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ABSTRACT

This dissertation aims to discuss the canonical quantization of general relativity and apply

it to the Schwarzschild black hole, and thus it can be divided into two main parts. To implement

this quantization process, it is essential to obtain a Hamiltonian for the gravitational field, and

a variational formulation of general relativity becomes necessary. With the Hamiltonian in

hand, we can define the mass of spacetime and, with it, the gravitational ADM action. The

system constraints are obtained by using the Dirac–Bergmann algorithm, and the quantization

then proceeds in the usual way, changing the nature of the canonical variables by promoting

them to operators. In the quantum theory, such constraints become conditions on the state

vector of the system, whose wave function satisfies the Wheeler–DeWitt equation. In the

case of the Schwarzschild black hole, we only have the degree of freedom given by its mass.

Therefore, we are dealing with an effectively one-dimensional system whose wave function is

a linear combination of confluent hypergeometric functions and whose mass spectrum derives

from the appropriate boundary condition. In this scenario, the transition between states is

responsible for the emission of Hawking radiation, and the temperature of the black hole is

obtained through the Stefan–Boltzmann law.

Keywords: Hamiltonian formalism; canonical quantization; general relativity; Schwarzschild

black hole.



RESUMO

Esta dissertação tem por objetivo discutir a quantização canônica da relatividade geral e

aplica-la ao buraco negro de Schwarzschild, podendo assim ser dividida em duas partes prin-

cipais. Para implementarmos esse processo de quantização, é essencial obtermos um Hamil-

toniano para o campo gravitacional e uma formulação variacional da relatividade geral se faz

necessária. Com o Hamiltoniano em mãos, somos capazes de definir a massa do espaço-tempo

e com isso a ação gravitacional ADM. Os vínculos do sistema são obtidos usando-se o al-

goritmo de Dirac-Bergmann e a quantização então procede de maneira usual, mudando-se a

natureza das variáveis canônicas ao promovê-las a operadores. Na teoria quântica, tais víncu-

los se tornam condições sobre o vetor de estado do sistema, cuja função de onda satisfaz a

equação de Wheeler–DeWitt. No caso do buraco negro de Schwarzschild temos apenas o grau

de liberdade dado pela sua massa. Sendo assim, estamos lidando com um sistema efetivamente

unidimensional cuja função de onda é uma combinação linear de funções hipergeométricas con-

fluentes e cujo espectro de massa decorre da condição de contorno apropriada. Nesse cenário,

a transição entre estados é responsável pela emissão de radiação Hawking e a temperatura do

buraco negro é obtida através da lei de Stefan-Boltzmann.

Palavras-chaves: Formalismo Hamiltoniano; quantização canônica; relatividade geral; buraco

negro de Schwarzschild.
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1 INTRODUCTION

As living beings that belong to a specific range on the scale spectrum of physical quantities,

all our senses have been shaped throughout our evolutionary history to capture and process

phenomena within this range of magnitudes, thus subjugating our perceptions and intuitions

about the world we live in. Therefore, in this context, it is natural for the limits of applicability

of the theories we developed to be contained in this range of scales since we first attempt to

understand the phenomena with which we have direct contact, the phenomena we experience

in our daily lives. Quantum mechanics (QM) and general relativity (GR) arise as two results

of our endeavor to expand the limits of applicability of our theories across the scale spectrum.

However, despite the universal character of both theories, QM and GR, they find relevance in

regions of the spectrum that are quite distant from each other. How wonderful it would be

if there existed objects whose full description requires the merge of the methods and tools of

quantum mechanics with those of general relativity.

In October 1914, Albert Einstein presented to the Prussian Academy of Sciences his paper

entitled The Formal Foundations of the General Theory of Relativity. However, at this stage,

the field equations of the theory lacked general covariance and did not reproduce the correct

value of 43′′ per century for the perihelion advance of Mercury’s orbit. On November 25, 1915,

Einstein finally came across the correct value for the perihelion advance in a paper entitled

Explanation of the Perihelion Motion of Mercury from General Relativity Theory. In this paper,

Einstein obtained the perihelion advance formula from an equation of motion derived from ap-

proximate field equations for the gravitational field of a point mass. Surprisingly, on December

22, less than one month after his paper, Einstein received a letter sent by the German physicist

and astronomer Karl Schwarzschild, where he presented an exact solution to the problem of

a point mass. Schwarzschild published his solution on February 3, 1916, under the name On

the Gravitational Field of a Point Mass, according to Einstein’s Theory, and died of pemphi-

gus on 11 May of that same year. The uniqueness of the Schwarzschild metric as the exact

vacuum solution to the Einstein field equations for a static, spherically symmetric, asymptoti-

cally flat spacetime was proved after 51 years by Werner Israel (ISRAEL, 1967). We know that

divergences in general indicate points where the theory no longer works. Schwarzschild’s work

revealed the possibility of the existence of singularities, bringing up objects that lie outside the

limits of general relativity.
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Stephen Hawking’s studies of the behavior of quantum fields near the black hole’s event

horizon led him to publish an article (HAWKING, 1974) in March 1974 communicating that black

holes can create and emit particles, radiating as if they were hot bodies with a temperature

proportional to its inverse mass. This thermal radiation gradually reduces the mass of the

black hole until it finally disappears, leaving us with the question of what happens with all

information that fell into the hole during its lifetime. In August 1975, Hawking published a

paper (HAWKING, 1975) detailing this evaporation mechanism. Hawking’s work shed some light

on the quantum aspects related to black holes, showing that we can not fully understand these

objects without a proper quantum formulation of general relativity.

Chapter 2 develops the Hamiltonian formalism for general relativity, and we closely follow

Ref. (POISSON, 2004). We start by introducing the notation used throughout the dissertation

by means of a quick discussion of some basic concepts in GR, followed by a derivation of the

Gauss–Codazzi equations. Once we have set the stage, we are free to talk about the variational

principle formulation of GR. At the level of the Lagrangian, the Hamilton variational principle

yields the standard form of the Einstein field equations (EFEs). Our interest in passing to the

Hamiltonian formulation is not in getting the Hamiltonian version of the field equations but

in the Hamiltonian itself, which formally defines what we might mean by the total energy of

spacetime. Our approach consists of thought of an arbitrary region 𝒱 of spacetime as the final

picture of the time evolution of an arbitrary spacelike hypersurface Σ. Thus we decompose

the spacetime into a foliation where each leaf is a hypersurface representing the gravitational

field configuration at that specific time. After we dismembered 𝒱 and its boundary, 𝜕𝒱 , we

adapt the gravitational action to this decomposition and then define the field velocity and

its canonical conjugate momentum in order to introduce the gravitational Hamiltonian. For

vacuum solutions of the EFEs, the Gauss–Codazzi equations manage to vanish the bulk part of

the Hamiltonian, which becomes a pure boundary term. This Hamiltonian defines the energy

of spacetime when we push the boundary 𝜕𝒱 all way to an asymptotic flat infinity and specify

the asymptotic values of the lapse function and the shift vector.

In chapter 3, we use the Dirac–Bergmann algorithm to extract all the constraints of the

theory. The so-called primary constraints arise from the definition of the momentum variables,

thus being consequences merely of the form of the Lagrangian. The consistency conditions

represent the requirement that these constraints be constant over time: the time derivative of

the constraints must be zero. By using the Poisson brackets to express time evolution, these

conditions lead to more constraints, called secondary constraints. The consistency conditions
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of these new constraints are identically satisfied, and the algorithm ends here, totaling eight

constraints for each point in space. To proceed with the canonical quantization is simple: we

map all the canonical variables into Hermitian operators and take the constraints to be condi-

tioned on the state kets of spacetime. We obtain a quantum mechanical equation for general

relativity, the Wheeler–DeWitt equation, by choosing the configuration space representation

for these state kets. This equation is supposed to be the dynamical equation of quantum

spacetime, but there is no time variable. In addition, this equation suffers from a massive

operator ordering problem, yielding divergences.

Chapter 4 is devoted to applying the previous discussion to the Schwarzschild black hole

(SBH). Here we start from a spherically symmetric spacelike hypersurface Σ and then build up

a spherical spacetime M utilizing a time parameterization. The evolution of Σ is dictated by

the ADM action, from which the constraints follow. Due to the spherical symmetry, there are

four constraints instead of eight, and through a judicious canonical transformation, followed

by elimination of the constraints, we bring the action to the reduced form, where the reduced

Hamiltonian is simply the Schwarzschild mass, which is the only degree of freedom of M.

Before proceeding with the quantization, we do one more canonical transformation and use

the Schwarzschild wormhole throat and its conjugate momentum as our canonical variables.

The quantization is done straightforwardly by promoting the canonical variables to Hermitian

operators. The Wheeler–DeWitt equation is the equation of the one-dimensional harmonic

oscillator with position-dependent angular frequency. Its general solution is a linear combination

of confluent hypergeometric functions with an overall Gaussian exponential factor. We restrict

ourselves to black holes whose masses are much larger than Planck’s mass, which allows

us to explore the asymptotic behavior of the confluent hypergeometric functions and obtain

a semi-classical approximation for the wave function of the SBH. There are two boundary

conditions to this wave function, and from one of them, we get the hole’s mass spectrum.

This spectrum and the assumption of spontaneous emission and the Stefan–Boltzmann law

constitute the basis for the quantized SBH thermodynamics described here. The idea is not

to follow Hawking’s steps to get thermodynamics out of the black hole but to see how far

the canonical quantization can take us. We trace an independent path here, and we refer

to the Hawking temperature and the Bekenstein–Hawking entropy to visualize our results as

corrections to it.
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2 HAMILTONIAN FORMULATION OF GENERAL RELATIVITY

2.1 PRELIMINARIES

2.1.1 Some basic concepts in general relativity

Consider an arbitrary region 𝒱 of spacetime, a four- dimensional manifold M that repre-

sents the structure of our universe, and its boundary 𝜕𝒱 , a three- dimensional submanifold.

We will refer to 𝜕𝒱 as a hypersurface. To be able to locate points in 𝒱 , we install an at-

las {(𝑉𝑖, 𝑥𝛼
𝑖 ), 𝑖 ∈ N}, where 𝑉𝑖 is a neighborhood around a point 𝑃 ∈ 𝒱 and 𝑥𝛼

𝑖 are the

coordinates of this point (Greek indices for quantities defined in the spacetime bulk), while

on the hypersurface 𝜕𝒱 we place an atlas {(𝑈𝑗, 𝑦𝑎
𝑗 ), 𝑗 ∈ N} (Lower-case Latin indices for

quantities defined only on the hypersurface). For simplicity, we will refer to these atlases as the

spacetime coordinates 𝑥𝛼 and the intrinsic coordinates 𝑦𝑎 of the hypersurface, respectively.

The coordinate system 𝑥𝛼 must overlap 𝑦𝑎. Therefore, there are points in spacetime that can

be represented by both coordinate systems, 𝑥𝛼 and 𝑦𝑎, which means that there must exist a

reversible transformation 𝑥𝛼 = 𝑥𝛼(𝑦𝑎).

We let 𝑔𝛼𝛽 denote the Lorentzian metric in 𝒱 with signature (−, +, +, +). The metric

evaluated at a certain point only gives us access to an infinitesimal distance around this point.

This distance is known as the interval and its square d𝑠2 = 𝑔𝛼𝛽d𝑥𝛼d𝑥𝛽 is usually referred to as

the metric since 𝑔𝛼𝛽 can be read directly from it. On the left-hand side, we see an invariant line

element d𝑠, a proper distance about which all observers must agree. At the same time, on the

right-hand side, there is an explicit coordinate system 𝑥𝛼, which is completely arbitrary. The

metric 𝑔𝛼𝛽 is then what translates arbitrariness of coordinate choice to invariant distances. If

we want to measure larger distances, we have to integrate the interval along the straightest

possible curve 𝛾(𝜆), where 𝜆 ∈ (𝑎, 𝑏) is a real parameter, connecting the desired two points,

𝐴 and 𝐵 for instance, which means that we must know the metric at all points of the curve

since the shape of the coordinate grid might change from one point to the other:

Δ𝑠 =
∫︁ 𝐵

𝐴
d𝑠 =

∫︁ 𝑏

𝑎

√︁
𝑔𝛼𝛽𝑣𝛼𝑣𝛽 d𝜆, (2.1)

where 𝑣𝛼 = d𝑥𝛼/d𝜆 is the 𝛼-th component of the tangent vector field 𝑣 = d/d𝜆 to the curve

in the vector basis {𝑒𝛼 := 𝜕/𝜕𝑥𝛼}.

To know how the coordinate grid changes in each direction, we decompose the covariant
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derivative of the basis vectors 𝑒𝛼:

∇𝑒𝛽
𝑒𝛼 = Γ𝜇

𝛼𝛽𝑒𝜇, (2.2)

where the components Γ𝜇
𝛼𝛽 are called the connection components. Since the covariant deriva-

tive operator obeys the product rule and its action on a function is simply the function’s usual

derivative, we have

∇𝑒𝛽
𝑣 = ∇𝑒𝛽

(𝑣𝛼𝑒𝛼) =
(︃

𝜕𝑣𝛼

𝜕𝑥𝛽
+ Γ𝛼

𝜇𝛽𝑣𝜇

)︃
𝑒𝛼 = ∇𝑒𝛽

𝑣𝛼𝑒𝛼, (2.3)

where ∇𝑒𝛽
𝑣𝛼 := 𝜕𝛽𝑣𝛼 + Γ𝛼

𝜇𝛽𝑣𝜇 merely denotes the 𝛼-th component of ∇𝑒𝛽
𝑣 and should not

be confused with the covariant derivative of the component 𝑣𝛼, which is a function, of the

vector 𝑣. We have made such a definition because we intend to represent tensors through their

components without having to write down the basis vectors all the time.

The connection is then the quantity (non-tensorial) that contains the information about

how the grid changes. If we require the metric to be covariantly constant, ∇𝛾𝑔𝛼𝛽 = 0 (the

inner product between two vectors remains constant under their parallel transport along any

curve), and the connection to be symmetric, Γ𝜇
𝛼𝛽 = Γ𝜇

𝛽𝛼 (no antisymmetric torsion tensor),

then Γ𝜇
𝛼𝛽 can be completely determined by the metric through the following expression:

Γ𝜇
𝛼𝛽 = 1

2𝑔𝜇𝜈 (𝜕𝛼𝑔𝜈𝛽 + 𝜕𝛽𝑔𝜈𝛼 − 𝜕𝜈𝑔𝛼𝛽) , (2.4)

in which case Γ𝜇
𝛼𝛽 is called the Christoffel symbol.

If a given vector field 𝑢 does not change along a curve 𝛾 with tangent vector field 𝑣,

then we write ∇𝑣𝑢 = 0 and say that 𝑢 is parallel transported along 𝛾. If 𝑣 itself is parallel

transported along 𝛾, then the curve 𝛾 is called a geodesic and we have ∇𝑣𝑣 = 𝑣𝛼∇𝛼𝑣 = 0,

the geodesic equation. Objects are represented by worldlines in spacetime. A worldline is a

curve parameterized by the object’s proper time 𝜏 , which is the time that ticks on the clock

attached to the object’s reference frame. If there is no net force acting upon the object, then

the worldline is a curve without acceleration, or in other words, a geodesic. Therefore, it is the

global behavior of geodesics that indicates the presence of curvature, also known as gravity,

in spacetime.

The concept of curvature can be precisely defined using the parallel transport of our

basis vectors 𝑒𝛼 from a point 𝑃 to a point 𝑄. Firstly, we choose a basis vector 𝑒𝛽(𝑃 ) and

two coordinates to transport the vector, say 𝑥𝜇 and 𝑥𝜈 . Transporting 𝑒𝛽(𝑃 ) first along 𝑥𝜇

then 𝑥𝜈 and secondly along 𝑥𝜈 then 𝑥𝜇, yields two images of 𝑒𝛽(𝑃 ), namely 𝑒𝑇
𝛽 (𝑄)𝜈𝜇 and
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𝑒𝑇
𝛽 (𝑄)𝜇𝜈 , respectively. We then compute the difference between these two vectors, 𝑅𝛽𝜇𝜈 :=

𝑒𝑇
𝛽 (𝑄)𝜇𝜈 − 𝑒𝑇

𝛽 (𝑄)𝜈𝜇:

𝑅𝛽𝜇𝜈 = [∇𝜇, ∇𝜈 ]𝑒𝛽 = (𝜕𝜇Γ𝛼
𝛽𝜈 − 𝜕𝜈Γ𝛼

𝛽𝜇 + Γ𝛾
𝛽𝜈Γ𝛼

𝛾𝜇 − Γ𝛾
𝛽𝜇Γ𝛼

𝛾𝜈)𝑒𝛼. (2.5)

The 256 components 𝑅𝛼
𝛽𝜇𝜈 of all 64 curvature vectors 𝑅𝛽𝜇𝜈 form the Riemann tensor:

𝑅𝛼
𝛽𝜇𝜈 = 𝜕𝜇Γ𝛼

𝛽𝜈 − 𝜕𝜈Γ𝛼
𝛽𝜇 + Γ𝛼

𝛾𝜇Γ𝛾
𝛽𝜈 − Γ𝛼

𝛾𝜈Γ𝛾
𝛽𝜇. (2.6)

Although the Riemann tensor fully describes the spacetime curvature, even if we take into

account its symmetries, its large number of components makes it a heavy object to handle in

terms of practical calculations. To describe curvature in a way more convenient for calculations,

we introduce two new quantities:

𝑅𝛼𝛽 := 𝑅𝜈
𝛼𝜈𝛽 = 𝑔𝜇𝜈𝑅𝜇𝛼𝜈𝛽 (2.7)

called the Ricci tensor, and its trace

𝑅 := 𝑅𝛼
𝛼 = 𝑔𝛼𝛽𝑅𝛼𝛽 (2.8)

called the Ricci scalar.

We conclude this subsection by turning our attention to 𝜕𝒱 . The hypersurface 𝜕𝒱 can

be localized in spacetime by a restriction on the spacetime coordinates: Φ(𝑥𝛼) = 0. Hence, to

move away from 𝜕𝒱 perpendicularly, one must follow the gradient of Φ, since the value of Φ

changes only in the direction perpendicular to 𝜕𝒱 . We can thus define a unit vector field 𝑛𝛼

normal to 𝜕𝒱 as follows:

𝑛𝛼 := 𝜀𝜕𝛼Φ
|𝑔𝛼𝛽𝜕𝛼Φ𝜕𝛽Φ|1/2 , (2.9)

where 𝜀 := 𝑛𝛼𝑛𝛼 = ±1, with 𝜀 = +1 where 𝜕𝒱 is timelike and 𝜀 = −1 where 𝜕𝒱 is spacelike.

We follow the convention that 𝑛𝛼 points in the direction of increasing Φ: 𝑛𝛼𝜕𝛼Φ > 0. Notice

that (2.9) can not be used to define a unit normal where 𝜕𝒱 is null, because 𝑛𝛼 is orthogonal to

itself in this case: 𝑛𝛼𝑛𝛼 = 0 (being both normal and tangent to 𝜕𝒱 ). Due to its particularities,

we will avoid the case of null hypersurface by saying that 𝜕𝒱 is almost-nowhere null, which

means that the regions where 𝜕𝒱 is null are too small compared to the regions where 𝜕𝒱 is

spacelike or timelike.

Using the transformation 𝑥𝛼 = 𝑥𝛼(𝑦𝑎), we can define the vector field

𝑒𝛼
𝑎 := 𝜕𝑥𝛼

𝜕𝑦𝑎
(2.10)
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tangent to 𝜕𝒱 : 𝑛𝛼𝑒𝛼
𝑎 = 0. The vectors 𝑛𝛼 and 𝑒𝛼

𝑎 form a vector basis for objects on 𝜕𝒱

embedded in 𝒱 . The projection of 𝑔𝛼𝛽 onto 𝜕𝒱 defines the induced metric on the hypersurface:

ℎ𝑎𝑏 := 𝑔𝛼𝛽𝑒𝛼
𝑎 𝑒𝛽

𝑏 . (2.11)

The induced metric is a three-tensor: it is invariant with respect to spacetime coordinate

transformations, but behaves as a tensor under hypersurface coordinate transformations. With

this, we can decompose the metric 𝑔𝛼𝛽 into two mutually orthogonal parts, one normal to 𝜕𝒱

and the other tangent to 𝜕𝒱 . This decomposition is called completeness relation and for the

inverse metric we have:

𝑔𝛼𝛽 = 𝜀𝑛𝛼𝑛𝛽 + ℎ𝛼𝛽, (2.12)

which defines ℎ𝛼𝛽 = ℎ𝑎𝑏𝑒𝛼
𝑎 𝑒𝛽

𝑏 .

2.1.2 Intrinsic and extrinsic geometries

In this subsection, we attempt to characterize the embedding of the hypersurface in space-

time by constructing three-quantities that live on the hypersurface. We start this task by defin-

ing the intrinsic covariant derivative of a three-vector field obtained from the projection onto

the hypersurface of a vector field 𝑉 𝛼 = 𝑉 𝑎𝑒𝛼
𝑎 purely tangent to the hypersurface, 𝑉 𝛼𝑛𝛼 = 0.

This will give rise to a three-connection from which we build the Riemann three-tensor.

We define the intrinsic covariant derivative of 𝑉𝑎 = 𝑉𝛼𝑒𝛼
𝑎 to be the projection of ∇𝛽𝑉𝛼

onto the hypersurface:

𝐷𝑏𝑉𝑎 := 𝑒𝛼
𝑎 𝑒𝛽

𝑏 ∇𝛽𝑉𝛼. (2.13)

Working out the right-hand side:

𝑒𝛼
𝑎 𝑒𝛽

𝑏 ∇𝛽𝑉𝛼 = 𝑒𝛽
𝑏 ∇𝛽(𝑒𝛼

𝑎 𝑉𝛼) − 𝑉𝛼𝑒𝛽
𝑏 ∇𝛽𝑒𝛼

𝑎

= 𝑒𝛽
𝑏 𝜕𝛽𝑉𝑎 − (𝑉 𝑐𝑒𝛼

𝑐 )𝑒𝛽
𝑏 ∇𝛽𝑒𝑎𝛼

= 𝜕𝑥𝛽

𝜕𝑦𝑏

𝜕𝑉𝑎

𝜕𝑥𝛽
− (𝑒𝛼

𝑐 𝑒𝛽
𝑏 ∇𝛽𝑒𝑎𝛼)𝑉 𝑐

= 𝜕𝑏𝑉𝑎 − Γ𝑐𝑎𝑏𝑉
𝑐, (2.14)

where we define the three-connection as Γ𝑐𝑎𝑏 := 𝑒𝛼
𝑐 𝑒𝛽

𝑏 ∇𝛽𝑒𝑎𝛼.

