
UNIVERSIDADE FEDERAL DE PERNAMBUCO 
PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE PRODUÇÃO 

 
 
 
 
 
 
 

NOVEL AND FASTER WAYS FOR SOLVING SEMI-MARKOV 
PROCESSES: MATHEMATICAL AND NUMERICAL ISSUES 

TESE SUBMETIDA À UFPE 

PARA OBTENÇÃO DE GRAU DE DOUTOR 

POR  

MÁRCIO JOSÉ DAS CHAGAS MOURA 

Orientador: Enrique López Droguett, Ph.D. 

RECIFE, Junho / 2009 

 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
M838n Moura, Marcio José das Chagas. 

Novel and faster ways for solving semi-markov processes: 
mathematical and numerical issues / Marcio José das Chagas Moura. - 
Recife: O Autor, 2009. 

 x, 106 folhas, il : tabs. grafs., figs 
 
Tese (Doutorado) – Universidade Federal de Pernambuco. CTG. 

Programa de Pós-Graduação em Engenharia de Produção. 
 
Inclui Referência e Apêndice.  
 

1. Engenharia de Produção. 2.Processos Semi-Markovianos. 
3.Densidade de Freqüência de Transição. 4.Quadratura Gaussiana.  5. 
Confiabilidade. 6. Avaliação da Disponibilidade. I. Título 

 
                            UFPE 
658.5                                                               BCTG/ 2009-110            
 
  



 
 
 



 

 ii

PÁGINA DEDICATÓRIA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

À minha avó, Iracema das Chagas (in memorian). 

À minha mãe, Maria da Conceição. 

À minha filha, Geovanna. 

 



 

 iii

AGRADECIMENTOS 

Esse sem dúvida é o tópico mais fácil de redigir desse trabalho. As palavras fluem 

naturalmente. A causa disso é o sentimento de alegria e alívio desse momento. Inúmeras 

pessoas contribuíram para a concretização desse sonho. 

Em primeiro lugar, agradeço a Deus por te me concedido paz e saúde, pré-requisitos 

necessários e suficientes para se iniciar qualquer coisa nesta vida. 

Agradeço à minha avó, Iracema das Chagas (in memorian), à minha mãe, Maria da 

Conceição e à minha filha, Geovanna, mulheres que fazem minha vida ter sentido 

diariamente. Agradeço à minha família, em geral, especialmente a meus tios (Marinalva, 

Mário, Marina, Zezinho e Carminha (in memorian)) e meu pai, Marcos Antônio. Agradeço à 

minha namorada, Milena Nascimento por ser fonte de afeto, compreensão e reflexão. 

Agradeço a meus amigos mais próximos que, indubitavelmente, são considerados como 

família: Flavinho, Reginha, Dona Lourdes, Selma, Dona Lindalva. 

Agradeço ao professor Enrique López por ter creditado em mim confiança e me concedido 

a oportunidade de trabalhar no CEERMA – Centro de Estudos e Ensaios em Risco e 

Modelagem Ambiental. Agradeço também a todos que compõem tal grupo de pesquisa, 

especialmente a Paulo Firmino e Isis Didier pelas discussões científicas sempre proveitosas. 

Agradeço aos professores membros da banca, Ana Paula Cabral, José Lamartine, Pauli 

Garcia e Marta Afonso, pelas sugestões valiosas e à Capes (Coordenação de Aperfeiçoamento 

de Pessoal de Nível Superior) pelo financiamento acadêmico concedido desde o meu 

mestrado.  

Agradeço a todos os membros (professores, secretárias, coordenadores, colaboradores, 

colegas de classe, etc.) do DEP – UFPE (Departamento de Engenharia de Produção), 

especialmente Juliane, que sempre estiveram dispostos a ajudar desde a minha graduação. 

Agradeço a todos meus amigos, especialmente a Mário Vieira, Vanessa Valentim, Hélder 

Diniz, Adiel Filho, Douglas Tomé, Marcio Mello e Felipe Fernandez por fazerem parte de 

minha estrutura. 

Enfim, agradeço a todos que direta ou indiretamente me ajudaram no desenvolvimento do 

presente trabalho. 



 

 iv

ABSTRACT 

Continuous-time semi-Markov processes (SMP) are important stochastic tools for modeling 

reliability metrics over time for systems where the future behavior depends on the current and 

next states as well as on sojourn times. The classical approach for solving the interval 

transition probabilities of SMP consists of directly applying any general quadrature method to 

the integral equations. However, this approach has a considerable computational effort. 

Namely N2 coupled integral equations must be solved, where N is the number of states. 

Therefore, this thesis proposes more efficient mathematical and numerical treatments for 

SMP. The first approach, which is called 2N-method, is based on transition frequency 

densities and general quadrature methods. Basically, it consists of only solving N coupled 

integral equations and N straightforward integrations. Another proposed method, named Lap-

method, is based on the application of Laplace transforms that are inverted by the Gauss 

quadrature method known as Gauss Legendre to obtain the state probabilities on the time 

domain. Mathematical formulation of these approaches as well as descriptions of their 

numerical treatment, including accurateness and time convergence issues, are developed and 

provided with details. The effectiveness of the novel 2N- and Lap-developments will be 

compared against the results provided by the classical method by using examples in the 

context of reliability engineering. From these examples, it is showed that the 2N- and the 

Laplace-based approach are significantly less time-consuming and have accuracy comparable 

to the classical method. 

Keywords: Semi-Markov Process; Transition Frequency Densities; Quadrature 

Methods; Laplace Transforms; Gauss Quadrature; Reliability; Availability Assessment. 

 



 

 v

RESUMO 

Processos semi-Markovianos (SMP) contínuos no tempo são importantes ferramentas 

estocásticas para modelagem de métricas de confiabilidade ao longo do tempo para sistemas 

para os quais o comportamento futuro depende dos estados presente e seguinte assim como do 

tempo de residência. O método clássico para resolver as probabilidades intervalares de 

transição de SMP consiste em aplicar diretamente um método geral de quadratura às equações 

integrais. Entretanto, esta técnica possui um esforço computacional considerável, isto é, N2 

equações integrais conjugadas devem ser resolvidas, onde N é o número de estados. Portanto, 

esta tese propõe tratamentos matemáticos e numéricos mais eficientes para SMP. O primeiro 

método, o qual é denominado 2N-, é baseado em densidades de frequência de transição e 

métodos gerais de quadratura. Basicamente, o método 2N consiste em resolver N equações 

integrais conjugadas e N integrais diretas. Outro método proposto, chamado Lap-, é baseado 

na aplicação de transformadas de Laplace as quais são invertidas por um método de 

quadratura Gaussiana, chamado Gauss Legendre, para obter as probabilidades de estado no 

domínio do tempo. Formulação matemática destes métodos assim como descrições de seus 

tratamentos numéricos, incluindo questões de exatidão e tempo para convergência, são 

desenvolvidas e fornecidas com detalhes. A efetividade dos novos desenvolvimentos 2N- e 

Lap- serão comparados contra os resultados fornecidos pelo método clássico por meio de 

exemplos no contexto de engenharia de confiabilidade. A partir destes exemplos, é mostrado 

que os métodos 2N- e Lap- são significantemente menos custosos e têm acurácia comparável 

ao método clássico. 

Palavras-chave: Processos semi-Markovianos; Densidades de Frequência de Transição; 

Métodos de Quadratura; Transformadas de Laplace; Quadratura Gaussiana; 

Confiabilidade; Avaliação da Disponibilidade. 
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1. INTRODUCTION 

1.1 Overview 

A homogeneous semi-Markov process (HSMP) can be understood as a probabilistic model 

whose future behavior is dependent on sojourn times which are random variables dependent 

on the current state i and on the state j to which the process will transit next. According to 

Ouhbi and Limnios (2003), HSMP are more flexible models than ordinary Markov processes 

as it is no longer required to assume that sojourn times are exponentially distributed. 

Recent applications and theoretical developments on HSMP have been proposed in the 

context of reliability engineering. For example, Perman et al. (1997) apply a recursive 

procedure to approximate the interval transition probabilities, which are used to assess the 

future behavior of an HSMP over time. Limnios (1997) proposes a dependability analysis for 

HSMP in discrete time by using a method based on algebraic calculus. Ouhbi and Limnios 

(1997) estimate reliability and availability through HSMP of a turbo-generator rotor using a 

set of real data. Ouhbi and Limnios (2002) propose a statistical formula for assessing the rate 

of occurrence of failures (ROCOF) of HSMP. Through this result, ROCOF of the Markov and 

alternated renewal processes are given as special cases. Some other applications of HSMP 

may be encountered in related literature, mainly in the reliability field (as exemplified in 

Janssen and Manca (2007); Limnios and Oprisan (2001); Pievatolo and Valadè (2003)). 

The future behavior of an HSMP is assessed through its interval transition probability 

equations which are comprised of a set of N2 coupled convolution integral equations, where N 

is the number of states. The classical method for solving these equations is explained in 

Corradi et al. (2004), and consists of directly applying a general quadrature method to these 

N2 coupled convolution integral equations. However, such an approach is quite burdensome 

with a computational cost sometimes greater than the Monte Carlo (MC) simulation. 

In a non-homogeneous semi-Markov process (NHSMP), transitions between two states in 

turn may depend not only on such states and on the sojourn times (x), but also on both times 

of the last (τ) and next (t) transitions, with x = t - τ. The time variable τ is also known as the 

most recent arrival time or last entry time, and the time variable t is the calendar or process 

time. Thus, NHSMP extend other stochastic processes such as HSMP. As a result, NHSMP 

are powerful modeling tools, mainly in the context of reliability engineering (as exemplified 

in Janssen and Manca (2007)). 
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In spite of that, there are two main reasons to explain the scarcity of NHSMP applications: 

(i) Janssen and Manca (2001) argue the non-homogeneity on the continuous time semi-

Markov environment implies additional difficulties in treating NHSMP; (ii) in accordance 

with Nelson and Wang (2007), for practical applications, gathering of high level required data 

(transition probabilities and/or rates) is likely to be a significant challenge, mainly in the 

presence of censoring implied by preventive maintenance. 

Specifically regarding the first claim, it gives rise to more intricate mathematical methods 

and numerical solutions. Indeed, as it will be discussed in upcoming sections, the future 

behavior of an NHSMP is assessed through its interval transition probability equations which 

are comprised of a system of N2 coupled integral equations with two variables, where N is the 

number of states. The classical method to solve the non-homogeneous equations is explained 

in Janssen and Manca (2001), and also consists of directly applying a general quadrature 

method to these N2 coupled integral equations, as for HSMP. However, such an approach is 

more complex than in the case of homogeneous counterpart, because the integrals involved 

are not of convolution type anymore, and also, since the interval transition probabilities to be 

determined depend on two parameters. 

As it can be seen from this overview on homogeneous and non-homogeneous semi-

Markov processes, the dynamic behavior analysis of both these models requires solving a set 

of N2 integral equations which increase considerably the computational time and intricacy of 

the related solution. Therefore, this thesis proposes alternative methods for solving the 

probability equations of HSMP and NHSMP in continuous time as an attempt to reduce the 

complexity associated with these stochastic models and to foster their applicability, mainly of 

NHSMP. 

Basically, one of these approaches consists of casting the N2 coupled integral equations of 

either HSMP or NHSMP into an initial value problem involving transition frequency 

densities, and then solve N coupled integral equations with one variable and N straightforward 

integrations. As it will be seen in upcoming chapters, this approach considerably reduces the 

computational effort in relation to the abovementioned classical method and MC simulation 

since it is not needed solving N2 integral equations anymore. 

This proposed approach is partly based on the work of Becker et al. (2000) where it is 

presented the mathematical formulation for semi-Markov processes (SMP) described by 

transition rates λij( ⋅ ). Similarly to Becker et al. (2000), the proposed approach also involves 

transition frequency densities. However, from this point the method discussed throughout this 
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thesis departs from the one presented in Becker et al. (2000). Firstly, in the proposed method 

the HSMP and NHSMP may be specified in terms of not only transition rates λij( ⋅ ), but also 

through transition probabilities Cij( ⋅ ). SMP described via transition probabilities represent 

important modeling tools, mainly in reliability applications such as in Janssen and Limnios 

(1999) and Droguett et al. (2007). Thus, this thesis proposes an extension to the work 

developed in Becker et al. (2000) so that SMP described through both λij( ⋅ ) and Cij( ⋅ ) may be 

handled in a more efficient and integrated form. 

Secondly, and conversely to Becker et al. (2000), this thesis is also numerical-based, i.e., a 

numerical treatment for the proposed mathematical formulation will be discussed. This 

numerical solution is based on general quadrature methods and will have its effectiveness 

compared against the classical method and the MC simulation by means of some examples in 

the reliability context.  

Thus, the proposed approach is two-fold, i.e., it addresses mathematical and numerical 

issues related for solving SMP in continuous time. For the sake of simplicity, henceforth the 

classical and proposed approaches will be distinguished through their computational efforts as 

N2-method and 2N-method, respectively. 

Another method which will be proposed here to handle specifically the behavior of HSMP 

is based on the Laplace Transform (LT) apparatus. The use of LT is not novel on problems 

involving HSMP. There are some works treating this issue in the related literature (Perman et 

al. (1997); Janssen and Manca (2006); Moura (2006); Howard (2007)). Through these 

approaches, LT are applied to the N2 coupled convolution integral equations and thus the 

solution on time domain is obtained through respective inversion. However, as stated by 

Bellman and Roth (1984) (pp. 149), “We cannot expect that any specific method for the 

inversion of the LT will work equally well in all cases”. Moreover, Csenki (1994) (p.233-234) 

argues that “no single method can be devised which will perform numerical LT inversion to a 

given accuracy”. In other words, a unique numerical method to invert LT is not able to solve 

any problem in a general way. 

In spite of these statements a method of LT inversion, which was developed by Bellman et 

al. (1966), has been applied by Oliveira et al. (2005) for solving the partial differential 

equations for non-homogeneous Markov processes described using supplementary variables. 

Great results attained on this situation (for distribution functions widely used in reliability 

context, like Exponential and Weibull) have led to delve on the feasibility of application of 

that LT method for solving SMP as well, for which the dynamic behavior rise from a 
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generalization of the Kolmogorov backward differential equations of the Markov environment 

(see Feller (1964)). 

Therefore, besides the 2N- and N2- approaches, there will also be described a method based 

on LT for solving SMP. This approach will be drawn only for HSMP (due to reasons that will 

come up over the text) and at the best of our knowledge, as 2N-approach, it has not been used 

elsewhere within the semi-Markov environment.  

This approach, which will be named Lap-method, will also be developed so that it can 

handle HSMP described through either transition probabilities or transition rates. The 

effectiveness of the Lap-numerical procedure will be compared against the 2N- and N2-

methods and the MC simulation in terms of computational effort (time) and accuracy by 

means of some examples in the context of reliability engineering. 

Therefore, the main question behind this thesis is: “How to solve (homogeneous and non-

homogeneous) semi-Markov processes through a less intricate and more efficient way?”. 

1.2 Motivation and Justifications 

In this section, the main contributions and justifications, under which the present thesis is 

backed up, will be discussed. Basically, two examples that may be faced by reliability 

practitioners are presented in order to show which type of practical problems will be solved by 

the proposed mathematical and numerical approaches. 

The first example addresses a case where an HSMP described by transition rates is used to 

handle a repairable pumping oil unit that pumps oil to a storage tank. Then it is discussed 

another example which consists of an NHSMP described by transition probabilities used to 

model a repairable pressure-temperature optical monitoring system for oil wells.  

Basically, these examples will be treated by the proposed mathematical and numerical 

approaches which will be designed in upcoming chapters as an attempt to answer the 

aforementioned question. 

1.2.1 Example 1: Pumping Oil Unit 

Most probabilistic models for system availability, reliability and maintainability 

assessment assume that the failure of one component immediately causes system failure. In 

some systems, however, the failure of a component leads to a system failure only when repair 

time has exceeded some time T, known as tolerable downtime (TDT). According to Vaurio 

(1997), systems that have this feature are known as fault tolerant systems (FTS). 
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This concept is usually employed in the context of software-based systems reliability, for 

example, in Madan et al. (2004) who use SMP to model a possible security intrusion and 

corresponding response of the fault tolerant software system to this event. Other related works 

include Littlewood et al. (2002), Levitin (2004), Levitin (2005) and Levitin (2006). 

In the context of fault tolerant safety systems, some reliability assessment models have 

been developed. For example, Camarinopoulos and Obrowski (1981) propose a model for 

reliability quantification that takes into account the frequency as well as the duration of 

failures. In that work, however, the TDT is considered constant, i.e., it does not have a 

stochastic behavior. 

Becker et al. (1994) and Chandra and Kumar (1997) use Markov processes (MP) in order 

to model safety systems with stochastic TDT. An MP is defined as a probabilistic model that 

satisfies the memoryless Markov property. According to this assumption, the future behavior 

of a system depends only on its present state and therefore is independent on the sojourn time 

in this state. According to Ouhbi and Limnios (1997), however, such an assumption is not 

always appropriate, since it is required to assume that sojourn times are exponentially 

distributed. 

Becker et al. (2000) model the reliability of FTS through SMP. SMP is an extension of 

Markov processes and as such they provide greater flexibility in terms of modeling complex 

dynamic systems. According to Howard (2007), SMP are not strictly Markovian anymore as 

the Markov property is not required at all instants. However, as they share enough 

characteristics in common with these processes, SMP receive that denomination. Moreover, 

when non-homogeneous semi-Markov processes are considered, it is also possible to model a 

system that might be under improvement or aging processes. In this type of SMP, the future 

behavior depends on two types of time variables: sojourn time and process time, being the 

latter also known as calendar or global time. 

A common characteristic shared by the aforementioned reliability/availability assessment 

models is that the future behavior of a system is conditioned only on time variables, either 

process or sojourn times or both. In some situations, however, other factors not necessarily 

time can influence the system behavior. Examples of such external factors include 

environmental variables (e.g., temperature, humidity), operational variables (e.g., hydrate and 

H2S concentration in oil flow), and physiological (e.g., fatigue) and/or psychological 

conditions (e.g., workload, stress). 
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In these cases, the system’s future behavior might be influenced by sojourn time variable 

as well as by those external factors. To take it into account, it is possible to integrate 

continuous time homogeneous semi-Markov processes and Bayesian belief networks (BBN) 

(see Moura (2006) for greater details on the hybrid model: SMP and BBN). 

As an example, assume that one is uncertain about the true value of the mean time to 

failure (MTTF) of a downhole pumping oil system, i.e., one is interested in assessing the 

uncertainty distribution of MTTF. The BBN topology in Figure 1-1 characterizes how the 

random variable MTTF of the downhole pumping system is influenced by the variables 

BWSOT: “Percentage of H2O and solids”, PARAF: “Level of paraffin”, FILTER: 

“Classification of the filter installed”, DEPTH_PUMP: “Depth of the pump unit”. 

As it can be seen in Figure 1-1, BBN is composed of nodes, which represent the variables 

of interest (discrete or continuous), and arcs that characterize the cause-effect relationships 

among these variables. 

 

Figure 1-1 – BBN for MTTF of a pumping unit 

The first step in setting up a BBN is the identification of random variables and their 

nature, i.e., whether they are discrete or continuous. Such values must be mutually exclusive. 

Next step is to designate the cause-effect relations among the relevant variables in order to 

construct the BBN topology. 

In a BBN, a node is parent of a child node when there is an arc leaving the former in 

direction to the latter. In Figure 1-1, for instance, the variable “PARAF” is a parent of 

“BWSOT” and “MTTF”. Any node with no parents is a root node, any node without children 

is a leaf node and any node that is neither a root nor leaf is an intermediary node. 

“DEPTH_PUMP” is a root node, “MTTF” is a leaf node and “PARAF” and “BWSOT” are 

intermediary nodes. 

After the construction of the BBN topology, next step is to determine the strengths of the 

cause-effect relations among the connected variables. This is carried out by specifying a 
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conditional probability distribution for each node. For discrete random variables, this consists 

of establishing conditional probabilities tables CPT for each node. These CPT can be 

generated from either data bases or engineering judgments, as in Langseth and Portinale 

(2007). 

For the sake of simplicity, it is assumed that all variables in the BBN of Figure 1-1 are 

dichotomic unless MTTF that can assume the following values {100, 200, 1.000, 10.000} 

hours. The CPT given in Appendix A were obtained from a data base according to the 

methodology proposed in Barros Jr. (2006), where level 0 refers to an adequate condition and 

level 1 to an inadequate one. These CPT correspond to the prior distributions. 

In this way, BBN is a graphic representation of a multivariate probability distribution 

where it is possible to represent cause-effect relations among random variables (Langseth and 

Portinale (2007)). Moreover, BBN provide flexibility in terms of knowledge updating through 

the Bayes theorem (see Bernardo and Smith (1994) for basic concepts on Bayesian inference) 

as discussed in Firmino (2004). 

As an example of how to integrate a homogeneous SMP with BBN, consider a downhole 

pumping unit that pumps oil to a storage tank, which in turn is kept above a predetermined 

level L in order to be able to supply customers in case of a pumping unit failure. The tank 

level above L is set to a value such that a TDT holds before the oil level goes under L in case 

of a pumping unit failure. Therefore, upon the occurrence of this failure, it is assumed that 

repair starts immediately in order to not go under this predetermined level and consequently 

the TDT. Otherwise, the oil level in the storage tank goes under a low limit and the oil supply 

halts. When the pumping unit is under repair and the TDT has not expired yet, no damage to 

customers is inflicted as oil can still be supplied, i.e., although in a degraded state the system 

is still available. However, when the tolerable downtime is reached and repair has not been 

completed yet, the system fails and it is assumed to be unavailable. 

