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ABSTRACT 

 

The field of Prognostics and Health Management (PHM) aims to predict the behavior 

of machines to make informed maintenance decisions. In the Oil and Gas industry, fault mode 

diagnosis, as a PHM activity, has been applied to rotating machinery such as compressors, 

centrifugal pumps, and submersible motors using traditional Machine Learning (ML) and Deep 

Learning techniques. With the emergence of a new and rapidly growing research field called 

Quantum Computing (QC), there is now potential for even more efficient and accurate 

predictions. The QC has contributed to different purposes and contexts, such as optimization, 

artificial intelligence, simulation, cybersecurity, pharmaceutics, and the energy sector. Despite 

the current limitations of hardware, QC has been explored to improve the speed and efficiency 

of ML models. This master thesis focuses on the application of Quantum Machine Learning 

(QML) to diagnose rolling bearings which are essential components in rotating machinery, 

based on vibration signals. We apply hybrid models involving the encoding and construction 

of parameterized quantum circuits connected to a classical neural network, the Multi-Layer 

Perceptron (MLP). The study uses the Variational Quantum Eigensolver framework along with 

rotation gates and different entanglement (two-qubits) gates (CNOT, CZ and iSWAP), and 

explores the impact of varying the number of layers (1, 5 and 10) in the quantum circuit. We 

use two databases of different complexity levels not previously explored with QML, namely 

Case Western Reserve University (CWRU) and Jiangnan University (JNU), with 10 and 12 

failure modes, respectively. For CWRU and JNU, all QML models presented higher accuracy 

than the classical MLP. These results suggest that, despite the current limitations of quantum 

environments, QML models are promising tools to be further investigated in PHM activities in 

the Oil and Gas industry.  

 

Keywords: quantum machine learning; prognostic and health management; fault diagnosis; oil 

and gas industry; research and development. 

 

  



 

 

RESUMO 

 

A área de Prognóstico e Gerenciamento de Saúde – Prognostic and Health Management 

(PHM) tem como objetivo prever o comportamento das máquinas para tomar decisões 

relacionadas a manutenção. Na indústria de Óleo e Gás, o diagnóstico de modo de falha, como 

uma atividade de PHM, tem sido aplicado em máquinas rotativas, como compressores, bombas 

centrífugas e motores submersos, usando técnicas tradicionais de Aprendizagem de Máquina 

(Machine Learning - ML) e Aprendizagem Profunda. Com o surgimento de um novo e 

crescente campo de pesquisa chamado Computação Quântica (Quantum Computing - QC), 

existe o potencial para previsões ainda mais eficientes e precisas. A QC tem contribuído para 

diferentes propósitos e contextos, como otimização, inteligência artificial, simulação, 

cibersegurança, indústria farmacêutica e setor energético. Apesar das limitações atuais de 

hardware, a QC tem sido explorada como uma maneira de melhorar a velocidade e eficiência 

dos modelos de ML. Este estudo se concentra na aplicação do Aprendizado de Máquina 

Quântica (Quantum Machine Learning - QML) para diagnosticar rolamentos, que são 

componentes essenciais em máquinas rotativas, com base em sinais de vibração. Aplicamos 

modelos híbridos que envolvem a codificação e construção de circuitos quânticos 

parametrizados conectados a uma rede neural clássica, a Perceptron de Camadas Múltiplas 

(Multilayer Perceptron - MLP). O estudo usa o framework Variational Quantum Eigensolver 

juntamente com portões de rotação e diferentes portões de emaranhamento (two-qubit gates), e 

explora o impacto de variar o número de camadas (1, 5 e 10) no circuito quântico. Usamos duas 

bases de dados de diferentes níveis de complexidade que não foram previamente exploradas 

com QML, a saber, Case Western Reserve University (CWRU) e Jiangnan University (JNU), 

com 10 e 12 modos de falha, respectivamente. Para a CWRU e para a JNU, todos os modelos 

QML apresentaram maior precisão do que o MLP clássico. Estes resultados sugerem que, 

apesar das limitações atuais dos ambientes quânticos, os modelos de QML são ferramentas 

promissoras para serem investigadas nas atividades de PHM na indústria de Óleo e Gás à 

medida que a QC avança. 

 

Palavras-chave: aprendizagem de máquinas quântica; gerenciamento de prognóstico e saúde; 

diagnóstico de falhas; indústria de petróleo e gás; pesquisa e desenvolvimento. 
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1 INTRODUCTION 

 

1.1 INITIAL REMARKS 

 

An important contributor in power production worldwide is the Oil and Gas (O&G) 

industry (PERRONS, 2014). However, facing the climate changes, Tamala et al. (2022) present 

the reduction of the world’s CO2 emission as a major challenge to be faced by this sector. Ritchi 

et al. (2022) indicate that, in Brazil, the CO2 emission in 2020 by oil and gas fuels resulted in 

305.51 and 60.33 million tonnes, respectively. Those are the largest emissions in the country, 

respectively, 65.37% and 12.91% of the total (Figure 1). Besides the effectiviness and viability 

of the fossil fuels energy sources, the renewable energy fountains are emerging by the advance 

of new technologies with the advantage of less greenhouse gases emissions.  

 

Figure 1 – CO2  emissions by fuel type in Brazil. 

 

Source: Ritchie et al. (2020). 

 

In addition, Perrons (2014) states that the O&G industry has changed in two critical 

aspects while global demand for these resources persists. The first is the large volume of “easy 

oil” that has already been consumed. As a result of this shift, upstream oil and gas businesses 

will need to invest in more complex technologies (ARAÚJO et al., 2022a) as exploring 

locations that are more challenging to access. Second, catastrophic disasters, such as the 

Deepwater Horizon oil spill (BEYER et al., 2016), have shifted O&G companies’ expectations 

and standards regarding environmental management, safety, and human welfare 
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(CHANDRASEGARAN; GHAZILLA; RICH, 2020). O&G facilities, such as drilling ships, 

FPSOs (Floating, Production, Storage, and Offloading), and refineries, work to increase the 

efficiency of their operations and maintenance procedures to decrease downtimes and avoid 

failures (BARRAZA et al., 2022). 

Based on the problems mentioned above and since O&G industry is a capital-intensive 

sector of the economy, strict availability standards are needed for its operations and innovative 

activities, from the creation and development to the operation of new technologies and 

equipment (BARRAZA et al., 2022). For example, in the mid-1970s, NASA developed the 

Technology Readiness Levels (TRL) approach that estimates the technologies’ maturity during 

acquisition and availability for use in the field (OLECHOWSKI; EPPINGER; JOGLEKAR, 

2015). Besides the aerospace sector, TRLs method was disseminated by ISO 16290:2013 to the 

other industries, including the O&G, alternative energy and defense industries 

(OLECHOWSKI; EPPINGER; JOGLEKAR, 2015; TOMASCHEK et al., 2016; YE et al., 

2017). 

The Bureau of Safety and Environmental Enforcement (BSEE) has adapted TRL for the 

O&G context. The steps are presented in Table 1. Each TRL represents general activities related 

to (1) technology research and development, (2) technology advancement, development, and 

demonstration, (3) technology deployment in operational environments, and (4) technology 

deployment in real environment. 

 

Table 1 – BSEE TRLs 

TRL 
Title 

Technology Research and Development 

1 Basic principles observed or reported 

2 Technology concept and speculative application formulated 

3 Technology proof of concept demonstrated 

Technology Advancement, Development, and Demonstration 

4 Technology prototype demonstrated in laboratory environment or model scenario 

5 Technology prototype tested in relevant environments 

6 Full-scale prototype demonstrated in relevant environments 

Technology Implementation in Operational Environments 

7 Integrated technology tested on a large scale 

8 Final integrated system tested in a real or relevant environment 

Technology Deployment in Real Environment 
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9 A final integrated system deployed in a real environment 

Source: Adapted from Panetta and Potter (2016, p. 5). 

 

As equipment development progresses in TRLs, an approach goes along with it, which 

is Prognostics and Health Management (PHM). PHM uses past and present information about 

equipment to assess its health, diagnose, predict and manage failures (JAVED; GOURIVEAU; 

ZERHOUNI, 2017). In Table 1, the PHM execution can be primarily inserted from TRL 6 

onwards, where testing and monitoring are performed to diagnose the condition and predict, for 

example, the Remaining Useful Life (RUL) of equipment. Although the PHM is usually applied 

form TRL 6 and has its real-time execution in TRL 9, the planning should be considered already 

in TRL 1, to define the parameters to be analyzed, as well as the tests and operations to be 

carried out to collect the data (JAVED; GOURIVEAU; ZERHOUNI, 2017; 

ROYCHOUDHURY et al., 2013), as shown in Figure 2. 

 

Figure 2 – Concept of TRLs adopted to represent prognostics maturity 

 

Source: Javed; Gouriveau; Zerhouni (2017, p. 217). 

 

Besides contributing to the context of equipment development, PHM tasks are also 

applied in the context of maintenance of in-use equipment. Mainly in the Condition Based 

Maintenance (CBM), which several businesses have implemented (e.g., automotive, aerospace, 

and military sectors) (QUATRINI et al., 2020). In this case, the monitoring and analysis of 

equipment conditions are constantly performed (ZONTA et al., 2020). The maintenance 

programs are proactive so that decisions are taken when there is a tendency to fail. Equipment 

degradation diagnoses and prediction are performed so that critical system failures and system 

shutdowns are avoided (BARRAZA et al., 2022; KUMAR; SHANKAR; THAKUR, 2018). 
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The three major stages of CBM are data capture, data processing, and maintenance decision-

making. Such steps must be performed for diagnosis or prognosis (ZONTA et al., 2020). 

Diagnostics in the PHM can be characterized as detecting present-day failures and 

providing information about potential outcomes. On the other hand, prognostics is the 

forecasting of future failures, or what is most likely to occur (BARRAZA et al., 2022; 

CORREA‐JULLIAN et al., 2022; JAVED; GOURIVEAU; ZERHOUNI, 2017; LINS et al., 

2015; SONG; WANG; CHEN, 2018). 

Traditional intelligent diagnosis methods include feature extraction using signal 

processing methods and fault classification by adopting Machine Learning (ML) and Deep 

Learning (DL) approaches (LUCAS et al., 2022; WANG et al., 2017; ZHAO et al., 2020). For 

example, Lucas et al. (2022) used Variational Autoencoder to diagnose failure modes of 

rotating machinery components. For the same category of equipment Zhao et al. (2020) present 

a study that serves as a benchmark with different DL models applied to different databases 

available in the literature. Among the techniques, there are Multi-layer Perceptron (MLP), 

Autoencoder (AE), Convolutional Neural Network (CNN), Recurrent Neural Network (RNN) 

and Deep Belief Network (DBN). 

PHM studies have been designed for the O&G sector to ensure safe and dependable 

output. Submersible motors were studied in Zhang and Yang (2022) paper; they are crucial 

elements of the offshore platform’s producing machinery. For the extraction of oil and gas, the 

supply of natural gas for electricity, and other social and economic benefits, submersible motor 

operation reliability is essential. The authors suggested a motor fault monitoring method based 

on multi-signal fusion to perform the PHM of this equipment. As distinctive signals, current 

and vibration have been chosen. Orrù et al. (2020) applied MLP and Support Vector Machine 

(SVM) for the failure prediction of a centrifugal pump in an Italian refinery. The predictive 

model attributes include flow rate, bearing vibration, axial displacement, and motor winding 

temperature. A petroleum refinery’s rolling bearings are subjected to vibration monitoring by 

Orhan, Aktürk, and Çelik (2006) to use the analysis as a preventive maintenance method. To 

identify faults early on, they employ spectral analysis. Finally, Moradi et al. (2022) performed 

analyses on Vapor Recovery Unit compressors using Bayesian DL models. 

Recently, important research interest has emerged based on the tremendous potential of 

parallelism offered by Quantum Computing (QC) and related quantum technologies (NAWAZ 

et al., 2019). Quantum algorithms aim to find ways to speed up the solution of computational 

problems by using a quantum computer (HARROW; MONTANARO, 2017). A quantum 

machine characterizes and computes the quantum properties of an atom in a molecule, which 
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is computationally and exceedingly challenging even for a supercomputer to handle. This 

significantly impacts drug research, healthcare, and big data processing (KAVITHA; 

KAULGUD, 2022). 