Therefore, definition (2.13) results in the usual expression for covariant differentiation (things

still keep working the same in one less dimension):

𝐷𝑏𝑉𝑎 = 𝜕𝑏𝑉𝑎 − Γ𝑐
𝑎𝑏𝑉𝑐, (2.15)
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where Γ𝑐
𝑎𝑏 is compatible with ℎ𝑎𝑏: 𝐷𝑐ℎ𝑎𝑏 := 𝑒𝛼

𝑎 𝑒𝛽
𝑏 𝑒𝛾

𝑐 ∇𝛾ℎ𝛼𝛽 = 0, which one can easily demon-

strate using the completeness relation (2.12). Hence, the symmetry requirement enables this

connection to be completely determined by ℎ𝑎𝑏:

Γ𝑐
𝑎𝑏 = 1

2ℎ𝑐𝑑(𝜕𝑎ℎ𝑑𝑏 + 𝜕𝑏ℎ𝑑𝑎 − 𝜕𝑑ℎ𝑎𝑏). (2.16)

With this, the Riemann three-tensor, also known as intrinsic curvature of the hypersurface

𝜕𝒱 , is given by

𝑅𝑎
𝑏𝑐𝑑 = 𝜕𝑐Γ𝑎

𝑏𝑑 − 𝜕𝑑Γ𝑎
𝑏𝑐 + Γ𝑎

𝑐𝑒Γ𝑒
𝑏𝑑 − Γ𝑎

𝑑𝑒Γ𝑒
𝑏𝑐. (2.17)

We observe that 𝐷𝑏𝑉𝑎 = 𝑒𝛼
𝑎 𝑒𝛽

𝑏 ∇𝛽𝑉𝛼 can be thought of as the tangent component of the

vector 𝑒𝛽
𝑏 ∇𝛽𝑉 𝛼, which leads us to ask whether this vector also has a normal component to

the hypersurface. To answer this question we re-write 𝑒𝛽
𝑏 ∇𝛽𝑉 𝛼 in terms of the metric and use

the completeness relation to split the vector into a normal part and a tangent part:

𝑒𝛽
𝑏 ∇𝛽𝑉 𝛼 = 𝑔𝛼

𝜇𝑒𝛽
𝑏 ∇𝛽𝑉 𝜇

= (𝜀𝑛𝛼𝑛𝜇 + ℎ𝑎𝑐𝑒𝛼
𝑎 𝑒𝑐𝜇)𝑒𝛽

𝑏 ∇𝛽𝑉 𝜇

= 𝜀(𝑛𝜇𝑒𝛽
𝑏 ∇𝛽𝑉 𝜇)𝑛𝛼 + ℎ𝑎𝑐(𝑒𝜇

𝑐 𝑒𝛽
𝑏 ∇𝛽𝑉𝜇)𝑒𝛼

𝑎

= 𝜀[𝑒𝛽
𝑏 ∇𝛽(𝑛𝜇𝑉 𝜇) − 𝑉 𝜇𝑒𝛽

𝑏 ∇𝛽𝑛𝜇]𝑛𝛼 + ℎ𝑎𝑐(𝐷𝑏𝑉𝑐)𝑒𝛼
𝑎

= −𝜀𝑉 𝑎(𝑒𝜇
𝑎𝑒𝛽

𝑏 ∇𝛽𝑛𝜇)𝑛𝛼 + 𝑒𝛼
𝑎 𝐷𝑏𝑉

𝑎, (2.18)

where in the fourth line we have used the fact that 𝑉 𝜇 = 𝑉 𝑎𝑒𝜇
𝑎 is orthogonal to 𝑛𝜇 and that

𝐷𝑏ℎ
𝑎𝑐 = 0. To the term within parentheses in the normal component, we give a name and a

new look:

𝐾𝑎𝑏 := 𝑒𝛼
𝑎 𝑒𝛽

𝑏 ∇𝛽𝑛𝛼, (2.19)

called the extrinsic curvature of the hypersurface 𝜕𝒱 . The extrinsic curvature is a symmetric

three-tensor, 𝐾𝑎𝑏 = 𝐾𝑏𝑎, and its trace is 𝐾 := ℎ𝑎𝑏𝐾𝑎𝑏 = ∇𝛼𝑛𝛼. The following equation

summarizes the answer to our question:

𝑒𝛽
𝑏 ∇𝛽𝑉 𝛼 = 𝑒𝛼

𝑎 𝐷𝑏𝑉
𝑎 − 𝜀𝑉 𝑎𝐾𝑎𝑏𝑛

𝛼. (2.20)

We now want to investigate how the intrinsic and extrinsic curvatures of 𝜕𝒱 are related to

the spacetime curvature. Our first move is to replace 𝑉 𝛼 with 𝑒𝛼
𝑎 . We notice that 𝑒𝛼

𝑎 = 𝑉 𝑐𝑒𝛼
𝑐

implies in 𝑉 𝑐 = 𝛿𝑐
𝑎, then (2.20) becomes:

𝑒𝛽
𝑏 ∇𝛽𝑒𝛼

𝑎 = (𝜕𝑏𝛿
𝑐
𝑎 + Γ𝑐

𝑑𝑏𝛿
𝑑
𝑎)𝑒𝛼

𝑐 − 𝜀𝛿𝑐
𝑎𝐾𝑐𝑏𝑛

𝛼

= Γ𝑐
𝑎𝑏𝑒

𝛼
𝑐 − 𝜀𝐾𝑎𝑏𝑛

𝛼. (2.21)
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We plan to take a covariant derivative in the above equation to obtain a second covariant

derivative of 𝑒𝛼
𝑎 , so we can bring the spacetime Riemann tensor into our calculation using its

definition as the action of the commutator [∇𝛽, ∇𝛾] upon 𝑒𝛼
𝑎 . Acting with 𝑒𝛾

𝑐 ∇𝛾 on both sides

of (2.21) gives us the following identity:

𝑒𝛾
𝑐 ∇𝛾(𝑒𝛽

𝑏 ∇𝛽𝑒𝛼
𝑎 ) = 𝑒𝛾

𝑐 ∇𝛾(Γ𝑑
𝑎𝑏𝑒

𝛼
𝑑 − 𝜀𝐾𝑎𝑏𝑛

𝛼). (2.22)

We first expand the left-hand side:

𝑒𝛾
𝑐 ∇𝛾(𝑒𝛽

𝑏 ∇𝛽𝑒𝛼
𝑎 ) = 𝑒𝛾

𝑐 𝑒𝛽
𝑏 ∇𝛾∇𝛽𝑒𝛼

𝑎 + (𝑒𝛾
𝑐 ∇𝛾𝑒𝛽

𝑏 )∇𝛽𝑒𝛼
𝑎

= 𝑒𝛾
𝑐 𝑒𝛽

𝑏 ∇𝛾∇𝛽𝑒𝛼
𝑎 + (Γ𝑑

𝑏𝑐𝑒
𝛽
𝑑 − 𝜀𝐾𝑏𝑐𝑛

𝛽)∇𝛽𝑒𝛼
𝑎

= 𝑒𝛾
𝑐 𝑒𝛽

𝑏 ∇𝛾∇𝛽𝑒𝛼
𝑎 + Γ𝑑

𝑏𝑐(Γ𝑒
𝑎𝑑𝑒𝛼

𝑒 − 𝜀𝐾𝑎𝑑𝑛𝛼) − 𝜀𝐾𝑏𝑐𝑛
𝛽∇𝛽𝑒𝛼

𝑎 , (2.23)

where we have used (2.21) twice.

Next, we work on the right-hand side:

𝑒𝛾
𝑐 ∇𝛾(Γ𝑑

𝑎𝑏𝑒
𝛼
𝑑 − 𝜀𝐾𝑎𝑏𝑛

𝛼) = 𝑒𝛼
𝑑 (𝑒𝛾

𝑐 ∇𝛾Γ𝑑
𝑎𝑏) + Γ𝑑

𝑎𝑏(𝑒𝛾
𝑐 ∇𝛾𝑒𝛼

𝑑 ) +

− 𝜀𝑛𝛼(𝑒𝛾
𝑐 ∇𝛾𝐾𝑎𝑏) − 𝜀𝐾𝑎𝑏𝑒

𝛾
𝑐 ∇𝛾𝑛𝛼

= 𝑒𝛼
𝑑 𝜕𝑐Γ𝑑

𝑎𝑏 + Γ𝑑
𝑎𝑏(Γ𝑒

𝑑𝑐𝑒
𝛼
𝑒 − 𝜀𝐾𝑑𝑐𝑛

𝛼) +

− 𝜀𝑛𝛼𝜕𝑐𝐾𝑎𝑏 − 𝜀𝐾𝑎𝑏𝑒
𝛾
𝑐 ∇𝛾𝑛𝛼. (2.24)

In the following development, after we equate (2.23) and (2.24) and solve for 𝑒𝛾
𝑐 𝑒𝛽

𝑏 ∇𝛾∇𝛽𝑒𝛼
𝑎 ,

we collect the terms with 𝑒𝛼
𝑒 and 𝑛𝛼, gathering them in two sets within parentheses, aiming

to introduce the intrinsic curvature in the first set and the covariant derivative of the extrinsic

curvature in the second one:

𝑒𝛾
𝑐 𝑒𝛽

𝑏 ∇𝛾∇𝛽𝑒𝛼
𝑎 = 𝑒𝛼

𝑑 𝜕𝑐Γ𝑑
𝑎𝑏 + Γ𝑑

𝑎𝑏(Γ𝑒
𝑐𝑑𝑒𝛼

𝑒 − 𝜀𝐾𝑐𝑑𝑛𝛼) − Γ𝑑
𝑏𝑐(Γ𝑒

𝑎𝑑𝑒𝛼
𝑒 − 𝜀𝐾𝑎𝑑𝑛𝛼) +

− 𝜀𝑛𝛼𝜕𝑐𝐾𝑎𝑏 + 𝜀𝐾𝑏𝑐𝑛
𝛽∇𝛽𝑒𝛼

𝑎 − 𝜀𝐾𝑎𝑏𝑒
𝛾
𝑐 ∇𝛾𝑛𝛼

= 𝑒𝛼
𝑑 𝜕𝑐Γ𝑑

𝑎𝑏 + (Γ𝑑
𝑎𝑏Γ𝑒

𝑐𝑑 − Γ𝑑
𝑏𝑐Γ𝑒

𝑎𝑑)𝑒𝛼
𝑒 − 𝜀(Γ𝑑

𝑎𝑏𝐾𝑐𝑑 − Γ𝑑
𝑏𝑐𝐾𝑎𝑑)𝑛𝛼 +

− 𝜀𝑛𝛼𝜕𝑐𝐾𝑎𝑏 + 𝜀𝐾𝑏𝑐𝑛
𝛽∇𝛽𝑒𝛼

𝑎 − 𝜀𝐾𝑎𝑏𝑒
𝛾
𝑐 ∇𝛾𝑛𝛼

= (𝜕𝑐Γ𝑒
𝑎𝑏 + Γ𝑒

𝑐𝑑Γ𝑑
𝑎𝑏 − Γ𝑒

𝑎𝑑Γ𝑑
𝑏𝑐)𝑒𝛼

𝑒 − 𝜀(𝜕𝑐𝐾𝑎𝑏 − Γ𝑑
𝑏𝑐𝐾𝑎𝑑 + Γ𝑑

𝑎𝑏𝐾𝑐𝑑)𝑛𝛼 +

+ 𝜀𝐾𝑏𝑐𝑛
𝛽∇𝛽𝑒𝛼

𝑎 − 𝜀𝐾𝑎𝑏𝑒
𝛾
𝑐 ∇𝛾𝑛𝛼

= (𝑅𝑒
𝑎𝑐𝑏 + 𝜕𝑏Γ𝑒

𝑎𝑐 + Γ𝑒
𝑏𝑑Γ𝑑

𝑎𝑐)𝑒𝛼
𝑒 − 𝜀(𝐷𝑐𝐾𝑎𝑏 + Γ𝑑

𝑎𝑐𝐾𝑑𝑏 + Γ𝑑
𝑎𝑏𝐾𝑐𝑑)𝑛𝛼 +

+ 𝜀𝐾𝑏𝑐𝑛
𝛽∇𝛽𝑒𝛼

𝑎 − 𝜀𝐾𝑎𝑏𝑒
𝛾
𝑐 ∇𝛾𝑛𝛼. (2.25)
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A similar expression for 𝑒𝛽
𝑏 𝑒𝛾

𝑐 ∇𝛽∇𝛾𝑒𝛼
𝑒 is given by

𝑒𝛽
𝑏 𝑒𝛾

𝑐 ∇𝛽∇𝛾𝑒𝛼
𝑒 = (𝑅𝑒

𝑎𝑏𝑐 + 𝜕𝑐Γ𝑒
𝑎𝑏 + Γ𝑒

𝑐𝑑Γ𝑑
𝑎𝑏)𝑒𝛼

𝑒 − 𝜀(𝐷𝑏𝐾𝑎𝑐 + Γ𝑑
𝑎𝑏𝐾𝑑𝑐 + Γ𝑑

𝑎𝑐𝐾𝑏𝑑)𝑛𝛼 +

+ 𝜀𝐾𝑐𝑏𝑛
𝛾∇𝛾𝑒𝛼

𝑎 − 𝜀𝐾𝑎𝑐𝑒
𝛽
𝑏 ∇𝛽𝑛𝛼. (2.26)

We now subtract (2.25) from (2.26) and use 𝑅𝛼
𝜇𝛽𝛾𝑒𝜇

𝑎 = [∇𝛽, ∇𝛾]𝑒𝛼
𝑎 to obtain

𝑅𝜇
𝛼𝛽𝛾𝑒𝛼

𝑎 𝑒𝛽
𝑏 𝑒𝛾

𝑐 = 𝑅𝑒
𝑎𝑏𝑐𝑒

𝜇
𝑒 − 𝜀(𝐷𝑏𝐾𝑎𝑐 − 𝐷𝑐𝐾𝑎𝑏)𝑛𝜇 + 𝜀𝐾𝑎𝑏𝑒

𝛾
𝑐 ∇𝛾𝑛𝜇 − 𝜀𝐾𝑎𝑐𝑒

𝛽
𝑏 ∇𝛽𝑛𝜇, (2.27)

where we exchanged the indices 𝛼 and 𝜇.

Multiplying this equation by 𝑒𝑑𝜇, we obtain 𝑅𝜇
𝛼𝛽𝛾 fully evaluated on 𝜕𝒱 , where it can be

directly related with the curvatures of the hypersurface:

𝑅𝜇𝛼𝛽𝛾𝑒𝛼
𝑎 𝑒𝛽

𝑏 𝑒𝛾
𝑐 𝑒𝜇

𝑑 = (𝑔𝜇𝜈𝑒𝜇
𝑑𝑒𝜈

𝑐 )𝑅𝑒
𝑎𝑏𝑐 + 𝜀𝐾𝑎𝑏(𝑒𝜇

𝑑𝑒𝛾
𝑐 ∇𝛾𝑛𝜇) − 𝜀𝐾𝑎𝑐(𝑒𝜇

𝑑𝑒𝛽
𝑏 ∇𝛽𝑛𝜇)

= 𝑅𝑑𝑎𝑏𝑐 + 𝜀(𝐾𝑎𝑏𝐾𝑐𝑑 − 𝐾𝑎𝑐𝐾𝑏𝑑), (2.28)

where we have used the definitions of the induced metric and the extrinsic curvature. This is

the curvature relationship that we were looking for. Notice that the term between parentheses

has the same symmetries of 𝑅𝑑𝑎𝑏𝑐. If we multiply (2.27) by 𝑛𝜇 instead, we find

𝑅𝜇𝛼𝛽𝛾𝑛𝜇𝑒𝛼
𝑎 𝑒𝛽

𝑏 𝑒𝛾
𝑐 = 𝐷𝑐𝐾𝑎𝑏 − 𝐷𝑏𝐾𝑎𝑐. (2.29)

Equations (2.28) and (2.29) are known as the general form of the Gauss-Codazzi equations.

They show that some projections of the spacetime curvature tensor along 𝑒𝛼
𝑎 and 𝑛𝛼 can be

written in terms of the curvatures of the hypersurface. There are also zero projections:

𝑅𝜇𝛼𝜈𝛽𝑛𝜇𝑛𝛼𝑛𝜈𝑛𝛽 = 0 and 𝑅𝜇𝛼𝜈𝛽𝑛𝜇𝑒𝛼
𝑎 𝑛𝜈𝑛𝛽 = 0.

The Gauss-Codazzi equations can be written in terms of the Einstein tensor,

𝐺𝛼𝛽 = 𝑅𝛼𝛽 − 1
2𝑅𝑔𝛼𝛽. (2.30)

The advantage of writing this way is that using Einstein’s field equations we can relate the

matter content in the region 𝒱 to the intrinsic and extrinsic curvatures of its boundary. We

start from the definitions of the Ricci tensor,

𝑅𝛼𝛽 = 𝑔𝜇𝜈𝑅𝜇𝛼𝜈𝛽

= (𝜀𝑛𝜇𝑛𝜈 + ℎ𝑚𝑛𝑒𝜇
𝑚𝑒𝜈

𝑛)𝑅𝜇𝛼𝜈𝛽

= 𝜀𝑅𝜇𝛼𝜈𝛽𝑛𝜇𝑛𝜈 + ℎ𝑚𝑛𝑅𝜇𝛼𝜈𝛽𝑒𝜇
𝑚𝑒𝜈

𝑛, (2.31)
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and the Ricci scalar,

𝑅 = 𝑔𝛼𝛽𝑅𝛼𝛽

= (𝜀𝑛𝛼𝑛𝛽 + ℎ𝑎𝑏𝑒𝛼
𝑎 𝑒𝛽

𝑏 )(𝜀𝑅𝜇𝛼𝜈𝛽𝑛𝜇𝑛𝜈 + ℎ𝑚𝑛𝑅𝜇𝛼𝜈𝛽𝑒𝜇
𝑚𝑒𝜈

𝑛)

= 𝑅𝜇𝛼𝜈𝛽𝑛𝜇𝑛𝛼𝑛𝜈𝑛𝛽 + 𝜀ℎ𝑚𝑛𝑅𝜇𝛼𝜈𝛽𝑒𝜇
𝑚𝑛𝛼𝑒𝜈

𝑛𝑛𝛽 +

+ 𝜀ℎ𝑎𝑏𝑅𝜇𝛼𝜈𝛽𝑛𝜇𝑒𝛼
𝑎 𝑛𝜈𝑒𝛽

𝑏 + ℎ𝑎𝑏ℎ𝑚𝑛𝑅𝜇𝛼𝜈𝛽𝑒𝜇
𝑚𝑒𝛼

𝑎 𝑒𝜈
𝑛𝑒𝛽

𝑏 . (2.32)

The first term in (2.32) is zero, while the second and third are the same, which one can see

by doing the exchanges 𝛼 ↔ 𝜇 and 𝛽 ↔ 𝜈 in the indices and knowing that 𝑅𝛼𝜇𝛽𝜈 = 𝑅𝜇𝛼𝜈𝛽.

Hence, we are left with

𝑅 = 2𝜀ℎ𝑎𝑏𝑅𝜇𝛼𝜈𝛽𝑛𝜇𝑒𝛼
𝑎 𝑛𝜈𝑒𝛽

𝑏 + ℎ𝑎𝑏ℎ𝑚𝑛𝑅𝜇𝛼𝜈𝛽𝑒𝜇
𝑚𝑒𝛼

𝑎 𝑒𝜈
𝑛𝑒𝛽

𝑏 . (2.33)

Substituting the expressions (2.31) and (2.33) into (2.30) results in

𝐺𝛼𝛽 = 𝜀𝑅𝜇𝛼𝜈𝛽𝑛𝜇𝑛𝜈 + ℎ𝑚𝑛𝑅𝜇𝛼𝜈𝛽𝑒𝜇
𝑚𝑒𝜈

𝑛 +

− 1
2(2𝜀ℎ𝑎𝑏𝑅𝜇𝛼𝜈𝛽𝑛𝜇𝑒𝛼

𝑎 𝑛𝜈𝑒𝛽
𝑏 + ℎ𝑎𝑏ℎ𝑚𝑛𝑅𝜇𝛼𝜈𝛽𝑒𝜇

𝑚𝑒𝛼
𝑎 𝑒𝜈

𝑛𝑒𝛽
𝑏 )𝑔𝛼𝛽. (2.34)

Projecting twice along 𝑛𝛼 and using (2.28):

−2𝜀𝐺𝛼𝛽𝑛𝛼𝑛𝛽 = − 2𝜀ℎ𝑚𝑛𝑅𝜇𝛼𝜈𝛽𝑒𝜇
𝑚𝑛𝛼𝑒𝜈

𝑛𝑛𝛽 + 2𝜀ℎ𝑎𝑏𝑅𝜇𝛼𝜈𝛽𝑛𝜇𝑒𝛼
𝑎 𝑛𝜈𝑒𝛽

𝑏 + ℎ𝑎𝑏ℎ𝑚𝑛𝑅𝜇𝛼𝜈𝛽𝑒𝜇
𝑚𝑒𝛼

𝑎 𝑒𝜈
𝑛𝑒𝛽

𝑏

= ℎ𝑎𝑏ℎ𝑚𝑛[𝑅𝑚𝑎𝑛𝑏 + 𝜀(𝐾𝑎𝑛𝐾𝑏𝑚 − 𝐾𝑎𝑏𝐾𝑛𝑚)]

= 𝑅3 + 𝜀(𝐾𝑏𝑚𝐾𝑏𝑚 − 𝐾2), (2.35)

where 𝑅3 := ℎ𝑎𝑏𝑅𝑛
𝑎𝑛𝑏 represents the three-Ricci scalar.

Multiplying by 𝑒𝛼
𝑎 𝑛𝛽 and using (2.29):

𝐺𝛼𝛽𝑒𝛼
𝑎 𝑛𝛽 = ℎ𝑚𝑛𝑅𝜇𝛼𝜈𝛽𝑒𝜇

𝑚𝑒𝛼
𝑎 𝑒𝜈

𝑛𝑛𝛽

= ℎ𝑚𝑛𝑅𝛽𝜈𝛼𝜇𝑛𝛽𝑒𝜈
𝑛𝑒𝛼

𝑎 𝑒𝜇
𝑚

= ℎ𝑚𝑛(𝐷𝑚𝐾𝑛𝑎 − 𝐷𝑎𝐾𝑛𝑚)

= 𝐷𝑚𝐾𝑚
𝑎 − 𝐷𝑎𝐾. (2.36)

Equations (2.35) and (2.36) are known as the contracted form of the Gauss-Codazzi equations

and shows us the close relation between those components of the Einstein tensor and the

curvatures of the hypersurface.

Before we leave this subsection, we need to derive one last expression that will come

in handy later. Observe that in the first term on the right-hand side of (2.33) we have
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𝑅𝜇𝛼𝜈𝛽𝑛𝜇𝑒𝛼
𝑎 𝑛𝜈𝑒𝛽

𝑏 , which is the missing component of the spacetime curvature tensor. We will

work on this term and end up with a more convenient expression for the spacetime Ricci scalar.

