
Universidade Federal De Pernambuco
Centro De Informática

Programa De Pós-Graduação Em Ciência da Computação

Juliandson Estanislau Ferreira

Specification is Law: Safe Creation and Upgrade of Ethereum Smart Contracts

Recife
2022

Juliandson Estanislau Ferreira

Specification is Law: Safe Creation and Upgrade of Ethereum Smart Contracts

Dissertação apresentada ao Programa de Pós-
graduação em Ciência da Computação do Centro
de Informática da Universidade Federal de Pernam-
buco, como requisito parcial para obtenção do título
de Mestre em Ciência da Computação.

Área de Concentração: Engenharia de Software e
Linguagens de Programação

Orientador (a): Doutor Augusto Cezar Alves Sam-
paio

Coorientador (a): Doutor Pedro Ribeiro Gonçalves
Antonino

Recife
2022

 Catalogação na fonte
 Bibliotecária Monick Raquel Silvestre da S. Portes, CRB4-1217

 F383Se Ferreira, Juliandson Estanislau
 Specification is law: safe creation and upgrade of ethereum smart contracts

 / Juliandson Estanislau Ferreira. – 2022.
 80 f.: il., fig., tab.

 Orientador: Augusto Cezar Alves Sampaio.
 Dissertação (Mestrado) – Universidade Federal de Pernambuco. CIn,

 Ciência da Computação, Recife, 2022.

 Inclui referências.

 1. Verificação formal. 2. Contratos inteligentes. 3. Ethereum. 4.Solidity. 5.
 Criação segura. 6. Atualização segura I. Sampaio, Augusto Cezar Alves
 (orientador). II. Título.

 005.1 CDD (23. ed.) UFPE - CCEN 2022-159

Juliandson Estanislau Ferreira

“Specification is Law: Safe Creation and Upgrade of Ethereum Smart
Contracts”

 Dissertação de Mestrado apresentada ao

Programa de Pós-Graduação em Ciência da

Computação da Universidade Federal de

Pernambuco, como requisito parcial para a

obtenção do título de Mestre em Ciência da

Computação. Área de Concentração:

Engenharia de software e linguagens de

programação.

Aprovado em: 12/09/2022.

BANCA EXAMINADORA

Prof. Dr. Alexandre Cabral Mota

Centro de Informática / UFPE

Profa. Dra. Fabíola Gonçalves Pereira Greve

Departamento de Ciência da Computação / UFBA

__

Prof. Dr. Augusto Cezar Alves Sampaio

Centro de Informática / UFPE

(Orientador)

ACKNOWLEDGEMENTS

I would like to thank God for giving me the opportunity to be a master’s student at
Centro de Informática (CIn) in Universidade Federal de Pernambuco (UFPE), a quality higher
education institution.

I would like to express my deep gratitude to my mentors Augusto Sampaio and Pedro
Antonino. The completion of this work was only possible thanks to their insightful suggestions
and ideas, patience in the most difficult moments of the journey and for believing in my work.

Additionally, I thank the professors Sérgio Soares and Waldemar Neto for the great atten-
tion paid and for the lessons that were very important for the conclusion of the case study in
this work.

I would also like to thank the Postgraduate Program in Computer Science at CIn and
all professors for creating opportunities, promoting a multicultural environment and social
interaction and sharing knowledge. Thanks to you, CIn is an academic center of excellence.

I thank professor Bill Roscoe, FACEPE and The Blockhouse Technology Ltd for the financial
support and the necessary infrastructure for the development of the research. And also all
members of the FormalBlocks group for all philosophical debates and support on this intense
academic journey.

Finally, I would like to express my gratitude to my parents, Maria Ferreira and Isael Ferreira
for their constant support in my decisions and unconditional encouragement. I also thank my
fiancee, Carolina Santos, who with patience, tenderness and an immense heart, was with me
in all the moments of the master’s degree, whether they were sad or happy. I am happy to
have this great woman by my side to face all the challenges that will come.

”Why? Because it is how it is.” (SOUZA, 2015, p.55).

ABSTRACT

Smart contract evolution is crucial for the success of decentralized applications, and
current methods and processes are not well suited to handle these drivers of change, as the
knowledge about the software is predominantly stored in informal documents. In addition, they
are the building blocks of the ”code is law” paradigm: the smart contract’s code indisputably
describes how its assets are to be managed - once it is created, its code is typically immutable.
Faulty smart contracts present the most significant evidence against the practicality of this
paradigm; they are well-documented and resulted in assets worth vast sums of money being
compromised. To address this issue, the Ethereum community proposed (i) tools and processes
to audit/analyse smart contracts, and (ii) design patterns implementing a mechanism to make
contract code mutable. Individually, (i) and (ii) only partially address the challenges raised by
the ”code is law” paradigm. In this work, we combine elements from (i) and (ii) to create a
systematic framework that moves away from ”code is law” and gives rise to a new ”specifica-
tion is law” paradigm. It allows contracts to be created and upgraded but only if they meet
a corresponding formal specification. We explain how formal verification techniques can be
used to ensure safety properties of smart contracts during their evolution. Although formal
verification methods have the potential of being used in several application fields, we focus
on ensuring compliance with its specifications. The process consists of three phases: Formal
requirements specification, verification, and deployment. All steps are planned and executed in
an integrated way and together they form a framework capable of fostering safe evolution and
make it more reliable and secure. The framework is centered around a trusted deployer : an
off-chain service that formally verifies and enforces specification conformance. We have proto-
typed this framework, and investigated its applicability to contracts implementing three widely
used Ethereum standards: the ERC20 Token Standard, ERC3156 Flash Loans and ERC1155
Multi Token Standard, with promising results.

Keywords: formal Verification; smart contracts; ethereum; solidity; safe deployment; safe
upgrade.

RESUMO

A evolução de contratos inteligentes é crucial para o sucesso de aplicações descentral-
izadas, os métodos e processos atuais não são adequados para lidar com esses drivers de
mudança, pois o conhecimento sobre o software está predominantemente armazenado em
documentos informais. Além disso, eles são os blocos de construção do paradigma "code is
law": o código do contrato inteligente descreve indiscutivelmente como seus ativos devem
ser gerenciados - uma vez criado, seu código é imutável. Contratos inteligentes com bugs
apresentam a evidência mais significativa contra a praticidade desse paradigma; normalmente
eles estão bem documentados e mesmo assim grandes somas de ativos foram comprometidas.
Para resolver esse problema, a comunidade Ethereum propôs (i) ferramentas e processos para
auditar/analisar contratos inteligentes e (ii) padrões de design que implementam um mecan-
ismo para tornar o código do contrato mutável. Individualmente, (i) e (ii) abordam apenas
parcialmente os desafios levantados pelo paradigma “code is law”. Neste trabalho, combinamos
elementos de (i) e (ii) para criar uma estrutura sistemática que se afasta do “code is law” e dá
origem a um novo paradigma “specification is law”. Ele permite que contratos sejam criados
e atualizados, mas somente se eles atenderem a uma determinada especificação formal. Expli-
camos como as técnicas formais de verificação podem ser usadas para garantir as propriedades
de segurança dos contratos inteligentes durante sua evolução. Embora os métodos formais de
verificação tenham potencial para serem utilizados em diversos campos de aplicação, focamos
em garantir a conformidade com suas especificações. O processo consiste em três fases: es-
pecificação de requisitos formais, verificação e implantação. Todas as etapas são planejadas
e executadas de forma integrada e juntas formam uma estrutura capaz de promover uma
evolução segura e torná-la mais confiável. O framework está centrado em trusted deployer :
um serviço off-chain que verifica e reforça formalmente conformidade de especificação. Pro-
totipamos essa estrutura e investigamos sua aplicabilidade a contratos que implementam três
padrões Ethereum amplamente utilizados: o ERC20 Token Standard, ERC3156 Flash Loans e
ERC1155 Multi Token Standard, com resultados promissores.

Palavras-chaves: verificação formal; contratos inteligentes; ethereum; solidity; criação segura;
atualização segura.

LIST OF FIGURES

Figure 1 – Blockchain Structure . 18
Figure 2 – Smart contract example . 25
Figure 3 – ToyWallet contract example . 27
Figure 4 – Buggy ToyWallet with specification . 30
Figure 5 – Trusted deployer architecture . 33
Figure 6 – ToyWallet specification. 35
Figure 7 – Proxy Structure . 38
Figure 8 – ToyWallet proxy . 40
Figure 9 – Trusted registry . 41
Figure 10 – Trusted Deployer behaviour . 42
Figure 11 – Trusted Deployer Architecture . 44
Figure 12 – Screenshot Create Smart Contract . 47
Figure 13 – Screenshot Upgrade Smart Contract . 48
Figure 14 – Merged ERC20 Contract . 50
Figure 15 – ERC20 Proxy . 51
Figure 16 – ERC20 specification . 57
Figure 17 – Buggy ERC20 transferFrom function . 58
Figure 18 – Buggy ERC20 allowance function . 58
Figure 19 – transferFrom function before refactoring 59
Figure 20 – Successful refactoring of the transferFrom function 59
Figure 21 – ERC3156 specification . 61
Figure 22 – Buggy flashLoan function . 62
Figure 23 – Buggy flashFee and maxFlashLoan functions 62
Figure 24 – ERC1155 specification . 63
Figure 25 – balanceOfBatch function before refactoring 64
Figure 26 – Successful refactoring of the balanceOfBatch function 65
Figure 27 – Buggy ERC1155 safeBatchTransferFrom function 65
Figure 28 – Buggy ERC1155 safeTransferFrom function 66

LIST OF TABLES

Table 1 – 0xMonorepo Commit History . 49
Table 2 – ERC20 Results . 58
Table 3 – ERC3156 Results . 60
Table 4 – ERC1155 Results . 64

CONTENTS

1 INTRODUCTION . 12

1.1 CONTRIBUTIONS . 15
1.2 OUTLINE . 17
2 BACKGROUND . 18

2.1 BLOCKCHAIN . 18
2.2 SMART CONTRACTS . 23
2.3 ETHEREUM AND SOLIDITY . 25
2.4 FORMAL VERIFICATION WITH SOLC-VERIFY 29
3 SAFE SMART CONTRACT DEPLOYMENT 32

3.1 TRUSTED DEPLOYER FRAMEWORK 32
3.2 VERIFIER . 34
3.3 UPGRADER . 37
3.4 REGISTRY . 40
4 TOOL SUPPORT AND APPLICATION TO A REAL COMMIT

HISTORY . 43

4.1 TRUSTED DEPLOYER TOOL . 43
4.2 SMART CONTRACT CREATION PROCESS 46
4.3 SMART CONTRACT UPGRADING PROCESS 47
4.4 TOOL APPLICATION TO A SMART CONTRACT COMMIT HISTORY . 48
5 CASE STUDIES: ERC20, ERC1155, AND ERC3156 52

5.1 CONTEXT . 52
5.2 PROCESS OVERVIEW . 54
5.3 ERC20 . 55
5.4 ERC3156 . 59
5.5 ERC1155 . 62
5.6 RESULTS AND DISCUSSION . 66
5.7 LIMITATIONS AND THREATS . 67
6 CONCLUSION . 69

6.1 CONTRIBUTIONS . 69
6.2 RELATED WORK . 70

6.3 FUTURE WORK . 72
REFERENCES . 74

12

1 INTRODUCTION

Blockchain was introduced to the world in 2009 with the publication of the article Bitcoin:

A Peer-to-Peer Electronic Cash System (NAKAMOTO, 2009). Since then, interest in this
paradigm has grown significantly, being considered today by many experts as a high-grade
innovative technology, since it is reshaping conventional industry and business processes and
it has the potential to profoundly impact the way society is organized.

A smart contract is a stateful reactive program that is stored in and processed by a trusted
platform, typically a blockchain, which securely executes such a program and safely stores its
persistent state. The use of a trusted platform guarantees that it is computationally infeasible
to tamper with its execution or persistent state in an undetectable way. Smart contracts were
created to provide an unambiguous, automated, and secure way to manage digital assets. The
terms of the contract would be written as a set of instructions and would be executed without
the need for a regulatory entity, allowing anonymous parties to make transactions, without
the need for an intermediary (SZABO, 1996). Smart contracts are meant to be building blocks
of the “code is law” paradigm, indisputably describing how its assets are to be managed. To
implement this paradigm, many smart contract platforms - including Ethereum, the platform
we focus on - disallow the code of a contract to be changed once deployed, effectively enforcing
a notion of code/implementation immutability.

This requirement of code immutability, however, has drawbacks. Firstly, if the code is
found to be incorrect after being deployed, the contract cannot be patched. There are many
examples of real-world contract instances with such flaws that have been exploited, putting
at risk their digital assets. The increased valuation of these assets, nowadays, is a significant
incentive to perpetrators of such attacks. Secondly, the execution of a contract function has
an explicit cost to be paid by the participant that requests it, typically in the cryptocurrency
underlying the platform, that is calculated based on the contract’s implementation. Platform
participants would, then, benefit from contracts being updated to a functionally-equivalent
but more cost-effective implementation, which is disallowed by this sort of code immutability.

To overcome this limitation, the Ethereum community has adopted the proxy pattern (OPEN-

ZEPPELIN, 2021), a mechanism by which one can mimic contract upgrades by splitting a
contract into two instances: the proxy instance holds the contract’s persistent state, and the
implementation instance the code associated with its functions. The proxy instance stores a

13

pointer to the current implementation instance, and relies on the code deployed on the latter
to execute. Hence, an update can be carried out (i.e. mimicked) by: (a) deploying a new
implementation instance, and (b) changing the proxy instance to point to this new instance.
To avoid arbitrary updates, a specific platform participant, the maintainer of the contract, is
given solo access to performing (b) and is expected to carry out only reasonable updates.

The simple application of this pattern, however, presents a number of potential issues.
Firstly, the use of this mechanism allows for the patching of smart contracts but it does not
address the fundamental underlying problem of correctness. Once an issue is detected, it can
be patched but (i) it may be too late, and (ii) what if the patch is faulty too? Secondly, it
typically gives an, arguably, unreasonable amount of power to the maintainer of this contract.
Such maintainers can change the code that is executing without any oversight. They could, for
instance, change the contract implementation to allow them to transfer the contract’s digital
assets to their own private wallet. One could implement a mechanism by which a number
of participants could vote for an upgrade, and a given quorum would be a precondition for
the update to be executed - preventing such arbitrary updates - but even such an approach
has undesirable consequences. The voters could collude to upgrade the contract to some
implementation that suits them alone, misrepresenting, then, the interests of the contract
instance’s stakeholders. The main flaw of such an approach is, arguably, the fact that no
guarantees are enforced by this updating process; the contract implementations can change
rather arbitrarily as long as the right participants have approved the change. In such a context,
the ”code is law” paradigm is in fact nonexistent.

In addition to the aforementioned problems, the development of smart contract-based
applications still represent a great challenge, since there are conflicts with the traditional
software development life cycles models, usually followed by software engineers, especially
on the testing and maintenance cycles (HUISMAN; GUROV; MALKIS, 2020). The development
of these kinds of applications is a relatively new activity in software engineering, so it lacks
best practices for writing safe code and tools/techniques to verify code correctness. Vitalik
Buterin, creator of the ethereum platform and great enthusiast of decentralized technologies,
once stated:

Buterin, Vitalik (VitalikButerin). "Most instances of smart contract bugs
I’ve seen have nothing to do with turing completeness vs decidability. More
logic errors and typos1." 04/20/2017, 5:52. Tweet.

1 This tweet can be found in: https://twitter.com/vitalikbuterin/status/868751724311216128

14

In the last few years, there has been a significant increase in the volume of interest in smart
contract evolution. The main reason for this interest is the fact that people are increasingly
dependent on these systems to develop their activities. Evolving and maintaining them is
therefore crucial because any software must meet the expectations of the stakeholders. These
expectations are usually expressed through requirements which are a set of descriptions of
how the system to be developed must behave, or a set of properties, or system attributes,
or limitations of the software development process itself. Requirements management is the
first and most fundamental step in the lifecycle of the software development process, as even
if the system is well designed and coded, but poorly specified, it will certainly lead to great
losses, therefore it is necessary to verify that the systems satisfy the contracts, standards, or
specifications that have been proposed. Software changes can happen in two ways, maintenance
when the software changes with the objective of correcting, adapting or amplifying the software
functionality and evolution when the software is modified to adapt it to changing stakeholders
needs.

In this context, systems composed of smart contracts must be treated in a special way, as
they are immutable after the deployment and need to be built completely at once, in addition
they must be able to withstand years of security attacks with code that cannot be modified.
Although smart contracts are present in an increasing range of applications, their development
is still not so simple. For the application to be successful, the contracts that compose it must
be extensively planned, taking into account all possible exceptions (ALCHEMY, 2018).

In order to solve these problems, a great effort has been spent on the proposal and creation
of several verification tools, as well as formal verification and model checking strategies that can
be applied to smart contracts in order to discover bugs before the contract is deployed (RODLER

et al., 2021a). Securify (TSANKOV et al., 2018a), SmartCheck (TIKHOMIROV et al., 2018a),
Slither (FEIST; GRIECO; GROCE, 2019), Oyente (LUU et al., 2016a), Gasper (CHEN et al., 2017),
SASC (ZHOU et al., 2018), MAIAN (NIKOLIC et al., 2018) and Solidifier (ANTONINO; ROSCOE,
2021b) are tools/frameworks created in order to help developers to find vulnerabilities and
ensure compliance, but they do not automate the safe, evolution process of smart contracts.
Although it is a consensus among academic researchers that the use of formal analysis tools
can help to increase the quality and reliability of software, it is still a cumbersome task to
integrate them in the daily software-development process (HUISMAN; GUROV; MALKIS, 2020).

To address these issues, we propose a systematic deployment framework that requires
contracts to be formally verified before they are created and upgraded; we target the Ethereum

15

platform and smart contracts written in Solidity. We propose a verification framework based
on the design by contract methodology (MEYER, 1992). Ethereum already has a mechanism by
which the community can propose and agree on smart contract specifications, called Ethereum
Request for Comments (ERCs) - see ERC20 (VOGELSTELLER; BUTERIN, 2015), for instance.
They describe the function signatures of a compliant contract implementation together with
a brief textual, informal, explanation on how the functions should behave. The format that
we propose for our specifications is very similar to that, except that we use a formal notation
to capture the behaviour of public functions. Our framework also relies on the proxy pattern
to carry out updates but in a rather sophisticated way. We rely on a trusted deployer, which
is an off-chain service, to vet contract creations and updates. It only allows these operations
to be carried out if the given implementation meets the expected specification - the contract
specification is set at the time of contract creation and remains unchanged during its lifetime.
We also provide a mechanism to test whether a contract has been deployed via our framework
so that participants can be certain they are executing a contract with the expected behaviour.

Our framework promotes a paradigm shift where the specification is immutable instead of
the implementation/code. Thus, it moves away from ”code is law” and proposes the ”specifi-

cation is law” paradigm - enforced by formal verification. This new paradigm addresses all the
concerns that we have highlighted: arbitrary code updates are forbidden as only conforming
implementations are allowed, and buggy contracts are prevented from being deployed as they
are vetted by a formal verifier. Thus, contract stakeholders can rely on the guarantee that
contract implementations always conform to their corresponding specifications.

We have prototyped our verification framework, and evaluated how its application could
bring benefits to the traditional Solidity smart-contract development life cycle. For this evalu-
ation, we investigated real-world contracts implementing three widely used Ethereum contract
standards: the ERC20 Token Standard, EIR3156 Flash Loans and ERC1155 Multi Token Stan-
dard. For some selected samples, we show how our framework could have prevented an erro-
neous implementation from being deployed, or that, even after changes, the implementation
would still meet the expected specification.

1.1 CONTRIBUTIONS

In this work, we develop a smart contract safe evolution and deployment process that
clearly outlines how evolve a smart contract, through its life cycle, the code while maintaining

16

its desired properties defined as a specification. This process is an important step towards
simplifying strategic and operational activities. Our purpose is to create a methodology that
can simplify the development life cycle, support stakeholders needs and assure software security
and quality. The methodology is based on two techniques: Safe evolution and Safe deployment.
This combination allowed us to create a systemic approach that incorporates all stages of
the development process and takes into account all the specifics of each step. Through this
systemic approach we are able to find some of the main errors that may arise during the
process of developing smart contracts: logic bugs, reentrancy attacks, arithmetic error of
integers, and bad coding patterns. In addition the process is consistent, since it was created to
deal with the peculiarities of smart contracts development. Our approach also decreases the
costs and risks of the evolution process, since the vulnerabilities are found in the early stage
of the process, increasing the security and credibility of the technology. In order to achieve the
general objective, we broke it into three specific objectives, such as:

• Verification framework. We propose a systematic verification framework based on the
design by contract methodology that is implemented by the trusted deployer’s veri-
fier. We propose the concept of a contract specification, which specifies what are the
member variable declarations and public function signatures together with annotations
constraining the behaviour of these functions.

