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ABSTRACT

In this work we describe an experimental investigation on the spatial intensity distribution

of the two transmitted beams and the two beams generated in a four-wave mixing (FWM)

process, using rubidium vapor as a nonlinear medium. The two FWM signals are detected in

the 2𝑘𝐹 − 𝑘𝑃 and 2𝑘𝑃 − 𝑘𝐹 directions, where 𝑘𝐹 and 𝑘𝑃 are the incident beam directions.

A diode laser, responsible by the two Ąelds that driven the FWM process, is tuned to the

5𝑆1⇑2(𝐹 ≙ 3) Ð→ 5𝑃3⇑2 of the 85𝑅𝑏. The images of the four beams are obtained using a

CMOS camera for a Ąxed atomic density and a Ąxed frequency of the input beams. From

each image we can determine the spatial distribution of the intensity of the respective beam.

We analyzed the spatial intensity distribution of the signals, as well as the spatial intensity

Ćuctuation. The spatial intensity distribution of the transmitted beams shows a decrease of

the beam waist for intensities close to the saturation intensity, while for high intensities the

spatial proĄle is almost constant. This behavior indicates an autofocusing effect, related to

the variation of the refractive index of the medium. The spatial distribution of the intensity

Ćuctuation is obtained considering an average surface for each image, and is used to calculate

the autocorrelation of the transmitted beams and the two generated FWM beams. Working

with the intensity Ćuctuation, we can deĄne a transverse spatial correlation length, which is

used to compare the behavior of the four beams with that of a free beam. In this sense, the

autocorrelations of intensity Ćuctuations of the transmitted beams show a decrease in the

correlation length in the same region of intensities where we observe the self-focusing effect,

and as we increase the intensity, the correlation length approaches the value obtained for the

free beam. On the other hand, the correlation length for the autocorrelations of the signals

generated by FWM increases as the intensity of the incident beams increases.

Keywords: four-wave mixing; spatial correlation; rubidium vapor; spatial image; non-linear

process.



RESUMO

Neste trabalho descrevemos um estudo experimental sobre a distribuição de intensidade

espacial dos dois feixes transmitidos e de dois feixes gerados em um processo de mistura de

quatro ondas, tendo como meio não linear vapor de rubídio. Os dois sinais gerados nesse

processo não linear são detectados nas direções 2𝑘𝐹 − 𝑘𝑃 e 2𝑘𝑃 − 𝑘𝐹 , onde 𝑘𝑃 e 𝑘𝐹 são as

direções dos feixes incidentes. Um laser de diodo, responsável pelos dois feixes utilizados no

processo de mistura de quatro ondas, é sintonizado na transição 5𝑆1⇑2(𝐹 ≙ 3) Ð→ 5𝑃3⇑2 do
85𝑅𝑏. As imagens dos quatro feixes são obtidas utilizando uma câmera CMOS e mantendo

Ąxa a densidade atômica e a frequência dos feixes de entrada. A distribuição espacial da

intensidade de cada um dos feixes é determinada a partir de suas respectivas imagens. Foram

analisadas tanto a distribuição espacial de intensidade dos feixes como a distribuição espacial

das Ćutuações de intensidade. A distribuição espacial de intensidade dos feixes transmitidos

apresenta uma diminuição da cintura do feixe para intensidades próximas à intensidade de

saturação, enquanto que para altas intensidades o perĄl espacial do feixe é aproximadamente

constante. Esse comportamento indica um efeito de auto-focalização que está associado à

variação do índice de refração do meio. A distribuição espacial das Ćutuações de intensidade é

obtida a partir da subtração de uma superfície média de cada imagem, e é utilizada para calcular

a autocorrelação das Ćutuações dos feixes transmitidos e dos feixes gerados. Na análise das

Ćutuações de intensidade, nós deĄnimos um comprimento de correlação espacial transversal,

o qual é utilizado para comparar o comportamento dos quatro feixes com o de um feixe livre.

Para os feixes transmitidos, observamos uma diminuição no comprimento de correlação na

mesma região de intensidades onde veriĄcamos o efeito de auto-focalização, sendo que, com

o aumento da intensidade, o comprimento de correlação se aproxima do valor obtido para o

feixe livre. No entanto, o comprimento de correlação dos sinais gerados no processo de mistura

de quatro ondas aumenta conforme a intensidade dos feixes incidentes aumenta.

Palavras-chaves: mistura de quatro ondas; correlação espacial; imagem; vapor de rubídio;

processo não linear.
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1 INTRODUCTION

Nonlinear optics is the study of processes that occur as a consequence of the modiĄcation

of the optical properties of a material system by the presence of light (1). The term ŠnonlinearŠ

is used in the sense that the response of the medium to the applied optical Ąeld depends in a

nonlinear manner to the strength of the applied optical Ąeld (1). The discovery of the second

harmonic generation (2) is often taken as the beginning of the Ąeld of nonlinear optics and

since this discovery it has become a very active Ąeld. There is a great variety of nonlinear

optical processes, but in this work are we only interested in one of them, the four-wave mixing

(FWM). In a four-wave mixing (FWM) process a fourth Ąeld is generated as the result of

the coherent combination of three electromagnetic Ąelds interacting with a nonlinear sample,

this process has been used extensively to investigate a variety of optical phenomena in atomic

systems. In our laboratory some studies on the FWM process in atomic systems have already

been developed (3) (4) (5), but always investigating the nonlinear process in the frequency

domain. A Ąrst theoretical study of the spatial proĄle of these generated signals is described

in the MasterŠs thesis of Motta (6) and in (7), showing the inĆuence of the ressonances of

the medium. In the present work, we describe an experimental investigation of the images of

these beams.

Today, almost all areas of science have been impacted by digital image processing. Visual

observation plays an important role in the scientiĄc process, in the beginning the only way

to document the results of an experiment was by verbal description and manual drawings,

but the invention of photography in the 19th century by Joseph Nicéphore Niépce (8) made

possible to document these results in an objective way. One area of physics that has been

most impacted by photography is astronomy. Photography has made possible to discover,

record and classify celestial objects, celestial bodies and celestial events, astronomers are able

to measure positions, magnitude, temperature and composition of these objects and events.

In this context, we describe an experimental investigation on the spatial intensity distribu-

tion of the two transmitted beams and the two beams generated in a four-wave mixing (FWM)

process, using rubidium vapor as nonlinear medium. The spatial distribution of intensity of the

beams is determined from the images of these beams.

In chapter 2, we present an introduction to digital image processing. We will present some

basic concepts, deĄnitions, operations and techniques of digital image processing. We will also

present a more in-depth description of some of the algorithms that were implemented in this

study.

In chapter 3, we describe our experimental setup and the procedures used to obtain our

images of the beams for a later analysis.

It is in chapter 4 that we present our experimental results and the analysis carried out. This

chapter is divided in two sections, one dedicated to obtain information from the transmitted

beams and the other speciĄc for the signals generated in the FWM process. Finally, we present
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the conclusions and perspectives of this work.
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2 FUNDAMENTALS OF IMAGE PROCESSING

In this chapter we present an introduction to digital image processing. We will present

some basic concepts, deĄnitions, operations and techniques of digital image processing. We

will also present a more in-depth description of some of the algorithms that were implemented

in this study. This chapter was strongly inspired by reference (9).

2.1 BASIC PROPERTIES AND TYPES OF DIGITAL IMAGES

A digital image is deĄned as a two-dimensional function, 𝑓(𝑥, 𝑦), where 𝑥 and 𝑦 are Ąnite

and discrete spatial coordinates representing a picture element (pixel). The value of 𝑓 at any

given pair of coordinates (𝑥, 𝑦) is a Ąnite and discrete quantity called the intensity or gray

level of the image at that point. A digital image can also be seen as a two-dimensional array

of values representing light intensity, where each element within the array is considered a pixel

(9) (10) (11).

By convention, the pixel with the coordinates (0, 0) is located at the top, left corner of

the image.

Figure 1 Ű Coventional coordinate system

Source: The author (2022)

A digital image has three basic properties.

Image resolution The resolution of an image is determined by its dimensions (height and

width), the number of rows and columns in pixels. For example, an image with dimensions
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1280 x 1024 (width x height) pixels means that the total number of pixels in the image

is 1310720.

Image definition The deĄnition of an image is indicated by the number of tones it can have

(10). The pixels in an image can take on different values, and the number of bits used

to encode them is called bit depth. An image with bit depth of n has a deĄnition of 2𝑛,

meaning that its pixels can assume 2𝑛 different values. For example, an image with bit

depth of 1 bit has pixels with two possible values (21): 0 or 1. An image with bit depth

of 8 bits has pixels with 256 possible values ranging from 0 to 255. An image with bit

depth of 16 bits has pixels with 65536 possible values ranging from 0 to 65535.

Number of channels The number of channels corresponds to the number of arrays that

compose an image. A grayscale image has only one channel, while an RGB image has

three channels: one for red component, one for green component and one for blue

component.

There are four types of digital images (11):

Binary images For binary images each pixel can only assume one of two possible values 0 or

1, usually corresponding to black or white. An example is shown in Ągure 2.

Figure 2 Ű Binary image

Source: The author (2022)

Grayscale images A grayscale image, sometimes referred to as an intensity image, has only

one channel and usually each pixel has a bit depth equal to 8, but grayscale images with

larger bit depth are also widely available. An example is shown in Ągure 3.

RGB images A RGB image, sometimes referred to as truecolor image, has three channels

that deĄne the red, green and blue color components for each individual pixel. RGB
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Figure 3 Ű Grayscale image

Source: The author (2022)

images are stored as 24-bit images, where each channel has a bit depth of 8 bits. An

example is shown in Ągure 4.

Figure 4 Ű RGB image

Source: The author (2022)

Indexed images An indexed image is a digital image that uses a color map, also known as a

palette, to assign a speciĄc color to each pixel in the image. The color information for

each pixel is stored in the color map, rather than in the image data itself, which results

in a smaller Ąle size and faster loading times. Indexed images typically use a limited color

palette, typically 256 colors, which can cause a lower image quality and less color variety

than non-indexed images. An example is shown in 5.
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Figure 5 Ű Indexed image

Source: The author (2022)

2.2 IMAGE FILE FORMATS AND BASIC ARITHMETIC OPERATIONS

Image Ąle formats are standardized means of organizing and storing digital images (10).

The formats bellow are some of the common image formats available:

• Portable Network Graphics (PNG)

• Tagged Image File Format (TIFF)

• Bitmap (BMP)

• Joint Photographic Experts Group (JPEG/JPG)

• Graphics Interchange Format (GIF)

• National Instruments Internal Image File Format (AIPD)

Standard 8-bit grayscale formats are PNG, JPEG, BMP, TIFF and AIDP. Standard 16-bit

grayscale format are PNG and AIPD. Standard color Ąle formats for RGB images are PNG,

JPEG, BMP, TIFF and AIDP (10).

Images are composed of two-dimensional arrays of numbers. We can deĄne simple math-

ematical operations on the elements of two arrays.

Addition The addition of two images, 𝐼1 and 𝐼2, of the same size is simply the element wise

sum of the two images:

𝐼𝑟(𝑥, 𝑦) ≙ 𝐼1(𝑥, 𝑦) + 𝐼2(𝑥, 𝑦), ∀(𝑥, 𝑦). (2.1)
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Figure 6 Ű Adding images. (a) 𝐼1. (b) 𝐼2. (c) 𝐼1 + 𝐼2.

Source: The author (2022)

Subtraction The subtraction of two images is deĄned as:

𝐼𝑟(𝑥, 𝑦) ≙ 𝐼1(𝑥, 𝑦) − 𝐼2(𝑥, 𝑦), ∀(𝑥, 𝑦) (2.2)

or,

𝐼𝑟(𝑥, 𝑦) ≙ ⋃︀𝐼1(𝑥, 𝑦) − 𝐼2(𝑥, 𝑦)⋃︀, ∀(𝑥, 𝑦). (2.3)

Both of these deĄnitions are possible, here in this work we have used the second one. A

subtraction of two images is shown in Ągure 7.

Figure 7 Ű Subtracting images. (a) 𝐼1. (b) 𝐼2. (c) 𝐼1 − 𝐼2.

