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ABSTRACT

Continuous-time semi-Markov processes (SMP) are important stochastic tools for modeling
reliability metrics over time for systems where the future behavior depends on the current and
next states as well as on sojourn times. The classical approach for solving the interval
transition probabilities of SMP consists of directly applying any general quadrature method to
the integral equations. However, this approach has a considerable computational effort.
Namely N’ coupled integral equations must be solved, where N is the number of states.
Therefore, this thesis proposes more efficient mathematical and numerical treatments for
SMP. The first approach, which is called 2N-method, is based on transition frequency
densities and general quadrature methods. Basically, it consists of only solving N coupled
integral equations and N straightforward integrations. Another proposed method, named Lap-
method, is based on the application of Laplace transforms that are inverted by the Gauss
quadrature method known as Gauss Legendre to obtain the state probabilities on the time
domain. Mathematical formulation of these approaches as well as descriptions of their
numerical treatment, including accurateness and time convergence issues, are developed and
provided with details. The effectiveness of the novel 2N- and Lap-developments will be
compared against the results provided by the classical method by using examples in the
context of reliability engineering. From these examples, it is showed that the 2N- and the
Laplace-based approach are significantly less time-consuming and have accuracy comparable
to the classical method.

Keywords: Semi-Markov Process; Transition Frequency Densities; Quadrature

Methods; Laplace Transforms; Gauss Quadrature; Reliability; Availability Assessment.
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RESUMO

Processos semi-Markovianos (SMP) continuos no tempo s3o importantes ferramentas
estocasticas para modelagem de métricas de confiabilidade ao longo do tempo para sistemas
para os quais o comportamento futuro depende dos estados presente e seguinte assim como do
tempo de residéncia. O método cléassico para resolver as probabilidades intervalares de
transi¢do de SMP consiste em aplicar diretamente um método geral de quadratura as equagdes
integrais. Entretanto, esta técnica possui um esfor¢o computacional consideravel, isto &, N’
equagdes integrais conjugadas devem ser resolvidas, onde N ¢ o numero de estados. Portanto,
esta tese propde tratamentos matematicos e numéricos mais eficientes para SMP. O primeiro
método, o qual é denominado 2N-, ¢ baseado em densidades de frequéncia de transicdo e
métodos gerais de quadratura. Basicamente, o método 2N consiste em resolver N equacdes
integrais conjugadas e N integrais diretas. Outro método proposto, chamado Lap-, ¢ baseado
na aplicacdo de transformadas de Laplace as quais s@o invertidas por um método de
quadratura Gaussiana, chamado Gauss Legendre, para obter as probabilidades de estado no
dominio do tempo. Formulacdo matematica destes métodos assim como descrigdes de seus
tratamentos numéricos, incluindo questdes de exatiddo e tempo para convergéncia, sdo
desenvolvidas e fornecidas com detalhes. A efetividade dos novos desenvolvimentos 2N- e
Lap- serdo comparados contra os resultados fornecidos pelo método classico por meio de
exemplos no contexto de engenharia de confiabilidade. A partir destes exemplos, ¢ mostrado
que os métodos 2N- e Lap- sdo significantemente menos custosos e t€m acuracia comparavel
ao método cléssico.

Palavras-chave: Processos semi-Markovianos; Densidades de Frequéncia de Transicao;
Métodos de Quadratura; Transformadas de Laplace; Quadratura Gaussiana;

Confiabilidade; Avaliacio da Disponibilidade.
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Chapter 1 Introduction

1. INTRODUCTION

1.1 Overview

A homogeneous semi-Markov process (HSMP) can be understood as a probabilistic model
whose future behavior is dependent on sojourn times which are random variables dependent
on the current state i and on the state j to which the process will transit next. According to
Ouhbi and Limnios (2003), HSMP are more flexible models than ordinary Markov processes
as it is no longer required to assume that sojourn times are exponentially distributed.

Recent applications and theoretical developments on HSMP have been proposed in the
context of reliability engineering. For example, Perman et al. (1997) apply a recursive
procedure to approximate the interval transition probabilities, which are used to assess the
future behavior of an HSMP over time. Limnios (1997) proposes a dependability analysis for
HSMP in discrete time by using a method based on algebraic calculus. Ouhbi and Limnios
(1997) estimate reliability and availability through HSMP of a turbo-generator rotor using a
set of real data. Ouhbi and Limnios (2002) propose a statistical formula for assessing the rate
of occurrence of failures (ROCOF) of HSMP. Through this result, ROCOF of the Markov and
alternated renewal processes are given as special cases. Some other applications of HSMP
may be encountered in related literature, mainly in the reliability field (as exemplified in
Janssen and Manca (2007); Limnios and Oprisan (2001); Pievatolo and Valadé (2003)).

The future behavior of an HSMP is assessed through its interval transition probability
equations which are comprised of a set of N coupled convolution integral equations, where N
is the number of states. The classical method for solving these equations is explained in
Corradi et al. (2004), and consists of directly applying a general quadrature method to these
N’ coupled convolution integral equations. However, such an approach is quite burdensome
with a computational cost sometimes greater than the Monte Carlo (MC) simulation.

In a non-homogeneous semi-Markov process (NHSMP), transitions between two states in
turn may depend not only on such states and on the sojourn times (x), but also on both times
of the last (1) and next (¢) transitions, with x = ¢ - 1. The time variable t is also known as the
most recent arrival time or last entry time, and the time variable ¢ is the calendar or process
time. Thus, NHSMP extend other stochastic processes such as HSMP. As a result, NHSMP
are powerful modeling tools, mainly in the context of reliability engineering (as exemplified

in Janssen and Manca (2007)).



Chapter 1 Introduction

In spite of that, there are two main reasons to explain the scarcity of NHSMP applications:
(7) Janssen and Manca (2001) argue the non-homogeneity on the continuous time semi-
Markov environment implies additional difficulties in treating NHSMP; (ii) in accordance
with Nelson and Wang (2007), for practical applications, gathering of high level required data
(transition probabilities and/or rates) is likely to be a significant challenge, mainly in the
presence of censoring implied by preventive maintenance.

Specifically regarding the first claim, it gives rise to more intricate mathematical methods
and numerical solutions. Indeed, as it will be discussed in upcoming sections, the future
behavior of an NHSMP is assessed through its interval transition probability equations which
are comprised of a system of N° coupled integral equations with two variables, where N is the
number of states. The classical method to solve the non-homogeneous equations is explained
in Janssen and Manca (2001), and also consists of directly applying a general quadrature
method to these N coupled integral equations, as for HSMP. However, such an approach is
more complex than in the case of homogeneous counterpart, because the integrals involved
are not of convolution type anymore, and also, since the interval transition probabilities to be
determined depend on two parameters.

As it can be seen from this overview on homogeneous and non-homogeneous semi-
Markov processes, the dynamic behavior analysis of both these models requires solving a set
of N’ integral equations which increase considerably the computational time and intricacy of
the related solution. Therefore, this thesis proposes alternative methods for solving the
probability equations of HSMP and NHSMP in continuous time as an attempt to reduce the
complexity associated with these stochastic models and to foster their applicability, mainly of
NHSMP.

Basically, one of these approaches consists of casting the N° coupled integral equations of
either HSMP or NHSMP into an initial value problem involving transition frequency
densities, and then solve N coupled integral equations with one variable and N straightforward
integrations. As it will be seen in upcoming chapters, this approach considerably reduces the
computational effort in relation to the abovementioned classical method and MC simulation
since it is not needed solving N integral equations anymore.

This proposed approach is partly based on the work of Becker et al. (2000) where it is
presented the mathematical formulation for semi-Markov processes (SMP) described by
transition rates A;(-). Similarly to Becker et al. (2000), the proposed approach also involves

transition frequency densities. However, from this point the method discussed throughout this
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thesis departs from the one presented in Becker et al. (2000). Firstly, in the proposed method
the HSMP and NHSMP may be specified in terms of not only transition rates A;( - ), but also
through transition probabilities Cj(-). SMP described via transition probabilities represent
important modeling tools, mainly in reliability applications such as in Janssen and Limnios
(1999) and Droguett et al. (2007). Thus, this thesis proposes an extension to the work
developed in Becker et al. (2000) so that SMP described through both A;(- ) and Cj(- ) may be
handled in a more efficient and integrated form.

Secondly, and conversely to Becker et al. (2000), this thesis is also numerical-based, i.e., a
numerical treatment for the proposed mathematical formulation will be discussed. This
numerical solution is based on general quadrature methods and will have its effectiveness
compared against the classical method and the MC simulation by means of some examples in
the reliability context.

Thus, the proposed approach is two-fold, i.e., it addresses mathematical and numerical
issues related for solving SMP in continuous time. For the sake of simplicity, henceforth the
classical and proposed approaches will be distinguished through their computational efforts as
N’-method and 2N-method, respectively.

Another method which will be proposed here to handle specifically the behavior of HSMP
is based on the Laplace Transform (LT) apparatus. The use of LT is not novel on problems
involving HSMP. There are some works treating this issue in the related literature (Perman et
al. (1997); Janssen and Manca (2006); Moura (2006); Howard (2007)). Through these
approaches, LT are applied to the N° coupled convolution integral equations and thus the
solution on time domain is obtained through respective inversion. However, as stated by
Bellman and Roth (1984) (pp. 149), “We cannot expect that any specific method for the
inversion of the LT will work equally well in all cases”. Moreover, Csenki (1994) (p.233-234)
argues that “no single method can be devised which will perform numerical LT inversion to a
given accuracy”. In other words, a unique numerical method to invert LT is not able to solve
any problem in a general way.

In spite of these statements a method of LT inversion, which was developed by Bellman et
al. (1966), has been applied by Oliveira et al. (2005) for solving the partial differential
equations for non-homogeneous Markov processes described using supplementary variables.
Great results attained on this situation (for distribution functions widely used in reliability
context, like Exponential and Weibull) have led to delve on the feasibility of application of

that LT method for solving SMP as well, for which the dynamic behavior rise from a
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generalization of the Kolmogorov backward differential equations of the Markov environment
(see Feller (1964)).

Therefore, besides the 2N- and N°- approaches, there will also be described a method based
on LT for solving SMP. This approach will be drawn only for HSMP (due to reasons that will
come up over the text) and at the best of our knowledge, as 2N-approach, it has not been used
elsewhere within the semi-Markov environment.

This approach, which will be named Lap-method, will also be developed so that it can
handle HSMP described through either transition probabilities or transition rates. The
effectiveness of the Lap-numerical procedure will be compared against the 2N- and N°-
methods and the MC simulation in terms of computational effort (time) and accuracy by
means of some examples in the context of reliability engineering.

Therefore, the main question behind this thesis is: “How fo solve (homogeneous and non-

homogeneous) semi-Markov processes through a less intricate and more efficient way?”.

1.2 Motivation and Justifications

In this section, the main contributions and justifications, under which the present thesis is
backed up, will be discussed. Basically, two examples that may be faced by reliability
practitioners are presented in order to show which type of practical problems will be solved by
the proposed mathematical and numerical approaches.

The first example addresses a case where an HSMP described by transition rates is used to
handle a repairable pumping oil unit that pumps oil to a storage tank. Then it is discussed
another example which consists of an NHSMP described by transition probabilities used to
model a repairable pressure-temperature optical monitoring system for oil wells.

Basically, these examples will be treated by the proposed mathematical and numerical
approaches which will be designed in upcoming chapters as an attempt to answer the

aforementioned question.

1.2.1 Example 1: Pumping Oil Unit

Most probabilistic models for system availability, reliability and maintainability
assessment assume that the failure of one component immediately causes system failure. In
some systems, however, the failure of a component leads to a system failure only when repair
time has exceeded some time 7, known as tolerable downtime (TDT). According to Vaurio

(1997), systems that have this feature are known as fault tolerant systems (FTS).
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This concept is usually employed in the context of software-based systems reliability, for
example, in Madan et al. (2004) who use SMP to model a possible security intrusion and
corresponding response of the fault tolerant software system to this event. Other related works
include Littlewood et al. (2002), Levitin (2004), Levitin (2005) and Levitin (2006).

In the context of fault tolerant safety systems, some reliability assessment models have
been developed. For example, Camarinopoulos and Obrowski (1981) propose a model for
reliability quantification that takes into account the frequency as well as the duration of
failures. In that work, however, the TDT is considered constant, i.e., it does not have a
stochastic behavior.

Becker et al. (1994) and Chandra and Kumar (1997) use Markov processes (MP) in order
to model safety systems with stochastic TDT. An MP is defined as a probabilistic model that
satisfies the memoryless Markov property. According to this assumption, the future behavior
of a system depends only on its present state and therefore is independent on the sojourn time
in this state. According to Ouhbi and Limnios (1997), however, such an assumption is not
always appropriate, since it is required to assume that sojourn times are exponentially
distributed.

Becker et al. (2000) model the reliability of FTS through SMP. SMP is an extension of
Markov processes and as such they provide greater flexibility in terms of modeling complex
dynamic systems. According to Howard (2007), SMP are not strictly Markovian anymore as
the Markov property is not required at all instants. However, as they share enough
characteristics in common with these processes, SMP receive that denomination. Moreover,
when non-homogeneous semi-Markov processes are considered, it is also possible to model a
system that might be under improvement or aging processes. In this type of SMP, the future
behavior depends on two types of time variables: sojourn time and process time, being the
latter also known as calendar or global time.

A common characteristic shared by the aforementioned reliability/availability assessment
models is that the future behavior of a system is conditioned only on time variables, either
process or sojourn times or both. In some situations, however, other factors not necessarily
time can influence the system behavior. Examples of such external factors include
environmental variables (e.g., temperature, humidity), operational variables (e.g., hydrate and
H,S concentration in oil flow), and physiological (e.g., fatigue) and/or psychological

conditions (e.g., workload, stress).
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In these cases, the system’s future behavior might be influenced by sojourn time variable
as well as by those external factors. To take it into account, it is possible to integrate
continuous time homogeneous semi-Markov processes and Bayesian belief networks (BBN)
(see Moura (2006) for greater details on the hybrid model: SMP and BBN).

As an example, assume that one is uncertain about the true value of the mean time to
failure (MTTF) of a downhole pumping oil system, i.e., one is interested in assessing the
uncertainty distribution of MTTF. The BBN topology in Figure 1-1 characterizes how the
random variable MTTF of the downhole pumping system is influenced by the variables
BWSOT: “Percentage of H,O and solids”, PARAF: “Level of paraffin®, FILTER:
“Classification of the filter installed”, DEPTH_PUMP: “Depth of the pump unit”.

As it can be seen in Figure 1-1, BBN is composed of nodes, which represent the variables
of interest (discrete or continuous), and arcs that characterize the cause-effect relationships

among these variables.

Figure 1-1 — BBN for MTTF of a pumping unit

The first step in setting up a BBN is the identification of random variables and their
nature, i.e., whether they are discrete or continuous. Such values must be mutually exclusive.
Next step is to designate the cause-effect relations among the relevant variables in order to
construct the BBN topology.

In a BBN, a node is parent of a child node when there is an arc leaving the former in
direction to the latter. In Figure 1-1, for instance, the variable “PARAF” is a parent of
“BWSOT” and “MTTF”. Any node with no parents is a root node, any node without children
is a leaf node and any node that is neither a root nor leaf is an intermediary node.
“DEPTH_PUMP” is a root node, “MTTF” is a leaf node and “PARAF” and “BWSOT” are
intermediary nodes.

After the construction of the BBN topology, next step is to determine the strengths of the

cause-effect relations among the connected variables. This is carried out by specifying a
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conditional probability distribution for each node. For discrete random variables, this consists
of establishing conditional probabilities tables CPT for each node. These CPT can be
generated from either data bases or engineering judgments, as in Langseth and Portinale
(2007).

For the sake of simplicity, it is assumed that all variables in the BBN of Figure 1-1 are
dichotomic unless MTTF that can assume the following values {100, 200, 1.000, 10.000}
hours. The CPT given in Appendix A were obtained from a data base according to the
methodology proposed in Barros Jr. (2006), where level 0 refers to an adequate condition and
level 1 to an inadequate one. These CPT correspond to the prior distributions.

In this way, BBN is a graphic representation of a multivariate probability distribution
where it is possible to represent cause-effect relations among random variables (Langseth and
Portinale (2007)). Moreover, BBN provide flexibility in terms of knowledge updating through
the Bayes theorem (see Bernardo and Smith (1994) for basic concepts on Bayesian inference)
as discussed in Firmino (2004).

As an example of how to integrate a homogeneous SMP with BBN, consider a downhole
pumping unit that pumps oil to a storage tank, which in turn is kept above a predetermined
level L in order to be able to supply customers in case of a pumping unit failure. The tank
level above L is set to a value such that a TDT holds before the oil level goes under L in case
of a pumping unit failure. Therefore, upon the occurrence of this failure, it is assumed that
repair starts immediately in order to not go under this predetermined level and consequently
the TDT. Otherwise, the oil level in the storage tank goes under a low limit and the oil supply
halts. When the pumping unit is under repair and the TDT has not expired yet, no damage to
customers is inflicted as oil can still be supplied, i.e., although in a degraded state the system
is still available. However, when the tolerable downtime is reached and repair has not been
completed yet, the system fails and it is assumed to be unavailable.

It is clear that the elapsed time since the start of repair activities plays a relevant role with
respect to system availability measure. Indeed, the system initially starts in state 1 (available)
and upon failure (it is considered failure time follows an exponential distribution) of the
pumping unit it transits to state 2 (failed, under repair and TDT not exceeded), as shown in
Figure 1-2. When state 2 is reached, a local clock is started such that when the sojourn time in
this state is greater than the TDT the system becomes unavailable, i.e., it transits to state 3

(failed, under repair and TDT exceeded).
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In other words, the transition from state 2 to 3 depends on the elapsed time ¢ since the
pumping unit has failed. In both cases (either states 2 or 3), it is assumed repair rate p is
constant (see Figure 1-2). For the sake of simplicity, no failures are considered for pipelines,
valves and the storage tank.

It is also assumed the TDT (in this case, time for the system transits from state 2 to 3) is

distributed according to a Weibull distribution as follows:

w=5[ 2] ool

where a and f are scale and shape factors respectively.

Given that transitions outwards state 2 depend only on the sojourn time, it is considered a
homogeneous semi-Markov process in order to address this FTS. Otherwise, an MP could
have been chosen since in this case all transition rates would be constant.

Furthermore, suppose that, as it might happen in situations of practical interest, the MTTF
characterizing transitions from state 1 to state 2 is influenced by some external factors. As
discussed above, the causal relationships among external factors related to a transition rate can
be characterized in terms of a BBN. As a result, availability measure of the pumping system
could be estimated from the hybrid model based on HSMP and BBN (see Moura and Droguett
(2008) in Attachment A).

In particular, for the system under consideration, assume that the MTTF of the
exponentially distributed time up to pumping unit failures (i.e., sojourn time in state 1) is

uncertain and influenced by the external factors shown in Figure 1-1.
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Figure 1-2 — HSMP for the downhole pumping oil unit

Figure 1-2 depicts an HSMP, which is described by transition rates A;(t), designed to
model the oil pumping unit taking into account the influence of sojourn times and external
factors on the future behavior of the system. In Figure 1-2, fiyrrr is marginal probability
distribution of the MTTF and it is obtained from the BBN in Figure 1-1.
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The requisite data needed for solving this sort of SMP are the parameters of the
probability density functions (PDF) of the holding time in each state i given that system will
go towards state j. In this example, it means to estimate of y, a and B. Moreover, as MTTF of
the transition from state 1 to 2 is uncertain, the CPT given in Appendix A are necessary to
estimate the PDF on that parameter.

Through Figure 1-2, it is developed a model for a more realistic representation and
quantification of availability measure for repairable FTS via the integration between
continuous time HSMP and BBN. Such systems have a basic feature: the sojourn time in any
state influences the transition probabilities. Moreover, external factors (e.g., environmental
and operational conditions) not necessarily time variables also impact the future behavior of
the system. Furthermore, as new evidence becomes available, the probability distributions of
these parameters as well as the state of knowledge about the behavior of the system can be
updated.

Thus, as the HSMP is described via transition rates then the integration between it and
BBN is achieved through an interface represented by parameters of the intensity functions
characterizing the transition rates. Such parameters are taken from BBN describing the cause
and effect relationships among the relevant external factors and the corresponding parameters.
The resulting uncertainty distribution about a particular parameter is then taken as input
information for the HSMP.

In order to explicitly quantify the impact of the uncertainty in the transition rates on the
state probabilities of the semi-Markov model, on the availability measure or on other relevant
reliability metric, a numerical procedure for solving HSMP must be repeated for a
considerable number of iterations.

Using the N°-method (given in Corradi et al. (2004)), which is hardly time-consuming, the
solution of the model in Figure 1-2 would become infeasible. Therefore, developing a faster
and accurate way for solving HSMP is a must for practitioners who are used to face some sort
of problems such as just described.

This example will be further discussed in chapter 4. In fact, it will be solved using 2N-,
Lap-, N°- and MC approaches which will be compared in terms of computational cost and
accuracy.

Next subsection presents another application of SMP. The problem characterization
mainly draws from Droguett et al. (2007) and Droguett et al. (2008) which follow in

attachments B and C respectively.
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1.2.2 Example 2: Optical Monitoring Systems

Oil has been the most important source of energy since the early days of last century. The
growing and continuous demand for energy associated with decreasing availability of this
limited resource have led to a considerable increase in investment directed towards the
development of renewable energy sources as well as to research efforts for optimizing
technologies related to the exploration and production of oil.

Mostly because of the increasing oil price, a considerable attention has been given to the
enhancement of production technologies that allow for anticipation of oil production volumes
and an improved reservoir management and control. In line with such efforts, recent
developments have led to the so called intelligent oil fields. The term ‘intelligent’ means: (7)
data acquisition: sensors provide data on important well parameters in real time; (ii) flow
remote control: it allows an operator to modify production or injection flow characteristics
with no on-site intervention; (iii) data interpretation and optimization: it allows production
and reservoir engineers feed simulation models and act on a particular well in real time.
Therefore, intelligent oil field is a concept encompassing various technologies that allow for
an integrated management of production and injection of one or several reservoirs.

Under these circumstances, availability is a key attribute: the higher availability the higher
production volumes and therefore profit are. Moreover, in terms of intelligent oil fields,
increased availability levels associated with the anticipation of production volumes in relation
to what is currently attained by a conventional oil field might serve as evidence for
justification of the considerable steep investment in new technology.

In this context, a research effort is underway for designing and implementing intelligent oil
fields in mature wells located in the Northeast of Brazil. Part of this effort concerns the in-
house development and installation of pressure-temperature optical monitoring systems
(OMS).

At the current stage, only a few units of these systems have been deployed for field tests
and, given the limited experience, availability assessment is usually performed under a
considerable level of uncertainty. In spite of that scenario, this limited experience has
suggested that an OMS might be comprised of components that are renewed after failures as
well as components that are under deteriorating processes with failure intensity functions that
are dependent on the total system age (process time).

