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RESUMO

Estamos vivenciando o inicio da Era da Informag¢ao, onde enormes quantidades de dados sao
geradas a cada instante, principalmente em decorréncia da rapida modernizagao e
desenvolvimento tecnoldgico que tém acontecido nos mais diversos setores da sociedade. Com
1ss0, no ambito das industrias estamos presenciando o desenrolar da 4* Revolucao Industrial,
ou Industria 4.0, fortemente marcada pela automagao, inteligéncia artificial e Big Data. Essa
revolugdo e as novas tecnologias trazidas por ela, podem trazer grandes melhorias a industria,
modificando as rela¢des de trabalho e aumentando significativamente a eficiéncia, seguranca e
qualidade dos processos industriais. Uma das tecnologias que trazem grande impacto em
diversas areas, ¢ o campo da inteligéncia artificial, um conjunto de recursos computacionais
que podem ser usados para modelar e resolver problemas de alta complexidade utilizando muito
menos recursos do que métodos tradicionais. Na Industria Quimica, inteligéncias artificiais
podem ser usadas por exemplo na modelagem de processos complexos, nao-lineares e que
contenham grande nimero de varidveis associadas, tornando dificil desenvolver modelos
fenomenoldgicos robustos e precisos o suficiente para prever esses processos. Um exemplo de
processo complexo que pode se valer de tais tecnologias € a producdo de gas de sintese, através
da reforma catalitica de metano. O gas de sintese ¢ uma mistura gasosa composta por gas
hidrogénio e monoxido de carbono, de grande interesse econdmico pois pode ser utilizado para
obter varios produtos com alto valor agregado, como amoénia, hidrogénio combustivel, e
hidrocarbonetos incluindo combustiveis sintéticos. Além disso o processo de reforma catalitica
seca, consome 0 metano € o gas carbonico, os dois principais causadores de efeito estufa,
transformando-os em compostos que terdo menos impacto ambiental. Porém, devido a
complexidade e baixa linearidade presente nestes processos, torna-se dificil gerar modelos
fenomenoldgicos precisos, e que possam se valer dos dados disponiveis. Assim a utilizagdo de
inteligéncias artificias, nesse caso, de métodos Machine Learning podem trazer avangos no
desenvolvimento, controle e entendimento desses processos. Neste trabalho foram utilizados
métodos de Machine Learning, dentre eles as redes neurais artificiais, para modelagem da
reforma catalitica seca do metano para a producdo de gas de sintese, a partir de dados
experimentais obtidos na literatura. Os modelos desenvolvidos foram avaliados através de
métricas de regressao e comparados entre si buscando aqueles que apresentaram melhor
desempenho. Os modelos de redes neurais obtiveram o melhor desempenho entre os modelos
testados, apresentando coeficientes de determinagdo acima de 0,97 na previsao das taxas de
producdo dos componentes do gas de sintese e erros relativos médios de até 6,22%. Os
resultados apontam para a utilidade desses modelos para uso industrial e académico na
modelagem de processos quimicos complexos.

Palavras-chave: Gés de sintese; Reforma Catalitica; Industria 4.0; Machine Learning; Redes
Neurais Artificiais.



ABSTRACT

We live in the beginning of the Information Age, where huge amounts of data are generated at
every moment, mainly as a result of the rapid modernization and technological development
that has been taking place in the most diverse sectors of society. As a result, within industries
we are witnessing the unfolding of the 4th Industrial Revolution, or Industry 4.0, strongly
marked by automation, artificial intelligence and Big Data. This revolution and the new
technologies brought about by it can bring great improvements to the industry, changing work
relationships and significantly increasing the efficiency, safety and quality of industrial
processes. One of the technologies that has a great impact in several areas is the field of artificial
intelligence, a set of computational resources that can be used to model and solve highly
complex problems using much less resources than traditional methods. In the Chemical
Industry, artificial intelligences can be used, for example, in the modeling of complex, non-
linear processes that contain a large number of associated variables, making it difficult to
develop phenomenological models that are robust and accurate enough to predict these
processes. An example of a complex process that can make use of such technologies is the
production of synthesis gas (syngas), through the catalytic reform of methane. Syngas is a
gaseous mixture composed of hydrogen gas and carbon monoxide, and is of great economic
interest, as it can be used to obtain several products with high added value, such as ammonia,
hydrogen fuel and hydrocarbons, including synthetic fuels. In addition, the dry catalytic reform
process consumes methane and carbon dioxide, the two main causes of the greenhouse effect,
transforming them into compounds that will have less environmental impact. However, due to
the complexity and low linearity of these processes, it is difficult to generate accurate
phenomenological models that can make use of the available data. Thus, the use of artificial
intelligence, in this case, Machine Learning methods can bring advances in the development,
control and understanding of these processes. In this work, Machine Learning methods,
including artificial neural networks, were used to model the dry catalytic reform of methane for
syngas production, based on experimental data obtained in the literature. The developed models
were evaluated using regression metrics and compared to each other, looking for those that
presented the best performance. The neural network models obtained the best performance
among the tested models, presenting coefficients of determination above 0.97 in the prediction
of the production rates of the syngas components and average relative errors of up to 6.22%.
The results point to the usefulness of these models for industrial and academic use in modeling
complex chemical processes.

Keywords: Syngas; Catalytic Reform; Industry 4.0; Machine Learning; Artificial Neural
Networks.
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1 INTRODUCAO

Nos ultimos anos, o0 mundo estd presenciando grandes avangos tecnoldgicos nas mais
diversas areas do conhecimento cientifico. A industria quimica estd diretamente envolvida
nesses avancos, com desenvolvimento de novos materiais, produtos € processos que tornam a
producdo de bens mais eficiente e limpa. Além disso, a industria quimica também ¢
grandemente impactada por avangos no conhecimento em outras areas tecnoldgicas, que tém
crescido a cada dia e apresentado solugdes rapidas, simplificadas e inteligentes para diversos
setores.

Um exemplo de conhecimento que estd cada vez mais em evidéncia no campo da Ciéncia
de Dados, e que ¢ estreitamente ligado a Estatistica e 8 Computagao, sdo os métodos de Machine
Learning (ML), uma subdivisao da area de Inteligéncia Artificial (IA). Métodos deste tipo,
quando aplicados, t€ém uma grande capacidade para modelar processos complexos, o que por
muitas vezes ¢ dificil a partir de equagdes fenomenoldgicas conhecidas (AL AANI et al., 2019).

Por vezes, se torna dificil e custoso desenvolver e resolver modelos tedricos que possam
descrever precisamente um sistema real, a exemplo das equagdes de Navier-Stokes para
modelagem do comportamento de um fluido. Dessa forma, em alguns casos € necessario
simplificar os modelos, para que se tenham solugdes analiticas, mas simples, abrindo mao de
acuracia para ganhar tempo na resolug@o do problema. Porém, esse balango torna-se desafiador
quando um problema complexo exige uma alta precisado (DOBBELAERE et al., 2021).

Nesse sentido, métodos de inteligéncia artificial, em especial os de ML, podem ter grande
vantagem na modelagem de problemas complexos, pois sdo modelos orientados por dados
(data-driven), que se adaptam as especificidades dos processos e sistemas estudados (AL AANI
etal.,2019).

Um dos subtdpicos de ML que tem recebido bastante atencdo nos ultimos tempos,
especialmente nas ciéncias de forma geral, € o Deep Learning, também muito conhecido como
campo das redes neurais. Uma rede neural ¢ um modelo computacional que tenta simular a
estrutura com que neurdnios bioldgicos funcionam em nossos cérebros. Sdo compostas de
unidades basicas de processamento, também chamadas neurdnios, organizados em multiplas
camadas em uma rede neural, organizadas através de um conceito hierarquico € o que da a esses
modelos a capacidade de aprendizagem (SARKAR; BALI; SHARMA, 2018).

Redes neurais tém sido usadas em diversos campos das ciéncias, no tratamento de variados
problemas, como processamento de linguagem natural e imagens, agrupamento e classificacao

de dados, previsao e regressao de dados. Em especial, na industria quimica, tem sido usada na
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area de controle ajudando a prever o comportamento de processos e na deteccdo de falhas,
redu¢do de dimensionalidade de modelos e modelagem de dinamicas complexas, permitindo
gerar previsdes acuradas para as variaveis de um processo a partir de dados historicos (LEE;
SHIN; REALFF, 2018).

Um exemplo de processo que pode ser modelado a partir de redes neurais ¢ a reforma
catalitica de metano (CH4) e gas carbonico (CO;) para producdo de gas de sintese, mistura
gasosa composta essencialmente de mondxido de carbono (CO) e gas hidrogénio (H2). O gas
natural € um recurso de grande importancia energética a nivel mundial, mas apesar disso poucos
produtos podem ser sintetizados diretamente a partir do metano (SALHI et al., 2011).

Dessa forma, a maior parte das sinteses a partir do metano sdo realizadas através da sua
conversao para gas de sintese, que servira de base para a produgao de diversos outros produtos
quimicos com alto valor agregado, tais como o metanol, amoniaco, € uma variedade de
hidrocarbonetos inclusive combustiveis sintéticos (SALHI et al., 2011).

A conversao do gas natural (CH4) em outros produtos através da reforma a gés de sintese,
além de agregar mais valor a esse composto ¢ também um método mais amigavel ao meio
ambiente, pois a utilizacdo de combustiveis sintetizados a partir desse processo podem
apresentar uma reducdo de cerca de 90% em emissdo de carcinogénicos e 50% de reducdo na
emissdo de CO; quando comparada a queima combustiveis fosseis convencionais (AYODELE;
CHENG, 2015).

Assim, o objetivo principal deste trabalho ¢ desenvolver um sistema de redes neurais
artificiais capazes de modelar o processo de reforma catalitica seca do metano a gas de sintese,
com base nos dados obtidos por Ayodele e Cheng (2015), e avaliar seu desempenho frente a
outros métodos mais simples de machine learning e também aos resultados no trabalho original
dos autores citados.