Source: The author (2022)

Division The division of two images is deĄned as:

𝐼𝑟(𝑥, 𝑦) ≙ 𝐼1(𝑥, 𝑦)
𝐼2(𝑥, 𝑦) , ∀(𝑥, 𝑦), (2.4)

where 𝐼2(𝑥, 𝑦) ≠ 0, ∀(𝑥, 𝑦). An example is shown in Ągure 8. In this example, we

divided the blurred image by the original image, this process is a type of edge detection

algorithm.
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Figure 8 Ű Dividing images. (a) 𝐼1. (b) 𝐼2. (c) 𝐼1⇑𝐼2.

Source: The author (2022)

Multiplication The multiplication of two images (see in Ągure 9) is deĄned as:

𝐼𝑟(𝑥, 𝑦) ≙ 𝐼1(𝑥, 𝑦) ∗ 𝐼2(𝑥, 𝑦), ∀(𝑥, 𝑦). (2.5)

Figure 9 Ű Multiplying images. (a) 𝐼1. (b) 𝐼2. (c) 𝐼1 ∗ 𝐼2.

Source: The author (2022)

In addition to the basic arithmetic operations, there are many more complex ones that can

be performed on images, such as: resizing, rotating, cropping, splitting, merging, changing

colors, etc. Some of these operations have great complexity of implementation, but fortunately,

they are already implemented in many libraries and with different programming languages.

2.3 IMAGE ENHANCEMENT AND IMAGE RESTORATION

Image enhancement and Image restoration are the processes of manipulating an image

so that the result is more appropriate than the original image for a speciĄc task (9). These
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processes of manipulation can be done in two broad approaches: spatial domain methods and

frequency domain methods. Via these two approaches we can improve images in many ways,

such as: sharpening the edges of objects, reducing random and periodic noise, correcting for

unequal illumination, etc (12). Here we will focus on frequency domain methods, but Ąrst let

us deĄne Fourier transform, convolution and correlation for images.

2.3.1 Fourier transform

The Fourier transform, 𝐹 (𝑢, 𝑣), of a two variables continuous function, 𝑓(𝑥, 𝑦), is deĄned

by the equation

𝐹 (𝑢, 𝑣) ≙ ∫ ∞

−∞

∫
∞

−∞

𝑓(𝑥, 𝑦)𝑒−𝑗2Þ(𝑢𝑥+𝑣𝑦) 𝑑𝑥 𝑑𝑦, (2.6)

where 𝑗 ≙
⌋︂
−1. We also deĄne the inverse Fourier transform by

𝑓(𝑥, 𝑦) ≙ ∫ ∞

−∞

∫
∞

−∞

𝐹 (𝑢, 𝑣)𝑒𝑗2Þ(𝑢𝑥+𝑣𝑦) 𝑑𝑢 𝑑𝑣. (2.7)

In the discrete case, the discrete Fourier transform(DFT) of an image, 𝑓(𝑥, 𝑦), of size M

x N is given by the equation

𝐹 (𝑢, 𝑣) ≙ 𝑀−1

∑
𝑥=0

𝑁−1

∑
𝑦=0

𝑓(𝑥, 𝑦)𝑒−𝑗2Þ(𝑢𝑥⇑𝑀+𝑣𝑦⇑𝑁), (2.8)

for 𝑢 ≙ 0, 1, 2, ..., 𝑀−1 and 𝑣 ≙ 0, 1, 2, ..., 𝑁−1. Similarly, we deĄne the inverse discrete Fourier

transform by

𝑓(𝑥, 𝑦) ≙ 1

𝑀𝑁

𝑀−1

∑
𝑢=0

𝑁−1

∑
𝑣=0

𝐹 (𝑢, 𝑣)𝑒𝑗2Þ(𝑢𝑥⇑𝑀+𝑣𝑦⇑𝑁), (2.9)

for 𝑥 ≙ 0, 1, 2, ..., 𝑀 − 1 and 𝑦 ≙ 0, 1, 2, ..., 𝑁 − 1. Equations 2.8 and 2.9 constitute the two

dimensional, discrete Fourier transform pair. The variables 𝑥 and 𝑦 are known as the spatial

or image variables, and 𝑢 and 𝑣 are known as the transform or frequency variables.

It is convenient sometimes to express 𝐹 (𝑢, 𝑣) in polar coordinates

𝐹 (𝑢, 𝑣) ≙ ⋃︀𝐹 (𝑢, 𝑣)⋃︀𝑒−𝑗ã(𝑢,𝑣), (2.10)

where

⋃︀𝐹 (𝑢, 𝑣)⋃︀ ≙⌈︂R2⋃︁𝐹 (𝑢, 𝑣)⨄︁ + I2⋃︁𝐹 (𝑢, 𝑣)⨄︁, (2.11)

and

ã(𝑢, 𝑣) ≙ tan−1 ⌊︀ I⋃︁𝐹 (𝑢, 𝑣)⨄︁
R⋃︁𝐹 (𝑢, 𝑣)⨄︁}︀ (2.12)

are the magnitude or spectrum and phase angle or phase spectrum respectively. We also deĄne

another quantity called power spectrum as

𝑃 (𝑢, 𝑣) ≙ ⋃︀𝐹 (𝑢, 𝑣)⋃︀2 ≙R2⋃︁𝐹 (𝑢, 𝑣)⨄︁ + I2⋃︁𝐹 (𝑢, 𝑣)⨄︁. (2.13)
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Before computing the Fourier transform of an image it is common to multiply the image by

the function (−1)𝑥+𝑦, this shifts the zero-frequency components to the center of the spectrum,

i.e., it centers the spectrum. The Ągure 10 shows a comparison between the Fourier transform

of an image and the Fourier transform of the same image multiplied by (−1)𝑥+𝑦.

Figure 10 Ű (a) Original image. (b) Logarithm of the power spectrum. (c) Logarithm of the centered power
spectrum

Source: The author (2022)

Let us investigate some properties of the Fourier transform. Looking at the value of the

Fourier transform at (𝑢, 𝑣) ≙ (0, 0),
𝐹 (0, 0) ≙ 𝑀−1

∑
𝑥=0

𝑁−1

∑
𝑦=0

𝑓(𝑥, 𝑦) ≙𝑀𝑁
1

𝑀𝑁

𝑀−1

∑
𝑥=0

𝑁−1

∑
𝑦=0

𝑓(𝑥, 𝑦) ≙𝑀𝑁∐︀𝑓(𝑥, 𝑦)̃︀ (2.14)

where ∐︀𝑓(𝑥, 𝑦)̃︀ is the average value of 𝑓(𝑥, 𝑦). Because 𝑀𝑁 is usually large, ⋃︀𝐹 (0, 0)⋃︀ is

typically the largest component of the Fourier spectrum by a factor of several orders of mag-

nitude. 𝐹 (0, 0) is called the DC component of the spectrum. Another important property is

that, if 𝑓(𝑥, 𝑦) is real, then it can be shown that,

⋃︀𝐹 (𝑢, 𝑣)⋃︀ ≙ ⋃︀𝐹 (−𝑢,−𝑣)⋃︀, (2.15)

which implies that the spectrum of the Fourier transform is symmetric. Finally, the DFT of

an image decomposes the image into a sum of sinusoids. The components of the spectrum

determine the amplitude of these sinusoids. Figure 11 shows the power spectrum for sums

of different sinusoids, for simple combinations of waves we have only a few bright spots. As

discussed earlier we can see the symmetry of the power spectrum. The power spectrum of real

images are much more complex than those of the sinusoids that we see in Ągure 11. Figure

12 is an example of the power spectrum of one such image.



21

Figure 11 Ű Power spectrums for diferent sinusoids

Source: The author (2022)

Figure 12 Ű Power spectrums of a real image

Source: The author (2022)

2.3.2 Convolution

In a 2D continuous space the convolution of two functions, 𝑓(𝑥, 𝑦) and 𝑔(𝑥, 𝑦), is deĄned

as (13):

𝑓(𝑥, 𝑦)★𝑔(𝑥, 𝑦) ≙ ∫ ∞

−∞

∫
∞

−∞

𝑓(𝑢, 𝑣)𝑔(𝑥 − 𝑢, 𝑦 − 𝑣) 𝑑𝑥 𝑑𝑦, (2.16)

The 2D discrete convolution of a kernel, 𝑤(𝑥, 𝑦), of size M x N with an image 𝑓(𝑥, 𝑦) is

deĄned as:

𝑤(𝑥, 𝑦)★𝑓(𝑥, 𝑦) ≙ 𝑎

∑
𝑚=−𝑎

𝑏

∑
𝑛=−𝑏

𝑤(𝑚, 𝑛)𝑓(𝑥 −𝑚, 𝑦 − 𝑛), (2.17)

where 𝑎 ≙ (𝑀 − 1)⇑2 and 𝑏 ≙ (𝑁 − 1)⇑2. The kernel 𝑤(𝑥, 𝑦) is also known as Ąlter, mask or

point spread function (FSD) depending on the situation.
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The convolution has the following properties:

• Commutativity: 𝑤★𝑓 ≙ 𝑓★𝑤 .

• Associativity: (𝑤★𝑓)★ℎ ≙ 𝑤★(𝑓★ℎ) ≙ 𝑤★𝑓★ℎ .

• Distributivity: 𝑤★(𝑓 + ℎ) ≙ (𝑤★𝑓) + (𝑤★ℎ) .

The computation of the 2D discrete convolution can be understood intuitively as follow.

Consider an image and a kernel, 𝑓(𝑥, 𝑦) and 𝑤(𝑥, 𝑦), respectively.

First, we Ćip the kernel in both horizontal and vertical directions, i.e., rotate by 180○,

Ągure 13. Then, we slide the Ćipped kernel across the image, 𝑓(𝑥, 𝑦), and at each location, we

calculate the sum of the products of the kernel elements with the corresponding pixels directly

under the kernel, as shown in Ągure 14.

Figure 13 Ű (a) Kernel. (b) Rotated kernel

Source: The author (2022)

Figure 14 Ű Output element of a convolution

Source: The author (2022)

This calculation is performed for all values of the displacement variables 𝑥 and 𝑦 so that

each element of 𝑤 visits each pixel of 𝑓 , this means that the correlation is a function of the
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displacement variables 𝑥 and 𝑦. The problem with the calculation as shown is that when we

get close to the border of the image, the kernel extends over the edge of the image, as shown

in Ągure 15. To solve this problem, we have to make some assumptions about pixels outside

Figure 15 Ű Kernel over the edge of the image

Source: The author (2022)

the image. There are many hypothesis that can be made, some of them shown in Ągure 16:

Filling with zeros We add a border area to the image and Ąll it with zeros. The result of

this assumption is the discrete linear convolution (14).

Wrapping We add a border area to the image and Ąll it with copies of the image. The result

of this assumption is known as a cyclic convolution, circular convolution or wraparound

(14).

Mirroring We add a border area to the image and Ąll it with mirrored (horizontal, vertical or

both depending on the direction) copies of itself.

Figure 16 Ű Different types of boundaries. (a) Filling with zeros. (b) Wrapping. (c) Mirroring.

Source: The author (2022)

It is important to note that no perfect boundary condition exists to handle the pixels close to

the border of the image, all of them will introduce errors in the result (15).
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Lastly, there is an import theorem known as Convolution Theorem that needs to be men-

tioned.

Theorem 1 (Convolution theorem) Let 𝐹 (𝑢, 𝑣) and 𝐺(𝑢, 𝑣) be the Fourier transform of

two images, 𝑓(𝑥, 𝑦) and 𝑔(𝑥, 𝑦), of size M x N. Then,

𝑓(𝑥, 𝑦)★𝑔(𝑥, 𝑦) ≙ ℱ−1⋃︁𝐹 (𝑢, 𝑣)𝐺(𝑢, 𝑣)⨄︁ (2.18)

where ℱ−1 indicates the inverse Fourier transform.

This means that convolution in the space domain corresponds to multiplication in the frequency

domain (9).

The spatial domain Ąltering mentioned at the beginning of this section is performed by

convoluting the input image with an appropriate Ąlter kernel. Filter kernels are also known as

Ąlter masks, convolution masks and convolution kernels.

