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ABSTRACT 

 

Risk Analysis (RA) is crucial to prevent and mitigate potential risk events; 

however, there are several challenges related to RA. For instance, accident 

investigation reports are useful sources of information to support safety professionals 

to propose measures to prevent or mitigate identified occupational accident root 

causes. Nevertheless, reports’ low quality and lack of detail may limit their usefulness. 

Moreover, the quality of Quantitative Risk Analysis (QRA) strongly relies on the 

identification of all potential hazards with major consequences related to the operation 

of an industrial system, which is usually performed by multiple experts and consumes 

a considerable amount of time and effort. Since valuable knowledge about an industrial 

system is stored in the form of textual data, Natural Language Processing (NLP) 

techniques can be helpful since it can be applied to extract, organize, and classify 

information from text. Although several studies contributed to the advance of RA, most 

studies applying NLP focus primarily on automatically identifying patterns from reactive 

data, such as accident reports, and do not consider the quality of information contained 

in these documents. In addition, different forms of text data store relevant knowledge 

about industrial systems and their respective risks, especially proactive data such as 

documents resulting from preliminary risk studies, and adoption of these data could 

support preventive risk studies. The main purpose of this study is to develop NLP-

based solutions to different issues faced in RA. Thus, this thesis presents two 

methodologies to (i) identify issues in a hydropower company’s accident investigation 

reports that may compromise their usefulness as a decision support tool (ii) 

automatically identify risk features from documents to support the initial stage of QRA 

in Oil and Gas (O&G) industries. Occupational safety technicians can benefit from the 

methodology that helps to identify issues and propose improvements to the accident 

reports. In addition, the second methodology can help experts to identify and assess 

hypothetical accidental scenarios related to the operation of an industrial facility. Thus, 

this thesis may contribute to the prevention and mitigation of occupational and/or major 

accidents and consequently avoid/reduce property damage, economic and social 

disruption, environmental degradation, and human losses. 

 

Keywords: risk analysis; accident investigation reports; natural language processing; 

text mining; oil refineries; hydroelectric power company. 



 
 

RESUMO 

 

A Análise de Riscos (RA) é essencial para a prevenção e mitigação de 

potenciais eventos de risco, porém há vários desafios relacionados à execução da 

análise. Por exemplo, relatórios de acidentes, são fontes úteis de informação para 

apoiar os especialistas de segurança a propor medidas preventivas/mitigativas das 

causas acidentais ocupacionais identificadas. Porém, a falta de detalhes e a baixa 

qualidade dos relatórios podem limitar a sua utilidade. Além disso, a qualidade da 

Análise Quantitativa de Risco (QRA) depende fortemente da identificação de todos os 

potenciais perigos com consequências graves, relacionados à operação do sistema 

industrial, o que consome uma quantidade considerável de tempo e esforço. Nesse 

contexto, o Processamento de Linguagem Natural (NLP) pode ser útil pois pode ser 

aplicado para extrair, organizar e classificar a informação do texto. Embora vários 

estudos tenham contribuído para o avanço da RA, a maior parte dos estudos que 

aplicam NLP à RA foca principalmente na identificação automática de padrões a partir 

de dados reativos, tais como relatórios de acidentes, e não consideram a qualidade 

da informação contida nestes documentos. Além disso, diferentes formas de dados 

de texto armazenam conhecimento relevante sobre os sistemas industriais e seus 

respectivos riscos, especialmente dados proativos, como documentos resultantes de 

estudos preliminares de riscos, e a adoção desses dados poderia apoiar estudos de 

risco preventivos. Por isso, esta tese apresenta duas metodologias baseadas em NLP 

para (i) identificar problemas em relatórios de acidentes que possam comprometer a 

utilidade desses documentos como ferramenta de suporte a decisão e (ii) para 

identificar características de risco a partir de documentos para apoiar a fase inicial da 

QRA. A primeira metodologia dá suporte aos técnicos de segurança para identificar 

problemas e propor melhorias/correções nos relatórios de acidente, contribuindo para 

uma melhor gestão de acidentes ocupacionais. Além disso a segunda metodologia 

pode auxiliar especialistas a identificar e avaliar cenários acidentais relacionados a 

operação de um sistema industrial. Dessa forma essa tese contribui para a prevenção 

e mitigação de acidentes e consequentemente evita/reduz danos a propriedade, 

econômicos e sociais, degradação ambiental e perdas humanas. 

 

Palavras-chave: análise de riscos; relatório de acidentes; processamento de 

linguagem natural; mineração de texto; refinaria de petróleo; companhia hidroelétrica.  
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1 INTRODUCTION 

 

1.1 INITIAL REMARKS 

 

Advances in technology and the growth in demand for different products have 

contributed to the increasing complexity of industrial systems, which brings huge 

challenges to the safe operation of these systems (HAO, NIE, 2022). Thus, the practice 

of Risk Analysis (RA), which involves hazard identification, risk assessment and 

management, is crucial to effectively guide investments for the prevention and 

mitigation of potential risk events. Shortfalls in RA, such as accuracy, decision making 

and communication, can have negative effects on economy, society, environment and 

business image (THEKDI, AVEN, 2022). 

Professionals from occupational safety and process safety, which are two 

separate disciplines with different approaches, can work together to create a safe 

environment and occupational health. The main difference between occupational 

safety and process safety is that process safety deals with undesired events, usually 

with a focus on ‘loss of containment’, that happen at a lower frequency, and are more 

likely to result in major consequences (SWUSTE, THEUNISSEN, et al., 2016). On the 

other hand, occupational safety typically addresses events involving personal safety at 

an individual level with small consequences (ALI, ARIFIN, et al., 2022). 

The risk models developed have been changing rapidly, one reason is the 

advance in computing performance and the ability to record, store and process 

massive amount of data. Another reason is the breakthroughs in the fields of Machine 

Learning (ML) and artificial intelligence that have enabled the efficient extraction of 

information from complex, high-dimensional and unstructured datasets (NATEGHI, 

AVEN, 2021). 

Overall, RA should help inform risk management to prioritize the most critical 

scenarios. To achieve this purpose different risk assessment tools and data sources 

can be applied. However, there are several challenges related to RA such as the 

quality and scope of information, absence of knowledge exchange in practice and 

implementation of some risk assessment tools (GREENBERG, COX, et al., 2020, 

KHODADADYAN, RESEARCHER, et al., 2021). 

For instance, most national and international regulators require companies to 

store a collection of investigation reports of occupational accidents. These reports are 



18 

 

useful sources of information to extract valuable characteristics related to the event 

that can be explored to support safety professionals to take appropriate actions to 

remove or attenuate identified root causes (HÄMÄLÄINEN, TAKALA, et al., 2017, 

SILVA, JACINTO, 2012). However, reports’ low quality and lack of detail may limit their 

usefulness because reasonable resources are required for manual analysis, which is 

a complex and error-prone task (YOUNG, I. J. B.; LUZ; LONE, 2019). 

In the context of process safety, Quantitative Risk Analysis (QRA) has been 

widely applied to large technological systems. At its core, QRA seeks to answer three 

questions: ‘what can go wrong?’, ‘how likely is it’ and ‘what are the consequences?’. 

Thus, the quality of QRA relies on the identification of all potential hazards performed 

in the initial stage of the analysis. This process is usually accomplished by different 

experts, which consumes a considerable amount of time and effort, and the results of 

this stage are recorded and periodically reviewed (APOSTOLAKIS, 2004). 

Commonly, information about an industrial system is stored in the form of textual 

data. Although these documents store valuable knowledge, the number of available 

documents is overwhelming and difficult to be manually processed. Thus, Natural 

Language Processing (NLP) techniques can be helpful since it can be applied to 

extract, organize, and classify information from text, allowing the automatic 

identification of patterns (DRURY, ROCHE, 2019). Indeed, approximately 76% of 

activities in industries require natural language understanding (BAKER, HALLOWELL, 

et al., 2020). 

NLP has been successfully applied in different fields such as healthcare, 

marketing, education, and industry (GAGNE, HALL, et al., 2019, HEIDINGER, 

GATZERT, 2018, YIM, WARSCHAUER, 2017, ZARE, 2019). NLP is an 

interdisciplinary field that uses different analysis tools and involves techniques from 

ML and Text Mining (TM). In a nutshell, NLP can be considered as a subdiscipline of 

artificial intelligence and computational linguistics that includes any manipulation of 

natural language to allow computers generating statements and/or words written in 

human languages (KHURANA, KOLI, et al., 2017). Therefore, this study proposes the 

application of NLP to develop solutions for problems faced when carrying out RA. 

Here we will present two methodologies based on NLP techniques that were 

developed to solve different real-world problems in the context of RA. The first 

proposed methodology uses different NLP approaches to identify issues in a 

hydropower company’s accident investigation reports that may compromise their 
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usefulness as a decision support tool. While the second methodology proposed aims 

to identify risk features in oil refineries in order to support the initial stage of QRA in Oil 

and Gas (O&G) industries. Thus, we believe that this thesis represents a positive 

contribution to RA, at different stages of the life cycle of an industrial system, by 

enabling an efficient use of human resources and risk management. For instance, 

Figure 1 illustrates when the methodologies described in this thesis could be applied 

in a generic process industry. 

 

Figure 1 – Example of application of the methodologies in the timeline of an industrial facility 

 
Source: The author (2022). 

 

Occupational safety technicians can benefit from the methodology that helps to 

identify problems and propose improvements and/or corrections to accident reports. In 

addition, the developed research can help risk analysts to identify and assess 

unexpected events related to the operation of an industrial facility. Thus, this thesis 

may contribute to the prevention and mitigation of occupational and/or major accidents 

(i.e., events with severe damage to people, to the environment and surroundings) and 

consequently avoid/reduce property damage, economic and social disruption, 

environmental degradation, and human losses. 
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1.2 MOTIVATION 

 

This section presents the motivation behind both proposed NLP-based 

methodologies mentioned above. 

 

1.2.1 Assessment of Accident Investigation Reports of a Hydropower Company 

 

Work accidents can lead not only to huge financial losses for the organization 

but also to serious threats to people’s integrity and environment (MAIOR, SANTANA, 

et al., 2018). According to the Workplace Safety and Health Institute in partnership with 

International Labour Organization (HÄMÄLÄINEN, TAKALA, et al., 2017), there are 

more than 2.78 million deaths and around 374 million non-fatal work accidents each 

year. On the other hand, these accidents are useful sources of information to extract 

valuable characteristics related to the event (SILVA, JACINTO, 2012). 

In this way, systematic accident investigation reports retain knowledge that can 

be explored to support decision-making. In fact, most national and international 

regulators require companies to store a collection of accident investigation reports 

allowing safety professionals to take appropriate actions to remove or attenuate 

identified root causes after their analysis (ABDAT, LECLERCQ, et al., 2014, 

BAVARESCO, ARRUDA, et al., 2021). Typically, these reports are written in natural 

language, since free textual responses allow one to describe the event as one 

perceives it. Reasonable resources are required for manual analysis of accident 

investigation reports, which is a complex and error-prone task. Thus, a complete 

human review of the entire database is almost impossible, considering numerous 

reports produced by a company (BERTKE, MEYERS, et al., 2012, KOC, GURGUN, 

2022). 

In addition, real reports oftentimes present drawbacks related to the quality of 

information filled out that may limit their usefulness. For example, incomplete or 

missing data, lack of standardization, and conflicting information are commonly found 

in these reports. In practice, these issues are a significant hurdle for analysts to extract 

useful insights, and then propose effective preventive measures to improve safety 

(YOUNG, LUZ, et al., 2019). 

Given that, our goal is to develop an approach that enables safety analysts and 

decision-makers to critically evaluate and identify potential issues and/or undesirable 
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patterns on accident investigation reports. To that end, we use NLP techniques, such 

as Bag-of-Words (BoW) (ZHANG, Yin, JIN, et al., 2010), Term Frequency-Inverse 

Document Frequency (TF-IDF) (XIANG, 2022), Doc2Vec (CHANG, XU, et al., 2018), 

and Latent Dirichlet Attribution (LDA) (XING, LEE, et al., 2020). The methodology 

considers three main steps: (i) unsupervised exploratory analysis of categories in the 

accident investigation reports; (ii) supervised ML to classify the accidents considering 

the categories found in the original reports; and (iii) restructuring the original groups 

and, then, reclassifying the accidents using the categorization proposed after (i). 

In summary, step (i) supports the analysis of the reports by providing an 

overview of the report content and main topics, which allows us to identify possible 

problems and propose improvements/corrections, and steps (ii) and (iii) allow us to 

compare the effects of possible changes in the accident reports by comparing the 

performance of the ML classifiers. Thus, we propose a systematic analysis that would 

both (a) support safety technicians in identifying possible problems in a set of accident 

investigation reports and (b) allow a quantitative assessment of the quality of the 

information extracted from the reports. Thus, the result obtained through the proposed 

methodology would be better accident investigation reports that could be used by 

methodologies already proposed by other authors. 

The proposed methodology to assess accident investigation reports was 

published in International Journal of Occupational Safety and Ergonomics (MACÊDO, 

RAMOS, et al., 2022). In addition, we analyze the modified accident investigation 

reports resulting from the methodology to illustrate its practical usefulness to support 

decision making. The goal is to determine whether there will be an injury leave, in 

which this information is fundamental to effectively defining strategies for the worker's 

absence. The results and methodology described was accepted in Journal of Risk and 

Reliability (RAMOS, Plinio, MACÊDO, et al., 2022). 

 

1.2.2 Support QRA in O&G Industries 

 

Oil refineries are expensive, complex systems that provide essential resources 

by converting crude oil into useful products such as fuels, lubricants, and asphalt. Oil 

refining encompasses a great variety of physical and chemical processes, and it is 

divided into three basic steps: separation, conversion, and treatment (DEMIRBAS, 

BAMUFLEH, 2017). These stages contain highly flammable, explosive, and/or toxic 
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substances, which are handled and stored in extreme conditions. In these high-risk 

environments, small errors can proliferate into process inefficiency, poor working 

conditions, and, ultimately, major consequences such as life and property losses and 

environmental impact (LONGO, PADOVANO, et al., 2021, PRAMOTH, SUDHA, et al., 

2020). The consequences of the loss of containment of these materials depend on 

different variables such as the nature of the released material and its physical state, 

and the environmental conditions (CASAL, 2017). 

Although great efforts have been made towards the prevention of major 

accidents, they are far from being eradicate. Thus, it is indispensable to develop new 

methods to support and improve risk studies. QRA is a systematic approach for 

identifying and analyzing accidental scenarios, and it is characterized through the 

methodical use of data and knowledge to describe causes, probabilities, and 

consequences of potential accidents (AVEN, KESSENICH, 2020, HE, LI, et al., 2018). 

National and international regulators demand QRA for both new and existing 

installations in order to provide a thorough picture of the hazards and, then, manage 

and minimize the potential risks related to their operation (VINNEM, RØED, 2020, 

WANG, Qianlin, ZHANG, et al., 2018). In a nutshell, QRA involves seven main steps 

(CCPS, 2008, TNO, 2005), illustrated in Figure 2. 

 

Figure 2 – Main steps of QRA process. 

 
Source: adapted from (CCPS, 2008; VILLA et al., 2016; ZENG; ZIO, 2017). 

 

The second step comprises hazards identification; in this step experts recognize 

relevant scenarios that may arise, assessing and reporting their likelihood and potential 

consequences (STEIJN, VAN KAMPEN, et al., 2020). To that end, experts usually 

adopt qualitative or semi-quantitative technique such as PrHA (YAN, XU, 2019), 

HAZard and OPerability analysis (HAZOP) (GUIOCHET, 2016), Failure Mode and 

Effect Analysis (FMEA) (BHATTACHARJEE, DEY, et al., 2020), and Fault Tree (FT) 

(RAMOS, Marília, THIEME, et al., 2020). The selection of the hazard analysis tool 

depends on the system lifecycle as well as the information available (VILLA, 
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PALTRINIERI, et al., 2016). Hazard identification is essential for QRA success, since 

its main objective is to identify most of the possible undesired events that may occur 

during the system operation (MARHAVILAS, FILIPPIDIS, et al., 2019). PrHA is widely 

adopted to identify different hazardous situations, categorize them, and prioritize the 

most critical ones to be further examined quantitatively (Figure 2, step 5) (BENEKOS, 

DIAMANTIDIS, 2017, KURIAN, SATTARI, et al., 2020). 

The process depicted in Figure 2 can be very time-consuming in practice, mainly 

depending on the complexity of the system analyzed and on the diverse backgrounds 

of the experts in the team that execute the risk assessment. In this context, the 

methodology here developed aims at reducing the efforts required to perform the initial 

stage of QRA. 

Given that, this study applies TM to extract information from text data and fine-

tune pre-trained Bidirectional Encoder Representations from Transformers (BERT) 

(DEVLIN, CHANG, et al., 2018) to identify risk features in an oil refinery. To that end, 

the pre-trained BERT model was fine-tuned with specific-domain datasets to perform 

three tasks: (i) to predict the potential consequences of accidents related to the 

operation of an oil refinery, and (ii) to classify each scenario in terms of severity of the 

consequence, and (iii) likelihood of occurrence. Each dataset used to train and test the 

three models was built based on PrHA documents available for an oil refinery. It is 

noteworthy that there are different documents that store information as textual data. 

We here focus on PrHA spreadsheets because they summarize and store information 

from experts and other refinery documents; thus, PrHA documents contain valuable 

textual information. These documents were developed by a group of experts specific 

to each production unit of the oil refinery. To perform the risk analysis, they followed a 

standard (ANP, 2014) that guides them in filling out the forms, and defining the 

potential consequences, and the frequency and severity categories for each of the 

scenarios. 

We expect that the developed models could be highly useful for new plants that 

depend on the approval of the environmental regulators to start the development of the 

facility design and construction. In these situations, almost no specific information is 

available for that plant, and then risk experts usually rely on partially relevant risk 

studies performed for similar facilities. Thus, with a model trained based on all the 

available information garnered from past risk studies, experts could use that entire 

source of knowledge to reduce uncertainty. Instead of starting the analysis from 
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scratch, risk analysts could reuse knowledge, imbued in the trained models, from 

previous studies or use QRA performed for similar plants as a starting point to identify 

potential consequences, qualitatively characterize frequency and severity of accidental 

scenarios, and prioritize the most critical events. It is worth emphasizing that although 

the models’ predictions are limited by training data, this would not hinder the QRA, 

since the postulated scenarios need to undergo a validation stage performed by 

experts. 

We claim that such a method is particularly important for oil refineries because 

regulatory agencies require highly detailed PrHA in order to provide valuable 

information to decision makers and surrounding communities and to be suitable for 

QRA (BAYBUTT, 2018). Thus, risk analysts are demanded to postulate and analyze 

hundreds or even thousands of scenarios. For instance, for a medium-size oil refinery 

that processes around 200k barrels of oil per day, a PrHA resulted in the identification 

of more than 3,000 accidental hypotheses. In addition, experts can critically evaluate 

scenarios that have been misclassified by the models and determine whether the 

model's prediction makes sense, i.e., indicating an error made by experts during the 

PrHA. Thus, the predictions provided by the models would also allow the experts to 

correct the PrHAs. 

Some results of the proposed methodology have been presented (MACÊDO, 

AICHELE, et al., 2020b, a, 2021, MACÊDO, MOURA, AICHELE, et al., 2021, 

MACÊDO, MOURA, LINS, et al., 2022, RAMOS, Plinio, MACÊDO, et al., 2022) and 

published in Process Safety and Environmental Protection (MACÊDO, MOURA, 

AICHELE, et al., 2022). In addition, we developed a web app, known as HALO1, 

process number BR512022000211-6, registered in the national institute of industrial 

property (MACÊDO, MOURA, LINS, et al., 2021). 

 

  

 
1http://nlprisk.ceerma.com/  
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1.3 OBJECTIVES 

 

1.3.1 General Objective 

 

The main objective of this thesis is to develop NLP-based solutions to two 

problems that may be faced in the context of Risk Analysis. Thus, this thesis proposes: 

• A methodology to support safety technicians in identifying possible 

problems in a set of accident investigation reports and to propose 

improvements using NLP and ML methods. 

• A methodology to automatically extract text data from documents to build 

NLP-based models to identify risk features and thus reduce effort 

required to perform initial stage of QRA. 

 

1.3.2 Specific Objectives 

 

Given the general objectives of this research, some specific objectives are 

similar for both problems and can be listed as follows: 

• Data extraction: A script for each RA problem was developed to extract 

all text data used as to build the models. Previously prepared PrHAs 

documents for an oil refinery were provided, as doc files, and accident 

investigation reports for a hydroelectric power company were provided, 

as excel files, to this study; 

• Data preprocessing: Preprocessing operations were performed in order 

to convert the text into a cleaner format and to obtain a numerical 

representation suitable to train machine learning algorithms; 

• Data organization: The data extracted was assessed and organized in 

order to build a dataset for each task. 

Regarding the methodology to assess accident investigation reports. We can 

list the following secondary objectives: 

• Topic modeling: Identification and critical assessment of the main topics 

on the accident investigation reports using LDA algorithm to identify 

patterns, searching for useful information to perform a further 

assessment; 



26 

 

• Problem definition: Identification of potential issues and 

solutions/corrections based on the exploratory analysis and definition of 

a classification task; 

• Baseline classifiers: Train different classifiers combining different ML 

algorithms and feature vector representations to perform supervised task 

using the original data; 

• Manual curation: Implementation of the proposed changes/corrections 

on the accident investigation report; 

• Final classifiers: Build ML classifiers to perform supervised task using the 

curated data to compare with the baseline results and check the impact 

on the performance of the algorithms; 

• Application of resulting accidents reports: Use the reports resulting from 

the methodology to perform a classification task in order to illustrate the 

practical usefulness of the improved reports to support decision making. 

Regarding the methodology to support QRA. We have the following secondary 

objectives: 

• Modeling process: Adjustments on BERT architecture to perform text (i) 

multiclassification task and (ii) multilabel classification task; 

• Fine-tune BERT: Part of each dataset was used to train the adjust pre-

trained BERT. Thus, a different classifier was obtained for each dataset. 

The remaining observations were used to test the performance of the 

classifiers. 

• Rare scenarios investigation: Experiments combining Data 

Augmentation (DA) and under sampling were performed to identify the 

most suitable approach to handle rare accident events; 

• HALO web app: development of the Hazard Analysis based on Language 

processing for Oil refineries (HALO), a web app to support risk analyst in 

identifying and assessing different accident scenarios related to chemical 

spills in oil refineries. 
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1.4 OUTLINE OF THE THESIS 

 

Besides this introduction chapter, this thesis has five additional chapters briefly 

described as follows: 

 

• Chapter 2: Provides the concise theoretical background about RA and 

NLP techniques; 

• Chapter 3: Presents works that applied TM and NLP to the RA context; 

• Chapter 4: Presents the proposed methodology based on NLP to assess 

accident investigation reports. Applies the proposed methodology to a 

hydropower company accident database. To complete the analysis, 

shows an application of resulting accident reports to predict injury leave 

given the information contained in these documents; 

• Chapter 5: Explains the proposed methodology to support the initial stage 

of QRA for identifying risk features using NLP. Applies the proposed 

methodology to a specific oil refinery. Discuss how to extract valuable 

features regarding rare risk events. And finally, describes the web-app 

developed to support the initial stages of QRA; 

• Chapter 6: Concludes remarks. 
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2 THEORETICAL BACKGROUND 

 

This chapter provides key concepts and definitions on RA and describes 

classical and advanced NLP techniques. The applications provided in Chapters 4 

and 5 use these concepts. 

