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RESUMO 

Estamos vivenciando o início da Era da Informação, onde enormes quantidades de dados são 
geradas a cada instante, principalmente em decorrência da rápida modernização e 
desenvolvimento tecnológico que têm acontecido nos mais diversos setores da sociedade. Com 
isso, no âmbito das indústrias estamos presenciando o desenrolar da 4ª Revolução Industrial, 
ou Indústria 4.0, fortemente marcada pela automação, inteligência artificial e Big Data. Essa 
revolução e as novas tecnologias trazidas por ela, podem trazer grandes melhorias à indústria, 
modificando as relações de trabalho e aumentando significativamente a eficiência, segurança e 
qualidade dos processos industriais. Uma das tecnologias que trazem grande impacto em 
diversas áreas, é o campo da inteligência artificial, um conjunto de recursos computacionais 
que podem ser usados para modelar e resolver problemas de alta complexidade utilizando muito 
menos recursos do que métodos tradicionais. Na Indústria Química, inteligências artificiais 
podem ser usadas por exemplo na modelagem de processos complexos, não-lineares e que 
contenham grande número de variáveis associadas, tornando difícil desenvolver modelos 
fenomenológicos robustos e precisos o suficiente para prever esses processos. Um exemplo de 
processo complexo que pode se valer de tais tecnologias é a produção de gás de síntese, através 
da reforma catalítica de metano. O gás de síntese é uma mistura gasosa composta por gás 
hidrogênio e monóxido de carbono, de grande interesse econômico pois pode ser utilizado para 
obter vários produtos com alto valor agregado, como amônia, hidrogênio combustível, e 
hidrocarbonetos incluindo combustíveis sintéticos. Além disso o processo de reforma catalítica 
seca, consome o metano e o gás carbônico, os dois principais causadores de efeito estufa, 
transformando-os em compostos que terão menos impacto ambiental. Porém, devido à 
complexidade e baixa linearidade presente nestes processos, torna-se difícil gerar modelos 
fenomenológicos precisos, e que possam se valer dos dados disponíveis. Assim a utilização de 
inteligências artificias, nesse caso, de métodos Machine Learning podem trazer avanços no 
desenvolvimento, controle e entendimento desses processos. Neste trabalho foram utilizados 
métodos de Machine Learning, dentre eles as redes neurais artificiais, para modelagem da 
reforma catalítica seca do metano para a produção de gás de síntese, a partir de dados 
experimentais obtidos na literatura. Os modelos desenvolvidos foram avaliados através de 
métricas de regressão e comparados entre si buscando aqueles que apresentaram melhor 
desempenho. Os modelos de redes neurais obtiveram o melhor desempenho entre os modelos 
testados, apresentando coeficientes de determinação acima de 0,97 na previsão das taxas de 
produção dos componentes do gás de síntese e erros relativos médios de até 6,22%. Os 
resultados apontam para a utilidade desses modelos para uso industrial e acadêmico na 
modelagem de processos químicos complexos. 

 
Palavras-chave: Gás de síntese; Reforma Catalítica; Indústria 4.0; Machine Learning; Redes 
Neurais Artificiais. 
  



 
 

ABSTRACT 

We live in the beginning of the Information Age, where huge amounts of data are generated at 
every moment, mainly as a result of the rapid modernization and technological development 
that has been taking place in the most diverse sectors of society. As a result, within industries 
we are witnessing the unfolding of the 4th Industrial Revolution, or Industry 4.0, strongly 
marked by automation, artificial intelligence and Big Data. This revolution and the new 
technologies brought about by it can bring great improvements to the industry, changing work 
relationships and significantly increasing the efficiency, safety and quality of industrial 
processes. One of the technologies that has a great impact in several areas is the field of artificial 
intelligence, a set of computational resources that can be used to model and solve highly 
complex problems using much less resources than traditional methods. In the Chemical 
Industry, artificial intelligences can be used, for example, in the modeling of complex, non-
linear processes that contain a large number of associated variables, making it difficult to 
develop phenomenological models that are robust and accurate enough to predict these 
processes. An example of a complex process that can make use of such technologies is the 
production of synthesis gas (syngas), through the catalytic reform of methane. Syngas is a 
gaseous mixture composed of hydrogen gas and carbon monoxide, and is of great economic 
interest, as it can be used to obtain several products with high added value, such as ammonia, 
hydrogen fuel and hydrocarbons, including synthetic fuels. In addition, the dry catalytic reform 
process consumes methane and carbon dioxide, the two main causes of the greenhouse effect, 
transforming them into compounds that will have less environmental impact. However, due to 
the complexity and low linearity of these processes, it is difficult to generate accurate 
phenomenological models that can make use of the available data. Thus, the use of artificial 
intelligence, in this case, Machine Learning methods can bring advances in the development, 
control and understanding of these processes. In this work, Machine Learning methods, 
including artificial neural networks, were used to model the dry catalytic reform of methane for 
syngas production, based on experimental data obtained in the literature. The developed models 
were evaluated using regression metrics and compared to each other, looking for those that 
presented the best performance. The neural network models obtained the best performance 
among the tested models, presenting coefficients of determination above 0.97 in the prediction 
of the production rates of the syngas components and average relative errors of up to 6.22%. 
The results point to the usefulness of these models for industrial and academic use in modeling 
complex chemical processes. 

 
Keywords: Syngas; Catalytic Reform; Industry 4.0; Machine Learning; Artificial Neural 
Networks. 
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1 INTRODUÇÃO 

Nos últimos anos, o mundo está presenciando grandes avanços tecnológicos nas mais 

diversas áreas do conhecimento científico. A indústria química está diretamente envolvida 

nesses avanços, com desenvolvimento de novos materiais, produtos e processos que tornam a 

produção de bens mais eficiente e limpa. Além disso, a indústria química também é 

grandemente impactada por avanços no conhecimento em outras áreas tecnológicas, que têm 

crescido a cada dia e apresentado soluções rápidas, simplificadas e inteligentes para diversos 

setores.  

Um exemplo de conhecimento que está cada vez mais em evidência no campo da Ciência 

de Dados, e que é estreitamente ligado à Estatística e à Computação, são os métodos de Machine 

Learning (ML), uma subdivisão da área de Inteligência Artificial (IA). Métodos deste tipo, 

quando aplicados, têm uma grande capacidade para modelar processos complexos, o que por 

muitas vezes é difícil a partir de equações fenomenológicas conhecidas (AL AANI et al., 2019).  

Por vezes, se torna difícil e custoso desenvolver e resolver modelos teóricos que possam 

descrever precisamente um sistema real, a exemplo das equações de Navier-Stokes para 

modelagem do comportamento de um fluido. Dessa forma, em alguns casos é necessário 

simplificar os modelos, para que se tenham soluções analíticas, mas simples, abrindo mão de 

acurácia para ganhar tempo na resolução do problema. Porém, esse balanço torna-se desafiador 

quando um problema complexo exige uma alta precisão (DOBBELAERE et al., 2021). 

Nesse sentido, métodos de inteligência artificial, em especial os de ML, podem ter grande 

vantagem na modelagem de problemas complexos, pois são modelos orientados por dados 

(data-driven), que se adaptam às especificidades dos processos e sistemas estudados (AL AANI 

et al., 2019). 

Um dos subtópicos de ML que tem recebido bastante atenção nos últimos tempos, 

especialmente nas ciências de forma geral, é o Deep Learning, também muito conhecido como 

campo das redes neurais. Uma rede neural é um modelo computacional que tenta simular a 

estrutura com que neurônios biológicos funcionam em nossos cérebros. São compostas de 

unidades básicas de processamento, também chamadas neurônios, organizados em múltiplas 

camadas em uma rede neural, organizadas através de um conceito hierárquico é o que dá a esses 

modelos a capacidade de aprendizagem (SARKAR; BALI; SHARMA, 2018). 

Redes neurais têm sido usadas em diversos campos das ciências, no tratamento de variados 

problemas, como processamento de linguagem natural e imagens, agrupamento e classificação 

de dados, previsão e regressão de dados. Em especial, na indústria química, tem sido usada na 
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área de controle ajudando a prever o comportamento de processos e na detecção de falhas, 

redução de dimensionalidade de modelos e modelagem de dinâmicas complexas, permitindo 

gerar previsões acuradas para as variáveis de um processo a partir de dados históricos (LEE; 

SHIN; REALFF, 2018). 

Um exemplo de processo que pode ser modelado a partir de redes neurais é a reforma 

catalítica de metano (CH4) e gás carbônico (CO2) para produção de gás de síntese, mistura 

gasosa composta essencialmente de monóxido de carbono (CO) e gás hidrogênio (H2). O gás 

natural é um recurso de grande importância energética a nível mundial, mas apesar disso poucos 

produtos podem ser sintetizados diretamente a partir do metano (SALHI et al., 2011).  

Dessa forma, a maior parte das sínteses a partir do metano são realizadas através da sua 

conversão para gás de síntese, que servirá de base para a produção de diversos outros produtos 

químicos com alto valor agregado, tais como o metanol, amoníaco, e uma variedade de 

hidrocarbonetos inclusive combustíveis sintéticos (SALHI et al., 2011). 

A conversão do gás natural (CH4) em outros produtos através da reforma a gás de síntese, 

além de agregar mais valor a esse composto é também um método mais amigável ao meio 

ambiente, pois a utilização de combustíveis sintetizados a partir desse processo podem 

apresentar uma redução de cerca de 90% em emissão de carcinogênicos e 50% de redução na 

emissão de CO2 quando comparada a queima combustíveis fósseis convencionais (AYODELE; 

CHENG, 2015). 

Assim, o objetivo principal deste trabalho é desenvolver um sistema de redes neurais 

artificiais capazes de modelar o processo de reforma catalítica seca do metano a gás de síntese, 

com base nos dados obtidos por Ayodele e Cheng (2015), e avaliar seu desempenho frente a 

outros métodos mais simples de machine learning e também aos resultados no trabalho original 

dos autores citados. 

De maneira geral, os objetivos específicos são: 

 Treinar modelos de machine learning simples para previsão dos resultados no 

processo de reforma catalítica seca, e selecionar o de melhor desempenho. 

 Otimizar hiperparâmetros e treinar redes neurais para previsão dos resultados no 

processo de reforma catalítica seca do metano. 

 Comparar desempenho dos modelos de machine learning simples com o 

desempenho das redes neurais desenvolvidas. 

 Comparar desempenho das redes neurais desenvolvidas com o desempenho das 

redes treinadas originalmente por Ayodele e Cheng (2015).   
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2 FUNDAMENTAÇÃO TEÓRICA 

Todos os dias presenciamos o desenvolvimento de novas tecnologias que têm grande 

capacidade para mudar a forma com que conhecemos e encaramos o mundo e estas estão sendo 

rapidamente incorporadas na sociedade, como em aspectos simples do dia-a-dia, a exemplo de 

ferramentas de comunicação e entretenimento, ou na tomada de decisões em grandes empresas, 

que passam a ser orientadas por grandes volumes de dados, e na indústria de maneira geral, que 

se beneficia de tais tecnologias para melhoria na qualidade dos produtos e eficiência dos 

processos. Quando olhamos diretamente para indústrias, a inclusão dessas novas tecnologias 

faz parte da chamada Indústria 4.0, ou 4ª Revolução Industrial (PERASSO, 2016). 