As usual, using the completeness relation, we have:

2𝜀(ℎ𝑎𝑏𝑒𝛼
𝑎 𝑒𝛽

𝑏 )𝑅𝜇𝛼𝜈𝛽𝑛𝜇𝑛𝜈 = 2𝜀(𝑔𝛼𝛽 − 𝜀𝑛𝛼𝑛𝛽)𝑅𝜇𝛼𝜈𝛽𝑛𝜇𝑛𝜈

= 2𝜀𝑔𝛼𝛽𝑅𝜇𝛼𝜈𝛽𝑛𝜇𝑛𝜈

= 2𝜀𝑅𝜇𝜈𝑛𝜇𝑛𝜈 , (2.37)

with

𝑅𝜇𝜈𝑛𝜇𝑛𝜈 = 𝑛𝜈(𝑅𝛼
𝜇𝛼𝜈𝑛𝜇)

= 𝑛𝜈(∇𝛼∇𝜈𝑛𝛼 − ∇𝜈∇𝛼𝑛𝛼)

= ∇𝛼(𝑛𝜈∇𝜈𝑛𝛼) − ∇𝛼𝑛𝜈∇𝜈𝑛𝛼 − ∇𝜈(𝑛𝜈∇𝛼𝑛𝛼) + ∇𝜈𝑛𝜈∇𝛼𝑛𝛼

= ∇𝛼(𝑛𝜈∇𝜈𝑛𝛼 − 𝑛𝛼∇𝜈𝑛𝜈) − ∇𝛼𝑛𝜈∇𝜈𝑛𝛼 + 𝐾2, (2.38)

where we recognized 𝐾 = ∇𝛼𝑛𝛼, the trace of the extrinsic curvature. The second term in the

above equation can be written as

∇𝛼𝑛𝛽∇𝛽𝑛𝛼 = 𝑔𝛽𝜇𝑔𝛼𝜈∇𝛼𝑛𝛽∇𝜇𝑛𝜈

= (𝜀𝑛𝛽𝑛𝜇 + ℎ𝛽𝜇)(𝜀𝑛𝛼𝑛𝜈 + ℎ𝛼𝜈)∇𝛼𝑛𝛽∇𝜇𝑛𝜈

= (𝜀𝑛𝛽𝑛𝜇 + ℎ𝛽𝜇)ℎ𝛼𝜈∇𝛼𝑛𝛽∇𝜇𝑛𝜈

= (ℎ𝑏𝑚𝑒𝛽
𝑏 𝑒𝜇

𝑚)(ℎ𝑎𝑛𝑒𝛼
𝑎 𝑒𝜈

𝑛)∇𝛼𝑛𝛽∇𝜇𝑛𝜈

= ℎ𝑏𝑚ℎ𝑎𝑛(𝑒𝛽
𝑏 𝑒𝛼

𝑎 ∇𝛼𝑛𝛽)(𝑒𝜈
𝑛𝑒𝜇

𝑚∇𝜇𝑛𝜈)

= ℎ𝑏𝑚ℎ𝑎𝑛𝐾𝑏𝑎𝐾𝑛𝑚

= 𝐾𝑎𝑏𝐾𝑎𝑏. (2.39)

In the second and third lines, we have used 𝑛𝛼∇𝛽𝑛𝛼 = 1
2∇𝛽(𝑛𝛼𝑛𝛼) = 0. Finally, we gather

these results in a new expression for the spacetime Ricci scalar:

𝑅 = 𝑅3 − 𝜀(𝐾𝑎𝑏𝐾𝑎𝑏 − 𝐾2) + 2𝜀∇𝛼(𝑛𝛽∇𝛽𝑛𝛼 − 𝑛𝛼∇𝛽𝑛𝛽). (2.40)

2.1.3 Lagrangian formulation of general relativity

We close this section with a brief discussion about the Lagrangian formalism, which ap-

plication in general relativity yields the Einstein field equations. Consider a scalar field 𝜑(𝑥𝛼)
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defined in 𝒱 . Suppose 𝜑 held fixed on the boundary 𝜕𝒱 . The necessary information to de-

termine the dynamic of this field is contained in the Lagrangian density, a scalar function

ℒ (𝜑, 𝜕𝛼𝜑) from which we build the action functional 𝑆[𝜑]:

𝑆[𝜑] =
∫︁

𝒱
ℒ (𝜑, 𝜕𝛼𝜑)

√
−𝑔 d4𝑥, (2.41)

where 𝑔 = det(𝑔𝛼𝛽) < 0 is the determinant of the metric in 𝒱 .

We state that among all possible time evolutions for the field configuration, the action

functional should be an extremum only for the evolution that the field configuration will truly

perform. This statement is the so-called Hamilton’s variational principle. Considering arbitrary

variations 𝛿𝜑(𝑥𝛼) around the true evolution, we calculate, in first-order in 𝛿𝜑, the variation of

the action. The condition 𝛿𝜑|𝜕𝒱 = 0 annihilate an eventual hypersurface integral. Demanding

𝛿𝑆 = 0, we obtain the Euler-Lagrange equation:

𝜕ℒ

𝜕𝜑
− ∇𝛼

𝜕ℒ

𝜕(∇𝛼𝜑) = 0. (2.42)

Once we are given a Lagrangian density, the solution of this equation, together with a boundary

condition, uniquely determines the field dynamics.

Following the example of scalar field, we are led to choose for the gravitational field 𝑔𝛼𝛽

a Lagrangian density ℒ = ℒ (𝑔𝛼𝛽, 𝜕𝜇𝑔𝛼𝛽). However, the first derivatives of the metric are

not tensorial quantities, so one can not build a scalar by combining them. Therefore, we allow

the inclusion of the next order derivatives: ℒ = ℒ (𝑔𝛼𝛽, 𝜕𝜇𝑔𝛼𝛽, 𝜕𝜇𝜕𝜈𝑔𝛼𝛽). The simplest scalar

quantity built from the metric up to its second derivatives and that contains the necessary

information to describe the spacetime geometry is the Ricci scalar. But the variation of a

Lagrangian density that depends on the field’s second derivatives gives rise to an additional

hypersurface integral that does not vanish by the condition of a fixed field on the boundary

𝜕𝒱 . To circumvent this problem without imposing one more condition on the field, which

would reduce the scope of our formalism, we add a boundary term to the gravitational action,

which variation must cancel out this additional hypersurface integral. Thus, the gravitational

action 𝑆𝐺 is given by two terms:

𝑆𝐺[𝑔] = 𝑆𝐻 [𝑔] + 𝑆𝐵[𝑔], (2.43)

where

𝑆𝐻 [𝑔] = 1
2𝜅

∫︁
𝒱

𝑅
√

−𝑔 d4𝑥 (2.44)
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is known as the Hilbert term (𝜅 = 8𝜋𝐺, where 𝐺 is Newton’s gravitational constant) and

𝑆𝐵[𝑔] = 1
𝜅

∮︁
𝜕𝒱

𝜀𝐾
√︁

|ℎ| d3𝑦 (2.45)

is the boundary term, with ℎ = det(ℎ𝑎𝑏) representing the determinant of the metric on 𝜕𝒱 .

To derive a field equation for the gravitational field, we must now apply Hamilton’s principle

to the total action

𝑆 = 𝑆𝐺[𝑔] + 𝑆𝑀 [𝜑, 𝑔], (2.46)

where we include the matter action

𝑆𝑀 [𝜑, 𝑔] =
∫︁

𝒱
ℒ𝑀

(︁
𝜑, 𝜕𝛼𝜑, 𝑔𝛼𝛽

)︁√
−𝑔 d4𝑥 (2.47)

to account for the possible presence of matter, represented by the scalar field 𝜑, in 𝒱 . After

we calculate the variations of all these terms ((POISSON, 2004), sec. 4.1), 𝑆𝐻 , 𝑆𝐵, and 𝑆𝑀 ,

we impose 𝛿𝑆 = 0 and arrive at the Einstein field equations:

𝐺𝛼𝛽 = 𝜅𝑇𝛼𝛽, (2.48)

where

𝑇𝛼𝛽 := ℒ𝑀𝑔𝛼𝛽 − 2𝜕ℒ𝑀

𝜕𝑔𝛼𝛽
, (2.49)

is the energy-momentum tensor.

2.2 ADM FORMALISM

2.2.1 3+1 decomposition

In our discussion above, we have introduced the idea of the time evolution of a field

configuration. One way to think about this idea is through an analogy, imagining the field as

a book, where each sheet represents the field at a given time. The i-th sheet corresponds to

a field configuration 𝜑(𝑡𝑖, x). Thus, the time evolution has its meaning translated into the act

of reading the book: the history of the field is told as we turn the pages, stacking more and

more sheets. The time evolution perspective promotes the timelike coordinate to a prominent

position by designating it as responsible for bringing about the change of state of the system,

which is dissonant with the covariant way in which we have written the Einstein field equations,

with timelike and spacelike coordinates treated on equal footing.
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To clarify this point, consider the simple case of a system with only one degree of freedom,

𝑞, and Lagrangian 𝐿(𝑞, 𝑞) homogeneous of first degree in 𝑞: 𝐿(𝑞, 𝜆𝑞) = 𝜆𝐿(𝑞, 𝑞). According

to Euler’s homogeneous function theorem:

𝐿 = 𝑞
𝜕𝐿

𝜕𝑞
. (2.50)

But this is equivalent to the statement that the Hamiltonian of the system is zero:

𝑝𝑞 − 𝐿 = 0, (2.51)

where 𝑝 = 𝜕𝐿/𝜕𝑞 is the momentum conjugate to 𝑞. Now consider a change of independent

time variable, from 𝑡 to 𝜏 . Using the homogeneity of the Lagrangian:

𝐿

(︃
𝑞,

d𝑞

d𝑡

)︃
= 𝐿

(︃
𝑞,

d𝑞/d𝜏

d𝑡/d𝜏

)︃
= d𝜏

d𝑡
𝐿

(︃
𝑞,

d𝑞

d𝜏

)︃
. (2.52)

The action then becomes ∫︁
𝐿(𝑞, 𝑞) d𝑡 =

∫︁
𝐿

(︃
𝑞,

d𝑞

d𝜏

)︃
d𝜏. (2.53)

Therefore, for a dynamical system with vanishing Hamiltonian, we can change the time

parameterization, 𝑡 → 𝜏 , and define a new Lagrangian

̃︀𝐿 = d𝑡

d𝜏
𝐿, (2.54)

such that the action stays invariant. As we will see further, the gravitational field is an example

of such a system with a vanishing Hamiltonian, and although we select a specific Lorentz frame

(time parameterization) in formulating the Hamiltonian of the field, we can switch frames

insofar we have an invariant variational principle.

We can incorporate the time evolution perspective directly into our description of spacetime

geometry. That is the idea behind the 3 + 1 decomposition, which consists of foliate the

spacetime with a family of arbitrary, non-intersecting, spacelike hypersurfaces {ΣΦ}, where

the index Φ ∈ R selects a member of the family.
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Figure 1 – Foliation of spacetime by spacelike hypersurfaces.

Σ3

Σ2

Σ1

tim
e

Source: the author (2021).

The specification of a particular hypersurface of the foliation can be made by a restriction

on the spacetime coordinates 𝑥𝛼 if we introduce a single-valued scalar field Φ(𝑥𝛼), usually

called the time function, such that Φ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 defines the hypersurface Σ𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. We

require the unit normal to the hypersurfaces, 𝑛𝛼 ∝ 𝜕𝛼Φ, to be a future-directed timelike

vector field, 𝑛𝛼𝑛𝛼 = −1. Therefore, the convention 𝑛𝛼𝜕𝛼Φ > 0 implies that Φ must increase

monotonically with the timelike coordinate in 𝒱 .

Now that we have 𝒱 foliated, we search for an alternative coordinate system that better

suits this construction. On each hypersurface ΣΦ we have the freedom of setting up a coor-

dinate system (𝑦𝑎)Φ independently of the coordinate systems that we lay down on the other

hypersurfaces of the foliation. In 𝒱 we define a congruence of curves {ℓ𝑠}, where the index

𝑠 ∈ R selects a member of the congruence, all of them parameterized by Φ and with tangent

vector field 𝑡𝛼 intersecting the hypersurfaces. We do not require that these curves intersect

the hypersurfaces orthogonally, which means that 𝑡𝛼 does not need to be parallel to 𝑛𝛼, nor

that they are geodesics, in which case 𝑡𝛼 should satisfy the geodesic equation. By construc-

tion, the parameter Φ of all curves crossing a given hypersurface ΣΦ has the same value. We

now link the initially unrelated intrinsic coordinates (𝑦𝑎)Φ by imposing the coordinates 𝑦𝑎 of

all points pierced by a given curve ℓ𝑠 to be the same. With this picture of the congruence

carrying through spacetime a grid of intrinsic coordinates placed on a hypersurface, we have

the alternative coordinate system that we were looking for, which is (𝑡, 𝑦𝑎) (from now on, we

will use 𝑡(𝑥𝛼) instead of Φ(𝑥𝛼)).
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Figure 2 – Construction of the coordinate system (𝑡, 𝑦𝑎).

Σ𝑡

ℓ𝑠

𝑦𝑎𝑡(𝑥𝛼)
𝑛𝛼

𝑒𝛼
𝑎

𝑡𝛼

𝒱 : 𝑥𝛼

Source: the author (2021).

The time function 𝑡(𝑥𝛼) determines the way we slice 𝒱 , so the arbitrariness of the foliation

is a consequence of the arbitrariness of 𝑡. A displacement along a curve ℓ𝑠 can be written as

d𝑥𝛼 = d𝑡 𝑡𝛼. But a change in 𝑡(𝑥𝛼) is given by d𝑡 = 𝜕𝛼𝑡 d𝑥𝛼. Hence, we obtain

𝑡𝛼𝜕𝛼𝑡 = 1. (2.55)

The original and the alternative coordinate systems are related by some well behaved parametric

relations 𝑥𝛼(𝑡, 𝑦𝑎). Once the 3 + 1 decomposition is made, we must be able to express the

spacetime metric in terms of the new coordinate system. The unit normal to the hypersurfaces

is

𝑛𝛼 = −𝑁𝜕𝛼𝑡, (2.56)

where the normalization function 𝑁 is called the lapse. In coordinates (𝑡, 𝑦𝑎) the lapse function

is 𝑁 = (−𝑔𝛼𝛽𝜕𝛼𝑡𝜕𝛽𝑡)−1/2 = (−𝑔𝑡𝑡)−1/2. The vector fields 𝑡𝛼 and 𝑒𝛼
𝑎 tangent to the congruence

and the hypersurfaces, respectively, are “naturally” given by

𝑡𝛼 =
(︃

𝜕𝑥𝛼

𝜕𝑡

)︃
𝑦𝑎

and 𝑒𝛼
𝑎 =

(︃
𝜕𝑥𝛼

𝜕𝑦𝑎

)︃
𝑡

, (2.57)

with 𝑒𝛼
𝑎 orthogonal to 𝑛𝛼: 𝑛𝛼𝑒𝛼

𝑎 = 0. The statement that we can interchange the order of

second partial derivatives,
𝜕

𝜕𝑡
𝑒𝛼

𝑎 = 𝜕

𝜕𝑦𝑎
𝑡𝛼, (2.58)

can be cast into the form of 𝑡𝛽∇𝛽𝑒𝛼
𝑎 = 𝑒𝛽

𝑎∇𝛽𝑡𝛼, which implies that 𝑡𝛼 and 𝑒𝛼
𝑎 are Lie transported

along each other:

L𝑡𝑒
𝛼
𝑎 = 0. (2.59)
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Using 𝑛𝛼 and 𝑒𝛼
𝑎 as basis vectors, we can decompose 𝑡𝛼 as follows:

𝑡𝛼 = 𝑁𝑛𝛼 + 𝑁𝑎𝑒𝛼
𝑎 , (2.60)

where the three-vector 𝑁𝑎 is called the shift. Using (2.55) and (2.56) it is easy to see that

the normal component of 𝑡𝛼 indeed must agree with the lapse function.

Figure 3 – Decomposition of the flow vector 𝑡𝛼 in the basis {𝑛𝛼, 𝑒𝛼
𝑎 }.

Σ𝑡

ℓ𝑠

𝑃

𝑁𝑎𝑒𝛼
𝑎

𝑁𝑛𝛼 𝑡𝛼

Source: the author (2021).

With this, a displacement in 𝒱 is written as

d𝑥𝛼 = 𝑡𝛼d𝑡 + 𝑒𝛼
𝑎 d𝑦𝑎

= (𝑁𝑛𝛼 + 𝑁𝑎𝑒𝛼
𝑎 )d𝑡 + 𝑒𝛼

𝑎 d𝑦𝑎

= (𝑁d𝑡)𝑛𝛼 + (𝑁𝑎d𝑡 + d𝑦𝑎)𝑒𝛼
𝑎 . (2.61)

Therefore, the spacetime metric expressed in coordinates (𝑡, 𝑦𝑎) is:

d𝑠2
ADM = 𝑔𝛼𝛽 [(𝑁d𝑡)𝑛𝛼 + (𝑁𝑎d𝑡 + d𝑦𝑎)𝑒𝛼

𝑎 ]
[︁
(𝑁d𝑡)𝑛𝛽 + (𝑁 𝑏d𝑡 + d𝑦𝑏)𝑒𝛽

𝑏

]︁
= −𝑁2d𝑡2 + ℎ𝑎𝑏(d𝑦𝑎 + 𝑁𝑎d𝑡)(d𝑦𝑏 + 𝑁 𝑏d𝑡) (2.62a)

= −(𝑁2 − 𝑁𝑎𝑁𝑎)d𝑡2 + 2𝑁𝑎d𝑦𝑎d𝑡 + ℎ𝑎𝑏d𝑦𝑎d𝑦𝑏, (2.62b)

where ℎ𝑎𝑏 = 𝑔𝛼𝛽𝑒𝛼
𝑎 𝑒𝛽

𝑏 is the induced metric on the hypersurfaces. In matrix notation:
⎛⎜⎜⎝𝑔𝑡𝑡 𝑔𝑡𝑎

𝑔𝑎𝑡 𝑔𝑎𝑏

⎞⎟⎟⎠ =

⎛⎜⎜⎝−(𝑁2 − 𝑁𝑎𝑁𝑎) 𝑁𝑎

𝑁𝑎 ℎ𝑎𝑏

⎞⎟⎟⎠ , (2.63)

⎛⎜⎜⎝𝑔𝑡𝑡 𝑔𝑡𝑎

𝑔𝑎𝑡 𝑔𝑎𝑏

⎞⎟⎟⎠ = 1
𝑁2

⎛⎜⎜⎝−1 𝑁𝑎

𝑁𝑎 𝑁2ℎ𝑎𝑏 − 𝑁𝑎𝑁 𝑏

⎞⎟⎟⎠ , (2.64)
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from where one can check the following relation:
√

−𝑔 = 𝑁
√

ℎ. (2.65)

Eq. (2.62a) makes clear the roles of the lapse function and the shift vector: 𝑁 translates

an elapsed time d𝑡 to a proper time, while 𝑁𝑎 tells us how much the initial coordinates have

shifted in the spatial directions.

Figure 4 – Lapse and shift visualization.

Σ𝑡+d𝑡

Σ𝑡
𝑃 (𝑦𝑎)

𝑄(𝑦𝑎 − 𝑁𝑎d𝑡)

𝑁d𝑡

𝑃 ′(𝑦𝑎 + d𝑦𝑎)

d𝑠ADM

Source: the author (2021).

Furthermore, (2.63) explicitly shows that the information contained in the spacetime metric

is preserved on the hypersurfaces Σ𝑡 and the flow ℓ: on the right-hand side we have the six

independent components ℎ𝑎𝑏(𝑡, y), the lapse function 𝑁(𝑡, y), and the three components

𝑁𝑎(𝑡, y) of the shift vector, matching the 10 · ∞3 degrees of freedom represented by the ten

independent components 𝑔𝛼𝛽(𝑡, y) for every point of space on the left-hand side. However,

𝑁 and 𝑁𝑎 are redundant degrees of freedom since they reflect the arbitrariness of the time

function 𝑡(𝑥𝛼) and of the congruence ℓ: 𝑁 = (−𝑔𝑡𝑡)−1/2 and 𝑁𝛼 := 𝑁𝑎𝑒𝛼
𝑎 = 𝑡𝛼 −𝑁𝑛𝛼, which

can be thought of as a measure of the deviation from the orthogonality. Therefore, the choices

of 𝑁 and 𝑁𝑎 cannot affect the physical content of the theory. Thus, we are left with 6 · ∞3

physical degrees of freedom, and we expect to come across the “four” constraints responsible

for this reduction.

2.2.1.1 Foliation of the boundary

Now that we have the fundamental results of the 3 + 1 decomposition, equations (2.60),

(2.62b), and (2.65), we need to provide more details about the foliation of the boundary 𝜕𝒱

before we get busy adapting the gravitational action to the Hamiltonian formalism. We estab-

lished that the region 𝒱 =
𝑡2⋃︀

𝑡=𝑡1
Σ𝑡 is foliated by spacelike hypersurfaces Σ𝑡 with coordinates 𝑦𝑎
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and described by equations of the form 𝑡(𝑥𝛼) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, or by parametric relations 𝑥𝛼(𝑦𝑎). It

has a unit normal 𝑛𝛼 ∝ 𝜕𝛼𝑡 and tangent vectors 𝑒𝛼
𝑎 = 𝜕𝑥𝛼/𝜕𝑦𝑎 , so that 𝑛𝛼𝑒𝛼

𝑎 = 0. Its embed-

ding in spacetime is characterized by the induced metric ℎ𝑎𝑏 = 𝑔𝛼𝛽𝑒𝛼
𝑎 𝑒𝛽

𝑏 and the extrinsic curva-

ture 𝐾𝑎𝑏 = 𝑒𝛼
𝑎 𝑒𝛽

𝑏 ∇𝛽𝑛𝛼. The completeness relation is 𝑔𝛼𝛽 = −𝑛𝛼𝑛𝛽 +ℎ𝑎𝑏𝑒𝛼
𝑎 𝑒𝛽

𝑏 . These hypersur-

faces are bounded by closed two-surfaces 𝑆𝑡, such that 𝒱 is bounded by 𝜕𝒱 = Σ𝑡1

⋃︀
ℬ
⋃︀Σ𝑡2 ,

where ℬ =
𝑡2⋃︀

𝑡=𝑡1
𝑆𝑡 is the timelike boundary.

Figure 5 – 𝒱 is foliated by spacelike hypersurfaces Σ𝑡, which are bounded by closed two-surfaces 𝑆𝑡, which in
turn foliates the timelike boundary ℬ of 𝒱 .

𝒱

ℬ

Σ𝑡

𝑆𝑡

Σ𝑡1

Σ𝑡2

Source: the author (2021).

On the surfaces 𝑆𝑡 we define coordinates 𝜃𝐴 = (𝜃1, 𝜃2) and as embedded in Σ𝑡 they are

described by Θ(𝑦𝑎) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 or 𝑦𝑎(𝜃𝐴). Their spacelike unit normal and tangent vectors are

𝑟𝑎 ∝ 𝜕𝑎Θ and 𝑒𝑎
𝐴 = 𝜕𝑦𝑎

⧸︁
𝜕𝜃𝐴 , with 𝑟𝑎𝑒𝑎

𝐴 = 0. The induced metric is given by 𝜎𝐴𝐵 = ℎ𝑎𝑏𝑒
𝑎
𝐴𝑒𝑏

𝐵

and the extrinsic curvature by 𝑘𝐴𝐵 = 𝑒𝑎
𝐴𝑒𝑏

𝐵𝐷𝑏𝑟𝑎. The three-dimensional completeness relation

is ℎ𝑎𝑏 = 𝑟𝑎𝑟𝑏 + 𝜎𝐴𝐵𝑒𝑎
𝐴𝑒𝑏

𝐵. As embedded in spacetime, on the other hand, the restriction must

be of the form Ψ(𝑥𝛼) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 and the parametric relations are 𝑥𝛼(𝜃𝐴) = 𝑥𝛼(𝑦𝑎(𝜃𝐴)).

We then associate to 𝑟𝑎 and 𝑒𝑎
𝐴 the four-vectors 𝑟𝛼 and 𝑒𝛼

𝐴 defined by 𝑟𝛼 := 𝑟𝑎𝑒𝛼
𝑎 , such that

𝑟𝛼𝑟𝛼 = 1 and 𝑟𝛼𝑛𝛼 = 0, and

𝑒𝛼
𝐴 := 𝜕𝑥𝛼

𝜕𝜃𝐴
= 𝑒𝛼

𝑎 𝑒𝑎
𝐴,

which satisfies 𝑟𝛼𝑒𝛼
𝐴 = 0. The induced metric can be expressed as 𝜎𝐴𝐵 = (𝑔𝛼𝛽𝑒𝛼

𝑎 𝑒𝛽
𝑏 )𝑒𝑎

𝐴𝑒𝑏
𝐵 =

𝑔𝛼𝛽𝑒𝛼
𝐴𝑒𝛽

𝐵, and using definition (2.13) for the three-covariant derivative, 𝐷𝑏𝑟𝑎 = 𝑒𝛼
𝑎 𝑒𝛽

𝑏 ∇𝛽𝑟𝛼,

the extrinsic curvature becomes 𝑘𝐴𝐵 = (𝑒𝛼
𝑎 𝑒𝛽

𝑏 ∇𝛽𝑟𝛼)𝑒𝑎
𝐴𝑒𝑏

𝐵 = 𝑒𝛼
𝐴𝑒𝛽

𝐵∇𝛽𝑟𝛼. The spacetime com-

pleteness relation on 𝑆𝑡 can be written as 𝑔𝛼𝛽 = −𝑛𝛼𝑛𝛽 + 𝑟𝛼𝑟𝛽 + 𝜎𝐴𝐵𝑒𝛼
𝐴𝑒𝛽

𝐵.
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The union of all surfaces 𝑆𝑡 is represented by ℬ. In ℬ we define a congruence of curves

{𝛽𝑠} parameterized by 𝑡 and with tangent vector 𝑛𝛼 intersecting the surfaces 𝑆𝑡 orthogonally.

