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ABSTRACT

Quantum computing has been revolutionizing the development of algorithms, which in-

cludes remarkable advances in artificial neural networks. The exploration of inherently

quantum phenomena holds the promise of transcending classical computing. However,

only noisy intermediate-scale quantum devices are available currently. To demonstrate

advantages in this quantum era, the development of quantum algorithms needs to satisfy

several software requirements due to the insufficiency of quantum computing resources.

In this research, we propose a kernel-based framework of quantum neurons that not only

contemplates existing quantum neurons but also makes room to define countless others,

including quantum neurons that comply with the present hardware restrictions. For exam-

ple, we propose here a quantum neuron that is implemented by a circuit of constant depth

with a linear number of elementary single-qubit gates. Existing quantum neurons are im-

plemented by exponentially expensive circuits, even using complex multi-qubit gates. We

improve the proposed quantum neuron through a parametrization that can change its ac-

tivation function shape in order to fit underlying patterns that existing quantum neurons

cannot fit. As an initial demonstration, we show the proposed quantum neuron producing

optimal solutions for six classification problems that an existing quantum neuron can solve

only two of them. After, we benchmark classical and quantum neurons in several classifi-

cation problems. As a result, in the majority of the cases, the proposed quantum neuron

is the best over all neurons, which solidly confirms its superiority. The parametrization

offers flexibility to not only fit a wide range of problems but also to optimize the margin

between classes, at least better than the classical neurons and existing quantum ones. In

light of those advantages, this research paves the way to develop quantum neural networks

that can demonstrate a practical quantum advantage in the current quantum era already.

Keywords: quantum computing; quantum neuron; kernel machine; constant-depth quan-

tum circuit; parametrized activation function.



RESUMO

A computação quântica vem revolucionando o desenvolvimento de algoritmos, o que inclui

notáveis avanços em redes neurais artificiais. A exploração de fenômenos inerentemente

quânticos traz a promessa de transcender a computação clássica. No entanto, apenas dis-

positivos quânticos de escala intermediária e ruidosos estão disponíveis atualmente. Para

demonstrar vantagens nesta era quântica, o desenvolvimento de algoritmos quânticos pre-

cisa satisfazer diversos requisitos de software devido à insuficiência de recursos computa-

cionais quânticos. Nesta pesquisa, nós propomos uma estrutura de neurônios quânticos

baseada em kernel que não apenas contempla neurônios quânticos existentes como tam-

bém abre espaço para definir inúmeros outros, incluindo neurônios quânticos que atendam

às atuais restrições de hardware. Por exemplo, nós propomos aqui um neurônio quântico

que é implementado por um circuito de profundidade constante com um número linear de

portas elementares de um único bit quântico. Neurônios quânticos existentes são imple-

mentados por circuitos exponencialmente custosos, mesmo usando portas complexas de

múltiplos bits quânticos. Nós melhoramos o neurônio quântico proposto através de uma

parametrização que consegue mudar a forma da sua função de ativação a fim de se ajustar

a padrões subjacentes que neurônios quânticos existentes não conseguem se ajustar. Como

uma demonstração inicial, nós mostramos o neurônio quântico proposto produzindo solu-

ções ótimas para seis problemas de classificação que um neurônio quântico existente con-

segue resolver apenas dois deles. Na sequência, nós extensivamente comparamos neurônios

quânticos e clássicos em diversos problemas de classificação. Como resultado, na maio-

ria dos casos, o neurônio quântico proposto é o melhor entre todos os neurônios, o que

confirma sua superioridade de forma sólida. A parametrização fornece flexibilidade para

não apenas se ajustar a uma ampla variedade de problemas mas também para otimizar a

margem entre classes, pelo menos melhor que os neurônios clássicos e os neurônios quân-

ticos existentes. Devido a essas vantagens, esta pesquisa abre o caminho para desenvolver

redes neurais quânticas que podem demonstrar uma vantagem quântica prática já na era

quântica atual.

Palavras-chaves: computação quântica; neurônio quântico; máquina de kernel; circuito

quântico de profundidade constante; função de ativação parametrizada.
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1 INTRODUCTION

In this chapter, we first delimit the context in which this research is embedded. Then,

an overview of the research and its discoveries is presented. We also present here the

organization of the dissertation regarding the subsequent chapters. Basically, this research

can be subdivided into two parts. The first one, which contemplates the proposed models

and a first validation, is already available on arXiv (CARVALHO; PAULA NETO, 2022) and is

under review in the IEEE Transactions on Neural Networks and Learning Systems, where

indications of merit were received in the first revision. We also recognize a high potential

for publication in the second part of this research, which extends the comparisons in order

to solidly support the proposed models, but it is not available on arXiv as well as it is

not submitted to a journal or a conference yet. Simultaneously with this research, we also

developed works in collaboration with a research group that studies quantum walks as

search algorithms for different graph structures and their applications (CARVALHO et al.,

2020; CARVALHO et al., 2023; SOUZA; CARVALHO; FERREIRA, 2021; SOUZA; CARVALHO;

FERREIRA, 2022). It is worth mentioning that the work developed by Carvalho et al.

(2020) obtained an honorable mention at the 9th Brazilian Conference on Intelligent

Systems (BRACIS 2020).

1.1 CONTEXTUALIZATION

Quantum computing is basically the act of performing computations under the quan-

tum mechanics regime, which allows the exploration of inherently quantum phenomena,

such as state superposition and particle entanglement (NIELSEN; CHUANG, 2010). This

computing model is expected to achieve the so-called supremacy over classical com-

puting, which will allow us to solve previously intractable problems in a reasonable

time (PRESKILL, 2012). For the quantum community, a revolution in business and so-

ciety will occur in the next years due to the achievement of that predicted quantum

supremacy.

Regarding specifically the development of neural networks, more efficient models can

be obtained by harnessing that quantum advantage (NGUYEN et al., 2020). Quantum

neurons can implement arbitrary non-linear functions while taking advantage of super-
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position and entanglement (PAULA NETO et al., 2020). The capacity of implementing ar-

bitrary activation functions qualifies the quantum neural networks as universal approxi-

mators (MARONESE; DESTRI; PRATI, 2022). When a quantum walk is used to search the

optimal synaptic weights, the optimization of classical feedforward neural networks no

longer suffers from local minima and requires a number of iterations that is well-defined

a priori (SOUZA; CARVALHO; FERREIRA, 2022). Implementing the operations of recurrent

cells in quantum circuits will lead to recurrent neural networks that provide exponential

speed-ups (CESCHINI; ROSATO; PANELLA, 2022).

However, those research efforts in quantum computing for neural networks assume the

existence of fault-tolerant large-scale quantum computers. Large-scale quantum comput-

ers have enough redundant qubits to encode the information and employ error correc-

tion codes (DEVITT; MUNRO; NEMOTO, 2013). Currently, only noisy intermediate-scale

quantum devices are available, so there are not enough resources to protect the system

by quantum error correction (PRESKILL, 2018). The implication in the development of

quantum algorithms is that a set of software requirements arises in order to successfully

execute the corresponding quantum circuits on the current hardware. Aspects like state

preparation, oracle expansion, connectivity, circuit rewriting, decoherence, gate infidelity,

and measurement errors can compromise the computation (LEYMANN; BARZEN, 2020).

Thus, the depth, width, and operations number of quantum circuits become critical fac-

tors when developing quantum algorithms. Nevertheless, the current quantum era creates

an opportunity to demonstrate advantages over classical computing at this time.

Research efforts have been focusing on that new generation of quantum algorithms

since quantum devices became available. Despite significant efforts at the quantum com-

piler level (ZULEHNER; PALER; WILLE, 2019; LAROSE, 2019), recent quantum algorithms

are developed considering those present restrictions (ACASIETE et al., 2020; ACAMPORA;

VITIELLO, 2021), including the development of quantum neural networks (TACCHINO et

al., 2019; MANGINI et al., 2020; TACCHINO et al., 2020; GRANT et al., 2018; CONG; CHOI;

LUKIN, 2019; DALLAIRE-DEMERS; KILLORAN, 2018; ZOUFAL; LUCCHI; WOERNER, 2019;

KONAR et al., 2022). Particularly, this research is not interested in the so-called varia-

tional quantum models, which are considered the quantum analogs of neural networks by

simply implementing a quantum circuit with an arbitrary structure that is optimized for

a given learning task. Instead, this research is focused on quantum models that are in-

spired by the classical neuron model (HAYKIN, 2009), which better represent the quantum
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counterparts of classical neural networks for sharing even more similarities.

Tacchino et al. (2019) took the first step in this direction by proposing a scheme that

computes the inner product between binary-valued vectors. After, Mangini et al. (2020)

proposed a particular way to work with continuous-valued vectors by reformulating the

previous scheme. Both schemes have an exponential advantage in information storage since

the circuit width grows in a logarithmic manner, although the circuit depth and the num-

ber of operations grow exponentially. Thus, there is room for developing reformulations

that work with continuous-valued vectors in other codifications, which is directly associ-

ated with the expressive power of quantum models (SCHULD; SWEKE; MEYER, 2021). At

the circuit level, a research gap exists in terms of efficiency. More efficient implementations

are required to further comply with the software requirements of the current quantum

hardware.

1.2 RESEARCH OVERVIEW

In this research, we first propose a framework of quantum neurons where those previous

schemes (TACCHINO et al., 2019; MANGINI et al., 2020) are particular cases. Based on that

framework, each quantum neuron implements a kernel machine with a non-deterministic

activation function. That activation function depends only on the kernel trick that each

quantum neuron applies. Thus, the quantum neurons differ from each other by their

feature space mappings. It makes room for other instantiations of this generalized kernel-

based framework of quantum neurons, including for actual quantum devices.

Generally, quantum kernel methods are used to estimate inner products for classical

models in a hybrid setup. The advantage emerges from the fact that the inner products

are estimated from classically intractable feature mappings. Those inner products can

be estimated by the standard swap-test (BUHRMAN et al., 2001) or, more recently, by

quantum kernel estimators (HAVLÍČEK et al., 2019; SCHULD; KILLORAN, 2019). Speedups

in classical models can be also obtained by classical sampling techniques inspired by

quantum models that generate the kernel matrix of inner products (DING; BAO; HUANG,

2022). However, the kernel-based framework of quantum neurons proposed here computes

the inner product between an input vector and a weight vector, and then explicitly extracts

such information to an ancillary qubit. Measuring the ancilla gives a standalone fully-

quantum classifier based on kernel machines. If the ancilla is not measured, the inner
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product can be propagated forward to other quantum neurons, which gives a quantum

neural network (TACCHINO et al., 2020). Finally, this kernel-based framework of quantum

neurons is expected to achieve practical quantum advantage, as is expected with quantum

kernel estimators (LIU; ARUNACHALAM; TEMME, 2021).

Based on that framework, we propose here a quantum neuron of constant depth,

i.e., the circuit implementation of the proposed neuron has a depth that is independent

of the input size. Constant-depth quantum circuits can demonstrate quantum advan-

tage (BRAVYI; GOSSET; KÖNIG, 2018; BRAVYI et al., 2020) and benefit from error mitiga-

tion techniques (LI; BENJAMIN, 2017; TEMME; BRAVYI; GAMBETTA, 2017; KANDALA et al.,

2019). The proposed quantum neuron implements local feature mappings (STOUDENMIRE;

SCHWAB, 2016) by taking advantage of qubit encoding (GRANT et al., 2018; KONAR et al.,

2022). We demonstrate that this encoding strategy actually implements a tensor-product

feature mapping to an exponentially larger space, which improves the separating capac-

ity (COVER, 1965). We further improve that neuron capacity by including two parameters

in its activation function. That parametrization can change the activation function shape

of the proposed quantum neuron in order to fit different underlying patterns with no

additional cost in the circuit implementation. Therefore, we propose a flexible quantum

neuron of constant depth implemented with a linear number of elementary single-qubit

gates. Existing quantum neurons (MANGINI et al., 2020; MARONESE; PRATI, 2021) are in-

flexible and exponentially expensive, even with complex multi-qubit gates in their circuit

implementations.

Then, we proceed to a visual study that relates some interactions between the input

and weight vectors in the original space with the respective neuron outputs in the feature

space. Those activation function shapes reveal the problem structures that each quantum

neuron can solve. By comparing the best solutions of each quantum neuron for six classifi-

cation problems, we show that parametrization can really change the activation function

shape in order to fit underlying patterns that an existing quantum neuron cannot fit.

The proposed quantum neuron produces optimal solutions for all six cases, which demon-

strates its flexibility and improved capabilities. That initial demonstration finishes with

a proof-of-concept experiment on a quantum simulator to show the feasibility of those

quantum neuron solutions.

The present research actually finishes by contrasting the quantum neurons against clas-

sical ones in several classification problems. Assessing whether or not quantum models
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can outperform classical counterparts is critical for the consolidation of quantum comput-

ing. Demonstrations of superiority over classical computing are required to support the

construction of fault-tolerant large-scale quantum computers, which involves numerous

engineering challenges. One of the major roles of the quantum algorithms community in

this quantum era is to demonstrate that the frontiers of classical computing can be ex-

ceeded. Here, we show the quantum neurons performing better than the classical ones in

all cases of the benchmark, which constitutes solid evidence that quantum computing can

go beyond. There is enough evidence here that the poor performances of classical neurons

in non-linearly separable problems do not hold for quantum neurons, which in turn can

produce optimal solutions for the same problems. Specifically, from forty classification

problems, the classical neurons can perfectly solve only two of them against seventeen

perfect solutions of the quantum neurons. In most of those cases, the quantum neurons

can still provide robust separations of classes. In particular, the benchmark also generates

enough evidence about the parametrization gains since the best overall neuron in the

majority of the cases addressed here is the quantum neuron that we proposed. Therefore,

the parametrization definitely gives flexibility to not only fit a wide range of problems

but also to optimize the margin between classes.

