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RESUMO

Um dos postulados mais elementar da Geometria afirma que retas parale-
las nunca se encontram. De fato, se restringimos a definição de paralelismo à
Geometria Euclidiana, a afirmação dada se mantém verídica invariavelmente.
No entanto, ao elevarmos o conceito de paralelismo à Geometria Projetiva, os
paradigmas antes apresentados começam a se ressignificar. Nessa perspectiva,
imagens formadas antes pelo Plano Euclidiano exibem configurações diferentes
no Plano Projetivo, inclusive os Fractais, que são, essencialmente, figuras que
repetem seus padrões geométricos, ou que suas partes separadas repetem os
traços do todo completo [1]. O presente trabalho se propõe a estudar o compor-
tamento dos fractais ao combiná-los com a Geometria Projetiva. Uma atenção
especial é dada ao Conjunto de Mandelbrot.
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ABSTRACT

One of the most elementary postulates of geometry asserts that parallel
straight lines never find each other. Indeed, if we restrict the parallelism de-
finition to Euclidean Geometry, the given proposition keeps truly invariably.
Nonetheless, if we raise the concept of parallelism to the Projective Geometry,
the paradigms shown before begin to resignify. In this perspective, images for-
med before in the Euclidean Plane show different shape in the Projective Plane,
including the Fractals, that are, essentially, figures that repeat your geometric
patterns, or that your parts separately repeat your trace as a whole [1]. The
present research work proposes to study the behavior of the fractals when com-
bining them with the Projective Geometry. An special attention is given to the
Mandelbrot Set.
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1 Introdução

Fractal é um objeto geométrico que pode ser dividido em partes, cada uma das
quais semelhante ao objeto original. É uma figura da geometria não clássica
muito frequente na natureza e no cotidiano, nas mais variadas formas, como em
plantas, mapas, comidas e no mercado financeiro. Alguns Fractais podem ser
definidos matematicamente. Seu precursor, Benoît Mandelbrot, definiu o termo
a partir do adjetivo em latim fractus, que significa quebrar [2].

A Geometria Projetiva, por sua vez, nasce da necessidade dos artistas re-
nascentistas em retratarem a realidade em suas pinturas, visando dar aos seus
espectadores uma representação naturalista das imagens e não somente uma
figura plana, ampliando as fronteiras impostas pela Geometria Euclidiana. [3]

Combinando-se essas duas áreas da matemática, o objetivo principal deste
trabalho é visualizar Fractais no Plano Projetivo, explorando conceitos, defini-
ções e axiomas da Geometria Projetiva com a complexidade dos Fractais.
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2 Referencial Teórico

2.1 Geometria Projetiva
Intuitivamente, pode-se entender a Geometria Projetiva como o ramo da Ma-
temática que estuda as relações entre um objeto do mundo real e sua imagem
projetada. É a geometria que descreve a forma como enxergamos e, com isso,
observa-se que os limites da Geometria Projetiva transcendem a Geometria Eu-
clidiana e seus postulados.

Sua essência nasce no século XVII, período em que matemáticos necessitam
embasar cientificamente as técnicas utilizadas por artistas do Renascimento na
construção de seus desenhos.[3]

Formalmente, a Geometria Projetiva é definida como o estudo das proprieda-
des geométricas que são invariantes com respeito às transformações projetivas.
[3]

2.1.1 Extensão do Plano Euclidiano e Reta no infinito

Antes de mergulharmos nas transformações projetivas que nos permitem proje-
tar as imagens no infinito, precisamos entender alguns conceitos básicos.

Seja a seguinte definição do Plano Euclidiano Estendido[5]:

• Considere o Plano Euclidiano R2

• Dada uma reta r do R2, o conjunto consistindo de r e todas as retas
paralelas a r é chamado de um feixe de retas paralelas. Para cada feixe
de retas paralelas, adicione uma entidade abstrata P∞, chamada ponto
no infinito do feixe. As retas do feixe são ditas se interceptar em P∞.
Uma reta r unida ao seu ponto no infinito é chamada de reta estendida,
e é denotada por r∗.

• Estipule que distintos feixe de retas têm distintos pontos no infinito.

