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ABSTRACT

In this work, we present a set of experiments involving four-wave mixing processes 

in rubidium atoms. We employ several experimental configurations exploring two- and 

three-level systems in cascade or Λ configurations, all of which are in a copropagating 

geometry, to investigate different physical phenomena present in each scenario. In the 

first experiment, we combine a cw diode laser and a 1 GHz femtosecond pulse train to 

generate coherent blue light through the four-wave mixing process in hot rubidium vapor. 

The generated coherent signal is analyzed by scanning either the diode frequency or 

the repetition rate of the frequency comb. In both cases, the cw laser induces an Autler-

Townes splitting with a wide separation in the doublet structure due to the configuration of 

copropagating fields. To model these results, we employ the density matrix formalism to 

write the Bloch equations and solve them numerically. The solutions allow us to explore 

other cases beyond those involving our experimental setup, comparing the response of 

the upper-level population and the generated signal coherence for homogeneously and 

non-homogeneously broadened systems. Moreover, in this same experiment, we also 

observed an unexpected interference effect between excitation routes of the four-wave 

mixing process when the repetition rate of the pulse train is scanned. The theoretical 

model demonstrates that the interfering effect appears only when the repetition rate 

is carefully chosen to produce a pair of modes of the frequency comb resonant with 

both one- and two-photon transitions for the same atomic velocity group. In the second 

experiment, still with a hot rubidium vapor, we explore two symmetrical degenerate four-

wave mixing signals induced by two almost copropagating laser beams, with~ka and~kb

wave-vectors, and detected simultaneously in the 2~ka −~kb and 2~kb −~ka directions. Each 

spectrum has a single peak with a short frequency separation between them, which our 

model indicates is due to the nonlinear behavior of the refractive indexes, a consequence 

of the high intensity of both input fields. Finally, we use the same experimental setup for 

the two symmetrical signals to study the field intensity fluctuations of the degenerate 

four-wave mixing signals and the transmission signals. In this case, the sample is 

an ensemble of cold rubidium atoms in a magneto-optical trap. There is an intensity-

intensity cross-correlation between the signals due to the resonant phase-noise to 

amplitude-noise conversion. In this type of cold system, we can neglect the Doppler-



broadening, allowing a straightforward study of the dependency of the correlations 

on the laser detuning. In these measurements, we observe a type of oscillation in 

the correlation curves that the theoretical model indicates to be connected with Rabi 

oscillations, revealed by the fluctuations long after the transient period.

Keywords: four-wave mixing; nonlinear optics; atomic spectroscopy; rubidium vapor; 

cold atoms.



RESUMO

Neste trabalho, é apresentado um conjunto de experimentos envolvendo pro-

cessos de mistura de quatro ondas em átomos de rubídio. Diversas configurações 

experimentais são utilizadas explorando sistema de dois e três níveis em configuração 

de cascata e Λ, todas numa geometria copropagante, procurando investigar fenômenos 

físicos presentes em cada cenário. No primeiro experimento, um laser de diodo contí-

nuo e um trem de pulsos ultracurtos, de 1GHz, são combinados para gerar um sinal 

de luz azul coerente via processo de mistura de quatro ondas em um vapor quente 

de rubídio. O sinal coerente é analisado variando a frequência do laser de diodo ou 

a taxa de repetição do pente de frequências. Em ambos os casos, o laser contínuo 

induz um efeito Autler-Townes com uma larga separação na estrutura de dubleto devido 

à configuração copropagante dos campos. O formalismo da matriz densidade é utili-

zado para modelar esses resultados, obtendo as equações de Bloch e as resolvendo 

numericamente. As soluções permitem explorar mais cenários que o experimento, com-

parando a resposta da população do estado excitado e do sinal gerado coerentemente 

para sistemas alargados homogênea e inomogeneamente. Ademais, neste mesmo 

experimento, também se observa um efeito de interferência inesperado entre rotas de 

excitação do processo de mistura de quatro ondas quando a taxa de repetição do trem 

de pulsos é variada. O modelo teórico demonstra que este efeito de interferência ocorre 

apenas quando a taxa de repetição é escolhida cuidadosamente para produzir um par 

de modos do pente de frequência ressonante com ambas as transições de um e dois 

fótons para o mesmo grupo de velocidade. O segundo experimento, ainda utilizando 

vapor quente de rubídio, explora dois sinais simétricos de mistura de quatro ondas 

degenerada, induzidos por dois campos quase copropagantes com vetores de onda

~ka e~kb, e detectados simultaneamente nas direções 2~ka −~kb e 2~kb −~ka. Cada espectro 

apresenta um único pico com uma pequena separação em frequência entre eles. O 

modelo teórico indica que esta separação é causada pelo comportamento não linear do 

índice de refração devido ao fato dos dois feixes incidentes serem intensos. Finalmente, 

a mesma configuração experimental de geração de sinais simétricos é utilizada para 

estudar as flutuações de intensidade dos sinais de mistura de quatro ondas degenerada 

e dos sinais de transmissão. Nesse caso, a amostra é um conjunto de átomos frios



de rubídio em uma armadilha magneto-ótica. Existe uma correlação cruzada entre as

intensidades dos sinais, devido à conversão ressonante de ruído de fase em ruído

de amplitude. Neste tipo de sistema frio, é possível descartar o alargamento Doppler,

o que permite um estudo mais direto da relação entre a correlação e a dessintonia

do laser. Nestas medidas, observa-se um tipo de oscilação nas curvas de correlação 

que o modelo teórico indica estar conectado com oscilações de Rabi, reveladas pelas 

flutuações de intensidade muito tempo após o período transiente.

Palavras-chave: mistura de quatro ondas; ótica não-linear; espectroscopia atômica; 

vapor de rubídio; átomos frios.
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1 INTRODUCTION

A new era in optics began with the development of the first laser by Maiman [1] in 

1960. This source of intense coherent light is behind several technological innovations 

that do not restrict themselves to physics but permeates several areas of knowledge, 

from basic science to industry or even medicine. In physics, the impact was particularly 

overriding for the field of nonlinear optics [2] since laser light combines high coherence 

and high intensity in a way never seen before. These properties represented an enor-

mous advance from the previous light sources, which gave rise to a new type of physical 

process to be studied.

Nonlinear optics has been studied as early as the nineteenth century, with the 

first studies on the Kerr effect [3]. However, the first experiment to explore this area of 

physics in the laser era was the classical experiment by Franken et al. in 1961 [4]. It 

is impressive how quickly this invention, the laser, was already being used in the most 

different scenarios in such a short time. In this experiment, Franken et al. shone a quartz 

crystal with an intense pulse of red light from a ruby laser. The output signal included a 

small blue light pulse with precisely half the wavelength of the original red light. This 

new frequency is generated because of the crystal nonlinearity, rendering the famous 

second harmonic generation (SHG).