2.3.3 Correlation

The 2D discrete correlation of a kernel, 𝑤(𝑥, 𝑦), of size M x N with an image 𝑓(𝑥, 𝑦) is

deĄned by

𝑤(𝑥, 𝑦)☆𝑓(𝑥, 𝑦) ≙ 𝑎

∑
𝑚=−𝑎

𝑏

∑
𝑛=−𝑏

𝑤(𝑚, 𝑛)𝑓(𝑥 +𝑚, 𝑦 + 𝑛) (2.19)

where 𝑎 ≙ (𝑀 − 1)⇑2 and 𝑏 ≙ (𝑁 − 1)⇑2. The kernel 𝑤(𝑥, 𝑦) is also known as template. We

note the similarities between the expressions for the discrete correlation given above and the

discrete convolution given by equation 2.17. The difference between these two equations is the

positive instead of negative signs in the second term of the summation. The implication of this

difference is that the implementation of the correlation remains the same as the convolution

with the exception that we do not Ćip the kernel in both directions, as shown in Ągure 17.

The discussion we had in the convolution section about boundary conditions also applies here.

The term cross-correlation is often used in place of correlation when 𝑓(𝑥, 𝑦) ≠ 𝑤(𝑥, 𝑦), images

being correlated are different, and the term autocorrelation when 𝑓(𝑥, 𝑦) ≙ 𝑤(𝑥, 𝑦), or the

images are the same.

Another important theorem that needs to be mentioned is the correlation theorem.

Theorem 2 (Correlation theorem) Let 𝐹 (𝑢, 𝑣) and 𝐺(𝑢, 𝑣) be the Fourier transform of

two images, 𝑓(𝑥, 𝑦) and 𝑔(𝑥, 𝑦), of size M x N. The correlation theorem states that (9),

𝑓(𝑥, 𝑦)☆𝑔(𝑥, 𝑦) ≙ ℱ−1⋃︁𝐹 ∗(𝑢, 𝑣)𝐺(𝑢, 𝑣)⨄︁ (2.20)

where ℱ−1 indicates the inverse Fourier transform and 𝐹 ∗ indicates the complex conjugate of

𝐹 .



25

Figure 17 Ű In the correlation the kernel is not rotated.

Source: The author (2022)

A special case of the correlation theorem occurs when 𝑓 ≙ 𝑤 and is known as Wiener-

Khinchin theorem or autocorrelation theorem, which states that

𝑓(𝑥, 𝑦)☆𝑓(𝑥, 𝑦) ≙ ℱ−1 )︀⋃︀𝐹 (𝑢, 𝑣)⋃︀2⌈︀ . (2.21)

In other words the autocorrelation of 𝑓 is the inverse Fourier transform of its power spectrum.

Usually equation 2.19 as it was deĄned it is not very usefull for many applications because

the result of the correlation is sensitive to scale changes in 𝑓 and 𝑤 (9). To overcome this

problem, we deĄned the Normalized Cross-Correlation(NCC) by

Ò(𝑥, 𝑦) ≙ ∑
𝑢

∑
𝑣

)︀𝑤(𝑢, 𝑣) −𝑤⌈︀)︀𝑓(𝑥 + 𝑢, 𝑦 + 𝑣) − 𝑓𝑥𝑦⌈︀
{∑

𝑢

∑
𝑣

)︀𝑤(𝑢, 𝑣) −𝑤⌈︀2∑
𝑢

∑
𝑣

)︀𝑓(𝑥 + 𝑢, 𝑦 + 𝑣) − 𝑓𝑥𝑦⌈︀2(︀
1

2

, (2.22)

where 𝑤 is the average value of 𝑤, 𝑓𝑥𝑦 is the mean value of 𝑓 in the region where 𝑓 and 𝑤

overlap. The summation limits are taken over the region where 𝑓 and 𝑤 overlap. The values

of Ò(𝑥, 𝑦) are in the range ⋃︁−1, 1⨄︁.
The principal application of the correlation is template matching. In template matching

we want to identify objects or regions in an input image that match a template image. The

correlation of the input image and the template image will be maximum at the location where

there is best correspondence. An example of template matching is shown bellow. The Ągure

18 (a) shows the input image, which is a set of old Greek coins. Figure 18 (b) is the template

image, it is one of the coins of the input image, we will identify the best matching position of

this coin in the input image.

First we calculate the normalized cross-correlation between these images and then Ąnd

the position of maximum correlation, this position has the best correspondence. Figure 19 (a)
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Figure 18 Ű (a) Set of coins (input image). (b) One of the coins (template image).

Source: The author (2022)

Figure 19 Ű (a) Correlation of the images. (b) The position with best correspondence.

Source: The author (2022)

shows the correlation between the images and Ągure 19 (b) shows where the highest matching

area is located in the input image, which is the exact position of the coin.

In Ągure 19 (a), the variables in the x and y axis are displacements and the value of each

pixel is the value of the correlation at that speciĄc pair (x,y).

2.3.4 Filtering in the frequency domain

Filtering is one of the most basic and common operations in image processing. We can

summarize the process of Ąltering an image, 𝑓(𝑥, 𝑦), in the frequency domain, in the following

three steps (9):

1. Calculate the centered Fourier transform, 𝐹 (𝑢, 𝑣).
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2. Multiply 𝐹 (𝑢, 𝑣) by a Ąlter function 𝐻(𝑢, 𝑣).
3. Compute the inverse Fourier transform and take the real part of the result.

There are different types of Ąlters, some of them are:

Ideal lowpass filter This Ąlter attenuates all frequencies outside a circle of radius 𝐷0, it is

deĄned by the function

𝐻(𝑢, 𝑣) ≙
)︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀]︀

1 𝑖𝑓 𝐷(𝑢, 𝑣) ≤𝐷0

0 𝑖𝑓 𝐷(𝑢, 𝑣) >𝐷0

(2.23)

where 𝐷(𝑢, 𝑣) is the distance of the point (𝑢, 𝑣) from the center. Figure 20 illustrates

an example of ideal lowpass Ąltering. The black areas of the Ąlter represent the regions

that will be attenuated. Lowpass Ąlters have the effect of blurring or smoothing the

image, hence their alternate name ŠblurringŠ or ŠsmoothingŠ Ąlter."

Figure 20 Ű Ideal lowpass Ąltering. (a) Original image. (b) Ideal lowpass Ąlter. (c) Filtered image.

Source: The author (2022)

Ideal highpass filter This Ąlter is the opposite of the ideal lowpass Ąlter, it attenuates all

frequencies inside a circle of radius 𝐷0. It is deĄned as,

𝐻(𝑢, 𝑣) ≙
)︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀]︀

0 𝑖𝑓 𝐷(𝑢, 𝑣) ≤𝐷0

1 𝑖𝑓 𝐷(𝑢, 𝑣) >𝐷0

, (2.24)

Ągure 21 shows an example of ideal highpass Ąltering. Highpass Ąlters are commonly

used in image processing to sharpen images and enhance edges.

Gaussian lowpass filter These Ąlters have the form of a Gaussian function given by

𝐻(𝑢, 𝑣) ≙ 𝑒𝐷2(𝑢,𝑣)⇑2𝐷2

0 , (2.25)

where 𝐷0 is the cut off frequency. Gaussian lowpass Ąlters are preferred over ideal lowpass

Ąlters. Figure 22 shows an example of Gaussian lowpass Ąltering. As explained before, a

lowpass Ąlter blurs the image.
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Figure 21 Ű Ideal highpass Ąltering. (a) Original image. (b) Ideal highpass Ąlter. (c) Filtered image.

Source: The author (2022)

Figure 22 Ű Gaussian lowpass Ąltering. (a) Original image. (b) Gaussian lowpass Ąlter. (c) Filtered image.

Source: The author (2022)

Gaussian highpass filter This Ąlter is the opposite of the Gaussian lowpass Ąlter and has

the form

𝐻(𝑢, 𝑣) ≙ 1 − 𝑒𝐷2(𝑢,𝑣)⇑2𝐷2

0 . (2.26)

Gaussian highpass Ąlters are preferred over ideal highpass Ąlters .Figure 23 shows an

example of Gaussian highpass Ąltering. As explained before, a highpass Ąlter sharpens

the image and enhance edges.

Notch filters The notch Ąlter rejects (or passes) frequencies in predeĄned neighborhoods

around a center frequency. The shape of the notch areas can also be arbitrary (e.g.

rectangular or circular). These kind of Ąlters are relevant because they can be used to

remove periodic noise and interference from images. We made use of this kind of Ąlter

to remove the interference present in the laser beam images; more details will be given

in the next section. In Ągure 24 we can see an example of interference Ąltering.

Ideal Ąlters have a sharp cutoff that separates the frequencies that pass through the Ąlter

(the passband) from the frequencies that are blocked (the stopband). The transition between
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Figure 23 Ű Gaussian highpass Ąltering. (a) Original image. (b) Gaussian highpass Ąlter. (c) Filtered image.

Source: The author (2022)

Figure 24 Ű Notch Ąltering. (a) Original image. (b) Notch Ąlter. (c) Filtered image.

Source: The author (2022)

these two regions is inĄnitely steep, resulting in a perfect distinction between the Ąltered and

non-Ąltered frequencies. In contrast, Gaussian Ąlters have a smooth cutoff that separates the

passband and stopband. They are based on the Gaussian function, which results in a gradual

transition between the Ąltered and non-Ąltered frequencies. In practice, Gaussian Ąlters are

preferred over ideal Ąlters, as ideal Ąlters are mostly used for educational purposes.

2.4 ALGORITHMS

In this study, various techniques of image processing will be employed to analyze laser

beam images. In this section, we will describe the speciĄc algorithms utilized in our analysis.

To begin with, we will outline the programming language and software libraries employed in

our research.
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2.4.1 Python

Python is an interpreted, object-oriented, high-level programming language with dynamic

semantics. It is a general-purpose programming-language, which means it can be used for

almost anything. It is open-source, friendly, easy to learn and easy to read programming

language. It is one of the most popular programming languages and it is widely used by the

scientiĄc community. All of our algorithms were implemented using python version 3.8.10.

Because it is open-source it has thousands of third-party modules(libraries) available. In our

analysis we made extensive use of the following libraries:

SciPy SciPy is an open-source library of numerical routines for scientiĄc computing in Python.

SciPy contains algorithms for linear algebra, optimization, integration, interpolation,

special functions, Fourier transforms, image processing, differential equations and many

other classes of problems (16).

NumPy NumPy is an open-source library of numerical routines for N-dimensional array pro-

cessing in Python (17).

Matplotlib Matplotlib is an open-source library for creating static, animated, and interactive

visualizations in Python (18).

OpenCV OpenCV (Open Source Computer Vision Library) is an open source computer vi-

sion and machine learning software library. It is available for C++, Python, Java and

MATLAB (19).

pandas pandas is an open-source library for data analysis and data manipulation (20) (21).

Scikit-image Scikit-image is an open-source library for image processing (22).

Mayavi Mayavi is an open-source library for interactive scientiĄc data visualization and 3D

plotting in Python (23).

2.4.2 Beam diameter

In our study, we aimed to determine the diameter of laser beams from the images captured.

We calculated the beam diameter in both the horizontal and vertical direction using the 1⇑𝑒2

width deĄnition. The 1⇑𝑒2 width is deĄned as the distance between the two points on the

marginal distribution that are 0.135 times the maximum value. For a Gaussian beam we have,

2𝑤 ≙

⌋︂
2FWHM⌋︂

𝑙𝑛2
≙ 1.699 ∗FWHM (2.27)

where 2𝑤 is the full 1⇑𝑒2 width and FWHM is the full width at half maximum (24). Figure 25

shows the FWHM and the full 1⇑𝑒2 width for a Gaussian curve.
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The algorithm used to Ąnd the diameter from an image, has the following procedures:

1. We Ąnd two sums, the sum of all rows, 𝑆𝑥, and the sum of all columns, 𝑆𝑦.

2. We do a Gaussian Ąt on both of these sums.

3. From these Gaussian Ąts we get the 1⇑𝑒2 width.

4. Multiply the 1⇑𝑒2 widths by the pixel size of the camera. These values are the horizontal

and vertical diameters of the beam.

From the sum of rows we get the horizontal diameter and from the sum of columns we get

the vertical diameter. This procedure works well for beams with a circular proĄle. The Ągure

26 shows the sums of rows and columns and its respective Gaussian Ąts.

