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RESUMO

Um dos postulados mais elementar da Geometria afirma que retas parale-
las nunca se encontram. De fato, se restringimos a definicdo de paralelismo a
Geometria Euclidiana, a afirmac¢ao dada se mantém veridica invariavelmente.
No entanto, ao elevarmos o conceito de paralelismo & Geometria Projetiva, os
paradigmas antes apresentados comegam a se ressignificar. Nessa perspectiva,
imagens formadas antes pelo Plano Euclidiano exibem configuragoes diferentes
no Plano Projetivo, inclusive os Fractais, que sao, essencialmente, figuras que
repetem seus padrbes geométricos, ou que suas partes separadas repetem os
tragos do todo completo [1]. O presente trabalho se propoe a estudar o compor-
tamento dos fractais ao combiné-los com a Geometria Projetiva. Uma atengao
especial é dada ao Conjunto de Mandelbrot.



ABSTRACT

One of the most elementary postulates of geometry asserts that parallel
straight lines never find each other. Indeed, if we restrict the parallelism de-
finition to Euclidean Geometry, the given proposition keeps truly invariably.
Nonetheless, if we raise the concept of parallelism to the Projective Geometry,
the paradigms shown before begin to resignify. In this perspective, images for-
med before in the Euclidean Plane show different shape in the Projective Plane,
including the Fractals, that are, essentially, figures that repeat your geometric
patterns, or that your parts separately repeat your trace as a whole [1]. The
present research work proposes to study the behavior of the fractals when com-
bining them with the Projective Geometry. An special attention is given to the
Mandelbrot Set.
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1 Introducao

Fractal é um objeto geométrico que pode ser dividido em partes, cada uma das
quais semelhante ao objeto original. E uma figura da geometria nao classica
muito frequente na natureza e no cotidiano, nas mais variadas formas, como em
plantas, mapas, comidas e no mercado financeiro. Alguns Fractais podem ser
definidos matematicamente. Seu precursor, Benoit Mandelbrot, definiu o termo
a partir do adjetivo em latim fractus, que significa quebrar [2].

A Geometria Projetiva, por sua vez, nasce da necessidade dos artistas re-
nascentistas em retratarem a realidade em suas pinturas, visando dar aos seus
espectadores uma representacao naturalista das imagens e nao somente uma
figura plana, ampliando as fronteiras impostas pela Geometria Euclidiana. [3]

Combinando-se essas duas areas da matematica, o objetivo principal deste
trabalho é visualizar Fractais no Plano Projetivo, explorando conceitos, defini-
coes e axiomas da Geometria Projetiva com a complexidade dos Fractais.
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2 Referencial Teo6rico

2.1 Geometria Projetiva

Intuitivamente, pode-se entender a Geometria Projetiva como o ramo da Ma-
tematica que estuda as relagoes entre um objeto do mundo real e sua imagem
projetada. E a geometria que descreve a forma como enxergamos e, com isso,
observa-se que os limites da Geometria Projetiva transcendem a Geometria Eu-
clidiana e seus postulados.

Sua esséncia nasce no século XVII, periodo em que matematicos necessitam
embasar cientificamente as técnicas utilizadas por artistas do Renascimento na
construgao de seus desenhos.[3]

Formalmente, a Geometria Projetiva ¢ definida como o estudo das proprieda-
des geométricas que sao invariantes com respeito as transformacoes projetivas.

[3]
2.1.1 Extensao do Plano Euclidiano e Reta no infinito

Antes de mergulharmos nas transformacoes projetivas que nos permitem proje-
tar as imagens no infinito, precisamos entender alguns conceitos béasicos.

Seja a seguinte defini¢do do Plano Euclidiano Estendido[5]:
e Considere o Plano Euclidiano R?

e Dada uma reta r do R%, o conjunto consistindo de r e todas as retas
paralelas a r é chamado de um feixe de retas paralelas. Para cada feixe
de retas paralelas, adicione uma entidade abstrata P,,, chamada ponto
no infinito do feixe. As retas do feixe sao ditas se interceptar em Ps.
Uma reta r unida ao seu ponto no infinito é chamada de reta estendida,
e é denotada por r*.

e Estipule que distintos feixe de retas tém distintos pontos no infinito.

e O conjunto de todos os pontos pontos no infinito é chamado de reta no
infinito, e € denotado por r.