Upon failure of the monitoring system, human performance during the reinstallation of an

OMS (i.e., removing, repairing and then running an OMS in hole) is a relevant factor
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influencing its availability. Moreover, the time interval to accomplish the reinstallation plays
an important role since it directly impacts the OMS availability as well as the human
performance during the effort to recover the system. In fact, under real life oil production
conditions in the Northeast of Brazil, there exists an available time to complete the
reinstallation (tolerable downtime). Otherwise, the OMS reinstallation in the field is not
longer feasible and, from the availability analysis perspective, it evolves to an unrecoverable
state — this tolerable downtime is one of the factors that directly influence the human
performance during the reinstallation and thus the OMS availability (see Droguett et al.
(2008) for deeper details).

Therefore, there are three relevant aspects in estimating the OMS availability: (i) the
available time to complete the reinstallation; (i7) the system deteriorating process and (#ii) the
maintenance crew’s performance, which is influenced by tolerable downtime and other factors
(e.g., experience, fatigue) in returning an OMS to its normal operational condition.

NHSMP may be used here in order to tackle the first two issues because: (i) the duration
(sojourn time) in a state may influence the availability of an OMS and (i7) provided that some
components might be under deteriorating processes, it should be considered time dependent
transition intensity functions. In this context, the combined impact of these two time variables
on the reliability of an OMS will be assessed through an NHSMP.

Indeed, OMS reinstallation process involves the repair of any possibly failed component
as well as running the OMS system downhole. Thus, as it depicted in Figure 1-3, it is assumed
that the system (OMS) starts at normal operation in state 1. Upon a system failure, the
reinstallation process of the OMS starts, which is represented by state 2. If the reinstallation
process cannot be completed, the system goes to state 3 where additional actions are taken to
restore the system to its normal operating condition. If the operator is still not able to restore
the system, all actions are halted as represented by state 4. Thus, the system is not functioning

(unavailable) when in states 2, 3 or 4.

pall) 2 D)

Gy(L1)

Gy (Lt)

Figure 1-3 — Non-Homogeneous semi-Markov process for an OMS
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OMS reinstallation procedures involve complex operations that require interactions
between human elements and equipments. Thus, to take into account the third relevant issue
(the crew’s performance in recovering an OMS), BBN could again be used to address
qualitatively and quantitatively the cause-effect relationships among factors that impact the

Human Error Probability (HEP) during the reinstallation of an OMS.

In the context of the OMS reinstallation, the variables “available time to complete the
reinstallation” and “the capacity to accomplish the task™ directly influence the probability of

the repairman to properly accomplish the procedure, as it can be seen in Figure 1-4.

uman Error
Probability
Repairman)

Available time to
complete
reinstallation

apacity to
accomplish the
task

Fatigue

Workload

conditions
Distracting
agents

Figure 1-4 — BBN model for the OMS repairman

Furthermore, according to Figure 1-4 the repairman is influenced by external factors. Two
of these factors are considered here: climatic conditions (e.g., temperature and humidity) and
distracting agents (e.g., informal parallel chats in work environment, noise, glare, movement,
flicker and color). These external factors associated with workload can cause fatigue (i.e.,
physical and/or mental fatigues). Fatigue associated with emotional state can influence the
attention of the repairman to the current task. It is possible, for example, that due to fatigue
and an unfavorable emotional state, the attention level is negatively impacted. It is considered
that three factors can influence the repairman capacity to carry out his activities: attention,
skills and experience. Attention refers to whether sufficient cognitive and physical resources
are put at the “right” places. Skills are the ability to understand situations and perform needed
actions without much cognitive activity. Deficiency of skills can manifest itself in reduced job
quality and time delay. Experience is the accumulation of information and knowledge
acquired through direct or indirect interactions with the system (see Chang and Mosleh

(2007)). The repairman performance measured by the HEP is directly influenced by his
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capacity to carry out the task and the available time to complete the reinstallation. Both
factors are considered to have major impact on the HEP, thus they are parents of the “human
error” node. For a detailed discussion on how a Human Reliability Analysis (HRA) is
performed, see Menézes (2005). Table 1-1 summarizes the BBN nodes and the levels which

they can assume.

Table 1-1 — Variables and their levels

Variable Levels
0 1
Human Error Yes No
Available time to complete reinstallation Adequate Inadequate
Capacity to accomplish the task Adequate Inadequate
Experience Average High
Attention Adequate Inadequate
Skills Adequate Inadequate
Emotional State Adequate Inadequate
Fatigue Adequate Inadequate
Workload Adequate Inadequate
External Factors Adequate Inadequate
Distracting Agents Yes No
Climatic Conditions Adequate Inadequate

Thus, when the system is in state 2, it is assumed that the operator has an appropriate
available time to complete the reinstallation tasks. Under this situation, the probability p,;
corresponds to the HEP under a condition of “adequate available time to complete the repair
(evidence 0)”. If the operator does not complete the reinstallation in the allotted time frame,
the system transits to state 3. In this state, the operator takes additional actions to restore the
system but now under a time pressure situation, i.e., it is considered that a substantially
reduced time frame is available to restore the system to its normal operating condition.
Correspondingly, the HEP p3, reflects the situation of “inadequate available time to complete
the repair (evidence 1)”. In both cases (states 2 and 3), if the operator ends the reinstallation
within the available time, the system returns to its normal operating condition (state 1).

Otherwise, the system transits to state 4.

13
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Figure 1-5 — A semi-Markov model with Bayesian belief network based human error probability for availability

assessment of downhole optical monitoring systems

Therefore, when the system enters states 2 or 3, the BBN node “human error” is directly
connected to the probabilities (parameters) of the NHSMP of Figure 1-3 what can be seen in
Figure 1-5. Thus, the parameters p,; and p;, are the HEP in the BBN of Figure 1-4 given the
evidences 0 and 1, respectively. The parameters p,; and p;3; are the respective complements of
P23 and D34

In this way, the conditioning factors influencing the error probability of an OMS
repairman as well as the cause-effect relationships among them are taken into account for the
availability assessment of an OMS via the continuous-time NHSMP.

As it may be noticed in the preceding description, the requisite data needed for solving
this NHSMP are different from those for example 1. Indeed, Figure 1-3 illustrates an NHSMP
described by transition probabilities. The required data to estimate the system (un)availability
over time via this type of NHSMP are the transition probabilities p;(-) and the conditional
Cumulative Distribution Function (CDF) Gj(-,-). These terms will be further described in
detail in next chapter.

Due to the lack of a robust and efficient method to solve the example just described,
Droguett et al. (2008) have solved it by using MC. Another possibility is to resort to the N-
method drawn for NHSMP in Janssen and Manca (2001). However, due to computational
time reasons this approach becomes impracticable.

Therefore, the 2N-method for NHSMP will be developed in chapter 5. Then in chapter 6,

the example described in the present section will be widely solved by using the 2N-method.
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1.2.3 Contributions

Actually, examples 1 and 2 address the availability assessment problem with somewhat no
use of simplistic assumptions on the system’s behavior. However, trying to approach as much
as possible towards reality requires a price to be paid. In these cases, the penalty corresponds
to the intricacy and complexity of mathematical and numerical formulations involved with
SMP what also implies impracticable computational times.

Indeed, traditionally examples 1 and 2 could be solved by using N’-method given in
Corradi et al. (2004) (HSMP) and Janssen and Manca (2001) (NHSMP), respectively.
However, both of them are rather cumbersome with a computational cost greater than MC.

This situation motivates the development of a novel and more efficient (faster)
mathematical and numerical formulation for SMP that has less computational effort, but keeps
the accuracy in relation to the available methods in the related literature, that is, MC
simulation and the N -approach. In fact, the 2N-mathematical formulation and numerical
treatment consists of casting the N’ coupled integral equations into an initial value problem
involving transition frequency densities, and then solve N coupled integral equations with one
variable and N straightforward integrations. As it will be proved in next chapters, this
approach possesses both abovementioned features: it is significantly less time-consuming and
has roughly accuracy equals to the N’-method.

Specifically regarding NHSMP, although they are powerful modeling tools, the
mathematical and computational difficulties of the non-homogeneous environment are usually
blamed as accountable for the scarcity of applications of this type of stochastic process. Thus,
this thesis plays an important role as an attempt to increase the feasibility of application of this
kind of stochastic model.

Moreover, this thesis describes another alternative method (called Lap-approach) for
solving the state probability equations of an HSMP on continuous time. This numerical
procedure is based on the application of LT. As there will be seen in detail, the main
advantage of this approach is that it is not required adjusting the number of steps in order to
obtain the desired convergence. There will be a pre-set number of steps, which is independent
on the problem to be solved and thus, this method is likely to have a considerable reduced
computational effort in relation to the abovementioned 2N- and N°-methods and MC as well.

Finally, the 2N-mathematical formulation and numerical approach will also be illustrated
by means of some examples of application in the context of reliability assessment (including

those which have been described in the two previous sections), where the effectiveness and
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the required computational effort of the 2N-method will be compared against the MC and the
N°- and Lap-approaches.

1.3 Objectives

1.3.1 General Objective
Developing a novel mathematical formulation and a faster numerical treatment for solving
on continuous time (homogeneous and non-homogeneous) semi-Markov processes described

through either transition rates or transition probabilities.

1.3.2 Specific Objectives

= Surveying at the theoretical background of homogenous and non-homogeneous semi-
Markov processes;

= Surveying at the N°-method: numerical perspective;

= Developing the 2N-mathematical formulation and numerical treatment for HSMP;

=  Developing the Lap-numerical treatment for HSMP;

= Developing the 2N-mathematical formulation and numerical treatment for NHSMP;

= Implementing numerically on C++ platform the solutions for 2N-, Lap-, N°- approaches
and MC simulation in order to make comparisons among them in terms of computational
time and accuracy;

= Applying the abovementioned methods to solve some examples in the context of
reliability engineering in order to evaluate their effectiveness in terms of computational

cost and accuracy.

1.3 Thesis Layout

The remainder of this thesis is organized as follows. Next chapter presents the theoretical
background related to SMP: HSMP and NHSMP described through either transition
probabilities or transition rates. Chapter 3 (section 3.1) develops the 2N-method for
homogeneous semi-Markov processes. In this chapter, the mathematical formulation
involving transition frequency densities and the description of the numerical method
(including the analysis of the discretization error) will be described. Chapter 3 (section 3.2)
also describes the Lap-numerical method for HSMP. This method is composed of the
application of LT and its corresponding inversion. Both issues will be discussed in that
chapter. In chapter 4, comparisons among 2N-, N°-, Lap- and MC approaches will be made

through some examples of application. Chapter 5 will show the description of the 2N-method
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for NHSMP. As for HSMP, in this chapter, the mathematical formulation and the numerical
treatment (including also the analysis of the discretization error) will be discussed taking into
account non-homogeneity issues. Chapter 6 will challenge the effectiveness of the 2N-method
drawn for NHSMP against the results from N°- and MC approaches. In this chapter, the
example 2 described in section 1.2.2 will be solved using the 2N-method. Next, chapter 7
presents two further examples. The first one will show how the 2N-method may be used for
determining a maintenance optimization policy so that to maximize the mean availability
measure. The second example is also inserted inside the optimization context. Basically, it is
designed for determining which maintenance decisions should be made so that the mean
availability and expected costs are jointly optimized over the system’s age. Thus, the Lap-
method will be used to estimate the mean availability in this framework. Finally, chapter 8
presents some conclusions, discussing final remarks and challenges for ongoing and future

research.
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Chapter 2 Theoretical Background

2. THEORETICAL BACKGROUND: SEMI-MARKOV PROCESSES

2.1. Applications and terminology

According to Howard (2007), an SMP can be understood as a probabilistic model in which
the successive occupation of states is governed by the transition probabilities of an MP,
known as embedded MP, but the sojourn times in each state is described by a random variable
that depends on the current state and on the state to which the next transition will be done.

In an SMP, the Markov property is required only at the transition times between states
and, therefore, it is not strictly Markovian. Thus, the sojourn time distribution can be arbitrary,
following any probability density function not necessarily exponential.

Some recent scientific developments on SMP may be quoted. Grabski (2003) presents the
properties of the reliability function of a component under a random load process with failure
rate modeled according to an SMP. The reliability functions were obtained through
application of Laplace-Stieltjes transforms to transition probability equations and, by using a
commercial computational software, the analytical solution of the inverse transform were
obtained.

Ouhbi and Limnios (2003) introduce non-parametric estimators for the reliability and
availability of SMP by assessing the asymptotical properties of these types of metrics. A
method to compute confidence intervals for such estimators is proposed and an example of
application is given for a three state SMP. Limnios and Oprisan (2001) demonstrate some
results and applications of SMP in the context of reliability.

Pievatolo and Valade (2003) assess the reliability of electrical systems in situations of
continuous operation. An analytical model is developed which allows for non-exponential
distributions of failure and repair times. SMP are used to compute the mean time between
failures (MTBF) and mean time to repair (MTTR) of a compensator output voltage.

El-Gohary (2004) presents maximum likelihood and Bayesian estimators for reliability
parameters of semi-Markovian models. Other recent works that have SMP as main issue are
Afchain (2004), Chen and Trivedi (2005), Limnios and Ouhbi (2006), Xie et al. (2005),
Soszynska (2006) and Jenab and Dhillon (2006).

A common characteristic of the aforementioned works is that defining an SMP requires
the specification of N’ probabilities of the embedded MP and N’ conditional probability

density functions of the sojourn times in each state given the next state. This is the usual
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definition of SMP which is presented in most of related literature, for example in Ross (1997)
and Limnios and Oprisan (2001).

However, in the context of reliability engineering, transition rates rather than transition
probabilities are also usually employed to define continuous time MP and, therefore,
transition rates should be attractive for defining SMP as well. Indeed, Becker et al. (2000)
develop the mathematical formulation of SMP described through transition rates. Such
transition rates are different from those of MP which are either constant (homogeneous
Markov processes) or dependent on process time (non-homogeneous Markov processes).

In fact, the transition rates of an SMP may only depend on sojourn time in a state for the
case of an HSMP, or both sojourn and process times for an NHSMP. In both cases, the
transition rates can be used to represent failure and repair rates as for MP.

Both ways (transition probabilities and transition rates) will be used in next two sections
to define SMP. In this way, the mathematical and numerical developments which will be
proposed in chapters 3 and 5 could address SMP described through either transition

probabilities or transition rates in the same fashion.

2.2. Homogeneous semi-Markov processes

HSMP in continuous time are introduced in this section using a similar nomenclature to

the one given in Corradi et al. (2004). Let S={1,..,N} represent the finite state space and

define the following random variables:
Z,:Q—>S8,T :Q—[0,0,
where Z, and T, are, respectively, the state and the time in the n™ transition.

The process (Z,,T,) is called homogeneous Markov renewal process if

n>-n

PiZ,., =T, ~T,<t|Z,.T, Z

>t n+l n>-n>“~n-1°

T, 1nZy ]

n+l

=PIZ,, = T, - T, <t|Z,=i]
The kernel Cj;(¢) of an HSMP is defined as:
C,(1)=PrZ,, =j.T,,~-T,<t|Z,=il. (2-1)

Eq. (2-1) is the probability of the HSMP to reach state j at time 7,,, given that it has

remained in state i for 7,,, -7, <t. According to Howard (2007), the kernel Cy(?) is the

n

fundamental describer of an HSMP as its elements determine the transitions between states as
well as the sojourn time (¢) both conditioned on the current state (7).

It follows that:
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pij:Pr .]|Zzl_l _hm ‘(t)ainjesa

where P = [p;/ is the matrix of transition probabilities of the continuous-time embedded
homogeneous Markov process (EHMP), which is the homogeneous Markov process relevant
to the HSMP.
HSMP will leave state i after it has stayed there for ¢ with probability given by:
F()=Pr[T,, -T,<t|Z,=i], (2-2)
which represents the CDF of the waiting time in state i.

Eq. (2-1) and (2-2) are related as follows:
E0=Y" ¢,

In fact, F(¢) means the probability that the HSMP leaves state i when its successor state j
is unknown.

The conditional CDF of the sojourn time given the current (i) and next states (j) to be
occupied by the process is given as:

G, (¢)=Pr[T,

n+l T<t|Z _lZn+1 ]7
which corresponds to CDF of the holding time given i and ;.

The probabilities are related as follows:

C.(t
ﬁ 5U(‘p1]¢09

1 , otherwise.

Basically, an HSMP works in the following way: when state 7 is reached, the next state j to
be occupied by the process is immediately drawn from the transition probabilities p; of the
EHMP. Given the current (i) and next () states, the sojourn time (¢) in state (i) is sampled
from the CDF G;(?). Thus, the next transition time (#,+;) is determined as t,+; = t, + ¢.

The future behavior of an HSMP over time may be assessed through its interval transition
probabilities ¢;(t)=Pr[Z=j | Zy=i], Z = (Z, t € R; ), which are given as follows (see Corradi
et al. (2004)):

N L
4;(0)=8,(1-F0))+ Y [ Cu(0)- ¢y (t = 0)dz (2-3)

k=1 ¢
- ARG o . .
where Cy(t) = p; B is the derivative of the kernel of the HSMP in relation to the

sojourn time ¢, and &;; is the Kronecker’s delta for which holds &; = 1 if i = and &;; = 0,
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otherwise. Eq. (2-3) assumes that the kernel Cj;(?) is absolutely continuous with respect to the
sojourn time.

Eq. (2-3), which is a set of convolution integral equations, is interpreted as follows: the
first part represents the probability of the process to remain in state i from 0 to ¢, with no state
change in this time interval. The second part represents the probability of the process to stay
in state 7 during the sojourn time 7, transiting to the intermediary state k at this time and from
this state to j at time ¢, remaining (¢ - T) in state k£ with 7 > 7.

When an HSMP is defined in this way, it is said that this process is described through
transition probabilities. However, in the context of reliability engineering, transition rates A;;(?)
rather than transition probabilities could also be attractive to define HSMP. Indeed, Becker et
al. (2000) and Ouhbi and Limnios (1999) have modified eq. (2-3) in order to handle HSMP
described through transition rates as follows:

(1) = 5, exp(=[ 4, (x)d) +
0

v . , (2-4)
£y j 2 (T)exp(— J' A (x)dx)h, (t—)d
k=19 0
where 4, (?) is the transition rate of an HSMP defined as:
Ayt = P{T, =T, e (t,t+d)NZ(T,) = j| Z(T,,.)) =inT, =T, > 1}, (2-5)

Eq. (2-5) indicates that a transition to state j occurs in an infinitesimal time interval after
the process has remained in state i for duration #, given that no transition leaving this state has

occurred. Moreover, 4, () is the transition rate leaving state 7 and is given by the following

equation:
N
4 ()= Zﬂik OF
k=1

The interpretation of eq. (2-4) is the same as the one provided for (2-3). However, the
kernel Cj(-) and the CDF Fj(- ) are defined in a different way as follows:

C, ()= J' 2 (2)exp [— J' J (x)dedz (2-6)
0 0
and
F@)=1- exp(—j A (x)dx) . 2-7)
0

Corradi et al. (2004) have developed a numerical method for HSMP directly applying a

general numerical quadrature method to equation (2-3) (i.e., only for NHSMP described by
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transition probabilities). However, the computational cost of this numerical solution is
considerably high mainly because it involves solving N? coupled integral equations with one
variable in the time domain, ¢.

Although the numerical method proposed by Corradi et al. (2004) has been originally
developed to handle HSMP described through transition probabilities (eq. (2-3)), it is likely to
be extended to address HSMP described through transition rates for which the interval
transition probabilities are given in equation (2-4).

Thus, in chapter 3 (section 3.1) it is presented a novel mathematical formulation for
HSMP (described through either transition probabilities (eqs. (2-1) and (2-2)) or transition
rates (eqs. (2-6) and (2-7))) as an initial value problem involving transition frequency
densities. Moreover, in the same chapter a numerical and straightforward treatment for this
new mathematical is drawn as an attempt to reduce the inherent computational cost that is
present in the solution of HSMP through the N*-method. As it said, this approach is called 2N-
due to its complexity.

Moreover, in chapter 3 (section 3.2) there will be proposed an alternative method to the
2N- and N’-methods for solving the interval convolution transition probability equations of an
HSMP on continuous time. Taking advantage of the convolution feature present in
homogenous environment, this numerical procedure is based on the application of LT which
will be inverted by using the Gauss quadrature method known as Gauss Legendre. Basically,
LT plays an important role since they will change the integral domain by an algebraic
environment which is likely to reduce the computational time of the solution.

Comparisons in terms of computational time and accuracy among the N°-, 2N- and Lap-
methods and Monte Carlo simulation will be accomplished in chapter 4 in order to validate

the effectiveness of the proposed models for solving HSMP.

2.3. Non-Homogeneous semi-Markov processes

NHSMP are introduced here using a similar nomenclature to the one given in Janssen and
Manca (2001). Thus, let define the following random variables:

Z Q58T :Q—[0,0,
where Z,, T, and X, =T, —T,_, are the state, process time, and sojourn time in the n™
transition, respectively.

The process (Z,,7,) is called non-homogeneous Markov renewal process if

n’ n
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Pr[Z

n+l=j’Tn+lSt|Zn=i’T;1=l’Z ]—;171""’20’76]

j’TnH St|Zn =i’T;1 =l]

n-1°
= Pr[ZnH =
The kernel Cj( - ,- ) of an NHSMP is defined as:

Cij (1,t)=PI'[Zn+1 :jiT;Hl SZ|ZH :i’]—;’l =Z] (2'8)

Eq. (2-8) is the probability of the process to reach state j at the time T

n+l

<t given that it

has reached state i at the time /, and remained there for X,,, <x. The kernel C;j(-,-) is the

n+l
fundamental describer of an NHSMP as its elements determine the transitions between states,
the time of the next transition () and then sojourn time (x) conditioned on the current state (i)
and the last transition time (/).
It follows that:
n-1

py;(1)=PrZ,=j|Z,, =iT, =1] :}Egcy(l,t), i,jesS,

where P(l) = [p;(l)] is the matrix of transition probabilities of the continuous-time embedded
non-homogeneous Markov process (ENHMP), which is the non-homogeneous Markov
process associated to the NHSMP.

NHSMP will leave state i within the time interval from / to # with probability given by:

F(L)y=Prt[T,, <t|Z, =0T, =1], (2-9)
which represents the CDF of the waiting time in state i.

Egs. (2-8) and (2-9) are related as follows:

F(l,0)= Zle C, (1) .

In fact, F,(-,) means the probability that the NHSMP leaves state i when its successor
state j is unknown.

The conditional CDF of the sojourn time in the current state (i) given the next state (j) to
be occupied by the process and the last transition time (/) is given as:

G;(L.t)=Pr[T,, <t1Z,=i,Z,., = j.T,=1].

n+l

The probabilities are related as follows:

(1) if p.(1)#0
>l p," )l

G, (Lt)=y p; (1) ’
1 , otherwise.

According to D’amico et al. (2005), the main difference between a non-homogeneous

Markov process and an NHSMP is on the CDF Gj(/,¢). In a Markovian environment, such
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functions must be exponential negative whereas in a semi-Markov context G;jj(/,f) may be
arbitrary and not necessarily exponential.

Basically, an NHSMP works in the following way: when state i is reached at the time /,
the next state j to be occupied by the process is immediately drawn from the transition
probabilities p;(/) of the ENHMP. Given the current (i) and next (j) states and the last
transition time (/), the sojourn time (x) in state (f) is sampled from the CDF Gj(-,- ). Thus, the
next transition time (¢) is determined as t =/ + x.