It is clear that the elapsed time since the start of repair activities plays a relevant role with 

respect to system availability measure. Indeed, the system initially starts in state 1 (available) 

and upon failure (it is considered failure time follows an exponential distribution) of the 

pumping unit it transits to state 2 (failed, under repair and TDT not exceeded), as shown in 

Figure 1-2. When state 2 is reached, a local clock is started such that when the sojourn time in 

this state is greater than the TDT the system becomes unavailable, i.e., it transits to state 3 

(failed, under repair and TDT exceeded). 



Chapter 1                                                                                                                   Introduction 

 8

In other words, the transition from state 2 to 3 depends on the elapsed time t since the 

pumping unit has failed. In both cases (either states 2 or 3), it is assumed repair rate μ is 

constant (see Figure 1-2). For the sake of simplicity, no failures are considered for pipelines, 

valves and the storage tank. 

It is also assumed the TDT (in this case, time for the system transits from state 2 to 3) is 

distributed according to a Weibull distribution as follows: 

( ) ( )
1

23 expt tf t
β ββ

αα α

−
⎛ ⎞ ⎛ ⎞= −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
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where α and β are scale and shape factors respectively. 

Given that transitions outwards state 2 depend only on the sojourn time, it is considered a 

homogeneous semi-Markov process in order to address this FTS. Otherwise, an MP could 

have been chosen since in this case all transition rates would be constant. 

Furthermore, suppose that, as it might happen in situations of practical interest, the MTTF 

characterizing transitions from state 1 to state 2 is influenced by some external factors. As 

discussed above, the causal relationships among external factors related to a transition rate can 

be characterized in terms of a BBN. As a result, availability measure of the pumping system 

could be estimated from the hybrid model based on HSMP and BBN (see Moura and Droguett 

(2008) in Attachment A). 

In particular, for the system under consideration, assume that the MTTF of the 

exponentially distributed time up to pumping unit failures (i.e., sojourn time in state 1) is 

uncertain and influenced by the external factors shown in Figure 1-1. 

MTTFf
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Figure 1-2 – HSMP for the downhole pumping oil unit 

Figure 1-2 depicts an HSMP, which is described by transition rates λij(t), designed to 

model the oil pumping unit taking into account the influence of sojourn times and external 

factors on the future behavior of the system. In Figure 1-2, fMTTF is marginal probability 

distribution of the MTTF and it is obtained from the BBN in Figure 1-1. 
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The requisite data needed for solving this sort of SMP are the parameters of the 

probability density functions (PDF) of the holding time in each state i given that system will 

go towards state j. In this example, it means to estimate of μ, α and β. Moreover, as MTTF of 

the transition from state 1 to 2 is uncertain, the CPT given in Appendix A are necessary to 

estimate the PDF on that parameter. 

Through Figure 1-2, it is developed a model for a more realistic representation and 

quantification of availability measure for repairable FTS via the integration between 

continuous time HSMP and BBN. Such systems have a basic feature: the sojourn time in any 

state influences the transition probabilities. Moreover, external factors (e.g., environmental 

and operational conditions) not necessarily time variables also impact the future behavior of 

the system. Furthermore, as new evidence becomes available, the probability distributions of 

these parameters as well as the state of knowledge about the behavior of the system can be 

updated. 

Thus, as the HSMP is described via transition rates then the integration between it and 

BBN is achieved through an interface represented by parameters of the intensity functions 

characterizing the transition rates. Such parameters are taken from BBN describing the cause 

and effect relationships among the relevant external factors and the corresponding parameters. 

The resulting uncertainty distribution about a particular parameter is then taken as input 

information for the HSMP. 

In order to explicitly quantify the impact of the uncertainty in the transition rates on the 

state probabilities of the semi-Markov model, on the availability measure or on other relevant 

reliability metric, a numerical procedure for solving HSMP must be repeated for a 

considerable number of iterations. 

Using the N2-method (given in Corradi et al. (2004)), which is hardly time-consuming, the 

solution of the model in Figure 1-2 would become infeasible. Therefore, developing a faster 

and accurate way for solving HSMP is a must for practitioners who are used to face some sort 

of problems such as just described. 

This example will be further discussed in chapter 4. In fact, it will be solved using 2N-, 

Lap-, N2- and MC approaches which will be compared in terms of computational cost and 

accuracy. 

Next subsection presents another application of SMP. The problem characterization 

mainly draws from Droguett et al. (2007) and Droguett et al. (2008) which follow in 

attachments B and C respectively. 
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1.2.2 Example 2: Optical Monitoring Systems 

Oil has been the most important source of energy since the early days of last century. The 

growing and continuous demand for energy associated with decreasing availability of this 

limited resource have led to a considerable increase in investment directed towards the 

development of renewable energy sources as well as to research efforts for optimizing 

technologies related to the exploration and production of oil.  

Mostly because of the increasing oil price, a considerable attention has been given to the 

enhancement of production technologies that allow for anticipation of oil production volumes 

and an improved reservoir management and control. In line with such efforts, recent 

developments have led to the so called intelligent oil fields. The term ‘intelligent’ means: (i) 

data acquisition: sensors provide data on important well parameters in real time; (ii) flow 

remote control: it allows an operator to modify production or injection flow characteristics 

with no on-site intervention; (iii) data interpretation and optimization: it allows production 

and reservoir engineers feed simulation models and act on a particular well in real time. 

Therefore, intelligent oil field is a concept encompassing various technologies that allow for 

an integrated management of production and injection of one or several reservoirs. 

Under these circumstances, availability is a key attribute: the higher availability the higher 

production volumes and therefore profit are. Moreover, in terms of intelligent oil fields, 

increased availability levels associated with the anticipation of production volumes in relation 

to what is currently attained by a conventional oil field might serve as evidence for 

justification of the considerable steep investment in new technology. 

In this context, a research effort is underway for designing and implementing intelligent oil 

fields in mature wells located in the Northeast of Brazil. Part of this effort concerns the in-

house development and installation of pressure-temperature optical monitoring systems 

(OMS). 

At the current stage, only a few units of these systems have been deployed for field tests 

and, given the limited experience, availability assessment is usually performed under a 

considerable level of uncertainty. In spite of that scenario, this limited experience has 

suggested that an OMS might be comprised of components that are renewed after failures as 

well as components that are under deteriorating processes with failure intensity functions that 

are dependent on the total system age (process time). 

Upon failure of the monitoring system, human performance during the reinstallation of an 

OMS (i.e., removing, repairing and then running an OMS in hole) is a relevant factor 
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influencing its availability. Moreover, the time interval to accomplish the reinstallation plays 

an important role since it directly impacts the OMS availability as well as the human 

performance during the effort to recover the system. In fact, under real life oil production 

conditions in the Northeast of Brazil, there exists an available time to complete the 

reinstallation (tolerable downtime). Otherwise, the OMS reinstallation in the field is not 

longer feasible and, from the availability analysis perspective, it evolves to an unrecoverable 

state – this tolerable downtime is one of the factors that directly influence the human 

performance during the reinstallation and thus the OMS availability (see Droguett et al. 

(2008) for deeper details). 

Therefore, there are three relevant aspects in estimating the OMS availability: (i) the 

available time to complete the reinstallation; (ii) the system deteriorating process and (iii) the 

maintenance crew’s performance, which is influenced by tolerable downtime and other factors 

(e.g., experience, fatigue) in returning an OMS to its normal operational condition. 

NHSMP may be used here in order to tackle the first two issues because: (i) the duration 

(sojourn time) in a state may influence the availability of an OMS and (ii) provided that some 

components might be under deteriorating processes, it should be considered time dependent 

transition intensity functions. In this context, the combined impact of these two time variables 

on the reliability of an OMS will be assessed through an NHSMP. 

Indeed, OMS reinstallation process involves the repair of any possibly failed component 

as well as running the OMS system downhole. Thus, as it depicted in Figure 1-3, it is assumed 

that the system (OMS) starts at normal operation in state 1. Upon a system failure, the 

reinstallation process of the OMS starts, which is represented by state 2. If the reinstallation 

process cannot be completed, the system goes to state 3 where additional actions are taken to 

restore the system to its normal operating condition. If the operator is still not able to restore 

the system, all actions are halted as represented by state 4. Thus, the system is not functioning 

(unavailable) when in states 2, 3 or 4. 

 

Figure 1-3 – Non-Homogeneous semi-Markov process for an OMS 
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OMS reinstallation procedures involve complex operations that require interactions 

between human elements and equipments. Thus, to take into account the third relevant issue 

(the crew’s performance in recovering an OMS), BBN could again be used to address 

qualitatively and quantitatively the cause-effect relationships among factors that impact the 

Human Error Probability (HEP) during the reinstallation of an OMS. 

In the context of the OMS reinstallation, the variables “available time to complete the 

reinstallation” and “the capacity to accomplish the task” directly influence the probability of 

the repairman to properly accomplish the procedure, as it can be seen in Figure 1-4. 

 

Figure 1-4 – BBN model for the OMS repairman 
Furthermore, according to Figure 1-4 the repairman is influenced by external factors. Two 

of these factors are considered here: climatic conditions (e.g., temperature and humidity) and 

distracting agents (e.g., informal parallel chats in work environment, noise, glare, movement, 

flicker and color). These external factors associated with workload can cause fatigue (i.e., 

physical and/or mental fatigues). Fatigue associated with emotional state can influence the 

attention of the repairman to the current task. It is possible, for example, that due to fatigue 

and an unfavorable emotional state, the attention level is negatively impacted. It is considered 

that three factors can influence the repairman capacity to carry out his activities: attention, 

skills and experience. Attention refers to whether sufficient cognitive and physical resources 

are put at the “right” places. Skills are the ability to understand situations and perform needed 

actions without much cognitive activity. Deficiency of skills can manifest itself in reduced job 

quality and time delay. Experience is the accumulation of information and knowledge 

acquired through direct or indirect interactions with the system (see Chang and Mosleh 

(2007)). The repairman performance measured by the HEP is directly influenced by his 
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capacity to carry out the task and the available time to complete the reinstallation. Both 

factors are considered to have major impact on the HEP, thus they are parents of the “human 

error” node. For a detailed discussion on how a Human Reliability Analysis (HRA) is 

performed, see Menêzes (2005). Table 1-1 summarizes the BBN nodes and the levels which 

they can assume. 

Table 1-1 – Variables and their levels 

Variable Levels 
0 1 

Human Error Yes No 
Available time to complete reinstallation Adequate Inadequate 

Capacity to accomplish the task Adequate Inadequate 
Experience Average High 
Attention Adequate Inadequate 

Skills Adequate Inadequate 
Emotional State Adequate Inadequate 

Fatigue Adequate Inadequate 
Workload Adequate Inadequate 

External Factors Adequate Inadequate 
Distracting Agents Yes No 

Climatic Conditions Adequate Inadequate 

Thus, when the system is in state 2, it is assumed that the operator has an appropriate 

available time to complete the reinstallation tasks. Under this situation, the probability p23 

corresponds to the HEP under a condition of “adequate available time to complete the repair 

(evidence 0)”. If the operator does not complete the reinstallation in the allotted time frame, 

the system transits to state 3. In this state, the operator takes additional actions to restore the 

system but now under a time pressure situation, i.e., it is considered that a substantially 

reduced time frame is available to restore the system to its normal operating condition. 

Correspondingly, the HEP p34 reflects the situation of “inadequate available time to complete 

the repair (evidence 1)”. In both cases (states 2 and 3), if the operator ends the reinstallation 

within the available time, the system returns to its normal operating condition (state 1). 

Otherwise, the system transits to state 4. 
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Figure 1-5 – A semi-Markov model with Bayesian belief network based human error probability for availability 

assessment of downhole optical monitoring systems 

Therefore, when the system enters states 2 or 3, the BBN node “human error” is directly 

connected to the probabilities (parameters) of the NHSMP of Figure 1-3 what can be seen in 

Figure 1-5. Thus, the parameters p23 and p34 are the HEP in the BBN of Figure 1-4 given the 

evidences 0 and 1, respectively. The parameters p21 and p31 are the respective complements of 

p23 and p34. 

In this way, the conditioning factors influencing the error probability of an OMS 

repairman as well as the cause-effect relationships among them are taken into account for the 

availability assessment of an OMS via the continuous-time NHSMP. 

As it may be noticed in the preceding description, the requisite data needed for solving 

this NHSMP are different from those for example 1. Indeed, Figure 1-3 illustrates an NHSMP 

described by transition probabilities. The required data to estimate the system (un)availability 

over time via this type of NHSMP are the transition probabilities pij( ⋅ ) and the conditional 

Cumulative Distribution Function (CDF) Gij( ⋅ , ⋅ ). These terms will be further described in 

detail in next chapter. 

Due to the lack of a robust and efficient method to solve the example just described, 

Droguett et al. (2008) have solved it by using MC. Another possibility is to resort to the N2-

method drawn for NHSMP in Janssen and Manca (2001). However, due to computational 

time reasons this approach becomes impracticable. 

Therefore, the 2N-method for NHSMP will be developed in chapter 5. Then in chapter 6, 

the example described in the present section will be widely solved by using the 2N-method. 
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1.2.3 Contributions 

Actually, examples 1 and 2 address the availability assessment problem with somewhat no 

use of simplistic assumptions on the system’s behavior. However, trying to approach as much 

as possible towards reality requires a price to be paid. In these cases, the penalty corresponds 

to the intricacy and complexity of mathematical and numerical formulations involved with 

SMP what also implies impracticable computational times. 

Indeed, traditionally examples 1 and 2 could be solved by using N2-method given in 

Corradi et al. (2004) (HSMP) and Janssen and Manca (2001) (NHSMP), respectively. 

However, both of them are rather cumbersome with a computational cost greater than MC. 

This situation motivates the development of a novel and more efficient (faster) 

mathematical and numerical formulation for SMP that has less computational effort, but keeps 

the accuracy in relation to the available methods in the related literature, that is, MC 

simulation and the N2-approach. In fact, the 2N-mathematical formulation and numerical 

treatment consists of casting the N2 coupled integral equations into an initial value problem 

involving transition frequency densities, and then solve N coupled integral equations with one 

variable and N straightforward integrations. As it will be proved in next chapters, this 

approach possesses both abovementioned features: it is significantly less time-consuming and 

has roughly accuracy equals to the N2-method. 

Specifically regarding NHSMP, although they are powerful modeling tools, the 

mathematical and computational difficulties of the non-homogeneous environment are usually 

blamed as accountable for the scarcity of applications of this type of stochastic process. Thus, 

this thesis plays an important role as an attempt to increase the feasibility of application of this 

kind of stochastic model. 

Moreover, this thesis describes another alternative method (called Lap-approach) for 

solving the state probability equations of an HSMP on continuous time. This numerical 

procedure is based on the application of LT. As there will be seen in detail, the main 

advantage of this approach is that it is not required adjusting the number of steps in order to 

obtain the desired convergence. There will be a pre-set number of steps, which is independent 

on the problem to be solved and thus, this method is likely to have a considerable reduced 

computational effort in relation to the abovementioned 2N- and N2-methods and MC as well. 

Finally, the 2N-mathematical formulation and numerical approach will also be illustrated 

by means of some examples of application in the context of reliability assessment (including 

those which have been described in the two previous sections), where the effectiveness and 
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the required computational effort of the 2N-method will be compared against the MC and the 

N2- and Lap-approaches. 

1.3 Objectives 

1.3.1 General Objective 

Developing a novel mathematical formulation and a faster numerical treatment for solving 

on continuous time (homogeneous and non-homogeneous) semi-Markov processes described 

through either transition rates or transition probabilities. 

1.3.2 Specific Objectives 

 Surveying at the theoretical background of homogenous and non-homogeneous semi-

Markov processes; 

 Surveying at the N2-method: numerical perspective; 

 Developing the 2N-mathematical formulation and numerical treatment for HSMP; 

 Developing the Lap-numerical treatment for HSMP; 

 Developing the 2N-mathematical formulation and numerical treatment for NHSMP; 

 Implementing numerically on C++ platform the solutions for 2N-, Lap-, N2- approaches 

and MC simulation in order to make comparisons among them in terms of computational 

time and accuracy; 

 Applying the abovementioned methods to solve some examples in the context of 

reliability engineering in order to evaluate their effectiveness in terms of computational 

cost and accuracy. 

1.3 Thesis Layout 

The remainder of this thesis is organized as follows. Next chapter presents the theoretical 

background related to SMP: HSMP and NHSMP described through either transition 

probabilities or transition rates. Chapter 3 (section 3.1) develops the 2N-method for 

homogeneous semi-Markov processes. In this chapter, the mathematical formulation 

involving transition frequency densities and the description of the numerical method 

(including the analysis of the discretization error) will be described. Chapter 3 (section 3.2) 

also describes the Lap-numerical method for HSMP. This method is composed of the 

application of LT and its corresponding inversion. Both issues will be discussed in that 

chapter. In chapter 4, comparisons among 2N-, N2-, Lap- and MC approaches will be made 

through some examples of application. Chapter 5 will show the description of the 2N-method 
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for NHSMP. As for HSMP, in this chapter, the mathematical formulation and the numerical 

treatment (including also the analysis of the discretization error) will be discussed taking into 

account non-homogeneity issues. Chapter 6 will challenge the effectiveness of the 2N-method 

drawn for NHSMP against the results from N2- and MC approaches. In this chapter, the 

example 2 described in section 1.2.2 will be solved using the 2N-method. Next, chapter 7 

presents two further examples. The first one will show how the 2N-method may be used for 

determining a maintenance optimization policy so that to maximize the mean availability 

measure. The second example is also inserted inside the optimization context. Basically, it is 

designed for determining which maintenance decisions should be made so that the mean 

availability and expected costs are jointly optimized over the system’s age. Thus, the Lap-

method will be used to estimate the mean availability in this framework. Finally, chapter 8 

presents some conclusions, discussing final remarks and challenges for ongoing and future 

research. 
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2. THEORETICAL BACKGROUND: SEMI-MARKOV PROCESSES 

2.1. Applications and terminology 

According to Howard (2007), an SMP can be understood as a probabilistic model in which 

the successive occupation of states is governed by the transition probabilities of an MP, 

known as embedded MP, but the sojourn times in each state is described by a random variable 

that depends on the current state and on the state to which the next transition will be done. 

In an SMP, the Markov property is required only at the transition times between states 

and, therefore, it is not strictly Markovian. Thus, the sojourn time distribution can be arbitrary, 

following any probability density function not necessarily exponential. 

Some recent scientific developments on SMP may be quoted. Grabski (2003) presents the 

properties of the reliability function of a component under a random load process with failure 

rate modeled according to an SMP. The reliability functions were obtained through 

application of Laplace-Stieltjes transforms to transition probability equations and, by using a 

commercial computational software, the analytical solution of the inverse transform were 

obtained.  

Ouhbi and Limnios (2003) introduce non-parametric estimators for the reliability and 

availability of SMP by assessing the asymptotical properties of these types of metrics. A 

method to compute confidence intervals for such estimators is proposed and an example of 

application is given for a three state SMP. Limnios and Oprisan (2001) demonstrate some 

results and applications of SMP in the context of reliability. 

Pievatolo and Valadè (2003) assess the reliability of electrical systems in situations of 

continuous operation. An analytical model is developed which allows for non-exponential 

distributions of failure and repair times. SMP are used to compute the mean time between 

failures (MTBF) and mean time to repair (MTTR) of a compensator output voltage. 

El-Gohary (2004) presents maximum likelihood and Bayesian estimators for reliability 

parameters of semi-Markovian models. Other recent works that have SMP as main issue are 

Afchain (2004), Chen and Trivedi (2005), Limnios and Ouhbi (2006), Xie et al. (2005), 

Soszynska (2006) and Jenab and Dhillon (2006). 

A common characteristic of the aforementioned works is that defining an SMP requires 

the specification of N2 probabilities of the embedded MP and N2 conditional probability 

density functions of the sojourn times in each state given the next state. This is the usual 
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definition of SMP which is presented in most of related literature, for example in Ross (1997) 

and Limnios and Oprisan (2001). 

However, in the context of reliability engineering, transition rates rather than transition 

probabilities are also usually employed to define continuous time MP and, therefore, 

transition rates should be attractive for defining SMP as well. Indeed, Becker et al. (2000) 

develop the mathematical formulation of SMP described through transition rates. Such 

transition rates are different from those of MP which are either constant (homogeneous 

Markov processes) or dependent on process time (non-homogeneous Markov processes). 

In fact, the transition rates of an SMP may only depend on sojourn time in a state for the 

case of an HSMP, or both sojourn and process times for an NHSMP. In both cases, the 

transition rates can be used to represent failure and repair rates as for MP. 

Both ways (transition probabilities and transition rates) will be used in next two sections 

to define SMP. In this way, the mathematical and numerical developments which will be 

proposed in chapters 3 and 5 could address SMP described through either transition 

probabilities or transition rates in the same fashion. 

2.2. Homogeneous semi-Markov processes 

HSMP in continuous time are introduced in this section using a similar nomenclature to 

the one given in Corradi et al. (2004). Let { }1,...,S N=  represent the finite state space and 

define the following random variables: 

: , : [0, [,n nZ S TΩ→ Ω→ ∞   

where nZ  and nT  are, respectively, the state and the time in the nth transition. 

The process ( ),n nZ T  is called homogeneous Markov renewal process if 

1 1 1 1 0 0

1 1

Pr[ , | , , , ,..., , ]

Pr[ , | ]

n n n n n n n

n n n n

Z j T T t Z T Z T Z T

Z j T T t Z i

+ + − −

+ +

= − ≤

= = − ≤ =
.  