Entao, segue que o Plano Euclidiano estendido é uma tripla (P, R, I)
com:

e P pontos que sdao os pontos de R? e os pontos P, do infinito.
e R retas que sao as retas estendidas e a reta no infinito 7.
e Relacao de incidéncia I herdada, ou seja:

— um ponto P, que nao esta no infinito, pertence a r* se, e somente se,
P esta em 7.

— P, estd em r* se, e somente se, P, é o ponto no infinito do feixe
retas paralelas determinados por r*.

— Todos os pontos no infinito estao em 7.
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2.1.2 Plano Projetivo

Seja a definigao de Planos Projetivos.

Um Plano Projetivo m é um conjunto P de pontos e um conjunto L de
subconjuntos de P, chamado de retas, satisfazendo as seguintes propriedades:

e P1. Existe uma tunica reta unindo dois pontos distintos.
e P2. Existe um tinico ponto de intersecgao entre duas retas distintas.
e P3. Existem pelo menos trés pontos nao colineares

e P4. Existem pelo menos trés pontos em cada linha.

Observe que o Plano Euclidiano Estendido é um Plano Projetivo, uma vez
que todos os axiomas acima sao satisfeitos. Entretanto, o Plano Euclidiano nao
é um plano projetivo desde que o axioma P2 nao é satisfeita por nenhum par
de retas paralelas.

2.2 Coordenadas Homogéneas

Um dos principais conceitos que se deve dominar quando estamos trabalhando
com projetividade é o de Coordenadas Homogéneas e sua associacao com a Ge-
ometria Projetiva.

"Coordenadas homogéneas, ou coordenadas projetivas, sao um sistema de
coordenadas usados em Geometria Projetiva, assim como as coordenadas car-
tesianas sao usadas na Geometria Euclidiana. Sua principal vantagem consiste
na possibilidade de que pontos, incluindo pontos no infinito, podem ser represen-
tados utilizando coordenadas finitas. (...) Em geral, transformagées projetivas
podem ser facilmente representadas por uma matriz."[6]

As afirmagoes a seguir sdo definidas e demonstradas em [4].

2.2.1 Pontos

Representagao Euclidiana
No espaco Euclidiano padrao, utilizando notacgao vetorial, normalmente nos
representariamos pontos no R? como segue:

P=[]
Y
Representagao Homogénea
Em coordenadas homogéneas, simplesmente adicionamos uma dimensao extra
ao vetor, com valor unitario. Entao, multiplicamos o novo vetor por um arbi-
trario fator escalar k,, temos:

x kpx
P=k, |y| = |kpy (1)
1 kp
Se quisermos voltar aos valores cartersianos, simplesmente dividimos as co-
ordenadas pelo escalar escolhido.
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2.2.2 Retas

Em Coordenadas Homogéneas, uma reta no espago 2D, é simplesmente repre-
sentada como segue:

ﬁ
I
SYRS

O que corresponde & equagao ax + by + ¢ = 0.

2.2.3 Propriedades de Pontos e Retas

Agora, nés sabemos como representar pontos e retas em Coordenadas Homo-
géneas. Iremos explorar algumas propriedades oriundas das definigoes destes
elementos.

Veficando se um ponto pertence a uma reta
Um ponto pertence a uma reta se, e somente se,:

r-P=0.

Ao expandirmos a equagao, podemos encontrar:

a]” kpx

bl - |kpy

kp
ar+by+c=0 (2)

Que nos traz a equagao da reta na forma cartesiana.

Intersecgao de retas
Duas retas r e s se interceptam em

T=TXs (3)
ai a2

Sejam 7 = |[by | e s = |by| retas em coordenadas homogéneas. Segue, da
C1 C2

Geometria Analitica sobre a interse¢do de dois planos no espago tridimensional,
que:

i j k
rxs=|la; b
az by c
Expandido o produto vetorial, temos:

rXs= (b102 - bgcl).i + (CLQCl — alcg).j + (a1b2 — agbl).k

Escrevendo na forma de vetor coluna, temos:

bico — bacy
P = lasc;y — ajco
a1by — azby
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Observe que P é da forma
kpx
kpy
kp
Para converter em Coordenadas Euclidianas, basta dividirmos pelo ultimo
termo.