As revoluções industriais, foram momentos de grande mudança nos meios de produção, 

marcados por avanços tecnológicos que mudaram definitivamente o funcionamento das 

indústrias. A 1ª Revolução Industrial, ocorreu por volta de 1765 e foi marcada pela mecanização 

dos processos, que permitiu a acelerar a produção e substituir parte do trabalho humano, 

resultando numa produção em larga escala. Foi seguida pela 2ª Revolução em 1870, marcada 

principalmente pelo desenvolvimento da Indústria Química e de novas formas de energia como 

o petróleo e a eletricidade, que permitiram a criação de novos inventos, como automóveis, 

aparelhos de rádio e telefones (A VOZ DA INDÚSTRIA, 2020). 

Após a 2ª Guerra Mundial, o conhecimento na área nuclear e quântica e também a corrida 

pela exploração espacial, permitiram não só o desenvolvimento de uma nova forma de geração 

de energia, mas também a criação de aparelhos e máquinas mais avançadas, com o 

desenvolvimento da microeletrônica, automação e biotecnologia. Com isso, iniciou-se a 3ª 

Revolução Industrial, que originou boa parte dos produtos e métodos de produção que temos 

hoje (PORTAL DA INDÚSTRIA, 2021). 

A 4ª Revolução Industrial, ou Indústria 4.0, engloba diversas novas tecnologias avançadas 

como inteligência artificial, robótica, Big Data, Internet das Coisas (IoT, do inglês Internet of 

Things), computação em nuvem, entre outras. Essa nova etapa da evolução industrial tem 

mudado rapidamente e em grande escala os modelos de produção atuais, aumentando a 

eficiência de dos processos e melhorando a tomada de decisões baseando-se no grande volume 

de dados e insights permitidos por essas ferramentas (PORTAL DA INDÚSTRIA, 2021). 

Com isso, a Indústria Química tem, cada vez mais à sua disposição, ferramentas que 

permitem a melhoria e desenvolvimento dos processos existentes. Ao utilizar recursos como o 

machine learning e inteligências artificiais para estudar e modelar processos complexos, não-

lineares e que são complicados de analisar através dos modelos tradicionais, há bons resultados 
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com predições acuradas e que demandam menos tempo e esforços, uma vez que não é 

necessário conhecer a fundo os detalhes e particularidades das reações, equipamentos e 

condições experimentais do processo estudado (DOBBELAERE et al., 2021).  

Porém isso não significa que a utilização desses métodos substitui o estudo do processo 

por meios tradicionais, pelo contrário, esses conhecimentos são essenciais para entender e tomar 

decisões sobre o processo e entender o que os dados analisados e gerados por essas ferramentas 

significam. Não se trata de uma substituição, e sim da união de conhecimentos e ferramentas 

para tornar a indústria ainda mais eficiente e produtiva. 

Um dos temas que está em evidência nos últimos anos é a produção de combustíveis, 

impulsionada pela crescente demanda de energia e pela preocupação com a preservação 

ambiental. Busca-se reduzir a emissão de gases estufa e a dependência de combustíveis fósseis, 

bem como alternativas na produção de combustíveis sustentáveis e formas de energia 

renovável. Porém a utilização de energias renováveis nem sempre é capaz de suprir 

completamente as necessidades de países industrializados por conta da dificuldade na extração 

desses combustíveis (YE, 2019). 

Naturalmente partir de tais demandas surgem soluções não só para produzir combustíveis 

de fontes renováveis, mas também utilizar combustíveis fósseis de maneira mais inteligente e 

menos prejudicial ao meio ambiente. Um dessas formas é a conversão de gás natural (composto 

majoritariamente de metano (CH4) e gás carbônico (CO2) através de uma reforma catalítica 

para produção de gás de síntese(AYODELE; CHENG, 2015).  

O gás de síntese pode ser utilizado para a produção de outros combustíveis e produtos como 

o metanol, reduzindo a emissão desses gases, principais responsáveis pelo efeito estufa. Além 

do consumo e transformação desses gases, combustíveis sintéticos produzidos a partir do gás 

de síntese podem apresentar uma redução de cerca de 90% em emissão de carcinogênicos e 

50% de redução na emissão de CO2 quando comparado a combustíveis fósseis convencionais 

(AYODELE; CHENG, 2015). 

2.1 GÁS DE SÍNTESE 

O gás de síntese consiste numa mistura gasosa formada por gás hidrogênio (H2) e monóxido 

de carbono (CO), podendo haver traços de outros compostos como gás carbônico (CO2), 

nitrogênio (N2) e metano (CH4). É utilizado na produção de compostos como metanol e amônia, 

além de combustíveis, como a gasolina sintética a partir do processo de síntese de Fischer-

Tropsch O gás de síntese pode ser obtido através de diferentes processos e matérias primas, 



15 
 

dentre elas: reforma catalítica de gás natural, gaseificação parcial do carvão, gaseificação de 

biomassa, gaseificação de rejeitos sólidos e coque, entre outras (SALES, 2013). 

2.1.1 Reforma catalítica de gás natural 

O processo de reforma catalítica do gás natural é bastante utilizado para a produção do gás 

de síntese, e em algumas refinarias com objetivo principal de produção de hidrogênio. Existem 

dois processos principais que são a reforma a vapor e a reforma a seco. Consiste num processo 

termoquímico com utilização de catalisador para promover a reação (SALHI et al., 2011).  

O grande desafio desses processos é o desgaste e desativação dos catalisadores devido às 

reações secundárias e deposição de carbono, principalmente pelo fato de que os catalisadores 

que apresentam melhor desempenho e mais resistências aos efeitos negativos, utilizam em sua 

composição metais preciosos, encarecendo e por vezes inviabilizando o processo (SALHI et 

al., 2011). 

2.1.1.1  Reforma catalítica a vapor 

O processo de reforma a vapor do metano é um dos mais antigos e mais utilizados para a 

produção de gás de síntese rico em H2, com foco na produção de hidrogênio combustível. A 

reforma a vapor normalmente é conduzida em fornos industriais de altas temperaturas, 

operando com reatores tubulares com leito catalítico. Uma consequência dessas condições de 

operação é o alto custo, refletido pelo grande consumo energético (em muitos casos parte do 

gás natural é usado como combustível para o processo) e também pelos custos do equipamento, 

uma vez que o reator precisa suportar as altas temperaturas (MELONI; MARTINO; PALMA, 

2020). 

A reação de reforma a vapor do metano é altamente endotérmica, sendo necessário operar 

a temperaturas entre 700 e 800 °C, e ocorre segundo a reação: 

 

𝐶𝐻ସ + 𝐻ଶ𝑂 →  𝐶𝑂 + 3𝐻ଶ 𝛥𝐻° = +206,4 𝑘𝐽. 𝑚𝑜𝑙ିଵ (1) 

 

Essa reação é normalmente seguida pela reação de deslocamento gás-água (water gas shift, 

WGS) produzindo ainda mais H2 e CO2 que acaba sendo um subproduto nesse processo: 

 

𝐶𝑂 + 𝐻ଶ𝑂 → 𝐶𝑂ଶ + 𝐻ଶ 𝛥𝐻° = −41 𝑘𝐽. 𝑚𝑜𝑙ିଵ (2) 
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Com isso, o processo de reforma a vapor do metano apresenta grande custo-benefício para 

produção de hidrogênio a baixo custo, e resulta num gás de síntese com alta proporção de 

H2/CO, necessário para produção de H2 puro. Foram desenvolvidos vários tipos de 

catalisadores, e um dos mais promissores para utilização em escala industrial é o catalisador de 

níquel depositado sobre alumina, por conta da sua eficiência e menor custo quando comparado 

aos demais catalisadores que utilizam em sua maioria metais preciosos (SALHI et al., 2011). 

Porém, o desenvolvimento de catalisadores eficientes e baratos para este processo ainda é 

desafiador, devido ao grande desgaste sofrido durante o processo, principalmente por conta da 

corrosão promovida pelo vapor. A deposição de carbono, e consequente desativação do 

catalisador, também é um problema para esse tipo de processo, mas pode ser bastante reduzida 

utilizando uma maior proporção de vapor em relação ao metano (de 2.5 a 3), o que por outro 

lado, aumenta os efeitos de corrosão (MELONI; MARTINO; PALMA, 2020). 

Outros metais também são ativos como catalisadores do processo, mas acabam 

apresentando diversas desvantagens. O cobalto, por exemplo, acaba sofrendo desgaste intenso 

devido as altas pressões e a presença do vapor; o ferro, é rapidamente oxidado e assim acaba 

inativado; outros metais nobres, como platina, paládio e ródio, apresentam boa resistência mas 

são demasiadamente custosos para uma operação comercial em escala, inviabilizando sua 

utilização (MELONI; MARTINO; PALMA, 2020). 

2.1.1.2  Reforma catalítica seca 

A reforma catalítica seca do metano, gera um gás de síntese com menor proporção de gás 

hidrogênio quando comparada à reforma a vapor, com proporção média de H2/CO = 1. Esse 

baixo rendimento é obtido principalmente pois além da reação de reforma, descrita pela 

Equação 3, ocorre simultaneamente a reação de deslocamento gás-água reversa (reverse water 

gas shift, RWGS), descrita pela Equação 4 (USMAN; WAN DAUD; ABBAS, 2015).  

 

𝐶𝐻ସ + 𝐶𝑂ଶ → 2𝐶𝑂 + 2𝐻ଶ Δ𝐻° = +247,4 𝑘𝐽. 𝑚𝑜𝑙ିଵ (3) 

   

𝐶𝑂ଶ + 𝐻ଶ → 𝐶𝑂 + 𝐻ଶ𝑂 𝛥𝐻° = +41 𝑘𝐽. 𝑚𝑜𝑙ିଵ (4) 

 

Mesmo com a baixa proporção de gás hidrogênio, essa reação de reforma é de grande 

interesse pois os dois principais gases causadores de efeito estufa são convertidos em compostos 

de maior valor agregado, permitindo não só uma redução na emissão de gases poluentes, mas 
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também a geração de valor a partir desses gases. Esse processo tende a produzir um gás de 

síntese numa proporção apropriada para a produção de gasolina sintética através da reação de 

síntese de Fischer-Tropsch, e nesse sentido apresenta uma redução de até 50% na emissão de 

CO2 quando comparado à queima de combustíveis fósseis (AYODELE; CHENG, 2015). 

Porém, mesmo com a importância do ponto de vista ambiental, a operação da reforma seca 

do metano pode ser ainda mais problemática, pois sofre grandemente com deposição de 

carbono, induzindo a desativação de catalisadores. Ocasionada pela decomposição do metano 

e pela reação de Boudouard, descritas pelas Equações 5 e 6, respectivamente (USMAN; WAN 

DAUD; ABBAS, 2015). 

 

𝐶𝐻ସ → 𝐶 + 2𝐻ଶ 𝛥𝐻° = +75,4 𝑘𝐽. 𝑚𝑜𝑙ିଵ (5) 

   

2𝐶𝑂 → 𝐶 + 𝐶𝑂ଶ 𝛥𝐻° = −172 𝑘𝐽. 𝑚𝑜𝑙ିଵ (6) 

 

O grande desafio para esse processo é a obtenção de catalisadores apropriados, uma vez 

que a maioria dos catalisadores com boa atividade são desenvolvidos com a utilização de metais 

preciosos, a exemplo dos catalisadores de ródio e rutênio que apresentam um bom desempenho 

e resistência a desativação, porém seu alto preço e baixa disponibilidade limitam seu 

desenvolvimento e ampla utilização (CHEN; ZAFFRAN; YANG, 2020). 