1.3 ORGANIZATION OF THE DISSERTATION

This dissertation is organized as follows. Firstly, however, it is worth mentioning that

the reader is expected to be familiar with the basic concepts of quantum computing.

If that assumption is not the case, the reader should refer to the books of Nielsen and

Chuang (2010) and Yanofsky and Mannucci (2008), where not only basic concepts but

also advanced topics on quantum computing are covered. With that assumption stated,

the dissertation proceeds by formalizing the proposed framework of quantum neurons

based on kernel machines in Chapter 2, which enables a facilitated description of the

existing quantum neurons. Under that generalized framework, Chapter 3 proposes the

parametrized quantum neuron of constant circuit depth. The activation function shapes

of the quantum neurons are presented in Chapter 4. As an initial application, Chapter 5

compares the quantum neurons in solving a few classification problems. On the other

hand, Chapter 6 presents an extensive benchmark that includes classical and quantum

neurons. Finally, Chapter 7 discusses the conclusions of this research.
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2 QUANTUM NEURON FRAMEWORK

The classical neuron model basically consists of two steps. First, the inner product

between the input vector 𝑖⃗ and the weight vector 𝑤⃗ is computed, and then that inner

product ∑︀
𝑗 𝑤𝑗𝑖𝑗 is passed to an activation function 𝜙(·) in order to define the neuron out-

put 𝑦 (HAYKIN, 2009). Based on that model, one can construct different classical neurons

by only changing the activation function that processes the obtained inner product. Ex-

amples of common activation functions are the Heaviside function and the logistic sigmoid

function, which are presented in Equation 2.1 and Equation 2.2 respectively.

𝜙(𝑤⃗ · 𝑖⃗) =

⎧⎪⎪⎨⎪⎪⎩
1, if 𝑤⃗ · 𝑖⃗ ≥ 0

0, if 𝑤⃗ · 𝑖⃗ < 0
(2.1)

𝜙(𝑤⃗ · 𝑖⃗) = 1
1 + 𝑒−(𝑤⃗·⃗𝑖)

(2.2)

Inspired by that classical neuron model, Tacchino et al. (2019) proposed a scheme for

actual quantum devices that encodes input and weight vectors, computes the inner prod-

uct between them, and finally extracts the activation function output. Here, we generalize

that scheme to a framework of quantum neurons based on kernel machines. Given two vec-

tors 𝜑 and 𝜃 in an input space, a kernel machine 𝑘(·, ·) maps those vectors to other two vec-

tors 𝑤⃗ and 𝑖⃗ in a feature space by a nonlinear transformation Φ(·), and then computes the

inner product between the transformed vectors, i.e., 𝑘(𝜑,𝜃) = Φ(𝜑)𝑇 Φ(𝜃) = 𝑤⃗ ·⃗𝑖 (BISHOP,

2006). The quantum neurons constructed by the framework are deeply related to that ker-

nel trick.

The quantum neurons implement kernel methods because the given 𝑚-dimensional

classical vectors 𝜃 and 𝜑 are first mapped to 𝑁 -dimensional quantum vectors 𝑖⃗ = Φ(𝜃)

and 𝑤⃗ = Φ(𝜑). Those quantum vectors can be directly encoded in legitimate quantum

states in the following way:

|𝜓𝑖⟩ =
𝑁−1∑︁
𝑗=0

𝑖𝑗 |𝑗⟩ and |𝜓𝑤⟩ =
𝑁−1∑︁
𝑗=0

𝑤𝑗 |𝑗⟩ .

Then, the inner product 𝑤⃗* · 𝑖⃗ = ⟨𝜓𝑤|𝜓𝑖⟩ is computed by the quantum neurons. The

final neuron output is given by the non-deterministic activation function presented in

Equation 2.3.
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𝜙(𝑤⃗* · 𝑖⃗) =

⎧⎪⎪⎨⎪⎪⎩
1, with probability |𝑤⃗* · 𝑖⃗|2

0, with probability 1 − |𝑤⃗* · 𝑖⃗|2
(2.3)

In this way, the quantum activation function depends on the inner product 𝑤⃗* · 𝑖⃗

that in turn depends on the feature space mapping Φ(·). Based on that framework, one

can realize different quantum neurons, including on actual quantum computers, by only

changing the mapping Φ(·) that each quantum neuron implements.

Figure 1 shows the circuit implementation of the framework of quantum neurons based

on kernel machines. Specifically, the quantum neurons differ from each other by the quan-

tum operators 𝐸 and 𝐷, which depend on the classical vectors 𝜃 and 𝜑 respectively. The

operator 𝐸 maps 𝜃 to 𝑖⃗ and then encodes it in |𝜓𝑖⟩ from |+⟩⊗𝑛, where |+⟩ = 1√
2(|0⟩ + |1⟩)

and 𝑛 is the number of encoding qubits. Thus,

𝐸(𝜃) |+⟩⊗𝑛 = |𝜓𝑖⟩ .

The operator 𝐷 maps 𝜑 to 𝑤⃗ and then decodes it from |𝜓𝑤⟩ to |+⟩⊗𝑛. Thus,

𝐷(𝜑) |𝜓𝑤⟩ = |+⟩⊗𝑛 .

At a higher level of abstraction, the operator 𝑈𝑖 encodes |𝜓𝑖⟩ from a blank register

|0⟩⊗𝑛:

𝑈𝑖 |0⟩⊗𝑛 = 𝐸(𝜃)𝐻⊗𝑛 |0⟩⊗𝑛 = 𝐸(𝜃) |+⟩⊗𝑛 = |𝜓𝑖⟩ .

On the other hand, 𝑈𝑤 decodes |𝜓𝑤⟩ to |1⟩⊗𝑛:

𝑈𝑤 |𝜓𝑤⟩ = 𝑋⊗𝑛𝐻⊗𝑛𝐷(𝜑) |𝜓𝑤⟩ = 𝑋⊗𝑛𝐻⊗𝑛 |+⟩⊗𝑛

= 𝑋⊗𝑛 |0⟩⊗𝑛

= |1⟩⊗𝑛 .

The operator 𝐷(𝜑) and then 𝑈𝑤 are defined according to the action on |𝜓𝑤⟩, but those

operators are applied in |𝜓𝑖⟩ in the circuit flow. Applying 𝑈𝑤 to |𝜓𝑖⟩ actually computes

the inner product between 𝑖⃗ and 𝑤⃗ by taking advantage of an interesting property of

unitary operators. Unitary operators preserve the space geometry, which includes inner
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Figure 1 – Framework Circuit to Build Quantum Neurons Based on Kernel Machines

𝑈𝑖 𝑈𝑤

|0⟩ 𝐻

𝐸(𝜃) 𝐷(𝜑)

𝐻 𝑋 ∙

|0⟩ 𝐻 𝐻 𝑋 ∙
... ... ... ... ...

|0⟩ 𝐻 𝐻 𝑋 ∙

|0⟩ 𝐻 𝐻 𝑋 ∙

|0⟩
Ancilla

Source: The author (2022).

First, 𝑈𝑖 encodes 𝑖⃗ = Φ(𝜃). Then, 𝑈𝑤 computes the inner product between 𝑖⃗ and 𝑤⃗ = Φ(𝜑). Such
information is extracted to an ancillary qubit that gives a non-deterministic activation function when
finally measured.

products (YANOFSKY; MANNUCCI, 2008). If 𝐴 is a unitary operator, the inner product

between a quantum state |𝑣⟩ and another quantum state |𝑣′⟩ is equal to the inner product

between 𝐴 |𝑣⟩ and 𝐴 |𝑣′⟩, i.e., ⟨𝑣′|𝑣⟩ = ⟨𝑣′𝐴†|𝐴𝑣⟩. Let 𝐴 = 𝑈𝑤, |𝑣⟩ = |𝜓𝑖⟩, and |𝑣′⟩ = |𝜓𝑤⟩.

We can rewrite the expression as:

⟨𝜓𝑤|𝜓𝑖⟩ = ⟨𝜓𝑤𝑈
†
𝑤|𝑈𝑤𝜓𝑖⟩ = ⟨1⊗𝑛|𝑈𝑤𝜓𝑖⟩.

Thus, the projection of 𝑈𝑤 |𝜓𝑖⟩ on the basis state |1⟩⊗𝑛 stores the inner product ⟨𝜓𝑤|𝜓𝑖⟩.

In other words, that inner product is stored in the component of |1⟩⊗𝑛 into the superpo-

sition of 𝑈𝑤 |𝜓𝑖⟩ = |𝜓𝑖,𝑤⟩. In this way,

|𝜓𝑖,𝑤⟩ = 𝑐0 |0⟩ + 𝑐1 |1⟩ + · · · + 𝑐𝑁−2 |𝑁 − 2⟩ + ⟨𝜓𝑤|𝜓𝑖⟩ |𝑁 − 1⟩ .

To extract such information, a multi-controlled NOT gate is applied targeting an

ancillary qubit. Note that only the basis state |𝑁 − 1⟩ in the superposition flips the

ancilla to the state |1⟩. Consequently, the final quantum state |𝜓𝑓⟩ is:

|𝜓𝑓⟩ = 𝑐0 |0⟩ |0⟩ + 𝑐1 |1⟩ |0⟩ + · · · + 𝑐𝑁−2 |𝑁 − 2⟩ |0⟩ + ⟨𝜓𝑤|𝜓𝑖⟩ |𝑁 − 1⟩ |1⟩ .

Since ⟨𝜓𝑤|𝜓𝑖⟩ = 𝑤⃗* · 𝑖⃗, measuring that ancillary qubit finally gives the activation

function already presented in Equation 2.3. Therefore, that quantum neuron framework
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applies the kernel trick and activates following a non-deterministic function of the com-

puted inner product, which was to be shown. To instantiate a quantum neuron, one only

needs to realize a feature mapping Φ(·) by means of the operators 𝐸 and 𝐷.

2.1 BINARY-VALUED QUANTUM NEURON

That generalized framework can be first instantiated in the binary-valued quantum

neuron (BVQN) (TACCHINO et al., 2019). Given 𝑚-dimensional classical vectors 𝜃 =

(𝜃0, 𝜃1, · · · , 𝜃𝑚−2, 𝜃𝑚−1) and 𝜑 = (𝜑0, 𝜑1, · · · , 𝜑𝑚−2, 𝜑𝑚−1), where 𝜃𝑗, 𝜑𝑗 ∈ {−1, 1}, the

BVQN feature mapping simply normalizes those classical vectors, which leads to the fol-

lowing 𝑁 -dimensional quantum vectors, where 𝑁 = 𝑚:

𝑖⃗ = Φ(𝜃) = 1√
𝑁

(︂
𝜃0, 𝜃1, · · · , 𝜃𝑚−2, 𝜃𝑚−1

)︂
and

𝑤⃗ = Φ(𝜑) = 1√
𝑁

(︂
𝜑0, 𝜑1, · · · , 𝜑𝑚−2, 𝜑𝑚−1

)︂
.

Those quantum vectors live in the Hilbert space spanned by 𝑛 qubits, where 𝑁 = 2𝑛. As

𝑁 equals 𝑚, the BVQN has an exponential advantage in storing the information.

Note that |+⟩⊗𝑛 = 1√
𝑁

∑︀𝑁−1
𝑗=0 |𝑗⟩, so 𝐸(𝜃) only needs to flip the sign of the basis states

|𝑗⟩ where 𝜃𝑗 = −1 to encode 𝑖⃗ in |𝜓𝑖⟩. Similarly, 𝐷(𝜑) only needs to cancel the sign of the

basis states |𝑗⟩ where 𝜑𝑗 = −1 to decode 𝑤⃗ from |𝜓𝑤⟩. Those operations are accomplished

by applying sign-flip blocks one by one or, more efficiently, by applying the hypergraph

states generation subroutine (HSGS) (TACCHINO et al., 2019; ROSSI et al., 2013). However,

those two strategies are exponentially expensive in terms of circuit depth. Finally, the

BVQN fires with the probability presented in Equation 2.4.

|𝑤⃗* · 𝑖⃗|2 =

⃒⃒⃒⃒
⃒⃒ 1
𝑁

𝑚−1∑︁
𝑗=0

𝜑𝑗𝜃𝑗

⃒⃒⃒⃒
⃒⃒
2

(2.4)

2.2 CONTINUOUS-VALUED QUANTUM NEURON

A first alternative to accepting real vectors instead of only binary ones is to instantiate

the framework in the continuous-valued quantum neuron (CVQN) (MANGINI et al., 2020),

which implements a phase-based feature mapping. That mapping encodes each classical
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component in the phase of a complex number written in the exponential form with mod-

ulus 1/
√
𝑁 . Thus, the classical vectors are mapped to quantum vectors of equal size in

the following manner:

𝑖⃗ = Φ(𝜃) = 1√
𝑁

(︂
𝑒𝑖𝜃0 , 𝑒𝑖𝜃1 , · · · , 𝑒𝑖𝜃𝑚−2 , 𝑒𝑖𝜃𝑚−1

)︂
and

𝑤⃗ = Φ(𝜑) = 1√
𝑁

(︂
𝑒𝑖𝜑0 , 𝑒𝑖𝜑1 , · · · , 𝑒𝑖𝜑𝑚−2 , 𝑒𝑖𝜑𝑚−1

)︂
.