= kplﬂ o blcg — b201

kiip albg — a2b1

kpy _ G2C¢1 —a1C2

k'p - a1b2 — 0,21)1

Nesse caso, dizemos que os pontos estao normalizados.
Retas passando por dois pontos

Uma reta passa por dois pontos P e ) se, somente se:

r=PxQ (4)

isto é, a reta unindo dois pontos P e Q é dada pelo produto vetorial da repre-
sentacao homogénea desses pontos. Logo, vem:

kplil'l ]Cpg.’bz
Sejam os pontos Py = [kpiy1| e Po = | kpoy2 |, temos o seguinte produto
kp1 kp2
vetorial:
i j k

Py x Py= |kpizr kpiyn kp
kp2x2 kp2y2 kp2

Expandido o produto vetorial, temos:
P1 x Py = kpikpa(y1 — y2) i+ kpikpa (22 — 1) + kpikpa (2192 — 2291) k

Escrevendo na forma do vetor coluna, temos:

Y1 — Y2
7= kp1kpo To — T
T1Y2 — T2Y1

Observe que se chamarmos a = kpikpa(y1 — y2), b = kpikpa(z2 — 21) €
¢ = kpikp2(z1y2 — 2y1), a equacdo se resume a:

<
I
o o

descrevendo a equacgao da reta, como definimos acima.
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2.2.4 Pontos ideais e Reta no infinito

Interseccao de Retas Paralelas

Considere duas retas r : axr + by +c1 =0 e s : ax + by + co = 0. Essas retas
sdo representadas, em coordenadas homogéneas, pelos vetores 7 = (a,b,c1)7 e
s = (a,b, c2). Note que como as duas coordenadas s@o iguais, estas sdo paralelas.
Vamos agora, aplicar a equagao 3 para encontrar os pontos de interseccao:

1]
rxs=1la b c].. (5)
a b

(c2 = c1)(ib + j(—a))

Logo, o ponto de intersec¢ao entre as retas é P = (co — ¢1)(b, —a,0)?. Igno-
rando o fator escalar (cz — 1), ficamos com o ponto (b, —a, 0)T.

Note que se quisermos a representagao euclidiana do ponto, obeteriamos
(b/0, -a/0), uma divisdo nao definida matematicamente, sugerindo apenas que
possuem coordenadas infinitamente grandes. Pontos da forma homogeénea (z,y,0)”
nao correspondem a ponto finito no R2. Esse fato vai ao encontro da ideia tra-
dicional de que retas paralelas se encontram no infinito.

Pontos ideais

Pontos de coordenadas homogéneas x = (r1, 2, 23)7 tais que x3 # 0 cor-
respondem a pontos finitos no R?. Os pontos com coordenada z3 = 0 sdo
conhecidos como pontos ideais ou pontos no infinito. Eles sao da forma:

Z1
Tideal = | T2 (6)
0

Reta no infinito
Observe que a uniao de todos os pontos ideais estao contidos numa tnica reta,
chamada reta no infinito, denotada pelo vetor ro, = (0,0,1)%, uma vez que o
produto escalar entre os pontos ideais e a reta no infinito é igual a 0. Isto é,
I r 0
Tideal * Too = | T2 -101 =0
0 1

2.3 Transformacgoes Projetivas

Uma transformacao projetiva é uma transformagao linear de um vetor em coor-
denadas homogéneas representado por uma matriz nao-singular 3 x 3, tal que:

x) hii hiz hig| |21
z5| = |ha1 hao hag| |22 (7)
Ty hsi hsa hgs| |23

A transformacao projetiva desenha cada imagem em um plano projetiva-
mente equivalente, deixando todas as suas propriedades projetivas invariantes.