The kernel Cij(t) of an HSMP is defined as: 

( ) 1 1Pr[ , | ].ij n n n nC t Z j T T t Z i+ += = − ≤ =  (2-1)

Eq. (2-1) is the probability of the HSMP to reach state j at time 1nT +  given that it has 

remained in state i for 1n nT T t+ − ≤ . According to Howard (2007), the kernel Cij(t) is the 

fundamental describer of an HSMP as its elements determine the transitions between states as 

well as the sojourn time (t) both conditioned on the current state (i). 

It follows that: 
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1Pr[ | ] lim ( ), ,ij n n ijt
p Z j Z i C t i j S− →∞

= = = = ∈ ,  

where P = [pij] is the matrix of transition probabilities of the continuous-time embedded 

homogeneous Markov process (EHMP), which is the homogeneous Markov process relevant 

to the HSMP. 

HSMP will leave state i after it has stayed there for t with probability given by: 

[ ]1( ) Pr |i n n nF t T T t Z i+= − ≤ = , (2-2)

which represents the CDF of the waiting time in state i. 

Eq. (2-1) and (2-2) are related as follows: 

1
( ) ( )

N
i ijj

F t C t
=

=∑ .  

In fact, Fi(t) means the probability that the HSMP leaves state i when its successor state j 

is unknown. 

The conditional CDF of the sojourn time given the current (i) and next states (j) to be 

occupied by the process is given as: 

( ) [ ]1 1Pr | ,ij n n n nG t T T t Z i Z j+ += − ≤ = = ,  

which corresponds to CDF of the holding time given i and j. 

The probabilities are related as follows: 

( )
( )

, 0,

1 , .

ij
ij

ijij

C t
if p

pG t
otherwise

⎧
≠⎪= ⎨

⎪
⎩

  

Basically, an HSMP works in the following way: when state i is reached, the next state j to 

be occupied by the process is immediately drawn from the transition probabilities pij of the 

EHMP. Given the current (i) and next (j) states, the sojourn time (t) in state (i) is sampled 

from the CDF Gij(t). Thus, the next transition time (tn+1) is determined as tn+1 = tn + t. 

The future behavior of an HSMP over time may be assessed through its interval transition 

probabilities φij(t)=Pr[Zt=j | Z0=i], Z = (Zt, t ∈ 0R+ ), which are given as follows (see Corradi 

et al. (2004)): 

( )
1 0

( ) 1 ( ) ( ) ( )
tN

ikij ij i kj
k

t F t C t dφ δ τ φ τ τ
=

= − + ⋅ −∑∫
i

 (2-3)

where 
( )

( ) ij
ij ij

d G t
C t p

dt

⎡ ⎤⎣ ⎦= ⋅
i

 is the derivative of the kernel of the HSMP in relation to the 

sojourn time t, and δij is the Kronecker’s delta for which holds δij = 1 if i = j and δij = 0, 
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otherwise. Eq. (2-3) assumes that the kernel Cij(t) is absolutely continuous with respect to the 

sojourn time. 

Eq. (2-3), which is a set of convolution integral equations, is interpreted as follows: the 

first part represents the probability of the process to remain in state i from 0 to t, with no state 

change in this time interval. The second part represents the probability of the process to stay 

in state i during the sojourn time τ, transiting to the intermediary state k at this time and from 

this state to j at time t, remaining (t - τ) in state k with t > τ. 

When an HSMP is defined in this way, it is said that this process is described through 

transition probabilities. However, in the context of reliability engineering, transition rates λij(t) 

rather than transition probabilities could also be attractive to define HSMP. Indeed, Becker et 

al. (2000) and Ouhbi and Limnios (1999) have modified eq. (2-3) in order to handle HSMP 

described through transition rates as follows: 

0

1 0 0

( ) exp( ( ) )

( ) exp( ( ) ) ( )

t

ij ij i

tN

ik i kj
k

t x dx

x dx t d
τ

φ δ λ

λ τ λ φ τ τ
=

= − +

+ − −

∫

∑∫ ∫
, (2-4)

where )(tijλ  is the transition rate of an HSMP defined as: 

1 1 1( ) { ( , ) ( ) | ( ) },ij n n n n n nt dt P T T t t dt Z T j Z T i T T tλ − − −= − ∈ + ∩ = = ∩ − > (2-5)

Eq. (2-5) indicates that a transition to state j occurs in an infinitesimal time interval after 

the process has remained in state i for duration t, given that no transition leaving this state has 

occurred. Moreover, ( )iλ ⋅  is the transition rate leaving state i and is given by the following 

equation: 

1

( ) ( )
N

i ik
k

λ λ
=

⋅ = ⋅∑ .  

The interpretation of eq. (2-4) is the same as the one provided for (2-3). However, the 

kernel Cij( ⋅ ) and the CDF Fi( ⋅ ) are defined in a different way as follows: 

0 0

( ) ( ) exp ( )
t z

ij ij iC t z x dx dzλ λ
⎛ ⎞
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

∫ ∫  (2-6)

and 

0

( ) 1 exp( ( ) )
t

i iF t x dxλ= − −∫ . (2-7)

Corradi et al. (2004) have developed a numerical method for HSMP directly applying a 

general numerical quadrature method to equation (2-3) (i.e., only for NHSMP described by 
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transition probabilities). However, the computational cost of this numerical solution is 

considerably high mainly because it involves solving N2 coupled integral equations with one 

variable in the time domain, t. 

Although the numerical method proposed by Corradi et al. (2004) has been originally 

developed to handle HSMP described through transition probabilities (eq. (2-3)), it is likely to 

be extended to address HSMP described through transition rates for which the interval 

transition probabilities are given in equation (2-4). 

Thus, in chapter 3 (section 3.1) it is presented a novel mathematical formulation for 

HSMP (described through either transition probabilities (eqs. (2-1) and (2-2)) or transition 

rates (eqs. (2-6) and (2-7))) as an initial value problem involving transition frequency 

densities. Moreover, in the same chapter a numerical and straightforward treatment for this 

new mathematical is drawn as an attempt to reduce the inherent computational cost that is 

present in the solution of HSMP through the N2-method. As it said, this approach is called 2N- 

due to its complexity.  

Moreover, in chapter 3 (section 3.2) there will be proposed an alternative method to the 

2N- and N2-methods for solving the interval convolution transition probability equations of an 

HSMP on continuous time. Taking advantage of the convolution feature present in 

homogenous environment, this numerical procedure is based on the application of LT which 

will be inverted by using the Gauss quadrature method known as Gauss Legendre. Basically, 

LT plays an important role since they will change the integral domain by an algebraic 

environment which is likely to reduce the computational time of the solution. 

Comparisons in terms of computational time and accuracy among the N2-, 2N- and Lap- 

methods and Monte Carlo simulation will be accomplished in chapter 4 in order to validate 

the effectiveness of the proposed models for solving HSMP. 

2.3. Non-Homogeneous semi-Markov processes 

NHSMP are introduced here using a similar nomenclature to the one given in Janssen and 

Manca (2001). Thus, let define the following random variables: 

: , : [0, [,n nZ S TΩ→ Ω→ ∞   

where nZ , nT  and 1n n nX T T −= −  are the state, process time, and sojourn time in the nth 

transition, respectively. 

The process ( ),n nZ T  is called non-homogeneous Markov renewal process if 
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1 1 1 1 0 0

1 1

Pr[ , | , , , ,..., , ]

Pr[ , | , ]

n n n n n n

n n n n

Z j T t Z i T l Z T Z T

Z j T t Z i T l

+ + − −

+ +

= ≤ = =

= = ≤ = =
.  

The kernel Cij( ⋅ , ⋅ ) of an NHSMP is defined as: 

( ) 1 1, Pr[ , | , ]ij n n n nC l t Z j T t Z i T l+ += = ≤ = = . (2-8)

Eq. (2-8) is the probability of the process to reach state j at the time 1nT t+ ≤  given that it 

has reached state i at the time l, and remained there for 1nX x+ ≤ . The kernel Cij( ⋅ , ⋅ ) is the 

fundamental describer of an NHSMP as its elements determine the transitions between states, 

the time of the next transition (t) and then sojourn time (x) conditioned on the current state (i) 

and the last transition time (l). 

It follows that: 

( ) 1 1Pr[ | , ] lim ( , ), ,ij n n n ijt
p l Z j Z i T l C l t i j S− − →∞

= = = = = ∈ ,  

where P(l) = [pij(l)] is the matrix of transition probabilities of the continuous-time embedded 

non-homogeneous Markov process (ENHMP), which is the non-homogeneous Markov 

process associated to the NHSMP. 

NHSMP will leave state i within the time interval from l to t with probability given by: 

[ ]1( , ) Pr | ,i n n nF l t T t Z i T l+= ≤ = = , (2-9)

which represents the CDF of the waiting time in state i. 

Eqs. (2-8) and (2-9) are related as follows: 

1
( , ) ( , )

N
i ijj

F l t C l t
=

=∑ .  

In fact, ( , )iF ⋅ ⋅  means the probability that the NHSMP leaves state i when its successor 

state j is unknown. 

The conditional CDF of the sojourn time in the current state (i) given the next state (j) to 

be occupied by the process and the last transition time (l) is given as: 

( ) [ ]1 1, Pr | , , .ij n n n nG l t T t Z i Z j T l+ += ≤ = = =   

The probabilities are related as follows: 

( ) ( )
( , )

, ( ) 0,
,

1 , .

ij
ij

ijij

C l t
if p l

p lG l t
otherwise

⎧
≠⎪= ⎨

⎪
⎩

  

According to D’amico et al. (2005), the main difference between a non-homogeneous 

Markov process and an NHSMP is on the CDF Gij(l,t). In a Markovian environment, such 
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functions must be exponential negative whereas in a semi-Markov context Gij(l,t) may be 

arbitrary and not necessarily exponential. 

Basically, an NHSMP works in the following way: when state i is reached at the time l, 

the next state j to be occupied by the process is immediately drawn from the transition 

probabilities pij(l) of the ENHMP. Given the current (i) and next (j) states and the last 

transition time (l), the sojourn time (x) in state (i) is sampled from the CDF Gij( ⋅ , ⋅ ). Thus, the 

next transition time (t) is determined as t = l + x. 

The future behavior of NHSMP over time is assessed through its interval transition 

probabilities φij(l,t)=Pr[Zt=j | Zl=i], Z = (Zt, t ∈ 0R+ ), which are given as follows (see Janssen 

and Manca (2001)): 

( )
1

( , ) 1 ( , ) ( , ) ( , )
tN

ikij ij i kj
k l

l t F l t C l t dφ δ τ φ τ τ
=

= − + ⋅∑∫
i

 (2-10)

where 
( ) ( , )

( , ) ij ij
ij

d p l G l t
C l t

dl

⎡ ⎤⋅⎣ ⎦=
i

 is the derivative of the kernel of the NHSMP in relation to l, 

and δij is the Kronecker’s delta for which holds δij = 1 if i = j and δij = 0, otherwise. Eq. (2-10) 

assumes that the kernel Cij( ⋅ , ⋅ ) is absolutely continuous with respect to the process time. 

Eq. (2-10) is interpreted as follows. The first part represents the probability of the process 

to remain in state i from l to t, with no state change in this time interval. The second part 

represents the probability of the process to reach state i at the time l, and the intermediary 

state k at the time τ, and to transit from this state to j at the time t, remaining (x = τ - l) in the 

state i and (x = t - τ) in the state k before reaching the state j at t, with t > τ > l. 

Transition rates that depend on both types of time variables (sojourn and process) may 

occur in problems of practical interest, for example, in FTS which are under deteriorating 

processes (see Moura (2006), for example). Therefore, it is necessary to develop a non-

homogeneous semi-Markovian model described by transition rates which depend on both 

sojourn and process times. 

Becker et al. (2000) defined the transition rate of an NHSMP as follows: 

( , ) Pr{ ( , ) ( ) | ( )

}.

ij l t dx t l x x dx Z t j Z l

i t l x

λ = − ∈ + ∩ =

= ∩ − >
 (2-11)

Eq. (2-11) represents a transition to state j which occurs in an infinitesimal time interval 

after the process has reached state i at time l, given that no transition leaving such a state 

occurred before. Note that both t and l represent process times, but l is the time of the last 

transition so that t=x+l as occurs for NHSMP described by transition probabilities. 
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To obtain the interval transition probabilities of an NHSMP defined by transition rates, 

one has to consider that the process is non-homogeneous in relation to the process time. Thus, 

φ(l,t) are given as follows: 

( )

( )
1

( , ) exp ,

( , ) exp , ( , ) .

t

ij ij i
l

tN

ik i kj
k l l

l t l t dx

l l x dx t d
τ

φ δ λ

λ τ λ φ τ τ
=

⎛ ⎞
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟+ −
⎜ ⎟
⎝ ⎠

∫

∑∫ ∫
 (2-12)

Eq. (2-12) means the same of eq. (2-10). The only idiosyncrasy regards the kernel Cij( ⋅ ) 

and the CDF Fi( ⋅ ) since they are defined in a different way as follows: 

( )( , ) ( , ) exp ,
t

ij ik i
l l

C l t l l dx dz
τ

λ τ λ τ
⎛ ⎞
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

∫ ∫  (2-13)

and 

( )( , ) 1 exp ,
t

i i
l

F l t l t dxλ
⎛ ⎞
⎜ ⎟= − −
⎜ ⎟
⎝ ⎠
∫ . (2-14)

Note that eqs. (2-10) and (2-12) are not of convolution type as is for the case of 

homogeneous semi-Markov processes (see previous section). In this way, the LT technique 

that is widely applied for HSMP could not be used in the non-homogeneous environment. 

Therefore, Janssen and Manca (2001) have developed the N2-numerical method for 

NHSMP directly applying a general numerical quadrature method to eq. (2-10) (i.e., only for 

NHSMP described by transition probabilities). However, the computational cost of this 

numerical solution is considerably high mainly because it involves the solution of N2 non-

convolution coupled integral equations and with two variables in the time domain, l and t. 

Thus, in chapter 5 it is developed a novel mathematical formulation for NHSMP 

(described through either transition probabilities (eqs. (2-8) and (2-9)) or transition rates (eqs. 

(2-13) and (2-14)) as an initial value problem involving transition frequency densities. 

Moreover, in the same chapter a numerical and straightforward treatment for this new 

mathematical is drawn as an attempt to reduce the inherent computational cost that plagues 

the solution of NHSMP through the N2-method. This approach is called 2N- due to its 

complexity. 
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3. SOLVING HOMOGENEOUS SEMI-MARKOV PROCESSES: 2N- 
AND LAP- APPROACHES 

3.1. 2N-method: Mathematical Formulation and Numerical Treatment 

The mathematical and numerical treatments, which is called 2N-method and will be 

developed in this chapter, is put forward as an attempt for untangling the inherent 

computational cost that plagues the solution of HSMP via the classical method given in 

Corradi et al. (2004). 

Basically, by changing N2-effort by 2N-complexity, the 2N-approach tends to reduce 

considerably the computational effort in relation to the N2-method and MC simulation as well, 

keeping the accuracy of the abovementioned approaches. The main findings of this section 

can be encountered in Moura and Droguett (2009d) which follows in attachment D. 

3.1.1. An initial value problem involving transition frequency densities 

Depending on how an HSMP is described, the kernel Cij( ⋅ ) and the CDF Fi( ⋅ ) are given 

by equations (2-1) and (2-2) in case of transition probabilities or by equations (2-6) and (2-7) 

in case of transition rates. The 2N-numerical approach will be developed in a general way in 

order to handle both situations. 

Thus, an initial value problem consists of computing the probabilities φj(t) given the initial 

conditions φj(0). By using a similar nomenclature to the one given in Becker et al. (2000), let 

Nj(t) be the number of times that state j of an HSMP is visited from any state in the interval 

[0,t]. Let also Hj(t) = E[Nj(t)] be its expected value. If Hj(t) is continuously differentiable, then 

hj(t)dt = dHj(t) is its corresponding density function. 

As the stochastic process under consideration is regular, i.e., no more than one transition 

can occur in any interval (t, t+dt), then hj(t) can be assumed as the probability that a transition 

occurs to state j in an infinitesimal time interval dt as follows: 

hj(t)dt=Pr{to reach state j in (t, t+dt)}.  

Thus, it follows that: 

( ) ( ) ( ) ( )
1 1 0

0 ( ) .
tN N

ijj i ij i
i i

h t C t h C t dφ τ τ τ
= =

= ⋅ + ⋅ −∑ ∑∫
i i

 (3-1)

According to the description of eq. (2-1), (3-1) means state j can be reached either if the 

process was initially in state i and remains there until time t, when a transition to state j 

occurs; or if the process reached state i at time τ, remaining there for x = t − τ, then a 
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transition to state j occurs. The summation over the state number N is for all possible 

intermediary states, where HSMP can transit. The integral term in turn means that the 

transition to state i may occur in any time τ ∈ [0,t]. 

Eq. (3-1) corresponds to a system of N integral equations with unknowns hj(t), j = 1,…,N. 

The probabilities φj(t)=Pr[Zt=j | Z0] can be obtained from the initial conditions φj(0) as 

follows: 

( ) ( ) ( )
0

0 [1 ( )] [1 ( )]
t

j j j j jt F t h F t dφ φ τ τ τ= ⋅ − + ⋅ − −∫ . (3-2)

Eq. (3-2) argues that a process can be in state j in time t either if it was initially in the state 

j and remained there at least up to time t; or if it visited state j at any time τ ∈ [0,t] with 

probability hj(t) and stayed there for (t − τ). Eq. (3-2) corresponds to N straightforward 

integrations that can be solved independently by using the solution of equation (3-1). 

Thus, eqs. (3-1) and (3-2) extend the formulation presented in Becker et al. (2000) in order 

to address HSMP described in terms of both transition probabilities and transition rates. 

The computational effort to solve eqs. (3-1) and (3-2) is less demanding than in the case of 

the N2-method described in Corradi et al. (2004). In fact, the 2N-method consists of solving N 

coupled convolution integral equations with one variable (eq. (3-1)) and N straightforward 

integrations (eq. (3-2)) whereas the N2-method consists of solving N2 coupled convolution 

integral equations. Comparisons among the 2N-approach, the N2-method and the Monte 

Carlo-based solution will be presented in chapter 4. Before that, a general quadrature based 

method for simultaneously solving equations (3-1) and (3-2) is presented in next section. 

3.1.2. Numerical formulation 

3.1.2.1. Description of the numerical solution 

A numerical integration or quadrature method can be written as follows (see Press et al. 

(2002)): 

,
00

( ) ( )
kh k

kd w hτ
τ

ϕ τ τ ϕ τ
=

≅ ⋅∑∫ , (3-3)

where h is the step measure and ,kwτ  are the weights related to the quadrature formula (3-3). 

Note that such weights do not depend on the integrand function ϕ( ⋅ ); they are function of the 

start point ( 0 ), of the end ( kh ) and the intermediary ( hτ ) points at which the function value is 

computed. Moreover, one has M such that Mh T= , with 0 kh T≤ ≤ , , ,k M k M≤ ∈`  where 

[0, ]T  is the integration interval, M is the number of steps and h is the step interval. 
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Using (3-3), a solution for (3-1) is given as: 

� ( ) � ( ) ( ),
1 0

( ) ( )
N k

j i ijj k
i

h kh a kh w h h C k hτ
τ

τ τ
= =

⎛ ⎞
= + ⋅ ⋅ −⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑

i
 (3-4)

where 

( ) ( )
1

0 ( )
N

ijj i
i

a kh C khφ
=

= ⋅∑
i

, (3-5)

where the notation ~  means an approximation, i.e., � ( )jh kh  is a numerical approximation for 

( )jh kh . 

The system of eqs. (3-4) can be written as follows: 

� ( ) � ( ) ( ),
1 0

( ) ( )
N k

j i ijk j
i

h kh w h h C k h a khτ
τ

τ τ
= =

⎛ ⎞
− ⋅ ⋅ − =⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑

i
 (3-6)

or in matrix form: 

i i( ) ( )(( ) ) ( )
0

k
T TT T
kh hk h khH H Aττ

τ
−

=

− Ψ ⋅ =∑ , (3-7)

where the symbol T represents the transpose matrix, i ( )
T

H ⋅  and ( )
TA ⋅  are N-order matrices, and 

( )
T
⋅Ψ  is N2-order matrix, where: 

,( ) ( )ijij kw Cτψ ⋅ = ⋅
i

. (3-8)

Alternatively, eq. (3-7) can be rewritten as follows: 

iTT T⋅ =U H A , (3-9)

where 

(0 )

(1 ) (0 )
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T T T
h h h

T T T T
Mh M h M h h

I
I

I

I

τ τ

τ

−

− −

⎡ ⎤−Ψ
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TA  (3-10)

A bold face notation is used for a matrix of matrices as in i,
TTU H , and TA . Eq. (3-9) is 

used to compute the N-order matrices i ( )
T

hH τ , whose elements � ( )jh hτ  are the density functions 

of the number of times that state j of an HSMP is visited from any state in the interval [0,τh], 

with 1,...,j N=  and 0,..., Mτ = . 

Having estimated the matrix iT
H , the next step consists in computing the N state 

probabilities � ( )j tφ . In fact, a numerical solution for the state probabilities � ( )j tφ  can be 

computed as follows: 

� ( ) ( ) � ( ),
0

0 [1 ( )] [1 (( ) )]
k

jj j k jj kh F kh w h h F k hτ
τ

φ φ τ τ
=

= ⋅ − + ⋅ ⋅ − −∑ , (3-11)

where � ( )jh hτ  (j = 1,…,N and τ = 0,…,M) are step-solutions obtained from eq. (3-8). In this 

way, i i ( ) i ( ) i ( )0 ,..., ,...,h h Mhτ⎡ ⎤= Φ Φ Φ⎣ ⎦Φ  is comprised of M matrices i ( )hτΦ  each one of order N.  