 

2.1 RISK ANALYSIS 

 

There is an enormous effort and interest in different industries and society to 

manage risks. However, there are many difficult issues and challenges in risk 

management, related in particular to the foundation and performance of RA. RA 

include identification of hazards, cause and consequence analysis, and risk 

assessment; thus, RA allows managing hazards properly to prevent potential accidents 

from happening (ISO, 2018). 

Overall, any unexpected event that is caused by an unsafe act or condition may 

disrupt the workflow in an industrial process, regardless of whether the event causes 

injury or property damage. Thus, such events should be seen as a warning that an 

accident may occur. Accident investigation is a safety technique designed to find out 

and report the causes that led to the given accident. The internal reporting and 

investigation of accidents aim to prevent accidents and the occurrence of similar 

events in the future. Given that, the importance of a good investigation lies in being 

able to extract some preventive benefit from past unexpected events (JONES, 

KIRCHSTEIGER, et al., 1999, SALGUERO-CAPARROS, SUAREZ-CEBADOR, et al., 

2015).  

Typically, these reports are written in natural language and oftentimes present 

drawbacks related to the quality of information filled out that may limit their usefulness, 

such as inconsistent or missing information and non-standardization. Overall, the 

proposed works so far by several authors (e.g., AHMADPOUR-GESHLAGI et al., 

2020; ANDRZEJCZAK; KARWOWSKI; THOMPSON, 2014; BAKER; HALLOWELL; 

TIXIER, 2020; HUGHES et al., 2018; LOMBARDI; FARGNOLI; PARISE, 2019; 

MUGURO et al., 2020; SINGLE; SCHMIDT; DENECKE, 2020; TIXIER et al., 2016) 

aim to facilitate the risk management by extracting information from accident 

investigation reports. These authors assume that set of reports contain good 

information and focus on the performance metrics of supervised (TIXIER, 
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HALLOWELL, et al., 2016a) and/or unsupervised (LOMBARDI, FARGNOLI, et al., 

2019) algorithms. With that being said, we believe that NLP can be applied to support 

safety analysts and decision-makers to critically evaluate and identify potential issues 

and/or undesirable patterns on accident investigation reports. 

Other widely used tool, particularlly in the O&G industry, to analyse and manage 

risks is QRA that oftentimes resorts to systematic approaches for characterizing a risk. 

The early stage of QRA consist of hazards identification and analysis, which represent 

some of the most difficult steps, due to the many possibilities (scenarios) of what may 

go wrong (PASMAN, ROGERS, 2018, RAMOS, Marília, LÓPEZ DROGUETT, et al., 

2020, ZENG, ZIO, 2017). To perform these steps, a team of experts usually attends 

several meetings aimed at brainstorming all hazards and potential leakages, their 

possible causes, expected frequency and consequences. To that end, the experts 

need to consider several engineering documents to gather relevant information about 

the system and its environment (PASMAN, ROGERS, 2018, ZIO, AVEN, 2013). 

There are different techniques that are widely adopted in the early stages of 

QRA. The choice of the right technique depends on different factors, as available 

resources, the amount and quality of the data, and the complexity of the system 

analyzed. The aim of PrHA is to identify all possible leakages and the accidental events 

that may occur and to provide a qualitative estimate of the severity and likelihood of 

each accidental scenario (LI, Xinhong, CHEN, et al., 2018).  

Simpy put, PrHA is an approach to screen out the low-risk scenarios, while the 

most critical events are further analyzed by a quantitative approach to estimate their 

physical effects generally related to fire, explosion, and toxic dispersion. Finally, this 

piece of information is conflated for all critical events to calculate the individual and 

social risks associated with the entire facility, which are compared to the risk tolerability 

criteria established by regulatory agencies. For oil refineries, these same steps are 

also performed for existing facilities with the objective of presenting evidence that both 

risk estimates are still below the thresholds. For instance, this is a demand required by 

the environmental regulator in order to permit the plant’s life extension.  

According to ISO 31010 (ISO, 2018), Table 1 and Table 2 show the 

consequence and likelihood classes respectively that are commonly adopted in PrHA. 

Their combination represents the risk category (ARUNRAJ, MAITI, 2007). Note that 

the categories are defined in terms of the damage to human life. It is worth to mention 
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that other assets could also be analyzed such as environment, property, or reputation. 

However, the scope of this work is limited to human life. 

 

Table 1 – Description of the consequence levels in terms of the effects to human life. 

Consequence 

Category Effects 

I Negligible  without injuries 

II Minor minor injuries or first aid treatment 

III Moderate serious injuries inside or mild injuries outside 

the facility 

IV Significant fatality inside or serious injuries outside the 

facility 
Source: adapted from (ISO, 2018). 

 
Table 2 – Description of the likelihood categories. 

Likelihood 

Category Description 

A Remote conceptually possible, but there are no records in the literature 

B Unlikely unlikely to occur in normal conditions 

C Possible might occur sometime 

D Likely will probably occur  
Source: adapted from (ISO, 2018). 

 

The results of the PrHA are usually reported as spreadsheets, as illustrated in 

Table 3, which is an example that represents the description of a potential accident 

due to the release of contaminated and oily water from a basin of the industrial 

wastewater treatment unit in an oil refinery. Table 3 also contains the operating 

conditions, a list of equipment existing in the analyzed subsystem, and the pipeline 

material. Note that, given the initiating event (i.e., small leakage or large leakage), a 

variety of consequences may occur (e.g., a small leakage might cause a toxic vapour 

clou and/or irritation), and may have different impact to human life, which is defined by 

the ‘severity’ column, whereas the rate of occurrence of each initiating event is 

indicated in the column ‘likelihood’. 

For an oil refinery with a capacity of processing about 230,000 barrels per day, 

the PrHA resulted in a dataset of 1,635 reports similar to that of Table 3. These 

spreadsheets summarize the assessment performed by the experts and represent 

their tacit knowledge; thus, these documents contain valuable information about the 

risks related to the operation of different subsystems present in the oil refinery. Given 

that, NLP techniques can be applied to automatically extract the text and assess the 

content of previous analysis to develop tools that may support future QRA. 
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Table 3 – Example of data contained in PrHA documents. 

Unit Industrial wastewater treatment 

System Flow regularization system 

Subsystem 
description 

Basin with possible presence of toxic substance hydrocarbon from 
another unit 

Pipeline Material Carbon steel 

Operating conditions 

Temperature 
(°𝑪) 

Pressure 

(𝒌𝒈𝒇. 𝒄𝒎−𝟐) 

Flow rate 

(𝒌𝒈. 𝒉−𝟏) 

25 1.03 3,000 

Equipment Sump pump 

Chemical Product Contaminated and oily water 

Initiating event Potential 
consequences 

Severity Likelihood 

Small leakage 
Irritation II D 

Toxic vapour cloud II D 

Large leakage 
Irritation III A 

Toxic vapour cloud III A 

Source: The author (2022). 

 

2.2 NATURAL LANGAGE PROCESSING 

 

NLP describes a field of artificial intelligence that uses computational algorithms 

to learn, understand, and produce human language content. The application areas in 

NLP include topics, such as extraction of useful information from text (e.g., named 

entities and topics), translation of text, summarization of written works, automatic 

answering of questions by inferring answers, and classification of texts (OTTER, 

MEDINA, et al., 2021).  

NLP has been successfully applied to extract knowledge of large amount of 

textual data and has proven to be useful in many fields, reducing the time and human 

effort required for content analysis of documents. For instance, text classification is 

one NLP task with several real-word applications, such as sentiment analysis of movies 

review and spam, bots, and fraud detection (MINAEE, KALCHBRENNER, et al., 2021). 

This task involves extracting rules from a set of labelled documents/texts (also called 

as annotated corpus), and once the classifier is trained, it can classify new textual data 

based on the patterns detected (BENGFORT, BILBRO, et al., 2018).  
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Basic NLP procedures include processing text data, converting text to features, 

and identifying semantic relationships (CAI, 2021). Moreover, language modeling is an 

essential piece of almost any application of NLP. Language modeling is the process of 

creating a model to predict words or simple linguistic components given previous 

words/components and/or deriving their full value from their interactions with other 

words (OTTER, MEDINA, et al., 2021). Section 2.2.1 explains text preprocessing, 

which is a fundamental part of the development of NLP systems; Section 2.2.2 

introduces topic modeling; Section 2.2.3 traditional representation models; Section 

2.2.4 shows advances in NLP and the evolution of language models; Sections 2.3 and 

2.4 describe Transformers architecture and BERT model respectively. These sections 

provide key concepts to understand this study. 

 

2.2.1 Text Preprocessing 

 

The presence of meaningless information, often found in raw text data, 

considerably affects the performance of predictive models. Therefore, preprocessing 

provides a significant contribution to improving data quality, by reducing computational 

costs, homogenizing the documents, and removing noisy or unwanted information 

(MADEIRA, MELÍCIO, et al., 2021).  

Text preprocessing is a set of operation applied on the textual data to eliminate 

noise from text, since text data often contains special characters, special formats (e.g., 

numbers and dates) and the most common words such as prepositions, articles, and 

pronouns are unlikely to provide useful knowledge. For this reason, text preprocessing 

is an essential part of any NLP system, since the characters, words, and sentences 

identified at this stage are the fundamental units passed to all further processing stages 

(VIJAYARANI, ILAMATHI, et al., 2015).  

The most commonly applied preprocessing operations are illustrated in Table 

4: stopwords removal, where irrelevant words (e.g., ‘a’, ‘it’ and ‘to’) are cut out; 

punctuation and noise removal; upper-to-lower case conversion to ensure that same 

words will be equivalent in different cases (e.g., ‘Hello’ and ‘hello’); stemming to reduce 

words to their root form (e.g., ‘processing’ is reduced to ‘process’); tokenization, to 

separate pieces of text into smaller units called tokens (e.g., ‘Hello word’ is converted 

to ‘Hello’, ‘word’) (TE, ADHITYA, et al., 2014).  
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Table 4 – Example of preprocessing operations. 

Original sentence ‘A simple# example of Preprocessing Operations’ 

Preprocessing operation 

Noise 
removal 

Stopwords 
removal 

Lowercasing Stemming Tokenization 

‘A simple 
example of 

Preprocessing 
Operations’ 

‘simple 
example 

Preprocessing 
Operations’ 

‘simple example 
preprocessing 

operations’ 

‘simple 
example 

preprocess 
operation’ 

‘simple’, 
‘example’, 

‘preprocess’, 
‘operation’ 

Source: The author (2022). 

 

The resulting tokens are then used to prepare a vocabulary, which refers to the 

set of unique tokens in the corpus. Tokenization is a key step while modeling textual 

data, it can be classified into 3 types according to the type of tokens obtained: word, 

character, and sub-word tokenization (CHOWDHARY, 2020, MORENO, REDONDO, 

2016). 

 

2.2.2 Topic Modeling 

 

From the NLP domain, topic modeling consists of several unsupervised 

approaches to discover the latent semantic structure (i.e., topics) amongst words in a 

collection of textual documents. Topic modeling can be applied to summarize the main 

themes of a collection of documents (e.g., accident investigation reports) within a 

vector space with a reduced number of dimensions or topics since in traditional vector 

spaces each term or word corresponds to a single dimension (YUN, GEUM, 2020).  

Popular topic modeling models include LDA, and its variants, that is a topic 

modeling algorithm that generates a probabilistic model for a collection of documents 

(texts), 𝐷, to be used as a text summary of a large set of files (EL AKROUCHI, 

BENBRAHIM, et al., 2021). LDA is based on the assumption that a document is 

generated by first picking a set of topics, and then for each topic, a set of words is 

chosen. Thus, each topic is characterized by selecting a very suitable word distribution 

(SRIVASTAVA, SINGH, et al., 2022). 

In summary, LDA uses a predefined number of topics, 𝐾, and calculates two 

probabilities: (i) the probability of words in a specific document, 𝑑, assigned to topic 𝜏, 

and (ii) the probability of topic 𝜏 in all the documents for the specific word 𝑤. It assumes 

that the topics and the words in these documents follow a Dirichlet distribution that are 

used to estimate latent topics (MIN, SONG, et al., 2020). LDA model tries to infer the 
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topics in a set of documents and the joint probability distribution for this model can be 

expressed as 𝑝(𝑤, 𝜏) = 𝑝(𝑤|𝜏) × 𝑝(𝜏|𝑑) (OSMANI, MOHASEFI, et al., 2020).  

Each document is characterized by a topic distribution 𝜃1, … , 𝜃𝐷, while each 

topic is described by a word distribution 𝜑1, … , 𝜑𝐾. Given 𝜃 and 𝜑, LDA assumes that 

the text is generated by the following processs: First, a word-probability distribution, 

𝜑𝑤~𝐷𝑖𝑟(𝛼), is chosen, where 𝐷𝑖𝑟(𝛽) is a Dirichlet distribution with parameter 𝛽. 

Second, for each document 𝑑, a topic-probability distribution, 𝜃𝑑~𝐷𝑖𝑟(𝛼), is specified. 

Then, for each 𝑛 word 𝑤 in 𝑑 a topic assignment, 𝜏𝑑,𝑛~𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝜃𝑤), is drawn and 

a word 𝑤𝑑,𝑛 is chosen from 𝑝(𝑤𝑑,𝑛|𝜑𝜏𝑑,𝑛
) (SCHWARZ, 2018).Thus, each topic, or latent 

dimension, is calculated without any kind of supervision, based only on the distribution 

of words in the reports (XU, GUO, et al., 2020). 

 

2.2.3 Representation Models 

 

Since raw texts are useless for algorithms that work on numeric feature spaces, 

they must be converted into a numerical representation, a feature vector that can be 

used as inputs for supervised and/or unsupervised algorithms. This task is known as 

language modeling and these representations are the basis for knowledge distillation. 

Moreover, using mathematical representation for words allow us to perform operations 

with the resultant vectors, such as estimating ‘semantic similarity’ between words by 

computing, for instance, the cosine distance between their vectors (BIANCHI, 

BENGOLEA MONZÓN, et al., 2020). However, obtaining high quality word 

representations is quite challenging because they should represent the syntax, 

semantics and context of a word (FELDMAN, SANGER, 2007). Thus, several modeling 

approaches have been designed from BoW representations to complex neural network 

language models based, for example, on recurrent neural networks and transformers 

(WOLF, DEBUT, et al., 2020).  

• BoW - BoW model requires two essential pieces of information: (i) a vocabulary 

of previously known words, and (ii) a measure for the occurrence of the words. 

Traditional BoW neglects contextual relationships (i.e., information about the 

order or structure of words), focusing only on the occurrence of words within the 

document (LI, Teng, MEI, et al., 2011). Specifically, the documents are 

represented as a vector containing the complete vocabulary size, where all 
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dimensions are null (i.e., 0) except for the ones corresponding to the words in 

the specific document. For instance, Table 5 shows a BoW representation of 

three sentences: (𝑎) ‘the worker fell and hit the head on the ladder’, (𝑏) ‘the 

worker fell from the ladder’, and (𝑐) ‘the ladder fell and hit the worker on the 

head’. In this example, the vocabulary size is 9, and thus the sentences are 9-

dimensional vectors. 

 

Table 5 – BoW representation for three different sentences. 

 Vocabulary 
Instances the worker fell and hit head on ladder from 

(a) 3 1 1 1 1 1 1 1 0 
(b) 2 1 1 0 0 0 0 1 1 
(c) 3 1 1 1 1 1 1 1 0 

Source: The author (2022). 
 

• TF-IDF - each dimension of the vector representation here corresponds 

to a word 𝑤 in the vocabulary. Instead of considering the number of 

occurrences, TF-IDF takes a weight that increases proportionally to the 

frequency that the word shows up in a document and decreases 

proportionally to the number of documents that contain that word. Thus, 

the greater the frequency of a word in a large number of documents, the 

less emphasized it is. On the other hand, the less frequent words are 

more specific and, then, associated with greater weights (HAVRLANT, 

KREINOVICH, 2017), which are computed as: 

 

𝑤𝑒𝑖𝑔ℎ𝑡(𝑤, 𝑑) = 𝑡𝑓(𝑤, 𝑑) × 𝑖𝑑𝑓(𝑤, 𝐷) (1) 

 

where 𝑡𝑓(𝑤, 𝑑) is the number of times term 𝑤 appears in document 𝑑, 

𝑖𝑑𝑓(𝑤, 𝐷)  = 𝑙𝑜𝑔 (
𝑚+1

𝑑𝑓(𝑤)
), 𝑑𝑓(𝑤) is the number of documents in the 

collection 𝐷 that contain 𝑤, and 𝑚 is the size of 𝐷. 

Moreover, a traditional task in statistical language modeling is to model the 

probability that a given word appears next after a given sequence of words. The idea 

is that there is a probability distribution on word sequences that govern natural 

language. Thus, a statistical language model can be represented as the conditional 

probability of the next word given all the previous ones, Equation (2, where 𝑤𝑡 is the t-

𝑡ℎ word (BENGIO, DUCHARME, et al., 2003). 



36 

 

𝑃̂(𝑤1
𝑇) = ∏ 𝑃̂(𝑤𝑡|𝑤1

𝑡−1) 

𝑇

𝑡=1

 (2) 

A problem with statistical language models is the curse of dimensionality to 

model the joint distribution between discrete random variables (such as words in a 

sentence). For instance, to model the joint distribution of 10 consecutive words in a 

corpus (i.e., set of texts) with a vocabulary size of 100 (i.e., with 100 unique words) 

there are 10010 − 1 = 1020 − 1 free parameters. The introduction of n-gram models 

alleviate this issue by considering that the conditional probability for the next word 

depends only on the last n − 1 words Equation (3 (DE MULDER, BETHARD, et al., 

2015). 

 

𝑃̂(𝑤𝑡|𝑤1
𝑡−1) ≈ 𝑃̂(𝑤𝑡|𝑤𝑡−𝑛+1

𝑡−1 ) (3) 

 

However, this approach brings other issues, such as the inability to deal well 

with synonyms or out-of-vocabulary words that were not present in the training corpus, 

since the similarity between words is not taking into account and there is much more 

information in the sequence than just the identity of the previous couple of words 

(BELLEGARDA, 2004, BENGIO, DUCHARME, et al., 2003).  

 

2.2.4 Advancements in NLP 

 

Progress was made in solving the issues mentioned with the introduction of the 

neural language model, i.e., language models based on neural networks. Bengio et al. 

(2003) trained a Feedforward Neural Network (FNN) with sequence of words, showing 

that a neural model can both learn the probability of a given word appearing next after 

a given sequence of words and a real-valued vector representation for each word in a 

predefined vocabulary. In addition to representing a corresponding word, such vector 

representations encode important linguistic information, e.g., vector representations 

capture relations like synonymy, antonymy and regional spelling variations.  

For instance, Doc2Vec is a model based on neural networks, it introduces the 

concept of ‘paragraph vectors’, representing devices that retain the main topic of 

paragraphs. Doc2Vec intuition is that the representations of the document must be 

good enough at predicting the words or the context of the report. Doc2Vec 

simultaneously uses two different architectures: Distributed BoW, in which the input is 
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considered as a special vector representing the document and the output is a context 

word, ignoring the order of the words; and Distributed Memory that introduces an 

additional document vector for the input along with the word vector representations 

that are shared among all documents. These vectors are concatenated and, then, the 

numeric representation of the words and documents are learned during the training 

process (LAU, BALDWIN, 2016). 

Particularly, a continuous representation is derived by utilizing a neural network. 

Overall, the word vectors of the input sentence are processed in the layers of the 

architecture. Each layer yields a more abstract representation of the input sentence 

until a single vector representing the entire input text is obtained. Stated more 

generally, neural networks can project the vocabulary into hidden layers, so that 

semantically similar words are clustered. For this reason, neural networks can provide 

better estimates for words which have never been seen during training (DE MULDER, 

BETHARD, et al., 2015). Neural networks perform well on several NLP tasks in the 

absence of any other features. Then, different output layers can be adopted, 

depending on the task performed by the network. For example, a 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 or 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 

can be considered for classification or a decoder (sequence-to-sequence 

configuration) for translation (BAKER, HALLOWELL, et al., 2020, GEORGE K, 

JOSEPH, 2014, KIM, YOON, et al., 2020). 

The main factor that distinguishes different types of networks from each other is 

their architecture, i.e., how the neurons are connected and the number of layers. Deep 

Learning (DL) architectures are currently the most popular in NLP research and 

applications, since they have achieved state-of-the-art results on different NLP tasks 

(e.g., machine translation, email spam detection, information extraction, and text 

summarization) (HOWARD, RUDER, 2018). 

One critical drawback of the FNNs proposed by Bengio et al. (2003) is that only 

a fixed number of previous words can be considered to predict the next word. The 

architecture of FNNs lack any form of ‘memory’; thus, only the words that are presented 

via the fixed number of input neurons can be used to predict the next word and all 

words that were presented during earlier iterations are ‘forgotten’. However, NLP is 

dependent on the order of words or other elements such as phonemes or sentences. 

The context length was extended to indefinite by using a recurrent version of neural 

networks, Recurrent Neural Networks (RNN), which can handle arbitrary context 

lengths. 
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In RNN-based models the input data must be provided sequentially. In other 

words, we need to enter the previous state to make any operation in the current state. 

Sequential neural networks can be used to solve different problems such as:  

• Vector-to-sequence: takes a single input, such as an image, and 

produces a sequence of data, such as a description; 

• Sequence-to-vector: takes a sequence as input, such as a product review 

or a social media post, and outputs a single value, such as a sentiment 

score; 

• Sequence-to-sequence: takes a sequence as input, such as an English 

sentence, and outputs another sequence, such as the Portuguese 

translation of the sentence. 

However, reading one word at a time, forces RNNs to perform multiple steps to 

make decisions that depend on words far away from each other. Thus, these 

architectures are slow to train, and they do not seem to learn long-term dependencies, 

because of the vanishing gradient problem that occurs due to the multiplicative 

gradient, which can increase/decrease exponentially according to the number of layers 

(DE MULDER, BETHARD, et al., 2015).  

Transformer architecture was proposed by Vaswani et al. (2017) and has since 

been replacing RNNs and their variations. Transformer architecture lets go of the 

recurrence relations used in previous models and, instead, depends entirely on an 

attention mechanism for modeling dependencies. One of the biggest differences 

between is that the input sequences are passed in parallel to Transformer architecture. 

For instance, an input sentence in Portuguese passes through an RNN, one word after 

another. The hidden state of the current word depends on the hidden state of the 

previous word; thus, the word embedding is generated one at a time. With the 

Transformer encoder there is not the concept of timestep, the entire input sequence is 

provided at once and the word embeddings are determined simultaneously. In general, 

Transformer architecture abandons the recursion relations and instead relies entirely 

on an attention mechanism to model global dependencies between input and output. 

Details about the Transformer architecture are presented in Section 2.3. 
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2.3 TRANSFORMERS OVERVIEW 

 

Transformers, introduced by Vaswani et al. (2017), was originally designed to 

solve sequence-to-sequence problems and it was the first transduction model relying 

entirely on self-attention to compute representations of its input and output without 

using sequence aligned RNNs or convolution. Thus, Transformers made two key 

contributions: 1) enabled processing entire sequences in parallel, making it possible to 

scale the speed and capacity of sequential DL models; 2) introduced ‘attention 

mechanisms’ that allowed tracking the relations between words across very long text 

sequences in both forward and reverse directions. 