Machine learning and QC are both likely to play a role in how society deals with 

information in the future, so it is logical to wonder how they could be merged (KAVITHA; 

KAULGUD, 2022; SIERRA-SOSA; TELAHUN; ELMAGHRABY, 2020), mainly because 

QC's prospects are increasing faster in hardware performance. For example, it is possible to 

evaluate several states simultaneously because quantum computations are based on the idea that 

subatomic particles can exist simultaneously in several states. It may lead to significant 

speedups (KHAN; ROBLES-KELLY, 2020) conferring, then, a possibility to improve the 

classic ML (BIAMONTE et al., 2017), since for many scenarios, as the amount of data grows, 

aligned with the complexity of the information, the training process becomes slower (ZHAO et 

al., 2020). It is one of the many applications that could profit from quantum devices 

(PERDOMO-ORTIZ et al., 2018). In this context, some machine learning models with quantum 

properties have appeared recently in the field of tools for the classification process 

(BIAMONTE et al., 2017; CORREA‐JULLIAN et al., 2022; GARCÍA; CRUZ-BENITO; 

GARCÍA-PEÑALVO, 2022; SILVA; DROGUETT, 2022). It is one of the many applications 

that could profit from quantum devices (PERDOMO-ORTIZ et al., 2018). 

 ML applications incorporating quantum techniques are known as Quantum Machine 

Learning (QML). QML models are based on QC techniques to develop new algorithms and 

improve existing ones (GARCÍA; CRUZ-BENITO; GARCÍA-PEÑALVO, 2022; SILVA; 

DROGUETT, 2022). Indeed, QC and ML are the two key areas that play a crucial role in 

engineering science as technology is developing quickly (ARAÚJO et al., 2022b, 2022c).  

This study will explore QML models to diagnose failure modes of different components 

and equipment with two bearing dataset available in the literature (CWRU, 2020; JNU, 2019) 

that are amenable to use in the O&G industry. Although QC is promising, there are still 

limitations. For example, the number of quantum units, i.e., qubits is still limited in simulators 

and quantum machines. Note that a qubit is the smallest unit of information in a quantum 

computer and can be either 0 or 1 or a superposition of these two (WANG; LIU, 2022). 

The ability to be in superposition is one of the qualities that distinguish a qubit from a 

conventional bit. One way to conceptualize a quantum state in superposition is as a linear 

combination of other unique quantum states. The core idea is that a search algorithm can tunnel 

through energetic barriers to escape local minima because quantum superposition and tunneling 
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enable direct transitions between states even when there is a high energy barrier between them 

(YARKONI et al., 2021). 

Therefore, this work aims, above all, to investigate the applicability of these techniques 

in the evaluation of vibration signals and compare them with classical ML models. The 

approaches will be tested on rotating machine components subjected to vibration as a stressor, 

common in O&G industry systems (KHALAF; SEIBI, 2011; ORRÙ et al., 2020). These 

machines are an essential industrial component of contemporary. For instance, motors have 

provided more than 50% of the mechanical energy supply for industrial applications in the 

United States (SONG; WANG; CHEN, 2018). The performance and operational efficiency of 

rotating machines are significantly impacted by bearings, which account for about 40% of 

electrical motor failure incidents machinery (SONG; WANG; CHEN, 2018). Vibrational 

analysis has become the industry standard for assessing the condition of roller bearings and 

other rotating machinery (ZHAO et al., 2019). Equipment and components can be better 

shielded from breaking if bearing issues can be recognized quickly and precisely (SONG; 

WANG; CHEN, 2018; ZHAO et al., 2020).  

Moreover, besides rotation gates, we apply entanglement gates (CNOT, CZ, and 

iSWAP) and more layers in the Parameterized Quantum Circuit (PQC) to observe the effect of 

such model variations. Entanglement is the phenomenon where two particles can be connected 

independent of the distance (KAVITHA; KAULGUD, 2022). The hypothesis is that the time 

and computing power needed will be reduced since one qubit can provide information about 

the other unit to which it is related (KHAN; ROBLES-KELLY, 2020). 

Note that the current investigation employs a quantum simulator sourced from the 

TensorFlow Quantum library to execute the QML models. Consequently, there are no direct 

assessments made on quantum hardware. Also, the potential influence of quantum noise is not 

factored into the analysis. 

In addition, our study will be applied to two complex databases available in the literature 

that have not yet been explored in the context of QML. Those are bearing datasets: (1) Case 

Western Reserve University (CWRU, 2020) and (2) Jiangnan University (JNU, 2019). The 

results obtained from the application of these models aim to indicate the QML’s usability and 

importance in supporting decision-making related to maintenance. 

 

1.2 RATIONALE AND CONTRIBUTION 
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Companies have been investing in Research and Development (R&D) as it represents a 

key factor for economic and competitive growth (ARAÚJO et al., 2021). Mavrotas and 

Makryvelios (2021) add that high-impact projects in this area are urgent and crucial for various 

organizations. The creation of new technologies or equipment poses many technical obstacles, 

including enhancements to existing operational methods and equipment and disruptive 

developments. The reliability and qualification of the equipment are crucial considerations in 

both circumstances during the design process. The development process should be based on 

reliability, PHM and allow for uncertainty (MAIOR et al., 2022; SHAFIEE; ELUSAKIN; 

ENJEMA, 2020; SHARMA; CHANDA, 2017). Throughout the development of the 

technology, studies have evaluated its reliability (JAVED; GOURIVEAU; ZERHOUNI, 2017; 

MAIOR et al., 2022; YE et al., 2017). Maior et al. (2022) indicate that estimating reliability is 

critical for ensuring predictability in equipment and technologies installed in oil wells. 

PHM systems are decisive to minimizing downtime and maintenance expenses and 

ensuring the safe and proper operation of real-world designed systems (ROYCHOUDHURY 

et al., 2013). The PHM community has utilized deep learning for almost ten years to handle 

issues like the identification of rotating machinery’s health states, the prediction of remaining 

useful life, or Bayesian analysis within complex and networked systems (ORRÙ et al., 2020; 

ROYCHOUDHURY et al., 2013; SAIMURUGAN et al., 2011; SONG; WANG; CHEN, 2018; 

ZHAO et al., 2020). 

Nevertheless, the quantum supremacy experiment and the first computers becoming 

accessible to the general public through cloud services have sparked interest in the field of 

quantum computing over the past three years in the general media and research community 

(HARROW; MONTANARO, 2017). This interest stems from the desire to find ways to 

optimize and accelerate current algorithms, modify them, or create new ones that take 

advantage of quantum mechanics (GARCÍA; CRUZ-BENITO; GARCÍA-PEÑALVO, 2022; 

RIEFFEL; POLAK, 2011; SILVA; DROGUETT, 2022). 

Thus, this dissertation is justified because, to the best of our understanding, this is the 

first work to present the application of a QML model which classifies more than three health 

states of equipment component that can be used in the context of O&G industry. Moreover, 

besides rotation gates, we apply entanglement gates (CNOT, CZ and iSWAP) which correlates 

two quantum particles. Also, we aggregate more circuit gates architectures layers in the 

Parameterized Quantum Circuit (PQC) to observe the effect of such quantum properties. The 

results obtained from the application of these models aim to indicate their usability and 

importance in supporting decision-making related to maintenance. 
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 Finally, this research is justified and states its relevance in three aspects: (1) social, (2) 

environmental, and (3) economic. In the social aspect, equipment health management provides 

society with safer and more reliable services. Moreover, one can consider the reduction of 

occupational accidents. The support of automated PHM systems helps operators who are 

directly involved in the operation since it reduces work pressure. Nevertheless, we point out 

that such techniques support but by no means replace the human element of the process. At the 

environmental level, the early diagnosis of failure modes for technologies can prevent leaks 

and minimize the emission of greenhouse gases. In the economic sense this thesis can help 

companies to reduce costs in several aspects. For example, the cost of accidents involving 

people, systems, and the environment. Furthermore, more efficient maintenance policies 

contribute to the reduction of expenses when performing preventive stops. It also promotes the 

preparation of the team and the necessary materials according to the plans. 

 

1.3 OBJECTIVES 

 

1.3.1 General Objective 

 

The general objective of this study is to investigate and adapt QML models to perform 

the PHM, through fault mode diagnosis, of equipment suitable for application in the O&G. 

 

1.3.2 Specific objectives 

 

Given the general objective of this research, some specific objectives are defined: 

• To investigate QML models with different structures of PQCs; 

• To investigate works that address quantum machine learning models applied to the 

context of O&G; 

• To diagnose failure modes of different equipment through quantum machine 

learning models; 

• To test various PQCs with rotation and two-qubit gates combined with different 

amounts of layers; 

• To perform a comparison between the models in terms of accuracy to test the 

technical feasibility of the models, i.e. to carry out proof of concept of this 

methodology. 
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1.4 DISSERTATION STRUCTURE 

 

Besides the introduction section, the remainder of this work is structured as follows: 

• Chapter 2 presents the theoretical framework that discusses PHM, Vibration Signals, 

Quantum Computing, and QML. Nevertheless, a literature review outlines what 

already exists in publications, as well as current gaps; 

• Chapter 3 presents the methodological aspects of the study. Thus, a framework is 

outlined for the QML model. Furthermore, the databases used for the analyses are 

detailed; 

• Chapter 4 presents the results concerning the QML models; 

• Chapter 5 presents the conclusive aspects, the work’s contributions, and suggestions 

for future research. 
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2 THEORETICAL BACKGROUND AND PRELIMINARY LITERATURE REVIEW 

 

This section is divided into two main parts. The first is the theoretical background 

supporting the research. The second part is related to the literature review to identify the studies 

developed regarding the theme and the associated potential for innovation. 

 

2.1 BEARINGS AND VIBRATION SIGNALS 

 

Rolling bearings are essential parts of rotating machines, and investigation into their 

fault diagnosis is extensive (MAIOR; MOURA; LINS, 2019). Such studies are important since 

the failures result in equipment damage, production losses, and staff injuries (ZHANG et al., 

2021). The outer race, inner race, ball, and cage are often the primary components taken into 

account in the study of localized faults in rolling bearings (ISLAM; KIM, 2019). 

Signals for monitoring information (data) can be generically categorized into vibration 

and auditory, temperature, and wear debris analysis categories. To simultaneously save 

maintenance costs and downtime, a technique called vibration analysis is utilized to monitor 

machine operating conditions and to diagnose deteriorations (MAIOR et al., 2022; ORHAN; 

AKTÜRK; ÇELIK, 2006). 

Vibration signals have a distinct pattern in a fault state than in a healthy state, allowing 

failure diagnosis. In fact, the acceleration signals exhibit a variety of broadband impulse 

responses due to localized failures in the rolling bearing components. As seen in Figure 3, the 

outer and inner races, as well as the ball, each have their own rotational frequency and wave 

behavior, resulting in a composed and complicated signal. 

 

Figure 3 - Local rolling element bearing failure signals. 

 

Source: Maior; Moura; Lins (2019, p. 611). 
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2.2 QUANTUM COMPUTING  

 

Part of the content of this chapter was published and presented at the The Probabilistic 

Safety Assessment & Management (PSAM) conference (ARAÚJO et al., 2022b). 

If the ability to simulate classical computers were the only feature of quantum 

computers, there would be little point in going to all the trouble of exploiting quantum effects. 

The advantage of quantum computing is that much more powerful functions may be computed 

using qubits and quantum gates. 

The performance mechanisms in resolving important industrial problems are 

highlighted by the distinctions between classical computing and QC. The QC mechanics use 

fundamental quantum properties like superposition, entanglement, and the measurement 

paradox to find the best answers to challenging issues (OSABA et al., 2021; PRAKASH, 2021). 

The smallest unit of information in a Quantum Computer is the qubit. The qubit can be 

either 0 or 1 or a superposition of these two. In quantum physics, Dirac’s notation, namely 

bra/ket, is used to represent a quantum state and their transformation. The ket is represented by 

|𝜓⟩ and it has a dual called bra ⟨𝜓| (RIEFFEL; POLAK, 2011). Eq. (1) provides the qubit state 

representation (CHIANG et al., 2014; PRAKASH, 2021). 

 

|𝜓⟩ = 𝛼|0⟩ + 𝛽|1⟩ (1) 

 

Where α and β are complex numbers that represent amplitudes, and they satisfy the 

relation |𝛼|2 + |𝛽|2 = 1; thus, |𝛼|2 and |𝛽|2 are the probabilities of a qubit collapsing to states 

“0” or “1”, respectively, after a measurement. Eq. (1) can be rewritten as Eq. (2), in which the 

parameters θ, ϕ, and γ are real numbers. (GARCÍA; CRUZ-BENITO; GARCÍA-PEÑALVO, 

2022; PRAKASH, 2021; YARKONI et al., 2021). 