Note that, rather than solving the N2 coupled integral equations through the direct 

application of any general quadrature method to either equation (2-10) or (2-12), the approach 

just described estimates the state probabilities of an HSMP by solving N coupled integral 

equations (eq. (3-6)) and N straightforward integrations (eq. (3-11)). 

For example, by using the extended Simpson’s rule given in Press et al. (2002) (p. 138), 

eqs. (3-6) and (3-11) can be written in the following way: 

� ( ) � ( ) ( )

� ( ) (

� ( ) ( )

� ( ) ( )

1

2

1 1

1
2

1 1

1

( ) 0
3

4 (2 1) ( 2 1)
3

2 2 ( 2 )
3

0
3

N

j i ijj
i

k
N

i ij
i

k
N

i ij
i

N

i ij
i

hh kh a kh h h C kh

h h h C k h

h h h C k h

h h kh C h

τ

τ

τ τ

τ τ

=

= =

−

= =

=

= + ⋅

+ − ⋅ − +

+ ⋅ −

+ ⋅

∑

∑∑

∑∑

∑

i

i

i

i

 

 



Chapter 3                                                                    Solving HSMP: 2N- and Lap- approaches 

 30

and 

� ( ) ( ) � ( )

� ( )

� ( )

� ( )

2

1

1
2

1

0 [1 ( )] 0 [1 ( )]
3

4 (2 1) [1 (( 2 1) )]
3

2 2 [1 (( 2 ) )]
3

[1 (0 )].
3

jj j jj

k

j j

k

j j

j j

hkh F kh h h F kh

h h h F k h

h h h F k h

h h kh F h

τ

τ

φ φ

τ τ

τ τ

=

−

=

= ⋅ − + ⋅ ⋅ −

+ ⋅ − ⋅ − − +

+ ⋅ ⋅ − −

+ ⋅ ⋅ −

∑

∑

 

(3-12) 

3.1.2.2. Solution conditions and upper limit estimate of the discretization error 

From eq. (3-4) follows that: 

� ( ) � ( ) ( )

� ( ) ( )

,
1

1

,
1 0

0

( ) ( ) .

N

j i ijk k
i

N k

i ijj k
i

h kh w h kh C h

a kh w h h C k hτ
τ

τ τ

=

−

= =

− ⋅ ⋅

⎛ ⎞
= + ⋅ ⋅ −⎜ ⎟⎜ ⎟

⎝ ⎠

∑

∑ ∑

i

i
 (3-13)

By writing eq. (3-13) in terms of j = 1,…,N, it follows that: 

� ( ) � ( ) ( )1 1, 1
1

0
N

i ik k
i

h kh w h kh C h d
=

− ⋅ ⋅ =∑
i

  

� ( ) � ( ) ( )2 2, 2
1

0
N

i ik k
i

h kh w h kh C h d
=

− ⋅ ⋅ =∑
i

  

                      #         #        #         #   

� ( ) � ( ) ( ),
1

0
N

N i iNk k N
i

h kh w h kh C h d
=

− ⋅ ⋅ =∑
i

, (3-14)

where jd , j = 1,…,N is the right-hand side term of equation (3-13). 

According to Press et al. (2002), it is guaranteed that the set of linear algebraic equations 

given in eq. (3-14) has solution if the matrix of known coefficients 

11 12 1 1

21 22 2 2

1 2

1 2

1 (0 ) (0 ) (0 ) (0 )
(0 ) 1 (0 ) (0 ) (0 )

,
(0 ) (0 ) 1 (0 ) (0 )

(0 ) (0 ) (0 ) 1 (0 )

j N

j N

i j ij iN

N N Nj NN

h h h h
h h h h

h h h h

h h h h

ψ ψ ψ ψ
ψ ψ ψ ψ

ψ ψ ψ ψ

ψ ψ ψ ψ

− − − −⎡ ⎤
⎢ ⎥− − − −⎢ ⎥
⎢ ⎥
⎢ ⎥
− − − −⎢ ⎥

⎢ ⎥
⎢ ⎥
− − − −⎢ ⎥⎣ ⎦

" "
" "

# # % # % #
" "

# # % # % #
" "

  

is not degenerate, i.e., is not singular, where ( )ijψ ⋅  is given in eq. (3-8). The non-singularity 

happens if none of the N eqs. in (3-14) is a linear combination of the others. If this condition is 

satisfied, the eq. (3-11) of unknowns � jφ  also admits solution given the solution of (3-4). 
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In the subsequent development, we make use of the following Lemmas 1 and 2 and 

Remark 1 from Baker (1977), and described in Corradi et al. (2004), that also hold for the 2N-

mathematical formulation: 

Lemma 1 (Baker (1977), p. 925). If 1

0
, , 1,..., 1v

v ii
A B v q q qξ ξ−

=
≤ + = + ≥∑ , where 0, 0A B> >  

and 1

0

q
ii
ξ ξ−

=
≤∑ , then: 

( )(1 ) , , 1,....v q
v A B A v q qξ ξ −≤ + + = +  

Lemma 2 (Baker (1977), p.926). Suppose that: 0A hL= ≤  and 0ph x= ≥ . Then 

(1 ) exp( )p qA Lx−+ ≤  if p q≥ . 

Remark 1 from Lemmas 1 and 2 results: 

( )(1 ) ( ) exp( ) ( ) exp( )v q
v A B A A B Lx hL B Lrhξ ξ ξ ξ−≤ + + ≤ + = + . 

Theorem 1: Let 

[ ]( ) : 0,jh t Y → \  

Let { }0,..., 1q M∈ − , M ∈` , such that 0 qh M≤ ≤ . 

Let 
�( ) ( ) ( )k

jj jh h kh h khξ = −     0,1,...,k M= , (3-15)

where ( )jh kh  is solution of equation (3-1) and � ( )jh kh  is solution of equation (3-4). 

Define also: 

1
( ) ( )

N
k k

i
i

h hη ξ
=

= ∑ . 

Moreover, let 

,

0
max kl l

M k M

w
w w

h
τ

τ≤ ≤ ≤
= = < ∞  (3-16)

( ) ( ) ( ) ( ),
1 1 00

( ) ( )
khN N k

k
ij ijj i k i

i i

t h h C kh d w h h C k hτ
τ

ϑ ϑ ϑ τ τ
= = =

⎡ ⎤
= ⋅ − − ⋅ ⋅ −⎢ ⎥

⎢ ⎥⎣ ⎦
∑ ∑ ∑∫

i i
 (3-17)

1
( ) ( )

N
k k

i
i

h t hσ
=

= ∑ ,  

( ) ( ) max ( )l l k
M q k M

h h hρ ρ σ
≤ ≤

= =  (3-18)

1

0
( ) ( )

q
l h hτ

τ

ξ η
−

=

= ∑ .  

Suppose that 1( )ijC t d≤
i

 for [ ]0,t T∈ . 

Then 
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( ) 1 1

1 1

( ) ( )
exp

1 1

l l l l
k M M

l l
M M

h Nhw d h Nd w kh
h

Nhw d Nd w h
ρ ξ

η
⎛ ⎞ ⎛ ⎞+

≤ ⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠
, (3-19)

, 1,...,k q q M= +  

given that 1 1l
MNhw d < . 

Proof: From eq. (3-4) it follows that for k q≥ : 

( ) ( ) ( )

( ) ( ) ( ) ( )

,
1 0

,
1 1 00

( ) ( )

( )

N k

ijj k i j
i

khN N k

ij iji k i
i i

h kh w h h C k h a kh

h C kh d w h h C k h

τ
τ

τ
τ

τ τ

ϑ ϑ ϑ τ τ

= =

= = =

⎛ ⎞
− ⋅ ⋅ − =⎜ ⎟⎜ ⎟

⎝ ⎠

⎛ ⎞
+ ⋅ − − ⋅ ⋅ −⎜ ⎟⎜ ⎟

⎝ ⎠

∑ ∑

∑ ∑ ∑∫

i

i i
. (3-20)

From eqs. (3-4) and (3-20), it follows that: 

� ( ) ( ) ( ) ( )

� ( ) ( ) ( ) ( )

( ) ( )

,
1 0

,
1 0 1 0

,
1 0

( )

( )

( )

N k

j ijj k i
i

khN k N

i ij ijk i
i i

N k

ijk i
i

h kh h kh w h h C k h

w h h C k h h C kh d

w h h C k h

τ
τ

τ
τ

τ
τ

τ τ

τ τ ϑ ϑ ϑ

τ τ

= =

= = =

= =

⎛ ⎞
− + ⋅ ⋅ −⎜ ⎟⎜ ⎟

⎝ ⎠

⎛ ⎞
= ⋅ ⋅ − − ⋅ −⎜ ⎟⎜ ⎟

⎝ ⎠

⎛ ⎞
+ ⋅ ⋅ −⎜ ⎟⎜ ⎟

⎝ ⎠

∑ ∑

∑ ∑ ∑∫

∑ ∑

i

i i

i

  

and from eqs. (3-15) and (3-17): 

� ( ) ( ) ( ) ( ), ,
1 0 0

( ) ( ) ( )

( ).

N k k
k

i ij ijj k k i
i

k
j

h w h h C k h w h h C k h

t h

τ τ
τ τ

ξ τ τ τ τ
= = =

⎡ ⎤− ⋅ ⋅ − − ⋅ ⋅ −⎢ ⎥
⎣ ⎦

= −

∑ ∑ ∑
i i

  

Hence, 

( ) � ( ) ( ),
1 0

( ) ( ) ( )
N k

k k
ij ij k i j

i
h w C k h h h h h t hτ

τ

ξ τ τ τ
= =

⎧ ⎫⎡ ⎤− ⋅ − ⋅ − = −⎨ ⎬⎣ ⎦⎩ ⎭
∑ ∑

i
  

and 

( ),
1 0

( ) ( ) ( ) ( )
N k

k k
ijj k i j

i
h w C k h h t hτ

τ
τ

ξ τ ξ
= =

⎡ ⎤
− ⋅ − ⋅ = −⎢ ⎥

⎣ ⎦
∑ ∑

i
.  

It follows from eq. (3-16) that: 

( ),
1 0

1
1 0

( ) ( ) ( ) ( )

( ) ( ) .

N k
k k

ijj j k i
i

N k
k
j M i

i

h t h w C k h h

t h d w h h

τ
τ

τ

τ

τ

ξ τ ξ

ξ

= =

= =

≤ + ⋅ − ⋅

≤ +

∑∑

∑∑

i

.  

Therefore, 

1
0 1

( ) ( ) ( )
k N

k k
j j M i

i
h t h d w h hτ

τ

ξ ξ
= =

≤ + ∑∑ .  

Performing the summation in relation to the index j = 1,…,N, one obtains that: 
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1
1 1 0 1

( ) ( ) ( )
N N k N

k k
j j M i

j j i

h t h Nd w h hτ

τ

ξ ξ
= = = =

≤ +∑ ∑ ∑∑ . (3-21) 

Eq. (3-21) implies that: 

( ) ( ) ( )1
0

k
k k

Mh h Nd w h hτ

τ

η σ η
=

≤ + ∑   

and 

( ) ( ) ( )
1

1 1
0

(1 )
k

k k
M MNd w h h h Nd w h hτ

τ

η σ η
−

=

− ≤ + ∑ .  

From eq. (3-18), it follows that: 

( ) ( ) ( )
1

1 1
0

(1 )
k

k
M M MNd w h h h Nd w h hτ

τ

η ρ η
−

=

− ≤ + ∑ .  

Now, from Lemmas 1 and 2, it follows that: 

1

11
M

M

Nd w h
A

Nd w h
=

−
,  

1

( )
1

M

M

h
B

Nd w h
ρ

=
−

  

From Remark 1, it follows that: 

1

11
M

M

Nd wAL
h Nd w h

= =
−

.  

Therefore, one has that: 

( ) 1

1

( ( ) ) exp
1

k M

M

Nd w kh
h A h B

Nd w h
η ξ

⎛ ⎞
≤ + ⎜ ⎟−⎝ ⎠

  

what implies that: 

( ) 1 1

1 1

( ) ( )
exp

1 1
k M M M

M M

h Nhw d h Nd w kh
h

Nhw d Nd w h
ρ ξ

η
⎛ ⎞ ⎛ ⎞+

≤ ⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠
. •

This proves the result in eq. (3-19). The same conclusion was reached in Corradi et al. 

(2004) for the N2-method. In other words, the same upper limit of the discretization error in 

solving the interval transition probabilities via N2-method is found when hj(t) is approximated 

via eq. (3-4). 

However, the upper limit of the 2N-discretization error function should also take into 

account the error made in eq. (3-11). Actually, the error estimate � ( ) ( )( )k
j jjh kh khς φ φ= −  in 

computing � ( )j tφ  through eq. (3-11) given the solution of (3-4) depends only on the choice of 

the quadrature method. In eq. (3-12), for instance, the error term is equal to ( )4( ) 1/k
j jh O kς = . 
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This means that the true answer ( )j khφ  differs from the estimate � ( )j khφ  by an amount equals 

to 41/ k  (see Press et al. (2002) for further details) which tends to zero when k increases. 

Disregarding the inequality in eq. (3-19), the most important finding encountered in the 

preceding developments is that even though 2N-method has a greater discretization error than 

N2-approach their accuracy will approximately be equal when the number M of steps 

increases. 

In other words, for the same M, the 2N-approach tends to be significantly less time-

consuming and has rough accuracy to the N2-method. In chapter 5, when the 2N-method 

drawn for NHSMP will be discussed the inequality in eq. (3-19) will again be considered. 

3.2. Lap-method: A Laplace-based numerical procedure to solve the state 
probability equations of HSMP 

In the present section the Lap-procedure is discussed. This numerical method is also 

drawn for HSMP described through either transition probabilities or transition rates. Basically, 

it is based on the application of Laplace transforms which will be inverted by using the Gauss 

quadrature method known as Gauss Legendre. 

As it will be seen, conversely to the 2N- and N2-approaches, the main advantage of this 

approach is that it is not required adjusting the number M of steps in order to obtain desired 

convergence. There will be a pre-set number of steps, which is independent on the problem to 

be solved and thus, this method is likely to have a considerable reduced computational effort 

in relation to the 2N- and N2-methods and MC as well. In other words, the features of this 

method will quit the need of previously specifying a number M of steps for each problem, thus 

reducing time for performing calculus. The main developments of this chapter may be found 

in Moura and Droguett (2008) and Moura and Droguett (2009b) which follow in attachments 

A and E respectively. 

3.2.1. State probabilities for HSMP via Lap-procedure 

Basically, eq. (3-1) can be written in matrix form as: 

( ) ( ) ( ) ( )

( ) ( )
( ) ( )

( ) ( )

1 1

11 1

1
0

1

N N

Nt

N

N NN

h t h t a t a t

C t C t
h h d

C t C t

τ τ
τ τ τ

τ τ

⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦
⎡ ⎤

− −⎢ ⎥
⎢ ⎥⎡ ⎤+ ⋅⎣ ⎦ ⎢ ⎥
⎢ ⎥

− −⎢ ⎥⎣ ⎦

∫

i i

i i

" "

"
" # % #

"

, 
(3-22) 

 

where ɑj(t) is given by eq. (3-5) and ( )ijC t
i

 is the derivative of the HSMP’s kernel. 

Eq. (3-22) can be rewritten as: 
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( )

( )

( )

( )

( ) ( )

( ) ( )

( )

( )

11 11 1 1

0
1

T
T T T

Nt

N N N
N NN

h t a t C t C t h
d

h t a t h
C t C t

τ τ τ
τ

τ
τ τ

⎡ ⎤
⎡ ⎤ ⎡ ⎤ ⎡ ⎤− −⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥= + ⋅⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦− −⎢ ⎥⎣ ⎦

∫

i i

i i

"
# # # % # #

"

.  

where symbol T  represents transpose matrix. Hence, in a more compact way: 

( ) ( ) ( ) ( )
0

t T
T T T

H t A t C t H dτ τ τ
⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + − ⋅⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦∫
i

. (3-23)

Notice this formulation is general since it can address HSMP described by transition 

probabilities or transition rates. The only difference is how kernel is defined: either by eq. 

(2-1) for transition probabilities or (2-6) for transition rates. 

In order to compute the state probabilities of HSMP, the Lap-procedure is based on the 

application of the LT to these equations and the corresponding inversion to obtain the solution 

on time domain t . 

Indeed, by applying LT to eq. (3-23), taking into account that the LT of the convolution of 

two independent functions ( ( )C ⋅
i

 and ( )H ⋅ ) is equal to the product between their individual LT 

and using i ( )f s  as the LT of a function ( )f t , it follows that: 

i ( ) i ( ) i ( ) i ( )*
T T T T

H s A s K s H s⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ , (3-24)

where s is the transformed variable and i ( )K s  is the matrix of the LT of kernel derivative ( )C ⋅
i

. 

By solving (3-24) for i ( )H s , it follows that: 

i ( ) i ( ) i ( )
T T T

I K s H s A s⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤− ⋅ =⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦
. (3-25)

Eq. (3-25) corresponds to a system of linear algebraic equations that can be 

simultaneously solved by using any numerical solution method. The unknowns of (3-25) are 

the values of � ( )jh s  (with 1,...,j N= ) and will be used for computing � ( )j sφ  which comes up 

from applying LT to convolution integral equations given in (3-2) as follows: 
� ( ) ( ) ( ) � ( ) ( )0 *j j jjj s v s h s v sφ φ= ⋅ +� � , (3-26)

where ( )jv s�  is the LT of the term ( )
0

exp
t

j x dxλ
⎛ ⎞
⎜ ⎟−
⎜ ⎟
⎝ ⎠
∫ . The values � ( )j sφ  represent the solution of 

(3-26) which can be independently solved for j=1,…,N using the values � ( )jh s  obtained from 

(3-25). 
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Given the solution of (3-26) (LT of the state probabilities for HSMP), the problem now 

consists of inverting the LT to obtain the state probabilities on the time variable t. The 

inversion method on which the Lap-method is backed up will be described in next subsection. 

3.2.2. Numerical Inversion of Laplace Transforms: Gauss-Legendre based 
method 

The numerical inversion of LT consists of obtaining estimates for f(t) given numerical 

values of the transform function 
~

( )f s : 

i ( )
0

( ) ,stf s e f t dt
∞

−= ∫  (3-27)

where s is the transformed variable. 

Some methods have been proposed in the literature to solve this problem such as Valkó 

and Abate (2004), Abate and Valkó (2004), Kryzhniy (2004), Milovanovic and Cvetkovic 

(2005) and Cuomo et al. (2007). 

The numerical inversion method of LT presented here to compute the interval transition 

probabilities of an HSMP is based on a Gaussian quadrature method known as Gauss 

Legendre (Bellman et al. (1966) and Abramowitz and Stegun (1972)). Recently, Oliveira et al. 

(2005) has applied a similar procedure to compute the state probabilities of non-homogeneous 

MP with supplementary variables. Great results attained on this situation have led to delve on 

the feasibility of its application for solving HSMP as well, for which the dynamic behavior 

rise from a generalization of the Kolmogorov backward differential equations of the Markov 

environment. 

Thus, making the change of variables z=exp(-t), eq. (3-27) reduces to a finite Mellin 

transform (see Haidar (1997)): 

i ( ) ( )
1

1

0

( ln ) .sf s z f z dz−= −∫  (3-28)

The integral of the right hand side of (3-28) can be approximated by a Gaussian 

Quadrature which involves the weighted sum of function ( )f ⋅  in the natural log of the 

abscissas zk provided, in this case, by the Gauss Legendre integration method. Thus, 

i ( ) ( )1

1

( ln ),
M

s
k k k

k

f s w z f z−

=

= −∑  (3-29)

where kw  and kz  are the weights and abscissas, respectively, provided by the Gauss Legendre 

method. Note that wk and zk do not depend on the function ( )f ⋅ , but only on the number M of 
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quadrature points and on the integration interval. See Press et al. (2002) for further details on 

how to obtain wk and zk by the Gauss Legendre method. 

According to Press et al. (2002), the idea of Gaussian quadrature is to provide the freedom 

to choose not only the weighting coefficients, but also the location of the abscissas at which 

the function is to be evaluated: they are no longer equally spaced as occurs, for example, with 

trapezoidal rule and Simpson method. 

Representing (3-29) in matrix form, it follows that: 

i,Ψ ⋅Θ = Θ  (3-30)

where Ψ  is M2-order matrix with 1v
vk k kw zψ −=  and , 1,...,k Mν = ; Θ  is M-order matrix of the 

state probabilities ( )lnj kzφ − ; iΘ  is M-order matrix of the LT of the state probabilities � ( )j sφ , 

with 1,...,s M=  and j fixed. Given the transformed solution, eq. (3-30) is solved N times in 

order to obtain the state probabilities ( )lnj kzφ −  for j = 1...N by using any method of solution 

of linear algebraic equations such as Lower-Upper decomposition (see Press et al. (2002)). 

Before solving eq. (3-30), (3-26) ( � ( ) ( ) ( ) � ( ) ( )0 *j j jjj s v s h s v sφ φ= ⋅ +� � ) is solved M runs in 

order to obtain the LT of the state probabilities � ( )j sφ , with 1,...,s M= . 

Theoretically, the bigger the number M of discretization points the greater results will be 

obtained. However, as we are using Gaussian Quadratures (rather than an equally spaced 

general quadrature methods, such as Newton-Cotes or Simpson formulas, as holds for the 2N- 

and N2- approaches) one has more freedom in choosing the coefficients and abscissas at which 

the function f will be evaluated thus, achieving integrations formulas of higher and higher 

accuracy with a smaller number of function evaluations than Newton-Cotes formula requires, 

for example (see Press et al. (2002) for more details). 

Indeed, in accordance with a sensitivity analysis performed by Oliveira et al. (1997) one 

may obtain reasonable great accuracies with a number M of discretization points equals to 16. 