 Outros metais mais baratos e abundantes têm sido testados para este processo. 

Catalisadores de níquel suportado em óxidos de outros metais, tem sido bastante utilizado, 

principalmente pelo seu baixo preço e facilidade de obtenção. Porém ainda não é o catalisador 

ideal, pois tem uma tendência a sofrer sinterização e desativação por deposição de carbono 

(MELONI; MARTINO; PALMA, 2020).  

Combinações de cobalto e níquel, além de outros metais também têm sido testadas e 

apresentam bom desempenho e resistência, porém ainda não há estudos conclusivos sobre esse 

tipo de catalisador (CHEN; ZAFFRAN; YANG, 2020). 

Usman, Wan Daud e Abbas (2015) analisaram a influência de uma série de parâmetros no 

processo de reforma seca, observando que o tamanho das partículas de catalisador pode ser uma 

variável útil para o controle da deposição de carbono. A utilização de partículas menores que 

15 nm, apontou para uma redução na desativação por deposição, independentemente do tipo de 

catalisador. Nesse estudo, também foram apontadas combinações de metais nobres e níquel 

como catalisadores bi metálicos, o que ajudaria a melhorar a resistência e atividade, bem como 
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diminuiria os custos em comparação a utilização de catalisadores monometálicos de metais 

nobres. 

Ayodele e Cheng (2015) utilizaram um catalisador de cobalto suportado sobre óxido de 

cério em um reator de leito fixo para realizar a reforma catalítica seca do metano. O experimento 

foi realizado em escala laboratorial para fins de modelagem e otimização, e os dados obtidos 

nesse experimento, foram utilizados no presente trabalho. A Figura 1 mostra o diagrama do 

esquemático do experimento realizado. 

Figura 1 - Diagrama esquemático do experimento de reforma catalítica seca. 

 
Fonte: (AYODELE; CHENG, 2015). 

A reforma foi executada em um reator de aço inoxidável preenchido com o leito fixo 

catalítico de cobalto sobre óxido de cério, em um forno com temperatura controlada. A 

alimentação consiste na corrente gasosa composta pelos reagentes, metano (CH4) e gás 

carbônico (H2) e os agente carreador gás nitrogênio (N2). O gás hidrogênio foi usado como 

agente redutor para o catalisador ao início do experimento, utilizando uma corrente de 20% H2 

e 80% de N2 para iniciar a atividade catalítica (AYODELE; CHENG, 2015). 

A temperatura foi medida através de um termopar acoplado ao forno, os fluxos gasosos 

controlados e medidos através de controladores digitais associados a cada corrente 

individualmente. A composição do gás de síntese produzido foi medida por cromatografia 

gasosa com detector de condutividade térmica, e a partir dos dados, calculadas as conversões e 

taxa de produção dos componentes do gás de síntese (AYODELE; CHENG, 2015). 

2.1.2 Processos de gaseificação 

Processos de gaseificação consistem na conversão de matéria rica em carbono para gás 

através de aquecimento em determinadas condições, o que inclui processos como a pirólise, 
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hidrogenação e oxidação parcial, sendo o último o método mais utilizado para produção de gás 

de síntese. A composição do gás de síntese gerado nesse processo depende das condições de 

operação (temperatura, pressão, catalisador) e da composição da matéria prima, que em geral é 

biomassa (WEN; LU; PHUC, 2021). 

A biomassa, em diversas formas tem sido utilizada como matéria prima no processo de 

gaseificação, sendo decomposta a altas temperaturas em vasos pressurizados. A gaseificação 

da biomassa exige inicialmente que haja uma pirólise para secagem do material e remoção de 

compostos voláteis. Então o material restante, predominantemente carbonáceo, sofre oxidação 

parcial para produção do gás de síntese (KAN et al., 2019).  

A pirólise exige temperaturas em torno dos 400 a 600°C e um ambiente livre de oxigênio. 

Já a gaseificação por oxidação parcial exige temperaturas ainda mais altas, em torno dos 800 a 

900 °C e uma quantidade controlada de oxigênio (BAHADAR et al., 2022). 

Também são estudados processos de co-gaseificação, onde mais de um tipo de biomassa 

e/ou outras matérias carbonáceas são utilizadas. Kan et al. (2019) apresentaram uma co-

gaseificação combinando resíduos de horticultura e lodo de esgoto para produção de gás de 

síntese, usando CO2 como oxidante, e utilizando as próprias cinzas como catalisador do 

processo, o que reduz custos e evita problemas de envenenamento e desgaste do catalisador. 

Mansur et al., (2020) fizeram um estudo de co-gaseificação utilizando carvão como matéria 

carbonácea principal, em blends combinados com serragem ou pellets de madeira, feitos a partir 

da serragem, para comparar o desempenho das duas matérias primas. Nesse estudo foi 

observado que a mistura de carvão e pellets produz um gás de síntese com maior proporção de 

H2/CO do que usando a serragem, dessa forma mostrando que um pré-processamento da matéria 

prima pode gerar um produto de maior valor agregado. 

A Figura 2 é uma representação dos processos de gaseificação e co-gaseificação de 

biomassa e carvão. De maneira geral o processo pode ser dividido em etapas de preparação, 

gaseificação e processamento de produtos. As etapas de preparação incluem processos como 

secagem, trituração e compactação da matéria prima (BAHADAR et al., 2022).  

Já o processamento dos produtos varia de acordo com a finalidade esperada para o gás de 

síntese, podendo ir da purificação e separação dos gases, como para a produção de hidrogênio 

combustível com alto grau de pureza; produção de metanol; armazenamento do gás de síntese 

para servir de insumo na Síntese de Fischer-Tropsch; ou a utilização do próprio gás de síntese 

como gás combustível (BAHADAR et al., 2022). 
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Figura 2 - Fluxograma da gaseificação e co-gaseificação de carvão e biomassa. 

 
Fonte: Adaptado de BAHADAR et al. (2022) 

2.2 MACHINE LEARNING 

Machine learning (ML) é a denominação dada a um conjunto de técnicas computacionais 

contidas dentro do campo da Inteligência Artificial (IA), cujas bases são a Ciência da 

Computação, a Matemática e a Estatística. A ideia por trás do ML é gerar algoritmos capazes 

de ajudar a máquina a aprender a partir de dados.  

Um algoritmo deve aprender a partir da Experiência ao processar os dados disponíveis, 

para executar determinadas Tarefas, enquanto a Performance desse algoritmo ao desempenhar 

tal tarefa é mensurada, com base em métricas definidas. É dito que este algoritmo aprende, 

quando a Performance nessas determinadas Tarefas aumenta com a Experiência, ou seja, ao 

processar mais dados no decorrer do tempo (SARKAR; BALI; SHARMA, 2018).  

Dentre as tarefas definidas para o algoritmo, pode-se destacar: classificação (ou 

categorização) de dados; detecção de anomalias; regressão; agrupamentos; tradução e 

transcrição (ambas se aplicam vastamente no processamento de linguagem natural); dentre 

outras possíveis tarefas (SARKAR; BALI; SHARMA, 2018). 

Dentre os principais paradigmas do ML destacam-se: 
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● Aprendizado supervisionado, no qual o modelo é treinado a partir de dados já 

classificados e tratados com uma estrutura bem definida de inputs e outputs. Um bom 

exemplo são modelos de Regressão, como support vector machines (SVM), redes 

neurais artificiais (ANNs) e Gaussian process regression (GPR). 

● Aprendizado não supervisionado, onde o modelo é apresentado a dados sem 

classificação e sem uma estrutura explícita de inputs e outputs. O modelo deve então, 

encontrar os padrões dos dados e agrupá-los. Técnica utilizada principalmente quando 

não há relações claras entre inputs e outputs. Exemplos de métodos não supervisionados 

são k-means clustering e support vector data description. 

● Aprendizado por reforço, onde o modelo é apresentado a um conjunto de dados e 

aprende com base numa “recompensa”, uma métrica computada através de uma função 

objetiva que deve ser maximizada, indicando o “caminho correto” que a rede deve 

tomar. 

Olhando para o ML aplicado à engenharia química, pode-se destacar como principais 

pontos fortes desses métodos a grande velocidade de desenvolvimento junto à boa acurácia de 

um modelo devidamente treinado. Junto a isso, há grande escalabilidade desse tipo de modelo, 

permitindo que se aplique a diferentes escalas e processos (DOBBELAERE et al., 2021). 

Em contrapartida, esses modelos se comportam como uma “caixa preta”, então se torna 

difícil entender o funcionamento do modelo e como seus parâmetros se relacionam, conforme 

a complexidade do modelo escolhido. Um outro fator que deve ser levado em conta é a 

reprodutibilidade, pois o ajuste e treinamento dos modelos é fortemente influenciado pelos 

dados disponíveis para o treinamento, bem como pela grande quantidade de combinações de 

parâmetros que podem ser utilizados (DOBBELAERE et al., 2021). 

Técnicas de machine learning aplicadas à engenharia química não são novidade. Essa 

indústria já experimentou os impactos do ML em épocas anteriores, desde os anos de 1980 

utilizando redes neurais “rasas” e outros modelos guiados por dados para fazer controle de 

processos e predição de falhas. (SCHWEIDTMANN et al., 2021) 

Um exemplo dessa utilização pioneira foi o sistema CONPHYDE, que auxiliava na 

previsão das propriedades termo físicas de misturas complexas, desenvolvido em 1983. O 

sistema era baseado no que se chamava de “sistemas experts”, modelos altamente 

especializados e impulsionados por heurística e conhecimento técnico dos processos. Vários 

outros modelos foram desenvolvidos a exemplo do DECADE (1985), para desenvolvimento de 

catalisadores e do MODELL.LA, uma linguagem de programação para modelagem de 

processos. Apesar do sucesso dos sistemas experts, os altos investimentos em tempo, dinheiro 
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e esforço para desenvolver tais ferramentas, acabaram inviabilizando seu uso na época   

(VENKATASUBRAMANIAN, 2019). 

Porém, essas “ondas” de aplicação do ML tiveram seu desenvolvimento limitado por 

aspectos técnicos, como a baixa disponibilidade e qualidade dos dados, a falta de poder 

computacional e de linguagens e ambientes de desenvolvimento amigáveis ao usuário. Nos dias 

atuais, com a rápida evolução da tecnologia e barateamento do poder computacional, 

ferramentas de ML são muito mais acessíveis, tanto no ambiente industrial quanto no 

acadêmico (SCHWEIDTMANN et al., 2021). 

Além das melhorias de hardware e acesso, soluções de software também foram 

aprimoradas e popularizadas, tornando o desenvolvimento de modelos de ML mais simples e 

amigável para uso. Hoje, linguagens como MATLAB, R, C++ e principalmente Python, são 

bastante utilizadas para criar modelos de ML, tratar e analisar dados e desenvolver aplicações 

para uso em produção. A disponibilidade de enormes quantidades de dados também permitiu o 

desenvolvimento dessa área, introduzindo conceitos como a ciência de dados e o “Big Data” 

(VENKATASUBRAMANIAN, 2019). 