• Trusted deployer infrastructure. We propose an off-chain trusted deployer service and a
companion on-chain trusted registry as centrepieces of our framework that allows for the
safe creation, execution and evolution of smart contracts. We combine formal verification
with advanced features of the Ethereum blockchain to implement this framework.

• Evaluation of our framework on real contracts. We evaluate our framework on a number
of real-world contracts. Furthermore, we have a detailed application of our framework
on some samples where we illustrate the benefits that our framework could have in
real life. Even though formal verification is a very computationally-intensive process, our
evaluation demonstrates that the sort of application we propose seems very tractable.

We propose a limited notion of evolution for smart contracts at the moment: only the
implementation of public functions can be upgraded and the persistent state data structures
are fixed. However, we are looking into new types of evolution where the data structure of the
contract’s persistent state can be changed, as well as the interface of the specification, provided

17

the projected behaviour with respect to the original interface is preserved, based on notions
of class (LISKOV; WING, 1994) and process (DIHEGO; ANTONINO; SAMPAIO, 2013) inheritance.
We present an infrastructure that applies to the Ethereum platform and for contracts written
in Solidity. However, the ideas proposed here should be applicable to similar platforms and to
Ethereum contracts written in languages other than Solidity. In this dissertation, we do not
focus on how to establish trust in the trusted deployer - we simply assume it is a trusted third
party. Instead, we focus on the functional aspect of our framework.

1.2 OUTLINE

This dissertation is organized in five chapters as follows.
In Chapter 2, we present a literature review exploring the concepts related to smart con-

tracts, solidity, formal verification and the solc-verify verification tool. All these concepts
explored served as a conceptual basis for the development of the proposed framework.

In Chapter 3, we present an architecture of the tool, explaining the characteristics of each
of its design elements: verification framework and trusted deployer infrastructure.

In Chapter 4, we present all the tools and processes used to implement the Trusted De-

ployer. We also present how to use the tool for safe creation and upgrade of smart contracts
and its application to a real development scenario.

In Chapter 5, we present and discuss the results obtained by applying our framework to
contracts on public repositories that implement the ERC20, ERC3156 and ERC1155 standards.

In Chapter 6, we present the final considerations about the work, the limitations, the
threats and we point some directions for future work.

18

2 BACKGROUND

This chapter introduces some background for the following chapters. We present an im-
portant description of the concepts and definitions related to blockchain, ethereum, solidity
and formal verification with solc-verify.

2.1 BLOCKCHAIN

Blockchain is a chronologically ordered chain of blocks, also referred to as a distributed
ledger managed in a decentralized manner. The chaining is done by adding the hash (mathe-
matical function that transforms an input of any length into an irreversible output of a fixed
size) of the previous block to the current block. This mechanism makes it infeasible to tamper
the data stored, since a transaction cannot be changed without changing its block and all
the following blocks (AITZHAN; SVETINOVIC, 2016). Furthermore, for any attack to succeed,
an adversary must take control over 51% of the whole network computational power. As the
network grows and acquires new mining nodes, it makes less likely that chances of this kind of
attack taking place, beacause the bigger the network, the more hash power is needed to take
control of it (MCSHANE, 2021). Figure 1 presents the basic elements that make up each block
and how they are organized.

Figure 1 – Blockchain Structure

Source: BAHGA; MADISETTI (2016)

Each block contains a timestamp whose function is to help to determine the moment in
which the block has been mined and validated by the blockchain network. Although timestamps
of the blocks are not accurate, it still serves as a parameter to adjust the mining difficulty,
based on how long it takes to extract blocks for a certain period.

19

Inside each block header, there is a special field called nonce, an acronym for "number only
used once", is a number that miners must find out before adding a new block to the chain.
Each time a new nonce is tried, a new hash is obtained. This process is necessary as there
is no way to know in advance the result of the SHA-256 hashing algorithm. In addition, the
blockchain network uses the block hash value to adjust the network difficulty, which tends to
be proportional to the number of participating miners. If a nonce generates a valid hash, it
is called a golden nonce (OLIVEIRA et al., 2013). Finding a golden nonce is a highly complex
mathematical task, since it is a random number and, thus, requires a significant amount of
trial-and-error and computer power. In proof-of-work consensus protocols, a miner has to find
a hash with a specific structure. Normally, this means a hash starting with a specific number
of zeros. By modulating this number of starting zeros, one can set the difficulty of the hash

puzzle. The more starting zeros are required the more difficult it is to find a nonce that will yield
such a hash. Usually a reward is offered to the miner who solves the puzzle (FRANKENFIELD,
2021). Once the problem is solved a new block is generated, the miner notifies the network and
the process restarts. Merkle tree is a data structure that stores on its leaves the hash value of
each transaction of the block. Each node is created by repeatedly calculating hashing pairs of
its child nodes until there is only one left which is called the merkle root, used as a summary
of all transactions. This technique is widely used in computer science to verify the consistency
of large amounts of data efficiently, since it allows to verify an individual transaction without
having to search the entire block (CHEN; CHOU; CHOU, 2019).

One of the main advantages of the technology is that it is a new form of decentralized
information that can be applicable in a wide range of industries besides financial services.
It is usually referred to as a ”shared” or ”distributed” ledger since all network participants
have a copy and share responsibility for keeping it up to date. This is the main difference
between blockchain and centralized systems, where control is normally maintained by an in-
stitution (YERMACK, 2017). The transactions contained therein are transparent, auditable,
reliable, anonymous and there is no need for intermediaries. Its decentralized nature makes it
a technology that promotes equality, freedom and new forms of interaction between people
(SWAN, 2015). Blockchain represents a major technological advance when compared to the
relational models developed in the 70s. Although these relational models have evolved signif-
icantly in recent years, there is great difficulty in finding a model that allows databases from
different organizations to communicate easily, which normally makes the processes more ex-
pensive and bureaucratic. Some models have been proposed to facilitate cooperation between

20

databases. Hub and Spoke where control of the network is transferred to an intermediary
(WANG; YANG; YANG, 2017) and Peer-to-Peer often presents inconsistencies as each machine
records its transactions in its own database (KUMAR; SUBBARAO, 2019). Blockchain takes the
best of these two models, as each node maintains a copy of the database and its consensus
algorithm ensures data consistency. Because it is decentralized, there is no single point of fail-
ure, in addition there is no monopoly by any institution, which avoids censorship and increases
the transparency of information.

Although Bitcoin was not the first digital payment method that was developed, it was the
first to solve the double-spending problem, which is the risk that a digital currency can be
spent twice.

This kind of problem is unique to digital assets because digital information can be repro-
duced relatively easily. Being a decentralized system, blockchain does not need a third-party
trusted authority. Instead, to guarantee the reliability and consistency of the data and trans-
actions, blockchain adopts the decentralized consensus mechanism which is sorely needed to
establish mutual trust between anonymous parties. A typical Blockchain system usually consists
of six layers (WANG et al., 2018), namely:

• Data layer : Describes how the information is structured in the blockchain (MICHELIN,
2019). This layer includes data related to blocks, encrypted messages included in trans-
actions, the timestamp, and other underlying data.

• Network layer : Blockchain system adopts P2P protocol which is fully distributed and
therefore resilient to single point of failure (SPoF) related issues. All nodes are connected
in a topological structure without any hierarchy so they are equal, and each peer plays
the role of client and server (ANTONOPOULOS, 2014) therefore, it does not depend on
a central authority to control, coordinate or manage exchanges between peers.

• Consensus layer : This layer can encapsulate various types of consensus protocols. The
importance of the consensus algorithm is due to the fact that each node modifies its
local copies, so it is necessary to have an agreement with the rest of the network to
reach a consensus on the state of the ledger. Some of the nodes may be unreliable and
therefore require fault tolerance support. The most common consensus algorithms are
PoW (Proof of Work) and PoS (Proof of Stake).

21

• Incentive layer : The nodes that participate in the verification and accounting of network
data in a decentralized system have an interest of their own: to maximize the rewards
obtained. Therefore, the network must have incentive mechanisms to offer to miners.
Such incentives ensure the security and effectiveness of decentralized ecosystems and
promote the development of the system in a virtuous circle.

• Contract layer : This layer encapsulates various types of script codes, algorithms, smart
contracts and therefore is the basis for programming and manipulating Blockchain sys-
tems. Some platforms, including Bitcoin, use non-Turing-complete scripting language,
which means they have no flow control, loops or conditionals. After Bitcoin, more com-
plex and flexible scripting languages for smart contracts emerged, such as Solidity, which
allows Blockchain to support a wider range of applications for financial and social sys-
tems.

• Application layer : On the Ethereum platform, in addition to transactions with the
ether cryptocurrency, it also supports decentralized applications (dApps) that run on
a P2P network rather than a single server. These applications communicate with the
Blockchain, in which it manages the state of all the actors in the network. The smart
contract represents the core logic of a dApp. They can process information from sensors
or external events and help Blockchain manage the state of the ledger.

The decentralized nature of a blockchain means incentives for attackers to make fraudu-
lent transactions or even reversing legitimate ones, which can create competing or inaccurate
ledgers. At its core blockchains are replicated state machines (RSMs) capable of transition-
ing to a new state based on external interactions and documenting previous states under a
Byzantine fault tolerance model (LEE; NIKITIN; SETTY, 2020). They enforce the notion of a
“world computer”, so all nodes in the network work together and share a common database.
An important property from this definition is that there must be a single valid blockchain state,
which is accessible to anyone connected to the network. In this sense, a blockchain can be
thought of as a kind of distributed database with a single shared state, which can be updated
via the addition of blocks of transactions (SHORISH, 2018).

The two main models used to represent how the state is recorded are Unspent Transaction

Outputs (UTXO) and Account-based. In the UTXO model, the movement of assets is recorded
as a directed acyclic graph (DAG). Following a newly created transaction, UTXOs are generated

22

from the output to represent the value transferred and are then assigned to the receiver’s
public address. A user can use any UTXOs that are assigned to their private key for further
transactions, but once the transaction is verified and stored in the ledger, the UTXO will be
considered spent and is no longer usable. This model does not incorporate accounts at the
protocol level but uses wallets to maintain balance by recording the sum of all UTXOs for an
account (COWLING et al., 2006) (VASSANTLAL et al., 2020).

The account-based transaction model represents assets as balances within accounts. The
model tracks the global shared state of asset balances for all accounts on the network. The two
account types seen in this model are the private-key user accounts and global smart contract
accounts, both of which contain executable code, account balance and internal memory. When
a transaction is sent and verified on the ledger, the sender’s balance is decreased and the
receiving account balance is increased by the same value. After a transaction has occurred,
the global state is updated to reflect any changes to account balance (CASTRO; LISKOV, 1999)
(VASSANTLAL et al., 2020).

Consensus mechanisms play a major role allowing blockchain systems to work together in
a distributed, untrusted environment and stay secure. It aims to solve the problem of how to
synchronize data across ”nodes”, since they need to come to a consensus about the state of
the ledger, as there is no central authority to assume responsibility. Among the main consensus
protocols, we can highlight:

• Proof of work (PoW): It is a consensus algorithm that ensures the authenticity of trans-
actions stored on the blockchain. In order to add a new block to the chain a miner should
use their computational power to validate transactions in a competition with each other
in a race to find a nonce that will produce a block hash that satisfies the restrictions
imposed by the protocol (TORRE; SEANG, 2019). Such a method is used to avoid ma-
licious nodes from producing invalid blocks that could result in attacks, such as denial
of service (DoS) or spam (PORAT et al., 2017). A new block is considered as legitimate
when other miners validate the process, so the proof must be difficult to create and easy
to be verified. Currently, this proposal is used in almost all cryptocurrencies. Producing
proof of work, in most cases, is a random process, so a lot of trial and error happens
before a valid proof of work is generated (FRANKENFIELD, 2021).

• Proof of stake (PoS) participants or nodes have to pledge some amount of digital
currency before they can create a new block. For each new expected block, a new signer

23

of the block will be selected, through random criteria, from the list of participants given
the amount of stake they have. Usually those with more stake in the blockchain will be
able to add blocks more often (RIBERA, 2018). It reduces dramatically the amount of
computational work needed to create blocks being therefore more scalable than PoW.

Although it was initially presented as a solution to specific problems related to the financial
services industry, blockchain technology can be adapted by any industry where it is necessary
to register, confirm and transfer any type of contract or ownership. Actually there are cur-
rently several use cases at various stages of maturity, such as: auctions (HAHN et al., 2017),
data management systems (ADHIKARI, 2017), financial contracts (BIRYUKOV; KHOVRATOVICH;

TIKHOMIROV, 2017), elections (MCCORRY; SHAHANDASHTI; HAO, 2017) and trading platforms
(NOTHEISEN; GöDDE; WEINHARDT, 2017).

2.2 SMART CONTRACTS

Smart contracts are programs stored on a blockchain that automatically enforce its terms
when predetermined conditions are met (ZHENG et al., 2020). This concept was proposed in
the 1990s with the publication of Smart Contracts: Building Blocks for Digital Markets article,
by Nick Szabo (SZABO, 1996). According to Szabo:

"New institutions, and new ways to formalize the relationships that make
up these institutions, are now made possible by the digital revolution. I call
these new contracts “smart,” because they are far more functional than
their inanimate paper-based ancestors. No use of artificial intelligence is
implied. A smart contract is a set of promises, specified in digital form,
including protocols within which the parties perform on these promises."
(SZABO, 1996)

In his work, Szabo predicted that the smart contracts would drastically change how people
trade with each other, since they will play a major role for the decentralized economy and can
be used to carry out financial transactions, property or anything else of value. Furthermore,
just like traditional contracts, smart contracts define rules and penalties around an agreement,
but perform the obligations automatically and significantly improves four basic aspects of con-
tracts, described as: observability, verifiability, privacy and enforceability. In a digital centralized
economy, it is very common to have an intermediary between two parties in a transaction that
acts as a certifier that a transaction actually took place and prevents fraud. In addition, the

24

intermediary controls all information flow on the network and receives a commission for each
transaction carried out.

Smart contracts allow anonymous transactions, without the need for a central authority.
These characteristics draw attention due to its high degree of independence, in addition, hu-
mans do not have a central role, since it is designed to work without a traditional management
structure. It is usually idealized and maintained by a community of developers around the world,
in fact the main philosophy that governs the principles of a decentralized application is the fact
that it never belongs to a specific person or location. Smart contracts must have a predefined
behavior and not have the ambiguities of natural language. They are made available to other
nodes through the blockchain network and each node processes transactions individually. The
role of the network is to update the status of the contract and check that everything went
according to its terms.

Blockchain and smart contracts are the foundations of a decentralized economy. Take as
example a smart contract that portrays a transaction for trading a property between a buyer
and a seller. As shown in Figure 2, the seller registers on the smart contract the property
descriptions (such as price, location and size) along with payment terms. The buyer then
can verify the authenticity of the information available and submit the payment. The smart
contract can also take as input data from external systems (such as interest rate and delivery
date) via oracle which is a trusted third-party service that serves as an interface between
blockchains and the outside world (BENIICHE, 2020).

This whole procedure is anonymous and no intermediaries are needed, which makes the
process cheaper, less bureaucratic, traceable, and auditable. In addition, due to the immutabil-
ity of blockchains the risk of data tampering is infeasible and the execution of the contract is
managed by the network.

One of the most innovative applications is the Decentralized Autonomous Organizations
(DAO’s), which basically is a network of interconnected smart contracts, capable of perform-
ing the same functions as traditional organizations. In this organization, humans do not play
the main role, as the system is designed to organize transactions through algorithms. Open-
Bazaar, for example, is an open source project that provides a platform where anyone can
buy or sell products and services in a fully decentralized marketplace. Through this platform
people can carry out transactions directly via a peer to peer network without depending on a
central regulatory authority. The OpenBazaar protocol is broken down into two pillars: pay-
ment and arbitration. The payment protocol is the core pillar and enables buyers to pay sellers

25

Figure 2 – Smart contract example

Source: MADIR (2018)

for products and services. It benefits users in several aspects when compared to centralized
applications because it ensures integrity over the sending and receiving of tokens by holding
them until the services or products are properly delivered. The arbitration protocol is designed
to solve disputes between buyers and sellers through a moderator. The disputes can arise when
the buyer does not release funds from escrow or the buyer is unsatisfied with the contents
or delivery of the item. Decentralized organizations have several advantages when compared
to traditional organizations. The first is to allow the user to have full control over who has
access to his private financial and business information. Another advantage is higher control
over business processes as there is no authority to define the rules of operation. Lastly, as
it is a decentralized application it does not require middlemen and has no marketplace fees,
restrictions, data collection, or censorship. Although they are present in an increasing range of
applications, their development is still not so simple because there are still few processes and
tools that support their development.

2.3 ETHEREUM AND SOLIDITY

Ethereum is an open source, decentralized, distributed computing platform that provides
a virtual machine capable of executing smart contracts using blockchain technology. It was
created to make life easier for developers who want to create decentralized applications (WOOD,
2014). Unlike the Bitcoin network it was designed to support a wide range of industries
although currently most applications are geared towards the financial sector. All this diversity
of applications that can be hosted in Ethereum blockchain has turned it into one of the most

26

popular smart contract platforms.
A participant in Ethereum controls an account, each of which has an address, private and

public keys associated with it. The private key generation process is offline and does not require
any interaction with the Ethereum network. Each private key is represented as an hexadecimal
64 digits string and it is generated by feeding a string of random bits into a 256-bits hashing
algorithm such as Keccak-256 or Sha-256 (MUSUMECI, 2018). The public key is calculated from
the private key using the elliptic curve digital signature algorithm (ANTONOPOULOS; WOOD,
2021). This means that a public key is generated from a set of two coordinates combined
in a way that satisfies the elliptic curve equation. An ethereum account is akin to the ones
in traditional banking systems and a participant that controls it also controls the balance
associated with it. Thus, they can send a transaction to Ethereum requesting the transfer of
some amount of the balance associated with one of its addresses. Aside from these addresses
that are managed by external entities, Ethereum also allows addresses to be managed by a
program (a smart contract). In addition to a balance, these smart contract addresses have
some code and data associated with them. While the former defines the functions offered by
the contract, the latter captures its persistent state.

Solidity is an object-oriented, high-level and statically-typed language widely used for im-
plementing smart contracts for the Ethereum Virtual Machine (EVM) and other blockchain
platforms. It was designed to look like javascript syntax and it has support for storage and
memory variables or objects, data types, inheritance, mappings, structs, arrays and basic types
such as booleans, strings and integers which can be signed and unsigned (RAJ, 2021). A con-
tract in Solidity is a concept very similar to that of a class in object-oriented languages, and a
contract instance a sort of long-lived persistent object and all of them are compiled down to
EVM bytecode and deployed on the blockchain having it reside at a particular address, thus
allowing external entities to trigger its behavior through function calls (AZZOPARDI; ELLUL;

PACE, 2018a).
We introduce the main elements of Solidity using the ToyWallet contract in Figure 3. It

implements a very basic ”wallet” contract that participants and other contracts can rely upon
to store their Ether. The member variables of a contract define the persistent state of the
contract. This example contract has a single member variable accs, a mapping from addresses
to 256-bit unsigned integers, which keeps track of the balance of Ether each ”client” of the
contract has in the ToyWallet; the integer accs[addr] gives the current balance for address
addr, and an address is represented by a 160-bit number.