After this demonstration of the potential of the laser in nonlinear optics, a series 

of new fascinating results came along. We can quote some relevant examples, such 

as the observation of two-photon absorption by Kaiser and Garrett [5], the stimulated 

Raman scattering by Ng and Woodbury [6], the third-harmonic generation, and the 

anti-Stokes frequency mixing both by Maker and Terhune [7, 8]. An interesting case is 

the parametric down-conversion [9], the inverse process of SHG. In this phenomenon, 

one photon interacts with a nonlinear medium (typically a crystal) and generates two 

photons, obeying momentum and energy conservation. These “twins” photons are 

produced simultaneously and are said to be correlated. The particularity of these output 

photons lies in the statistics behind the process. In opposition to the classical fields 

produced by a beam splitter acting on a laser, for example, that obeys Poisson counting
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statistics, the twin photons of the parametric down-conversion present a correlation

incompatible with classical light fields. This is one example of non-classical light, which

eventually resulted in modern quantum optics, a field in accelerated growth in the past

decades.

The topics of nonlinear optics we want to address in this thesis arise from the

interaction of coherent optical fields within a third-order nonlinear medium. In particular,

among the several third-order phenomena, we are interested in four-wave mixing (FWM).

This process has been used extensively to investigate a variety of optical phenomena

in different atomic systems. Regarding the energy structure, since very early studies,

different atomic level configurations have been explored to enhance the efficiency of

this nonlinear process as, for example, two-level [10, 11], three-level Λ [12, 13], and

four-level double-Λ schemes [14].

In terms of recent applications of FWM that are relevant to some of the results

in this thesis, we may cite the generation of quantum correlated beams [15, 16], the

storage of quantum memory, the transfer of orbital angular momentum between light

beams [17, 18], the reduction of the paraxial diffraction of light [19], and the development

of single-photon sources [20].

In particular, a common characteristic in much of the FWM processes described

in the literature is the possibility to control the refractive index [21] of the medium,

and in some conditions cancel the resonant absorption, due to the phenomenon of

electromagnetically induced transparency (EIT) [22, 23], or enhance the absorption, via

electromagnetically induced absorption (EIA) [24, 25].

We describe the FWM process in more detail in section 2, where we present

the fundamental concepts necessary for understanding the experiments reported in

this thesis. Namely, we delineate the energy structure of our sample, rubidium atoms,

which we explore in different experimental setups involving hot vapors or cooled trapped

Rb gases. Moreover, we present the electromagnetic wave theory, which eventually

connects with the theoretical models for the phenomena, building a semiclassical

treatment, in which the fields are classic, but the atoms are quantum systems. The

quantum treatment of the atomic systems is provided, as well as an example of a
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three-level system, which is useful for the description of the results of the remaining

sections.

The bulk of this work encloses three different experiments, each one exploring

different aspects and effects of the FWM process, in particular, in a forward configuration.

This configuration poses some experimental challenges but also reveals phenomena

that could not be observed in a counterpropagating arrangement of the input fields.

Most of the FWM experiments are performed with cw lasers, exploring the high

power and the tunability near atomic resonances. However, a powerful tool one can

employ is a femtosecond (fs) laser, taking advantage of coherent temporal control

techniques [26]. In recent years, advances in ultrafast lasers have enhanced the direct

application of mode-locked fs lasers, leading, for instance, to the development of a rapid

multidimensional coherent spectroscopy with high spectral resolution [27]. In this sense,

we present in section 3 a set of results involving a coherent blue light signal obtained

through an FWM process using a combination of cw laser and femtosecond pulse train.

This combination allows us not only to probe the action of each laser but also to explore

the different characteristics of the nonlinear process.

In particular, we want to explore the dynamic Stark shift, also known as the AC

Stark effect, observed in the FWM results of this experiment. This phenomenon occurs

when a near-resonant strong field interacts with matter. It results in the energy level

splitting at a transition and has important implications in spectroscopy. In three-level

systems, this effect is also known as the Autler-Townes (AT) splitting [28]. Typically, it

results in a double peak in the weak field absorption, with the most common setup in

three-level cascade systems being with counterpropagating laser beams, exploring the

almost Doppler-free configuration. However, our experimental setup has a copropagating

configuration, leading to different results. In particular, we demonstrate that the AT

doublet, in the copropagating setup, can only be distinguished in the FWM signal, in

opposition to what would be detected in the fluorescence signal. To confirm this, we

employ numerical methods to model the phenomenon in the high-intensity regime and

for a Doppler-broadened media, exploring more scenarios than in the experiment.

Another feature the same experimental system allows us to observe is an inter-
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ference between FWM excitation routes. This interference is characterized by a very

narrow peak over the AT spectra, and it connects with the repetition rate of the fs laser.

We show that if one tunes the repetition rate attentively, the first step of the FWM

process can be performed by either of the lasers, cw or fs. This creates a situation of

indistinguishability, inducing an interference that can be controlled via the repetition rate

of the fs laser.

Working with Doppler-broadened media still, we present in section 4 results

regarding a degenerate FWM process. In this case, we focus on two symmetric FWM

signals that are generated within a hot rubidium cell. These signals are generated by two

laser beams, with ka and kb wave vectors. It is an interesting configuration since most

of the experiments involving degenerate FWM are performed by counterpropagating

input laser beams, as this setup satisfies the phase-matching conditions automatically.

However, we show the phase-matching conditions for copropagating configurations give

rise to new interesting phenomena. In particular, we observe that each FWM spectra

shows a single peak separated by a small frequency shift when the two input fields

resonate with the closed transition 85Rb 5S1/2(F = 3)→ 5P3/2(F = 4). This frequency

shift itself is not unexpected, as there are reports in the literature connecting it to the

phase-matching conditions [29], in which the phase mismatch is mainly due to the

wavelength differences. However, since our process is degenerate, the changes in the

refractive index of both input fields lead to a shift in the opposite direction of these typical

cases.

Especially, as we detect the two signals simultaneously, we can distinguish a

frequency shift towards red or blue, from each peak associated with the FWM signals,

depending on how the beam whose frequency is swept contributes to the observed

signal. Naturally, understanding how to effectively control the proprieties of the atomic

media, where the nonlinear process is taking place, is of widespread interest for funda-

mental aspects of atom-light interaction. In this sense, this section aims to investigate

the main physical mechanisms responsible for these frequency shifts and how they are

related to the coherence induced in the atomic system.

Finally, in section 5, we present a study of the correlation between intensity

fluctuations of both FWM signals and the transmission signals in a similar experimental
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configuration to section 4. However, for this study, we change the hot rubidium cells

for a cloud of trapped Rb atoms in a magneto-optical trap. We do so to avoid the

complications of Doppler-broadening, as one of the objectives of this experiment is

to study how these correlations behave as a function of laser detuning. As will be

discussed extensively, Doppler-broadened media have several velocity groups that

respond differently to the input laser in terms of detuning, while the cold sample has a

very narrow Maxwell-Boltzmann distribution.

There has been a significant interest in the past decades in the study of light

intensity fluctuations when it interacts with matter. Early experimental work by Yabusaki

et al [30] demonstrated that it was possible to obtain spectroscopic information by

analyzing the intensity fluctuations of a laser beam interacting with rubidium vapor, that

is, without any need to modulate the laser frequency. R. Walser and P. Zoller [31] then

provided a theoretical framework to explain this new spectroscopy, in particular how the

conversion of phase noise to amplitude noise plays a crucial role in the process.

This type of spectroscopy involves the measurement of noise (or fluctuations)

in a system to extract information about the underlying physics. This can be done by

analyzing the frequency spectrum of the noise, which may reveal information about the

dynamics and interactions of the system. In laser systems, noise can arise from various

sources, such as fluctuations in pump power, thermal fluctuations, and noise in cavity

mirrors.