Além das linguagens de programação, diversos frameworks foram criados e aprimorados 

para esse tipo de trabalho. Para o Python, podem ser citados o TensorFlow do Google e o scikit-

learn para criação e treino de modelo; Pandas, numpy e scipy para leitura e tratamento de dados; 

matplotlib e Seaborn para visualização de dados, dentre outras bibliotecas. O desenvolvimento 

destes frameworks, além de tornar a etapa técnica mais amigável e simplificada, expande as 

possibilidades do que pode ser feito com ML e reduz drasticamente o tempo e esforço 

necessário para o seu desenvolvimento.  

Hoje, para desenvolver uma rede neural não é mais necessário programa-la do zero, 

levando em conta toda a matemática e estatística por trás dos modelos, e com algumas linhas 

de código é possível tratar os dados, criar o modelo, treiná-lo e obter os resultados. Utilizando 

por exemplo frameworks como Pycaret, uma ferramenta do que é chamado AutoML, que 

facilita o processo de tratamento dos dados e treinamento de diversos modelos 

simultaneamente, permitindo a escolha daqueles que apresentam melhor desempenho para 

serem otimizados e aprofundados. 

2.2.1 Redes Neurais 

Dentre os métodos de machine learning, um dos conjuntos de maior destaque são as redes 

neurais, devido a sua grande versatilidade e adaptabilidade à diversos tipos de problemas, desde 

classificação de dados, predição e regressão, até mesmo processamento de imagens e linguagem 
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natural. O campo em que atuam as redes neurais é chamado de Deep Learning, e esses 

algoritmos são baseados num conceito em que as várias representações dos dados são 

aprendidas em diferentes camadas na estrutura da rede(SARKAR; BALI; SHARMA, 2018).  

A interação e hierarquia entre as diferentes camadas, possibilita construir uma inteligência 

para a máquina, a partir da forma que os dados são representados. Esse tipo de arquitetura 

baseado em camadas é, de maneira geral, o “coração” dos algoritmos de Deep Learning 

(SARKAR; BALI; SHARMA, 2018). 

Redes neurais imitam o funcionamento de neurônios humanos para representar as formas 

de relacionamento não-lineares entre os dados, e são compostas por nós (chamados 

“neurônios”), elementos processadores básicos das redes, com valores associados a cada um 

(pesos e bias) que são “aplicados” aos sinais de entrada da rede, e o conjunto de operações 

realizadas por toda a rede determinam os valores de saída (BAHADAR et al., 2022). 

O objetivo do treino de uma rede neural, é calcular e determinar os melhores pesos e bias 

para cada neurônio da rede de forma a retornar valores o mais próximo dos dados reais 

utilizados no treino. Uma rede treinada, deve ser capaz de gerar resultados confiáveis para dados 

fora do conjunto de dados de treino, ou seja, deve ser capaz de fazer previsões acuradas para 

inputs que ela nunca tenha entrado em contato (VALENTE; VALENTE, 2021).  

Esse método de treinamento cria um modelo “caixa preta” do ponto de vista do fenômeno 

estudado, pois não são utilizadas equações fenomenológicas na predição e todos os parâmetros 

de pesos e bias calculados no treino das redes não necessariamente têm sentido físico ou 

químico atribuído, e são valores compreendidos apenas pela rede (VALENTE; VALENTE, 

2021). 

2.2.1.1  Estrutura de redes neurais 

As redes neurais consistem em nós, também chamados neurônios, que são as unidades mais 

básicas de processamento em uma rede. O aglomerado de neurônios num mesmo nível é 

chamado de camada (layer). Uma rede pode ser composta por diversas camadas de neurônios, 

contendo pelo menos uma camada de entrada (input) e uma de saída (output), as demais 

camadas intermediárias são chamadas de camadas ocultas (hidden layers). Os dados de entrada 

são repassados para os neurônios da próxima camada, processam esses dados de acordo com os 

pesos atribuídos a cada neurônio, e passam o valor processado para a próxima camada através 

de uma função de ativação até alcançar a camada de saída, onde resultados são computados 

(ELMAZ; YÜCEL; MUTLU, 2020). 
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Um exemplo de estrutura de rede neural é apresentado na Figura 3, onde os círculos 

amarelos representam os pontos de entrada dos dados (inputs), os vermelhos os pontos de saída 

(outputs), e no meio, os azuis representam os neurônios das chamadas “camadas ocultas” da 

rede neural. Cada coluna de neurônios representa uma camada, e normalmente cada neurônio 

interage apenas com os neurônios das camadas anterior e posterior, não interagindo com outros 

neurônios da própria camada. 

Figura 3 - Representação da estrutura de uma rede neural.  

 
Fonte: (COELHO, 2017) 

Cada neurônio recebe os valores de todos os neurônios da camada anterior, que são 

ponderados por pesos associados a cada neurônio, e então somado com um parâmetro bias e 

então esse valor é passado para uma função de ativação responsável por combinar linearmente 

os valores computados nos neurônios. As funções de ativação têm como objetivo gerar o sinal 

de saída de cada neurônio, através de uma transformação escalar e determinar o “estado 

ativado” de cada neurônio. Essas funções são o que dão às redes neurais a capacidade de se 

ajustar a dados não-lineares (DING; QIAN; ZHOU, 2018). 

A estrutura de um neurônio genérico é ilustrada na Figura 4. 

Figura 4 - Esquema de representação de um neurônio genérico. 

 
Fonte: (COELHO, 2017) 
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Generalizando, a equação do neurônio k pode ser descrita como: 

 

𝜐௞ = 𝑏௞ + ෍ 𝑥௜𝜔௞,௜  
 (7) 

 

e o sinal de saída é definido através da função de ativação (φ) da camada: 

 

𝑦௞ = 𝜑(𝜐௞)  (8) 

 

A função de ativação pode assumir diversas expressões, dentre as mais comuns podem-se 

destacar: 

 Sigmoidal (sigmoid): 

 

𝜑(𝑥) =
1

1 + 𝑒ି௫  
 (9) 

 

 ReLU: 

 

𝜑(𝑥) = max(0, 𝑥) = ቄ
𝑥 , 𝑠𝑒 𝑥 ≥ 0
0 , 𝑠𝑒 𝑥 ≤ 0 

 (10) 

2.2.1.2  Treino de redes neurais 

O objetivo do treino de uma rede neural, é calcular e determinar os melhores pesos e bias 

para cada neurônio da rede de forma a retornar valores o mais próximo dos dados reais 

utilizados no treino. Uma rede treinada, deve ser capaz de gerar resultados confiáveis para dados 

fora do conjunto de dados de treino, ou seja, deve ser capaz de fazer previsões acuradas para 

inputs que ela nunca tenha entrado em contato (VALENTE; VALENTE, 2021).  

Esse método de treinamento cria um modelo “caixa preta” do ponto de vista do fenômeno 

estudado, pois não são utilizadas equações fenomenológicas na predição e todos os parâmetros 

de pesos e bias calculados no treino das redes não necessariamente têm sentido físico ou 

químico atribuído, e são valores compreendidos apenas pela rede (VALENTE; VALENTE, 

2021). 

Um dos métodos mais populares para eficientes para o treino de redes neurais é o 

Backpropagation (ou retropropagação). Algoritmos de treino baseados neste método, em geral 

são construídos em duas etapas: a propagação e o ajuste de pesos. Na etapa de propagação, a 
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rede neural é alimentada pelos inputs do conjunto de dados de treino, esses dados são 

processados pela rede, inicializada com valores aleatórios ou pré-definidos paras os pesos e 

biases. O processamento desses dados gera valores de saída, que são então comparados aos 

outputs reais do conjunto de treino. Então são computados os erros entre os valores gerados 

pela rede e os valores reais, desejados (SARKAR; BALI; SHARMA, 2018). 

Esses erros são então retropropagados pela rede, refazendo os cálculos em cada neurônio e 

gerando um erro para o ajuste de pesos. O algoritmo de treino computa o gradiente dos pesos 

com base no erro para cada neurônio, e aplica a “taxa de aprendizagem” para definir a 

porcentagem do valor do gradiente que será subtraída do peso daquele neurônio. O cálculo do 

gradiente normalmente é feito a partir de algoritmos de otimização e funções similares, como 

por exemplo o gradiente descendente estocástico (SARKAR; BALI; SHARMA, 2018). 

Essas etapas são repetidas diversas vezes, até que se obtenha um baixo erro, que seja 

satisfatório para o problema. Essas múltiplas repetições/iterações são as chamadas épocas 

(SARKAR; BALI; SHARMA, 2018). 

2.2.1.3  Construção e hiperparâmetros  

Ao treinar modelos de machine learning, os parâmetros internos do modelo são ajustados 

para se adaptar bem aos dados. Porém, além de parâmetros internos do modelo (pesos, bias, 

etc.), também existem os chamados hiperparâmetros, que não podem ser ajustados a partir dos 

dados, e devem ser definidos antes mesmo do treinamento. Hiperparâmetros são a configuração 

do modelo, definindo sua e estrutura e controlando o processo de aprendizagem (YANG; 

SHAMI, 2020). 

Todos os modelos de machine learning possuem hiperparâmetros, na maioria dos casos 

diferentes entre si, mas em especial para redes neurais é possível citar exemplos como: 

 Número de camadas ocultas 

 Número de neurônios por camada (pode haver diferente quantidade de neurônios 

em cada camada) 

 Função de erro 

 Algoritmo de otimização para o ajuste dos pesos 

 Taxa de aprendizagem: taxa que será aplicada sobre o gradiente ao recalcular 

pesos e bias dos neurônios. 

 Tamanho da amostra por propagação: define o volume de amostras que será 

usada em cada propagação completa, antes de reajustar os parâmetros da rede. 
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 Número de épocas: quantidade de iterações/ciclos de treinamento que serão 

executados 

 Métodos de parada antecipada: essa função avalia a variação do erro, num 

determinado número de épocas, caso não haja melhoria, é feita uma parada 

antecipada no treinamento. 

A definição dos hiperparâmetros (processo dehyperparameter tunning ou hyperparameter 

optimization, HPO) pode ser feita manualmente, ajustando os valores, treinando o modelo e 

avaliando o desempenho do treino. Esse método funciona bem para modelos com poucos 

hiperparâmetros, porém para modelos mais complexos fazer esse processo manualmente se 

torna muito custoso e demorado. Além disso, exige um conhecimento mais aprofundado de 

cada um deles, para entender sua influência sobre o modelo e definir os novos valores que 

devem ser testados. Por vezes, a interação entre diferentes hiperparâmetros tem uma relação 

não linear, o que torna o processo ainda mais difícil e não analítico (YANG; SHAMI, 2020). 

Visando tornar o processo de HPO mais simples e menos custoso, é possível utilizar 

algoritmos que executarão esse processo repetidas vezes avaliando o desempenho de cada 

conjunto de hiperparâmetros testados para escolher aquele que apresenta melhor performance. 

Como não existe um método analítico para definir a combinação ótima de hiperparâmetros para 

cada modelo, em geral esses modelos fazem uma busca pseudoaleatória num intervalo 

determinado de valores. Pode-se citar como exemplo os métodos de Grid Search e Randomized 

Search, que testam os conjuntos de hiperparâmetros dentro de um intervalo de valores de 

maneira sequencial e randomizada, respectivamente (SARKAR; BALI; SHARMA, 2018). 