27

Figure 3 – ToyWallet contract example

1 contract ToyWallet {

3 mapping (address => uint) accs;
event Transferred(address indexed owner , uint256 value);

5
modifier checkBalance(uint value) {

7 require(accs[msg.sender] >= value , "Insufficient Funds");
_;

9 }
function deposit () payable public {

11 accs[msg.sender] = accs[msg.sender] + msg.value;
}

13 function withdraw (uint256 value) public checkBalance {
bool ok = msg.sender.send(value);

15 require(ok);
accs[msg.sender] = accs[msg.sender] - value;

17 emit Transferred(msg.sender , value);
}

19 }

Public functions describe the operations that participants and other contracts can execute
on the contract. The contract in Figure 3 has public functions deposit and withdraw that
can be used to transfer Ether into and out of the ToyWallet contract, respectively. In Solidity,
functions have the implicit argument msg.sender designating the caller’s address, and payable

functions have the msg.value which depict how much Wei - the most basic (sub)unit of Ether
- is being transferred, from caller to callee, with that function invocation; such a transfer is
carried out implicitly by Ethereum. For instance, when deposit is called on an instance of
ToyWallet, the caller can decide on some amount amt of Wei to be sent with the invocation.
By the time the deposit body is about to execute, Ethereum will already have carried out the
transfer from the balance associated to the caller’s address to that of the ToyWallet instance
- and amt can be accessed via msg.value. Note that, as mentioned, this balance is part of
the blockchain’s state rather than an explicit variable declared by the contract’s code. One
can programmatically access this implicit balance variable for address addr with the command
addr.balance.

Solidity’s construct require(condition) aborts and reverts the execution of the function in
question if condition does not hold - even in the case of implicit Ether transfers. The call
addr.send(amount) sends amount Wei from the currently executing instance to address addr ;
it returns true if the transfer was successful, and false otherwise. The function withdraw has
a modifier which is used to change the behaviour of a function. It creates additional features
or apply some restriction on function. It can be executed before or after the original function
call. For instance, the require statement declared in the modifier checkBalance requires the

28

caller to have the funds they want to withdraw, whereas the requires declared in the function
withdraw requires the msg.sender.send(value) statement to succeed, i.e. the value must have
been correctly withdrawn from ToyWallet to msg.sender. Then, the account balance of the
caller (i.e. msg.sender) is updated in ToyWallet to reflect the withdrawal. The final statement
in this function has an event which is used to inform the calling application about the current
state of the contract. Events in the Solidity plays an important role, acting not only as a
mere logging mechanism, but also as a means of communication between the decentralized
applications and the users of those services (HAJDU; JOVANOVIć; CIOCARLIE, 2020).

We use the transaction create-contract as a means to create an instance of a Solidity
smart contract in Ethereum. In reality, Ethereum only accepts contracts in the EVM bytecode

low-level language - Solidity contracts need to be compiled into that. The processing of a trans-
action create-contract(𝑐, 𝑎𝑟𝑔𝑠) creates an instance of contract 𝑐 and executes its constructor
with arguments 𝑎𝑟𝑔𝑠. Solidity contracts without a constructor (as our example in Figure 3)
are given an implicit one. A create-contract call returns the address at which the contract
instance was created. We omit the args when they are not relevant for a call. We use 𝜎 to
denote the state of the blockchain where 𝜎[𝑎𝑑].𝑏𝑎𝑙𝑎𝑛𝑐𝑒 gives the balance for address 𝑎𝑑, and
𝜎[𝑎𝑑].𝑠𝑡𝑜𝑟𝑎𝑔𝑒.𝑚𝑒𝑚 the value for member variable 𝑚𝑒𝑚 of the contract instance deployed at
𝑎𝑑 for this state. For instance, let 𝑐tw be the code in Figure 3, and addrtw the address returned
by the processing of create-contract(𝑐tw). For the blockchain state 𝜎′ immediately after this
processing, we have that: for any address 𝑎𝑑𝑑𝑟, 𝜎′[addrtw].𝑠𝑡𝑜𝑟𝑎𝑔𝑒.𝑎𝑐𝑐𝑠[𝑎𝑑𝑑𝑟] = 0 and its
balance is zero, i.e., 𝜎′[𝑎𝑑𝑑𝑟tw].𝑏𝑎𝑙𝑎𝑛𝑐𝑒 = 0. We introduce and use this intuitive notation to
present and discuss state changes as it can concisely and clearly capture them. There are many
works that formalise such concepts (HILDENBRANDT et al., 2018; WANG et al., 2020; ANTONINO;

ROSCOE, 2021a).
A transaction call-contract can be used to invoke contract functions; processing

call-contract(𝑎𝑑𝑑𝑟, 𝑓𝑢𝑛𝑐_𝑠𝑖𝑔, 𝑎𝑟𝑔𝑠) executes the function with signature func_sig at address
addr with input arguments args. When a contract is created, the code associated with its
non-constructor public functions is made available to be called by such transactions. The
constructor function is only run (and available) at creation time. For instance, let addrtw be
a fresh ToyWallet instance and ToyWallet.deposit give the signature of the corresponding
function in Figure 3, processing the transaction call-contract(addrtw,ToyWallet.deposit, 𝑎𝑟𝑔𝑠)

where 𝑎𝑟𝑔𝑠 = {𝑚𝑠𝑔.𝑠𝑒𝑛𝑑𝑒𝑟 = addr𝑠𝑛𝑑, 𝑚𝑠𝑔.𝑣𝑎𝑙𝑢𝑒 = 10} would cause the state of this in-
stance to be updated to 𝜎′′ where we have that 𝜎′′[addrtw].𝑠𝑡𝑜𝑟𝑎𝑔𝑒.𝑎𝑐𝑐𝑠[addr𝑠𝑛𝑑] = 10 and

29

𝜎′′[addrtw].𝑏𝑎𝑙𝑎𝑛𝑐𝑒 = 10. So, the above transaction has been issued by address addr𝑠𝑛𝑑 which
has transferred 10 Wei to addr𝑡𝑤.

2.4 FORMAL VERIFICATION WITH SOLC-VERIFY

Formal verification refers to applying a rigorous mathematical process to prove the cor-
rectness of a system with respect to a certain formal specification or property. This technique
is based on the idea of a static analysis of the set of possibles scenarios represented by an
abstract mathematical model and providing a formal proof based on the predefined require-
ments (MISSON, 2019) and it is used to guarantee that a given system meets its functional and
non-functional requirements (CLARKE; WING., 1996). This is an important step in an attempt
to ensure that the system will behave as expected. With mathematical methods, one can
explore all behavioral possibilities of the system, obtaining a result whether or not an event
may happen and it is a method widely used in various industries during the system develop-
ment process. The main advantage of this method is to facilitate the identification of faults
before its implementation. Therefore, many tools have emerged to support the development
of secure smart contracts and to aid the analysis of deployed ones. There are several analysis
methods that are used by these tools. Static analysis refers to a class of methods that examine
the source code or bytecode of a contract without executing it, dynamic analysis means to
observe a contract while executing it in the original context and symbolic execution means to
execute code using symbolic instead of concrete values for the variables.

The modular verifier solc-verify, a source-level verification tool for solidity smart con-
tracts (HAJDU; JOVANOVIĆ, 2020b; HAJDU; JOVANOVIĆ, 2020a) was created to help developers
to formally check that their smart contracts behave as expected. Solc-verify supports in-code
annotations to specify contract properties. Input contracts are also manually annotated with
contract invariants and their functions with loop invariants, pre- and postconditions. An an-
notated Solidity contract is then translated into a Boogie program which is verified by the
Boogie verifier (BARNETT et al., 2005; LEINO, 2008).

Its modular nature means that solc-verify verifies functions locally/independently, and
function calls are abstracted by the corresponding function’s specification, rather than their
implementation being precisely analysed/executed. These specification constructs have their
typical meaning. An invariant is valid if it is established by the constructor and maintained by
the contract’s public functions, and a function meets its specification if and only if from a state

30

satisfying its pre-conditions, any state successfully terminating respects its postconditions. So
the notion is that of partial correctness. Note that an aborted and reverted execution, such as
one triggered by a failing require command, does not successfully terminate.

Figure 4 illustrates a specification for an alternative version of the ToyWallet’s smart con-
tract. Solc-verify provides a sum function over collections (arrays and mappings) (HAJDU;

JOVANOVIĆ, 2020a). The contract is annotated with the invariant sum_uint (accs) == ad-

dress (this).balance. When the balance of the contract is updated by deposit or withdraw a
verification is performed to evaluate the consistency between the contract’s and wallets bal-
ance; if the invariant is violated solc-verify reports an error. The postconditions of the withdraw

function specify that the balance of the instance and the wallet balance associated with the
caller must decrease by the withdrawn amount and no other wallet balance must be affected
by the call.

Figure 4 – Buggy ToyWallet with specification

1 /** @notice invariant __verifier_sum_uint(accs) == address(this).balance */
contract ToyWallet {

3
mapping (address => uint) accs;

5 event Transferred(address indexed owner , uint256 value);

7 modifier checkBalance(uint value) {
require(accs[msg.sender] >= value , "Insufficient Funds");

9 _;
}

11
/**

13 * @notice postcondition address(this).balance == __verifier_old_uint(address(
this).balance) + msg.value

* @notice postcondition accs[msg.sender] == __verifier_old_uint(accs[msg.
sender]) + msg.value

15 * @notice postcondition forall (address addr) addr == msg.sender ||
__verifier_old_uint(accs[addr]) == accs[addr]

*/
17 function deposit () payable public {

accs[msg.sender] = accs[msg.sender] + msg.value;
19 }

21 /**
* @notice postcondition address(this).balance == __verifier_old_uint(address(

this).balance) - value
23 * @notice postcondition accs[msg.sender] == __verifier_old_uint(accs[msg.

sender]) - value
* @notice postcondition forall (address addr) addr == msg.sender ||

__verifier_old_uint(accs[addr]) == accs[addr]
25 * @notice emits Transferred

*/
27 function withdraw (uint256 value) public checkBalance {

bool ok = msg.sender.send(value);
29 require(ok);

accs[msg.sender] = accs[msg.sender] - value;
31 emit Transferred(msg.sender , value);

}
33 }

31

This alternative implementation uses msg.sender.call.value(value)("") instead of
msg.sender.send(value). While the latter only allows for the transfer of value Wei from the
instance to address msg.sender, the former delegates control to msg.sender in addition to the
transfer of value.1 If msg.sender is a smart contract instance that calls withdraw again during
this control delegation, it can withdraw all the funds in this alternative ToyWallet instance -
even the funds that were not deposited by it. This reentrancy bug is detected by solc-verify

when it analyses this alternative version of the contract. A similar bug was exploited in what
is known as the DAO attack/hack to take over US$53 million worth of Ether (SIEGEL, 2016;
VOLLMER, 2016; ATZEI; BARTOLETTI; CIMOLI, 2017).

Solc-verify also allows to define events as part of the specification. This is an important
feature since Solidity does not impose limitations on the emitted events so a contract could
emit events that do not correspond to state changes. So any function annotated with emits

must emit an event.

1 In fact, the function send also delegates control to msg.sender but it does in such a restricted way that it
cannot perform any relevant computation. So, for the purpose of this paper and to simplify our exposition,
we ignore this delegation.

32

3 SAFE SMART CONTRACT DEPLOYMENT

This chapter describes the design and development process of the trusted deployer frame-
work - used to promote the secure creation and evolution of smart contracts. In addition, it
delimits the scope of the framework by pointing out what are the functionalities available and
what is out of scope. We present the theoretical bases on which the trusted deployer framework

(an off-chain service that formally verifies and enforces a notion of conformance between a
specification and an implementation) was built. We also discuss all principles needed to deploy,
upgrade and manage the smart contract versions. Our framework is generic and, in principle,
can integrate with any verification tool that supports design by contract.

3.1 TRUSTED DEPLOYER FRAMEWORK

We propose a framework for the safe creation and upgrade of smart contracts based around
a trusted deployer. This entity is trusted to only create or update contracts that have been
verified to meet their corresponding specifications. A smart contract development process built
around it prevents developers from deploying contracts that have not been implemented as
intended. Thus, stakeholders can be sure that contract instances deployed by this entity, even
if their code is upgraded, comply with the intended specification.

Our trusted deployer targets the Ethereum platform, and we implement it as an off-chain
service. Generally speaking, a trusted deployer could be implemented as a smart contract in
a blockchain platform, as part of its consensus rules, or as an off-chain service. In Ethereum,
implementing it as a smart contract is not practically feasible as a verification infrastructure
on top of the EVM (BUTERIN, 2014) would need to be created. Furthermore, blocks have
an upper limit on the computing power they can use to process their transactions, and even
relatively simple computing tasks can exceed this upper limit (WüST et al., 2020). As verification
is a notoriously complex computing task, it should exceed this upper limit even for reasonably
small systems. Neither can we change the consensus rules for Ethereum.

We present the architecture of the trusted deployer infrastructure in Figure 5. The trusted
deployer relies on an internal verifier that implements the functions verify-creation⊑ and
verify-upgrade⊑, and an upgrader that implements functions create-contract and upgrade-

contract; we detail what these functions do in the following. The deployer’s create-contract

33

Figure 5 – Trusted deployer architecture

Trusted Deployer

Verifier Upgrader
Ethereum
Platform

verify
update

verify
creation

create
contract

create
contract

upgrade
contract

get spec

create
contract

upgrade
contract

(upgrade-contract) check that an implementation meets its specification by calling
verify-creation⊑ (verify-upgrade⊑) before relaying this call to the upgrader’s create-contract

(upgrade-contract) which effectively creates (upgrades) the contract in the Ethereum platform.
The get-spec function can be used to test whether a contract instance has been deployed by
the trusted deployer and which specification it satisfies.

The trusted deployer maintains an internal persistent variable registry mapping addresses of
instances to the specification they meet. This service offers functions create-trusted-contract,
and upgrade-trusted-contract as per Algorithm 1, and function get-spec to access registry.
A value of type Option⟨𝑇 ⟩ is either of the form Some(𝑡) where 𝑡 ∈ 𝑇 or a value None. The
trusted deployer relies on an internal verifier that implements the functions verify-creation⊑

and verify-upgrade⊑, and an upgrader that implements functions create-upgradable-contract

and upgrade-upgradable-contract.
The verifier is used to establish whether an implementation meets a specification. A ver-

ification framework is given by a triple (𝒮, 𝒞, ⊑) where 𝒮 is a language of smart contract
specifications, 𝒞 is a language of implementations, and ⊑∈ (𝒮 × 𝒞) is a satisfiability rela-
tion between smart contracts’ specifications and implementations. In this paper, 𝒞 is the set
of Solidity contracts and 𝒮 a particular form of Solidity contracts, possibly annotated with
contract invariants, that include function signatures annotated with postconditions. The func-
tions verify-creation⊑ and verify-upgrade⊑ both take a specification 𝑠 ∈ 𝒮 and a contract
implementation 𝑐 ∈ 𝒞 and test whether 𝑐 meets 𝑠 - they work in slightly different ways as
we explain later. When an implementation does not meet a specification, verifiers typically
return an error report that points out which parts of the specification do not hold and maybe
even witnesses/counterexamples describing system behaviours illustrating such violations; they
provide valuable information to help developers correct their implementations.

The upgrader is used to create and manage upgradable smart contracts - Ethereum does

34

Algoritmo 1: Implementation of a trusted deployer.
State: registry : map(address ↦→ 𝒮)

create-trusted-contract(s : 𝒮, c : 𝒞, cargs : Args) : Option⟨address⟩
if verify-creation⊑(𝑠, 𝑐) then

𝑎𝑑𝑑𝑟 = create-upgradable-contract(𝑐, 𝑎𝑟𝑔𝑠);
registry[addr] = 𝑠;
return Some(ins);

end
return None;

upgrade-trusted-contract(addr : address, c : 𝒞) : bool
if verify-upgrade⊑(𝑠, 𝑐) for 𝑠 ≡ registry[addr] then

upgrade-upgradable-contract(𝑎𝑑𝑑𝑟, 𝑐);
return true;

end
return false;

not have built-in support for contract upgrades. Function create-contract creates an upgradable
instance of contract 𝑐 ∈ 𝒞 - it returns the Ethereum address where the instance was created -
whereas upgrade-contract allows for the contract’s behaviour to be upgraded. The specification
used for a successful contract creation will be stored and used as the intended specification
for future upgrades. Only the creator of a trusted contract can update its implementation.

Note that once a contract is created via our trusted deployer, the instance’s specification
is fixed, and not only its initial implementation but all upgrades are guaranteed to satisfy this
specification. Therefore, participants in the ecosystem interacting with this contract instance
can be certain that its behaviour is as intended by its developer during the instance’s entire
lifetime, even if the implementation is upgraded as the contract evolves.

3.2 VERIFIER

We propose design by contract (MEYER, 1992) as a methodology to specify the behaviour
of smart contracts. In this traditional specification paradigm, conceived for object-oriented
languages, a developer can specify invariants for a class and pre-/postconditions for its meth-
ods. These elements define a specification contract between the code using this class and the
class implementation itself. Invariants must be established by the constructor and guaranteed
by the public methods, whereas postconditions are ensured by the code in the method’s body

35

provided that the pre-conditions are guaranteed by the caller code and the method terminates
- we leave total correctness to be addressed in future implementations of our trusted deployer.
We propose a specification format that defines what the member variables and signatures
of member functions should be. Additionally, the function signatures can be annotated with
postconditions, and the specification with invariants; these annotations capture the expected
behaviour of the contract. In ordinary programs, a function is called in specific call sites fixed
in the program’s code. Pre-conditions can, then, be enforced and checked in these call sites.
In the context of public functions of smart contracts, however, any well-formed transaction
can be issued to invoke such a function. Hence, we move away from preconditions in our
specification, requiring, thus, postconditions to be met whenever public functions successfully
terminate.

Figure 6 – ToyWallet specification.

1 /**
* @notice invariant accs[address(this)] == 0

3 */
contract ToyWallet {

5 mapping (address => uint) accs;

7 /**
* @notice postcondition forall (address addr) accs[addr] == 0

9 */
constructor () public;

11
/**

13 * @notice postcondition address(this).balance == __verifier_old_uint(address(
this).balance) + msg.value

* @notice postcondition accs[msg.sender] == __verifier_old_uint(accs[msg.
sender]) + msg.value

15 * @notice postcondition forall (address addr) addr == msg.sender ||
__verifier_old_uint(accs[addr]) == accs[addr]

*/
17 function deposit () payable public;

19 /**
* @notice postcondition address(this).balance == __verifier_old_uint(address(

this).balance) - value
21 * @notice postcondition accs[msg.sender] == __verifier_old_uint(accs[msg.

sender]) - value
* @notice postcondition forall (address addr) addr == msg.sender ||

__verifier_old_uint(accs[addr]) == accs[addr]
23 */

function withdraw (uint256 value) public;
25 }

Figure 6 illustrates a specification for the ToyWallet contract. Invariants are declared in a
comment block preceding the contract declaration, and function postconditions are declared
in comment blocks preceding their signatures. Our specification language reuses constructs
from Solidity and the solc-verify specification language, which in turn borrows elements from
the Boogie language (BARNETT et al., 2005; LEINO, 2008). Member variables and function

36

signature declarations are as prescribed by Solidity, whereas the conditions on invariants and
postconditions are side-effect-free Solidity expressions extended with quantifiers and the __ver-

ifier_old_x(v) expression which can only be used in a postcondition, and it denotes the value
of v in the function’s execution pre-state.

We target Solidity as the implementation language as it is arguably the most popular
language used to create smart contracts. We choose to use Solidity as opposed to EVM
bytecode as it gives a cleaner semantic basis for the analysis of smart contracts (ANTONINO;

ROSCOE, 2021a) and it also provides a high-level error message when the specification is not
met. The satisfiability relation ⊑ that we propose is as follows.

Definition 1. The relation 𝑠 ⊑ 𝑐 holds iff:

• Syntactic obligation: a member variable is declared in 𝑠 if and only if it is declared in
𝑐 with the same type, and they must be declared in the exact same order. A public
function signature is declared in 𝑠 if and only if it is declared and implemented in 𝑐.

• Semantic obligation: invariants declared in 𝑠 must be respected by 𝑐, and the imple-
mentation of functions in 𝑐 must respect their corresponding guards and postconditions
described in 𝑠.

The purpose of this work is not to provide a formal semantics to Solidity or to formalize the
execution model implemented by the Ethereum platform. Other works propose formalizations
for Solidity and Ethereum (HAJDU; JOVANOVIĆ, 2020b; ANTONINO; ROSCOE, 2020; WANG et

al., 2020). Our focus is on using the modular verifier solc-verify to discharge the semantic
obligations imposed by our satisfaction definition.