• O conjunto de todos os pontos pontos no infinito é chamado de reta no
infinito, e é denotado por r∞.

Então, segue que o Plano Euclidiano estendido é uma tripla (P, R, I)
com:

• P pontos que são os pontos de R2 e os pontos P∞ do infinito.

• R retas que são as retas estendidas e a reta no infinito r∞.

• Relação de incidência I herdada, ou seja:

– um ponto P, que não está no infinito, pertence a r∗ se, e somente se,
P está em r.

– P∞ está em r∗ se, e somente se, P∞ é o ponto no infinito do feixe
retas paralelas determinados por r∗.

– Todos os pontos no infinito estão em r∞.
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2.1.2 Plano Projetivo

Seja a definição de Planos Projetivos.

Um Plano Projetivo π é um conjunto P de pontos e um conjunto L de
subconjuntos de P , chamado de retas, satisfazendo as seguintes propriedades:

• P1. Existe uma única reta unindo dois pontos distintos.

• P2. Existe um único ponto de intersecção entre duas retas distintas.

• P3. Existem pelo menos três pontos não colineares

• P4. Existem pelo menos três pontos em cada linha.

Observe que o Plano Euclidiano Estendido é um Plano Projetivo, uma vez
que todos os axiomas acima são satisfeitos. Entretanto, o Plano Euclidiano não
é um plano projetivo desde que o axioma P2 não é satisfeita por nenhum par
de retas paralelas.

2.2 Coordenadas Homogêneas
Um dos principais conceitos que se deve dominar quando estamos trabalhando
com projetividade é o de Coordenadas Homogêneas e sua associação com a Ge-
ometria Projetiva.

"Coordenadas homogêneas, ou coordenadas projetivas, são um sistema de
coordenadas usados em Geometria Projetiva, assim como as coordenadas car-
tesianas são usadas na Geometria Euclidiana. Sua principal vantagem consiste
na possibilidade de que pontos, incluindo pontos no infinito, podem ser represen-
tados utilizando coordenadas finitas. (...) Em geral, transformações projetivas
podem ser facilmente representadas por uma matriz." [6]

As afirmações a seguir são definidas e demonstradas em [4].

2.2.1 Pontos

Representação Euclidiana
No espaço Euclidiano padrão, utilizando notação vetorial, normalmente nós
representaríamos pontos no R2 como segue:

P =

[
x
y

]
Representação Homogênea

Em coordenadas homogêneas, simplesmente adicionamos uma dimensão extra
ao vetor, com valor unitário. Então, multiplicamos o novo vetor por um arbi-
trário fator escalar kp, temos:

P = kp ·

xy
1

 =

kpxkpy
kp

 (1)

Se quisermos voltar aos valores cartersianos, simplesmente dividimos as co-
ordenadas pelo escalar escolhido.
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2.2.2 Retas

Em Coordenadas Homogêneas, uma reta no espaço 2D, é simplesmente repre-
sentada como segue:

r =

ab
c

 .

O que corresponde à equação ax+ by + c = 0.

2.2.3 Propriedades de Pontos e Retas

Agora, nós sabemos como representar pontos e retas em Coordenadas Homo-
gêneas. Iremos explorar algumas propriedades oriundas das definições destes
elementos.

Veficando se um ponto pertence a uma reta
Um ponto pertence a uma reta se, e somente se,:

r · P = 0.

Ao expandirmos a equação, podemos encontrar:ab
c

T

·

kpxkpy
kp

 ∴

ax+ by + c = 0 (2)

Que nos traz a equação da reta na forma cartesiana.

Intersecção de retas
Duas retas r e s se interceptam em

x = r × s (3)

Sejam r =

a1b1
c1

 e s =

a2b2
c2

 retas em coordenadas homogêneas. Segue, da

Geometria Analítica sobre a interseção de dois planos no espaço tridimensional,
que:

r × s =

 i j k
a1 b1 c1
a2 b2 c2


Expandido o produto vetorial, temos:

r × s = (b1c2 − b2c1).i + (a2c1 − a1c2).j + (a1b2 − a2b1).k

Escrevendo na forma de vetor coluna, temos:

P =

b1c2 − b2c1
a2c1 − a1c2
a1b2 − a2b1


14



Observe que P é da forma kpxkpy
kp

 .