 

|𝜓⟩ = 𝑒𝑖𝛾 (cos
𝜃
2 |0⟩ + 𝑒𝑖𝜙 sin

𝜃 
2 |1⟩) (2) 

 

The Bloch Sphere (Figure 4) is a geometric representation of the pure state space of a 

two-level quantum mechanical system. It is used in quantum mechanics and computation 

(SCHERER, 2019). In Figure 4, the angles θ and ϕ correspond to spherical coordinates that 

represent a point describing a single qubit state (PRAKASH, 2021). The |𝝍⟩ can be defined as 

a Hilbert Space vector coming from the origin to the sphere's surface. This vector has a ℝ𝟑 
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dimension with the following configuration: [sin(θ)cos(ϕ), sin(θ)sin(ϕ), cos(ϕ)] 

(SCHULD; PETRUCCIONE, 2018). 

 

Figure 4 - Bloch Sphere which represents the qubit. 

 

Source: Prakash (2021, p. 268). 

 

Also, the Bloch sphere provides a visual representation of quantum states operations. 

Rotations on the sphere represent unitary transformations, while projections onto one of the 

poles depict measurements. The Bloch sphere's utility lies in its ability to show the impact of 

quantum gates, which form the foundation of quantum circuits. This makes it a valuable tool 

for creating and examining quantum algorithms and error correction techniques (SCHERER, 

2019; SCHÖNBERGER, 2022). Finally, The Bloch sphere visually represents entangled states 

between two quantum systems. When two systems are entangled, their combined state cannot 

be described by a single point on the sphere but by a region of it (SIM; JOHNSON; ASPURU-

GUZIK, 2019). 

In Figure 5, we can see a representation of a quantum circuit. The circuit is a QC 

paradigm that is comparable to classical circuits, in which a computation is made up of a series 

of quantum gates, measurements, and qubit initializations to known values. The circuit is read 

from left to right. Following the horizontal lines Figure 5, |0⟩ represent the input qubits in state 

“0”. Next are logic gates, such as single-qubit blocks Hadamard (H), X and Z gates, and two-

qubit gates as CNOT. In summary, the measurement operation at the end of the line translates 

the quantum result into a classical one (NIELSEN; CHUANG, 2010). 
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Figure 5 - A Quantum Circuit example. 

 

Source: Adapted from Nielsen and Chuang (2010). 

 

The quantum operations are done according to a series of foundational operations called 

quantum logic gates. They are the building blocks behind all quantum algorithms (HARROW; 

MONTANARO, 2017; MONTANARO, 2016). The following sections present some of these 

gates, namely, superposition, controlled, and rotation gates. 

 

2.2.1 The Hadamard Gate 

 

A qubit can be forced into a superposition state using the Hadamard gate (Eq. 3). When 

applied over |Ψ0⟩ = |0⟩, its output is a qubit with an equal chance of going from a |0⟩ or |1⟩ 

state following a measurement (SHAREEF et al., 2014; SILVA; DROGUETT, 2022). 

 

𝐻 =
1

√2
[
1 1
1 −1

] (3) 

 

2.2.2 Controlled Gates 

 

Entanglement is another important quantum mechanics property that is leveraged in 

quantum computing for constructing dependencies between qubits (CORREA‐JULLIAN et al., 

2022). Among the entanglement gates, we can cite CNOT, CZ, and iSWAP as examples 

(RASMUSSEN; ZINNER, 2022). 

Two inputs and two outputs make up the CNOT gate. If both qubits are in their absolute 

basal states, which are either |0⟩ or |1⟩, then the first qubit serves as the control qubit and the 

second acts as the controlled qubit. If the first qubit is |0⟩, then the CNOT gate does not affect 

the system; if it is |1⟩, the second qubit is inverted to the opposite state. That is if the second 
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qubit was |0⟩ it becomes |1⟩; if it was |1⟩, it becomes |0⟩ (CORREA‐JULLIAN et al., 2022; 

SILVA; DROGUETT, 2022).  

Target and controlled gates make up the CZ gate. If the controlled gate is 1, a Z gate 

was applied to the qubit on the target gate. A symmetric gate, the iSWAP switches two-qubit 

states and phases the amplitudes of |01⟩ and |10⟩ by i (NIELSEN; CHUANG, 2010; 

RASMUSSEN; ZINNER, 2022). Note that the kets cited above consist on the representation of 

two-qubits states. the Eqs. (4)-(6) present the matrices corresponding to these gates. 

𝐶𝑁𝑂𝑇 = [

1 0 0
0 1 0
0
0

0
0

0
1

    

0
0
1
0

] (4) 

𝐶𝑍 = [

1 0 0
0 1 0
0
0

0
0

1
0

    

0
0
0

−1

] (5) 

𝑖𝑆𝑊𝐴𝑃 = [

1 0 0
0 0 𝑖
0
0

𝑖
0

0
0

    

0
0
0
1

] (6) 

 

2.2.3 Rotation Gates 

 

Since the Hadamard and CNOT gates work directly on qubits without requiring the 

definition of external parameters, they can be categorized as non-parametric gates. Rotation 

gates, on the other hand, can have their impact on a qubit fine-tuned externally, making them 

single qubit parametric gates (CHIANG et al., 2014; CORREA‐JULLIAN et al., 2022; SILVA; 

DROGUETT, 2022). 

The effect of the rotational gate operation can be simply understood thanks to the Bloch 

Sphere depiction. Each operation rotates the qubit by a specific number of radians determined 

by the external parameter, i.e., the parameterized rotation angle. This rotation is around the 

main axis. Eq. (7)-(9) provide the matrices for these gates (CHIANG et al., 2014; CORREA‐

JULLIAN et al., 2022; SILVA; DROGUETT, 2022). 

 

𝑅𝑥(ξ) = [
𝑐𝑜𝑠

ξ

2
−𝑖 𝑠𝑖𝑛

ξ

2

−𝑖 𝑠𝑖𝑛
ξ

2
𝑐𝑜𝑠

ξ

2

] 

(7) 
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𝑅𝑦(ξ) = [
𝑐𝑜𝑠

ξ

2
−𝑠𝑖𝑛

ξ

2

𝑠𝑖𝑛
ξ

2
𝑐𝑜𝑠

ξ

2

] 

(8) 

𝑅𝑧(ξ) = [𝑒−𝑖
ξ
2 0

0 𝑒𝑖
ξ
2

] 
(9) 

 

2.3 LITERATURE REVIEW  

 

2.3.1 Quantum Machine Learning applied to PHM in the O&G Industry 

 

QC is frequently referred to as an interdisciplinary research frontier involving 

disciplines as diverse as computer science, physics, chemistry, and engineering. The excitement 

relies on the hypothesis that quantum information will eventually result in a new wave of 

technological advancements in information, computation, and communication (WANG; LIU, 

2022). 

QML is a new field of study that emerged by exploiting quantum systems to process 

classical data using ML techniques. Indeed, the field of computer science may undergo a radical 

change as a result of QML. Information processing could be accelerated far beyond current 

classical speeds. (KHAN; ROBLES-KELLY, 2020). 

Despite novelty in the context of Reliability Engineering, QML has a growing interest 

in the academia, expanding its application in recent years. Figure 6, extracted from WoS, 

provides the number of articles using “Quantum Machine Learning” as a keyword. The first 

publication appeared in 2014 and, since then, this number has been increasing significantly. 

The year 2022 has the peak of publications, with 130 in total. The search was conducted until 

October 2022. 
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Figure 6 – “Quantum Machine Learning” publications in Web of Science. 

 

Source: The Author (2023). 

 

The research community has shown interest in two strategies. The first, PQC, a quantum 

circuit made up of parametric gates is considered a trainable model, with the parameters being 

updated to minimize a specified objective function. PQC enables researchers to draw obvious 

similarities and parallels with classic neural networks The second strategy is related to quantum 

kernel techniques.  They can be employed for prediction and tasks like clustering or 

dimensionality reduction (CORREA‐JULLIAN et al., 2022; SILVA; DROGUETT, 2022). 

Although these combined algorithms have theoretically demonstrated performance 

gains, their scalability is still in question because current Quantum Processing Units (QPUs) 

are unable to dependably execute the operations necessary to evaluate these methods on actual 

data. To examine the effects of incorporating quantum circuits as building blocks into new 

frameworks, a different strategy is to employ small, parameterized quantum circuits that can be 

easily operated on real hardware or even simulated in classical computers. In a sense, this 

method of tackling this new subject is comparable to what happened with DL models in the 

wake of ML models’ natural progression toward greater scalability around 2010 (GARCÍA; 

CRUZ-BENITO; GARCÍA-PEÑALVO, 2022; MONTANARO, 2016; SILVA; DROGUETT, 

2022). 

In a literature review, when searching by keywords in WoS, the combinations “Quantum 

Machine Learning” and “PHM” or “Fault Detection” only returned one article. In this case, the 

authors applied quantum kernel methods to wind turbine fault detection (CORREA‐JULLIAN 

et al., 2022). Extending the search to Google Scholar, one more article is found exploring 

rotating machines (SILVA; DROGUETT, 2022). In QML models, the quantum part aims to 

provide trial states for the algorithm. The PQC, or ansatz circuit, generates these states 
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according to a set of control parameters that are managed by the classical part of the algorithm 

(RASMUSSEN; ZINNER, 2022). 

PQC has been applied in the PHM context to categorize health states in rotating 

machinery with performance comparable to conventional ML methods (SILVA; DROGUETT, 

2022). Nevertheless, in this case, only rotation gates were used. 

It is necessary to observe the effect of operations such as superposition and 

entanglement to emphasize the quantum contribution of the model. Faced with the different 

ways of schematizing PQCs, there are algorithms that combine the two types of ports mentioned 

here (single-qubit and two-qubit), such as the Variational Quantum Eigensolver (VQE), that 

can combine the single-qubit and two-qubit, as well as the parameterized and non-

parameterized gates (RASMUSSEN; ZINNER, 2022; TILLY et al., 2022). For example, 

Rasmussen and Zinner (RASMUSSEN; ZINNER, 2022) used VQE with both single (rotation 

gates) and two-qubit (CNOT, CZ, and iSWAP) gates with angles to be parameterized during 

training. Meanwhile, Sim et al. (SIM; JOHNSON; ASPURU-GUZIK, 2019) performed several 

combinations with different rotation gates, in x, y, and z, and entanglement gates (CNOT and 

CZ), forming 19 different circuit types for testing. Schuld and Petruccione (SCHULD; 

PETRUCCIONE, 2018) also add other circuit schematization possibilities, such as those based 

on the Quantum Approximate Optimization Algorithm (QAOA) architecture. 
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3 METHODOLOGY 

 

This research is characterized by being of an applied nature due to its practical interest, 

that is, the results should be applied or used in solving problems that occur in reality 

(MARCONI; LAKATOS, 2002). Regarding its objectives, the research can be classified as 

exploratory. In this case, the procedures to be adopted are for investigations in which the object 

of research presents a lack of knowledge, i.e., in our focus, it is not widely explored in the 

literature (GIL, 2002; SCHOLTEN; BLOK; HAAR, 2015). This research has a Quantitative 

Approach because it considers that opinions and information can be translated into numbers 

and analyzed statistically (HABES et al., 2018). Finally, to address the objectives of this work 

concerning data, the Problem Modeling method will be adopted. It comprises the use of 

mathematical techniques to describe the operation of a system (GIL, 2002). Figure 7 contains 

the classification of the present study, according to approach, objectives, technical procedures, 

and nature. 

 

Figure 7 – Research methodology classification 

 

Source: The Author (2023) 

 

3.1 DATASETS 

 

3.1.1 CWRU dataset 

The Bearing Data Center dataset from Case Western Reserve University (CWRU, 2020) 

is used in this study to assess the proposed methodology. This set includes signals from 

mechanical vibration series obtained from an induction electric motor with engine load starting 

from 0 to 3 HP. Data were obtained from two accelerometers mounted on top of the motor and 
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connected by magnetic bases, one of which was collected at the Drive End (DE), and the other 

was collected nearby the bearing Fan End (FE). The collections of the two accelerometers are 

precisely coordinated. 

These faults, which can occur in the rearing Rolling Element (RE), the Inner Raceway 

(IR), and the Outer Raceway (OR), are intentionally introduced by an electro-discharge 

machine (EDM), additionally it having various fault widths and engine rotation rates (CWRU, 

2020). Table 2 shows the different failure modes, the diameters used and the proportion of each 

class in the data set used. The vibration data are collected at a rate of 12k samples per second 

from accelerometers connected to the equipment at two points, at the upper and lower turbine 

of the device. 

 

Table 2 – Description of failure modes of the CWRU. 