The future behavior of NHSMP over time is assessed through its interval transition
probabilities ¢i(L,t)=Pr[Z=j | Z=i], Z = (Z;, t € Ry ), which are given as follows (see Janssen
and Manca (2001)):
¢,(L,ty=35,(1- F(L,0)+ kﬁjéik (1,7)- ¢, (z,0)d7 (2-10)
=17

1

d[ p;(1)-G,(.0)]
dl

and o;; is the Kronecker’s delta for which holds 6;; = 1 if i = and &;; = 0, otherwise. Eq. (2-10)

where é‘;,- @,0= is the derivative of the kernel of the NHSMP in relation to /,

assumes that the kernel Cj(-,-) is absolutely continuous with respect to the process time.

Eq. (2-10) is interpreted as follows. The first part represents the probability of the process
to remain in state i from / to ¢, with no state change in this time interval. The second part
represents the probability of the process to reach state i at the time /, and the intermediary
state k at the time 7, and to transit from this state to j at the time ¢, remaining (x =t - /) in the
state 7 and (x =7 - 7) in the state k before reaching the state j at ¢z, with ¢ >t > 1.

Transition rates that depend on both types of time variables (sojourn and process) may
occur in problems of practical interest, for example, in FTS which are under deteriorating
processes (see Moura (2006), for example). Therefore, it is necessary to develop a non-
homogeneous semi-Markovian model described by transition rates which depend on both
sojourn and process times.

Becker et al. (2000) defined the transition rate of an NHSMP as follows:

Ay(L,tydx =Prit =l e (x,x+dx) NZ(t) = j| Z(])
(2-11)
=iNnt—1>x}.

Eq. (2-11) represents a transition to state j which occurs in an infinitesimal time interval
after the process has reached state i at time /, given that no transition leaving such a state
occurred before. Note that both ¢ and / represent process times, but / is the time of the last

transition so that =x+/ as occurs for NHSMP described by transition probabilities.
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To obtain the interval transition probabilities of an NHSMP defined by transition rates,
one has to consider that the process is non-homogeneous in relation to the process time. Thus,

@(l,¢) are given as follows:

¢, (L,1) = 5exp£ J.ﬂ (Lt)d J

t (2-12)
J.ﬂl.k a, T)exp{—J. (1, x)dx} ¢, (z.0)d.
1 !

+

M=

=~
Il

1

Eq. (2-12) means the same of eq. (2-10). The only idiosyncrasy regards the kernel Cy(-)
and the CDF Fj(- ) since they are defined in a different way as follows:

C, (1,5 = J'/l,.k (I,7) exp[—j a0, r)dx}dz (2-13)
/ !

and

Ei(l,t) = l—exp[—j/li (l,t)dx} . (2-14)
I

Note that egs. (2-10) and (2-12) are not of convolution type as is for the case of
homogeneous semi-Markov processes (see previous section). In this way, the LT technique
that is widely applied for HSMP could not be used in the non-homogeneous environment.

Therefore, Janssen and Manca (2001) have developed the N°-numerical method for
NHSMP directly applying a general numerical quadrature method to eq. (2-10) (i.e., only for
NHSMP described by transition probabilities). However, the computational cost of this
numerical solution is considerably high mainly because it involves the solution of N’ non-
convolution coupled integral equations and with two variables in the time domain, / and z.

Thus, in chapter 5 it is developed a novel mathematical formulation for NHSMP
(described through either transition probabilities (egs. (2-8) and (2-9)) or transition rates (egs.
(2-13) and (2-14)) as an initial value problem involving transition frequency densities.
Moreover, in the same chapter a numerical and straightforward treatment for this new
mathematical is drawn as an attempt to reduce the inherent computational cost that plagues
the solution of NHSMP through the N’-method. This approach is called 2N- due to its

complexity.
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3. SOLVING HOMOGENEOUS SEMI-MARKOV PROCESSES: 2N-
AND LAP- APPROACHES

3.1. 2N-method: Mathematical Formulation and Numerical Treatment

The mathematical and numerical treatments, which is called 2N-method and will be
developed in this chapter, is put forward as an attempt for untangling the inherent
computational cost that plagues the solution of HSMP via the classical method given in
Corradi et al. (2004).

Basically, by changing N°-effort by 2N-complexity, the 2N-approach tends to reduce
considerably the computational effort in relation to the N°-method and MC simulation as well,
keeping the accuracy of the abovementioned approaches. The main findings of this section

can be encountered in Moura and Droguett (2009d) which follows in attachment D.

3.1.1. An initial value problem involving transition frequency densities

Depending on how an HSMP is described, the kernel Cj(-) and the CDF Fj(-) are given
by equations (2-1) and (2-2) in case of transition probabilities or by equations (2-6) and (2-7)
in case of transition rates. The 2N-numerical approach will be developed in a general way in
order to handle both situations.

Thus, an initial value problem consists of computing the probabilities ¢;(¢) given the initial
conditions ¢;(0). By using a similar nomenclature to the one given in Becker et al. (2000), let
N;(?) be the number of times that state j of an HSMP is visited from any state in the interval
[0,]. Let also H;(#) = E[N;(#)] be its expected value. If H(¥) is continuously differentiable, then
h;j(£)dt = dHj(?) is its corresponding density function.

As the stochastic process under consideration is regular, i.e., no more than one transition
can occur in any interval (¢, t+dft), then hj(¢) can be assumed as the probability that a transition
occurs to state j in an infinitesimal time interval d¢ as follows:

hj(f)dt=Pr{to reach state j in (t, t+dt),.
Thus, it follows that:
N
=>"4.(0)- (t)+ZJ'h Cy(t-7) (3-1)
i=l i=l o

According to the description of eq. (2-1), (3-1) means state j can be reached either if the

process was initially in state i and remains there until time ¢, when a transition to state j

occurs; or if the process reached state i at time 7, remaining there for x = ¢ — 1, then a
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transition to state j occurs. The summation over the state number N is for all possible
intermediary states, where HSMP can transit. The integral term in turn means that the
transition to state  may occur in any time T € [0,].

Eq. (3-1) corresponds to a system of N integral equations with unknowns h;(¢), j = 1,...,N.
The probabilities ¢j(t)=Pr[Z=/ | Zo] can be obtained from the initial conditions ¢;(0) as

follows:

8, (1) =9, (0)-11=F,@1+ [, (r)-11= F, (=) . (3-2)

0

Eq. (3-2) argues that a process can be in state j in time ¢ either if it was initially in the state
j and remained there at least up to time #; or if it visited state j at any time 7 e [0,f] with
probability hij(f) and stayed there for (¢ — 1). Eq. (3-2) corresponds to N straightforward
integrations that can be solved independently by using the solution of equation (3-1).

Thus, egs. (3-1) and (3-2) extend the formulation presented in Becker et al. (2000) in order
to address HSMP described in terms of both transition probabilities and transition rates.

The computational effort to solve egs. (3-1) and (3-2) is less demanding than in the case of
the N’-method described in Corradi et al. (2004). In fact, the 2N-method consists of solving N
coupled convolution integral equations with one variable (eq. (3-1)) and N straightforward
integrations (eq. (3-2)) whereas the N’-method consists of solving N° coupled convolution
integral equations. Comparisons among the 2N-approach, the N’-method and the Monte
Carlo-based solution will be presented in chapter 4. Before that, a general quadrature based

method for simultaneously solving equations (3-1) and (3-2) is presented in next section.
3.1.2. Numerical formulation

3.1.2.1. Description of the numerical solution

A numerical integration or quadrature method can be written as follows (see Press et al.

(2002)):
! p(z)dr = Zw p(th), (3-3)

where £ is the step measure and w,, are the weights related to the quadrature formula (3-3).
Note that such weights do not depend on the integrand function @(-); they are function of the
start point (0), of the end (4% ) and the intermediary (z/ ) points at which the function value is
computed. Moreover, one has M such that Mh=T, with 0<kh<T, k<M,k,M ¢ N where
[0,77] is the integration interval, M is the number of steps and /4 is the step interval.
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Using (3-3), a solution for (3-1) is given as:

N k .
hj(kh)=a, (kh)+Z[Z w, . -hi (th)-Cy ((k=1)h) (3-4)
i=1 \ 7=0
where
N .
a; (kh)="" 4 (0)-Cy(ih), (3-5)

i=1
where the notation ~ means an approximation, i.e., &;(kk) is a numerical approximation for
h; (kh) .

The system of egs. (3-4) can be written as follows:

Z Z i (ch)-Cy (k- r)h)J = a,(kh) (3-6)
i=1 \ 7=0
or in matrix form:
7 k . 7T T
H(kh) _z‘{j((k—f)h) H(‘rh) = A(/(h) N (3‘7)
=0

where the symbol ’represents the transpose matrix, H (, and A, are N-order matrices, and

¥ is N-order matrix, where:

Vi ()= Wik Ci(). (3_8)
Alternatively, eq. (3-7) can be rewritten as follows:
Ul =AT, (3-9)
where
- ‘P{oh) 0 0 0
Vo 1=, 0 e 0
UT _ . .
_‘P(Trh) ‘P(T(r 1)h) I- lP(To;,) 0
_\P{Mm \PﬁM nm \PﬂM on o I= ‘P(TOh)
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- -
HT(Oh) W A (0h)
~ T
HT(lh) A

~T T

H =| and A = 7ol (3-10)
H (zh) (zh)
~ AT
_HT(Mh)J L () |

A bold face notation is used for a matrix of matrices as in U”,H' , and A”. Eq. (3-9) is

used to compute the N-order matrices H ffh) , whose elements #,(zh) are the density functions

of the number of times that state j of an HSMP is visited from any state in the interval [0,7/],

with j=1,..N and r=0,..,M .

Having estimated the matrix H', the next step consists in computing the N state

probabilities ¢ ;(¢). In fact, a numerical solution for the state probabilities é (1) can be

computed as follows:
k
9, (ki)=9¢; (0)-[1—F,-(kh)]+zwr,k hj(zh)-[1=F,((k=0)h)], (3-11)
7=0

where #;(ch) (j = 1,...,N and 7 = 0,...,M) are step-solutions obtained from eq. (3-8). In this

way, ®= I:(D(Oh),...,q)(rh),...,CD(Mh):| is comprised of M matrices ®(s each one of order N.

Note that, rather than solving the N’ coupled integral equations through the direct
application of any general quadrature method to either equation (2-10) or (2-12), the approach
just described estimates the state probabilities of an HSMP by solving N coupled integral
equations (eq. (3-6)) and N straightforward integrations (eq. (3-11)).

For example, by using the extended Simpson’s rule given in Press et al. (2002) (p. 138),
egs. (3-6) and (3-11) can be written in the following way:

hj(kh)=a;(kh)+~ Zh (0h)-Cy (kh)
i=1

N
w|}

3
235

=l

N
Z, )-Cy (0h)

i=

hi (27 =1)h) C,-,-((k—21+l)h

[ =
LR o | =

-1

l\)
=

MI\)

hi(2zh)- C,, (k—27)h)

+

w|w w
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and
¢, (kh) =g, (0)-[1-F,(kh)] + g ; (OR)-[1=F; (kh)] (3-12)
k
2
Zhj Qr=1)h)-[1-F;((k-2r +)h)]
Ll
2h
+?-;h,~(22’h)~[l—Fj((k—2r)h)]
g hj(kh)-[1-F;(0h)].
3.1.2.2.

Solution conditions and upper limit estimate of the discretization error
From eq. (3-4) follows that:

7 (kh) Zw,( . )-Cys (0)

. (3-13)
= a,(kh)+ z Zw,,k “hi (th)-Cy ((k—r)h)}

i=1 \ 7=0
By writing eq. (3-13) in terms of j = /,...,N, it follows that:

N .
hu (k)= w i (kh)-Car (OR) = d,

i=1

N .
ho (k)= wy s - hi (kh)- Ciz (OR) = d,

i=1

iz;v(kh)—iwk!k i (Kh)-Civ (0h) = dy, (3-14)

where d;,j = I,...,N is the right-hand side term of equation (3-13).

According to Press et al. (2002), it is guaranteed that the set of linear algebraic equations

given in eq. (3-14) has solution if the matrix of known coefficients

[1- v, (0h) =y, (0h) -+ =y, ,(Oh) - -y, (Oh) ]
Yy (Oh) 1- Vo (Oh) Y, (Oh) v Yo (Oh)
paOB)  —ppOF) < 1=y OB o~ (O) |

L ¥V (0h) =y, (0h) -+ =y (Oh) - 1=y, (Oh)_

is not degenerate, i.e., is not singular, where () is given in eq. (3-8). The non-singularity
happens if none of the N egs. in (3-14) is a linear combination of the others. If this condition is
satisfied, the eq. (3-11) of unknowns ¢ , also admits solution given the solution of (3-4).
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In the subsequent development, we make use of the following Lemmas 1 and 2 and
Remark 1 from Baker (1977), and described in Corradi et al. (2004), that also hold for the 2/N-
mathematical formulation:

‘1|§|+BV—qq+1, .g>1, where 4>0,B>0

and 7 |&|<¢&, then:
|&,|<(4E+BY1+4)" " v=q,q+],...
Lemma 2 (Baker (1977), p.926). Suppose that: 4=hL<0 and ph=x>0. Then
1+ A" <exp(Lx) if p>q.
Remark 1 from Lemmas 1 and 2 results:
|E,| < (A€ +B)(1+ 4)"™7 < (A& + B)exp(Lx) = (hLE + B)exp(Lrh) .
Theorem 1: Let
h(1):[0,Y] > R
Let ge{0,...M -1}, M eN, such that 0<gh<M .
Let
EX(h) = hy(kh)y—h,(kh)  k=0,1,..,M, (3-15)
where h,(kh) is solution of equation (3-1) and ,(kh) is solution of equation (3-4).
Define also:

7=l ).

Moreover, let

w =w, = max |Wr’k|<oo (3-16)
0<r<ksM |
N _kh N T k
HOE Zj'h Cy (kh—9 )d9=>"| > w, b (h): )-Cyi ((k—2)h) (3-17)
i=l o i=1 [ =0
P ()= p, (h) = max o* () (3-18)

=30 .

Suppose that Ci(0)| < d, for t€[0,T].

Then
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7 ()< [pl (h)+ Nhw', d &' (h)jexp{ Nd,w, kh J

1- Nhw!,d, 1-Ndw,h)’ (3-19)

k=q,q+1,...M
given that Nawl,d, <1.

Proof: From eq. (3-4) it follows that for k>gq:

Z[Z i b (zh): c,, (k- r)h)]zaj(kh)

i=1 \ 7=0

(3-20)

N kh

+ 2 [ 1 (9)-Cy (kh-8)ds- i[iwr,k~hl-(rh)-C-‘,-j((k—r)h)].

i=l o i=l \ 7=0

From egs. (3-4) and (3-20), it follows that:

hj (kh) Z{Z ol (zh)-Cy (k- r)h)]

i=1 \ 7=0

i‘,[zwﬁ i (2h)-Cy (k- r)h)J ZT B (9)-Cy (kh—9)d8

+i(zw,k -y (ch)-Cy (k- r)h)]

i=1 \ 7=0

and from egs. (3-15) and (3-17):

k

£ 30| S )€ ((000) =3 (1) (=)

=" (h).

Hence,
HOR Z{Z ., -Cy (Ge=2)h)-[ i (ch) =, (rh)]} =—t*(h)
and

& (h)~ Z[Zwk Cy ((k—7)h) & (h)}——tf(h).

=1 L7=0

It follows from eq. (3-16) that:

wﬂdkml
§|tf(h)|+dlehZZ|§,. (h).

Therefore,

et 0|l ] - 13 S e
=0 i=1

Performing the summation in relation to the index j = /,...,N, one obtains that:
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S[et 0] < SJek ol N 1Y D fer ). (3-21)

Eq. (3-21) implies that:
7 ()< o () + Ndpw, "7 ()
and
k-1
(1= Nd,wy, hyn* (h) < c* (h)+ Nd,w,hY 0" (h).
=0
From eq. (3-18), it follows that:
k-1
(1= Ndyw, " (h) < p,, (h)+Nd,w, hY 0" (h).
=0
Now, from Lemmas 1 and 2, it follows that:
_ Ndw,h
1-Ndw,h’
__ Pu (h)
1—Nd,w, h
From Remark 1, it follows that:
Z _ ﬁ _ Nd]WM ]
h 1-Ndw,h
Therefore, one has that:

7" (h) < (AE(h)+ B) exp[Mj

1-Ndw,h
what implies that:

OE Py, (h)+ Nhw,,d,E(h) ex Nd,w, kh ‘
1-Nhw,,d, 1-Ndw, h

This proves the result in eq. (3-19). The same conclusion was reached in Corradi et al.
(2004) for the N’-method. In other words, the same upper limit of the discretization error in
solving the interval transition probabilities via N°-method is found when hj(?) 1s approximated
via eq. (3-4).

However, the upper limit of the 2N-discretization error function should also take into

account the error made in eq. (3-11). Actually, the error estimate gf (h)=¢ ; (kh)—¢; (kh) in

computing &j (¢) through eq. (3-11) given the solution of (3-4) depends only on the choice of

the quadrature method. In eq. (3-12), for instance, the error term is equal to gf (h)=0; (l/k“) .

33



Chapter 3 Solving HSMP: 2N- and Lap- approaches

This means that the true answer ¢, (kk) differs from the estimate ¢, (k) by an amount equals

to 1/k* (see Press et al. (2002) for further details) which tends to zero when k increases.
Disregarding the inequality in eq. (3-19), the most important finding encountered in the
preceding developments is that even though 2N-method has a greater discretization error than
N -approach their accuracy will approximately be equal when the number M of steps
increases.
In other words, for the same M, the 2N-approach tends to be significantly less time-
consuming and has rough accuracy to the N’-method. In chapter 5, when the 2N-method

drawn for NHSMP will be discussed the inequality in eq. (3-19) will again be considered.

3.2. Lap-method: A Laplace-based numerical procedure to solve the state
probability equations of HSMP

In the present section the Lap-procedure is discussed. This numerical method is also
drawn for HSMP described through either transition probabilities or transition rates. Basically,
it is based on the application of Laplace transforms which will be inverted by using the Gauss
quadrature method known as Gauss Legendre.

As it will be seen, conversely to the 2N- and N°-approaches, the main advantage of this
approach is that it is not required adjusting the number M of steps in order to obtain desired
convergence. There will be a pre-set number of steps, which is independent on the problem to
be solved and thus, this method is likely to have a considerable reduced computational effort
in relation to the 2N- and N°-methods and MC as well. In other words, the features of this
method will quit the need of previously specifying a number M of steps for each problem, thus
reducing time for performing calculus. The main developments of this chapter may be found
in Moura and Droguett (2008) and Moura and Droguett (2009b) which follow in attachments
A and E respectively.

3.2.1. State probabilities for HSMP via Lap-procedure

Basically, eq. (3-1) can be written in matrix form as:

[hl () hy (f)] :[“1 ()-ay (f)J
t én(t—‘r) C.'uv(t—z') (3'22)
[[n (@) ()] P dr
‘ é}v](l—l‘) (‘jNN(t—T)
where a;(?) is given by eq. (3-5) and ég; (¢) is the derivative of the HSMP’s kernel.

Eq. (3-22) can be rewritten as:
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T

! téll(f_r) - C.'1N(.t—r) ()

T

dr .

()| lay(@0)] 9 o (5)

Cai(t—7) - Cw(t-7)

where symbol " represents transpose matrix. Hence, in a more compact way:
t T
T T b T
[ ()] =[] + j{c(t_f)} [a(e)] az. (3-23)
0

Notice this formulation is general since it can address HSMP described by transition
probabilities or transition rates. The only difference is how kernel is defined: either by eq.
(2-1) for transition probabilities or (2-6) for transition rates.

In order to compute the state probabilities of HSMP, the Lap-procedure is based on the
application of the LT to these equations and the corresponding inversion to obtain the solution
on time domain ¢.

Indeed, by applying LT to eq. (3-23), taking into account that the LT of the convolution of

two independent functions (é(-) and H()) is equal to the product between their individual LT

and using f(s) as the LT of a function f£(¢), it follows that:

T

—~ T ~ T ~ T ~
[H(S)J = [A(s)} + [K (S)J *[H(S)J , (3-24)
where s is the transformed variable and K (s) is the matrix of the LT of kernel derivative é(-) .

By solving (3-24) for H(s), it follows that:

~ T ~ T ~ T
LR A =[] (3-25)
Eq. (3-25) corresponds to a system of linear algebraic equations that can be

simultaneously solved by using any numerical solution method. The unknowns of (3-25) are

the values of %;(s) (with j=1,...N) and will be used for computing ¢, (s) which comes up

from applying LT to convolution integral equations given in (3-2) as follows:

97 (s)=;(0)-v; (s)+ ki (s)*v; (s), (3-26)
t
where v, (s) is the LT of the term exp[— J A; (x)dx}. The values gB_/. (s) represent the solution of
0

(3-26) which can be independently solved for j=1,...,N using the values 7, (s) obtained from

(3-25).
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Given the solution of (3-26) (LT of the state probabilities for HSMP), the problem now
consists of inverting the LT to obtain the state probabilities on the time variable 7. The

inversion method on which the Lap-method is backed up will be described in next subsection.

3.2.2. Numerical Inversion of Laplace Transforms: Gauss-Legendre based
method

The numerical inversion of LT consists of obtaining estimates for f{¢) given numerical

values of the transform function }(s) :
7(s)=[e e, (3-27)
0

where s is the transformed variable.

Some methods have been proposed in the literature to solve this problem such as Valko
and Abate (2004), Abate and Valké (2004), Kryzhniy (2004), Milovanovic and Cvetkovic
(2005) and Cuomo et al. (2007).

The numerical inversion method of LT presented here to compute the interval transition
probabilities of an HSMP is based on a Gaussian quadrature method known as Gauss
Legendre (Bellman et al. (1966) and Abramowitz and Stegun (1972)). Recently, Oliveira et al.
(2005) has applied a similar procedure to compute the state probabilities of non-homogeneous
MP with supplementary variables. Great results attained on this situation have led to delve on
the feasibility of its application for solving HSMP as well, for which the dynamic behavior
rise from a generalization of the Kolmogorov backward differential equations of the Markov
environment.

Thus, making the change of variables z=exp(-#), eq. (3-27) reduces to a finite Mellin
transform (see Haidar (1997)):

f(s)= J 27 f(In(z))dz. (3-28)

0
The integral of the right hand side of (3-28) can be approximated by a Gaussian

Quadrature which involves the weighted sum of function f(-) in the natural log of the

abscissas z; provided, in this case, by the Gauss Legendre integration method. Thus,

](s) = Zwkz,fflf(—ln(zk ), (3-29)

k=1
where w, and z, are the weights and abscissas, respectively, provided by the Gauss Legendre

method. Note that wy and z; do not depend on the function f(-), but only on the number M of
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quadrature points and on the integration interval. See Press et al. (2002) for further details on
how to obtain wy and z; by the Gauss Legendre method.