2.2.2 Machine Learning na Indústria Química 

Redes neurais são reconhecidas por ter uma vasta gama de aplicação e adaptabilidade aos 

mais diversos problemas, abrangendo áreas como processamento de imagens, linguagem 

natural, classificação de dados e regressão de sistemas não lineares. Na indústria química, um 

bom exemplo de seu uso são os sistemas de controle preditivo e de predição de falhas.  Yao, 

Wang e Xu (2014) desenvolveram um sistema de monitoramento de falhas em processos em 

batelada, utilizando para isso o método de support vector data description. O método se 

mostrou válido quando testado no controle de um processo de produção de semicondutores, 

apresentando algumas melhorias. 

 Petsagkourakis et al. (2020) desenvolveram um método utilizando um modelo de 

aprendizado por reforço de uma rede neural recorrente para ajuste de parâmetros de controle 
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em processos bioquímicos complexos, sendo um dos casos de estudo a produção de ficocianina, 

pigmento azul produzido por cianobactérias que tem propriedades anti-alergênicas e 

antioxidantes. Aliado aos modelos fenomenológicos reais para a simulação do processo, este 

método obteve desempenho superior ao método tradicional de controle preditivo não linear, 

mesmo com uma quantidade reduzida de amostras para o treinamento do modelo. 

 O aprendizado supervisionado tem sido usado também para modelar sistemas dinâmicos 

e fazer predições e otimização dos processos, auxiliando na tomada de decisão. Processos como 

cristalização, polimerização, destilações e outros, podem ser simulados como modelos 

orientados por dados (data-driven), permitindo um estudo mais rápido dos processos, levando 

em conta as especificidades de cada planta (SCHWEIDTMANN et al., 2021). 

2.2.2.1 Machine Learning na produção de Gás de Síntese 

 A produção de gás de síntese pode ser feita a partir de diversas matérias primas de origem 

carbonácea, e as características dessas matérias primas impactam diretamente na eficiência do 

processo. Por muitas vezes é difícil determinar precisamente a composição dessas matérias 

primas para fazer uso de equações fenomenológicas para modelar o processo. Nessas situações, 

o uso de redes neurais e outros métodos de machine learning podem ser úteis pois não dependem 

de conhecer composições exatas, o modelo vai se adaptar aos dados e medições disponíveis, se 

elas forem significantes para os resultados (BAHADAR et al., 2022). 

 Pandey et al. (2016) testaram diferentes arquiteturas no desenvolvimento de redes neurais 

para modelagem da produção de gás de síntese através da gaseificação de rejeito sólido em um 

reator de leito fluidizado. As simulações mostraram que as redes são uma alternativa viável na 

predição dessas composições, com algumas estruturas atingindo coeficientes de determinação 

de até 0.99.   

Já  George, Arun e Muraleedharan (2018) utilizaram um processo de gaseificação similar 

para conversão de diversos tipos de biomassa, e a modelagem a partir de uma rede neural do 

tipo MIMO resultou em um coeficiente de regressão de 0.987, além de apresentarem um breve 

estudo sobre a influência dos parâmetros de entrada na composição final do gás de síntese. 

 Wen, Lu e Phuc (2021) aplicaram métodos de machine learning para prever a composição 

do gás de síntese produzido a partir da gaseificação de cascas de arroz. Foram testados dois 

modelos: redes neurais artificiais (ANN) e gradient boost regressor (GBR), que chegaram a 

alcançar coeficientes de determinação de 0.89 e 0.93 respectivamente. Como dados de entrada, 

além de análise laboratorial das composições na matéria prima, foram usados parâmetros como 
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umidade, porcentagem de cinzas na amostra e quantidade de voláteis, para a previsão da 

composição do gás de síntese. 

 Quanto à reforma catalítica do metano a gás de síntese, Elmaz, Yücel e Mutlu (2020) 

fizeram uma modelagem preditiva da reforma seca de metano sobre um catalisador de cobalto, 

e utilizaram redes neurais, support vector regression (SVR) e regressão polinomial para fazer 

a previsão da conversão de metano e gás carbônico, e nesse caso obtiveram um melhor 

desempenho utilizando regressão polinomial, seguida de SVR. 

  Ye (2019) utilizou uma ANN para modelar a produção do metanol a partir do gás de 

síntese, e investigar o efeito do aumento da pressão parcial na conversão. Para validação foi 

executado um experimento mostrando que o aumento da pressão houve também um aumento 

da conversão de metanol, conforme previsto pelo modelo. 

  Bahadar et al., (2022) testaram diversos algoritmos de machine learning, incluindo ANNs 

para modelar um conjunto de dados compilado de diversos autores para a modelagem da 

produção de gás de síntese. A comparação no desempenho de todos os métodos apontou o 

desempenho superior das ANNs para os dados utilizados, obtendo coeficientes de determinação 

de até 0.998, superando em todas as situações os demais métodos. 

  Ayodele e Cheng (2015) por sua vez, realizaram o experimento de reforma catalítica seca 

do metano em reator de leito fixo, utilizando como catalisador cobalto suportado em cério, e 

utilizaram redes neurais artificiais e o método de Box-Behnken para investigar os efeitos das 

pressões parciais de CH4 e de CO2 na taxa de produção do gás de síntese e a conversão dos 

reagentes.  

A partir das ANNs, fizeram a previsão dos das composições atingindo coeficientes de 

determinação de 0.99, e utilizaram o modelo Box-Behnken, um método de superfície de 

resposta para determinar os inputs ótimos para maximizar a conversão. Após otimização dos 

parâmetros de processo, obtiveram conversões de 74,84% e 76,49% para o CH4 e CO2, 

respectivamente.  
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3 MATERIAIS E MÉTODOS 

3.1  SOFTWARES 

Para desenvolvimento deste trabalho, foi utilizada a linguagem de programação Python, na 

versão 3.7. Os frameworks e bibliotecas de código utilizados foram: 

 Pandas, para manipulação de dados. 

 NumPy e SciPy, para utilidades matemáticas e estatísticas. 

 Seaborn e matplotlib, para visualização de dados. 

 Scikit-learn, para tratamento de dados e desenvolvimento de métodos de machine 

learning. 

 Pycaret, para desenvolvimento de métodos de machine learning. 

 Desenvolvimento e treino de redes neurais: Keras, TensorFlow  

 Otimização de hiperparâmetros de redes neurais: KerasTuner 

Como ambientes de desenvolvimento integrados (IDEs) foram utilizados o VSCode e o 

Google Colab. Todos os softwares citados são de código aberto (open source) e gratuitos para 

uso. 

3.2  CONJUNTO DE DADOS 

O conjunto de dados experimentais utilizados foram obtidos do trabalho de Ayodele e 

Cheng (2015). Neste conjunto, existem 57 amostras referentes ao experimento de reforma 

catalítica seca do metano para produção de gás de síntese realizado em escala laboratorial pelos 

autores citados, conforme detalhado na Seção 2.1.1.2. Cada amostra no dataset conta com 8 

parâmetros, sendo 4 deles dados de entrada (inputs), variáveis manipuladas no processo: 

 X1: Pressão parcial de gás metano (CH4), em kPa. 

 X2: Pressão parcial de gás carbônico (CO2), em kPa. 

 X3: Proporção de alimentação entre CH4 e CO2, adimensional. 

 X4: Temperatura do reator, em °C. 

e 4 dados de saída (outputs), variáveis medidas, como resultado do experimento, sendo: 

 Y1: Taxa de produção de gás hidrogênio (H2), em mmol.min-1.gcat
-1. 

 Y2: Taxa de produção de monóxido de carbono (CO), em mmol.min-1.gcat
-1. 

 Y3: Porcentagem de conversão de CH4. 

 Y4: Porcentagem de conversão de CO2. 
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3.3  METODOLOGIA 

3.3.1 Análise de dados 

Os dados foram incialmente analisados utilizando as ferramentas das bibliotecas Pandas, 

Seaborn e Matplotlib, buscando entender a distribuição dos dados e a possibilidade de outliers, 

dados faltantes ou errados, ou duplicações de amostras no dataset, para remoção ou correção 

das amostras afetadas. Foram observados os intervalos dos dados para cada parâmetro para 

definir os intervalos válidos para predição do modelo.  

Utilizou-se uma matriz de correlação para avaliar o nível de correlação linear entre os 

parâmetros calculada através do método de Pearson, descrito na Equação 11: 

 

𝑟௫௬ =
∑ 𝑧௫𝑧௬

𝑁
 

 (11) 

   

onde z é o desvio padrão das variáveis x e y, e N é o número de dados. Para a avaliação, 

assumiram-se os intervalos descritos na Tabela 1. 

 Tabela 1 - Nível de correlação para o coeficiente de Pearson. 
Módulo Coef. de Pearson (rxy) Nível de correlação 

|rxy| = 1 Correlação perfeita 

0.8 ≤ |rxy| < 1 Muito alta 

0.6 ≤ |rxy| < 0.8 Alta 

0.4 ≤ |rxy| < 0.6 Moderada 

0.2 ≤ |rxy| < 0.4 Baixa 

0 < |rxy| < 0.2 Muito baixa 

rxy = 0 Nenhuma correlação 

Fonte: Adaptado de SARKAR; BALI; SHARMA (2018). 

3.3.2 Tratamento de dados 

3.3.2.1  Normalização 

Para evitar o efeito da escala e de diferentes dimensões no treinamento dos modelos, o 

conjunto de dados de entrada foi normalizado utilizando o método de normalização mín-máx, 

que dimensiona os dados no intervalo de 0 a 1, transformando os dados usando a Equação 12: 
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𝑥௡௢௥௠ =
𝑥 − 𝑥௠௜௡

𝑥௠௔௫ − 𝑥௠௜௡
 

 (12) 

   

Sendo xmin e xmax o menor e o maior valor no intervalo do parâmetro x a ser normalizado. 

Apenas os conjuntos de inputs foram normalizados, pois os outputs, como valores a serem 

previstos, não sofrem do efeito de escala e não precisam ser normalizados. A normalização foi 

feita utilizando a função “MinMaxScaler” do framework scikit-learn. 

3.3.2.2  Separação dos conjuntos teste e treino 

Os modelos de machine learning e redes neurais devem ser capazes de prever resultados 

acurados a partir de dados ainda não vistos pelo modelo. Para isso é necessário separar o 

conjunto de dados em dois conjuntos: 

 Conjunto de treino: será utilizado na seleção de modelos, otimização de 

hiperparâmetros e treino do modelo final. Deve conter a maior quantidade dos 

dados e ser representar bem sua distribuição. 

 Conjunto de teste: será utilizado apenas para validação, sendo apresentado ao 

modelo apenas após o treinamento para avaliar as previsões com dados não vistos 

até então. 

Os dados foram separados em conjuntos de treino e teste usando o algoritmo de seleção 

pseudoaleatória “train_test_split” disponível no framework scikit-learn. O conjunto de teste 

contendo 80% das amostras, e o conjunto de destes os 20% restantes. 

3.3.3 Desenvolvimento dos modelos de Machine Learning 

Para desenvolvimento dos modelos, optou-se por uma abordagem MISO (multiple input 

single output), em que se utiliza todos as variáveis de entrada para prever apenas uma das 

variáveis de saída por modelo treinado. Dessa forma, para cada uma das variáveis de saída, 

foram treinados os seguintes modelos:  

 Árvores de Decisão 

 Florestas Aleatórias 

 Gradient Boost Regressor 

 Regressão Lasso 

 Regressão Linear 

 Support Vector Machine 
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Estes 6 modelos foram treinados utilizando o framework Pycaret, que cria e faz uma 

otimização prévia dos hiperparâmetros dos modelos, fazendo a avaliação e comparação de cada 

um com base em métricas predefinidas. Neste caso, as métricas definidas foram o erro médio 

absoluto (MAE), o erro médio quadrático (MSE), o coeficiente de determinação (R²) e o erro 

relativo médio (ERM), e também pela construção de um gráfico Q-Q (gráfico de probabilidade 

normal), para avaliação da reta de ajuste dos dados previstos e reais. 