Periodicity in that phase-based scheme and the square modulus in the activation

function make the CVQN equally recognize values that are actually different. To really

distinguish such values, the classical vectors are scaled to the interval [0, 𝜋/2]. Thus, the

feature mapping is applied to classical vectors 𝜃 and 𝜑, where 𝜃𝑗, 𝜑𝑗 ∈ [0, 𝜋/2]. The 𝑁 -

dimensional quantum vectors, where 𝑁 = 𝑚, are described by 𝑛 qubits, where 𝑁 = 2𝑛,

which represents an exponential advantage again in information storage.

To implement 𝐸(𝜃) and 𝐷(𝜑), the blocks that flip the sign in the BVQN are used

here to encode each 𝑒𝑖𝜃𝑗 and to decode each 𝑒𝑖𝜑𝑗 , respectively, by applying multi-controlled

phase gates instead of multi-controlled 𝑍 gates. The phase gate is represented in the matrix

form by:

𝑃 (𝜆) =

⎛⎜⎜⎝1 0

0 𝑒𝑖𝜆

⎞⎟⎟⎠ .

As sign-flip blocks, phase-shift blocks are also exponentially expensive in terms of circuit

depth. Finally, the CVQN fires with the probability presented in Equation 2.5.

|𝑤⃗* · 𝑖⃗|2 =

⃒⃒⃒⃒
⃒⃒ 1
𝑁

𝑚−1∑︁
𝑗=0

𝑒𝑖(𝜃𝑗−𝜑𝑗)

⃒⃒⃒⃒
⃒⃒
2

(2.5)
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3 PROPOSED QUANTUM NEURON

Amplitude encoding leverages the qubit capacity of storing an exponential amount of

information simultaneously, but the circuit depth to encode the data in such amplitudes

grows exponentially. Here, we propose to use a qubit encoding scheme under that frame-

work of quantum neurons, differently from the BVQN and the CVQN that use amplitude

encoding. In this way, an 𝑚-dimensional classical vector is encoded in 𝑚 qubits, which

represents less efficient storage, but the state preparation is definitely efficient in terms of

circuit depth as each qubit only requires a single rotation to encode the data (GRANT et

al., 2018; KONAR et al., 2022). That efficiency of qubit encoding allows us to propose the

constant-depth quantum neuron (CDQN).

Instead of a qubit encoding from rotations about the y-axis (GRANT et al., 2018; KONAR

et al., 2022), we apply the phase shift gate 𝑃 (𝜆) already used in amplitude encoding

previously (MANGINI et al., 2020). Thus, the classical input vector 𝜃 is directly encoded

by the operator 𝐸 as follows:

𝐸(𝜃) = ⊗𝑚−1
𝑗=0 𝑃 (𝜃𝑗).

Similarly, the classical weight vector 𝜑 is directly decoded by the operator 𝐷 in the

following way:

𝐷(𝜑) = ⊗𝑚−1
𝑗=0 𝑃 (−𝜑𝑗).

As a result, 𝑈𝑖 comes down to:

𝑈𝑖 = ⊗𝑚−1
𝑗=0 𝑃 (𝜃𝑗)𝐻⊗𝑚.

In turn, 𝑈𝑤 comes down to:

𝑈𝑤 = 𝑋⊗𝑚𝐻⊗𝑚 ⊗𝑚−1
𝑗=0 𝑃 (−𝜑𝑗).

Therefore, with a circuit depth independent of the input size, the proposed quantum

neuron computes the inner product between two vectors that are transformed by a tensor

product of local feature mappings (STOUDENMIRE; SCHWAB, 2016). Those classical vectors

are also pre-processed to the interval [0, 𝜋/2], as for the CVQN.
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Applying that 𝐸(𝜃) in a basis state |𝑠⟩ produces the following state:

𝐸(𝜃) |𝑠⟩ =
𝑚−1∏︁
𝑗=0

(𝑒𝑖𝜃𝑗 )𝑏𝑗,𝑠,𝑚 |𝑠⟩ ,

where 𝑏𝑗,𝑠,𝑚 is the 𝑗-th bit in the binary representation of the integer value 𝑠 with 𝑚

bits. In this way, 𝑏𝑗,𝑠,𝑚 selects the phase shifts to be applied. For example, with 𝑚 = 4,

applying 𝐸(𝜃) in |5⟩ produces 𝑒𝑖𝜃1𝑒𝑖𝜃3 |5⟩, using the big-endian convention. Applying 𝐸(𝜃)

in |+⟩⊗𝑚 stores a conditioned product of 𝑒𝑖𝜃𝑗 on the amplitude of each possible state |𝑠⟩,

which represents the following feature mapping, where 𝑁 = 2𝑚:

𝑖⃗ = Φ(𝜃) = 1√
𝑁

(︂ 𝑚−1∏︁
𝑗=0

(𝑒𝑖𝜃𝑗 )𝑏𝑗,0,𝑚 ,
𝑚−1∏︁
𝑗=0

(𝑒𝑖𝜃𝑗 )𝑏𝑗,1,𝑚 , · · · ,
𝑚−1∏︁
𝑗=0

(𝑒𝑖𝜃𝑗 )𝑏𝑗,𝑁−2,𝑚 ,
𝑚−1∏︁
𝑗=0

(𝑒𝑖𝜃𝑗 )𝑏𝑗,𝑁−1,𝑚

)︂

and

𝑤⃗ = Φ(𝜑) = 1√
𝑁

(︂ 𝑚−1∏︁
𝑗=0

(𝑒𝑖𝜑𝑗 )𝑏𝑗,0,𝑚 ,
𝑚−1∏︁
𝑗=0

(𝑒𝑖𝜑𝑗 )𝑏𝑗,1,𝑚 , · · · ,
𝑚−1∏︁
𝑗=0

(𝑒𝑖𝜑𝑗 )𝑏𝑗,𝑁−2,𝑚 ,
𝑚−1∏︁
𝑗=0

(𝑒𝑖𝜑𝑗 )𝑏𝑗,𝑁−1,𝑚

)︂
.

Different from the previous quantum neurons that map 𝑚-dimensional classical vec-

tors to 𝑁 -dimensional quantum vectors with 𝑁 = 𝑚, the CDQN applies a feature map-

ping where 𝑁 > 𝑚. Specifically, the CDQN maps the vectors to an exponentially larger

space. Thus, the CDQN is a kernel method that takes advantage of the theorem proposed

by Cover (1965), which states that mapping to feature spaces of high dimensionality im-

proves the separating capacity. As an implication of the theorem, non-linearly separable

problems are more likely to become linearly separable in a high-dimensional space. Finally,

the CDQN fires with the probability presented in Equation 3.1.

|𝑤⃗* · 𝑖⃗|2 =

⃒⃒⃒⃒
⃒⃒ 1
𝑁

𝑁−1∑︁
𝑠=0

𝑚−1∏︁
𝑗=0

(𝑒𝑖(𝜃𝑗−𝜑𝑗))𝑏𝑗,𝑠,𝑚

⃒⃒⃒⃒
⃒⃒
2

(3.1)

We can simplify the relation presented in Equation 3.1 by observing that it is actually a

combination of 𝑚 local inner products. Each local inner product is computed with respect

to a local feature mapping that maps a 𝜃𝑗 to 𝑖𝑗 = 1√
2(1, 𝑒𝑖𝜃𝑗 ) and a 𝜑𝑗 to 𝑤𝑗 = 1√

2(1, 𝑒𝑖𝜑𝑗 ).

As a result, the relation presented in Equation 3.1 is equivalent to a product of 𝑚 local

inner products in the form 𝑤𝑗
* · 𝑖𝑗 = 1

2(1 + 𝑒𝑖(𝜃𝑗−𝜑𝑗)). Therefore, the CDQN fires with a

probability that can be simplified as presented in Equation 3.2.
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|𝑤⃗* · 𝑖⃗|2 =

⃒⃒⃒⃒
⃒⃒ 1
𝑁

𝑚−1∏︁
𝑗=0

(1 + 𝑒𝑖(𝜃𝑗−𝜑𝑗))

⃒⃒⃒⃒
⃒⃒
2

(3.2)

Building on the CDQN, we propose to parametrize its activation function by a multi-

plicative factor 𝜏 and an additive constant 𝛿. Those parameters act on the component-wise

differences between the classical input and weight vectors. In this way, we propose the

parametrized constant-depth quantum neuron (PCDQN) that fires with the probability

presented in Equation 3.3. By adjusting 𝜏 and 𝛿, the PCDQN can change its activa-

tion function shape. Thus, that parametrization generates flexibility. Such flexibility is

supposed to allow the PCDQN to fit different underlying patterns.

|𝑤⃗* · 𝑖⃗|2 =

⃒⃒⃒⃒
⃒⃒ 1
𝑁

𝑚−1∏︁
𝑗=0

(1 + 𝑒𝑖[𝜏(𝜃𝑗−𝜑𝑗)+𝛿])

⃒⃒⃒⃒
⃒⃒
2

(3.3)

At the circuit level, that parametrization is achieved by passing 𝜏𝜃 as the argument

of 𝐸(·) and 𝜏𝜑 as the argument of 𝐷(·) followed by applying 𝑃 (𝛿) to each qubit. Figure 2

shows the circuit implementation of the PCDQN. As can be seen, the PCDQN is imple-

mented by a circuit of constant depth with a linear number of elementary single-qubit

gates. The PCDQN is not only efficient but also flexible due to 𝜏 and 𝛿.

Figure 2 – Circuit Implementation of the PCDQN

|0⟩ 𝐻 𝑃 (𝜏𝜃0) 𝑃 (−𝜏𝜑0) 𝑃 (𝛿) 𝐻 𝑋 ∙

|0⟩ 𝐻 𝑃 (𝜏𝜃1) 𝑃 (−𝜏𝜑1) 𝑃 (𝛿) 𝐻 𝑋 ∙

... ... ... ... ... ... ... ...

|0⟩ 𝐻 𝑃 (𝜏𝜃𝑚−2) 𝑃 (−𝜏𝜑𝑚−2) 𝑃 (𝛿) 𝐻 𝑋 ∙

|0⟩ 𝐻 𝑃 (𝜏𝜃𝑚−1) 𝑃 (−𝜏𝜑𝑚−1) 𝑃 (𝛿) 𝐻 𝑋 ∙

|0⟩
Ancilla

Source: The author (2022).

Qubit encoding provides a constant-depth circuit with a linear number of elementary single-qubit gates.
Additionally, the parameters 𝜏 and 𝛿 can change the PCDQN activation function shape.

The PCDQN could be even more efficient by applying only one phase gate 𝑃 (𝜆) to

each qubit, where 𝜆 = 𝜏(𝜃𝑗 − 𝜑𝑗) + 𝛿. Therefore, 𝜏 and 𝛿 would be included in the circuit

with no additional cost. However, that circuit presented in Figure 2 increases the depth

by 1 and the number of operations by 𝑚 to implement the parametrization. Actually, the
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parameter 𝜏 is included in the phase gates that encode the inputs and decode the weights,

but the parameter 𝛿 is included in phase gates apart.

To demonstrate the efficiency of the CDQN and the PCDQN over the CVQN, Figure 3

compares the circuit growth of each quantum neuron as the input size increases. Figure 3a

compares in terms of circuit depth and Figure 3b compares in terms of number of opera-

tions by using, respectively, the depth and size functions provided by Qiskit (ANIS et al.,

2021). The blue curve represents the CVQN, the orange curve represents the CDQN, and

the green curve represents the PCDQN.

Figure 3 – Circuit Growth of Each Quantum Neuron as the Input Size Increases
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Source: The author (2022).

The blue, orange, and green curves represent the CVQN, the CDQN, and the PCDQN growths, respec-
tively. (a) in terms of circuit depth. (b) in terms of the number of operations.

As can be seen, the CVQN grows linearly with the input size 𝑚 in terms of depth and

number of operations. Since 𝑚 = 2𝑛 for the CVQN, that quantum neuron grows expo-

nentially with the number of qubits 𝑛. On the other hand, the CDQN and the PCDQN

have a constant depth and a lower number of operations. Additionally, the CDQN and

the PCDQN are efficiently implemented with elementary single-qubit gates only, while

the CVQN is more expensive, even using complex phase-shift blocks.
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4 ACTIVATION FUNCTION SHAPES

Classical neuron outputs depend on some interaction between the input and weight

vectors. For example, the larger the inner product between the vectors, the larger the

output of the sigmoid activation function. As another example, the larger the Euclidean

distance between the vectors, the smaller the output of the radial basis activation function.

On the other hand, the quantum neuron outputs depend on the inner product between

the input and weight vectors in the feature space. In this chapter, we study the quantum

neuron outputs as a function of some relations between the original vectors, which can be

seen as an indirect way to visualize quantum activation shapes.