 

2.3.1 Architecture 

 

Transformers have an encoder-decoder structure as depict in Figure 3 the 

encoder maps an input sequence of words representations (𝑥1, . . . , 𝑥𝑛) to a sequence 

of continuous representations 𝑧 =  (𝑧1, . . . , 𝑧𝑛). Given 𝑧, the decoder then generates 

an output sequence (𝑦1, . . . , 𝑦𝑚) of words one element at a time. At each step the model 

processes the previously generated words as additional input when generating the 

next (KALYAN, RAJASEKHARAN, et al., 2021). Transformer follows this overall 

architecture using stacked self-attention and fully connected layers for both the 

encoder and decoder, shown in the left and right halves of Figure 3, respectively. 

The encoder module is composed of a stack of 6 identical layers. Each layer 

has two sub-layers: 1) a multi-head self-attention mechanism; 2) a fully connected 

FNN. In addition, there is a residual connection around each of the two sub-layers, 

followed by layer normalization. In other words, the output of each sub-layer is 

𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝒙 +  𝑆𝑢𝑏𝑙𝑎𝑦𝑒𝑟(𝒙)), where 𝑆𝑢𝑏𝑙𝑎𝑦𝑒𝑟(𝒙) is the function implemented by the 

sub-layer itself. Thus, the input is passed to each encoder block, which processes it 

through attention and feed forward layers to gradually capture more complicated 

relationships between the words in the sentence (XU, Y. et al., 2022). 

Next, the resulting encoder’s attention vector passes through the decoder 

blocks that translate it into output data (e.g., the translated version of the input text). 

The decoder module is also composed of a stack of 6 identical layers. In addition to 

the two sub-layers in each encoder layer, the decoder inserts a third sub-layer, which 
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performs multi-head attention over the output of the encoder stack. Like the encoder, 

there are residual connections around each of the sub-layers, followed by layer 

normalization. 

 
Figure 3 – Transformers architecture. 

 
Source: Adapted from Vaswani et al. (2017). 

 

The self-attention sub-layer is modified in the decoder stack to prevent positions 

from attending to subsequent positions. This masking, combined with fact that the 

output embeddings are compensated by one position, ensures that the predictions for 

position 𝑖 can depend only on the known outputs at positions less than 𝑖 (VASWANI et 

al., 2017). The next section provides more details about the attention mechanism. 

 

2.3.2 Attention Mechanism 

 

Transformers architecture adopts self-attention mechanisms to generate word 

embeddings which take the context of the nearby words. Bahdanau, Cho and Bengio 

(2015) introduced the idea of ‘attention’ in DL networks, where not only all the input 

words are considered in the context vector of a RNN, but also the relative importance 

to each context vector. More specifically, the self-attention mechanism compares every 
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word 𝑥𝑖 in the sentence 𝒙 = (𝑥1, . . . , 𝑥𝑛) to every other word in the sentence 𝒙 and, then, 

combines contextually related words together. 

The first step of the self-attention mechanism involves computing the query, key 

and value vectors for each word 𝑥𝑖 in the input sentence, 𝑞𝑖, 𝑘𝑖 and 𝑣𝑖 respectively. 

These vectors are by multiplying the embeddings by matrices 𝑊𝑄, 𝑊𝐾 and 𝑊𝑉. Next, 

we take the dot products of the query with all keys in the sentence to find contextually 

related words for a chosen word. The results of the dot products are used as weight 

factors, that indicates how much two words (𝑥𝑖 and 𝑥𝑗) depend on each other. After 

that, the dot products are scaled with √64 (square root of the dimension of the key 

vectors) and passes through a softmax function to map the values to [0,1] and to 

ensure that they sum to 1 over the whole sequence, resulting in scaled weight factors 

for word 𝑖 (𝑠𝑖,𝑗). Figure 4 shows this step for the first word of the sentence 𝑥1 (OK, LEE, 

et al., 2022). 

 

Figure 4 – Computing the scaled weight factors for the first word 𝑥1 of an input sentence 𝒙 =
(𝑥1, 𝑥2, 𝑥3, 𝑥4). 

 
Source: adapted from Sutskever; Vinyals; Le (2014); Vaswani et al. (2017); Wu, Y. et al. (2016). 

 

After computing the scaled weight factors for all the words in the sentence 

𝑠𝑖,𝑗 ∀ 𝑖, 𝑗 ∈ 𝒙 = (𝑥1, . . . , 𝑥𝑛), each value vector is multiplied by its corresponding scaled 

weight factor. Then, the weighted value vectors are summed resulting on the output of 

the self-attention layer, i.e., the enriched word embedding 𝑧𝑖 for the word 𝑥𝑖. Figure 5 

illustrates the computation for the first word of a sentence. 
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As shown in Figure 3, the attention mechanism is applied as self-attention in the 

encoder and decoder blocks and as encoder-decoder attention. The attention scores 

in the encoder-decoder attention are computed as described before, but the queries 

vectors come from the previous decoder layer, and the keys and values come from the 

output of the encoder. This allows the model to obtain word representations that 

captures the relation between each target word with each input word. 

 

Figure 5 – Sum of the weighted vectors with the softmax layer outputs for the word 𝑥1 resulting 
in new embeddings 

 
Source: adapted from Sutskever; Vinyals; Le (2014); Vaswani et al. (2017); Wu, Y. et al. (2016). 

 

Moreover, in transformers, the attention function with the queries, keys and 

values vectors, are linearly projected ℎ times in parallel. The attention sublayer splits 

its query, key, and value vectors across ℎ heads and each head process the data 

independently. All the attention outputs are concatenated, and the final embedding is 

obtained by multiplying the final attention output by matrix 𝑊𝑂 (Figure 6). 

Transformers based models, have been successfully applied in NLP due to their 

ability to learn universal language representations, when trained with large volume of 

text data. However, training these models from scratch is computational costly and 

time-consuming; thus, transfer learning allows the reuse of the knowledge learned in 

source tasks (i.e., pretraining tasks) to perform downstream tasks target tasks. Another 

possible issue to learn valuable language information is the difficulty to obtained 

labeled dataset to perform NLP tasks. However, self-supervised learning allows 
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transformers models to learn based on the pseudo supervision provided by one or 

more pretraining tasks (KALYAN, RAJASEKHARAN, et al., 2021). 

BERT (DEVLIN, CHANG, et al., 2018) and GPT (RADFORD, NARASIMHAN, 

et al., 2018) were the first pretrained language models based on transformers encoder 

and decoder respectively. Firstly, GPT achieved state-of-the-art results on 9 NLP 

tasks. BERT obtained new state-of-the-art results on 11 NLP tasks. Currently, several 

authors have been exploring and modifying BERT and GPT to derive models with 

better performance, such as XLNet (YANG, DAI, et al., 2019), RoBERTa (LIU, Yinhan, 

OTT, et al., 2019), ELECTRA (CLARK, LUONG, et al., 2020), ALBERT (LAN, CHEN, 

et al., 2019), Gato (REED, ZOLNA, et al., 2022) and Chinchilla (HOFFMANN, 

BORGEAUD, et al., 2022). The proposed modifications consist mainly in increasing 

the number of parameters (e.g., number of layers), increasing the number of training 

data, and training the models in different unsupervised source tasks (GAO, Leo, 

BIDERMAN, et al., 2020).  

 

Figure 6 – Computing multi-head self-attention for the word 𝑥1 resulting in new embeddings 

 
Source: adapted from Vaswani et al. (2017). 

 

In the context of risk and reliability analysis, it is still very common to find simpler 

models such as BoW, TF-IDF and Doc2Vec applied, despite the advances when 

considering studies related to core NLP tasks. BERT implementations in Pytorch and 

Tensorflow have been available for more than a year (WOLF, DEBUT, et al., 2020), in 

different languages, stably, with no long-term compatibility problems between libraries. 
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Moreover, the inference and fine-tuning of models with more parameters, such as the 

ones mentioned in the previous paragraph, has a higher computational cost. Taking 

these factors into consideration, we developed our methodology based on BERT, as it 

gives us flexibility and robustness. 

 

2.4 BERT 

 

BERT is a novel method of pre-training language representations, and its 

architecture consists of a stack of 𝑁, in the original paper 𝑁 = 12, Transformer 

encoders. BERT was proposed and pre-trained by Google on an extremely large 

corpus (BooksCorpus (ZHU, KIROS, et al., 2015) and Wikipedia). During pre-training, 

the model learns the relation between words within a sentence and between sentences 

by training on two unsupervised tasks: ‘mask language modeling’ and ‘next sentence 

prediction’. For the ‘masked language modeling’, BERT takes in a sentence with 15% 

of the words being randomly masked originally; then, the objective is to predict the 

original word of the masked token based only on its context. This objective allows the 

representation to combine the right and the left contexts. For the ‘next sentence 

prediction’, BERT takes in two sentences and the aim is to predict if the second one 

follows the first. This task allows the model to understand the relation across sentences 

(DEVLIN, CHANG, et al., 2018). 

In a nutshell, during pre-training, a set of two sentences, with some words being 

masked, is fed to the model and each word is converted into feature vector 

representations. These input data are passed to the transformer encoder layers; each 

encoder is broken down into two sub-layers: a multi-head attention and a feed forward 

neural network. The encoder’s inputs first flow through the attention layers that help 

the model focus on other words in the input sentence as it encodes a specific word. 

Next, the outputs of the multi-head attention layer are concatenated and fed to a neural 

network. Finally, each word vector is passed into a fully connected layer in the output 

layer; for more details see Devlin et al. (2018) and Vaswani et al. (2017). 

Nevertheless, training these models from scratch would require large datasets 

and a long time to converge. Thus, pre-trained word representations have been the 

key component for improving different NLP tasks. Several pre-trained versions of the 

model are available for download; thus, we can further train BERT to perform a 

supervised-learning task by adding an untrained layer of neurons on top of the pre-
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trained model. Overall, during fine-tuning, the pre-trained parameters are adopted to 

initialize the model and, then, they are fine-tuned using specific labelled data for solving 

the supervised task. 

To fine-tune pre-trained BERT, we need to adjust its last layer according to the 

supervised task of interest. For instance, we can adjust BERT’s architecture by adding 

one output layer on top of the pre-trained model to adapt it for performing a 

classification task (Figure 7). 

 

Figure 7 – Modified BERT architecture to perform classification task. 

 
Source: adapted from (DEVLIN et al., 2018). 

 

The representation of the last token [CLS] of the input sentence is fed to the 

output layer, i.e., the final hidden state 𝒉 of the token [CLS] is used to represent the 

sentence. Then, an activation function computes 𝒉 and converts it into probabilities 

Equation (4. 

 

𝑝(𝑐|𝒉) = 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(𝒉𝑇𝑾 + 𝑏) (4) 

 

where 𝑐 is the class of the input sentence, 𝑏 is the bias, and 𝑾 is the weights matrix of 

the added output layer. 
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In this case, the loss is propagated through the entire architecture and all BERT 

pretrained parameters as well as 𝑾 and 𝑏 are fine-tuned and updated based on the 

new dataset. However, 𝑾 and 𝑏 are the only parameters that need to be randomly 

initialized and learned from scratch. Although the developed models are initialized with 

the same pre-trained parameters, training for distinct tasks provides different fine-

tuned models in an efficient way. Indeed, this approach allows us to build models with 

state-of-the-art architectures within a reasonable time, since training these 

architectures from scratch can take days (HOWARD, RUDER, 2018). 
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3 RELATED WORKS 

 

Zio (2018) pointed that the advance in computing power and growing data 

availability counts in favor for the development of models for mining of knowledge 

acquired for RA. Indeed, automatic mining patterns from massive amount of textual 

data is attractive as the text is a source of knowledge to support safety professionals 

and to improve the spread of safety-related culture. Indeed, TM and NLP techniques 

aim to understand, process, and interpret human language allowing to train intelligent 

models (SINGLE, SCHMIDT, et al., 2020), which provides a rapid and trustworthy 

analysis of large, textual databases comprised of risk study documents, such as 

accident investigation reports and/or PrHA (BALLESTEROS, SUMNER, et al., 2020). 

ML and NLP have been successfully applied to different research areas. In this section, 

we focus on the different issues that both fields can handle in the risk analysis context. 

For instance, Rachman and Ratnayake (2019) developed an ML based-model to 

conduct risk-based inspection screening assessment that is used to identify equipment 

that makes major contribution to the system’s total risk of failure, thus, allowing to 

prioritize high-risk systems. These authors have to perform feature selection to build a 

dataset from previous risk-based inspections conducted for offshore oil and gas 

production and processing units, where the output was the risk category. Kurian et al., 

(2020) applied ML to analyze process and occupational-type incidents reports from 

five oil sand industries. These reports were manually classified and provided to 

different ML algorithms (AdaBoost, Decision Trees, K-Nearest Neighbors, Random 

Forest, Support Vector Machines (SVM), Multilayer Perceptron, Multinomial Naive 

Bayes, and Logistic Regression) in order to predict labels for incident type, 

consequence type, actual risk score, and potential risk score. Moreover, we developed 

in (MACÊDO, MOURA, RAMOS, et al., 2022) a ML-based methodology to identify 

potential consequences related to the operation of an atmospheric distillation unit and 

to classify the expected frequency and severity of consequences. To that end, we 

compared the performance of different ML algorithms (SVM, Multilayer Perceptron, 

AdaBoost, Random Forest, K-Nearest Neighbors, and Gradient Boosting Decision 

Trees). However, these approaches require the feature engineering step, where the 

specialist must manually process the database and pick up which features will be used 

for feeding the model. 
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TM and NLP has been adopted to infer information from accident investigation 

reports of aviation (ANDRZEJCZAK, KARWOWSKI, et al., 2014), civil construction 

(BAKER, HALLOWELL, et al., 2020), road traffic (MUGURO, SASAKI, et al., 2020), 

railway industry (HUGHES, SHIPP, et al., 2018), and oil industry (AHMADPOUR-

GESHLAGI, GILLANI, et al., 2020). In addition, NLP can be found in the analysis of 

reports of accidents that almost occurred (ANSALDI, SIMEONI, et al., 2020), 

verification of safety rules (GULIJK, HOLMES, 2020), and automated classification of 

injury (GUARAV, KIRSTEN, et al., 2020) and injury leave (MAIOR, SANTANA, et al., 

2020) from accident investigation reports. For example, Sarkar et al. (2019) combined 

categorical features and text data to predict the accident outcomes such as injury, near 

miss, and property damage using topic modeling and ML. Madeira et al. (2021) 

performs text classification to categorize human factors from aviation incident reports 

using semi-supervised and supervised models. It is worth noting that these authors 

focused on the model’s performance to automatically identify patterns and classify 

causes since this is paramount for accident investigation.  

Moreover, Heidarysafa et al. (2018), Nayak et al. (2009) and Zhang et al. (2019) 

applied NLP methods on accident’s narratives to comprehend contextual relationships 

inherent to road accidents, identify causes and predict secondary crashes. Passmore 

et al. (2018) applied topic modeling to summarize narrative reports of injuries that 

occurred in coal mines to identify the main theme of the documents. Boggs, Wali and 

Khattak (2020) applied NLP to perform an exploratory analysis of automated vehicle 

crash reports to quantify the pre-crashes and location factors. Kuhn (2019), Robinson 

(2019) and Sjöblom (2014) developed approaches based on NLP in the context of 

aviation accident analysis to find similarities between the accident investigation reports 

applying clustering, and to automatically identify topics within reports by topic modeling 

in order to pinpoint trends to prioritize safety activities (VAYANSKY, KUMAR, 2020).  

Liu et al. (2021) employed 𝐾-means clustering to assess incident narratives from 

Pipeline and Hazardous Materials Safety Administration database in order to identify 

contributing factors and latent causality. Suh (2021) applied TM and topic modeling to 

extract topics from narrative texts contained in accidents reports of Occupational 

Safety and Health Administration database to identify sectoral patterns, which is 

defined by categorizing the common nature of accidents shared across industries. 

Wang and Mai (2016) proposed a system based on TM to extract risk elements from 

risk matrices. The authors extracted the risk origin, component, causes, probability, 
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and severity from those documents and annotated the identified words. Then, they 

adopted SVM to perform a binary classification (high or low risk).  

Sarkar (2016) proposed a TM and ML-based model to identify basic events that 

influence the primary causes of occupational accidents (reactive data) in a steel plant. 

Then, the author predicted the probability of the occurrence of a given cause through 

a Bayesian network (LEU, CHANG, 2013). Next, Sarkar, Verma and Maiti (2018) 

included proactive data, which consist of observations by safety inspectors that 

indicate a certain level of potential hazard, and used decision tree classifiers to predict 

the occurrence of accidents. 

Singh, Maiti and Dalmahapatra (2019) used reactive (accident report) and 

proactive data (workplace conditions during an accident-free period) to identify chain 

of events in accident paths. Zhang and Mahadevan (2019) developed an SVM and DL-

based model to examine previous accidents. The authors applied the ensemble model 

to extract features from reports of aviation accidents and assign the risk level to a 

corresponding aviation incident. Their model classified the risk associated with the 

consequences of accidental events as high, moderately high, medium, moderately 

medium, and low. 

In order to support the development and periodic review of QRA, several studies 

have proposed advanced approaches to address different challenges usually faced in 

the analysis. For example, Bernechea, Vílchez and Arnaldos (2013) proposed a 

methodology to consider domino effects into QRA, by estimating the frequency with 

which new accidents will occur, while Kamil et al. (2019); Lisi et al. (2015); Zhou and 

Reniers (2018) focused on modeling such effects. Other studies have been done to 

estimate more realistic accident frequency (BADRI, NOURAI, et al., 2013, LANDUCCI, 

PALTRINIERI, 2016) and to quantify and/or update probability of failure/ accidents 

(GUO, JI, et al., 2021, LI, Yang, WANG, et al., 2021, MENG, ZHU, et al., 2021, 

SARVESTANI, AHMADI, et al., 2021). However, these studies were not concerned 

with the efforts required in the early stages of QRA. Indeed, they adopted traditional 

and time-consuming approaches to identify hazards – namely, PrHA, HAZOP, bow-tie 

(constructed after assessing accident databases), assessment of historical data, 

literature review, and others. 

Generally, these techniques involve examining different engineering documents 

that describe the installation (e.g., flowcharts, equipment, and material lists) and 

attending numerous meetings to postulate possible leakages, identify hazards and 
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their possible causes and consequences and, finally, evaluate and classify risks 

(CARRASQUILLA, MELKO, 2017).  

Regarding the initial steps of QRA, for instance, Aziz, Ahmed and Khan (2019) 

built an ontology for knowledge modeling and to design an expert database system 

from the hazard scenarios. The preliminary step of the proposed approach consists of 

outlining the hazard scenarios and gathering relevant information, which requires 

tedious procedures and several brainstorming sessions. Furthermore, Ahmad et al. 

(2019) incorporated the thematic analysis for hazard prevention strategies, which was 

applied to extract information from accident databases; this analysis involves 

transcribing and/or re-reading the data repeatedly to obtain the key points of the hazard 

prevention suggestions from the accident databases. 

Although the mentioned studies significantly contributed to the advance of RA, 

there is still a lack of studies applying TM, NLP and DL techniques to support 

preventive risk studies in process industries. Most studies that apply these techniques 

TM, NLP and DL to RA focus mainly on automatic identification of patterns from 

reactive data, such as accident reports, and classification of accidents’ cause. Indeed, 

one can look into reports both quantitatively, producing statistics and trends, and 

qualitatively, where prevention strategies can be drawn up based on different causes. 

However, real investigation reports oftentimes present drawbacks related to the quality 

of information filled out. For example, incomplete or missing data, lack of 

standardization, and conflicting information are commonly found in these reports. In 

practice, these issues are a significant hurdle for analysts to extract useful insights, 

and then propose effective preventive measures to improve safety. Moreover, valuable 

information is stored in different forms of text data, especially proactive data, and their 

adoption could support preventive risk studies. Therefore, this thesis aims to fill the 

mentioned gaps by: 

Applying NLP techniques to recognize, address, and point out possible 

inconsistencies in the accident investigation reports. Here, the database is composed 

of written reports about previous accidental events that occurred in a real hydroelectric 

power company. Using a 6-year historical database, the proposed methodology 

investigates and discusses the current characterization of the accident investigation 

reports, which were structured based on the Brazilian Standard ABNT NBR 14280 - 

Workplace accident record. To the best of our knowledge, this is the first study 

proposing a methodology for identifying low-quality patterns in investigation reports 
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through text mining and NLP and multiclassification tasks considering hydroelectric 

power company context. 

Proposing an approach based on TM, NLP and DL models to extract information 

from proactive risk analysis of an oil refinery in order to specify the potential 

consequences and classify each accidental scenario in terms of severity of their 

consequence and likelihood of occurrence. To that end, we developed an approach 

based on pre-trained BERT model to extract relevant information from PrHA 

documents. The text data was used to feed and fine-tune pre-trained BERT. In this 

way, the model is capable of learning patterns that allow it to characterize risk 

scenarios (predict potential consequences, severity of consequences and likelihood of 

occurrence) given the occurrence of an uncontrollable release of hazardous material. 

Next, we present our proposed approach. 
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4 METHODOLOGY TO ASSESS ACCIDENT INVESTIGATION REPORTS OF A 

HYDROPOWER COMPANY 

 

Part of this chapter have been have published in International Journal of 

Occupational Safety and Ergonomics (MACEDO, July B. et al., 2022). This part of the 

study aims to use NLP techniques to recognize, address, and point out possible 

inconsistencies in the accident investigation reports. Here, the database is composed 

of written reports about previous accidental events that occurred in a real hydropower 

company. Using a 6-year historical database, the proposed methodology investigates 

and discusses the current characterization of the accident investigation reports, which 

were structured based on the Brazilian Standard ABNT NBR 14280 - Workplace 

accident record (NBR, 2001). To the best of our knowledge, this is the first study 

proposing a methodology for identifying low-quality patterns in investigation reports 

through NLP and multiclassification tasks considering hydroelectric power company 

context. 

 

4.1 METHODS 

 

A schematic overview of our proposed methodology to extract knowledge from 

text is shown in Figure 8. The main idea is to support the diagnosis of the quality 

content and understanding of raw texts of accident investigation reports using NLP and 

ML methods. This can allow experts to identify inconsistencies and/or propose 

corrections and/or changes to improve the reports. After implementing the 

suggestions, the resulting reports would provide more useful and reliable information 

for the safety technicians. Although we processed texts in Portuguese, we followed 

generic steps.  

Firstly, raw reports are pre-processed using operations to remove noise, then are 

converted into feature vectors through different text representation models. Next, we 

performed an exploratory analysis, using the resulting representations to summarize 

their main contents and identify patterns, searching for useful information to perform a 

further assessment. Then, we trained several classifiers using different combinations 

of ML algorithms and feature vector representations to categorize the reports into 

different groups. Finally, we evaluated their predictions and compared their 
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performance. Each step was developed in Python computational language. The steps 

are detailed in the following sections. 

 
Figure 8 – Main steps and models used on our proposed methodology. 

 
Source: The author (2022). 

 

4.1.1. Text Preprocessing 

 

We performed three preprocessing operations: (i) stop words filtering, (ii) 

lowercasing, and (iii) tokenization. Stop words filtering is used to identify the content 

information, in which noninformative terms are removed (e.g., ‘the’, ‘it’, and ‘is’). Terms 

are also converted to lowercase (uppercase conversion). Finally, tokenization is 

applied by dividing the text into terms in which their unit is defined as words (also 

known as tokens). For all these preprocessing steps, we used Python string methods, 

as well as functions from the NLTK Library (BIRD, KLEIN, et al., 2009). 

 

4.1.2. Modeling Process 

 

As mentioned, computers do not understand words, only numbers; thus, instead 

of directly providing text to algorithms, we convert it into feature vector representations. 