De maneira geral, os objetivos especificos sao:

e Treinar modelos de machine learning simples para previsdo dos resultados no
processo de reforma catalitica seca, e selecionar o de melhor desempenho.

e Otimizar hiperparametros e treinar redes neurais para previsao dos resultados no
processo de reforma catalitica seca do metano.

e (Comparar desempenho dos modelos de machine learning simples com o
desempenho das redes neurais desenvolvidas.

e Comparar desempenho das redes neurais desenvolvidas com o desempenho das

redes treinadas originalmente por Ayodele e Cheng (2015).
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2 FUNDAMENTACAO TEORICA

Todos os dias presenciamos o desenvolvimento de novas tecnologias que tém grande
capacidade para mudar a forma com que conhecemos e encaramos o mundo e estas estdo sendo
rapidamente incorporadas na sociedade, como em aspectos simples do dia-a-dia, a exemplo de
ferramentas de comunicagdo e entretenimento, ou na tomada de decisdes em grandes empresas,
que passam a ser orientadas por grandes volumes de dados, e na industria de maneira geral, que
se beneficia de tais tecnologias para melhoria na qualidade dos produtos e eficiéncia dos
processos. Quando olhamos diretamente para industrias, a inclusao dessas novas tecnologias
faz parte da chamada Industria 4.0, ou 4* Revolugdo Industrial (PERASSO, 2016).

As revolugdes industriais, foram momentos de grande mudanga nos meios de produgao,
marcados por avancos tecnoldgicos que mudaram definitivamente o funcionamento das
industrias. A 1* Revolugao Industrial, ocorreu por volta de 1765 e foi marcada pela mecanizagao
dos processos, que permitiu a acelerar a producdo e substituir parte do trabalho humano,
resultando numa producdo em larga escala. Foi seguida pela 2* Revolu¢ao em 1870, marcada
principalmente pelo desenvolvimento da Industria Quimica e de novas formas de energia como
o petréleo e a eletricidade, que permitiram a criagdo de novos inventos, como automoveis,
aparelhos de radio e telefones (A VOZ DA INDUSTRIA, 2020).

Ap6s a 2% Guerra Mundial, o conhecimento na area nuclear e quantica e também a corrida
pela exploracdo espacial, permitiram ndo s6 o desenvolvimento de uma nova forma de geragao
de energia, mas também a criagdo de aparelhos € maquinas mais avancadas, com o
desenvolvimento da microeletronica, automagao e biotecnologia. Com isso, iniciou-se a 3*
Revolugdo Industrial, que originou boa parte dos produtos e métodos de produgdo que temos
hoje (PORTAL DA INDUSTRIA, 2021).

A 4* Revolugao Industrial, ou Industria 4.0, engloba diversas novas tecnologias avangadas
como inteligéncia artificial, robodtica, Big Data, Internet das Coisas (IoT, do inglés Internet of
Things), computagdo em nuvem, entre outras. Essa nova etapa da evolugdo industrial tem
mudado rapidamente e em grande escala os modelos de produ¢do atuais, aumentando a
eficiéncia de dos processos e melhorando a tomada de decisdes baseando-se no grande volume
de dados e insights permitidos por essas ferramentas (PORTAL DA INDUSTRIA, 2021).

Com isso, a Industria Quimica tem, cada vez mais a sua disposi¢do, ferramentas que
permitem a melhoria e desenvolvimento dos processos existentes. Ao utilizar recursos como o
machine learning e inteligéncias artificiais para estudar e modelar processos complexos, nao-

lineares e que sdo complicados de analisar através dos modelos tradicionais, ha bons resultados
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com predigdes acuradas e que demandam menos tempo e esfor¢os, uma vez que ndo ¢
necessario conhecer a fundo os detalhes e particularidades das reagdes, equipamentos e
condigdes experimentais do processo estudado (DOBBELAERE et al., 2021).

Porém isso ndo significa que a utilizacao desses métodos substitui o estudo do processo
por meios tradicionais, pelo contrario, esses conhecimentos sdo essenciais para entender e tomar
decisdes sobre o processo e entender o que os dados analisados e gerados por essas ferramentas
significam. Nao se trata de uma substituicao, e sim da unido de conhecimentos e ferramentas
para tornar a industria ainda mais eficiente e produtiva.

Um dos temas que estd em evidéncia nos ultimos anos ¢ a produgdo de combustiveis,
impulsionada pela crescente demanda de energia e pela preocupacdo com a preservagao
ambiental. Busca-se reduzir a emissao de gases estufa e a dependéncia de combustiveis fosseis,
bem como alternativas na producao de combustiveis sustentdveis e formas de energia
renovavel. Porém a utilizacdo de energias renovaveis nem sempre ¢ capaz de suprir
completamente as necessidades de paises industrializados por conta da dificuldade na extracao
desses combustiveis (YE, 2019).

Naturalmente partir de tais demandas surgem solugdes nao s6 para produzir combustiveis
de fontes renovaveis, mas também utilizar combustiveis fosseis de maneira mais inteligente e
menos prejudicial ao meio ambiente. Um dessas formas € a conversao de gas natural (composto
majoritariamente de metano (CH4) e gas carbonico (CO2) através de uma reforma catalitica
para producdo de gas de sintese(AYODELE; CHENG, 2015).

O gas de sintese pode ser utilizado para a producao de outros combustiveis e produtos como
o metanol, reduzindo a emissao desses gases, principais responsaveis pelo efeito estufa. Além
do consumo e transformacao desses gases, combustiveis sintéticos produzidos a partir do gas
de sintese podem apresentar uma redugdo de cerca de 90% em emissdo de carcinogénicos e
50% de reducdo na emissdao de CO2 quando comparado a combustiveis fosseis convencionais

(AYODELE; CHENG, 2015).
2.1 GAS DE SINTESE

O gés de sintese consiste numa mistura gasosa formada por gas hidrogénio (Hz) e mondxido
de carbono (CO), podendo haver tracos de outros compostos como gas carbdonico (CO»),
nitrogénio (N2) e metano (CHa). E utilizado na produgéo de compostos como metanol e amonia,
além de combustiveis, como a gasolina sintética a partir do processo de sintese de Fischer-

Tropsch O gas de sintese pode ser obtido através de diferentes processos e matérias primas,
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dentre elas: reforma catalitica de gas natural, gaseificacdo parcial do carvao, gaseificagdo de

biomassa, gaseificacao de rejeitos sélidos e coque, entre outras (SALES, 2013).
2.1.1 Reforma catalitica de gas natural

O processo de reforma catalitica do gés natural ¢ bastante utilizado para a producao do gas
de sintese, e em algumas refinarias com objetivo principal de produgdo de hidrogénio. Existem
dois processos principais que sdo a reforma a vapor e a reforma a seco. Consiste num processo
termoquimico com utilizagdo de catalisador para promover a reagdo (SALHI et al., 2011).

O grande desafio desses processos ¢ o desgaste e desativacao dos catalisadores devido as
reacdes secundarias e deposi¢cdo de carbono, principalmente pelo fato de que os catalisadores
que apresentam melhor desempenho e mais resisténcias aos efeitos negativos, utilizam em sua
composi¢ao metais preciosos, encarecendo e por vezes inviabilizando o processo (SALHI et

al.,2011).
2.1.1.1 Reforma catalitica a vapor

O processo de reforma a vapor do metano ¢ um dos mais antigos e mais utilizados para a
producdo de gas de sintese rico em H», com foco na produgdo de hidrogénio combustivel. A
reforma a vapor normalmente ¢ conduzida em fornos industriais de altas temperaturas,
operando com reatores tubulares com leito catalitico. Uma consequéncia dessas condigdes de
operagdo ¢ o alto custo, refletido pelo grande consumo energético (em muitos casos parte do
gas natural ¢ usado como combustivel para o processo) e também pelos custos do equipamento,
uma vez que o reator precisa suportar as altas temperaturas (MELONI; MARTINO; PALMA,
2020).

A reagdo de reforma a vapor do metano ¢ altamente endotérmica, sendo necessario operar

a temperaturas entre 700 e 800 °C, e ocorre segundo a reacao:

CH, + H,0 - CO + 3H, AH® = +206,4 kJ.mol™! (1)

Essa reacdo ¢ normalmente seguida pela reacdo de deslocamento gas-agua (water gas shift,

WGS) produzindo ainda mais H, e CO» que acaba sendo um subproduto nesse processo:

CO + H,0 - CO, + H, AH®° = —41 kJ.mol ™! )
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Com isso, o processo de reforma a vapor do metano apresenta grande custo-beneficio para
produgdo de hidrogénio a baixo custo, e resulta num gas de sintese com alta propor¢do de
H»/CO, necessario para producdo de H> puro. Foram desenvolvidos varios tipos de
catalisadores, € um dos mais promissores para utilizacdo em escala industrial ¢ o catalisador de
niquel depositado sobre alumina, por conta da sua eficiéncia e menor custo quando comparado
aos demais catalisadores que utilizam em sua maioria metais preciosos (SALHI et al., 2011).

Porém, o desenvolvimento de catalisadores eficientes e baratos para este processo ainda ¢
desafiador, devido ao grande desgaste sofrido durante o processo, principalmente por conta da
corrosao promovida pelo vapor. A deposicdo de carbono, e consequente desativacdo do
catalisador, também ¢ um problema para esse tipo de processo, mas pode ser bastante reduzida
utilizando uma maior proporc¢ao de vapor em relagdo ao metano (de 2.5 a 3), o que por outro
lado, aumenta os efeitos de corrosao (MELONI; MARTINO; PALMA, 2020).

Outros metais também sdo ativos como catalisadores do processo, mas acabam
apresentando diversas desvantagens. O cobalto, por exemplo, acaba sofrendo desgaste intenso
devido as altas pressoes e a presenca do vapor; o ferro, ¢ rapidamente oxidado e assim acaba
inativado; outros metais nobres, como platina, paladio e rddio, apresentam boa resisténcia mas

sd0 demasiadamente custosos para uma operacdo comercial em escala, inviabilizando sua

utilizacdo (MELONI; MARTINO; PALMA, 2020).
2.1.1.2 Reforma catalitica seca

A reforma catalitica seca do metano, gera um gas de sintese com menor proporcao de gas
hidrogénio quando comparada a reforma a vapor, com propor¢ao média de Ho/CO = 1. Esse
baixo rendimento ¢ obtido principalmente pois além da reagcdo de reforma, descrita pela
Equacdo 3, ocorre simultaneamente a reagdo de deslocamento gas-dgua reversa (reverse water

gas shift, RWGS), descrita pela Equagao 4 (USMAN; WAN DAUD; ABBAS, 2015).