The verify-creation⊑ function works as follows. Firstly, the syntactic obligation imposed
by Definition 1 is checked by a syntactic comparison between 𝑠 and 𝑐. If it holds, we rely on
solc-verify to check whether the semantic obligation is fulfilled. We use what we call a merged

contract as the input to solc-verify - it is obtained by annotating 𝑐 with the corresponding
invariants and postconditions in 𝑠. If solc-verify is able to discharge all the proof obliga-
tions associated to this merged contract, the semantic obligations are considered fulfilled, and
verify-creation⊑ succeeds.

Function verify-upgrade⊑ is implemented in a very similar way but it relies on a slightly
different satisfiability relation and merged contract. While verify-creation⊑ checks that the
obligations of the constructor are met by its implementation, verify-upgrade⊑ simply assumes

37

they do. The constructor is only executed - and, therefore, its implementation checked for
satisfiability - at creation time. The upgrade process assumes that the constructor’s obligations
were met, and checks the implementation of the (non-constructor) public functions. The
merged contract used in this verification process, then, has a constructor that has the expected
signature and specification annotations but whose body has only statement require(false); this
statement indicates to solc-verify that it does not need to validate the implementation of the
constructor.

3.3 UPGRADER

Ethereum does not provide a built-in mechanism for upgrading smart contracts, since the
code of smart contracts is immutable once it is deployed on the blockchain. However, there
are approaches one can simulate this functionality. The first is to deploy every new patched
contract to the blockchain and migrate the state of the original contract to it. Nevertheless,
this strategy has some drawbacks since it requires access to all the internal state of the old
contract. In addition, the state migration between the contracts must be implemented manually
(RODLER et al., 2021a). A more feasible approach would be the proxy pattern (OPENZEPPELIN,
2021).

This design pattern splits the contract across two instances: the proxy instance and the
implementation instance. The proxy instance holds the persistent state and the upgrade logic,
relying on the code in an implementation instance which is stateless and contains all business
logic. The proxy instance is the de-facto instance, that is, it should be the target of calls
willing to execute the upgradable contract, therefore it should be immutable. It also stores the
address of the implementation instance it relies upon, and the interface of the proxy’s public
functions can be upgraded by changing this address. Our upgrader relies on this pattern to
deploy upgradable contracts.

We illustrate how to create a proxy using the ToyWalletProxy contract in Figure 8. Given
a contract 𝑐 that meets its specification according to Definition 1, the upgrader creates the
Solidity contract 𝑝𝑟𝑜𝑥𝑦(𝑐) as follows. It has the same member variable declarations, in the
same order, as 𝑐 - having the same order is an implementation detail that is necessary to
implement the sort of delegation we use as it enforces proxy and implementation instances to
share the same memory layout. In addition to those, it has a new address member variable
called implementation - it stores the address of the implementation instance. The constructor of

38

𝑝𝑟𝑜𝑥𝑦(𝑐) extends the constructor of 𝑐 with an initial setting up of the variable implementation.
This proxy contract also has a public function upgrade that can be used to change the address
of the public-functions-implementation instance. The trusted deployer is identified by a trusted
Ethereum address addr𝑡𝑑; see, for instance, Line 27 in ToyWalletProxy. This address is used
to ensure calls to upgrade can only be issued by the trusted deployer. In the process of
creating and upgrading contracts the trusted deployer acts as an external participant of the
Ethereum platform. We assume that the contract implementations and specifications do not
have member variables named implementation, or functions named upgrade and _upgrade to
avoid name clashes.

The proxy instance relies on the low-level delegatecall Solidity command to dynamically
borrow and execute the function implementations defined in the contract instance at implemen-

tation. When the contract instance at address proxy executes implementation.delegatecall(𝑠𝑖𝑔,

args), it executes the code associated with the function with signature sig stored in the in-
stance at address implementation but applied to the proxy instance - modifying its state
- instead of implementation. For instance, in Figure 8, we have that the ToyWalletProxy

functions deposit and withdraw borrow and execute the code of functions with the same
signature in the instance at address implementation. By using this feature, we can change
the behaviour of the proxy’s public functions by switching implementation addresses with the
new desired implementation. For each (non-constructor) public function in 𝑐 with signature
sig, 𝑝𝑟𝑜𝑥𝑦(𝑐) has a corresponding function declaration whose implementation relies on imple-

mentation.delegatecall(sig, args). This command was proposed as a means to implement and
deploy contracts that act as a sort of dynamic library. Such a contract is deployed with the
sole purpose of other contracts borrowing and using their code. The contract 𝑝𝑟𝑜𝑥𝑦(𝑐) will
also include any internal function that is needed by the constructor. Lastly, the function on
the implementation contract returns either the data or throws an exception if something went
wrong. The proxy architecture pattern is shown in Figure 7.

Figure 7 – Proxy Structure

Source: NADOLINSKI; SPAGNUOLO (2018)

39

The upgrader function create-upgradable-contract(𝑐) behaves as follows. Firstly, it issues
transaction create-contract(𝑐, 𝑎𝑟𝑔𝑠) to the Ethereum platform to create the initial implementa-
tion instance at address addrimpl. Secondly, it issues transaction create-contract(𝑝𝑟𝑜𝑥𝑦(𝑐), 𝑎𝑟𝑔𝑠),
such that implementation would be set to addrimpl, to create the proxy instance at ad-
dress addr𝑝𝑥. We illustrate this process with our ToyWallet contract in Figure 3. For a
call, create-upgradable-contract(𝑇𝑜𝑦𝑊𝑎𝑙𝑙𝑒𝑡, 𝑎𝑟𝑔𝑠), our upgrader would issue transaction
create-contract(no-constructor(𝑇𝑜𝑦𝑊𝑎𝑙𝑙𝑒𝑡, 𝑎𝑟𝑔𝑠), which would create the constructor-less
public-functions-implementation instance at address addr𝑡𝑤. Then it would proceed to is-
sue transaction create-contract(𝑇𝑜𝑦𝑊𝑎𝑙𝑙𝑒𝑡𝑃𝑟𝑜𝑥𝑦, 𝑎𝑟𝑔𝑠) where 𝑎𝑟𝑔𝑠 binds parameter _im-

plementation to addr𝑡𝑤 and, of course, 𝑝𝑟𝑜𝑥𝑦(𝑇𝑜𝑦𝑊𝑎𝑙𝑙𝑒𝑡) is ToyWalletProxy. For the sake
of simplicity, we assume that these contract creations cannot fail. Note that both of these
transactions are issued by and using the trusted deployer’s address addr𝑡𝑑. The upgrader func-
tion upgrade-upgradable-contract(𝑐) behaves similarly, but the second step issues transaction
call-contract(addr𝑝𝑥,upgrade, 𝑎𝑟𝑔𝑠), triggering the execution of function upgrade in the proxy
instance and changing its implementation address to the new implementation instance.

Given the behaviour of the trusted deployer and especially its restriction on creation and
updates as far as ensuring satisfiability between specification and implementation, we make
the following claim.

Let ℐ be an invariant implied by the specification 𝑠 - that is, a predicate implied by
the invariant definitions or by each of the post-conditions on public functions - and 𝑐 an
upgradable (proxy) contract instance with specification 𝑠 that has been created and managed
by the trusted deployer. For a persistent state 𝑠𝑡 of this contract instance, i.e., one that can
be reached from the zero-initialised persistent state via a non-empty sequence of calls starting
with the constructor and followed by public functions, it must be the case that:

1. ℐ holds for state 𝑠𝑡; and

2. for any public function 𝑓 in 𝑐 with post-condition 𝒫 in 𝑠, any state 𝑠𝑡′ reached after a
successfully terminating execution of 𝑓 from 𝑠𝑡 must respect 𝒫 .

40

Figure 8 – ToyWallet proxy

1 contract ToyWalletProxy {
mapping (address => uint) accs;

3 address implementation;

5 function deposit () payable public {
(bool success , bytes memory _) = implementation.delegatecall(

7 abi.encodeWithSignature("deposit ()"));
require(success);

9 }

11 function withdraw (uint256 value) public {
(bool success , bytes memory _) = implementation.delegatecall(

13 abi.encodeWithSignature("withdraw(uint256)", value));
require(success);

15 }

17 constructor(/* contract ’s original constructor parameters , */ address
_implementation) public {
/* contract ’s original constructor code */

19 _upgrade(_implementation);
}

21
function upgrade(address new_implementation) public {

23 _upgrade(new_implementation);
}

25
function _upgrade(address new_implementation) internal {

27 require(msg.sender == addr𝑡𝑑);
implementation = new_implementation;

29 }
}

3.4 REGISTRY

An external participant in the Ethereum platform can confirm that a given instance was cre-
ated by the trusted deployer by calling its get-spec function. Smart contracts in the Ethereum
platform, however, cannot probe external services, such as the trusted deployer. Therefore, an
Ethereum smart contract would have no means to check whether an instance that it wants
to interact with is safe. As composability, namely, this ability of smart contracts to interact
and cooperate, is one of the main features of Ethereum, we propose a mechanism by which
contracts can programmatically test if a counterpart contract is safe. As part of the trusted
deployer infrastructure, we create a trusted registry. It is essentially a mirror of the trusted
deployer’s internal registry implemented as an Ethereum smart contract. This trusted registry
has other benefits in its own right. For instance, given its implementation as an Ethereum
smart contract, it inherits the non-function properties offered by this platform such as high-

41

availability and secure execution.

Figure 9 – Trusted registry

contract TrustedRegistry {
2

mapping (address => bytes32) verified_addrs;
4 address maintainer;

6 constructor () public {
maintainer = msg.sender;

8 }

10 function new_mapping(address addr , bytes32 spec_id) public {
if (msg.sender == maintainer && spec_id != bytes32 (0)) {

12 verified_addrs[addr] = spec_id;
}

14 }

16 function get_spec(address addr) view public returns (bytes32) {
return verified_addrs[addr];

18 }
}

In the process of setting up the trusted deployer, the TrustedRegistry contract in Figure 9
is created as part of its infrastructure at the well-known trusted address addr𝑟𝑒𝑔. It has map-
ping verified_addr that associates the proxy instances that have been created by the trusted
deployer with the specification they comply to. As an implementation detail, we do not store
the specification themselves but rather a small representative as a 32-byte array - it could be,
for instance, a cryptographic hash of the specification. We do not allow this representative to
be the zeroed array, 𝑏𝑦𝑡𝑒𝑠32(0) in Solidity syntax, as we use this value to represent absence
of an association. That is, if the result of a call 𝑔𝑒𝑡_𝑠𝑝𝑒𝑐(𝑎𝑑𝑑𝑟) is the value 𝑏𝑦𝑡𝑒𝑠32(0), it
means the address 𝑎𝑑𝑑𝑟 has not been deployed by the trusted deployer, and hence has no
specification associated with it.

Having this trusted registry might seem a small contribution but it brings significant guar-
antees that cannot be otherwise obtained. In Solidity, and generally in Ethereum, type informa-
tion cannot be programmatically obtained by smart contracts. For instance, when executing a
function call, a smart contract cannot check whether the target contract has code associated
with the specific function it is trying to call. It simply tries to execute the code associated with
a function signature. Solidity’s behaviour can be especially problematic in this aspect. They
have an implicit execution flow by which a special fallback function is executed if none of the
other functions in the target contract have the intended signature. Thus, a smart contract

42

might execute a function on a counterpart that apparently successfully terminates when in
fact a completely different unwanted function runs instead. Our trusted deployer acts as a
verification oracle that pushes into the blockchain, and specifically into the TrustedRegistry

contract, information not only about the interface of deployed contracts, ensured by the syn-
tactic obligation in Definition 1, but also about their public functions behaviour, ensured by
the semantic obligation on the same definition. This information can be programmatically
obtained via the get_spec function in TrustedRegistry, of course. Amongst other usages, this
ability can be harnessed to create a sort of safe contract call. A contract can check that the
to-be-called counterpart meets a certain specification and only issue the call if so. For instance,
let us assume that we want to write a smart contract function that calls do_something in
contract 𝑐, but only does so if 𝑐 meets specification expected_spec. This behaviour could be
achieved by the following snippet:

Figure 10 – Trusted Deployer behaviour

1 requires(TrustedRegistry(addr𝑟𝑒𝑔).get_spec(address(c)) == expected_spec);
c.do_something(a, b);

A similar approach can be taken by external applications that want to use a safe smart
contract. They can instead use the function get_spec of the trusted deployer, and abort their
execution if the contract they want to interact with does not meet the expected specification.

43

4 TOOL SUPPORT AND APPLICATION TO A REAL COMMIT HISTORY

This chapter presents the implementation of the main functionalities of the prototype tool
that has been developed (Section 4.1), particularly, the smart contract safe creation (Section
4.2) and upgrade (Section 4.3) features. We also present an example of the complete framework
in a real development scenario. First we describe the research context, next we scrutinize a
scenario based on the 0xMonorepo repository in order to analyse possible occurrences of bugs
found in the commit history (Section 4.4). In the next chapter we present a more detailed
evaluation of the proposed verification framework.

4.1 TRUSTED DEPLOYER TOOL

We developed the Trusted Deployer 1 prototype which was built on top of the modular
verifier solc-verify and it has three main features: creation, verification and upgrading of smart
contracts. Its main purpose is to facilitate the work of developers during the development life
cycle, so we provide a clear and simple interface to support the use of the proposed framework.

The Trusted Deployer was created based on the pattern Representational State Transfer
(REST) an architectural style that can be used as a basis for a platform-independent HTTP-
based service interface (SUNDVALL et al., 2013). This pattern brought two main benefits to
the project: scalability and flexibility, which means that our application can be scaled quickly
due to the separation between the client and the server. Model-View-Controller (MVC), a
programming paradigm that separates an application into three separate classes: the modeling
of the domain, the presentation of information and the business logic (KRASNER; POPE, 1988).
With the use of this architecture, we were able to increase the efficiency of the development
process, making it simpler. Furthermore, possible changes, whether due to maintenance or
the emergence of new requirements, should not affect the entire application. Its back-end
was developed using the programming language Rust (version 1.60.0), the Rocket web frame-
work (version 0.5) which eliminate different types of memory-related bugs at compile time.
In addition, Rust is extremely fast, secure and reliable. The database management system is
PostgreSQL (version 14.1) a secure, robust and open source relational database. We also use
open-source libraries to interact with the smart contracts deployed in the Ethereum network
1 The prototype as well as all instructions for its configuration and use available at <https://github.com/

formalblocks/safeevolution>.

https://github.com/formalblocks/safeevolution
https://github.com/formalblocks/safeevolution

44

(web3.js). The front-end was developed using the programming language JavaScript and the
React framework (version 17.0.1) which and facilitates the process of writing components and
facilitates further maintenance and it boosts productivity. We used Git and Github as a version
control tool and repository respectively, for both projects. During the studies to formulate the
prototype, the need for a secure platform for safe creating and updating smart contracts was
identified. From this perspective, the software architecture must satisfy the following require-
ments:

• Security: To create or update a smart contract, it is necessary to create a digital wallet;
the agent who wants to use the platform must have public and private keys and all
transactions must be signed.

• Inviolability: All transactions must be recorded on the blockchain so that smart contracts
cannot be tampered with.

Although this work has focused on the Ethereum blockchain because it is widely used,
meets the requirements raised for the project and enables the execution of the project without
having to allocate large infrastructure resources, it is compatible with any network that uses
EVM as their default smart contract engine like Fantom, Binance Smart Chain, Tron and Celo,
to mention a few. Figure 11 presents an overview of the tool considering its process workflow
and all the modules that make it up. The figure considers only the modules but it will be
shown the details of each module and how they adhere to the conceptual bases presented in
Chapter 3.

Figure 11 – Trusted Deployer Architecture

Source: The author

45

Parser

The specification and implementation smart contracts are imported into the tool through
files with the .sol extension, then we generate, using the official Solidity compiler, a JSON
object with the AST (Abstract Syntax Tree) that is an intermediate language with a graph
representation of source code. The transformation from source code to an AST is an important
step to create typed in-memory objects that can be manipulated programmatically. Our cus-
tom parser helps to analyze the structures in the smart contracts code, create merged smart
contracts and perform static analysis.

Checker

It is the module responsible for carrying out all the validations defined for the deployment
and evolution of smart contracts. First, we check the syntactic conformance between an im-
plementation and the associated specification smart contracts, that is, whether the signatures
of the public functions contained in the contracts are compatible, in addition all the variables
as well as their respective types contained in the specification for the declaration of invariants
and postconditions must also be the same as those the implementation contract. According to
the established rules, the user is not allowed to declare a function with the upgrade identifier
as it is already defined by the proxy for updating the addresses of the implementation smart
contracts.

The user inputs the constructor variables through the web interface, so it is necessary to
convert the javascript types to their respective solidity equivalent types. If it is an upgrade
operation, it is not allowed to declare constructors in the implementation smart contract.
Finally, we generate the merged smart contract, perform the syntactic analysis and collect the
results for user feedback. The deployment or upgrade process will not proceed if any of the
mentioned requirements are not respected.

Proxy

This module is responsible for setting-up the proxy contract architecture as discussed in
Section 3.3. This is possible by separating the logic that stores state and business rules from
the implementation contract. For the proxy configuration it is necessary to identify and extract

46

the signatures of public functions and variables as well as configuring the parameters and the
body of the constructor and fill the proxy template.

Deployer

After performing all the previous steps, the Trusted Deployer deploys the register, proxy
and logic smart contracts on the blockchain in addition to all the addresses of the mentioned
smart contracts; the specification file and author are saved in a database. This procedure
improves the visualization and manipulation of data by users, as the details of the verification
process can be analyzed.

4.2 SMART CONTRACT CREATION PROCESS

In order to access the features offered by the Trusted Deployer tool all users must have a
crypto wallet, that is, a tool that allows them to manage their assets. They also should acquire
a balance in cryptocurrency (in the case of Ethereum, ETH) in order to pay the transaction
costs to the network. The public and private keys will be used to carry out the transactions
and it will also ensure that only the user with the appropriate permissions has access to the
smart contract. To increase the security of the tool, we do not store or manage the user’s
private key, instead we use a non-custodial crypto wallet so the user is the only one in control
of the funds and contracts deployed. When setting up a non-custodial wallet, a user gets a
mnemonic phrase of 12 to 24 words which should be stored somewhere safe. The seed phrase
can be used to regain the wallet access.

Although there are different types of non-custodial like the physical ones that can be stored
in hardware devices or software that can be installed in a computer, we choose the browser-
based type to promote a better experience to users. There are several options, including add-ons
in popular browsers like Google Chrome or Mozilla Firefox and even browsers with native wallets
like Brave. In this case, the Trusted Deployer tool contains a specific page with instructions
that must guide users to create and manage a wallet and purchase cryptocurrencies.

To understand the implementation challenges for registering contracts on the blockchain, it
is necessary to evaluate the processes related to the Trusted Deployer tool’s deployer module.
Figure 12 shows a screenshot of the creation smart contract process, according to the workflow,
a user starts its operation by a specification_id which is a unique identifier that will ensure for

47

all participants that interact with the smart contract that a given instance was created by the
Trusted Deployer by calling its get-spec function; therefore it is formally verified and safe. The
user must also upload the specification and implementation files. Solidity supports multiple
inheritance, so multiple contracts can be inherited by a contract that is known as a derived
contract. In this case the user must inform the derived contract to be verified and constructor
parameters when they exist.

Figure 12 – Screenshot Create Smart Contract

Source: The author

4.3 SMART CONTRACT UPGRADING PROCESS

Considering the good practices to handle the wallet described in the previous section, we
defined a procedure to upgrade smart contracts (Figure 13). From the moment a connection
is established between the wallet and the Trusted Deployer, the user has access to the histor-
ical data generated from the smart contract deployment. After input of specification_id and
implementation smart contract, the tool must check if there is a record of a corresponding
specification; if there is, the update process will occur automatically. In this case only the
implementation smart contract is sent to the blockchain and its address is registered in the
proxy.

48

Figure 13 – Screenshot Upgrade Smart Contract

Source: The author

4.4 TOOL APPLICATION TO A SMART CONTRACT COMMIT HISTORY

After discussing the results of the smart contract verification process, we introduce a
scenario based on the 0xMonorepo2 repository which implements the ERC20 pattern and is one
of the repositories used during our study. We analysed the whole commit history (see Table 1)
in order to find errors or nonconformities and describe what the history of the repository would
be if a developer had used our tool since invalid commits would be prevented from being
deployed. The idea is to show how our tool implements the architecture depicted in Figure 11;
we also demonstrate that the tool supports a safe smart contract development process.