16



2.3.1 Reta no infinito

Sob uma transformacao projetiva, pontos ideais podem ser mapeados para pon-
tos finitos e, consequentemente, 7o, pode ser mapeada por uma reta finita. Esse
mapeamento é dado por:

1 0 0
H=10 1 0|,c#0. (8)
a b c

Seja o ponto que se quer projetar no infinito P = (x,y, 1)T. Temos que:

1 0 0f |z z
P=10 1 0| |y| = Y
a b c| |1 axr +by+c

Dividindo as duas primeiras coordenadas, a fim de se obter os pontos em
coordenadas euclidianas, temos:

, T
r = —-————
ax + by +c
g Y
axr +by+c

2.4 Fractais
2.4.1 Definigao

O termo Fractal foi definido inicialmente pelo matematico polonés - com naci-
onalidade francesa e americana - Benoit B. Mandelbrot em 1975 em seu livro
The Fractal Geometry of Nature. O termo faz referéncia ao adjetivo em Latin
fractus, o verbo correspondente em Latim é frangere e significa "quebrar"para
criar fragmentos regulares [2]. Um fractal é uma figura geométrica em que cada
parte é semelhante ao objeto como um todo, os padroes da figura inteira sao
repetidos em cada parte em uma escala menor.

2.4.2 Exemplos

Os Fractais s@o encontrados com facilidade na natureza como podemos observar
em flocos de neve, plantas, arvores.

Figura 1: Folha de Samambaia
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Figura 2: Floco de neve

Paralelamente, alguns fractais sao definidos por equagoes matematicas e po-
dem exibir formas inusitadas e belas.

Figura 3: Tapete de Sierpinsky, Triangulo de Sierpinsky, Arvore Recursiva

2.4.3 O Conjunto de Mandelbrot

Um dos fractais que ganha mais destaque é o conjunto de Mandelbrot. Foi
definido inicialmente por Robert W. Brooks e Peter Matelski em 1978 (Fig.
4), como parte de um estudo sobre grupos Kleinianos[8]. Benoit Mandelbrot,
enquanto pesquisador da IBM, obteve visualizagoes do conjunto com maiores
qualidades(Fig. 5). Por esse motivo, e por ser precursor do tema, tal conjunto
leva seu nome.

E definido como segue:

Conjunto dos pontos de ¢ no Plano Complexo para os quais a sequéncia
definida por:

0, n=0
22 +e¢, n>0

Zn = (9)
nao tende ao infinito.

Observe que ¢ pode assumir qualquer valor dentro do conjunto dos Nameros
Complexos. No entanto, para valores de ¢ que se afastam da origem, a sequén-
cia tende ao infinito e ¢ "escapa'"do conjunto. Mais precisamente, o conjunto
¢é limitado por uma circunferéncia de raio 2. Isto é, um ponto ¢ pertence ao

18
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Figura 4: Conjunto de Mandelbrot obtido por Robert W. Brooks e Peter Ma-
telski em 1978

Figura 5: Conjunto de Mandelbrot

Conjunto de Mandelbrot se, e somente se, |z,| > 2 para todo n > 0.[8]

Para desenhar o conjunto de mandelbrot em tela, descreveremos o pseudo-
codigo abaixo. A ideia é simples. Basta percorrer todos os pixels da regido que
se quer desenhar, mapear os pontos para o intervalo pertencente ao conjunto de
mandelbrot, iterar sobre os pontos e verificar se estes estdo fora ou dentro do
conjunto, e a depender do caso atribui-se uma cor ao ponto.

para cada pixel (px, py) da tela, faga:
x0 = coordenada x mapeada dentro do eixo real que se quer observar
yO = coordenada y mapeada dentro do eixo imagindrio que se quer observar
c(x0, y0) // nimero complexo associado aos pontos x0 e yO
iteragbes = 0
max_iteragdes = 1000
z = (0,0) // nimero complexo auxiliar
enquanto(lc| < 2 && iteragBes < max_iteragdes), faga:
z =2z % z + C;
iteragdes++;

cor = pallete[iteragdes]
plot(px, py, cor)
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Observe que ao se escolher adequadamente os valores ao qual quer se mapear,
dentro do Conjunto de Mandelbrot - isto é, definir as fronteiras do eixo real ou
imaginéario -, podemos deslocar o conjunto vertical ou horizontalmente, também
é possivel "dar zoom'"no conjunto.

2.4.4 O Conjunto de Julia

O Conjunto de Julia é um conjunto que surge no estudo da Dindmica Com-
plexa[9]. O nome desse conjunto é em homenagem ao matematico francés Gas-
ton Julia (1893-1978), quem descobriu esse conjunto e explorou suas proprieda-
des.