Here, we analyzed and compared the results by using three different models: BoW, 

TF-IDF, and Doc2Vec, using the Gensim library (REHUREK, SOJKA, 2010). 
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4.1.3. Exploratory Analysis  

 

Firstly, we performed Data Augmentation (DA) as an attempt to overcome the 

database imbalance. In NLP context, DA is a natural choice to replace words or 

phrases with their synonyms (WEI, ZOU, 2020). We used the nlpgaug (MA, 2021), 

which is a library dedicated to textual augmentation in ML experiments. Simply put, the 

replacement of some words by synonyms, such as ‘machinery’ for ‘engine’, preserves 

the same content but generates a new sentence. More specifically, we used 

word.synonym function for the Portuguese language, which performs word 

replacement from the large lexical database WordNet. 

Thus, the synonym substitution procedure was performed on the training data 

generating new samples for categories with fewer instances and creating a more 

balanced database. To train and test the classifiers, we split each category in an 80/20 

ratio for training/testing. 

Moreover, in this step we used topic modeling to summarize the main themes of 

a collection of documents (e.g., reports) within a vector space with a reduced number 

of dimensions or topics since in traditional vector spaces each term or word 

corresponds to a single dimension (YUN, GEUM, 2020). We sought the best number 

of topics by using the coherence score within a pre-defined search space. Topic 

coherence computes a value for a single topic by measuring the degree of semantic 

similarity between high-scoring words in the topic, summing pairwise distributional 

similarity scores over all words (𝑊). We here consider the UMass metric (ASNANI, 

PAWAR, 2018) Equation (5, which was designed for LDA; it uses the conditional log-

probability smoothed by adding 𝜀; 𝐷(𝑤𝑖, 𝑤𝑗) is the number of documents containing the 

words 𝑤𝑖 and 𝑤𝑗, and 𝐷(𝑤𝑗) is the number of documents containing 𝑤𝑗: 

 

𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒(𝑊) = ∑
log(𝐷(𝑤𝑖, 𝑤𝑗) + 𝜀)

𝐷(𝑤𝑗)
𝑤𝑖,𝑤𝑗∈𝑊

 (5) 

  

4.1.4. Classification Task 

 

In the occupational safety context, NLP is frequently used to build predictive 

systems by using a corpus of already coded accident descriptions to learn the 
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relationship between the terms in the narratives and a target category (PIMM, 

RAYNAL, et al., 2014). Thus, to perform the classification task we here consider three 

well-known ML techniques implemented in Python language with the scikit-learn 

package (PEDREGOSA, VAROQUAUX, et al., 2011): 

• SVM - Support Vector Machine: it is based on the inductive principle of 

structural risk minimization, which aims to minimize an upper limit of the 

generalization error, considering the sum of the training error and a loss 

function (MAIOR, MOURA, et al., 2019). SVM maps nonlinearly 

separable data in a small-sized space to a large-sized feature space, 

where the data can be linearly separated (VAPNIK, IZMAILOV, 2019).  

• MLP - Multilayer Perceptron: class of artificial, feedforward neural 

network, which presents at least three layers of neurons: an input layer, 

a hidden layer, and an output layer (MAIOR, MOURA, et al., 2018). Each 

hidden node includes a non-linear activation function; MLP uses a 

supervised learning technique for training that is called backpropagation 

(WANG, Shi-Wei, YU, 2005). 

• RF - Random Forest: it is an ensemble method that extends the idea of 

recursive partitioning, where it cultivates several decision trees. Each 

tree is trained using a sample of the training data set and, then, grows 

using a subset of predictors randomly selected from each node. After 

generating a large number of trees, they vote for the most popular class; 

more details can be found in (BREIMAN, 2001). 

Here, the classifiers were trained over 80% of the dataset. Then, the performance 

of the classifiers was evaluated on test data (the remainder 20%) through the accuracy, 

𝐴, as seen in Equation (6: 

 

𝐴 =
𝑇𝑃 +  𝑇𝑁

𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃 +  𝐹𝑁
 

 
(6) 

 

where 𝑇𝑃, 𝑇𝑁, 𝐹𝑃 and 𝐹𝑁 are the numbers of true positives, true negatives, false 

positives, and false negatives, respectively. Additionally, we computed precision, recall 

and 𝐹1-score, where precision is the number of true positives (instances correctly 

predicted as 1) overall positive predictions (all instances predicted as 1), recall is the 
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number of true positives over all instances with 1 as the true label, and 𝐹1-score is the 

harmonic mean between precision and recall. 

 

4.2 DATA ANALYSIS AND BASELINE RESULTS 

 

The database we analyzed is presented in the form of a spreadsheet, where rows 

correspond to an accident investigation report and columns are characteristics 

(factors) about the event itself (e.g., location, causes, damage to people, injury leave 

(days), financial impact) and employee involved in the event (e.g., job position, 

experience in the activity, training). The dataset contains 626 reports that describe, in 

Portuguese, accidental events that occurred in a 6-year period. Each report contains 

several factors; thus, the safety technician must fill out almost 60 fields with either a 

‘Yes’ or ‘No’ answer or provide a short text. Figure 9 shows a simplified version, with 

fictitious employee personal information, of the report to illustrate its structure and how 

the main information is provided. 

The high number of factors may lead one to believe the event descriptions are 

thoroughly detailed. However, the filling of the long report makes the process of 

investigating, recording, and documenting the accidental event boresome. In fact, 

difficulties in filling out the reports are a common problem already mentioned by the 

safety technician. Moreover, the lack of standardization for describing the factors may 

hinder the efficient use of the accident investigation reports database for supporting 

decision-making for risk management. Indeed, as the report’s descriptions are based 

on NBR14280 (NBR, 2001), it makes one wonder if the factors are clearly understood 

and well-presented by the safety technician. 

After scrutinizing the raw data, we identified that much information is not filled 

out, presenting a poor standardization for completing the reports, which is probably 

related to a lack of understanding about the fields and/or questions. This is even more 

critical when factors need to be described as free text in open fields, which is the case 

of ‘accident type’, ‘accident agent’, ‘source of injury’, ‘unsafe act’, and others. For 

instance, based on NBR 14280 (NBR, 2001), the ‘accident agent’ factor represents the 

object, substance, or environment which the unsafe condition is related to and that 

caused the accident, whereas ‘source of injury’ corresponds to the object, substance, 

energy, or movement of the body that directly caused the injury. Their meanings are 

slightly different and may be easily mistaken. Thus, the safety technician needs to 
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deeply understand the factors’ concept to correctly fill out the reports and have them 

memorized (or check the standard); otherwise, an incorrect description is going to be 

provided. 

 

Figure 9 – Simplified version of the report, filled with fictitious employee information and an 
example accident. 

 
Source: The author (2022). 

 

Figure 9 exemplifies a common situation found in the database, where the ‘source 

of injury’ factor was filled in as ‘joint inflammation’, which is in fact the ‘accident 

consequence’. According to NBR 14280 (NBR, 2001), in this case, the correct ‘source 

of injury’ factor would be ‘ladder’; thus, the ‘accident agent’ factor, which was correctly 

filled out in Figure 9, is categorized as ‘building, structure, pole, tower, rope, cable, 

electrical cable, chair, drums, pulleys, tanks, cylinders, tank protection’. Yet, in the 

analyzed database, there are several redundant, but required fields that could be 

grouped together to make the report simpler, more straightforward. For example, the 

fields ‘did you have experience in the task?’ and ‘how much time of experience in the 

task?’ could be merged, because if the employee does not have experience in the task, 

the time of experience would be zero. Moreover, the fields ‘was the employee wearing 
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PPE?’ and ‘was the PPE appropriate’ could be simplified to ‘was the employee wearing 

appropriate PPE?’, where PPE stands for Personal Protective Equipment. Such 

simplifications could make the filling out process less exhausting, which would increase 

the quality of reports. 

Here, we focus our analysis on the ‘accident agent’ as it represents a valuable 

source of information to identify common elements about the cause of accidents and, 

then, propose preventive measures. The safety technician standardized the ‘accident 

agent’ categories into nine different classes, which are presented in Table 6. 

 

Table 6 – Accident agent’ categories. 

Label  Category 

0 Scaffolding 
1 Duct, ditches, pipes, tunnels, pressure vessels 

2 
Building, structure, pole, tower, rope, cable, electrical cable, chair, drums, pulleys, 
tanks, cylinders, tank protection 

3 
Manual and automatic tools, drilling machines, sander, polisher, grinder, drill, 
lathe, electrical discharge machine, electrical equipment, electric arc, hydraulic or 
pneumatic 

4 Engine, pump, turbine 
5 Trip or slip 

6 
Chemical substance and industrialized metal, lead, mercury, zinc, cadmium, 
chromium, rebar, ferrous alloy 

7 Commuting accidents 
8 Motor vehicle, motorcycle, tractor scooter, on track, hoisting equipment 

Source: The author (2022). 

 

However, we identified that, no matter the background and expertise, the safety 

technician was often confused by the categories when reporting the accidental event. 

To depict this situation, Table 7 presents actual cases of the ‘accident agent’ category 

we found in the database. In Table 7, one can see that the ‘accident agent’ of the first 

instance should be categorized as ‘trip or slip’ (category 5), because the employee 

tripped over a box. In addition, the second instance represents an accident that 

occurred when the employee was arriving at the company’s facilities, i.e., a ‘commuting 

accident’ (category 7), but it was misclassified.  

Moreover, the third instance should be classified as category 2, since the accident 

consisted of the employee slipping while climbing the structure. This may indicate that 

these categories are not well-understood. In the context of this database, the accident 

investigation reports were also analyzed by few other studies in statistical context and 

in text mining field. For instance, Moura et al. (2016) proposed a Bayesian population 

variability method for estimating accident and recovery rate distributions, while Maior 
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et al. (2020) performed binary text classification (accidents with or without injury leave) 

based on the description written by the safety technician. Guimarães et al., (2020) 

grouped the same accident investigation reports, considering the safety technician 

description, and indicated five as the ideal number of clusters, pointing out that it may 

exist a smaller number of groups of accidents that are more generic and easier to 

distinguish. 

 

Table 7 – Example of instances assigned with the wrong 'accident agent' category. 

Instance Accident description Accident agent 

1 

When the employee stood up from 
her chair, she hit her foot on a box 
that was under the worktable. She 
lost her balance, falling and hurting 

her thumb. 

Duct, ditches, pipes, tunnels, pressure 
vessels 

2 

The employee, when arrived at the 
sidewalk that gives access to the 

company's facilities, bumped into a 
stone and fell, suffering injuries to her 

leg and hand 

Building, structure, pole, tower, rope, 
cable, electrical cable, chair, drums, 

pulleys, tanks, cylinders, tank 
protection 

3 
When climbing on the structure, the 
employee slipped, and the impact 

dislocated his shoulder. 

Manual and automatic tools, drilling 
machines, sander, polisher, grinder, 

drill, lathe, electrical discharge 
machine, electrical equipment, electric 

arc, hydraulic or pneumatic 
Source: The author (2022). 

 

Conversely to these aforementioned papers, we here perform a 

multiclassification task, since we categorized the accidents agents. As previously 

mentioned, the original database has nine categories of ‘accident agents’, and the 

number of instances in each is presented in Figure 10.  

 

Figure 10 – Number of instances per 'accident agent' factor considering the original categories. 

 
Source: The author (2022). 
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It is noteworthy that there are many more descriptions in categories 3 (‘Manual 

and automatic tools, drilling machines, sander, polisher, grinder, drill, lathe, electrical 

discharge machine, electrical equipment, electric arc, hydraulic or pneumatic’), 5 (‘trip 

or slip’), and 7 (‘commuting accidents’) than to the others. 

Initially, to get a base result to compare with the modifications that will be 

proposed, we considered these classes to train the classification models without 

performing the exploratory analysis (see Figure 8). In order to avoid biases and to 

account for the variability, the process of training and test was repeated 10 times (CV 

– Cross Validation) and we computed the median performance metrics (Table 8) to 

classify the test data. 

 

Table 8 – Median accuracy (%) of the classification task using nine ‘accident agent’ categories as the 
target. 

Classifier  BoW  TF-IDF  Doc2Vec 

SVM  51.98  53.96  31.34 
RF  58.33  57.14  31.34 
MLP  59.92  59.52  28.17 

Source: The author (2022). 

 

As we expected, the performance of the models is quite low and further 

investigation is required. We assume a few hypotheses that may have caused this: (i) 

the data imbalance (Figure 10), (ii) the low quality of data/grouping, and/or (iii) poor 

configuration of ML algorithms. Then, we will work on these assumptions in next the 

sections. 

 

4.3 APPLICATION AND RESULTS 

 

4.3.1 Dealing with Data Imbalance 

 

The synonym substitution procedure was performed on the training data 

generating new samples for categories with fewer instances and creating a more 

balanced database. To train and test the classifiers, we split each category in an 80/20 

ratio for training/testing. Therefore, the training set for categories 3, 5, and 7 had 100 

samples, while the remaining categories had less than 45 samples (e.g., there were 

only 8 training samples for category 4). Hence, the word.synonym was used for 

categories 0, 1, 2, 4, 6 and 8 to randomly select and generate new training samples. 
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Note that we did not generate a database with an equal amount of data for all 

categories, we only ensured that the word.synonym provides at least 100 training 

samples, including the original training data. Figure 11 presents the number of 

instances in each category on the augmented training set and on the test portion. 

 

Figure 11 – Number of training (original and augmented) and test instances per ‘accident agent’ 
factor considering the original categories found in the reports. 

 
Source: The author (2022). 

 

Next, the same steps of processing the augmented data, training, and testing 

were repeated 10 times (CV) to account for the variability. Nevertheless, as one can 

see in Table 9, even with a more balanced dataset, all classifiers showed an inferior 

median accuracy compared to the baseline performance (Table 8). 

 
Table 9 – Median accuracy (%) of the classification task using nine categories as the target after DA. 

Classifier  BoW  TF-IDF  Doc2Vec 

SVM  51.94  51.94  11.24 
RF  54.65  56.20  13.18 
MLP  58.91  57.76  10.86 

Source: The author (2022). 

 

In addition, Table 10 provides the median performance metrics of the best 

classifier (i.e., MLP-BoW) for test data and for each category. Even with augmented 

data, the model was not able to correctly classify the instances belonging to augmented 

categories, which supports the idea that the data found in the reports are not of good 

quality. In other words, create artificial instances from poor-defined data jeopardizes 

the model performance as the technique increased the number of low-quality instances 
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in the dataset. As this behavior is presented in all models of Table 9, the following 

analyses are not performed in the augmented database. 

 

Table 10 – Median performance metrics (%) of on test data with MLP-BoW (trained with augmented 
data). 

Label Precision (%)  Recall (%)  𝑭𝟏-score (%) 

0 0.00  0.00  0.00 
1 0.00  0.00  0.00 
2 50.00  18.18  26.66 
3 55.55  69.23  61.64 
4 0.00  0.00  0.00 
5 56.25  36.36  45.28 
6 0.00  0.00  0.00 
7 65.63  73.33  69.27 
8 60.00  36.36  45.28 
9 55.55  69.23  61.64 

Source: The author (2022). 

 

Moreover, despite being a more elaborated model, the performance of the 

Doc2Vec model is much worse in both analyses compared to the others (Table 8 and 

Table 9). Indeed, Lee and Yoon (2018) argued that although Doc2Vec proved to be 

effective in binary classification, it is not clear whether Doc2Vec can perform well 

multiclassification tasks. The authors mentioned that since multiclassification task can 

be challenging for Doc2Vec, depending mainly on the number of categories, to get 

satisfactory results it may be necessary to augment the Doc2Vec-based features. 

Therefore, in the remainder of Section 4.3, we will discard Doc2Vec and only evaluate 

the TF-IDF and BoW models. 

 

4.3.2 Topic Modeling  

 

Next, aiming to identify potential inherent groups of accidents and evaluate the 

categorization of the accidents, topic modeling task is performed using LDA algorithm 

to summarize the descriptions and key topic groups. Then, we here defined a search 

space for the number of topics (2 to 25 topics) and adopted the number of topics that 

yielded the best average topic coherence score, which shows the weak or strong topic 

correlation as described in Section 2.2.2. Figure 12 depicts the average coherence 

score as we vary the number of topics. 

  



63 

 

Figure 12 – Average coherence score for a different number of topics. 

 
Source: The author (2022). 

 

As illustrated in Figure 12, the best score was achieved when thirteen topics were 

considered. However, thirteen topics is a rather large number considering the total of 

accidents in our database. This result is probably caused by the variability on the 

accident descriptions and possible overlapping topics. Table 11 summarizes some 

topics achieved (translated into English), providing the four main concepts (i.e., terms 

/ words) that represent each topic. 

 

Table 11 – Concepts describing each topic. 

 Concept 
Topic 1st 2nd 3rd 4th 

1 Bus  Same  Get off  Employee 
2 Stairs  Slipped  Wet  Get down 
3 Coming  Suffered  Employee  Driving 
4 Employee  Coming  Foot  Injury 
5 Knee  Left  Day  Vehicle 
6 Stepped  Right  Building  Eye 
7 Same  Key  Moto  Work 
8 Vehicle  Causing  Left  Hand 
9 Entrance  Access  Sidewalk  Step 

10 Chair  Right  After  Step 
11 Floor  Went down  Slipped  Catch 
12 Contusion  Left  Shoulder  Rise 
13 Room  Ankle  Ramp  Coming 

Source: The author (2022). 

 

Indeed, it is possible to notice that many topics overlap. For instance, both topics 

2 and 11 involve ‘slipping’. However, they differ in terms of the ‘accident agent’: ‘stairs’ 
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in topic 2, while ‘floor’ for topic 11. Moreover, topics 4 and 13 handle with events in 

which an employee walks (see the action verb ‘coming’ associated with the employee 

action) and, then, his/her ‘ankle’ or ‘foot’ are injured. Note that topics 1, 3, 4, 7, 9, and 

13 seemingly represent accidents that occurred when the employee was arriving/going 

to work; topics 2, 10, and 11 correspond to trip and fall accidents; while topics 5 and 8 

may characterize accidents caused by vehicles and topics 6 and 12 seems to be lone 

topics. Based on the outcome of topic modeling, the evaluation of the results after DA, 

as well as on the results found in (GUIMARÃES, ARAÚJO, et al., 2020), the accidents 

can be put together in larger groups, resulting in less categories. 

Thus, we decided to perform a laborious, yet necessary, database manual 

curation. Note that even if we performed topic modelling on the clusters identified by 

Guimarães et al. (2020), a manual curation would probably still be necessary to label 

each accident agent, because the descriptions used for clustering/topic modeling 

encompass not only the accident agents, but the accident conditions, consequence 

and other factors. We discuss the manual curation in next Section. 

 

4.3.3 Restructuring the Reports’ Database 

 

We evaluated the original pre-defined categories, merging the ones that seem to 

be similar. The restructuring resulted in six categories as shown in Table 12. This step 

was essential as it allowed us to identify accident agents misclassified by the safety 

technician (see Table 7). 

 

Table 12 – Six Categories of accidental events. 

Label Categories 

0 Scaffolding 
1 Administrative fall/ injury 
2 Equipment/ tools 
3 Chemical products 
4 Commuting 
5 Others 

Source: The author (2022). 

 

After reorganizing the database, we proposed new labels, and the number of 

instances in each class is presented in Figure 13. Five groups (0-4) are formed by 

accident investigation reports with common causes within each group, and the 

remaining set (5: ‘others’) is composed by events that have different causes and are 
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not assigned to any specific category. The categories ‘administrative fall/ injury’ refers 

to accidents in the administration building due to person movement, while ‘commuting’ 

represents accidents due to employee displacement, with or without a motorized 

vehicle, outside the company’s building. 

Despite the restructuring, there are still categories (0: ‘scaffolding’, 3: ‘chemical 

products’, and 5: ‘others’) with rather few instances. One may expect that these 

accidents were related of more severe consequences, which has a lower frequency 

according to the Heinrich’s triangle (BATTIATO, FARINELLA, et al., 2018). However, 

considering the information of ‘injury leave’ provided in the original database, the 

accidents related to these less frequent agents are not necessarily associated with 

more severe consequences: 61.9%, 53.8%, and 63.1% of the accidents categorized 

as 0, 3, and 5 respectively led to injury leave compared to 57.5%, 55.4%, and 68.9% 

of classes 1, 2 and 4. In other words, a frequent ‘accident agents’ (e.g., 4: ‘commuting’) 

led to severe consequences. These results reinforce the hypothesis that the 

investigation reports were not filled in correctly. 

 

Figure 13 – Number of instances per ‘accident agent’ considering the new categorization after the 
curation 

 
Source: The author (2022). 

 

Next, we performed the same steps of the methodology (i.e., preprocessing and 

conversion into feature vector representations) before training and, then, we tested 

each model 10 times. Table 13 presents the classification median accuracies. The 

manual labeling increased the accuracy by about 15 percentage point in some cases 

(e.g., SVM-TF-IDF) compared to Table 8. The significant improvement in performance 

confirms the assumption of mislabeling in filling out accidents’ investigation report 
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based on the original categories. Indeed, the new categorization apparently is more 

coherent, aligned with the safety technician view; thus, being beneficial for the 

identification of patterns. 

 

Table 13 – Median accuracy (%) of the classifiers on test data adopting six categories of accidental 
events 

Classifier  BoW TF-IDF 

SVM 64.29 68.26 
RF 67.86 67.06 
MLP 70.63 69.44 

Source: The author (2022). 

 

Moreover, Figure 14 shows the confusion matrix for the results of one round of 

CV on the test set for the MLP-BoW, which presented the best median accuracy. In 

the confusion matrices, the element in the 𝑟-th row and 𝑗-th column, 𝑐𝑟,𝑗, indicates the 

number of observations 𝑗 predicted as 𝑟. For example, the element 𝑐0,0 of the confusion 

matrix indicates that 0 of the instances were corrected classified as 0. 

 

Figure 14 – Confusion matrix for classification of test data with MLP-BoW model 

 
Source: The author (2022). 

 

Despite the overall improvement in the performance, the results still indicate a 

poor representation of different categories with fewer data (i.e., 0, 3, and 5). In fact, the 

median performances for these categories were all zero; the model only correctly 

classified the instances labeled as 1, 2, and 4. 

Yet, 9 of 11 errors for classifying label 4 (‘commuting’) consist of predicting label 

1 (‘administrative fall/injury’) and 6 of 11 errors for classifying label 1 consist of 

predicting label 4. This is probably because these ‘accident agent’ categories are 

inherently similar and, then, it negatively interfered in the models’ learning process. In 
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order to illustrate these errors, Table 14 shows some examples of misclassified 

accidents’ descriptions labeled as 1 and 4. 

The first instance (label 4) misclassified as label 1 contains a consequence 

(underlined in the description) that is common to label 1 (e.g., the employee slipped in 

the office and sprained his/her ankle). The second instance also comprises a 

consequence common to accidents categorized as 1; moreover, the accident involves 

slipping in high heels, which is a frequent cause of administrative falls/injuries. The 

description of instances 2 and 3 also encompasses the terms ‘slip’ and ‘trip’. In 

addition, instances 1, 2 and 3 involve employee displacement to work; according to 

standard NBR 14280 (NBR, 2001), accidents labeled as 1 involve displacement within 

the company’s facilities. Since the employees were walking to work, the accidents 

occurred due to similar causes (‘slip’ and ‘trip’) and had similar consequences 

(‘sprained his/her ankle’) as ‘administrative fall/injury’ accidents. The fourth instance 

describes a ‘stepping on a stone’ situation, which is an odd condition for an 

administrative accident. In addition, the accident described in the fifth instance 

occurred when the employee entered a facility by walking. The terms ‘entering’ and 

‘arriving’ are oftentimes used to describe commuting accidents. Finally, in the 

examples provided one can see that the descriptions use very similar terms regardless 

the categories. Thus, it is plausible that the model had difficulties in differentiating label 

1 and label 4. 