Although these sensitivity tests have been taken on the Markov environment, one has 

considerable chances to reach the same findings here provided the semi-Markov processes are 

an extension of Markov models. 

At this point, an important advantage of the Lap-numerical method comes up: whereas for 

the 2N- and N2-approaches the number of discretization points should be increased to obtain 

improved accuracies, the Lap-procedure with only 16 points will be able to provide valuable 

results with less computational cost than the 2N- and N2-methods, as it will be showed 

through the examples in chapter 4. 
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Before that, notice that the numerical method as just described is only able to compute the 

state probabilities ( )jφ ⋅  at the points ln kt z= − . However, by using the result 

~

0

1( )st se f at dt f
a a

∞
−

⎛ ⎞⎛ ⎞⎜ ⎟= ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∫ , the Lap-procedure may be used to obtain ( )lnj ka tφ − , where 0a >  

works as a scale factor and it will be defined as 
1ln

Ta z
−= , where 1z  is the minimum value of 

the abscissa provided by the Gauss Legendre method. 
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4. ASSESSING THE EFFECTIVENESS OF THE 2N- AND LAP- 
METHODS FOR SOLVING HSMP 

The present chapter focuses on scrutinizing the main findings of chapter 3, comparing the 

effectiveness in terms of computational time and accuracy of 2N- and Lap- approaches against 

the results obtained through the N2- and MC methods by means of three examples in the 

context of availability assessment. 

At first, 2N- and N2-approaches will be required for solving the homogeneous version of 

the availability assessment problem of optical monitoring systems described in section 1.2.2. 

Next, 2N- and Lap-methods will solve the pumping oil unit problem given in section 1.2.1. 

Finally, the Lap-procedure will be also used in order to perform uncertainty analysis on the 

availability measure of the same pumping oil unit. 

4.1. Optical Monitoring System Case: A Comparison Between 2N- and N2-
approaches 

In section 1.2.2, it was mentioned that the OMS dynamics should be treated by NHSMP 

due to the its peculiar characteristics. However, in this section let disregard the non-

homogeneous idiosyncrasy of that system in order to compare performances of the 2N- and 

N2-approaches designed for HSMP in treating the problem of predicting the OMS dynamic 

behavior over time. 

Given that the problem description is provided in 1.2.2, let’s move on directly towards the 

required data for modeling. In fact, data needed to estimate the state probabilities and system 

unavailability for HSMP described through transition probabilities, such as OMS, are the 

transition probabilities pij and the CDF Gij( ⋅ ) as indicated in Figure 1-3. The probabilities p23 

and p34 correspond to HEP that are assessed taking into consideration whether the “available 

time to complete the repair” is adequate or not (see section 1.2.2). 

In Droguett et al. (2008), these probabilities and their causal relationships with 

performance shaping factors are handled through BBN (see Pearl (2000) and Korb and 

Nicholson (2003) for further details on BBN). Due to the scarcity of failure data on the OMS 

performance, the probabilities p23 and p34 (and their complements p21 and p31, respectively) 

were obtained from engineering judgments (see Langseth and Portinale (2007) for further 

details on BBN in the reliability context). 

For the sake of simplicity, the integration between HSMP and BBN is not considered here. 

Therefore, in this example it is assumed that the operator HEP corresponds to 0.18 when 

under a situation of adequate available time to complete the repair, i.e., when the system 
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reaches state 2. When the system reaches state 3, the time window to complete the repair 

becomes tighter, and it is assumed an HEP equals to 0.38 (these values are from Droguett et 

al. (2008) and may also be obtained through the CPT given in Appendix B). 

The probability values pij as well as the CDF Gij( ⋅ ) of the HSMP are summarized in Table 

4-1. Note that none of the parameters given in Table 4-1 depends on the process time what 

implies the non-homogeneity has not actually been considered. 

Table 4-1 – Parameter estimates of the HSMP: pij and Gij(t) for the OMS example 

Transition  Transition probabilities of 
the EHMP Conditional CDF 

i → j pij Gij(t)
1 → 1 0.60 Exponential (1E-04h-1) 
1 → 2 0.40 Weibull (500.0h, 1.35) 
2 → 1 0.82 Exponential (0.05h-1) 
2 → 3 0.18 Weibull (300.0h, 1.75) 
3 → 1 0.62 Exponential (0.05h-1) 
3 → 4 0.38 Lognormal (4.0h, (0.40)2h2) 

It is now possible to estimate the state probabilities (eq. (3-2)) and the system 

unavailability by solving the 2N-numerical procedure described in chapter 3 (section 3.1), as 

shown in Figure 4-1 for a mission time of 1 year (8760 hours) and M = 2,500 steps for the 2N-

method, as well as according to the N2-method described in Corradi et al. (2004) (with M = 

2,500) and to the MC simulation (with M = 2,500 and 100,000 samples). 
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Figure 4-1 – State probabilities and unavailability curves for example 2 - 2N-method x N2 and Monte Carlo approaches: (a) 
1( )tφ ; (b) 2 ( )tφ ; (c) 3 ( )tφ ; (d) 4 ( )tφ ; (e) unavailability 

Note that the measures estimated by the 2N-method match the computed values obtained 

by the application of MC simulation as well as by the N2-solution. These results provide a 

validation of the accuracy of 2N-numerical treatment then. 

Furthermore, even though the simulation times depend on the computer settings, a 

considerable difference in terms of computational effort is verified in this example. Indeed, in 

an Intel® Core Dual Core Processor 32-bit Operating System, 2.00 GHz, 250.0 Gb and 2.00 

GB of RAM1, the 2N-method required 27.56 seconds, whereas the MC and the N2 approaches 

spent 1,163.25 seconds and 40,551.05 seconds, respectively. 

The difference in CPU time required by the N2 and MC methods and the 2N-approach 

underlines the efficiency of the latter in quickly achieving meaningful results with accuracy 

comparable to the N2-method. 

4.2. Pumping Oil Unit Case: A Comparison Between 2N- and Lap-approaches 

Since the 2N-method has obtained noteworthy results, this section aims comparing it 

against the Lap-procedure through the pumping oil unit case, which was described in section 

1.2.1 and may be modeled as an HSMP described by transition rates. 

Then, assume that system is initially in state 1, the failure (λ) and repair (μ) rates are 

constant and equal to 3.5e-3 failure/h and 0.020 repair/h, respectively, and α = 100h and β = 

2.08. Conversely to section 1.2.1, notice that the uncertainty on MTTF value has not been 

considered here. The focus on uncertainty analysis will be switched back in next section. 

By solving the state probabilities for this HSMP described by transition rates given in eq. 

(3-2), Figure 4-2 shows the outcomes provided by the Lap-procedure, 2N- and Monte Carlo 

approaches for a mission time of T = 500.0h. For sake of illustration, Figure 4-2 does not 

                                                 
1 The same computer setting will be used for the next examples. 
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depict the results attained by N2- since previous section already showed it and the 2N-

approach show close agreement. 

 
(a) 

 
(b) 

 
(c) 

Figure 4-2 – State probabilities – Lap-method x 2N- and MC approaches: (a) 1( )tφ ; (b) 2 ( )tφ ; (c) 3 ( )tφ  

In this example of application, the MC algorithm ran with 100,000 iterations and M = 500 

steps. For the 2N- and N2- methods, M = 500 steps were used. Note that in Figure 4-2, the 

state probabilities computed by the Lap- and 2N- numerical procedures and by simulation 

show close agreement, providing a validation of the Lap-technique in relation to its numerical 

approximation. 

Furthermore, the Lap-numerical technique has computed the state probabilities for this 

HSMP described by transition rates considerably faster than the 2N- and N2- and MC 

approaches. Indeed, the Lap-method spent less than one second (0.06 seconds), while the 2N-, 

N2- and MC approaches took 1.97, 1,317.12 and 64.10 seconds, respectively. 

4.3. Pumping Oil Unit: Availability Uncertainty Analysis Through Lap-method 

In section 1.2.1, the pumping oil unit problem had been described considering the 

uncertainty on MTTF value which was influenced by external factors (see Figure 1-1). 

Basically, it is required that an HSMP-based numerical method runs several times in order to 
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catch the impact of MTTF uncertainty on the (un)availability measure. Since the Lap-

procedure has showed meaningful outcomes in terms of computational time and accuracy as 

well, it will be used to perform the availability uncertainty analysis in this section. 

Furthermore, it will be showed how to update probabilistic beliefs on availability curve as 

new evidence becomes available. 

4.3.1. Availability Measure Estimation 

Considering that the system starts its operation in state 1 (available), the availability is 

assessed for a mission time equals to T=1,000.0h. Considering also the relation λ = 1/MTTF, 

λ: failure rate, the Lap-algorithm described in section 3.2 is replicated for 100,000 iterations 

in order to explicitly quantify the uncertainty on the availability measure given uncertainty in 

the MTTF characterized in terms of the BBN in Figure 1-1. 

Indeed, Figure 4-3(a) shows the 5th, 50th, and 95th percentile curves computed for 

availability by the Lap-numerical procedure. Each percentile corresponds to the probability 

that the availability measure value is smaller than the computed one at a specific point in the 

mission time, thus explicitly quantifying the impact of the uncertainty about the parameter 

MTTF on availability measure. Figure 4-3(b) in turn illustrates the availability curves 

computed by both Lap-numerical method and MC simulation considering the prior1 mean 

value for 5246.98priorMTTF =  h. 

(a) (b) 

Figure 4-3 – Availability Measure Curve: (a) uncertainty on availability measure; (b) Proposed numerical procedure x Monte 
Carlo simulation 

In this example, the MC algorithm for HSMP described in Moura and Droguett (2007) 

(which follows in attachment F) has run with M = 1,000 steps and 100,000 iterations for each 

step. For the Lap-method, M = 16 steps was used as discussed in section 3.2. 

                                                 
1 The term prior means CPT in Appendix A is directly used to estimate MTTF distribution. 
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Note that in Figure 4-3(b), the availability measure computed by both the Lap- and MC 

procedures show close agreement, again providing a validation of the Lap-technique in 

relation to its numerical approximation. 

Moreover, the Lap-method spent roughly 0.02 seconds per replication, while the MC took 

47.81 seconds to compute the results showed in Figure 4-3(b). 

4.3.2. Updating Probabilistic Beliefs 

The hybrid (HSMP-BBN) model allows for uncertainty updating regarding the availability 

measure as new evidence about any of the external factors influencing MTTF (Figure 1-1) 

becomes available at any point in the mission time. In fact, suppose it is known that the level 

of paraffin is inadequate for the oil to be handled by the pumping unit. This new evidence 

does not imply any changes in the BBN topology (Figure 1-1) or for the state diagram of the 

HSMP (Figure 1-2). However, the CPT of the BBN, which are given in Appendix A, are 

modified as now it is known that P(Inadequate level of paraffin) = 1. 

This new evidence impacts the future behavior of the system and consequently its 

availability measure. The uncertainty on system availability metric given the new evidence is 

characterized in terms of a posterior distribution whereas a prior distribution characterizes the 

uncertainty about availability metric before the evidence has become available as was done in 

previous subsection.  

Updating the uncertainty distribution for the MTTF according to Firmino (2004), Figure 

4-4 shows the comparison between marginal prior and posterior probability distributions for 

the MTTF. The results show that because of the inadequate paraffin level there is a shift of 

probability mass towards lower values of MTTF. 
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Figure 4-4 – Prior and posterior marginal probability distributions of MTTF 

Considering the posterior mean value for MTTF,  2800.0posteriorMTTF = h, Figure 4-5 

illustrates the impact on the availability uncertainty given the updated MTTF probability 

distribution. More specifically, the marginal probability distribution of MTTF, called 
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priorMTTF  in previous subsection, is updated given the evidence regarding the level of paraffin 

which in turn affects the availability metric. 

 
(a) (b) 

 
(c) 

Figure 4-5 – Prior and posterior availability measure: (a) Lap-method: uncertainty on posterior availability measure; (b) 

Lap-numerical procedure x Monte Carlo simulation; (c) Lap-method: Prior x posterior availability measure 

This analysis was solely based on evidence about the variable “level of paraffin”. 

Nevertheless, similar studies can be performed provided that evidence becomes available for 

other variables, for example, “percentage of H2O and solids - BWSOT”. Moreover, 

uncertainty on other reliability measures such as reliability and maintainability could be 

assessed from the proposed hybrid model (see Moura (2006) and Moura and Droguett 

(2008)). 

4.4. Comments 

Continuous-time homogeneous semi-Markov processes are important probabilistic tools to 

model reliability measures for systems whose future behavior is dependent on the current and 

next states of the process as well as on sojourn times, as for fault tolerant systems where the 

failure of a component leads to a system failure only when repair time has exceeded some 

tolerable downtime, i.e., component failure does not immediately cause a system failure. 
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HSMP were usually computed via the N2-method described in Corradi et al. (2004) where 

the future behavior of the system is assessed via interval transition probability equations 

comprised of a set of N2 coupled integral equations with one time variable t. However, this 

approach is rather time-consuming with a computational cost greater than the MC simulation. 

This situation motivated the search for more efficient numerical treatments of HSMP with 

less computational effort and with a comparable accuracy in relation to the available methods 

in the related literature (MC simulation and the N2-approach). 

In fact, the 2N-mathematical formulation and numerical treatment consists of casting the 

N2 coupled convolution integral equations into an initial value problem involving transition 

frequency densities, and then solve N coupled integral equations with one variable and N 

straightforward integrations.  

Moreover, this thesis has proposed the alternative Lap-method which makes use of LT. 

Although using Laplace apparatus on HSMP field is not novel, the Lap-procedure showed 

some noteworthy advantages: (i) it used a pre-set number of steps, which is independent on 

the problem to be solved. Thus, it is not required anymore adjusting (through either trial-error 

tests or dynamically) the number M of steps in order to attain the desired convergence. (ii) 

thus, it reduced considerably the computational effort in relation to the abovementioned 2N- 

and N2-methods and MC as well. The Lap-approach was also validated by comparison with 

the results from both the 2N- and N2-solutions and MC method.  

One drawback that deserves attention is since Lap-method is backed up on Gaussian 

Quadratures theory there is not a quite simple way to obtain an estimate of the absolute error 

made by the approach (see Press et al. (2002) for more details). Moreover, unfortunately, the 

application of the Lap-procedure within the non-homogeneous environment has not catched 

notable outcomes, as showed in Moura and Droguett (2007). 
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5. 2N-METHOD FOR NON-HOMOGENEOUS SEMI-MARKOV 
PROCESSES 

Non-homogeneity implies higher difficulties on the continuous-time semi-Markov 

processes (NHSMP) environment. This gives rise as more intricate mathematical methods and 

related numerical solutions and is one of the main reasons behind the scarcity of NHSMP 

applications.  

Indeed, the N2-method for solving NHSMP is rather burdensome (as it has already been 

seen for HSMP case in chapter 3), consisting of directly applying a general quadrature method 

to N2 coupled integral equations with two variables, where N is the number of states. 

Therefore, the next two chapters focus on developing a new and faster numerical treatment, 

which is also called 2N-method, for NHSMP and scrutinizing its effectiveness comparing 

against the results provided by the N2- method and MC. Rather than computing N2 integral 

equations, this approach consists of solving only N coupled integral equations with one 

variable and N straightforward integrations so that the high and inherent computational cost 

that plagues the solution of NHSMP is likely to be reduced. 

The main findings within this chapter can be found in Moura and Droguett (2009c), which 

follows in attachment G. As the homogenous counterpart may be considered a special case of 

NHSMP, the conclusions made over the present chapter may be specialized for the 

developments showed in chapter 3 (section 3.1). In spite of that, it was quite meaningful 

developing a particular 2N-mathematical and numerical formulations for HSMP since in this 

way its peculiar characteristics have been taken into account. 

5.1. An initial value problem for NHSMP involving transition frequency 
densities 

Depending on how an NHSMP is described, the kernel Cij( ⋅ ) and the CDF Fi( ⋅ ) are given 

by equations (2-8) and (2-9) in case of transition probabilities or by equations (2-13) and 

(2-14) in case of transition rates. The 2N-numerical approach will be developed in a general 

way in order to handle both situations. 

By using a similar nomenclature to the one in Becker et al. (2000), let recall N(t) to be the 

number of times that state j of an NHSMP is visited from any state in the interval [0,t]. Let 

also Hj(t) = E[N(t)] be its expected value. If Hj(t) is continuously differentiable, then hj(t)dt = 

dHj(t) is its corresponding density function. 
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As the stochastic process under consideration is regular, i.e., no more than one transition 

can occur in any interval (t, t+dt), then hj(t) can be assumed as the probability that a transition 

occurs to state j in an infinitesimal time interval dt as follows: 

hj(t)dt=Pr{to reach state j in (t, t+dt)}.  

Thus, it follows that: 

( ) ( ) ( ) ( )
1 1 0

0 (0, ) , .
tN N

ijj i ij i
i i

h t C t h C t dφ τ τ τ
= =

= ⋅ + ⋅∑ ∑∫
i i

 (5-1)

According to the description of eq. (2-8), (5-1) means state j can be reached either if the 

process was initially in state i and remains there until time t, when a transition to state j 

occurs; or if the process reached state i at time τ, remaining there for x = t − τ, then a 

transition to state j occurs. The summation over the state number N is for all possible 

intermediary states, where NHSMP can transit. The integral term in turn means that the 

transition to state i may occur at any time τ ∈ [0,t]. 

Eq. (5-1) corresponds to a system of N integral equations with unknowns hj(t), j = 1,…,N. 

The probabilities φj(t)=Pr[Zt=j | Z0] can be obtained from the initial conditions φj(0) as 

follows: 

( ) ( ) ( )
0

0 [1 (0, )] [1 ( , )]
t

j j j j jt F t h F t dφ φ τ τ τ= ⋅ − + ⋅ −∫ . (5-2)

Eq. (5-2) says that a process can be in state j at time t either if it was initially in the state j 

and remained there at least up to time t; or if it visited state j at any time τ ∈ [0,t] with 

probability hj(t) and stayed there for (x = t − τ). Eq. (5-2) corresponds to N straightforward 

integrations that can be solved independently by using the solution of equation (5-1). 

Eqs. (5-1) and (5-2) extend the formulation presented in Becker et al. (2000) in order to 

address NHSMP described in terms of both transition probabilities and transition rates. 

Moreover, the computational effort to solve eqs. (5-1) and (5-2) is less intricate than in the 

case of the N2-method described in Janssen and Manca (2001). In fact, the 2N-method consists 

of solving N coupled integral equations with one variable (eq. (5-1)) and N straightforward 

integrations (eq. (5-2)) whereas the N2-method consists of solving N2 coupled integral 

equations (eq. (2-10)). A comparison among the 2N-approach, the N2-method and the MC-

based solution will be discussed in chapter 6.  

Before that in next section, a general quadrature based method for simultaneously solving 

the eqs. (5-1) and (5-2) will be presented. Moreover, the convergence conditions and error 

analysis are also developed and demonstrated. 
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5.2. Numerical formulation 

5.2.1. Description of the numerical solution 

A numerical integration or quadrature method can be written as follows (see Press et al. 

(2002)): 

,
00

( , ) ( , )
kh k

kt d w h khτ
τ

ϕ τ τ ϕ τ
=

≅ ⋅∑∫ , (5-3)

where h is the step measure, and ,kwτ  are the weights related to the quadrature formula (5-3). 

Note that such weights also do not depend on the integrand function ϕ( ⋅ , ⋅ ); they are function 

of the start point ( 0 ), of the end point ( kh ) and of the intermediary point ( hτ ) at which the 

function value is computed. Moreover, one has M such that Mh T= , with 0 kh T≤ ≤ , 

, ,k M k M≤ ∈`  where M is the number of steps and T is the mission time. 

Using eq. (5-3), a solution for (5-1) is given as: 

� ( ) � ( ) ( ),
1 0

(0 , ) ,
N k

j i ijj k
i

h kh a h kh w h h C h khτ
τ

τ τ
= =

⎛ ⎞
= + ⋅ ⋅⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑

i
, (5-4)

where 

( ) ( )
1

0 , 0 (0 , )
N

ijj i
i

a h kh C h khφ
=

= ⋅∑
i

,  

where the notation ~  again means an approximation. 

The system of eqs. (5-4) can be written as follows: 

� ( ) � ( ) ( ),
1 0

, (0 , )
N k

j i ijk j
i

h kh w h h C h kh a h khτ
τ

τ τ
= =

⎛ ⎞
− ⋅ ⋅ =⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑

i
 (5-5)

or in matrix form: 

i i( ) ( )( , ) (0 , )
0

k
T TT T
kh hh kh h khH H Aττ

τ =

− Ψ ⋅ =∑ , (5-6)

where the symbol T represents the transpose matrix, i ( )
T

H ⋅  and ( , )
TA ⋅ ⋅  are N-order matrices, and 

( , )
T
⋅ ⋅Ψ  is N2-order matrix, where: 

,( , ) ( , )ijij kw Cτψ ⋅ ⋅ = ⋅ ⋅
i

. (5-7)

Alternatively, eq. (5-6) can be written as follows: 

iTT T⋅ =U H A , (5-8)

where 
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TA  (5-9)

A bold face notation is used for a matrix of matrices as in i,
TTU H , and TA . Eq. (5-9) is 

used to compute the N-order matrices i ( )
T

hH τ , whose elements � ( )jh hτ  are the density functions 

of the number of times that state 1,...,j N=  of an NHSMP is visited from any state in the 

interval [0,τh].  

Basically, eq. (5-9) represents the main difference between the 2N- and N2-approaches. 