Para converter em Coordenadas Euclidianas, basta dividirmos pelo último
termo.

x =
kpx

kp
=

b1c2 − b2c1
a1b2 − a2b1

y =
kpy

kp
=

a2c1 − a1c2
a1b2 − a2b1

Nesse caso, dizemos que os pontos estão normalizados.

Retas passando por dois pontos

Uma reta passa por dois pontos P e Q se, somente se:

r = P ×Q (4)

isto é, a reta unindo dois pontos P e Q é dada pelo produto vetorial da repre-
sentação homogênea desses pontos. Logo, vem:

Sejam os pontos P1 =

kp1x1

kp1y1
kp1

 e P2 =

kp2x2

kp2y2
kp2

, temos o seguinte produto

vetorial:

P1 × P2 =

 i j k
kp1x1 kp1y1 kp1
kp2x2 kp2y2 kp2


Expandido o produto vetorial, temos:

P1 × P2 = kp1kp2(y1 − y2).i + kp1kp2(x2 − x1).j + kp1kp2(x1y2 − x2y1).k

Escrevendo na forma do vetor coluna, temos:

r = kp1kp2

 y1 − y2
x2 − x1

x1y2 − x2y1


Observe que se chamarmos a = kp1kp2(y1 − y2), b = kp1kp2(x2 − x1) e

c = kp1kp2(x1y2 − x2y1), a equação se resume a:

r =

ab
c


descrevendo a equação da reta, como definimos acima.
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2.2.4 Pontos ideais e Reta no infinito

Intersecção de Retas Paralelas
Considere duas retas r : ax + by + c1 = 0 e s : ax + by + c2 = 0. Essas retas
são representadas, em coordenadas homogêneas, pelos vetores r = (a, b, c1)

T e
s = (a, b, c2). Note que como as duas coordenadas são iguais, estas são paralelas.
Vamos agora, aplicar a equação 3 para encontrar os pontos de intersecção:

r × s =

∣∣∣∣∣∣
i j k
a b c1
a b c2

∣∣∣∣∣∣ ∴ (5)

(c2 − c1)(ib+ j(−a))

Logo, o ponto de intersecção entre as retas é P = (c2 − c1)(b,−a, 0)T . Igno-
rando o fator escalar (c2 − c1), ficamos com o ponto (b,−a, 0)T .

Note que se quisermos a representação euclidiana do ponto, obeteríamos
(b/0, -a/0), uma divisão não definida matematicamente, sugerindo apenas que
possuem coordenadas infinitamente grandes. Pontos da forma homogênea (x, y, 0)T

não correspondem a ponto finito no R2. Esse fato vai ao encontro da ideia tra-
dicional de que retas paralelas se encontram no infinito.

Pontos ideais

Pontos de coordenadas homogêneas x = (x1, x2, x3)
T tais que x3 ̸= 0 cor-

respondem a pontos finitos no R2. Os pontos com coordenada x3 = 0 são
conhecidos como pontos ideais ou pontos no infinito. Eles são da forma:

xideal =

x1

x2

0

 (6)

Reta no infinito
Observe que a união de todos os pontos ideais estão contidos numa única reta,
chamada reta no infinito, denotada pelo vetor r∞ = (0, 0, 1)T , uma vez que o
produto escalar entre os pontos ideais e a reta no infinito é igual a 0. Isto é,

xideal · r∞ =

x1

x2

0

T

·

00
1

 = 0

2.3 Transformações Projetivas
Uma transformação projetiva é uma transformação linear de um vetor em coor-
denadas homogêneas representado por uma matriz não-singular 3× 3, tal que:x′

1

x′
2

x′
3

 =

h11 h12 h13

h21 h22 h23

h31 h32 h33

x1

x2

x3

 (7)

A transformação projetiva desenha cada imagem em um plano projetiva-
mente equivalente, deixando todas as suas propriedades projetivas invariantes.
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2.3.1 Reta no infinito

Sob uma transformação projetiva, pontos ideais podem ser mapeados para pon-
tos finitos e, consequentemente, r∞ pode ser mapeada por uma reta finita. Esse
mapeamento é dado por:

H =

1 0 0
0 1 0
a b c

 , c ̸= 0. (8)

Seja o ponto que se quer projetar no infinito P = (x, y, 1)T . Temos que:

P =

1 0 0
0 1 0
a b c

xy
1

 =

 x
y

ax+ by + c


Dividindo as duas primeiras coordenadas, a fim de se obter os pontos em

coordenadas euclidianas, temos:

x′ =
x

ax+ by + c

y′ =
y

ax+ by + c

2.4 Fractais
2.4.1 Definição

O termo Fractal foi definido inicialmente pelo matemático polonês - com naci-
onalidade francesa e americana - Benoit B. Mandelbrot em 1975 em seu livro
The Fractal Geometry of Nature. O termo faz referência ao adjetivo em Latin
fractus, o verbo correspondente em Latim é frangere e significa "quebrar"para
criar fragmentos regulares [2]. Um fractal é uma figura geométrica em que cada
parte é semelhante ao objeto como um todo, os padrões da figura inteira são
repetidos em cada parte em uma escala menor.

2.4.2 Exemplos

Os Fractais são encontrados com facilidade na natureza como podemos observar
em flocos de neve, plantas, árvores.

Figura 1: Folha de Samambaia
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Figura 2: Floco de neve

Paralelamente, alguns fractais são definidos por equações matemáticas e po-
dem exibir formas inusitadas e belas.

Figura 3: Tapete de Sierpinsky, Triângulo de Sierpinsky, Árvore Recursiva

2.4.3 O Conjunto de Mandelbrot

Um dos fractais que ganha mais destaque é o conjunto de Mandelbrot. Foi
definido inicialmente por Robert W. Brooks e Peter Matelski em 1978 (Fig.
4), como parte de um estudo sobre grupos Kleinianos[8]. Benoit Mandelbrot,
enquanto pesquisador da IBM, obteve visualizações do conjunto com maiores
qualidades(Fig. 5). Por esse motivo, e por ser precursor do tema, tal conjunto
leva seu nome.

É definido como segue:

Conjunto dos pontos de c no Plano Complexo para os quais a sequência
definida por:

zn =

{
0, n=0
z2n−1 + c, n>0

(9)

não tende ao infinito.
Observe que c pode assumir qualquer valor dentro do conjunto dos Números

Complexos. No entanto, para valores de c que se afastam da origem, a sequên-
cia tende ao infinito e c "escapa"do conjunto. Mais precisamente, o conjunto
é limitado por uma circunferência de raio 2. Isto é, um ponto c pertence ao

18



Figura 4: Conjunto de Mandelbrot obtido por Robert W. Brooks e Peter Ma-
telski em 1978

Figura 5: Conjunto de Mandelbrot

Conjunto de Mandelbrot se, e somente se, |zn| ≥ 2 para todo n ≥ 0.[8]

Para desenhar o conjunto de mandelbrot em tela, descreveremos o pseudo-
codigo abaixo. A ideia é simples. Basta percorrer todos os pixels da região que
se quer desenhar, mapear os pontos para o intervalo pertencente ao conjunto de
mandelbrot, iterar sobre os pontos e verificar se estes estão fora ou dentro do
conjunto, e a depender do caso atribui-se uma cor ao ponto.

para cada pixel (px, py) da tela, faça:
x0 = coordenada x mapeada dentro do eixo real que se quer observar
y0 = coordenada y mapeada dentro do eixo imaginário que se quer observar
c(x0, y0) // número complexo associado aos pontos x0 e y0
iterações = 0
max_iterações = 1000
z = (0,0) // número complexo auxiliar
enquanto(|c| < 2 && iterações < max_iterações), faça:

z = z * z + c;
iterações++;

cor = pallete[iterações]
plot(px, py, cor)
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Observe que ao se escolher adequadamente os valores ao qual quer se mapear,
dentro do Conjunto de Mandelbrot - isto é, definir as fronteiras do eixo real ou
imaginário -, podemos deslocar o conjunto vertical ou horizontalmente, também
é possível "dar zoom"no conjunto.

2.4.4 O Conjunto de Julia

O Conjunto de Julia é um conjunto que surge no estudo da Dinâmica Com-
plexa[9]. O nome desse conjunto é em homenagem ao matemático francês Gas-
ton Julia (1893-1978), quem descobriu esse conjunto e explorou suas proprieda-
des.