Label Mode Description Proportion (%) 

0 Health State: the normal bearing 18.24 

1 Inner ring 1: 0.007 inch 9.04 

2 Inner ring 2: 0.014 inch 9.12 

3 Inner ring 3: 0.021 inch 9.12 

4 Rolling Element 1: 0.007 inch 9.04 

5 Rolling Element 2: 0.014 inch 9.04 

6 Rolling Element 3: 0.021 inch 9.04 

7 Outer ring 1: 0.007 inch 9.12 

8 Outer ring 2: 0.014 inch 9.12 

9 Outer ring 3: 0.021 inch 9.12 

Source: Adapted from Lucas et al. (2022, p. 02). 

 

3.1.2 JNU dataset 

 

Jiangnan University’s (JNU) (JNU, 2019; LI et al., 2013) bearing datasets are also freely 

available and are made up of three vibration datasets with three different rotating speeds (600, 

800, and 1000 rpm), all of which were gathered at 50 kHz. One health condition and three 

failure modes are displayed in the JNU datasets (IR, OR, and RE). All states were measured at 

the same locations as the CWRU base. As a result, the total working conditions classes are 

twelve, as shown in Table 3 with the respective proportions for each state. 
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Table 3 – Description of failure modes of the JNU dataset. 

Label Mode Description Proportion (%) 

0 Inner ring 1: 600 rpm 5.55 

1 Health State 1: 600 rpm 16.68 

2 Outer ring 1: 600 rpm 5.55 

3 Rolling Element 1: 600 rpm 5.55 

4 Inner ring 2: 800 rpm 5.55 

5 Health State 2: 800 rpm 16.68 

6 Outer ring 2: 800 rpm 5.55 

7 Rolling Element 2: 800 rpm 5.55 

8 Inner ring 3: 1000 rpm 5.55 

9 Health State 3: 800 rpm 16.68 

10 Outer ring 3: 1000 rpm 5.55 

11 Rolling Element 3: 1000 rpm 5.55 

Source: Adapted from Lucas et al. (2022, p. 03). 

 

3.2 VIBRATION SIGNAL PREPROCESSING 

 

In this study the input data were used in two ways: (1) time domain; and (2) frequency 

domain (the Fast Fourier Transform — FFT is used). The time domain input uses the vibration 

signals without a preprocessing. We use the same data length adopted by Zhao et al. (2020): 

1024 points. Indeed, the total number of samples (L) is obtained according to the Eq. (10). 

Where C is each signal length and floor refers to rounding towards minus infinity. 

 

L = floor (
C

1024
) 

(10) 

 

In the frequency domain input, we apply the FFT in each sample from the time domain, 

according to Eq. (11). The 𝑦[𝑘] is the FFT of the signal in a sequence-L. 

 

𝑦[𝑘] =  ∑ 𝑒−2𝜋𝑗
𝑘𝑙
𝐿 𝑠[𝑙]

𝐿−1

𝑙=0

 
(11) 

 

After defining the input type, we use the Maximum–Minimum normalization to 

facilitate the ML or QML convergence. This normalization is calculated according to Eq. (12). 

Where 𝑠𝑖 is the input signal, also, the minimun and maximum values of 𝑠𝑖 are, 

respectively, 𝑠𝑖
𝑚𝑖𝑛 and  𝑠𝑖

𝑚𝑎𝑥. 
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𝑠𝑖
𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒−1 =

𝑠𝑖 − 𝑠𝑖
𝑚𝑖𝑛

𝑠𝑖
𝑚𝑎𝑥 − 𝑠𝑖

𝑚𝑖𝑛
,               𝑖 = 1, 2, … , 𝐿 

(12) 

 

3.3 QUANTUM MACHINE LEARNING METHODOLOGY 

 

The step-by-step framework application of QML models is presented in Figure 8. This 

is a framework based on different studies that use the PQC logic in QML models (KAVITHA; 

KAULGUD, 2022; SIERRA-SOSA; TELAHUN; ELMAGHRABY, 2020; SILVA; 

DROGUETT, 2022). However, in our case, several modifications were analyzed regarding the 

neural network used, PQC settings, and health status diagnosis. In fact, here we considered a 

more complex problem for which more than ten different labels are possible for the machinery 

diagnosis. Moreover, while in other studies only rotation gates were used (KONAR et al., 2017; 

SILVA; DROGUETT, 2022), we aggregate two-qubit gates to observe quantum effects arising 

from entanglement. Of which we tested CNOT, CZ, and iSWAP. In terms of application, the 

Python® programming language was used along with the TensorFlow Quantum library 

(SIERRA-SOSA; TELAHUN; ELMAGHRABY, 2020). 

 

Figure 8 – Hybrid Quantum Machine Learning scheme to perform PHM tasks. 

 

Source: The Author (2023). 
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Each stage is described below: 

• Prepare Quantum Dataset: consists of pre-processing the classical data. For example, 

normalization, and feature extraction can be performed. 𝑋1̂, 𝑋2̂, … , 𝑋𝑛̂  are vectors or 

multidimensional matrices, with a certain number of features monitored. Then, the data is 

encoded into qubits. A circuit is generated which takes as input 𝑁 qubits defined in a |0⟩ 

state and an 𝑁-dimensional real-valued vector, whose values lie in a range (e.g., [0,1]). 

Encoding schemas are a hot active debated topic that straddles the line between quantum 

hardware and software (CORREA‐JULLIAN et al., 2022). Various methods could be 

utilized, such as amplitude encoding and angle encoding. We employed angle encoding. The 

data processing capabilities of quantum neural networks can directly benefit from this 

encoding method. This encoding’s key advantage is that it is extremely effective in terms of 

operations because, regardless of the many data values to be encoded, just a fixed number of 

parallel processes are required (SIERRA-SOSA; TELAHUN; ELMAGHRABY, 2020). Eq. 

(13) summarizes the angle enconding method, where ⨂ represents the tensor product 

between the vector spaces S: 

 

𝑥⃗ → |𝜓⟩ = 𝑆(𝑥0)⨂𝑆(𝑥1)⨂ ⋯ ⨂𝑆(𝑥𝑁−1) (13) 

 

In Eq. (13), S represents the following operation performed for each element of the classical 

vector: 

 

𝑆(𝑥𝑖) = 𝑐𝑜𝑠 (
𝜋

2
𝑥𝑖) |0⟩ + 𝑠𝑖𝑛 (

𝜋

2
𝑥𝑖) |1⟩ (14) 

 

• Evaluate quantum model: after encoding the data, PQC is created. PQC consists of one or 

several logic gates where the parameters of the gates (e.g., an angle 𝜃 of a rotation 𝑌) are 

free parameters to be adjusted/optimized depending on the error propagated from outside 

to inside the circuit. In this study, we tested different PQC schemes. The first one consists 

only of rotation gates over 𝑦, 𝑥, and 𝑧, for each qubit (𝑞𝑖), as shown in Figure 9. Note that 

a, b, and c are the angles of each gate to be parameterized. 
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Figure 9 – PQC defined by y, x and z rotation gates. 

 

Source: The Author (2023). 

In addition, we considered the circuit configuration used in the VQE quantum algorithm 

based on the study by Rasmussen and Zinner (2022). First, a Euler rotation is performed 

on each qubit, i.e., a combination of rotations in y, z and y, followed by a nearest-neighbor 

qubit coupling using the given entangling gate. Here, we apply the two-qubit gates CNOT, 

CZ, and iSWAP as shown in Figure 10. PQCs were built with different numbers of layers, 

namely, 1, 5, and 10. The maximum number of layers was 10 due to computational 

limitations. Above that, the processing of the models became too heavy for the simulator. 

 

Figure 10 – PQC defined VQE with generic two-qubit gates visualization that in this study can be CNOT, CZ, or 

iSWAP. 

 

Source: The Author (2023). 

 

• Sample or Average: measurements are performed, returning the processed quantum data to 

classical data. For this work, a measurement operation was defined through the Pauli Z-gate 

(Eq. (15)) in each of the qubits. Pauli measurements are a generalization of computational 

basis measurements that cover measurements in other bases and of equality between several 

qubits. A measurement in the Pauli Z basis projects the state onto one of the eigenstates |0⟩ or 

|1⟩ of this matrix (NIELSEN; CHUANG, 2010): 

 

𝑍 = [
1 0
0 −1

] (15) 
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• Evaluate classical model: it collects the built features that are fed to the neural network. 

The error is calculated, as well as backpropagation of the error is performed through the 

gradients. The latter flow through the classical neural network weights and through PQC. 

At this stage, the diagnosis will be performed. 

 

3.4 FEATURE EXTRACTION 

 

Standard vibration-based metrics like mean, variance, root mean square (RMS), 

kurtosis, as well as higher order statistics, are frequently employed for machinery diagnostics 

(KIM et al., 2021; LYBECK; MARBLE; MORTON, 2007; MAIOR; MOURA; LINS, 2019; 

YE; YU, 2021). In this study, we will use eight different features. At first, five of them will be 

considered (mean, variance, RMS, peak-to-peak and maximum amplitude), as used in Silva and 

Droguett’s (2022) study. Then, three more metrics will be added to observe if the results are 

improved or not, which are the Crest Factor, Kurtosis and Skewness. Since each feature 

corresponds to one qubit, our model then expanded from 5 to 8 qubits. Consequently, the circuit 

will have more replicas of the pre-defined logic gates that perform operations on these new 

quantum bits. Below these features will be defined: 

• Variance and mean: the statistical dispersion of a signal is measured by variance 

(PERUCHI et al., 2020). The impacts in a spalled bearing should increase the signal’s 

variability. The variance for a time series 𝑠𝑖 with length L is: 

 

𝜎2 =
1

𝐿
∑(𝑠𝑖 − 𝑠̅)2

𝐿

𝑖=1

 (16) 

 

Where the population mean is: 

  

𝑠̅ =
1

𝐿
∑ 𝑠𝑖

𝐿

𝑖=1

 (17) 
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• RMS: it is the square root of the mean square, i.e., the arithmetic mean of the squares 

of the data. Also, it represents the residual signal energy, as shown in Eq. (18) (KIM et 

al., 2021; LYBECK; MARBLE; MORTON, 2007): 

 

𝑅𝑀𝑆 = √
1

𝑁
∑ 𝑥𝑖

2

𝑁

𝑖=1

 (18) 

 

• Skewness: it describes a distortion or asymmetry in a set of data that departs from 

normal distribution. The curve is said to be skewed if it is displaced to the left or 

right.(ROSER et al., 2020). It can be calculated as follows in Eq. (19) (NAYANA; 

GEETHANJALI, 2017): 

𝑆𝐾𝑊 =

1
𝐿

∑ |𝑠𝑖 −  𝑠̅|3𝐿
𝑖=1

(√1
𝐿

∑ |𝑠𝑖 −  𝑠̅|2𝐿
𝑖=1 )

3 
(19) 

• Kurtosis: is frequently used as an indicator for quantifying vibration signal impulses 

(ANTONI; BORGHESANI, 2019). Kurtosis is a metric that can detect impulsive 

features in vibration signals and is directly related to vibration signal fault features 

(HEMMATI; ORFALI; GADALA, 2016; LI et al., 2018). Kurtosis is defined as follows 

in Eq. (20): 

 

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =
(𝐿 − 1) ∑ (𝑠(𝑡) − 𝑠̅)4𝐿

𝑡−1

(∑ (𝑠(𝑠(𝑡) − 𝑠̅) − 𝑠̅)2𝐿
𝑡−1 )2

 (20) 

 

• Peak-to-peak: is the difference between a waveform’s maximum positive and maximum 

negative amplitudes (LYBECK; MARBLE; MORTON, 2007), and it is calculated 

according to Eq. (21): 

 

𝑃𝑃 =  𝑠𝑚𝑎𝑥 − 𝑠𝑚𝑖𝑛 (21) 
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• Maximum Amplitude: is the maximum displacement or distance moved by a point on a 

vibrating body or wave measured from its equilibrium position (ZHANG; YANG, 

2022). The notation for this feature is: 

𝑀𝑎𝑥𝐴𝑚𝑝 =  𝑠𝑚𝑎𝑥 (22) 

 

• Crest Factor: is the ratio of the peak vibration level to the RMS and is frequently used 

to detect changes in signal patterns caused by impulse vibration sources that are not 

normally captured by RMS analysis alone. Under normal circumstances, its value 

ranges between 2 and 6. It is determined as follows: 

 

𝐶𝑟𝑒𝑠𝑡 𝐹𝑎𝑐𝑡𝑜𝑟 =
𝑃𝑒𝑎𝑘 𝐿𝑒𝑣𝑒𝑙

𝑅𝑀𝑆
 (23) 
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4 RESULTS 

 

4.1 CWRU RESULTS 

 

In the first data configuration developed for this study, five features were extracted from 

the time domain signal: (i) mean, (ii) variance, (iii) maximum amplitude, (iv) peak-to-peak, and 

(v) RMS.  The second structure used the features from (i)-(v) and added the following: (vi) crest 

factor, (vii) kurtosis and (viii) skewness. The vibration signals were divided into segments of 

length equal to 1,024 points. The extension of the database resulted in 1,305 samples with the 

number of columns corresponding to the number of features. 