We use this congruence to relate the coordinates 𝜃𝐴 through all surfaces 𝑆𝑡 in the same way we

did before: 𝜃𝐴 is constant along a curve. We choose 𝑧𝑖 = (𝑡, 𝜃𝐴) to be coordinates on ℬ, which

will be defined by Ω(𝑥𝛼) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 or 𝑥𝛼(𝑧𝑖). Its unit normal is 𝑟𝛼 ∝ 𝜕𝛼Ω and its tangent

vectors we denote by 𝑒𝛼
𝑖 = 𝜕𝑥𝛼/𝜕𝑧𝑖 . The induced metric on ℬ is given by 𝛾𝑖𝑗 = 𝑔𝛼𝛽𝑒𝛼

𝑖 𝑒𝛽
𝑗 and

we let K𝑖𝑗 = 𝑒𝛼
𝑖 𝑒𝛽

𝑗 ∇𝛽𝑟𝛼 be its extrinsic curvature. The completeness relation on ℬ is simply

𝑔𝛼𝛽 = 𝑟𝛼𝑟𝛽 + 𝛾𝑖𝑗𝑒𝛼
𝑖 𝑒𝛽

𝑗 .

Figure 6 – New congruence of curves 𝛽 orthogonal to 𝑆𝑡 within ℬ along which 𝜃𝐴 is constant.

𝑆𝑡

𝑆𝑡1

𝑆𝑡2

𝛽𝜃𝐴

𝑟𝛼

𝑒𝛼
𝐴

ℬ

𝑛𝛼

𝑡

Source: the author (2021).

Due to the orthogonality of this new congruence 𝛽, there will be no shift vector associated

with it. Moreover, since the surfaces 𝑆𝑡 are the boundaries of the hypersurfaces Σ𝑡, we will

still be talking about the same lapse function 𝑁 here. Obviously, equations 𝑛𝛼 = −𝑁𝜕𝛼𝑡 and

𝑛𝛼𝑛𝛼 = −1 are still valid, such that, as the unit tangent vector to the congruence 𝛽, 𝑛𝛼 may

be expressed as

𝑛𝛼 = 1
𝑁

(︃
𝜕𝑥𝛼

𝜕𝑡

)︃
𝜃𝐴

. (2.66)

With this, a displacement on ℬ is given by:

d𝑥𝛼 =
(︃

𝜕𝑥𝛼

𝜕𝑡

)︃
d𝑡 +

(︃
𝜕𝑥𝛼

𝜕𝜃𝐴

)︃
d𝜃𝐴

= 𝑁𝑛𝛼d𝑡 + 𝑒𝛼
𝐴d𝜃𝐴. (2.67)
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Therefore, the metric on ℬ expressed in coordinates (𝑡, 𝜃𝐴) is:

d𝑠2
ℬ = 𝑔𝛼𝛽(𝑁𝑛𝛼d𝑡 + 𝑒𝛼

𝐴d𝜃𝐴)(𝑁𝑛𝛽d𝑡 + 𝑒𝛽
𝐵d𝜃𝐵)

= −𝑁2d𝑡2 + 𝜎𝐴𝐵d𝜃𝐴d𝜃𝐵. (2.68)

From this expression for 𝛾𝑖𝑗d𝑧𝑖d𝑧𝑗, it is straightforward to obtain
√

−𝛾 = 𝑁
√

𝜎, where

𝛾 = det(𝛾𝑖𝑗) and 𝜎 = det(𝜎𝐴𝐵).

2.2.1.2 Scalar field in curved spacetime

As we saw in the previous section, the field equation (2.42) for a scalar field 𝜑(𝑥𝛼) with

Lagrangian density ℒ (𝜑, 𝜕𝛼𝜑) was derived from the action functional (2.41) via Hamilton’s

principle. In the new coordinates (𝑡, 𝑦𝑎), the derivatives 𝜕𝛼𝜑 are 𝜕𝑡𝜑 := 𝜑̇, for the time deriva-

tive, and 𝜕𝑎𝜑 := 𝑒𝛼
𝑎 𝜕𝛼𝜑, for the spatial derivatives. The canonical momentum conjugate to 𝜑

is defined by

𝑝 := 𝜕

𝜕𝜑̇

(︁
ℒ

√
−𝑔
)︁
. (2.69)

Assuming that one can solve this equation for 𝜑̇, which gives 𝜑̇(𝜑, 𝜕𝑎𝜑, 𝑝), we define the

Hamiltonian density by

ℋ (𝜑, 𝜕𝑎𝜑, 𝑝) := 𝑝 𝜑̇ − ℒ (𝜑, 𝜑̇, 𝜕𝑎𝜑)
√

−𝑔. (2.70)

The Hamiltonian functional 𝐻[𝜑, 𝑝](𝑡) is obtained by integrating ℋ over Σ𝑡 and is a function

of time 𝑡. The action functional (2.41) then becomes

𝑆[𝜑, 𝑝] =
∫︁ 𝑡2

𝑡1
d𝑡
∫︁

Σ𝑡

(𝑝 𝜑̇ − ℋ ) d3𝑦 . (2.71)

We could get Hamilton’s equations of motion by varying this action with respect to 𝜑 and

𝑝. However, the equations of motion can be concisely written in the Poisson brackets (PBs)

formalism:

𝜑̇ =
{︁
𝜑, ℋ

}︁
, (2.72a)

𝑝̇ =
{︁
𝑝, ℋ

}︁
. (2.72b)

Using the Poisson brackets, we can shortly express time evolution. Let 𝒫 denote the (2 ·∞3)–

dimensional phase space formed by all pairs (𝜑(𝑡, y), 𝑝(𝑡, y)), and 𝐶∞(𝒫) denote the space
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of all smoothly differentiable functionals 𝑈 [𝜑, 𝑝] of the phase space, also known as dynamical

variables:

𝑈 : 𝒫 −→ 𝐶∞(𝒫)

(𝜑, 𝑝) ↦→ 𝑈 [𝜑, 𝑝].

Thus, { , } is a structure that generates dynamical variables. Just take two arbitrary dynamical

variables, stick into the PB and get a third one:

{ , } : 𝐶∞(𝒫) × 𝐶∞(𝒫) −→ 𝐶∞(𝒫).

This map obeys some properties:

{︁
𝑈, 𝑉

}︁
= −

{︁
𝑉, 𝑈

}︁
(antisymmmetry), (2.73a){︁

𝑈, 𝑉 + 𝜆𝑊
}︁

=
{︁
𝑈, 𝑉

}︁
+ 𝜆

{︁
𝑈, 𝑊

}︁
(bilinearity), (2.73b){︁

𝑈, 𝑉 𝑊
}︁

= 𝑉
{︁
𝑈, 𝑊

}︁
+
{︁
𝑈, 𝑉

}︁
𝑊 (product rule), (2.73c){︁

𝑈,
{︁
𝑉, 𝑊

}︁}︁
+
{︁
𝑉,
{︁
𝑊, 𝑈

}︁}︁
+
{︁
𝑊,

{︁
𝑈, 𝑉

}︁}︁
= 0 (Jacobi identity). (2.73d)

The equal-time PB of two canonical variables is a fundamental PB:

{︁
𝜑(𝑡, y), 𝜑(𝑡, y′)

}︁
= 0, (2.74a){︁

𝑝(𝑡, y), 𝑝(𝑡, y′)
}︁

= 0, (2.74b){︁
𝜑(𝑡, y), 𝑝(𝑡, y′)

}︁
= 𝛿(y − y′). (2.74c)

The definition of the PB of two functionals 𝑈 and 𝑉 with respect to the canonical variables

𝜑 and 𝑝 is ((LEMOS, 2018), sec. 11.4):

{︁
𝑈(𝑡, y), 𝑉 (𝑡, y′)

}︁
=
∫︁

Σ𝑡

(︃
𝛿𝑈(𝑡, y)
𝛿𝜑(𝑡, y′′)

𝛿𝑉 (𝑡, y′)
𝛿𝑝(𝑡, y′′) − 𝛿𝑈(𝑡, y)

𝛿𝑝(𝑡, y′′)
𝛿𝑉 (𝑡, y′)
𝛿𝜑(𝑡, y′′)

)︃
d3𝑦′′ . (2.75)

This is the prescription to generate dynamical variables using PBs.

2.2.2 Gravitational field

We are now in position to introduce the 3 + 1 decomposition to the gravitational action.

By substituting (2.44) and (2.45) into (2.43), we have

2𝜅𝑆𝐺 =
∫︁

𝒱
𝑅

√
−𝑔 d4𝑥 + 2

∮︁
𝜕𝒱

𝜀𝐾
√︁

|ℎ| d3𝑦. (2.76)
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We intend to express everything in the equation above in terms of foliated quantities. Since the

boundary 𝜕𝒱 is composed by three parts, the overall boundary integral breaks down into three

integrals referring to the two spacelike (𝜀 = −1) boundaries Σ𝑡1 and Σ𝑡2 , and the timelike

(𝜀 = +1) boundary ℬ. Moreover, because the unit normal to 𝜕𝒱 must point outward, the

integration over Σ𝑡1 carries an extra minus sign since the unit normal to Σ𝑡1 is future-directed

and therefore points inward:

2
∮︁

𝜕𝒱
𝜀𝐾

√︁
|ℎ| d3𝑦 = 2

∫︁
Σ𝑡1

𝐾
√

ℎ d3𝑦 − 2
∫︁

Σ𝑡2

𝐾
√

ℎ d3𝑦 + 2
∫︁

ℬ
K

√
−𝛾 d3𝑧. (2.77)

Making use of expression (2.40),

𝑅 = 𝑅3 + 𝐾𝑎𝑏𝐾𝑎𝑏 − 𝐾2 − 2∇𝛼(𝑛𝛽∇𝛽𝑛𝛼 − 𝑛𝛼∇𝛽𝑛𝛽), (2.78)

and writing
√

−𝑔 d4𝑥 = 𝑁
√

ℎ d𝑡 d3𝑦, the volume integral in (2.76) becomes:
∫︁

𝒱
𝑅

√
−𝑔 d4𝑥 =

∫︁ 𝑡2

𝑡1
d𝑡
∫︁

Σ𝑡

( 𝑅3 + 𝐾𝑎𝑏𝐾𝑎𝑏 − 𝐾2)𝑁
√

ℎ d3𝑦 +

− 2
∮︁

𝜕𝒱
(𝑛𝛽∇𝛽𝑛𝛼 − 𝑛𝛼∇𝛽𝑛𝛽)dΣ𝛼. (2.79)

Evaluating this last boundary integral on Σ𝑡1 , where dΣ𝛼 = 𝑛𝛼

√
ℎ d3𝑦 (extra minus sign

already included):

−2
∫︁

Σ𝑡1

(𝑛𝛽∇𝛽𝑛𝛼 − 𝑛𝛼∇𝛽𝑛𝛽)dΣ𝛼 = −2
∫︁

Σ𝑡1

(𝑛𝛼𝑛𝛽∇𝛽𝑛𝛼 + ∇𝛽𝑛𝛽)
√

ℎ d3𝑦

= −2
∫︁

Σ𝑡1

[︂1
2𝑛𝛽∇𝛽(𝑛𝛼𝑛𝛼) + ∇𝛽𝑛𝛽

]︂√
ℎ d3𝑦

= −2
∫︁

Σ𝑡1

𝐾
√

ℎ d3𝑦. (2.80)

The integration over Σ𝑡2 gives us the same result but with a plus sign. The contribution from

ℬ, on which dΣ𝛼 = 𝑟𝛼

√
−𝛾 d3𝑧, is:

−2
∫︁

ℬ
(𝑛𝛽∇𝛽𝑛𝛼 − 𝑛𝛼∇𝛽𝑛𝛽)dΣ𝛼 = −2

∫︁
ℬ

𝑟𝛼𝑛𝛽∇𝛽𝑛𝛼√
−𝛾 d3𝑧

= −2
∫︁

ℬ
[𝑛𝛽∇𝛽(𝑟𝛼𝑛𝛼) − 𝑛𝛼𝑛𝛽∇𝛽𝑟𝛼]

√
−𝛾 d3𝑧

= 2
∫︁

ℬ
𝑛𝛼𝑛𝛽∇𝛽𝑟𝛼

√
−𝛾 d3𝑧. (2.81)

When we put together these results, we see that the integrals over the spacelike boundaries

Σ𝑡1 and Σ𝑡2 cancel out so that we are left with

2𝜅𝑆𝐺 =
∫︁ 𝑡2

𝑡1
d𝑡
∫︁

Σ𝑡

( 𝑅3 + 𝐾𝑎𝑏𝐾𝑎𝑏 − 𝐾2)𝑁
√

ℎ d3𝑦 + 2
∫︁

ℬ
(K + 𝑛𝛼𝑛𝛽∇𝛽𝑟𝛼)

√
−𝛾 d3𝑧. (2.82)
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In Eq. (2.82) we have the gravitational action subjected to the foliation of 𝒱 . We can

simplify this expression if we rewrite the integrand of the integral over ℬ using the discussion

about the foliation of ℬ that we’ve made previously. For the trace K we have:

K = 𝛾𝑖𝑗K𝑖𝑗

= (𝛾𝑖𝑗𝑒𝛼
𝑖 𝑒𝛽

𝑗 )∇𝛽𝑟𝛼

= (𝑔𝛼𝛽 − 𝑟𝛼𝑟𝛽)∇𝛽𝑟𝛼. (2.83)

Hence,

K + 𝑛𝛼𝑛𝛽∇𝛽𝑟𝛼 = (𝑔𝛼𝛽 − 𝑟𝛼𝑟𝛽 + 𝑛𝛼𝑛𝛽)∇𝛽𝑟𝛼

= (𝜎𝐴𝐵𝑒𝛼
𝐴𝑒𝛽

𝐵)∇𝛽𝑟𝛼

= 𝜎𝐴𝐵𝑘𝐴𝐵

= 𝑘. (2.84)

Finally, using
√

−𝛾 d3𝑧 = 𝑁
√

𝜎 d𝑡 d2𝜃, we end up with an expression that displays the familiar

way of writing the action 𝑆𝐺 as the time integral of a Lagrangian 𝐿𝐺:

2𝜅𝑆𝐺 =
∫︁ 𝑡2

𝑡1
d𝑡
[︂∫︁

Σ𝑡

( 𝑅3 + 𝐾𝑎𝑏𝐾𝑎𝑏 − 𝐾2)𝑁
√

ℎ d3𝑦 + 2
∮︁

𝑆𝑡

𝑘𝑁
√

𝜎 d2𝜃
]︂

. (2.85)

We notice that the bulk part ℒΣ𝑡 is written as extrinsic geometry minus intrinsic geometry,

reproducing the classic form of a quadratic term 𝐾𝑎𝑏𝐾𝑎𝑏 − 𝐾2, playing the role of kinetic

energy, minus − 𝑅3 , as the potential energy. Eq. (2.85) is manifestly invariant under general

spatial coordinate transformations.

2.2.2.1 The gravitational Hamiltonian

The 3 + 1 decomposition establish the metric field ℎ𝑎𝑏 as our dynamical coordinates. The

rate of change of a field configuration ℎ𝑎𝑏 along the congruence ℓ is given by the associated

velocity ℎ̇𝑎𝑏 defined by the Lie derivative of ℎ𝑎𝑏 along the vector field 𝑡𝛼 tangent to this

congruence:

ℎ̇𝑎𝑏 := L𝑡ℎ𝑎𝑏

= L𝑡(𝑔𝛼𝛽𝑒𝛼
𝑎 𝑒𝛽

𝑏 )

= (L𝑡𝑔𝛼𝛽)𝑒𝛼
𝑎 𝑒𝛽

𝑏

= (∇𝛽𝑡𝛼 + ∇𝛼𝑡𝛽)𝑒𝛼
𝑎 𝑒𝛽

𝑏 , (2.86)
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where property (2.59) was used in the second line. Recalling that 𝑡𝛼 = 𝑁𝑛𝛼 + 𝑁𝛼, we have:

𝑒𝛼
𝑎 𝑒𝛽

𝑏 ∇𝛽𝑡𝛼 = 𝑒𝛼
𝑎 𝑒𝛽

𝑏 (𝑛𝛼∇𝛽𝑁 + 𝑁∇𝛽𝑛𝛼 + ∇𝛽𝑁𝛼)

= 𝑁(𝑒𝛼
𝑎 𝑒𝛽

𝑏 ∇𝛽𝑛𝛼) + 𝑒𝛼
𝑎 𝑒𝛽

𝑏 ∇𝛽𝑁𝛼

= 𝑁𝐾𝑎𝑏 + 𝐷𝑏𝑁𝑎. (2.87)

Therefore,

ℎ̇𝑎𝑏 = 2𝑁𝐾𝑎𝑏 + 𝐷𝑎𝑁𝑏 + 𝐷𝑏𝑁𝑎. (2.88)

The canonical momentum conjugate to ℎ𝑎𝑏 is defined by:

Π𝑎𝑏 := 𝜕ℒ𝐺

𝜕ℎ̇𝑎𝑏

. (2.89)

But we see that only the bulk part of the gravitational Lagrangian density in (2.85) depends

on ℎ̇𝑎𝑏 via the relation between the extrinsic curvature 𝐾𝑎𝑏 and the velocity established in

(2.88). Hence, we may write

2𝜅Π𝑎𝑏 = 𝜕𝐾𝑚𝑛

𝜕ℎ̇𝑎𝑏

𝜕

𝜕𝐾𝑚𝑛

(2𝜅ℒΣ𝑡), (2.90)

where

2𝜅ℒΣ𝑡 = [ 𝑅3 + (ℎ𝑎𝑐ℎ𝑏𝑑 − ℎ𝑎𝑏ℎ𝑐𝑑)𝐾𝑎𝑏𝐾𝑐𝑑]𝑁
√

ℎ. (2.91)

Using (2.88) we can then proceed with the calculation of Π𝑎𝑏:

2𝜅Π𝑎𝑏 = 1
2𝑁

𝛿𝑎
𝑚𝛿𝑏

𝑛

𝜕

𝜕𝐾𝑚𝑛

{︁
[ 𝑅3 + (ℎ𝑎𝑐ℎ𝑏𝑑 − ℎ𝑎𝑏ℎ𝑐𝑑)𝐾𝑎𝑏𝐾𝑐𝑑]𝑁

√
ℎ
}︁

= 1
2𝑁

𝜕

𝜕𝐾𝑎𝑏

{︁
[ 𝑅3 + (ℎ𝑎𝑐ℎ𝑏𝑑 − ℎ𝑎𝑏ℎ𝑐𝑑)𝐾𝑎𝑏𝐾𝑐𝑑]𝑁

√
ℎ
}︁

= 1
2

√
ℎ (ℎ𝑎𝑐ℎ𝑏𝑑 − ℎ𝑎𝑏ℎ𝑐𝑑) 𝜕

𝜕𝐾𝑎𝑏

(𝐾𝑎𝑏𝐾𝑐𝑑)

= 1
2

√
ℎ (ℎ𝑎𝑐ℎ𝑏𝑑 − ℎ𝑎𝑏ℎ𝑐𝑑)(𝐾𝑐𝑑 + 𝛿𝑎

𝑐𝛿
𝑏
𝑑𝐾𝑎𝑏)

=
√

ℎ (𝐾𝑎𝑏 − 𝐾ℎ𝑎𝑏). (2.92)

The gravitational Hamiltonian density is defined by

ℋ𝐺 := Π𝑎𝑏ℎ̇𝑎𝑏 − ℒ𝐺. (2.93)
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Using (2.88), (2.91) and (2.92), its bulk part is

2𝜅ℋΣ𝑡 =
√

ℎ (𝐾𝑎𝑏 − 𝐾ℎ𝑎𝑏)(2𝑁𝐾𝑎𝑏 + 2𝐷(𝑏𝑁𝑎)) − 𝑁
√

ℎ ( 𝑅3 + 𝐾𝑎𝑏𝐾𝑎𝑏 − 𝐾2)

= 𝑁
√

ℎ (2𝐾𝑎𝑏𝐾𝑎𝑏 − 2𝐾2 − 𝑅3 − 𝐾𝑎𝑏𝐾𝑎𝑏 + 𝐾2) +
√

ℎ (𝐾𝑎𝑏 − 𝐾ℎ𝑎𝑏)2𝐷𝑏𝑁𝑎

= 𝑁
√

ℎ (𝐾𝑎𝑏𝐾𝑎𝑏 − 𝐾2 − 𝑅3 ) +

+ 2
√

ℎ 𝐷𝑏[(𝐾𝑎𝑏 − 𝐾ℎ𝑎𝑏)𝑁𝑎] − 2
√

ℎ 𝑁𝑎𝐷𝑏(𝐾𝑎𝑏 − 𝐾ℎ𝑎𝑏). (2.94)

In the first line we have used the fact that both 𝐾𝑎𝑏 and ℎ𝑎𝑏 are symmetric. To obtain the full

gravitational Hamiltonian we just need to integrate ℋΣ𝑡 over Σ𝑡 and subtract the boundary

term in (2.85):

2𝜅𝐻𝐺 =
∫︁

Σ𝑡

2𝜅ℋΣ𝑡 d3𝑦 − 2
∮︁

𝑆𝑡

𝑘𝑁
√

𝜎 d2𝜃

=
∫︁

Σ𝑡

(𝐾𝑎𝑏𝐾𝑎𝑏 − 𝐾2 − 𝑅3 )𝑁
√

ℎ d3𝑦 +

+ 2
∮︁

𝑆𝑡

(𝐾𝑎𝑏 − 𝐾ℎ𝑎𝑏)𝑁𝑎 d𝑆𝑏 − 2
∫︁

Σ𝑡

𝑁𝑎𝐷𝑏(𝐾𝑎𝑏 − 𝐾ℎ𝑎𝑏)
√

ℎ d3𝑦 +

− 2
∮︁

𝑆𝑡

𝑘𝑁
√

𝜎 d2𝜃, (2.95)

where d𝑆𝑏 = 𝑟𝑏

√
𝜎 d2𝜃. Gathering these terms we finally arrive at

2𝜅𝐻𝐺 =
∫︁

Σ𝑡

[︁
(𝐾𝑎𝑏𝐾𝑎𝑏 − 𝐾2 − 𝑅3 )𝑁 − 2𝑁𝑎𝐷𝑏(𝐾𝑎𝑏 − 𝐾ℎ𝑎𝑏)

]︁√
ℎ d3𝑦 +

− 2
∮︁

𝑆𝑡

[︁
𝑘𝑁 − (𝐾𝑎𝑏 − 𝐾ℎ𝑎𝑏)𝑁𝑎𝑟𝑏

]︁√
𝜎 d2𝜃. (2.96)

Here, 𝐾𝑎𝑏 must be seen as a function of ℎ𝑎𝑏 and Π𝑎𝑏: 𝐾𝑎𝑏 = 𝐾𝑎𝑏(ℎ𝑎𝑏, Π𝑎𝑏). This dependence

can be written explicitly using (2.92), from which
√

ℎ 𝐾 = −𝜅Π, where Π := ℎ𝑎𝑏Π𝑎𝑏. This

allows us to write
√

ℎ 𝐾𝑎𝑏 = 2𝜅
(︂

Π𝑎𝑏 − 1
2Πℎ𝑎𝑏

)︂
. (2.97)

Eq. (2.96) is just the gravitational part of the total Hamiltonian associated with the total

action (2.46). But we do not need to worry about subjecting the matter action to the 3 +

1 decomposition because we are only interested in vacuum solutions to the Einstein field

equations. From the Gauss-Codazzi equations (2.35) and (2.36), such solutions must satisfy

the following constraints:

𝑅3 + 𝐾2 − 𝐾𝑎𝑏𝐾𝑎𝑏 = 0, (2.98a)

𝐷𝑏(𝐾𝑎𝑏 − 𝐾ℎ𝑎𝑏) = 0. (2.98b)
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Therefore, the gravitational Hamiltonian for a vacuum solution is a pure boundary term:

𝐻
(0)
𝐺 = −1

𝜅

∮︁
𝑆𝑡

[︁
𝑘𝑁 − (𝐾𝑎𝑏 − 𝐾ℎ𝑎𝑏)𝑁𝑎𝑟𝑏

]︁√
𝜎 d2𝜃. (2.99)

We must now think about what this quantity 𝐻
(0)
𝐺 is supposed to mean physically. We

see that, in addition to ℎ𝑎𝑏 and Π𝑎𝑏, 𝐻
(0)
𝐺 also depends on the embedding of the surface

𝑆𝑡 in Σ𝑡, given the presence of 𝑘 = 𝜎𝐴𝐵𝑘𝐴𝐵 in (2.99). But more interesting is to note the

dependence on the foliation, since that 𝐻
(0)
𝐺 is evaluated where 𝑆𝑡 is located, hence depends

on how we choose to slice 𝒱 , and the dependence on the flow lines, which are specified by

𝑁 and 𝑁𝑎. Each choice that we make for the lapse and shift will produce a different value

for the Hamiltonian and perhaps with a different meaning. This undetermined meaning of the

Hamiltonian is the price we pay for all arbitrariness that we’ve kept in constructing the theory.