Then, we defined a set of two-dimensional input vectors by splitting the interval [0, 𝜋/2]

into ten equidistant values and taking all possible combinations, which gives an input set of

one hundred vectors. The weight vector is fixed here as (𝜋/2, 𝜋/2). Thus, we compute the

classical relations and the corresponding quantum neuron outputs for each input vector

with respect to that weight vector of reference. Input vectors that give the same measure

to that reference vector do not necessarily give the same neuron outputs. Specifically,

we considered the following metrics provided by scikit-learn (PEDREGOSA et al., 2011):

Manhattan distance, Euclidean distance, linear kernel, polynomial kernel, RBF kernel,

and sigmoid kernel.

Figure 4 contrasts the CVQN activation with the CDQN activation as functions of the

Manhattan distance, the Euclidean distance, and the linear kernel. The CVQN activation

presents the same qualitative behavior in all cases but with a shift to the right for the

Euclidean distance, as can be seen in Figure 4a, Figure 4b, and Figure 4c. In all cases, high

values of activation are generated for the input vectors with extreme measures. Moving

away from the extremes, the measures generate smaller and smaller values of activation in

addition to the previous high values. Regarding the CDQN, its activation monotonically

decreases as the Manhattan and Euclidean distances increase, as shown in Figure 4d and

Figure 4e, and monotonically increases as the linear kernel also increases, as shown in

Figure 4f.

In a similar way, Figure 5 contrasts the CVQN activation with the CDQN activation

as functions of the polynomial kernel, the RBF kernel, and the sigmoid kernel. The CVQN

activation presents relatively the same qualitative behavior already presented in Figure 4
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Figure 4 – Quantum Neuron Activation as a Function of the Manhattan Distance, the Euclidean Distance,
and the Linear Kernel Between the Original Input and Weight Vectors
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Source: The author (2022).

(a), (b), and (c) for the CVQN. (d), (e), and (f) for the CDQN.

but with a shift to the left for the polynomial and RBF kernels, as shown in Figure 5a

and Figure 5b, and a considerable shift to the right for the sigmoid kernel, as shown in

Figure 5c. The CDQN activation presents relatively the same qualitative behavior already

presented in Figure 4f but with shapes that suggest a logarithmic growth in Figure 5d, a

linear growth in Figure 5e, and an exponential growth in Figure 5f.

Therefore, the CVQN and the CDQN can solve classification problems where those

activation shapes fit correctly. It turns out the nature of each quantum neuron is preserved

for any of those metrics. Thus, we follow the analysis using only the Euclidean distance

due to its intuitiveness.

Figure 6 shows the PCDQN activation as a function of the Euclidean distance for some

combinations of 𝜏 and 𝛿, which gives examples of substantial changes that are achieved

by means of parametrization on that linear decay already presented in Figure 4e. For

example, (𝜏 = 1/4, 𝛿 = 𝜋/2) and (𝜏 = 1/2, 𝛿 = 𝜋/4) give approximately a linear growth

and a logarithmic growth, as shown in Figure 6a and Figure 6b. Figure 6c shows a chain

of concave-down parabolas achieved by (𝜏 = 1, 𝛿 = 𝜋/4). An exponential decay and an

exponential growth are achieved by (𝜏 = 1, 𝛿 = 3𝜋/2) and (𝜏 = 2, 𝛿 = 5𝜋/4) respectively,
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Figure 5 – Quantum Neuron Activation as a Function of the Polynomial Kernel, the RBF Kernel, and
the Sigmoid Kernel Between the Original Input and Weight Vectors
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Source: The author (2022).

(a), (b), and (c) for the CVQN. (d), (e), and (f) for the CDQN.

Figure 6 – PCDQN Activation as a Function of the Euclidean Distance Between the Original Input and
Weight Vectors for Some Combinations of 𝜏 and 𝛿
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Source: The author (2022).

(a) for 𝜏 = 1/4 and 𝛿 = 𝜋/2. (b) for 𝜏 = 1/2 and 𝛿 = 𝜋/4. (c) for 𝜏 = 1 and 𝛿 = 𝜋/4. (d) for 𝜏 = 1 and
𝛿 = 3𝜋/2. (e) for 𝜏 = 2 and 𝛿 = 5𝜋/4. (f) for 𝜏 = 4 and 𝛿 = 0.
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as shown in Figure 6d and Figure 6e. Figure 6f approaches multiple concave-up parabolas

with (𝜏 = 4, 𝛿 = 0). In summary, the PCDQN is flexible. In practice, such flexibility is

expected to enable the PCDQN to fit problems that the other neurons cannot fit correctly.
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5 APPLICATION ON CLASSIFICATION PROBLEMS

Here, we numerically compare the quantum neurons at solving some classification

problems. Additionally, we study the best solutions of the quantum neurons by means

of their activation function shapes applied to the problems. Finally, we demonstrate the

feasibility of those numerical solutions by executing the quantum neuron circuits on a

quantum simulator.

5.1 DATASETS

The three datasets used here are depicted in Figure 7a, Figure 7b, and Figure 7c. The

positive class is represented by the black blobs, while the negative class is represented by

the red blobs, although there is no previous indication of that labeling. Thus, we decide

to swap the labels, deriving three more classification problems where the old negative

classes become the new positive classes and vice versa, as depicted in Figure 7d, Figure 7e,

and Figure 7f. Note that a line is not able to separate the classes of any of those two-

dimensional binary classification problems. It is worth also mentioning that each input

variable is scaled to that interval [0, 𝜋/2].

We refer to Figure 7a and Figure 7d as the diagonal blobs due to the formed structure.

The difference is that the target class is formed by the center blobs in Figure 7a, while

the target is the corner blobs in Figure 7d. That dataset is provided by the scikit-learn

make_blobs function, letting centers be [(-5,8), (0,0), (5,-8)], cluster_std be 1.2, and

random_state be 0. Each class has 50 samples. Alternatively, the target is the inner circle

in Figure 7b, while the target is the outer circle in Figure 7e. Those concentric circles are

provided by the scikit-learn make_circles function, letting noise be 0.05, factor be 0.4,

and random_state be 0. Each circle has 50 samples. Finally, the blobs in the coordinates

[(0, 0), (0, 𝜋/2), (𝜋/2, 0), (𝜋/2, 𝜋/2)] form a square, where the target is like the Exclusive

OR (XOR) problem in Figure 7c, while the target is like the Not Exclusive OR (NXOR)

problem in Figure 7f.
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Figure 7 – Classification Problems where the Quantum Neurons are Applied
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Source: The author (2022).

The positive class is represented by the black blobs, while the negative class is represented by the red
ones. All inputs are in the interval [0, 𝜋/2].

5.2 SEARCH FOR WEIGHTS AND PARAMETERS

We conduct a grid search for the best weight vector of each quantum neuron for each

classification problem. The space of weight vectors is formed here by all vectors (𝜑0, 𝜑1)

where each component assumes one-hundred equidistant values in the interval [0, 𝜋/2],

which gives a ten-thousand-vector weight space. Then, we choose the first weight vector in

the search that maximizes the Area Under the Receiver Operating Characteristic Curve

(AUC ROC). The AUC ROC allows measuring the classification quality in a threshold-free

manner. We compute that metric by means of the scikit-learn roc_auc_score function.

Specifically for the PCDQN, we conduct a nested grid search for the best parameter

combination and weight vector for each classification problem. The space of parameters

is formed here by all combinations (𝜏, 𝛿), where
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𝜏 ∈
{︃

1
4 ,

1
2 , 1, 2, 4

}︃
and

𝛿 ∈
{︃

0, 𝜋4 ,
𝜋

2 ,
3𝜋
4 , 𝜋,

5𝜋
4 ,

3𝜋
2

}︃
.

Actually, the combination (1, 0) is not allowed since it produces the CDQN. Con-

sequently, there are 34 allowed combinations to search. Those combinations explore a

variety of lengths and shifts along the activation function period, which is 2𝜋. For each

combination of 𝜏 and 𝛿, we search that ten-thousand-vector weight space. Then, we choose

the first values of (𝜏, 𝛿) and (𝜑0, 𝜑1) that maximize the AUC ROC together in the nested

search.

5.3 RESULTS AND DISCUSSION

Table 1 shows the maximum AUC ROC that each quantum neuron achieved for each

classification problem. The CVQN and the CDQN perfectly solved the Diagonal blobs

when targeting the class Center. The CVQN also solved the NXOR-like Square blobs,

while the CDQN performed like a random model. On the other hand, while the CVQN

did not solve the Concentric circles when targeting the class Inner, the CDQN did. In

summary, the CVQN and the CDQN only solved two problems each. The PCDQN pro-

duced optimal solutions for all problems, even for those problems where the other neu-

rons performed like merely random models. Those results confirm the hypothesis that

parametrization gives flexibility.

Table 1 – Maximum AUC ROC of Each Quantum Neuron for Each Classification Problem

Dataset Target CVQN CDQN PCDQN

Diagonal blobs Center 1.0 1.0 1.0
Corner 0.5 0.5 1.0

Concentric circles Inner 0.8244 1.0 1.0
Outer 0.502 0.4088 0.9524

Square blobs XOR-like 0.5 0.5 1.0
NXOR-like 1.0 0.5 1.0

Source: The author (2022).
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The best parameter combinations and weight vectors of each quantum neuron for each

classification problem are reported in Table 2. Actually, the weights have about sixteen

decimal places. We report here only the first two decimal places, which is enough to

retrieve the original weights of about sixteen decimal places used in the search.

Table 2 – Best Parameter Combinations and Weight Vectors of Each Quantum Neuron for Each Classi-
fication Problem

CVQN CDQN PCDQN
Dataset Target

(𝜑0, 𝜑1) (𝜑0, 𝜑1) (𝜏, 𝛿) (𝜑0, 𝜑1)

Diagonal blobs Center (0, 0) (0.46, 0.49) (1/4, 0) (0.46, 0.50)
Corner (0, 0.87) (0, 1.07) (1/4, 𝜋) (0.69, 0.76)

Concentric circles Inner (0, 0.03) (0.60, 0.76) (1/4, 0) (0.60, 0.76)
Outer (0.79, 0) (1.57, 1.45) (1/4, 𝜋) (0.82, 0.74)

Square blobs XOR-like (0, 0.79) (0, 0) (4, 0) (0.15, 1.20)
NXOR-like (0, 0) (0, 0) (4, 0) (0.04, 0.04)

Source: The author (2022).

In the following, we use those best parameters and weights to study the quantum

neuron solutions. We then plot the activation shape of each quantum neuron for each

classification problem, which depends on the best parameters for the PCDQN. Those

shapes are drawn as functions of the Euclidean distance from the input data to the

corresponding best weight vector. A problem is solved if the neuron outputs for the black

blobs are higher than the ones for the red blobs, regardless of the Euclidean distances to

the best weight vector. In this way, there will be a threshold that separates the classes

perfectly.

Figure 8 contrasts the quantum neuron solutions for the two problems derived from

the Diagonal blobs. The CVQN solves the problem when targeting the class Center by

positioning the weight vector closer to the center cluster, which gives values of activation

for that cluster higher than the ones for the corner clusters, as shown in Figure 8a. That

CVQN solution required the ability to also distinguish the black blobs from the red blobs

at the intersection of Euclidean distances between the clusters. A similar CVQN solution

correctly separated the upper left cluster from the center cluster when targeting the class

Corner, although the bottom right cluster has incorrectly obtained the lowest values,

as shown in Figure 8d. The CDQN and the PCDQN solve the problem when targeting

the class Center by positioning the weight vector close to the target cluster, and then

implementing a monotonic decay as the Euclidean distance increases in any direction, as
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shown in Figure 8b and Figure 8c. A monotonic decay does not solve the problem when

targeting the class Corner, as shown in Figure 8e for the CDQN. Actually, a monotonic

growth from a weight vector within the center cluster solves that problem, as shown in

Figure 8f for the PCDQN, which can be achieved by means of parametrization.

Figure 8 – Solutions Obtained by the CVQN, the CDQN, and the PCDQN for the Two Problems Derived
from the Diagonal Blobs
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Source: The author (2022).

(a), (b), and (c) when targeting the class Center. (d), (e), and (f) when targeting the class Corner.

The quantum neuron solutions for the two problems derived from the Concentric circles

are contrasted in Figure 9. The CVQN correctly separates the classes at the intersection of

Euclidean distances between them when targeting the class Inner, as shown in Figure 9a.

The CVQN does not solve the problem because the closest and the most distant blobs,

which are of the negative class, obtained high values of activation. Figure 9d shows that the

CVQN performed like a random model when targeting the class Outer because the solution

basically implements a decay. However, the circle shapes inside that solution suggest

the multiple neuron outputs for the same Euclidean distance depend on the distance

direction. The CDQN and the PCDQN solve the problem when targeting the class Inner

by implementing a monotonic decay from that target circle, as shown in Figure 9b and

Figure 9c. That shape does not fit the problem when targeting the class Outer, as shown in

Figure 9e for the CDQN. A monotonic growth from the center can really fit that problem,
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which can be achieved by parametrization, as shown in Figure 9f for the PCDQN. That

solution does not fit perfectly because far blobs obtained low values of activation. Thus,

the distance direction really matters.

Figure 9 – Solutions Obtained by the CVQN, the CDQN, and the PCDQN for the Two Problems Derived
from the Concentric Circles
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Source: The author (2022).

(a), (b), and (c) when targeting the class Inner. (d), (e), and (f) when targeting the class Outer.