 

Table 14 – Instances misclassified by SVM-TF-IDF model regarding label 1 (‘administrative fall/injury’) 
and label 4 (‘commuting’) accident agents 

Instance Accident description 
Accident agent 
Label  Predicted 

1 
The employee went to work at around 8:20 a.m. when he 
sprained his ankle when stepping on the uneven side of 
the sidewalk. 

4 1 

2 

The employee walked from home to work and when 
passing on a sloping sidewalk she slipped and fell to the 
ground. She was not in a hurry at the time, she wore a 
clog and suffered a fractured left ankle. 

4 1 

3 
The employee tripped over a loose stone on the ground 
when walking down the sidewalk on his way to work, 
falling on his knee and suffering bruises. 

4 1 

4 
While performing an activity the employee stepped on a 
stone, fell with the right side of his chest on the stone, and 
suffered a chest injury. 

1 4 

5 
When entering the accommodation, the employee did not 
notice the glass door and bump into it, suffering a cut on 
the left eyebrow. 

1 4 

Source: The author (2022). 
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The result for the class ‘others’ is somehow expected because it is made up of 

reports of events that have different causes and are not common to the other 

categories. Thus, from the few instances available, the classification methods were not 

able to identify features to represent this class. Indeed, the classifiers try to assign 

these accidents to classes that have the maximum similarity, which once again, might 

hinder their performance. For example, the accident description ‘during a competition 

held by the team, one of the recreational activities was tug-of-war. When pulling the 

cable, the employee felt pain in the lower back’ was labeled as 2 (‘equipment/ tools’) 

instead of 5 (‘others’) probably because of the expression ‘pulling the cable’ makes 

that accident to be incorrectly related to the maintenance/operation of some 

equipment. 

 

4.3.4 Parameter Tuning 

 

Each ML algorithm requires a set of hyper-parameters in its formulation, and their 

proper estimation demands attention to best adjusts the mapping function (MAIOR, 

SANTANA, et al., 2018). Thus, we here applied Grid-Search (GS) and CV algorithms 

to fine-tune their hyper-parameters. GS looks into a specified searching space (subset 

of hyper-parameters), while 𝑘-fold CV is applied to the training dataset to find the 

hyper-parameters resulting in the best performance measured on the validation set. 

Additionally, 𝑘-fold CV provides less-biased and less-optimistic results equally dividing 

dataset into 𝑘 parts, where 𝑘 –  1 are used for training and 1 for validation purposes. 

This process is executed 𝑘 times, changing the validation portion until all training 

data have been used. This procedure was here performed over training data, with 𝑘 =

 10. Table 15 presents the search spaces for GS-CV approach for each ML model, see 

(PEDREGOSA, VAROQUAUX, et al., 2011) for further details. 

 

Table 15 – Search space for GS for each classifier and description of the hyperparameters 

Classifier  Hyper-parameters  Value / Type range 

SVM 
gamma  [10-5, 10-4, 10-3, 10-2] 
C  [10, 102, 103, 104] 

MLP 
hidden layers size  [(100), (100, 100), (100, 100, 100)] 
activation  [‘tanh’, ‘relu’] 
solver  [‘sgd’, ‘adam’] 

RF 
max depth  [20, 30, 40, 50] 
n estimators  [50, 83, 116, 150, ‘None’] 

Source: The author (2022). 
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The results on a test set with fine-tuned hyper-parameters are summarized in 

Table 16. The results slightly improved for most classifiers. The greatest enhancement 

(5 percentage point) was obtained for SVM-TF-IDF, which is particularly interesting for 

discarding the hypothesis that a greater performance is not achieved due to the poor 

selection of the hyper-parameters of the classifiers. 

 

Table 16 – Accuracy (%) of the classifiers with fine-tuned hyper-parameters on test data adopting six 
categories of accidental events. 

Classifier  BoW  TF-IDF 

SVM  65.08  73.02 
RF  69.84  67.46 
MLP  69.05  72.22 

Source: The author (2022). 

 

As we mentioned, it is noteworthy that, despite the reduction in the number of 

categories from nine to six, there are still many of them with a limited amount of data 

(i.e., 0, 3, and 5). Thus, even with parameter tunning, the models may not have been 

able to properly learn the patterns to identify these categories due to the small number 

of samples. 

 

4.3.5 Sensitivity Analysis 

 

Finally, we performed a sensitivity analysis regarding the three classes with the 

least frequent data (i.e., 0, 3, and 5) to assess the impact of these categories on the 

overall performance. Specifically, we considered the four cases in which we removed 

the instances categorized as ‘scaffolding’, ‘chemical products’, and ‘others’ individually, 

and the case where they are jointly crossed out. Then, we performed the hyper-

parameters selection via GS-CV and retrained the models still using the 80/20 ratio for 

training/testing. Table 17 presents the accuracy obtained of the models on test data. 

Compared to the performance of Table 13 removing one category at a time generally 

led to better results. For example, taking out ‘scaffolding’ or ‘chemical products’ 

provided an increase of 8 percentage point in the RF-BoW performance. Moreover, 

the removal of ‘others’ raised 5, 4, and 4 percentage point in the SVM-TD-IDF, RF-

BoW, and MLP-TF-IDF accuracy respectively. Yet, removing all samples that belong 

to classes with fewer data (i.e., labeled with 0, 3 and 5) clearly improved the 
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performance for all classification and representation models (compare Table 13 and 

the last line of Table 17). 

Table 17 – Accuracy (%) of classifiers on test data after removing classes 0, 3 or/and 5. 

Class Removed 
BoW TF-IDF 

SVM RF MLP SVM RF MLP 

0: ‘scaffolding’  66.67  75.61  69.92  73.27  70.73  73.98 
3: ‘chemical products’  66.13  75.00  74.19  75.00  70.97  75.00 
5: ‘others’  66.67  71.74  71.74  73.98  69.11  73.98 
0, 3 and 5 69.49  76.27  76.27  77.97  74.58  78.81 

Source: The author (2022). 

 

To illustrate the classification performance regarding each category, Figure 15 

presents the confusion matrix for the results of the best model without the three 

categories mentioned (i.e., MLP-TF-IDF), while Table 18 shows the performance 

metrics for each remaining category. Even with the concerns regarding the safety 

technician labeling procedure, the account of classes with a greater number of reports 

led to balanced and reasonable results. 

 

Figure 15 – Confusion matrix for the test classification with MLP-TF-IDF model after removing classes 
0, 3 and 5 

 
Source: The author (2022). 

 

Table 18 – Performance metrics on test data of MLP-TF-IDF model after removing 'scaffolding', 
'chemical products', and 'others' for each accident label 

Label  Precision (%)  Recall (%)  𝑭𝟏-score (%) 

1 75.51 77.08 76.29 
2 74.02 83.33 78.43 
4 85.71 78.26 81.82 

Source: The author (2022). 

 

The model could satisfactorily learn patterns of these categories, with 𝐹1-scores 

close to 80% for all classes. The precision for label 2 is slightly lower than for categories 

1 and 4; probably because category 2 has the smallest number of samples and, then, 

the model did not learn all the subtleties to identify this ‘accident agent’ factor. Note 
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that these errors also affected the recall for labels 1 and 4 (instances labeled as 2 were 

misclassified as 1 and 4). Thus, the consideration of a truly balanced dataset (i.e., with 

original reports, not augmented ones) may be helpful in analyzing the performance 

metrics. 

 

4.3.6 Conclusion 

 

In Section 4.2 we presented the results of the NLP-based classifiers with the 

original categorization of the accidents reports that are used as a starting point of the 

analysis. Then, the results of the exploratory analysis, obtained through an 

unsupervised learning algorithm, provided us with an overview of the accident 

investigation reports, serving as a tool to identify possible systematic issues in these 

reports. Indeed, in Section 4.3.2 we identified a high number of topics and also 

observed the overlap among them. These results allowed us to postulate a possible 

problem related to the categorization of the accidents, which led us to perform a 

manual curation of the database where we proposed a new categorization of ‘accident 

agent’ and reclassified the accidents. Next, in Section 4.3.3 we present a new 

categorization and the performance of the NLP-classifiers on the classification task 

using the updated database (accident investigation reports with their new labels). 

Finally, the improvement observed in the performance of the classifiers indicates that 

the proposed categories are more representative and contain better quality information 

for training the classifiers. 

Here we employ NLP as a tool to improve the quality of the information contained 

in the reports. Thus, the result obtained through the proposed methodology would be 

more useful accident investigation reports that could be adopted by methodologies 

already proposed by other authors. To demonstrate this, in the next section we adopt 

the resulting reports for predicting injury leave. 

 

4.4 INJURY LEAVE CLASSIFICATION 

 

This part of the study aims to analyze the accident investigation reports resulting 

from the proposed methodology, i.e., with accidents relabeled with the proposed 

accident agents, to illustrate the practical usefulness of the modified reports to support 

decision making. The goal is to determine whether there will be an injury leave, in 
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which this information is fundamental to effectively defining strategies for the worker's 

absence. The results and methodology described here were accepted in the Journal 

of Risk and Reliability (RAMOS, Plinio, MACÊDO, et al., 2022). 

Investigation of injury leaves caused from accidents is important when the 

evaluation of unavailability and worktime loss is of interest. The employee’s absence 

can lead the company to spend financial resources. Indeed, according to the Brazilian 

National Institute of Social Security (INSS, 2022), the organization pays the 

employee’s salary within the first 15 days after the accident, and then the government 

pays the employee's social security benefit for the rest of the leave period. However, 

for the company, it is still mandatory to collect the worker's guarantee fund, besides 

possibly hiring a new employee for the task. Indeed, significant research effort has 

been put into the analysis of occupational accidents regarding the assessment of rates 

of accident and recovery (PAREJO-MOSCOSO, RUBIO-ROMERO, et al., 2012). 

Pre-trained language models such as BERT (described in Section 2.4) can be 

fine-tuned with specific domain data and provide state-of-the-art results even with only 

a few hundred samples (SI, WANG, et al., 2020). Indeed, some successful applications 

in risk and reliability have been published (MACÊDO, MOURA, AICHELE, et al., 2022, 

MOON, CHI, et al., 2022, ZHANG, Lite, WANG, et al., 2022, ZHOU, Bing, ZOU, et al., 

2022), but there is still a gap in the application of these powerful models regarding the 

use numerical variables, which are fundamental to our context. The proposal is to use 

BERT model for the textual variable, which, when concatenated with the non-textual 

variables, feeds a classifier model. To analyze the results, we considered one specific 

class of the category ‘accident agent’, that was proposed after the application of the 

proposed methodology (Section 4.3.3) and represents the element related to the 

unsafe condition that caused the accident. 

Thus, the trained classifier would be used in practice to process new accident 

reports. As new accidents would occur, the safety technician would fill out an accident 

report and the model would provide as an output whether the injury would result as a 

leave or not. Managers can use the model to reorganize their workforce due to the 

shortage of human resources, or even assist the management of financial resources 

such as the need to cover employee leave or hire temporary employees. Here, we 

consider not only the accident description, which is written by the company safety 

technician, but also other numerical and categorical information presented in the 

database such as the use or not of PPE and the employee’s years of work.  



73 

 

 

4.4.1 BERT-based Classifier 

 

Accident reports are not usually restricted to the event description as they may 

contain fields filled in with numerical, categorical and/or binary information to detail the 

accident. This information can be used to identify common causes, consequences and 

sources of accidents, as well as propose preventive and mitigative measures. One 

common approach, when applying models to process natural language, such as 

BERT, is to combine numerical and categorical variable with textual variable by 

converting all variables to text (MACÊDO, MOURA, RAMOS, et al., 2022). Although 

BERT can understand natural language, it may not be able to capture all information 

contained in values relative to continuous numbers, or even a large number of discrete 

numbers (WALLACE, WANG, et al., 2020). Thus, an alternative approach is to 

concatenate the non-textual variables for BERT embedding and classify the resulting 

vector through a neural network.  

Here we changed BERT's architecture (Figure 7) to incorporate the numerical 

data into the word representations. In other words, during fine-tuning, we update the 

entire architecture not only with text data but also with the numerical data. Thus, the 

generated embeddings take into consideration not only the specific context as 

technical terms, but also quantitative information about the analyzed scenarios. A 

schematic overview of our proposed BERT-based classifier is shown in Figure 16. 

From the modified accident investigation reports we select textual variables (e.g., 

accident descriptions), numerical variables (e.g., years of experience of the injured 

person, age of the worker) and binary variables (e.g., the use of PPE, training in 

occupational safety) that can be used as predictor variables in a classification model.  

The numerical (continuous and binary) variables will be concatenated from the 

768 standard BERT features that will be used to represent the textual variables. These 

combined features are input to a MLP for the final classification. Each step was 

developed in the Python computational language and is detailed below. We used the 

Pytorch implementation of pre-trained BERT available at transformers library (WOLF, 

DEBUT, et al., 2020). We here built our model on top of the ‘bert-base-multilingual-

cased’ version of the ‘BertForSequenceClassification’ model which is a version pre-

trained in 104 languages (including Portuguese, in which our text data are originally 

written). 
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Figure 16 – Overview of the proposed BERT-based classifier. 

 
Source: The author (2022). 

 

The MLP implemented has 770 nodes in the input layer (dimension of our 

combined input vector) and the dimension of the MLP layers were defined as (
1

4
) of the 

nodes of the previous layer. Thus, the resulting MLP has 4 hidden layers with 192, 48, 

12 and 3 nodes, and a final layer with 2 nodes (since we are performing a binary 

classification). See Table 19 for a detailed description of the system parameters. 

We apply a CV algorithm based on the Leave-P-Out cross-validator (LPO-CV) 

(PEDREGOSA, VAROQUAUX, et al., 2011), to evaluate the performance of our 

model. Using the CV has a high chance of detecting whether our model is being 

overfitted. In this way, the LPO-CV method creates all the different training/validation 

sets revoking 𝑝 samples from the entire set. For 𝑛 samples, this method produces (
𝑛

𝑝
) 

train-test pairs. 

From this, a confusion matrix with the prediction of the test data for each run was 

formed, to assist in the performance evaluation of the models. The classifier’s 
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performance has been evaluated considering the classification accuracy, precision, 

recall, and 𝐹1-score for each round. 

 

Table 19 – System trainable parameters. 

Block Type Shape Activation Amou
nt 

Paramete
rs 

Embedding word_embeddings (11954, 
768) 

 1 9,180,672 

Embedding position_embeddings (512, 
768) 

 1 393,216 

Embedding token_type_embeddi
ngs 

(2, 768)  1 1,536 

Embedding LayerNorm.weight (768)  1 768 

Embedding LayerNorm.bias (768)  1 768 

Dropout dropout   1  

BertSelfAttenti
on 

query.weight (768, 
768) 

Linear 12   

BertSelfAttenti
on 

query.bias (768) Linear 12   

BertSelfAttenti
on 

key.weight (768, 
768) 

Linear 12  

BertSelfAttenti
on 

key.bias (768) Linear 12  

BertSelfAttenti
on 

value.weight (768, 
768) 

Linear 12  

BertSelfAttenti
on 

value.bias (768) Linear 12  

Dropout dropout   12  

BertOutput dense.weight (768, 
768) 

Linear 12  

BertOutput dense.bias (768) Linear 12  

BertOutput LayerNom.weight (768)  12  

BertOutput LayerNorm.bias (768)  12  

BertIntermedia
te 

dense.weight (3072,76
8) 

GELUActivati
on 

12  

BertIntermedia
te 

dense.bias (3072) GELUActivati
on 

12  

BertOutput dense.weight (768, 
3072) 

Linear 12  

BertOutput dense.bias (768) Linear 12  

BertOutput LayerNom.weight (768)  12  

BertOutput LayerNorm.bias (768)  12  

Dropout dropout   12  

BertPooler dense.weight (768,768
) 

Linear 12  

BertPooler dense.bias (768) Linear 12  

MLP init (770,3) tanh 1  

MLP final_layer  Linear 1  
Source: The author (2022). 
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4.4.2 Data Analysis 

 

As mentioned, here, we focused on predicting if an occupational accident led to 

injury leave or not. In the modified accident investigation reports, the accidents were 

classified into six different ‘accident agent’ categories. Here, we focus our analysis on 

the class with more samples, ‘administrative fall/injury’, which contains 219 reports. 

Other different classes, which have fewer accident reports e.g., 13 reports in the 

‘chemical products’ class), would increase the list of words (vocabulary) for the model 

but would not provide enough data for the model to extract patterns.  

After evaluating all the characteristics present in the reports, we consider that 

three of them represent a relevant source of information for the classifier: (i) accident 

description (provided as free text), (ii) use of PPE during the accident (binary variable), 

and (iii) the employee’s length of experience (continuous variable). Thus, we removed 

the accident samples that did not present these variables filled in the report. This 

reduced 38 samples of the specific category. The binary variable assumes 0 value if 

the employee was not using PPE and 1 otherwise. The continuous variable was scaled 

between 0 and 1.  

Finally, the texts are preprocessed to remove noise as described in Section 4.1.1. 

In addition, to mark the beginning and the end of each sentence, it was necessary to 

add [CLS] and [SEP] respectively; this is because BERT was pre-trained using the 

format [CLS] sentence [SEP]. Moreover, it is essential to use the same tokenization to 

fine-tune a pre-trained model; for this reason, we used the ‘BertTokenizer’ backed by 

transformers library, which splits the sentences into a sequence of tokens according to 

punctuation and sub-word units, converts raw text to sparse index encodings, and 

stores the vocabulary token-to-index map. Thus, the cleaned sentences were 

processed by the tokenizer. In addition, the tokenizer transforms all sequences to a 

maximum length by adding zeros, since the model requires inputs that have the same 

shape and size.  

 

4.4.3 Data Augmentation 

 

Here, after the 80/20 split, the DA procedure was applied to the test set to: (i) 

balance the ‘administrative fall/injury’ category of accident agent; (ii) to increase the 

dataset. Next, in Table 20, an example of how the DA procedure works. 
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Table 20 – Example of DA procedures in an adapted description. 

Procedures Description 

Preprocessed 
original 

after parking truck getting out of he did not realize that there was gap ground 
slipping hurting his right knee 

DA1 after parking car getting out of he did not realize that there was gap ground slipping 
hurting his right knee  

DA2 after parking truck getting out of he did not realize that there was gap ground 
slipping harming his right knee 

Source: The author (2022). 

 

Therefore, the training set consists of 480 samples among augmented and 

original descriptions (145 original), whereas the test set contains 36 non-augmented 

descriptions (19 reports of injury leave and 17 reports of non-injury leave). The 

sentence length of these reports varies according to the detail of each accident, 

providing different terms for vocabulary training. The sentence length histogram is 

shown in Figure 17.  

 
Figure 17 – Histogram of sentence lengths. 

 
Source: The author (2022). 

 

We noticed that all sentences have a length of less than 300. which is smaller 

than BERT’s sequence length limit of 512 tokens. Next, during the tokenization 

process, we added [CLS] and [SEP] to mark the beginning and end of each sentence, 

making the sentences usable by BERT who have been pre-trained using this format. 

Table 21 shows the post tokenization sentence. 

 

Table 21 – Example of tokenization procedures in an adapted description. 
Procedures Description 

Tokenization [CLS] [after] [parking] [truck] [getting] [out] [of] [he] [did] [not] [realize] [that] [there] 

[was] [gap] [ground] [slipping] [hurting] [his] [right] [knee] [SEP] 

Source: The author (2022). 
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Characterizations of the dataset before and after the pre-processing steps 

described above are reported in Table 22. After the sentences are cleaned up and 

tokenized, we transform them to a maximum length of 300 tokens for all sentences by 

adding zeros so that all inputs have the same shape and size. From there, the textual 

variable will go to the BERT which will be concatenated with the other variables, and 

finally feed the MLP classifier. 

 

Table 22 – Summary descriptive statistics of documents, before and after pre-processing steps. 

Measure Before Preprocessing After Preprocessing 

Number of observations 291 181 

Vocabulary size (distinct 
word count) 

2025 1703 

Mean word count per 
document 

43.96 28.62 

Standard deviation word 
count per document 

25.95 16.83 

Source: The author (2022). 

 

Finally, the processed texts are converted into a numerical representation using 

BERT. Thus, one can feed the ML model with the concatenated vector, as shown in 

Figure 18.  

 

Figure 18 – Tokenization and encoding concatenated vector. 

  
Source: The author (2022). 
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The first tensor represents the textual feature after tokenization and encoding, 

the second tensor refers to the binary variable, and finally, the third tensor represents 

the continuous variable after normalization. These combined variables are input to an 

MLP that predicts the occurrence of the accident leave for a given accident, 0 for an 

accident without injury leave and 1 otherwise. Instead of adopting a simple strategy of 

combining all variables as text and feeding it through BERT, the numerical/binary 

variables are treated separately to improve the performance of the classifier. 

 

4.4.4 Results and Discussion 

 

We considered 10 different training/validation sets, randomly split in a proportion 

of 90/10, to avoid biases and to account for the variability. It is noteworthy that, unlike 

𝑘-fold CV, the validation set samples may overlap considering the different splits of the 

complete set. Considering this, we computed the median and standard deviation for 

the accuracy of the classification on test set, seen in Table 23. The median results for 

the other metrics for each label are shown in Table 24. 

 

Table 23 – Median and standard deviation for the accuracy test set. 

Measures Median Standard deviation 
Accuracy 73.50 % 3.18 

Source: The author (2022). 

 

Despite the median being around 73%, one of the models (rounds) achieved the 

best test accuracy of 78%. In fact, seven of the ten (7/10) rounds had test results 

greater than 70%, with the smallest three achieving close results (69%). We noticed 

that all the medians of the metrics reached results above 70%. 

 

Table 24 – Median of test data classification results for each consequence. 

Consequence/Mensure Precision Recall F1-score 
0 71.5% 76% 71.5% 
1 76.5% 74% 74.5% 

Source: The author (2022). 

 

In particular, the injury leave consequence had a median precision above 76%, 

which is interesting for our application. Figure 19 shows the confusion matrix for the 

results of one round of CV on the test set, where 0 represents no injury leave and 1 

represents that there was a leave. 
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Figure 19 – Confusion matrix for classification of test data with the best result. 

 
Source: The author (2022). 

 

As one can see, there were 4 FP and 4 FN in the test set classification, which 

means that 4 accidents that did not lead to injury leave were erroneously classified as 

accidents that led to injury leave; meanwhile 4 accidents that led to injury were 

misclassified as accidents that did not lead to injury leave.  

Finally, we present reports correctly classified by most of the models and others 

frequently incorrectly classified. Table 25 and Table 26 present the textual, binary, and 

numerical variables of these reports, in addition to the true and predicted values of the 

injury leave label. The hit rate, as the name implies, is the proportion of times that 

report was correctly predicted in the models.  

 

Table 25 – Adapted reports with the higher hit rates. 

Model input 
Ground 

truth 
Models 
output 

Summary 

Description PPE Years 
True 
label 

Majority 
predicted 

label 
Hit rate 

the employee was working in the 
warehouse when he tripped and fell 

fracturing his right arm 
True 53 1 1 10/10 

the employee lost his balance and 
fell from a height of about 6 steps to 
reach the ground floor suffering light 
injuries to his shoulder leg and right 

elbow 

True 26 0 0 10/10 

when the employee was executing a 
maneuver to remove the mechanical 

lock there was a sudden 
displacement taking the right hand 

with it and causing injury to the distal 
phalanx of the little finger 

True 45 0 0 10/10 

Source: The author (2022). 
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We noticed that in the first report of Table 25 the element ‘fracturing’ in the 

description, despite the use of PPE, is pertinent to indicate the occurrence of injury 

leave. While in the second document the elements as ‘light injuries’, and the use of 

PPE can indicate the non-leave. In the third document, despite the use of PPE, 

elements such as ‘hand’, ‘finger’ and the absence of any term to describe the 

seriousness of the situation, can mean indicating the non-leave. 