An important aspect of these cases is the distinction between different types of

fluctuation. Typically one can model these fluctuations as Gaussian or non-Gaussian

fluctuations, and the distinction between them is important because they reveal informa-

tion about the noise sources within the system. For example, Gaussian noise is often

associated with thermal fluctuations, while non-Gaussian noise is often associated with

external noise sources and nonlinear processes [32].

Since these pioneering studies, there have been numerous research efforts

focused on exploring these fluctuations in light-matter interactions. Notable findings

include the examination of correlations and anti-correlations in electromagnetically

induced transparency [33, 34, 35, 36], the control of intensity noise correlations and
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squeezing of FWM processes through polarization [37], and the generation of correlated

and anti-correlated fields using atomic spin coherence [38].

In our experiment, different polarization configurations are compared, accessing

distinct internal energy level structures. Furthermore, we observe an oscillatory behavior

compatible with Rabi oscillations [39] in the correlation functions. We can detect these

oscillations long after the transient period, retrieving the frequency information through

the correlation function. To model the correlation in general and, in particular understand

these oscillations, we use the theoretical model from Ariunbold et al. [40] to simulate

the fluctuations and look for agreements with the experimental results.

In this introductory section, we have provided a comprehensive overview of

the research topic and problems that our thesis aims to address. We have discussed

some of the backgrounds of the experiments, as well as the research questions and

objectives that we will be addressing throughout the thesis. We have also outlined

the thesis structure and the methods that were used. In section 6, we will present the

conclusions of our research, summarize our findings, and discuss their implications for

future research in the field.
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2 FUNDAMENTAL CONCEPTS

This section introduces the basic set of concepts relevant to the understanding 

of the problems we address throughout this thesis. We begin describing the energy 

structure of alkali atoms, with particular attention to rubidium, as it is the atomic species 

we use in all of the experiments described here. Next, we briefly describe the classic 

electromagnetic fields that i nteract with the atomic medium to build a  semiclassical 

treatment of the phenomena [41]. We then present the density-matrix formalism and 

the optical Bloch equations to study the dynamics of the atom-light interaction. As an 

example, we show the step-by-step solution of a three-level system interacting with two 

input fields. Not only this serves as an example but also sets the first steps to solving 

some of the problems of the following sections.

2.1 Energy structure of alkali atoms

The experiments presented here are all performed with rubidium samples, an 

alkali metal with the atomic number Z = 37. Alkalis are a family of elements much used 

in atomic physics experiments due to their single optically active electron. Even though 

these are multi-electron atoms, and therefore we cannot solve their energy structure 

analytically, we can make approximations that take advantage of their similarities with 

the hydrogen atom. With alkalis, all electrons but one fully occupy the energy subshells. 

The single unpaired valence electron behaves much like the single electron of hydrogen, 

meaning that, given adequate approximations, alkalis are a fairly simple atomic system 

to study.

In the past few decades, there was a popularization of rubidium and cesium 

samples in atomic spectroscopy laboratories. Since the 1990s, cheap diode lasers 

have been available in the near-infrared, the same region of the spectrum in which lies 

the D1 and D2 lines of Rb and Cs. The atomic vapor is also easily obtainable in small 

cells due to the relatively low vapor pressure of these atomic species, leading to the 

spread of these samples in many research groups. Especially for Rb, there was quite a 

success in laser cooling techniques with the development of the magneto-optical trap
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[42] and consequently, the first realization of Bose-Einstein condensation [43], both

achievements that rendered Nobel prizes.

Then, it is relevant for this work to understand the energy structure of the alkalis,

with particular attention to Rb. One can perform a phenomenological qualitative analysis

of the spectra and write down the energy levels of the alkalis (with some corrections) just

like for the hydrogen atom. This is the so-called quantum defect approach, which uses

the hydrogen expressions correcting the numerical parameters phenomenologically. On

the other hand, more quantitative approaches are also available with the Hartree-Fock

method [44] or even the post-Hartree-Fock methods that include electron correlation

to achieve more precise results. However, in this work, we are interested in the energy

structures that lie within the energy levels.

One can obtain the hydrogen energy structure through the Schrödinger equation.

However, there are relativistic corrections that must be performed to account for some

shifts in the energy levels or even degeneracy breaks. In the latter case, the existence

of the electron spin leads to the spin-orbit (SO) interaction, which is described by the

hamiltonian [44]

HSO =

(
Ze2

4πε0

)
(gs−1)
2m2c2r3 L ·S, (1)

where ε0 is the vacuum permittivity; m is the electron’s mass; gs is the electron spin

g-factor; L and S are the orbital and spin angular momentum operators, respectively.

The basic idea behind the SO coupling is that an electron’s spin and orbital

angular momentum are not independent, but are instead coupled together through the

interaction of the electron’s intrinsic magnetic moment with the magnetic moment of the

orbit. This interaction results in a shift in the energy levels of the electron. One of the

most relevant effects of SO coupling is the break of the degeneracy of some energy

levels into the so-called fine structure.

To find out the energy shifts due to the SO coupling, it is interesting to look for an

adequate set of quantum numbers, which will be |n,L,S,J,mJ〉. This way, we can express
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the product L ·S in terms of total angular momentum J = L+S

L ·S =
J2−L2−S2

2
. (2)

Therefore, the fine structure shift is proportional to

∆E f s =
A f s

2
[J (J+1)−L(L+1)−S (S+1)] , (3)

where all the parameters of Eq. 1 are contained in the constant A f s. Consider the energy

level n = 5, which is the fundamental energy level of the valence electron of Rb, then the

SO interaction breaks the degeneracy of the L = 0 and L = 1 components of this level

into 5S1/2, 5P1/2, and 5P3/2. Notice that we are using spectroscopic notation, which is

especially useful for this situation.

Spectroscopic notation is used to describe the energy levels of an atom and the

transitions between them. The notation consists of three parts: the principal quantum

number (n), the angular momentum quantum number (L), and the total angular mo-

mentum quantum number (J). It is the typical way to write down the state of an atom

and it is particularly useful when dealing with fine structure energy levels. The general

form is nL j, where L is written as S, P, D, F for L = 0,1,2,3. For atoms with more than

one optically active electron, the number of spin states 2S+ 1 is also depicted as a

superscript after the principal quantum number. For alkalis, this number is always 2, so

we choose to not write it down.

So far, we have neglected the nucleus spin, but the same type of coupling

between orbital angular momentum and spin applies to it as well. This will lead to an

even smaller energy structure called hyperfine energy structure. The strength of this

energy structure splitting depends on the nuclear spin of the element and the energy

level of the electron. In the case of rubidium, it will allow differentiating both naturally

occurring isotopes, 85Rb and 87Rb, as the differences in the number of neutrons change

the nucleus total spin.
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We can express this coupling with the hamiltonian [44]

Hh f s = Ah f sI ·J, (4)

where the physical parameters are within Ah f s. In this case, we go to a new basis

|n,J, I,F,mF〉 for which we redefine the total angular momentum to include the nucleus

spin angular momentum

F = J+ I. (5)

The form of the energy shift is very similar to the fine structure one, with the adequate

changes of the angular momentum operators

∆Eh f s =
Ah f s

2
[F (F +1)− I (I +1)− J (J+1)] . (6)

Once the energy structure of the alkalis is detailed, we can show the actual

energy levels with the fine and hyperfine structure for the D2 line of both rubidium

isotopes in Figs. 1 and 2. We detail the two atomic species because there are some

results of this work with one of them and some with the other. The following section’s

experiment also includes the 5D levels, which have their energy structure detailed in

Ref. [45]. The so-called D2 lines encopasses the transitions 5S1/2→5P3/2 while the D1

line is for transitions 5S1/2→5P1/2.