Finally, Figure 10 contrasts the quantum neuron solutions for the two problems de-

rived from the Square blobs. The CVQN performed as a random model when targeting

the XOR-like problem because the solution basically implements a decay, as shown in

Figure 10a. A distant point obtained a high value of activation due to its distance direc-

tion. The CVQN solves the problem perfectly when targeting the NXOR-like problem by

taking advantage of all spectrum of its activation shape to generate high values of activa-

tion in the extremes and low values in the intermediate distances, as shown in Figure 10d.

A monotonic decay does not fit any of those two problems, as shown in Figure 10b and

Figure 10e, both for the CDQN. In contrast, a concave-up parabola can fit those two

problems. By the way, the PCDQN can implement such shape, as already shown in Fig-

ure 6f. Thus, the PCDQN can solve those two problems perfectly, as shown in Figure 10c

and Figure 10f.

Those results demonstrate limitations in the CVQN and in the CDQN since their
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Figure 10 – Solutions Obtained by the CVQN, the CDQN, and the PCDQN for the Two Problems Derived
from the Square Blobs
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Source: The author (2022).

(a), (b), and (c) when targeting the XOR problem. (d), (e), and (f) when targeting the NXOR problem.

activation shapes can fit only particular problems. The PCDQN, in turn, can dynamically

change its activation shape to a monotonic decay, a monotonic growth, and a concave-up

parabola, for example. That list of shapes is not exhaustive. The PCDQN can implement

even more shapes by exploring its real parameters, depending on the underlying pattern

of the problem. Thus, the PCDQN is flexible. Such flexibility allows the PCDQN to fit

complex problems that are beyond the capabilities of the other neurons.

5.4 EXECUTION ON A QUANTUM SIMULATOR

Finally, we demonstrate the physical feasibility of the previous numerical solutions

through a proof-of-concept experiment on a quantum simulator. We address here the two

classification problems used by Mangini et al. (2020): Diagonal blobs targeting the class

Center and Concentric circles targeting the class Inner. The quantum neuron solutions

for those two problems are then implemented in quantum circuits that are executed on

the Qiskit QASM simulator.

To estimate the quantum neuron activation for a given pair of vectors, we take the
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proportion of 1s in the circuit outputs after twenty thousand executions of the circuit.

Thus, each quantum neuron is executed twenty thousand times for each input vector of

each classification problem to estimate the activation with respect to the corresponding

best weight vector. Twenty thousand executions of three quantum neurons applied in

two classification problems of a hundred samples each give twelve million circuit execu-

tions. Nevertheless, finite numbers of execution can cause small errors in the activation

estimates.

After estimating the activation, we can compute the circuit-generated AUC ROC of

each quantum neuron for each classification problem on the quantum simulator. Those

circuit-generated values of AUC ROC are contrasted in Figure 11. The blue bars repre-

sent the CVQN, the orange bars represent the CDQN, and the green bars represent the

PCDQN. In fact, the quantum neurons reproduce the reference values reported in Table 1

for those two problems. The CDQN and the PCDQN generate optimal results, while the

CVQN is optimal in the first problem but generates an AUC ROC of about 0.82 in the

second problem. Therefore, the quantum neuron solutions are validated by the circuit

realizations in the quantum simulator.

Figure 11 – AUC ROC Generated by the Quantum Neuron Circuits on a Quantum Simulator for the
Diagonal Blobs when Targeting the Class Center and the Concentric Circles when Targeting
the Class Inner
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Source: The author (2022).

The blue, orange, and green bars represent the CVQN, the CDQN, and the PCDQN, respectively.
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6 BENCHMARKING CLASSICAL AND QUANTUM NEURONS

The experiments of the previous chapter prototyped the quantum neurons through

an initial application on a few classification problems. In this chapter, we conduct an

extensive experimental comparison in order to obtain enough evidence to support solid

conclusions. The present extension is based on comparing against more neurons, which

includes classical ones. Classification problems derived from other datasets are also con-

sidered here. We put all this together in benchmarks from two perspectives. First, the

neurons are contrasted by their maximum AUC ROC values obtained on the classifica-

tion problems. Finally, the class separation on the classification problems perfectly solved

by the neurons becomes the comparison criterion of the benchmark.

6.1 NEW NEURONS

During the development of this research, the continuous Rosenblatt quantum neuron

(CRQN) was proposed in the literature (MARONESE; PRATI, 2021). Thus, we readily took

it into account in the benchmark development. In this way, the previous neurons could

be compared against one more model that can be recast in the kernel-based framework

of quantum neurons proposed in this research. The CRQN provides a straightforward

generalization of the BVQN (TACCHINO et al., 2019) by basically applying a feature map-

ping that only normalizes classical vectors. The difference from the BVQN is that the

CRQN works with real classical vectors instead of binary ones. From classical vectors

𝜃 = (𝜃0, 𝜃1, · · · , 𝜃𝑚−2, 𝜃𝑚−1) and 𝜑 = (𝜑0, 𝜑1, · · · , 𝜑𝑚−2, 𝜑𝑚−1), where 𝜃𝑗, 𝜑𝑗 ∈ [−1, 1] ⊂ R,

the CRQN feature mappings Φ𝑖(·) and Φ𝑤(·) provide the following 𝑁 -dimensional quan-

tum vectors, where 𝑁 = 𝑚+ 2:

𝑖⃗ = Φ𝑖(𝜃) = 1√
𝑚

(𝛼𝜃, 𝜃0, 𝜃1, · · · , 𝜃𝑚−2, 𝜃𝑚−1, 0) and

𝑤⃗ = Φ𝑤(𝜑) = 1√
𝑚

(0, 𝜑0, 𝜑1, · · · , 𝜑𝑚−2, 𝜑𝑚−1, 𝛼𝜑).

The components 𝛼𝜃 and 𝛼𝜑 compensate for the normalization factor 1/
√
𝑚 so that

the vectors 𝑖⃗ and 𝑤⃗ become unit vectors. In this way, 𝛼𝜃 equals
√
𝑚− 𝜃 · 𝜃, while 𝛼𝜑

equals
√
𝑚− 𝜑 · 𝜑. In the inner product between 𝑖⃗ and 𝑤⃗, 𝛼𝜃 is canceled out by a zeroed
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component in the respective position in 𝑤⃗. Similarly, 𝑖⃗ has a zeroed component in the

respective position to cancel out 𝛼𝜑. As the BVQN, the CRQN has an exponential ad-

vantage by storing the 𝑁 = 𝑚+ 2 vector components in only 𝑛 qubits, where 𝑛 = log2𝑁 .

If 𝑁 is not an exact power of 2, the quantum vectors are filled with more 2⌈log2𝑁⌉ − 𝑁

zeroed components.

For the amplitude encoding of 𝑖⃗, the operator 𝐸(𝜃) first encodes each |𝑖𝑗| by ap-

plying a particular case for real data of an algorithm that initializes arbitrary quantum

states (SHENDE; BULLOCK; MARKOV, 2006). That particular implementation for real vec-

tors is basically composed of multi-controlled 𝑅𝑦 gates. After the rotations along the

y-axis to encode the components in absolute value, 𝐸(𝜃) corrects the component signs by

applying the HSGS already used by the BVQN. Analogously, the operator 𝐷(𝜑) decodes

𝑤⃗ by first applying the HSGS to cancel negative signs, and then multi-controlled 𝑅𝑦 gates

finally decode each |𝑤𝑗|. Therefore, the operators 𝐸(𝜃) and 𝐷(𝜑) are subdivided into

two steps that are implemented by exponentially expensive circuits in terms of depth and

number of operations, even using complex multi-controlled gates. Finally, the CRQN fires

with the probability presented in Equation 6.1.

|𝑤⃗* · 𝑖⃗|2 =

⃒⃒⃒⃒
⃒⃒ 1
𝑚

𝑚−1∑︁
𝑗=0

𝜑𝑗𝜃𝑗

⃒⃒⃒⃒
⃒⃒
2

(6.1)

As can be seen, the CRQN activation depends explicitly on the inner product between

the original vectors. Thus, we can unequivocally study its activation by varying only

such relation between the vectors. Figure 12 shows the CRQN activation values for inner

products varying from -10 to 10 with a step size equal to 0.1 and 𝑚 equal to 10. This

activation function shape exhibits the impacts on the CRQN outputs from changes in

that interaction between classical vectors. The minimum point of the parabola is at the

inner product equal to 0. Then, the activation monotonically increases as the inner product

moves away from 0 in any direction. The maximum activation values occur in the extreme

inner products.

However, this benchmark of neurons is not about quantum models only. Classical

neurons are also contemplated here. The idea is to extensively compare standard classical

neurons, which are strongly consolidated, with emerging quantum ones, which are seeking

consolidation in the community of machine learning and its applications. This type of

research is valuable for demonstrating whether a practical quantum advantage can exist
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Figure 12 – CRQN Activation as a Function of the Inner Product Between the Original Vectors
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Source: The author (2022).

By controlling the inner product directly, the CRQN activation was computed for that metric varying
from -10 to 10 in steps of 0.1. The normalization occurred by a factor 𝑚 equal to 10 in the CRQN
activation function.

or not. In this way, three classical neurons with common activation functions are explored

in the benchmark. The linear classical neuron (LCN), the logistic sigmoid classical neuron

(LSCN), and the hyperbolic tangent classical neuron (HTCN) are the three classical

baselines against which the quantum neurons are compared here.

The notion of feature space mappings that are implemented by quantum neurons does

not hold for the classical neurons. Thus, the vectors 𝑖⃗ and 𝑤⃗ come down to the original

input and weight vectors 𝜃 and 𝜑, respectively. The inner product between 𝑖⃗ = 𝜃 and

𝑤⃗ = 𝜑 determines the outputs given by the activation functions of those classical neurons.

The activation function of the LCN is presented in Equation 6.2. The LSCN activation

function was already presented in Equation 2.2 for contextualization reasons. Equation 6.3

finally presents the HTCN activation function.

𝜙(𝑤⃗ · 𝑖⃗) = 𝑤⃗ · 𝑖⃗ (6.2)

𝜙(𝑤⃗ · 𝑖⃗) = 𝑒(𝑤⃗·⃗𝑖) − 𝑒−(𝑤⃗·⃗𝑖)

𝑒(𝑤⃗·⃗𝑖) + 𝑒−(𝑤⃗·⃗𝑖)
(6.3)

Some intuition can be obtained from the shapes of those activation functions. Figure 13

shows the outputs of each classical neuron as the inner product varies. As can be seen

in Figure 13a, the LCN implements a line that crosses the origin with a slope of 1 by

giving outputs identical to the inputs. With shapes that look like the letter “S", the

LSCN and the HTCN suppress those outputs to the intervals [0, 1] and [-1, 1], as shown

in Figure 13b and Figure 13c respectively. In all cases, the neuron outputs monotonically

grow with the inner product. That output growth occurs at the same ratio of the inner
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product changes in the LCN. In turn, the derivatives vary in the LSCN and the HTCN.

Firstly, the derivatives are low but smoothly increasing for small inner products, where the

neuron outputs are also small. Then, the derivatives achieve their highest values around

inner products of 0, where the neuron outputs grow rapidly from changes in the inputs.

Finally, the derivatives become smoothly low again for high inner products, where the

neuron outputs are also high. It is worth mentioning that, in the following benchmark

experiments, the classical neurons work with vector entries pre-processed to the interval

[0, 1] as a common practice to avoid scaling issues.

Figure 13 – Classical Neuron Activation as a Function of the Inner Product Between Vectors
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Source: The author (2022).

By controlling the inner product directly, the classical neuron activation was computed for that metric
varying from -10 to 10 in steps of 0.1. (a) for the LCN. (b) for the LSCN. (c) for the HTCN.

6.2 NEW DATASETS

To benchmark the classical and quantum neurons, a greater variety of classification

problems is needed in order to contemplate more situations and levels of complexity. Thus,

more datasets are required for an extensive experimental comparison between classical

and quantum neurons. In this way, an old dataset was modified and other three new

datasets were added to the experiments. The two classification problems derived from

the Diagonal blobs, which were already showed in Figure 7a and Figure 7d, continue

for the present benchmark. In the same manner, this benchmark also consider the two

classification problems derived from the Concentric circles already presented in Figure 7b

and Figure 7e.

Figure 7c and Figure 7f already presented the two problems addressed here that were

derived from a square with a blob in each of its corners. The modification in that old
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dataset for the benchmark was to fill the corners of a square with clusters of blobs instead.

Figure 14a shows the obtained classification problem when organizing the Square clusters

as the XOR problem. Conversely, targeting the Square clusters like the NXOR problem

generates the classification problem presented in Figure 14c. This new dataset can be

obtained by the scikit-learn make_classification function, letting class_sep be 5.0 and

random_state be 0. The cluster of each corner has 25 samples, which implies 50 samples

per class. However, the first really new dataset considered for the benchmark was the

Moons. Two interleaved moons are obtained from two half circles where one is reflected

and shifted with respect to the other. Figure 14b shows the problem of targeting the moon

that is like the ∪ symbol. The other moon, which is like the ∩ symbol, is the target class

in Figure 14d. That dataset of moons can be produced by the scikit-learn make_moons

function, letting noise be 0.05 and random_state be 0. Each moon is formed by 50 samples.

Figure 14 – Classification Problems Derived from the Two New Datasets of Two Classes Contemplated
in the Benchmark of Classical and Quantum Neurons
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Source: The author (2022).