We should now ask ourselves how to reinsert physical meaning into our theory by making

meaningful choices for 𝑁 and 𝑁𝑎. The first thing we must do is to go far away from the

gravitational source and consider surfaces 𝑆𝑡 in the asymptotic regions of spacetime. From

now on, we take 𝒱 to be the whole spacetime M, which must be asymptotically flat. In these

distant regions we can place a Minkowski frame (𝑡, 𝑥̄, 𝑦, 𝑧) and restrict the hypersurfaces Σ𝑡

such that it smoothly approach flat hypersurfaces 𝑡 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. It is worth emphasizing that

this is just an assertion about the asymptotic portions of Σ𝑡, which are still arbitrary in the

spacetime bulk.

Figure 7 – Asymptotic behaviour of the foliation in asymptotically flat spacetime.

𝑦𝑎

𝑡

Σ𝑡

𝑢𝛼

𝑛𝛼

𝑡𝛼
𝑡 = 𝑐𝑜𝑛𝑠𝑡

ℓ𝑠

M : 𝑥𝛼

Source: the author (2021).

The arbitrary coordinates 𝑦𝑎 and 𝑥𝛼 are asymptotically related to the Minkowski coordi-

nates: 𝑦𝑎(𝑥̄, 𝑦, 𝑧) and 𝑥𝛼(𝑡, 𝑥̄, 𝑦, 𝑧). The unit normal 𝑛𝛼 to Σ𝑡 must coincide with the unit

normal 𝑢𝛼 := 𝜕𝑥𝛼
⧸︁

𝜕𝑡 to 𝑡 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. We then have the following asymptotic expression
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for the flow vector:

𝑡𝛼 → 𝑁

(︃
𝜕𝑥𝛼

𝜕𝑡

)︃
𝑥̄,𝑦,𝑧

+ 𝑁𝑎

(︃
𝜕𝑥𝛼

𝜕𝑦𝑎

)︃
𝑡

. (2.100)

The choice 𝑁 = 1 and 𝑁𝑎 = 0 implies in 𝑡𝛼 → 𝜕𝑥𝛼
⧸︁

𝜕𝑡 , which generates an asymptotic

time translation. The Hamiltonian (2.99) subjected to this particular choice defines the ADM

mass:

𝑀 := − lim
𝑆𝑡→∞

1
𝜅

∮︁
𝑆𝑡

𝑘
√

𝜎 d2𝜃. (2.101)

With this definition, we succeed in establishing a formal connection between the total energy

of spacetime and time translations. Notice that because the metric field ℎ𝑎𝑏 is asymptotically

flat, ℎ𝑎𝑏 → 𝛿𝑎𝑏, and 𝑁𝑎 = 0, the extrinsic curvature 𝐾𝑎𝑏 must asymptotically vanish, so

does the momentum Π𝑎𝑏. Flat spacetime is not dynamical. Eq. (2.101) allows us to write the

gravitational action (2.85) as

𝑆𝐺 =
∫︁

d𝑡
∫︁

Σ𝑡

1
2𝜅

( 𝑅3 + 𝐾𝑎𝑏𝐾𝑎𝑏 − 𝐾2)𝑁
√

ℎ d3𝑦 −
∫︁

𝑀(𝑡) d𝑡. (2.102)

Another fruitful choice is 𝑁 = 0 and 𝑁𝑎 = 𝜕𝑦𝑎/𝜕𝑥̄ , which generates an asymptotic spatial

translation along 𝑥̄, and the definition

𝑃𝑥̄ := lim
𝑆𝑡→∞

1
𝜅

∮︁
𝑆𝑡

(𝐾𝑎𝑏 − 𝐾ℎ𝑎𝑏)𝑁𝑎𝑟𝑏

√
𝜎 d2𝜃 (2.103)

establish a formal connection between the total linear momentum of spacetime and spatial

translations, both along 𝑥̄. For the total angular momentum of spacetime associated with

asymptotic rotations, we make the choice 𝑁 = 0 and 𝑁𝑎 = 𝜕𝑦𝑎/𝜕𝜙 := 𝜙𝑎, where 𝜙 is the

angle around some rotation axis in the asymptotic region, which gives

−𝐽 := lim
𝑆𝑡→∞

1
𝜅

∮︁
𝑆𝑡

(𝐾𝑎𝑏 − 𝐾ℎ𝑎𝑏)𝜙𝑎𝑟𝑏

√
𝜎 d2𝜃. (2.104)
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3 CANONICAL QUANTIZATION OF GENERAL RELATIVITY

3.1 CONSTRAINED HAMILTONIAN SYSTEM

We have already anticipated that there must exist at least “four” constraints in the theory.

The fact that the ADM action (2.102) is independent of 𝑁̇ and 𝑁̇𝑎 is expressed by the following

constraints:

𝑃𝑁 := 𝜕ℒ𝐺

𝜕𝑁̇
= 0, (3.1a)

𝑃 𝑎 := 𝜕ℒ𝐺

𝜕𝑁̇𝑎

= 0. (3.1b)

These two independent relations, 𝑃𝑁(𝑁, 𝑁𝑎, ℎ𝑎𝑏, ℎ̇𝑎𝑏) = 0 and 𝑃 𝑎(𝑁, 𝑁𝑎, ℎ𝑎𝑏, ℎ̇𝑎𝑏) = 0, are

called primary constraints and imply that 𝑁̇ and 𝑁̇𝑎 are arbitrary and cannot be re-expressed

in terms of momenta.

Because of these constraints, the Hamiltonian is not uniquely determined since we could

work with

2𝜅 ̃︂ℋ𝐺 := 2𝜅ℋ𝐺 + 𝑃𝑁𝑁̇ + 𝑃 𝑎𝑁̇𝑎 (3.2)

and our theory should not be able to distinguish between ℋ𝐺 and ̃︂ℋ𝐺. However, this seems

not to be the case when we compute the PB of 𝑈 ∈ 𝐶∞(𝒫), where 𝒫 now denotes the

(20 · ∞3)–dimensional phase space built with (𝑁, 𝑁𝑎, ℎ𝑎𝑏, 𝑃𝑁 , 𝑃 𝑎, Π𝑎𝑏), with ̃︂ℋ𝐺:

2𝜅 𝑈̇ =
{︁
𝑈, 2𝜅 ̃︂ℋ𝐺

}︁
=
{︁
𝑈, 2𝜅ℋ𝐺 + 𝑃𝑁𝑁̇ + 𝑃 𝑎𝑁̇𝑎

}︁
= 2𝜅

{︁
𝑈, ℋ𝐺

}︁
+ 𝑃𝑁

{︁
𝑈, 𝑁̇

}︁
+
{︁
𝑈, 𝑃𝑁

}︁
𝑁̇ + 𝑃 𝑎

{︁
𝑈, 𝑁̇𝑎

}︁
+
{︁
𝑈, 𝑃 𝑎

}︁
𝑁̇𝑎, (3.3)

where we have used properties (2.73). Following Dirac (DIRAC, 1964), we only make use of

the constraint equations (3.1) after we have worked out the relevant Poisson brackets, and

introduce the weak equality symbol ≈ to remind us of this rule:

𝑃𝑁 ≈ 0, (3.4a)

𝑃 𝑎 ≈ 0. (3.4b)

The equation of motion of the generic dynamical variable 𝑈 then becomes:

2𝜅 𝑈̇ ≈ 2𝜅
{︁
𝑈, ℋ𝐺

}︁
+ 𝑁̇

{︁
𝑈, 𝑃𝑁

}︁
+ 𝑁̇𝑎

{︁
𝑈, 𝑃 𝑎

}︁
. (3.5)
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The presence of 𝑁̇ and 𝑁̇𝑎 above seems to represent an issue in our theory because the time

evolution of the system is not uniquely determined by an initial state (𝑁, 𝑁𝑎, ℎ𝑎𝑏, 𝑃𝑁 , 𝑃 𝑎, Π𝑎𝑏)(𝑡0)

but also by the specification of these arbitrary coefficients, such that two different choices of

them could lead an initial state to two different states at later times 𝑡 > 𝑡0. To examine the

consequences of this equation of motion, firstly note that (3.4) must hold for all time, which

means 𝑃̇ ≈ 0 and 𝑃̇ 𝑎 ≈ 0. If we take 𝑈 to be 𝑃𝑁 and 𝑃 𝑎, we thus obtain the two consistency

conditions:

𝑃̇𝑁 ≈
{︁
𝑃𝑁 , ℋ𝐺

}︁
≈ 0, (3.6a)

𝑃̇ 𝑎 ≈
{︁
𝑃 𝑎, ℋ𝐺

}︁
≈ 0, (3.6b)

where we used the fundamental Poisson bracket
{︁
𝑃𝑁(𝑡, y), 𝑃 𝑎(𝑡, y′)

}︁
= 0. It is worth at this

point to write down the non-zero fundamental PBs:

{︁
𝑁(𝑡, y), 𝑃𝑁(𝑡, y′)

}︁
= 𝛿(y − y′), (3.7a){︁

𝑁𝑎(𝑡, y), 𝑃 𝑏(𝑡, y′)
}︁

= 𝛿 𝑏
𝑎 𝛿(y − y′), (3.7b){︁

ℎ𝑎𝑏(𝑡, y), Π𝑐𝑑(𝑡, y′)
}︁

= 𝛿 (𝑐
𝑎 𝛿

𝑑)
𝑏 𝛿(y − y′). (3.7c)

The symmetrization on the r.h.s. of (3.7c) is necessary because the l.h.s. is symmetric on 𝑎𝑏

and 𝑐𝑑. The PB of two dynamical variables, 𝑈 and 𝑉 , with respect to the canonical variables

𝑁 , 𝑁𝑎, ℎ𝑎𝑏, 𝑃𝑁 , 𝑃 𝑎, Π𝑎𝑏 is:

{︁
𝑈(𝑡, y), 𝑉 (𝑡, y′)

}︁
=
∫︁

Σ𝑡

[︃(︃
𝛿𝑈(𝑡, y)
𝛿𝑁(𝑡, y′′)

𝛿𝑉 (𝑡, y′)
𝛿𝑃𝑁(𝑡, y′′) − 𝛿𝑈(𝑡, y)

𝛿𝑃𝑁(𝑡, y′′)
𝛿𝑉 (𝑡, y′)
𝛿𝑁(𝑡, y′′)

)︃
+

+
(︃

𝛿𝑈(𝑡, y)
𝛿𝑁𝑎(𝑡, y′′)

𝛿𝑉 (𝑡, y′)
𝛿𝑃 𝑎(𝑡, y′′) − 𝛿𝑈(𝑡, y)

𝛿𝑃 𝑎(𝑡, y′′)
𝛿𝑉 (𝑡, y′)

𝛿𝑁𝑎(𝑡, y′′)

)︃
+

+
(︃

𝛿𝑈(𝑡, y)
𝛿ℎ𝑎𝑏(𝑡, y′′)

𝛿𝑉 (𝑡, y′)
𝛿Π𝑎𝑏(𝑡, y′′) − 𝛿𝑈(𝑡, y)

𝛿Π𝑎𝑏(𝑡, y′′)
𝛿𝑉 (𝑡, y′)

𝛿ℎ𝑎𝑏(𝑡, y′′)

)︃]︃
d3𝑦′′. (3.8)

To work out the consistency conditions (3.6), we first must write (2.96),

2𝜅 (𝐻𝐺 − 𝑀) =
∫︁

Σ𝑡

[𝑁
√

ℎ (𝐾𝑎𝑏𝐾𝑎𝑏 − 𝐾2 − 𝑅3 ) − 2𝑁𝑎

√
ℎ 𝐷𝑏(𝐾𝑎𝑏 − 𝐾ℎ𝑎𝑏)] d3𝑦, (3.9)

in terms of the canonical variables only. Using (2.97) and
√

ℎ 𝐾 = −𝜅Π:

√
ℎ (𝐾𝑎𝑏𝐾𝑎𝑏 − 𝐾2 − 𝑅3 ) = 2𝜅2

√
ℎ

(2Π𝑎𝑏Π𝑎𝑏 − Π2) −
√

ℎ 𝑅3

= 2𝜅2
√

ℎ
(ℎ𝑎𝑐ℎ𝑏𝑑 + ℎ𝑎𝑑ℎ𝑏𝑐 − ℎ𝑎𝑏ℎ𝑐𝑑)Π𝑎𝑏Π𝑐𝑑 −

√
ℎ 𝑅3 . (3.10)
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Using (2.92):

−2
√

ℎ 𝐷𝑏(𝐾𝑎𝑏 − 𝐾ℎ𝑎𝑏) = −4𝜅
√

ℎ 𝐷𝑏

(︃
Π𝑎𝑏

√
ℎ

)︃

= −4𝜅𝐷𝑏Π𝑎𝑏 + 4𝜅

(︃
Π𝑎𝑏

√
ℎ

)︃
𝐷𝑏

√
ℎ

= −4𝜅𝐷𝑏Π𝑎𝑏 − 4𝜅

(︃
Π𝑎𝑏

√
ℎ

)︃
1
2

√
ℎ ℎ𝑐𝑑𝐷𝑏ℎ

𝑐𝑑

= −4𝜅𝐷𝑏Π𝑎𝑏. (3.11)

By defining the super-Hamiltonian

𝜒 := 𝐺𝑎𝑏𝑐𝑑Π𝑎𝑏Π𝑐𝑑 −
√

ℎ 𝑅3 , (3.12)

where

𝐺𝑎𝑏𝑐𝑑 := 2𝜅2
√

ℎ
(ℎ𝑎𝑐ℎ𝑏𝑑 + ℎ𝑎𝑑ℎ𝑏𝑐 − ℎ𝑎𝑏ℎ𝑐𝑑), (3.13)

and the supermomentum

𝜒𝑎 := −4𝜅𝐷𝑏Π𝑎𝑏, (3.14)

we can write (3.9) in the following compacted way:

2𝜅 (𝐻𝐺 − 𝑀) =
∫︁

Σ𝑡

(𝑁𝜒 + 𝑁𝑎𝜒𝑎) d3𝑦. (3.15)

With this form of the Hamiltonian, we compute the PBs in (3.6):

{︁
𝑃𝑁(𝑡, y), ℋ𝐺(𝑡, y′)

}︁
= −

∫︁
Σ𝑡

𝛿𝑃𝑁(𝑡, y)
𝛿𝑃𝑁(𝑡, y′′)

𝛿ℋ𝐺(𝑡, y′)
𝛿𝑁(𝑡, y′′) d3𝑦′′

= −
∫︁

Σ𝑡

𝛿(y − y′′) 𝛿ℋ𝐺(𝑡, y′)
𝛿𝑁(𝑡, y′′) d3𝑦′′

= −𝛿ℋ𝐺(𝑡, y′)
𝛿𝑁(𝑡, y)

= − 1
2𝜅

𝜒(𝑡, y) 𝛿(y − y′). (3.16)

Analogously, {︁
𝑃 𝑎(𝑡, y), ℋ𝐺(𝑡, y′)

}︁
= − 1

2𝜅
𝜒𝑎(𝑡, y) 𝛿(y − y′). (3.17)

Therefore, the consistency conditions give rise to the following secondary constraints:

𝜒 ≈ 0, (3.18a)

𝜒𝑎 ≈ 0. (3.18b)
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As stated by DeWitt (DEWITT, 1967), Eq. (3.18a) is known as the Hamiltonian constraint

in virtue of the classical appearance of 𝜒 =
√

ℎ (𝐾𝑎𝑏𝐾𝑎𝑏 − 𝐾2 − 𝑅3 ) as the sum of kinetic

and potential energies. The fact that this constraint must hold for all time shows a balance

between the extrinsic and intrinsic curvatures on each hypersurface Σ𝑡. The quantity 𝐺𝑎𝑏𝑐𝑑

defined in (3.13) tells us how to contract the momentum. We call it the DeWitt metric, and

it is easy to see that it has the following symmetries:

𝐺𝑎𝑏𝑐𝑑 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝐺𝑏𝑎𝑐𝑑, (3.19a)

𝐺𝑎𝑏𝑑𝑐, (3.19b)

𝐺𝑐𝑑𝑎𝑏. (3.19c)

To explore the consistency conditions related to the secondary constraints, we need to

calculate some PBs first. The PBs of 𝜒 and 𝜒𝑎 with 𝑃𝑁 and 𝑃 𝑎 must vanish since 𝜒 and 𝜒𝑎

depend only on ℎ𝑎𝑏 and Π𝑎𝑏. The PBs involving 𝜒 and 𝜒𝑎 are listed bellow (DEWITT, 1967):
{︁
𝜒𝑎(𝑡, y), 𝜒𝑏(𝑡, y′)

}︁
= 𝜒𝑏(𝑡, y) 𝜕𝑎𝛿(y − y′) + 𝜒𝑎(𝑡, y′) 𝜕𝑏𝛿(y − y′), (3.20a){︁

𝜒𝑎(𝑡, y), 𝜒(𝑡, y′)
}︁

= 𝜒(𝑡, y) 𝜕𝑎𝛿(y − y′), (3.20b){︁
𝜒(𝑡, y), 𝜒(𝑡, y′)

}︁
= 2𝜒𝑎(𝑡, y) 𝜕𝑎𝛿(y − y′) + 𝜕𝑎𝜒𝑎(𝑡, y) 𝛿(y − y′). (3.20c)

Using the total Hamiltonian

2𝜅
(︁̃︁𝐻𝐺 − 𝑀

)︁
=
∫︁

Σ𝑡

(𝑃𝑁𝑁̇ + 𝑃 𝑎𝑁̇𝑎 + 𝑁𝜒 + 𝑁𝑎𝜒𝑎) d3𝑦, (3.21)

we have:

2𝜅𝜒̇ =
{︁
𝜒(𝑡, y), 2𝜅 ̃︂ℋ𝐺(𝑡, y′)

}︁
≈ 𝑁(𝑡, y′)

{︁
𝜒(𝑡, y), 𝜒(𝑡, y′)

}︁
+ 𝑁𝑎(𝑡, y′)

{︁
𝜒(𝑡, y), 𝜒𝑎(𝑡, y′)

}︁
. (3.22)

But the Poisson brackets (3.20) are linear combinations of 𝜒 and 𝜒𝑎, and thereby the equation

above weakly vanishes. The same conclusion applies to 𝜒̇𝑎. Therefore, the consistency condi-

tions related to the secondary constraints do not give rise to more secondary constraints, and

we end up with 2 · ∞3 physical degrees of freedom.

Since ℋ𝐺 is zero, we are free to change the time scale of Eq. (3.5). The form of our

equation of motion thus does not change under time reparameterization. Before we move on

to the quantization procedure, we must unravel the issue we pointed out in (3.5). We will show

that the difference between two final states corresponds to the increment of an infinitesimal

canonical transformation. Thus, these final states are related by a canonical transformation

and thereby represent the same physical state.
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Figure 8 – Time evolution of an initial state.

(𝑁, 𝑁𝑎, ℎ𝑎𝑏, 𝑃𝑁 , 𝑃 𝑎, Π𝑎𝑏)(𝑡0)

(𝑁, 𝑁𝑎, ℎ𝑎𝑏, 𝑃𝑁 , 𝑃 𝑎, Π𝑎𝑏)(𝑡0 + 𝛿𝑡)

(𝑁, 𝑁𝑎, ℎ𝑎𝑏, 𝑃𝑁 , 𝑃 𝑎, Π𝑎𝑏)′(𝑡0 + 𝛿𝑡)

𝑁̇ , 𝑁̇
𝑎

𝑁 ′, 𝑁 ′
𝑎

Δ𝑈(𝑡0 + 𝛿𝑡)

Source: the author (2022).

In first order in 𝛿𝑡:

𝑈(𝑡0 + 𝛿𝑡) = 𝑈(𝑡0) + 𝑈̇ 𝛿𝑡

= 𝑈(𝑡0) +
{︁
𝑈, ̃︂ℋ𝐺

}︁
𝛿𝑡

≈ 𝑈(𝑡0) +
(︃{︁

𝑈, ℋ𝐺

}︁
+ 𝑁̇

2𝜅

{︁
𝑈, 𝑃𝑁

}︁
+ 𝑁̇𝑎

2𝜅

{︁
𝑈, 𝑃 𝑎

}︁)︃
𝛿𝑡. (3.23)

A different choice 𝑁 ′, 𝑁 ′
𝑎 yields a difference

Δ𝑈(𝑡0 + 𝛿𝑡) = 𝛿𝑡
(𝑁̇ ′ − 𝑁̇)

2𝜅

{︁
𝑈, 𝑃𝑁

}︁
+ 𝛿𝑡

(𝑁̇ ′
𝑎 − 𝑁̇𝑎)
2𝜅

{︁
𝑈, 𝑃 𝑎

}︁
:= 𝜖

{︁
𝑈, 𝑃𝑁

}︁
+ 𝜖𝑎

{︁
𝑈, 𝑃 𝑎

}︁
, (3.24)

where 𝜖 and 𝜖𝑎 are small arbitrary numbers. We conclude that the primary constraints of our

theory are generating functions of infinitesimal canonical transformations. This means that the

change of canonical variables 𝑈 ′ = 𝑈 + Δ𝑈 , where Δ𝑈 is given by (3.24), does not affect

the physical state of the system.

3.2 THE CANONICAL QUANTIZATION

To communicate with phenomena at the level of quantum scales, we need to use a different

mathematical language than we use for phenomena on classical scales. Quantum mechanics

postulates that at a time 𝑡0, the state of a physical system is completely specified by a

ket |Ψ(𝑡0, x)⟩ belonging to a vector space 𝒮 . Therefore, all the information in the physical

degrees of freedom of the system must be contained in |Ψ(𝑡0, x)⟩. However, the state ket

alone only gives us the probability density of finding the system around a certain point of

space at time 𝑡0. So we need tools with which we can extract more information about the

system. Suppose our system is some water in a glass, and we want to know the temperature

of this system. We just act with a thermometer on the water and read its temperature on a



42

scale of real numbers selected by the mercury level. The thermometer is meant to give only

the temperature of the water, nothing else. In quantum mechanics, Hermitian operators play

the role of the thermometer, acting on |Ψ(𝑡0, x)⟩ and giving specific information about the

system.

When it comes to the quantization of a constrained Hamiltonian system, we face the

question of whether we should quantize first the unreduced classical system (gauge + physical

degrees of freedom) and then apply some quantum reduction to obtain a genuine quantum

theory, or reduce first and then quantize the classical reduced system.

Figure 9 – Two ways of quantizing constrained systems.

classical reduction

unreduced classical system

reduced classical system reduced quantum theory

quantum reduction

unreduced quantum theoryquantization

quantization
Source: reproduction of the diagram in (LOLL, 1990).