The data was divided into 70% of its amount for training, while 30% was targeted for 

testing. Then, angle encoding was performed as described in the section 3.1. The output of this 

step are objects generated for reading and operation in the quantum circuits. These objects have 

a bijective relationship with the data points. That is, a data point has exactly one circuit 

representation. Figure 11 shows an example of a database vector with its respective encoding 

results. 

 

Figure 11 - Vector with angle encoding. 

 

Source: The Author (2023). 

 

In the end, the traditional neural network recieves as input the classical information 

obtained from the quantum measurement step. The processing was structured with three layers: 

the first one consists of the input units that depends of the number of the model features (5 or 

8); the second has 100 neurons; and, finally, the output layer has the number of neurons 
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equivalent to the number of classes (10 and 12 to CWRU and JNU, respectively). The SoftMax 

activation function computes the scores for each class. Thus, the model provides the prediction 

of the corresponding failure mode. The cross-entropy categorical function is used to measure 

the models’ losses. The default backpropagation operation of TFQ uses the finite difference 

method to compute the gradient approximation corresponding to the free parameters (rotation 

gates angles to parameterized: a, b, and c) (SILVA; DROGUETT, 2022). Adam optimizer (LIU 

et al., 2022) was used, with a learning rate of 0.01. We ran the training for 300 epochs, with the 

patience of 30 epochs for an early stop, i.e., the training ends if there is no improvement in the 

accuracy performance for 20 consecutive epochs (SARAYGORD AFSHARI et al., 2022). The 

above configuration is summarized in Table 4. For comparison purposes, the same structure 

was considered to represent the classical model (i.e., MLP). 

 

Table 4 – Neural Network Setup. 

Neural Network Setup 

Input Layer Neurons: Nº of qubits (5 or 8) 

Hiden Layer Neurons: 100 

Ouput Layer Neurons: Nº of classes (10 or 12) 

Activation functions: Relu, SoftMax 

Loss function: Cross entropy categorical 

Optimizer: Adam 

Learning Rate: 0.01 

Epochs: 300 

Batch size: 32 

Patience (Early Stop): 30 

Source: The Author (2023). 

 

Table 5 shows the accuracy, precision, recall, and F1-score results obtained when 

running the classic ML and QML models. Initially, the lowest accuracy presented is for MLP, 

resulting in 95.40% and 91.95% for five and eight features, respectively. Among the QML 

models with five features, the best accuracy (98.08%) is presented in three scenarios: only 

rotation gates with one layer; and VQE with the CZ gate having one and five circuit layers. 

However, observing the other metrics, the CZ with five layers had a better-weighted precision 

than the others.  
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Table 5 –CWRU: ML and QML Accuracy, Precision, Recall and F1-Score Results. Performances Change on 

a color Scale from shades of green for the best tesults, to red for the worst. 

Category 
Quantum 

gates 

# of 

circuit 

layers 

Accuracy 

(%) 

 Precision 

(%) 

Recall  

(%)  

F1-Score 

 (%) 

5 

feat. 

8 

feat. 

5 

feat. 

8 

feat. 

5 

feat. 

8 

feat. 

5 

feat. 

8 

feat. 

Classic 

ML 

(MLP) 

- - 95.40 91.95 96.06 92.88 95.40 91.95 95.20 91.48 

QML  

Ry, Rx, 

Rz 

1 98.08 97.32 98.23 97.48 98.08 97.32 98.07 97.24 

5 96.93 95.02 97.38 95.34 96.93 95.02 96.84 94.88 

10 96.17 96.93 96.49 95.34 96.17 96.93 96.08 96.95 

VQE: 

Ry, Rz, 

Ry + 

CNOT 

1 96.55 94.25 96.68 94.60 96.55 94.25 96.49 94.21 

5 96.17 95.02 96.68 95.27 96.17 95.02 96.02 95.03 

10 95.79 95.79 96.21 96.04 95.79 95.79 95.73 95.62 

VQE: 

Ry, Rz, 

Ry + CZ 

1 98.08 96.93 98.21 97.23 98.08 96.93 98.02 96.90 

5 98.08 98.47 98.26 98.65 98.08 98.47 98.08 98.49 

10 96.17 96.55 96.70 96.83 96.17 96.55 96.20 96.47 

VQE: 

Ry, Rz, 

Ry + 

iSWAP 

1 96.55 96.93 96.65 96.99 96.55 96.93 96.54 96.89 

5 96.55 95.79 96.61 96.10 96.55 95.79 96.49 95.72 

10 96.17 96.93 96.65 97.30 96.17 96.93 96.13 96.92 

Source: The Author (2023). 

 

Considering the first type of QML model (Ry, Rx, Rz), the behavior of the four metrics 

has better performances on circuits with only one layer and worse ones with ten layers. Thus, 

showing a decreasing pattern as the number of layers increases. The PQC with CNOT has the 

lowest accuracy of the QML models when applied to ten circuit layers (95.79%). Increasing 

this number to 10 peaks the performance to 96.55%. As observed, this result does not improve 

when increasing the number of layers. The PQC with CZ as the two-qubit gate has its worst 

result with ten layers and the best with 5 when considering mainly the precision. Finally, the 

iSWAP has similar behavior to CZ, i.e., the worst accuracy result for ten layers. However, best 

with one and intermediate with ten. 

Still, in Table 5, we can observe the results for the model with eight features. In this 

scenario, MLP also has the worst accuracy (91.95%). The best result consists of the 

configuration of PQC with CZ and five layers (98.47%), which is approximately six percentage 

points greater than MLP. Results with eight features were better than those with five features 

in only six of the 13 configurations evaluated in this study. 

Appendix A shows all the CWRU confusion matrices (CM) and accuracy curves. In the 

CMs, for the five features QML models with only rotation gates (Figure 12a), with CNOT 

(Figure 12b), and with CZ (Figure 12c), the most severe diagnostic problems were in label 2: 
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IR with 0.014 inches. The worst classification for iSWAP (Figure 12d), with one layer, was in 

label 5 (RE2). 

 

Figure 12 - CWRU confunsion matrices for 1-layer PQCs for the following configurations: (a) Ry, Rx, Rz; (b) Ry, 

Rz, Ry + CNOT; (c) Ry, Rz, Ry + CZ; (d) Ry, Rz, Ry + iSWAP. 

Source: The Author (2023). 

 

The graphs of accuracy in Appendix A show the number of epochs for each model to 

achieve its best result, according to the stopping criterion used (patience of 30 epochs). Figure 

13 summarizes some of these graphics. For the circuits with only one layer, one observes that 

the model with only rotations (Figure 13a) needed 48 epochs to reach its peak accuracy. The 

other configurations, on the other hand, varied around 80 epochs. In this case, CNOT with 81 

(Figure 13b), CZ with 80 (Figure 13c), and iSWAP with 76 (Figure 13c). Regarding the circuit 

repetition, not necessarily more layers need more epochs, as it was not true for the four tested 

configurations.  

 

(a) Ry, Rx, Rz    (b)   Ry, Rz, Ry + CNOT 

(c)  Ry, Rz, Ry + CZ 

  

(d)  Ry, Rz, Ry + iSWAP 
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Figure 13 - CWRU accuracy curves for 1-layer PQCs for the following configurations: (a) Ry, Rx, Rz; (b) Ry, Rz, 

Ry + CNOT; (c) Ry, Rz, Ry + CZ; (d) Ry, Rz, Ry + iSWAP 

Source: The Author (2023). 

4.1.1 CWRU Results considering Time and Frequency domain 

In this section, the experiments were run with the proportions of 80% of samples as the 

training set and 20% of samples as the testing set which were randomly selected. We used both 

signals from time and from frequency domain with the same features used before. To obtain 

reliable results and show the best validation accuracy that the models can achieve, we repeat 

each experiment five times. Four indicators are used to assess the performance of models, 

including the mean and maximum values of the accuracy obtained by the last epoch and the 

mean and maximum values of the maximal accuracy. For simplicity, they can be denoted as 

Last-Mean, Last-Max, Best-Mean, and Best-Max, respectively. These metrics will be used with 

the aim to compare our results with those aquired by Zhao et al. (2020) using classical methods, 

such as, MLP, Convolutional Neural Network (CNN) and AutoEncoder (AE). 

 (a) Ry, Rx, Rz  (b)  Ry, Rz, Ry + CNOT 

 

 (c)  Ry, Rz, Ry +  CZ  (d)  Ry, Rz, Ry + iSWAP 
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It is important to highlight that we used features extracted from the data, as explained 

in the methodology and results sections (respectively, 3.4 and 4.1), due to qubits limitations 

while Zhao et al. (2020) used the complete signal. Thus, using features some information may 

be lost during the training process. Also, the networks architectures are also different to more 

information about them see Zhao et al. (2020). 

According to Table 6, most of the best results came from the configuration with data in 

the time domain with 8 features. Less so in the PQC architecture with VQE and CZ gate, where 

the best performances concern data in the frequency domain with 8 features. It is observed that 

the data tends to be better, regardless of the domain, with 8 qubits. Comparing the results with 

the classical models, it can be seen that Zhao et al. (2020) achieved 100% accuracy training 

when using CNN in both domains. With MLP and AE it achieved this mark only in the 

frequency domain. The QML configurations used in this work are shown to be superior to MLP 

and AE in the time domain. However, it is possible that the deep structure of the training 

influences the achievement of an accuracy rating of 100%. 

 

Table 6 – CWRU: Comparison between QML from this study and Classic DL from Zhao et al. (2020) results 

Category 
Quantum 

gates 

# of 

layers 
Metric 

Time  

Domain 

Frequency 

Domain 

Accuracy (%) Accuracy (%) 

5 

features 

8 

features 

5 

features 

8 

features 

QML 

Ry, Rx, Rz 

1 

Last Mean 94.10 96.76 94.10 95.24 

Best Mean 96.38 98.48 96.57 98.10 

Last Max 96.19 98.10 94.29 97.14 

Best Max 98.10 99.05 97.14 99.05 

5 

Last Mean 92.38 96.76 94.29 95.81 

Best Mean 94.29 98.48 96.95 97.52 

Last Max 97.14 98.10 96.19 97.14 

Best Max 98.10 99.05 98.10 98.10 

10 

Last Mean 92.00 95.24 91.24 95.62 

Best Mean 93.90 97.90 96.57 97.90 

Last Max 97.14 97.14 96.19 99.05 

Best Max 98.10 99.05 97.14 99.05 

VQE: 

Ry, Rz, Ry + 

CNOT 

1 

Last Mean 90.48 91.81 82.86 88.19 

Best Mean 93.33 93.14 86.29 90.48 

Last Max 95.24 93.33 89.52 92.38 

Best Max 96.19 95.24 93.33 92.38 

5 

Last Mean 93.71 94.67 92.57 90.67 

Best Mean 95.24 96.38 95.62 93.90 

Last Max 96.19 97.14 95.24 95.24 

Best Max 97.14 97.14 96.19 95.24 
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10 

Last Mean 92.00 92.57 91.43 88.76 

Best Mean 95.24 95.81 94.29 91.62 

Last Max 95.24 93.33 95.24 92.38 

Best Max 98.10 96.19 95.24 94.29 

VQE: 

Ry, Rz, Ry + 

CZ 

1 

Last Mean 94.67 95.24 89.71 96.00 

Best Mean 96.95 96.76 92.00 97.33 

Last Max 96.19 97.14 96.19 99.05 

Best Max 98.10 98.10 97.14 99.05 

5 

Last Mean 94.48 96.00 91.05 94.67 

Best Mean 96.38 97.52 95.43 97.33 

Last Max 97.14 98.10 94.29 97.14 

Best Max 98.10 99.05 97.14 98.10 

10 

Last Mean 93.90 94.29 90.86 92.00 

Best Mean 95.43 96.57 92.95 95.24 

Last Max 96.19 94.14 94.29 93.33 

Best Max 97.14 98.10 95.24 97.14 

VQE: 

Ry, Rz, Ry + 

iSWAP 

1 

Last Mean 95.81 94.29 89.90 95.24 

Best Mean 97.71 97.52 94.67 97.71 

Last Max 96.19 97.14 93.33 96.19 

Best Max 98.10 99.05 97.14 98.10 

5 

Last Mean 94.10 94.10 93.52 92.95 

Best Mean 96.38 96.76 95.24 96.00 

Last Max 95.24 95.24 98.10 96.19 

Best Max 98.10 99.05 98.10 98.10 

10 

Last Mean 94.86 94.10 91.43 90.86 

Best Mean 95.81 96.19 95.62 95.62 

Last Max 96.19 95.24 95.24 95.24 

Best Max 96.19 98.10 97.14 98.10 

Classical 

ML 

(ZHAO et 

al.., 2020) 

Model  Metric Time Domain 
Frequency 

Domain 

MLP 

- Last Mean 60.00 

61.72 

62.24 

63.02 

100 

100 

100 

100 

- Best Mean 

- Last Max 

- Best Max 

CNN 

- Last Mean 99.58 

99.79 

100 

100 

99.89 

99.92 

100 

100 

- Best Mean 

- Last Max 

- Best Max 

AE 

- Last Mean 54.71 100 

- Best Mean 71.42 100 

- Last Max 66.67 100 

- Best Max 73.95 100 

Source: The Author (2023). 
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The trainable parameters of the models can also be compared. In this study, the classic 

MLP model has 1,610 and 1,910 trainable parameters for 5 and 8 features, respectively. On the 

other hand, the QML models have three more trainable parameters that correspond to the angles 

of the PQC rotation gates. Thus, the models with quantum components have a total of 1,613 and 

1,913 trainable parameters for the respective input types of 5 and 8 features. In comparison, the 

models of Zhao et al. (2020) have higher numbers of trainable parameters. Their simplest DL 

framework, the deep MLP, composed of five fully connected layers and five corresponding batch 

normalization layers, has 695,146 trainable parameters. Thus, the models employed in this 

research were competitive to a degree comparable to approximately 0.23% of the parameter 

quantity utilized in the deep MLP of Zhao et al. (2020). The more complex AE and CNN also 

have even larger numbers of trainable parameters than MLP. Therefore, it can be concluded that 

the models used in this study are less computationally expensive in terms of trainable parameters. 