CH, + CO, - 2CO + 2H, AH® = +247,4 kJ.mol™? 3)

€O, + Hy, - CO + H,0 AH® = +41 kJ.mol™? (4)

Mesmo com a baixa propor¢do de gas hidrogénio, essa reacdo de reforma ¢ de grande

interesse pois os dois principais gases causadores de efeito estufa sdo convertidos em compostos

de maior valor agregado, permitindo nao s6 uma reducdo na emissao de gases poluentes, mas
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também a geracdo de valor a partir desses gases. Esse processo tende a produzir um gas de
sintese numa propor¢ao apropriada para a produgdo de gasolina sintética através da reacdo de
sintese de Fischer-Tropsch, e nesse sentido apresenta uma reducdo de até¢ 50% na emissdo de
CO; quando comparado a queima de combustiveis fosseis (AYODELE; CHENG, 2015).

Porém, mesmo com a importancia do ponto de vista ambiental, a operagdo da reforma seca
do metano pode ser ainda mais problemadtica, pois sofre grandemente com deposi¢do de
carbono, induzindo a desativagao de catalisadores. Ocasionada pela decomposi¢do do metano
e pela reagdo de Boudouard, descritas pelas Equagdes 5 e 6, respectivamente (USMAN; WAN
DAUD; ABBAS, 2015).

CH, - C+ 2H, AH® = +75,4 kJ.mol™? (5)

2C0 - C+CO, AH® = =172 kJ.mol™? (6)

O grande desafio para esse processo ¢ a obtencao de catalisadores apropriados, uma vez
que a maioria dos catalisadores com boa atividade sdo desenvolvidos com a utilizagao de metais
preciosos, a exemplo dos catalisadores de rédio e ruténio que apresentam um bom desempenho
e resisténcia a desativagdo, porém seu alto prego e baixa disponibilidade limitam seu
desenvolvimento e ampla utilizagdo (CHEN; ZAFFRAN; YANG, 2020).

Outros metais mais baratos e abundantes tém sido testados para este processo.
Catalisadores de niquel suportado em 6xidos de outros metais, tem sido bastante utilizado,
principalmente pelo seu baixo prego e facilidade de obteng@o. Porém ainda ndo ¢ o catalisador
ideal, pois tem uma tendéncia a sofrer sinterizagdo e desativacdo por deposi¢do de carbono
(MELONI; MARTINO; PALMA, 2020).

Combinagdes de cobalto e niquel, além de outros metais também tém sido testadas e
apresentam bom desempenho e resisténcia, porém ainda ndo ha estudos conclusivos sobre esse
tipo de catalisador (CHEN; ZAFFRAN; YANG, 2020).

Usman, Wan Daud e Abbas (2015) analisaram a influéncia de uma série de parametros no
processo de reforma seca, observando que o tamanho das particulas de catalisador pode ser uma
variavel util para o controle da deposi¢do de carbono. A utilizagdo de particulas menores que
15 nm, apontou para uma redu¢do na desativacio por deposi¢do, independentemente do tipo de
catalisador. Nesse estudo, também foram apontadas combinagdes de metais nobres e niquel

como catalisadores bi metalicos, o que ajudaria a melhorar a resisténcia e atividade, bem como
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diminuiria os custos em comparagdo a utilizacdo de catalisadores monometalicos de metais
nobres.

Ayodele e Cheng (2015) utilizaram um catalisador de cobalto suportado sobre 6xido de
cério em um reator de leito fixo para realizar a reforma catalitica seca do metano. O experimento
foi realizado em escala laboratorial para fins de modelagem e otimizagdo, e os dados obtidos
nesse experimento, foram utilizados no presente trabalho. A Figura 1 mostra o diagrama do

esquematico do experimento realizado.

Figura 1 - Diagrama esquematico do experimento de reforma catalitica seca.
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Fonte: (AYODELE; CHENG, 2015).

A reforma foi executada em um reator de aco inoxidavel preenchido com o leito fixo
catalitico de cobalto sobre ¢xido de cério, em um forno com temperatura controlada. A
alimentacdo consiste na corrente gasosa composta pelos reagentes, metano (CHs) e gas
carbonico (H») e os agente carreador gas nitrogénio (N2). O gas hidrogénio foi usado como
agente redutor para o catalisador ao inicio do experimento, utilizando uma corrente de 20% H>
e 80% de N para iniciar a atividade catalitica (AYODELE; CHENG, 2015).

A temperatura foi medida através de um termopar acoplado ao forno, os fluxos gasosos
controlados e medidos através de controladores digitais associados a cada corrente
individualmente. A composi¢do do gas de sintese produzido foi medida por cromatografia
gasosa com detector de condutividade térmica, e a partir dos dados, calculadas as conversdes e

taxa de producao dos componentes do gas de sintese (AYODELE; CHENG, 2015).

2.1.2 Processos de gaseificacao

Processos de gaseificacao consistem na conversao de matéria rica em carbono para gas

através de aquecimento em determinadas condi¢des, o que inclui processos como a pirolise,



19

hidrogenacdo e oxidagdo parcial, sendo o ultimo o método mais utilizado para produgdo de gas
de sintese. A composi¢ao do gas de sintese gerado nesse processo depende das condigdes de
operagao (temperatura, pressao, catalisador) e da composi¢ao da matéria prima, que em geral ¢
biomassa (WEN; LU; PHUC, 2021).

A biomassa, em diversas formas tem sido utilizada como matéria prima no processo de
gaseificagdo, sendo decomposta a altas temperaturas em vasos pressurizados. A gaseificacao
da biomassa exige inicialmente que haja uma pirdlise para secagem do material e remogao de
compostos volateis. Entdo o material restante, predominantemente carbonaceo, sofre oxidagao
parcial para producdo do gés de sintese (KAN et al., 2019).

A pirolise exige temperaturas em torno dos 400 a 600°C e um ambiente livre de oxigénio.
Ja a gaseificagdo por oxidagdo parcial exige temperaturas ainda mais altas, em torno dos 800 a
900 °C e uma quantidade controlada de oxigénio (BAHADAR et al., 2022).

Também sdo estudados processos de co-gaseificagdo, onde mais de um tipo de biomassa
e/ou outras matérias carbonaceas sdo utilizadas. Kan er al. (2019) apresentaram uma co-
gaseificagdo combinando residuos de horticultura e lodo de esgoto para producao de gas de
sintese, usando CO, como oxidante, e utilizando as prdprias cinzas como catalisador do
processo, o que reduz custos e evita problemas de envenenamento e desgaste do catalisador.

Mansur et al., (2020) fizeram um estudo de co-gaseificagao utilizando carvao como matéria
carbondcea principal, em blends combinados com serragem ou pellets de madeira, feitos a partir
da serragem, para comparar o desempenho das duas matérias primas. Nesse estudo foi
observado que a mistura de carvao e pellets produz um gas de sintese com maior propor¢ao de
H>/CO do que usando a serragem, dessa forma mostrando que um pré-processamento da matéria
prima pode gerar um produto de maior valor agregado.

A Figura 2 ¢ uma representacdo dos processos de gaseificacdo e co-gaseificagdo de
biomassa e carvao. De maneira geral o processo pode ser dividido em etapas de preparagao,
gaseificagdo e processamento de produtos. As etapas de preparagdo incluem processos como
secagem, trituracdo e compactacdo da matéria prima (BAHADAR et al., 2022).

Ja o processamento dos produtos varia de acordo com a finalidade esperada para o gas de
sintese, podendo ir da purificagdo e separacdo dos gases, como para a produgao de hidrogénio
combustivel com alto grau de pureza; produgdo de metanol; armazenamento do gas de sintese
para servir de insumo na Sintese de Fischer-Tropsch; ou a utilizagdo do proprio gas de sintese

como gas combustivel (BAHADAR et al., 2022).
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Figura 2 - Fluxograma da gaseificagdo e co-gaseificacdo de carvao e biomassa.
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2.2 MACHINE LEARNING

Machine learning (ML) ¢ a denominagdo dada a um conjunto de técnicas computacionais
contidas dentro do campo da Inteligéncia Artificial (IA), cujas bases sd3o a Ciéncia da
Computacao, a Matematica e a Estatistica. A ideia por trds do ML ¢é gerar algoritmos capazes
de ajudar a maquina a aprender a partir de dados.

Um algoritmo deve aprender a partir da Experiéncia ao processar os dados disponiveis,
para executar determinadas Tarefas, enquanto a Performance desse algoritmo ao desempenhar
tal tarefa é mensurada, com base em métricas definidas. E dito que este algoritmo aprende,
quando a Performance nessas determinadas Tarefas aumenta com a Experiéncia, ou seja, ao
processar mais dados no decorrer do tempo (SARKAR; BALI; SHARMA, 2018).

Dentre as tarefas definidas para o algoritmo, pode-se destacar: classificagdo (ou
categorizagdo) de dados; deteccdo de anomalias; regressdo; agrupamentos; tradugdo e
transcricdo (ambas se aplicam vastamente no processamento de linguagem natural); dentre
outras possiveis tarefas (SARKAR; BALI; SHARMA, 2018).

Dentre os principais paradigmas do ML destacam-se:
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e Aprendizado supervisionado, no qual o modelo ¢ treinado a partir de dados ja
classificados e tratados com uma estrutura bem definida de inputs e outputs. Um bom
exemplo sdo modelos de Regressdo, como support vector machines (SVM), redes
neurais artificiais (ANNSs) e Gaussian process regression (GPR).

e Aprendizado niao supervisionado, onde o modelo ¢ apresentado a dados sem
classificagdo e sem uma estrutura explicita de inputs e outputs. O modelo deve entdo,
encontrar os padrdes dos dados e agrupa-los. Técnica utilizada principalmente quando
nao ha relagdes claras entre inputs e outputs. Exemplos de métodos nao supervisionados
sdo0 k-means clustering e support vector data description.

e Aprendizado por refor¢o, onde o modelo ¢ apresentado a um conjunto de dados e
aprende com base numa “recompensa’”, uma métrica computada através de uma fungao
objetiva que deve ser maximizada, indicando o “caminho correto” que a rede deve
tomar.

Olhando para o ML aplicado a engenharia quimica, pode-se destacar como principais
pontos fortes desses métodos a grande velocidade de desenvolvimento junto a boa acuracia de
um modelo devidamente treinado. Junto a isso, ha grande escalabilidade desse tipo de modelo,
permitindo que se aplique a diferentes escalas e processos (DOBBELAERE et al., 2021).