While 2N-method needs to solve eq. (5-9) (set of N linear algebraic equations) M times as a 

requirement to catch the system’s dynamic behavior over time, N2-method computes the 

interval transition probabilities by using a somewhat modified formula which possesses a 

main difference in relation to that equation: the solution of the N2-counterpart for eq. (5-9) is 

composed of an M2-order matrix of matrices which in turn are of order N2. Thus, through N2-

method the number of each set of N2 linear equations to be solved is equal to (M2+M)/2. In 

this way, 2N-method tends to reduce considerably the computational time in relation to N2-

method. 

Having estimated the solutions matrix iT
H  (eq. (5-9)), the next step consists in computing 

the N state probabilities � ( )j tφ . In fact, a numerical solution for the state probabilities � ( )j tφ  

can be computed as follows: 

� ( ) ( ) � ( ),
0

0 [1 (0 , )] [1 ( , )]
k

jj j k jj kh h F h kh w h h F h khτ
τ

φ φ τ τ
=

= ⋅ − + ⋅ ⋅ −∑ , (5-10)
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where � ( )jh hτ  (j = 1,…,N and τ = 0,…,M) are step-solutions obtained from eq. (5-9). In this 

way, i i ( ) i ( ) i ( )0 ,..., ,...,h h Mhτ⎡ ⎤= Φ Φ Φ⎣ ⎦Φ  is comprised of M matrices i ( )hτΦ  each one of order N.  

Note that, rather than solving the N2 coupled integral equations with two variables through 

the direct application of any general quadrature method to eq. (2-10), the approach just 

described estimates the state probabilities of an NHSMP by solving N coupled integral 

equations with one variable (eq. (5-9)) and N straightforward integrations (eq. (5-10)). 

For example, by using the extended Simpson’s rule given in Press et al. (2002) (p. 138), 

eqs. (5-5) and (5-10) can be written in the following way: 
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 (5-11) 

5.2.2. Solution conditions and upper limit estimate of the discretization error 

From eq. (5-4) follows that: 
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 (5-12)

By writing eq. (5-12) in terms of j = 1,…,N, it follows that: 
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i

, (5-13)

where jd , j = 1,…,N is the right-hand side term of eq. (5-12). 

According to Press et al. (2002), it is guaranteed that the set of linear algebraic equations 

given in eq. (5-13) has solution if the matrix of known coefficients 
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,  

is not degenerate, i.e., is not singular, where ( , )ijψ ⋅ ⋅  is given in eq. (5-7). The non-singularity 

happens if none of the N eqs. in (5-13) is a linear combination of the others. If this condition is 

satisfied, eq. (5-10) of unknowns � jφ  also admits solution given the solution of eq. (5-4). 

Janssen and Manca (2001) reached an equivalent solution condition for the case of the N2-

method, i.e., by directly applying a general quadrature method to the N2 coupled integral 

equations. 

In the subsequent development, we again make use of the Lemmas 1 and 2 and Remark 1 

from section 3.1, and described in Janssen and Manca (2001), that also hold for the 2N-

mathematical formulation proposed here for NHSMP: 

Theorem 1: Let 

[ ]( ) : ,jh l l Y → \      [ ]0,l T∈ . 

Let { }0,..., 1q M∈ − , M ∈` , such that l qh T≤ ≤ . 

Let 
�( ) ( ) ( )k

jj jh h kh h khξ = −     0,1,...,k M= , (5-14)

where ( )jh kh  is solution of eq. (5-1) and � ( )jh kh  is solution of (5-4). 

Define also: 
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, 1,...,k q q M= +  

given that 1 1l
MNhw d < . 

Proof: From eq. (5-1) it follows that for k q≥ : 

( ) ( ) ( )

( ) ( ) ( ) ( )

,
1 0

,
1 1 00

, (0 , )

, ,

N k

ijj k i j
i

khN N k

ij iji k i
i i

h kh w h h C h kh a h kh

h C kh d w h h C h kh

τ
τ

τ
τ

τ τ

ϑ ϑ ϑ τ τ

= =

= = =

⎛ ⎞
− ⋅ ⋅ =⎜ ⎟⎜ ⎟

⎝ ⎠

⎛ ⎞
+ ⋅ − ⋅ ⋅⎜ ⎟⎜ ⎟

⎝ ⎠

∑ ∑

∑ ∑ ∑∫

i

i i
. (5-19)

From eqs. (5-4) and (5-19), it follows that: 
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and from eqs. (5-14) and (5-16): 
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It follows from eq. (5-15) that: 
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Performing the summation in relation to the index j = 1,…,N, one obtains that: 

1
1 1 0 1

( ) ( ) ( )
N N k N

k k
j j M i

j j i

h t h Nd w h hτ

τ

ξ ξ
= = = =

≤ +∑ ∑ ∑∑ . (5-20)

Eq. (3-21) implies that: 
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From eq. (5-17), it follows that: 
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Now, from Lemmas 1 and 2, it follows that: 
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From Remark 1, it follows that: 
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what implies that: 
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Eq. (5-18) computes the upper limit of the discretization error estimate whenever � ( )jh kh  is 

used to approximate ( )jh kh . The same conclusion was reached in Janssen and Manca (2001) 

for the N2-method. In other words, the upper limit of the numerical error computed by 

estimating the interval transition probabilities by using the N2-method is the same given by eq. 

(5-18). 

Given the solution of eq. (5-4), the error estimate � ( ) ( )( )k
j jjh kh khς φ φ= −  in computing ( )j tφ  

through eq. (5-10) in turn depends only on the choice of the quadrature method since each 

unknown may be solved independtly. In eq. (5-11), for example, the error term is equal to 

( )4( ) 1/k
j jh O kς = . This means the true answer ( )j khφ  differs from the estimate � ( )j khφ  by an 

amount equals to 41/ k  (see Press et al. (2002) for further details). 

Therefore, the upper limit of the total error estimate of the 2N-method is given by the sum 

of the discretization errors estimated from eqs. (5-1) and (5-2). In spite of that, as eq. (5-18) is 

an inequality it is even possible that the 2N-method catches smaller errors than N2-method. 

In this way, it is expected that the 2N-method be less time-consuming since it involves 

solving N coupled integral equations and N straightforward integrations. Moreover, generally 

speaking it has accuracy roughly equals to the N2-method. However, it is also possible that the 

2N-method obtains minor errors than N2-method. Research on these findings will be done in 

next chapter. 
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6. ASSESSING THE EFFECTIVENESS OF THE 2N-METHOD FOR 
SOLVING NHSMP 

Two examples in the context of reliability are presented in this chapter. The first one 

addresses a case where a semi-analytical solution is available. Then it is discussed an example 

of application concerning the pressure-temperature optical monitoring systems for oil wells 

previously described in section 1.2.2. In both cases, the 2N-approach is validated via the 

comparison against the results obtained from the semi-analytical solution (for the first 

example) as well as from both the N2- and the MC methods. 

6.1. A semi-analytical example 

This section handles a simple three-state reliability semi-Markov example for a system 

comprised of a single component as illustrated in Figure 6-1. This system starts its operation 

in state 1. From there, it moves to state 2 if it reaches a determined non-critical degradation 

stage. If degradation level of the component attains a critical threshold, the system fails (state 

3). 

 
Figure 6-1 – HSMP for the semi-analytical example 

This semi-Markov process is homogeneous in relation to the process time and, for this 

situation, a semi-analytical solution is possible as follows: 

1 1( ) 1 (0, )t F tφ = − ,  

122 2
0

( ) (0, ) [1 ( , )]
t

t C F t dφ τ τ τ= ⋅ −∫
i

,  

3 1 2( ) 1 [ ( ) ( )]t t tφ φ φ= − + .  

The solution is considered semi-analytical as the state probability 1( )tφ  can be analytically 

estimated, while the state probability 2 ( )tφ is computed via numerical integration.  

The required data to estimate the system reliability is given in Table 6-1. For the sake of 

validation, the results provided by the semi-analytical solution are compared against the ones 

from the 2N-method, the N2-approach, and the MC simulation drawn for NHSMP. 

Table 6-1 – Parameters of the NHSMP: pij(t) and Gij(l,t) for the semi-analytical example. 

Transition  Transition probabilities of 
the ENHMP Conditional CDF  
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i → j pij Gij(l,t)
1 → 2 1.0 Exponential (1e-3h-1) 
2 → 3 1.0 Weibull (250.0h, 1.5) 

Supposing that the system is functioning when in states 1 and 2, the system reliability is 

shown in Figure 6-2 for a mission time equals to 4,500.0 hours, M = 1,500 steps for the N2- 

and 2N-approaches, and 100,000 samples for the Monte Carlo simulation. 

 
Figure 6-2 – Reliability for the semi-analytical example: mission time of 4,500 hours and M = 1500 steps. 

Note that the reliability estimated by the 2N-mathematical formulation and numerical 

treatment matches the computed values via the semi-analytical solution, as it also does for the 

MC and the N2-solutions, thus providing a validation of the 2N-model, with its numerical 

approximation. 

Another important aspect to be considered is the computational effort involved in the three 

solution methods. Actually, the 2N-approach with its numerical treatment computes the 

system reliability considerably faster than both MC simulation and N2-method. Indeed, the 

2N-method spent 2.44 seconds, while the Monte Carlo took 133.56 seconds, and the N2- 

required 2,442.19 seconds. 

In the next section, it is discussed a more complex example of application in the context of 

temperature-pressure optical monitoring systems in oil industry. 

6.2. Example of application: availability of downhole optical monitoring 
systems 

The present section focuses on scrutinizing the main findings on the 2N-method drawn for 

NHSMP on continuous-time. 

For validation purposes, the solution provided by the 2N-mathematical and numerical 

approaches will again be compared to the N2-method given in Janssen and Manca (2001) and 

the MC simulation by means of an example in the context of reliability assessment of 

temperature-pressure optical monitoring systems for downhole applications in the oil industry. 
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The explanation of this application comes from the example 2 given in subsection 1.2.2. 

Provided that description, the focus will switch towards the data required for analyzing over 

time the availability of the optical monitoring system. 

6.2.1. Required data 

Optical Monitoring Systems are installed as part of intelligent completions in onshore oil 

wells. Each well is comprised of three production zones. Thus, a monitoring system is 

comprised of four pressure-temperature sensors, one for each zone plus one sensor for 

monitoring the artificial elevation system (oil pumping). All sensors are on the same optical 

cable. 

Provided the lack of operational experience on these systems some simplifying 

assumptions are made. Indeed, although an OMS is comprised of several components (e.g., 

optical cable, sensor unit, jumpers, cable-cable and cable-sensor connections) as shown in 

Figure 6-3, the availability modeling is developed at the system level. Moreover, the 

reinstallation typically involves the repairman who runs the OMS downhole as well as a 

supervisor. The HEP is, however, modeled and quantified only for the repairman. 

Therefore, and in light of these limitations, it aims to develop a model based on the 

combination of continuous-time SMP and BBN that is able to handle over time the joint 

impact of the tolerable downtime and process time as well as the human performance on the 

OMS availability during the execution of reinstallation activities. 

 

Figure 6-3 - Intelligent well with a pressure-temperature OMS 

Spectral analysis of the limited OMS units that have been deployed has been used for 

gaining knowledge regarding OMS time to failure pattern. Figure 6-4 and Figure 6-5 show the 

spectral analysis for an OMS when it was installed and 20 months later, respectively. 
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Each sensor in the OMS is represented by a double optical power peak, where the left and 

right ones correspond to pressure and temperature, respectively. Thus, Figure 6-4 and Figure 

6-5 have four pairs of peak corresponding to the four sensors in the OMS. If the optical power 

of one peak in relation to the others in the spectrum is small, then peaks are interpreted as 

noise, resulting in the loss of the monitoring capability. 

As seen in Figure 6-4 and Figure 6-5, the spectral analysis has indicated a gradual 

attenuation of the optical power from the sensors, and it is more significant for the bottom 

sensor (indicated by a red contour). 

 
Figure 6-4 – Spectral analysis for OMS at installation 

These results have led to the conclusion that the OMS units are under a deterioration 

process what, along with the tolerable downtime characteristics, justifies the use of an 

NHSMP. This process eventually leads to the complete loss of the signal, as shown in Figure 

6-6 for the first two sensors from the well bottom after just 22 months from the installation 

date. 

 
Figure 6-5 – Spectral analysis for OMS after 20 months of installation 

The semi-Markov process is therefore considered as non-homogeneous so that this 

deterioration process may be adequately addressed. Therefore, the required data to estimate 

the system availability via this NHSMP model are the parameters pij( ⋅ ) and Gij( ⋅ , ⋅ ) of the 

NHSMP in Figure 1-3, through which the kernel Cij( ⋅ , ⋅ ) can also be found. 
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Figure 6-6 – Spectral analysis for OMS after 22 months of installation 

Table 6-2 summarizes the requisite data for solving the NHSMP given in Figure 1-3. 

Looking at that, it can be seen probabilities p11(t) and p12(t) depend on the process time t, 

reflecting the deteriorating process to which the OMS is subjected. The probability p12(t) of 

leaving state 1 to state 2 is set to value 0.4 at t0 = 0, increasing continuously in the interval of 

15,000h. The probability p11(t) in turn decreases from 0.6 during the same interval. 
Table 6-2 – Estimates of parameters of the NHSMP. 

i → j pij(t) Gij(l,t)
1 → 1 (-0.00004 t) + 0.6 Exponential(1E-04h-1) 
1 → 2 (0.00004 t) + 0.4 Weibull(270.0h, 1.86) 
2 → 1 0.82 Exponential(0.0208h-1) 
2 → 3 0.18 LogNormal(4.0h, (0.4h)2) 
3 → 1 0.62 Exponential(0.0416 h-1) 
3 → 4 0.38 LogNormal(2.5h,(0.25h)2) 

Indeed, 2N-method for NHSMP described in chapter 4 will be used for solving the 

NHSMP of Figure 1-3. In next subsection, the main findings on 2N-method will be analyzed 

comparing its effectiveness, in terms of accuracy and computational time, with the results 

provided by N2-method and MC simulation. 

6.2.2. Results 

In fact, for different number M of steps, from Figure 6-7 to Figure 6-10 there will be 

showed the estimated OMS availability (A(t) = 1( )tφ ) for a mission time of T = 1 year (8,760 

hours) according to the 2N- and N2-methods and to MC simulation (100,000 samples). The 

main findings of this subsection are provided in Moura and Droguett (2009a), which follows 

in attachment H. 
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Figure 6-7 – OMS availability: mission time of 8,760 hours and M = 100 steps 

In Figure 6-7, neither 2N- nor N2- show close agreement when compared to the MC 

solution. In this case, the distance (discretization error) between the 2N-method and MC-

simulation is shorter than that of the N2-approach. 

This figure also depicts the N2-approach attains probability values greater than 1.0 for this 

number of steps, which does not look like to be as big as enough to reach the converged 

solution. 

As the number of steps increases by 400 steps (M = 500) we can notice the 2N-method 

already matches MC-simulation, whereas N2-method keeps showing a noteworthy distance 

(Figure 6-8) from that. 

Now setting up M = 1,500, Figure 6-9 depicts that the availability curve estimated from 

2N-method matches the computed values gathered from N2- and MC approaches. 

0.88

0.9

0.92

0.94

0.96

0.98

1

0 2000 4000 6000 8000

A
(t
)

T(h)

MC‐method (1,500 steps)

2N‐method (500 steps)

N2‐method (500 steps)

 
Figure 6-8 – OMS availability: mission time of 8,760 hours and M = 500 steps 

Figure 6-10 summarizes how the 2N-method reaches MC results as M increases. These 

results provide a illustrated validation, in terms of accuracy, of the mathematical formulation 

and numerical treatment given and developed by Moura and Droguett (2009c). 



Chapter 6                                      Assessing the Effectiveness: 2N-Method for solving NHSMP 

 62

0.88

0.9

0.92

0.94

0.96

0.98

1

0 2000 4000 6000 8000

A
(t
)

T(h)

MC‐method (1,500 steps)

2N‐method (1,500 steps)

N2‐method (1,500 steps)

 
Figure 6-9 – OMS availability: mission time of 8,760 hours and M = 1,500 steps 

Although the 2N-method approximately reaches the desired convergence with only 500 

steps (Figure 6-8), a similar analysis should be made for the other state probabilities ( ( )i tφ , i = 

2, 3, 4) in order to find the number Mi necessary to converge. The number M of steps needed 

to achieve the process’s convergence as a whole is the maximum of Mi, i = 1,…,4. In other 

words, this corresponds to find Mi which minimizes the upper limit of the discretization error 

of the 2N-method which in turn is the sum of eq. (5-18) and the error estimated in 

approximating ( )j khφ  by ( )
~

j tφ . 
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Figure 6-10 – OMS availability: 2N-method x MC 

It is worthwhile making two important considerations on the Figure 6-6 to Figure 6-10: (i) 

as in this case the NHSMP of Figure 1-3 is not an ergodic system (due to the absorbing state 

4), availability equals reliability and the curve must go to zero. Because of this, the y-axis 

could have be quoted as reliability rather than availability, not reaching a steady state; (ii) it is 

observed a local minimum at the beginning of the mission. This behavior is somewhat a result 

of the deteriorating process under which the system is subjected when it occupies state 1. 

Then, it may be seen an increase in the system reliability as the failure/reinstallation cycles 

start (process reaches states 2 and 3). 
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Letting the illustrated analysis aside, we may make use of the cross-entropy measure (see 

Kullback and Leibler (1951) for more details) for analyzing how the discrepancy among the 

2N-, N2- and MC-methods varies as a function of the number M of steps. Basically, the cross-

entropy is given by 

( ) ( )( , ) log
( )

f xD f g f x dx
g x

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∫ , 

where the function f corresponds to the results from MC-simulation and g could be the 

outcomes from the 2N- or N2-methods. 

Figure 6-11 illustrates the cross-entropy measured for the availability metric by both the 

2N- and N2-approaches. Generally speaking, it underpins the discussion made in section 5.2.2 

on the upper limit of the discretization error estimate for NHSMP. In fact, even though the 

2N-method is faster it presents an error estimate smaller than N2-method over the number M 

of steps and that tends to zero as M increases. The latter characteristic holds for the N2-method 

as well. 
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Figure 6-11 – Cross-entropy over number of steps: 2N- x N2- 

Figure 6-11 also depicts that the findings given in section 3.1.2.2 on the accuracy of the 

2N-method for HSMP are somewhat conservative. In that occasion, it has been concluded the 

2N-discretization error would be greater or equal to N2-error. However, in section 3.1.2.2 the 

inequality in eq. (3-19) was disregarded what implies the results from Figure 6-11 also holds 

for HSMP. 

Besides validating the 2N-method accuracy in comparison with the results of the N2- and 

MC approaches, other criteria to contrast these different solutions for NHSMP is the time to 

converge, i.e., computational cost. 

Indeed, by using the 2N-approach it is only needed solving N coupled integral equations 

with one variable and N straightforward integrations, rather than computing N2 integral 

equations as through the N2-method. Indeed for M = 1,500 steps, the 2N-method spent 7.10 
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seconds, whereas the MC took 246.43 seconds, and the N2-approach required 8,370.24 

seconds. Figure 6-12 shows the time (in seconds) took by both 2N- and N2-approaches as M 

varies. 
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Figure 6-12 – Computational time over the number of steps: 2N- x N2- 

This analysis provides a validation in terms of accuracy and computational effort of the 

2N-approach. Basically, it has showed that by the 2N-method the state probabilities are 

obtained considerably faster than through the N2-approach. 

Moreover, it has been observed that even with a less intricate computational complexity, 

the 2N-method reaches the converged solution with a truncation error smaller than the N2-

method. Obviously, one must scrutinize these outcomes in order to find whether they 

correspond to a general consequence or not. 

6.3. Comments 

6.3.1. 2N-method 

NHSMP were usually computed via the N2-method described in Janssen and Manca 

(2001) where the future behavior of the system is assessed via interval transition probability 

equations comprised of a system of N2 coupled integral equations with two variables, with N 

the number of states. However, this approach is rather cumbersome. 

This situation motivated the development of a more efficient formulation for NHSMP that 

had less computational effort, but kept the accuracy in relation to the available methods in the 

related literature, that is, MC simulation and the N2-approach. In fact, the proposed 2N-

mathematical formulation and numerical treatment consists of casting the N2 coupled integral 

equations into an initial value problem involving transition frequency densities, and then solve 

N coupled integral equations with one variable and N straightforward integrations. This 

approach possesses the two aforementioned meaningful features: it is significantly less time-

consuming and has accuracy equals to the N2-method, as it was proved in section 5.2.2. 
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The 2N-mathematical formulation and numerical approach were also illustrated by means 

of two examples of application in the context of reliability and availability assessment, where 

the effectiveness and the required computational effort of the 2N-method were also compared 

against the MC and the N2-approaches. From these examples, it was verified that the proposed 

approach is considerable faster than both the MC simulation and the N2-method. Specifically 

on the second example, 2N-approach reaches greater accuracy than N2-method validating the 

findings in section 5.2.2 on the behavior of the upper limit of the discretization error. 

6.3.2. OMS availability assessment 

The availability analysis of an OMS is a complex subject. It is influenced by failure 

patterns of components that are usually under deteriorating processes. Maintenance also poses 

its own challenges, the most relevant ones being the human performance during 

reinstallations, and the impact of available time to complete the reinstallation on the human 

error probability. And the availability assessment must be carried out with high level of 

uncertainty as a result of the paucity of relevant empirical information. 

In this context, section 6.2 has provided an availability model for pressure-temperature 

optical monitoring systems. The model is based on the integration between non-homogeneous 

continuous time semi-Markov processes and Bayesian belief networks. NHSMP portion is 

responsible for handling the OMS dynamics, and BBN are used to qualitatively and 

quantitatively model the cause-effect relationships among factors influencing the repairman 

error probability during reinstallations. The model has also been applied to the analysis of an 

OMS in an onshore oil well in the Northeast of Brazil. 