The positive class is represented by the black blobs, while the negative class is represented by the red
ones. Intentionally, the data scale is omitted because the neurons work in different input intervals.

The first dataset of 3 classes contemplated in this study was the Gaussian quantiles.
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This dataset is constructed here by sampling 150 points from a 2-dimensional normal

distribution. Then, the 50 points closest to the origin are labeled as the class Inner.

The class Middle is formed taking out the 50 points closest and the 50 points more

distant from the origin. Those 50 points that are more distant from the origin are labeled

as the class Outer. Applying a one-vs-all approach, the Gaussian quantiles derive three

classification problems, where the first one is to target the class Inner, the second one

is to target the class Middle, and the third one is to target the class Outer, as shown

respectively in Figure 15a, Figure 15b, and Figure 15c. For consistency reasons, we also

applied in this dataset an inverted one-vs-all approach, where the class at hand is the

negative class of the problem and the others form the positive class. Figure 15d shows

the problem of targeting all classes other than the class Inner. The class Middle is the

negative class of the problem in Figure 15e. Finally, in Figure 15f, the class Inner and

the class Middle form the positive class, while the class Outer is the negative class. The

scikit-learn make_gaussian_quantiles function, letting random_state be 0, provide the

Gaussian quantiles used here.

Different from the previous problems, the last dataset added to the benchmark consists

of real-life data. The Iris is a well-known 4-dimensional dataset of 3 classes, with 50

instances per class. The scikit-learn load_iris function provide the data. The classes refer

to 3 species of flowers, which are Setosa, Versicolor, and Virginica. Again, by applying

both a one-vs-all approach and an inverted one-vs-all approach, six classification problems

can be derived from this dataset:

1. Setosa as the positive class, while Versicolor and Virginica as the negative class;

2. Setosa as the negative class, while Versicolor and Virginica as the positive class;

3. Versicolor as the positive class, while Setosa and Virginica as the negative class;

4. Versicolor as the negative class, while Setosa and Virginica as the positive class;

5. Virginica as the positive class, while Setosa and Versicolor as the negative class;

6. Virginica as the negative class, while Setosa and Versicolor as the positive class.

In total, from 4 datasets of 2 classes and 2 datasets of 3 classes, we derive 20 classifica-

tion problems in which the classical and quantum neurons are applied in the benchmark.
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Figure 15 – Classification Problems Derived from a Dataset of Three Classes Contemplated in the Bench-
mark of Classical and Quantum Neurons
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Source: The author (2022).

The positive class is represented by the black blobs, while the negative class is represented by the red
ones. Intentionally, the data scale is omitted because the neurons work in different input intervals.

Those 20 problems are addressed here in the original form and with the presence of a

bias, summing 40 problems to apply the neurons. The bias itself means a new degree of

freedom for the weight vectors. Consequently, a neutral element is attached to the input

vectors. Attaching the neutral element of the addition or the neutral element of the mul-

tiplication depends on the neuron that is applied. The way that weight values operate

in the activation function determines the attached input value. For the quantum neurons

already applied in the previous chapter, the attached input value is 0. For the neurons

added in this chapter, the attached input value is 1. Regardless of bias, the applied neuron

also determines the input scale. As already seen in the previous chapter, those quantum

neurons require a pre-processing stage in which the data is scaled to the interval [0, 𝜋/2].

A rescaling of data is necessary for the neurons introduced in this chapter. The CRQN

works in the interval [−1, 1], while the classical neurons operate in the interval [0, 1]. We

suppressed the scale in Figure 14 and Figure 15 because of that neuron dependency.
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6.3 BENCHMARKING THROUGH THE MAXIMUM AUC ROC

The maximum values of AUC ROC that we reported before were obtained by searching

a weight space of ten thousand two-dimensional vectors. For each vector component,

the allowed interval [0, 𝜋/2] was subdivided into one-hundred equidistant values. The

weight space was then constructed by taking the Cartesian product of those sets of vector

component values. Now, we are also addressing four-dimensional problems and allowing

the presence of a bias. Thus, a different weight space is required depending on the number

of freedom degrees of the problem. All weight spaces used here have at least ten thousand

vectors. The number of equidistant parts in which the interval [0, 𝜋/2] is subdivided is

the smaller integer that guarantees the required weight space size when the Cartesian

product is taken.

Specifically, two-dimensional problems and four-dimensional problems, both without

a bias, have a weight space of 10000 vectors by subdividing that interval into 100 parts

and 10 parts, respectively. When a bias is added, the weight space size becomes 10648 by

subdividing that interval into 22 parts for two-dimensional problems and becomes 16807

by subdividing that interval into 7 parts for four-dimensional problems. The rule is to

subdivide that interval in a number of parts 𝑛𝑝 such that 𝑛𝑝 = ⌈ 𝑑
√

10000⌉, where 𝑑 is the

number of freedom degrees. In that way, a weight space with 𝑛𝑣 vectors is obtained, where

𝑛𝑣 = (𝑛𝑝)𝑑 ≥ 10000. Note that there is a trade-off here when it comes to adding a bias.

One more degree of freedom increased 𝑛𝑣 but decreased 𝑛𝑝. Thus, there are more trials to

maximize the AUC ROC when a bias is added, but the steps are less refined in the grid.

The weight space depends not only on the number of freedom degrees but also on

the neuron that is applied due to scale reasons. Not all neurons work with vector entries

in the interval [0, 𝜋/2]. Actually, only the neurons of the previous chapter work in this

interval. The neurons that we included now work in another interval of vector entries.

The CRQN works in the interval [−1, 1], while the classical neurons work in the interval

[0, 1]. In this way, the weight space constructed for a problem may be rescaled to attend

to the interval of values required for the neuron at hand. Therefore, we conducted a fair

comparison between the neurons in terms of the number of trials and the refinement of

the steps, with each neuron working in its appropriate interval of vector entries.

Here, that distinction between the CDQN and the PCDQN in order to make explicit

the gains obtained by the parametrization is no longer necessary. Allowing the combination
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(𝜏 = 1, 𝛿 = 0) in the parameter space enables the PCDQN to instantiate the CDQN

when appropriate. Thus, there are 35 parameter combinations to try when adjusting the

PCDQN for a given problem. As before, for each parameter combination of the PCDQN,

we also search the space of weight vectors, which depends on the freedom degrees of the

problem. In order to avoid overly fine decision boundaries, we round the outputs of all

neurons to two decimal places. Finally, we compute the AUC ROC obtained by each trial

and then report the maximum value found for each neuron when solving each classification

problem without a bias and with a bias.

Table 3 benchmarks the neurons through their best values of AUC ROC on the sixteen

classification problems derived from the datasets of two classes. When there is no bias in

the problem, we indicate by “N" in the column named “Bias”. Alternatively, “Y” indicates

that there is a bias in the problem. In each problem, we compared the quantum neurons

and the classical neurons separately. The maximum AUC ROC value obtained within

each group of neurons is marked in bold. Then, we compared the best results between the

two groups of neurons. The best overall result is further marked by an underscore.

The first problem addressed in this extensive comparison between neurons is the Di-

agonal blobs when targeting the class Center. The CVQN and the PCDQN performed

like an optimal model, while the CRQN, the LCN, and the HTCN performed like a ran-

dom model in that problem. The LSCN, in turn, performed as a middle ground between

the random and the optimal models. When a bias was added, the CRQN achieved that

intermediate performance also obtained by the LSCN. Targeting the class Corner made

the CVQN perform as a random model while allowing the CRQN to achieve the optimal

value of AUC ROC. The addition of a bias, however, did not produce significant changes

in the neuron performances in that problem.

Regarding the Concentric circles when targeting the class Inner, only the PCDQN

performed as an optimal model. The CVQN performed as a middle ground between the

PCDQN performance and the performance of all other neurons, which approached the

random model with the LSCN being slightly better. The addition of a bias allowed the

CVQN to match the PCDQN performance and the CRQN to match the LSCN perfor-

mance. Changing the target to the class Outer made the CVQN perform like a random

model and the CRQN approach an optimal model. Even with a slight deterioration in the

performance, the PCDQN was the best neuron again. Finally, the neurons did not take

advantage of the bias when targeting the class Outer.
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Table 3 – Benchmarking Classical and Quantum Neurons through the Maximum AUC ROC Values Ob-
tained on Datasets of Two Classes

Dataset Target Bias CVQN PCDQN CRQN LCN LSCN HTCN

Diagonal
blobs

Center N 1.0 1.0 0.53 0.57 0.75 0.57
Y 1.0 1.0 0.75 0.5664 0.75 0.628

Corner N 0.5 1.0 1.0 0.58 0.75 0.58
Y 0.5 1.0 1.0 0.5332 0.75 0.6518

Concentric
circles

Inner N 0.832 1.0 0.5 0.5394 0.68 0.5394
Y 1.0 1.0 0.66 0.52 0.67 0.563

Outer N 0.5036 0.93 0.8596 0.5288 0.69 0.5204
Y 0.4604 0.9202 0.8554 0.5304 0.67 0.5484

Square
clusters

XOR-like N 0.5 0.75 1.0 0.5604 0.74 0.5604
Y 0.5056 0.75 1.0 0.5692 0.66 0.5618

NXOR-like N 1.0 0.75 1.0 0.536 0.73 0.5348
Y 0.965 0.75 1.0 0.544 0.6814 0.546

Moons
∪-like N 0.9478 0.9568 0.5932 0.826 0.826 0.826

Y 0.9546 0.957 0.9604 0.8186 0.8434 0.8434

∩-like N 0.9472 0.9516 0.6 0.941 0.9418 0.9398
Y 0.9474 0.9508 0.959 0.943 0.944 0.9472

Source: The author (2022).

Since each dataset provides two classification problems that are addressed both without a bias and with
a bias, four datasets provided sixteen classification problems in which the neurons were contrasted. In
the column named “Bias", “N" and “Y" refer to the absence and the presence of a bias, respectively. The
best results among the quantum neurons are highlighted in bold. The best results among the classical
neurons are also highlighted in bold. The best overall results are underlined.

The Square clusters were perfectly separated only by the CRQN when the target

class was like the XOR problem. The CVQN, the LCN, and the HTCN performed like

random models on that problem. The PCDQN and the LSCN obtained intermediate

performances between those extremes. With a bias, the only difference that emerged was

the deterioration in the LSCN performance, making that neuron approach a random

model. Organizing the problem like the NXOR problem allowed the CVQN to perform

optimally, while the other neurons performed as before without a bias, which includes the

CRQN performing also optimally. The addition of a bias deteriorated not only the LSCN

again but also the CVQN this time.

The last two-class dataset addressed here was the Moons. When targeting the moon

that is like the ∪ symbol, the CVQN and the PCDQN approached optimal models, with

the PCDQN being slightly better. The CRQN, in turn, approached a random model. All
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classical neurons obtained intermediate performances. With a bias, the CRQN became

the best neuron to address that problem, which represented one of the most significant

improvements observed in the experiments due to the addition of a bias. By targeting

the moon that is like the ∩ symbol, although the PCDQN continued as the best neuron

followed by the CVQN when a bias is not used, all classical neurons obtained competitive

performances that approach the performances of those quantum neurons. One more time,

the CRQN performed like a random model, and the expressive gains from the addition of

a bias made it the best of all neurons for the problem at hand.

The results for the two datasets of three classes addressed here, which are the Gaus-

sian quantiles and the Iris, are reported in Table 4. There are twenty-four classification

problems derived from those datasets in which the maximum AUC ROC values obtained

by the neurons are contrasted. Regarding the Gaussian quantiles, the first problem was to

target the class Inner, where only the PCDQN solved perfectly. The CVQN approached

an optimal model, while the other neurons performed like random models with the LSCN

performing moderately better. The CVQN approached the PCDQN and the CRQN ap-

proached the LSCN when a bias was added. When the target class is formed by all classes

other than the class Inner, the CRQN approached an optimal model but not as much

as the PCDQN that continued as the best neuron. The other neurons performed like

random models, with the LSCN relatively better again. That LSCN performance was

approximated by the HTCN making use of a bias.