Exploraremos a forma polinomial quadratica desse conjunto e suas renderi-
zagoes. O Polinomio Quadratico desse conjunto é similar a defini¢ao recursiva
do Conjunto de Mandelbrot:

fe(z)=2"+c¢ (10)

No entanto, o parametro ¢ é fixo. Diferentemente do Conjunto de Mandel-
brot, onde se iterava variando-se os valores de c.
O pseudocodigo para o algoritmo da geragao do Conjunto de Julia é:

escolha um nimero complexo c
para cada pixel (px, py) da tela, faga:
x0 = coordenada x mapeada dentro do eixo real que se quer observar
yO = coordenada y mapeada dentro do eixo imagindrio que se quer observar
z = (x0, y0) // nGmero complexo associado aos pontos x0 e yO
iteragbes = 0
max_iteragdes = 1000
enquanto(|c| < 2 && iteragBes < max_iteragles), faga:
zZ =2 %2z +cC;
iteragdes++;

cor = palletel[iteragdes]
plot(px, py, cor)
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3 Metodologia

3.1 OpenGL

A fim de se obter as imagens para este trabalho, foi utilizada a biblioteca
OpenGL na versao 3.3.7]

3.2 Projetividade

Como descrito na segado 2.3.1, para obter uma imagem projetada, deve-se mul-
tiplicar as coordenadas de seus pixels por uma matriz nao-singular 3 x 3 que
leve os pontos originais aos projetados seguidos por uma normalizagao.

A matriz deve ser da forma:

1 0 0
H=10 1 0
a b ¢

Note que, como a, b e ¢ representam os coeficientes de uma reta, podemos
dividir toda a terceira linha por ¢, sem perda de generalidade, e a matriz é
simplificada a:

1 0 0
H=1|0 1 0 (11)
v U2 1

Essa matriz é definida como variavel global no projeto e os valores de vl e
v2 podem ser alterados em tempo real via teclado.

float vi1 0.00;
float v2 0.00;
float projectivity[3][3] = {{1, 0, 0}, {0, 1, 0}, {v1, v2, 1}};

O resultado dessa aplicagdo da projetividade é descrito na segao 3.4.

3.3 Conjunto de Mandelbrot no OpenGL

Como descrito no item 2.4.3, o conjunto é descrito por uma funcao recursiva,
para os quais a sequencia definida pela equagao 9 nao tende ao infinito. Além
disso, deve se fazer o mapeamento dos valores do conjunto de Mandelbrot para
os valores em tela.

Inicialmente definiremos algumas variaveis globais:
e minRe, menor valor do eixo real a ser observado.
e maxRe, maior valor do eixo real a ser observado.
e minlm, menor valor do eixo imaginario a ser observado.
e maxRe, maior valor do eixo imaginério a ser observado.

e maxlterations, maxima quantidade de iteragoes, para evitar que haja loop
infinito.
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e width e height, largura e altura da tela, respectivamente.

Para fins de modularidade e organizagao do codigo, foi criada uma funcao "be-
longs"para saber, apenas, se o ponto esta no conjunto ou nao.

#include <complex>

int belongs(std::complex<double> c, int iterations) {
std: :complex<double> z(0, 0);
int i = 0;
while (abs(z) < 2 && i < iterations) {
zZ =2z %z + C;
i++;
}
return i;

}

A fungdo principal fica:

for (int i = -width; i < width; i++) {
for (int j = -height; j < height; j++) {
xPosition = (float) (i) / width;
yPosition = (float)(j) / height;
xMandelbrot = minRe + (maxRe - minRe) * ((xPosition + 1) / 2);
yMandelbrot = minIm + (maxIm - minIm) * ((yPosition + 1) / 2);
result = belongs(std::complex<double>(xMandelbrot, yMandelbrot), maxIterations);
if (result !'= maxIterations) {
h = 40 + round(120 * result * 1.0 / maxIterations);
rgb = hsl2rgb((float)h / 100, 0.6, 0.7);
glColor3ub(rgb.r, rgb.g, rgh.b);
glVertex3f (xPosition, yPosition, 0);

O resultado é exibido na figura 6.

BLIT

Figura 6: Conjunto de Mandelbrot gerado utilizando OpenGL



Como foi dito também no item 2.4.3 ao mudar as variaveis de fronteiras,
altera-se a imagem gerada. Ao escolher os valores minRe = —1.5, maxRe =
—1.3, minIm = —0.2, maxIm = 0.2, obtemos a Fig. 7.