Em contrapartida, esses modelos se comportam como uma “caixa preta”, entdo se torna
dificil entender o funcionamento do modelo e como seus parametros se relacionam, conforme
a complexidade do modelo escolhido. Um outro fator que deve ser levado em conta ¢ a
reprodutibilidade, pois o ajuste e treinamento dos modelos ¢ fortemente influenciado pelos
dados disponiveis para o treinamento, bem como pela grande quantidade de combinagdes de
parametros que podem ser utilizados (DOBBELAERE et al., 2021).

Técnicas de machine learning aplicadas a engenharia quimica nao sdo novidade. Essa
industria ja experimentou os impactos do ML em épocas anteriores, desde os anos de 1980
utilizando redes neurais “rasas” e outros modelos guiados por dados para fazer controle de
processos e predicao de falhas. (SCHWEIDTMANN et al., 2021)

Um exemplo dessa utilizagdo pioneira foi o sistema CONPHYDE, que auxiliava na
previsdo das propriedades termo fisicas de misturas complexas, desenvolvido em 1983. O
sistema era baseado no que se chamava de “sistemas experts”, modelos altamente
especializados e impulsionados por heuristica e conhecimento técnico dos processos. Varios
outros modelos foram desenvolvidos a exemplo do DECADE (1985), para desenvolvimento de
catalisadores ¢ do MODELL.LA, uma linguagem de programacdo para modelagem de

processos. Apesar do sucesso dos sistemas experts, os altos investimentos em tempo, dinheiro
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e esfor¢o para desenvolver tais ferramentas, acabaram inviabilizando seu uso na época
(VENKATASUBRAMANIAN, 2019).

Porém, essas “ondas” de aplicagdo do ML tiveram seu desenvolvimento limitado por
aspectos técnicos, como a baixa disponibilidade e qualidade dos dados, a falta de poder
computacional e de linguagens e ambientes de desenvolvimento amigéaveis ao usuario. Nos dias
atuais, com a rapida evolugdo da tecnologia e barateamento do poder computacional,
ferramentas de ML s3o muito mais acessiveis, tanto no ambiente industrial quanto no
académico (SCHWEIDTMANN et al., 2021).

Além das melhorias de hardware e acesso, solugdes de software também foram
aprimoradas e popularizadas, tornando o desenvolvimento de modelos de ML mais simples e
amigavel para uso. Hoje, linguagens como MATLAB, R, C++ e principalmente Python, sao
bastante utilizadas para criar modelos de ML, tratar e analisar dados e desenvolver aplicagdes
para uso em producdo. A disponibilidade de enormes quantidades de dados também permitiu o
desenvolvimento dessa area, introduzindo conceitos como a ciéncia de dados e o “Big Data”
(VENKATASUBRAMANIAN, 2019).

Além das linguagens de programacao, diversos frameworks foram criados e aprimorados
para esse tipo de trabalho. Para o Python, podem ser citados o TensorFlow do Google e o scikit-
learn para criagdo e treino de modelo; Pandas, numpy e scipy para leitura e tratamento de dados;
matplotlib e Seaborn para visualizacdo de dados, dentre outras bibliotecas. O desenvolvimento
destes frameworks, além de tornar a etapa técnica mais amigavel e simplificada, expande as
possibilidades do que pode ser feito com ML e reduz drasticamente o tempo e esforco
necessario para o seu desenvolvimento.

Hoje, para desenvolver uma rede neural ndo ¢ mais necessario programa-la do zero,
levando em conta toda a matematica e estatistica por trds dos modelos, e com algumas linhas
de codigo ¢ possivel tratar os dados, criar o0 modelo, treina-lo e obter os resultados. Utilizando
por exemplo frameworks como Pycaret, uma ferramenta do que ¢ chamado AutoML, que
facilita o processo de tratamento dos dados e treinamento de diversos modelos
simultaneamente, permitindo a escolha daqueles que apresentam melhor desempenho para

serem otimizados e aprofundados.
2.2.1 Redes Neurais

Dentre os métodos de machine learning, um dos conjuntos de maior destaque sdo as redes
neurais, devido a sua grande versatilidade e adaptabilidade a diversos tipos de problemas, desde

classificacdo de dados, predi¢do e regressao, até¢ mesmo processamento de imagens e linguagem
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natural. O campo em que atuam as redes neurais ¢ chamado de Deep Learning, e esses
algoritmos sdo baseados num conceito em que as vdrias representacdes dos dados sdo
aprendidas em diferentes camadas na estrutura da rede(SARKAR; BALI; SHARMA, 2018).

A interacdo e hierarquia entre as diferentes camadas, possibilita construir uma inteligéncia
para a maquina, a partir da forma que os dados sdo representados. Esse tipo de arquitetura
baseado em camadas ¢, de maneira geral, o “coracdo” dos algoritmos de Deep Learning
(SARKAR; BALI; SHARMA, 2018).

Redes neurais imitam o funcionamento de neuroénios humanos para representar as formas
de relacionamento ndo-lineares entre os dados, e sdo compostas por nds (chamados
“neurdnios”), elementos processadores basicos das redes, com valores associados a cada um
(pesos e bias) que sao “aplicados” aos sinais de entrada da rede, € o conjunto de operacdes
realizadas por toda a rede determinam os valores de saida (BAHADAR et al., 2022).

O objetivo do treino de uma rede neural, ¢ calcular e determinar os melhores pesos e bias
para cada neurdnio da rede de forma a retornar valores o mais proéximo dos dados reais
utilizados no treino. Uma rede treinada, deve ser capaz de gerar resultados confiaveis para dados
fora do conjunto de dados de treino, ou seja, deve ser capaz de fazer previsdes acuradas para
inputs que ela nunca tenha entrado em contato (VALENTE; VALENTE, 2021).

Esse método de treinamento cria um modelo “caixa preta” do ponto de vista do fendmeno
estudado, pois ndo sdo utilizadas equagdes fenomenologicas na predi¢ao e todos os parametros
de pesos e bias calculados no treino das redes ndo necessariamente tém sentido fisico ou
quimico atribuido, e sdo valores compreendidos apenas pela rede (VALENTE; VALENTE,
2021).

2.2.1.1 Estrutura de redes neurais

As redes neurais consistem em nods, também chamados neurdnios, que sao as unidades mais
basicas de processamento em uma rede. O aglomerado de neur6nios num mesmo nivel ¢é
chamado de camada (/ayer). Uma rede pode ser composta por diversas camadas de neuronios,
contendo pelo menos uma camada de entrada (input) e uma de saida (output), as demais
camadas intermediarias sao chamadas de camadas ocultas (hidden layers). Os dados de entrada
sdo repassados para os neurdnios da proxima camada, processam esses dados de acordo com os
pesos atribuidos a cada neur6nio, e passam o valor processado para a proxima camada através
de uma funcdo de ativacdo até alcangar a camada de saida, onde resultados sdo computados

(ELMAZ; YUCEL; MUTLU, 2020).
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Um exemplo de estrutura de rede neural ¢ apresentado na Figura 3, onde os circulos
amarelos representam os pontos de entrada dos dados (inputs), os vermelhos os pontos de saida
(outputs), € no meio, os azuis representam os neurdnios das chamadas “camadas ocultas” da
rede neural. Cada coluna de neurdnios representa uma camada, € normalmente cada neuroénio
interage apenas com os neurdnios das camadas anterior e posterior, ndo interagindo com outros
neurdnios da propria camada.

Figura 3 - Representagdo da estrutura de uma rede neural.

Fonte: (COELHO, 2017)

Cada neurdnio recebe os valores de todos os neurdnios da camada anterior, que sdo
ponderados por pesos associados a cada neurdnio, e entdo somado com um pardmetro bias e
entdo esse valor ¢ passado para uma funcao de ativagao responsavel por combinar linearmente
os valores computados nos neuronios. As fungdes de ativacao tém como objetivo gerar o sinal
de saida de cada neurOnio, através de uma transformacdo escalar e determinar o “estado
ativado” de cada neuronio. Essas fungdes sdo o que ddo as redes neurais a capacidade de se
ajustar a dados ndo-lineares (DING; QIAN; ZHOU, 2018).

A estrutura de um neurdnio genérico ¢ ilustrada na Figura 4.

Figura 4 - Esquema de representacdo de um neurdnio genérico.
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Generalizando, a equacdo do neurdnio k pode ser descrita como:

Vg = bk + z xia)k'i (7)

e o sinal de saida ¢ definido através da fun¢do de ativagao (¢) da camada:

Vi = @) (3)

A fungdo de ativacao pode assumir diversas expressoes, dentre as mais comuns podem-se

destacar:

e Sigmoidal (sigmoid):

9
fﬂ(x)=m ®)

e RelLU:

x,sex =0 (10)

@(x) = max(0,x) = {0 cex <0

2.2.1.2 Treino de redes neurais

O objetivo do treino de uma rede neural, ¢ calcular e determinar os melhores pesos e bias
para cada neuronio da rede de forma a retornar valores o mais proximo dos dados reais
utilizados no treino. Uma rede treinada, deve ser capaz de gerar resultados confiaveis para dados
fora do conjunto de dados de treino, ou seja, deve ser capaz de fazer previsdes acuradas para
inputs que ela nunca tenha entrado em contato (VALENTE; VALENTE, 2021).

Esse método de treinamento cria um modelo “caixa preta” do ponto de vista do fenomeno
estudado, pois ndo sao utilizadas equacdes fenomenologicas na predigao e todos os parametros
de pesos e bias calculados no treino das redes ndo necessariamente tém sentido fisico ou
quimico atribuido, e sdo valores compreendidos apenas pela rede (VALENTE; VALENTE,
2021).

Um dos métodos mais populares para eficientes para o treino de redes neurais € o
Backpropagation (ou retropropagacao). Algoritmos de treino baseados neste método, em geral

sdo construidos em duas etapas: a propagacdo e o ajuste de pesos. Na etapa de propagacao, a
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rede neural ¢ alimentada pelos inputs do conjunto de dados de treino, esses dados sdo
processados pela rede, inicializada com valores aleatorios ou pré-definidos paras os pesos e
biases. O processamento desses dados gera valores de saida, que sdo entdo comparados aos
outputs reais do conjunto de treino. Entdo sdo computados os erros entre os valores gerados
pela rede e os valores reais, desejados (SARKAR; BALI; SHARMA, 2018).