Para cada uma das variáveis de saída, selecionou-se o modelo que apresentou melhor 

performance com base nas métricas do treinamento. Então o modelo selecionado foi novamente 

treinado e otimizado, e então avaliado perante os dados do conjunto de teste, gerando as 

métricas finais para comparação com as redes neurais. 

3.3.4 Desenvolvimento das Redes Neurais Artificiais 

Para desenvolvimento das redes neurais artificiais, foram utilizados os frameworks 

TensorFlow e Keras, para construção e treinamento, e o KerasTuner para otimização de 

hiperparâmetros. 

Optou-se por uma abordagem MISO (multiple input single output), construindo uma rede 

neural para cada uma das variáveis de saída, totalizando 4 modelos criados. Cada modelo 

separadamente passou por otimização de hiperparâmetros, treinamento e avaliação frente ao 

conjunto de dados de teste, para definição da melhor arquitetura de rede para previsão de cada 

variável de saída. 

A otimização de hiperparâmetros foi feita utilizando o método RandomSearch, no 

framework KerasTuner, fazendo um treinamento prévio simplificado de diversas redes, 

selecionando combinações diferentes de hiperparâmetros. Os hiperparâmetros otimizados por 

algoritmo foram: 

 Número de camadas, para a escolha 1 a 3 camadas. 

 Número de neurônios por camada, utilizando entre 6 e 40 neurônios na primeira 

camada, e entre 6 e 20 neurônios nas camadas seguintes. 

 Taxa de aprendizagem, utilizando 10 valores pré-selecionados entre 1 e 0.0005. 

 Função de erro, utilizando MAE, MSE e Huber Loss. 

Outros hiperparâmetros como o número de amostras por propagação, número de épocas e 

porcentagem de dados usados para validação cruzada durante o treino foram selecionadas 

manualmente em cada caso. 
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Após a determinação dos melhores hiperparâmetros, a rede neural foi efetivamente criada, 

treinada por um maior número de épocas e utilizando critérios de parada antecipada, caso a rede 

não melhorasse o desempenho após 50 épocas consecutivas. Caso apresentasse boa 

performance e ajuste aos dados, e as curvas de treino não demonstrassem overfitting ou 

underfitting, o modelo seguia para ser testado frente ao conjunto de teste. 

O modelo treinado foi usado para previsão dos resultados a partir das amostras do conjunto 

de teste e os resultados previstos foram comparados aos valores reais, utilizando as métricas: 

erro médio absoluto (MAE), o erro médio quadrático (MSE), o coeficiente de determinação 

(R²) e o erro relativo médio (ERM), e também pela construção de um gráfico Q-Q (gráfico de 

probabilidade normal), para avaliação da reta de ajuste dos dados previstos e reais.  

3.3.5 Comparação entre modelos 

Incialmente, o desempenho das redes neurais foi comparado ao desempenho dos métodos 

de machine learning mais simples desenvolvidos previamente, utilizando apenas o melhor 

modelo produzido para cada uma das variáveis de saída. A comparação foi feita por meio das 

métricas de cada modelo e dos gráficos de probabilidade normal. Num segundo momento, o 

desempenho das redes neurais desenvolvidas neste trabalho foi comparado ao desempenho da 

rede neural desenvolvida no trabalho original de Ayodele e Cheng (2015), que contém os dados 

utilizados neste trabalho e um modelo de ANN treinado a partir desses dados.  
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4 RESULTADOS E DISCUSSÃO 

4.1 ANÁLISE E TRATAMENTO DE DADOS 

4.1.1 Análise exploratória dos dados 

A análise inicial dos dados mostra a distribuição dos inputs como mostrado na Figura 5. 

Como se trata de condições experimentais dos experimentos, os dados não apresentam uma 

distribuição Gaussiana, e isso deve ser levado em consideração na hora de selecionar os 

conjuntos de dados para treino, para que a amostra de treino possa representar bem o dataset. 

Os dados de pressão parcial de CH4 e CO2 apresentam maior quantidade de amostras com 

valores entre 40 e 50 kPa, onde pouco mais da metade dos dados está contido nesse intervalo. 

Enquanto os valores de razão de alimentação estão um pouco melhor distribuídos ao redor do 

valor 1. A temperatura apresenta apenas três valores: 650, 700 e 750 °C. 

Figura 5 – Gráficos de distribuição dos dados de entrada. 

 
Fonte: o Autor. 
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 Um resumo das informações numéricas sobre a distribuição de todos os dados é mostrado 

na Tabela 2. 

Tabela 2 – Informações numéricas dos dados experimentais. 

 Variável Média Desvio padrão Mín. Máx. 

X1 Pressão parcial de CH4 [kPa] 38.16 15.46 5.00 50.00 

X2 Pressão parcial de CO2 [kPa] 38.16 15.46 5.00 50.00 

X3 
Razão de alimentação 

(CH4/CO2) 
1.63 2.36 0.05 10.00 

X4 Temperatura (°C) 700.88 41.72 650.00 750.00 

Y1 
Taxa de produção de H2 

[mmol.min-1.gcat-1] 
3.70 2.31 0.15 10.09 

Y2 
Taxa de produção de 

CO[mmol.min-1.gcat-1] 
5.12 2.04 1.20 8.38 

Y3 Conversão de CH4 [%] 52.61 14.82 23.15 79.46 

Y4 Conversão de CO2 [%] 64.06 18.16 17.86 90.68 

Fonte: o Autor. 

O conjunto de dados também não possui amostras com valores nulos ou outliers que 

precisam ser removidos do conjunto. Conhecendo os valores máximos e mínimos de cada 

parâmetro de entrada, definimos o intervalo que será válido para inputs com a intenção de fazer 

predições do modelo que será gerado. 

Figura 6 - Matriz de correlação linear entre dados de entrada e saída. 

 

Fonte: o Autor. 

Ao avaliar o grau de correlação linear dos dados através da Figura 6, observa-se que: 

● X1 tem baixa correlação com Y3 e Y4, muito baixa com Y2. Pode-se desconsiderar a 

correlação com Y1. 
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● X2 tem uma correlação moderada com Y2 e Y3, e muito baixa com Y1 e Y4. 

● X3 tem correlação moderada com Y4 e baixa com Y3. Pode-se desconsiderar a 

correlação com Y1 e Y4. 

● X4 tem correlação moderada com Y1, baixa com Y3 e Y4 e muito baixa com Y2. 

Essa informação mostra que os dados não apresentam correlação linear forte, porém é 

possível observar que algumas variáveis têm impacto significativo nas demais, a exemplo da 

temperatura (X4), que tem efeito significativo sobre todas as variáveis de saída. O que é 

esperado, pois a reação de reforma é altamente endotérmica, ou seja, é beneficiada pelo 

aumento da temperatura, porém não de maneira linear.  

Observa-se também que a pressão parcial de CO2 (X2) influencia bastante na taxa de 

produção do CO (Y2). Uma possível explicação para esse maior efeito é a reação de reverse 

water gas shift, representada pela Equação 4, e pode ser estendida também para a conversão de 

H2, pois este produto é consumido nessa reação paralela, tendo sua composição final reduzida 

no gás de síntese. 

É esperado que a quantidade e proporção entre os reagentes também influencie no 

andamento da reação, e consequentemente nas conversões e produção do gás de síntese. Porém 

como observado na correlação da pressão parcial de CH4 (X1) com a taxa de produção de H2 

(Y1), linearmente não parece haver uma relação estabelecida que possa ser representada por um 

modelo simples entre estes parâmetros. 

Outros efeitos que podem estar associados ao processo não podem ser avaliados 

diretamente através dos dados experimentais disponíveis, como o desgaste do catalisador 

durante cada execução do experimento. 

4.1.2 Normalização dos dados 

Como visto na seção anterior, os dados de entrada têm dimensões e escalas bastante 

diferentes, o que vai impactar severamente os resultados do modelo, pois os inputs com maior 

ordem de grandeza acabam por receber maiores pesos nos parâmetros dos modelos de machine 

learning. Para minimizar esse efeito, é necessário passar todos os inputs para um intervalo de 

mesma escala através de um scaling.  

Os dois principais métodos de scaling são a padronização e a normalização. Porém, como 

visto na Figura, os dados não estão distribuídos numa curva Gaussiana, dessa forma uma 

padronização não faria sentido, e o melhor método a ser aplicado é a normalização. Com isso, 

todos os dados de entrada passaram à uma escala de 0 a 1. Além da mudança de escala, nesse 

processo limita-se o intervalo válido para predições, pois dados inseridos para fazer previsões 
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a partir dos modelos desenvolvidos, precisam estar dentro do intervalo de valores mínimos e 

máximos para cada variável de entrada, conforme mostrado na Tabela 2. 

4.2 DESENVOLVIMENTO DOS MODELOS 

No desenvolvimento dos modelos, optou-se por utilizar uma abordagem MISO ao invés de 

MIMO, pois os modelos convergiam com mais facilidade. Um modelo do tipo MIMO, ao tentar 

estimar valores de diferentes escalas (nesse caso as taxas de formação dos produtos, contra a 

conversão de reagentes) se torna mais complexo para treinar e ajustar o os hiperparâmetros de 

forma a apresentar desempenho razoável, tanto para os modelos simples de machine learning, 

quanto para as redes neurais. Além disso, por se tratar de um pequeno volume de dados, o 

esforço computacional e tempo de treino necessário foram muito pequenos, permitindo então 

gastar um pouco mais de tempo treinando modelos separadamente para cada uma das variáveis 

de saída. 

4.2.1 Modelos de Machine Learning simples 

A partir do treino inicial, utilizando apenas os dados do conjunto de treino para avaliar e 

comparar o desempenho de cada modelo, selecionando o melhor com base nas métricas 

estabelecidas. A primeira métrica observada foi o coeficiente de determinação (R²), seguido do 

erro médio absoluto (MAE) e erro médio quadrático (MSE). O desempenho por modelo, para 

cada variável de saída após o treino inicial é mostrado nas Tabelas 3 e 4. 

Tabela 3 – Desempenho de treino por modelo, para as variáveis Y1 e Y2. 

 Y1: Taxa de produção de H2 Y2: Taxa de produção de CO 

Modelo MAE MSE R² MAE MSE R² 

Árvores de Decisão 0.84 1.35 0.33 0.69 0.75 0.11 

Florestas Aleatórias 0.76 1.06 0.54 0.55 0.51 0.73 

Gradient Boost 

Regressor (GBR) 
0.66 0.79 0.61 0.46 0.41 0.73 

Regressão Lasso 1.66 4.34 -0.35 1.77 4.16 -1.51 

Regressão Linear 1.65 4.09 -0.85 0.56 0.55 0.61 

Support Vector 

Machine (SVM) 
1.42 3.43 -0.20 0.72 0.89 0.62 

Fonte: o Autor. 
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Tabela 4 – Desempenho de treino por modelo, para as variáveis Y3 e Y4. 