BLIT  ¥S¥NC ON

Figura 7: Conjunto de Mandelbrot no zoom

Também é possivel alterar a paleta de cores através da definicdo da cor em
HSL. Note que o valor de h (hue ou matiz) depende da quantidade de iteragoes
necessérias para validar se o ponto esta dentro ou fora do conjunto. Ao se es-
colher a base de h como 100 e os valores de s (saturagao) como 0.5 e de 1 (luz)
como 0.6, obtem-se a Fig. 8.

Figura 8: Conjunto de Mandelbrot variando-se as cores

3.4 Projetividade no Conjunto de Mandelbrot

Para obter os pixels projetados, devemos multiplicar a matriz da equacao 11
pelo vetor coluna de coordenadas homogéneas dos pontos.
Para v; = 0.23 e vo = 0.8, temos:

float xScreen;

float yScreen;
float xMandelbrot;
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float yMandelbrot;
float coord[3]1[3] = {{}, {3}, {}3};

float xProjected;
float yProjected;

glBegin (GL_POINTS) ;

for (int i = -width; i < width; i++)

{
for (int j = -height; j < height; j++)
{

xScreen = (float) (i) / width;
yScreen = (float) (j) / height;
xMandelbrot = minRe + (maxRe - minRe) * ((xScreen + 1) / 2);
yMandelbrot = minIm + (maxIm - minIm) * ((yScreen + 1) / 2);

coord[0] [0] = xMandelbrot;
coord[1] [0] = yMandelbrot;
coord[2] [0] = 1;

multiply(projectivity, coord, M4);

xProjected = M4[0][0] / M4[2][0];

yProjected = M4[1]1[0] / M4[2][0];

result = belongs(std::complex<double>(xScreen, yScreen), maxIterations);

if (result !'= maxIterations)

{
h = 100 + round(120 * result * 1.0 / maxIterations);
rgb = hsl2rgb((float)h / 100, 0.5, 0.6);
glColor3ub(rgb.r, rgb.g, rgbh.b);
glVertex3f (xProjected, yProjected, 0);

}

}
}

glEnd () ;

A figura 9 exibe o resultado dessa operagao.

Figura 9: Conjunto de Mandelbrot renderizado com descontinuagoes na tela
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Note, no entanto, que ha espagos vazios e descontinuacoes na tela proveniente
da renderizacao. Para corrigir essa falha, devemos aplicar a fungao belongs aos
pontos projetados, desenhar os pontos zScreen e yScreen e a matriz a ser
considerada ¢ a matriz inversa, isto ¢, H~!. Nesse caso, o codigo fica:

glBegin (GL_POINTS) ;

for (int i = -width; i < width; i++)

{
for (int j = -height; j < height; j++)
{

xScreen = (float) (i) / width;
yScreen = (float) (j) / height;
xMandelbrot = minRe + (maxRe - minRe) * ((xScreen + 1) / 2);
yMandelbrot = minIm + (maxIm - minIm) * ((yScreen + 1) / 2);
coord[0] [0] = xMandelbrot;
coord[1] [0] yMandelbrot;
coord[2] [0] 1;
multiply(projectivityInverse, coord, M4);
xProjected = M4[0][0] / M4[2][0];
yProjected = M4[1]1[0] / M4[2][0];
result = belongs(std::complex<double>(xProjected, yProjected), maxIterations);
if (result != maxIterations)
{
h = 100 + round(120 * result * 1.0 / maxIterations);
rgb = hsl2rgb((float)h / 100, 0.5, 0.6);
glColor3ub(rgb.r, rgb.g, rgb.b);
glVertex3f (xScreen, yScreen, 0);
}
}

}

glEnd ) ;

O resultado da imagem corrigida é o que é exibido na figura 10.

Figura 10: Conjunto de Mandelbrot sem descontinuagdes na tela
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Adicionalmente, pode-se "elevar"a ordem do Conjunto de Mandelbrot, au-
mentando o grau do polinémio.