Esses erros sdo entdo retropropagados pela rede, refazendo os célculos em cada neurénio e
gerando um erro para o ajuste de pesos. O algoritmo de treino computa o gradiente dos pesos
com base no erro para cada neurdnio, e aplica a “taxa de aprendizagem” para definir a
porcentagem do valor do gradiente que serd subtraida do peso daquele neurdnio. O calculo do
gradiente normalmente ¢ feito a partir de algoritmos de otimizagdo e fungdes similares, como
por exemplo o gradiente descendente estocastico (SARKAR; BALI; SHARMA, 2018).

Essas etapas sdo repetidas diversas vezes, até que se obtenha um baixo erro, que seja
satisfatorio para o problema. Essas multiplas repetigdes/iteracdes sdo as chamadas épocas

(SARKAR; BALIL; SHARMA, 2018).
2.2.1.3 Construgdo e hiperparametros

Ao treinar modelos de machine learning, os parametros internos do modelo sao ajustados
para se adaptar bem aos dados. Porém, além de pardmetros internos do modelo (pesos, bias,
etc.), também existem os chamados hiperparametros, que ndo podem ser ajustados a partir dos
dados, e devem ser definidos antes mesmo do treinamento. Hiperpardmetros sdo a configuragao
do modelo, definindo sua e estrutura e controlando o processo de aprendizagem (YANG;
SHAMI, 2020).

Todos os modelos de machine learning possuem hiperpardmetros, na maioria dos casos
diferentes entre si, mas em especial para redes neurais ¢ possivel citar exemplos como:

e Numero de camadas ocultas

e Numero de neurdnios por camada (pode haver diferente quantidade de neurénios
em cada camada)

e Funcao de erro

e Algoritmo de otimizagao para o ajuste dos pesos

e Taxa de aprendizagem: taxa que sera aplicada sobre o gradiente ao recalcular
pesos e bias dos neuronios.

e Tamanho da amostra por propagacio: define o volume de amostras que sera

usada em cada propagacdo completa, antes de reajustar os parametros da rede.
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e Numero de épocas: quantidade de iteracdes/ciclos de treinamento que serdo
executados

e Métodos de parada antecipada: essa funcdo avalia a variacdo do erro, num
determinado numero de épocas, caso ndo haja melhoria, ¢ feita uma parada
antecipada no treinamento.

A defini¢ao dos hiperparametros (processo dehyperparameter tunning ou hyperparameter
optimization, HPO) pode ser feita manualmente, ajustando os valores, treinando o modelo e
avaliando o desempenho do treino. Esse método funciona bem para modelos com poucos
hiperpardmetros, porém para modelos mais complexos fazer esse processo manualmente se
torna muito custoso e demorado. Além disso, exige um conhecimento mais aprofundado de
cada um deles, para entender sua influéncia sobre o modelo e definir os novos valores que
devem ser testados. Por vezes, a interacdao entre diferentes hiperparametros tem uma relagao
ndo linear, o que torna o processo ainda mais dificil e ndo analitico (YANG; SHAMI, 2020).

Visando tornar o processo de HPO mais simples e menos custoso, ¢ possivel utilizar
algoritmos que executardo esse processo repetidas vezes avaliando o desempenho de cada
conjunto de hiperparametros testados para escolher aquele que apresenta melhor performance.
Como ndo existe um método analitico para definir a combinagao 6tima de hiperparametros para
cada modelo, em geral esses modelos fazem uma busca pseudoaleatéria num intervalo
determinado de valores. Pode-se citar como exemplo os métodos de Grid Search e Randomized
Search, que testam os conjuntos de hiperparametros dentro de um intervalo de valores de

maneira sequencial e randomizada, respectivamente (SARKAR; BALI; SHARMA, 2018).
2.2.2 Machine Learning na Industria Quimica

Redes neurais sao reconhecidas por ter uma vasta gama de aplicagdo e adaptabilidade aos
mais diversos problemas, abrangendo areas como processamento de imagens, linguagem
natural, classificagdo de dados e regressdo de sistemas ndo lineares. Na industria quimica, um
bom exemplo de seu uso sdo os sistemas de controle preditivo e de predi¢do de falhas. Yao,
Wang e Xu (2014) desenvolveram um sistema de monitoramento de falhas em processos em
batelada, utilizando para isso o método de support vector data description. O método se
mostrou valido quando testado no controle de um processo de produgdo de semicondutores,
apresentando algumas melhorias.

Petsagkourakis ef al. (2020) desenvolveram um método utilizando um modelo de

aprendizado por refor¢o de uma rede neural recorrente para ajuste de parametros de controle
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em processos bioquimicos complexos, sendo um dos casos de estudo a produgdo de ficocianina,
pigmento azul produzido por cianobactérias que tem propriedades anti-alergénicas e
antioxidantes. Aliado aos modelos fenomenologicos reais para a simulacao do processo, este
método obteve desempenho superior ao método tradicional de controle preditivo nao linear,
mesmo com uma quantidade reduzida de amostras para o treinamento do modelo.

O aprendizado supervisionado tem sido usado também para modelar sistemas dinamicos
e fazer predigdes e otimizagdo dos processos, auxiliando na tomada de decisdao. Processos como
cristalizacdo, polimerizacao, destilagdes e outros, podem ser simulados como modelos
orientados por dados (data-driven), permitindo um estudo mais rapido dos processos, levando

em conta as especificidades de cada planta (SCHWEIDTMANN et al., 2021).
2.2.2.1 Machine Learning na produgao de Gas de Sintese

A producdo de gés de sintese pode ser feita a partir de diversas matérias primas de origem
carbonécea, e as caracteristicas dessas matérias primas impactam diretamente na eficiéncia do
processo. Por muitas vezes ¢ dificil determinar precisamente a composi¢do dessas matérias
primas para fazer uso de equagdes fenomenologicas para modelar o processo. Nessas situagoes,
o uso de redes neurais e outros métodos de machine learning podem ser tteis pois nao dependem
de conhecer composi¢des exatas, o modelo vai se adaptar aos dados e medi¢des disponiveis, se
elas forem significantes para os resultados (BAHADAR et al., 2022).

Pandey et al. (2016) testaram diferentes arquiteturas no desenvolvimento de redes neurais
para modelagem da producdo de gas de sintese através da gaseificagao de rejeito solido em um
reator de leito fluidizado. As simulagdes mostraram que as redes sao uma alternativa viavel na
predicdo dessas composicdes, com algumas estruturas atingindo coeficientes de determinacao
de até 0.99.

Ja George, Arun e Muraleedharan (2018) utilizaram um processo de gaseificacao similar
para conversao de diversos tipos de biomassa, ¢ a modelagem a partir de uma rede neural do
tipo MIMO resultou em um coeficiente de regressdo de 0.987, além de apresentarem um breve
estudo sobre a influéncia dos parametros de entrada na composi¢ao final do gas de sintese.

Wen, Lu e Phuc (2021) aplicaram métodos de machine learning para prever a composicao
do gas de sintese produzido a partir da gaseificagdo de cascas de arroz. Foram testados dois
modelos: redes neurais artificiais (ANN) e gradient boost regressor (GBR), que chegaram a
alcancgar coeficientes de determinacdo de 0.89 e 0.93 respectivamente. Como dados de entrada,

além de analise laboratorial das composi¢des na matéria prima, foram usados pardmetros como
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umidade, porcentagem de cinzas na amostra e quantidade de volateis, para a previsdo da
composicao do gas de sintese.

Quanto a reforma catalitica do metano a gas de sintese, Elmaz, Yiicel ¢ Mutlu (2020)
fizeram uma modelagem preditiva da reforma seca de metano sobre um catalisador de cobalto,
e utilizaram redes neurais, support vector regression (SVR) e regressao polinomial para fazer
a previsdo da conversdo de metano e gas carbdnico, e nesse caso obtiveram um melhor
desempenho utilizando regressao polinomial, seguida de SVR.

Ye (2019) utilizou uma ANN para modelar a producao do metanol a partir do gas de
sintese, e investigar o efeito do aumento da pressdo parcial na conversdo. Para validagao foi
executado um experimento mostrando que o aumento da pressdo houve também um aumento
da conversao de metanol, conforme previsto pelo modelo.

Bahadar et al., (2022) testaram diversos algoritmos de machine learning, incluindo ANNs
para modelar um conjunto de dados compilado de diversos autores para a modelagem da
produgdo de gas de sintese. A comparacdo no desempenho de todos os métodos apontou o
desempenho superior das ANNs para os dados utilizados, obtendo coeficientes de determinagao
de até¢ 0.998, superando em todas as situagdes os demais métodos.

Ayodele e Cheng (2015) por sua vez, realizaram o experimento de reforma catalitica seca
do metano em reator de leito fixo, utilizando como catalisador cobalto suportado em cério, e
utilizaram redes neurais artificiais e o método de Box-Behnken para investigar os efeitos das
pressoes parciais de CH4 e de CO2 na taxa de producdo do gas de sintese e a conversao dos
reagentes.

A partir das ANNSs, fizeram a previsdo dos das composi¢des atingindo coeficientes de
determinagdo de 0.99, e utilizaram o modelo Box-Behnken, um método de superficie de
resposta para determinar os inputs 6timos para maximizar a conversao. Apds otimizagdao dos
parametros de processo, obtiveram conversdes de 74,84% e 76,49% para o CH4 e CO?2,

respectivamente.
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3 MATERIAIS E METODOS

3.1 SOFTWARES

Para desenvolvimento deste trabalho, foi utilizada a linguagem de programacao Python, na

versdo 3.7. Os frameworks e bibliotecas de codigo utilizados foram:

Pandas, para manipulagdo de dados.

NumPy e SciPy, para utilidades matematicas e estatisticas.

Seaborn e matplotlib, para visualizagao de dados.

Scikit-learn, para tratamento de dados e desenvolvimento de métodos de machine
learning.

Pycaret, para desenvolvimento de métodos de machine learning.

Desenvolvimento e treino de redes neurais: Keras, TensorFlow

Otimizacao de hiperparametros de redes neurais: KerasTuner

Como ambientes de desenvolvimento integrados (IDEs) foram utilizados o VSCode ¢ o

Google Colab. Todos os softwares citados sdo de codigo aberto (open source) e gratuitos para

uso.