Exploraremos a forma polinomial quadrática desse conjunto e suas renderi-
zações. O Polinômio Quadrático desse conjunto é similar a definição recursiva
do Conjunto de Mandelbrot:

fc(z) = z2 + c (10)

No entanto, o parâmetro c é fixo. Diferentemente do Conjunto de Mandel-
brot, onde se iterava variando-se os valores de c.

O pseudocódigo para o algoritmo da geração do Conjunto de Julia é:

escolha um número complexo c
para cada pixel (px, py) da tela, faça:

x0 = coordenada x mapeada dentro do eixo real que se quer observar
y0 = coordenada y mapeada dentro do eixo imaginário que se quer observar
z = (x0, y0) // número complexo associado aos pontos x0 e y0
iterações = 0
max_iterações = 1000
enquanto(|c| < 2 && iterações < max_iterações), faça:

z = z * z + c;
iterações++;

cor = pallete[iterações]
plot(px, py, cor)
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3 Metodologia

3.1 OpenGL
A fim de se obter as imagens para este trabalho, foi utilizada a biblioteca
OpenGL na versão 3.3.[7]

3.2 Projetividade
Como descrito na seção 2.3.1, para obter uma imagem projetada, deve-se mul-
tiplicar as coordenadas de seus pixels por uma matriz não-singular 3 × 3 que
leve os pontos originais aos projetados seguidos por uma normalização.

A matriz deve ser da forma:

H =

1 0 0
0 1 0
a b c


Note que, como a, b e c representam os coeficientes de uma reta, podemos

dividir toda a terceira linha por c, sem perda de generalidade, e a matriz é
simplificada a:

H =

 1 0 0
0 1 0
v1 v2 1

 (11)

Essa matriz é definida como variável global no projeto e os valores de v1 e
v2 podem ser alterados em tempo real via teclado.

float v1 = 0.00;
float v2 = 0.00;
float projectivity[3][3] = {{1, 0, 0}, {0, 1, 0}, {v1, v2, 1}};

O resultado dessa aplicação da projetividade é descrito na seção 3.4.

3.3 Conjunto de Mandelbrot no OpenGL
Como descrito no item 2.4.3, o conjunto é descrito por uma função recursiva,
para os quais a sequencia definida pela equação 9 não tende ao infinito. Além
disso, deve se fazer o mapeamento dos valores do conjunto de Mandelbrot para
os valores em tela.

Inicialmente definiremos algumas variáveis globais:

• minRe, menor valor do eixo real a ser observado.

• maxRe, maior valor do eixo real a ser observado.

• minIm, menor valor do eixo imaginário a ser observado.

• maxRe, maior valor do eixo imaginário a ser observado.

• maxIterations, máxima quantidade de iterações, para evitar que haja loop
infinito.
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• width e height, largura e altura da tela, respectivamente.

Para fins de modularidade e organização do código, foi criada uma função "be-
longs"para saber, apenas, se o ponto está no conjunto ou não.

#include <complex>

int belongs(std::complex<double> c, int iterations) {
std::complex<double> z(0, 0);
int i = 0;
while (abs(z) < 2 && i < iterations) {

z = z * z + c;
i++;

}
return i;

}

A função principal fica:

for (int i = -width; i < width; i++) {
for (int j = -height; j < height; j++) {

xPosition = (float)(i) / width;
yPosition = (float)(j) / height;
xMandelbrot = minRe + (maxRe - minRe) * ((xPosition + 1) / 2);
yMandelbrot = minIm + (maxIm - minIm) * ((yPosition + 1) / 2);
result = belongs(std::complex<double>(xMandelbrot, yMandelbrot), maxIterations);
if (result != maxIterations) {

h = 40 + round(120 * result * 1.0 / maxIterations);
rgb = hsl2rgb((float)h / 100, 0.6, 0.7);
glColor3ub(rgb.r, rgb.g, rgb.b);
glVertex3f(xPosition, yPosition, 0);

}
}

}

O resultado é exibido na figura 6.