We follow the Dirac quantization procedure (blue path), which consists of mapping all the

canonical variables into Hermitian operators. Under this quantization map 𝑄 from the phase

space 𝒫 to the space of Hermitian operators 𝐻 on the state space 𝒮 , the Poisson brackets

are taken into commutators:

𝑄 : 𝒫 −→ 𝐻(𝒮 )

{ , } ↦→ 1
𝑖ℏ

[ , ].

The fundamental PBs (3.7) then become:

[︁
𝑁̂(𝑡, y), 𝑃𝑁(𝑡, y′)

]︁
= 𝑖ℏ 𝛿(y − y′), (3.25a)[︁

𝑁̂𝑎(𝑡, y), 𝑃 𝑏(𝑡, y′)
]︁

= 𝑖ℏ 𝛿 𝑏
𝑎 𝛿(y − y′), (3.25b)[︁

ℎ̂𝑎𝑏(𝑡, y), Π̂𝑐𝑑(𝑡, y′)
]︁

= 𝑖ℏ 𝛿 (𝑐
𝑎 𝛿

𝑑)
𝑏 𝛿(y − y′). (3.25c)

We use the constraints of the classical theory to filter the state kets relevant to our quantum
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theory. These constraints become conditions on |Ψ⟩:

𝑃𝑁 |Ψ⟩ = 0, (3.26a)

𝑃 𝑎 |Ψ⟩ = 0, (3.26b)

𝜒̂ |Ψ⟩ = 0, (3.26c)

𝜒̂𝑎 |Ψ⟩ = 0. (3.26d)

All kets that satisfy these eight constraint conditions are said to belong to the physical subspace

𝒮phys of the state space 𝒮 . We demand (3.26) to be the only conditions on the state kets.

Take (3.26c) for example and multiply it by 𝜒̂𝑎:

𝜒̂𝑎𝜒̂ |Ψ⟩ = 0. (3.27)

On the other hand, if we multiply (3.26d) by 𝜒̂, we get

𝜒̂𝜒̂𝑎 |Ψ⟩ = 0. (3.28)

If we subtract these two equations, we obtain

[𝜒̂𝑎, 𝜒̂] |Ψ⟩ = 0. (3.29)

For this result to be just a consequence of the constraint conditions, and not a new condition

that |Ψ⟩ must satisfy, the commutator [𝜒̂𝑎, 𝜒̂] must be some linear combination of the con-

straint operators. The same holds for the remaining commutators, [𝜒̂𝑎, 𝜒̂𝑏] and [𝜒̂, 𝜒̂′]. This

conclusion is in agreement with (3.20), where we have linear combinations of 𝜒 and 𝜒𝑎.

To obtain a wave function for M, we need to specify a representation for the state kets.

In the configuration space representation, we use |𝑔𝛼𝛽⟩ = |𝑁, 𝑁𝑎, ℎ𝑎𝑏⟩ as base kets for 𝒮 .

All the information in the degrees of freedom of M is contained in these base kets, and to

extract it, we must act with the appropriate operator:

𝑁̂ |𝑁, 𝑁𝑎, ℎ𝑎𝑏⟩ = 𝑁 |𝑁, 𝑁𝑎, ℎ𝑎𝑏⟩ , (3.30a)

𝑁̂𝑎 |𝑁, 𝑁𝑎, ℎ𝑎𝑏⟩ = 𝑁𝑎 |𝑁, 𝑁𝑎, ℎ𝑎𝑏⟩ , (3.30b)

ℎ̂𝑎𝑏 |𝑁, 𝑁𝑎, ℎ𝑎𝑏⟩ = ℎ𝑎𝑏 |𝑁, 𝑁𝑎, ℎ𝑎𝑏⟩ . (3.30c)

From the fundamental commutation relations, we know that the observables 𝑁̂ , 𝑁̂𝑎, ℎ̂𝑎𝑏 are

mutually compatible, so they were expected to have simultaneous eigenkets. In this represen-

tation, |Ψ⟩ becomes a functional of the configuration space:

⟨𝑁, 𝑁𝑎, ℎ𝑎𝑏|Ψ⟩ = Ψ[𝑁, 𝑁𝑎, ℎ𝑎𝑏]. (3.31)
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If {|𝑔𝛼𝛽⟩} is a basis, then it defines 10 · ∞3 linear independent directions in 𝒮 , along which

any |Ψ⟩ ∈ 𝒮 can be projected down. Therefore, the sum of all projection operators |𝑔𝛼𝛽⟩⟨𝑔𝛼𝛽|

must be the unit operator, otherwise there would be directions along which |Ψ⟩ could not be

projected. This means that our set of kets would not span the entire state space, so it would

not be a basis. We then have

∑︁
𝛼 ≤ 𝛽

∫︁
Σ𝑡

d3𝑦
√

ℎ |𝑔𝛼𝛽(𝑡, y)⟩⟨𝑔𝛼𝛽(𝑡, y)| = 1̂, (3.32)

where we must restrict the indices of the sum because the metric is symmetric, so |𝑔𝛼𝛽⟩⟨𝑔𝛼𝛽| =

|𝑔𝛽𝛼⟩⟨𝑔𝛽𝛼|, and we do not end up with 6·∞3 directions been counted twice. This closure relation

allows us to write

|Ψ⟩ =
∑︁

𝛼 ≤ 𝛽

∫︁
Σ𝑡

d3𝑦
√

ℎ |𝑔𝛼𝛽(𝑡, y)⟩ Ψ[𝑔𝛼𝛽(𝑡, y)]. (3.33)

If we interpret the modulus square of the wave functional, |Ψ[𝑔𝛼𝛽(𝑥)]|2, as the probability

density of M to have a local metric field 𝑔𝛼𝛽(𝑡, y) around a point y ∈ Σ𝑡, then Ψ must be

square-integrable: ∑︁
𝛼 ≤ 𝛽

∫︁
Σ𝑡

|Ψ[𝑔𝛼𝛽(𝑡, y)]|2
√

ℎ d3𝑦 < ∞. (3.34)

We now need to define an inner product in 𝒮 under which the state kets can be normalized

and the observables are Hermitian. Using (3.32):

⟨Ψ2|Ψ1⟩ =
∑︁

𝛼 ≤ 𝛽

∫︁
Σ𝑡

d3𝑦
√

ℎ ⟨Ψ2|𝑔𝛼𝛽(𝑡, y)⟩ ⟨𝑔𝛼𝛽(𝑡, y)|Ψ1⟩

=
∑︁

𝛼 ≤ 𝛽

∫︁
Σ𝑡

d3𝑦
√

ℎ Ψ*
2[𝑔𝛼𝛽(𝑡, y)]Ψ1[𝑔𝛼𝛽(𝑡, y)]. (3.35)

This equation gives the probability amplitude for state |Ψ1⟩ to be found in state |Ψ2⟩. In

particular, we must have ⟨Ψ|Ψ⟩ = 1, and thereby our quantum states are normalized. The

state space 𝒮 equipped with the inner product (3.35) is a Hilbert space H.

In the configuration space representation, the momenta become functional derivative op-

erators:

⟨𝑁, 𝑁𝑎, ℎ𝑎𝑏|𝑃𝑁 |Ψ⟩ = −𝑖ℏ
𝛿

𝛿𝑁
Ψ[𝑁, 𝑁𝑎, ℎ𝑎𝑏], (3.36a)

⟨𝑁, 𝑁𝑎, ℎ𝑎𝑏|𝑃 𝑎|Ψ⟩ = −𝑖ℏ
𝛿

𝛿𝑁𝑎

Ψ[𝑁, 𝑁𝑎, ℎ𝑎𝑏], (3.36b)

⟨𝑁, 𝑁𝑎, ℎ𝑎𝑏|Π̂𝑎𝑏|Ψ⟩ = −𝑖ℏ
𝛿

𝛿ℎ𝑎𝑏

Ψ[𝑁, 𝑁𝑎, ℎ𝑎𝑏]. (3.36c)
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Eqs. (3.26a) and (3.26b) then tell us that Ψ depends only on ℎ𝑎𝑏. The physical quantum states

thus belong to the physical Hilbert space Hphys, spanned by {|ℎ𝑎𝑏⟩}.

We introduce dynamics in Hphys through the Hamiltonian constraint, which is the “normal

component” of the gravitational Hamiltonian. In the “metric representation”, Eqs. (3.26c) and

(3.26d), with a simple choice of factor ordering, take the form(︃
−ℏ2𝐺𝑎𝑏𝑐𝑑

𝛿2

𝛿ℎ𝑎𝑏𝛿ℎ𝑐𝑑

−
√

ℎ 𝑅3
)︃

Ψ[ℎ𝑎𝑏] = 0, (3.37a)

4𝑖ℏ𝜅𝐷𝑐ℎ𝑎𝑏
𝛿

𝛿ℎ𝑏𝑐

Ψ[ℎ𝑎𝑏] = 0. (3.37b)

Taken together, these equations are the quantum mechanical version of the Einstein field

equations. Eq. (3.37a) is the so-called Wheeler–DeWitt equation. This second order functional

derivative equation is based on a wave function over three-geometries and imply the possibility

of superposition of different spacetimes.
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4 CANONICAL QUANTIZATION OF SCHWARZSCHILD BLACK HOLE

4.1 THE SCHWARZSCHILD BLACK HOLE

In this chapter, we apply the theory we have developed so far to the Schwarzschild space-

time. From the no-hair theorem (ISRAEL, 1967), we know in advance about the uniqueness of

the Schwarzschild metric:

d𝑠2
SCH = −𝐹 (𝑅)d𝑇 2 + 𝐹 −1(𝑅)d𝑅2 + 𝑅2dΩ2, (4.1)

where dΩ2 = d𝜃2 + sin2 𝜃 d𝜑2 is the metric on the two-sphere 𝑆2 and 𝑥𝛼 = (𝑇, 𝑅, 𝜃, 𝜑) are

the Schwarzschild spacetime coordinates. The function 𝐹 (𝑅) has the explicit form

𝐹 (𝑅) = 1 − 2𝐺𝑀

𝑅
, (4.2)

where 𝑀 ≥ 0 is the constant Schwarzschild mass parameter. The 𝑇 independence of the

metric coefficients entails 𝜕/𝜕𝑇 to be a Killing vector field of the metric (4.1). For this

reason we call 𝑇 the Killing time. On the other hand, the radial curvature coordinate 𝑅 ≥ 0

is invariantly defined by the requirement that 4𝜋𝑅2 be the area of the surface 𝑇 = 𝑐𝑜𝑛𝑠𝑡,

𝑅 = 𝑐𝑜𝑛𝑠𝑡.

To explore the causal structure of this spacetime, let us look at the behavior of the light

cones. Evaluating (4.1) along radial null geodesics, we find

d𝑇

d𝑅
= ±𝐹 −1, (4.3)

which measures the slope of the light cones. As one approaches the black hole from far

away, the slope goes from ±1 at 𝑅 ≫ 2𝐺𝑀 to ±∞ near 𝑅 = 2𝐺𝑀 . In the Schwarzschild

coordinates, the light cones then close up when we move from the asymptotic regions of

spacetime and get close to the surface 𝑅 = 2𝐺𝑀 . This behavior of the light cones gives the

impression that a free-falling observer would never cross the surface 𝑅 = 2𝐺𝑀 .

We know that the Schwarzschild coordinates are ill-behaved on this surface, since 𝑔𝑇 𝑇 → 0

and 𝑔𝑅𝑅 → ∞ as 𝑅 → 2𝐺𝑀 . Besides, the metric signature swap from (−, +, +, +) above

the surface to (+, −, +, +) beneath it, setting 𝑅 as the timelike coordinate. However, the

curvature invariant

𝑅𝛼𝛽𝜇𝜈𝑅𝛼𝛽𝜇𝜈 = 48𝐺2𝑀2

𝑅6 (4.4)
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shows that 𝑅 = 2𝐺𝑀 is just a coordinate singularity. The physical singularity is located at

𝑅 = 0. What the Schwarzschild coordinates are trying to tell us is that the black hole event

horizon is located at 𝑅 = 2𝐺𝑀 . Below the horizon, everything is destined to fall downwards

with no hope of ever coming out.

Figure 10 – The Schwarzschild coordinates can not be extended into (or out of) the black hole, such that we
need two patches to cover both regions, 𝑅 > 2𝐺𝑀 and 𝑅 < 2𝐺𝑀 .

𝑅

𝑇

2𝐺𝑀0
Source: the author (2022).

To clarify the problem of the asymptotic approach of a free-falling observer, as seen by a

stationary (at rest with respect to the hole) observer far away outside the black hole, consider

the latter sitting at constant spatial coordinates (𝑅0, 𝜃0, 𝜑0), and the former’s radial trajectory

starting at this very position. Let 𝑅 and 𝜏 denote the radius and the proper time of the falling

observer. To calculate the coordinate speed 𝑣 = d𝑅/d𝑇 of the falling observer, we start

evaluating the Schwarzschild metric, d𝑠2
SCH = −d𝜏 2, along her radial trajectory. Using (4.1),

we have

d𝜏 2 = 𝐹d𝑇 2 − 𝐹 −1d𝑅2, (4.5)

from which we get

𝑣 = ±𝐹

⎯⎸⎸⎷1 − 𝐹 −1

(︃
d𝜏

d𝑇

)︃2

, (4.6)

where we must take the negative sign. Since the metric is independent of 𝑇 , there is a timelike

Killing vector 𝐾𝛼 = (1, 0, 0, 0), and the energy per unit mass of the falling observer

𝐸 = 𝐹
d𝑇

d𝜏
(4.7)
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is a conserved quantity along the trajectory (see (CARROLL, 2019), Eq. 5.61). By substituting

(4.7) into (4.6), we obtain

𝑣 = −𝐹

√︃
1 − 𝐹

𝐸2 . (4.8)

Using the initial condition 𝑣(𝑅0) = 0, we set 𝐸2 = 𝐹0 := 𝐹 (𝑅0), so the coordinate speed of

the falling observer is given by

𝑣(𝑅) = −𝐹

√︃
1 − 𝐹

𝐹0
, (4.9)

which indeed goes to zero at 𝑅 = 2𝐺𝑀 .

Similarly, to calculate the proper speed 𝑢 = d𝑅/d𝜏 , we use (4.5) and (4.7), with 𝐸2 = 𝐹0,

and conclude that

𝑢(𝑅) = −
√︁

𝐹0 − 𝐹 , (4.10)

which goes to −
√

𝐹0 ̸= 0 at 𝑅 = 2𝐺𝑀 . The greater the value of the initial radius 𝑅0,

the greater the proper speed |𝑢| at the event horizon. In particular, for 𝑅0 → ∞, 𝑢(2𝐺𝑀)

approaches the speed of light.

Therefore, although the stationary observer sees her image fade and gradually slow down

until freezing on the horizon, the falling observer faces no trouble in crossing the horizon in a

finite amount of her proper time, given by:

Δ𝜏 = 1√
2𝐺𝑀

𝑅0∫︁
2𝐺𝑀

d𝑅√︃
1
𝑅

− 1
𝑅0

= 1√
2𝐺𝑀

[︃
𝑅

3/2
0 arctan

(︃
𝑅

1/2
0

√︃
1

2𝐺𝑀
− 1

𝑅0

)︃
+ 2𝐺𝑀𝑅0

√︃
1

2𝐺𝑀
− 1

𝑅0

]︃
. (4.11)

We now look for a coordinate system well-behaved everywhere. A coordinate patch that

covers the entire manifold, except the physical singularity, is given by the Kruskal coordinates

( ̃︀𝑇 , ̃︀𝑅, 𝜃, 𝜑) ((MISNER; THORNE; WHEELER, 1973), sec. 31), where

(I)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
̃︀𝑇 (𝑇, 𝑅) =

(︂
𝑅

2𝐺𝑀
− 1

)︂1/2
e𝑅/4𝐺𝑀 sinh

(︂
𝑇

4𝐺𝑀

)︂
, (4.12a)

̃︀𝑅(𝑇, 𝑅) =
(︂

𝑅

2𝐺𝑀
− 1

)︂1/2
e𝑅/4𝐺𝑀 cosh

(︂
𝑇

4𝐺𝑀

)︂
, (4.12b)

for the outer region 𝑅 > 2𝐺𝑀 , and

(II)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
̃︀𝑇 (𝑇, 𝑅) =

(︂
1 − 𝑅

2𝐺𝑀

)︂1/2
e𝑅/4𝐺𝑀 cosh

(︂
𝑇

4𝐺𝑀

)︂
, (4.13a)

̃︀𝑅(𝑇, 𝑅) =
(︂

1 − 𝑅

2𝐺𝑀

)︂1/2
e𝑅/4𝐺𝑀 sinh

(︂
𝑇

4𝐺𝑀

)︂
, (4.13b)
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for the inner region 0 < 𝑅 < 2𝐺𝑀 . The Schwarzschild metric in terms of the Kruskal

coordinates reads

d𝑠2
SCH = −32𝐺3𝑀3

𝑅
e−𝑅/2𝐺𝑀 (d ̃︀𝑇 2 − d ̃︀𝑅2) + 𝑅2dΩ2, (4.14)

where 𝑅 must be understood as a function of ̃︀𝑇 and ̃︀𝑅, implicitly defined by

̃︀𝑅2 − ̃︀𝑇 2 =
(︂

𝑅

2𝐺𝑀
− 1

)︂
e𝑅/2𝐺𝑀 . (4.15)

This metric is manifestly regular at 𝑅 = 2𝐺𝑀 , and evaluating it along radial null geodesics,

we see that the light cones on the Kruskal diagram ( ̃︀𝑅 − ̃︀𝑇 plane) are oriented at 45 degrees

everywhere. On a Kruskal diagram, the surfaces 𝑅 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, both outside and inside the

black hole, are defined by (4.15). Hence, they will be represented by lateral hyperbolas outside

the black hole, while inside, we get vertical hyperbolas. At 𝑅 = 2𝐺𝑀 , these hyperbolas

degenerate into their asymptotes ̃︀𝑇 = ± ̃︀𝑅. On the other hand, the surfaces of simultaneity

𝑇 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 are straight lines through the origin:

̃︀𝑇 = tanh
(︂

𝑇

4𝐺𝑀

)︂ ̃︀𝑅, (4.16a)

̃︀𝑅 = tanh
(︂

𝑇

4𝐺𝑀

)︂ ̃︀𝑇 , (4.16b)

outside and inside the black hole, respectively. We observe that 𝑇 → ±∞ implies in ̃︀𝑇 → ± ̃︀𝑅,

such that the surfaces 𝑅 = 2𝐺𝑀 and 𝑇 = ±∞ coincide. The Kruskal coordinates gave us

two copies of each surface 𝑅 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, thus creating two copies of the universe, and ended

up revealing that the region of the manifold not covered by the Schwarzschild coordinates is

much larger than we thought.
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Figure 11 – Kruskal diagram of Schwarzschild spacetime. The red lines represent the surfaces 𝑇 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡.

𝑅
=

2𝐺
𝑀

𝑅
=

2𝐺
𝑀𝑇

=
+∞

𝑇 =
−∞

̃︀𝑇

̃︀𝑅
𝑅 = 3𝐺𝑀

𝑅 = 3𝐺𝑀

𝑅 = 0

𝑅 = 0
𝑅 = 𝐺𝑀

𝑅 = 𝐺𝑀

Source: the author (2022).

With the two angular coordinates suppressed, each point of this diagram represents a

spherical surface. The origin, in particular, is called the bifurcation two-sphere, and this whole

manifold that was revealed to us is called the maximally extended Schwarzschild spacetime,

being divided into four regions. Region I is where we live safely outside the black hole. By

following a future-directed timelike worldline, which lies within the light cones, one falls into

region II, the black hole region, while following a past-directed timelike worldline, one reaches

region IV, usually called the white hole region. It is in this sense that we refer to the surface

𝑅 = 2𝐺𝑀 that separates regions I and II as a future horizon, while the surface 𝑅 = 2𝐺𝑀

that separates regions I and IV is the past horizon. Spacelike geodesics, which lie outside

the light cones, would lead us to region III, which represents an asymptotically flat universe

identical, but distinct, to that of region I.



51

Figure 12 – Regions of the maximally extended Schwarzschild spacetime.

I

II
III

IV

future horizon

past horizon

singularity

singularity

Source: the author (2022).

Of course that this mirror universe where time seems to pass in reverse only exists if we

are talking about eternal black holes. For a real black hole, which is the outcome of the

gravitational collapse of a sufficiently massive star, the diagram must be cut off at a timelike

boundary representing the surface of the collapsing star, so regions III and IV would not exist.

4.2 GEOMETRODYNAMICS OF SBH

4.2.1 Hamiltonian formalism for a spherically symmetric spacetime

The following geometrodynamical approach stems from Kuchař (KUCHAR, 1994) and con-

sists in evolving, according to the ADM action (2.102), the geometry of a spherically symmet-

ric spacelike hypersurface Σ, and then reconcile our solution with Schwarzschild’s by requiring

them to be locally isomorphic. On Σ, we place coordinates 𝑦𝑎 = (𝑟, 𝜃, 𝜑) adapted to its sym-

metry. In this coordinates, the metric ℎ𝑎𝑏 on Σ is completely characterized by two functions

Λ(𝑟) and 𝑅(𝑟) of the radial label 𝑟:

d𝑠2
Σ = Λ2(𝑟)d𝑟2 + 𝑅2(𝑟)dΩ2. (4.17)
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In matrix notation:

(ℎ𝑎𝑏) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
Λ2 0 0

0 𝑅2 0

0 0 𝑅2 sin2 𝜃

⎞⎟⎟⎟⎟⎟⎟⎟⎠ . (4.18)

We take Λ(𝑟) to be positive, and since Σ is asymptotically flat, we have Λ(|𝑟| = ∞) = 1

and 𝑅(|𝑟| = ∞) = |𝑟|, such that (4.17) becomes the flat spherical polar metric. Let us proceed

with the calculations of the intrinsic geometry of Σ. The non-zero spatial Christoffel symbols

Γ3 𝑐
𝑎𝑏 are displayed bellow:

Γ3 𝑟
𝑟𝑟 = Λ′

Λ , Γ3 𝜃
𝑟𝜃 = 𝑅′

𝑅
, Γ3 𝜑

𝑟𝜑 = 𝑅′

𝑅
,

Γ3 𝑟
𝜃𝜃 = −

(︂
𝑅

Λ

)︂2 𝑅′

𝑅
, Γ3 𝜃

𝜑𝜑 = sin 𝜃 cos 𝜃, Γ3 𝜑
𝜃𝜑 = cos 𝜃

sin 𝜃
,

Γ3 𝑟
𝜑𝜑 = Γ3 𝑟

𝜃𝜃 sin2 𝜃,

where the primes ′ denote differentiation with respect to 𝑟. These Christoffel symbols yield a

diagonal spatial Ricci tensor 𝑅3
𝑎𝑏:

𝑅3
𝑟𝑟 = −2𝑅′′

𝑅
+ 2Λ′𝑅′

Λ𝑅
,

𝑅3
𝜃𝜃 = −

(︂
𝑅

Λ

)︂2 𝑅′′

𝑅
−
(︃

𝑅′

Λ

)︃2

+
(︂

𝑅

Λ

)︂2 𝑅′Λ′

𝑅Λ + 1,

𝑅3
𝜑𝜑 = 𝑅3

𝜃𝜃 sin2 𝜃.

By contracting 𝑅3
𝑎𝑏 with the inverse metric ℎ𝑎𝑏, we obtain the spatial Ricci scalar:

𝑅3 = −4 𝑅′′

Λ2𝑅
+ 4Λ′𝑅′

Λ3𝑅
− 2 𝑅′ 2

Λ2𝑅2 + 2
𝑅2 . (4.19)

We now make a 3 + 1 composition and generate the spherically symmetric spacetime

M = R× Σ by labeling Σ with a time parameter 𝑡 ∈ R and stacking the many hypersurfaces

Σ𝑡 into a foliation. Consequently, the metric coefficients Λ and 𝑅 become also functions of

𝑡. We then associate with this nesting of three-dimensional spheres a lapse function 𝑁(𝑡, 𝑟)

and a shift vector 𝑁𝑎(𝑡, 𝑟). Due to the spherical symmetry, the shift vector has only the radial

component: 𝑁𝑎 = (𝑁 𝑟, 0, 0).