3.2 CONJUNTO DE DADOS

O conjunto de dados experimentais utilizados foram obtidos do trabalho de Ayodele e

Cheng (2015). Neste conjunto, existem 57 amostras referentes ao experimento de reforma

catalitica seca do metano para produgao de gés de sintese realizado em escala laboratorial pelos

autores citados, conforme detalhado na Se¢do 2.1.1.2. Cada amostra no dataset conta com 8

parametros, sendo 4 deles dados de entrada (inputs), variaveis manipuladas no processo:

Xi: Pressdo parcial de gas metano (CH4), em kPa.
Xo: Pressdo parcial de gas carbonico (CO»), em kPa.
X3: Proporg¢ao de alimentagado entre CHs4 ¢ CO., adimensional.

X4: Temperatura do reator, em °C.

e 4 dados de saida (outputs), variaveis medidas, como resultado do experimento, sendo:

Y : Taxa de producdo de gas hidrogénio (H,), em mmol.min™!.gea’!.
Y: Taxa de produc¢do de mondxido de carbono (CO), em mmol.min™!.gea™!.
Y3: Porcentagem de conversao de CHa.

Y4: Porcentagem de conversao de CO..
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3.3 METODOLOGIA
3.3.1 Analise de dados

Os dados foram incialmente analisados utilizando as ferramentas das bibliotecas Pandas,
Seaborn e Matplotlib, buscando entender a distribui¢ao dos dados e a possibilidade de outliers,
dados faltantes ou errados, ou duplicagdes de amostras no dataset, para remog¢ao ou corre¢ao
das amostras afetadas. Foram observados os intervalos dos dados para cada pardmetro para
definir os intervalos validos para predi¢cao do modelo.

Utilizou-se uma matriz de correlacao para avaliar o nivel de correlagdo linear entre os

parametros calculada através do método de Pearson, descrito na Equacao 11:

X ZyZy (11)
=T

onde z ¢ o desvio padrdo das varidveis x e y, ¢ N ¢ o numero de dados. Para a avaliacao,
assumiram-se os intervalos descritos na Tabela 1.

Tabela 1 - Nivel de correlagdo para o coeficiente de Pearson.
Moédulo Coef. de Pearson (rxy) Nivel de correlaciao

[rsy| =1 Correlagao perfeita
0.8 <|rxy| <1 Muito alta
0.6 <|rxy| <0.8 Alta
0.4 <|rxy| <0.6 Moderada
0.2 <|rxy| <0.4 Baixa
0 <|rxy| <0.2 Muito baixa
rxy =0 Nenhuma correlacao

Fonte: Adaptado de SARKAR; BALI; SHARMA (2018).

3.3.2 Tratamento de dados
3.3.2.1 Normalizagio

Para evitar o efeito da escala e de diferentes dimensdes no treinamento dos modelos, o
conjunto de dados de entrada foi normalizado utilizando o método de normalizagdo min-max,

que dimensiona os dados no intervalo de 0 a 1, transformando os dados usando a Equacgao 12:
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_ X = Xmin (12)
Xnorm =
Xmax — Xmin

Sendo Xmin € Xmax 0 Menor € o maior valor no intervalo do parametro x a ser normalizado.
Apenas os conjuntos de inputs foram normalizados, pois os outputs, como valores a serem
previstos, ndo sofrem do efeito de escala e ndo precisam ser normalizados. A normalizacao foi

feita utilizando a fungdo “MinMaxScaler” do framework scikit-learn.
3.3.2.2 Separacao dos conjuntos teste e treino

Os modelos de machine learning e redes neurais devem ser capazes de prever resultados
acurados a partir de dados ainda ndo vistos pelo modelo. Para isso é necessario separar o
conjunto de dados em dois conjuntos:

e Conjunto de treino: serda utilizado na selecdo de modelos, otimizacdo de
hiperpardmetros e treino do modelo final. Deve conter a maior quantidade dos
dados e ser representar bem sua distribuigao.

e Conjunto de teste: serd utilizado apenas para valida¢do, sendo apresentado ao
modelo apenas apos o treinamento para avaliar as previsdes com dados ndo vistos
até entdo.

Os dados foram separados em conjuntos de treino e teste usando o algoritmo de sele¢do
pseudoaleatdria “train_test split” disponivel no framework scikit-learn. O conjunto de teste

contendo 80% das amostras, e o conjunto de destes os 20% restantes.
3.3.3 Desenvolvimento dos modelos de Machine Learning

Para desenvolvimento dos modelos, optou-se por uma abordagem MISO (multiple input
single output), em que se utiliza todos as varidveis de entrada para prever apenas uma das
variaveis de saida por modelo treinado. Dessa forma, para cada uma das variaveis de saida,
foram treinados os seguintes modelos:

e Arvores de Decisdo

e Florestas Aleatorias

e Gradient Boost Regressor
e Regressio Lasso

e Regressao Linear

e Support Vector Machine
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Estes 6 modelos foram treinados utilizando o framework Pycaret, que cria e faz uma
otimizacdo prévia dos hiperpardmetros dos modelos, fazendo a avaliagdo e comparagao de cada
um com base em métricas predefinidas. Neste caso, as métricas definidas foram o erro médio
absoluto (MAE), o erro médio quadratico (MSE), o coeficiente de determinacao (R?) e o erro
relativo médio (ERM), e também pela construcdo de um grafico Q-Q (grafico de probabilidade
normal), para avaliagdo da reta de ajuste dos dados previstos e reais.

Para cada uma das varidveis de saida, selecionou-se o0 modelo que apresentou melhor
performance com base nas métricas do treinamento. Entdo o modelo selecionado foi novamente
treinado e otimizado, e entdo avaliado perante os dados do conjunto de teste, gerando as

métricas finais para comparagdo com as redes neurais.
3.3.4 Desenvolvimento das Redes Neurais Artificiais

Para desenvolvimento das redes neurais artificiais, foram utilizados os frameworks
TensorFlow e Keras, para constru¢do e treinamento, e o KerasTuner para otimizacdo de
hiperparametros.

Optou-se por uma abordagem MISO (multiple input single output), construindo uma rede
neural para cada uma das varidveis de saida, totalizando 4 modelos criados. Cada modelo
separadamente passou por otimizacdo de hiperpardmetros, treinamento e avaliagdo frente ao
conjunto de dados de teste, para definicdo da melhor arquitetura de rede para previsdo de cada
variavel de saida.

A otimizacdo de hiperparametros foi feita utilizando o método RandomSearch, no
framework KerasTuner, fazendo um treinamento prévio simplificado de diversas redes,
selecionando combinag¢des diferentes de hiperparametros. Os hiperparametros otimizados por
algoritmo foram:

e Numero de camadas, para a escolha 1 a 3 camadas.

e Numero de neurdnios por camada, utilizando entre 6 e 40 neur6nios na primeira
camada, e entre 6 e 20 neurdnios nas camadas seguintes.

e Taxa de aprendizagem, utilizando 10 valores pré-selecionados entre 1 e 0.0005.

¢ Funcao de erro, utilizando MAE, MSE ¢ Huber Loss.

Outros hiperparametros como o numero de amostras por propagacao, nimero de épocas €
porcentagem de dados usados para validagdo cruzada durante o treino foram selecionadas

manualmente em cada caso.
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Ap6s a determinagdo dos melhores hiperparametros, a rede neural foi efetivamente criada,
treinada por um maior niimero de épocas e utilizando critérios de parada antecipada, caso a rede
ndo melhorasse o desempenho apos 50 épocas consecutivas. Caso apresentasse boa
performance e ajuste aos dados, e as curvas de treino ndo demonstrassem overfitting ou
underfitting, o modelo seguia para ser testado frente ao conjunto de teste.

O modelo treinado foi usado para previsdo dos resultados a partir das amostras do conjunto
de teste e os resultados previstos foram comparados aos valores reais, utilizando as métricas:
erro médio absoluto (MAE), o erro médio quadratico (MSE), o coeficiente de determinagao
(R?) e o erro relativo médio (ERM), e também pela constru¢do de um grafico Q-Q (grafico de

probabilidade normal), para avaliagdo da reta de ajuste dos dados previstos e reais.
3.3.5 Comparacio entre modelos

Incialmente, o desempenho das redes neurais foi comparado ao desempenho dos métodos
de machine learning mais simples desenvolvidos previamente, utilizando apenas o melhor
modelo produzido para cada uma das variaveis de saida. A comparacdo foi feita por meio das
métricas de cada modelo e dos graficos de probabilidade normal. Num segundo momento, o
desempenho das redes neurais desenvolvidas neste trabalho foi comparado ao desempenho da
rede neural desenvolvida no trabalho original de Ayodele e Cheng (2015), que contém os dados

utilizados neste trabalho e um modelo de ANN treinado a partir desses dados.
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4 RESULTADOS E DISCUSSAO
4.1 ANALISE E TRATAMENTO DE DADOS
4.1.1 Analise exploratodria dos dados

A andlise inicial dos dados mostra a distribui¢ao dos inputs como mostrado na Figura 5.
Como se trata de condi¢des experimentais dos experimentos, os dados ndo apresentam uma
distribuicdo Gaussiana, e isso deve ser levado em consideragdo na hora de selecionar os
conjuntos de dados para treino, para que a amostra de treino possa representar bem o dataset.
Os dados de pressao parcial de CHs e CO; apresentam maior quantidade de amostras com
valores entre 40 e 50 kPa, onde pouco mais da metade dos dados esta contido nesse intervalo.
Enquanto os valores de razdo de alimentacdo estdo um pouco melhor distribuidos ao redor do

valor 1. A temperatura apresenta apenas trés valores: 650, 700 e 750 °C.

Figura 5 — Gréficos de distribui¢ao dos dados de entrada.

30 30
25 25
© ©
o 20 o 20
c c
«Q «
= =
0 15 o 15
[ [
10 / 10
5 /f__/ 5
0 0
10 20 30 40 50 10 20 30 40 50
Pressao parcial de CHa (kPa) Pressao parcial de CO: (kPa)
25
30
25 20
20
o ©
5 o 15
c c
:q:_j) 15 :g
o ]
2 /\ 210
10
5
0 0

0 2 4 6 8 10 660 680 700 720 740
Razao de alimentacao (CH4/CO2) Temperatura (°C)

Fonte: o Autor.
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Um resumo das informag¢des numéricas sobre a distribui¢do de todos os dados ¢ mostrado

na Tabela 2.