Figura 6: Conjunto de Mandelbrot gerado utilizando OpenGL
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Como foi dito também no item 2.4.3 ao mudar as variaveis de fronteiras,
altera-se a imagem gerada. Ao escolher os valores minRe = −1.5, maxRe =
−1.3, minIm = −0.2, maxIm = 0.2, obtemos a Fig. 7.

Figura 7: Conjunto de Mandelbrot no zoom

Também é possível alterar a paleta de cores através da definição da cor em
HSL. Note que o valor de h (hue ou matiz) depende da quantidade de iterações
necessárias para validar se o ponto está dentro ou fora do conjunto. Ao se es-
colher a base de h como 100 e os valores de s (saturação) como 0.5 e de l (luz)
como 0.6, obtem-se a Fig. 8.

Figura 8: Conjunto de Mandelbrot variando-se as cores

3.4 Projetividade no Conjunto de Mandelbrot
Para obter os pixels projetados, devemos multiplicar a matriz da equação 11
pelo vetor coluna de coordenadas homogêneas dos pontos.

Para v1 = 0.23 e v2 = 0.8, temos:

float xScreen;
float yScreen;
float xMandelbrot;
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float yMandelbrot;
float coord[3][3] = {{}, {}, {}};

float xProjected;
float yProjected;

glBegin(GL_POINTS);

for (int i = -width; i < width; i++)
{

for (int j = -height; j < height; j++)
{

xScreen = (float)(i) / width;
yScreen = (float)(j) / height;
xMandelbrot = minRe + (maxRe - minRe) * ((xScreen + 1) / 2);
yMandelbrot = minIm + (maxIm - minIm) * ((yScreen + 1) / 2);
coord[0][0] = xMandelbrot;
coord[1][0] = yMandelbrot;
coord[2][0] = 1;
multiply(projectivity, coord, M4);
xProjected = M4[0][0] / M4[2][0];
yProjected = M4[1][0] / M4[2][0];
result = belongs(std::complex<double>(xScreen, yScreen), maxIterations);
if (result != maxIterations)
{

h = 100 + round(120 * result * 1.0 / maxIterations);
rgb = hsl2rgb((float)h / 100, 0.5, 0.6);
glColor3ub(rgb.r, rgb.g, rgb.b);
glVertex3f(xProjected, yProjected, 0);

}
}

}

glEnd();

A figura 9 exibe o resultado dessa operação.

Figura 9: Conjunto de Mandelbrot renderizado com descontinuações na tela
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Note, no entanto, que há espaços vazios e descontinuações na tela proveniente
da renderização. Para corrigir essa falha, devemos aplicar a função belongs aos
pontos projetados, desenhar os pontos xScreen e yScreen e a matriz a ser
considerada é a matriz inversa, isto é, H−1. Nesse caso, o código fica:

glBegin(GL_POINTS);

for (int i = -width; i < width; i++)
{

for (int j = -height; j < height; j++)
{

xScreen = (float)(i) / width;
yScreen = (float)(j) / height;
xMandelbrot = minRe + (maxRe - minRe) * ((xScreen + 1) / 2);
yMandelbrot = minIm + (maxIm - minIm) * ((yScreen + 1) / 2);
coord[0][0] = xMandelbrot;
coord[1][0] = yMandelbrot;
coord[2][0] = 1;
multiply(projectivityInverse, coord, M4);
xProjected = M4[0][0] / M4[2][0];
yProjected = M4[1][0] / M4[2][0];
result = belongs(std::complex<double>(xProjected, yProjected), maxIterations);
if (result != maxIterations)
{

h = 100 + round(120 * result * 1.0 / maxIterations);
rgb = hsl2rgb((float)h / 100, 0.5, 0.6);
glColor3ub(rgb.r, rgb.g, rgb.b);
glVertex3f(xScreen, yScreen, 0);

}
}

}

glEnd();

O resultado da imagem corrigida é o que é exibido na figura 10.

Figura 10: Conjunto de Mandelbrot sem descontinuações na tela
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Adicionalmente, pode-se "elevar"a ordem do Conjunto de Mandelbrot, au-
mentando o grau do polinômio.