4.2 JNU RESULTS 

The settings used for training this database are similar to those of the CWRU. However, 

this is a larger database that resulted in a sample size of 8,790 rows and 12 health states. Indeed, 

JNU is a more complex database than CWRU. In a study dealing with seven different databases 

from the rotating machinery components literature, the authors state that JNU is at 3 out of 4 

levels of difficulty, while CWRU is at 1 out of 4 (see Zhao et al., 2020). 

Table 7 presents the accuracy, precision, recall, and F1-score results obtained from the 

Classic MLP and QML models. With five features, the lowest accuracy was obtained for the 

MLP, resulting in 61.59% of the test data, followed by VQE with CZ with ten layers (62.19%). 

The best accuracy was in the PQC with the two-qubit gate CZ and one-layer circuit with an 

accuracy of 70.49%, followed by rotation gates and with iSWAP, both with one layer, that hit 

70.31% and 70.27%, respectively. However, when we look at the precision metric, the order of 

best performance goes first to iSWAP (68.63%), then to VQE with CZ (67.74%), and lastly to 

just rotation gates (67.70%). For all metrics, the model with the CNOT two-qubit gate is the 

only one with just intermediate to low values since it does not have any green highlights in 

Table 7.  
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Table 7 – JNU: ML and QML Accuracy, Precision, Recall and f1-score results. performances change on a 

color scale from shades of green for the best tesults, to red for the worst. 

Category 
Quantum 

gates 

# of 

 circuit 

layers 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

5 

feat. 

8 

feat. 

5 

feat. 

8 

feat. 

5 

feat. 

8 

feat. 

5 

feat. 

8 

feat. 

Classic 

ML 

(MLP) 

- - 61.59 62.57 49.91 56.52 61.59 62.57 53.91 56.11 

QML  

Ry, Rx, 

Rz 

1 70.31 70.04 67.70 67.98 70.31 70.04 68.29 68.08 

5 69.28 69.93 65.47 68.06 69.28 69.93 65.38 67.78 

10 68.49 68.37 65.72 66.10 68.49 68.37 65.91 65.80 

VQE: 

Ry, Rz, 

Ry + 

CNOT 

1 63.41 63.44 58.94 58.07 63.41 63.44 57.98 58.37 

5 66.02 65.91 62.13 62.52 66.02 65.91 62.76 61.55 

10 65.19 67.90 61.52 63.93 65.19 67.80 60.68 64.26 

VQE: 

Ry, Rz, 

Ry + CZ 

1 70.42 68.37 67.74 65.70 70.42 68.37 67.67 65.69 

5 64.88 67.80 59.95 64.41 64.88 67.80 59.88 64.75 

10 62.19 68.41 57.43 65.09 62.19 68.41 58.19 65.58 

VQE: 

Ry, Rz, 

Ry + 

iSWAP 

1 70.27 70.19 68.63 67.47 70.27 70.19 67.67 67.98 

5 69.43 67.65 65.89 64.22 69.43 67.65 66.62 63.65 

10 64.92 64.85 59.33 61.89 64.92 64.85 60.42 61.64 

Source: The author (2023). 

 

With eight features, the worst accuracy was obtained by the same configuration of five 

features: MLP (62.57%). The second place belongs to the VQE with CNOT with one layer 

(63.44%). The other metrics follow the same order. The best accuracy was obtained with the 

iSWAP (one layer) with an accuracy of 70.19%, followed by rotation gates (Ry, Rx, Rz) with 

one and five layers, corresponding to 70.04% and 69.93%, respectively. However, the accuracy 

of rotation gates with five layers (68.06%) is better than rotation gates with one layer and 

iSWAP (one layer). The latter two configurations have accuracy in the order previously written, 

with 67.98% and 67.47%, respectively. 

Note that the best precision is approximately 11 percentage points greater than the 

Classic MLP. In addition, with eight features, increasing metrics performance behavior by 

adding the layers only happened in the configuration with CNOT. 

Appendix B presents the JNU confusion matrices and accuracy curves. Concerning the 

CMs, for the five features QML models with only rotation gates (Figure 14a) and iSWAP 

(Figure 14d), both with one layer, the most severe diagnostic problems were in label 7: rolling 

Element 2 at 800 rpm. For CNOT (Figure 14b) and CZ (Figure 14c), it was, respectively, label 

4 (inner ring at 800 rpm) and label 3 (rolling element at 600 rpm). 
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Figure 14 - JNU confusion matrices for 1-layer PQCs for the following configurations: (a) Ry, Rx, Rz; (b) Ry, Rz, 

Ry + CNOT; (c) Ry, Rz, Ry + CZ; (d) Ry, Rz, Ry + iSWAP. 

Source: The author (2023). 

 

The accuracy graphs in Appendix B display the number of epochs required by each 

model to produce its best outcome. The more layers in PQCs using iSWAP (Figure 15d), the 

more epochs are required. However, for only rotation gates (Figure 15a), VQE with CNOT 

(Figure 15b), and VQE with CZ (Figure 15c), we did not observe such a behavior. 

 

(a) Ry, Rx, Rz 

 

(b)  Ry, Rz, Ry + CNOT 

 

(c)  Ry, Rz, Ry + CZ 

 

 (d)  Ry, Rz, Ry + iSWAP 
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Figure 15 - JNU accuracy curves for 1-layer PQCs for the following configurations: (a) Ry, Rx, Rz; (b) Ry, Rz, Ry 

+ CNOT; (c) Ry, Rz, Ry + CZ; (d) Ry, Rz, Ry + iSWAP 

Source: The Author (2023). 

4.2.1 JNU Results considering Time and Frequency domains 

In this section, the analysis will be done according to the settings explained in section 

4.1.1. Table 8 shows the results with time and frequency domain. Note that time domain just 

has outputs with 5 features due to the longer time to run the model. Regarding in a general way, 

the time domain with 5 features presented the best scores. They are also greater than those 

indicated by Zhao et al. (2020) in the MLP and AE models. However, as in CWRU, CNN was 

better in both domains. It is important to recall that Zhao et al. (2020) applied models trained 

through with the complete signal. This may have led to CNN's improved performance. 

  

 (a) Ry, Rx, Rz  (b) Ry, Rx, Rz + CNOT 

 

 (c) Ry, Rx, Rz + CZ  (d) Ry, Rx, Rz + iSWAP 
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Table 8 – JNU: Comparison between QML from this study and Classic DL from Zhao et al. (2020) results 

Category Quantum gates 
# of 

layers 
Metric 

Time 

Domain 
Frequency Domain 

Accuracy 

(%) 
Accuracy (%) 

5 features 
5 

features 

8 

features 

QML 

Ry, Rx, Rz 

1 

Last Mean 67.21 

68.54 

68.83 

67.21 

62.82 62.95 

Best Mean 64.19 64.51 

Last Max 63.63 63.47 

Best Max 64.61 65.10 

5 

Last Mean 64.58 

68.08 

66.88 

69.16 

62.14 62.63 

Best Mean 64.42 65.03 

Last Max 63.80 64.45 

Best Max 64.77 65.75 

10 

Last Mean 66.59 

68.02 

68.51 

69.48 

62.63 60.45 

Best Mean 64.45 64.54 

Last Max 63.64 63.47 

Best Max 65.26 65.10 

VQE: 

Ry, Rx, Rz + 

CNOT 

1 

Last Mean 61.01 59.61 60.16 

Best Mean 63.08 61.40 61.82 

Last Max 62.50 

63.96 

60.55 62.99 

Best Max 63.15 62.99 

5 

Last Mean 64.03 

65.75 

65.42 

66.56 

60.49 61.49 

Best Mean 63.21 63.70 

Last Max 61.69 62.82 

Best Max 63.80 64.29 

10 

Last Mean 61.56 

65.62 

65.26 

67.21 

60.75 62.66 

Best Mean 63.02 63.70 

Last Max 62.18 65.10 

Best Max 64.12 65.10 

VQE: 

Ry, Rx, Rz + CZ 

1 

Last Mean 67.24 

68.54 

68.34 

69.32 

62.34 63.05 

Best Mean 63.15 64.74 

Last Max 64.29 63.63 

Best Max 65.26 65.10 

5 

Last Mean 63.77 

67.53 

68.02 

70.62 

62.66 61.20 

Best Mean 64.16 63.12 

Last Max 63.96 62.82 

Best Max 65.10 65.09 

10 

Last Mean 63.54 

65.91 

65.10 

67.86 

61.88 61.10 

Best Mean 63.70 63.90 

Last Max 63.80 65.10 

Best Max 64.45 65.10 

VQE: 

Ry, Rx, Rz + 

iSWAP 

1 

Last Mean 67.24 

68.28 

68.51 

69.48 

62.14 62.56 

Best Mean 64.48 64.61 

Last Max 63.31 63.31 

Best Max 65.10 64.94 
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5 

Last Mean 64.29 

67.11 

67.69 

68.02 

61.49 62.01 

Best Mean 62.89 64.61 

Last Max 64.12 63.63 

Best Max 64.61 64.61 

10 

Last Mean 64.68 

66.56 

66.23 

68.34 

62.89 62.05 

Best Mean 63.99 63.54 

Last Max 63.80 63.80 

Best Max 64.94 64.12 

Classical 

ML 

Model  Metric 
Time 

Domain 
Frequency Domain 

MLP 

- Last Mean 40.60 

45.17 

44.94 

46.25 

96.52 

97.44 

97.21 

97.78 

- Best Mean 

- Last Max 

- Best Max 

CNN 

- Last Mean 80.79 

83.56 

82.31 

84.81 

92.88 

94.01 

94.25 

94.60 

- Best Mean 

- Last Max 

- Best Max 

AE 

- Last Mean 41.64 

44.68 

45.11 

45.96 

95.77 

96.78 

96.47 

96.99 

- Best Mean 

- Last Max 

- Best Max 

Source: The author (2023). 

 

The number of trainable parameters for the QML models with 5 and 8 features in this 

database are 1,815 and 2,115, respectively. Meanwhile, the classic MLP model used in this 

study has 1,812 and 2,112 trainable parameters, which is 3 fewer parameters than the QML 

models. In contrast, Zhao et al.'s (2020) deep MLP, composed of five fully connected layers 

and five corresponding batch normalization layers, has 746,408 trainable parameters, which is 

significantly more computationally expensive than the models used in this research -

corresponding to only 0.24% of those used by the authors mentioned above. 

 

4.3 DISCUSSION 

 

Here we outline more general considerations of the obtained results presented for each 

database regarding the trained structures. Note that we base our observations on the content of 

Tables 5 and 7. 

We varied our models in three aspects: (1) the number of features; (2) PQC quantum 

operations structure; and (3) the number of circuit layers. In (1), since the quantum simulator 

used cannot process the complete signal, given the limitation of qubits, extracting features is a 
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way to test the QC models. We use these two types of inputs, 5 and 8 features, to infer if a larger 

amount would yield better metric results. 