Let us now calculate the extrinsic curvature of each hypersurface Σ𝑡. From (2.88), we

have:

𝐾𝑎𝑏 = 1
2𝑁

(ℎ̇𝑎𝑏 − 𝜕𝑎𝑁𝑏 − 𝜕𝑏𝑁𝑎 + 2 Γ3 𝑐
𝑎𝑏𝑁𝑐). (4.20)
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We found that 𝐾𝑎𝑏 is diagonal, with

𝐾𝑟𝑟 = Λ
𝑁

(Λ̇ − (Λ𝑁 𝑟)′),

𝐾𝜃𝜃 = 𝑅

𝑁
(𝑅̇ − 𝑅′𝑁 𝑟),

𝐾𝜑𝜑 = 𝐾𝜃𝜃 sin2 𝜃.

The “kinetic energy” of the hypersurfaces is

𝐾𝑎𝑏𝐾𝑎𝑏 − 𝐾2 =
[︃

1
𝑁2Λ2 (Λ̇ − (Λ𝑁 𝑟)′)2 + 2

𝑁2𝑅2 (𝑅̇ − 𝑅′𝑁 𝑟)2
]︃
+

−
[︃

1
𝑁2Λ2 (Λ̇ − (Λ𝑁 𝑟)′)2 + 4

𝑁2𝑅2 (𝑅̇ − 𝑅′𝑁 𝑟)2 +

+ 4
𝑁2Λ𝑅

(Λ̇ − (Λ𝑁 𝑟)′)(𝑅̇ − 𝑅′𝑁 𝑟)
]︃

= − 4
𝑁2𝑅2

[︃
1
2(𝑅̇ − 𝑅′𝑁 𝑟)2 + 𝑅

Λ(Λ̇ − (Λ𝑁 𝑟)′)(𝑅̇ − 𝑅′𝑁 𝑟)
]︃
. (4.21)

The metric 𝑔𝛼𝛽 of this 3 + 1 composed spacetime is given by the ADM metric (2.62b):

d𝑠2
ADM = −[𝑁2 − (Λ𝑁 𝑟)2]d𝑡2 + 2Λ2𝑁 𝑟d𝑡d𝑟 + Λ2d𝑟2 + 𝑅2dΩ2. (4.22)

In matrix notation:

(𝑔𝛼𝛽) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−[𝑁2 − (Λ𝑁 𝑟)2] Λ2𝑁 𝑟 0 0

Λ2𝑁 𝑟 Λ2 0 0

0 0 𝑅2 0

0 0 0 𝑅2 sin2 𝜃

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (4.23)

from which
√

−𝑔 = 𝑁Λ𝑅2 sin 𝜃 = 𝑁
√

ℎ. (4.24)

Gathering (4.19), (4.21), and (4.24) into the ADM action (2.102), we have:

ℒΣ𝑡 = 1
2𝜅

( 𝑅3 + 𝐾𝑎𝑏𝐾𝑎𝑏 − 𝐾2)𝑁
√

ℎ

= 2
𝜅

{︃
𝑁

(︃
−𝑅𝑅′′

Λ + Λ′𝑅𝑅′

Λ2 − 𝑅′ 2

2Λ + Λ
2

)︃
+

− 1
𝑁

[︃
Λ
2 (𝑅̇ − 𝑅′𝑁 𝑟)2 + 𝑅(Λ̇ − (Λ𝑁 𝑟)′)(𝑅̇ − 𝑅′𝑁 𝑟)

]︃}︃
sin 𝜃. (4.25)
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Therefore, the bulk action 𝑆Σ[Λ, 𝑅; 𝑁, 𝑁 𝑟] is given by:

𝑆Σ =
∫︁

d𝑡
∫︁ ∞

−∞
d𝑟

8𝜋

𝜅

{︃
𝑁

(︃
−𝑅𝑅′′

Λ + Λ′𝑅𝑅′

Λ2 − 𝑅′ 2

2Λ + Λ
2

)︃
+

− 1
𝑁

[︃
Λ
2 (𝑅̇ − 𝑅′𝑁 𝑟)2 + 𝑅(Λ̇ − (Λ𝑁 𝑟)′)(𝑅̇ − 𝑅′𝑁 𝑟)

]︃}︃
, (4.26)

where the solid angle 4𝜋 came from the integration over 𝜃 and 𝜑, and we let the parameter 𝑟

run from −∞ to +∞ since we intend to cover all the extended Schwarzschild spacetime.

To pass from the Lagrangian to the Hamiltonian, we need to calculate all the conjugate

momenta. The angular independence in the integrand of (4.26) reflects the spherical symmetry

of M. Such as ℒΣ𝑡 , this integrand is also a linear Lagrangian density, and the dynamics of Λ

and 𝑅 will follow from it. We shall denote it by ℒ . As we already know, 𝑁 and 𝑁 𝑟 are not

dynamical:

𝑃𝑁 = 𝜕ℒ

𝜕𝑁̇
= 0 and 𝑃𝑟 = 𝜕ℒ

𝜕𝑁̇ 𝑟
= 0. (4.27)

On the other hand, we have:

𝑃Λ = 𝜕ℒ

𝜕Λ̇
= −𝑚2

𝑃 𝑅

𝑁
(𝑅̇ − 𝑅′𝑁 𝑟), (4.28a)

𝑃𝑅 = 𝜕ℒ

𝜕𝑅̇
= −𝑚2

𝑃

𝑁
[Λ(𝑅̇ − 𝑅′𝑁 𝑟) + 𝑅(Λ̇ − (Λ𝑁 𝑟)′)], (4.28b)

where 𝑚𝑃 = 𝐺−1/2 is the Planck mass (ℏ = 1). We can solve these equations for the velocities

𝑅̇ and Λ̇:

𝑅̇ = − 𝑁

𝑚2
𝑃 𝑅

𝑃Λ + 𝑅′𝑁 𝑟, (4.29a)

Λ̇ = − 𝑁

𝑚2
𝑃 𝑅2 (𝑅𝑃𝑅 − Λ𝑃Λ) + (Λ𝑁 𝑟)′. (4.29b)

If we substitute (4.29) into (4.26), we obtain ℒ in terms of the canonical variables Λ, 𝑅, 𝑃Λ,

𝑃𝑅:

ℒ = 𝑁Λ
2𝑚2

𝑃 𝑅2 𝑃 2
Λ − 𝑁

𝑚2
𝑃 𝑅

𝑃Λ𝑃𝑅 + 𝑚2
𝑃 𝑁

(︃
−𝑅𝑅′′

Λ + Λ′𝑅𝑅′

Λ2 − 𝑅′ 2

2Λ + Λ
2

)︃
. (4.30)

The Hamiltonian density ℋ is then given by:

ℋ := 𝑃ΛΛ̇ + 𝑃𝑅𝑅̇ − ℒ

= 𝑁Λ
2𝑚2

𝑃 𝑅2 𝑃 2
Λ − 𝑁

𝑚2
𝑃 𝑅

𝑃Λ𝑃𝑅 − 𝑚2
𝑃 𝑁

(︃
−𝑅𝑅′′

Λ + Λ′𝑅𝑅′

Λ2 − 𝑅′ 2

2Λ + Λ
2

)︃
+

+ 𝑁 𝑟(𝑃𝑅𝑅′ − Λ𝑃 ′
Λ) + (𝑁 𝑟Λ𝑃Λ)′. (4.31)
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Not only the shift vector 𝑁 𝑟 but also the momenta 𝑃Λ and 𝑃𝑅 are asymptotically zero, so the

term (𝑁 𝑟Λ𝑃Λ)′ does not contribute to the action,
∫︁

d𝑡 (𝑁 𝑟Λ𝑃Λ)
⃒⃒⃒𝑟=+∞

𝑟=−∞
= 0, (4.32)

and we can remove it from (4.31):

ℋ = 𝑁𝜒 + 𝑁 𝑟𝜒𝑟, (4.33)

where

𝜒 := Λ
2𝑚2

𝑃 𝑅2 𝑃 2
Λ − 1

𝑚2
𝑃 𝑅

𝑃Λ𝑃𝑅 − 𝑚2
𝑃

(︃
−𝑅𝑅′′

Λ + Λ′𝑅𝑅′

Λ2 − 𝑅′ 2

2Λ + Λ
2

)︃
(4.34)

is the super-Hamiltonian, and

𝜒𝑟 := 𝑃𝑅𝑅′ − Λ𝑃 ′
Λ (4.35)

is the radial component of the supermomentum.

The primary constraints (4.27) together with the Hamilton’s equations of motion,

𝑃̇𝑁 = −𝜕ℋ

𝜕𝑁
= −𝜒, (4.36a)

𝑃̇𝑟 = −𝜕ℋ

𝜕𝑁 𝑟
= −𝜒𝑟, (4.36b)

give the secondary constraints:

𝜒 = 0 and 𝜒𝑟 = 0. (4.37)

Using the Lagrange multipliers 𝑁 and 𝑁 𝑟, the action 𝑆Σ can be cast into canonical form:

𝑆Σ[Λ, 𝑅, 𝑃Λ, 𝑃𝑅; 𝑁, 𝑁 𝑟] =
∫︁

d𝑡
∫︁ ∞

−∞
d𝑟 (𝑃ΛΛ̇ + 𝑃𝑅𝑅̇ − 𝑁𝜒 − 𝑁 𝑟𝜒𝑟). (4.38)

4.2.2 Schwarzschild spacetime

We now wonder if the boundary action

𝑆𝜕Σ =
∫︁

𝑀(𝑡) d𝑡 (4.39)

is also a functional of the canonical variables. For this to be true, the ADM mass must be

a dynamical variable that satisfies 𝑀 ′ = 0, which guarantees 𝑀 to depend solely on time 𝑡.

Since the ADM metric (4.22) must be locally isometric to the Schwarzschild metric (4.1), then
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the ADM mass of M is the Schwarzschild mass. Substituting 𝑇 = 𝑇 (𝑡, 𝑟) and 𝑅 = 𝑅(𝑡, 𝑟)

into (4.1), we get:

d𝑠2
SCH = − (𝐹𝑇̇ 2 − 𝐹 −1𝑅̇2)d𝑡2 + 2(−𝐹𝑇̇𝑇 ′ + 𝐹 −1𝑅̇𝑅′)d𝑡d𝑟 +

+ (−𝐹𝑇 ′ 2 + 𝐹 −1𝑅′ 2)d𝑟2 + 𝑅2dΩ2. (4.40)

Comparing these metric coefficients with those of (4.22), we see that

Λ2 = −𝐹𝑇 ′ 2 + 𝐹 −1𝑅′ 2, (4.41a)

Λ2𝑁 𝑟 = −𝐹𝑇̇𝑇 ′ + 𝐹 −1𝑅̇𝑅′, (4.41b)

𝑁2 − (Λ𝑁 𝑟)2 = 𝐹𝑇̇ 2 − 𝐹 −1𝑅̇2. (4.41c)

We can use the first two equations to solve the third one for 𝑁 . After a few algebraic steps,

one finds

𝑁 = 𝑇̇𝑅′ − 𝑇 ′𝑅̇

Λ . (4.42)

By using this result together with

𝑁 𝑟 = −𝐹𝑇̇𝑇 ′ + 𝐹 −1𝑅̇𝑅′

Λ2 (4.43)

and the first equation (4.41a) in Eq. (4.28a), the time derivatives 𝑇̇ and 𝑅̇ drop out, and we

obtain the relation

−𝐹𝑇 ′ = Λ
𝑚2

𝑃 𝑅
𝑃Λ. (4.44)

The substitution of this relation into (4.41a) gives 𝐹 in terms of the canonical variables:

𝐹 =
(︃

𝑅′

Λ

)︃2

−
(︃

𝑃Λ

𝑚2
𝑃 𝑅

)︃2

. (4.45)

Lastly, bringing Eq. (4.2), we show that the Schwarzschild mass can indeed be read from the

canonical data:

𝑀 = 𝑃 2
Λ

2𝑚2
𝑃 𝑅

− 𝑚2
𝑃 𝑅𝑅′ 2

2Λ2 + 𝑚2
𝑃 𝑅

2 . (4.46)

If we differentiate this expression with respect to 𝑟 and then add zero,

𝑅′

𝑚2
𝑃 Λ𝑅

𝑃Λ𝑃𝑅 − 𝑅′

𝑚2
𝑃 Λ𝑅

𝑃Λ𝑃𝑅,

by recalling definitions (4.34) and (4.35), we find that 𝑀 ′ is a linear combination of the

secondary constraints:

𝑀 ′ = − 1
Λ

(︃
𝑅′𝜒 + 𝑃Λ

𝑚2
𝑃 𝑅

𝜒𝑟

)︃
. (4.47)
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A remarkable outcome of this algebraic procedure of constructing 𝑀 from the canonical data

is that 𝑀 and 𝑃𝑀 := −𝑇 ′, given by (4.44), form a pair of canonically conjugate variables:{︁
𝑀(𝑡, 𝑟), 𝑃𝑀(𝑡, 𝑟′)

}︁
=
∫︁ (︃

𝛿𝑀(𝑡, 𝑟)
𝛿Λ(𝑡, 𝑟′′)

𝛿𝑃𝑀(𝑡, 𝑟′)
𝛿𝑃Λ(𝑡, 𝑟′′) − 𝛿𝑀(𝑡, 𝑟)

𝛿𝑃Λ(𝑡, 𝑟′′)
𝛿𝑃𝑀(𝑡, 𝑟′)
𝛿Λ(𝑡, 𝑟′′)

)︃
d𝑟′′

=
(︃

𝑅′

Λ

)︃2

𝐹 −1

⎡⎣1 + 2𝐹 −1
(︃

𝑃Λ

𝑚2
𝑃 𝑅

)︃2
⎤⎦ 𝛿(𝑟 − 𝑟′) +

−
(︃

𝑃Λ

𝑚2
𝑃 𝑅

)︃2

𝐹 −1

⎡⎣1 + 2𝐹 −1
(︃

𝑅′

Λ

)︃2
⎤⎦ 𝛿(𝑟 − 𝑟′)

= 𝛿(𝑟 − 𝑟′). (4.48)

We may want to replace Λ, 𝑃Λ with 𝑀 , 𝑃𝑀 , given that with this new pair of canonical

variables the boundary action 𝑆𝜕Σ is a way simpler. With the help of (4.45), the full expression

for 𝑃𝑀 is

𝑃𝑀 = Λ𝑃Λ

𝑚2
𝑃 𝑅

⎡⎣(︃𝑅′

Λ

)︃2

−
(︃

𝑃Λ

𝑚2
𝑃 𝑅

)︃2
⎤⎦−1

. (4.49)

This expression is the negative of d𝑇/d𝑟 , and if we integrate it, we obtain the difference of

the Killing times 𝑇 (𝑟1) and 𝑇 (𝑟2) between any two points, 𝑟1 and 𝑟2, of the hypersurface Σ𝑡.

As we can see, neither (4.46) nor (4.49) contains 𝑃𝑅, so 𝑀 and 𝑃𝑀 have vanishing PBs with

𝑅. However, their PBs with 𝑃𝑅 do not vanish. To implement the desired transformation of

canonical variables, we need to modify the troublesome momentum 𝑃𝑅 in such a way that the

new momentum, 𝑃R, will have vanishing PBs with 𝑀 and 𝑃𝑀 , but still remains conjugate to

R := 𝑅. (4.50)

If we add to 𝑃𝑅 a dynamical variable Θ that does not depend on 𝑃𝑅, then we may have

a transformation that fulfills the above requirements:

𝑃R = 𝑃𝑅 + Θ[Λ, 𝑅, 𝑃Λ]. (4.51)

To determine Θ, we use the fact that 1-forms, 𝜔 = 𝑝𝑖d𝑥𝑖, are well-defined objects, invariant

under changes of coordinates:

𝑃𝑅d𝑅 + 𝑃ΛdΛ = 𝑃RdR + 𝑃𝑀d𝑀. (4.52)

We know that, because of (4.32), the action (4.38) cannot tell the difference between 𝑃𝑅𝑅′ −

Λ𝑃 ′
Λ and 𝑃𝑅𝑅′ + 𝑃ΛΛ′, so we can write this identity as

𝑃𝑅𝑅′ − Λ𝑃 ′
Λ = 𝑃RR′ + 𝑃𝑀𝑀 ′ (4.53)
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and take

𝜒𝑟 = 𝑃RR′ + 𝑃𝑀𝑀 ′ (4.54)

to be the supermomentum in the new canonical variables.

We now get Θ just by comparing (4.53) with (4.51):

Θ = −Λ𝑃 ′
Λ

𝑅′ − 𝑃𝑀𝑀 ′

𝑅′ . (4.55)

Therefore, to find the expression for the new momentum is a matter of substituting (4.44)

and (4.47) and using (4.45). We end up with a linear combination of the constraints:

𝑃R = 𝐹 −1
(︃

𝑃Λ

𝑚2
𝑃 𝑅

𝜒 + 𝑅′

Λ2 𝜒𝑟

)︃
. (4.56)

This result completes our new canonical chart on phase space. The transition

Λ, 𝑅, 𝑃Λ, 𝑃𝑅 ↦→ 𝑀,R, 𝑃𝑀 , 𝑃R (4.57)

is a canonical transformation (see (KUCHAR, 1994) for the proof) easily reversible:

Λ = (𝐹 −1𝑅′ 2 − 𝐹𝑇 ′ 2)1/2 = (F−1R′ 2 − F𝑃 2
𝑀)1/2, (4.58a)

𝑃Λ = −𝑚2
𝑃 𝑅

Λ 𝐹𝑇 ′ = 𝑚2
𝑃R

(F−1R′ 2 − F𝑃 2
𝑀)1/2 F𝑃𝑀 , (4.58b)

𝑅 = R, (4.58c)

𝑃𝑅 = 𝑃R − Θ = 𝑃R + 𝑚2
𝑃

R′

[︃
(RF𝑃𝑀)′ − RF𝑃𝑀

2
(F−1R′ 2 − F𝑃 2

𝑀)′

F−1R′ 2 − F𝑃 2
𝑀

+ 𝑃𝑀𝑀 ′

𝑚2
𝑃

]︃
,

(4.58d)

where F := 𝐹 (R).

The super-Hamiltonian in the new canonical variables is obtained from (4.47) by using

(4.58a) and (4.58b):

−𝑅′𝜒 = Λ𝑀 ′ + 𝑃Λ
𝜒𝑟

𝑚2
𝑃 𝑅

= (F−1R′ 2 − F𝑃 2
𝑀)𝑀 ′ + F𝑃𝑀𝜒𝑟

(F−1R′ 2 − F𝑃 2
𝑀)1/2 . (4.59)

By adding F𝑃𝑀𝑃RR′ − F𝑃𝑀𝑃RR′ to the numerator and recognizing expression (4.54), we

get

𝜒 = −F−1𝑀 ′R′ + F𝑃𝑀𝑃R

(F−1R′ 2 − F𝑃 2
𝑀)1/2 . (4.60)

We can therefore express the constraints in terms of the new canonical variables using (4.54)

and (4.60), or equivalently (4.47) and (4.56):

𝑀 ′ = 0 and 𝑃R = 0. (4.61)
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When we apply these constraints to the gravitational action 𝑆𝐺 = 𝑆Σ + 𝑆𝜕Σ,

𝑆𝐺[𝑀,R, 𝑃𝑀 , 𝑃R; 𝑁, 𝑁 𝑟] =
∫︁

d𝑡
∫︁ ∞

−∞
d𝑟 (𝑃𝑀𝑀̇ + 𝑃RṘ − 𝑁𝜒 − 𝑁 𝑟𝜒𝑟) −

∫︁
𝑀 d𝑡, (4.62)

we are left with the only physical degree of freedom of the Schwarzschild spacetime:

𝑆𝐺[𝑀,P𝑀 ] =
∫︁

(P𝑀𝑀̇ − 𝐻) d𝑡, (4.63)

where

𝐻(𝑀) := 𝑀 (4.64)

is the reduced Hamiltonian, and the homogeneity of 𝑀 allowed us to define the new momentum

P𝑀(𝑡) :=
∫︁ ∞

−∞
𝑃𝑀 d𝑟 = 𝑇 (𝑟 = −∞) − 𝑇 (𝑟 = ∞), (4.65)

which carries the information about the evolution of the asymptotic ends of the hypersurfaces

Σ𝑡 in spacetime, and takes the values −∞ < P𝑀 < ∞.

The extended Schwarzschild spacetime has two spacelike infinities, and the reader may

have bothered that apparently, we have not taken into account the contribution of the left-

hand side infinity to the boundary action (4.39). Firstly, stationary observers placed at the

spatial infinities of regions I and III (refer back to Fig. 12) should agree about the mass of

the hole: 𝑀± = 𝑀 , where the minus sign refers to the left-hand side infinity and the plus

sign to the right-hand side infinity. Secondly, the lapse function is the rate of change of their

proper time 𝜏± with respect to the label time 𝑡 in the direction normal to the hypersurfaces

Σ𝑡 (remember that 𝑁 𝑟
± = 0): 𝑁± = ±𝜏±. The boundary action then becomes

𝑆Σ =
∫︁

𝑀(𝜏+ − 𝜏−) d𝑡. (4.66)

However, this time parameterization at infinities is arbitrary, and we can set 𝜏+ − 𝜏− = 1. In

particular, the choice 𝜏− = 0 and 𝜏+ = 1 freezes the evolution of the hypersurfaces at the

left-hand side infinity, while their evolution at the right-hand side infinity proceeds at unit rate.