Figura 11: Conjunto de Mandelbrot para fc(z) = z3 + c

Figura 12: Conjunto de Mandelbrot para fc(z) = z4 + c

3.4.1 Conjunto de Julia

Como observado na seção 2.4.4, o Conjunto de Julia para polinômios quadráticos
se aproxima da sequência recursiva do Conjunto de Mandelbrot, mudando-se
apenas o fato de que fixa-se o número complexo c e variam-se os valores de z
pelo plano complexo. Definiremos uma nova função chamada belongsToJulia
como segue:

int belongsToJulia(std::complex<double> c, std::complex<double> z, int iterations)
{

int i = 0;
while (abs(z) < 2 && i < iterations)
{

z = z * z + c;
i++;

}
return i;

}
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E a função completa fica:

std::complex<double> c(-0.715,0.200);

glBegin(GL_POINTS);

for (int i = -width; i < width; i++)
{

for (int j = -height; j < height; j++)
{

xPosition = (float)(i) / width;
yPosition = (float)(j) / height;
xMandelbrot = minRe + (maxRe - minRe) * ((xPosition + 1) / 2);
yMandelbrot = minIm + (maxIm - minIm) * ((yPosition + 1) / 2);
coord[0][0] = xMandelbrot;
coord[1][0] = yMandelbrot;
coord[2][0] = 1;
multiply(projectivityInverse, coord, M4);
xProjected = M4[0][0] / M4[2][0];
yProjected = M4[1][0] / M4[2][0];
result = belongsToJulia(c, std::complex<double>(xProjected, yProjected), maxIterations);
if (result != maxIterations)
{

h = 10 + round(250 * result * 1.0 / maxIterations);
rgb = hsl2rgb((float)h / 50, 0.8, 0.4);
glColor3ub(rgb.r, rgb.g, rgb.b);
glVertex3f(xPosition, yPosition, 0);

}
}

}

glEnd();

Note que os parâmetros de projetividade estão presentes pois são equivalen-
tes ao do Conjunto de Mandelbrot.

Temos os seguintes resultados na figura 13 para diferentes números comple-
xos escolhidos.

Figura 13: Conjunto de Julia para c = −0.715 + 0.2i, c = 0.285 + 0i e c =
0.285 + 0.01i, respectivamente
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Também é possível visualizar zoom e projetividade para a reta no infinito
r∞.

Figura 14: Conjunto de Julia com zoom e para valores de v1 = 0.23 e v2 = 0.74

3.5 Utilizando Curvas de Bezier para observar a mudança
de cores

Curva de Bézier é uma curva polinomial paramétrica expressa como a interpo-
lação linear entre pontos representativos, pontos de controle. Foi definida em
1962 por Pierre Bézier, então funcionário da fábrica de automóveis Renault.

3.5.1 Definição Matemática

Sejam B1, B2, B3, ..., Bn pontos de controle, um ponto pertencente a Curva de
Bézier é dado por:

B(t) =

n∑
i=0

(
n

i

)
(1− t)n−itiBi (12)

O resultado da Curva de Bezier para 4 pontos de controle é mostrado na
figura 15

Figura 15: Curva de Bézier para 4 pontos de controle em 2 dimensões

Note que os pontos definidos na equação 12 não são restritos a 2 dimen-
sões. Se estendemos os pontos para 3 dimensões, podemos obter, para cada
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valor de t, um vetor v = (Bx(t), By(t), Bz(t)) e podemos definir estes valores
como parâmetros de entrada para a renderização do Conjunto de Mandelbrot
ou do Conjunto de Julia definido anteriormente, dentro de uma faixa de valores
apropriada.

A implementação segue como:

Combinação de n elementos tomados r a r adicinada a função auxiliar
productRange, que calcula o produto de todos os números inteiros entre nú-
meros inteiros dados:

int combination(int n, int r)
{

if (n == r || r == 0)
{

return 1;
}
else
{

r = (r < n - r) ? n - r : r;
return productRange(r + 1, n) / productRange(1, n - r);

}
}

int productRange(int a, int b)
{

int prd = a, i = a;

while (i++ < b)
{

prd *= i;
}
return prd;