Figura 11: Conjunto de Mandelbrot para f.(z) = z® + ¢

Figura 12: Conjunto de Mandelbrot para f.(z) = z* + ¢

3.4.1 Conjunto de Julia

Como observado na se¢ao 2.4.4, o Conjunto de Julia para polinomios quadraticos
se aproxima da sequéncia recursiva do Conjunto de Mandelbrot, mudando-se
apenas o fato de que fixa-se o nimero complexo ¢ e variam-se os valores de z
pelo plano complexo. Definiremos uma nova fungao chamada belongsToJulia
como segue:

int belongsToJulia(std: :complex<double> c, std::complex<double> z, int iterations)
{
int i = 0;
while (abs(z) < 2 && i < iteratioms)
{
z =2 %z + cC;
i++;
}

return i;

}
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E a funcao completa fica:

std: :complex<double> c(-0.715,0.200);

glBegin (GL_POINTS) ;

for (int i = -width; i < width; i++)

{
for (int j = -height; j < height; j++)
{

xPosition = (float) (i) / width;
yPosition = (float) (j) / height;
xMandelbrot = minRe + (maxRe - minRe) * ((xPosition + 1) / 2);

yMandelbrot = minIm + (maxIm - minIm) * ((yPosition + 1) / 2);
coord[0] [0] = xMandelbrot;
coord[1] [0] = yMandelbrot;

coord[2] [0] = 1;

multiply(projectivityInverse, coord, M4);

xProjected = M4[0][0] / M4[2][0];

yProjected = M4[11[0] / M4[2][0];

result = belongsToJulia(c, std::complex<double>(xProjected, yProjected), maxIterat
if (result != maxIterations)

{
h = 10 + round(250 * result * 1.0 / maxIterations);

rgb = hsl2rgb((float)h / 50, 0.8, 0.4);
glColor3ub(rgb.r, rgb.g, rgh.b);
glVertex3f (xPosition, yPosition, 0);
}
}
}

glEnd ) ;

Note que os parametros de projetividade estao presentes pois sao equivalen-
tes ao do Conjunto de Mandelbrot.

Temos os seguintes resultados na figura 13 para diferentes nimeros comple-
x0s escolhidos.

Figura 13: Conjunto de Julia para ¢ = —0.715 + 0.2¢, ¢ = 0.285 4+ 0i e ¢ =
0.285 4 0.01%, respectivamente
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Também é possivel visualizar zoom e projetividade para a reta no infinito

Too-

Figura 14: Conjunto de Julia com zoom e para valores de vl = 0.23 e v2 = 0.74

3.5 Utilizando Curvas de Bezier para observar a mudancga
de cores

Curva de Bézier é uma curva polinomial paramétrica expressa como a interpo-
lacao linear entre pontos representativos, pontos de controle. Foi definida em
1962 por Pierre Bézier, entao funcionério da fabrica de automoéveis Renault.

3.5.1 Definicao Matemaéatica

Sejam B, Bs, Bs, ..., B, pontos de controle, um ponto pertencente a Curva de
Bézier é dado por:

n n .
B(t) = 1—t)""'B; 12
0=3(7)u-0 (12)

O resultado da Curva de Bezier para 4 pontos de controle é mostrado na
figura 15

Figura 15: Curva de Bézier para 4 pontos de controle em 2 dimensoes

Note que os pontos definidos na equacao 12 nao sdo restritos a 2 dimen-
soes. Se estendemos os pontos para 3 dimensoes, podemos obter, para cada
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valor de t, um vetor v = (By(t), By(t), B»(t)) e podemos definir estes valores
como pardmetros de entrada para a renderizagdo do Conjunto de Mandelbrot
ou do Conjunto de Julia definido anteriormente, dentro de uma faixa de valores
apropriada.

A implementacao segue como:

Combinagao de n elementos tomados r a r adicinada a funcgdo auxiliar
product Range, que calcula o produto de todos os ntimeros inteiros entre ni-
meros inteiros dados:

int combination(int n, int r)

{
if (m==1r || r ==0)
{
return 1;
}
else
{
r=(r<n-r1r)?7n-r1r:r;
return productRange(r + 1, n) / productRange(l, n - r);
}
}

int productRange(int a, int b)
{

int prd = a, i = a;

while (i++ < b)

{

prd *= i;
X
return prd;

}
Curva de Bézier:

point bezierPoint(float t, float xPoints[], float yPoints[], float zPoints[], int nPoints)
{

float x = 0;
float y = 0;
float z = 0;

struct point p;

for (int i = 0; i <= nPoints; i++)