In the reports that had a low hit rate, some elements may have contributed to 

misleading the classifier. For example, in the first one of Table 26, the use of PPE in 

addition to description elements such as ‘hand’ and ‘finger’, has led most models to 

classify it as non-leave. In the second document, elements such as ‘bruise’, despite 

not using PPE, can mean a minor consequence of the accident, which caused the 

model to misclassify as well. 

 

Table 26 – Adapted reports with the lower hit rate. 

Model input 
Ground 

truth 
Models 
output 

Summary 

Description PPE Years 
True 
label 

Majority 
predicted 

label 
Hit rate 

the employee was storing the 
material for removing the ladder this 

one got its hooks stuck in the 
structure the employee went up to 
release it one of the hooks came 
loose and the ladder descended 

hitting the 4th finger of the left hand 
causing dislocation 

True 39 1 0 1/10 

the employee was transporting 
equipment to the warehouse and 

then when he pulled one of the ropes 
it came loose causing him to twist his 

body causing a bruise on his right 
leg 

False 50 1 0 3/10 

Source: The author (2022). 

 

Thus, the absence of terms to describe the severity of the situation and accidents 

with injury leave, even with the use of PPE, may have contributed to misleading the 

classifier. In fact, the reports that had a low hit rate had elements that did not 

characterize the accidents to justify or not the injury leave. 
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4.4.5 Conclusion 

 

Using the modified accident reports we were able to build a classifier to predict 

the occurrence of injury leave with an accuracy of 78%. A model that correctly predicts 

worker leave can support managers to propose an organizational plan to effectively 

deal with the worker's absence from the job before the leave is officially communicated. 

An interesting point to be highlighted is that because our analysis consisted of a very 

small subset of the accident reports (i.e., we analyzed ‘administrative fall/injury’ 

accidents), the use of a pre-trained model as BERT is a smart solution, since the 

amount of data available would not be enough to train a NLP model from scratch and 

achieve satisfactory results. In addition, another advantage of using BERT is that are 

several pre-trained versions available in other languages, including Portuguese. 

 

4.5 GENERAL CONCLUSION 

 

The results obtained shows that NLP provides auspicious techniques to identify 

poor/imperfect datasets once their performance greatly relies on the quality and 

integrity of the database. The proposed approach was able to identify issues on the 

filling out of the reports as well as in the safety technician grasp on the standard NBR 

14280 (NBR, 2001). Thus, adjustments are necessary to provide documents that are 

more capable of retaining the knowledge acquired from the accident events, and then 

could be reused by the company and improve the current safety environment. 

The downside of the proposed methodology is that it is not yet completely 

automatic, still relying on manual curation. Moreover, the analyzed database has only 

626 reports, while other studies worked on databases with more than 1,000 reports 

(BAKER, HALLOWELL, et al., 2020, CHENG, LEU, et al., 2012), not allowing building 

and training DL architectures from scratch. In addition, the database was unbalanced, 

and even using the DA procedure, no significant improvement was achieved. Finally, 

the quality of filling in the reports was poor, hindered the classifiers' performance, which 

explains the improvement observed after reclassification. 

Using the improved reports, we inferred the occurrence of injury leaves for 

occupational accidents. In addition, we propose an approach that considers not only 

the accident description but also binary information such as the use or not of PPE at 

the time of the accidents and numerical information such as the years of work of the 
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injured employee. These textual, binary, and numerical variables were combined, and 

the resulting vector was trained by the MLP classifier. Thus, the trained classifier can 

provide useful information that helps managers effectively deal with the worker's 

absence and its consequences (costs, work replanning). 
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5 METHODOLOGY TO SUPPORT QRA IN O&G INDUSTRY 

 

This part of the thesis aims at supporting identification and assessment of 

hazards with severe consequences related to the operation of an O&G industry, 

reducing efforts required to develop risk studies. Our idea is to develop NLP-models 

capable of learning and recognizing risk features, and thus extract useful knowledge 

about accidental scenarios. Some results discussed on this chapter was published in 

Process Safety and Environmental Protection (MACÊDO, MOURA, AICHELE, et al., 

2022) and registered in the national institute of industrial property, process number 

BR512022000211-6, (MACÊDO, MOURA, LINS, et al., 2021). 

 

5.1 METHODS 

 

We adopted TM techniques to extract text data from PrHA documents, and then 

perform text classification tasks to identify risk features in oil refinery’s subsystems. 

Then, we developed three models. Figure 20 provides an overview of the proposed 

methodology. First, we developed two scripts: one that automatically extracts text from 

a collection of PrHA spreadsheets, and another to organize and build an annotated 

corpus for each supervised-learning task, also referred to as dataset in this study. Next, 

the corpus was preprocessed and converted into a manageable format for feeding the 

learning algorithms. 

 

Figure 20 – General overview of the proposed methodology. 

 
Source: The author (2022). 
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Next, the classifiers were developed by fine-tuning pre-trained BERT model with 

the extracted data to perform three classification tasks: i) identification of possible 

consequences, given an occurrence of a leakage; ii) classification of the severity of the 

consequences; iii) classification of the likelihood of occurrence of the accidental 

scenario. Each model was trained with a specific annotated corpus that was built from 

the PrHA sheets. Indeed, the corpus contains the data extracted from PrHA documents 

(e.g., Table 3) and the target related to its corresponding task. Below, we describe 

these steps in more details. 

 

5.1.1 Text Extraction 

 

The first script accesses each PrHA document (available as DOC files), and the 

textual data are extracted by searching for each header: unit, system, subsystem 

description, equipment, chemical product, pipeline/equipment material, temperature, 

pressure, flow rate, initiating event, potential consequences, likelihood, and severity. 

Then, all texts were automatically extracted and stored into a CSV file.  

Since some headers have multiple text data (e.g., initiating event, see Table 3), 

various instances were generated per document. Each row of the resulting CSV file 

corresponds to an instance, and each text associated to a header is separated by 

commas. Table 27 illustrates the instances resulting from Table 3 on the CSV file. 

 
Table 27 – Data from Table 3 converted into CSV format. 

Instance 

Data 
(unit, system, subsystem description, chemical product, temperature, pressure, flow 

rate, material, equipment, initiating event, potential consequence, severity, 
likelihood) 

1 
Industrial wastewater treatment, Flow regularization system, Basin with possible 

presence of toxic substance hydrocarbon from another unit, Contaminated and oily 
water, 25, 1.033 3000, Carbon steel, Sump pump, Small leakage, Irritation, II, D 

2 

Industrial wastewater treatment, Flow regularization system, Basin with possible 
presence of toxic substance hydrocarbon from another unit, Contaminated and oily 

water, 25, 1.033 3000, Carbon steel, Sump pump, Small leakage, Toxic vapour 
cloud, II, D 

3 
Industrial wastewater treatment, Flow regularization system, Basin with possible 

presence of toxic substance hydrocarbon from another unit, Contaminated and oily 
water, 25, 1.033 3000, Carbon steel, Sump pump, Large leakage, Irritation, II, A 

4 

Industrial wastewater treatment, Flow regularization system, Basin with possible 
presence of toxic substance hydrocarbon from another unit, Contaminated and oily 

water, 25, 1.033 3000, Carbon steel, Sump pump, Large leakage, Toxic vapour 
cloud, III, A 

Source: The author (2022). 
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5.1.2 Text Organization 

 

As Figure 20 depicts, the target depends on the task performed. For this reason, 

an annotated corpus (i.e., labelled dataset) was built for each of the three tasks. Thus, 

the second script selects the textual data to construct the input sentences and the 

target from the CSV file according to the header. The script also cuts out the rows of 

the CSV without data related to the ‘initiating event, ‘potential consequence’, ‘severity 

category’ or ‘likelihood category’.  

Each row of the CSV file may provide multiple input sentences. For example, a 

set of potential consequences was specified for two initiating events (small leakage 

and large leakage, see Table 3) and, thus, we can build a sentence for each set. It is 

also possible to construct different input sentences using the potential consequences, 

where the output pair can be either the severity or the likelihood category. Thus, we 

built corpus 1 with 1,391 instances, i.e., input sentence and label pairs, for 

Consequence Prediction Model and dataset 2 and dataset 3 with 2,974 instances for 

Severity and Frequency Classifiers. Table 28 summarizes the input and output that 

compose the datasets and presents the number of instances of each corpus. 

 

Table 28 – Definition of the input and output of each corpus. 

Corpus Input data Output 
Number of 
instances 

1 

Unit, system, subsystem description, 
chemical product, initiating event, 

equipment, equipment specifications, 
temperature, pressure and flow rate 

Potential 
consequence 

1,391 

2 

Unit, system, subsystem description, 
chemical product, initiating event, 

equipment, equipment specifications, 
temperature, pressure, flow rate, and 

potential consequence 

Severity category 2,974 

3 

Unit, system, subsystem description, 
chemical product, initiating event, 

equipment, equipment specifications, 
temperature, pressure, flow rate, and 

potential consequence 

Likelihood 
category 

2,974 

Source: The author (2022). 

 

Each input sequence provided to Consequence Prediction Model characterizes 

a possible leakage in a specific subsystem of the oil refinery. Since two initiating events 

(small leakage and large leakage) were considered by the experts during the 
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development of the PrHA, every subsystem is represented twice in this dataset. For 

the first task, we defined our input as a sentence constructed by joining the following 

text: unit, system, subsystem description, chemical product, operating conditions, 

equipment, equipment specifications, and initiating event. Considering the example in 

Table 27, one of the raw sentences 𝑖 used as input for task 1, 𝑥1,𝑖, is given in Equation 

(7: 

 

𝑥1,𝑖 = Industrial wastewater treatment Flow regularization system Basin 

with possible presence of toxic substance hydrocarbon from other 

unit Contaminated and oily water 25 1.033 3,000 Carbon steel 

Sump pump Small leakage   

(7) 

 

This sentence represents that a small leakage of petroleum might cause toxic 

vapour cloud and/or irritation; thus, the output is a vector that contains the combination 

of the potential consequences. In this example, the output 𝑦1,𝑖 corresponding to 𝑥1,𝑖 is 

given in Equation (8: 

y1,i =

0
0
0
1
0
1
0

 
(8) 

 

Note that this vector contains 7 positions, which represent the number of all 

potential consequences that can damage human life found in the PrHA documents. 

Thus, each position 𝑦1,𝑖
𝑛 , 𝑛 = 1, 2, 3, 4, 5, 6, or 7 (burn injury, vapour cloud explosion, 

flash fire, irritation, pool fire, toxic vapour cloud, or jet fire respectively), assumes the 

values 0 or 1, where 1 indicates the presence of the potential consequence 𝑛. These 

potential consequences were defined by the experts based on their knowledge, 

experience, and creativity. The use of textual data from PrHA may allow the model to 

extract and understand this knowledge. Thus, it would enable postulating an accidental 

scenario in an oil refinery subsystem. 

For the second and third tasks, the input sentences were similarly constructed 

by joining the same textual data used for the first task with the addition of the potential 

consequence (see Table 3 and Table 28). Using the same example, two input 
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sentences can be constructed: one by adding ‘toxic vapour cloud’ and the other by 

adding ‘irritation’. These input sentences are present in both corpus (i.e., for task 2 and 

for task 3). For example, one of these sentences used as input for task 2, x2,i, and 3, 

x3,i, is given in Equation (9. 

 

𝑥2,𝑖 = 𝑥3,𝑖 = Industrial wastewater treatment Flow regularization system 

Basin with possible presence of toxic substance 

hydrocarbon from other unit Contaminated and oily water 

25 1.033 3,000 Carbon steel Sump pump Small leakage 

Toxic vapour cloud  

(9) 

 

The output for the second task may be assigned to four possible values (0, 1, 

2, or 3), which represent the severity categories (I to IV; see Table 1). For instance, 

the output of Severity Classifier for the 𝑖-th input sentence is 𝑦2,𝑖 = 1 (II). Also, the 

output for the third task may be assigned to four possible values (0,1, 2, or 3), which 

represent the likelihood category (A to D; see Table 2), while the output of Frequency 

Classifier for the 𝑖-th input sentence is 𝑦3,𝑖 = 3 (D). Thus, we created an appropriate 

dataset for each model. 

 

5.1.3 Text Preprocessing 

 

Textual data oftentimes present noise, such as different variations of 

capitalization for the same word, punctuation, special characters, etc. Given that, three 

preprocessing operations (lowercasing, noise removal and tokenization) were 

performed to transform the input sentences into a cleaner format that can help improve 

the learning process of the models. The lowercasing and noise removal were 

implemented in Python using regular expression operations and Pandas library 

(MCKINNEY, 2010) and the tokenization was performed using the tokenizer provided 

by transformers library (WOLF, DEBUT, et al., 2020). 

First, we converted upper-cased to lower-cased words. Lowercasing all data is 

simple and one of the most effective processes to solve data sparsity issues, and it 

should be applied to improve accuracy for all languages and domains (UYSAL, 

GUNAL, 2014). Next, noise removal includes deleting special characters, white 

spaces, and punctuation. In the input sentences, several special characters were 
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present (e.g., ‘-’, ‘/’, ‘%’, ‘#’). This step also includes the expansion of abbreviations 

(e.g., ‘adu’ was converted to ‘atmospheric distillation unit’). Thus, noise removal was 

paramount to construct cleaner sentences. To mark the beginning and the end of each 

sentence, it was necessary to add [CLS] and [SEP] respectively; this is because BERT 

was pre-trained using the format [CLS] sentence [SEP].  

To fine-tune a pre-trained model, it is necessary to apply the same tokenization 

applied during pre-training; thus, we used the ‘AutoTokenizer’ backed by transformers 

library, which splits the sentences into a sequence of tokens according to punctuation 

and word pieces (i.e., sub-word units), converts raw text to sparse index encodings, 

and stores the vocabulary token-to-index map. Thus, the cleaned sentences were 

processed by the tokenizer, and then Table 29 presents some examples. In addition, 

the tokenizer transforms all sequences to a maximum length (512 tokens) by adding 

zeros, since the model requires inputs that have the same shape and size. 

 

Table 29 – Examples of tokenized sentences. 

Corpus Tokenized sentence 

1 

['[CLS]', 'industrial', 'waste', '##water', 'treatment', 
'flow', 'regularization', 'system', 'basin', 'with', 
'possible', 'presence' 'of', 'toxic', 'substances, 

'hydrocarbon', 'from', 'other', 'unit', 'contaminated', 
'and', 'oily', 'water', 'sump', 'pump', 'leak', '##age', 

'[SEP]'] 

2 and 3 

['[CLS]', 'industrial', 'waste', '##water', 'treatment', 
'flow', 'regularization', 'system', 'basin', 'with', 
'possible', 'presence' 'of', 'toxic', 'substances, 

'hydrocarbon', 'from', 'other', 'unit', 'contaminated', 
'and', 'oily', 'water', 'sump', 'pump', 'leak', '##age', 

'toxic', 'vapour', 'cloud', '[SEP]'] 

Source: The author (2022). 
 

5.1.4 Modeling Process 

 

We used the Pytorch implementation of pre-trained BERT available at 

transformers library (WOLF, DEBUT, et al., 2020). We here adopted the ‘bert-base-

multilingual-cased’ version of the ‘BertForSequenceClassification’ model. Thus, fine-

tune them on our own datasets described in Section 5.1.2. 

As mentioned, we modified the output layer of the pre-trained model to adapt it 

for performing a classification task. More specifically, we added three different output 

layers for each model because Consequence Prediction Model aims at predicting 
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multiple classes that are not mutually exclusive, while Models 2 and 3 classify the input 

sentence into a single class among mutually exclusive classes. Then, we used a 

𝑠𝑖𝑔𝑚𝑜𝑖𝑑 activation function for Consequence Prediction Model, and a 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 for 

Models 2 and 3 to predict the probability of each label 𝑐. Simply put, the 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 

function returns a value in the range 0 to 1 for each label (i.e., independent 

probabilities); thus, the predicted labels are the ones, which have probability greater 

than 0.5. In turn, the 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 activation function outputs are mutually exclusive, and 

then the sum of their probabilities is 1; thus, the predicted class is the one, which has 

the highest probability (FARHADI, NIA, et al., 2019, GAO, Bolin, PAVEL, 2017). 

Consequence Prediction Model was fitted using the binary cross-entropy loss function 

(to penalize each output independently), while Models 2 and 3 adopted the categorical 

cross-entropy (further details can be found in (GOODFELLOW, BENGIO, et al., 2016).  

We fine-tuned the pre-trained model three times, each time using a specific 

dataset for a given classification task. Thus, using the GeForce RTX 2080 Ti, the fine-

tuning of each model took about four/five hours. We adopted ‘BertAdam’ as optimizer, 

available on transformers library, and a learning rate of 10−6, batch size of 16, and 

warm up of 0.1 to train all models. 

Finally, each dataset was randomly split into 90% (10% of it were adopted for 

validation) for training and the remaining 10% for test (unseen data). Finally, we 

evaluated the model’s performance on test data. The results achieved with each model 

are discussed in the following section. 

 

5.2 RESULTS AND DISCUSSION 

 

Some results discussed on this chapter have been presented at ESREL 

(MACÊDO, AICHELE, et al., 2020a) and ABRISCO (MACÊDO, MOURA, AICHELE, et 

al., 2021) and published in Process Safety and Environmental Protection (MACÊDO, 

MOURA, AICHELE, et al., 2022).  

 

5.2.1 Consequence Prediction Model  

 

To evaluate the learning and generalization of Consequence Prediction Model, 

the train and validation learning curves are presented in Figure 21a, and the accuracy 

(i.e., proportion of true positives and true negatives among the total number of 



91 

 

observations) graphs are given in Figure 21b. The training and validation accuracies 

were remarkably high (99.97% and 99.9% respectively), which indicate a good fit of 

the learning algorithm. Then, we stopped the training after 150 epochs to avoid 

overfitting.  

 

Figure 21 – a) Training and validation optimization learning curves for Consequence Prediction 
Model; b) Training and validation accuracy learning curves for Consequence Prediction Model. 

  
a b 

Source: The author (2022). 

 

As explained, Consequence Prediction Model performs a multi-classification in 

which an instance can be assigned to different potential consequences simultaneously; 

thus, the output is a vector with 7 dimensions, which represent potential 

consequences, and the value assumed in each dimension is binary, indicating whether 

the example contains that consequence or not.  

Figure 22 provides the confusion matrices with the prediction on test data for 

each consequence to evaluate the performance of Consequence Prediction Model. In 

the confusion matrices, the element in the 𝑟-th row and 𝑗-th column, 𝑐𝑟,𝑗, indicates the 

number of observations 𝑗 predicted as 𝑟. For example, 𝑐0,0 
(𝑏𝑢𝑟𝑛 𝑖𝑛𝑗𝑢𝑟𝑦)

 (element of the 

confusion matrix for burn injury) indicates that 110 of the instances that are not labelled 

as burn injury (0) were corrected classified as 0.  

Indeed, Consequence Prediction Model achieved a mean accuracy of 97.42% 

to predict the potential consequences of test samples. From the confusion matrices, 

we computed precision, recall, and 𝐹1-score for each class, where precision is the 

number of true positives (instances correctly predicted as 1) over all positive 

predictions (all instances predicted as 1), recall is the number of true positives over all 

instances with 1 as true label, and 𝐹1-score is the harmonic mean between precision 

and recall. 
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Figure 22 – Confusion matrices for Consequence Prediction Model’s classification of test data 

 
Source: The author (2022). 

 

Table 30 summarizes the scores for each category. One can see the inferior 

precision for pool fire (75%) in comparison to others. This can be explained by the 

relatively high number of false positives. In the early stages of QRA, the aim is to 

identify all the possible hazardous scenarios; thus, this type of error is deemed to be 

acceptable since the risk analyst may assess the coherence of the model’ results. 

 

Table 30 – Results of the classification of test data for each potential consequence.  

𝒏 Potential consequence Precision (%) Recall (%) 𝑭𝟏-score (%) 

1 Burn injury 87.09 90 88.52 

2 Vapour cloud explosion 95.59 98.48 97.01 

3 Flash fire 100 100 100 

4 Irritation 100 100 100 

5 Pool fire 75 90 81.82 

6 Toxic vapour cloud 91.55 94.20 92.75 

7 Jet Fire 100 97.06 98.51 

Source: The author (2022). 

 

Moreover, Consequence Prediction Model yielded more false positives for burn 

injury and for toxic vapour cloud than for pool fire. However, the precision related to 

the prediction of these consequences were less affected by these. Consequence 

Prediction Model also yielded more false negatives for burn injury and toxic vapour 

cloud than for the other consequences. Nevertheless, the recall for burn injury and 

toxic vapour cloud is 90% and 94.2% respectively. Thus, Consequence Prediction 
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Model presented satisfactory results considering all potential consequences and 

achieved a mean 𝐹1-score above 94.09%. 

We also evaluated the model’s performance to correctly predict the whole list of 

potential consequences of a given instance. This means that if one or more labels of a 

sample were misclassified, we considered the prediction as a model error. Then, Table 

31 presents all misclassifications, the actual target, and a brief description of the error; 

85.41% of the test data were assigned with the correct set of labels. 

 

Table 31 – Wrong predictions made by Consequence Prediction Model. 

 Error   
# of errors Type Description Prediction Target 

1 

False positive 

Predicted toxic vapour cloud 0 0 0 0 0 1 1 0 0 0 0 0 0 1 
Predicted toxic vapour cloud 0 1 1 0 0 1 1 0 1 1 0 0 0 1 

Predicted vapour cloud 
explosion 

0 1 0 0 1 1 0 0 0 0 0 1 1 0 

Predicted burn injury 1 1 1 0 0 1 0 0 1 1 0 0 1 0 
Predicted toxic vapour cloud 0 0 1 1 0 1 0 0 0 1 1 0 0 0 

Predicted burn injury 1 1 0 0 0 0 0 0 1 0 0 0 0 0 
Predicted toxic vapour cloud 1 1 0 0 0 1 0 1 1 0 0 0 0 0 

Predicted vapour cloud 
explosion 

0 1 0 0 1 1 0 0 0 0 0 1 1 0 

False negative 

Did not predict burn injury 0 1 1 0 0 1 0 1 1 1 0 0 1 0 
Did not predict toxic vapour 

cloud 
0 0 1 1 0 0 0 0 0 1 1 0 1 0 

Did not predict vapour cloud 
explosion 

0 0 0 0 0 1 0 0 1 0 0 0 1 0 

Did not predict toxic vapour 
cloud 

1 1 0 0 0 0 0 1 1 0 0 0 1 0 

Did not predict pool fire 1 1 0 0 0 0 0 1 1 0 0 1 0 0 
Did not predict burn injury 0 1 0 0 0 0 0 1 1 0 0 0 0 0 

Did not predict jet fire 0 1 0 0 0 0 0 0 1 0 0 0 0 1 
Did not predict toxic vapour 

cloud 
0 0 1 1 0 0 0 0 0 1 1 0 1 0 

2 

False positive 

Predicted burn injury and pool 
fire 

1 1 1 0 1 1 0 0 1 1 0 0 1 0 

Predicted burn injury and toxic 
vapour cloud 

1 1 0 0 0 1 0 0 1 0 0 0 0 0 

False negative 

Did not predict pool fire and 
toxic vapour cloud 

1 1 0 0 1 1 0 1 1 0 0 0 0 0 

Did not predict burn injury; 
predicted pool fire  

0 1 0 0 1 0 0 1 1 0 0 0 0 0 

False negative and 
false positive 

Did not predict toxic vapour 
cloud; predicted vapour cloud 

explosion 
0 1 0 0 1 0 0 0 0 0 0 1 1 0 

Source: The author (2022). 