 Y3: Conversão de CH4 Y4: Conversão de CO2 

Modelo MAE MSE R² MAE MSE R² 

Árvores de Decisão 6.27 96.32 0.13 9.75 157.43 -0.63 

Florestas Aleatórias 5.07 54.27 0.52 6.29 70.16 0.23 

Gradient Boost 

Regressor (GBR) 
5.73 79.85 0.28 5.48 61.27 0.06 

Regressão Lasso 10.75 164.04 -0.24 13.73 305.16 -1.06 

Regressão Linear 7.71 92.63 0.16 13.28 293.10 -2.84 

Support Vector 

Machine (SVM) 
12.51 215.17 -0.52 14.23 364.67 -0.82 

Fonte: o Autor. 

A partir dos dados mostrados nas Tabelas 3 e 4, os modelos escolhidos foram o Gradient 

Boost Regressor (GBR) para a previsão de Y1 e Y2, e o modelo de Florestas Aleatórias para 

previsão de Y3 e Y4. Os modelos treinados nessa etapa não conseguiram se ajustar bem aos 

dados para previsão de Y4, a conversão de CO2. Como demonstrado na análise dos dados, essa 

variável tem baixa correlação com as variáveis de entrada estudadas, o que pode explicar a 

dificuldade desses modelos a, pois mesmo aqueles que usam métodos não lineares, a exemplo 

das Florestas Aleatórias, podem não apresentar profundidade suficiente para prever essa 

informação com precisão (BAHADAR et al., 2022).  

Após a seleção dos tipos de modelos mais promissores, foi feito um novo treinamento junto 

à uma otimização de hiperparâmetros mais rígida. Os novos modelos foram validados 

utilizando o conjunto de teste. A Tabela 5 traz o desempenho final de cada modelo, junto à 

equação da reta de ajuste do gráfico Q-Q de cada modelo, mostrados na Figura 7.  

Tabela 5 - Desempenho por modelo selecionado frente ao conjunto de teste. 

Variável alvo Modelo selecionado MAE MSE R² ERM Reta de ajuste 

Y1 GBR 0.58 0.47 0.82 21.95% y = 1.00x - 0.11 

Y2 GBR 0.50 0.40 0.91 10.36% y = 0.86x + 0.52 

Y3 Florestas Aleat. 4.85 38.85 0.82 9.68% y = 0.93x + 0.59 

Y4 Florestas Aleat. 6.21 56.87 0.88 10.43% y = 1.48x - 31.10 

Fonte: o Autor. 
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Figura 7 - Gráficos Q-Q para os modelos de machine learning simples. 

Variáveis (a) Y1, (b) Y2, (c) Y3, (d) Y4. 

 
Fonte: o Autor. 

Nas Figuras 7a e 7b a seguir, percebe-se que os modelos do tipo GBR conseguiram explicar 

razoavelmente bem a maioria dos dados, para as taxas de produção de H2 e CO (variáveis Y1 e 

Y2, respectivamente), como indicado pelos coeficientes de determinação, na Tabela 5. O 

modelo para Y1, se aproximou bastante da reta normal ideal (y=x), indicando uma boa precisão 

na previsão, já para Y2 a reta teve coeficientes um pouco mais distantes do ideal. Esses modelos 

foram capazes de se ajustar bem aos dados e fazer previsões razoavelmente acuradas, porém, 

ainda com uma dispersão moderada. 

Já para as conversões de CH4 e CO2 (variáveis Y3 e Y4, respectivamente), nas Figuras 7c e 

7d, os coeficientes de determinação, também indicaram um ajuste razoavelmente bom aos 

dados, porém houve uma maior dispersão nos valores preditos.  Para Y3, apesar dos coeficientes 

da reta serem também próximos ao ideal, por conta da dispersão, a previsão não é tão precisa 

quanto a obtida com o GBR para Y1 e Y2.  
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Para Y4, o modelo não teve performance boa, quando comparado aos demais. Apesar do 

coeficiente de determinação ser bom, o ajuste dos dados não foi preciso como é perceptível na 

Figura 7d, com a reta de ajuste dos dados se afastando bastante da reta normal ideal. Além de 

apresentar também uma alta dispersão e um valor de erro alto. 

Os resultados de performance para os modelos escolhidos nessa etapa foram utilizados 

como valores de referência a serem batidos no treinamento das redes neurais, apresentadas na 

seção seguinte deste trabalho. 

4.2.2 Redes Neurais Artificiais 

Diferentemente do treino inicial aplicado aos modelos simples de machine learning, o 

treino inicial aplicado às redes neurais teve como objetivo principal fazer a otimização de 

hiperparâmetros do modelo. A partir do treino inicial foram definidos os melhores 

hiperparâmetros para a construção dos modelos finais. O número de camadas e a quantidade de 

neurônios por camada para cada uma das redes é mostrado na Tabela 6. 

Tabela 6 - Número de camadas e neurônios por camada para as ANNs, por variável alvo. 

Variável alvo N° de camadas 1ª 2ª 3ª 

Y1 1 39 - - 

Y2 2 20 8 - 

Y3 2 36 9 - 

Y4 3 28 12 11 

Fonte: o Autor. 

É perceptível que não há um padrão nem similaridade na estrutura das redes neurais, 

mesmo ao comparar variáveis de mesma natureza (Y1 com Y2, e Y3 com Y4). Isso se dá tanto 

pelo método de HPO utilizado que busca configurações “aleatórias” dentro dos intervalos 

definidos, como também pela própria natureza das redes neurais, pois não há regras e métodos 

bem definidos para a escolha do número de neurônios e camadas (YANG; SHAMI, 2020).   

Após o treino prévio, cada rede foi reiniciada e novamente treinada usando os 

hiperparâmetros selecionados a partir do HPO, de forma a obter os modelos finais. Os modelos 

finais testados frente aos dados do conjunto de teste apresentaram o desempenho mostrado na 

Tabela 7. Também são mostradas as equações das retas de ajuste das previsões feitas por cada 

rede para as variáveis alvo. 
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Tabela 7 - Desempenho das ANNs frente ao conjunto de teste. 

Variável alvo  MAE MSE R² ERM Reta de ajuste 

Y1  0.18 0.05 0.99 6.22% y = 0.95x + 0.19 

Y2  0.20 0.07 0.97 4.50% y = 1.02x - 0.07 

Y3  4.45 26.76 0.94 8.84% y = 0.95x - 1.09 

Y4  4.85 32.35 0.92 7.12% y = 1.07x - 7.49 

Fonte: o Autor. 

Em comparação aos modelos mais simples, as redes neurais apresentaram uma melhoria 

na performance, quando comparamos as Tabelas 6 e 7. Observa-se que para todas as variáveis 

houve diminuição considerável em todas as métricas de erro. Também houve uma melhora no 

coeficiente de determinação, em especial para Y1 e Y3.  A Figura 8 traz os gráficos Q-Q para 

cada variável, com as predições feitas com as redes neurais. 

Figura 8 - Gráficos Q-Q para as redes neurais. 

Variáveis (a) Y1, (b) Y2, (c) Y3, (d) Y4. 

 
Fonte: o Autor. 

Os coeficientes da reta de ajuste também ficaram bastante próximas do ideal (a reta y = x), 

indicando que houve acurácia na predição das variáveis alvo. Ao observar a Figura 8, percebe-
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se que os dados estão também visualmente menos dispersos em comparação aos dos modelos 

mais simples, na Figura 7, condizendo com a redução no valor dos erros. 

Em comparação ao modelo de Florestas Aleatórias, a rede neural conseguiu fazer previsões 

e se ajustar muito melhor aos dados, como é observado na comparação entre as Figuras 7d e 

8d. Essa melhoria era esperada, dada a maior capacidade das redes neurais de descrever relações 

não lineares entre dados de maneira mais profunda que outros métodos não-lineares. 

Mesmo assim, as previsões para as conversões de CH4 e CO2 (Y3 e Y4, respectivamente) 

apresentaram dispersão um pouco maior em comparação as taxas de produção de H2 de CO (Y1 

e Y2, respectivamente), com os modelos de redes neurais. 

Comparando o desempenho entre as redes neurais, para evitar o efeito da escala dos dados, 

que impacta as métricas MAE e MSE, observasse-se o erro relativo médio (ERM), que 

normaliza os erros. Houve uma grande melhoria no ERM principalmente para a variável Y1, 

com uma diminuição de quase 16%. 

Dessa forma, as redes neurais desenvolvidas tiveram melhor performance que os modelos 

mais simples de machine learning trabalhados anteriormente, destacando o Gradient Boost 

Regressor e o modelo de Árvores Aleatórias.  

4.3  COMPARAÇÃO AO TRABALHO ORIGINAL 

No trabalho desenvolvido por Ayodele e Cheng (2015), foi utilizada uma estrutura de redes 

neurais MIMO, dessa forma apenas um modelo foi treinado, diferentemente do desenvolvido 

neste trabalho. A rede foi treinada baseada na métrica de MSE como função erro, porém o valor 

para essa métrica não foi disponibilizado no trabalho, e também não poderia ser usado como 

parâmetro de comparação, pois um modelo MIMO apresentaria apenas um valor para essa 

métrica, referente aos erros em todas as variáveis alvos. O modelo desenvolvido foi construído 

com uma única camada oculta, com 16 neurônios.  

A avaliação do modelo do trabalho original foi feita principalmente a partir dos gráficos 

Q-Q e também do erro médio relativo. Os gráficos em questão são mostrados na Figura 9. 
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Figura 9 - Gráficos Q-Q por variável alvo, para predições da rede neural 

desenvolvida por Ayodele e Cheng (2015). 

Variáveis (a) Y1, (b) Y2, (c) Y3, (d) Y4. 

 
Fonte: Adaptado de AYODELE e CHENG (2015). 

No entanto, ao observar as Figuras 9a e 9b percebe-se que, apesar do R² ser muito próximo 

do ideal, as retas de ajuste se distanciam da reta normal ideal, indicando que as previsões feitas 

pelo modelo para Y1 e Y2 não foram acuradas. Tomando uma amostra dos dados e as equações 

das retas de ajustes, estima-se que haja por volta de 20% a 40% de erro relativo nas predições 

de Y1 e Y2 para este modelo. Porém, para as taxas de produção de H2 e CO, não foram 

apresentados os erros relativos médios no trabalho original, logo essa estimativa não pode ser 

confirmada. 

Dessa forma, assume-se os modelos de redes neurais desenvolvidas neste trabalho têm um 

melhor potencial para prever as taxas de produção de H2 e CO no processo de reforma catalítica 

seca do metano estudado, em comparação ao modelo apresentado no trabalho original por 

Ayodele e Cheng (2015). Isso por que estes novos modelos apresentaram uma baixa dispersão 

dos dados e uma reta de ajuste mais próxima da ideal, indicando uma maior acurácia na previsão 

das variáveis do processo. 
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Ayodele e Cheng (2015) apresentaram os valores de erro relativo médio para as conversões 

de CH4 e CO2, sendo 3.21% e 3.34%, respectivamente. A partir dessas informações, observa-

se que o desempenho do modelo desenvolvido no trabalho original é superior quanto às 

variáveis Y3 e Y4, com melhor coeficiente de determinação e melhor ajuste.  