According to Press et al. (2002), the idea of Gaussian quadrature is to provide the freedom
to choose not only the weighting coefficients, but also the location of the abscissas at which
the function is to be evaluated: they are no longer equally spaced as occurs, for example, with
trapezoidal rule and Simpson method.

Representing (3-29) in matrix form, it follows that:

v.0=0, (3-30)
where ¥ is M*-order matrix with v =wz ' and v,k=1,.,M ; @ is M-order matrix of the
state probabilities ¢, (-Inz; ); © is M-order matrix of the LT of the state probabilities ¢, (s),

with s=1,..,M and j fixed. Given the transformed solution, eq. (3-30) is solved N times in

order to obtain the state probabilities ¢;(-Inz,) forj = /...N by using any method of solution

of linear algebraic equations such as Lower-Upper decomposition (see Press et al. (2002)).

Before solving eq. (3-30), (3-26) (4;(s)=4¢;(0)-v;(s)+h;(s)*v;(s)) is solved M runs in
order to obtain the LT of the state probabilities ¢ i (s), with s=1,..,M .

Theoretically, the bigger the number M of discretization points the greater results will be
obtained. However, as we are using Gaussian Quadratures (rather than an equally spaced
general quadrature methods, such as Newton-Cotes or Simpson formulas, as holds for the 2/V-
and N°- approaches) one has more freedom in choosing the coefficients and abscissas at which
the function f will be evaluated thus, achieving integrations formulas of higher and higher
accuracy with a smaller number of function evaluations than Newton-Cotes formula requires,
for example (see Press et al. (2002) for more details).

Indeed, in accordance with a sensitivity analysis performed by Oliveira et al. (1997) one
may obtain reasonable great accuracies with a number M of discretization points equals to /6.
Although these sensitivity tests have been taken on the Markov environment, one has
considerable chances to reach the same findings here provided the semi-Markov processes are
an extension of Markov models.

At this point, an important advantage of the Lap-numerical method comes up: whereas for
the 2N- and N -approaches the number of discretization points should be increased to obtain
improved accuracies, the Lap-procedure with only /6 points will be able to provide valuable
results with less computational cost than the 2N- and N’-methods, as it will be showed

through the examples in chapter 4.
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Before that, notice that the numerical method as just described is only able to compute the

state probabilities ¢,(-) at the points ¢=-Inz,. However, by wusing the result

[ e f (at)dtzl}(ij], the Lap-procedure may be used to obtain ¢, (-alnz, ), where a>0
a a

0

works as a scale factor and it will be defined as a = —%nz , Where z; is the minimum value of
1

the abscissa provided by the Gauss Legendre method.
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4. ASSESSING THE EFFECTIVENESS OF THE 2N- AND LAP-
METHODS FOR SOLVING HSMP

The present chapter focuses on scrutinizing the main findings of chapter 3, comparing the
effectiveness in terms of computational time and accuracy of 2N- and Lap- approaches against
the results obtained through the M- and MC methods by means of three examples in the
context of availability assessment.

At first, 2N- and N’-approaches will be required for solving the homogeneous version of
the availability assessment problem of optical monitoring systems described in section 1.2.2.
Next, 2N- and Lap-methods will solve the pumping oil unit problem given in section 1.2.1.
Finally, the Lap-procedure will be also used in order to perform uncertainty analysis on the

availability measure of the same pumping oil unit.

4.1. Optical Monitoring System Case: A Comparison Between 2N- and N*
approaches

In section 1.2.2, it was mentioned that the OMS dynamics should be treated by NHSMP
due to the its peculiar characteristics. However, in this section let disregard the non-
homogeneous idiosyncrasy of that system in order to compare performances of the 2N- and
N-approaches designed for HSMP in treating the problem of predicting the OMS dynamic
behavior over time.

Given that the problem description is provided in 1.2.2, let’s move on directly towards the
required data for modeling. In fact, data needed to estimate the state probabilities and system
unavailability for HSMP described through transition probabilities, such as OMS, are the
transition probabilities p;; and the CDF Gj(-) as indicated in Figure 1-3. The probabilities p;;
and p;4 correspond to HEP that are assessed taking into consideration whether the “available
time to complete the repair” is adequate or not (see section 1.2.2).

In Droguett et al. (2008), these probabilities and their causal relationships with
performance shaping factors are handled through BBN (see Pearl (2000) and Korb and
Nicholson (2003) for further details on BBN). Due to the scarcity of failure data on the OMS
performance, the probabilities p,; and p34 (and their complements p,; and pj3;, respectively)
were obtained from engineering judgments (see Langseth and Portinale (2007) for further
details on BBN in the reliability context).

For the sake of simplicity, the integration between HSMP and BBN is not considered here.
Therefore, in this example it is assumed that the operator HEP corresponds to 0.18 when

under a situation of adequate available time to complete the repair, i.e., when the system
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reaches state 2. When the system reaches state 3, the time window to complete the repair
becomes tighter, and it is assumed an HEP equals to 0.38 (these values are from Droguett et
al. (2008) and may also be obtained through the CPT given in Appendix B).

The probability values p;; as well as the CDF Gy;(- ) of the HSMP are summarized in Table
4-1. Note that none of the parameters given in Table 4-1 depends on the process time what

implies the non-homogeneity has not actually been considered.

Table 4-1 — Parameter estimates of the HSMP: p;; and Gy;(¢) for the OMS example

Transition probabilities of

Transition the EHMP Conditional CDF
i—] Pij Gii(D)
11 0.60 Exponential (1E-04h™)
12 0.40 Weibull (500.0h, 1.35)
21 0.82 Exponential (0.05h™")
253 0.18 Weibull (300.0h, 1.75)
3—>1 0.62 Exponential (0.05h™)
354 0.38 Lognormal (4.0h, (0.40)*h%)

It is now possible to estimate the state probabilities (eq. (3-2)) and the system
unavailability by solving the 2N-numerical procedure described in chapter 3 (section 3.1), as
shown in Figure 4-1 for a mission time of 1 year (8760 hours) and M = 2,500 steps for the 2N-
method, as well as according to the N°-method described in Corradi et al. (2004) (with M =
2,500) and to the MC simulation (with M = 2,500 and 100,000 samples).
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0.06 +
| = Monte Carlo |
= N -Method

| - 2N-Mathod

Unavallability(t]
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Time (h)

Figure 4-1 — State probabilities and unavailability curves for example 2 - 2N-method x N” and Monte Carlo approaches: (a)

$(1);(0) $,(1): (0) #5(1) 5 (d) P4(2) ; (e) unavailability

Note that the measures estimated by the 2N-method match the computed values obtained
by the application of MC simulation as well as by the N*-solution. These results provide a
validation of the accuracy of 2N-numerical treatment then.

Furthermore, even though the simulation times depend on the computer settings, a
considerable difference in terms of computational effort is verified in this example. Indeed, in
an Intel® Core Dual Core Processor 32-bit Operating System, 2.00 GHz, 250.0 Gb and 2.00
GB of RAM', the 2N-method required 27.56 seconds, whereas the MC and the N approaches
spent 1,163.25 seconds and 40,551.05 seconds, respectively.

The difference in CPU time required by the N’ and MC methods and the 2N-approach
underlines the efficiency of the latter in quickly achieving meaningful results with accuracy

comparable to the N°-method.

4.2. Pumping Oil Unit Case: A Comparison Between 2N- and Lap-approaches

Since the 2N-method has obtained noteworthy results, this section aims comparing it
against the Lap-procedure through the pumping oil unit case, which was described in section
1.2.1 and may be modeled as an HSMP described by transition rates.

Then, assume that system is initially in state 1, the failure (A) and repair (p) rates are
constant and equal to 3.5e-3 failure/h and 0.020 repair/h, respectively, and a = 100h and S =
2.08. Conversely to section 1.2.1, notice that the uncertainty on MTTF value has not been
considered here. The focus on uncertainty analysis will be switched back in next section.

By solving the state probabilities for this HSMP described by transition rates given in eq.
(3-2), Figure 4-2 shows the outcomes provided by the Lap-procedure, 2N- and Monte Carlo

approaches for a mission time of 7 = 500.0h. For sake of illustration, Figure 4-2 does not

! The same computer setting will be used for the next examples.

41



Chapter 4 Assessing the Effectiveness: 2N- and Lap- for solving HSMP

depict the results attained by N~ since previous section already showed it and the 2N-

approach show close agreement.
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Figure 4-2 — State probabilities — Lap-method x 2N- and MC approaches: (a) ¢ (£) ; (b) #, (£) ; (¢) 45 (£)

In this example of application, the MC algorithm ran with 100,000 iterations and M = 500
steps. For the 2N- and N’- methods, M = 500 steps were used. Note that in Figure 4-2, the
state probabilities computed by the Lap- and 2N- numerical procedures and by simulation
show close agreement, providing a validation of the Lap-technique in relation to its numerical
approximation.

Furthermore, the Lap-numerical technique has computed the state probabilities for this
HSMP described by transition rates considerably faster than the 2N- and N°- and MC
approaches. Indeed, the Lap-method spent less than one second (0.06 seconds), while the 2N-,
N’- and MC approaches took 1.97, 1,317.12 and 64.10 seconds, respectively.

4.3. Pumping Oil Unit: Availability Uncertainty Analysis Through Lap-method

In section 1.2.1, the pumping oil unit problem had been described considering the
uncertainty on MTTF value which was influenced by external factors (see Figure 1-1).

Basically, it is required that an HSMP-based numerical method runs several times in order to
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catch the impact of MTTF uncertainty on the (un)availability measure. Since the Lap-
procedure has showed meaningful outcomes in terms of computational time and accuracy as
well, it will be used to perform the availability uncertainty analysis in this section.
Furthermore, it will be showed how to update probabilistic beliefs on availability curve as

new evidence becomes available.

4.3.1. Availability Measure Estimation

Considering that the system starts its operation in state 1 (available), the availability is
assessed for a mission time equals to 7=1,000.0h. Considering also the relation A = I/MTTF,
A failure rate, the Lap-algorithm described in section 3.2 is replicated for 100,000 iterations
in order to explicitly quantify the uncertainty on the availability measure given uncertainty in
the MTTF characterized in terms of the BBN in Figure 1-1.

Indeed, Figure 4-3(a) shows the 5", 50", and 95" percentile curves computed for
availability by the Lap-numerical procedure. Each percentile corresponds to the probability
that the availability measure value is smaller than the computed one at a specific point in the
mission time, thus explicitly quantifying the impact of the uncertainty about the parameter
MTTF on availability measure. Figure 4-3(b) in turn illustrates the availability curves

computed by both Lap-numerical method and MC simulation considering the prior' mean

value for MTTF prior = 5246.98 h.

Alt)

(a) (b)

Figure 4-3 — Availability Measure Curve: (a) uncertainty on availability measure; (b) Proposed numerical procedure x Monte
Carlo simulation

In this example, the MC algorithm for HSMP described in Moura and Droguett (2007)
(which follows in attachment F) has run with M = 1,000 steps and 100,000 iterations for each

step. For the Lap-method, M = 16 steps was used as discussed in section 3.2.

! The term prior means CPT in Appendix A is directly used to estimate MTTF distribution.
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Note that in Figure 4-3(b), the availability measure computed by both the Lap- and MC
procedures show close agreement, again providing a validation of the Lap-technique in
relation to its numerical approximation.

Moreover, the Lap-method spent roughly 0.02 seconds per replication, while the MC took
47.81 seconds to compute the results showed in Figure 4-3(b).

4.3.2. Updating Probabilistic Beliefs

The hybrid (HSMP-BBN) model allows for uncertainty updating regarding the availability
measure as new evidence about any of the external factors influencing MTTF (Figure 1-1)
becomes available at any point in the mission time. In fact, suppose it is known that the level
of paraffin is inadequate for the oil to be handled by the pumping unit. This new evidence
does not imply any changes in the BBN topology (Figure 1-1) or for the state diagram of the
HSMP (Figure 1-2). However, the CPT of the BBN, which are given in Appendix A, are
modified as now it is known that P(Inadequate level of paraffin) = 1.

This new evidence impacts the future behavior of the system and consequently its
availability measure. The uncertainty on system availability metric given the new evidence is
characterized in terms of a posterior distribution whereas a prior distribution characterizes the
uncertainty about availability metric before the evidence has become available as was done in
previous subsection.

Updating the uncertainty distribution for the MTTF according to Firmino (2004), Figure
4-4 shows the comparison between marginal prior and posterior probability distributions for
the MTTF. The results show that because of the inadequate paraffin level there is a shift of

probability mass towards lower values of MTTF.
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Figure 4-4 — Prior and posterior marginal probability distributions of MTTF

Considering the posterior mean value for MTTE, MTTF poserior = 2800.0h, Figure 4-5

illustrates the impact on the availability uncertainty given the updated MTTF probability

distribution. More specifically, the marginal probability distribution of MTTF, called
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MTTF

prior

in previous subsection, is updated given the evidence regarding the level of paraffin

which in turn affects the availability metric.
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This analysis was solely based on evidence about the variable “level of paraffin”.
Nevertheless, similar studies can be performed provided that evidence becomes available for
other variables, for example, “percentage of H,O and solids - BWSOT”. Moreover,
uncertainty on other reliability measures such as reliability and maintainability could be
assessed from the proposed hybrid model (see Moura (2006) and Moura and Droguett
(2008)).

4.4, Comments

Continuous-time homogeneous semi-Markov processes are important probabilistic tools to
model reliability measures for systems whose future behavior is dependent on the current and
next states of the process as well as on sojourn times, as for fault tolerant systems where the
failure of a component leads to a system failure only when repair time has exceeded some

tolerable downtime, i.e., component failure does not immediately cause a system failure.
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HSMP were usually computed via the N-method described in Corradi et al. (2004) where
the future behavior of the system is assessed via interval transition probability equations
comprised of a set of N* coupled integral equations with one time variable . However, this
approach is rather time-consuming with a computational cost greater than the MC simulation.

This situation motivated the search for more efficient numerical treatments of HSMP with
less computational effort and with a comparable accuracy in relation to the available methods
in the related literature (MC simulation and the Nz—approach).

In fact, the 2N-mathematical formulation and numerical treatment consists of casting the
N coupled convolution integral equations into an initial value problem involving transition
frequency densities, and then solve N coupled integral equations with one variable and N
straightforward integrations.

Moreover, this thesis has proposed the alternative Lap-method which makes use of LT.
Although using Laplace apparatus on HSMP field is not novel, the Lap-procedure showed
some noteworthy advantages: (i) it used a pre-set number of steps, which is independent on
the problem to be solved. Thus, it is not required anymore adjusting (through either trial-error
tests or dynamically) the number M of steps in order to attain the desired convergence. (i7)
thus, it reduced considerably the computational effort in relation to the abovementioned 2N-
and N°-methods and MC as well. The Lap-approach was also validated by comparison with
the results from both the 2N- and N’-solutions and MC method.

One drawback that deserves attention is since Lap-method is backed up on Gaussian
Quadratures theory there is not a quite simple way to obtain an estimate of the absolute error
made by the approach (see Press et al. (2002) for more details). Moreover, unfortunately, the
application of the Lap-procedure within the non-homogeneous environment has not catched

notable outcomes, as showed in Moura and Droguett (2007).
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5. 2N-METHOD FOR NON-HOMOGENEOUS SEMI-MARKOV
PROCESSES

Non-homogeneity implies higher difficulties on the continuous-time semi-Markov
processes (NHSMP) environment. This gives rise as more intricate mathematical methods and
related numerical solutions and is one of the main reasons behind the scarcity of NHSMP
applications.

Indeed, the N*-method for solving NHSMP is rather burdensome (as it has already been
seen for HSMP case in chapter 3), consisting of directly applying a general quadrature method
to N coupled integral equations with two variables, where N is the number of states.
Therefore, the next two chapters focus on developing a new and faster numerical treatment,
which is also called 2N-method, for NHSMP and scrutinizing its effectiveness comparing
against the results provided by the N°- method and MC. Rather than computing N° integral
equations, this approach consists of solving only N coupled integral equations with one
variable and N straightforward integrations so that the high and inherent computational cost
that plagues the solution of NHSMP is likely to be reduced.

The main findings within this chapter can be found in Moura and Droguett (2009¢), which
follows in attachment G. As the homogenous counterpart may be considered a special case of
NHSMP, the conclusions made over the present chapter may be specialized for the
developments showed in chapter 3 (section 3.1). In spite of that, it was quite meaningful
developing a particular 2N-mathematical and numerical formulations for HSMP since in this

way its peculiar characteristics have been taken into account.

5.1. Aninitial value problem for NHSMP involving transition frequency
densities

Depending on how an NHSMP is described, the kernel Cj(- ) and the CDF Fj(- ) are given
by equations (2-8) and (2-9) in case of transition probabilities or by equations (2-13) and
(2-14) in case of transition rates. The 2N-numerical approach will be developed in a general
way in order to handle both situations.

By using a similar nomenclature to the one in Becker et al. (2000), let recall N(7) to be the
number of times that state j of an NHSMP is visited from any state in the interval [0,z]. Let
also H;(#) = E[N(?)] be its expected value. If H;(#) is continuously differentiable, then h;(r)dt =

dH;(?) s its corresponding density function.
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As the stochastic process under consideration is regular, i.e., no more than one transition
can occur in any interval (¢, ¢+dft), then hj(#) can be assumed as the probability that a transition
occurs to state j in an infinitesimal time interval df as follows:

hj(f)dt=Pr{to reach state j in (t, t+dt),.
Thus, it follows that:
N
=34.(0)-¢; 0. t)+ZIh Cy(z.t)d (5-1)
i=l i=l o

According to the description of eq. (2-8), (5-1) means state j can be reached either if the
process was initially in state i and remains there until time #, when a transition to state j
occurs; or if the process reached state i at time 7, remaining there for x = ¢ — 1, then a
transition to state j occurs. The summation over the state number N is for all possible
intermediary states, where NHSMP can transit. The integral term in turn means that the
transition to state i may occur at any time T < [0,f].

Eq. (5-1) corresponds to a system of N integral equations with unknowns h;(¢), 7 = 1,...,N.
The probabilities ¢;(t)=Pr[Z=j | Zo] can be obtained from the initial conditions ¢;(0) as

follows:
8, (1)=9,(0)-[1-F,(0, t)]+.[h 1= F,(r,0)ldz (5-2)

Eq. (5-2) says that a process can be in state j at time ¢ either if it was initially in the state j
and remained there at least up to time ¢; or if it visited state j at any time 7 e [0,/] with
probability h;(7) and stayed there for (x = ¢ — 7). Eq. (5-2) corresponds to N straightforward
integrations that can be solved independently by using the solution of equation (5-1).

Egs. (5-1) and (5-2) extend the formulation presented in Becker et al. (2000) in order to
address NHSMP described in terms of both transition probabilities and transition rates.
Moreover, the computational effort to solve eqs. (5-1) and (5-2) is less intricate than in the
case of the N°-method described in Janssen and Manca (2001). In fact, the 2N-method consists
of solving N coupled integral equations with one variable (eq. (5-1)) and N straightforward
integrations (eq. (5-2)) whereas the N°-method consists of solving N° coupled integral
equations (eq. (2-10)). A comparison among the 2N-approach, the N°-method and the MC-
based solution will be discussed in chapter 6.

Before that in next section, a general quadrature based method for simultaneously solving
the egs. (5-1) and (5-2) will be presented. Moreover, the convergence conditions and error

analysis are also developed and demonstrated.
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5.2. Numerical formulation

5.2.1. Description of the numerical solution

A numerical integration or quadrature method can be written as follows (see Press et al.

(2002)):
[otede=3 ., -olch,kh), (5-3)

where / is the step measure, and w,, are the weights related to the quadrature formula (5-3).

Note that such weights also do not depend on the integrand function ¢(-,- ); they are function
of the start point (0), of the end point (&%) and of the intermediary point (74 ) at which the
function value is computed. Moreover, one has M such that Mr=T, with 0<kh<T,
k<M,k,M e N where M is the number of steps and 7' is the mission time.
Using eq. (5-3), a solution for (5-1) is given as:
N k .
hj(kh)=a, (0h,kh)+2(z w, i -hi (zh)-Cyj (ch,kh) |, (5-4)
i=1 \ =0

where
N .
a; (0h,kh)=">"¢,(0)- Cy(Oh,kh),
i=1
where the notation ~ again means an approximation.
The system of eqgs. (5-4) can be written as follows:

N k .
ilj(kh)—z ZWT,,( i (zh)-Cyj (vh,kh) | = a,(0h, kh) (5-5)

i=1 \ =0

or in matrix form:

k

~T ~T

H (i _Z\P(Trh,kh) “Heny = A(T)h,kh) > (5-6)
7=0

. ~T .
where the symbol ”represents the transpose matrix, H(, and Al,, are N-order matrices, and

¥, is N-order matrix, where:

v, ()=, Colr) (5-7)

Alternatively, eq. (5-6) can be written as follows:

UT-H =AT, (5-8)
where
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B T
1=, 0 0 0 0 )
T T
_ly(()h,w) I _‘{J(lh,lh) 0 0
UT = : : . : . :
T T T >
_lP(Oh,rh) _\P(lh,rh) I_T(rh,rh) 0
T T T T
B _‘P(Oh,Mh) _lP(lh,Mh) _lIJ(rh‘Mh) I_\P(Mh,Mh)J
- ror
H (Oh)1 A (0h,0h) 1
~T T
H an A (0h,1h)
~T T
_ and A’ =
Ho=_; A" (5-9)
H (th) (Oh,zh)
.
7 o, s ]

A bold face notation is used for a matrix of matrices as in U’,H', and A”. Eq. (5-9) is

used to compute the N-order matrices H wn , whose elements #,(ch) are the density functions
of the number of times that state j=1,..,N of an NHSMP is visited from any state in the
interval [0,74].

Basically, eq. (5-9) represents the main difference between the 2N- and N -approaches.
While 2N-method needs to solve eq. (5-9) (set of N linear algebraic equations) M times as a
requirement to catch the system’s dynamic behavior over time, N°-method computes the
interval transition probabilities by using a somewhat modified formula which possesses a
main difference in relation to that equation: the solution of the N -counterpart for eq. (5-9) is
composed of an M*-order matrix of matrices which in turn are of order N°. Thus, through N°-
method the number of each set of N° linear equations to be solved is equal to (M°+M)/2. In
this way, 2N-method tends to reduce considerably the computational time in relation to N°-

method.

Having estimated the solutions matrix 'y (eq. (5-9)), the next step consists in computing

the N state probabilities ¢, (¢). In fact, a numerical solution for the state probabilities ¢, (¢)

can be computed as follows:

k
8, (kh)= g, (Oh)-[1—F;(Oh,kh)]+ D" w,.; - hj (ch)-[1- F,(zh,kh)], (5-10)

7=0

50



Chapter 5 2N-Method for solving NHSMP

where #;(zh) (j = 1,...,.N and 7 = 0,...,M) are step-solutions obtained from eq. (5-9). In this

way, ®= [d)(()h),...,d)(rh),...,@(Mh)} is comprised of M matrices ®(.» each one of order N.

Note that, rather than solving the N” coupled integral equations with two variables through
the direct application of any general quadrature method to eq. (2-10), the approach just
described estimates the state probabilities of an NHSMP by solving N coupled integral
equations with one variable (eq. (5-9)) and N straightforward integrations (eq. (5-10)).