Separating the class Middle from the other classes of the Gaussian quantiles was

the most challenging task because all neurons performed basically as random models,

independent of whether or not a bias was used and whether or not the class Middle was

the positive class of the problem. Nevertheless, the PCDQN can be highlighted since

it obtained the best performances in all those cases, approaching the middle ground

performance between the random and the optimal models, especially when a bias was used

to target the class Middle as the positive class. Targeting the class Outer, independent of

using a bias, was another case where the PCDQN obtained the best results by approaching

an optimal model. Among the remaining neurons, the CRQN achieved the best values

of AUC ROC by also approaching an optimal model. The other neurons performed like

random models. When the class Outer was the negative class, the PCDQN solved the

problem perfectly, the CVQN approximated an optimal model, and all other neurons

performed like random models. The CVQN actually performed as an optimal model when
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Table 4 – Benchmarking Classical and Quantum Neurons through the Maximum AUC ROC Values Ob-
tained on Datasets of Three Classes

Dataset Target Bias CVQN PCDQN CRQN LCN LSCN HTCN

Gaussian
quantiles

Inner N 0.8764 1.0 0.5 0.5536 0.685 0.5536
Y 0.9943 1.0 0.67 0.5528 0.685 0.5782

Not Inner N 0.5174 0.9328 0.8824 0.59 0.67 0.59
Y 0.4905 0.9168 0.8708 0.5639 0.66 0.6462

Middle N 0.6264 0.695 0.5859 0.5382 0.573 0.5382
Y 0.6115 0.735 0.6185 0.5377 0.5779 0.5728

Not Middle N 0.5535 0.6508 0.6104 0.5766 0.615 0.5766
Y 0.5474 0.6588 0.63 0.5829 0.6438 0.5948

Outer N 0.5375 0.9182 0.8688 0.62 0.66 0.62
Y 0.5012 0.9159 0.8638 0.5519 0.66 0.6083

Not Outer N 0.8575 1.0 0.5 0.525 0.655 0.525
Y 0.9842 0.9996 0.63 0.5 0.655 0.5185

Iris

Setosa N 1.0 1.0 0.9825 0.8796 0.8802 0.8796
Y 1.0 1.0 1.0 0.8796 0.8802 0.8812

Not Setosa N 1.0 1.0 0.716 1.0 1.0 1.0
Y 1.0 1.0 1.0 1.0 1.0 1.0

Versicolor N 0.9422 0.9955 0.6808 0.5804 0.6395 0.5785
Y 0.9955 0.9941 0.8306 0.5804 0.6258 0.5867

Not Vers. N 0.7163 0.9946 0.9989 0.7942 0.7972 0.7942
Y 0.6606 0.9928 0.9985 0.7956 0.7977 0.7974

Virginica N 0.9452 0.9931 0.7511 0.9979 0.9973 0.9974
Y 0.9891 0.9928 0.9986 0.9976 0.9976 0.9978

Not Virg. N 0.9549 0.999 0.6251 0.5856 0.5872 0.5854
Y 0.9988 0.9991 0.9955 0.5935 0.5946 0.5947

Source: The author (2022).

Since each dataset provides six classification problems that are addressed both without a bias and with a
bias, two datasets provided twenty-four classification problems in which the neurons were contrasted. In
the column named “Bias", “N" and “Y" refer to the absence and the presence of a bias, respectively. The
best results among the quantum neurons are highlighted in bold. The best results among the classical
neurons are also highlighted in bold. The best overall results are underlined.

using a bias. In that case, although a minor deterioration occurred, the PCDQN continued

with the best performance.

Finally, considering the problems derived from the Iris, the first one is to target the

class Setosa, where the CVQN and the PCDQN achieved optimal results. The classical

neurons approximated an optimal model but not as close as the CRQN, which actually

performed perfectly when a bias was added. All neurons perfectly solved the problem
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when the class Setosa was the negative class, with the exception of the CRQN that only

achieved that performance with a bias again. When targeting the class Versicolor, the

CVQN approached an optimal model, although the PCDQN approached this ideal result

even more. The other neurons performed as random models, with the CRQN being slightly

better. The addition of a bias allowed enough improvement in the CVQN performance to

overcome the PCDQN performance, which suffered a minor deterioration. A reasonable

improvement also occurred in the CRQN performance by the use of a bias. On the other

hand, the neurons did not take advantage of a bias when the class Versicolor was the

negative class. In that case, the PCDQN and the CRQN really approximated the ideal

value of AUC ROC, with the CRQN being smoothly superior. All other neurons obtained

intermediate performances.

The problem of targeting the class Virginica was the only case where the classical

neurons outperformed the quantum neurons, although the PCDQN obtained a really

competitive result. The CVQN also approached an optimal model but not enough to

overcome the PCDQN or even the classical neurons. The CRQN obtained a middle ground

between the random and the ideal results. When a bias was added, the CVQN improved

but still not enough to overcome the other neurons. However, the CRQN took advantage

of the bias significantly, overcoming the other neurons and becoming the best neuron

for that problem. Ultimately, the CRQN and the classical neurons, which have performed

near optimally, became random models by only inverting the problem in order to turn the

class Virginica into the negative class. Then, the CRQN experienced the most significant

improvement observed in all experiments conducted in this study due to the addition of

a bias. The CRQN almost solved the problem perfectly with a bias. The CVQN really

approached an optimal model, especially with a bias. The PCDQN, in turn, practically

achieved the ideal result, which made it the best neuron for the problem one more time.

In summary, the quantum neurons outperformed the classical ones in all cases. Gen-

erally, the quantum neurons performed like optimal models, and the classical neurons

obtained poor performances. The quantum neurons demonstrated a superior capacity in

hard problems for classical neurons since the problems are not linearly separable. The

LSCN was the classical neuron with the best performance, although its performance

did not match the high performances of the quantum neurons. Specifically, the PCDQN

was the best neuron in most cases. Those results provided even more evidence that the

parametrization really equips the PCDQN with the required flexibility to fit a wide range
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of problems. Regarding the use of a bias, when it was beneficial, the CVQN and mainly

the CRQN were the neurons that could take advantage of the new degree of freedom.

In the amplitude encoding, the bias is stored in a separate component of the quantum

vector, which enables direct control of its impacts. Differently, in the qubit encoding of

the PCDQN, the bias affects half of the components of the quantum vector, which com-

plicates its exploration strategically due to those multiple dependencies. For the classical

neurons, the problems are beyond their capacities even with a bias.

6.4 BENCHMARKING THROUGH THE SEPARATION OF CLASSES

In this section, the benchmark between classical and quantum neurons proceeds to

another perspective, which is focused on the cases where the AUC ROC achieved by the

neurons equals 1. The idea is to measure the quality of those solutions in some way, even

though the performances are already perfect from the AUC ROC viewpoint. An AUC

ROC equal to 1 means that some threshold separates the positive class from the negative

class. That is, the neuron outputs for the examples of the positive class are higher than the

neuron outputs for the examples of the negative class. However, there is no information

regarding the quality of that separation between the classes. The greater the separation,

the greater the margin, which represents the robustness of the solution to errors. From

this viewpoint, it is possible to further compare neurons that achieved AUC ROC values

of 1.

In this way, we calculated a measure of class separation by taking the difference be-

tween the lowest neuron output for an example of the positive class and the highest

neuron output for an example of the negative class. The distance of those neuron outputs

reveals the tolerance of that neuron solution. The greater the distance, the greater the

separation of classes. However, the neuron can separate the classes of the problem with

multiple weight vectors searched in the grid. Those best weight vectors generate solutions

that differ from each other by the metric of class separation that we defined. With some

weight vectors, the classes may be separated at the limit of separation. With others, the

classes may be far from each other. Thus, the solution tolerance varies with the weight

vector that is used, even though all those best weight vectors are equal from the AUC

ROC viewpoint since the problem is perfectly solved using any of them. Therefore, due to

that variance, we contrast the neurons by the mean value of the class separations obtained
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from all weight vectors that solved the problem. Also, we compare the proportion of those

best weight vectors over the whole weight space.

An ideal neuron is the one that maximizes the class separation mean while minimizing

the standard deviation with a higher proportion of successful weight vectors. By maxi-

mizing the class separation mean, such neuron is expected to generate the most robust

solutions. The minimization of the standard deviation guarantees the stability of that

robustness. A high proportion of successful vectors means that, on average, less time is

required to find an optimal vector in the weight space, i.e., the convergence is faster.

Before using those criteria to compare the classical and quantum neurons, we first used

them to select the best instance of the PCDQN that solved the problem perfectly. Among

the parameter combinations that achieved an AUC ROC of 1, we report the results for

the PCDQN instance that obtained the higher class separation mean. If that criterion

was not enough to select the best instance, we selected the one with the lowest standard

deviation among the PCDQN instances with the maximum class separation mean. The

maximization of the proportion of successful weight vectors was used as the last crite-

rion whenever necessary. Once the best PCDQN results are taken, we can discuss the

performance of all neurons according to those same criteria that lead to an ideal neuron.

Table 5 benchmarks the quantum neurons through their class separation mean values

obtained on the classification problems perfectly solved by those neurons. The mean

values are followed by their respective standard deviations, which are reported inside the

parentheses. The results are reported for the problems where at least one quantum neuron

provided optimal solutions. If not all quantum neurons perfectly solved a problem, the

non-optimal neurons are filled with a dash. As can be seen, quantum neurons separated the

classes perfectly in seventeen of the forty classification problems addressed here previously.

On the other hand, classical neurons separated the classes perfectly in only two of those

classification problems, as reported in Table 6.

The first perfectly solved problem was the Diagonal blobs when targeting the class

Center, where only the CVQN and the PCDQN provided optimal solutions. The PCDQN

obtained a margin three times greater than the CVQN one on average. The CVQN solu-

tions, however, deviated from the respective mean value four times less than the PCDQN

solutions. When a bias was added, the mean margin of the CVQN became half of the pre-

vious margin, but the solutions became three times more stable. The PCDQN, in turn,

separated the classes with two-thirds of the previous mean margin. Comparing the two
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Table 5 – Benchmarking through the Separation of Classes Obtained on the Classification Problems that
the Quantum Neurons Solved Perfectly

Dataset Target Bias CVQN PCDQN CRQN

Diagonal
blobs

Center N 0.06 (±0.03) 0.18 (±0.12) -
Y 0.03 (±0.01) 0.12 (±0.11) -

Corner N - 0.07 (±0.05) 0.04 (±0.03)
Y - 0.05 (±0.04) 0.02 (±0.01)

Concentric
circles Inner N - 0.18 (±0.12) -

Y 0.02 (±0.01) 0.11 (±0.09) -

Square
clusters

XOR-like N - - 0.04 (±0.03)
Y - - 0.03 (±0.02)

NXOR-like N 0.06 (±0.03) - 0.06 (±0.05)
Y - - 0.03 (±0.02)

Gaussian
quantiles

Inner N - 0.03 (±0.01) -
Y - 0.01 (±0.00) -

Not Outer N - 0.01 (±0.00) -

Iris
Setosa N 0.03 (±0.02) 0.09 (±0.06) -

Y 0.03 (±0.02) 0.07 (±0.05) 0.05 (±0.04)

Not Setosa N 0.02 (±0.01) 0.10 (±0.06) -
Y 0.06 (±0.04) 0.09 (±0.06) 0.01 (±0.01)

Source: The author (2022).

The mean values of class separation followed by the standard deviations obtained by the quantum neurons
are reported. A dash indicates that the respective quantum neuron did not solve the problem perfectly.
The best results among the quantum neurons are highlighted in bold and also underlined if the result
remains the best of all when compared with the classical neurons. The quantum neurons provided optimal
solutions for seventeen out of forty classification problems. In the column named “Bias", “N" and “Y"
refer to the absence and the presence of a bias, respectively.

quantum neurons with a bias, the PCDQN solutions were four times more robust on av-

erage, although the instability of the PCDQN is evident. When the labels were inverted,

the CVQN no longer solved the problem, the opposite effect occurred with the CRQN,

and the PCDQN continued providing optimal solutions. In that case, the PCDQN was

almost two times more robust than the CRQN on average, although the PCDQN was

almost two times more unstable. The bias addition decreased the PCDQN mean margin

but not as much as the CRQN one that became half of before with also three times more

stability than before. With the bias, the PCDQN obtained a mean margin almost three

times greater than the CRQN one, although the PCDQN instability is evident again.

The Concentric circles were perfectly separated only when the target was the class
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Table 6 – Benchmarking through the Separation of Classes Obtained on the Classification Problems that
the Classical Neurons Solved Perfectly

Dataset Target Bias LCN LSCN HTCN

Iris Not Setosa N 0.15 (±0.1) 0.04 (±0.02) 0.12 (±0.08)
Y 0.15 (±0.1) 0.03 (±0.02) 0.07 (±0.06)

Source: The author (2022).

The mean values of class separation followed by the standard deviations obtained by the classical neurons
are reported. The best results among the classical neurons are highlighted in bold and also underlined
because those results remain the best of all when also compared with the quantum neurons. The classical
neurons provided optimal solutions for two out of forty classification problems. In the column named
“Bias", “N" and “Y" refer to the absence and the presence of a bias, respectively.

Inner, and only quantum neurons were able to achieve that complete separation of classes.

Particularly, the CVQN solved the problem exclusively with a bias. On average, the

CVQN solutions worked at the limit of separation, which represents a low error tolerance.

Conversely, the class distances were almost six times greater with the PCDQN using a bias

in mean terms. Without a bias, the PCDQN class distances were even greater. Despite the

instability, only the PCDQN provided robust solutions for that problem. The problems

derived from the Square clusters were exclusively solved by quantum neurons again, with

only the CRQN providing optimal solutions for all those cases. The addition of a bias,

however, approximated the CRQN solutions to the limit of separation between classes,

independent of the positive class. The CVQN solved the problem especially when the

target class was like the NXOR problem. In that case, the CVQN mean margin equaled

the CRQN mean margin, although the CVQN was more stable, which makes the CVQN

the best neuron for that problem. The bias addition, though, compromised sufficiently

that the CVQN no longer separated the classes of that problem.

Proceeding to the problems derived from the Gaussian quantiles, only the PCDQN

separated the classes when the target was the class Inner. That separation occurred in

the lowest allowed margin between classes when a bias was used. Without the bias, the

PCDQN solutions were more error tolerant. When the positive class was formed by the

class Inner and also the class Middle, which is equivalent to all classes other than the

class Outer form the positive class, the PCDQN continued solving the problem solely but

only without a bias and working at the separation limit.