Dessa o modelo proposto originalmente parece explicar melhor a relação entre os dados, 

para Y3 e Y4, apresentando menor erro relativo e baixíssima ou quase nenhuma dispersão, como 

visto nas Figuras 9c e 9d, em comparação aos modelos desenvolvidos neste trabalho. Mesmo 

assim, o desempenho dos modelos novos se aproximou bastante do modelo original, 

apresentando uma dispersão razoavelmente baixa e erros relativos baixos. 
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5 CONCLUSÕES 

O desenvolvimento de modelos de machine learning aplicados à uma reforma catalítica 

seca de metano, demonstrou o potencial desses métodos como ferramentas que podem ser 

aplicadas tanto na indústria química como na própria academia. Os resultados obtidos neste 

trabalho reforçam a ideia de que o uso de modelos de ML pode auxiliar na previsão acurada de 

dados e do comportamento de processos químicos, enquanto reduz o tempo e esforço necessário 

para desenvolvimento, em comparação a modelos fenomenológicos complexos. 

Mesmo entre os métodos mais simples de ML foi possível obter modelos que se ajustassem 

aos dados permitindo previsões razoavelmente acuradas. Dentre eles, os modelos de Gradient 

Boost Regressor e de Árvores Aleatórias alcançaram um melhor desempenho entre os demais, 

atingindo R² entre 0,82 e 0,91, porém ainda apresentando um erro relativo médio um pouco 

alto, principalmente para as variáveis de taxa de produção de H2 e CO, 21,95% e 10,36% 

respectivamente.  

Os modelos de redes neurais artificiais desenvolvidos, superaram o desempenho dos 

modelos mais simples, com destaque na previsão das variáveis de taxa de produção do H2 e de 

CO, onde os R² aumentaram para 0,99 e 0,97 e houve uma redução no erro relativo médio para 

6,22% e 4,50%, respectivamente para as duas variáveis. Essa melhora no desempenho 

demonstra a maior capacidade das redes neurais de se ajustar a dados que possuem baixa 

correlação linear entre si, quando comparadas aos métodos de ML mais simples.  

Porém, redes neurais são mais complexas e difíceis de treinar em relação aos métodos 

simples, exigindo um treinamento mais cuidadoso e trabalhoso durante a otimização de 

hiperparâmetros. Os modelos mais simples podem ser definidos com mais facilidade, utilizando 

ferramentas como o Pycaret. Porém, como evidenciado, a simplicidade desses modelos pode 

levar a um menor desempenho, a depender do problema trabalhado. 

Em comparação ao modelo de rede neural desenvolvido por Ayodele e Cheng, para os 

mesmos dados utilizados neste trabalho, não foi possível obter coeficientes de determinação tão 

altos, porém os modelos desenvolvidos aqui apresentam uma maior acurácia na previsão das 

variáveis de taxa de produção do H2 e de CO, apresentando certo nível de melhoria apesar de 

apresentar uma maior dispersão. 

  



47 
 

REFERÊNCIAS 

A VOZ DA INDÚSTRIA. Caminho até a Indústria 4.0: os destaques das revoluções 
industriais. 2020. Disponível em: https://avozdaindustria.com.br/industria-40-totvs/caminho-
ate-industria-40-os-destaques-das-revolucoes-industriais. Acesso em: 17 set. 2022.  

AL AANI, Saif; BONNY, Talal; HASAN, Shadi W.; HILAL, Nidal. Can machine language 
and artificial intelligence revolutionize process automation for water treatment and 
desalination? Desalination, vol. 458, no. February, p. 84–96, 2019. 

AYODELE, Bamidele V.; CHENG, Chin Kui. Modelling and optimization of syngas 
production from methane dry reforming over ceria-supported cobalt catalyst using artificial 
neural networks and Box-Behnken design. Journal of Industrial and Engineering 
Chemistry, v. 32, p. 246–258, 2015. 

BAHADAR, Ali; KANTHASAMY, Ramesh; SAIT, Hani Hussain; ZWAWI, Mohammed; 
ALGARNI, Mohammed; AYODELE, Bamidele Victor; CHENG, Chin Kui; WEI, Lim Jun. 
Elucidating the effect of process parameters on the production of hydrogen-rich syngas by 
biomass and coal Co-gasification techniques: A multi-criteria modeling approach. 
Chemosphere, vol. 287, no. P1, p. 132052, 2022. 

CHEN, Shuyue; ZAFFRAN, Jeremie; YANG, Bo. Dry reforming of methane over the cobalt 
catalyst: Theoretical insights into the reaction kinetics and mechanism for catalyst 
deactivation. Applied Catalysis B: Environmental, v. 270, n. January, 2020. 

COELHO, Matheus. Fundamentos de Redes Neurais - Laboratório iMobilis. Universidade 
Federal de Ouro Preto, 2017. Disponível em: 
http://www2.decom.ufop.br/imobilis/fundamentos-de-redes-neurais/. Acesso em 09 jul. 2022.  

DING, Bin; QIAN, Huimin; ZHOU, Jun. Activation functions and their characteristics in 
deep neural networks. Jun. 2018, [S.l.]: Chinese Control and Decision Conference, jun. 
2018. p. 1836–1841.  

DOBBELAERE, Maarten R.; PLEHIERS, Pieter P.; VAN DE VIJVER, Ruben; STEVENS, 
Christian V.; VAN GEEM, Kevin M. Machine Learning in Chemical Engineering: Strengths, 
Weaknesses, Opportunities, and Threats. Engineering, vol. 7, no. 9, p. 1201–1211, 2021. 

ELMAZ, Furkan; YÜCEL, Özgün; MUTLU, Ali Yener. Predictive Modeling of the Syngas 
Production from Methane Dry Reforming over Cobalt Catalyst with Statistical and Machine 
Learning Based Approaches. International Journal of Advances in Engineering and Pure 
Sciences, p. 8–14, 2020. 

GEORGE, Joel; ARUN, P.; MURALEEDHARAN, C. Assessment of producer gas 
composition in air gasification of biomass using artificial neural network model. 
International Journal of Hydrogen Energy, v. 43, n. 20, p. 9558–9568, 2018. 

KAN, Xiang; CHEN, Xiaoping; SHEN, Ye; LAPKIN, Alexei A.; KRAFT, Markus; WANG, 
Chi Hwa. Box-Behnken design based CO2 co-gasification of horticultural waste and sewage 
sludge with addition of ash from waste as catalyst. Applied Energy, vol. 242, no. February, 
p. 1549–1561, 2019. 



48 
 

LEE, Jay H.; SHIN, Joohyun; REALFF, Matthew J. Machine learning: Overview of the 
recent progresses and implications for the process systems engineering field. Computers & 
Chemical Engineering, v. 114, p. 111–121, jun. 2018. 

MANSUR, Fatin Zafirah; FAIZAL, Che Ku Mohammad; MONIR, Minhaj Uddin; SAMAD, 
Nur Asma Fazli Abdul; ATNAW, Samson Mekbib; SULAIMAN, Shaharin Anwar. Co-
gasification between coal/sawdust and coal/wood pellet: A parametric study using response 
surface methodology. International Journal of Hydrogen Energy, vol. 45, no. 32, p. 
15963–15976, 2020. 

MELONI, Eugenio; MARTINO, Marco; PALMA, Vincenzo. A short review on Ni based 
catalysts and related engineering issues for methane steam reforming. Catalysts, v. 10, n. 3, 
2020. 

PANDEY, Daya Shankar; DAS, Saptarshi; PAN, Indranil; LEAHY, James J.; KWAPINSKI, 
Witold. Artificial neural network based modelling approach for municipal solid waste 
gasification in a fluidized bed reactor. Waste Management, vol. 58, p. 202–213, 2016. 
https://doi.org/10.1016/j.wasman.2016.08.023. 

PERASSO, Valeria. O que é a 4a revolução industrial - e como ela deve afetar nossas 
vidas. BBC News Brasil, 2016. Disponível em: https://www.bbc.com/portuguese/geral-
37658309. Acesso em: 20 set. 2022.  

PETSAGKOURAKIS, P.; SANDOVAL, I. O.; BRADFORD, E.; ZHANG, D.; DEL RIO-
CHANONA, E. A. Reinforcement learning for batch bioprocess optimization. Computers 
and Chemical Engineering, vol. 133, p. 106649, 2020. 

PORTAL DA INDÚSTRIA. Indústria 4.0: Entenda seus conceitos e fundamentos. 
Disponível em: http://www.portaldaindustria.com.br/industria-de-a-z/industria-4-0/. Acesso 
em: 19 set. 2022.  

SALES, Deivson Cesar Silva. Desenvolvimento da tecnologia GTL de produção de 
metanol a partir do gás de síntese. 2013. 181f. Tese (Doutorado em Engenharia Química), 
Programa de Pós-Graduação em Engenharia Química (PPEQ), Universidade Federal de 
Pernambuco, Recife, PE., 2013.  

SALHI, N.; BOULAHOUACHE, A.; PETIT, C.; KIENNEMANN, A.; RABIA, C. Steam 
reforming of methane to syngas over NiAl2O4 spinel catalysts. International Journal of 
Hydrogen Energy, vol. 36, no. 17, p. 11433–11439, 2011. 

SARKAR, Dipanjan; BALI, Raghav; SHARMA, Tushar. Practical Machine Learning with 
Python. Berkeley, CA: Apress, vol. 1, 2017. 530 p. 

SCHWEIDTMANN, Artur M.; ESCHE, Erik; FISCHER, Asja; KLOFT, Marius; REPKE, 
Jens Uwe; SAGER, Sebastian; MITSOS, Alexander. Machine Learning in Chemical 
Engineering: A Perspective. Chemie-Ingenieur-Technik, vol. 93, no. 12, p. 2029–2039, 
2021. 

USMAN, Muhammad; WAN DAUD, W. M.A.; ABBAS, Hazzim F. Dry reforming of 
methane: Influence of process parameters - A review. Renewable and Sustainable Energy 
Reviews, v. 45, p. 710–744, 2015. 



49 
 

VALENTE, Emanuele de Oliveira; VALENTE, Gerson de Freitas Silva. Simulação de redes 
neurais artificiais para estimativa de volume de madeira florestal a partir do DAP / Simulation 
of artificial neural networks for estimation of forest wood volume from DAP. Brazilian 
Journal of Animal and Environmental Research, v. 4, n. 3, p. 3748–3757, 2021. 

VENKATASUBRAMANIAN, Venkat. The promise of artificial intelligence in chemical 
engineering: Is it here, finally? AIChE Journal, v. 65, n. 2, p. 466–478, 2019. 

WEN, Hung Ta; LU, Jau Huai; PHUC, Mai Xuan. Applying artificial intelligence to predict 
the composition of syngas using rice husks: A comparison of artificial neural networks and 
gradient boosting regression. Energies, v. 14, n. 10, p. 1–18, 2021. 

YANG, Li; SHAMI, Abdallah. On hyperparameter optimization of machine learning 
algorithms: Theory and practice. Neurocomputing, v. 415, p. 295–316, 2020. 

YAO, Ma; WANG, Huangang; XU, Wenli. Batch process monitoring based on functional 
data analysis and support vector data description. Journal of Process Control, v. 24, n. 7, p. 
1085–1097, 2014. 

YE, Jiansen. Artificial neural network modeling of methanol production from syngas. 
Petroleum Science and Technology, v. 37, n. 6, p. 629–632, 2019. 

 

 


	Microsoft Word - Modelo-monografia-tcc-edit.docx
	Microsoft Word - folha de aprovacao.docx
	03b04b9fea245b8a4ae93671ace456f851bdaffe01b91b7392e4a6fbd1254af2.pdf
	Microsoft Word - folha de aprovacao.docx
	Microsoft Word - TCC Leonardo Araújo - FINAL.docx