 

Note that 21 out of 144 instances on test set were misclassified, 16 out of 21 

instances had one incorrect label and 5 instances had two incorrect labels. However, 

in only 11 instances, there were potential consequences unpredicted; in these cases, 
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experts should review the results and manually include them. It is noteworthy that most 

unpredicted potential consequences were burn injury and toxic vapour cloud.  

A possible explanation for the inferior performance to predict some potential 

consequences might be the presence of similar scenarios in the PrHA documents that 

cannot led to such consequences. Table 32 shows some examples of input (sentences 

showed without preprocessing and tokenization to facilitate de analysis), output, and 

the prediction made by Consequence Prediction Model, 𝑥1,𝑖,𝑦1,𝑖, and  𝑦̂1,𝑖, respectively. 

 

Table 32 – Assessing scenarios provided by Model and the potential consequences predicted. 

𝒊 𝒙𝟏,𝒊 𝒚𝟏,𝒊 𝒚̂𝟏,𝒊 Error 

1 

naphtha hydrotreating unit reactor 
system hydrogen and hydrogen sulfide 

section between exchanger and 
recycling gas injection point naphtha and 

naphtha stream 57 200 91,461 carbon 
steel small leakage 

1 1 0 0 0 0 0 0 1 0 0 0 0 0 

Did not 
predict 
burn 
injury 

2 

naphtha hydrotreating unit cooling and 
separation system hydrogen and 

hydrogen sulfide section between the 
separation point of the output stream from 
the stabilization vessel and the naphtha 
stream for recycling exchanger 31 260 

82,943 carbon steel large leakage 

0 1 0 0 0 0 0 0 1 0 0 0 0 0 - 

3 

naphtha hydrotreating unit cooling and 
separation system hydrogen and 

hydrogen sulfide section between 
exchanger and condenser 33 300 20,1291 

carbon steel large leakage  

1 1 0 0 1 0 0 1 1 0 0 0 0 0 
Did not 
predict 
pool fire 

Source: The author (2022). 

 

For instance, there are several similarities in the description of instances 1 and 

2 (in bold); however, instance 2 does not generate burn injury despite the higher 

operating temperature and it was correctly classified by Consequence Prediction 

Model. Also, among 635 accidental scenarios related to naphtha hydrotreating unit 

only 8 of them can cause burn injury. Moreover, instances 2 and 3 even involve the 

same system (cooling and separation system), equipment (exchanger) and similar 

operating conditions; however, differently from instance 3, the scenario described in 

instance 2 cannot led to pool fire. 

In addition, it is worth mentioning that burn injury, toxic vapour cloud, and pool 

fire (for which the model had the worst recall) are related to a wide variety of scenarios, 

which can make it difficult for it to learn/recognize all features that characterize these 

potential consequences. For instance, considering our database, pool fire and toxic 
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vapour cloud occur in more than 15 different units of the oil refinery (i.e., almost all 

units in the refinery) and they are associated with the release of more than 100 

chemical products, whereas jet fire occurs in only 7 units, due to the outflow of 50 

substances. 

How to improve the performance of the model will be object of future research. 

A possible solution to overcome this problem may be to perform DA to build a more 

homogeneous dataset in relation to the different features, such as unit and/or chemical 

(LIU, Sisi, LEE, et al., 2020). It is worth mentioning that the model’s outcomes 

represent a starting point for completing the QRA. Thus, analysts should critically 

evaluate these results in order to add/remove scenarios, and then build a more 

representative database. Thus, the updated database could be used to retrain the 

models as a way to improve their performances and system representativeness. 

Overall, Consequence Prediction Model provides satisfactory predictions of the 

potential consequences for different subsystems of the oil refinery. The model 

predictions could be used as a starting point for RA by providing an initial set of 

hypothetical accidental scenarios and its severity and frequency categories. The team 

of risk analysts could evaluate whether the scenarios are coherent and could postulate 

new potential consequences. Thus, the trained models may support experts and 

consequently reduce time and human efforts to perform QRA. 

 

5.2.2 Severity Classifier 

 

The sentences (instances) provided to Severity Classifier are labelled with the 

severity of the potential consequences (see Table 1). The optimization and the 

accuracy learning curves for Severity Classifier are shown in Figure 23a and Figure 

23b respectively. Severity Classifier was trained for 150 epochs until its loss curves 

reached some stability. The accuracy curves reached 92.83% on training and 92.92% 

on validation. Again, the proximity of the training and validation curves and the behavior 

of the learning plots indicate a good fit of the model.  

Table 24 shows the confusion matrix on the test data. The model achieved an 

accuracy of 86.44% to classify the test data.The lowest precision was for the prediction 

of category I (75.86%) and III (78.35%). These outcomes for category I can be 

explained by the small number of instances; thus, the instances II misclassified as I 

had a big impact on the precision (note that the recall for category II was less affected 
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by these errors). Yet, Severity Classifier predicted correctly 95.65% of the instances 

classified as I. 

 

Figure 23 – a) Training and validation optimization learning curves for Severity Classifier; b) 
Training and validation performance learning curves for Severity Classifier. 

  
a b 

Source: The author (2022). 
 

Figure 24 – Confusion matrix for Severity Classifier’s classifications of test data. 

 

Source: The author (2022). 

 

Moreover, the worst recall was computed for category IV, where 10 out of 11 

misclassifications were predicted as III. Nevertheless, the results obtained were 

satisfactory. Indeed, 𝐹1-scores were above 80% for all categories. Table 33 

summarizes the results for each category. 

 

Table 33 – Results of the classification of test data for each severity category.  

Severity 
Precision 

(%) 

Recall (%) 𝑭𝟏-score (%) 

I 75.86 95.65 84.61 

II 92.17 85.48 88.69 

III 80.41 88.63 81.28 

IV 92.45 81.67 84.21 

Source: The author (2022). 
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A possible explanation for the inferior performance to predict category III might 

be the presence of similar scenarios descriptions in the PrHA documents, which are 

classified with different severity levels. For instance, Table 34 shows some examples 

of input (sentences showed without preprocessing and tokenization to facilitate the 

analysis) and output pairs (𝑥2,𝑖, 𝑦2,𝑖)  used to train Severity Classifier and misclassified 

scenarios (i.e., prediction 𝑦̂2,𝑖 different from 𝑦2,𝑖). Note that the instances without 

predictions correspond to the training instances. 

 

Table 34 – Samples of input and output pairs in the data set. 

𝒊 𝒙𝟐,𝒊 𝒚𝟐,𝒊 𝒚̂𝟐,𝒊 

1 
Hydrotreating unit loading and unloading of chemicals system dmds from 

container to pump and from pump to unit flange 1.33 25 container tank 
large leakage toxic vapour cloud 

III - 

2 
Hydrotreating unit loading and unloading of chemicals system dmds from 

truck to the loading area and container in the waiting area 1.33 25 
container tank large leakage toxic vapour cloud 

II III 

3 
Powerhouse steam system medium pressure steam from boiler to the 

medium pressure steam collection and distribution header 17.5 260 
64.73 large leakage burn injury 

II - 

4 
Powerhouse steam system medium pressure steam from medium 

pressure steam collection and distribution header to the battery limit 
17.5 260 128.92 large leakage burn injury 

III II 

5 
Water treatment unit chemical product system gaseous chlorine from 

chlorine cylinders to the chlorination system in the chlorinator house 
carbon steel 25 0 30 large leakage toxic vapour cloud 

III - 

6 
Water treatment unit chemical product system gaseous chlorine chlorine 

cylinders inside the cylinder room carbon steel 25 21.1 40 large leakage 
toxic vapour cloud 

IV III 

Source: The author (2022). 

 

As we can see, 𝑥2,1 (training input) and 𝑥2,2 (test input) are very similar, both 

represent the transport of dmds (dimethyl disulphide) in the hydrotreating unit under 

similar operating conditions; then, it is reasonable that Severity Classifier classified 𝑥2,2 

as III, i.e., the same category as 𝑥2,1. However, the system described in 𝑥2,1 starts at 

the container tank and goes to pump; while the system described in 𝑥2,2  starts at the 

truck and goes to the container tank. Likewise, Severity Classifier misclassified 𝑥2,4 as 

II. Both 𝑥2,3 and 𝑥2,4 represent a burn injury due to large leakage of a pipeline containing 

medium pressure steam in the powerhouse under similar operating conditions; 

however, the system described in 𝑥2,3 goes from the boiler to the header, while 𝑥2,4 

considers the header up to the battery limit and involves a higher flow rate.  
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Moreover, most of the scenarios of the water treatment unit in our database are 

classified as III, such as 𝑥2,5, which involves the large leakage of pipeline from chlorine 

cylinders to the chlorination system. There are only three scenarios classified as IV, 

which may have compromised the learning process. One of them is 𝑥2,6 (misclassified 

as III) that represents a toxic vapour cloud generated due to the large leakage of the 

chlorine cylinder. Additionally, 𝑥2,5 and 𝑥2,6 are also similar; both encompass the 

release of gaseous chlorine and the chlorine cylinder. Thus, the data provided might 

not be sufficient to make the model capture these subtleties between category III and 

others, which may have compromised the learning process. On the other hand, these 

errors for categories III and IV are tolerable because in practice scenarios classified as 

III or IV must be further analyzed quantitatively.  

Thus, the classification provided by Severity Classifier would certainly be useful 

to identify the least severe scenarios, filtering the most critical cases for further 

quantitative analysis. Moreover, since the main purpose of QRA is to identify all 

accidental scenarios, underestimate scenarios are undesirable. Thus, to avoid this 

situation we plan to incorporate in the models’ training a function to penalize non-

conservative predictions. Furthermore, since we treated all variables as textual data, 

we will investigate ensemble models such as the combination of BERT with other ML 

classifiers to process the continuous variables separately, so that the model can better 

learn the relationship between these variables and the description of subsystems. 

 

5.2.3 Frequency Classifier 

 

Finally, the input sequence provided to Frequency Classifier is labelled with the 

likelihood category; see Table 2. The evaluation of the model training can be done 

through the optimization and the accuracy learning curves in Figure 25a and Figure 

25b respectively. The model was trained for 130 epochs until its loss curve reached 

some stability and achieved an accuracy of 97.68% on training and 95.48% on 

validation; the curves indicate a good fit of the model. Moreover, Frequency Classifier 

achieved an accuracy of 94.34% on test. A detailed description of Frequency Classifier 

outcomes is given in  

Figure 26 and the performance metrics are summarized in Table 35. 
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Figure 25 – a) Training and validation optimization learning curves for Frequency 
Classifier; b) Training and validation accuracy curves for Frequency Classifier. 

 
 

a b 

Source: The author (2022). 
 

Figure 26 – Confusion matrix of Frequency Classifier’s classifications of test data. 

 
Source: The author (2022). 

 
Table 35 – Results of the classification of test data for each likelihood category.  

Likelihood Precision (%) Recall (%) 𝑭𝟏-score (%) 

A 89.28 75.76 81.97 
B 92.56 97.39 94.91 
C 100 91.80 95.72 
D 95.7 100 97.8 

Source: The author (2022). 

 
Frequency Classifier predicted all classes with great precision. The worst 

performance was in the prediction of category A, which represents the least frequent 

events (Table 2) that are indeed more difficult to envision and usually leads to more 

uncertain estimates (JIN, WANG, et al., 2020, MARCHIORI, GUIDA, 2015). In fact, 

24.24% of the instances of category A were misclassified as B. These errors have a 

greater impact on the metrics for category A, since it corresponds to the smallest group 

on test. Note that these errors do not have a major impact on the metrics for category 

B. Moreover, one interesting finding is that most of the model's errors were in predicting 

instances into categories that represent more likely events. These errors may lead to 

more critical risk classification of the scenarios (ISO, 2018). Finally, all performance 
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metrics for category B, C, and D were above 90%. These results of Frequency 

Classifier suggest a reasonable ability to learn and recognize patterns about all 

likelihood categories. 

 
5.2.4 Concatenation of Errors 

 
To analyze the concatenation of errors, we combined the predictions made by 

Severity Classifier and 3 on test data. To that end, we considered the risk matrix (Table 

36), according to which risks are classified as Tolerable (T), Moderate (M), or Non-

Tolerable (NT) (ISO, 2018). The risk categories provided by the models are 

summarized in the confusion matrix (Figure 27). One can see that more than 17% of 

the test samples were assigned into a more critical risk category; thus, the results 

provided are more conservative. 

 
Table 36 – Risk matrix. 

Risk Matrix 

Consequence 
Likelihood 

A B C D 

IV M M M NT 

III T M M M 

II T T M M 

I T T T T 
Source: The author (2022). 

 
Figure 27 – Confusion matrix with the result on test data of the combination of Severity and Frequency 

Classifiers. 

 
Source: The author (2022). 

 

5.2.5 Sensitivity Analysis 

 

In order to further evaluate the performance of the algorithms we retrained the 

models using 70% of the dataset; then, we evaluated their performances on the 

remaining data. Figure 28 provides the confusion matrices with the prediction on test 
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data for each consequence to evaluate the performance of Consequence Prediction 

Model. 

From the confusion matrices, we computed the performance metrics 

summarized in Table 37. Comparing Table 30 and Table 37, one can see that the 

performance of Consequence Prediction Model improved and the false negative rate 

dropped for all potential consequences. This result is very positive, since the main 

purpose of the early stages of QRA is to predict all possible consequences. This result 

is very positive, since the main purpose of the early stages of QRA is to predict all 

possible consequences. 

 

Figure 28 – Confusion matrices for Consequence Prediction Model’s classification of test data using 
70/30 split. 

 
Source: The author (2022). 

 

Table 37 – Results of the classification of test data using 70/30 split for each potential consequence. 

𝒏 Potential consequence Precision (%) Recall (%) 𝑭𝟏-score (%) 

1 Burn injury 93.62 93.62 93.62 

2 Vapour cloud explosion 99.49 98.99 99.24 

3 Flash fire 99.39 100 99.69 

4 Irritation 100 100 100 

5 Pool fire 85.19 100 92.00 

6 Toxic vapour cloud 97.16 98.08 97.62 

7 Jet Fire 100 99.09 99.54 

Source: The author (2022). 

 

Moreover, with the increase from 144 to 431 test instances, Consequence 

Prediction Model made only 8 more errors considering the assignment of the correct 

set of potential consequences, i.e., 29 out of 431 instances on test set were 
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misclassified (Table 38). Among them, 27 instances had one incorrect label and 2 

instances had two incorrect labels. As mentioned, the main purpose of the early stages 

of QRA is to identify all possible hazards; thus, only 16 errors (unpredicted 

consequences) are critical regarding the following steps of QRA. Yet, the most 

unpredicted was burn injury (6 out of 16), which is not quantitively evaluated in the 

following steps of QRA, since it is not often related to casualties. 

 

Table 38 – Wrong predictions made by Consequence Prediction Model using 70/30 split. 

 Error   

# of 
errors 

Type Description Prediction Target 

1 

False positive 

Predicted toxic vapour cloud 1 1 0 0 0 1 0 1 1 0 0 0 0 0 
Predicted toxic vapour cloud 0 0 0 0 0 1 1 0 0 0 0 0 0 1 

Predicted vapor cloud explosion 0 0 1 0 1 1 0 0 0 0 0 1 1 0 
Predicted toxic vapour cloud 0 0 1 1 0 1 0 0 0 1 1 0 0 0 
Predicted toxic vapour cloud 0 1 1 0 0 1 1 0 1 1 0 0 0 1 
Predicted toxic vapour cloud 0 0 1 1 0 1 0 0 0 1 1 0 0 0 

Predicted burn injury 1 1 1 0 0 1 0 0 1 1 0 0 1 0 
Predicted burn injury 1 1 0 0 0 0 0 0 1 0 0 0 0 0 
Predicted burn injury 1 1 1 0 0 1 0 0 1 1 0 0 1 0 

Predicted vapour cloud 
explosion 

0 1 0 0 1 1 0 0 0 0 0 1 1 0 

Predicted burn injury 1 1 1 0 0 1 0 0 1 1 0 0 1 0 
Predicted burn injury 1 1 0 0 0 1 0 0 1 0 0 0 1 0 

False negative 

Did not predict pool fire 1 1 0 0 0 1 0 1 1 0 0 1 1 0 
Did not predict toxic vapour 

cloud 
1 1 0 0 0 0 0 1 1 0 0 0 1 0 

Did not predict burn injury 0 1 1 0 0 0 0 1 1 1 0 0 0 0 
Did not predict burn injury 0 1 0 0 0 1 0 1 1 0 0 0 1 0 
Did not predict burn injury 0 1 0 0 0 0 0 1 1 0 0 0 0 0 

Did not predict toxic vapour 
cloud 

0 0 1 1 0 0 0 0 0 1 1 0 1 0 

Did not predict vapour cloud 
explosion 

0 0 0 0 0 1 0 0 1 0 0 0 1 0 

Did not predict pool fire 0 0 1 0 0 0 0 0 0 1 0 1 0 0 

Did not predict vapour cloud 
explosion 

0 0 1 0 0 0 0 0 1 1 0 0 0 0 

Did not predict pool fire 1 1 1 0 0 0 0 1 1 1 0 1 0 0 

Did not predict toxic vapour 
cloud 

0 0 0 0 1 0 0 0 0 0 0 1 1 0 

Did not predict burn injury 0 1 0 0 0 0 0 1 1 0 0 0 0 0 

Did not predict toxic vapour 
cloud 

1 1 1 0 0 0 0 1 1 1 0 0 1 0 

Did not predict jet fire 0 1 0 0 0 0 0 0 1 0 0 0 0 1 

Did not predict pool fire 1 1 0 0 0 0 0 1 1 0 0 1 0 0  

2 

False negative and 
false positive 

Did not predict burn injury; 
predicted toxic vapour cloud 

0 1 0 0 0 1 0 1 1 0 0 0 0 0 

False positive 
Predicted burn injury and toxic 

vapour cloud 
1 1 0 0 0 1 0 0 1 0 0 0 0 0 

Source: The author (2022). 
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Regarding the performance of Severity Classifier, some performance metrics 

improved (see Table 33 and Table 39); however, more than 12% of the instances III 

were classified as a less severe category. As we mentioned, in practice, scenarios 

classified as III and IV must be further analyzed in the QRA, while the less severe 

scenarios are screened out from the analysis. Thus, we believe that such errors made 

by Severity Classifier with the 70/30 split would result in the removal of many scenarios 

from the following stages of a QRA, diminishing the usefulness of the proposed 

methodology. 

 

Table 39 – Performance metrics for Severity Classifier using 70/30 split. 

Severity Precision (%) Recall (%) 𝐅𝟏-score (%) 

I 80.39 94.25 86.77 
II 88.18 86.87 87.52 
III 86.50 85.87 86.18 
IV 94.12 90.26 92.15 

Source: The author (2022). 

 

Moreover, for Frequency Classifier, the performances for classifying the 

likelihood of occurrence with the 70/30 split resulted in worse performances (see Table 

35 and Table 40). This can be explained because we have an unbalanced dataset; 

then, 70% can represent a small amount of training data considering some classes. 

For instance, there are 330 instances labeled as A, while there are 1150 instances of 

category B.  

 
Table 40 – Performance metrics for Frequency Classifier using 70/30 split. 

Likelihood Precision (%) Recall (%) 𝐅𝟏-score (%) 

A 93.24 67.65 78.41 
B 90.82 96.74 93.48 
C 82.80 81.25 82.02 
D 88.15 90.50 89.31 

Source: The author (2022). 

 
5.2.6 Conclusion 

 

Consequence Prediction Model presented a great performance both in the 

individual prediction of each potential consequence, as well as in the prediction of the 

set of consequences associated with the different subsystems. Severity Classifier also 

showed satisfactory results, since only the precision to classify the severity level III was 

less than 80%. In addition, part of the contribution to decrease the precision for this 

category is due to the classification of less severe instances (I and II) as III; thus, the 
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experts can focus their efforts on the assessment of the most severe accident 

scenarios. Finally, most of Frequency Classifier’s errors were more conservative (i.e., 

predicted an instance into a more likely category). Moreover, the Frequency Classifier 

presented promising results, achieving high performance in the prediction of most 

likelihood categories.  

Thus, TM and NLP can be adopted to support risk analysts in identifying the 

potential consequences of different scenarios, related to ‘loss of containment’ of 

hazardous material, and to describe qualitatively risks in terms of expected likelihood 

and severity of consequences. In addition, we believe that the predictions provided by 

the models would also allow the experts to correct the PrHAs. Experts can critically 

evaluate scenarios that have been misclassified by the trained models and decide 

whether the model's prediction makes sense, i.e., indicating an error made by experts 

during the PrHA.  

 

5.3 EXTRACTING FEATURES OF RARE RISK EVENTS 

 

Some results discussed on this section have been presented at ESREL 

(MACÊDO, MOURA, LINS, et al., 2022). It is important to keep in mind that step 2 of 

QRA (see Figure 2) may be quite challenging when dealing with rare accident events 

with extreme consequences, since limited knowledge exists for these events (SPADA, 

BURGHERR, et al., 2019, ZIO, AVEN, 2013). On the other hand, developing 

techniques to identify features about catastrophic events is quite useful for QRA.  

Here, we investigate how to handle accident datasets to improve BERT-based 

classifier learning about rare event. To do that we compared different DA and 

undersampling configurations to obtain a balanced and sufficiently large training set. 

The final aim of this analysis is developing capable of characterizing relevant features 

about rare accidental scenarios in support to HAZOP and PrHA. 

As mentioned, pre-trained language models have been directly fine-tuned, 

entirely removing the need for task-specific architectures. In addition, the substantial 

increase in the transformer language models, from 100 million to 17 billion parameters, 

has brought improvements in several downstream NLP tasks. However, to achieve 

strong performance on a desired task typically requires fine-tuning on a dataset of 

thousands to hundreds of thousands of examples specific to that task (BROWN, 

MANN, et al., 2020). Thus, a challenge arises when we are interested in rare events, 
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since only limited information is available. For instance, some accidents are postulated 

as possible in principle, but there are no historical occurrence records. 

As described in Section 2.1, each document contains the description of potential 

accident events from different processing units of an oil refinery and their qualitative 

assessment of frequency of occurrence and severity of consequences. The expected 

frequency of the events is classified into four categories (Table 2) according to (ISO, 

2018). 

As one can see in Figure 29, the labelled dataset is quite unbalanced. There 

are less than 300 potential accidents classified as Remote, representing under 15% of 

the dataset. As pointed by Brown et al. (2020), the difficult to build labelled datasets 

may limit the applicability of NLP to perform text classification tasks. Indeed, this 

dataset was used in to build a classifier able to predict the expected frequency (Section 

5.2.3), and the worst performance of the NLP classifiers was to categorize remote 

events (i.e., labelled as A). 

 

Figure 29 – Number of instances per likelihood category. 

 
Source: The author (2022). 

 

DA is a useful tool to improve the performance of a model; however, in NLP 

datasets, DA is difficult due to the high complexity of language (WEI, ZOU, 2020). 

Thus, we explored different DA configurations to balance our dataset in order to 

improve the performance of the NLP model in classifying remote events. 