With this model we only scratched the surface of the problem. Although we do not 

provide conclusive results from the application of the model to a real case situation, the 

availability model tackled the most relevant issues concerning the operation and maintenance 

characteristics of the system, providing the analysts with much needed flexibility for 

evaluating the availability of the system, as it was demonstrated in the example of application. 

In the following we provide more specific comments on the limitations of the proposed 

availability model and discuss some alternative modeling approaches. (i) Given the lack of 

data on the failure processes, the availability analysis was done at the system level. Although 

the spectral analysis indicated that the optical monitoring system is under deterioration, the 

availability engineers and certainly the development process of the system will benefit from a 

disaggregated availability analysis (at component level). This might be done by including a 

Fault Tree sub-model which considers the combinations of component failure events leading 



Chapter 6                                      Assessing the Effectiveness: 2N-Method for solving NHSMP 

 66

the system to change its general state. This and failure data gathering and analysis from the 

deployed units (7 production and 1 injection wells have been recently equipped with the 

monitoring system) are part of the next stage of this research. (ii) The construction of the BBN 

model for the human error probability and the population of the table of conditional 

probabilities were based on expert opinion elicitation. Although all nodes were binaries, the 

expert had difficulties in providing quantitative assessments especially for the non-root nodes. 

As one of the next steps of this research, empirical data on at least some of the factors will be 

collected so to relief the cognitive burden on an expert. So from this and the previous step, 

one might get more reliable availability assessments. (iii) In the proposed model, the available 

time to complete a reinstallation is obtained from the sojourn time in an unavailable state. 

Although the semi-Markovian process is continuous in time, this information is passed as 

discrete (binary) evidence to the node “available time to complete the reinstallation” of the 

BBN model for the human error probability. In the next stage of this research, this node is 

treated as continuous. Thus, the use of hybrid BBN is a must and the iterative algorithm 

proposed by Neil et al. (2008) is currently being tested in the context of application of this 

work. (iv) Dynamic Bayesian networks (DBN) have been used in the area of dependability 

analysis, for example, Boudali and Dugan (2005), Weber et al. (2004) and Montani et al. 

(2008). However, at best of our knowledge, DBN-based approaches have been limited to deal 

with representations of homogeneous and non-homogeneous Markov processes mostly in 

discrete time ((Boudali and Dugan (2006) propose a continuous time based DBN framework 

for the analysis of dynamic fault trees), and with focus on non-repairable systems. However, 

DBN are an alternative approach to the availability assessment of the type of system analyzed 

in this research, and representation of semi-Markovian processes and repairable systems in a 

DBN framework are subjects of current research by the author. 
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7. FURTHER EXAMPLES AND COMMENTS 

In this chapter two further examples will be discussed. The first one shows how the 2N-

method may be used for determining a maintenance optimization policy so that to maximize 

the mean availability measure. The second example is also inserted into the optimization 

context. Basically, it is designed for determining which maintenance decisions should be 

made so that the mean availability and expected costs are jointly optimized over the system’s 

age. Thus, the Lap-method will be used to estimate the mean availability in this framework. 

Basically, these examples will be described as an attempt to show how reliability 

problems, which would become infeasible due to the lack of an efficient method for solving 

NHSMP, may be modeled by using the proposed mathematical and numerical approaches. 

7.1. System Availability Optimization 

System availability optimization is one of the main issues to production managers: the 

greater the system availability the greater the production profits are. Provided that each 

preventive maintenance action promotes a rejuvenation impact on the availability measure, 

this section develops an approach to maximize the mean availability by identifying an optimal 

maintenance policy for a hypothetical system, which is modeled according to a non-

homogeneous semi-Markov processes. 

In order to solve the resulting optimization problem constrained by system performance 

costs, genetic algorithms (GA) operators will be used (see Marseguerra et al. (2006) for 

greater details on GA). The developments of this section are widely described in Moura et al. 

(2008), which follows in attachment I. 

7.1.1. Description of the problem 

Consider a system, which due to the same reasons discussed throughout the two last 

chapters, may be modeled through an NHSMP. Then, it is aimed establishing a preventive 

maintenance policy that maximizes the system’s mean availability restricted to technological 

and cost constraints. 

This optimal policy is comprised of operating times tj up to the preventive action jth, which 

has a rejuvenation impact q on the real age of the system. The parameter is incorporated into 

the state equations of an NHSMP so that the effectiveness of each preventive maintenance is 

taken into account in the optimization procedure of the mean system availability. 

The mathematical programming problem relevant to the system is summarized as follows: 
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Max A [T | (t1, t2, …, tn); q] (7-1)

s.t. C[T | (t1, t2, …, tn); q; cp; cc] ≤ K 

 cp, cc, T, K > 0, ti ∈  (0, T], N, n ∈  N, and q ∈  ℜ  

 n ≤ N 

where T is the mission time under consideration; tj is the operating time up to the jth 

preventive maintenance action, with t0 = 0; t = (t1, t2, …, tn) composes a preventive 

maintenance policy; n is the number of preventive maintenance events in T and N is its upper 

bound; A [T | (t1, t2, …, tn); q] is the system mean availability in T modeled in terms of an 

NHSMP and related to (t1, t2, …, tn) and q; C[T | (t1, t2, …, tn), q, cp, cc] is the cost related to 

the system performance in T given the maintenance policy (t1, t2, …, tn), q, the cost per time 

unit to perform preventive (cp) and corrective (cc) maintenances. 

In order to compute C[T | (t1, t2, …, tn); q, cp, cc], the time spent by the system under 

preventive and corrective maintenances are estimated as a function of A [T | (t1, t2, …, tn), q] 

and Tp (mean preventive maintenance time) [see eq. (7-2)]. Finally, K is a maximal cost 

constraint, i.e., the total cost incurred by performing corrective and preventive maintenance 

actions. 

( )
( )
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,..., ;

n p c

p p n p c

t t q c c

n c T T T A t t q T c

⎡ ⎤ =⎣ ⎦
⎡ ⎤⎡ ⎤⋅ ⋅ + − ⋅ − ⋅⎣ ⎦⎣ ⎦

 (7-2)

To achieve the optimal maintenance policy, GA are introduced to the problem. Basically, 

GA consider a population of individuals, where each individual is a possible solution to the 

problem. In this context, genetic operators such as crossover and mutation are 

computationally mimicked in order to simulate the evolution process (see Michalewicz (1996) 

for more details). 

7.1.2. Casting Maintenance Effectiveness into NHSMP 

In order to take into account the effectiveness q of each maintenance action, let rewrite the 

eqs. (5-1) and (5-2). Thus, the future behavior of an NHSMP over time may now be assessed 

through its state probabilities φj(t)=Pr[Zt=j | Z0] given by as follows: 

( ) ( )

( )
0

0 [1 (0, )]

[1 ( , )] ( )

j j j
t

j j

t F qt

h q F q qt d

φ φ

τ τ τ

= ⋅ −

+ ⋅ −∫
 (7-3)

where Fj(l,t) and hj(t) are defined in chapters 2 and 6 respectively. Thus, it follows that: 
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where ( , )ijC
i
i i  is also defined in chapter 2. 

Eq. (7-3) and (7-4) are modified versions of  (5-1) and (5-2) respectively, keeping the 

same meaning as the latter though. In fact, backed up the virtual age model called General 

Renewal Process proposed by Kijima and Sumita (1986), the parameter q is introduced in 

order to measure the effectiveness of maintenance actions. In other words, the parameter q is 

used to handle the rejuvenation imposed to the system after the last maintenance event. 

In accordance with q, a maintenance action can recover the system to some of the possible 

states: (i) q = 0 – as good as new (perfect repair); (ii) q = 1 – as bad as old (minimal repair); 

(iii) 0 < q < 1 - better than old but worse than new (imperfect repair). The impact of these 

types of maintenance on the system’s availability is illustrated in Figure 7-1. 

According to Figure 7-1, it can be noticed that up to the first maintenance action there is 

no difference among the three types of repair analyzed. However, just after the first 

intervention the impact q of each maintenance action on system availability may be assessed. 

Moreover, Figure 7-1 illustrates that while the system is unavailable and under preventive 

maintenance the instantaneous availability is zero. For further details on the classical and 

Bayesian procedures for estimation of the parameter q see Yañez et al. (2002). 

 

Figure 7-1 – Impact of different types of repair on the availability 

The model developed here proposes a preventive maintenance policy that maximizes the 

mean availability of a system which is estimated according to an NHSMP by considering the 

impact q of each maintenance action on the system performance. Therefore, the objective 

function presented in (7-1) is the mean availability given by (7-5), where {A} is the set of 
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states in which the system is available. This mean availability as well as the system dynamics 

as a whole will be estimated by using the 2N-method described in chapter 5 for NHSMP. 

( )
{ } 0

1 t
k

k A

A d
t

φ τ τ
∈

= ∑ ∫  (7-5)

7.1.3. Example 

It is assumed that a hypothetical system starts in normal operation in state 1. Over time, 

due to operational and/or environmental conditions, the system may operate in a degraded 

state even though it is still available, which corresponds to the state 2. In this state, the 

corrective maintenance process, which consists of the installation or reinstallation of the 

system, starts. There is a tolerable downtime (TDT) inside which the system may operate in 

this degraded condition. If the repair process cannot be completed within this TDT, the system 

goes into state 3 where additional corrective actions are taken to restore it to its normal 

operating condition, but in this case the system is unavailable. It is assumed that all corrective 

actions recover the system to the same condition it had just before the failure. In other words, 

corrective actions are considered as minimal repairs (q = 1.0). 

Besides the corrective maintenance actions, the system may also undergo preventive 

maintenance events (state 4) which possess an effectiveness q. It is assumed that all 

preventive maintenance occurrence times are known at the start of the mission (at t=0). This 

preventive maintenance policy corresponds to a particular individual in the GA optimization 

algorithm, i.e., the NHSMP model is evaluated for each potential solution, (t1, t2, …, tn), 

during the execution of the optimization procedure. 
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Figure 7-2 – Non-Homogeneous semi-Markov processes for a hypothetical system 

It is also considered that a preventive maintenance action corresponds to an imperfect one, 
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i.e., it recovers the system to a condition somewhere between perfect and minimal repairs. 

The state space diagram is illustrated in Figure 7-2, where the dotted lines represent the 

transitions due to the preventive maintenance events. 

As it has been previously discussed, the goal is to establish a preventive maintenance 

policy that maximizes the mean availability of this system, which in turn is modeled via 

NHSMP whose required parameters are given in Table 7-1. Other requisite data are T = 150 

days; Tp = 1 day; N = 5 maintenances; cp = $10.00; cc = $30.00; K = $200.00. The GA-based 

required parameters are showed in Moura et al. (2008). 
Table 7-1 – Parameters estimation for the NHSMP. 

i → j pij(t) Gij(l,t)
1 → 1 (-0.0034 t) + 0.5 Exponential (5E-01) 
1 → 2 (0. 0034 t) + 0.5 Weibull (30.0, 1.36) 
2 → 1 0.70 Exponential (1.0) 
2 → 3 0.30 LogNormal (2.5, 0.25) 
3 → 1 1.0 Exponential (1.0) 

With the intention of evaluating the proposed approach, the preventive maintenance 

effectiveness parameter q is initially considered equals to 0.0, and the system performance 

cost is disregarded. 

For q = 0.0, a preventive maintenance action restores the system to an “as good as new” 

condition, and therefore it is expected that tj is approximately equally spaced over time. In 

relation to the system mean availability, it can be seen in Figure 7-3 that the optimal 

maintenance policy for the system is roughly given by tj ≅  24 days, for any j= 1, 2, …, 5. Call 

this tj the target value. Under this condition, the resulting system mean availability is equal to 

0.9975. 
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Figure 7-3 – System mean availability for different maintenance policies 

By considering the input parameters, the best solution provided by the proposed NHSMP-

GA approach corresponds to the preventive maintenance policy (in days) {21.10, 19.44, 
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24.91, 25.13, 29.16} for which the system mean availability is equal to 0.9974. 

The maximum absolute error in comparison with the above target solution is about 5.16 

days, generated by t5=29.16 days. However, when considering a set of 50 replications of the 

algorithm the target tj (24 days) lies inside the 95% confidence interval for each generated 

sample (see Table 7-2). 

Table 7-2 – 95% Confidence interval (in days) for each preventive maintenance based on a GA sample of 

optimal solutions with q = 0.0. 

Mean operating times 
up to maintenance lower bound upper bound 

t1 23.50 29.50 
t2 21.02 31.00 
t3 20.45 32.54 
t4 21.76 29.84 
t5 21.25 28.97 

Now, considering q = 0.35, the best solution provided by the NHSMP-GA approach 

corresponds to the preventive maintenance policy (in days) {32.46, 17.46, 15.25, 15.03, 

14.91} for which the system mean availability is equal to 0.9941. The resulting system 

performance cost is estimated as $50.00. Note that, on average, due to the high availability, 

the fraction of time the system spends under corrective maintenance is virtually zero, i.e., the 

preventive maintenance policy avoids the expenses with corrective maintenance actions. 

Provided that no analytical solution is available for the system availability and for the 

optimal solution accordingly, the assessment of the uncertainty about the estimated optimal 

preventive maintenance policy is with no doubt relevant information for the decision maker. 

In fact, this uncertainty is characterized in terms of the 95% confidence intervals for the mean 

occurrence time of each maintenance event based on 50 replications of the algorithm (see 

Table 7-3). 

Table 7-3 – 95% Confidence interval for each preventive maintenance based on a GA sample of optimal 

solutions with q = 0.35. 

Mean operating times 
up to maintenance lower bound upper bound 

t1 21.56 36.41 
t2 17.08 23.87 
t3 14.98 21.15 
t4 14.34 20.07 
t5 13.83 19.98 

7.1.4. Comments 

This section has presented an approach for handling the maximization of system mean 

availability by determining an optimal preventive maintenance policy constrained to the 
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system’s performance costs. 

In the approach, the system dynamics is modeled via non-homogeneous semi-Markov 

processes by using the 2N-method given in chapter 5, where the idea behind Generalized 

Renewal Processes is employed to characterize the effectiveness of corrective and preventive 

maintenances on the system age. 

7.2. Semi-Markov Processes for Decision-Making 

As it has been seen previously in section 1.2.2 and chapter 6, pressure-temperature optical 

sensors have been developed to improve the management and control of oil reservoirs. One of 

their aims is to decrease the number and impact of intrusive maintenance interventions since 

the (re)installation procedures are human intensive and might influence the life of the 

monitored systems. Therefore, maintenance policies that jointly optimize mean availability 

and expected cost rate associated with maintenance interventions on monitored systems are a 

must in oil industries. 

This section proposes a multiobjective optimization model based on semi-Markov 

decision processes (SMDP) to find a set of nondominated maintenance policies. Each 

obtained policy is of threshold type and it represents the optimal decision (do-nothing, 

minimal maintenance or replacement) whenever the system enters a new deterioration stage. 

An example of application is also discussed. This section is based on the findings of Moura et 

al. (2009), which follows in attachment J. 

7.2.1. Description of the problem 

Considered that data collected from OMS might be used in a pattern recognition technique 

(e.g., Support Vector Machines (SVM), see Burges (1998) and Shawe-Taylor (2000)) to 

indicate at which deterioration state the system is. Given that, adequate actions should be 

taken so that the number of interventions is minimized. 

Due to the complexity of systems from oil industry, these interventions are intrusive, 

highly human-intensive and cost-consuming and thus minimizing them means decreasing the 

impact of human performance on the system and related costs as well. 

Preventive actions, which set a periodic interval to perform planned maintenances, ignore 

the health status of a physical equipment/system. Therefore, they may not be adequate to oil 

industry systems since sometimes they would imply unnecessary actions, i.e., as system has 

not crossed the critical deterioration line yet. On the other hand, pre-set times for preventive 
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actions might also not pay enough attention on the system, even if a latent failure will take 

place next. Both situations are cost and time consuming and should be attenuated. 

In this way, according to Jardine et al. (2006) more efficient maintenance approaches such 

as condition-based maintenance (CBM) may be implemented to handle this situation. CBM is 

a maintenance program that recommends maintenance actions based on the information 

collected through condition monitoring (OMS, for instance). CBM attempts to avoid systems 

being over or under maintained by taking maintenance actions only when there is evidence of 

abnormal behaviors of a physical asset.  

If properly established and effectively implemented, a CBM program can significantly 

diminish maintenance costs by reducing the number of scheduled preventive maintenance 

operations. 

One of the main key steps of a CBM program is to recommend efficient decision policies, 

which involves maintenance decision-making analysis that essentially depends on the system 

deterioration states. 

Suppose a hypothetical system is monitored continuously, data on physical variables are 

collected from OMS, and then processed to find the system deterioration state. Moreover, 

assume there are three possible decisions which, generally speaking, will depend on the 

system state: do-nothing (N), minimal maintenance (M) or replacement (R). 

Basically, this section is based on the work of Moustafa et al. (2004). Similarly to them, it 

is allowed one of three decisions δi = {N, M, R} at each deterioration state i. Moreover, SMDP 

will be used. 

However, from this point the approach adopted here departs from the one presented in 

Moustafa et al. (2004). Firstly, it will be considered two objectives to optimize: the expected 

long-run cost rate and the expected availability, whereas in Moustafa et al. (2004) just the 

expected long-run cost rate is minimized. Secondly and conversely to Moustafa et al. (2004), 

in order to handle this multiobjective problem, a multiobjective genetic algorithm is applied 

(see Deb (1999)). Thirdly and finally, the Lap-method developed in this thesis will be used in 

order to estimate the mean availability measure. 

Some optimization approaches have been presented in literature in order to attain optimal 

maintenance policies for the single objective problem. For instance, Castanier et al. (2003) 

investigate the problem of inspecting and maintaining a repairable system subject to 

continuous deterioration processes. They aim to find a policy, by means of Markov renewal 

approach, that optimizes system performance. Chen and Trivedi (2005) use an SMDP value 

iteration algorithm to find the optimal maintenance policy jointly with the optimal inspection 
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rate. Kim and Makis (2009) apply SMDP with a modified policy iteration algorithm in order 

to find an optimal maintenance policy, such as in previous works, concerning only the 

minimization of the expected long-run cost rate. 

Note that the mentioned works consider only a single objective optimization and, as 

asserted by Castanier et al. (2003), there is a necessity of optimization schemes adapted to the 

multiobjective nature of maintenance problems. 

In a multiobjective optimization perspective, instead of finding a unique solution (an 

optimal maintenance policy), one may obtain a set of nondominated maintenance policies that 

present the compromise between the considered objectives (in this work, expected long run 

cost and mean availability).  

Deb (1999) emphasizes that evolutionary algorithms such as GA are useful tools in 

handling multiobjective problems since they consider various potential solutions in a single 

run and several objectives can be treated separately. 

Basically, given a solution provided by the multiobjective GA, the embedded SMDP 

calculates the associated values of both objectives, which are fed back to the multiobjective 

GA. Thus, solutions evolve throughout algorithm iterations by means of the genetic operators. 

An evaluation of the dominance-nondominance relation between every pair of potential 

solutions takes place and, at the end, a set of nondominated maintenance policies may be 

obtained. 

Therefore, the main purpose of this section is to determine a way of how the decisions δi = 

{N, M, R} should be made in order to determine a set of nondominated steady state 

maintenance policies which minimize the expected long-run cost rate as well as maximizing 

the expected system availability via continuous time SMDP and multiobjective GA. In fact, 

the Lap-method described for continuous-time SMP will be adopted to compute the mean 

availability of the system. Regarding the multiobjective GA portion of the model, details may 

be found in Moura et al. (2009). The model SMDP-GA will be validated in subsection 7.2.3, 

comparing its results against an exhaustive multiobjective algorithm that assesses all possible 

maintenance policies. 

7.2.2. Model Characteristics 

SMDP will be used here to tackle the behavior of some systems in oil industry since it is 

assumed that the local time spent at each state influences the system dynamics. For the sake of 

simplicity, the analysis is accomplished at system level. 
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In this section, the SMDP’s role is to determine which actions should be made at each 

decision epoch so that to optimize long-run cost rate and availability. Conversely to Love et 

al. (2000), who consider the time as the system goes down as a decision epoch, and similarly 

to Moustafa et al. (2004), it is assumed here a decision should be made at each time when the 

deterioration state changes. 

At every decision epoch, an action must be taken, which implies some costs and elapsed 

times, for example, cost to replace the system or time to perform a minimal maintenance. 

Thus, the aim is to determine a sequence of decisions, which jointly optimize mean costs and 

availability, by using SMDP. 

According to Makis and Jardine (1993), the optimal replacement policy for this type of 

system is of the control-limit form (threshold type). That is, for ith state there is a decision δi = 

{N, for i < k1; M, for k1 ≤ i < k2; R, for i ≥ k2}, where k1 and k2 are the threshold indexes. 

Let S = {1, …, n+1} represent the finite state space, where the state 1 represents the initial 

operational system and n+1 means the system reaches the most critical deterioration stage (see 

Figure 7-4). At these states, the decisions are do-nothing and replacement, respectively. 

Between these extreme states, there are some intermediate ordered deterioration stages i, 

where it is needed to determine what is the more adequate action (δi = {N; M; R}) that should 

be taken to optimize the expected long-run costs and availability. 

1,2p

2,3p
1,3p

1, 1ip −

1,ip

1, 1ip +

1,np

1, 1np +

2, 1ip −

2,ip

2, 1ip +

2, 1np +

, 1n np +

2,np

 

Figure 7-4 – State diagram for SMDP 
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Suppose, for example, the considered system might go through n deterioration stages 

before reach the highest deterioration level as can be seen in Figure 7-4. At each state, there 

are either rewards (availability) and/or losses (costs) depending on the decision to be made. 