For example, by using the extended Simpson’s rule given in Press et al. (2002) (p. 138),
egs. (5-5) and (5-10) can be written in the following way:

- L. .
by (kh) = aj(Oh,kh)+§;h,~ (0R)-Cy (Oh, kh)

k
2 .
D" hi((2r=1)h)-Cy (27 = 1)h,kir)

and

9, (kn)=¢, (O)-[l—}f“j(Oh,kh)]+§-fzj (0R)-[1— F; (Oh, kh)]

hj(Q2r=Dh)-[1-F;((2r —)h, kh)]

+
w|§
EMM\»

£ (5-11)
+%-ZZ:ZU(2rh)-[1—F-(2rh,kh)]
3 — J
+§-iz,~(kh)-[l—Fj(kh,kh)].
5.2.2. Solution conditions and upper limit estimate of the discretization error
From eq. (5-4) follows that:
N .
hy (k)= wy g - hi (kh)- Ciy (Kh, ki)
i=1
N (k-1 _ . (5-12)
=a;(Oh,k)+ Y| > w, ;. hi(ch)-Cy (ch,kh)
i=1 \ r=0

By writing eq. (5-12) in terms of j = /,...,N, it follows that:
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N .
b (k)= " w i i (kh)- Cir (I, eh) = d,
i=1

N .
ho ()= " wy < hi (kh)- Ciz (K, k) = d,

i=1

N .
Iy () =" wy g B () Cov (Kb, ki) = d . (5-13)
i=1

where d,,j = 1,...,N is the right-hand side term of eq. (5-12).

According to Press et al. (2002), it is guaranteed that the set of linear algebraic equations

given in eq. (5-13) has solution if the matrix of known coefficients

[y, (kh k)~ (khokh) - =y (kb k) - =y, (khkh) |
o (khkh)y =y (khokh) - =y (khkh) - =y, (kh,kh)

—y, (khykh) =y, (khokh) - 1=y, (khkh) - =y (khkh) |
| W kb kh) =y, (kh,kh) - =y (khykh) - 1=y (kh,kh) |

is not degenerate, i.e., is not singular, where v, (.- is given in eq. (5-7). The non-singularity
happens if none of the N egs. in (5-13) is a linear combination of the others. If this condition is
satisfied, eq. (5-10) of unknowns ¢ ; also admits solution given the solution of eq. (5-4).
Janssen and Manca (2001) reached an equivalent solution condition for the case of the N°-
method, i.e., by directly applying a general quadrature method to the N’ coupled integral
equations.

In the subsequent development, we again make use of the Lemmas 1 and 2 and Remark 1
from section 3.1, and described in Janssen and Manca (2001), that also hold for the 2N-
mathematical formulation proposed here for NHSMP:

Theorem 1: Let

h():[LY] >R 1e[0,T].

Let g€{0,...M -1}, M eN, such that /<qh<T.

Let

EN(h)y=hi(khy—h,(kh) ~ k=0,1,...M, (5-14)

where A (kh) is solution of eq. (5-1) and 7, (kh) is solution of (5-4).

Define also:
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7=l ).

Moreover, let

s

w=wl, :ogﬁ)s(M_;k <o (5-15)
N kh N

t ()= Zjh -Cy (9, kh)d 9~ > z I (zh)-Cy (ch,kh) (5-16)
i=l o i=l | =0

p'(h)=p, (h)= qu{‘gﬁ[ o (h) (5-17)

£ =3 .

Suppose that |C;(1,1)|<d, for te[l,Y] and xe[0,1-1].

Then

v P (h) + Niwl,d, &' (h) Nd, !, kh
”A(h)‘( 1— N, d, jep(l—Ndlw’th’ (5-18)

k=q,q+1,...M
given that Naw,d, <1.

Proof: From eq. (5-1) it follows that for k>gq:

N
h, (kh) Z[Zw,k by (ch)-Cy (zh, kh)]_a (Oh, kh)
i=1 \ 7=0 (5_19)

N kh

*Zf” .Cy (9, kh)d I~ i[z b (eh)-Cy ( rhkh)]

i=l o

From egs. (5-4) and (5-19), it follows that:

hj (kh)~h; (kh) ZN:[Zw,k by (ch)-Cy (zh, kh)J

{z W, hi (2h)-Cy ( rhkh] ﬁ:jh )-Cyi (9.kh)d
0

=0 i=1

Mz

i=1

+ﬁ“[zw,k by (zh)-Cy (ch, kh)]

and from egs. (5-14) and (5-16):
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§f(h)—i{iwnk i (eh)-Cy (chokit) =3 w., b (eh)-C (rh,kh)}

i=1 [ 7=0

=17 (h).

Hence,

i=l (r=0

HOE Z{Z .Cy (vh,kh)- [h,-(rh)—hi(rh)J}:—t_f(h)

and

i=l [ 7=0

& (- Z[Z o Cy (zh kh) & (h)} =—t;(h).
It follows from eq. (5-15) that:

& @) <[]+ zz

< )

rh kh‘

(h)|

Tk

i=l =0

Therefore,

& [ <l ], >3 e
=0 i=1

Performing the summation in relation to the index j = /,...,N, one obtains that:

SJét ] < 3| ]+ et 13 (5-20)

=0 i=

Eq. (3-21) implies that:

7 ()< o (W) + Ndpw, Y7 (1)

=0

and

(1= Ndyw, hyn* (h) < & (h)+Nd]th§n’ (h)

=0

From eq. (5-17), it follows that:

k-1
(1= Ndw, )" (h) < p,, (h)+ Nd,w, h D 0" (h)

=0

Now, from Lemmas 1 and 2, it follows that:
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__Ndw,h
1— Ndw, b’

AL
1— Nd,w, h

From Remark 1, it follows that:

Z:ﬁz Ndle
h

1 Ndw, b~
Therefore, one has that:

n* (h) < (AE(h) + B)exp {MJ

1—Ndw,, h

what implies that:

Uk(h)é Py (W) + Nhw,, d,&(h) ex Nd,w,, kh )
1—Nhw,,d, 1—Ndw, h

Eq. (5-18) computes the upper limit of the discretization error estimate whenever ; (kh) is
used to approximate 4, (kk). The same conclusion was reached in Janssen and Manca (2001)

for the N°-method. In other words, the upper limit of the numerical error computed by
estimating the interval transition probabilities by using the N°-method is the same given by eq.
(5-18).

Given the solution of eq. (5-4), the error estimate gf (h) = 47)_/. (kh)—¢; (ki) in computing ¢, (¢)

through eq. (5-10) in turn depends only on the choice of the quadrature method since each

unknown may be solved independtly. In eq. (5-11), for example, the error term is equal to

ch (h):Oj(l/ k4). This means the true answer ¢, (kh) differs from the estimate ¢, (ki) by an

amount equals to 1/k* (see Press et al. (2002) for further details).

Therefore, the upper limit of the total error estimate of the 2N-method is given by the sum
of the discretization errors estimated from eqs. (5-1) and (5-2). In spite of that, as eq. (5-18) is
an inequality it is even possible that the 2N-method catches smaller errors than N°-method.

In this way, it is expected that the 2N-method be less time-consuming since it involves
solving N coupled integral equations and N straightforward integrations. Moreover, generally
speaking it has accuracy roughly equals to the N’-method. However, it is also possible that the
2N-method obtains minor errors than N°-method. Research on these findings will be done in

next chapter.
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6. ASSESSING THE EFFECTIVENESS OF THE 2N-METHOD FOR
SOLVING NHSMP

Two examples in the context of reliability are presented in this chapter. The first one
addresses a case where a semi-analytical solution is available. Then it is discussed an example
of application concerning the pressure-temperature optical monitoring systems for oil wells
previously described in section 1.2.2. In both cases, the 2N-approach is validated via the
comparison against the results obtained from the semi-analytical solution (for the first

example) as well as from both the N°- and the MC methods.

6.1. A semi-analytical example

This section handles a simple three-state reliability semi-Markov example for a system
comprised of a single component as illustrated in Figure 6-1. This system starts its operation
in state 1. From there, it moves to state 2 if it reaches a determined non-critical degradation
stage. If degradation level of the component attains a critical threshold, the system fails (state
3).

Figure 6-1 — HSMP for the semi-analytical example

This semi-Markov process is homogeneous in relation to the process time and, for this

situation, a semi-analytical solution is possible as follows:

¢1(1)21—Fi(0,l),
5.0 = [ Co 0,01~ Fy(e.0Mdr

¢3(t) = 1_[¢1(t)+¢2(t)] .
The solution is considered semi-analytical as the state probability ¢ () can be analytically
estimated, while the state probability ¢,(r) is computed via numerical integration.

The required data to estimate the system reliability is given in Table 6-1. For the sake of
validation, the results provided by the semi-analytical solution are compared against the ones

from the 2N-method, the N’-approach, and the MC simulation drawn for NHSMP.

Table 6-1 — Parameters of the NHSMP: p;(#) and Gyj(/,¢) for the semi-analytical example.

Transition probabilities of

the ENHMP Conditional CDF

Transition
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i—] Pij Gii(l.h)
12 1.0 Exponential (le-3h™)
23 1.0 Weibull (250.0h, 1.5)

Supposing that the system is functioning when in states 1 and 2, the system reliability is
shown in Figure 6-2 for a mission time equals to 4,500.0 hours, M = 1,500 steps for the N°-
and 2N-approaches, and 100,000 samples for the Monte Carlo simulation.

Tih)

Figure 6-2 — Reliability for the semi-analytical example: mission time of 4,500 hours and M = 1500 steps.

Note that the reliability estimated by the 2N-mathematical formulation and numerical
treatment matches the computed values via the semi-analytical solution, as it also does for the
MC and the N’-solutions, thus providing a validation of the 2N-model, with its numerical
approximation.

Another important aspect to be considered is the computational effort involved in the three
solution methods. Actually, the 2N-approach with its numerical treatment computes the
system reliability considerably faster than both MC simulation and N°-method. Indeed, the
2N-method spent 2.44 seconds, while the Monte Carlo took 133.56 seconds, and the N-
required 2,442.19 seconds.

In the next section, it is discussed a more complex example of application in the context of

temperature-pressure optical monitoring systems in oil industry.

6.2. Example of application: availability of downhole optical monitoring
systems

The present section focuses on scrutinizing the main findings on the 2N-method drawn for
NHSMP on continuous-time.

For validation purposes, the solution provided by the 2N-mathematical and numerical
approaches will again be compared to the N°-method given in Janssen and Manca (2001) and
the MC simulation by means of an example in the context of reliability assessment of

temperature-pressure optical monitoring systems for downhole applications in the oil industry.
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The explanation of this application comes from the example 2 given in subsection 1.2.2.
Provided that description, the focus will switch towards the data required for analyzing over

time the availability of the optical monitoring system.

6.2.1. Required data

Optical Monitoring Systems are installed as part of intelligent completions in onshore oil
wells. Each well is comprised of three production zones. Thus, a monitoring system is
comprised of four pressure-temperature sensors, one for each zone plus one sensor for
monitoring the artificial elevation system (oil pumping). All sensors are on the same optical
cable.

Provided the lack of operational experience on these systems some simplifying
assumptions are made. Indeed, although an OMS is comprised of several components (e.g.,
optical cable, sensor unit, jumpers, cable-cable and cable-sensor connections) as shown in
Figure 6-3, the availability modeling is developed at the system level. Moreover, the
reinstallation typically involves the repairman who runs the OMS downhole as well as a
supervisor. The HEP is, however, modeled and quantified only for the repairman.

Therefore, and in light of these limitations, it aims to develop a model based on the
combination of continuous-time SMP and BBN that is able to handle over time the joint
impact of the tolerable downtime and process time as well as the human performance on the

OMS availability during the execution of reinstallation activities.

Pradustion Tubing 2 76" EUE—| s} T Casing S 12714 lom
65 Ibift Isertable pump (550.4 m)
Senser1 (569.4 m)
B=+— Hydraulic Packer 1 (5724 m)
Senser2 (8760 m)

ON-OFF Valve (§76.0 m) — 1
- Pay Zone 1 (616.0 -646.7 m)

8] «— Hydraulic Packer 2 (§49.4 m)

ON-OFF Valve (8535 m) —

Pay Zone 2( 653.0 -6760 m)

+— Hydraullc Packer 3 (579.0m)
Sensor 4 (6826 m)

OM-OFF Valve (6835 m) — |- SN
|

Mule Shoe (685.5 m) Pay Zone 3 (652.0 -711.0 m)

Botton (7803 m)
[+ shoe osom)

Figure 6-3 - Intelligent well with a pressure-temperature OMS

Spectral analysis of the limited OMS units that have been deployed has been used for
gaining knowledge regarding OMS time to failure pattern. Figure 6-4 and Figure 6-5 show the

spectral analysis for an OMS when it was installed and 20 months later, respectively.
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Each sensor in the OMS is represented by a double optical power peak, where the left and
right ones correspond to pressure and temperature, respectively. Thus, Figure 6-4 and Figure
6-5 have four pairs of peak corresponding to the four sensors in the OMS. If the optical power
of one peak in relation to the others in the spectrum is small, then peaks are interpreted as
noise, resulting in the loss of the monitoring capability.

As seen in Figure 6-4 and Figure 6-5, the spectral analysis has indicated a gradual

attenuation of the optical power from the sensors, and it is more significant for the bottom

sensor (indicated by a red contour).
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Figure 6-4 — Spectral analysis for OMS at installation

These results have led to the conclusion that the OMS units are under a deterioration
process what, along with the tolerable downtime characteristics, justifies the use of an
NHSMP. This process eventually leads to the complete loss of the signal, as shown in Figure

6-6 for the first two sensors from the well bottom after just 22 months from the installation
date.
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Figure 6-5 — Spectral analysis for OMS after 20 months of installation

The semi-Markov process is therefore considered as non-homogeneous so that this

deterioration process may be adequately addressed. Therefore, the required data to estimate
the system availability via this NHSMP model are the parameters p;i(-) and Gjj(-,-) of the
NHSMP in Figure 1-3, through which the kernel C;(- ,-) can also be found.
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Figure 6-6 — Spectral analysis for OMS after 22 months of installation

Table 6-2 summarizes the requisite data for solving the NHSMP given in Figure 1-3.
Looking at that, it can be seen probabilities p;i(f) and pi2(¢) depend on the process time ¢,
reflecting the deteriorating process to which the OMS is subjected. The probability p;2(¢) of
leaving state 1 to state 2 is set to value 0.4 at ¢y = 0, increasing continuously in the interval of

15,000h. The probability p;;(¢) in turn decreases from 0.6 during the same interval.

Table 6-2 — Estimates of parameters of the NHSMP.

i =] pii(® Gii(l,t)

11 (-0.00004 t) + 0.6 Exponential(1E-04h™")
152 (0.00004 t) + 0.4 Weibull(270.0h, 1.86)
21 0.82 Exponential(0.0208h™)
253 0.18 LogNormal(4.0h, (0.4h)?)
31 0.62 Exponential(0.0416 h™)
354 0.38 LogNormal(2.5h,(0.25h)%)

Indeed, 2N-method for NHSMP described in chapter 4 will be used for solving the
NHSMP of Figure 1-3. In next subsection, the main findings on 2N-method will be analyzed
comparing its effectiveness, in terms of accuracy and computational time, with the results

provided by N’-method and MC simulation.

6.2.2. Results
In fact, for different number M of steps, from Figure 6-7 to Figure 6-10 there will be
showed the estimated OMS availability (A(t) = 4 () ) for a mission time of 7' =1 year (8,760

hours) according to the 2N- and N*-methods and to MC simulation (100,000 samples). The
main findings of this subsection are provided in Moura and Droguett (2009a), which follows

in attachment H.
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Figure 6-7 — OMS availability: mission time of 8,760 hours and M = 100 steps

In Figure 6-7, neither 2N- nor N°- show close agreement when compared to the MC
solution. In this case, the distance (discretization error) between the 2N-method and MC-
simulation is shorter than that of the N°-approach.

This figure also depicts the N°-approach attains probability values greater than 1.0 for this
number of steps, which does not look like to be as big as enough to reach the converged
solution.

As the number of steps increases by 400 steps (M = 500) we can notice the 2N-method
already matches MC-simulation, whereas N -method keeps showing a noteworthy distance
(Figure 6-8) from that.

Now setting up M = 1,500, Figure 6-9 depicts that the availability curve estimated from
2N-method matches the computed values gathered from N’- and MC approaches.

~#-2N-method (S00 steps)

Z 094 | _ —MCmethod(1,500steps)
<
N2-method (500 steps)

0.9

0 2000 4000 6000 8000
T(h)

Figure 6-8 — OMS availability: mission time of 8,760 hours and M = 500 steps

Figure 6-10 summarizes how the 2N-method reaches MC results as M increases. These
results provide a illustrated validation, in terms of accuracy, of the mathematical formulation

and numerical treatment given and developed by Moura and Droguett (2009c).
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Figure 6-9 — OMS availability: mission time of 8,760 hours and M = 1,500 steps

Although the 2N-method approximately reaches the desired convergence with only 500

steps (Figure 6-8), a similar analysis should be made for the other state probabilities (4,(¢), i =

2, 3,4) in order to find the number M; necessary to converge. The number M of steps needed
to achieve the process’s convergence as a whole is the maximum of M;, i = 1,...,4. In other
words, this corresponds to find M; which minimizes the upper limit of the discretization error

of the 2N-method which in turn is the sum of eq. (5-18) and the error estimated in

approximating ¢, (kh) by ¢, ().
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Figure 6-10 — OMS availability: 2N-method x MC

It is worthwhile making two important considerations on the Figure 6-6 to Figure 6-10: (i)
as in this case the NHSMP of Figure 1-3 is not an ergodic system (due to the absorbing state
4), availability equals reliability and the curve must go to zero. Because of this, the y-axis
could have be quoted as reliability rather than availability, not reaching a steady state; (i7) it is
observed a local minimum at the beginning of the mission. This behavior is somewhat a result
of the deteriorating process under which the system is subjected when it occupies state 1.
Then, it may be seen an increase in the system reliability as the failure/reinstallation cycles

start (process reaches states 2 and 3).
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Letting the illustrated analysis aside, we may make use of the cross-entropy measure (see
Kullback and Leibler (1951) for more details) for analyzing how the discrepancy among the
2N-, N°- and MC-methods varies as a function of the number M of steps. Basically, the cross-

entropy is given by

D(f.9)=] f(x)log[g 8%

where the function f corresponds to the results from MC-simulation and g could be the
outcomes from the 2N- or N*-methods.

Figure 6-11 illustrates the cross-entropy measured for the availability metric by both the
2N- and N’-approaches. Generally speaking, it underpins the discussion made in section 5.2.2
on the upper limit of the discretization error estimate for NHSMP. In fact, even though the
2N-method is faster it presents an error estimate smaller than N°-method over the number M

of steps and that tends to zero as M increases. The latter characteristic holds for the N’-method

A(t)
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Figure 6-11 — Cross-entropy over number of steps: 2N- x N-

Figure 6-11 also depicts that the findings given in section 3.1.2.2 on the accuracy of the
2N-method for HSMP are somewhat conservative. In that occasion, it has been concluded the
2N-discretization error would be greater or equal to N’-error. However, in section 3.1.2.2 the
inequality in eq. (3-19) was disregarded what implies the results from Figure 6-11 also holds
for HSMP.

Besides validating the 2N-method accuracy in comparison with the results of the N°- and
MC approaches, other criteria to contrast these different solutions for NHSMP is the time to
converge, i.e., computational cost.

Indeed, by using the 2N-approach it is only needed solving N coupled integral equations
with one variable and N straightforward integrations, rather than computing N’ integral

equations as through the N°-method. Indeed for M = 1,500 steps, the 2N-method spent 7.10
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seconds, whereas the MC took 246.43 seconds, and the Nz—approach required 8,370.24
seconds. Figure 6-12 shows the time (in seconds) took by both 2N- and N*-approaches as M

varies.
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Figure 6-12 — Computational time over the number of steps: 2N- x N°-

This analysis provides a validation in terms of accuracy and computational effort of the
2N-approach. Basically, it has showed that by the 2N-method the state probabilities are
obtained considerably faster than through the N°-approach.

Moreover, it has been observed that even with a less intricate computational complexity,
the 2N-method reaches the converged solution with a truncation error smaller than the N°-
method. Obviously, one must scrutinize these outcomes in order to find whether they

correspond to a general consequence or not.
6.3. Comments

6.3.1. 2N-method

NHSMP were usually computed via the N’-method described in Janssen and Manca
(2001) where the future behavior of the system is assessed via interval transition probability
equations comprised of a system of N* coupled integral equations with two variables, with N
the number of states. However, this approach is rather cumbersome.

This situation motivated the development of a more efficient formulation for NHSMP that
had less computational effort, but kept the accuracy in relation to the available methods in the
related literature, that is, MC simulation and the Nz-approach. In fact, the proposed 2N-
mathematical formulation and numerical treatment consists of casting the N coupled integral
equations into an initial value problem involving transition frequency densities, and then solve
N coupled integral equations with one variable and N straightforward integrations. This
approach possesses the two aforementioned meaningful features: it is significantly less time-

consuming and has accuracy equals to the N°-method, as it was proved in section 5.2.2.
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The 2N-mathematical formulation and numerical approach were also illustrated by means
of two examples of application in the context of reliability and availability assessment, where
the effectiveness and the required computational effort of the 2N-method were also compared
against the MC and the N°-approaches. From these examples, it was verified that the proposed
approach is considerable faster than both the MC simulation and the N°-method. Specifically
on the second example, 2N-approach reaches greater accuracy than N°-method validating the

findings in section 5.2.2 on the behavior of the upper limit of the discretization error.

6.3.2. OMS availability assessment

The availability analysis of an OMS is a complex subject. It is influenced by failure
patterns of components that are usually under deteriorating processes. Maintenance also poses
its own challenges, the most relevant ones being the human performance during
reinstallations, and the impact of available time to complete the reinstallation on the human
error probability. And the availability assessment must be carried out with high level of
uncertainty as a result of the paucity of relevant empirical information.

In this context, section 6.2 has provided an availability model for pressure-temperature
optical monitoring systems. The model is based on the integration between non-homogeneous
continuous time semi-Markov processes and Bayesian belief networks. NHSMP portion is
responsible for handling the OMS dynamics, and BBN are used to qualitatively and
quantitatively model the cause-effect relationships among factors influencing the repairman
error probability during reinstallations. The model has also been applied to the analysis of an
OMS in an onshore oil well in the Northeast of Brazil.

With this model we only scratched the surface of the problem. Although we do not
provide conclusive results from the application of the model to a real case situation, the
availability model tackled the most relevant issues concerning the operation and maintenance
characteristics of the system, providing the analysts with much needed flexibility for
evaluating the availability of the system, as it was demonstrated in the example of application.