The final energy structure within the scope of this work is the Zeeman sublevels.

Consider an external weak magnetic field, that is, that can be treated as a perturbation to

the hyperfine hamiltonian µbB < Ah f s. Then, the effective hamiltonian for this interaction

is

HB = µBgFBFz, (7)

where µB is the Bohr magneton; gF is the Landé factor; B the external magnetic field;

and Fz the z-component of the total angular momentum F. The Landé g-factors are

multiplicative terms in the Hamiltonians of the interaction of the atom with an external

magnetic field and, in this case, are given by [46]
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Figure 1 – Rubidium 85 D2 transition hyperfine structure, with frequency splittings between the hyperfine energy
levels. The approximate Landé gF -factors for each level are also given, with the corresponding Zeeman
splittings between adjacent magnetic sublevels.

Source: Ref [46].
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Figure 2 – Rubidium 87 D2 transition hyperfine structure, with frequency splittings between the hyperfine energy
levels. The approximate Landé gF -factors for each level are also given, with the corresponding Zeeman
splittings between adjacent magnetic sublevels.

Source: Ref [46].
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gF ≈ gJ
F (F +1)− I (I +1)+ J (J+1)

2F (F +1)
, (8)

gJ ≈ 1+
J (J+1)+S (S+1)−L(L+1)

2J (J+1)
, (9)

where we performed a few approximations, namely: neglect the nuclear term in gF as it

is a 0.1% correction and use the approximate values gS ≈ 2 and gL ≈ 1. This last g-factor

might deviate from this approximation depending on the isotope or energy level due to

multielectron or quantum electrodynamics (QED) [47] effects, so it is advisable to use

experimentally obtained values.

Notice that, in this Zeeman effect scenario, the degeneracy of the sublevels

within the hyperfine structure is lifted with each F hyperfine energy level containing

2F + 1 sublevels, labeled by mF . This is of particular importance even when there is

not an external magnetic field, due to the selection rules for transitions between these

sublevels. We address this problem in more detail in section 4.

Finally, for a strong magnetic field, one must change the basis once again as

the basis |n,J, I,F,mF〉 that we used for describing the hyperfine structure is no longer

adequate. In this case, we treat the hyperfine hamiltonian as a perturbation leading to

different energy levels, in the so-called Paschen-Back regime [44].

2.2 Electromagnetic fields

After this brief description of the atomic systems used in the experiments of this

work, it is time to look at the electromagnetic fields. The existence and behavior of

electromagnetic waves within an atomic medium are dictated by Maxwell’s equations

[48]

∇ ·D = ρ, (10)

∇ ·B = 0, (11)

∇×E =−∂B
∂ t

, (12)

∇×H =
∂D
∂ t

+ j, (13)
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where ρ is the charge density and j is the free current density. The constitutive relations

are

D = ε0E+P, (14)

B = µ0H+M, (15)

where µ0 is the vacuum magnetic permeability, P is the polarization, and M is the

magnetization. There are a few simplifications that the neutral atomic samples we use

allow: first, there are no free charges (ρ = 0) nor free currents (j = 0); second, the

material is nonmagnetic (M = 0). This second condition connects to the fact that we will

treat the interaction hamiltonian using the electric dipole term, as it is the most relevant

one. With these considerations, it is rather simple to find the optical wave equation

following the usual procedure of taking the curl of the Maxwell-Faraday equation (Eq.

12). Hence, we arrive at the partial differential equation (PDE)

∇
2E− 1

c2
∂ 2

∂ t2 E =
1

ε0c2
∂ 2P
∂ t2 . (16)

We must emphasize that in deriving this last PDE, we neglected the contribution of

∇(∇ ·E) that comes from the vector identity for ∇×∇×E. Even though this term is only

null for linear phenomena in isotropic media, it is usually very small in the nonlinear

optics problems we are interested in here [49].

It is in the polarization, that is, the dipole moment per unit volume, that lies the

description of the optical response in nonlinear optics phenomena. We can express it in

a power series in terms of the electric field as

P = ε0

(
χ
(1)E +χ

(2)E2 +χ
(3)E3 + . . .

)
, (17)

where the coefficients χ(n) are the n-th-order optical susceptibilities of the medium. Note

that we considered the polarization P and electrical field E as scalars for simplicity.

In general, χ(n) is an (n+ 1)-th-rank tensor which represents both the polarization-

dependent nature of the interaction and the symmetries of the nonlinear medium.
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Figure 3 – Wave mixing processes described by Eq. 18 that can occur when two input waves interact in a medium
characterized by a χ(3) susceptibility.

Source: The author (2023).

Atomic vapors are naturally centrosymmetric, hence they have a null second-order term,

meaning that the first nonlinear term is the third-order term.

Consider then that two incident fields with frequency components ωa and ωb,

with the latter being a weak field, interact with a χ(3) medium. There will be several

frequency combinations allowed to happen, but we are interested in the combination

with frequency 2ωa−ωb, that is, the FWM process frequency (see Fig. 3(a)).

FWM is a parametric nonlinear optical process that occurs when two photons of

the field with frequency ωa are annihilated while another photon is created in the weak

field mode so that the nonlinear polarization associated with this phenomenon is

P(2ωa−ωb) = 3ε0χ
(3)E2

a E∗b . (18)

The factor of 3 comes from the different field permutations that may contribute to this

particular polarization term. With such polarization, a fourth photon is generated in the

frequency of the FWM process to conserve energy and momentum. This process is

depicted in the simple level scheme of Fig. 3(b).
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This process we described is parametric because the system’s initial and final

quantum states are identical. A difference between parametric and nonparametric

processes is that in the first case photon energy is always conserved, while this condition

does not necessarily hold for the second process, since energy can be transferred to

(or from) the medium.

Still, regarding the energy level structure, a very common configuration for the

FWM process is the non-degenerate configuration, in which the incident fields are

at different frequencies. This is the case we analyze in section 3. Another common

configuration for the FWM process is the so-called degenerate configuration, in which

all of the incident fields are at the same frequency. In this case, the generated fields

will also be at the same frequency, with the direction and polarization dictated by the

specific conditions of the experiment. We analyze a process such as this in sections 4

and 5.

One of the key factors that determine the efficiency of FWM is the phase-

matching condition, which determines the direction of propagation of the generated

fields. Phase-matching can be achieved either by adjusting the refractive index of the

medium or by adjusting the angle of the incident fields. In some cases, it is also possible

to achieve phase-matching by using an external field, such as an electric or magnetic

field, to modify the energy levels of the atoms in the medium.

Finally, keep in mind that FWM is a process with typically very small efficiency.

This means that it is usually necessary to use very high-intensity fields to obtain

significant amounts of the generated fields. Hence, the generated fields are often very

weak, and it can be challenging to detect them experimentally.