Figure 25 Ű FHMW and 1⇑𝑒2 width

Source: The author (2022)

We can do all these previous steps using functions from the SciPy and NumPy libraries.

To Ąnd the sum of the rows and columns we can use the function sum from NumPy and to

Ąnd the Gaussian Ąt we can use the function curve_Ąt from the SciPy library.

2.4.3 Intensity fluctuations of the beams

In our analysis, we had to Ąnd the intensity Ćuctuations of the laser beams. To accomplish

this, we considered three different methods. In the Ąrst one, we take the image of the laser

beam and Ąt a two dimensional Gaussian curve on it, to get the Ćuctuations, we subtract

the Gaussian Ąt from the image. To Ąnd the two dimensional Gaussian Ąt, we Ąrst need to

transform the input image, which is a two dimensional array, into a one dimensional array by

using the NumPy method ravel(). What this method does is take each row and put it right at

the end of the previous one, we say that it Ćattened the array. Figure 27 shows this process

for a 3 x 3 array.
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Figure 26 Ű Sums of rows and columns

Source: The author (2022)

Figure 27 Ű Flattening of a 3 x 3 array

Source: The author (2022)

This one dimensional array is composed of the all the rows of the input image one after the

other in sequence. For an image of a laser beam, if we plotted this one dimensional array what

we would see is a sequence of curves resembling Gaussian curves. In Ągure 28 we can see the

plot of a small section of one of these Ćattened laser beam images. The next step is to do

a Gaussian Ąt on this vector using the SciPy function curve_Ąt, this will Ąt all the Gaussian

curves contained in the Ćattened array. For this process, we deĄne a function that generates

a 2D Gaussian and returns it Ćattened. It is this function that we use for the Ątting. Figure

29 shows a small section of one of these Ćattened laser beam images and its Gaussian Ąt.

Finally, we use the method reshape from the the NumPy library to revert back the Ćattened

array to its original dimensions and use the function subtract from the OpenCv library to

subtract the Gaussian Ąt from the laser beam image. We use the function subtract to guarantee

that both images have the same type and depth, if this condition is not satisĄed, then an error

is thrown by the function. Figure 30 shows on the Ąrst row, the beam image, the Gaussian Ąt
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Figure 28 Ű Section of a Ćattened image of a laser beam

Source: The author (2022)

Figure 29 Ű Section of a Ćattened image of a laser beam and its gaussian Ąt

Source: The author (2022)

and the Ćuctuations; On the second row we have a 3D view of these images.

The second method we used to Ąnd the Ćuctuations was by calculating the mean image

of the input image and then subtracting it from the input image. The mean image is obtained

by linear averaging Ąltering of the input image. This kind of Ąlter replaces the value of every

pixel in an image by the average value of neighboring pixels, including itself. The number of

pixels used in the calculation of the mean value depends on the dimensions of the Ąlter mask.

This is a type of Ąltering in the spatial domain, where the Ąlter mask is a two dimensional

array divided by the number of elements. In this case, all elements of this two dimentional

array are equal to 1. Figure 31 shows an example of a 3 x 3 averaging kernel, this kernel has

9 elements which means that 9 pixels will be used for calculating the average value. Figure 32

shows the beam image, average image, Ćuctuations and the 3D view of these quantities.

The Ąnal method for Ąnding intensity Ćuctuations is to subtract an average of all video

frames of the image. Each video consists of a series of images, then we take the average of

this set of images and subtract this average from the images to obtain the Ćuctuations of
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Figure 30 Ű (a) Laser beam. (b) Gaussian Ąt. (c) Fluctuations

Source: The author (2022)

Figure 31 Ű 3 x 3 smoothing averaging kernel

Source: The author (2022)

intensity. This method has some problems. First, averaging must be done on a set with a large

number of images, however, most of our videos contain a maximum of 10 frames. We are

not frequency locking our laser, so each frame of the video is in a slightly different condition.

Thus, we are averaging images that are not in the same condition. This is much more evident

in the images of the FWM signals where we can visually observe differences in the frames.

In Ągure 33 we have a comparison between the Ąrst and second methods. On the Ąrst row

we have a 3D view of these intensity Ćuctuations and in the second row we have plotted a

line of the original beam, a line of the Gaussian Ąt in (a)(average image in (b)), and a line of

the resulting intensity Ćuctuation. Our beam does not have a perfect Gaussian proĄle, this

indicates that subtracting a Gaussian Ąt to Ąnd the intensity Ćuctuations may not be the best

choice. Subtracting the average image gives us a much better result. Thus, from now on when

we talk about intensity Ćuctuations we are referring to the intensity Ćuctuation that we get
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Figure 32 Ű (a) Laser beam. (b) Average image. (c) Fluctuations

Source: The author (2022)

Figure 33 Ű Intensity Ćuctuations. (a) Subtracting Gaussian Ąt. (b) Subtracting mean image.

Source: The author (2022)

from subtracting the average image from the intensity proĄle image.
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2.4.4 Cross-correlation and Autocorrelation

The normalized cross-correlation(NCC) can be calculated directly by the equation 2.22,

however, it has a high computational cost which means it is very time consuming. For the image

𝑓 and template 𝑤 of sizes M x N and m x n respectively, it can be shown that the correlation

has computational complexity of O(m x n x M x N) (25). An alternative way of calculating the

NCC is by taking advantage of the implementations similarities between the correlation and

convolution. In subsections 2.3.2 and 2.3.3 we discussed how both of these implementations

are the same with the exception that for the convolution we have to Ćip the kernel in both

directions(rotate by 180○), meaning that if we already have the convolution implemented we

donŠt need to implement the correlation directly, we may use the convolution to Ąnd the

correlation. In order to Ąnd the correlation between two images using a pre-implemented

convolution function, we must Ąrst rotate the template by 180 degrees. This is because the

function Ąrst rotates the template before performing the necessary computations. By passing

the two images to the function with the template already rotated, the function will rotate the

template again by 180 degrees, resulting in a total rotation of 360 degrees. This means that the

calculations that follow will be done with the original images, thus calculating the correlation.

However, this method only gives us the numerator of the Normalized Cross-Correlation (NCC)

(equation 2.22), additional computations are needed to Ąnd the denominator. The problematic

quantity in the denominator is ∑
𝑢

∑
𝑣

)︀𝑓(𝑥 + 𝑢, 𝑦 + 𝑣) − 𝑓𝑥𝑦⌈︀2. Suppose 𝑓 has size M x M and

𝑤 has size N x N, then

∑
𝑢

∑
𝑣

)︀𝑓(𝑥 + 𝑢, 𝑦 + 𝑣) − 𝑓𝑥𝑦⌈︀2 ≙∑
𝑢

∑
𝑣

)︀𝑓(𝑥 + 𝑢, 𝑦 + 𝑣)⌈︀2 − 2∑
𝑢

∑
𝑣

𝑓(𝑥 + 𝑢, 𝑦 + 𝑣)𝑓𝑥𝑦

+∑
𝑢

∑
𝑣

)︀𝑓𝑥𝑦⌈︀2,
the summation limits are taken over the region where 𝑓 and 𝑤 overlap. The terms 𝑓𝑥𝑦 can be

precomputed, so they can leave the double summation.

∑
𝑢

∑
𝑣

)︀𝑓(𝑥 + 𝑢, 𝑦 + 𝑣) − 𝑓𝑥𝑦⌈︀2 ≙∑
𝑢

∑
𝑣

)︀𝑓(𝑥 + 𝑢, 𝑦 + 𝑣)⌈︀2 − 2𝑓𝑥𝑦∑
𝑢

∑
𝑣

𝑓(𝑥 + 𝑢, 𝑦 + 𝑣)
+𝑁2𝑓𝑥𝑦

2

,

We used the fact that ∑
𝑢

∑
𝑣

1 ≙ 𝑁2. By deĄnition 𝑓𝑥𝑦 ≙
1

𝑁2∑
𝑢

∑
𝑣

𝑓(𝑥 + 𝑢, 𝑦 + 𝑣), so

∑
𝑢

∑
𝑣

)︀𝑓(𝑥 + 𝑢, 𝑦 + 𝑣) − 𝑓𝑥𝑦⌈︀2 ≙∑
𝑢

∑
𝑣

)︀𝑓(𝑥 + 𝑢, 𝑦 + 𝑣)⌈︀2 − 2

𝑁2
⌊︀∑

𝑢

∑
𝑣

𝑓(𝑥 + 𝑢, 𝑦 + 𝑣)}︀2

+𝑁2
1

𝑁4
⌊︀∑

𝑢

∑
𝑣

𝑓(𝑥 + 𝑢, 𝑦 + 𝑣)}︀2

≙∑
𝑢

∑
𝑣

)︀𝑓(𝑥 + 𝑢, 𝑦 + 𝑣)⌈︀2 − 1

𝑁2
⌊︀∑

𝑢

∑
𝑣

𝑓(𝑥 + 𝑢, 𝑦 + 𝑣)}︀2 ,
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both of these terms can be calculated via the convolution. For a given (𝑥, 𝑦), the Ąrst term,

∑
𝑢

∑
𝑣

)︀𝑓(𝑥+𝑢, 𝑦 + 𝑣)⌈︀2, is the element (𝑥, 𝑦) of the convolution of 𝑓 2 with a two dimensional

array of ones with the same size as the template. For the second term,∑
𝑢

∑
𝑣

𝑓(𝑥+𝑢, 𝑦+𝑣), we

convolve 𝑓 with a two dimensional array of ones with same size as the template. By calculating

these two last quantities we can Ąnd the denominator in the NCC. We can summarize the

process of calculating the NCC in the following steps:

1. Remove the mean value of the image and template.

2. Make the image convolution with the template rotated by 180○.

3. Use the convolution to calculate the normalization terms.

In python, we can use the function fftconvolve from SciPy to calculate the convolution and

the normalizing terms, and use the function rot90 from NumPy to rotate the template. In

python code we have:

1 # Based on the Octave implementation by Benjamin Eltzner , 2014 <b.eltzner@gmx.de>

# Step 1

3 template = template - np.mean(template)

image = image - np.mean(image)

5

# Step 2

7 template_ones = np.ones(np.shape(template))

template_rot = np.rot90(template , 2)

9 output = fftconvolve(image , np.conjugate(template_rot), mode='same')

11 # Step 3

normalization_terms = fftconvolve(np.square(image), template_ones , mode='same') -

np.square(fftconvolve(image , template_ones , mode=mode))/(np.prod(np.shape(

template)))

13

# Result

15 sum_squares_template = np.sum(np.square(template))

output = output/np.sqrt(sum_squares_template * normalization_terms)

2.4.5 Radial profile

Given an image, ℐ, we want to Ąnd the radial distribution of intensity (average intensity

as a function of the radius) or radial proĄle of that image. Here we will describe in detail the

algorithm that we use to Ąnd this radial proĄle.

The Ąrst step is to Ąnd a matrix of distances, 𝒟, where for a given pixel in the image ℐ at

position (x,y), we Ąnd its distance to a speciĄed center and store this value in the matrix of

distances 𝒟 at the position (x,y). In other words, we Ąnd the distance of all pixels in the image

ℐ with respect to a speciĄed center and store it in a matrix 𝒟 at the exact same position

of the corresponding pixel in the image ℐ. This can be achieved in many ways. One possible
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way is to use for loops to visit each pixel of the image ℐ and calculate the distance. Another

method is by using the function indices from the Numpy library, this function returns an array

representing the indices of a grid. We pass to this function the dimensions of the image ℐ.

This array of indices represent the positions x and y of the pixels in the image, so we can use

this array to Ąnd the distances. In both methods we will Ąnd the distances as decimal numbers

(Ćoating point numbers), but we are dealing with distances in pixels, so it is necessary to

convert these values to integers. Here we used the method astype from the Numpy library on

the matrix 𝒟 to change from decimal numbers to integers. As an example consider the image

ℐ as the 5x5 matrix shown in Ągure 34. By using any of the two methods mentioned above

Figure 34 Ű Image ℐ

Source: The author (2022)

we Ąnd the matrix 𝒟, shown in Ągure 35. For a 5x5 matrix we have possible radii of 0, 1 and

2.