In the following we provide more specific comments on the limitations of the proposed
availability model and discuss some alternative modeling approaches. (i) Given the lack of
data on the failure processes, the availability analysis was done at the system level. Although
the spectral analysis indicated that the optical monitoring system is under deterioration, the
availability engineers and certainly the development process of the system will benefit from a
disaggregated availability analysis (at component level). This might be done by including a

Fault Tree sub-model which considers the combinations of component failure events leading
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the system to change its general state. This and failure data gathering and analysis from the
deployed units (7 production and 1 injection wells have been recently equipped with the
monitoring system) are part of the next stage of this research. (if) The construction of the BBN
model for the human error probability and the population of the table of conditional
probabilities were based on expert opinion elicitation. Although all nodes were binaries, the
expert had difficulties in providing quantitative assessments especially for the non-root nodes.
As one of the next steps of this research, empirical data on at least some of the factors will be
collected so to relief the cognitive burden on an expert. So from this and the previous step,
one might get more reliable availability assessments. (iii) In the proposed model, the available
time to complete a reinstallation is obtained from the sojourn time in an unavailable state.
Although the semi-Markovian process is continuous in time, this information is passed as
discrete (binary) evidence to the node “available time to complete the reinstallation” of the
BBN model for the human error probability. In the next stage of this research, this node is
treated as continuous. Thus, the use of hybrid BBN is a must and the iterative algorithm
proposed by Neil et al. (2008) is currently being tested in the context of application of this
work. (iv) Dynamic Bayesian networks (DBN) have been used in the area of dependability
analysis, for example, Boudali and Dugan (2005), Weber et al. (2004) and Montani et al.
(2008). However, at best of our knowledge, DBN-based approaches have been limited to deal
with representations of homogeneous and non-homogeneous Markov processes mostly in
discrete time ((Boudali and Dugan (2006) propose a continuous time based DBN framework
for the analysis of dynamic fault trees), and with focus on non-repairable systems. However,
DBN are an alternative approach to the availability assessment of the type of system analyzed
in this research, and representation of semi-Markovian processes and repairable systems in a

DBN framework are subjects of current research by the author.
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7. FURTHER EXAMPLES AND COMMENTS

In this chapter two further examples will be discussed. The first one shows how the 2N-
method may be used for determining a maintenance optimization policy so that to maximize
the mean availability measure. The second example is also inserted into the optimization
context. Basically, it is designed for determining which maintenance decisions should be
made so that the mean availability and expected costs are jointly optimized over the system’s
age. Thus, the Lap-method will be used to estimate the mean availability in this framework.

Basically, these examples will be described as an attempt to show how reliability
problems, which would become infeasible due to the lack of an efficient method for solving

NHSMP, may be modeled by using the proposed mathematical and numerical approaches.

7.1. System Availability Optimization

System availability optimization is one of the main issues to production managers: the
greater the system availability the greater the production profits are. Provided that each
preventive maintenance action promotes a rejuvenation impact on the availability measure,
this section develops an approach to maximize the mean availability by identifying an optimal
maintenance policy for a hypothetical system, which is modeled according to a non-
homogeneous semi-Markov processes.

In order to solve the resulting optimization problem constrained by system performance
costs, genetic algorithms (GA) operators will be used (see Marseguerra et al. (2006) for
greater details on GA). The developments of this section are widely described in Moura et al.

(2008), which follows in attachment 1.

7.1.1. Description of the problem

Consider a system, which due to the same reasons discussed throughout the two last
chapters, may be modeled through an NHSMP. Then, it is aimed establishing a preventive
maintenance policy that maximizes the system’s mean availability restricted to technological
and cost constraints.

This optimal policy is comprised of operating times # up to the preventive action jth, which
has a rejuvenation impact g on the real age of the system. The parameter is incorporated into
the state equations of an NHSMP so that the effectiveness of each preventive maintenance is
taken into account in the optimization procedure of the mean system availability.

The mathematical programming problem relevant to the system is summarized as follows:
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Max A[T | (ti, ta, ..., t); ] (7-1)
s.t. C[T|(t, to, ...s tn); @5 ¢ps cc] <K
Cpy Ce, T, K>0,8€ (0, 7], N,n € Nandg € R
n<N
where T is the mission time under consideration; # is the operating time up to the jth
preventive maintenance action, with 4 = 0; ¢t = (¢, t, ..., t;) composes a preventive
maintenance policy; z is the number of preventive maintenance events in 7" and N is its upper
bound; A[T | (t1, ta, ..., t,); ¢] is the system mean availability in 7 modeled in terms of an
NHSMP and related to (#, %, ..., t,) and q; C[T'| (#1, t2, ..., ta), 4, Cp, Cc] 1s the cost related to
the system performance in 7 given the maintenance policy (¢, %, ..., t;), ¢, the cost per time
unit to perform preventive (c,) and corrective (c.) maintenances.

In order to compute C[T | (41, t, ..., tn); ¢, ¢, Cc), the time spent by the system under
preventive and corrective maintenances are estimated as a function of A[T | (1, t2, ..., tn), q]
and 7, (mean preventive maintenance time) [see eq. (7-2)]. Finally, K is a maximal cost
constraint, i.e., the total cost incurred by performing corrective and preventive maintenance
actions.

C[T|(tl,...,t”);q;cp;cl,]:

n-c, -Tp +[T—T-Z[(tl,...,tn);q}—Tp}cC (7-2)

To achieve the optimal maintenance policy, GA are introduced to the problem. Basically,
GA consider a population of individuals, where each individual is a possible solution to the
problem. In this context, genetic operators such as crossover and mutation are
computationally mimicked in order to simulate the evolution process (see Michalewicz (1996)

for more details).

7.1.2. Casting Maintenance Effectiveness into NHSMP
In order to take into account the effectiveness ¢ of each maintenance action, let rewrite the
egs. (5-1) and (5-2). Thus, the future behavior of an NHSMP over time may now be assessed
through its state probabilities ¢;(t)=Pr[Z=j | Zo] given by as follows:
9 (t)=9;(0)-[1-F;(0.q0)]
+:j)h ' (g7)[1- F; (g7, q0)d(z) (7-3)

where F;(L¢) and h;(¢) are defined in chapters 2 and 6 respectively. Thus, it follows that:
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> [ (7-4)
* ZJ.hi(qT) -Cy(gr.qt)dr

i=l ¢

where é,-j(-,-) is also defined in chapter 2.

Eq. (7-3) and (7-4) are modified versions of (5-1) and (5-2) respectively, keeping the
same meaning as the latter though. In fact, backed up the virtual age model called General
Renewal Process proposed by Kijima and Sumita (1986), the parameter ¢ is introduced in
order to measure the effectiveness of maintenance actions. In other words, the parameter ¢ is
used to handle the rejuvenation imposed to the system after the last maintenance event.

In accordance with ¢, a maintenance action can recover the system to some of the possible
states: (i) ¢ = 0 — as good as new (perfect repair); (ii) ¢ = 1 — as bad as old (minimal repair);
(#ii) 0 < g <1 - better than old but worse than new (imperfect repair). The impact of these
types of maintenance on the system’s availability is illustrated in Figure 7-1.

According to Figure 7-1, it can be noticed that up to the first maintenance action there is
no difference among the three types of repair analyzed. However, just after the first
intervention the impact ¢ of each maintenance action on system availability may be assessed.
Moreover, Figure 7-1 illustrates that while the system is unavailable and under preventive
maintenance the instantaneous availability is zero. For further details on the classical and

Bayesian procedures for estimation of the parameter g see Yafiez et al. (2002).

1wy -, -,
" ", ",
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+q=00
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Figure 7-1 — Impact of different types of repair on the availability

The model developed here proposes a preventive maintenance policy that maximizes the
mean availability of a system which is estimated according to an NHSMP by considering the
impact g of each maintenance action on the system performance. Therefore, the objective

function presented in (7-1) is the mean availability given by (7-5), where {4} is the set of
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states in which the system is available. This mean availability as well as the system dynamics

as a whole will be estimated by using the 2N-method described in chapter 5 for NHSMP.

Z%kz{;} [ (c)ar (7-5)

7.1.3. Example

It is assumed that a hypothetical system starts in normal operation in state 1. Over time,
due to operational and/or environmental conditions, the system may operate in a degraded
state even though it is still available, which corresponds to the state 2. In this state, the
corrective maintenance process, which consists of the installation or reinstallation of the
system, starts. There is a tolerable downtime (TDT) inside which the system may operate in
this degraded condition. If the repair process cannot be completed within this TDT, the system
goes into state 3 where additional corrective actions are taken to restore it to its normal
operating condition, but in this case the system is unavailable. It is assumed that all corrective
actions recover the system to the same condition it had just before the failure. In other words,
corrective actions are considered as minimal repairs (¢ = 1.0).

Besides the corrective maintenance actions, the system may also undergo preventive
maintenance events (state 4) which possess an effectiveness ¢. It is assumed that all
preventive maintenance occurrence times are known at the start of the mission (at =0). This
preventive maintenance policy corresponds to a particular individual in the GA optimization
algorithm, i.e., the NHSMP model is evaluated for each potential solution, (¢, t, ..., t,),

during the execution of the optimization procedure.

Figure 7-2 — Non-Homogeneous semi-Markov processes for a hypothetical system

It is also considered that a preventive maintenance action corresponds to an imperfect one,
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i.e., it recovers the system to a condition somewhere between perfect and minimal repairs.
The state space diagram is illustrated in Figure 7-2, where the dotted lines represent the
transitions due to the preventive maintenance events.

As it has been previously discussed, the goal is to establish a preventive maintenance
policy that maximizes the mean availability of this system, which in turn is modeled via
NHSMP whose required parameters are given in Table 7-1. Other requisite data are 7 = 150
days; 7, = 1 day; N = 5 maintenances; ¢, = $10.00; c. = $30.00; K = $200.00. The GA-based

required parameters are showed in Moura et al. (2008).

Table 7-1 — Parameters estimation for the NHSMP.

i =] pii(t) Gii(l,t)

11 (-0.0034 t) + 0.5 Exponential (5E-01)
1-2 (0.00341t)+0.5 Weibull (30.0, 1.36)
21 0.70 Exponential (1.0)
23 0.30 LogNormal (2.5, 0.25)
351 1.0 Exponential (1.0)

With the intention of evaluating the proposed approach, the preventive maintenance
effectiveness parameter ¢ is initially considered equals to 0.0, and the system performance
cost is disregarded.

For ¢ = 0.0, a preventive maintenance action restores the system to an “as good as new”
condition, and therefore it is expected that # is approximately equally spaced over time. In
relation to the system mean availability, it can be seen in Figure 7-3 that the optimal
maintenance policy for the system is roughly given by # = 24 days, for any j=1, 2, ..., 5. Call
this ¢ the target value. Under this condition, the resulting system mean availability is equal to

0.9975.
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Figure 7-3 — System mean availability for different maintenance policies
By considering the input parameters, the best solution provided by the proposed NHSMP-
GA approach corresponds to the preventive maintenance policy (in days) {21.10, 19.44,
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2491, 25.13, 29.16} for which the system mean availability is equal to 0.9974.

The maximum absolute error in comparison with the above target solution is about 5.16
days, generated by #5=29.16 days. However, when considering a set of 50 replications of the
algorithm the target # (24 days) lies inside the 95% confidence interval for each generated
sample (see Table 7-2).

Table 7-2 — 95% Confidence interval (in days) for each preventive maintenance based on a GA sample of

optimal solutions with q = 0.0.

Mean operating times

. lower bound upper bound
up to maintenance

t 23.50 29.50

t 21.02 31.00

t3 20.45 32.54

ty 21.76 29.84

ts 21.25 28.97

Now, considering ¢ = 0.35, the best solution provided by the NHSMP-GA approach
corresponds to the preventive maintenance policy (in days) {32.46, 17.46, 15.25, 15.03,
1491} for which the system mean availability is equal to 0.9941. The resulting system
performance cost is estimated as $50.00. Note that, on average, due to the high availability,
the fraction of time the system spends under corrective maintenance is virtually zero, i.e., the
preventive maintenance policy avoids the expenses with corrective maintenance actions.

Provided that no analytical solution is available for the system availability and for the
optimal solution accordingly, the assessment of the uncertainty about the estimated optimal
preventive maintenance policy is with no doubt relevant information for the decision maker.
In fact, this uncertainty is characterized in terms of the 95% confidence intervals for the mean

occurrence time of each maintenance event based on 50 replications of the algorithm (see

Table 7-3).

Table 7-3 — 95% Confidence interval for each preventive maintenance based on a GA sample of optimal

solutions with ¢ = 0.35.

Mean operating times

. lower bound upper bound
up to maintenance

t 21.56 36.41

t 17.08 23.87

t3 14.98 21.15

ty 14.34 20.07

ts 13.83 19.98

7.1.4. Comments

This section has presented an approach for handling the maximization of system mean

availability by determining an optimal preventive maintenance policy constrained to the
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system’s performance costs.

In the approach, the system dynamics is modeled via non-homogeneous semi-Markov
processes by using the 2N-method given in chapter 5, where the idea behind Generalized
Renewal Processes is employed to characterize the effectiveness of corrective and preventive

maintenances on the system age.

7.2. Semi-Markov Processes for Decision-Making

As it has been seen previously in section 1.2.2 and chapter 6, pressure-temperature optical
sensors have been developed to improve the management and control of oil reservoirs. One of
their aims is to decrease the number and impact of intrusive maintenance interventions since
the (re)installation procedures are human intensive and might influence the life of the
monitored systems. Therefore, maintenance policies that jointly optimize mean availability
and expected cost rate associated with maintenance interventions on monitored systems are a
must in oil industries.

This section proposes a multiobjective optimization model based on semi-Markov
decision processes (SMDP) to find a set of nondominated maintenance policies. Each
obtained policy is of threshold type and it represents the optimal decision (do-nothing,
minimal maintenance or replacement) whenever the system enters a new deterioration stage.
An example of application is also discussed. This section is based on the findings of Moura et

al. (2009), which follows in attachment J.

7.2.1. Description of the problem

Considered that data collected from OMS might be used in a pattern recognition technique
(e.g., Support Vector Machines (SVM), see Burges (1998) and Shawe-Taylor (2000)) to
indicate at which deterioration state the system is. Given that, adequate actions should be
taken so that the number of interventions is minimized.

Due to the complexity of systems from oil industry, these interventions are intrusive,
highly human-intensive and cost-consuming and thus minimizing them means decreasing the
impact of human performance on the system and related costs as well.

Preventive actions, which set a periodic interval to perform planned maintenances, ignore
the health status of a physical equipment/system. Therefore, they may not be adequate to oil
industry systems since sometimes they would imply unnecessary actions, i.e., as system has

not crossed the critical deterioration line yet. On the other hand, pre-set times for preventive
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actions might also not pay enough attention on the system, even if a latent failure will take
place next. Both situations are cost and time consuming and should be attenuated.

In this way, according to Jardine et al. (2006) more efficient maintenance approaches such
as condition-based maintenance (CBM) may be implemented to handle this situation. CBM is
a maintenance program that recommends maintenance actions based on the information
collected through condition monitoring (OMS, for instance). CBM attempts to avoid systems
being over or under maintained by taking maintenance actions only when there is evidence of
abnormal behaviors of a physical asset.

If properly established and effectively implemented, a CBM program can significantly
diminish maintenance costs by reducing the number of scheduled preventive maintenance
operations.

One of the main key steps of a CBM program is to recommend efficient decision policies,
which involves maintenance decision-making analysis that essentially depends on the system
deterioration states.

Suppose a hypothetical system is monitored continuously, data on physical variables are
collected from OMS, and then processed to find the system deterioration state. Moreover,
assume there are three possible decisions which, generally speaking, will depend on the
system state: do-nothing (N), minimal maintenance (M) or replacement (R).

Basically, this section is based on the work of Moustafa et al. (2004). Similarly to them, it
is allowed one of three decisions &;,= {N, M, R} at each deterioration state i. Moreover, SMDP
will be used.

However, from this point the approach adopted here departs from the one presented in
Moustafa et al. (2004). Firstly, it will be considered two objectives to optimize: the expected
long-run cost rate and the expected availability, whereas in Moustafa et al. (2004) just the
expected long-run cost rate is minimized. Secondly and conversely to Moustafa et al. (2004),
in order to handle this multiobjective problem, a multiobjective genetic algorithm is applied
(see Deb (1999)). Thirdly and finally, the Lap-method developed in this thesis will be used in
order to estimate the mean availability measure.

Some optimization approaches have been presented in literature in order to attain optimal
maintenance policies for the single objective problem. For instance, Castanier et al. (2003)
investigate the problem of inspecting and maintaining a repairable system subject to
continuous deterioration processes. They aim to find a policy, by means of Markov renewal
approach, that optimizes system performance. Chen and Trivedi (2005) use an SMDP value

iteration algorithm to find the optimal maintenance policy jointly with the optimal inspection
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rate. Kim and Makis (2009) apply SMDP with a modified policy iteration algorithm in order
to find an optimal maintenance policy, such as in previous works, concerning only the
minimization of the expected long-run cost rate.

Note that the mentioned works consider only a single objective optimization and, as
asserted by Castanier et al. (2003), there is a necessity of optimization schemes adapted to the
multiobjective nature of maintenance problems.

In a multiobjective optimization perspective, instead of finding a unique solution (an
optimal maintenance policy), one may obtain a set of nondominated maintenance policies that
present the compromise between the considered objectives (in this work, expected long run
cost and mean availability).

Deb (1999) emphasizes that evolutionary algorithms such as GA are useful tools in
handling multiobjective problems since they consider various potential solutions in a single
run and several objectives can be treated separately.

Basically, given a solution provided by the multiobjective GA, the embedded SMDP
calculates the associated values of both objectives, which are fed back to the multiobjective
GA. Thus, solutions evolve throughout algorithm iterations by means of the genetic operators.
An evaluation of the dominance-nondominance relation between every pair of potential
solutions takes place and, at the end, a set of nondominated maintenance policies may be
obtained.

Therefore, the main purpose of this section is to determine a way of how the decisions §;=
{N, M, R} should be made in order to determine a set of nondominated steady state
maintenance policies which minimize the expected long-run cost rate as well as maximizing
the expected system availability via continuous time SMDP and multiobjective GA. In fact,
the Lap-method described for continuous-time SMP will be adopted to compute the mean
availability of the system. Regarding the multiobjective GA portion of the model, details may
be found in Moura et al. (2009). The model SMDP-GA will be validated in subsection 7.2.3,
comparing its results against an exhaustive multiobjective algorithm that assesses all possible

maintenance policies.

7.2.2. Model Characteristics
SMDP will be used here to tackle the behavior of some systems in oil industry since it is
assumed that the local time spent at each state influences the system dynamics. For the sake of

simplicity, the analysis is accomplished at system level.
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In this section, the SMDP’s role is to determine which actions should be made at each
decision epoch so that to optimize long-run cost rate and availability. Conversely to Love et
al. (2000), who consider the time as the system goes down as a decision epoch, and similarly
to Moustafa et al. (2004), it is assumed here a decision should be made at each time when the
deterioration state changes.

At every decision epoch, an action must be taken, which implies some costs and elapsed
times, for example, cost to replace the system or time to perform a minimal maintenance.
Thus, the aim is to determine a sequence of decisions, which jointly optimize mean costs and
availability, by using SMDP.

According to Makis and Jardine (1993), the optimal replacement policy for this type of
system is of the control-limit form (threshold type). That is, for i™ state there is a decision §; =
{N, for i <ky; M, for ky<i<ky; R, fori > k}, where k| and k, are the threshold indexes.

Let S= {1, ..., nt+1} represent the finite state space, where the state 1 represents the initial
operational system and n+1 means the system reaches the most critical deterioration stage (see
Figure 7-4). At these states, the decisions are do-nothing and replacement, respectively.

Between these extreme states, there are some intermediate ordered deterioration stages i,
where it is needed to determine what is the more adequate action (0; = {/V; M; R}) that should

be taken to optimize the expected long-run costs and availability.

Figure 7-4 — State diagram for SMDP
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Suppose, for example, the considered system might go through »n deterioration stages
before reach the highest deterioration level as can be seen in Figure 7-4. At each state, there
are either rewards (availability) and/or losses (costs) depending on the decision to be made.

For decision “do-nothing”, which may be made at any state i € S — {n+1}, there is an
operating cost per unit time of a;. For decision “minimal maintenance”, for each state i € S —
{1, n+1}, there are the mean maintenance cost b; and time ;. Just after this action, the system
goes to state (i-1) and restart its operation from there. For decision “replacement”, which may
be taken at any state i € S — {1}, there are the mean replacement cost ¢; and time 7;. The
system returns to “as good as new” condition at state 1, immediately after a replacement. For
the two last decisions (M, R), there is also an idle cost m related to the elapsed time during
which the system is not operational.

Thus, it is needed to choose the set of pairs (kj, k) of thresholds that will point out the

decisions to be made at each state so that the expected long-run cost rate G, and availability

A are minimized and maximized, respectively. G, and A, are given as follows:

. EC,0+C,0)+C.(0)+C, ()
m

G =1l t (7-6)
A° = lim M (7-7)
t—>0

where C,(f), Cu(f), C(t) and C,(f) are the costs of production, minimal maintenance,
replacement and interruption of the business over the time and D,(?) is the time portion during
which the system is operational.

After a replacement, which might be either corrective (n+1-th state) or preventive (A"
state, where k € (2, n]), the system is completely recovered to the first deterioration level. In
accordance with Castanier et al. (2003), because of this regenerative property, and following a
widely used approach in maintenance modeling based on the renewal theorem, the long-run
study (i.e. on an infinite time span) of the deterioration process can be limited to the study of
the system state evolution on a single renewal cycle defined by the time period between the
instant when the system enters the first state and the moment when it undergoes a
replacement.

In that way, one may calculate eqgs. (7-6) and (7-7) by considering just a replacement cycle
through egs. (7-8) and (7-9):

C(klskz)

G (ki k) =
(ky, k) T k)

(7-8)
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To(k15k2)

A" (k) =
(ky, ky) T k)

(7-9)

where T(k,, k) is the expected long-run elapsed time required for the system goes from state 1
to state n+1 and is dependent on which decisions will be made at each state i. Associated with
T(k1, k), follow C(ki, k») which is the expected long-run cost. Eq. (7-9) in turn is computed by
settling the mission time at 7(k;, k») and using the Lap-method described in section 3.2 since

SMDP is considered homogeneous in relation to the process time.

7.2.3. Example

As previously discussed, the system under analysis might go through n states, before
reaching the most critical deterioration state n+1. Hence, it is adopted here a multiobjective
perspective integrated with SMDP, for handling the problem of characterizing the sequence of
decisions along the 7 states. In this section, the results of the proposed model are validated by
means of an exhaustive multiobjective example.

Decisions are made in accordance with the pairs (k, k») of thresholds that jointly optimize
the expected long-run cost (eq. (7-8)) and availability (eq. (7-9)).

Table 7-3 presents cost data in monetary units and the distribution functions F; of the
waiting time in the state i needed to feed the SMDP portion. Apart from the first state, all F}, i
# 1, are exponential with parameter 4, = 4,,+0.0001, i = 3, ..., n, and 4, = 0.0011.
Furthermore, it is considered that the cost m of the system loss per unit time is 18, b, = 0.03 " ¢;
and ;= 0.03 " ;.

Table 7-4 — Required data for SMDP portion.