In the classical model (MLP), different behaviors occurred in the two databases: the 

results with five features were better in all metrics for CWRU, while in JNU, it was the opposite. 

For the quantum models, on the other hand, this varied. In the CWRU, when considering the 

precision metric, the results with five features were better than the eight features’ results since 

they were successful in 58.33% of the cases. For JNU, in turn, results with eight features were 

the ones that obtained this percentage. But when observing the recall, for example, in CWRU, 

in six out of 12 scenarios, the results with eight features were better, and in one of them, the 

results were equal. In JNU, five features came out on top, with seven out of 12 results. 

We performed the Mann-Whitney statistical test for two independent random samples 

(MONTGOMERY; RUNGER, 2010) to evaluate the hypothesis that the medians of the 

balanced accuracies of the two populations (5 and 8 features) are equal by model configuration. 

We executed 10 training rounds for each of the Classic ML and QML models, resulting in a 

total of 130 balanced accuracy values for each input size (either five feature or eight features), 

as shown in Table 9 and Table 10. 

 

Table 9 – CWRU: Balanced accuracy samples of the models by features. 

Model Features Balanced Accuracy 

MLP 

5 
[0.9109, 0.9490, 0.9507, 0.9535, 0.9563, 0.9563, 0.9469, 0.9601, 

0.9546, 0.9640] 

8 
[0.9170, 0.9418, 0.9465, 0.9521, 0.9501, 0.9521, 0.9587, 0.9587, 

0.9587, 0.9587] 

Ry, Rx, Rz 

(1 layer) 

5 
[0.9577, 0.9599, 0.9613, 0.9703, 0.9748, 0.9782, 0.9654, 0.9787, 

0.9717, 0.9762] 

8 
[0.9752, 0.9650, 0.9717, 0.9762, 0.9370, 0.9640, 0.9689, 0.9801, 

0.9563, 0.9570] 

Ry, Rx, Rz 

(5 layers) 

5 
[0.9750, 0.9586, 0.9455, 0.9725, 0.9350, 0.9923, 0.9337, 0.9731, 

0.9878, 0.9612] 

8 
[0.9653, 0.9191, 0.9710, 0.9846, 0.9794, 0.9813, 0.9846, 0.9832, 

0.9658, 0.9820] 

Ry, Rx, Rz 

(10 layers) 

5 
[0.9832, 0.9832, 0.9624, 0.9885, 0.9538, 0.9711, 0.9515, 0.9599, 

0.9613, 0.9391] 

8 
[0.9666, 0.9717, 0.9717, 0.9962, 0.9565, 0.9170, 0.9717, 0.9759, 

0.9762, 0.9237] 

VQE: 

Ry, Rz, Ry + CNOT 

(1 layer) 

5 
[0.9142, 0.8844, 0.9443, 0.9001, 0.9219, 0.9252, 0.9377, 0.9381, 

0.8930, 0.8935] 

8 
[0.9300, 0.9085, 0.9273, 0.9198, 0.9176, 0.9191, 0.9288, 0.9041, 

0.9353, 0.9293] 

VQE: 

Ry, Rz, Ry + CNOT 

(5 layers) 

5 
[0.9638, 0.9792, 0.9689, 0.9724, 0.9679, 0.9719, 0.9413, 0.9585, 

0.9281, 0.9397] 

8 
[0.9499, 0.9648, 0.9364, 0.9773, 0.9309, 0.9510, 0.9478, 0.9611, 

0.9604, 0.9223] 
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VQE: 

Ry, Rz, Ry + CNOT 

(10 layers) 

5 
[0.9687, 0.9296, 0.9547, 0.9468, 0.9662, 0.9346, 0.9679, 0.9414, 

0.9640, 0.9638] 

8 
[0.9659, 0.9736, 0.9669, 0.9508, 0.9501, 0.8812, 0.9674, 0.9653, 

0.9443, 0.9870] 

VQE: 

Ry, Rz, Ry + CZ (1 

layer) 

5 
[0.9668, 0.9884, 0.9770, 0.9252, 0.9500, 0.9409, 0.9621, 0.9727, 

0.9546, 0.9846] 

8 
[0.9799, 0.9794, 0.9762, 0.9716, 0.9808, 0.9671, 0.9710, 0.9658, 

0.9717, 0.9559] 

VQE: 

Ry, Rz, Ry + CZ (5 

layers) 

5 
[0.9571, 0.9617, 0.9503, 0.9741, 0.9283, 0.9830, 0.9316, 0.9509, 

0.9762, 0.9685] 

8 
[0.9365, 0.9606, 0.9662, 0.9610, 0.9435, 0.9611, 0.9813, 0.9863, 

0.9624, 0.9762] 

VQE: 

Ry, Rz, Ry + CZ 

(10 layers) 

5 
[0.9315, 0.9634, 0.9147, 0.9407, 0.9299, 0.9399, 0.9480, 0.9612, 

0.9721, 0.9583] 

8 
[0.9549, 0.9606, 0.9717, 0.9381, 0.9664, 0.9434, 0.9678, 0.9623, 

0.9510, 0.9621] 

VQE: 

Ry, Rz, Ry + 

iSWAP (1 layer) 

5 
[0.9832, 0.9832, 0.9830, 0.9832, 0.9832, 0.9453, 0.9769, 0.9587, 

0.9752, 0.9345] 

8 
[0.9479, 0.9878, 0.9489, 0.9595, 0.9846, 0.9468, 0.9685, 0.9614, 

0.9769, 0.9413] 

VQE: 

Ry, Rz, Ry + 

iSWAP (5 layers) 

5 
[0.9500, 0.9531, 0.9660, 0.9747, 0.9507, 0.9745, 0.9595, 0.9787, 

0.9753, 0.9540] 

8 
[0.9320, 0.9616, 0.9350, 0.9748, 0.9760, 0.9589, 0.9380, 0.9369, 

0.9456, 0.9678] 

VQE: 

Ry, Rz, Ry + 

iSWAP (10 layers) 

5 
[0.9792, 0.9365, 0.9498, 0.9566, 0.9474, 0.9547, 0.9422, 0.9678, 

0.9520, 0.9490] 

8 
[0.9458, 0.9557, 0.9467, 0.9878, 0.9519, 0.9486, 0.9414, 0.9416, 

0.9608, 0.9573] 

Source: The Author (2023). 
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Table 10 – JNU: Balanced accuracy samples of the models by features. 

Model Features Balanced Accuracy 

MLP 

5 
[0.4339, 0.4523, 0.4642, 0.4982, 0.5046, 0.5250, 0.5211, 0.5311, 

0.5252, 0.5292] 

8 
[0.4684, 0.4668, 0.4817, 0.4870, 0.5198, 0.5183, 0.5323, 0.5256, 

0.5254, 0.5314] 

Ry, Rx, Rz 

(1 layer) 

5 
[0.5588, 0.5781, 0.5796, 0.5614, 0.5654, 0.5678, 0.5743, 0.5764, 

0.5668, 0.5528] 

8 
[0.5835, 0.5707, 0.5779, 0.5831, 0.5789, 0.5777, 0.5799, 0.5703, 

0.5833, 0.5770] 

Ry, Rx, Rz 

(5 layers) 

5 
[0.5105, 0.5520, 0.5579, 0.5564, 0.5681, 0.5572, 0.5707, 0.5599, 

0.5809, 0.4765] 

8 
[0.5768, 0.5703, 0.5706, 0.5332, 0.5680, 0.5710, 0.5740, 0.5660, 

0.5821, 0.5801] 

Ry, Rx, Rz 

(10 layers) 

5 
[0.5407, 0.5088, 0.5664, 0.5612, 0.5670, 0.5079, 0.5601, 0.5201, 

0.4927, 0.5572] 

8 
[0.5276, 0.5820, 0.4667, 0.5095, 0.5783, 0.5778, 0.5693, 0.5746, 

0.5596, 0.5510] 

VQE: 

Ry, Rz, Ry + CNOT 

(1 layer) 

5 
[0.4633, 0.4862, 0.4567, 0.4664, 0.4693, 0.4818, 0.4541, 0.4859, 

0.4600, 0.4743] 

8 
[0.4730, 0.4387, 0.4840, 0.4684, 0.4009, 0.4503, 0.4567, 0.4718, 

0.4725, 0.4520] 

VQE: 

Ry, Rz, Ry + CNOT 

(5 layers) 

5 
[0.5066, 0.5360, 0.5277, 0.5176, 0.5081, 0.5001, 0.5148, 0.5059, 

0.4727, 0.4767] 

8 
[0.4992, 0.5022, 0.5126, 0.5248, 0.5187, 0.4878, 0.5533, 0.5072, 

0.5191, 0.5435] 

VQE: 

Ry, Rz, Ry + CNOT 

(10 layers) 

5 
[0.4603, 0.4907, 0.4906, 0.5030, 0.4901, 0.4996, 0.4995, 0.5141, 

0.4913, 0.4941] 

8 
[0.5275, 0.5036, 0.4863, 0.5102, 0.5094, 0.5104, 0.5009, 0.4743, 

0.5233, 0.4926] 

VQE: 

Ry, Rz, Ry + CZ (1 

layer) 

5 
[0.5613, 0.5679, 0.5774, 0.5706, 0.5717, 0.5690, 0.5576, 0.5775, 

0.5748, 0.5560] 

8 
[0.5715, 0.5786, 0.5549, 0.5866, 0.5749, 0.5692, 0.5777, 0.5721, 

0.5792, 0.5816] 

VQE: 

Ry, Rz, Ry + CZ (5 

layers) 

5 
[0.5009, 0.5371, 0.5560, 0.5131, 0.5240, 0.5698, 0.5121, 0.5581, 

0.5487, 0.4886] 

8 
[0.5263, 0.5161, 0.5654, 0.5277, 0.5876, 0.5108, 0.5263, 0.5088, 

0.5175, 0.5517] 

VQE: 

Ry, Rz, Ry + CZ 

(10 layers) 

5 
[0.5032, 0.4967, 0.5202, 0.5113, 0.4861, 0.5256, 0.5171, 0.4323, 

0.5041, 0.5183] 

8 
[0.5105, 0.5480, 0.5615, 0.5333, 0.5321, 0.5274, 0.5162, 0.5347, 

0.5392, 0.5594] 

VQE: 

Ry, Rz, Ry + 

iSWAP (1 layer) 

5 
[0.5640, 0.5747, 0.5807, 0.5745, 0.5589, 0.5564, 0.5663, 0.5710, 

0.5765, 0.5520] 

8 
[0.5670, 0.5745, 0.5778, 0.5826, 0.5863, 0.5677, 0.5799, 0.5710, 

0.5722, 0.5738] 

VQE: 

Ry, Rz, Ry + 

iSWAP (5 layers) 

5 
[0.5019, 0.5277, 0.5451, 0.5121, 0.5636, 0.5349, 0.4567, 0.4905, 

0.5362, 0.5181] 

8 
[0.5148, 0.5225, 0.5657, 0.5321, 0.5624, 0.5521, 0.5170, 0.4572, 

0.5240, 0.5071] 

VQE: 

Ry, Rz, Ry + 

iSWAP (10 layers) 

5 
[0.5231, 0.5124, 0.5004, 0.4890, 0.4993, 0.5017, 0.5486, 0.4714, 

0.5222, 0.5207] 

8 
[0.5135, 0.5124, 0.5513, 0.5237, 0.4966, 0.5075, 0.5346, 0.5128, 

0.5132, 0.5525] 
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For the execution of the statistical test, we set the following hypotheses: H0 – No 

difference between the balanced accuracy medians when related to the factor “number of 

features”; H1: the two balanced accuracy medians are different when related to the factor 

“number of features”. The significance level defined for this case was 0.05 (for more 

information about Mann-Whitney test calculation see Montgomery and Runger (2010)). 

According to Table 11, for each of the CWRU models we cannot reject the null hypothesis that 

the two medians are different. However, for JNU, statistical evidence for rejecting H0 is present 

in four scenarios out of thirteen: Ry, Rx, Rz (1 layer); Ry, Rx, Rz (5 layers); VQE: Ry, Rz, Ry + 

CZ (1 layer); and VQE: Ry, Rz, Ry + CZ (10 layers). After evaluating the data in Table 10, it was 

found that the medians were higher for scenarios involving eight features (respectively, 57.83, 

57.08, 57.63, and 53.40) than for those with five features (respectively, 56.73, 55.76, 56.98, and 

53.05).  

 

Table 11 – CWRU and JNU: Mann-Whitney U test results. 