Figure 35 Ű Matrix of distances 𝒟

Source: The author (2022)
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The next step consists of Ąnding the sums of all pixels for a given radius. To do this we use

the function bincount from the Numpy library. We pass to this function the image ℐ and the

matrix 𝒟, however this function only works for one dimensional arrays, so we Ćatten both the

image ℐ and the matrix 𝒟 before passing them on to the function. The function bincount is

usually used for counting the number of occurrences of each value in an array of non-negative

integers, but when in addition to the Ąrst array, an array of weights is given, this function will

perform sums over variable-size chunks of the Ąrst array. Let us make this operation clearer

using the example image ℐ in Ągure 34 and the corresponding matrix 𝒟 in Ągure 35. In Ągure

36 we see both of these arrays Ćattened. In this situation the weights are the Ćattened array

ℐ. The function bincount will associate the Ąrst value of the Ćattened array ℐ with the Ąrst

Figure 36 Ű Image ℐ and matrix 𝒟 Ćattened

Source: The author (2022)

value of the Ćattened array 𝒟, the second value of the Ćattened array ℐ and the second value

of the array 𝒟 and so on, i.e., it will associate each pixel in ℐ with its respective distance in

𝒟. Then, for each possible radius, bincount will store in a new array the sum of all elements

that have the same radius associated. We show this calculation bellow.

𝑅𝑎𝑑𝑖𝑢𝑠 0 ∶ 11

𝑅𝑎𝑑𝑖𝑢𝑠 1 ∶ 4 + 7 + 4 + 7 + 7 + 4 + 7 + 4 ≙ 44

𝑅𝑎𝑑𝑖𝑢𝑠 2 ∶ 1 + 1 + 2 + 1 + 1 + 1 + 1 + 2 + 2 + 1 + 1 + 1 + 1 + 2 + 1 + 1 ≙ 20

The returned array of sums is [11, 44, 20] and the elements are the sums of the intensities of

the pixels at the radius of 0, 1 and 2 respectively. The last step consists of Ąnding the number

of pixels at each radius and then dividing each element of the returned array of sums by its

respective number of pixels. The number of pixels at each radius is easy to Ąnd, we use again

the function bincount, but this time we pass on to it only the Ćattened array 𝒟. As a result

we obtain the array [1, 8, 16]. Carrying out the division of each element of the array of sums

is [11, 44, 20] by its respective number of pixels, we obtain:

radial proĄle ≙ ⋃︁11⇑1, 44⇑8, 20⇑16⨄︁ ≙ ⋃︁11, 5.5, 1.25⨄︁
We can summarize this process in the following steps:

1. Calculate the distance of each pixel in the image with respect to a speciĄed center and

store them in a matrix.
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2. Use the function indices from the Numpy library to Ąnd the radial sums.

3. Use again the function indices to Ąnd the number of pixels at each possible radius.

4. Divide each element of the radial sumsŠ array by the respective number of pixels at that

radius.

2.4.6 Pattern removal filter

In our laser beam images, we consistently observed interference patterns. These regular

patterns can interfere with the results of our analysis and potentially lead to incorrect conclu-

sions. To mitigate this issue, there are various techniques for eliminating these patterns. Most

of these methods involve identifying and eliminating the frequencies associated with the pat-

terns in the Fourier transform of the images. However, a drawback of many of these methods

is that they require a signiĄcant amount of experimentation to identify the related frequen-

cies, making it challenging to automate the removal of these patterns (26). Fortunately, there

are a few methods that enable this automation process (26) (27) (28). We used the method

explained in Background pattern removal by power spectral Ąltering by Michael Cannon, Alex

Lehar, and Fred Preston (26).

As it was discussed in subsection 2.3.1, the Fourier transform breaks down the image into

a sum of sinusoids that constitute the image and these sinusoids appear as bright spots on

the power spectrum. Hence, the periodic interference that we want to remove also appears as

bright spots in the power spectrum. We need to identify these Fourier components so that we

can attenuate them. However, as it was discussed in the same subsection, the DC component

of the Fourier transform is the largest component of the Fourier spectrum by a factor of several

orders of magnitude, therefore, only the center of the power spectrum can be seen in the power

spectrum. This can be observed in Ągure 37, which displays an image of the laser beam and

its corresponding power spectrum, where only the DC component is visible.

Figure 37 Ű (a) Image. (b) Power spectrum

Source: The author (2022)
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In order to detect the other components in the power spectrum, we apply the averaging

method of Welch (26) (29) to obtain a modiĄed power spectrum that allows us to identify these

components. The averaging method of Welch consists of dividing the image into overlapping

subsections, performing a modiĄed periodogram on each subsection, which is the squared

magnitude of the Fourier transform multiplied by a 2D hanning window, and then averaging

all these modiĄed periodograms. We can summarize this process in the following steps,

1. Divide the image into a number N of subsections, 𝐼𝑖(𝑥, 𝑦), that overlap.

2. Multiply each subsection by a 2D Hanning window, 𝑤(𝑥, 𝑦), to reduce edge effects.

3. Find the magnitude squared of the Fourier transform for each of these products 𝐼𝑖(𝑥, 𝑦)∗
𝑤(𝑥, 𝑦).

4. Average all the results of step 3.

The result of all the steps above return the modiĄed power spectrum,

ã𝑚 ≙
1

𝑁
∑

𝑖

⋃︀ℱ ⋃︁𝐼𝑖(𝑥, 𝑦) ⋅𝑤(𝑥, 𝑦)⨄︁⋃︀2 , (2.28)

where ℱ represents the Fourier transform operator.

In step 2 we multiply the image subsections by a 2D Hanning window, also known as

Hann window. A Hann window is a type of window function that is commonly used in signal

processing to reduce spectral leakage in the Fourier transform. In one dimension, a Hanning

window is deĄned as

𝑤(𝑥) ≙ 0.5 − 0.5 cos( 2Þ𝑥

𝑀 − 1
) 0 ≤ 𝑥 ≤𝑀 − 1. (2.29)

To obtain a 2D Hanning window, we compute the outer product of two 1D Hanning windows,

𝑤(𝑥, 𝑦) ≙ 𝑤1(𝑥)𝑤2(𝑦). (2.30)

The number of subsections, N, of the image can vary based on the amount of overlap

between the subsections. A higher overlap results in more subsections, while less overlap leads

to fewer subsections. The typical approach is to have the subsections overlap by half of their

size. Figure 38 shows an image and some of its subsections multiplied by the 2D Hanning

window. Figure 39, we display the original image, the power spectrum, and the modiĄed power

spectrum. The modiĄed power spectrum allows us to clearly observe the other components of

the Fourier transform.

The next step is to remove the DC peak of the modiĄed power spectrum without disturbing

the other peaks. This is achieved in two steps. Firstly, we calculate a radial average of the

modiĄed power spectrum, which means we Ąnd the average value of the pixels for each radius.

Figure 40 shows the radial average of the modiĄed power spectrum. We then subtract this
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Figure 38 Ű Subsections of an image

Source: The author (2022)

Figure 39 Ű (a) Image. (b) Power spectrum. (c) ModiĄed power spectrum

Source: The author (2022)

radial average from the modiĄed power spectrum. However, since the radial average is a one-

dimensional curve, we can not subtract it directly from the two-dimensional modiĄed power

spectrum. To make this subtraction possible, we rotate the radial average around one of the

axes, resulting in a two-dimensional curve. Figure 41 shows the modiĄed power spectrum, the

rotated radial average, and a comparison between the center row of both the modiĄed power

spectrum and the rotated radial average. Figure 42 shows the result of the subtraction of

the rotated radial average from the modiĄed power spectrum.

The next step is to isolate the peaks in the Fourier transform that are related to the periodic

interference, these peaks are much larger than the other components of the Fourier transform.

To accomplish this, we establish a threshold, and set anything below this threshold to zero.

Afterwards, we resize the result to match the input image. Figure 43 shows the modiĄed power

spectrum after these modiĄcations. Finally, we want to eliminate these resulting peaks from



43

Figure 40 Ű Radial average

Source: The author (2022)

Figure 41 Ű (a) ModiĄed power spectrum. (b) Radial average rotated. (c) Comparison between the center row
of (a) and (b)

Source: The author (2022)

the Fourier transform. To do this, we need to locate these peaks and then create a notch Ąlter

that eliminates neighborhoods centered on these positions. We choose a circular shape for the

notch areas. To Ąlter the image, we multiply the notch Ąlter with the Fourier transform of the

input image, take the inverse Fourier transform, and then take the real part. The result of this
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Figure 42 Ű (a) Result of the subtraction. (b) 3D view.

Source: The author (2022)

Figure 43 Ű (a) Smaller coefficients set to zero and resized. (b) 3D view.

Source: The author (2022)

process is the Ąltered image. We can summarize this process in the following steps:

1. Find the modiĄed power spectrum of the input image.

2. Remove the DC peak.

3. Set small Fourier components to zero and resize the modiĄed power spectrum.

4. Find the peaks and create a notch Ąlter.

5. Multiply the notch Ąlter by the Fourier transform of the input image.

6. Calculate the inverse Fourier transform and take the real part.

Figure 44 shows the input image, the notch Ąlter and the Ąltered image.

This algorithm can be implemented as a function with four adjustable parameters to im-

prove the Ąnal Ąltered image. The Ąrst parameter is the size of the image segments, which are

n x n in size, where n is the Ąrst parameter. Care should be taken when choosing n as it greatly
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Figure 44 Ű Notch Ąltering. (a) Original image. (b) Notch Ąlter. (c) Filtered image.

Source: The author (2022)

impacts the performance of the program. For our images, 𝑛 ≙ 128 was found to be suitable. It

is important to avoid attenuating any frequencies that are too close to the DC peak (center

of the spectrum) as this can cause distortion in the Ąltered image. To achieve this, the second

parameter is an exclusion radius from the center of the modiĄed power spectrum, any peak

within this radius will be ignored. The third parameter is a threshold used to set small Fourier

components to zero. Any value below this threshold will be set to zero. The fourth parameter

is the radius of the circular notch areas. Finally, it is important to note that due to a resizing

of the modiĄed power spectrum in step 3 of the algorithm, it is desirable for the input image

to be square shaped.



46

3 EXPERIMENT

In this chapter we discuss our experimental setup and the methods used to obtain the

images of the intensity proĄle of the beams.

3.1 EXPERIMENTAL SETUP

For the FWM experiment we used a diode laser from Sanyo, model DL7140-201S with a

homemade electronic box for temperature and current control.

For the purpose of controlling the laser frequency and having a frequency reference, we

use a saturated absorption (SA) experiment. In the saturated absorption we have two counter-

propagating beams of same frequency, a strong one called pump and a weak one called probe,

and they interact with atoms of rubidium inside a vapor cell in our system. When the laser

frequency does no match the hyperĄne levels, both beams interact with different group of

atoms resulting in an absorption spectra equal to the ordinary absorption. When the frequency

is equal to one of the hyperĄne levels, both beams interact with the same group of atoms,

therefore the probe beam is less absorbed resulting in a dip in the absorption spectra. Figure 45

shows the absorption spectra of rubidium. We see the four Doppler lines corresponding to the

Figure 45 Ű Saturated absorption of Rb. The inset graph is a zoom of the transition 5𝑆1⇑2, 𝐹𝑔 = 3→ 5𝑃3⇑2 of
85𝑅𝑏. The region in gray is the region of frequency where all of our experiments were performed.

Source: The author (2022)

two isotopes of Rubidium: 85𝑅𝑏 e 87𝑅𝑏. In each Doppler line there are many dips induced by

the saturation absorption, but only half of them correspond to hyperĄne levels. When the laser

frequency is in the middle of two hyperĄne transitions, an additional peak, called crossover,

will appear between the hyperĄne peaks in the absorption spectrum. For our measurements

the laser frequency was tuned to 5𝑆1⇑2(𝐹 ≙ 3)Ð→ 5𝑃3⇑2 of 85𝑅𝑏.
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Our experimental saturated absorption experiment setup is shown in Ągure 46. A small

portion of the laser beam is reĆected by a beam-splitter (BS), it passes through a Rb cell,

then it is attenuated by a Ąlter (F) and is reĆected back through the Rb cell to a photo-

detector (PD). The attenuated beam that goes to the photo-detector is the probe beam and

the beam that Ąrst entered the cell is the pump beam. We use a 60 dB optical isolator (OI)

from Isowave to prevent reĆected light from reaching the diode.