Tabela 2 — Informagdes numéricas dos dados experimentais.

Variavel Média Desvio padrao Min. Max.
X1 Pressao parcial de CH4 [kPa] 38.16 15.46 5.00 50.00
X2 Pressao parcial de CO2 [kPa] 38.16 15.46 5.00 50.00
Razao de alimentacao
X3 1.63 2.36 0.05 10.00
(CH4/C0O2)
X4 Temperatura (°C) 700.88 41.72 650.00 750.00
Taxa de producio de H2
Yi 3.70 2.31 0.15 10.09

[mmol.min.gcac]

Taxa de produciao de

Y2 5.12 2.04 1.20 8.38
CO[mmol.min™'.gcac]

Y3 Conversao de CH4 [%] 52.61 14.82 23.15 79.46

Y4+ Conversiao de CO2 [%] 64.06 18.16 17.86 90.68

Fonte: o Autor.

O conjunto de dados também ndo possui amostras com valores nulos ou outliers que
precisam ser removidos do conjunto. Conhecendo os valores maximos e minimos de cada
parametro de entrada, definimos o intervalo que serd valido para inputs com a inten¢do de fazer

predi¢des do modelo que sera gerado.

Figura 6 - Matriz de correlacdo linear entre dados de entrada e saida.
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Ao avaliar o grau de correlagdo linear dos dados através da Figura 6, observa-se que:

Fonte: o Autor.

e XI tem baixa correlagdo com Y3 e Y4, muito baixa com Y2. Pode-se desconsiderar a

correlacdo com Y1.
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e X2 tem uma correlagdo moderada com Y2 e Y3, e muito baixa com Y1 e Y4.

e X3 tem correlagdo moderada com Y4 ¢ baixa com Y3. Pode-se desconsiderar a

correlagdo com Y1 e Y4.

e X4 tem correlacdo moderada com Y1, baixa com Y3 e Y4 e muito baixa com Y?2.

Essa informacdo mostra que os dados ndo apresentam correlagdo linear forte, porém ¢
possivel observar que algumas varidveis t€ém impacto significativo nas demais, a exemplo da
temperatura (X4), que tem efeito significativo sobre todas as variaveis de saida. O que ¢
esperado, pois a reacao de reforma ¢ altamente endotérmica, ou seja, ¢ beneficiada pelo
aumento da temperatura, porém nao de maneira linear.

Observa-se também que a pressdo parcial de CO; (X7) influencia bastante na taxa de
producao do CO (Y2). Uma possivel explicacdo para esse maior efeito € a reagdao de reverse
water gas shift, representada pela Equacao 4, e pode ser estendida também para a conversao de
Ha, pois este produto ¢ consumido nessa reagdo paralela, tendo sua composicao final reduzida
no gas de sintese.

E esperado que a quantidade e propor¢do entre os reagentes também influencie no
andamento da reagdo, e consequentemente nas conversdes € producao do gas de sintese. Porém
como observado na correlacdo da pressdo parcial de CHs (X1) com a taxa de producdo de H»
(Y1), linearmente ndo parece haver uma relagdo estabelecida que possa ser representada por um
modelo simples entre estes parametros.

Outros efeitos que podem estar associados ao processo nao podem ser avaliados
diretamente através dos dados experimentais disponiveis, como o desgaste do catalisador

durante cada execug¢do do experimento.
4.1.2 Normalizac¢ao dos dados

Como visto na se¢do anterior, os dados de entrada t€ém dimensdes e escalas bastante
diferentes, o que vai impactar severamente os resultados do modelo, pois os inputs com maior
ordem de grandeza acabam por receber maiores pesos nos parametros dos modelos de machine
learning. Para minimizar esse efeito, ¢ necessario passar todos os inputs para um intervalo de
mesma escala através de um scaling.

Os dois principais métodos de scaling sao a padronizagdo e a normalizagdo. Porém, como
visto na Figura, os dados ndo estdo distribuidos numa curva Gaussiana, dessa forma uma
padronizagdo ndo faria sentido, e o melhor método a ser aplicado ¢ a normaliza¢do. Com isso,
todos os dados de entrada passaram a uma escala de 0 a 1. Além da mudancga de escala, nesse

processo limita-se o intervalo valido para predi¢des, pois dados inseridos para fazer previsoes
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a partir dos modelos desenvolvidos, precisam estar dentro do intervalo de valores minimos e

maximos para cada variavel de entrada, conforme mostrado na Tabela 2.
4.2 DESENVOLVIMENTO DOS MODELOS

No desenvolvimento dos modelos, optou-se por utilizar uma abordagem MISO ao invés de
MIMO, pois os modelos convergiam com mais facilidade. Um modelo do tipo MIMO, ao tentar
estimar valores de diferentes escalas (nesse caso as taxas de formagao dos produtos, contra a
conversao de reagentes) se torna mais complexo para treinar e ajustar o os hiperparametros de
forma a apresentar desempenho razoavel, tanto para os modelos simples de machine learning,
quanto para as redes neurais. Além disso, por se tratar de um pequeno volume de dados, o
esfor¢o computacional e tempo de treino necessario foram muito pequenos, permitindo entao
gastar um pouco mais de tempo treinando modelos separadamente para cada uma das variaveis

de saida.
4.2.1 Modelos de Machine Learning simples

A partir do treino inicial, utilizando apenas os dados do conjunto de treino para avaliar e
comparar o desempenho de cada modelo, selecionando o melhor com base nas métricas
estabelecidas. A primeira métrica observada foi o coeficiente de determinagao (R?), seguido do
erro médio absoluto (MAE) e erro médio quadratico (MSE). O desempenho por modelo, para

cada variavel de saida ap6s o treino inicial ¢ mostrado nas Tabelas 3 ¢ 4.

Tabela 3 — Desempenho de treino por modelo, para as variaveis Y1 e Yo.

Yi: Taxa de producio de Hz Y2: Taxa de produciao de CO

Modelo MAE MSE R? MAE MSE R?
Arvores de Decisio 0.84 1.35 0.33 0.69 0.75 0.11
Florestas Aleatérias 0.76 1.06 0.54 0.55 0.51 0.73
Gradient Boost

0.66 0.79 0.61 0.46 0.41 0.73
Regressor (GBR)
Regressao Lasso 1.66 4.34 -0.35 1.77 4.16 -1.51
Regressao Linear 1.65 4.09 -0.85 0.56 0.55 0.61
Support Vector

1.42 3.43 -0.20 0.72 0.89 0.62
Machine (SVM)

Fonte: o Autor.
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Tabela 4 — Desempenho de treino por modelo, para as variaveis Y3z e Ya.

Y3: Conversao de CH4 Y4: Conversao de CO2
Modelo MAE MSE R? MAE MSE R?

Arvores de Decisio 6.27 96.32 0.13 9.75 157.43 -0.63
Florestas Aleatorias 5.07 54.27 0.52 6.29 70.16 0.23
Gradient Boost

5.73 79.85 0.28 5.48 61.27 0.06
Regressor (GBR)
Regressao Lasso 10.75 164.04 -0.24 13.73 305.16 -1.06
Regressao Linear 7.71 92.63 0.16 13.28 293.10 -2.84
Support Vector

12.51 215.17 -0.52 14.23 364.67 -0.82
Machine (SYM)

Fonte: o Autor.

A partir dos dados mostrados nas Tabelas 3 e 4, os modelos escolhidos foram o Gradient
Boost Regressor (GBR) para a previsdo de Y1 e Y2, e o modelo de Florestas Aleatorias para
previsdao de Y3 e Y4. Os modelos treinados nessa etapa nao conseguiram se ajustar bem aos
dados para previsao de Y4, a conversao de CO>. Como demonstrado na analise dos dados, essa
variavel tem baixa correlagdo com as variaveis de entrada estudadas, o que pode explicar a
dificuldade desses modelos a, pois mesmo aqueles que usam métodos ndo lineares, a exemplo
das Florestas Aleatorias, podem ndo apresentar profundidade suficiente para prever essa
informacao com precisao (BAHADAR et al., 2022).

Apos a selegdo dos tipos de modelos mais promissores, foi feito um novo treinamento junto
a uma otimizacdo de hiperparametros mais rigida. Os novos modelos foram validados
utilizando o conjunto de teste. A Tabela 5 traz o desempenho final de cada modelo, junto a

equagao da reta de ajuste do grafico Q-Q de cada modelo, mostrados na Figura 7.

Tabela 5 - Desempenho por modelo selecionado frente ao conjunto de teste.

Variavel alvo Modelo selecionado MAE MSE R? ERM Reta de ajuste

Y1 GBR 0.58 047 0.82 2195% y=100x-0.11
Y2 GBR 0.50 040 091 1036% y=0.86x+0.52
Y3 Florestas Aleat. 485 3885 0.82 9.68% y=0.93x+0.59
Y4 Florestas Aleat. 6.21 56.87 0.88 1043% y=148x-31.10

Fonte: o Autor.
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Figura 7 - Gréficos Q-Q para os modelos de machine learning simples.

Variaveis (a) Y1, (b) Y2, (¢) Y3, (d) Ya.
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Fonte: o Autor.

Nas Figuras 7a e 7b a seguir, percebe-se que os modelos do tipo GBR conseguiram explicar
razoavelmente bem a maioria dos dados, para as taxas de producdo de H> e CO (variaveis Y e
Y, respectivamente), como indicado pelos coeficientes de determinagdo, na Tabela 5. O
modelo para Y1, se aproximou bastante da reta normal ideal (y=x), indicando uma boa precisao
na previsao, ja para Y» a reta teve coeficientes um pouco mais distantes do ideal. Esses modelos
foram capazes de se ajustar bem aos dados e fazer previsdes razoavelmente acuradas, porém,
ainda com uma dispersdo moderada.

Ja para as conversdes de CHs e CO» (variaveis Y3 e Y4, respectivamente), nas Figuras 7c e
7d, os coeficientes de determinacao, também indicaram um ajuste razoavelmente bom aos
dados, porém houve uma maior dispersao nos valores preditos. Para Y3, apesar dos coeficientes
da reta serem também proximos ao ideal, por conta da dispersdo, a previsao nao ¢ tdo precisa

quanto a obtida com o GBR para Y1 e Y.
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Para Y4, 0 modelo ndo teve performance boa, quando comparado aos demais. Apesar do
coeficiente de determinagdo ser bom, o ajuste dos dados nao foi preciso como ¢ perceptivel na
Figura 7d, com a reta de ajuste dos dados se afastando bastante da reta normal ideal. Além de
apresentar também uma alta dispersdo e um valor de erro alto.