2.3 Bloch equations

Our final goal is to use the quantum mechanics formalisms to derive the atomic

parameters that connect with the nonlinear optical susceptibilities. The idea is to express

how the susceptibility depends on the atomic system’s parameters such as dipole

transition moments and energy levels. Moreover, by solving the equations of motion

that we will find, we can make predictions of the numerical values of the nonlinear
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response and model experimental results. These numerical results are typically reliable

for the case of atomic vapors since the parameters of these systems (energy levels,

dipole transition moments, decay rates, etc.) are often available in the literature with

high accuracy.

To describe the dynamics of the atomic medium under the interaction with

electromagnetic fields we must look for the equations of motion of this system. We have

already provided a classical description of the fields, but the treatment of the atoms

must follow the rules of quantum mechanics as depicted in the first subsection. Hence,

let us briefly recapitulate the traditional quantum mechanics postulates and then build

up the density-matrix formalism.

For a pure quantum system, at any time t0, its state can be specified by the ket

|ψ (t0)〉, an element of the Hilbert space H [50]. An observable, that is, any measurable

quantity, is a Hermitian operator Â acting upon H . When a measurement is performed,

the possible outcomes are the eigenvalues of the observable Â corresponding to that

measurement. Moreover, the probability of obtaining an eigenvalue an is given by

p(an) =
gn

∑
k=1

∣∣∣〈ψ ∣∣∣uk
n

〉∣∣∣2 , (19)

where gn is the degenerescence degree of the eigenvalue an and
∣∣uk

n
〉

represents

the set of orthonormal kets of the degenerate subspace. We must be careful with

these degeneracies especially in the context of this work, because of transitions in

the hyperfine structure, as each level contains several Zeeman sublevels. The same

probability can also be written in terms of a projector into the set of kets
∣∣uk

n
〉

p(an) = 〈ψ|Pn |ψ〉 , (20)

with the projector being Pn = ∑
gn
k=1

∣∣uk
n
〉〈

uk
n
∣∣. If the result of the measurement is an, the

system abruptly evolves to a new state

∣∣ψ ′〉= Pn |ψ〉√
p(an))

. (21)
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This type of measurement, called a projective measurement, causes the system state

to evolve in time in this immediate way, referred to as the “collapse” of the wavefunction.

There are other ways to extract information about the system state, but they are out of

the scope of this text.

The temporal evolution of the system, when there is not a measurement happe-

ning, is given by the Schrödinger equation

i}
d
dt
|ψ〉= Ĥ (t) |ψ〉 . (22)

This completes the basic set of postulates that allows the description of quantum sys-

tems (for distinguishable particles). However, not all physical systems can be adequately

described by these rules. A system that includes classical uncertainties can be seen as

a statistical mixture of quantum states. The proper way to describe these systems is with

the density operator ρ̂. These operators must obey a few properties: (i) Tr(ρ̂) = 1; (ii)ρ̂

is Hermitian; (iii) its eigenvalues are non-negative. In particular, given that the density

operator is Hermitian, there must be a spectral decomposition

ρ̂ = ∑
i

pi |ψi〉〈ψi| , (23)

where pk represents the probability of finding the system in a certain state |ψi〉.

We must emphasize that the density operator is not in the Hilbert space but

rather “acts” upon its vectors. Albeit that, it still represents the system state and is part

of its own vectorial space with a defined internal product, the Hilbert-Schmidt space,

with dimension N2, for a Hilbert space of dimension N.

With these definitions of the density operator, we can still represent pure states,

when it is possible to write ρ̂ as a projector, ρ̂ = |ψ〉〈ψ|. In this case, it is easy to see

that Tr(ρ̂2) = 1. On the other hand, for a mixed state, or a non-pure state, Tr(ρ̂2)< 1.

The elements of the density operator have distinct meanings: the diagonal terms

are the populations associated with the probability of finding the system in a certain

state of the basis; the off-diagonal terms are called coherences and they represent the

superposition of states.
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One can obtain the temporal dynamics of the density operator through the

Schrödinger equation. For simplicity, consider a time-independent hamiltonian:

ρ̂ = ∑
i

pi |ψ (t)〉〈ψ (t)| , (24)

= ∑
i

pie−
i
} Ĥt |ψ0〉〈ψ0|e

i
} Ĥt ; (25)

∴
dρ̂

dt
=− i

}
Ĥρ̂ +

i
}

ρ̂Ĥ, (26)

=− i
}
[
Ĥ, ρ̂

]
. (27)

This is the Liouville-von Neumann equation and it applies to closed systems. However,

the typical systems we want to address in this thesis are atoms interacting with light,

which are naturally open systems. A very clear example of that is the coupling between

the atomic states and vacuum modes that induces spontaneous decay [51]. The alter-

native approach, under a few considerations, is the Lindblad equation, from which we

may derive the dynamics of open quantum systems. However, a faster (and more suited

to the scope of this work) approach is to add these decay terms phenomenologically

dρ̂

dt
=− i

}
[
Ĥ, ρ̂

]
+

∂ ρ̂

∂ t

∣∣∣∣
relax

. (28)

Once these terms are added we have the optical Bloch equations [52], that is, the

equations of motion for an atomic system interacting with an electromagnetic field.

As an example, that sets the path of the following sections models, let us obtain

the optical Bloch equations of a three-level system interacting with two input fields.

There are three possible arrangements for such a system: a cascade system, in which

there is a ground, an intermediate, and an excited state; the Λ system, with two ground

states and a shared excited state; the V state, which is the opposite of the Λ, that is,

two excited states and a common ground state. These systems are depicted in Fig. 4.

The total hamiltonian of the system is:

Ĥ = Ĥ0 + Ĥint , (29)
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Figure 4 – Possible arrangements for a three-level system: (a) cascade; (b) Λ; (c) V configuration.

Source: The author (2023).

where Ĥ0 is the free atom hamiltonian given by

Ĥ0 = } [ω1 |1〉〈1|+ω2 |2〉〈2|+ω3 |3〉〈3|] , (30)

while for the interaction hamiltonian we consider only the electric dipole term:

Ĥint =−∑
j

e~r ·E j, (31)

where j = a,b. The electric fields can be written as:

Ea =
[
εa(t)e−i(ωat−ka·r+φa)+ c.c.

]
ea; (32)

Eb =
[
εb(t)e−i(ωbt−kb·r+φb)+ c.c.

]
eb, (33)

where εa,b are the electric field amplitudes; ωa,b are the angular frequencies of each

input field; ka,b are the wavevectors; φa,b represent the phases; and ea,b are the polari-

zation unit vectors. A few remarks are due at this point. First, given the choice of our

representation of these fields with their complex amplitudes, the real representation of

the field must have a multiplicative factor of 2, that is, E j ≈ 2cos
(
ω jt− k jz+φ j

)
. Moreo-

ver, we are considering that the fields have wavevectors in the z-direction, eliminating

transversal components. We will see that our experimental setup will not always obey



Section 2. Fundamental concepts 38

this consideration. Finally, for most of this thesis, we will neglect the phase of the input

fields, including now. However, in the last section, this phase plays a crucial role in

understanding the relevant phenomena.