Figure 46 Ű Scheme of a saturated absorption experiment

Source: The author (2022)

The frequency locking of the laser was achieved by manually Ąnding the desired region in

the saturated absorption spectrum and then turning off the amplitude of the ramp used to

scan the frequency of the diode laser. The region we used for our experiments is approximately

100 ± 40 MHz above the 5𝑆1⇑2, 𝐹𝑔 ≙ 3 → 5𝑃3⇑2, 𝐹𝑒 ≙ 4 transition of 85𝑅𝑏, represented the the

gray region on the inset graph in Ągure 45.

3.2 FOUR-WAVE MIXING SETUP

Only a fraction of the laser beam power is necessary for the saturated absorption, the

remaining power goes to the FWM experiment. In Ągure 47 we have the simpliĄed scheme of

our setup. This beam is guided by a set of optical components until it reaches a single-mode

optical Ąber (OF in the diagram). We use an optical Ąber in order to have an almost Gaussian

proĄle of the beam at the ĄberŠs exit. Figure 48 shows a comparison between the laser beam

proĄle before and after going through the Ąber.

After the optical Ąber, the laser beam is then divided into two, one that is reĆected at the

PBS, 𝑇𝑃 , and the other that is transmitted, 𝑇𝐹 . During the experiments we tried to mantain

both beams, 𝑇𝑃 and 𝑇𝐹 , with almost the same intensity. The transmitted beams, 𝑇𝑃 and 𝑇𝐹 ,

with wave-vectors 𝑘𝑃 and 𝑘𝐹 , respectively, and with an orthogonal linear polarization, cross

paths inside a cell containing a natural concentration of rubidium atoms. At room temperature,

∼ 24𝑜𝐶, the atomic density is low, about 1010𝑎𝑡⇑𝑐𝑚3. In order to increase the density of
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Figure 47 Ű SimpliĄed scheme of the FWM experimental setup

Source: The author (2022)

Figure 48 Ű Comparison of the beam proĄle before and after the optical Ąber. (a) Before. (b) After

Source: The author (2022)

rubidium atoms, we heated the cell to ∼ 72𝑜𝐶. We can determine the atomic density of

rubidium at different temperatures via the expression (30),

log
10
(𝑁) ≙ −4032

𝑇
− 2.5 log

10
(𝑇 ) + 30.707, (3.1)

where 𝑁 is the atomic density in 𝑎𝑡⇑𝑐𝑚3 and 𝑇 is the temperature in Kelvin. For a temperature

of ∼ 72𝑜𝐶 we have atomic density of about 8 × 1011𝑎𝑡⇑𝑐𝑚3.

The two beams, 𝑇𝑃 and 𝑇𝐹 , overlap in the middle of the cell, and due to the interaction

with the atomic medium, two beams at directions 2𝑘𝐹 − 𝑘𝑃 and 2𝑘𝑃 − 𝑘𝐹 are generated. In

Ągure 49 we show the Doppler absorption curve of the two transmissions and the intensity of

the two FWM signals as a function of the laser detuning (Ó⇑2Þ). The gray region represents
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where we perform our experiments, it is in this region where we have the strongest FWM

signals.

Figure 49 Ű FWM signals and transmissions

Source: The author (2022)

3.3 MEASUREMENTS

We have four beams coming out of the cell, the two transmitted beams, 𝑇𝑃 and 𝑇𝐹 , and

two FWM signals at directions 2𝑘𝑃 − 𝑘𝐹 and 2𝑘𝐹 − 𝑘𝑃 . These generated beams have linear

orthogonal polarizations due to the fact that the incident beams also have linear orthogonal

polarizations. The nonlinear signals are very weak and there are a lot of scattered light from

the other beams. The linear orthogonal polarization allows us to clean part of the scattered

light, using PBS on each path.

To capture images of the intensity proĄle of these beams we use a CCD camera model

DCC1545M - GL - CMOS with 1280 x 1024 pixels of resolution, monochrome sensor from

Thorlabs. We had only one of these CCD, hence we could only take images either of the

transmitted beams or the generated FWM signals at one time. At the beginning of our mea-

surements, we took pictures of the beams, but then we started recording videos, each video

with 10 frames. This change was made in order to average the results of our analysis over

all frames of each video. Most of our experiments were done with the beam diameters at the

entrance of the cell of 1.4 mm, but a few were done with the diameters of order of 2.2 mm.

For the transmitted beams measurements, we put the CCD right after the cell. For each

set of parameters, we took videos of both transmitted beams at the same time, and separately

each at once. In this way, for each measurement we took three videos. For the generated FWM

signals we had to put the CCD further from the cell because the signals are very close to the

transmitted beams. To separate the nonlinear signals from the transmitted beams and the
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scattered lights, we use mirrors, PBS and irises. These irises also helped in the alignment of

the CCD. In Ągure 50 we show a simpliĄed scheme for the measurements of the transmitted

beams and FWM generated signals.

Figure 50 Ű SimpliĄed scheme for taking images of the transmissions and generated FWM signals

Source: The author (2022)

The use of irises and PBSs to clean the FWM signals was crucial, without it would not be

possible to do any analysis on the resulting images. Figure 51 shows the intensity proĄle of

the FWM signal without these irises and PBSs and with these irises and PBSs. We can still

Figure 51 Ű (a) Without the irises and PBSs. (b) With the irises and PBSs

Source: The author (2022)

see some interference patterns in Ągure 51(b), to remove them we use the interference Ąlter

developed in subsection 2.4.6.
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4 RESULTS AND DISCUSSION

In this chapter we present and discuss our main results and how we analyze them. We also

discuss some effects that can be associated with our observations. The chapter was divided in

two sections. In the Ąrst one we discuss only the results associated to the transmitted beams;

and in the second part we extend our analysis to the images for the FWM signals.

4.1 TRANSMISSIONS

4.1.1 Diameters

The Ąrst analysis comprised the investigation of the variation of the diameters of the

transmitted beams. We looked at the diameters of the transmited beams with the cellŠs tem-

perature at 24𝑜𝐶 and 72𝑜𝐶 for different intensities. Figure 52 shows the behavior for both

horizontal and vertical directions. Each point in this Ągure is an average of multiple images

Figure 52 Ű Diameters comparison of the transmitted beams at 24
𝑜𝐶 and 72

𝑜𝐶 for varying intensities. (a)
Diameters in the horizontal direction. (b) Diameters in the vertical direction.

Source: The author (2022)

and the error bars, only shown when they are bigger than the point marker, are the standard

deviation. The dashed lines serve as visual aids to demonstrate the general trend of the data.

On this graph the Y-axis is 𝒟⇑𝒟0 where 𝒟 is the diameter in Û𝑚 and 𝒟0 is the diameter of

the transmitted beam with smallest intensity also in Û𝑚, this means that we are looking at

changes in diameter instead of the absolute value. On the X-axis we have ℐ⇑ℐ𝑆 where ℐ is the

beam intensity before entering the Rb cell in 𝑚𝑊 ⇑𝑐𝑚2 and ℐ𝑆 is the saturation intensity also

in 𝑚𝑊 ⇑𝑐𝑚2, given by

ℐ𝑆 ≙
𝑐𝜖0Γ2ℎ̵2

4⋃︀𝜖 ⋅ 𝑑⋃︀2 , (4.1)
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where Γ is the natural decay rate of the excited state, 𝜖 is the unit polarization vector of the

light Ąeld and 𝑑 is the atomic dipole moment. We use the saturation intensity of isotropic

light at the cycling transition which has value ∼ 3.9 𝑚𝑊 ⇑𝑐𝑚2 (31). Ideally, ℐ should be the

intensity at the center of the cell where the transmitted beams cross paths, but we were unable

to calculate the intensity at that position. In theory, the intensity of light at position 𝑧 inside

the cell can be found by the Beer-Lambert Law (32),

ℐ(𝑧) ≙ ℐ0𝑒
Ð(Ü,𝑇 )𝑧, (4.2)

where ℐ0 is the intensity at the entrance and Ð is the absorption coefficient which is depen-

dent on the frequency, Ü, of the incident light and the temperature, 𝑇 , of the medium. The

absorption coefficient can be written as,

Ð ≙ 𝒩à, (4.3)

where 𝒩 is the number density of the atomic gas and à is the microscopic atomic absorption

cross-section. Finally, à can be written as,

à ≙
à0

1 + 4(∆⇑Γ)2 + (ℐ0⇑ℐ𝑆) , (4.4)

where ∆ is the detuning of the laser, Γ is the natural decay rate of the excited state and à0

is the on-resonance scattering cross-section given by

à0 ≙
ℎ̵æΓ

2ℐ𝑆

.

The absorption coefficient has dependencies on temperature, frequency and density which

makes determining it very challenging, in our case, all our attempts were unsuccessful.

We can clearly see in Ągure 52 that at 24𝑜𝐶 the diameters are almost constant in all range

of intensities for both horizontal and vertical directions. On the other hand, at 72𝑜𝐶 we can

see a great variation in the diameter values for small intensities, a decrease of about 20 to

25% in the diameter value. As the intensity increases the diameters become approximately

constant. In other words, for small intensities we have a self-focusing effect due to changes in

the refractive index of the medium. Due to the electric Ąeld of the light wave, changes in the

refractive index occur. For high intensity light beams, the refractive index changes according

to

∆𝑛 ≙ 𝑛2𝐼, (4.5)

where 𝑛2 is the nonlinear refractive index and 𝐼 is the intensity. The nonlinear refractive index

is related to the third order susceptibility ä(3) and the effect on the beam depends on whether

ä(3) is positive or negative. Positive ä(3) causes the self-focusing of the beam and negative

ä(3) causes the self-defocusing (33).

We also investigated how the presence of one the transmitted beams affects the diameter

of the other. For this we took videos when: (i) both transmitted beams crossing the cell at

the same time, and (ii) each beam crosses the cell singly.
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Figure 53 Ű Comparison of the transmitted beams when they are isolated and when they are together. (a)
Diameters in the horizontal direction. (b) Diameters in the vertical direction.

Source: The author (2022)

The results are shown in Ągure 53, where we can clearly see that the decrease in diameter

is larger for the isolated beams. For example, in Ągure 53(a), the isolated beam has a maxi-

mum diameter variation of approximately 30%, while the maximum diameter variation when

both beams are present is approximately 25%. Again, the dashed lines serve as visual aids to

demonstrate the general trend of the data. We can understand this result if we consider that

when both beams are present the self-focusing effect appears to be distributed for both of

them.

In summary, we observe a decrease in the diameters of the transmitted beams for smaller

intensities and as the intensity increases the diameters becomes approximately constant. This

effect is greater when the beams are isolated.

4.1.2 Autocorrelation/Cross-correlation of the images

We also calculated the spatial cross-correlation and autocorrelation of the intensity proĄle

images of the transmitted beams. Figure 54 shows some examples of intensity proĄle images

of the transmitted beams and its respective autocorrelations in a 3D view, for three different

intensity: (a) 119 ℐ𝑆, (b) 22 ℐ𝑆 and (c) 1 ℐ𝑆. Although, the pictures seem to indicate some

change in the intensity distribution as the intensity increases, the autocorrelations are very

similar, with a miximum equal to 1 at the center of the image and with a shape similar to

a Gaussian. To compare these autocorrelations/cross-correlations, we take the full width at

half maximum of the autocorrelations and cross-correlations for different intensities, we see

that the widths present the same behavior as the obtained for the diameters, shown in Ągure

55. The dashed lines serve as visual aids to demonstrate the general trend of the data. For

small intensities we have a decrease in the FWHM and as the intensity increases the FWHM



54

Figure 54 Ű Intensity proĄle of the transmissions and its spatial autocorrelations. (a) 1 ℐ𝑆 . (b) 22 ℐ𝑆 . (c) 119
ℐ𝑆 .

Source: The author (2022)

Figure 55 Ű FWHM of the cross-correlations and autocorrelations

Source: The author (2022)

becomes approximately constant. We note that the variation here in the FHWM is about 15%,

smaller than the variation observed in the diameters, approximately 25%.