State F; a ci (10°) fi
1 Wei(0.001, 1.36) 17 50 24
2 Exp(0.0011) a7  ¢+7.5 43

3 Exp(/ler.0.000 1) axt7 7.5 ry+3
i EXp(at0.0001) a7 cutTS  rgh3

n Exp(4,,+0.0001)  a,,+7 c,t7.5  r1H3
ntl — — c, 7.5 r, 3

The transition probabilities from deterioration state i to j are given by:

2—j L .
S i>j; pij =0, otherwise

ij n+l
Z n+2—j
J=i+l
The data acquired by continuous condition monitoring could have been used for directly
estimating the failure rates and other parameters of the semi-Markov decision model. These
data are also used for determining at which deterioration state the monitored system is likely

to be.
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The number of SMDP accesses by the exhaustive multiobjective algorithm in order to
evaluate the considered objectives is exactly the quantity of potential maintenance policies
(nMP). In the case of three possible decisions and hence two threshold indexes, this quantity

is defined as:
nMP = ”(”T‘DH (7-10)

On the other hand, the multiobjective GA has an upper limit to the quantity of SMDP
assessments, which is given by:

nEval < nlnd " (nGen+1) (7-11)
where nind and nGen are the number of individuals and generations respectively.

In this way, regarding the number of SMDP evaluations, it is surely worth using
multiobjective GA instead of exhaustive multiobective algorithms since the equality in eq.
(7-11) is hardly met in practice. This occurs since only different potential solutions may be
evaluated by means of SMDP and, as the multiobjective GA evolves and converges towards
the nondominated set, there is a reduction of the number of different solutions to be assessed.
Taking this fact into consideration, it was set n = 50.

All experiments were executed in the same PC setting as in chapters 4 and 6. The
exhaustive multiobjective algorithm found 38 nondominated solutions associated with the true
Pareto front (see Table 7-5 and Figure 7-5). It required 6079.4 seconds to assess all of the
1226 possible pairs of thresholds (i, k).

Table 7-5 - True nondominated solutions

ki  k,  Exp.long-run costrate  Mean availability
1 32 417.2220 0.5396
1 31 417.2625 0.5503
1 30 417.4126 0.5609
1 29 417.6861 0.5715
1 28 418.0987 0.5820
1 27 418.6685 0.5924
I 26 419.4156 0.6028
1 25 420.3632 0.6131
1 24 421.5382 0.6233
1 23 4229713 0.6335
1 22 424.6987 0.6437
1 21 426.7623 0.6537
1 20 429.2119 0.6637
1 19 432.1065 0.6736
1 18 435.5165 0.6834
1 17 439.5271 0.6930
1 16 444.2420 0.7024
1 15 449.7887 0.7117
1 14 456.3262 0.7207
1 13 464.0547 0.7293
1 12 473.2302 0.7375
I 11 484.1855 0.7452
1 10 497.3612 0.7521
1 9 513.3531 0.7581
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1 8 532.9875 0.7628
1 7 557.4443 0.7656
1 6 588.4696 0.7662
2 29 406.1186 0.4550
2 28 406.2036 0.4618
2 27 406.4278 0.4683
2 26 406.8091 0.4746
2 25 407.3677 0.4806
2 24 408.1267 0.4864
2 23 409.1130 0.4918
2 22 410.3578 0.4969
2 21 411.8974 0.5016
2 20 413.7748 0.5058
2 19 416.0406 0.5095

Then 10 trials of the multiobjective SMDP with GA were executed. Table 7-6 presents the
number of obtained nondominated threshold pairs, the quantity of exact solutions of the true

nondominated set, the number of SMDP evaluations and the execution time as well.
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Figure 7-5 - True Pareto front and some obtained fronts from multiobjective SMDP + GA

Note that even the upper limit of nEval being relatively large (20100) for the present
example application, the number of SMDP evaluations is, on average, about 37% of nMP =
1226. In addition, the multiobjective GA in junction with the SMDP was able to find
approximately 91% of the true nondominated set in about 10% of the time required by the
exhaustive multiobjective algorithm. Figure 7-5 depicts the true Pareto front and fronts #2 and
#10 obtained by the SMDP with multiobjective GA. Note that all points from #2 and #10

fronts are on or very nearby the true solutions.

Table 7-6 - Results of multiobjective SMDP + GA

Trial # Obtained Exact SMDP Time
(k1, k) Pareto evaluations  (seconds)
solutions
1 35 35 443 616.5
2 35 34 460 640.8
3 35 35 445 604.7
4 35 35 460 644.8
5 29 29 412 626.6
6 34 34 441 578.3
7 36 36 470 647.1

80



Chapter 7 Further Examples and Comments

8 36 36 468 657.8
9 36 36 463 626.7
10 35 35 448 623.8
Mean 34.6 345 451 626.7
Std. dev.  2.07 2.07 17.28 23.21

It can also be observed from Table 7-5 that all policies indicate it is interesting to perform
minimal maintenance actions in early deterioration states. In addition, the sooner the

replacement, the higher the mean availability and the expected long-run cost rate reached.

In this way, decision makers may evaluate how much they are disposal to spend in order
to obtain a gain in mean availability. This can be done by means of a Return of Investment
analysis (ROI) between two different maintenance policies from the solution set:

ROI=(4; —4;) /(G - G, i#]

For example, to change from policy (2, 23) to policy (1, 9), the ROI is equal to 0.00255.

7.2.4. Comments

This section proposed a multiobjective optimization model based on semi-Markov
decision processes for the optimal replacement policy for monitored systems from oil
industry. The proposed multiobjective approach was validated by means of an exhaustive
algorithm and was able to find almost all solutions from the true nondominated set in a
considerable reduced time frame.

The ongoing research is to integrate this multiobjective portion with a Gamma process
which has been commonly used to address issues related to continuous degradation (see
Noortwijk (2009) for more details). In this way, the work developed by Castanier et al. (2003)
would be extended.

Moreover, following the findings in Kim and Makis (2009), in upcoming developments, it
will also be considered imperfect maintenance actions which will allow recovering the system
to an intermediate deterioration state between the “as good as new” and “as bad as old”

conditions.

7.3. Pattern Recognition Problem through Support Vector Machines

Clustering the continuous data acquired via intelligent technologies into a set of discrete
states, which is given in Figure 7-4, is the first step of the proposed model described in
previous section. This requirement consists in collecting data, training them using a pattern
recognition technique and analyzing its effectiveness on unseen data.

Basically, it corresponds to a multi-classification problem in which each state i represents

a category where the system could be. The work presented in the previous section is supposed
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to start from the definition of this set of states and requires that a pattern recognition model
determines periodically the condition state.

Support Vector Machines (SVM) has been successfully applied to pattern recognition and
regression problems. SVM is able to obtain noteworthy results when a data set

(X2, )seees(%,0s 3, )} © 7 xR s available for training, where » denotes the space of the input

points (e.g., x =%R’, where d is the y dimension). For instance, these might be time to failure

(Hong and Pai (2006)), dissolved gases content in power transformer oil (Fei et al. (2009)) or
reliability of software (Pai (2006)).

Experimental results have revealed SVM performs better than other techniques such as
Artificial Neural Networks (ANN), Grey Model, Multi-Layer Perceptron network-based
method, the Radial Basis Function network-based method, and autoregressive integrated
moving average (see Pai (2006)).

There are two main reasons which explain SVM surpasses these techniques (mainly ANN,
which are one of the commonest methods used in forecasting): (7) rather than backed up the
empirical risk minimization (which minimizes the training errors) as ANN, SVM makes use
of the structural risk minimization. Through this principle, SVM seeks to minimize an upper
bound on the generalization error. This fact plays an important role since minimizing the
number of training errors appears to be computationally demanding and it guarantees good
generalization performance as well; (if) solving a classification or regression problem via
SVM corresponds to deal with a convex quadratic optimization problem. Karush-Kuhn-

Tucker conditions state a necessary clause for a point € y to be a global solution and also are

sufficient conditions when the objective function is convex.

Therefore, SVM are not plagued with the problem of local minima as ANN are. For more
details on these SVM characteristics see Shawe-Taylor (2000) and Burges (1998) for the
classification problem and Smola and Scholkoff (2004) for the regression case.

In this way, SVM could have be used to address the pattern recognition (multi-
classification) problem necessary as an intial step to tackle a condition monitoring problem

such as the one discussed in previous section. This is issue of our ongoing research.
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8. CONCLUSIONS

8.1. Final Remarks

Continuous-time homogeneous semi-Markov processes are important probabilistic tools to
model reliability measures for systems whose future behavior is dependent on the current and
next states of the process and on sojourn times, besides the process time in case of non-
homogeneity.

SMP have been traditionally solved via the N°-method described in Corradi et al. (2004)
and Janssen and Manca (2001) for HSMP and NHSMP respectively, where the system
dynamics are assessed via interval transition probability equations comprised of a set of N
coupled integral equations. However, as it can be seen in chapters 4 and 6, this approach has
been rather burdensome and is not straightforward to implement.

This reason has motivated delving for a more efficient numerical treatment of SMP with
less computational effort and with a comparable accuracy in relation to the available methods
in the related literature (MC simulation and the N -approach).

Therefore, this research has given rise to the 2N-mathematical formulation and numerical
treatment which consists of casting the N° coupled integral equations into an initial value
problem involving transition frequency densities, and then solve N coupled integral equations
with one variable and N straightforward integrations. Through the analysis of some examples,
it has been seen this approach possesses the two aforementioned features: the 2N-method
convergence speed is greater than the other approaches and has a discrepancy from the MC-
results smaller than that of N°-approach, corroborating the main findings provided in section
5.2 on the upper limit of the 2N-discretization error.

Speaking specifically on NHSMP, the 2N-method plays an important role to leverage the
feasibility of application of this type of stochastic model. Although NHSMP are powerful
modeling tools, the mathematical and computational difficulties inherent to the N°-method on
the non-homogeneous environment are usually blamed as accountable for the impracticability
of this type of stochastic process.

Although 2N-method has showed meaningful outcomes in terms of computational effort
and accurateness as well, both approaches (2N- and N2—) have an important drawback to be
considered: they require increasing the algorithm’s order (number M of steps) so that to attain

greater accuracy. Hence, this reason increases the effort for solving semi-Markov processes,
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since the minimum number M of steps to reach a maximum discretization error should be
known previously.

This situation has motivated the development of the Lap-numerical procedure which made
use of Laplace Transforms for solving HSMP. Through a couple of examples of application in
the context of reliability engineering, Lap-procedure has showed some noteworthy
advantages: (i) it used a pre-set number of steps, which is independent on the problem to be
solved. Thus, it is not required anymore adjusting (through either trial-error tests or
dynamically) the number M of steps in order to attain the desired convergence. (ii) thus, it
reduced considerably the computational effort in relation to the 2N- and N’-methods and MC
as well. (iif) Lap-numerical procedure has been designed for treating HSMP specified in terms
of either transition probabilities or transition rates (iv) it has possessed accurateness
comparable to the 2N- and N’-method and MC solution. However, the same meaningful
results have not been encountered for the non-homogeneous case, as can be seen in Moura
and Droguett (2007).

Finally, this thesis has presented two further examples. In those examples, the numerical
procedures developed in this work have been used in optimization and decision-making
problems.

Indeed, the first example have developed an approach to maximize the mean availability
by identifying an optimal maintenance policy for a hypothetical system, which is modeled
according to a non-homogeneous semi-Markov processes. Hence, the 2N-method, which has
been drawn for NHSMP in chapter 6, has been used to estimate the availability measure.
Genetic algorithms in turn have been adopted to perform the optimization task of the
approach.

The aim of the second further example has been to establish a way of how the decisions
do-nothing, minimal maintenance and replacement should be made in order to determine a set
of nondominated steady state maintenance policies which jointly minimize the expected long-
run cost rate as well as maximizing the expected system availability via continuous time
SMDP and multiobjective GA. Thus, the Lap-method described for continuous-time SMP has
been adopted to compute the mean availability of the system. The model SMDP-GA was

validated comparing its results against an exhaustive multiobjective algorithm.
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8.2. Limitations, Ongoing Research and Future Challenges

8.2.1. Semi-Markov Processes: Requisite data, 2N- and Lap-methods

Regarding semi-Markov processes, three important limitations of this work deserve
attention. Firstly discussing semi-Markov processes in general, we have the well-known and
already quoted difficulty in obtaining the requisite data to analyze semi-Markov processes,
mainly on the non-homogeneous environment. Regarding this issue, El-Gohary (2004)
presents maximum likelihood and Bayesian estimates of the parameters included in a semi-
Markov reliability model of three states.

The second limitation lies on how to find out a number M of steps to minimize the
discretization error computed from the 2N-method. Up to now, this variable is not calculated
on simulation time what makes necessary to test several solutions of the 2N-method (with
different M) and check them out in comparison with the MC results. Sometimes, this is a quite
tough task. This is the issue of our ongoing scientific researches.

Thirdly, one drawback that deserves attention on the Lap-method is since this approach is
based upon Gaussian Quadratures theory there is not a quite simple way to obtain an estimate
of the absolute error committed by the approach (see Press et al. (2002) for more details). This
is also topic of our ongoing research.

As suggestion of future works, one could apply other numerical inversion Laplace
transform methods such as Cuomo et al. (2007) in order to compare with the results provided

in the present work.

8.2.2. Support Vector Machines

As it has been mentioned in section 7.3, the first steps in a condition-based maintenance
problem correspond to clustering the continuous data acquired via intelligent technologies into
a set of discrete states. This requirement would consist in gathering data, training them using a
pattern recognition technique and analyzing its adequateness to test data.

Basically, it consists of a multi-classification problem in which each state i represents a
pattern. Thus, the findings presented in section 7.2 are supposed to start from the definition of
this set of states and requires that a pattern recognition model determines periodically the
condition state.

One subject of our current research is to use support vector machines to address the former
steps of a condition-based problem. Mainly, due to the reasons explained in section 7.3, SVM

has been successfully applied not only to pattern recognition problems, but also to regression

85



Chapter 7 Further Examples and Comments

ones, surpassing techniques as Artificial Neural Networks, Grey Model, Multi-Layer
Perceptron network-based method, the Radial Basis Function network-based method, and
autoregressive integrated moving average (see Pai (2006)), what underpins its use for treating

CBM related matters.
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Abstract

In this work it is proposed a model for the assessment of availability measure of fiult tolerant

Gmss Lependre. The hybrid mode] and pamerical procedure are ilhostrated by means of an example of
application in the context of St tolerant systams,

Kevwords: semi-Markov processes; Bayesian belief networks; Laplace transforms;
availability messure; fanlt tolerant systems.

Resnmo

Nmmhlhemmmn&hhmhmwmmsmmem
Bayesianas para avaliagio da di philidade de 2 falba Esia inbegragio resulta em um
m&hmﬂmh}nﬁomﬂemdzmsmmkmmm
mmsﬂxmhmemmmmmmm ambientais &
opemacionais. Além disso, o modelo hibrido permite avaliar a propagagio de incerieza sobre a
Whmﬁnntmmmmpmmmlmkm
de probabilidade de esmdo de processos semi-Markovianes descriws per taxas de mamsicio. Tal

mdmmmmmehmhm@hﬂ;mhmﬂmdsklmmmmﬂ
mdndeqmﬂnma mhe:.dnmﬁnsshgm&e_ﬂmdﬂnhﬂxﬂnemm
mumeérico sin ilsmrados por meio de wm evemplo de aplicagdo no contexto de sistemas wlerantes 3 fabha,
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A Semi-Markov Model with Bayesian Belief Network Based Human
Reliability Modeling for Awvailability Assessment of Downhole Optical

Monitoring Systems

EL. Droguett. M.C. Moura

Universidade Federal de Pernambuco - Brazil

CMC. Jacinto, MLF. Silva Jr. & P.A A Garcia
Petrobras - Brazil

ABSTRACT: In this article, it is proposed a hybrid model for the availability assessment of downhole optical
monitoring systems where the system dynamics is modeled according to a non-homoegeneous contimious time
semi-Markov process and the human reliability for the installation and reinstallation procedures are given by
Bayesian belief network models. Insights regarding the mimerical solution of such hybrid model are also pro-
vided. The propesed modeling approach 1s illustrated by means of an application to a real case scenano in

brown onshore fields m Brazil.

1 INTRODUCTION
1.1 Optical monitoring system (OMS)

Mostly becanse of the increasing oil price, a consid-
erable attention has been given to the

of production technologies that allow for anticipa-
tien of oil production volunes and an mproved res-
ervoir management and control. In hine with such ef-
forts, recent developments in the context of reservoir
mmgamntandcoutm]hzwledmlhedeuek)p-
ment and installation of temperature-pressure optical
monitoring systems (OMS) for downhole applica-
tions.

Given the limited experience with this type of
systems, the availability assessment is usually per—
formed wmder a comsiderable level of
Despite that scenario, this linuted experience Ims
suggested that an OMS is comprised of

Moreover, the time to accomplish a repair is de-
terminant. It is considered that there is a tolerable
maximum downtime for which the repair must be

ed.
Therefore, there are three relevant aspects i es-
timating the system availability: (1) the system dete-

numu.ngpmcess (ﬂﬂler@mopmtm's capacity
in returning an OMS to its normal operational condi-
tion; (ii1) the available time to complete a repair ac-
tion. In this context, this paper proposes a model for
availability assessment that is able to handle the
combined impact of failure process and the human
error during the execution of repair activities.

1.2 A hybrid model for availability analysis of OMS

Thepmpusedmudelcombnustbenseofnou—
contimucus tme semi-Markov

that are renewed after failures as well as omnpmeﬂts
that are under deteriorating processes with failure
probabilities that are dependent on the total system
age.

Furthermore, when brown (mature) fields are the
focus of interest, cost is a relevant variable. In this
context, the optical cable usually is responsible for
approximately 80% of the total cost of an OMS for
brown field applications. Upon a well failure, the
OMS nmst be pull out of the whole even when no
failures has been observed m any of the OMS com-
ponents.

During these installation and reinstallation proce-
dures, human performance is a relevant factor influ-
encing the optical monitoring system life and the op-
tical cable in particular.

proc-
esses {N'H.SMP) and Bayesian Belief Networks
(BBN) for human reliability estimation.

NHSMP will be used here in order to model the
system dynamics because:
(1) Although the of an OMS might be
renewed upon a well failure, the duration (sojoum
time) in a state influences the availability of an OMS
and

(i1) Provided that some components might be under
detummuugpmcesses l.t shou]dhe considered time

“The cause—eﬁ?ect relahnmh.lps charactenizing the
human error probabilities (HEF) during installation
and reinstallation procedures will be qualitatively
and quantitatively modeled via BBN: according to a

thodology proposed by (Droguett et al, 2006)
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A semi-Markov model with Bayesian belief network based human
error probability for availability assessment of downhole optical
monitoring systems

Enrique Lopez Droguett, Mércio das Chagas Moura >, Carlos Magno Jacinto®,
Manoel Feliciano Silva Jr.®

* Depammens of Prdactinn Sygineering, Federal Uniwersity of Rermambeen R Acafdmio Hela o, S8 Cidlde URdwrsddeio, S0740- 590 Recife-PE, Brasd
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ARTICLE INFO ABSTRACT
Artiche hist org: Compelled by increasing ol prices, a research effort is underway for designing and imple-
Beceved 23 Apeil 2008 menting inteligent ol fields in Brazil, with a first pilot dinecied towarnds mature wells in
rm;"m‘;-mﬁwm theMartheast. One of the major benefits of this technalogy is the antid pation of ol produc-
Amnﬂ - tion wolh amnd an imy d reservair manag and camtral. Civen the considerable
? sieep imvestment on the new techmology, avail abillity is a key attribute: higher availabil ity
meams higher production val An img jpart of this effort & the development of
pro— F F optical i I 5 [ OME) and thedr anadlability 255 sment.
S Atz process Availability analysis of an OMS impase same camplexities, where fhe mast relevant aects
o p— are: (1) the sysiem u"mdu'admgp'l.rm: (i) the .auid:.letl'rh:mmrrp.l:l?: the
Hisma s ervor proba biliny mainenance; and (@) human emmor probability (HEF) during maintenance that is influ-
Ava laling e ssmnr enced by the available time and other factors (e.g, expeni fatigue) in ing an
DM to its normal operational condition. In this paper we present a first athempt to 5o khee
this problem. it is develo ped an availability 2= se<sment made] in which the system d ynam-
iz & deoibed via a contd time semi-Markovian process spedfied in terms of

probabilities. This model i inegrated with 2 Bayesian belief network characterizing the

canme-effert reationships among Gotors influencing the repainman smor probakility dur-

ing maintenance. The moded is applied to 2 real case concerming mature ofl wells.
2008 Brevier BV, All rights reserved.

1. lmtrosdu ction

0l has been the mot impontand soerce of energy since the early days of lat century. The growing and oontinwmes
demand for energy ssociated with decresing svailability of this limited resoerce have led to 2 considerable inraxse in
investment directed towards the development of slternative energy sownces x4 well x5 to reseanch efons for optimizing
techmol agies related to the exploration snd production of @l

Mimtly becsse of the incresing ol price, 2 consideralie sttention has been given to the enhancement of production
techmol agies that allow lor antici pation of ol production volumes snd an improved reservolr management snd contrdl. In
lime with such efforts, recent developments have led to the 3o called intelligent oil fields. The tenm intelligent” means: (i)
dats acquisition: sendor provide dats on imponant well parameters in real time; (ii) low remote control: it sllows an
operatar to modify production or injection Mow charactenstics with no on-site intervention; (iii) data inter pretation and

* Cormspoading i, Tel: +55 31 36477279 Lo +55 81 3271 3800,
E-mail adiden s ncione ceralgenail com (M de (hagas Mosg ]

1551900 - aee Boal ot © M08 Elevier BV, Al dghes resssnal
doi: 10015} denpa L 20080804 1

! This paper is published at the journal Simullation Modelling Practice and Theory.
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Numerical Approach for Assessing System Dynamic
Availability Via Continuous Time Homogeneous
Semi-Markov Processes

Mireo das Chagas Moura + Enrigque Lipex Droguett

Receved: 11 March 2008 /Revised: 5 Sepaember 2006 /
Accepiad: 10 November 2008
1 Bprimger Seimee + Business Madia) LLC Do

Abstraet Contl time homog semi-Markov p (CTHSMP) are impos-
tamt stochstic tools o model relishility meamres for systems whose fure behavior iz
dependent on the corent and next stsfes occupded by the process a2 well 38 on sajousm
times in these stetes. A method @ solve the imerval transdtion probabilitles of CTHSMP
:muufﬁﬂywmnywqmwmmmfwdﬂngﬂ
equationg which deseribe the fiture bebavior of & CTHEMP, where N is the number of
atates. However, the major drawhack of this spprosch s i consddershle com putational
effort. In this work, it & propoded a new more efficlent mmencsl spprosch for CTHEMP:
deseribed through either iramition pmbdijﬂuulruilimrlm.?.ﬂmlhnﬂz:mphd
integral equations, the approach cmatsts of solving only N eomgpled integral equations and &
atraghtforwand infegrations. Two example: in the comext of avalshility sssesmment ane
presented in onder to validste the effectivensss of this method sgainet the comparison with
the resulis provided by the classdes] snd Monte Carlo approaches. From thess examples, it
15 shown that the proposed spperoach 1s sdgnd ficantly ksa time-consuming and has sccurscy
compirable to the method of N computstional effort.