As already explained, the trusted deployer requires that developers have their code formally
verified before they can deploy their contracts to a blockchain network. In order to create a
smart contract, a developer has to provide its code and specification together. Each speci-
fication linked to the created smart contract will be assigned a unique identifier that must
be referenced in subsequent updates. The tool uses the solc-verify in background to verify
the code against its specification before it proceeds to deploy the smart contract. Figure 14
presents a merged contract, which is the result of the merging of the specification (see Fig-
ure 16) and an implementation contract. The verification contract is automatically created
from the abstract syntax tree of the contracts after a syntactic check is performed; in this
case, the goal is to analyse if there is any discrepancy between the signature of the functions
and the data model of the specification and implementation contracts.

The proxy pattern allows the implementation contract to be replaced while the trusted
2 The 0xMonorepo repository can be found at <https://github.com/formalblocks/safeevolution>.

https://github.com/formalblocks/safeevolution

49

0xMonorepo Repository
Commit Time Output Commit Time Output Commit Time Output Commit Time Output
7d59fa 3.05s WOP bb4c8b 2.20s No errors 89abd7 3.18 No errors 99fbf3 2.90s No errors
7008e8 3.25s WOP 897515 3.11s No errors ba1485 3.47s No errors 9b521a 3.45s No errors
b58bf8 2.93s WOP 32fead 3.78s No errors f21b04 3.32s No errors 0758f2 3.73s No errors
548fda 2.85s WOP d11811 4.01s No errors d2e422 3.51s No errors d35a05 3.56s No errors
6f2cb6 3.70s No errors 1729cf 3.28s No errors a2024d 2.70s No errors 5813bb 4.20s No errors
145fea 3.10s No errors 63abf3 3.44s No errors bb3c34 3.41s No errors 01aeee 3.21s No errors
1fb643 3.83s No errors c84be8 3.20s No errors f54591 3.97s No errors 272125 3.67s No errors
5198c5 2.50s No errors 8bce73 2.79s No errors

Table 1 – 0xMonorepo Commit History

proxy (see Figure 15) or the access point is never changed. Both contracts are still immutable
in the sense that their code cannot be changed, but the logic contract can simply be swapped
by another contract. Every proxy must contain all variables (lines 3 to 5) defined in the
implementation contract which will store the state as well as the signatures of all its public
functions (lines 7 to 35). If there is any constructor in the implementation contract it will be
merged with the default constructor of the proxy (lines 42 to 48).

During the analysis of the scenario, 30 commits were verified; it was observed the wrong
operator (WOP) error in its first four commits 7d59fa, 7008e8, b58bf8 and 548fda. If the
developer had used our tool the error would have been discovered in the first analysis, these
deployments would have been prevented, and an error message containing the specific reason
would be returned to the developer forcing him to fix the bug. From the results collected from
our evolution scenario, one can see that our strategy is effective in identifying errors in the
early stage of the process. Our tool abstracts many details of the deployment and upgrade
process, making it simpler for platform users when compared to the manual process.

50

Figure 14 – Merged ERC20 Contract

/** @notice invariant _totalSupply == __verifier_sum_uint(balances) */
2 contract ERC20Token {

4 uint constant MAX_UINT = 2**256 - 1;
mapping (address => uint) balances;

6 mapping (address => mapping (address => uint)) allowed;
uint public _totalSupply;

8 event Transfer(address indexed _from , address indexed _to , uint _value);
event Approval(address indexed _owner , address indexed _spender , uint _value);

10
/** @notice postcondition ((balances[msg.sender] == __verifier_old_uint (balances[msg.

sender]) - _value && msg.sender != _to) || (balances[msg.sender] ==
__verifier_old_uint (balances[msg.sender]) && msg.sender == _to) && success) || !
success

12 * @notice postcondition ((balances[_to] == __verifier_old_uint (balances[_to]) + _value
&& msg.sender != _to) || (balances[_to] == __verifier_old_uint (balances[_to])

&& msg.sender == _to)) || !success
* @notice emits Transfer */

14 function transfer(address _to , uint _value) public returns (bool success) {
require(balances[msg.sender] >= _value && balances[_to] + _value >= balances[_to]);

16 balances[msg.sender] -= _value;
balances[_to] += _value;

18 emit Transfer(msg.sender , _to , _value);
return true; }

20
/** @notice postcondition ((balances[_from] == __verifier_old_uint (balances[_from]) -

_value && _from != _to) || (balances[_from] == __verifier_old_uint (balances[
_from]) && _from == _to) && success) || !success

22 * @notice postcondition ((balances[_to] == __verifier_old_uint (balances[_to]) + _value
&& _from != _to) || (balances[_to] == __verifier_old_uint (balances[_to]) && _from
== _to) && success) || !success

* @notice postcondition (allowed[_from][msg.sender] == __verifier_old_uint (allowed[
_from][msg.sender]) - _value && success) || (allowed[_from][msg.sender] ==
__verifier_old_uint (allowed[_from][msg.sender]) && !success) || _from == msg.
sender

24 * @notice postcondition allowed[_from][msg.sender] <= __verifier_old_uint (allowed[
_from][msg.sender]) || _from == msg.sender

* @notice emits Transfer */
26 function transferFrom(address _from , address _to , uint _value) public returns (bool

success) {
uint allowance = allowed[_from][msg.sender];

28 require(balances[_from] >= _value && allowance >= _value && balances[_to] + _value
>= balances[_to]);

balances[_to] += _value;
30 balances[_from] -= _value;

if (allowance < MAX_UINT) {
32 allowed[_from][msg.sender] -= _value;

}
34 emit Transfer(_from , _to , _value);

return true; }
36

/** @notice postcondition (allowed[msg.sender][_spender] == _value && success) || (
allowed[msg.sender][_spender] == __verifier_old_uint (allowed[msg.sender][_spender
]) && !success)

38 * @notice emits Approval */
function approve(address _spender , uint _value) public returns (bool success) {

40 allowed[msg.sender][_spender] = _value;
emit Approval(msg.sender , _spender , _value);

42 return true; }

44 /** @notice postcondition balances[_owner] == balance */
function balanceOf(address _owner) public view returns (uint balance) {

46 return balances[_owner]; }

48 /** @notice postcondition allowed[_owner][_spender] == remaining */
function allowance(address _owner , address _spender) public view returns (uint

remaining) {
50 return allowed[_owner][_spender]; }

}

51

Figure 15 – ERC20 Proxy

1 contract ERC20Proxy {

3 uint256 public _totalSupply;
mapping(address => uint256) internal balances;

5 mapping(address => mapping(address => uint256)) internal allowed;

7 function approve (address _spender ,uint256 _value) public returns (bool success) {
(bool success , bytes memory bytesAnswer) = implementation.delegatecall(abi.

encodeWithSignature("approve(address ,uint256)",_spender ,_value));
9 require(success);

return abi.decode(bytesAnswer , (bool));
11 }

13 function transfer (address _to ,uint256 _value) public returns (bool success) {
(bool success , bytes memory bytesAnswer) = implementation.delegatecall(abi.

encodeWithSignature("transfer(address ,uint256)" ,_to ,_value));
15 require(success);

return abi.decode(bytesAnswer , (bool));
17 }

19 function transferFrom (address _from ,address _to ,uint256 _value) public returns (bool
success) {
(bool success , bytes memory bytesAnswer) = implementation.delegatecall(abi.

encodeWithSignature("transferFrom(address ,address ,uint256)",_from ,_to ,_value));
21 require(success);

return abi.decode(bytesAnswer , (bool));
23 }

25 function balanceOf (address _owner) public returns (uint256 balance) {
(bool success , bytes memory bytesAnswer) = implementation.delegatecall(abi.

encodeWithSignature("balanceOf(address)" ,_owner));
27 require(success);

return abi.decode(bytesAnswer , (uint256));
29 }

31 function allowance (address _owner ,address _spender) public returns (uint256
remaining) {
(bool success , bytes memory bytesAnswer) = implementation.delegatecall(abi.

encodeWithSignature("allowance(address ,address)" ,_owner ,_spender));
33 require(success);

return abi.decode(bytesAnswer , (uint256));
35 }

37 Registry registry;
bytes32 spec;

39 address implementation;
address author;

41
constructor(Registry _registry , bytes32 _spec , address _implementation) public {

43 require(_spec != bytes32 (0));
registry = _registry;

45 spec = _spec;
author = msg.sender;

47 _upgrade(_implementation);
}

49 function upgrade(address new_implementation) public {
_upgrade(new_implementation);

51 }
function _upgrade(address new_implementation) internal {

53 require(msg.sender == author);
bytes32 spec_id = registry.get_spec(new_implementation);

55 require(spec_id == spec);
implementation = new_implementation;

57 }
}

52

5 CASE STUDIES: ERC20, ERC1155, AND ERC3156

To validate our approach, we have carried out three systematic case studies of the ERC20
Token Standard, the ERC1155 Multi Token Standard, and the ERC3156 Flash Loans. We start
with the definition of the context of our evaluation (Section 5.1) followed by the process that
we have adopted (Section 5.2), and then consider each of the token standards (Sections 5.3
to 5.5); finally, we summarise the overall results of our verification effort in Section 5.6.

5.1 CONTEXT

The main purpose of the study is to provide evidence that the proposed framework can
be used to ensure the deployment and evolution of smart contracts in a secure manner. The
framework must be integrated into a development process and whenever there is any change
in the code, one must verify if the change meets the specification, so we intend to answer the
following research question: Does the proposed framework improve on the process of creation

and evolution of smart contracts?

In the first phase, a review of the literature was carried out. The objective was to explore
the main features of smart contract development patterns and the most common error types.
As a result, we could identify opportunities for the application of the framework in line with
the objectives of the study. In the second phase, we identified, documented and validated
requirements related to three Ethereum smart contract specifications: ERC20, ERC3156 and
ERC1155. Even though these standards were developed by the ethereum community as a way
of organizing and disseminating knowledge among stakeholders, there are still problems related
to the use of natural language since it is inherently ambiguous; in addition there is a great
difficulty in maintaining traceability between requirements and code.

Each of these standards defines a contract interface and is accompanied by an informal
description of its functions’ behaviours. We chose these standards because they are widely
used and in an advanced state of maturity. By structuring the existing requirements in natural
language, we were able to extract the formal properties used in the verification process and
create a corresponding formal contract specification. Then, we conducted a quantitative anal-
ysis, in order to verify the feasibility of the framework, to evaluate its effectiveness, which can
be measured by the number of errors found or safe evolutions that have been proven correct,

53

and efficiency, measured by the time to process the verification.
The objective is to verify whether the correctness and consistency of the properties specified

in smart contracts are met by the implementation, and thus determine whether the evolution
process was valid or not. First, we transform requirements written in natural languages, into
formal specifications; this step will give us all invariants and postconditions needed for analysis.
Next, we construct a model which consists of an abstract smart contract with the signature of
all the methods that integrate the respective standard, data structures, and all the properties
to be verified. Then using the solc-verify tool we verify the behaviour of the smart contract
through its evolution process; the main objective of this step is to ensure that the upgrade of
smart contracts is not carried out arbitrarily but based on a notion of safe evolution, that is,
the properties must be preserved regardless of the change in the code. Also, we analyse the
efficiency of our methodology. We measure the execution time, in seconds and whether or not
the analysis came up with any result.

To validate our approach, we have carried out three systematic case studies of the ERC20
Token Standard, the ERC1155 Multi Token Standard, and the ERC3156 Flash Loans. For the
ERC20, we examined 8 repositories and out of 32 commits analysed, our framework identified 8
unsafe commits, in the sense that they did not conform to the specification; for the ERC1155,
we examined 4 repositories and out of 18 commits analysed, 5 were identified as unsafe; and for
the ERC3156, we examined 5 repositories and out of 18 commits analysed, 7 were identified as
unsafe. The contract samples we analysed were extracted from repositories that were public,
and presented reasonably complex commit histories that changed the smart contract behavior.
The samples also cover aspects of evolution that are related to improving the readability and
maintenance of the code, but also optimisations where, for instance, redundant checks executed
by a function were removed. The evaluation was carried out on a Lenovo IdeapadGaming3i
with the operating system Windows 10, Intel(R) Core(TM) i7-10750 CPU @ 2.60GHz, 8GB
of RAM, with Docker Engine 20.15.5.

In order to choose the verifier that would be part of the Trusted Deployer and answer
research questions, we compiled a comprehensive list of tools for analyzing smart contracts
by checking the publications of papers, public github repositories and forums. We investigate
8 tools for static analysis Ethereum smart contracts regarding availability, maturity level and
detection of security issues. Although one of the main features of the Trusted Deployer is its
composability and can be used with a diverse variety of verifiers we choose Solc-Verify with
Solidity compiler version 0.5.17. This version, in addition to being stable, proved to be quite

54

efficient in the analysis of smart contracts. It is important to note that Solc-Verify works at
the source level, and allows users to specify high-level properties such as contract invariants,
loop invariants, pre- and post-conditions and assertions. In addition, it can effectively find bugs
and prove correctness of non-trivial properties with minimal user effort.

Our framework was able to identify errors of the following categories1: Integer Overflow and
Underflow (IOU); Non Specification Conformance (NSC), when a function does not meet a
specific mandatory requirement defined in its ERC specification; Nonstandard Token Interface
(NTI), when the contract does not meet the syntactic restriction defined by the standard;
wrong operator (WOP), for instance, when the < operator would be expected but ≤ is used
instead; and Verification Error (VRE), when the verification process cannot be completed or
the results are inconclusive. It also established conformance for some of the samples analysed.

5.2 PROCESS OVERVIEW

We first analyze standard natural language interfaces of the Ethereum platform, also known
as Ethereum Improvement Proposals, which are standards developed by the Ethereum com-
munity to specify potential new features or processes (JAMESON, 2022). Although EIPs are a
concise way of organizing standards and disseminate the knowledge among the stakeholders,
there are still problems related to the use of natural language, because they are inherently
ambiguous. All EIPs chosen for the study are part of Ethereum Request for Comments cat-
egory and are in final update status which indicates a high degree of maturity regarding
the discussions on the standard. The specifications for each ERC are expressed in accor-
dance with the terms of the standard RFC 2119, which defines several keywords "MUST ",
"MUST NOT ", "REQUIRED", "SHALL", "SHALL NOT ", "SHOULD", "SHOULD NOT ",
"RECOMMENDED", "MAY " and "OPTIONAL" that helps describe the requirements, guide
the understanding about it and extract the formal specifications.

We then construct a model with specifications and functional properties; the model con-
sists of abstract smart contracts with the signature of all the public and external functions
that integrate the respective interfaces, data structures, and all the properties to be verified
expressed as invariants and postconditions. For functions with access modifiers of the private
and internal type, they are not part of the specification as they only indirectly contribute to the
1 All specifications, sample contracts, and scripts used in this evaluation can be found at <https://github.

com/formalblocks/safeevolution>.

https://github.com/formalblocks/safeevolution
https://github.com/formalblocks/safeevolution

55

observable behaviour of a contract. These functions are being indirectly verified when they are
called within public function. The verification of the postconditions of these public functions
must take into account the behaviour/execution of called private functions.

Then using the solc-verify tool we verify the behaviour of smart contracts through their
evolution process; the main objective of this step is to ensure that the initial deploy and
subsequent upgrades of smart contracts are based on a notion of safe evolution, which means
that each implementation must satisfy the properties in the specification. Finally, assuming
that the verification was successful, the smart contract implementation is then deployed on the
blockchain. Due to the fact that smart contracts are immutable after deployment, we make
use of the proxy pattern which allowed us to decouple a contract’s state and business rules
which helps prevent the loss of relevant information during the safe evolution process.

Although it is not in our scope to define an automated translation from informal re-
quirements to formal requirements, we have followed a systematic approach. Inter-contract
communication and events are core features of EVM and many bugs may arise from their
uses, they were not on the scope of the project therefore the specifications were not included
in the model even though they were mandatory as defined in RFC 2119.

Modifiers in Solidity are used to change the behaviour of functions. This mechanism pro-
vides a means for structural and behavioral features that apply to different parts of the smart
contract to be implemented separately, preserving cohesion and reducing complexity. They
create additional features or apply some restriction on functions and can be executed before
or after the original function call. The segregation of these properties makes it possible to
modularize the code properly and then compose it according to needs. It is not possible to
verify modifiers since they are not functions, so all properties related to the behavior of mod-
ifiers have been transformed into postconditions added to the functions. In order to create a
specification that can be verified for a wide range of smart contracts, we wrote specifications
only for the mandatory methods.

5.3 ERC20

Proposed in 2015 in order to establish a common interface for fungible tokens, ERC20 is
one of the first standards defined for the Ethereum platform, and it is also one of the most
popular, with thousands of active tokens deployed on the main Ethereum network and daily
transaction volume worth billions of dollars. ERC20 effectively allows smart contracts to act

56

very similarly to native cryptocurrency like Bitcoin.
It defines member variables: totalSupply keeps track of the total number of tokens in

circulation, balanceOf maps a wallet (i.e. address) to the balance it owns, and allowance

stores the number of tokens that an address has made available to be spent by another one.
It defines public functions: totalSupply, balanceOf and allowance are accessors for the above
variables; transfer and transferFrom can be used to transfer tokens between contracts; and
approve allows a contract to set an ”allowance” for a given address.

Figure 16 presents a specification, derived from the informal description in the stan-
dard (VOGELSTELLER; BUTERIN, 2015). In Line 1, we define an invariant requiring that the
total number of tokens remain unchanged regardless of the operation carried out by the con-
tract. The functions totalSupply, balanceOf and allowance do not change the state of the
smart contract so each function has only one postcondition (lines 8, 6 and 14) to ensure
that the expected information will be returned successfully.

The transfer function has 3 postconditions; the operation is successful only when the tokens
are debited from the source account and credited in the destination account, according to the
specifications provided in the ERC20 standard. The postconditions (lines 17 to 18) require that
the balances are updated as expected and the postcondition in line 19 will check whether or
not the balances of the addresses not involved in the transaction will remain unchanged. The
transferFrom function automates the transfer process and allows sending a given amount of
tokens on behalf of the owner, so we added two more postconditions (lines 25 to 26) in addition
to those defined for the transfer function to ensure that the tokens available for withdrawal
have been successfully debited when a transfer occurs; besides, it is necessary to verify if the
money to be withdrawn is less than or equal to the amount allowed. When these functions are
successful, the balance of both addresses will be updated within the contract, constituting a
state change. The ERC20 standard recommends to emit a Transfer event whenever a token
transfer has occurred (lines 20 and 28) (VICTOR; LüDERS, 2019). Finally, on the approve

function (line 31), we defined one postcondition to make sure the operation is successful
always when a credit is available, the specification states that the Approval event must be
issued (line 32). Table 2 shows the complete list of all ERC20 results we obtained.