We define the Rabi frequency and the transition dipole moment as:

Ω j ≡
µnpε j

}
; (34)

µnp ≡ e
〈
n
∣∣r · e j

∣∣ p
〉
. (35)

Our first task is to calculate all the elements of the interaction hamiltonian. First,

notice that all elements in the main diagonal are zero, for there is no dipole interaction

of a level with itself. To calculate the off-diagonal terms we move to a rotating frame,

which eliminates one of the complex components to avoid fast-spinning terms in the next

steps of the derivation. We are doing this simplification at this point to avoid carrying the

cumbersome complex notation. The interaction hamiltonian is then

Ĥint =−}


0 Ω̃∗aeiωat 0

Ω̃ae−iωat 0 Ω̃be−iωbt

0 Ω̃∗beiωbt 0

 . (36)

We incorporated the spatial part of the electric field into the Rabi frequencies, that is

Ω̃ j = Ω jeik jz. Finally, to write down the total hamiltonian, we shift the energy levels by

the energy of level |1〉

Ĥ =−}


0 Ω̃∗aeiωat 0

Ω̃ae−iωat −ω21 Ω̃be−iωbt

0 Ω̃∗beiωbt −ω31

 , (37)

where we used the definition ωnp = ωn−ωp.

Let us use the Liouville-von Neumann equation (see Eq. 27) to obtain the

density-matrix elements. For now, we will overlook the relaxation terms. By using the

completeness relations of the system:
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ρ̇np =
i
}
(ρn1H1p +ρn2H2p +ρn3H3p−ρ1pHn1−ρ2pHn2−ρ3pHn3) (38)

Given that, the populations and coherences are:

ρ̇11 =
i
}
(���

�
ρ11H11 +ρ12H21 +���

�
ρ13H31 −����ρ11H11 −ρ21H12−����ρ31H13 ) ; (39)

ρ̇22 =
i
}
(ρ21H12 +���

�
ρ22H22 +ρ23H32−ρ12H21−����ρ22H22 −ρ32H23) ; (40)

ρ̇33 =
i
}
(���

�
ρ31H13 +ρ32H23 +���

�
ρ33H33 −����ρ13H31 −ρ23H32−����ρ33H33 ) ; (41)

ρ̇21 =
i
}
((ρ22−ρ11)H21 +ρ21 (H11−H22)−ρ31H23 +���

�
ρ23H31 ) ; (42)

ρ̇31 =
i
}
(−����ρ11H31 −ρ21H32 +ρ31 (H11−H33)+ρ32H21 +���

�
ρ33H31 ) ; (43)

ρ̇23 =
i
}
(−����ρ21H13 +(ρ22−ρ33)H23 +ρ23 (ρ22−ρ33)−ρ13H21) . (44)

The missing off-diagonal terms are the complex conjugate of the ones presented.

Rearranging and substituting the hamiltonian elements:

ρ̇11 =−i
(
ρ12Ω̃ae−iωat−ρ21Ω̃

∗
aeiωat) ; (45)

ρ̇22 =−i
(
ρ21Ω̃

∗
aeiωat−ρ12Ω̃ae−iωat +ρ23Ω̃

∗
beiωbt−ρ32Ω̃be−iωbt) ; (46)

ρ̇33 =−i
(
ρ32Ω̃be−iωbt−ρ23Ω̃

∗
beiωbt) ; (47)

ρ̇21 =−i
(
(ρ22−ρ11)Ω̃ae−iωat +ρ21ω21−ρ31Ω̃be−iωbt) ; (48)

ρ̇31 =−i
(
−ρ21Ω̃

∗
beiωbt +ρ31ω31 +ρ32Ω̃ae−iωat) ; (49)

ρ̇23 =−i
(
(ρ22−ρ33)Ω̃be−iωbt +ρ23 (−ω21 +ω31)−ρ13Ω̃ae−iωat) . (50)

At this point, we introduce the slow variables of the system to later eliminate explicit

time dependence. Let us define the slow coherences:

ρ12 = σ12eiωat ; (51)

ρ13 = σ13ei(ωa−ωb)t ; (52)

ρ32 = σ32eiωbt . (53)
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These choices of frequencies in which the system frame may rotate are intentional,

as we are looking for a very simple description of the interaction in the low-intensity

regime. We can use the equations that follow to approximate higher-order responses.

A more rigorous (and complicated) treatment would be to write these coherences as

a Floquet expansion, allowing the system to oscillate in any combination of the input

fields frequencies [53].

With these definitions, we rewrite the density-matrix elements:

ρ̇11 =−iσ12Ω̃a + iσ21Ω̃
∗
a; (54)

ρ̇22 =−iσ21Ω̃
∗
a + iσ12Ω̃a− iσ23Ω̃

∗
b + iσ32Ω̃b; (55)

ρ̇33 =−iσ32Ω̃b + iσ23Ω̃
∗
b; (56)

σ̇21 = iδaσ21− i(ρ22−ρ11)Ω̃a + iσ31Ω̃b; (57)

σ̇31 = i(∆−ω31)σ31 + iσ21Ω̃
∗
b− iσ32Ω̃a; (58)

σ̇23 = i(δb−ω31)σ23− i(ρ22−ρ33)Ω̃b + iσ13Ω̃a. (59)

We have defined the detunings as

δa ≡ ωa−ω21; (60)

δb ≡ ωb−ω23; (61)

∆≡ ωa−ωb. (62)

At this point, our description of the atom-light interaction is still missing the decay

rates. To add them properly we must choose which type of three-level system we want

to address. For this example, let us detail the case of the Λ system (see Fig. 4(b)), in

which the population of the excited state can decay to each one of the ground states.

Population decay rates will be represented by Γnp while coherence decay rates will be

γnp. Hence, the final set of optical Bloch equations is
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ρ̇11 =−iσ12Ω̃a + iσ21Ω̃
∗
a +Γ21ρ22; (63)

ρ̇22 =−iσ21Ω̃
∗
a + iσ12Ω̃a− iσ23Ω̃

∗
b + iσ32Ω̃b− (Γ21 +Γ23)ρ22; (64)

ρ̇33 =−iσ32Ω̃b + iσ23Ω̃
∗
b +Γ23ρ22; (65)

σ̇21 = (iδa− γ21)σ21− i(ρ22−ρ11)Ω̃a + iσ31Ω̃b; (66)

σ̇31 = (i∆− iω31− γ31)σ31 + iσ21Ω̃
∗
b− iσ32Ω̃a; (67)

σ̇23 = (iδb− iω31− γ23)σ23− i(ρ22−ρ33)Ω̃b + iσ13Ω̃a. (68)

We chose a very general form for the decay rates. However, different processes may

require different decay terms, for example, the decay rate that could be introduced due

to the finite time of interaction between the input field and the atoms.

The treatment we have built so far assumes that all the atoms in a sample can

be described by the same set of equations. However, there are scenarios in which

some groups of atoms might have different interactions than others. The most common

effect that causes this is Doppler-broadening, a type of inhomogeneous broadening. In

this case, the detuning is a function of the atom’s velocity, which on the other hand is

given by the Maxwell-Boltzmann distribution for an atomic vapor. We treat the Doppler-

broadening in sections 3 and 4 in more detail.