Keywords Homogenesons semi-mardkov p - Inte gra | equations - Quadran
medhads - Avad bbbty stee sment - Rielishd bty

AME 2000 Subject Clasifeation 0K 10 - G0K15

1 Dmtrodue thon

A hemogeneous semi-Markov process (HEMP) can be undensiood s a probabiistic model
for which the fidure hehavior is dependent on the sojourn times that in om are random

MA C Meoem 5} E L Decgeest
Deparsmens of Prdection Fagmeaing, Paderal Usiversity of Pemamioeco,
R Acadienics Hlio Rames, s, Cidude Ubiversitivia, S0740.930 Recife, PE, Brazil

I'nbdishi:l erlire: 13 Doear w2 2004 nw

! This paper is published at the journal Methodology Computing & Applied Probability.
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ATLAPLACE TRANSFORM NUMERICAL BASED SOLUTION OF CONTINUOUS TIME
HOMOGENEOUS SEMI-MARKOV PROCESSES FOR DYNAMIC AVAILABILITY
ASSESSMENT
DMircio das Chagas Moura®, Enrique Lépez Droguett
i af Prrocy En teag, Federal L a P e, Rua. ] Hilte Romaos, 2, Cidade

Elaivarsidris, JO740-330 Recife, PE, Brazil

Conti time homog semi-Markow processes (CTHSMP) are important stochastic tools fo

model reliability measures for systems whose fistare behavior 1= dependent on the cwrrent and next states
occupied by the process as well as on the sojoum times. A method (called 2V-method) for solving the
state probabilities of CTHSMP consists of directly applying a general quadrature method to WV coupled
intezral equations and making N straightforward integrations, where N is the mamber of states. However,
a drawback of this approach is the need to know previously the number M of steps enough to guarantes
the alzorithmic comvergence. Therefore, it is proposed a munerical approach for CTHSMP described
through either mansition probakilites or wansidon rates. This mumerical procedure is bazed on the
applicanon of Laplace mansforms that are invered by the Gauss quadranre method known s Gauss
Legendre to obtain the state probabilities on the tme domain. The main advantzge of this approach is

that it is not required adjusting dynamically the mamber of steps in order to obtain the desired

convergence. There is a pre-set ber of steps independent on the problem to be solved and thus, this

method is likely to have a considerable reduced computational effort. Its effectiveness will be compared
against the results provided by the 2N- and Monte Carlo methods by using two examples in the context
of relisbility assessment. From these examples, it is showed that the Laplace-based approach is
significantly less fime-consuming and has acouracy comparshle to the 2N-method.

Eeywords: Semi-Markov Process; Laplace Transforms; Gauss Quadrature; Availability

" Corresponding author. Fan: +355-81-1116-8728x30
E-mail address: marciocmeuraigmail com (M. C. Moura)

! This article was submitted for possible publication at the journal RESS (Reliability Engineering and System
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Enrique Lopez Droguett
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ABSTRACT

A non-homogeneous semi-Markow process (in short NHSMPF) can be thought as a stochastie
model m which the future behavier 1s dependent on the cwrent and next states oceupied by the
process as well as on sojown and process times. In this work, it is proposed a mmmerical approach
to solve the interval fransition probabilities of NHSMP described by transition rates. The
numerical procedure is based on the application of Laplace transfooms that are inverted by the
Gauss Quadrature method known as Gauss Legendre. An example in the context of reliability
assessment 15 presented in order fo validate the effactiveness of the proposed methed through the
comparison with the results provided by Monte Carlo simulation.

EKEYWORDS. Non-homogeneous semi-Markov processes. Numerical Inversion of Laplace
transforms. Reliability.
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Mathematical formulation and numerical treatment based on transition
frequency densities and quadrature methods for non-homogeneous
semni-Markov processes

Marcio das Chagas Moura®, Enrique Lopez Droguett

Depuroment of Padsction Enginestng Federal Undversity of Pemambern, R Acd® mico Hilio Ramos, 5N Cidode Liw misisa, SOT40-530 Recife, PE Bmil

ARTICLE INFO ABSTRACT

Ardice hisinre HNam-h i-Mark (NHEMF) are important stochastic tools for modeling
mnuym ez Bty mﬂrks aver time for q-;hems where the future behaviar depends on the curment and next
Kcavad ' masd bhan states ax well a5 on sojourn and process fimes. The clxsical method to sobve the interval transifion
E B arely Joo FﬁﬂthMMmdeMWFﬂiwmmdmwnm
Acceprad 29 Maxh 1008 o AR i
Aaifible onne 11 Agel 2008 I equationz. thiz h has 2 efiart
Mamely, H’-mq:lﬂd integral equations with v varidhles must be sahved, 'II1=|'=H is the mumber of
Kieywonts: states. Therefore, this article proposes 2 more effident mathematicl formulation and numerical
:"ummwm treatment, which are hated on tramsition frequency demsities and general quadrature methods
m.nta-::“lql respectively, for MHEMPs. The approach consists of anly salving M-coupled integral equations wath ane
Relabdiny uiaﬂ:xﬂﬂm#liw:ﬂmmmmmmﬂmmmmﬂmhhﬁn*ﬂ
presented. ﬂ:ﬂmm:ddmnam:wlmamﬂ,ﬂ:ﬂ ilable. Then an
d'ap[lnﬂm:m:u'nmg,_ T ftoring 5y l':rdu:kl:hmm! In
hath cases, the propossd approach s valid dvia the ¢ T agaimnst the nesults obtained from the
malyﬂ:d:dmmtfﬂ'ﬂuﬁlﬂmh‘,la weell ax from both the clssic and the Monte Carla
methads.
& 008 Brevier Ltd Al rights neserved.
1. Initrodu ction exponentisl Limnios [3] propases a discrete-time dependability

A homogeneous semi-Markov process (HSMP) can be wnder-
atond 28 8 probabilistic model for whidh the future behaviar is
dependent on the sojouwm tdmes (x), which are random van shiles
that depend on the curment state snd on the state to which the
ekt b tion will be done. Aocording to Ouhbd snd Lirmios 1],
HEMPs are more exitle models than ordinary Markov processes,
a3 it is no longer required to asmwme that sojourn times are
exponentially distributed

Recent applications and theorsticsl dev on HEMPs
have been proposed in the contesa of reliability engineening For
example, Perman et al [2] applisd 2 recursie procedure to
appraximate the intenval trandition probabilities, which ane wed
o msess the future behavior of an HSMP over time Olosed
formules for relisbility metrics are not svailable when the
probability distributions of the sojowm time in 2 state sre non-

m-ﬁ Fat: #5531 TTIE725:00
[ﬂ_ ) M Mowral ealopend wlpe by

05515320/ 5- e frong mazer © 008 Etevier Lrdl AT rights resesved.
diod: 10,00 IS ness XS, 03032

anahysis for HSMPs by using 2 methid based on slgebrsiccaloulus
Ouhbi and Limnios [4] estimated relishility amd availability
hughmmﬁlum-#mlwmmlmﬂulm
Oashbi s Li |5] proposed a tatical formula for ssessing
the rate of ocowrence of Failures (ROOOF) of HEMPs. Thiough this
result, ROCOF of the Markov and slternsted renewal processes
are 5o given as special cxses.

I & non-lhomoge neows semd -Markov process (NHSMPL trandi-
tiond between two states may depend not ondy on swdy states snd
on the sojowm times (x), but slio on both times of the last (o) and
et () tra s tions, with & = = The time varable ¢ is 250 known
23 the most recent srrval ime or |t entry time, and the time
varisble s the calendar or process time This, NHEMPS esxtend
otler stochstic processes such &5 HSMPL

Aza result, NHSMP: are powerful modeling tooks, maindyin the
relisbility feld (o exemplified in Janssen and Manca [5])L
According to Becker et al. [7) NHSMPS are considered a3
approaches to model reliability charsctedstics of components or
amall syatems with mpbt test and maintensnes :r.neyu.
Janssen snd Mancs [B] argue. h . that the non-h
in the contivuoustime semi-Marlov environment in'plies

! This article is published at the journal RESS (Reliability Engineering and System Safety).
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A faster numerical procedure for solving non-homogeneous semi-
Markov processes

M. C.Moura & E. L. Droguett
Universidade Federal de Penambuco, Racife-PE, Brazil

ABSTRACT: Non-homogeneity implies higher difficulties on the contmuous-time semi-Markov processes
(CTNHSMPF) environment. This gives rise as more infricate mathematical methods and related numerical so-
lutions and is one of the mamn reasons behind the scarcity of CTNHSMP applications. Indeed, the classical
method for solving CTNH

SMP is rather burdensome, consisting of directly applying a general quadrature method to N? coupled integral
equatmnsmlhhh‘ovmabl&n where N 1s the mumber of states. Therefore, this article focuses on scrutmizing
the effectiveness of a new and faster numerical treatment for CTNHSMP. Rather than computing N integral

equations, this approach comsists of solving only N coupled integral equations with one variable and N

straightforward integra

CTINHSMP is likely to be reduced. Comparisons agamst the results provided by the

Carlo will be performed.

1 INTRODUCTION

Contmuous time non-homogeneous senu-Markow
processes (CTNHSMP) are powerful modeling
tools, especially in the reliability field (as exempli-
fied m Janssen & Manca (2007)). Accordmg to
Becker et al. (2000), CTNHSMP are considered as
approaches to model reliability characteristics of
components or small systems with complex test and
mamtenance strategies.

In a CTNHSMF, transitions between two states
may depend not only on such states and on the so-
joumn times {x) (as 1t occurs with the homogeneous
counterpart), but also on both times of the last (1)
and next (f) transitions, with x = ¢ - 1. The time vari-
able 7 is also known as the most recent armival or last
entry time, and f 15 the calendar or process time.
Thus, CTNHSMP extend other models such as ho-
mogeneous semi-Markov, (non-) homogeneous or-
dinary Markov and other point stechastic processes.

In spite of that, there are two main reasons to ex-
plam the scarcity of CTNHSMP applications: (i)
Janssen & Manca (2001) argue the non-homogeneity
on the continmous time semi-Markov environment
mphies  addittonal  diffienlties 1in  treating
CTNHSMF; (if) in accordance with Nelson & Wang
(2007, for pmcm:a.l applications, gathermg of high
level required data (tramsition probabilities and/or
rates) is likely to be a significant challenge. mainly

tions so that the high and mherent computational cost that pla

s the solution of
- method and Monte

in the presence of censoring implied by preventive
mamienance.

Specifically discussing the first cause, it gives
rise as more infricate mathematical methods and
mumencal solutions. Indeed, the future behavior of a
CTNHSMP is usually assessed through its imterval
transition probability equations which are comprised
of a system of N d mtegral equations with
two variables, where N 1s the number of states.

The classical method for solving CTNHSMP is
explained i Janssen & Manca (2001) and consists
of directly applying a general quadrature methed to
these N coupled mtegral equations, which are a ge-
neralization of the Kolmogorow backward differen-
tial equaticns of the Markov environment (see Feller
(1964)). However, such an approach 1s rather com-
bersome. with a computational cost greater than
Monte Carlo (MC)-based algorithms.

Therefore, Moura & Droguett (2009) propose an
alternative method for solving the probability equa-
tions of a CTNHSMP. The approach consists of
casting the N* coupled integral equations mbo an mi-

tial value problem involving transition frequency
denasities, and then solve N coupled mtegral equa-
tions with one variable and N straightforward inte-
grations.

The mathematical and numernecal treatments de-
veloped by Moura & Droguett (2009) is put forward

" This article is accepted to be published in the proceedings of Esrel (Safety and Reliability Conference) 2009,
Prague, Czech Republic.
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Optical Monitoring System Availability Optimization via Semi-
Markov Processes and Genetic Algorithms

Marcio das Chagas Moura, M.Sc., Federal University of Pernambuco
Paulo Renato A. Firmino, M._Sc., Federal University of Pernambuco
Ennique Lopez Droguett, Fh D, Federal University of Pemambuco
Carlos Magno Jacimto, M. Sc., PETROBRAS-CENPES

Eey Words: non-homogenepus semi-Markov processes, real-coded genetic alzonthoms, system mean availability, virtual age

SUMMART & CONCLUSIONS

System availability optimization is one of the main issuwes
to oil production managers: the greater the system availability
the grester the production profits are. Provided thar preventive
maintenance actions promote refuvenstion impact om
availability indicator, this paper proposes an approach to
maximize the mean availability by identifying sn optimal
maintenance policy for downhole eptical monitoring systems,
which are modeled according to pon-homossneous semi-
Markov processes. In order fo solve the resulting optimization
problem constrained by systmnpetﬁmme costs, new real-
coded GA operators are also pr The @ d
mmumemphﬁgdhymufmapphumnmamﬂ
sCenario in onshore oil wells in Brazil.

1 INTRODUCTION

Muostly becsuse of competitive reasons, a considerable
arention is devoted to the development of optimal preventive
maintenance policies that aim fo maximize the system mesn
availability. In fact, these policies are influenced by system’s
stochastic failure and repair processes and have both cost and
technological constramts.

In the context of oil production, recent breakthronghs for
reservoir management and conool hawve led o the
development and installation of temperafure-pressure optical
monitoring systems (OMS) for downhole applications. Due to
the buge variety and sggressiveness of the dowmhole operating
environment, an OMS has components that upon a faihire
condiion mught either be completely renewed or have
intensity functions dependent on the process (global) time.

Moreover, some of these components exhibit non-
exponentizl times to faibore. In this conteet, this article sims to
develop i optimal preventive maintenance policy thar
maximizes the mean availability by using genetic alzorithms
for dowmhole OMSs based upon confinnous tme Don-
bomopeneons semi-Markow processes (MHSMP).

In order to model the system dynamics, MHSMPs are
employed because: (i) although the components of an OMS
might be renewed upon a well failure, the duration (sojouwn

1-4244-1461-3/08/$25.00 ©2008 IEEE

mme) in a state mfluences the availability of an OMS and (if)
provided that some components might be umder deteriorating
precesses, it should be considered time-dependent intensity
functions.

Through genetic algorithrms, it is established a preventive
maintensnce policy that mawimizes the system's mean
availability restricted to technological and cost constraints.
This optimal policy is comprised of operating times f, up @
preventive actions, which have a rejuvenation impact g on the
real age of the system This parameter is mcorporated into the
state equations of the WHSMP so that the effectiveness of each
preventive mamfenance is taken imbo account i the
optimization procedure of the OMS"s availability.

The mathematical programming problem relevant to the

qsmmismmnximdasﬁnﬂn‘ws:
Maximize 4 [T'| (fy, t, ..., t2); g] subject to L
n=N o)
CIT|{t fy, oo T G 6 6] 2K €]
Ent, LE=0,4E (0,7, MnENmdge R, (%

wbem!":sﬂ:emsmmm&ltmm 1 is the
operating time up to the j* preventive maintenance scriom,
with & = 0; (ty, s, ..., &) COMposes 3 preventive maintenance
pdkﬁnkﬂnmmtuufmeﬁvemhﬂmmemﬁh?
and WV is its upper bound; A [T|{f, &, ..., ) g] is the system
mesn availsbility m I’ modeled in terms of an WHSMP and
related to (f, &, ..., &) and g; CIT| (%, &, -, Gl &, G 6] 5
ﬂ:ecusrmmdmﬂnsymwfmmmcemrmmﬂxe
maintenance policy (fy, &, ..., L) @, the cost per fime nnit o
pﬂﬁumprmnm{c,jmdcme(c,jmms
In order to compute C[T'| (fy, &, .., &), @, €5, €], the time
spent by the system wunder pmmme and comective
Msmmdﬁamﬁdﬂ'“ﬂ t,
m;]mdi}(ﬂneamagepremmmmmj[ﬂ
eq. (5)]. Finally, £ is a maximal cost constraint, i.e., the toml
cost moumed by performing commective and preventive
majintensnce aCHons.
C[T|{i‘|,...:i‘.};-§',c';i:']—

n-c, 'rp"'[T_I'E[{EH'J»];?]_TF]'C; (=)}

! This article was published in the proceedings of IEEE RAMS 2008 (Annual Reliability and Maintanability
Symposium), Las Vegas, USA.
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Semi-Markov decision processes for determining optimal multiobjective
maintenance policies

M.C. Moura, I.D. Lins, P.R. Firmino & E L.
Department of Production Engineering, Universidade Federal de Pernambuce, Recife, Pernambuco, Brazil

CM. Jacinto
PETROBRAS-CENPES, Rio de Janeiro, Brazil

ABSTRACT: Downhole pressure-temperature optical sensors have been developed to improve the manage-
ment and conirol of il reservoirs. One of their aims is to decrease the mumber and impact of mtrusive mam-

tenance interventions since the (re)installation procedures are human intensive and might influence the life of
the monitored systems. Therefore, maintenance policies that jointly optimize mean availability and expected
cost rate associated with maintenance interventions on monitored systems are a must in oil mdustries. This
paper proposes a multiobjective optimization model based on semi-Markov decision processes to find a set of
nondominated maintenance policies. Each obtained policy is of threshold type and it represents the optimal
decision (do-nothing, minimal maintenance or replacement) whenever the system enters a new deterioration
state. Insights of a multichjective genetic algorithm and of an exhaustive method regarding mumerical search

for solutions are provided. The model 15 appled to a sitoation involving onshore brown fields m Brazil

1 INTRODUCTION
Compelled by mcreasing oil prices, a research effort
15 underway for designing and 1 ing intelli-

gent o1l fields m Brazil, with a first pilot directed
towards mature wells in the Northeast. One of the
major benefits of this technology 1s the anticipation
of oil production velumes and an improved reservoir
management and control, mcludmg mantenance de-
cisions. Given the considerable steep imvestment on
new technologies, system avallablity is a key
attribute: higher availability means higher produc-
tion volumes.

The term “mtelhgent” means: (1) data acqmsition:
sensors provide data on important well parameters
on real time; (i1) flow remote control: it allows an
operator to modify production or injection flow cha-
racteristics with no on-site intervention; (i) data in-
terpretation and optimization: it allows production
and reservolr engineers feed simulation models and
act on a particular well on real time. Therefore, in-
telligent oil field 15 a concept encompassing various
technologies that allow for an integrated manage-
ment of production and mjection of one or several
TEeServolrs.

Anmlpm'tampartufthjstechmlogylsmepm
sure-temperature optical monitoring systems (OMS).
They are responsm]e for acqumng physical data
(pressure and temperature) from the downhole envi-
ronment of oil industries. OMS availability amalysis,
mainly of the sensor compeonent, 15 already done by

Droguett et al. (2008). Moreover, Moura et al
(2008) developed optimal time maintenance policies
for OMS systems.

Data collected from OMS might be used in a pat-
tern recogmtion techmque to indicate at which dete-
nioration state the system is. Given that, adequate ac-
tions should be faken so that the number of
interventions is minimized.

Due to the complexity of systems from cil indus-
try, these interventions are ntrusive, highly human-
mtmmeandmst—mnsummga.udﬂmsmmmmng
them means decreasing the mpact of human per-
formance on the system and related costs as well.

Preventive actions, which set a penodic mterval
to perform planned maintenances, ignore the health
status of a physical equpment/system. Therefore,
they may not be adeguate to cil industry systems
since sometimes they would imply unnecessary ac-
tions, .., as system did not cross the critical deteri-
cration line yet. On the other hand, pre-set times for
preventive achions mught also not pay enough atten-
tien on the system, even if a latent failure will take
place next. Both sitnations are cost and time con-
suming and should be attenuated.

In this way, according to Jardme et al (2006)
more efficient maintenance approaches such as con-
dition-based maintenance (CBM) may be imple-
mented to handle this situation. CBM 15 a mainten-
ance program that recommends mamtenance actions
based on the mformation collected through condition
monitering (OMS, for instance). CBM attempts to

" This article is accepted to be published in the proceedings of Esrel (Safety and Reliability Conference) 2009,
Prague, Czech Republic.
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Table A - 1 - CPT of the MTTF given the level of paraffin (PARAF) and the percentage of H,O and solids (BWSOT)
PARAF, BWSOT P(MTTF (h) | PARAF, BWSOT )

100 200 1000.0  10000.0
0 0 0.05 0.10 0.15 0.70
0 1 0.15 0.15 0.30 0.40
1 0 0.15 0.20 0.40 0.25
1 1 0.20 0.50 0.15 0.15
Table A - 2 — CPT of the percentage of H,0O and solids (BWSOT) given the level of paraffin (PARAF)
PARAF P(BWSOT | PARAF)
0 1
0.80 0.20
1 0.40 0.60
Table A - 3 — CPT of the level of paraffin (PARAF) given the classification of the filter installed (FILTER)
FILTER P(PARAF | FILTER)
0 1
0 0.75 0.25
1 0.45 0.55

Table A - 4 — CPT of the classification of the filter installed (FILTER) given the depth of the pump (DEPTH_PUMP)
DEPTH_PUMP P(FILTER | DEPTH_PUMP)

0 1
0 0.90 0.10
1 0.60 0.40
Table A - 5 — CPT of the depth of the pump (DEPTH PUMP)
Variable P(DEPTH_PUMP)
0 1
DEPTH PUMP 0.70 0.30
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Table B - 1 — CTP of the repairman’s capacity given attention, experience and skill

Attention, P(Repairman’s Capacity |
Experience, Skill Attention, Experience, Skill)
0 1

0 0 0 1.0 0.0
0 0 1 0.85 0.15
0 1 0 0.65 0.35
0 1 1 0.25 0.75
1 0 0 0.75 0.25
1 0 1 0.45 0.55
1 1 0 0.35 0.65
1 1 1 0.0 1.0

Table B - 2 — CTP of the repairman’s attention given emotional state and fatigue

Emotional P(Repairman’s Attention |
State, Fatigue Emotional State, Fatigue)
0 1
0 0 0.95 0.05
0 1 0.55 0.45
1 0 0.35 0.65
1 1 0.15 0.85

Table B - 3 — CTP of the repairman’s fatigue given workload and external factors

];Z &I;_l:ll;lad’ P(Repairman’s Fatigue |
Workload, External Factors)
Factors
0 1
0 0 0.95 0.05
0 1 0.75 0.25
1 0 0.55 0.45
1 1 0.15 0.85

Table B - 4 — CTP of the external factors given climatic conditions and distracter agent

Climatic conditions, distracter

P(External factors | Climatic

agents conditions, Distracter agents)
0 1
0 0 0.85 0.15
0 1 0.55 0.45
1 0 0.75 0.25
1 1 0.45 0.55

Table B - 5 — CTP of the repairman given capacity and time available to complete reinstallation

Repairman’s
capacity,
Available time

P(Repairman | Repairman’s
capacity, Time available)

0

1

0.90

0.10
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0 1 0.75 0.25
1 0 0.55 0.45
1 1 0.20 0.80

Table B - 6 — CTP of the root nodes: Emotional state, Workload, Climatic Conditions, Distracter Agents, Experience, Skill,
Available time

Node P(Root Nodes)
0 1
Emotional State 0.45 0.55
Workload 0.85 0.15
Climatic Conditions 0.85 0.15
Distracting Agents 0.05 0.95
Experience 0.85 0.15
Skill 0.75 0.25
Available time to complete reinstallation 0.75 0.25
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