ERC20 Analysis

We use the snippet in Figure 17 - extracted from the Uniswap repository, commit 55ae25
- to illustrate the detection of wrong operator errors. When checked by our framework, the

57

Figure 16 – ERC20 specification

/** @notice invariant _totalSupply == __verifier_sum_uint(balances) */
2 contract ERC20 {

4 mapping (address => uint) balances;
mapping (address => mapping (address => uint)) allowed;

6 uint public _totalSupply;

8 /** @notice postcondition supply == _totalSupply */
function totalSupply () public view returns (uint256 supply);

10
/** @notice postcondition balances[_owner] == balance */

12 function balanceOf(address _owner) public view returns (uint balance);

14 /** @notice postcondition allowed[_owner][_spender] == remaining */
function allowance(address _owner , address _spender) public view returns (uint

remaining);
16

/** @notice postcondition ((balances[msg.sender] == __verifier_old_uint (balances[msg.
sender]) - _value && msg.sender != _to) || (balances[msg.sender] ==
__verifier_old_uint (balances[msg.sender]) && msg.sender == _to) && success) || !
success

18 * @notice postcondition ((balances[_to] == __verifier_old_uint (balances[_to]) +
_value && msg.sender != _to) || (balances[_to] == __verifier_old_uint (balances[
_to]) && msg.sender == _to) && success) || !success

* @notice postcondition forall (address addr) (addr == msg.sender || addr == _to ||
__verifier_old_uint(balances[addr]) == balances[addr]) && success || (
__verifier_old_uint(balances[addr]) == balances[addr]) && ! success

20 * @notice emits Transfer */
function transfer(address _to , uint _value) public returns (bool success);

22
/** @notice postcondition ((balances[_from] == __verifier_old_uint (balances[_from]) -

_value && _from != _to) || (balances[_from] == __verifier_old_uint (balances[_from
]) && _from == _to) && success) || !success

24 * @notice postcondition ((balances[_to] == __verifier_old_uint (balances[_to]) + _value
&& _from != _to) || (balances[_to] == __verifier_old_uint (balances[_to]) && _from
== _to) && success) || !success

* @notice postcondition allowed[_from][msg.sender] == __verifier_old_uint (allowed[
_from][msg.sender]) - _value || _from == msg.sender

26 * @notice postcondition allowed[_from][msg.sender] <= __verifier_old_uint(allowed[_from
][msg.sender]) || _from == msg.sender

* @notice postcondition forall (address addr) (addr == _from || addr == _to ||
__verifier_old_uint(balances[addr]) == balances[addr]) && success || (
__verifier_old_uint(balances[addr]) == balances[addr]) && ! success

28 * @notice emits Transfer */
function transferFrom(address _from , address _to , uint256 _value) public returns (bool

success);
30

/** @notice postcondition (allowed[msg.sender][_spender] == _value && success) || (
allowed[msg.sender][_spender] == __verifier_old_uint (allowed[msg.sender][

_spender]) && !success)
32 * @notice emits Approval */

function approve(address _spender , uint _value) public returns (bool success);

third postcondition for the transferFrom function presented in the specification in Figure 16 is
not satisfied. Note that the allowance amount is not debited if the amount to be transferred is
equal to the maximum integer supported by Solidity (i.e. uint(-1)). A possible solution would
consist of removing the if branching, allowing the branch code to always execute.

The code snippet in Figure 18 - DigixDao repository, commit 5aee64 - does not conform
to its formal specification. The correct allowance for the spender is only returned when it is
not greater than the owner’s balance. To fix this issue, we need to remove the code related

58

ERC20
Repository Commit Time Output Repository Commit Time Output

0xMonorepo 548fda 2.85s WOP DsToken 3c436c 3.77s No errors
0xMonorepo 6f2cb6 2.84s No errors DsToken 733e5c 3.81s No errors
0xMonorepo c84be8 2.57s No errors DsToken 8b8263 3.08s No errors
Ambrosus 9fb24b 3.15s No errors Klenergy 3d4d62 5.14s No errors
Ambrosus b1806b 2.99s No errors Klenergy 60263d 1.70s VRE
Ambrosus db3ea0 3.74s No errors OpenZeppelin 3a5da7 3.59s No errors
DigixDao 0550e8 5.97s No errors OpenZeppelin 43ebb4 3.57s No errors
DigixDao 1c0c4f 8.82s No errors OpenZeppelin 5db741 3.87s No errors
DigixDao 5aee64 7.60s NTI OpenZeppelin 5dfe72 3.96s No errors
DigixDao 6bddc6 7.74s No errors OpenZeppelin 9b3710 3.45s No errors
DigixDao 845F03 9.17s No errors Uniswap 4e4546 3.67s No errors
DigixDao aabf24 2.97s No errors Uniswap 55ae25 3.43s WOP
DigixDao e221ff 9.21s No errors Uniswap e382d7 3.57s IOU
DigixDao e320a2 8.89s No errors SkinCoin 25db99 0.99s NTI
DsToken 08412f 4.14s WOP SkinCoin 27c298 1.94s NTI
DsToken 10c964 3.66s No errors SkinCoin ac33d8 3.23s No errors

Table 2 – ERC20 Results

Figure 17 – Buggy ERC20 transferFrom function

1 function transferFrom(address from , address to, uint value) external
returns (bool success) {

3 if (allowance_[from][msg.sender] != uint(-1)) {
allowance_[from][msg.sender] =

5 allowance_[from][msg.sender].sub(value);
}

7 _transfer(from , to, value);
return true;

9 }

to _balance (lines 4 to 6 and 8), ensuring that the _allowance will be returned regardless of
the _balance amount.

Figure 18 – Buggy ERC20 allowance function

function allowance(address _owner , address _spender) public returns (uint256 remaining) {
2 uint256 _allowance = allowed[_owner][_spender];

uint256 _balance = balances[_owner];
4 if (_allowance > _balance) {

remaining = _balance;
6 } else {

remaining = _allowance;
8 }

return remaining;
10 }

Figures 19 and 20 - extracted from the Openzeppelin repository, commits 9b3710 and
43ebb4, respectively - illustrate a case of safe contract evolution. The code of this contract

59

has undergone significant changes. The refactoring in question is one of the most common
and is known as extract method (function, in Solidity). From commit 9b3710 to 43ebb4, the
new internal function _transfer was created, and the extracted code from the original transfer

function was moved into it. This internal function is then invoked by the function transfer.
Our framework shows that both of these versions conform to the ERC20 specification and so
they can be safely deployed.

Figure 19 – transferFrom function before refactoring

1 function transferFrom(address from , address to, uint256 value) public
returns (bool success) {

3 require(value <= _allowed[from][msg.sender]);
require(value <= _balances[from]);

5 require(to != address (0));
_allowed[from][msg.sender] = _allowed[from][msg.sender].sub(value);

7 _balances[from] = _balances[from].sub(value);
_balances[to] = _balances[to].add(value);

9 emit Transfer(from , to, value);
return true;

11 }

Figure 20 – Successful refactoring of the transferFrom function

1
function transferFrom(address from , address to, uint256 value) public returns (bool) {

3 require(value <= _allowed[from][msg.sender]);
_allowed[from][msg.sender] = _allowed[from][msg.sender].sub(value);

5 _transfer(from , to, value);
return true;

7 }

9 function _transfer(address from , address to, uint256 value) internal {
require(value <= _balances[from]);

11 require(to != address (0));
_balances[from] = _balances[from].sub(value);

13 _balances[to] = _balances[to].add(value);
emit Transfer(from , to, value);

15 }

5.4 ERC3156

Lending and credit are one of the most important financial activities and have been an
integral part of human society and it is intricately related to the concept of trust and the
promise of repayment (XU; VADGAMA, 2022). Usually the money is held by banks, a financial
institution which facilitates the money flow between parties and charges fees for using their
services. In recent times, the blockchain technology has significantly impacted centralized
finance promoting financial inclusion and solving many problems in inefficient markets.

60

ERC3156
Repository Commit Time Output Repository Commit Time Output
ArgoBytes c3c92c 4.59s No errors Erc3156 512268 3.79s NSC
ArgoBytes e524c1 3.19s No errors Wrappes 70b977 6.65s No errors
ArgoBytes 738d47 4.35s No errors Wrappes 5f65ac 3.23s No errors
ArgoBytes 3409ee 2.57s No errors Wrappes 6bf6d6 4.79s No errors
Dss Flash f2ca83 5.15s NSC Weth10 34c42c 5.14s NSC
Dss Flash b1e01d 3.37s NSC Weth10 b85345 3.85s NSC
Dss Flash 2e70bb 6.12s NSC Weth10 dbe412 3.97s No errors
Dss Flash 18caa8 4.24s No errors Weth10 d2c480 4.25s No errors
Erc3156 e18bdf 4.01s NSC Weth10 4fcc9e 5.39s No errors

Table 3 – ERC3156 Results

Decentralized finance (DeFi) is a decentralized, censorship-free, low-fee, fully-automated,
transparent and permissionless finance ecosystem which eliminates centralized finance since
it allows people lend, trade, and borrow through peer-to-peer network without relying on
intermediaries such as banks (WANG et al., 2021). DeFi democratizes financial services and relies
on the integrity of smart contracts, so any flaw would enable attackers to launch malicious
operations to take advantage of the protocol and make profits.

The ERC3156 standard is composed by ERC3156FlashBorrower and ERC3156FlashLender

interfaces and together they provide a standardization for single-asset flash loans. Figure 21
presents a specification for the ERC3156 standard. The postcondition (Line 9) defined for
the maxFlashLoan function checks if the amount of currency available to be lent is returned
correctly; according to the specification defined for this function, the zero value must be
returned if the token passed as parameter is not supported. The flashFee function must return
the fee charged for a given loan (Line 13); when the token is not supported the operation
must revert so when the verification process is successful it means that this condition has been
met (Line 12). The flashLoan function initiates a flash loan and must not modify the token
and amount parameters received (Lines 18 to 19). Flash lenders can provide loans of several
token types on the same contract so it should be checked whether or not a token is supported
(Line 16) as well as the amount available to lend (Line 17). If successful, the function must
return true (Line 20). The onFlashLoan function receives a flash loan and requires an initiator
which should be the same as the one passed as parameter by the lender function (Line 3).
Table 3 shows the complete list of all ERC3156 results we obtained.

61

Figure 21 – ERC3156 specification

contract ERC3156FlashBorrower {
2

/** @notice postcondition initiator == msg.sender */
4 function onFlashLoan(address initiator ,address token ,uint256 amount ,uint256 fee ,bytes

calldata data) external returns (bytes32);
}

6
contract ERC3156FlashLender {

8
/** @notice postcondition resp == line && token == address(dai) || resp == 0 */

10 function maxFlashLoan(address token) external view returns (uint256 resp);

12 /** @notice postcondition token == address(dai)
* @notice postcondition resp == (amount * toll)/WAD */

14 function flashFee(address token , uint256 amount) external view returns (uint256 resp);

16 /** @notice postcondition token == address(dai)
* @notice postcondition amount <= line

18 * @notice postcondition __verifier_old_address(token) == token
* @notice postcondition __verifier_old_uint(amount) == amount

20 * @notice postcondition resp */
function flashLoan(IERC3156FlashBorrower receiver , address token , uint256 amount ,

bytes calldata data) external returns (bool resp);
22 }

ERC3156 Analysis

The function in Figure 22 - Dss Flash repository, commits f2ca83, b1e01d and 2e70bb -
does not conform to the requirements defined by the ERC3156 standard. According to the
function signature, a boolean value must be returned. After formally verifying the code on the
three mentioned commits, it was detected that no explicit return value has been defined by the
developer, so the false value is returned by default. According to the function’s specification,
the value true must be returned whenever its execution is successful. This represents a serious
flaw because from the point of view of a client that invokes the flashLoan function, its execution
would never be successful, so this iteration could lead to an unexpected behavior.

The code snippet in Figure 23 - Weth10 repository, commits 34c42c and b85345 - illustrates
two functions that have an error when checked against its formal specification. The ERC3156
Flash Loans standard can handle multiple tokens, so it is mandatory for these functions to
check the address passed by parameter and return the right value or revert when it is necessary.

62

Figure 22 – Buggy flashLoan function

function flashLoan(IERC3156FlashBorrower receiver , address token , uint256 amount , bytes
calldata data) external override lock returns (bool) {

2 require(token == address(dai), "DssFlash/token -unsupported");
require(amount <= line , "DssFlash/ceiling -exceeded");

4
uint256 rad = mul(amount , RAY);

6 uint256 fee = mul(amount , toll) / WAD;
uint256 total = add(amount , fee);

8
vat.suck(address(this), address(this), rad);

10 daiJoin.exit(address(receiver), amount);

12 emit FlashLoan(address(receiver), token , amount , fee);

14 require(receiver.onFlashLoan(msg.sender , token , amount , fee , data) == keccak256("
ERC3156FlashBorrower.onFlashLoan"), "IERC3156: Callback failed");

16 dai.transferFrom(address(receiver), address(this), total);
daiJoin.join(address(this), total);

18 vat.heal(rad);
vat.move(address(this), vow , mul(fee , RAY));

20 }

Figure 23 – Buggy flashFee and maxFlashLoan functions

function flashFee(address token , uint256 value) external view returns (uint256) {
2 return value.mul(9).div (10000);

}
4

function maxFlashLoan(address token) external view returns (uint256) {
6 LendingPoolLike.ReserveData memory reserveData = lendingPool.getReserveData(token);

return IERC20(reserveData.aTokenAddress).balanceOf(address(lendingPool));
8 }

5.5 ERC1155

The ERC1155 standard was created in order to promote a better integration between the
ERC20 and the ERC721, a standard for representing ownership of non-fungible tokens, that is,
where each token is unique, so an ERC1155 token can perform the same functions as those of
the aforementioned tokens, improving the functionality of both and avoiding implementation
errors. It provides an interface for managing any combination of fungible and non-fungible
tokens in a single contract efficiently. One of the most important features of the ERC1155
standard is secure transfer, that is, the smart contract that follows this pattern includes a
function that checks if the destination address is able to receive the transaction and, if not,
reverts it to return control of the tokens to the issuer. In addition, the ERC1155 standard allows
batch transfers which can significantly reduce the gas fees paid to the Ethereum network.

The functions balanceOf and balanceOfBatch returns the balance of specific tokens of the
address and a list of addresses specified in the parameter function respectively. The function

63

Figure 24 – ERC1155 specification

contract ERC1155 {
2

mapping (uint256 => mapping(address => uint256)) private _balances;
4 mapping (address => mapping(address => bool)) private _operatorApprovals;

6 /** @notice postcondition _balances[id][account] == balance */
function balanceOf(address account , uint256 id) public view returns (uint256 balance){}

8
/** @notice postcondition batchBalances.length == accounts.length

10 * @notice postcondition batchBalances.length == ids.length
* @notice postcondition forall (uint x) !(0 <= x && x < batchBalances.length) ||

batchBalances[x] == _balances[ids[x]][accounts[x]] */
12 function balanceOfBatch(address [] memory accounts , uint256 [] memory ids) public view

returns (uint256 [] memory batchBalances) {}

14 /** @notice postcondition _operatorApprovals[msg.sender][operator] == approved
* @notice emits ApprovalForAll */

16 function setApprovalForAll(address operator , bool approved) public {}

18 /** @notice postcondition _operatorApprovals[account][operator] == approved */
function isApprovedForAll(address account , address operator) public view returns (

bool approved) { }
20

/** @notice postcondition to != address (0)
22 * @notice postcondition _operatorApprovals[from][msg.sender] || from == msg.sender

* @notice postcondition __verifier_old_uint (_balances[id][from]) >= amount
24 * @notice postcondition _balances[id][from] == __verifier_old_uint (_balances[id][from

]) - amount
* @notice postcondition _balances[id][to] == __verifier_old_uint (_balances[id][to])

+ amount
26 * @notice emits TransferSingle */

function safeTransferFrom(address from , address to, uint256 id, uint256 amount , bytes
memory data) public { }

28
/** @notice postcondition _operatorApprovals[from][msg.sender] || from == msg.sender

30 * @notice postcondition to != address (0)
* @notice emits TransferBatch */

32 function safeBatchTransferFrom(address from , address to, uint256 [] memory ids ,
uint256 [] memory amounts , bytes memory data) public {}

}

isApprovedForAll returns a boolean value informing if an address is allowed to handle the
tokens from another address. The safeTransferFrom function transfers tokens in a safe way
to a valid ERC1155 address. The transferFrom function can do batch operations, transferring
tokens to several wallets at the same time, reducing transaction costs. The setApprovalForAll

function gives an address permission to handle another address’ tokens.
Figure 24 presents a specification for the ERC1155 standard. The isApprovedForAll and

balanceOf functions only have one postcondition each to ensure that the balance of a given
address (line 6) and the approval to manage all tokens from another address (line 18) will
be returned correctly. The postcondition defined to setApprovalForAll function enforces the
approval status should be the same as the one passed as parameter (line 14); an Approval-

ForAll event should be emitted whenever the approval status is changed (line 15). In the
balanceOfBatch function, the size of the list of accounts and token ids should be equal to the

64

ERC3155
Repository Commit Time Output Repository Commit Time Output
0xSequence 319740 4.82s No errors OpenZeppelin 0db76e 5.59s No errors
0xSequence 578d46 5.31s No errors OpenZeppelin 440b65 6.61s No errors
0xSequence 99012f 5.59s No errors OpenZeppelin 5db741 6.70s No errors
0xSequence acfa7c 5.81s No errors OpenZeppelin 956d66 8.58s No errors
Desc-Stock 44464c 4.34s IOU Ejin-Erc 30dba0 4.13s No errors
Desc-Stock 4c5d80 5.18s IOU Ejin-Erc 614714 4.49s No errors
Desc-Stock 96d5b2 4.33s WOP Ejin-Erc bf4d04 4.01s No errors
Desc-Stock ae8a13 4.24s IOU Ejin-Erc cc96af 4.57s No errors
Desc-Stock bf2c1a 3.60s IOU Ejin-Erc e20fc9 3.77s No errors

Table 4 – ERC1155 Results

list of balances returned, besides we must also check if the balances are in the list (lines 9
to 11). The postconditions defined for the functions safeTransferFrom (lines 21 to 25) and
safeBatchTransferFrom (lines 29 to 30) are quite similar. In both cases, for the operation to
be successful, the token or a batch of them should be debited from the source account and
credited in the destination account. Table 4 shows the the complete list of all ERC1155 results
we obtained.

ERC1155 Analysis

Figures 25 and 26 - extracted from the Descentralized-Stock repository, commits 96d5b2
and 4c5d80, respectively - illustrate a case of safe contract evolution. The code of this contract
has undergone significant changes. The refactoring in question was intended to fix a bug
introduced in commit 96d5b2 where the developer took out the code responsible for checking
the size of lists passed as parameter. According to the specification for the ERC1155 standard,
this checking is mandatory and without it could lead to unexpected results, since an out-of-

bounds exception occurs when the _ids list is greater than the _owners list.

Figure 25 – balanceOfBatch function before refactoring

1 function balanceOfBatch(address [] calldata _owners , uint256 [] calldata _ids) external
override view returns (uint256 [] memory){

3 uint256 [] memory _balances;
for (uint256 i = 0; i < _owners.length; ++i) {

5 require(_owners[i] != address (0));
_balances[i] = _balance[_owners[i]][_ids[i]];

7 }
return _balances;

9 }

65

Figure 26 – Successful refactoring of the balanceOfBatch function

1 function balanceOfBatch(address [] calldata _owners , uint256 [] calldata _ids) external
override view returns (uint256 [] memory){

3 require(_owners.length == _ids.length);
uint256 [] memory _balances = new uint256 [](_owners.length);

5 for (uint256 i = 0; i < _owners.length; ++i) {
require(_owners[i] != address (0));

7 _balances[i] = (_balance[_owners[i]][_ids[i]]);
}

9 return _balances;
}

The snippet in Figure 27 - extracted from Descentralized-Stock repository, commit 96d5b2
- illustrates another example of the wrong operator error. A postcondition was not satisfied,
because, according to the specification, the size of the _ids and _values arrays must be equal.
So, any call to this function would result in an error or an unexpected behavior. A possible
solution would consist of changing the operator != for == in the second require in Figure 27.

Figure 27 – Buggy ERC1155 safeBatchTransferFrom function

function safeBatchTransferFrom(address _from , address _to , uint256 [] calldata _ids ,
uint256 [] calldata _values , bytes calldata _data) external {

2 require(_to != address (0) && _from != address (0));
require(_ids.length != _values.length);

4 require(_approv[_from][msg.sender] || _from == msg.sender);

6 for (uint256 i = 0; i < _ids.length; ++i) {
require(_balance[_from][_ids[i]] >= _values[i]);

8 _balance[_from][_ids[i]] -= _values[i];
_balance[_to][_ids[i]] += _values[i];

10 }
emit TransferBatch(msg.sender , _from , _to , _ids , _values);

12 require(_checkOnERC1155BatchReceived(msg.sender , _from , _to , _ids , _values , _data))
;

}

The snippet in Figure 28 - also extracted from Descentralized-Stock repository, commit
96d5b2 - has overflow/underflow error, that is, the arithmetic operation for crediting and
debiting reaches the maximum or minimum size of a type. This is a common vulnerability in
Ethereum smart contracts because the EVM provides no indication that an overflow/underflow
has occurred, that is, the program does throw an exception and executes subsequent code.
One approach to solve this problem is to perform the arithmetic operation, check the result,
and revert the transaction if an error occurs.