}

Curva de Bézier:

point bezierPoint(float t, float xPoints[], float yPoints[], float zPoints[], int nPoints)
{

float x = 0;
float y = 0;
float z = 0;

struct point p;

for (int i = 0; i <= nPoints; i++)
{

x += combination(nPoints, i) * pow(1 - t, nPoints - i) * pow(t, i) * xPoints[i];
y += combination(nPoints, i) * pow(1 - t, nPoints - i) * pow(t, i) * yPoints[i];
z += combination(nPoints, i) * pow(1 - t, nPoints - i) * pow(t, i) * zPoints[i];

}
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p.x = x;
p.y = y;
p.z = z;

return p;
}

Perceba que o retorno da função bezierPoint retorna um ponto com 3 co-
ordenadas. Podemos atribuir essas coordenadas a cada uma das variáveis do
nosso sistema de cor HSL.

O trecho de código modificado será:

h = 10 + round(360 * p.x * result * 1.0 / maxIterations);
rgb = hsl2rgb((float)h / 50, p.y, p.z);

onde p é um ponto da Curva de Bézier para pontos de controle arbitrários.
Para os pontos de controle B0 = (0.3, 0.7, 0.2), B1 = (0.1, 0.4, 0.63) e B2 =

(0.8, 0.12, 0.67) e t = 0.55, temos como resultado a figura 16.

Figura 16: Utilizando a Curva de Bezier para variar as cores do Conjunto de
Julia

3.6 Velocidade de Iterações do Conjunto de Mandelbrot
Um resultado natural que se poderia esperar para fractais projetivamente trans-
formados (além da deformação geométrica em si) seria a apresentação de mag-
nificações de diferentes níveis ("zooms") ao mesmo tempo em regiões distintas
da figura. Magnificações de níveis muito díspares poderiam produzir fractais
verdadeiramente novos, ao invés de fractais já conhecidos mas deformados pro-
jetivamente. Mas há uma questão de velocidade de avaliação em operação.

Observe a equação 9. Perceba que a sequência por ela definida evolui seus
termos complexos quadraticamente. Se analisarmos o termo z2n utilizando a
fórmula de De Moivre[11], temos:

z2n = [ρ2(cosϕ+ i sinϕ)] (13)

Isto é, a cada vez que a sequência é iterada, seu módulo aumenta ao qua-
drado. E como descrito na seção 2.4.3, se o módulo de zn ≥ 2, o número
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complexo zn não pertence ao Conjunto de Mandelbrot. Como esta sequência
converge para o infinito rapidamente, a deformação projetiva não contrabalan-
ceia a velocidade da geração de fractais suficientemente para se observar novas
estruturas de fronteira, visto que tal transformação, descrita em 2.3.1 e em 3.2,
é uma operação linear seguida de uma normalização.
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4 Conclusão

Esse trabalho se propôs a estudar a formação de fractais no Plano Projetivo,
dando uma atenção especial ao Conjunto de Mandelbrot e suas derivações. Fo-
ram apresentados e discutidos diversos conceitos de Fractais e Geometria Pro-
jetiva, a fim de fornecer um embasamento teórico necessário ao entendimento
do tema.

Os axiomas, postulados e definições apresentados na seção 2.1 dispõe de
todo aparato matemático que alicerça a implementação. Caso o leitor sinta-se
convidado a uma visão mais densa sobre o assunto, consultar [3], [4] e [5].

Para obter o resultado esperado, utilizou-se o OpenGL como motor gráfico
para renderizar as imagens apresentadas nas seções 3.3, 3.4 e 3.5. O que resultou
em imagens estáticas com boa resolução. No entanto, devido ao alto número
de operações provenientes da implementação do algoritmo de renderização, ao
se fazer ações interativas como zoom ou alterar a reta no infinito, o sistema
apresentou alguns travamentos devido a limitação física do equipamento. Caso
os parâmetros fossem apresentados previamente, a imagem era renderizada de
forma fluida.

4.1 Trabalhos Futuros
Durante a elaboração deste trabalho, novas ideias surgiram de assuntos que
transcendem, tangenciam ou complementam o tema. São eles:

• Utilizar GPU para renderização dos conjuntos.

• Analisar outros fractais.

• Investigar projetividade em curvas bidimensionais clássicas, tais como
Lemniscata, Limaçons, Figuras de Lissajous.
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