Let us look for solutions to the set of Eqs. 63-68 in the steady-state. In this case,

the time derivatives are set to zero and we are left with a system of linear equations. It

is possible to solve them analytically [54], but the solution is quite cumbersome. We opt

at this moment to solve them numerically using Gaussian elimination. To do so, we write

the set of Eqs. 63-68 in a matrix form and then solve for the density-matrix elements

using a linear algebra suite (Wolfram Mathematica 12.0). The program containing this

solution is in appendix A.

An interesting phenomenon that this system allows us to explore is electromag-

netically induced transparency (EIT), a phenomenon in which the transmission of light

through an optically dense medium is suppressed by the application of a control laser

beam. It occurs in atomic systems such as the one we are modeling in this example.

Interference between the two input fields exciting the atoms creates a “dark state” which
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Figure 5 – Transmission signal as a function of the probe field detuning. (a) Ωa = 0.5Γ, (b) Ωa = 5Γ. The two graphs
are normalized independently.

Source: The author (2023).

leads to a suppression of the probe light transmission through the medium. It was first

observed in the late 1980s [55, 56] and it has since been abundantly studied.

Consider then that the a field (control) has a fixed detuning δa = 0 in the transition

|1〉 → |2〉, and we scan the frequency of the b field (probe) in the transition |3〉 → |2〉.

Moreover, we consider Γ21 = Γ23 = Γ. The b field is set to be very weak (Ωb = 0.01Γ).

Finally, for a thin sample, that is, with a length smaller than the Rayleigh length of

the input lasers, we can approximate the imaginary part of the coherence σ23 as the

transmission of the b field. We detail this particular approximation in section 5 where

we will use it again. The other decay rates come from Refs. [46, 45]. With all of these

considerations, we plot the transmission Tb ≈ Im(σ23) as a function of the detuning δb in

Fig. 5.

In Fig. 5(a) the control field has a Rabi frequency equal to half the natural

linewidth, that is, Ωa = 0.5Γ. Near resonance, the probe field is absorbed as expected.

However, on resonance, there is a narrow peak indicating that the probe field is no longer

absorbed, showing the EIT phenomenon. On the hand, in Fig. 5(b) we increased the

Rabi frequency of the control field tenfold, rendering a completely different transmission

curve. The once thin peak that indicated the EIT phenomenon is no longer present

and we see a doublet structure. This is a characteristic signature of the Autler-Townes
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splitting, our main focus in section 3. For now, it is sufficient to say that for strong fields,

the excited level is split into two different levels. These two levels are separated enough

to distinguish the excitation routes, eliminating the interference once responsible for

the EIT and rendering two well-separated peaks. The transition between EIT and AT

splitting is still nowadays a topic of interest [57, 58]. A final comment is about how the

two peaks are separated by 2Ωa. This separation might change considerably depending

on the Doppler-broadening and the geometric arrangement of the experiment, as we

detail in the following section.

This simple example described here sets the first steps of the modeling of the

actual experimental results of this thesis. We will in the following sections introduce

phenomena connected to the Doppler broadening, the geometry of the nonlinear pro-

cess, or even the stochastic phase of the input fields. Overall, the route to obtaining the

equations of motion and eventually the final output signals follow the procedure shown

here but with the proper adaptations to each situation.
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3 COHERENT BLUE LIGHT GENERATION IN A DOPPLER-BROADENED FOUR-
WAVE MIXING PROCESS

In this section, we present our results on the coherent blue light (CBL) generation

via four-wave mixing (FWM) in a hot vapor of rubidium atoms using a combination of

a cw diode laser and a 1 GHz femtosecond pulse train. Special atention is directed

towards two aspects of the problem: an analysis of the Autler-Townes (AT) splitting of

the CBL signal [59] and an interference effect between FWM excitation routes [60].

We obtain the CBL signal by scanning the cw laser frequency or the repetition

rate of the pulsed laser. In both scenarios, there is an AT splitting with a large separation

in the doublet structure due to the configuration of copropagating fields. We will see that

this is in opposition to the typical result found in the literature for AT splitting which scales

with the Rabi frequency. Moreover, if one scans the repetition rate of the femtosecond

pulse train in a specific region of values, the spectra present a narrow peak, which we

interpret as a sign of the interfering pathways of excitation. We model both results, the

interference pattern and the AT splitting, employing the density matrix formalism to write

the Bloch equations and solve them numerically. For the interference effect, the solution

shows that the narrow peak appears only when both lasers are resonant with one- and

two-photon transitions for the same atomic velocity group. As for the AT splitting, we

use the model to detail cases beyond the experimental setup, comparing, for instance,

the fluorescence and the FWM signal for homogeneously and non-homogeneously

broadened systems. We also study how the AT splitting behaves if one scans the strong

or the weak laser beam.

3.1 Optical pulse train

For the experiment described in this section, we use a combination of continuous

and pulsed laser sources. In order to proceed, we first provide some details about the

pulsed laser and how it interacts with the atomic vapor. A mode-locked pulsed laser

is a sequence of optical pulses with a well-defined phase relationship separated by a

constant time interval. These lasers are said to be mode-locked and can produce a
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series of extremely short, intense pulses of light at a very high repetition rate. These

pulses are typically on the order of picoseconds or femtoseconds in duration and can

be generated at repetition rates up to several gigahertz.

Mode-locked lasers are used in a variety of applications, including spectroscopy,

time and frequency metrology, and optical communication [61]. The basic principle of

mode-locking is to create a feedback loop within the laser cavity that locks the phase of

the laser’s output field to a specific value. This can be achieved by using a nonlinear

element, such as a saturable absorber or a Kerr cell, to modulate the gain of the laser.

When the gain of the laser is modulated in this way, it creates a series of pulses that are

evenly spaced in time.

One of the key features of mode-locked lasers arises in the frequency domain

since they generate a series of equally spaced frequency components, known as a

frequency comb. A frequency comb is a periodic array of equally spaced frequencies that

can be used as a very precise frequency ruler. One of the main advantages of frequency

combs is their ability to provide a highly precise and stable frequency reference, when

locked into a frequency pattern. This makes them ideal for applications where high

accuracy and stability are required, such as in spectroscopy and time and frequency

metrology [62]. In spectroscopy, frequency combs can be used to precisely measure the

absorption or emission spectrum of a sample, and to detect extremely small differences

in the frequencies of the absorbed or emitted light.

Frequency combs are also employed in optical communication systems to trans-

mit large amounts of data over long distances. In these systems, the frequency comb

is used to generate a series of optical carriers at different frequencies, transmitting

data with a technique known as wavelength division multiplexing (WDM) [63]. In turn,

WDM systems are used to transmit multiple optical signals over a single fiber by using

different wavelengths for each signal and are widely common in modern communication

systems.

In our experiment, we have a mode-locked Ti:sapphire laser (BR Labs Ltda),

which emits 100 fs pulses at a 1 GHz repetition rate, with a maximum output average

power of 500 mW, and a 20 nm bandwidth centered near 776 nm. It is helpful to analyze
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Figure 6 – Diagrammatic representation of a pulse train in the time domain and its respective Fourier transform.

Source: Ref. [62].

the mathematical description of such a laser source. Consider the electric field [64]:

E f s(t) =
N−1

∑
n=0

ε f s(t−nTR)e−i(ω f st−nω f sTR+n∆φ), (69)

where, ε f s(t) is the pulse envelope of the fs field; TR is the repetition period; N is

the number of pulses; ω f s is the frequency of the carrier wave; and ∆φ is the phase

difference between each pulse, introduced by optical elements within the laser cavity.