Os resultados de performance para os modelos escolhidos nessa etapa foram utilizados
como valores de referéncia a serem batidos no treinamento das redes neurais, apresentadas na

se¢do seguinte deste trabalho.
4.2.2 Redes Neurais Artificiais

Diferentemente do treino inicial aplicado aos modelos simples de machine learning, o
treino inicial aplicado as redes neurais teve como objetivo principal fazer a otimizacdo de
hiperparametros do modelo. A partir do treino inicial foram definidos os melhores
hiperparametros para a constru¢ao dos modelos finais. O niimero de camadas e a quantidade de

neurdnios por camada para cada uma das redes ¢ mostrado na Tabela 6.

Tabela 6 - Numero de camadas e neurdnios por camada para as ANNS, por variavel alvo.

Variavel alvo N° de camadas 1* 2* 3°

Y1 1 39 - -
Y2 2 20 8 -
Y3 2 36 9 -
Y4 3 28 12 11

Fonte: o Autor.

E perceptivel que ndo hd um padrdo nem similaridade na estrutura das redes neurais,
mesmo ao comparar varidveis de mesma natureza (Y1 com Y2, € Y3 com Y4). Isso se da tanto
pelo método de HPO utilizado que busca configura¢des “aleatorias” dentro dos intervalos
definidos, como também pela propria natureza das redes neurais, pois ndo ha regras e métodos
bem definidos para a escolha do numero de neurdnios e camadas (YANG; SHAMI, 2020).

Apds o treino prévio, cada rede foi reiniciada e novamente treinada usando os
hiperpardmetros selecionados a partir do HPO, de forma a obter os modelos finais. Os modelos
finais testados frente aos dados do conjunto de teste apresentaram o desempenho mostrado na
Tabela 7. Também sao mostradas as equagdes das retas de ajuste das previsdes feitas por cada

rede para as variaveis alvo.
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Tabela 7 - Desempenho das ANNSs frente ao conjunto de teste.

Variavel alvo MAE MSE R? ERM Reta de ajuste
Y1 0.18 0.05 099 6.22% y=0.95x+0.19
Y2 0.20 0.07 097 4.50% y=1.02x-0.07
Y3 4.45 2676 094 8.84% y=1095x-1.09
Y4 485 3235 092 7.12% y=1.07x-749

Fonte: o Autor.

Em comparagdo aos modelos mais simples, as redes neurais apresentaram uma melhoria

na performance, quando comparamos as Tabelas 6 e 7. Observa-se que para todas as variaveis

houve diminuigdo consideravel em todas as métricas de erro. Também houve uma melhora no

coeficiente de determinacao, em especial para Y1 e Y3. A Figura 8 traz os graficos Q-Q para

cada variavel, com as predi¢des feitas com as redes neurais.

Figura 8 - Graficos Q-Q para as redes neurais.

Variaveis (a) Y1, (b) Y2, (¢) Y3, (d) Ya.
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Fonte: o Autor.

Os coeficientes da reta de ajuste também ficaram bastante proximas do ideal (a reta y = x),

indicando que houve acurécia na predi¢ao das variaveis alvo. Ao observar a Figura 8, percebe-
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se que os dados estdo também visualmente menos dispersos em comparacao aos dos modelos
mais simples, na Figura 7, condizendo com a reducao no valor dos erros.

Em comparagdo ao modelo de Florestas Aleatorias, a rede neural conseguiu fazer previsoes
e se ajustar muito melhor aos dados, como ¢ observado na comparagao entre as Figuras 7d e
8d. Essa melhoria era esperada, dada a maior capacidade das redes neurais de descrever relagdes
ndo lineares entre dados de maneira mais profunda que outros métodos nao-lineares.

Mesmo assim, as previsoes para as conversoes de CHs e CO; (Y3 e Y3, respectivamente)
apresentaram dispersao um pouco maior em comparagao as taxas de producao de H> de CO (Y1
e Y2, respectivamente), com os modelos de redes neurais.

Comparando o desempenho entre as redes neurais, para evitar o efeito da escala dos dados,
que impacta as métricas MAE e MSE, observasse-se o erro relativo médio (ERM), que
normaliza os erros. Houve uma grande melhoria no ERM principalmente para a variavel Y1,
com uma diminui¢do de quase 16%.

Dessa forma, as redes neurais desenvolvidas tiveram melhor performance que os modelos
mais simples de machine learning trabalhados anteriormente, destacando o Gradient Boost

Regressor ¢ o modelo de Arvores Aleatorias.
43 COMPARACAO AO TRABALHO ORIGINAL

No trabalho desenvolvido por Ayodele e Cheng (2015), foi utilizada uma estrutura de redes
neurais MIMO, dessa forma apenas um modelo foi treinado, diferentemente do desenvolvido
neste trabalho. A rede foi treinada baseada na métrica de MSE como fungao erro, porém o valor
para essa métrica nao foi disponibilizado no trabalho, e também nao poderia ser usado como
parametro de comparacdo, pois um modelo MIMO apresentaria apenas um valor para essa
métrica, referente aos erros em todas as variaveis alvos. O modelo desenvolvido foi construido
com uma unica camada oculta, com 16 neuronios.

A avaliacao do modelo do trabalho original foi feita principalmente a partir dos graficos

Q-Q e também do erro médio relativo. Os graficos em questao sdo mostrados na Figura 9.
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Figura 9 - Gréficos Q-Q por variavel alvo, para predi¢des da rede neural
desenvolvida por Ayodele e Cheng (2015).
Variaveis (a) Y1, (b) Y2, (¢) Y3, (d) Ya.
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Fonte: Adaptado de AYODELE e CHENG (2015).

No entanto, ao observar as Figuras 9a e 9b percebe-se que, apesar do R? ser muito préximo
do ideal, as retas de ajuste se distanciam da reta normal ideal, indicando que as previsdes feitas
pelo modelo para Y e Y2 ndo foram acuradas. Tomando uma amostra dos dados e as equagdes
das retas de ajustes, estima-se que haja por volta de 20% a 40% de erro relativo nas predi¢cdes
de Y1 e Y para este modelo. Porém, para as taxas de producdo de H» e CO, ndo foram
apresentados os erros relativos médios no trabalho original, logo essa estimativa ndo pode ser
confirmada.

Dessa forma, assume-se os modelos de redes neurais desenvolvidas neste trabalho t€ém um
melhor potencial para prever as taxas de produ¢do de H> e COno processo de reforma catalitica
seca do metano estudado, em comparacdo ao modelo apresentado no trabalho original por
Ayodele e Cheng (2015). Isso por que estes novos modelos apresentaram uma baixa dispersao
dos dados e uma reta de ajuste mais proxima da ideal, indicando uma maior acuracia na previsao

das variaveis do processo.
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Ayodele e Cheng (2015) apresentaram os valores de erro relativo médio para as conversdes
de CHs e COg, sendo 3.21% e 3.34%, respectivamente. A partir dessas informagdes, observa-
se que o desempenho do modelo desenvolvido no trabalho original ¢ superior quanto as
variaveis Y3 € Y4, com melhor coeficiente de determinacao e melhor ajuste.

Dessa o modelo proposto originalmente parece explicar melhor a relagdo entre os dados,
para Y3 e Y, apresentando menor erro relativo e baixissima ou quase nenhuma dispersdo, como
visto nas Figuras 9c e 9d, em comparagdo aos modelos desenvolvidos neste trabalho. Mesmo
assim, o desempenho dos modelos novos se aproximou bastante do modelo original,

apresentando uma dispersdo razoavelmente baixa e erros relativos baixos.
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5 CONCLUSOES

O desenvolvimento de modelos de machine learning aplicados & uma reforma catalitica
seca de metano, demonstrou o potencial desses métodos como ferramentas que podem ser
aplicadas tanto na induastria quimica como na propria academia. Os resultados obtidos neste
trabalho reforcam a ideia de que o uso de modelos de ML pode auxiliar na previsdo acurada de
dados e do comportamento de processos quimicos, enquanto reduz o tempo e esforgo necessario
para desenvolvimento, em comparagao a modelos fenomenoldgicos complexos.

Mesmo entre os métodos mais simples de ML foi possivel obter modelos que se ajustassem
aos dados permitindo previsdes razoavelmente acuradas. Dentre eles, os modelos de Gradient
Boost Regressor e de Arvores Aleatérias alcangaram um melhor desempenho entre os demais,
atingindo R? entre 0,82 ¢ 0,91, porém ainda apresentando um erro relativo médio um pouco
alto, principalmente para as varidveis de taxa de producdo de H> e CO, 21,95% e 10,36%
respectivamente.

Os modelos de redes neurais artificiais desenvolvidos, superaram o desempenho dos
modelos mais simples, com destaque na previsao das variaveis de taxa de producao do H> e de
CO, onde os R? aumentaram para 0,99 e¢ 0,97 e houve uma redugao no erro relativo médio para
6,22% e 4,50%, respectivamente para as duas varidveis. Essa melhora no desempenho
demonstra a maior capacidade das redes neurais de se ajustar a dados que possuem baixa
correlagdo linear entre si, quando comparadas aos métodos de ML mais simples.

Porém, redes neurais sdo mais complexas e dificeis de treinar em relagdo aos métodos
simples, exigindo um treinamento mais cuidadoso e trabalhoso durante a otimizag¢do de
hiperparametros. Os modelos mais simples podem ser definidos com mais facilidade, utilizando
ferramentas como o Pycaret. Porém, como evidenciado, a simplicidade desses modelos pode
levar a um menor desempenho, a depender do problema trabalhado.

Em comparacdo ao modelo de rede neural desenvolvido por Ayodele e Cheng, para os
mesmos dados utilizados neste trabalho, ndo foi possivel obter coeficientes de determinagao tao
altos, porém os modelos desenvolvidos aqui apresentam uma maior acuracia na previsao das
variaveis de taxa de producao do H> e de CO, apresentando certo nivel de melhoria apesar de

apresentar uma maior dispersao.
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