Model Metrics CWRU JNU 

MLP 
U 46.00 48.00 

pvalue 0.3952 0.2854 

Ry, Rx, Rz 

(1 layer) 

U 40.50 15.00 

pvalue 0.2481 0.0046 

Ry, Rx, Rz 

(5 layers) 

U 37.00 22.00 

pvalue 0.1723 0.0188 

Ry, Rx, Rz 

(10 layers) 

U 46.00 32.00 

pvalue 0.3955 0.0929 

VQE: 

Ry, Rz, Ry + CNOT (1 layer) 

U 42.00 32.00 

pvalue 0.2854 0.0929 

VQE: 

Ry, Rz, Ry + CNOT (5 layers) 

U 33.00 38.00 

pvalue 0.1061 0.1923 

VQE: 

Ry, Rz, Ry + CNOT (10 layers) 

U 39.00 29.00 

pvalue 0.2137 0.0606 

VQE: 

Ry, Rz, Ry + CZ (1 layer) 

U 36.00 24.00 

pvalue 0.1537 0.0270 

VQE: 

Ry, Rz, Ry + CZ (5 layers) 

U 41.50 47.00 

pvalue 0.2726 0.4251 

VQE: 

Ry, Rz, Ry + CZ (10 layers) 

U 30.00 9.00 

pvalue 0.0702 0.0011 

VQE: 

Ry, Rz, Ry + iSWAP (1 layer) 

U 40.5 29.00 

pvalue 0.2473 0.0606 

VQE: 

Ry, Rz, Ry + iSWAP (5 layers) 

U 32 44.00 

pvalue 0.0929 0.3388 

VQE: 

Ry, Rz, Ry + iSWAP (10 layers) 

U 47.00 32.00 

pvalue 0.4251 0.0929 
Source: The author (2023) 
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For the analysis of quantum operations, merging points (2) and (3) is interesting. We 

can clearly identify in Table 5 that the model with the CZ entanglement gate and five layers has 

the greenest results in CWRU in all calculated metrics. The frameworks that followed it 

involved only rotations in a single layer and the CZ itself with one layer. 

Zooming in on each of the models, starting with just rotation gates, one sees that with 

five features, the behavior of the results is decreasing. With eight features, this varies a bit, but 

generally, the best performances are with only one layer. 

The model with CNOT is one of the worst overall; the results mostly vary from yellow 

to reddish, with no green points. As said before, the entanglement gate gains prominence, 

especially in the scenario with five layers. And its worst results are in the increase to 10 layers. 

Finally, iSWAP shows average results with some highlights, mainly with eight features. 

In JNU, Table 7, the highlights in green are divided between just rotations, followed by 

iSWAP, CZ, and again, lastly, CNOT. In most cases with just rotations, the behavior when 

varying the layers is also mostly decreasing, i.e., the best results remain in the first layer as in 

CWRU. The same is true for CZ and iSWAP. In CNOT, however, this changes somewhat, as 

the negative highlights this time are in the first layer. 

Thus, overall, the scenario with the rotation gates did relatively well for the two 

databases. CZ got the best accuracy values, but at some points, especially for JNU, it had very 

reddish values. It is seen that CNOT did not manage to be outstanding, and we can indicate it 

as the structure with entanglement presenting the worst performance for both databases. 

We performed the Kruskall-Wallis statistical test for independent random samples 

(MONTGOMERY; RUNGER, 2010) to evaluate the hypothesis that the medians of the 

balanced accuracies of the models are equal. In other words, we want to assess whether the 

balanced accuracy scores vary based on the "model" factor. We used the same samples from 

Table 9 and Table 10. 

For the execution of the statistical test, we set the following hypotheses: H0 - The 

medians of all samples are equal; H1: At least two medians are different. The 

𝐻𝑜𝑏𝑠  test statistic follows a chi-squared distribution with degrees of freedom (d.f.) = 12 (13 -1). 

This is a right-tailed test (that is, we will reject the null hypothesis of equal medians if H exceeds 

its critical value) (MONTGOMERY; RUNGER, 2010). For d.f. = 12 we obtain the critical 

value (21.0261) for a significance level equal to 0.05. 

We conducted the test for four different scenarios: CWRU and JNU with 5 and 8 

features. In Table 12, we can observe the test statistics and the obtained p-values. In all cases, 

the null hypotheses were rejected since the statistics exceed the critical value. Thus, we can 
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infer that, statistically, at least two medians among the models differ and the balanced accuracy 

scores vary based on the model factor. The presented highlights of results support the notion 

that certain models consistently demonstrate suboptimal performance, particularly those 

utilizing CNOT. On the other hand, some models, such as the VQE with CZ, exhibit superior 

results. 

 

Table 12– CWRU and JNU: Kruskal-Wallis test results. 

Metrics 
CWRU JNU 

5 features 8 features 5 features 8 features 

𝑯𝒐𝒃𝒔 42.6283 47.9495 86.7778 93.2312 

pvalue 2.61e − 05 3.19e − 06 2.0698e-13 1.1659e-14 

Source: The author (2023). 

 

When using the quantum simulator, there was no pattern regarding the increase in the 

number of layers and the improvement of the metrics. The results were generally better with up 

to five layers, decreasing when composing the circuit with ten layers. But there were cases 

where the inverse also happened. 

Therefore, based on all findings, some QML models outperformed MLP in the 

calculated metrics. However, many other ML model configurations could be compared. In this 

study, it is not possible to judge whether the higher complexity DL algorithms are better than 

those of QML. Some studies in the literature apply DL methods that can achieve 100% 

accuracy, as in Zhao et al. (2020), as we observed in sections 4.1.1 and 4.2.1, but differently 

from our case, they use the full signal and have no input size limitations. We emphasize that 

the main focus is to show the applicability of these QML methods – on the rise in the literature 

(BIAMONTE et al., 2017; BROUGHTON et al., 2020; PERDOMO-ORTIZ et al., 2018) – in 

Reliability Engineering and to encourage their exploration in different machinery, sectors, and 

contexts that demand PHM activities, which are valuable to support maintenance decisions. 

 Finally, Table 13 shows the computational times, measured in seconds, required to train 

the models for the two databases (CWRU and JNU). The first point is that the classical MLP 

model achieves significantly less training time than the QML ones. The reason for this is that 

the models were trained on a simulator. Actual quantum hardware would likely achieve more 

agile times than those presented here. 
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Table 13 - CWRU and JNU run times run times in seconds by model. 

Category Quantum gates 
# of circuit 

layers 

Run time (seconds) 

CWRU JNU 

5 

features 

8 

features  

5 

features 

8 

features  

Classic ML 

(MLP) 
- - 3.00 1.30 7.30 7.41 

QML  

Ry, Rx, Rz 

1 18.73 40.39 579.99 394.82 

5 36.30 74.44 751.31 1062.08 

10 86.31 168.38 875.50 3011.48 

VQE: Ry, Rz, Ry + 

CNOT 

1 27.50 65.36 162.99 506.52 

5 51.11 128.81 1211.89 684.67 

10 75.43 220.98 2020.91 2583.07 

VQE: Ry, Rz, Ry + 

CNOT 

1 28.69 41.19 261.53 591.85 

5 70.47 173.35 555.65 2253.73 

10 121.43 505.76 1714.18 3612.71 

VQE: Ry, Rz, Ry + 

CNOT 

1 25.18 45.34 361.11 538.44 

5 68.56 90.58 1117.64 1378.35 

10 147.63 353.91 2526.39 2377.20 

Source: The author (2023). 

 

When comparing the quantum models with each other, the fewer layers in the circuit, 

the faster the training becomes since the number of operations is smaller. It occurs in all 

scenarios.  

The training time of JNU is significantly longer than that of CWRU due to the 

complexity of the former. Lastly, we note that due to the early stopping inserted in training, 

some processes have more epochs than others, as presented in Figure 15. Consequently, some 

training takes longer than others as well. Also, models with eight features, in most cases, have 

longer processing times than those with five features. That is, possibly the increase in the 

number of qubits also influences the longer processing time. 
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5 CONCLUDING REMARKS 

 

5.1 CONCLUSIONS 

 

The main objective of this work was to use QML for the PHM of of equipment that can 

be used in the O&G industry. We bring results regarding bearing data available in the literature. 

These components compose different and important equipment in the O&G industry as shown 

in Orrù et al (2020) study. The framework of the QML models was based on an existing 

approach, but they have different combinations in the quantum part itself. That is, the PQCs 

have other configurations besides the rotations gates. These are: the increment of the VQE 

algorithm combined with different two-qubit gates (CNOT, CZ and iSWAP). Still additional 

layers of these circuits were added to identify if the increment of quantum operations, such as 

entanglement, would bring differences in the results. 

Using just signals in the time domain, regarding the CWRU, the model with CZ and 5 

layers presented higher accuracy of the training data in relation to the others. Therefore, the 

effectiveness of a hybrid-quantum model for the diagnosis of failure modes for this type of 

equipment can be attested to in the scope of this study. As partial results, it was seen that when 

compared to the MLP model that has the same neural network configuration used for the 

quantum models, the QML results were better overall. 

Concerning JNU, the best model in terms of accuracy was the VQE with CZ 

entanglement gates with 1 circuit layer. In this database, the model with the lowest accuracy 

was the MLP in both features configuration (5 and 8). 

When comparing with benchmarks available in the literature (ZHAO et al., 2020), it 

was seen that the QML models studied in this paper overlap MLP and AE only in the time 

domain. In the frequency domain the classical models still have better results. Thus, it opens 

the possibility for new QML models to be explored, since there are many and diverse ways to 

build such systems, which can excel what is already known classically in academia. 

The contributions of this work are outlined in the following aspects: (1) exploration of 

two databases in the literature not yet analyzed in the QML framework; (2) performance of the 

diagnosis of a larger number of failure modes, compared to what has already been done in the 

literature; (3) delineation of the limitations of this study that can be a start kick for 

improvements and execution of new studies that cover the gaps of this one, as will be described 

throughout this conclusion; and, (4) to conduct a proof of concept that new quantum computing 

technologies can be used in Reliability Engineering problems, specifically in the diagnosis of 
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failure modes of rotating machinery components, which are widely used in the O&G industry. 

Interested organizations may also be able to follow QC trends to modernize actions to help 

develop maintenance policies that are key points for the success of productive operations and 

safety. 

The outcomes supported the notion that the proposed QML models constitute a 

promising strategy for handling features extractions of times series from multi-sensor suites for 

complex systems’ health state diagnosis. It must be emphasized that, so far, there are many 

limitations in terms of computational capacity of quantum programs, as will be mentioned in 

the next session. However, this is a promising path that tends to gain popularity in academia 

and companies. Quantum Computing has been receiving growing investments in terms of 

hardware in order to enable the resolution of problems with larger instances in a more efficient 

way. 

 

5.2 LIMITATIONS AND FUTURE WORKS 

 

Despite the promising results, the QML models, given the framework we are using, is 

limited to the maximum number of qubits that the quantum library simulator, from TensorFlow 

Quantum, makes available. Thus, it is not possible to use the complete series, reducing the 

analysis only to features. It is possible that some data information is lost during the analysis. 

Also, we peformed our models using just the TensorFlow Quantum simulator. In this sense, the 

execution time in this type of software is much longer than when using a quantum machine. 

Thus, for future work it is suggested to use a QC hardware to improve performance in this 

regard and observe some quantum variables as noises. 

Another limitation refers to the number of layers used in the circuit. Due to the 

computational capacity, it was not possible to apply more than 10 layers. In this case, it is 

assumed that the greater the number of layers, the greater the effect of quantum properties, such 

as entanglement. However, this study is limited only to the observations presented here. 

Nevertheless, it is suggested for future studies the application of other configurations of 

quantum circuits, such as the QAOA architecture. Finally, exploring different backpropagation 

methods in addition to the finite difference technique used in this work, such as the parameter-

shift rule, could bring valuable insights. 

In the preprocessing scheme, the inputs where preprocessing only in the time and in the 

frequency domain. However, there are other configurations that may be explored tofit the 

models, for example, the Short Time Fourier Transform (STFT) and the Continuous Wavelet 
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Transform (CWT). Also, as the main purpose of this work was to vary the PQC of the model, 

the classical neural network used remained the same in every scenario. In this sense, to future 

works it is suggested that other NN schemes be tested for network efficiency observation. 

The code library is available at: 

 https://github.com/laviniammaraujo/MasterThesis_PHMviaQML.  

  

https://github.com/laviniammaraujo/MasterThesis_PHMviaQML
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APPENDIX A – CWRU DATASET: CONFUSION MATRIX AND MODEL ACCURACY GRAPH WITH FIVE AND EIGHT 
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APPENDIX B – JNU DATASET: CONFUSION MATRIX AND MODEL ACCURACY GRAPH WITH FIVE AND EIGHT 

FEATURES 
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