For decision “do-nothing”, which may be made at any state i ∈ S – {n+1}, there is an 

operating cost per unit time of ai. For decision “minimal maintenance”, for each state i ∈ S – 

{1, n+1}, there are the mean maintenance cost bi and time ti. Just after this action, the system 

goes to state (i-1) and restart its operation from there. For decision “replacement”, which may 

be taken at any state i ∈ S – {1}, there are the mean replacement cost ci and time ri. The 

system returns to “as good as new” condition at state 1, immediately after a replacement. For 

the two last decisions (M, R), there is also an idle cost m related to the elapsed time during 

which the system is not operational.  

Thus, it is needed to choose the set of pairs (k1, k2) of thresholds that will point out the 

decisions to be made at each state so that the expected long-run cost rate *
∞G  and availability 

*
∞A  are minimized and maximized, respectively. *

∞G  and *
∞A  are given as follows: 

t
tCtCtCtCE
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t
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where Cp(t), Cm(t), Cr(t) and Cu(t) are the costs of production, minimal maintenance, 

replacement and interruption of the business over the time and Do(t) is the time portion during 

which the system is operational. 

After a replacement, which might be either corrective (n+1-th state) or preventive (kth 

state, where k ∈ (2, n]), the system is completely recovered to the first deterioration level. In 

accordance with Castanier et al. (2003), because of this regenerative property, and following a 

widely used approach in maintenance modeling based on the renewal theorem, the long-run 

study (i.e. on an infinite time span) of the deterioration process can be limited to the study of 

the system state evolution on a single renewal cycle defined by the time period between the 

instant when the system enters the first state and the moment when it undergoes a 

replacement. 

In that way, one may calculate eqs. (7-6) and (7-7) by considering just a replacement cycle 

through eqs. (7-8) and (7-9): 
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where T(k1, k2) is the expected long-run elapsed time required for the system goes from state 1 

to state n+1 and is dependent on which decisions will be made at each state i. Associated with 

T(k1, k2), follow C(k1, k2) which is the expected long-run cost. Eq. (7-9) in turn is computed by 

settling the mission time at T(k1, k2) and using the Lap-method described in section 3.2 since 

SMDP is considered homogeneous in relation to the process time. 

7.2.3. Example 

As previously discussed, the system under analysis might go through n states, before 

reaching the most critical deterioration state n+1. Hence, it is adopted here a multiobjective 

perspective integrated with SMDP, for handling the problem of characterizing the sequence of 

decisions along the n states. In this section, the results of the proposed model are validated by 

means of an exhaustive multiobjective example. 

Decisions are made in accordance with the pairs (k1, k2) of thresholds that jointly optimize 

the expected long-run cost (eq. (7-8)) and availability (eq. (7-9)). 

Table 7-3 presents cost data in monetary units and the distribution functions Fi of the 

waiting time in the state i needed to feed the SMDP portion. Apart from the first state, all Fi, i 

≠ 1, are exponential with parameter λi = λi-1+0.0001, i = 3, …, n, and λ2 = 0.0011. 

Furthermore, it is considered that the cost m of the system loss per unit time is 18, bi = 0.03 . ci 

and ti = 0.03 . ri. 
Table 7-4 – Required data for SMDP portion. 

State Fi ai ci (103) ri
1 Wei(0.001, 1.36) 17 50 24
2 Exp(0.0011) a1+7 c1+7.5 r1+3
3 Exp(λ2+0.0001) a2+7 c2+7.5 r2+3
#  # # # #
i Exp(λi-1+0.0001) ai-1+7 ci-1+7.5 ri-1+3
#  # # # #
n Exp(λn-1+0.0001) an-1+7 cn-1+7.5 rn-1+3

n+1 – – cn+7.5 rn+3
The transition probabilities from deterioration state i to j are given by: 

,
2

2
1

1
∑
+

+=

−+

−+
= n

ij

ij

jn

jnp  i > j; pij = 0, otherwise 
 

The data acquired by continuous condition monitoring could have been used for directly 

estimating the failure rates and other parameters of the semi-Markov decision model. These 

data are also used for determining at which deterioration state the monitored system is likely 

to be. 
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The number of SMDP accesses by the exhaustive multiobjective algorithm in order to 

evaluate the considered objectives is exactly the quantity of potential maintenance policies 

(nMP). In the case of three possible decisions and hence two threshold indexes, this quantity 

is defined as: 

nMP = 1
2

)1(
+

−nn  (7-10) 

On the other hand, the multiobjective GA has an upper limit to the quantity of SMDP 

assessments, which is given by:  

nEval ≤ nInd . (nGen+1) (7-11) 

where nInd and nGen are the number of individuals and generations respectively. 

In this way, regarding the number of SMDP evaluations, it is surely worth using 

multiobjective GA instead of exhaustive multiobective algorithms since the equality in eq. 

(7-11) is hardly met in practice. This occurs since only different potential solutions may be 

evaluated by means of SMDP and, as the multiobjective GA evolves and converges towards 

the nondominated set, there is a reduction of the number of different solutions to be assessed. 

Taking this fact into consideration, it was set n = 50. 

All experiments were executed in the same PC setting as in chapters 4 and 6. The 

exhaustive multiobjective algorithm found 38 nondominated solutions associated with the true 

Pareto front (see Table 7-5 and Figure 7-5). It required 6079.4 seconds to assess all of the 

1226 possible pairs of thresholds (k1, k2).  

Table 7-5 - True nondominated solutions 
k1 k2 Exp. long-run cost rate Mean availability
1 32 417.2220 0.5396
1 31 417.2625 0.5503
1 30 417.4126 0.5609
1 29 417.6861 0.5715
1 28 418.0987 0.5820
1 27 418.6685 0.5924
1 26 419.4156 0.6028
1 25 420.3632 0.6131
1 24 421.5382 0.6233
1 23 422.9713 0.6335
1 22 424.6987 0.6437
1 21 426.7623 0.6537
1 20 429.2119 0.6637
1 19 432.1065 0.6736
1 18 435.5165 0.6834
1 17 439.5271 0.6930
1 16 444.2420 0.7024
1 15 449.7887 0.7117
1 14 456.3262 0.7207
1 13 464.0547 0.7293
1 12 473.2302 0.7375
1 11 484.1855 0.7452
1 10 497.3612 0.7521
1 9 513.3531 0.7581
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1 8 532.9875 0.7628
1 7 557.4443 0.7656
1 6 588.4696 0.7662
2 29 406.1186 0.4550
2 28 406.2036 0.4618
2 27 406.4278 0.4683
2 26 406.8091 0.4746
2 25 407.3677 0.4806
2 24 408.1267 0.4864
2 23 409.1130 0.4918
2 22 410.3578 0.4969
2 21 411.8974 0.5016
2 20 413.7748 0.5058
2 19 416.0406 0.5095

Then 10 trials of the multiobjective SMDP with GA were executed. Table 7-6 presents the 

number of obtained nondominated threshold pairs, the quantity of exact solutions of the true 

nondominated set, the number of SMDP evaluations and the execution time as well. 

 
Figure 7-5 - True Pareto front and some obtained fronts from multiobjective SMDP + GA 

Note that even the upper limit of nEval being relatively large (20100) for the present 

example application, the number of SMDP evaluations is, on average, about 37% of nMP = 

1226. In addition, the multiobjective GA in junction with the SMDP was able to find 

approximately 91% of the true nondominated set in about 10% of the time required by the 

exhaustive multiobjective algorithm. Figure 7-5 depicts the true Pareto front and fronts #2 and 

#10 obtained by the SMDP with multiobjective GA. Note that all points from #2 and #10 

fronts are on or very nearby the true solutions. 

Table 7-6 - Results of multiobjective SMDP + GA 
Trial # Obtained

(k1, k2) 
Exact 
Pareto 
solutions 

SMDP 
evaluations 

Time 
(seconds) 

1 35 35 443 616.5
2 35 34 460 640.8
3 35 35 445 604.7
4 35 35 460 644.8
5 29 29 412 626.6
6 34 34 441 578.3
7 36 36 470 647.1
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8 36 36 468 657.8
9 36 36 463 626.7
10 35 35 448 623.8
Mean 34.6 34.5 451 626.7
Std. dev. 2.07 2.07 17.28 23.21

It can also be observed from Table 7-5 that all policies indicate it is interesting to perform 

minimal maintenance actions in early deterioration states. In addition, the sooner the 

replacement, the higher the mean availability and the expected long-run cost rate reached.  

In this way, decision makers may evaluate how much they are disposal to spend in order 

to obtain a gain in mean availability. This can be done by means of a Return of Investment 

analysis (ROI) between two different maintenance policies from the solution set: 

ROI = (Ai
* – Aj

*) / (Gi
* - Gj

*), i ≠ j  

For example, to change from policy (2, 23) to policy (1, 9), the ROI is equal to 0.00255. 

7.2.4. Comments 

This section proposed a multiobjective optimization model based on semi-Markov 

decision processes for the optimal replacement policy for monitored systems from oil 

industry. The proposed multiobjective approach was validated by means of an exhaustive 

algorithm and was able to find almost all solutions from the true nondominated set in a 

considerable reduced time frame.  

The ongoing research is to integrate this multiobjective portion with a Gamma process 

which has been commonly used to address issues related to continuous degradation (see 

Noortwijk (2009) for more details). In this way, the work developed by Castanier et al. (2003) 

would be extended. 

Moreover, following the findings in Kim and Makis (2009), in upcoming developments, it 

will also be considered imperfect maintenance actions which will allow recovering the system 

to an intermediate deterioration state between the “as good as new” and “as bad as old” 

conditions. 

7.3. Pattern Recognition Problem through Support Vector Machines 

Clustering the continuous data acquired via intelligent technologies into a set of discrete 

states, which is given in Figure 7-4, is the first step of the proposed model described in 

previous section. This requirement consists in collecting data, training them using a pattern 

recognition technique and analyzing its effectiveness on unseen data. 

Basically, it corresponds to a multi-classification problem in which each state i represents 

a category where the system could be. The work presented in the previous section is supposed 
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to start from the definition of this set of states and requires that a pattern recognition model 

determines periodically the condition state. 

Support Vector Machines (SVM) has been successfully applied to pattern recognition and 

regression problems. SVM is able to obtain noteworthy results when a data set 

( ) ( ){ }1 1,..., ,..., ,...,l lx y x y χ⊂ ×ℜ  is available for training, where χ  denotes the space of the input 

points (e.g., dχ = ℜ , where d is the χ  dimension). For instance, these might be time to failure 

(Hong and Pai (2006)), dissolved gases content in power transformer oil (Fei et al. (2009)) or 

reliability of software (Pai (2006)). 

Experimental results have revealed SVM performs better than other techniques such as 

Artificial Neural Networks (ANN), Grey Model, Multi-Layer Perceptron network-based 

method, the Radial Basis Function network-based method, and autoregressive integrated 

moving average (see Pai (2006)). 

There are two main reasons which explain SVM surpasses these techniques (mainly ANN, 

which are one of the commonest methods used in forecasting): (i) rather than backed up the 

empirical risk minimization (which minimizes the training errors) as ANN, SVM makes use 

of the structural risk minimization. Through this principle, SVM seeks to minimize an upper 

bound on the generalization error. This fact plays an important role since minimizing the 

number of training errors appears to be computationally demanding and it guarantees good 

generalization performance as well; (ii) solving a classification or regression problem via 

SVM corresponds to deal with a convex quadratic optimization problem. Karush-Kuhn-

Tucker conditions state a necessary clause for a point ϵ χ  to be a global solution and also are 

sufficient conditions when the objective function is convex. 

Therefore, SVM are not plagued with the problem of local minima as ANN are. For more 

details on these SVM characteristics see Shawe-Taylor (2000) and Burges (1998) for the 

classification problem and Smola and Scholkoff (2004) for the regression case. 

In this way, SVM could have be used to address the pattern recognition (multi-

classification) problem necessary as an intial step to tackle a condition monitoring problem 

such as the one discussed in previous section. This is issue of our ongoing research. 
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8. CONCLUSIONS 

8.1. Final Remarks 

Continuous-time homogeneous semi-Markov processes are important probabilistic tools to 

model reliability measures for systems whose future behavior is dependent on the current and 

next states of the process and on sojourn times, besides the process time in case of non-

homogeneity. 

SMP have been traditionally solved via the N2-method described in Corradi et al. (2004) 

and Janssen and Manca (2001) for HSMP and NHSMP respectively, where the system 

dynamics are assessed via interval transition probability equations comprised of a set of N2 

coupled integral equations. However, as it can be seen in chapters 4 and 6, this approach has 

been rather burdensome and is not straightforward to implement. 

This reason has motivated delving for a more efficient numerical treatment of SMP with 

less computational effort and with a comparable accuracy in relation to the available methods 

in the related literature (MC simulation and the N2-approach). 

Therefore, this research has given rise to the 2N-mathematical formulation and numerical 

treatment which consists of casting the N2 coupled integral equations into an initial value 

problem involving transition frequency densities, and then solve N coupled integral equations 

with one variable and N straightforward integrations. Through the analysis of some examples, 

it has been seen this approach possesses the two aforementioned features: the 2N-method 

convergence speed is greater than the other approaches and has a discrepancy from the MC-

results smaller than that of N2-approach, corroborating the main findings provided in section 

5.2 on the upper limit of the 2N-discretization error.  

Speaking specifically on NHSMP, the 2N-method plays an important role to leverage the 

feasibility of application of this type of stochastic model. Although NHSMP are powerful 

modeling tools, the mathematical and computational difficulties inherent to the N2-method on 

the non-homogeneous environment are usually blamed as accountable for the impracticability 

of this type of stochastic process. 

Although 2N-method has showed meaningful outcomes in terms of computational effort 

and accurateness as well, both approaches (2N- and N2-) have an important drawback to be 

considered: they require increasing the algorithm’s order (number M of steps) so that to attain 

greater accuracy. Hence, this reason increases the effort for solving semi-Markov processes, 
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since the minimum number M of steps to reach a maximum discretization error should be 

known previously. 

This situation has motivated the development of the Lap-numerical procedure which made 

use of Laplace Transforms for solving HSMP. Through a couple of examples of application in 

the context of reliability engineering, Lap-procedure has showed some noteworthy 

advantages: (i) it used a pre-set number of steps, which is independent on the problem to be 

solved. Thus, it is not required anymore adjusting (through either trial-error tests or 

dynamically) the number M of steps in order to attain the desired convergence. (ii) thus, it 

reduced considerably the computational effort in relation to the 2N- and N2-methods and MC 

as well. (iii) Lap-numerical procedure has been designed for treating HSMP specified in terms 

of either transition probabilities or transition rates (iv) it has possessed accurateness 

comparable to the 2N- and N2-method and MC solution. However, the same meaningful 

results have not been encountered for the non-homogeneous case, as can be seen in Moura 

and Droguett (2007). 

Finally, this thesis has presented two further examples. In those examples, the numerical 

procedures developed in this work have been used in optimization and decision-making 

problems. 

Indeed, the first example have developed an approach to maximize the mean availability 

by identifying an optimal maintenance policy for a hypothetical system, which is modeled 

according to a non-homogeneous semi-Markov processes. Hence, the 2N-method, which has 

been drawn for NHSMP in chapter 6, has been used to estimate the availability measure. 

Genetic algorithms in turn have been adopted to perform the optimization task of the 

approach. 

The aim of the second further example has been to establish a way of how the decisions 

do-nothing, minimal maintenance and replacement should be made in order to determine a set 

of nondominated steady state maintenance policies which jointly minimize the expected long-

run cost rate as well as maximizing the expected system availability via continuous time 

SMDP and multiobjective GA. Thus, the Lap-method described for continuous-time SMP has 

been adopted to compute the mean availability of the system. The model SMDP-GA was 

validated comparing its results against an exhaustive multiobjective algorithm. 
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8.2. Limitations, Ongoing Research and Future Challenges 

8.2.1. Semi-Markov Processes: Requisite data, 2N- and Lap-methods 

Regarding semi-Markov processes, three important limitations of this work deserve 

attention. Firstly discussing semi-Markov processes in general, we have the well-known and 

already quoted difficulty in obtaining the requisite data to analyze semi-Markov processes, 

mainly on the non-homogeneous environment. Regarding this issue, El-Gohary (2004) 

presents maximum likelihood and Bayesian estimates of the parameters included in a semi-

Markov reliability model of three states.  

The second limitation lies on how to find out a number M of steps to minimize the 

discretization error computed from the 2N-method. Up to now, this variable is not calculated 

on simulation time what makes necessary to test several solutions of the 2N-method (with 

different M) and check them out in comparison with the MC results. Sometimes, this is a quite 

tough task. This is the issue of our ongoing scientific researches. 

Thirdly, one drawback that deserves attention on the Lap-method is since this approach is 

based upon Gaussian Quadratures theory there is not a quite simple way to obtain an estimate 

of the absolute error committed by the approach (see Press et al. (2002) for more details). This 

is also topic of our ongoing research. 

As suggestion of future works, one could apply other numerical inversion Laplace 

transform methods such as Cuomo et al. (2007) in order to compare with the results provided 

in the present work. 

8.2.2. Support Vector Machines 

As it has been mentioned in section 7.3, the first steps in a condition-based maintenance 

problem correspond to clustering the continuous data acquired via intelligent technologies into 

a set of discrete states. This requirement would consist in gathering data, training them using a 

pattern recognition technique and analyzing its adequateness to test data. 

Basically, it consists of a multi-classification problem in which each state i represents a 

pattern. Thus, the findings presented in section 7.2 are supposed to start from the definition of 

this set of states and requires that a pattern recognition model determines periodically the 

condition state. 

One subject of our current research is to use support vector machines to address the former 

steps of a condition-based problem. Mainly, due to the reasons explained in section 7.3, SVM 

has been successfully applied not only to pattern recognition problems, but also to regression 
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ones, surpassing techniques as Artificial Neural Networks, Grey Model, Multi-Layer 

Perceptron network-based method, the Radial Basis Function network-based method, and 

autoregressive integrated moving average (see Pai (2006)), what underpins its use for treating 

CBM related matters. 
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APPENDIX A 

Table A - 1 – CPT of the MTTF given the level of paraffin (PARAF) and the percentage of H2O and solids (BWSOT) 

PARAF, BWSOT P(MTTF (h) | PARAF, BWSOT ) 
  100 200 1000.0 10000.0 
0 0 0.05 0.10 0.15 0.70 
0 1 0.15 0.15 0.30 0.40 
1 0 0.15 0.20 0.40 0.25 
1 1 0.20 0.50 0.15 0.15 

 
Table A - 2 – CPT of the percentage of H2O and solids (BWSOT) given the level of paraffin (PARAF) 

PARAF P( BWSOT | PARAF)
 0 1
0 0.80 0.20 
1 0.40 0.60 

 
Table A - 3 – CPT of the level of paraffin (PARAF) given the classification of the filter installed (FILTER) 

FILTER P( PARAF | FILTER) 
 0 1 
0 0.75 0.25 
1 0.45 0.55 

 

Table A - 4 – CPT of the classification of the filter installed (FILTER) given the depth of the pump (DEPTH_PUMP) 

DEPTH_PUMP P( FILTER | DEPTH_PUMP) 
 0 1
0 0.90 0.10 
1 0.60 0.40 

 
Table A - 5 – CPT of the depth of the pump (DEPTH_PUMP) 
Variable P(DEPTH_PUMP) 

 0 1 
DEPTH_PUMP 0.70 0.30 
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APPENDIX B 

Table B - 1 – CTP of the repairman’s capacity given attention, experience and skill 

Attention, 
Experience, Skill 

P(Repairman’s Capacity | 
Attention, Experience, Skill) 

   0 1 
0 0 0 1.0 0.0 
0 0 1 0.85 0.15 
0 1 0 0.65 0.35 
0 1 1 0.25 0.75 
1 0 0 0.75 0.25 
1 0 1 0.45 0.55 
1 1 0 0.35 0.65 
1 1 1 0.0 1.0 

  
Table B - 2 – CTP of the repairman’s attention given emotional state and fatigue 

Emotional 
State, Fatigue 

P(Repairman’s Attention | 
Emotional State, Fatigue) 

  0 1 
0 0 0.95 0.05 
0 1 0.55 0.45 
1 0 0.35 0.65 
1 1 0.15 0.85 

 
Table B - 3 – CTP of the repairman’s fatigue given workload and external factors 

Workload, 
External 
Factors 

P(Repairman’s Fatigue | 
Workload, External Factors) 

  0 1 
0 0 0.95 0.05 
0 1 0.75 0.25 
1 0 0.55 0.45 
1 1 0.15 0.85 

 

Table B - 4 – CTP of the external factors given climatic conditions and distracter agent 

Climatic conditions, distracter 
agents 

P(External factors | Climatic 
conditions, Distracter agents) 

  0 1 
0 0 0.85 0.15 
0 1 0.55 0.45 
1 0 0.75 0.25 
1 1 0.45 0.55 

 

Table B - 5 – CTP of the repairman given capacity and time available to complete reinstallation 

Repairman’s 
capacity, 

Available time

P(Repairman | Repairman’s 
capacity, Time available) 

  0 1 
0 0 0.90 0.10 
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0 1 0.75 0.25 
1 0 0.55 0.45 
1 1 0.20 0.80 

 

Table B - 6 – CTP of the root nodes: Emotional state, Workload, Climatic Conditions, Distracter Agents, Experience, Skill, 
Available time 

Node P(Root Nodes) 
 0 1 

Emotional State 0.45 0.55 
Workload 0.85 0.15 

Climatic Conditions 0.85 0.15 
Distracting Agents 0.05 0.95 

Experience 0.85 0.15 
Skill 0.75 0.25 

Available time to complete reinstallation 0.75 0.25 
 
 
 