66

Figure 28 – Buggy ERC1155 safeTransferFrom function

1 function safeTransferFrom(address _from , address _to , uint256 _id , uint256 _value , bytes
calldata _data) external{

require(_to != address (0));
3 require(_balance[_from][_id] >= _value);

require(_from == msg.sender || _isApproved[_from][msg.sender]);
5 require(_checkOnERC1155Received(msg.sender , _from , _to , _id , _value , _data)==true);

7 _balance[_from][_id] = _balance[_from][_id] - _value;
_balance[_to][_id] += _value;

9
emit TransferSingle(msg.sender , _from , _to , _id , _value);

11 }

5.6 RESULTS AND DISCUSSION

The results of our evaluation suggest that the kind of verification that we employ in our
framework is tractable, as solc-verify can efficiently analyse these samples. The fact that
errors that could lead to millionaire losses were detected in real-world contracts attests to the
necessity of our framework and its practical impact. Smart contracts are increasingly popular,
and we believe they will become a key and common element of trusted distributed systems
in the future. Therefore, having a safe development process supported by our framework will
help to increase the credibility of such a technology and promote its adoption.

Our initial motivation to gather the samples from public github repositories may be a threat
to our search strategy. Since we could not analyze private repositories, relevant cases to show
strengths and weaknesses of the framework may not have been included. The relatively low
number of samples could also be considered as a threat, since it could lead to an unintentionally
biased study or less comprehensive than it could have been. Our framework also presents some
limitations, since it is not in our scope to verify errors related to inter-contract interactions.

In this work, we do not focus on security properties and trust guarantees of our trusted
deployer. Instead, we focus on the functional aspect of our framework. For instance, we do
not discuss in detail how the trusted deployer and its infrastructure can be trusted, nor how to
establish a secure communication channel with it. We leave a detailed discussion on all these
aspects together with the mechanisms and protocols by which they can be implemented for
follow-up work.

We focus on contract upgrades that preserve the signature of public functions. Also, we
assume contract specifications fix the data structures used in the contract implementation.
However, we plan to relax these restrictions in future versions of the framework, allowing the
data structures in the contract implementation to be a data refinement of those used in the

67

specification; we also plan to allow the signature of the implementation to extend that of the
specification, provided some notion of behaviour preservation is obeyed when the extended
interface is projected into the original one.

Ensuring software correctness has long been the goal in computer science. A smart contract
security audit is a methodical way to detect bugs in smart contracts and it is very important to
protect resources invested. Usually, auditors will examine the code of smart contracts, produce
a report, and provide it to the developers for them to work with. Smart contract audits
don’t focus only on blockchain security. They also look at efficiency and optimization. Since
software involves a construction process, it needs to be guaranteed that from requirements to
implementation the software meets the required specifications. Formal methods have become
an important tool to solve this problem (GARCIA, 2009).

Unlike manual auditing, formal verification can provide complete coverage with respect to
a given requirement. It ensures that each requirement has been mathematically verified. Al-
though Trusted Deployer requires users to manually classify all reported vulnerabilities into true
positives or false positives, compared to manual audit for smart contracts, Trusted Deployer

reduces the required effort to inspect the code.
Formal verification is complete with respect to any given requirement. However, additional

activities are necessary to ensure that all requirements have been expressed, that is, all admissi-
ble behaviors of the software have been specified. This activity states that the completeness of
the set of requirements should be demonstrated with respect to the intended function. Since
formal methods can’t handle the problem of detecting all missing requirements. A manual
auditing would be necessary as a complementary activity to the verification process.

5.7 LIMITATIONS AND THREATS

According to (RUNESON et al., 2012) the validity of a study denotes the trustworthiness
of the results, and to what extent the results are not biased by the researchers’ subjective
point of view. So, to ensure that the results are consistent with the investigated reality, the
researcher must plan the study taking into account four types of threats: construct validity,
internal validity, external validity, and reliability. Although we adopted a protocol to gather and
analyse the data presented in the last section, this study still has some limitations as discussed
below.

Our initial motivation to gather the samples from public github repositories may be a threat

68

to our search strategy. Since we could not analyze private repositories, relevant cases to show
strengths and weaknesses of the framework may not have been included. Our approach was
successful to identify and analyse nonconformities that went unnoticed during the development
process but the relatively low number of samples could also be considered as a threat, since
it could lead to an unintentionally biased study or less comprehensive than they could have
been.

Our framework also presents some limitations, since it is not in our scope to verify errors
related to the consensus mechanism, EVM bad design and concurrency. The postconditions
are bound to the methods that make up the contract interface so it is only possible to specify
loop invariants in the body of the implementation contract functions. Although we know that
requirements can evolve in such a way that makes the original smart contracts unsuitable
for stakeholders’ needs. It is important to point out that the study is based on a notion of
immutable specifications, therefore, it does not take into account possible changes in the
requirements that could lead to changes in the smart contracts interfaces.

69

6 CONCLUSION

In this chapter, we discuss the main contributions, as well as suggestions for future work.

6.1 CONTRIBUTIONS

We propose a framework for the safe deployment of smart contracts. Not only does it
check that contracts conform to their specification at creation time, but it also guarantees
that subsequent code updates are conforming too. Upgrades can be performed even if the
implementation has been proven to satisfy the specification initially. A developer might, for in-
stance, want to optimise the resources used by the contract. Furthermore, our trusted deployer

records information about the contracts that have been verified, and which specification they
conform to, so that participants can be certain they are interacting with a contract with the
expected behaviour; contracts can be safely executed. None of these capabilities are offered
by the Ethereum platform by default nor are available in the literature to the extent provided
by the framework proposed in this paper.

We have prototyped our trusted deployer and investigated its applicability - specially its
formal verification component - to contracts implementing three widely used Ethereum stan-
dards: the ERC20 Token Standard, ERC3156 Flash Loans and ERC1155 Multi Token Standard,
with promising results.

This idea of using trusted computing to verify a smart contract before its deployment
can be extended to software in general. Particularly, a trusted deployer could be part of a
deployment process for reactive systems in general, such as component-based, (micro)service-
based systems, or even system-of-systems.

Our framework shifts immutability from the implementation of a contract to its specifica-
tion, promoting the ”code is law” to the ”specification is law” paradigm. We believe that this
paradigm shift brings a series of improvements. Firstly, developers are required to outline their
intent in the form of a (formal) specification, so they can, early in the development process,
identify issues with their design. They can and should validate their specification; we consider
this problem orthogonal to the framework that we are providing. Secondly, specifications are
more abstract and, as a consequence, tend to be more stable than (the corresponding con-
forming) implementations. A contract can be optimised, for instance, and both the original

70

and optimised versions must satisfy the same reference specification. Thirdly, even new im-
plementations that involve change of data representation can still be formally verified against
the same specification, by using data refinement techniques.

6.2 RELATED WORK

There is a glaring need for a safe mechanism to upgrade smart contracts in platforms, such
as Ethereum, where contract implementations are immutable once deployed; the many surveys
uncovering this fact (HU et al., 2021; TOLMACH et al., 2021; GROCE et al., 2020) and community-
proposed design patterns proposing mechanisms to upgrade smart contracts (OPENZEPPELIN,
2021; BARROS; GALLAGHER, 2019; LU, 2018; PALLADINO, 2019) attest this necessity. Yet,
surprisingly, we could only find three close related approaches (DICKERSON et al., 2018; RODLER

et al., 2021b) that try to tackle this problem. The “preliminary work" in (DICKERSON et al.,
2018) proposes a methodology based around special contracts that carry a proof that they
meet the expected specification. Their on-chain solution requires fundamental changes in the
smart contract platforms themselves. They propose the addition of a special instruction to
deploy these special proof-carrying contracts, and the adaptation of platform miners, which
are responsible for checking and reaching a consensus on the validity of contract executions, to
check these proofs. Our framework and the one presented in that work share the same goal: to
propose a mechanism by which contracts can be upgraded but only if they meet the expected
specification. However, our approach and theirs differ significantly in many aspects. Firstly,
while theirs requires a complete change on the rules of the platform - which requires a large
distributed network, i.e. the smart contract platform, to synchronise and agree on this change
- ours can be implemented, as detailed in this paper, on top of Ethereum’s current capabilities.
Moreover, as our framework relies on an off-chain service to ensure that an implementation
meets a specification, we can rely on methods that are easier to use, i.e. require less user
input, like model checking. The fact that their framework is on-chain makes the use of such
verification methods more difficult - the complex computations typically associated with these
methods would slow down consensus, likely to a prohibitive level. Hence, they rely on the
user to construct a proof that an implementation meets a specification, since checking that a
proof is valid tends to be much less complex than constructing it. Finally, there is an inherent
difference of maturity between the two works. While theirs introduces abstract ideas with some
concrete elements, we provide details on how to implement ours using current technology and

71

an evaluation based on real-world Solidity samples.
Azzopardi et al. (AZZOPARDI; ELLUL; PACE, 2018b) propose the use of runtime verification

to ensure that a contract conforms to its specification. Given a Solidity smart contract 𝐶

and an automaton-based specification 𝑆, their approach produces an instrumented contract
𝐼 that dynamically tracks the behaviour of 𝐶 with respect to 𝑆. 𝐼’s behaviour is functionally
equivalent to 𝐶 when 𝑆 is respected. If a violation to 𝑆 is detected, however, a reparation
strategy (i.e. some user-provided code) is executed instead. This technique can be combined
with a proxy to ensure that a monitor contract keeps track of implementation contracts as
they are upgraded, ensuring their safe evolution. Unlike our approach, there is an inherent
(on-chain) runtime overhead to dynamically keep track of specification conformance.

In (RODLER et al., 2021b), the authors propose a mechanism to upgrade contracts in
Ethereum that works at the EVM-bytecode level. Their framework takes vulnerability re-
ports issued by the community as an input, and tries to patch affected deployed contracts
automatically using patch templates. It uses previous contract transactions and, optionally
user-provided unit tests, to try to establish whether a patch preserves the behaviour of the
contract. Ultimately, the patching process may require some manual input. If the deployed
contract and the patch disagree on some test, the user must examine this discrepancy and
rule on what should be done. Note that this manual intervention is always needed for attacked
contracts, as the transaction carrying out the attack - part of the attacked contract’s history
- should be prevented from happening in the new patched contract.

The main difference between our work and theirs relates to the approach to validate
patches. While they simply test patches, we formally verify them against a formal specification.
Their approach requires less human intervention, as a specification does not need to be provided
- only optionally some unit tests - but it offers no formal guarantees about patches. It could be
that a patch passes their validation (i.e. testing with the contract history), without addressing
the underlying vulnerability. Our framework, however, is based around a formal notion of
“patch validity" that ensures that patches always respect a user-provided specification. Finally,
while our approach is proactive in requiring the user to provide a definition for the expected
behaviour of a contract, and possibly spotting implementation vulnerabilities while verifying
conformance to that specification, theirs is based on vulnerability reports being issued first for
then contracts to be rectified.

As soon as smart contract platforms came to be, it became apparent that supporting
developers with verification tools was a necessity. A number of analysis tools for EVM byte-

72

code were created (LUU et al., 2016b; MOSSBERG et al., 2019; LIU et al., 2018; GRISHCHENKO;

MAFFEI; SCHNEIDEWIND, 2018; TIKHOMIROV et al., 2018b; TSANKOV et al., 2018b; PERMENEV

et al., 2020). They were designed to find specific behaviour patterns witnessing typical bad
behaviours. Tools operating on the level of Solidity were also proposed (WANG et al., 2020;
HAJDU; JOVANOVIĆ, 2020b; HAJDU; JOVANOVIĆ, 2020a; ANTONINO; ROSCOE, 2021a). These
tools tend to focus instead on formally verifying user-provided semantic properties. All of these
tools are concerned with the verification aspect but they do not provide any framework to be
integrated into a smart contract deployment process.

Design by contract (MEYER, 1992) is a methodology that was originally created for specify-
ing the behaviour of object-oriented programs but was also adopted in other contexts (MEYER,
1988; LEINO, 2010; BARNETT et al., 2005; LEINO, 2008; LEAVENS; BAKER; RUBY, 1999; HAJDU;

JOVANOVIĆ, 2020b). This sort of specification is particularly fitting in the case of Solidity smart
contracts, especially the format of specification that we propose, as the community already
employ a similar format, albeit informal, to describe standard contract interfaces in the form of
Ethereum Request for Comments (ERCs); see for example, ERC20 (VOGELSTELLER; BUTERIN,
2015).

Some papers have proposed methodologies to carry out pre-deployment patching/repair-
ing (TORRES; JONKER; STATE, 2021; NGUYEN; PHAM; SUN, 2021; YU et al., 2020). They try
to scan a binary for common vulnerabilities and patch the vulnerabilities they find prior to
deploying the contract. These papers do not propose a way to update deployed contracts.

6.3 FUTURE WORK

A limitation of our current approach is the restrictive notion of evolution for smart con-
tracts: only the implementation of public functions can be upgraded - the persistent state
data structures are fixed. However, we are looking into new types of evolution where the
data structure of the contract’s persistent state can be changed - as well as the interface of
the specification, provided the projected behaviour with respect to the original interface is
preserved, based on notions of class (LISKOV; WING, 1994) and process (DIHEGO; ANTONINO;

SAMPAIO, 2013) inheritance, and interface evolution such as in (DIHEGO; SAMPAIO; OLIVEIRA,
2020).

This work focuses on creating, updating and deploying safe smart contracts and their
consequences. It is a rather new and complex subject therefore there are still many themes

73

that can be explored from the study presented here. In this section, we present new ideas that
can make our approach more efficient, extensive and systematic. The recommendations for
future research with new directions are:

• Throughout the study the differences between informal and formal requirements specifi-
cation languages were noted. For any project to be successful a high level of adherence
between the requirements and the functionality of the developed artifacts is required.
In the future, we plan to fulfill the gap between the formal and informal approaches
through a systematic mapping between them. Such an approach will help to systematize
the process of defining invariants and postconditions and keep a high level of traceability.

• Smart contract development is a dynamic process and requirements changes are a part
of it. So understanding the possible implications of making the change is a key aspect
of responsible requirements management. As future work, we plan to adopt an impact
analysis in order to reduce the risk of missing changes to dependent items and guarantee
that postconditions and invariants are adhering to the new requirements. We also plan
to consider a more flexible notion of conformance, capturing changes of smart contract
specification, data representation (data refinement) and interface evolution as, for ex-
ample, in (DIHEGO; SAMPAIO; OLIVEIRA, 2020). This will require extending the current
state-of-the-art tool support to smart contract verification.

74

REFERENCES

ADHIKARI, C. Secure framework for healthcare data management using ethereum-based
blockchain technology. In: 2017 Undergraduate Research and Scholarship Conference. [S.l.:
s.n.], 2017.

AITZHAN, N. Z.; SVETINOVIC, D. Security and privacy in decentralized energy trading
through multi-signatures, blockchain and anonymous messaging streams. In: IEEE
Transactions on Dependable and Secure Computing. [S.l.: s.n.], 2016. p. 840 – 852.

ALCHEMY, N. A short history of smart contract hacks on
Ethereum. 2018. Disponível em: <https://medium.com/new-alchemy/
a-short-history-of-smart-contract-hacks-on-ethereum-1a30020b5fd>. Acesso em: Oct
29th, 2021.

ANTONINO, P.; ROSCOE, A. W. Formalising and verifying smart contracts with solidifier: a
bounded model checker for solidity. In: . [S.l.: s.n.], 2020.

ANTONINO, P.; ROSCOE, A. W. Solidifier: Bounded model checking solidity using lazy
contract deployment and precise memory modelling. In: Proceedings of the 36th Annual ACM
Symposium on Applied Computing. [S.l.: s.n.], 2021. (SAC ’21), p. 1788–1797.

ANTONINO, P. R.; ROSCOE, A. W. Solidifier: bounded model checking solidity using lazy
contract deployment and precise memory modelling. In: The 36th ACM/SIGAPP Symposium
on Applied Computing. [S.l.: s.n.], 2021. p. 1788–1797.

ANTONOPOULOS, A. M. Mastering Bitcoin: Unlocking Digital Cryptocurrencies Capa
comum. [S.l.]: O’Reilly Media, 2014.

ANTONOPOULOS, A. M.; WOOD, G. Mastering Ethereum. 2021. Disponível em:
<https://www.oreilly.com/library/view/mastering-ethereum/9781491971932/ch04.html>.
Acesso em: Feb 15th, 2022.

ATZEI, N.; BARTOLETTI, M.; CIMOLI, T. A survey of attacks on ethereum smart contracts
(sok). In: SPRINGER. POST 2017. [S.l.], 2017. p. 164–186.

AZZOPARDI, S.; ELLUL, J.; PACE, G. J. Monitoring smart contracts: Contractlarva and
open challenges beyond. In: International Conference on Runtime Verification. [S.l.: s.n.],
2018. p. 113–137.

AZZOPARDI, S.; ELLUL, J.; PACE, G. J. Monitoring smart contracts: Contractlarva and
open challenges beyond. In: Runtime Verification - 18th International Conference, RV 2018,
Limassol, Cyprus, November 10-13, 2018, Proceedings. [S.l.]: Springer, 2018. (Lecture Notes
in Computer Science, v. 11237), p. 113–137.

BAHGA, A.; MADISETTI, V. K. Blockchain platform for industrial internet of things. In:
Journal of Software Engineering and Application. [S.l.: s.n.], 2016. v. 9, p. 533–546.

BARNETT, M.; CHANG, B.-Y. E.; DELINE, R.; JACOBS, B.; LEINO, K. R. M. Boogie: A
modular reusable verifier for object-oriented programs. In: SPRINGER. FMCO 2005. [S.l.],
2005. p. 364–387.

https://medium.com/new-alchemy/a-short-history-of-smart-contract-hacks-on-ethereum-1a30020b5fd
https://medium.com/new-alchemy/a-short-history-of-smart-contract-hacks-on-ethereum-1a30020b5fd
https://www.oreilly.com/library/view/mastering-ethereum/9781491971932/ch04.html

75

BARROS, G.; GALLAGHER, P. EIP-1822: Universal Upgradeable Proxy Standard (UUPS).
2019. <https://eips.ethereum.org/EIPS/eip-1822>.

BENIICHE, A. A study of blockchain oracles. In: . [S.l.: s.n.], 2020.

BIRYUKOV, A.; KHOVRATOVICH, D.; TIKHOMIROV, S. Findel: secure derivative contracts
for ethereum. In: FC. Financial Cryptography and Data Security - FC 2017 International
Workshops. [S.l.], 2017. p. 453–467.

BUTERIN, V. Ethereum White Paper. 2014. <https://github.com/ethereum/wiki/wiki/
White-Paper>.

CASTRO, M.; LISKOV, B. Practical byzantine fault tolerance. In: . [S.l.: s.n.], 1999.

CHEN, T.; LI, X.; LUO, X.; ZHANG, X. Under-optimized smart contracts devour your
money. In: IEEE. 2017 IEEE 24th International Conference on Software Analysis, Evolution
and Reengineering (SANER). [S.l.], 2017. p. 442–446.

CHEN, Y.-C.; CHOU, Y.-P.; CHOU, Y.-C. An image authentication scheme using merkle
tree mechanisms. In: Future Internet. [S.l.: s.n.], 2019. p. 1–18.

CLARKE, E. M.; WING., J. M. Formal methods: State of the art and future directions. In:
ACM Computing Surveys. [S.l.: s.n.], 1996. p. 626–643.

COWLING, J.; MYERS, D.; LISKOV, B.; RODRIGUES, R.; SHRIRA, L. Hq replication: A
hybrid quorum protocol for byzantine fault tolerance. In: . [S.l.]: IEEE, 2006.

DICKERSON, T. D.; GAZZILLO, P.; HERLIHY, M.; SARAPH, V.; KOSKINEN, E.
Proof-carrying smart contracts. In: Financial Cryptography Workshops. [S.l.: s.n.], 2018.

DIHEGO, J.; ANTONINO, P. R. G.; SAMPAIO, A. Algebraic laws for process subtyping. In:
GROVES, L.; SUN, J. (Ed.). Formal Methods and Software Engineering - 15th International
Conference on Formal Engineering Methods, ICFEM 2013, Queenstown, New Zealand, October
29 - November 1, 2013, Proceedings. Springer, 2013. (Lecture Notes in Computer Science,
v. 8144), p. 4–19. Disponível em: <https://doi.org/10.1007/978-3-642-41202-8_2>.

DIHEGO, J.; SAMPAIO, A.; OLIVEIRA, M. A refinement checking based strategy for
component-based systems evolution. J. Syst. Softw., v. 167, p. 110598, 2020. Disponível em:
<https://doi.org/10.1016/j.jss.2020.110598>.