We understand that the variation in the FWHM of the autocorrelation/cross-correlation

and in the diameters of the images are manifestations of the nonlinear behavior of the refractive

index for high intensity Ąelds, usually denominated as Kerr effect.
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4.1.3 Autocorrelation of the intensity fluctuations

In the last decades, there has been an interest in studying light Ćuctuations when it interacts

with matter. In particular, to obtain spectroscopic information using the intensity Ćuctuations

of a laser beam interacting with atomic vapor. The root of this phenomenon is the conversion

of phase-noise to amplitude-noise due to the light-matter interaction, with interesting results

such as the study of correlations and anti-correlations in electromagnetically induced trans-

parency, controlling intensity noise correlations and squeezing of four-wave mixing processes

via polarization (34) (35) (36), and the generation of correlated and anticorrelated Ąelds via

atomic spin coherence (37).

In this direction some results were obtained with our experimental system, by Alexandre

Almeida, measuring the intensity Ćuctuations in time. A high correlation was observed for the

transmitted beams, and also for the two generated nonlinear signals. Preliminar results are

described in (38).

In the work described here, we detected the images using a CCD camera that has a long

integration time. This means that this type of Ćuctuation is blurred and no information due

to conversion phase-noise to amplitude-noise is observed. However, we hope to see same

contribution due to macroscopic Ćuctuations of the refraction index.

In this sense, we try to see if we can get some information about the atom-Ąeld interaction,

or about the nonlinear process, looking for the autocorrelation of the intensity Ćuctuations.

The Ąrst thing we need to do is to understand how the autocorrelation of the intensity

Ćuctuations behave when the beam does not propagate through the medium, we will use this

result as a base for comparison. We took several images of the beam without the cell and

we calculated the autocorrelation of the intensity Ćuctuations for each image. The intensity

Ćuctuations were obtained using the method described in subsection 2.4.3. In Ągure 56 we plot

the autocorrelation, Ò, obtained for each measurement as a function of the radial parameter,

𝜌. To convert pixel measurements to micrometers, we multiply by the size of each pixel, which

is 5.2 Û𝑚. We see that the autocorrelation decreases rapidly and then oscillates around zero.

We Ąnd the mean curve of this set of curves, which we represent by a dashed line with the

gray region that surrounds it as the uncertainty.

We deĄne a spatially transverse correlation length as the width, 𝜌𝑐, of the autocorrelation

of intensity Ćuctuations such as

Ò(𝜌𝑐) ≙ 1⇑2.

Simply put, it is the width of the curve at 1/2. When the beam does not propagate through the

medium we have a correlation length of 14±3 Û𝑚. To calculate the uncertainty in the transverse

correlation length, we take into account the fact that each point in the autocorrelation of

intensity Ćuctuations is the average of ten values, and each of these ten values has its own

uncertainty. This is because each curve represents the average of ten images. We assume that

each value has an uncertainty of ±2.5 Û𝑚. The total uncertainty for each average point is
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Figure 56 Ű Autocorrelation of the intensity Ćuctuations of a beam without a cell.

Source: The author (2022)

then taken as the distance from the top of the uncertainty of the highest point to the bottom

of the uncertainty of the lowest point of the set of ten points used to calculate the average.

In Ągure 57 we have a visual representation of this process. In Ągure 57 (a) we present the

points, its uncertainties and the mean values. In Ągure 57 (b) we present the mean values and

the resulting uncertainties.

Figure 57 Ű Uncertainties

Source: The author (2022)

Let us start our analysis by looking at how the autocorrelations of the Ćuctuations behave

when the cell is at a temperature of 24𝑜𝐶 for different intensities. We calculated the auto-

correlation of the intensity Ćuctuations for two different settings. First, when both beams are
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Figure 58 Ű Autocorrelations of the Ćuctuations for the transmissions at cell temperature 24
𝑜𝐶. On the Ąrst

row both transmitted beams are present. Second row the transmitted beams are isolated.

Source: The author (2022)

present, i.e., both transmitted beams crossing the cell at the same time; Second, the transmit-

ted beams cross the cell individually. The purpose of having these two settings is to observe

how one the transmitted beams affects the intensity Ćuctuations of the other. In the Ąrst row

of Ągure 58, we have both beams present and in the second row we have the beams isolated.

On the X-axis of each one of these plots we have the radius, 𝜌, in Û𝑚 and on the Y-axis we

have the autocorrelation, Ò. In each plot we have multiple curves being plotted, each curve

corresponds to a different intensity. Firstly, we can note that all the curves are inside the gray

region which is the uncertainty of the ŠNo cellŠ curve, indicating that the introduction of the

medium at this temperature seems to not have affected the intensity Ćuctuations. Another

thing that we can point out, by looking at Ągure 58Šs Ąrst and second row, is that the presence

of the other beam seems to have no effect on the Ćuctuations of the other at this temperature.

Now, we repeat the analysis with the cellŠs temperature at 72𝑜𝐶, shown in Ągure 59. At

this temperature we notice that for smaller intensities we have a decrease in correlation length

and as we increase the intensity the curves behave as the ŠNo cellŠ curve. We can also notice

that the intensity Ćuctuations of one beam is affected by the presence of the other one, when

the beams are isolated the decrease in correlation length seems to be larger. A better way to

visualize this decrease in correlation length is to look at the value of the correlation length

as a function of intensity, shown in Ągure 60. In this Ągure the dotted line represents the

correlation length for the beam when it does not propagate through the medium and the

gray region represents the uncertainty of this value. We can clearly see the decrease in the
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Figure 59 Ű Autocorrelations of the Ćuctuations for the transmissions at cell temperature 72
𝑜𝐶. On the Ąrst

row both transmitted beams are present. Second row the transmitted beams are isolated.

Source: The author (2022)

Figure 60 Ű Correlation length for the transmitted beams

Source: The author (2022)

correlation as the intensity decreases.
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4.2 FWM SIGNALS

Now, we will analyse the FWM signals. The images of these nonlinear signals at the camera

and in 3D for three intensities are shown in Ągure 61. At Ąrst, we need to point out that we

Figure 61 Ű FWM generated signals. On the Ąrst row we have the images and on the second one we have
these images in 3D. (a) 11 ℐ𝑆 . (b) 24 ℐ𝑆 . (c) 109 ℐ𝑆 .

Source: The author (2022)

can only see these FWM signals for high intensities, we can see in the Ąrst image that the

signal is very weak (only half of the signal can be seen). Another thing to point out is that

the spatial proĄle of these beams is distorted. First, we study the correlation/autocorrelation

of these images.

4.2.1 Correlation of the images

In the Ąrst row of Ągure 62 we have the same intensity proĄles of the FWM signals showed

in Ągure 61, and in the second row its respective autocorrelations. We will repeat the analysis

that we performed for the transmitted beams. Figure 63 shows the full width at half maximum

of the autocorrelation and cross-correlation for different intensities. The dashed lines serve as

visual aids to demonstrate the general trend of the data. We can see a 20% variation in

the FHWM for smaller intensities, but no clear pattern. This variation occurs in the region of

intensities where the signal is very weak and therefore with great uncertainty. In this way, it

is difficult to get some conclusion from these results. Instead, we are going to investigate the

Ćuctuations of intensity of the FWM signals.
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Figure 62 Ű Intensity proĄle of the FWM signals and its spatial autocorrelations. (a) 11 ℐ𝑆 . (b) 24 ℐ𝑆 . (c)
109 ℐ𝑆 .

Source: The author (2022)

Figure 63 Ű FWHM of the cross-correlations and autocorrelations

Source: The author (2022)

4.2.2 Autocorrelation of the intensity fluctuations

In Ągure 64 we plot the autocorrelations for the intensity Ćuctuations of the FWM signals

for a large range of intensities, (a) 2𝑘𝑃 − 𝑘𝐹 and (b) 2𝑘𝐹 − 𝑘𝑃 . We also present a dotted

line that correspond to the ŠNo cellŠ curve, together the uncertainty, gray region. It is clear

that we have an increase in the correlation length for higher intensities and as we decrease the

intensity, the curves behave like the ŠNo cellŠ curve. A better way to visualize this increase in
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Figure 64 Ű Autocorrelation of intensity Ćuctuations for the FWM signals. (a) 2𝑘𝑃 − 𝑘𝐹 . (b) 2𝑘𝐹 − 𝑘𝑃 .

Source: The author (2022)

correlation length is by plotting the correlation length as a function of the intensity as shown in

Ągure 65. In this Ągure the dotted line represents the correlation length for the beam without

Figure 65 Ű Correlation length of the FWM signals.

Source: The author (2022)

the medium and the gray region represents the uncertainty. We can clearly see the increase in

the correlation as the intensity increases.

4.2.3 A simple theoretical analysis

Looking at the literature on autocorrelation of intensity Ćuctuations, we found an inter-

esting discussion on the autocorrelation of intensity Ćuctuations of a beam propagating in a
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medium that Ćuctuates randomly in space only, not in time, very weakly and very slowly com-

pared with the wavelength of light (39). These autocorrelations have different forms depending

on whether work with a plane wave or a spherical wave. For a plane wave, the authors Ąnd a

compact expression for the autocorrelation, that can be written as:

𝐶𝑎𝑝(𝜌) ≙ 𝒵𝑒𝑥𝑝(−𝜌2⇑𝑎2) − Im𝐸𝑖 (−𝜌2⇑𝑎2

1−𝑗𝒵
)

𝒵 − 𝑡𝑎𝑛−1𝒵
, (4.6)

where 𝒵 is called the wave parameter, 𝑎 is the correlation length and 𝐸𝑖 is the integral

exponential function. Figure 66 shows the autocorrelation curves obtained by equation 4.6 for

different values of 𝒵 and Ąxed 𝑎 ≙ 20Û𝑚. All these curves have a Gaussian like decay at

Figure 66 Ű Autocorrelation of intensity Ćuctuations, 𝐶𝑎𝑝(𝜌), for different values of 𝒵 and 𝑎 = 20Û𝑚.

Source: The author (2022)

the beginning and then some oscilations around zero. These curves closely resemble what we

found experimentally, so we will use expression 4.6 to try to Ąt our experimental curves.

First, let us Ąt the autocorrelation of intensity Ćuctuations for the beam when it does not

propagate through the medium, shown in Ągure 67. We see that expression 4.6 describes

very well our experimental curve, both the initial decay and the oscilations. It is important to

note that the parameter 𝑎 is approximately equal to 2𝜌𝑐, where 𝜌𝑐 is the correlation length

that we deĄned in subsection 4.1.3. Now, let us try to Ąt the autocorrelation curves for

transmitted beams when the medium is at 72𝑜𝐶. For low intensities, Ągure 68(a), we see

that the adjustment is not very precise. Expression 4.6 cannot adjust for initial steep drop

of the experimental curve nor for the oscilations that follow. For the high intensity, Ągure 68

(b), a good agreement is obtained with our experimental curve. This is expected because the

experimental curves for higher intensities are very similar to the curve of the beam when it

does not propagate through the medium.
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Figure 67 Ű Fit of the autocorrelation of intensity Ćuctuations for the beam when it does not propagate through
the medium.

Source: The author (2022)

Figure 68 Ű Fit of the transmitted beams. (a) 1ℐ𝑆 . (b) 118ℐ𝑆 .

Source: The author (2022)

For the FWM signals, the Ąt of autocorrelation curves are shown in Ągure 69. We observe

that the adjustment is not very good, mainly in the region of oscilations that follow the steep

drop at the beginning.

These results indicate that we can have a good adjustment of the experimental autocor-

relations of intensity Ćuctuations, when the experimental results are very similar to what we

have obtained without the medium.

For the transmitted beams, we see that in the intensity region where the greatest refractive
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Figure 69 Ű Fit of the FWM signals. (a) 11ℐ𝑆 . (b) 110ℐ𝑆 .

Source: The author (2022)

index variation should occur, when the diameters decreases, it corresponds to the region where

the Ąt is worse. This seems to indicate that this simple theoretical model cannot describe

the strong Ćuctuations in the refractive index caused by the high intensity of the incident

beams. Our results indicate that these strong Ćuctuation in the refractive index, probably are

responsible by the observed decrease in the correlation length. What is not clear for us is

why in the FWM process, when the interaction light-matter is essential, the correlation length

increase.
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5 CONCLUSIONS

In this work we conducted an experimental study on the spatial intensity distribution of the

two transmitted beams and the two beams generated in a four-wave mixing (FWM) process,

using rubidium vapor as nonlinear medium.