Regarding the Iris, the only task that the neurons accomplished perfectly was to sep-

arate the class Setosa from the other classes, independent of whether that class was the
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positive or the negative class of the problem. Particularly, the classical neurons solved the

problem merely when the class Setosa was the negative class. With the class Setosa as

the positive class, only the CVQN and the PCDQN provided optimal solutions, with the

mean margin of the PCDQN solutions being three times greater than the CVQN ones.

At the same time, the CVQN solutions were three times more stable than the PCDQN

ones. When a bias was added, the CVQN was not affected, the PCDQN became less

error-tolerant and more stable, and the CRQN entered the competition by also provid-

ing optimal solutions. Comparing the quantum neurons, the PCDQN obtained the most

robust solutions, followed by the CRQN and finally by the CVQN. The quantum neu-

rons can be ordered in the same way from the most unstable to the most stable in that

problem.

Letting the class Setosa be the negative class of the problem made the CVQN work

nearly to the separation limit, while the PCDQN provided a mean margin five times

greater than the CVQN one, although some instability exists. In that case, the classical

neurons also separated the classes successfully. The LSCN, specifically, obtained a mean

margin two times greater than the CVQN one, although the CVQN was two times more

stable. The LCN and the HTCN, in turn, obtained mean margins even greater than the

PCDQN one. At the same time, those two classical neurons were also more unstable. The

LCN generated the most error-tolerant solutions on average, although the instability is

evident. Using a bias triplicated the CVQN mean margin and allowed the CRQN to solve

the problem, even though the CRQN class separation occurred at the separation limit.

The CVQN also became more unstable with a bias. The use of a bias slightly reduced

the PCDQN mean margin, but that neuron continued as the best neuron among the

quantum ones. With a bias, the LSCN and the HTCN obtained mean margins lower than

the previous ones. The HTCN also became more stable than before. Finally, the LCN was

not impacted by the bias, which preserved the best results not only among the classical

neurons but also when compared with the quantum ones.

This study ends by benchmarking the neurons through their proportions of success-

ful weight vectors in Table 7. Firstly, as can be seen, the CVQN solved the Diagonal

blobs when targeting the class Center with more than a quarter of the weight space.

The PCDQN had about three and a half times fewer weight vectors of success in the

same problem. With a bias, the CVQN proportion of successful weight vectors reduced to

less than half of before, which is still larger than the PCDQN proportion. Targeting the
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class Corner was a task that the CRQN solved with almost half of the weight space. The

PCDQN proportion of successful weight vectors was about ten and a half times lower. The

bias usage, however, impacted negatively the CRQN proportion in a way that practically

equaled that low PCDQN proportion.

Table 7 – Benchmarking through the Proportion of Successful Weight Vectors Obtained on the Classifi-
cation Problems that the Neurons Solved Perfectly

Dataset Target Bias CVQN PCDQN CRQN LCN LSCN HTCN

Diagonal
blobs

Center N 0.2584 0.0733 - - - -
Y 0.1129 0.0742 - - - -

Corner N - 0.0437 0.4622 - - -
Y - 0.046 0.0565 - - -

Concentric
circles Inner N - 0.0423 - - - -

Y 0.0172 0.0289 - - - -

Square
clusters

XOR-like N - - 0.1938 - - -
Y - - 0.025 - - -

NXOR-like N 0.2482 - 0.2476 - - -
Y - - 0.0344 - - -

Gaussian
quantiles

Inner N - 0.0002 - - - -
Y - 0.0007 - - - -

Not Outer N - 0.0001 - - - -

Iris
Setosa N 0.0911 0.07 - - - -

Y 0.0548 0.088 0.0915 - - -

Not Setosa N 0.0592 0.1794 - 0.2151 0.202 0.2146
Y 0.1142 0.1789 0.0253 0.2265 0.2096 0.2183

Source: The author (2022).

The proportions of weight vectors that allowed the neurons to solve the classification problems perfectly
are reported. A dash indicates that the respective neuron did not solve the problem perfectly. The
best results among the quantum neurons are highlighted in bold. The best results among the classical
neurons are also highlighted in bold. The best overall results are underlined. The quantum neurons solved
seventeen out of forty classification problems, while the classical neurons solved only two of them. In the
column named “Bias", “N" and “Y" refer to the absence and the presence of a bias, respectively.

When targeting the class Inner of the Concentric circles, the addition of a bias made

the PCDQN proportion even smaller. Nevertheless, the PCDQN proportion was almost

double the CVQN proportion for the same problem with a bias. Regarding the Square

clusters with the target like the XOR problem, practically a fifth of the weight space

was successful when used by the CRQN. That proportion was reduced almost ten times

only by the bias addition. The CVQN and the CRQN solved the problem with about a

quarter of the weight space when the target was like the NXOR problem, with the CVQN
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proportion slightly higher. Again, the bias addition reduced the CRQN proportion of

successful weight vectors by an order of magnitude. Conversely, the bias addition increased

the PCDQN proportion when targeting the class Inner of the Gaussian quantiles, even

though that PCDQN proportion continued extremely low. Even more extreme was the

PCDQN proportion for the Gaussian quantiles with the class Outer as the negative class.

In that case, only one weight vector in the whole weight space allowed the PCDQN to

solve the problem.

Finally, the neurons are contrasted by their proportions of successful weight vectors

in Iris-derived problems. When targeting the class Setosa, the CVQN proportion approx-

imated a tenth of the whole weight space. The PCDQN proportion, in turn, was inferior

but close. Those CVQN and PCDQN proportions, respectively, decreased and increased

with the bias addition, making the PCDQN one the highest between them. However, the

PCDQN proportion with the use of a bias was not higher than the CRQN proportion,

which also approximated a tenth of the weight space.

The PCDQN finally obtained the best proportion among the quantum neurons when

the class Setosa was the negative class of the problem. In that case, the PCDQN propor-

tion approximated a fifth of the weight space. That PCDQN result was three times higher

than the CVQN one. On the other hand, the classical neurons obtained proportions that

exceeded a fifth of the weight space. Although all classical neurons obtained similar results

that are higher than the PCDQN result, the LCN solved the problem with the best pro-

portion. When a bias was added, the CVQN almost doubled its proportion, reducing the

difference from the PCDQN proportion, which continued as the best among the quantum

neurons. The CRQN proportion with a bias was an order of magnitude lower than the

CVQN and the PCDQN ones. The bias addition slightly improved the classical neuron

proportions, with the LCN providing the best proportion not only among the classical

neurons but also when compared with the quantum ones again.

In summary, those results demonstrated that different from the classical neurons that

only solved two problems, the quantum neurons solved seventeen problems with robust

solutions and significant proportions of successful weight vectors in most cases. Specif-

ically, the parametrization equipped the PCDQN with the ability to also optimize the

margin between classes. Before, the PCDQN optimized the AUC ROC in the majority of

the cases. Here, its flexibility could be also explored in order to generate the best solu-

tions in terms of class separation in the majority of the cases again. That quality in the
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separation of classes complicated the problems even more. In this way, the proportion of

successful weight vectors naturally decreased for the PCDQN solutions. In some cases,

nevertheless, the PCDQN maximized not only the robustness of the solutions but also

the proportion of optimal weight vectors.

In the specific problems that the classical neurons solved, their class separations and

proportions of successful weight vectors were the highest. The high separations of the

LCN are explained by the lack of output bounds in the linear activation. Thus, there

is a propensity to have higher distances in the LCN outputs. The results also demon-

strated that high mean margins are associated with more instability of the neuron in

providing such robust solutions. Those results suggest that, when the mean margins in-

crease, the successful weight space regions enlarge. As the grid search strategy causes

gradual movements in the weight space, the neurons experience a variety even greater

of smooth variations in the solution robustness, which increases the deviations from the

mean values. Regarding the use of bias, generally, the impacts were negative, even for

the CVQN and the CRQN, which took advantage of the new degree of freedom in the

AUC ROC experiment. Here, focusing only on the problems perfectly solved, the bias

compromised the solution robustness and the proportion of successful weight vectors of

the neurons. Adding a bias in the cases already solved without it only complicates the

problems, affecting negatively the neuron performance measures.
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7 CONCLUSIONS

Here, we conclude by summarizing the contributions of this research as well as the

corresponding implications for the state of the art. Future directions for related works are

also presented.

7.1 CONTRIBUTIONS AND IMPLICATIONS

In this research, we proposed a generalized framework to build quantum neurons that

apply the kernel trick. We highlight that the feature space mapping is what determines

each quantum neuron under the proposed framework. Each particular case only instan-

tiates the transformation that is applied to the input and weight vectors. It makes room

to define countless quantum neurons, including for actual quantum devices, as long as

the feature mappings can be implemented in quantum circuits. Feature mappings hard to

compute classically may solve practical problems more efficiently, which will represent a

quantum advantage achieved by that quantum neuron framework.

Under that framework, we presented a quantum neuron with a parametrized activa-

tion function and an efficient circuit implementation. That circuit implementation further

complies with the constraints of actual quantum devices compared to the existing quan-

tum neurons. Firstly, a circuit with constant depth and a linear number of operations

mitigates the errors by decoherence times and gate infidelities. Qubit encoding generates

a straightforward state preparation. Connectivity is not a problem since that encoding

strategy generates separable states. Circuit rewriting is facilitated since the circuit uses

elementary single-qubit gates. Additionally, the proposed neuron is still flexible due to

the parametrization of its activation function.

Each quantum neuron implements a fundamentally different activation function. Here,

we showed the neuron activation shapes as functions of some relations between the input

and weight vectors. While the existing quantum neurons are restricted, the parametrized

neuron that we proposed can fit different problem structures. As a first demonstration,

we showed the parametrized neuron producing optimal solutions for six classification

problems that an existing quantum neuron was able to solve only two of them. The pro-

posed quantum neuron without parametrization also solved only two problems. Thus,
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parametrizing really improves the neuron capabilities. We finished that initial demonstra-

tion with a feasibility experiment in a quantum simulator, where the numerical solutions

were successfully reproduced. Validating those numerical solutions on simulated quan-

tum circuits is a primary step toward taking advantage of quantum effects on actual

quantum devices. There will be a moment when those devices will allow us to deal with

impracticable problems for classical simulations.

Currently, however, quantum computing is still proving itself as a solid alternative

to classical computing from multiple perspectives. We contributed in this direction by

conducting a massive comparison between classical and quantum neurons at solving sev-

eral non-linearly separable problems. Fundamentally, single classical neurons are linear

classifiers. Thus, the classical neurons obtained the expected poor performances in those

classification problems. On the other hand, the quantum neurons provided higher values

of AUC ROC in all cases, approaching optimal performances in the majority of the prob-

lems, especially by the quantum neuron that we proposed. That benchmark demonstrated

a quantum superiority with regard to neuron capabilities. Nevertheless, those limited clas-

sical neurons are the fundamental building blocks of sophisticated classical models that

are responsible for the success of countless data-driven applications in multiple domains.

Alternatively, due to the demonstrated quantum superiority, the application of learning

models built from those quantum neurons is expected to achieve even more remarkable

results on problems of practical interest.

Actually, the positive class and the negative class can be separated by a hyperplane

in two problems addressed here. Exclusively, the classical neurons separated the classes

of those two problems perfectly. Apart from those two problems, the quantum neurons

solved fifteen problems that a hyperplane does not separate the classes in any way. In

particular, the proposed quantum neuron produced the most robust solutions by maxi-

mizing the mean separation of classes. Better margins between classes can prevent errors

when classifying unseen data of space regions that the training samples may not cover.

Additionally, even if the training samples represent the data population, better margins

provide more tolerance to the multiple sources of noise present in the real quantum hard-

ware. However, high-quality solutions were generally obtained by a low number of weight

vectors. In some cases, nevertheless, the proposed quantum neuron also maximized the

proportion of successful weight vectors, which represents more global minima in the error

surface. Therefore, faster convergence times can be eventually obtained in training phases.
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7.2 FUTURE WORKS

Future works can discover other quantum neurons under the proposed framework by

using other gates, combining gates, applying heterogeneous gates, or even evolving some

evolutionary approach to learn the optimal feature mapping for a given learning task. A

theoretical study can define the bounds of that framework or even prove that it is universal.

Subsequent works can compare the quantum neuron performances when executed on real

quantum devices. Applying the quantum neurons to practical classification problems is

another possible direction since the quantum neuron framework can eventually discover

practical feature mappings. Instead of a grid search strategy, the weight vectors can be

adjusted by variational quantum algorithms (CEREZO et al., 2021; HUANG; TAN; XU, 2022).

That variational strategy can be explored to also optimize the parameter combination in

the quantum neuron proposed here, which will lead to an efficient quantum neuron with

a trainable activation function shape.

A natural future step is to construct networks composed of quantum neurons under

the proposed framework. However, that step brings multiple possibilities. First, different

neural network architectures can be explored. For example, the quantum neurons can

constitute a feedforward network. Alternatively, a recurrent structure can be obtained by

using an auxiliary quantum register to store and transfer past information over the iter-

ations (BAUSCH, 2020; TAKAKI et al., 2021). Another point to explore is the composition

of neurons within the network. Networks can be formed by a specific quantum neuron

only or different quantum neurons can be used in each layer. In this way, fair compar-

isons will require classical neural networks and other quantum neural networks in future

benchmarks. Finally, the developed quantum neural network can be used in learning tasks

other than classification, such as regression and time series forecasting.
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