{
X += combination(nPoints, i) * pow(l - t, nPoints - i) * pow(t, i) * xPoints[i];
y += combination(nPoints, i) * pow(l - t, nPoints - i) * pow(t, i) * yPoints[i];
z += combination(nPoints, i) * pow(l - t, nPoints - i) * pow(t, i) * zPoints[i];
}
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= X;

)
N & M
|
=

return p;

Perceba que o retorno da fungao bezier Point retorna um ponto com 3 co-
ordenadas. Podemos atribuir essas coordenadas a cada uma das variaveis do
nosso sistema de cor HSL.

O trecho de codigo modificado sera:

h = 10 + round(360 * p.x * result * 1.0 / maxIterations);
rgb = hsl2rgb((float)h / 50, p.y, p.2);

onde p é um ponto da Curva de Bézier para pontos de controle arbitrarios.
Para os pontos de controle By = (0.3,0.7,0.2), By = (0.1,0.4,0.63) e By =
(0.8,0.12,0.67) e t = 0.55, temos como resultado a figura 16.

Mandelbrot set - o ®

BLIT

Figura 16: Utilizando a Curva de Bezier para variar as cores do Conjunto de
Julia

3.6 Velocidade de Iteragoes do Conjunto de Mandelbrot

Um resultado natural que se poderia esperar para fractais projetivamente trans-
formados (além da deformagao geométrica em si) seria a apresentagao de mag-
nificagoes de diferentes niveis ("zooms") ao mesmo tempo em regides distintas
da figura. Magnificagoes de niveis muito dispares poderiam produzir fractais
verdadeiramente novos, ao invés de fractais ja conhecidos mas deformados pro-
jetivamente. Mas ha uma questao de velocidade de avaliacao em operagao.

Observe a equagao 9. Perceba que a sequéncia por ela definida evolui seus
termos complexos quadraticamente. Se analisarmos o termo z2 utilizando a
formula de De Moivre[11], temos:

22 = [p*(cos ¢ + isin ¢)] (13)

Isto é, a cada vez que a sequéncia é iterada, seu moédulo aumenta ao qua-
drado. E como descrito na secao 2.4.3, se o modulo de z, > 2, o niimero
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complexo z, nao pertence ao Conjunto de Mandelbrot. Como esta sequéncia
converge para o infinito rapidamente, a deformagao projetiva nao contrabalan-
ceia a velocidade da geragao de fractais suficientemente para se observar novas
estruturas de fronteira, visto que tal transformagao, descrita em 2.3.1 e em 3.2,
é uma operacao linear seguida de uma normalizagao.
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4 Conclusao

Esse trabalho se propos a estudar a formagao de fractais no Plano Projetivo,
dando uma atengao especial ao Conjunto de Mandelbrot e suas derivagoes. Fo-
ram apresentados e discutidos diversos conceitos de Fractais e Geometria Pro-
jetiva, a fim de fornecer um embasamento teorico necessario ao entendimento
do tema.

Os axiomas, postulados e definigoes apresentados na secao 2.1 dispoe de
todo aparato matemaético que alicerca a implementagao. Caso o leitor sinta-se
convidado a uma visdo mais densa sobre o assunto, consultar [3], [4] e [5].

Para obter o resultado esperado, utilizou-se o OpenGL como motor grafico
para renderizar as imagens apresentadas nas segoes 3.3, 3.4 e 3.5. O que resultou
em imagens estaticas com boa resolucao. No entanto, devido ao alto ntimero
de operagoes provenientes da implementagao do algoritmo de renderizagao, ao
se fazer agoes interativas como zoom ou alterar a reta no infinito, o sistema
apresentou alguns travamentos devido a limitagao fisica do equipamento. Caso
os parametros fossem apresentados previamente, a imagem era renderizada de
forma fluida.

4.1 Trabalhos Futuros

Durante a elaboragao deste trabalho, novas ideias surgiram de assuntos que
transcendem, tangenciam ou complementam o tema. Sao eles:

e Utilizar GPU para renderizagao dos conjuntos.
e Analisar outros fractais.

e Investigar projetividade em curvas bidimensionais cléssicas, tais como
Lemniscata, Limacons, Figuras de Lissajous.
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