The approach adopted consists in using contextualized word embeddings to 

generate a vector under a different context. DA was implemented using nlpaug, a 

library dedicated to textual augmentation in ML experiments (MA, 2021). More 

specifically, the ContextualWordEmbsAug function, designed to perform insertion and 
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substitution, was adopted to generate new samples based on randomly selected input 

sentences, maintaining the original meaning. Simply put, the 

ContextualWordEmbsAug function performs substitution by searching the most 

suitable word using the surrounding words as a feature to predict the target word. 

DA was performed on the training data (80% of the dataset) for the classes with 

less samples (A and C) in order to balance the number of samples. In addition, we 

assumed that categories B and A have characteristics in common, which may hinder 

the model’s ability to separate these events. Also, the high number of B instances can 

lead to a faster overfitting for this class. Thus, undersampling was performed to reduce 

the number of samples from major category (B), since we are interest in extracting 

features of rare events that presents few samples available. The following 

configurations were adopted: 

i. Generate 200 training samples labelled as A; 

ii. Generate 200 training samples labelled as A and 100 labelled as C; 

iii. Undersampling B to reduce to 399 samples; 

iv. Removing all instances labelled as B; 

v. Generate 100 training samples labelled as A and remove all instances 

labelled as B. 

Then, the training sets obtained according to each configuration are used to 

fine-tune BERT model resulting on different classifiers. The impact of each 

configuration on the classifiers’ performance is evaluated by comparing the results on 

the test set to the baseline result (Table 41), which is brought in as the performance 

on test data of a classifier obtained by fine-tuning of BERT using the original training 

set.  

 

Table 41 – Baseline results; performance on test data of the classifier using the original training set. 

Likelihood Recall Precision 𝑭𝟏-score 

A 70.67 81.54 75.72 
B 88.89 86.02 87.43 
C 90.10 79.82 84.95 
D 85.04 91.53 88.19 

Source: The author (2022). 

 

Moreover, all classifiers were trained for 25 epochs, with batch size of 16 and 

learning rate of 5 × 10−5. The results and discussion of all experiments are presented 

in the next section. 
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5.3.1 Results 

 

The performance on test data of the classifier obtained using configuration (i) 

(200 augmented samples labelled as A) is presented in Table 42.  

 
Table 42 – Performance of the classifier using the training set obtained with configuration (i). 

Likelihood Recall Precision 𝑭𝟏-score 

A 67.53 75.36 71.23 

B 88.32 85.25 86.76 

C 82.76 88.89 85.72 

D 95.08 89.92 92.43 

Source: The author (2022). 

 
Overall, comparing Table 41 to Table 42, the performance improved considering 

categories C and D. There was a 10% increase on the recall for class D and the 

precision for class C. However, as one can see, the performances for category A and 

B decreased. This result may indicate that the description of accident scenarios related 

to A and B are similar. Thus, simply augmenting the data related to remote events is 

not enough to tackle this issue, because it makes the classifier label scenarios B as A. 

Table 43 shows the classifier’s performance on test data with configuration (ii). 

One interesting result was the increase of the recall metric regarding classes B and D. 

This result may indicate that configuration (ii) improved the features extracted for 

accident scenarios B and D, since the number of instances from these classes that 

were misclassified decreased.  

 

Table 43 – Performance of the classifier using the training set obtained with configuration (ii). 

Likelihood Recall Precision 𝑭𝟏-score 

A 60.26 95.92 74.02 

B 94.89  83.5 88.83 

C 83.91 76.84 80.22 

D 89.44 91.37 90.39 
Source: The author (2022). 

 

On the other hand, although there was a significant improvement on the 

precision metric for class A, there was also a decrease on the recall. This is particularly 

undesirable since we want a model to extract valuable features about such rare events. 

With configuration (ii) the extracted features were worse than the baseline classifier to 
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represent class A since more accident scenarios were misclassified into a different 

class. 

In addition, we randomly removed some instances belonging to class B. Table 

44 shows the classifier’s performance on test data with configuration (iii). After under 

sampling class B, most metrics worsened, as expected since we are reducing the 

number of samples used to train the model. One can see that the model began to 

classify more instances as A and consequently the recall for class A increased and the 

precision decreased. There was also an improvement regarding the recall for class D, 

because the classifier did not misclassify accidents from class D as B. 

 

Table 44 – Performance of the classifier using the training set obtained with configuration (iii). 

Likelihood Recall Precision 𝑭𝟏-score 

A 73.75 56.19 63.78 

B 68.98 84.87 76.10 

C 82.42 77.32 79.79 

D 92.68 88.37 91.00 

Source: The author (2022). 

 

Configuration (iv) was adopted considering that category B must have many 

characteristics in common with category A, since class B also represents rare (unlikely) 

events. Indeed, the results obtained with configurations (i), (ii) and (iii) showed the 

classifiers often have difficulties differentiating these classes. Table 45 shows the 

classifier’s performance on test data with configuration (iv). 

 

Table 45 – Performance of the classifier using the training set obtained with configuration (iv). 

Likelihood Recall Precision 𝑭𝟏-score 

A 93.06 97.10 95.04 

C 77.23 89.66 82.98 

D 92.13 81.25 86.35 

Source: The author (2022). 

 

Indeed, after training the model only with common accident events (class C and 

D) and class A (remote events), there was a significant improvement in the 

performance of the model regarding A. Also, it is possible to see a slight reduction in 

some metrics related to the classification of C and D, due to the removal of a large 

number of samples; considering the 𝐹1-score for C and D the performance decreased 

2%. In addition to the removal of the samples labelled as B we generated 100 training 
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samples for class A (configuration v). Table 46 shows the classifier’s performance on 

test data with configuration (v). 

 

Table 46 – Performance of the classifier using the training set obtained with configuration (v). 

Likelihood Recall Precision 𝑭𝟏-score 

A 100 100 100 

C 86.35 87.65 86.99 

D 93.10 90.00 91.52 

Source: The author (2022). 

 
After removing the samples that has common characteristics as the remote 

events and performing DA, we were able to correctly predict all instances labelled as 

A of this specific test set. Thus, it seems promising for dealing with rare scenarios that 

usually are underrepresented in accident and reliability databases. 

 

5.3.2 Conclusion 

 

The early stages of QRA involves identifying and assess accident events. 

Developing techniques to identify features about catastrophic events with extreme 

consequences is quite useful for QRA. The application of NLP may be quite 

challenging when dealing with rare accident events, since limited knowledge exists for 

them. Moreover, in NLP datasets, DA is difficult due to language complexity. Thus, we 

explored different DA configurations to balance our dataset in order to improve the 

performance of the NLP model in classifying remote events. 

The results showed that simply augmenting the training data for the remote 

accident class is not enough to improve the model's learning for this class. However, 

fine-tuning only with samples of frequent and likely events (C and D) significantly 

improved the performance of the model. Thus, combining this approach and 

performing DA for class A, configuration (v), resulted in a model capable to correctly 

predict all remote events, which is a promising result. 

 

5.4 HALO (Hazard Analysis based on Language processing for Oil refineries) 

 

Overall, the proposed methodology for identifying risk features presented 

satisfactory results; thus, the trained classifiers could be a useful tool to support the 
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QRA early qualitative stages. To that end, we developed a web app, known as HALO2, 

registered in the national institute of industrial property (MACÊDO, MOURA, LINS, et 

al., 2021), and embedded the trained classifiers into the app. The app to support risk 

analysts identifying and assessing accidental scenarios related to the operation of oil 

refineries. In summary, the user (risk analyst) provides information about the system 

and the trained classifiers take the user’s input.  

Given a system described by the user, the app 1) identifies the potential 

consequences of accidents related to the operation of the system, classifies each 

accidental scenario in terms of 2) severity of the consequence and 3) likelihood of 

occurrence. Moreover, the app provides an overview of similar scenarios and allows 

risk analysts to perform an exploratory analysis through the scenarios. Yet, HALO also 

displays visual outputs, includes word clouds for the description of similar systems 

found in our database and a bar chart to illustrate the proportion of the potential 

consequences associated with these similar systems. These visual outputs summarize 

the knowledge contained in previous risk studies and allow the user (risk analyst) to 

gain insight into the analyzed system.  

HALO can meaningfully support the early stages of QRA; instead of starting the 

risk study from scratch, risk analysts can use the app outcomes as a starting point to 

identify and qualitatively characterize the accidental scenarios. This may be useful to 

prioritize the most critical scenarios that should be analyzed quantitatively. For 

instance, in the case of new plants, where there is almost no specific information 

available, the experts usually rely on partially relevant risk studies performed for similar 

plants. Thus, the app, which contains valuable information garnered from past risk 

studies, allows the experts to use that entire source of knowledge to reduce the 

uncertainty for performing the early stages of QRA. 

 

5.4.1 What is HALO? 

 

HALO was developed in Python, using the Streamlit, Transformers, and Gensim 

libraries (REHUREK, SOJKA, 2010, WOLF, DEBUT, et al., 2020). The content of the 

app is divided into four parts: i) What is Hazard Analysis based on Language 

 
2http://nlprisk.ceerma.com/  
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processing for Oil refineries?, ii) User’s Guide, iii) System Definition and Overview, and 

iv) Accident Scenario Prediction. As shown in  

Figure 30, there is a menu in the sidebar, displayed on the left side of the screen, 

with the title of each part. In this menu, the user selects the desired part. In the following 

figures, this menu will be omitted for a better adjustment of the images. 

The first part ( 

Figure 30) presents general information about the app and its outcomes. The 

app was developed to identify different risk features and provide an overview of the 

hazards in oil refineries, and support risk analysts to complete the early stages of a 

QRA. One of the outcomes provided by the app consists of a list of potential 

consequences due to hypothetical chemical spills in an oil refinery system. In addition, 

the app qualitatively estimates the severity and the likelihood of occurrence of each 

predicted potential consequence. Moreover, the app presents a visual representation 

through word cloud for the descriptions of the similar systems found in our database. 

Also, the app provides a bar chart to represent the distribution of the potential 

consequences related to chemical spills in these similar systems. 

 
Figure 30 – What is Hazard Analysis based on Language processing for Oil refineries? 

 
Source: The author (2022). 

5.4.2 User’s Guide 

 

The second part (Figure 31) provides instructions for the user, explains how the 

app is organized, and briefly describes the parts of the app. As mentioned, HALO has 

four parts, and the user can select one of them at a time in the sidebar. First, the user 
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must go to the third part to define the system of the oil refinery that will be analyzed. 

Also, in the third part visual outputs related to similar systems found in our database 

are displayed, the visual outputs include word clouds to summarize the descriptions of 

the similar systems and a bar chart to illustrate the potential consequences related to 

chemical spills in these similar systems. 

 

Figure 31 – User’s Guide. 

 
Source: The author (2022). 

 

Then, the user can go to the fourth part, where the possible consequences 

predicted by our classifiers and their respective frequency and severity estimates is 

provided. The trained classifiers take the user’s input features and each classifier 

considers two failure modes: small leakage and large leakage. The first classifier 

predicts the potential consequences related to both failure modes. The second and 

third classifiers take the user’s input, the failure mode, and the list of potential 

consequences to predict the category that represents the likelihood of occurrence and 

the severity level of all potential consequences. The app is able to predict 11 potential 



113 

 

consequences: burn injury, vapor cloud explosion, flash fire, irritation, soil 

contamination, pool fire, groundwater contamination, atmospheric contamination, toxic 

vapor cloud, and jet fire. Moreover, the consequences are classified into four severity 

categories and four likelihood categories, described in Table 1 and Table 2 

respectively. 

 

5.4.3 System Definition Overview  

 

The third part of the app is composed of two subparts: a) System Definition 

(Figure 32) and b) Similar Systems Overview (Figure 33). In ‘a’, the user defines nine 

variables to characterize the system under analysis: unit (𝑣1), unit subsystem (𝑣2), 

chemical product involved in the hypothetical spill (𝑣3), instrument present in the 

subsystem analyzed (𝑣4), equipment material (𝑣5), description of the subsystem (𝑣6), 

operational temperature (𝑣7), pressure (𝑣8), and mass flow rate (𝑣9).  

To define the features 𝑣1, 𝑣2 , 𝑣3 , 𝑣4 and 𝑣5 the user chooses one option from a 

drop-down list. These are categorical variables and the ‘categories’ available are 

limited by the data used to build the models embedded in the app. For instance, the 

models are only able to predict risk features related to chemical releases in 22 units of 

an oil refinery (e.g., atmospheric distillation unit, delayed coking unit, hydrotreater unit, 

and others). If the unit that the user is interested in is not in the drop-down list, it means 

that there was no data related to this unit in our database. Moreover, 𝑣4 and 𝑣5 are 

optional features; if the user does not know the instruments present in the subsystem 

(or there are no instruments, e.g., sensors, valves) or the material of the 

pipeline/equipment, the user can choose ‘none’ and, thus, the model ignores these 

features. 

The other variables to characterize the system are provided as a short text by 

the user. To define 𝑣6 the user must provide a short description of the analyzed 

‘section’, for example, ‘Pipeline from the exit of desalters to heater exchangers. This 

description must be provided in Portuguese because the models were trained in this 

language. Moreover, 𝑣7 , 𝑣8 and 𝑣9 must be provided in °𝐶, 𝑘𝑔𝑓. 𝑐𝑚−2, and 𝑘𝑔. ℎ−1 

respectively. Finally, the user confirms the features by clicking on ‘Features OK!’ at the 

bottom of the screen. 

Figure 32 – System Definition. 
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Source: The author (2022). 

 

5.4.4 Risk Features Predicted 

 

When the user clicks the button, the page will load ‘b’ (Figure 33). The fourth part 

summarizes the system being analyzed by the user at the top of the screen and, then, 

displays the visual representation, through word clouds, of the descriptions of the 

similar systems in the dataset used to train the model. The world clouds are generated 

for the descriptions related to the unit selected by the user (𝑣1). The first word cloud 

represents all descriptions related to 𝑣1 and the second one is created using the 

descriptions of the systems that contains 𝑣1 and 𝑣2. Word clouds are widely adopted 
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in text analysis in a static way to visually summarize text documents. This technique 

provides an overview of the texts that might help the user identify the number and kind 

of topics in the descriptions of similar systems. This statistical overview is 

accomplished by positively correlating the font size of the depicted word with the word 

frequency (HEIMERL, LOHMANN, et al., 2014).  

 

Figure 33 – Similar System Overview. 

 
Source: The author (2022). 

 
In the same section, the app displays a bar chart (Figure 34) that shows the 

proportion of each potential consequences of chemical spills in the systems of 𝑣1. For 

instance, in Figure 34 the consequence ‘toxic vapor cloud’ (‘nuvem tóxica’) represents 

30% of the consequences of the accidental scenarios related to ‘tocha e blowdown’, in 

English ‘flare and blowdown’ unit (𝑣1), considering all accidental scenarios identified 

for this unit in our database. The bar chart can help the user identify consequences 

that are not predicted by the classifiers.  

For instance, in this example we know that ‘toxic vapor cloud’ is the most frequent 

potential consequence for similar systems; however, the app’s classifiers might not 

predict this specific consequence. Thus, we could critically analyze whether this 

consequence is possible or not for the analyzed system. Next, the user can go to the 

fourth part of the app. 

 

Figure 34 – Potential consequences related to similar systems. 
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Source: The author (2022). 

 
When the user confirms the variables, these variables are fed into the app’s 

classifiers (described in Sections 5.2.1, 5.2.2, and 5.2.3). Thus, the NLP-based 

classifiers process the textual data and predicts the risk features. The results of the 

classifiers predictions are displayed in a table (the first table presented in Figure 35), 

the column ‘vazamento’ corresponds to the failure modes and each row in the table 

corresponds to an accidental scenario (composed of failure mode, consequence, 

frequency, and severity). 

 
Figure 35 – Predictions provided by HALO’s classifiers. 

 
Source: The author (2022). 

 

5.4.5 Conclusion 

 

HALO can help the analyst to identify and evaluate the hazards related to 

chemical spills in an oil refinery by providing a list of potential consequences, their 

severity and likelihood categories, and visual outputs. These results can be used to 
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prioritize the most critical scenarios and, thus, reduce the number of scenarios 

posteriorly quantified. Additionally, the word clouds and bar chart provided by the app 

summarize the knowledge from previous risk studies conducted for an actual oil 

refinery. These results can support the analyst to postulate additional accidental 

scenarios and assess the consistency of the results predicted by the classifiers. 

 

5.5 GENERAL CONCLUSION 

 

A method based on TM techniques and pre-trained BERT model was developed 

to identify risk features in an oil refinery. First, a corpus was built using PrHA 

documents to train the models. The texts were automatically extracted from the 

documents and, then, preprocessed into a convenient format for the learning 

algorithms. Next, the pre-trained model was tailored for performing three tasks: i) to 

identify possible consequences, given the occurrence of a leakage; ii) to classify the 

severity of the consequences; iii) to classify the likelihood of occurrence of the accident 

scenario. As a result, we developed three models that could extract sufficient 

knowledge from the textual data and yielded satisfactory training and test outcomes.  

These outcomes underscore that TM and NLP can be adopted to support 

identification and analysis of hazards related to chemical spills in an oil refinery. The 

trained classifiers can provide to risk analysts a starting point to postulate different 

scenarios potential consequences of different scenarios and qualitative description of 

risks in terms of expected likelihood and severity of consequences. The proposed 

methodology presented satisfactory results; thus, the trained classifiers were 

embedded into a web-based app called HALO.  

Moreover, developing techniques to identify features about catastrophic events 

with extreme consequences is quite useful for QRA. However, it may be quite 

challenging to develop good models when dealing with rare accident events, since 

limited knowledge exists for them. Moreover, in NLP datasets, DA is difficult due to 

language complexity. Thus, we explored different DA configurations to balance our 

dataset in order to improve the performance of the NLP model in classifying remote 

events. 

One possible alternative to DA is to use Few-Shot Learning (BROWN, MANN, et 

al., 2020); thus, it will be object of future research. In addition, in future works we intend 

to evaluate whether, through the features extracted through fine-tuning using 
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configuration (v), it is possible to identify other characteristics, such as the severity of 

the consequences of these rare events. 

Further studies, which would take into account other engineering documents, 

such as flowcharts, equipment and material lists, should be undertaken to investigate 

the possibility of conflating more information about the system and the data stored in 

the PrHA documents. This could improve the model's learning process and reduce 

biases usually found in early stages of QRA. 

Although the scope of this study was restricted to the oil refinery context, the 

methodology can be applicable to different industrial systems, being necessary to 

provide data from the context of interest to train the models. It is important to 

emphasize that the model’s predictions are limited to what is provided through the 

training data. Therefore, caution must be taken when generalizing the predictions, and 

the results must be carefully evaluated by the risk analysts. 
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6 CONCLUDING REMARKS 

 

This thesis aimed at developing two methodologies that can be applied at 

different time epochs over the lifecycle of an industrial system to aid RA, in both 

occupational safety (Chapter 4) and process safety (Chapter 5). Thus, this thesis may 

contribute to the prevention and mitigation of occupational accidents and/or major 

accidents that can threaten human life and lead to environmental degradation and to 

property damage, consequently avoiding economic losses, fatalities, and negative 

effects on the company's image and society.  

Indeed, the outcome of this thesis strengthens the idea that information contained 

as text data can be automatically extracted and processed by TM and NLP techniques 

to support risk studies and consequently improve risk management and safety in the 

work/industrial environment. 

First, we analyzed a dataset of accident investigation reports of a hydroelectric 

power company through different NLP approaches. We were able to identify the 

usefulness of several categories already adopted, but there were also existing ones 

that we found out to be ineffective in terms of their descriptions. The results obtained 

in the exploratory analysis suggested that a lower number of categories would be more 

suitable for this specific database. This is probably due to a lack of standardization and 

understanding of the pre-defined categories.  

Moreover, the improvement on the performance of the classifiers due to the 

curation may indicate the presence of inconsistencies in the original classification 

among the ‘accident agents’. In addition, we performed a sensitivity analysis removing 

classes with few instances (i.e., ‘scaffolding’, ‘chemical products’, and ‘others’), and 

the performance of most of the models improved even further. These outcomes 

indicated that the classes are not well- understood by the classifiers (i.e., it consists of 

multiple and heterogeneous event descriptions) and are under-represented in our 

database. 

Therefore, we showed the importance of the company’s safety culture to keep 

safety technician engaged in carefully constructing an accident database. In fact, the 

safety technician must have the correct understanding of what and how to fill out each 

required field in the report, which is only achieved by continuous training. This would 

improve the quality of the reports and allow keeping the original categorization. In 
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addition, a well-designed database provides useful information for risk management 

and decision-making. 

The downside of the proposed methodology to assess accident investigation 

reports is that it is not yet completely automatic, still relying on manual curation. 

Therefore, in future work we intend to improve manual curation process, such as 

adopting clusters to group the accidents and label them in a less manual way. 

Moreover, since the analyzed database has only 626 reports, in an ongoing study we 

are applying this methodology to a larger accident base in a different context, more 

specifically to aviation accident data, allowing us to build and train DL architectures. 

Second, we showed that information contained in past PrHA of an oil refinery can 

be reused to train models to extract identify different risk features and support the initial 

stage of QRA. The proposed methodology based on BERT, an advanced pre-trained 

language model, does not require an absurd amount of data like most NLP 

approaches, which can reach up to trillions of training tokens (GAO, Leo, BIDERMAN, 

et al., 2020, HOFFMANN, BORGEAUD, et al., 2022), to achieve satisfactory results. 

In addition, the proposed methodology can be easily adapted to different industrial 

systems, being necessary to provide data from the context of interest to train the 

models. In addition. We also have developed a web-app called HALO, where we 

embedded the trained classifiers that were trained to identify the potential 

consequences of different scenarios and to describe qualitatively risks in terms of 

expected likelihood and severity of consequences were embedded into a web-based 

app called HALO.  

Indeed, the proposed method could be a useful tool to support hazard 

identification and analysis; instead of starting the QRA from scratch, analysts could 

either reuse knowledge from previous studies or process studies for similar plants. This 

may be rather useful especially for plants, which are brand new and depend on the 

approval of the environmental regulators to start the development of the facility design 

and construction. Then, experts may use that entire source of knowledge to reduce the 

uncertainty for performing risk analysis based on a model trained with all the available 

information collected and processed from past risk studies. Furthermore, we believe 

that the predictions provided by the models could indicate errors made by experts 

during the PrHAs. Experts can critically evaluate scenarios misclassified by the trained 

models and decide whether the model's prediction makes sense. Thus, the proposed 

methodology would also enable experts to correct the PrHAs.. 
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Regarding the methodology to support QRA in O&G industries, we explored 

different DA configurations to balance our dataset in order to improve the performance 

of the NLP model in classifying remote events. One possible alternative to DA is to use 

Few-Shot Learning (BROWN, MANN, et al., 2020); thus, it will be object of future 

research. In addition, in future works we intend to evaluate whether, through the 

features extracted through fine-tuning using configuration (v), it is possible to identify 

other characteristics, such as the severity of the consequences of these rare events. 

Further studies, which would take into account other engineering documents, 

such as flowcharts, equipment and material lists, should be undertaken to investigate 

the possibility of conflating more information about the system and the data stored in 

the PrHA documents. Furthermore, different NLP models should be explored, since a 

number of new models have been derived from the transformers architecture, such as 

XLNet (YANG, DAI, et al., 2019), RoBERTa (LIU, Yinhan, OTT, et al., 2019), 

ELECTRA (CLARK, LUONG, et al., 2020), ALBERT (LAN, CHEN, et al., 2019), Gato 

(REED, ZOLNA, et al., 2022) and Chinchilla (HOFFMANN, BORGEAUD, et al., 2022). 

This could improve the model's learning process and reduce biases usually found in 

early stages of QRA 
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