FEIST, J.; GRIECO, G.; GROCE, A. Slither: A static analysis framework for smart contracts.
In: IEEE. 2019 IEEE/ACM 2nd International Workshop on Emerging Trends in Software
Engineering for Blockchain (WETSEB). [S.l.], 2019.

FRANKENFIELD, J. Nonce. 2021. Disponível em: <https://www.investopedia.com/terms/
n/nonce.asp>. Acesso em: Feb 28th, 2022.

GARCIA, G. A. Formal verification and testing of software architectural models. In: . [S.l.:
s.n.], 2009.

GRISHCHENKO, I.; MAFFEI, M.; SCHNEIDEWIND, C. Ethertrust: Sound static analysis of
ethereum bytecode. Technische Universität Wien, Tech. Rep, 2018.

https://eips.ethereum.org/EIPS/eip-1822
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://doi.org/10.1007/978-3-642-41202-8_2
https://doi.org/10.1016/j.jss.2020.110598
https://www.investopedia.com/terms/n/nonce.asp
https://www.investopedia.com/terms/n/nonce.asp

76

GROCE, A.; FEIST, J.; GRIECO, G.; COLBURN, M. What are the actual flaws in important
smart contracts (and how can we find them)? In: BONNEAU, J.; HENINGER, N. (Ed.).
Financial Cryptography and Data Security. Cham: Springer International Publishing, 2020. p.
634–653.

HAHN, A.; SINGH, R.; LIU, C.-C.; CHEN, S. Smart contract-based campus demonstration
of decentralized transactive energy auctions. In: IEEE. 2017 IEEE Power & Energy Society
Innovative Smart Grid Technologies Conference. [S.l.], 2017. p. 1–5.

HAJDU, Á.; JOVANOVIĆ, D. Smt-friendly formalization of the solidity memory model. In:
ESOP 2020. [S.l.]: Springer, 2020. p. 224–250.

HAJDU, Á.; JOVANOVIĆ, D. solc-verify: A modular verifier for solidity smart contracts. In:
VSTTE. [S.l.]: Springer, 2020. p. 161–179.

HAJDU Ákos; JOVANOVIć, D.; CIOCARLIE, G. Formal specification and verification of
solidity contracts with events. In: . [S.l.: s.n.], 2020.

HILDENBRANDT, E.; SAXENA, M.; RODRIGUES, N.; ZHU, X.; DAIAN, P.; GUTH, D.;
MOORE, B.; PARK, D.; ZHANG, Y.; STEFANESCU, A. et al. Kevm: A complete formal
semantics of the ethereum virtual machine. In: IEEE. CSF 2018. [S.l.], 2018. p. 204–217.

HU, B.; ZHANG, Z.; LIU, J.; LIU, Y.; YIN, J.; LU, R.; LIN, X. A comprehensive
survey on smart contract construction and execution: paradigms, tools, and systems.
Patterns, v. 2, n. 2, p. 100179, 2021. ISSN 2666-3899. Disponível em: <https:
//www.sciencedirect.com/science/article/pii/S2666389920302439>.

HUISMAN, M.; GUROV, D.; MALKIS, A. Formal methods: From academia to industrial
practice. a travel guide. In: . [S.l.: s.n.], 2020.

JAMESON, H. Introduction to Ethereum Improvement Proposals (EIPs). 2022.
<https://ethereum.org/en/eips/>.

KRASNER, G. E.; POPE, S. A description of the model-view-controller user interface
paradigm in the smalltalk80 system. In: . [S.l.: s.n.], 1988.

KUMAR, D. G.; SUBBARAO, C. D. V. Peer – to – peer computing: Architectures,
applications and challenges. In: International Journal of Recent Technology and Engineering.
[S.l.: s.n.], 2019.

LEAVENS, G. T.; BAKER, A. L.; RUBY, C. Jml: A notation for detailed design. In:
. Behavioral Specifications of Businesses and Systems. Boston, MA: Springer US,

1999. p. 175–188. ISBN 978-1-4615-5229-1. Disponível em: <https://doi.org/10.1007/
978-1-4615-5229-1_12>.

LEE, J.; NIKITIN, K.; SETTY, S. Replicated state machines without replicated execution.
In: . [S.l.: s.n.], 2020. (IEEE).

LEINO, K. R. M. This is boogie 2. manuscript KRML, Citeseer, v. 178, n. 131, p. 9, 2008.

LEINO, K. R. M. Dafny: An automatic program verifier for functional correctness. In:
CLARKE, E. M.; VORONKOV, A. (Ed.). Logic for Programming, Artificial Intelligence,
and Reasoning. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. p. 348–370. ISBN
978-3-642-17511-4.

https://www.sciencedirect.com/science/article/pii/S2666389920302439
https://www.sciencedirect.com/science/article/pii/S2666389920302439
https://ethereum.org/en/eips/
https://doi.org/10.1007/978-1-4615-5229-1_12
https://doi.org/10.1007/978-1-4615-5229-1_12

77

LISKOV, B. H.; WING, J. M. A behavioral notion of subtyping. ACM Trans. Program. Lang.
Syst., Association for Computing Machinery, New York, NY, USA, v. 16, n. 6, p. 1811–1841,
nov. 1994. ISSN 0164-0925. Disponível em: <https://doi.org/10.1145/197320.197383>.

LIU, C.; LIU, H.; CAO, Z.; CHEN, Z.; CHEN, B.; ROSCOE, B. Reguard: finding reentrancy
bugs in smart contracts. In: ACM. ICSE 2018. [S.l.], 2018. p. 65–68.

LU, A. Solidity DelegateProxy Contracts. 2018. <https://blog.gnosis.pm/
solidity-delegateproxy-contracts-e09957d0f201>.

LUU, L.; CHU, D.-H.; OLICKEL, H.; SAXENA, P.; HOBOR, A. Making smart contracts
smarter. In: CCS ’16. Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security. [S.l.], 2016. p. 254–269.

LUU, L.; CHU, D.-H.; OLICKEL, H.; SAXENA, P.; HOBOR, A. Making smart contracts
smarter. In: ACM. CCS 2016. [S.l.], 2016. p. 254–269.

MADIR, J. Introducing Blockchain-Based Smart Contracts – A Roadmap
For Lawmakers. 2018. <https://sites.law.duke.edu/thefinregblog/2018/11/13/
introducing-blockchain-based-smart-contracts-a-roadmap-for-lawmakers/>.

MCCORRY, P.; SHAHANDASHTI, S. F.; HAO, F. A smart contract for boardroom voting
with maximum voter privacy. In: KIAYIAS A. (EDS). Financial Cryptography and Data
Security. FC 2017. Lecture Notes in Computer Science. [S.l.], 2017. v. 10322, p. 357–375.

MCSHANE, G. What Is a 51% Attack? 2021. Disponível em: <https://www.coindesk.com/
learn/what-is-a-51-attack/>. Acesso em: Feb 28th, 2022.

MEYER, B. Object-Oriented Software Construction. 1st. ed. USA: Prentice-Hall, Inc., 1988.
ISBN 0136290493.

MEYER, B. Applying ’design by contract’. Computer, v. 25, n. 10, p. 40–51, 1992.

MICHELIN, R. A. A lightweight blockchain data model for the internet of things. In: . [S.l.:
s.n.], 2019.

MISSON, H. A. Applying formal verification techniques to embedded software in uav design.
In: . [S.l.: s.n.], 2019.

MOSSBERG, M.; MANZANO, F.; HENNENFENT, E.; GROCE, A.; GRIECO, G.; FEIST, J.;
BRUNSON, T.; DINABURG, A. Manticore: A user-friendly symbolic execution framework for
binaries and smart contracts. In: IEEE. 2019 34th IEEE/ACM International Conference on
Automated Software Engineering (ASE). [S.l.], 2019. p. 1186–1189.

MUSUMECI, M. PRIVATE AND PUBLIC KEYS ON ETHEREUM. 2018. Disponível em:
<https://www.massmux.com/private-and-public-keys-on-ethereum/>. Acesso em: Feb 8th,
2022.

NADOLINSKI, E.; SPAGNUOLO, F. Proxy Patterns. 2018. <https://blog.openzeppelin.
com/proxy-patterns/>.

NAKAMOTO, S. Bitcoin: A Peer-to-Peer Electronic Cash System. 2009. Disponível em:
<http://bitcoin.org/bitcoin.pdf>.

https://doi.org/10.1145/197320.197383
https://blog.gnosis.pm/solidity-delegateproxy-contracts-e09957d0f201
https://blog.gnosis.pm/solidity-delegateproxy-contracts-e09957d0f201
https://sites.law.duke.edu/thefinregblog/2018/11/13/introducing-blockchain-based-smart-contracts-a-roadmap-for-lawmakers/
https://sites.law.duke.edu/thefinregblog/2018/11/13/introducing-blockchain-based-smart-contracts-a-roadmap-for-lawmakers/
https://www.coindesk.com/learn/what-is-a-51-attack/
https://www.coindesk.com/learn/what-is-a-51-attack/
https://www.massmux.com/private-and-public-keys-on-ethereum/
https://blog.openzeppelin.com/proxy-patterns/
https://blog.openzeppelin.com/proxy-patterns/
http://bitcoin.org/bitcoin.pdf

78

NGUYEN, T. D.; PHAM, L. H.; SUN, J. Sguard: Towards fixing vulnerable smart contracts
automatically. In: 2021 IEEE Symposium on Security and Privacy (SP). [S.l.: s.n.], 2021. p.
1215–1229.

NIKOLIC, I.; KOLLURI, A.; SERGEY, I.; SAXENA, P.; HOBOR, A. Finding the greedy,
prodigal, and suicidal contracts at scale. In: . [S.l.: s.n.], 2018.

NOTHEISEN, B.; GöDDE, M.; WEINHARDT, C. Trading stocks on blocks - engineering
decentralized markets. In: HEVNER A. (EDS). Designing the Digital Transformation.
DESRIST 2017. Lecture Notes in Computer Science. [S.l.], 2017.

OLIVEIRA, S.; SOARES, F.; FLACH, G.; JOHANN, M.; REIS, R. Building a bitcoin miner
on an fpga. In: XXVII SIM - South Symposium on Microelectronics. [S.l.: s.n.], 2013.

OPENZEPPELIN. Proxy Upgrade Pattern. 2021. <https://docs.openzeppelin.com/
upgrades-plugins/1.x/proxies>.

PALLADINO, S. EIP-1967: Standard Proxy Storage Slots. 2019. <https://eips.ethereum.
org/EIPS/eip-1967>.

PERMENEV, A.; DIMITROV, D.; TSANKOV, P.; DRACHSLER-COHEN, D.; VECHEV, M.
Verx: Safety verification of smart contracts. In: S&P 2020. [S.l.: s.n.], 2020. p. 18–20.

PORAT, A.; PRATAP, A.; SHAH, P.; ADKAR, V. Blockchain consensus : An analysis of
proof-of-work and its applications. In: . [S.l.: s.n.], 2017.

RAJ, R. What is Solidity? 2021. Disponível em: <https://intellipaat.com/blog/tutorial/
blockchain-tutorial/what-is-solidity/>. Acesso em: Mar 13th, 2022.

RIBERA, E. G. Design and implementation of a proof-of-stake consensus algorithm for
blockchain. In: . [S.l.: s.n.], 2018.

RODLER, M.; LI, W.; KARAME, G. O.; DAVI, L. Evmpatch: timely and automated patching
of ethereum smart contracts. In: 30TH USENIX SECURITY SYMPOSIUM. USENIX Security
2021. USENIX Association. [S.l.], 2021.

RODLER, M.; LI, W.; KARAME, G. O.; DAVI, L. Evmpatch: Timely and automated patching
of ethereum smart contracts. In: 30th USENIX Security Symposium (USENIX Security
21). USENIX Association, 2021. p. 1289–1306. ISBN 978-1-939133-24-3. Disponível em:
<https://www.usenix.org/conference/usenixsecurity21/presentation/rodler>.

RUNESON, P.; HOST, M.; RAINER, A.; REGNELL, B. Case Study Research in Software
Engineering: Guidelines and Examples. [S.l.]: Wiley Publishing, 2012.

SHORISH, J. Blockchain state machine representation. In: . [S.l.: s.n.], 2018.

SIEGEL, D. Understanding The DAO Attack. 2016. <https://www.coindesk.com/
understanding-dao-hack-journalists> accessed on 22 July 2021.

SOUZA, E. Teoria Do Não-conhecimento. 2015.

SUNDVALL, E.; NYSTRöM, M.; KARLSSON, D.; ENELING, M.; CHEN, R.; ÖRMAN, H.
Applying representational state transfer (rest) architecture to archetype-based electronic
health record systems. In: . [S.l.: s.n.], 2013.

https://docs.openzeppelin.com/upgrades-plugins/1.x/proxies
https://docs.openzeppelin.com/upgrades-plugins/1.x/proxies
https://eips.ethereum.org/EIPS/eip-1967
https://eips.ethereum.org/EIPS/eip-1967
https://intellipaat.com/blog/tutorial/blockchain-tutorial/what-is-solidity/
https://intellipaat.com/blog/tutorial/blockchain-tutorial/what-is-solidity/
https://www.usenix.org/conference/usenixsecurity21/presentation/rodler
https://www.coindesk.com/understanding-dao-hack-journalists
https://www.coindesk.com/understanding-dao-hack-journalists

79

SWAN, M. Blockchain thinking: The brain as a dac (decentralized autonomous organization).
In: Texas Bitcoin Conference. [S.l.: s.n.], 2015.

SZABO, N. S. Smart Contracts: Building Blocks for Digital Markets. 1996. Disponível
em: <https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/
LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html>. Acesso em: Oct 29th,
2021.

TIKHOMIROV, S.; VOSKRESENSKAYA, E.; IVANITSKIY, I.; TAKHAVIEV, R.;
MARCHENKO, E.; ALEXANDROV, Y. Smartcheck: Static analysis of ethereum smart
contracts. In: WETSEB’18: WETSEB’18:IEEE/ACM. 1st International Workshop on
Emerging Trends in Software Engineering for Blockchain. [S.l.], 2018.

TIKHOMIROV, S.; VOSKRESENSKAYA, E.; IVANITSKIY, I.; TAKHAVIEV, R.;
MARCHENKO, E.; ALEXANDROV, Y. Smartcheck: Static analysis of ethereum smart
contracts. In: IEEE. WETSEB 2018. [S.l.], 2018. p. 9–16.

TOLMACH, P.; LI, Y.; LIN, S.-W.; LIU, Y.; LI, Z. A survey of smart contract formal
specification and verification. Association for Computing Machinery, New York, NY, USA,
v. 54, n. 7, 2021. ISSN 0360-0300. Disponível em: <https://doi.org/10.1145/3464421>.

TORRE, D.; SEANG, S. Proof of work and proof of stake consensus protocols: a blockchain
application for local complementary currencies. In: . [S.l.: s.n.], 2019.

TORRES, C. F.; JONKER, H.; STATE, R. Elysium: Automagically healing vulnerable smart
contracts using context-aware patching. CoRR, abs/2108.10071, 2021. Disponível em:
<https://arxiv.org/abs/2108.10071>.

TSANKOV, P.; DAN, A.; DRACHSLER-COHEN, D.; GERVAIS, A.; BüNZLI, F. Securify:
Practical security analysis of smart contracts. In: CCS ’18. Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security. [S.l.], 2018. p. 67–82.

TSANKOV, P.; DAN, A.; DRACHSLER-COHEN, D.; GERVAIS, A.; BUENZLI, F.; VECHEV,
M. Securify: Practical security analysis of smart contracts. In: ACM. CCS 2018. [S.l.], 2018.
p. 67–82.

VASSANTLAL, R.; ALCHIERI, E.; FERREIRA, B.; BESSANI, A. From byzantine replication
to blockchain: Consensus is only the beginning. In: . [S.l.]: IEEE, 2020.

VICTOR, F.; LüDERS, B. K. Measuring ethereum-based erc20 token networks. In: Financial
Cryptography and Data Security: 23rd International Conference. [S.l.: s.n.], 2019. p. 113–129.

VOGELSTELLER, F.; BUTERIN, V. EIP-20: Token Standard. 2015. <https://eips.ethereum.
org/EIPS/eip-20>.

VOLLMER, J. The Biggest Hacker Whodunnit of the Summer. 2016. <https:
//www.vice.com/en/article/pgkzqm/the-biggest-hacker-whodunnit-of-the-summer>
accessed on 22 July 2021.

WANG, D.; WU, S.; LIN, Z.; WU, L.; YUAN, X.; ZHOU, Y.; WANG, H.; REN, K. Towards
a first step to understand flash loan and its applications in defi ecosystem. In: International
Workshop on Security in Blockchain and Cloud Computing 2021. [S.l.: s.n.], 2021. p. 23–28.

https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html
https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html
https://doi.org/10.1145/3464421
https://arxiv.org/abs/2108.10071
https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-20
https://www.vice.com/en/article/pgkzqm/the-biggest-hacker-whodunnit-of-the-summer
https://www.vice.com/en/article/pgkzqm/the-biggest-hacker-whodunnit-of-the-summer

80

WANG, R.; YANG, K.; YANG, L. Designing hub-and-spoke network with uncertain travel
times:a new hybrid methodology. In: Journal of Uncertain Systems. [S.l.: s.n.], 2017. p.
243–256.

WANG, S.; YUAN, Y.; WANG, X.; LI, J.; QIN, R.; WANG, F.-Y. An overview of smart
contract: Architecture, applications, and future trends. In: IEEE Intelligent Vehicles
Symposium (IV). [S.l.: s.n.], 2018. p. 108–113.

WANG, Y.; LAHIRI, S. K.; CHEN, S.; PAN, R.; DILLIG, I.; BORN, C.; NASEER, I.; FERLES,
K. Formal verification of workflow policies for smart contracts in azure blockchain. In:
VSTTE. [S.l.: s.n.], 2020. p. 87–106.

WOOD, G. Ethereum: A secure decentralised generalised transaction ledger. 2014.

WüST, K.; MATETIC, S.; EGLI, S.; KOSTIAINEN, K.; CAPKUN, S. Ace: Asynchronous and
concurrent execution of complex smart contracts. In: Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security. [S.l.: s.n.], 2020. (CCS ’20), p.
587–600.

XU, J.; VADGAMA, N. From banks to defi: the evolution of the lending market. In:
SPRINGER. [S.l.], 2022. p. 113–129.

YERMACK, D. Corporate governance and blockchains. In: Review of Finance. [S.l.: s.n.],
2017. p. 7–31.

YU, X. L.; AL-BATAINEH, O.; LO, D.; ROYCHOUDHURY, A. Smart contract repair. ACM
Trans. Softw. Eng. Methodol., Association for Computing Machinery, New York, NY, USA,
v. 29, n. 4, set. 2020. ISSN 1049-331X. Disponível em: <https://doi.org/10.1145/3402450>.

ZHENG, Z.; XIE, S.; DAI, H.-N.; CHEN, W.; CHEN, X.; WENG, J.; IMRAN, M. Future
generation computer systems. In: . [S.l.: s.n.], 2020. p. 475–491.

ZHOU, E.; HUA, S.; PI, B.; SUN, J.; NOMURA, Y.; YAMASHITA, K.; KURIHARA, H.
Security assurance for smart contract. In: IEEE. 2018 9th IFIP International Conference on
New Technologies, Mobility and Security (NTMS). [S.l.], 2018. p. 1–5.

https://doi.org/10.1145/3402450

	Title page
	Acknowledgements
	Abstract
	Resumo
	List of Figures
	Listing
	List of Tables
	Contents
	Introduction
	Contributions
	Outline

	Background
	Blockchain
	Smart Contracts
	Ethereum and Solidity
	Formal verification with solc-verify

	Safe Smart Contract Deployment
	Trusted Deployer Framework
	Verifier
	Upgrader
	Registry

	Tool Support and Application to a Real Commit History
	Trusted Deployer Tool
	Smart Contract Creation Process
	Smart Contract Upgrading Process
	Tool Application to a Smart Contract Commit History

	CASE STUDIES: ERC20, ERC1155, and ERC3156
	Context
	Process Overview
	ERC20
	ERC3156
	ERC1155
	Results and Discussion
	Limitations and Threats

	Conclusion
	Contributions
	Related Work
	Future Work

	References