The equations of motion for the reduced canonical variables follow from the variation of

the reduced action (4.63) and show that 𝑀 is a constant of motion:

𝑀̇ = 0, (4.67a)

Ṗ𝑀 = 𝜏− − 𝜏+ = −1. (4.67b)

So far we assumed that we could extend the hypersurfaces Σ𝑡 through the singularities

in II and IV, which requires the existence of a wormhole linking regions I and III at their



60

horizons. Following Ref. (JALALZADEH; SILVA; MONIZ, 2021), we map the black hole solution

into a wormhole solution by using the canonical transformation 𝑀,P𝑀 ↦→ 𝑥, 𝑝 introduced

by Louko and Mäkelä (LOUKO; MÄKELÄ, 1996), where 𝑥 ≥ 0 is the wormhole throat and

−∞ < 𝑝 < ∞ its conjugate momentum:

|P𝑀(𝑥)| =
2𝑀/𝑚2

𝑃∫︁
𝑥

d𝑥′√︃
2𝑀

𝑚2
𝑃 𝑥′ − 1

, (4.68a)

𝑀(𝑥, 𝑝) = 𝑝2

2𝑚2
𝑃 𝑥

+ 𝑚2
𝑃 𝑥

2 . (4.68b)

To satisfy 𝑀̇ = 0, 𝑥 and 𝑝 must evolve according to

𝑥̇ = 𝑝

𝑚2
𝑃 𝑥

, (4.69a)

𝑝̇ = 𝑝2

2𝑚2
𝑃 𝑥2 − 𝑚2

𝑃

2 . (4.69b)

If we parameterize 𝑥 and 𝑡 with a dimensionless conformal time 𝜂,

d𝑡 = 𝑥 d𝜂, (4.70)

these equations of motion become:
d𝑥

d𝜂
= 𝑝

𝑚2
𝑃

, (4.71a)

d𝑝

d𝜂
= 𝑝2

2𝑚2
𝑃 𝑥

− 𝑚2
𝑃 𝑥

2

= 𝑀 − 𝑚2
𝑃 𝑥. (4.71b)

By differentiating (4.71a) with respect to 𝜂 and then using (4.71b), we obtain
d2𝑥

d𝜂2 + 𝑥 = 𝑀

𝑚2
𝑃

. (4.72)

Therefore, we can write 𝑥(𝜂) and 𝑡(𝜂) as

𝑥(𝜂) = 𝑀

𝑚2
𝑃

(1 + cos 𝜂), (4.73a)

𝑡(𝜂) = 𝑀

𝑚2
𝑃

(𝜂 + sin 𝜂). (4.73b)

We see that 𝑥 is periodic and reaches its turning values, 0 and 2𝑀/𝑚2
𝑃 , at integer multiples

of 𝜋, 𝑥(𝜂 = 𝑛𝜋), which correspond to

𝑡(𝑛𝜋) = 𝑛𝜋𝑀

𝑚2
𝑃

= 𝑛

8𝑇H
, 𝑛 ∈ Z (4.74)

where 𝑇H is, remarkably, the Hawking temperature of the SBH.
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4.3 QUANTIZED SBH

4.3.1 The mass spectrum

Following the canonical quantization procedure, the reduced Hamiltonian becomes an op-

erator 𝐻̂(𝑥̂, 𝑝) acting on a state ket |Ψ⟩. Eq. (4.64) then becomes an eigenvalue equation:

𝐻̂(𝑥̂, 𝑝) |Ψ⟩ = 𝑀 |Ψ⟩ . (4.75)

The dependence of the Hamiltonian on 𝑥̂ and 𝑝 comes from (4.68b). By writing this dependence

explicitly, we get (︃
𝑝2

2𝑚2
𝑃

+ 𝑚2
𝑃

2 𝑥̂2
)︃

|Ψ⟩ = 𝑀𝑥̂ |Ψ⟩ . (4.76)

In the coordinate representation,

𝑥̂ → 𝑥, 𝑝 → −𝑖
d
d𝑥

, |Ψ⟩ → Ψ(𝑥), (4.77)

Eq. (4.76) becomes

− 1
2𝑚2

𝑃

d2Ψ(𝑥)
d𝑥2 + 𝑚2

𝑃

2

(︃
𝑥 − 𝑀

𝑚2
𝑃

)︃2

Ψ(𝑥) = 𝑀2

2𝑚2
𝑃

Ψ(𝑥). (4.78)

We can simplify this equation with the following definitions:

𝑧 :=
√

2 𝑚𝑃

(︃
𝑥 − 𝑀

𝑚2
𝑃

)︃
, (4.79a)

̃︀Ψ(𝑧) := Ψ(𝑥(𝑧)), (4.79b)

𝜈 := 𝑀2

2𝑚2
𝑃

− 1
2 . (4.79c)

In terms of this new dimensionless variable 𝑧 ≥ 𝑧0 := −
√

2 𝑀/𝑚𝑃 , Eq. (4.78) reads(︃
− d2

d𝑧2 + 𝑧2

4

)︃ ̃︀Ψ(𝑧) =
(︂

𝜈 + 1
2

)︂ ̃︀Ψ(𝑧), (4.80)

which is the equation of the one-dimensional harmonic oscillator with position-dependent

angular frequency: ̃︀Ψ′′ + 𝜔2 ̃︀Ψ = 0, (4.81)

where

𝜔(𝑧) :=
√︃

𝜈 + 1
2 − 𝑧2

4 . (4.82)
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This wave function must be square-integrable,
∫︁ ∞

𝑧0

⃒⃒⃒ ̃︀Ψ(𝑧)
⃒⃒⃒2

d𝑧 < ∞, (4.83)

and we require that it must vanish at infinity:

̃︀Ψ(𝑧 → ∞) = 0. (4.84)

To ensure this boundary condition, we may consider an explicitly Gaussian exponential factor

in the two independent solutions of (4.80):

̃︀Ψ1(𝑧) = 𝑓(𝑧) e−𝑧2/4, (4.85a)
̃︀Ψ2(𝑧) = 𝑧𝑔(𝑧) e−𝑧2/4, (4.85b)

where 𝑓(𝑧) and 𝑔(𝑧) satisfy the respective equations upon substitution in (4.80). The substi-

tution of the first solution ̃︀Ψ1(𝑧) yields

𝑓 ′′ − 𝑧𝑓 ′ + 𝜈𝑓 = 0. (4.86)

By using the definitions 𝜉 := 𝑧2/2 and 𝑓(𝑧) := 𝑓(𝑧(𝜉)) to rewrite the above equation, we

obtain

𝜉𝑓 ′′ +
(︂1

2 − 𝜉
)︂

𝑓 ′ + 𝜈

2𝑓 = 0, (4.87)

which is a confluent hypergeometric equation. Therefore, its solution is a confluent hyperge-

ometric function:

𝑓(𝜉) = 𝐹1 1

(︂
−𝜈

2 ; 1
2; 𝜉

)︂
. (4.88)

By substituting (4.85b) into (4.80), we get

𝑔′′ +
(︂2

𝑧
− 𝑧

)︂
𝑔′ + (𝜈 − 1)𝑔 = 0. (4.89)

In terms of 𝜉 and 𝑔(𝜉) := 𝑔(𝑧(𝜉)):

𝜉𝑔′′ +
(︂3

2 − 𝜉
)︂

𝑔′ − (1 − 𝜈)
2 𝑔 = 0, (4.90)

which solution is

𝑔(𝜉) = 𝐹1 1

(︂1 − 𝜈

2 ; 3
2; 𝜉

)︂
. (4.91)

The general solution of (4.80) is a linear combination of its two independent solutions:

̃︀Ψ(𝑧) = e−𝑧2/4
[︃
𝐴 𝐹1 1

(︃
−𝜈

2 ; 1
2; 𝑧2

2

)︃
+ 𝐵𝑧 𝐹1 1

(︃
1 − 𝜈

2 ; 3
2; 𝑧2

2

)︃]︃
, (4.92)
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where 𝐴 and 𝐵 are constants. Before we apply the boundary condition (4.84), we need to

know about the asymptotic behaviour of the confluent hypergeometric functions in the above

general solution. From Abramowitz and Stegun (ABRAMOWITZ; STEGUN, 1964), since 𝜉 > 0

and 𝜉 → ∞ along the positive real axis, we have the following:

𝐹1 1 (𝑎; 𝑐; 𝜉 → ∞) → Γ(𝑐)
Γ(𝑎) e𝜉 𝜉𝑎−𝑐. (4.93)

Therefore:

𝐹1 1

(︃
−𝜈

2 ; 1
2; 𝑧2

2 → ∞
)︃

→
Γ
(︂1

2

)︂
Γ
(︂−𝜈

2

)︂ e𝑧2/2 𝑧−(𝜈+1) 2(𝜈+1)/2, (4.94a)

𝐹1 1

(︃
1 − 𝜈

2 ; 3
2; 𝑧2

2 → ∞
)︃

→
Γ
(︂3

2

)︂
Γ
(︂1 − 𝜈

2

)︂ e𝑧2/2 𝑧−(𝜈+2) 2(𝜈+2)/2. (4.94b)

If we substitute these relations in (4.92), we obtain an exponential factor e𝑧2/4 multiplying

remaining terms within the square brackets. Hence, Ψ(𝑧 → ∞) vanishes only if the square

brackets vanish. This fixes the relative values of 𝐴 and 𝐵:

𝐴

𝐵
= −

Γ
(︂3

2

)︂
Γ
(︂1 − 𝜈

2

)︂ Γ
(︂−𝜈

2

)︂
Γ
(︂1

2

)︂ 2(𝜈+2)/2

2(𝜈+1)/2 = −
Γ
(︂−𝜈

2

)︂
Γ
(︂1 − 𝜈

2

)︂ 1√
2

. (4.95)

With this result, the wave function becomes

̃︀Ψ(𝑧) = 𝑁 e−𝑧2/4

⎡⎢⎢⎣ Γ
(︂−𝜈

2

)︂
Γ
(︂1 − 𝜈

2

)︂ 𝐹1 1

(︃
−𝜈

2 ; 1
2; 𝑧2

2

)︃
−

√
2 𝑧 𝐹1 1

(︃
1 − 𝜈

2 ; 3
2; 𝑧2

2

)︃⎤⎥⎥⎦ , (4.96)

where 𝑁 := −𝐵/
√

2 is a normalization constant. This wave function is normalized by using

the following inner product:
⟨ ̃︀Ψ2

⃒⃒⃒ ̃︀Ψ1
⟩

=
∫︁ ∞

𝑧0
d𝑧 ̃︀Ψ*

2(𝑧) ̃︀Ψ1(𝑧). (4.97)

A second boundary condition arises when we require the reduced Hamiltonian operator

𝐻̂ to be Hermitian. Note that the operator, Ĥ, acting on ̃︀Ψ(𝑧) on the left-hand side of the

eigenvalue equation (4.80) is proportional to 𝐻̂:

Ĥ = 𝑀

2𝑚2
𝑃

𝐻̂. (4.98)

Its adjoint operator Ĥ† satisfies
⟨ ̃︀Ψ2

⃒⃒⃒
Ĥ ̃︀Ψ1

⟩
=
⟨
Ĥ† ̃︀Ψ2

⃒⃒⃒ ̃︀Ψ1
⟩

, (4.99)
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and the validity of the self-adjoint condition Ĥ = Ĥ† holds if a certain boundary term vanishes.

Let us show this explicitly:

⟨ ̃︀Ψ2

⃒⃒⃒
Ĥ ̃︀Ψ1

⟩
=
∫︁ ∞

𝑧0
d𝑧 ̃︀Ψ*

2

(︃
−d2 ̃︀Ψ1

d𝑧2 + 𝑧2

4
̃︀Ψ1

)︃

=
∫︁ ∞

𝑧0
d𝑧

[︃
−d( ̃︀Ψ*

2
̃︀Ψ′

1)
d𝑧

+ d ̃︀Ψ*
2

d𝑧
̃︀Ψ′

1 + 𝑧2

4
̃︀Ψ*

2
̃︀Ψ1

]︃

=
∫︁ ∞

𝑧0
d𝑧

[︃
−d( ̃︀Ψ*

2
̃︀Ψ′

1)
d𝑧

+ d( ̃︀Ψ*′
2
̃︀Ψ1)

d𝑧
+
(︃

−d2 ̃︀Ψ*
2

d𝑧2 + 𝑧2

4
̃︀Ψ*

2

)︃ ̃︀Ψ1

]︃

=
⟨
Ĥ ̃︀Ψ2

⃒⃒⃒ ̃︀Ψ1
⟩

+ ( ̃︀Ψ*′
2
̃︀Ψ1 − ̃︀Ψ*

2
̃︀Ψ′

1)
⃒⃒⃒⃒∞
𝑧0

. (4.100)

Since ̃︀Ψ(𝑧 → ∞) = 0, we must have

̃︀Ψ1(𝑧0)̃︀Ψ′
1(𝑧0)

=
̃︀Ψ*

2(𝑧0)̃︀Ψ*′
2 (𝑧0)

. (4.101)

But the wave function is not a complex function, and ̃︀Ψ1 and ̃︀Ψ2 are arbitrary, so these

quotients must be constant. In terms of Ψ(𝑥), we have

Ψ(0)
Ψ′(0) = 𝛾, (4.102)

where the prime symbol denotes derivative with respect to 𝑥, and the constant 𝛾 has dimension

of length. Therefore, the demand for a Hermitian Hamiltonian leads to a new fundamental

constant of the theory unless we take the wave function to be zero at the singularity:

Ψ(0) = 0. (4.103)

If we subject (4.96) to this new boundary condition,

̃︀Ψ(︂
𝑧0 = −

√
2 𝑀

𝑚𝑃

)︂
= 0, (4.104)

we get:

𝐹1 1

(︃
−𝜈

2 ; 1
2; 𝑀2

𝑚2
𝑃

)︃

Γ
(︂1 − 𝜈

2

)︂ + 2 𝑀

𝑚𝑃

𝐹1 1

(︃
1 − 𝜈

2 ; 3
2; 𝑀2

𝑚2
𝑃

)︃

Γ
(︂−𝜈

2

)︂ = 0. (4.105)

We are interested in the black hole states whose mass 𝑀 is much larger than Planck’s mass

𝑚𝑃 . Putting into perspective, stellar black holes, which are the final state of the gravitational

collapse of extremely massive stars, typically has a mass between about 5 and 10 solar masses,

𝑀⊙ = 1, 988 × 1030 kg, while supermassive black holes, which can be found in the center
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of almost every large galaxy, can have masses ranging from millions to billions solar masses.

Comparing with 𝑚𝑃 = 2, 176 × 10−8 kg, we can safely say that 𝑀/𝑚𝑃 ≫ 1 (𝜈 ≫ 1) for this

masses regime. Therefore, we can use (4.93) to obtain a semi-classical approximation:

𝐹1 1

(︂
−𝜈

2 ; 1
2; 2𝜈 + 1

)︂
≈

√
𝜋

Γ
(︂−𝜈

2

)︂ e2𝜈+1 (2𝜈 + 1)−(𝜈+1)/2, (4.106a)

𝐹1 1

(︂1 − 𝜈

2 ; 3
2; 2𝜈 + 1

)︂
≈

√
𝜋/2

Γ
(︂1 − 𝜈

2

)︂ e2𝜈+1 (2𝜈 + 1)−(𝜈+2)/2. (4.106b)

Eq. (4.105) then becomes

0 = 2
√

𝜋 e2𝜈+1

(2𝜈 + 1) 𝜈+1
2 Γ

(︂−𝜈

2

)︂
Γ
(︂1 − 𝜈

2

)︂

= e2𝜈+1

(2𝜈 + 1) 𝜈+1
2 2𝜈 Γ(−𝜈)

, (4.107)

where we have used the Legendre duplication formula for the gamma function:

Γ(𝑐) Γ
(︂

𝑐 + 1
2

)︂
= 21−2𝑐

√
𝜋 Γ(2𝑐), with 𝑐 ∈ C. (4.108)

Thereby, to attend the boundary condition (4.104), Γ(−𝜈) must diverge, hence 𝜈 must be a

positive integer. From (4.79c),

𝑛 = 1
2

(︃
𝑀2

𝑚2
𝑃

− 1
)︃

∈ N, (4.109)

we then obtain the mass spectrum of the Schwarzschild black hole in terms of 𝑚𝑃 , which can

be thought of as the elementary mass of a black hole with Schwarzschild radius equals twice

the reduced Compton wavelength:

𝑀(𝑛) = 𝑚𝑃

√
2𝑛 + 1, 𝑛 ≫ 1. (4.110)

The black hole’s surface area is proportional to 𝑀2, since that it is given by 𝐴 = 4𝜋𝑅2
SCH,

where 𝑅SCH is the Schwarzschild radius. The area spectrum of the quantized SBH then follows

from (4.110):

𝐴(𝑛) = 16𝜋(2𝑛 + 1)ℓ2
𝑃 , (4.111)

where ℓ𝑃 = 1/𝑚𝑃 is the Planck length.
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4.3.2 The thermodynamics

As suggested by Mukhanov (MUKHANOV, 1986) and Li Xiang (XIANG, 2004), the existence

of a quantum number 𝑛 and mass levels 𝑀𝑛 make the quantized SBH analogous to an atomic

system. If a black hole in level 𝑛 + 1 is allowed to interact with the vacuum, then it may decay

into the closest lower level 𝑛, and a photon with minimal frequency 𝜔0 will be emitted similarly

to an atomic transition. This frequency is determined as follows:

𝜔0 = 𝑚𝑃

√
2𝑛 + 3 − 𝑚𝑃

√
2𝑛 + 1

= 𝑚𝑃

√
2𝑛

⎛⎝√︃1 + 3
2𝑛

−
√︃

1 + 1
2𝑛

⎞⎠ . (4.112)

Since 𝑛 ≫ 1, we can use (1 ± 𝜖)𝑎 ≈ 1 ± 𝑎𝜖 to get 𝜔0 = 𝑚𝑃 /
√

2𝑛, which shows that the

mass spectrum is not equally spaced, but becomes broader as 𝑛 decreases, such that low level

transitions emit more energetic photons. If we now use (4.109), we end up with

𝜔0 ≈ 𝑚2
𝑃

𝑀

[︃
1 − 1

2

(︂
𝑚𝑃

𝑀

)︂2
]︃

. (4.113)

The finite lifetime of the black hole in level 𝑛 + 1 is its characteristic time 𝜏𝑛 defined as

𝜏−1
𝑛 := 𝑀̇

𝜔0
, (4.114)

where 𝑀̇ denotes the mass loss rate of the transition. By using (4.113), we conclude that

𝜏−1
𝑛 ≈ 𝑀𝑀̇

𝑚2
𝑃

[︃
1 − 1

2

(︂
𝑚𝑃

𝑀

)︂2
]︃

. (4.115)

The width of level 𝑛 is proportional to the difference 𝑀𝑛+1 − 𝑀𝑛:

𝑊𝑛 = 𝛼(𝑀𝑛+1 − 𝑀𝑛) = 𝛼 𝜔0, (4.116)

where 𝛼 ≪ 1 is a dimensionless constant.

If we assume that the lifetime 𝜏𝑛 of the black hole becomes shorter as 𝑛 increases, then in

the semi-classical limit, it is expected intense low-energy emission. But to measure the energy

of a state with good precision, the state must be observed for many cycles, which becomes

hard to accomplish if the state has a short 𝜏𝑛. This suggests an uncertainty relation between

𝜏𝑛 and 𝑊𝑛:

𝜏𝑛𝑊𝑛 ≈ 1. (4.117)
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This uncertainty causes a blurring in the energy of excited states: each time an excited state

decays into the nearest level, the emitted energy may be slightly different, but the average

energy of the emitted photons corresponds to the theoretical value 𝜔0. Using (4.114) and

(4.115), we can solve (4.117) for 𝑀̇ and find

𝑀̇ = 𝛼 𝜔2
0

≈ 𝛼
𝑚4

𝑃

𝑀2

[︃
1 +

(︂
𝑚𝑃

𝑀

)︂2
]︃

, (4.118)

which exhibits a divergent behaviour of the radiated power 𝑀̇ in late stages of the black hole

evaporation, 𝑀 → 0. But this divergence is an extrapolation of our current formalism since

such small mass scales lies outside of its scope.

Due to its discrete mass spectrum, the quantized SBH absorbs and emits radiation only

with frequencies corresponding to the distance between two levels. Thus, the quantized SBH

does not radiate as a black body, and to define its temperature from the Stefan–Boltzmann

law,

𝑀̇ = 𝜀𝜎𝐴𝑇 4, (4.119)

where 𝜀 ∈ (0, 1) is the emissivity of the radiating body and 𝜎 = 𝜋2/60 is the Stefan-Boltzmann

constant (𝑘𝐵 = 1), one must determine the gray body factor 𝜀. It was by using the Stefan–

Boltzmann law to calculate the emission rate of the SBH emitting as a grey body that Giddings

(GIDDINGS, 2016) concluded that the effective emitting area should be larger than the horizon

area. The region from which the emission originates he called the black hole’s “quantum

atmosphere”, and its radius is about 2.6 times the Schwarzschild radius of the black hole.

However, for our purposes, the black hole lies at the semi-classical limit, and its spectrum is

very narrow, such that the emitted radiation is almost thermal. In the black body approximation

(𝜀 ≈ 1), if we use (4.118) and 𝐴 = 16𝜋𝑀2/𝑚4
𝑃 , Eq. (4.119) becomes

𝛼
𝑚4

𝑃

𝑀2

[︃
1 +

(︂
𝑚𝑃

𝑀

)︂2
]︃

= 4𝜋3

15
𝑀2

𝑚4
𝑃

𝑇 4, (4.120)

which can be solved for the black hole temperature:

𝑇 ≈
(︂15𝛼

4𝜋3

)︂1/4 𝑚2
𝑃

𝑀

[︃
1 + 1

4

(︂
𝑚𝑃

𝑀

)︂2
]︃

. (4.121)
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The black hole entropy can be expressed as

𝑆 =
∫︁ d𝑀

𝑇

≈
(︃

4𝜋3

15𝛼

)︃1/4 1
𝑚2

𝑃

∫︁
𝑀

[︃
1 − 1

4

(︂
𝑚𝑃

𝑀

)︂2
]︃

d𝑀

=
(︃

4𝜋3

15𝛼

)︃1/4 (︃
𝑀2

2𝑚2
𝑃

− 1
4 ln 𝑀

)︃
+ 𝑐𝑜𝑛𝑠𝑡. (4.122)

We fix the value of 𝛼 by requiring the leading term of the entropy to be the Bekenstein-Hawking

entropy 𝑆BH = 4𝜋𝑀2/𝑚2
𝑃 :

𝛼 = 1
15360𝜋

⇒
(︃

4𝜋3

15𝛼

)︃1/4

= 8𝜋. (4.123)

Finally, we arrive at a negative logarithmic correction to the Bekenstein-Hawking entropy:

𝑆 = 𝑆BH − 2𝜋 ln 𝑀 + 𝑐𝑜𝑛𝑠𝑡. (4.124)

Another important thermodynamic quantity is heat capacity. According to Eq. (4.121), the

black hole gets hotter as it loses mass, thus having a negative heat capacity:

𝐶 =
(︃

𝜕𝑇

𝜕𝑀

)︃−1

≈ − 8𝜋

𝑚2
𝑃 𝑀2

[︃
1 − 3

4

(︂
𝑚𝑃

𝑀

)︂2
]︃

< 0. (4.125)

Unlike the heat capacity for the Hawking temperature 𝑇H = 𝑚2
𝑃 /8𝜋𝑀 that vanishes at 𝑀 = 0,

the heat capacity of the quantized SBH becomes vanishing when the mass approaches the

non-zero Planck scale 2𝑚𝑃 /
√

3, which can be regarded as the new ground state of the black

hole. The negativity of the heat capacity prevents the evaporating black hole from reaching

the thermal equilibrium with its surrounding.

We end our analysis by obtaining the lifetime of the quantized SBH, which can be made

by integrating (4.118):

Δ𝑡 = − 1
𝛼 𝑚4

𝑃

2𝑚𝑃 /
√

3∫︁
𝑀

𝑀 ′ 2
[︃
1 +

(︂
𝑚𝑃

𝑀 ′

)︂2
]︃−1

d𝑀 ′

≈ 1
𝛼 𝑚4

𝑃

𝑀∫︁
2𝑚𝑃 /

√
3

(𝑀 ′ 2 − 𝑚2
𝑃 ) d𝑀 ′

= 𝑀3

3𝛼 𝑚4
𝑃

[︃
1 − 3

(︂
𝑚𝑃

𝑀

)︂2
]︃

+ 10
9
√

3 𝛼 𝑚𝑃

, (4.126)

which gives a lifetime of the order of 1074 seconds to a solar mass black hole.
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5 CONCLUSION

Chapter 2 of this dissertation was devoted to constructing a Hamiltonian for the gravita-

tional field. To this end, we decomposed the spacetime into arbitrary spacelike hypersurfaces

Σ𝑡 and related them by introducing the lapse function 𝑁 and shift vector 𝑁𝑎, which, together

with the induced metric ℎ𝑎𝑏 on the hypersurfaces, amounted to the form the canonical con-

figuration variables of the theory. When evaluated on vacuum solutions to the Einstein field

equations, the meaning of this Hamiltonian turned out to be a boundary term sensitive to

the asymptotic behavior of 𝑁 and 𝑁𝑎. By means of a suitable choice of these, the ADM

definition of the spacetime energy was attained. In chapter 3, we showed that there are eight

constraints relating to the canonical variables and that the gravitational Hamiltonian conse-

quently vanishes, which results in equations of motion with no absolute time variable. Then,

we attempted to give a quantum mechanical treatment to this Hamiltonian constrained sys-

tem by promoting the classical constraints to operators that annihilate the quantum state of

spacetime. Following the standard procedures of quantum mechanics, we ended up with the

Wheeler–DeWitt equation.

Once the general discussion was concluded, we proceeded in chapter 4 with the geometro-

dynamics of the maximally extended Schwarzschild spacetime. We showed that the constant

Schwarzschild mass is the only degree of freedom of this spacetime. The theory was no longer a

field theory but a theory of finite degrees of freedom. The quantization of this one-dimensional

classical system was then addressed within ordinary quantum mechanics. This quantization led

us to a mass spectrum for the SBH, and the thermodynamics we have obtained qualitatively

reproduces the features of the black hole evaporation.
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