From the analysis of the diameters of the transmitted beams, we observed a self-focusing

effect due to changes in the refractive index of the medium for intensities close to the saturation

intensity. As the intensity increases, the intensity proĄle of the transmitted beams do not

change. We also calculated the cross-correlation and autocorrelation of the images of the

transmitted beams for different intensities. We observe that the full width at half maximum of

these autocorrelations and cross-correlations present the same behavior as the diameters. The

same analysis for the nonlinear signals was performed, but we could not see any clear pattern.

We also analyzed the spatial intensity Ćuctuations of the transmitted and generated FWM

signals. We deĄned a transverse spatial correlation length that we used to compare the be-

haviour of our beams with that of a free beam. For the transmitted beams, we observe a

decrease in the transverse spatial correlation length in the same region of intensities where we

observe the self-focusing effect. While for the generated FWM signals, we observe an increase

in the transverse spatial correlation length as the intensity of the incident beams increases.

These results indicate that the variations in the refractive index, which cause the self-focusing

effect in the transmitted beams are also responsible for decrease/increase in the transverse

spatial correlation length for the Ćuctuations of intensity, although it is not clear how this

happens.

Finally, we looked at a simple theoretical model for the autocorrelation of the Ćuctuations

of intensity found in reference (39). We use a closed expression given by the authors for the

autocorrelation of intensity Ćuctuations to Ąt our experimental curves. A good adjustment of

the experimental autocorrelations of intensity Ćuctuations was observed, when the experimental

results were very similar to those obtained without the nonlinear medium. The Ąt gets worse in

the regions of intensity where the Ćuctuations of intensity shows a signiĄcant increase/decrease

in the transverse spatial correlation length.

A more realistic theoretical model need to be developed, taking into account the spatial

proĄle - Gaussian - of the incident beams and the strong Ćuctuations of the refractive index

induced by the high intensity beams.
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import numpy as np
import matplotlib.pyplot as plt
import cv2
from scipy import interpolate
from scipy.ndimage.filters import maximum_filter
from scipy.ndimage.morphology import generate_binary_structure, 
binary_erosion

def radial_profile(data, center):
    y, x = np.indices((data.shape))
    r = np.sqrt((x - center[0])**2 + (y - center[1])**2)
    r = r.astype(np.int)

    tbin = np.bincount(r.ravel(), data.ravel())
    nr = np.bincount(r.ravel())
    radialprofile = tbin / nr
    return radialprofile

def DFT_2D(image):
    dft = cv2.dft(np.float32(image), flags=cv2.DFT_COMPLEX_OUTPUT)
    dft_shift = np.fft.fftshift(dft)
    magnitude_spectrum = 20 * np.log((cv2.magnitude(dft_shift[:, :, 0],
                                                    dft_shift[:, :, 1]))+1)
    return dft_shift, magnitude_spectrum

def find_patches(image, size_patches):
    rows, cols = image.shape 
    han = np.hanning(size_patches) 
    han_2d = np.outer(han, han)  
    han_patches = []
    step_patches = size_patches//4

    for i in range(0, rows-size_patches, step_patches):
        for j in range(0, cols-size_patches, step_patches):
            han_patches.append(
                image[i:i+size_patches, j:j+size_patches] * han_2d)
    return han_patches

def log_power_spectral_estimate(patches):
    power_spectral_estimate = np.zeros(patches[0].shape)
    for patch in patches:
        fft = np.fft.fftshift(
            cv2.dft(np.float32(patch), flags=cv2.DFT_COMPLEX_OUTPUT))
        mag = np.power(cv2.magnitude(fft[:, :, 0], fft[:, :, 1]), 2)
        power_spectral_estimate = power_spectral_estimate + mag

    power_spectral_estimate = power_spectral_estimate/len(patches)
    return 20*np.log(power_spectral_estimate)

def angular_average(spectral_estimate):

    nrow, ncol = spectral_estimate.shape
    radial_average = radial_profile(spectral_estimate, (nrow//2, ncol//2))
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APPENDIX A – PATTERN REMOVAL FILTER



    x = np.linspace(0, len(radial_average), len(radial_average))
    f = interpolate.interp1d(x, radial_average, kind='linear')
    x_new = np.linspace(0, len(radial_average), 8*len(radial_average))
    radial_average_interpolated = f(x_new)

    return radial_average, radial_average_interpolated

def angular_average_2D(ang_average, size_patches, radius):

    rows, cols = len(ang_average)*2, len(ang_average)*2
    crow, ccol = int(rows/2), int(cols/2)
    mask = np.ones((rows, cols))
    mask = mask * np.min(ang_average)
    center = [crow, ccol]
    x, y = np.ogrid[:rows, :cols]
    mask_area = np.sqrt((x - center[0]) ** 2 + (y - center[1]) ** 2)
    list_of_radius = np.linspace(0, radius, len(ang_average))

    tolerance = 0.2
    indice = 0
    for r in list_of_radius:
        res = np.where(np.abs(mask_area - r) <= tolerance)
        mask[res] = ang_average[indice]
        indice += 1

    mask[crow, ccol] = np.max(ang_average)
    angular_average = mask[crow - (size_patches//2):crow + (size_patches//2),
                           ccol - (size_patches//2):ccol + (size_patches//2)]
    return angular_average

def distance(p1, p2):
    return np.sqrt((p1[0]-p2[0])**2 + (p1[1]-p2[1])**2)

def image_back(fft):
    res = np.fft.ifftshift(fft)
    res = cv2.idft(res)
    return res[:, :, 0]*255/np.max(res[:, :, 0])

def detect_peaks(image):

    neighborhood = generate_binary_structure(2, 2)
    local_max = maximum_filter(image, footprint=neighborhood) == image
    background = (image == 0)
    eroded_background = binary_erosion(
        background, structure=neighborhood, border_value=1)
    detected_peaks = local_max ^ eroded_background

    return detected_peaks

def pattern_filter(image, size_patches=128, threshold=0.5, notch_radius=5, 
exclusion_radius=10):

    patches = find_patches(
        image, size_patches=size_patches) 
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    log_pow_estimate = log_power_spectral_estimate(patches)

    radial_average, radial_average_interpolated = angular_average(
        log_pow_estimate)

    angular_average_itself = angular_average_2D(
        radial_average_interpolated, size_patches=size_patches, 
radius=len(radial_average))

    modified_log_power_inter = cv2.subtract(log_pow_estimate.astype(
        np.float64), angular_average_itself.astype(np.float64))

    modified_log_power_inter = modified_log_power_inter / \
        np.max(modified_log_power_inter) 
    smaller = np.where(np.abs(modified_log_power_inter) < threshold)
    modified_log_power_inter[smaller] = 0
    smaller = np.where((modified_log_power_inter) < 0)
    modified_log_power_inter[smaller] = 0

    modified_log_power_r = cv2.resize(
        modified_log_power_inter, image.shape[::-1])

    peaks = detect_peaks(modified_log_power_r)
    peaks = np.where(peaks == True)

    rows, cols = modified_log_power_r.shape
    filter = np.ones((rows, cols, 2))
    x, y = np.ogrid[:rows, :cols]
    img_center = (rows//2, cols//2)
    for peak in zip(peaks[0], peaks[1]):
        if distance(img_center, peak) < exclusion_radius:
            continue
        else:
            mask_area = (x - peak[0]) ** 2 + (y - peak[1]
                                              ) ** 2 <= 
np.power(notch_radius, 2)
            filter[mask_area] = 0

    fft, img_mag = DFT_2D(image)
    fshift = fft * filter
    result = image_back(fshift)

    return abs(result)
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import cv2
import numpy as np
from scipy.optimize import curve_fit
import matplotlib.pyplot as plt
from sys import argv, exit
from os.path import join

def gaussian(x, y0, xc, A, w):
return y0 + (A*np.exp(-(1.0/2.0)*np.power(((x-xc)/w), 2)))

video = int(argv[1])
diametro_h = []
diametro_v = []

for foto in range(1, 10):
path = f'/path/{video}/{foto}.jpg'
imagem = cv2.imread(path, cv2.IMREAD_GRAYSCALE)
################################################
feixe_1, _ = imagem[300:300+512, 100:100+512]

############### Horizontal #####################
dados_h = np.sum(feixe_1, axis=0)
dados_x = np.linspace(0, len(dados_h), len(dados_h))
p0 = (1, 400, 10000, 150)
popt, pcov = curve_fit(gaussian, dados_x, dados_h, p0=p0)
diametro_h.append(abs(round(popt[3]*4*5.2)))
del imagem, dados_h, dados_x, popt, pcov

############### Vertical #####################
dados_v = np.sum(feixe_1, axis=1)
dados_x = np.linspace(0, len(dados_v), len(dados_v))
p0 = (1, 400, 10000, 150)
popt, pcov = curve_fit(gaussian, dados_x, dados_v, p0=p0)
diametro_v.append(abs(round(popt[3]*4*5.2)))
del dados_v, dados_x, popt, pcov

path_save = 'Path to save'
path = join(path_save, 'file_name.txt')
with open(path, 'a') as fo:

fo.write(f"{video},{np.mean(diametro_h)},{np.std(diametro_h, ddof=1)}
{np.mean(diametro_v)},\
{np.std(diametro_v, ddof=1)}\n")
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import numpy as np

def radial_profile(data, center):
y, x = np.indices((data.shape))
r = np.sqrt((x - center[0])**2 + (y - center[1])**2)
r = r.astype(np.int)

tbin = np.bincount(r.ravel(), data.ravel())
nr = np.bincount(r.ravel())
radialprofile = tbin / nr
return radialprofile
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import numpy as np
import cv2
import matplotlib.pyplot as plt
from estatistica_feixes import radial_profile, normxcorr2
from pattern_removal_filter import pattern_filter
from scipy.signal import fftconvolve
from sys import argv
from os.path import join
import os
from scipy.signal import peak_widths

def average_kernel(order):
    kernel = (1/(order**2))*np.ones((order, order))
    return kernel

P = figura[220:220+600, 50:50+600]
feixe_1_f = pattern_filter(P, threshold=0.2,
                            notch_radius=5, exclusion_radius=9)

F = figura[220:220+600, 680:680+600]
feixe_2_f = pattern_filter(F, threshold=0.2,
                            notch_radius=5, exclusion_radius=9)

# Creating the average kernel
kernel = average_kernel(20)

# Mean filtering the image
mean_image_1 = fftconvolve(feixe_1_f, kernel, mode=mode)
mean_image_2 = fftconvolve(feixe_2_f, kernel, mode=mode)

# Flutuactions
diff_1 = cv2.subtract(feixe_1_f, mean_image_1)
diff_2 = cv2.subtract(feixe_2_f, mean_image_2)

# Autocorrelations
auto_1 = normxcorr2(diff_1, diff_1, mode=mode)
auto_2 = normxcorr2(diff_2, diff_2, mode=mode)

max_auto1 = np.unravel_index(
    np.argmax(auto_1, axis=None), auto_1.shape)[::-1]
max_auto2 = np.unravel_index(
    np.argmax(auto_2, axis=None), auto_2.shape)[::-1]

# Radial
rad_auto1 = radial_profile(auto_1, max_auto1)[0:40]
rad_auto2 = radial_profile(auto_2, max_auto2)[0:40]
rad_auto1 = np.concatenate((rad_auto1[::-1], rad_auto1[1:]))
rad_auto2 = np.concatenate((rad_auto2[::-1], rad_auto2[1:]))
pos_1 = np.where(rad_auto1 >= 0)
pos_2 = np.where(rad_auto2 >= 0)
rad_auto1 = rad_auto1[pos_1]
rad_auto2 = rad_auto2[pos_2]

# Finding maximum
max_auto1_radial = np.where(abs(rad_auto1) == np.max(rad_auto1))
max_auto2_radial = np.where(abs(rad_auto2) == np.max(rad_auto2))
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# Finding widths
width_auto1_radial = peak_widths(
    rad_auto1, max_auto1_radial[0], rel_height=0.5)
width_auto2_radial = peak_widths(
    rad_auto2, max_auto2_radial[0], rel_height=0.5)
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