This train of ultrashort pulses can be thought of as a frequency comb if one

describes the electric field amplitude in the frequency domain. Therefore, taking the

Fourier transform of Eq. 69 renders:

Ẽ f s(ω) = ε̃ f s(ω−ω f s)
N−1

∑
m=0

e−im(ωTR−∆φ). (70)

A representation of the pulses and frequency modes is provided Fig. 6. Notice

that, in this representation, the modes are depicted as thin lines. The actual width of

each frequency mode is ≈ 1/NTR. Therefore, the modes are thinner as the number of
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pulses increases. In the limit N→ ∞:

Ẽ f s(ω) = 2πε̃ f s(ω−ω f s) fR

∞

∑
m=−∞

δ (ω−ωm), (71)

in which

ωm = 2π( f0 +m fR), (72)

where we consider ∆φ fR = 2π f0; the repetition rate is defined as 1/TR ≡ fR; ωm is

the frequency of the mth mode of the frequency comb; and f0 is the so-called offset

frequency.

Finally, the number of modes in the frequency comb is of special interest. In

our case, for fR = 1 GHz and 100 fs pulses, there are about 104 frequency modes in

our laser. This repetition rate is measured with a photodiode and phase locked to a

signal generator (E8663B-Agilent), with 1 Hz resolution, using a cavity mirror mounted

on a piezoelectric transducer (PZT) allowing to scan fR. The carrier-envelope-offset

frequency, f0, is free running.

In terms of application, we are interested in employing this type of pulsed laser to

perform spectroscopic measurements. In particular, when a frequency comb with such

a high repetition rate interacts with an atomic medium, the necessary conditions for the

coherent accumulation [65] are fulfilled since the atomic relaxation time is much larger

than the time interval between pulses. In addition, for this 1 GHz repetition rate, only

one or two modes lie within the Doppler width, which allows the treatment of the pulsed

laser as a series of continuous modes that interact with the atoms. This is critical to the

results we present here and how we model them. For instance, some works perform

spectroscopy taking advantage of this, distinguishing the different hyperfine levels and

investigating the coherent processes induced by the train of ultrashort pulses [66, 67].

In fact, one can employ different types of spectroscopy using a combination of

this high-repetition-rate pulsed laser and a cw laser. That is, the repetition rate of the fs

laser is fixed and the different atomic velocity groups are selected as the frequency of

the diode laser is scanned. This technique is called velocity-selective spectroscopy [68].

On the other hand, we can scan the repetition rate itself and fix the diode frequency,

leading to a case in which a specific group of atoms is probed each time.
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3.2 CBL experimental setup

Our initial goal with this experiment was to extend a previous study of the CBL

generated in rubidium vapor, now using our 1 GHz pulse train instead of the previous 100

MHz pulse train [67]. This change in parameters, increasing the frequency separation

between the optical modes, allows us to easily distinguish the blue signal generated by

each mode of the frequency comb. Consequently, the results resemble those obtained

using two cw diode lasers [69]. However, we will show that the combination of pulsed and

continuous lasers allows the observation of a few novel effects, such as the interference

between excitation routes.

A diagrammatic representation of the experiment is depicted in Fig. 7, together

with the relevant energy levels in the center. For simplicity we label the levels 5S1/2,

5P3/2, 5D5/2, and 6P3/2 as |1〉, |2〉, |3〉, and |4〉, respectively. We use a mode-locked

Ti:sapphire laser, with the parameters already described, together with a diode laser

stabilized in temperature and with a linewidth of about 1 MHz. This linewidth is much

smaller than the hot Rb Doppler linewidth (of hundreds of MHz). The cw laser has a

transverse mode TEM00 with a 0.7 mm beam waist, while the fs laser has a beam waist

of 0.6 mm, both measured at the Rb cell position with a CCD camera.

The two beams have parallel circular polarizations obtained with polarizing beam-

splitters (PBS) and quarter-wave plates. These beams are aligned in a copropagating

configuration and pass through a 5 cm long cell containing natural Rb heated up to

≈ 100 oC. Throughout the measurements, the average power of the fs laser is fixed at

250 mW (≈ 7 W/cm2) while the power of the diode laser varied from 0.070 up to 4.5

mW (1.4 to 90 mW/cm2), both values acquired at the cell entrance. With a set of lenses,

we focused both beams in the center of the cell to increase the intensity, collecting them

after the Rb cell with another lens.

The two copropagating beams, at 780 nm (cw) and 776 nm (fs), drive each step

of the two-photon transition 5S1/2→ 5P3/2→ 5D5/2 of 85Rb. Since these input beams

have circular polarizations, there is a significant optical pumping whitin the Zeeman

sublevel structure. Hence, the excitation process only happens in states with the highest

mF . Moreover, if the repetition rate of the pulsed laser is chosen very carefully, there
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Figure 7 – Experimental setup with relevant energy levels of 85Rb. BS, L, M, PBS, PMT, and SAS indicate beam-
splitter, lens, mirror, polarizer beam-splitter, photomultiplier, and saturated absorption spectroscopy, res-
pectively.

Source: Ref. [60].

will also be a frequency mode in the first transition 5S1/2 → 5P3/2, but in this initial

description, we do not consider this case.

The combination of both lasers exciting the two-photon transition, together with

quantum fluctuations, is sufficient to induce a parametric process [70]. Hence, there is

an induced coherence between the levels 5S1/2 and 6P3/2, leading to the generation

of new light beams at 5.23 µm (mid-infrared) and 420 nm (blue). The infrared field

undergoes the process of amplified spontaneous emission (ASE) but it cannot be

detected as it is absorbed by the pyrex cell that holds the vapor. Our main focus is on

the blue signal generated through the FWM process. This CBL signal is selected using

a blue bandpass filter and diffraction gratings to, only then, be sent into a photomultiplier

tube and recorded by an oscilloscope.
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Figure 8 – Simplified scheme of the saturated absorption spectroscopy. OI, BS and ND are optical isolators, beam-
splitters, and neutral density filters, respectively.

Source: The author (2023).

3.2.1 Saturated absorption spectroscopy

In Fig. 7 we show that part of the light of the diode laser is taken to a saturated

absorption spectroscopy (SAS) experiment. Let us detail this experimental technique

and its importance to our experiments.

The diode laser frequency can be tuned in a range of about 10 GHz by changing

the injection current of the laser head. Therefore, we can choose which rubidium isotope

we want to study. However, most of our results are with 85Rb, since this isotope renders

larger signals. It is crucial to monitor the frequency of the diode laser and to do so we

use the results of SAS.

The SAS setup is shown in the simplified scheme of Fig. 8. Only a small fraction

of the laser power is necessary to perform the SAS, so we use a microscope slide to

divide the beam into two parts. The stronger beam goes to the CBL experiment, while

the weaker is used in the SAS.

This experimental method, a well-known type of Doppler-free spectroscopy, uses

a pair of counter-propagating beams to distinguish the hyperfine levels of an atomic

vapor. These beams are called pump and probe, the latter being less intense, and they

interact, in our system, with a sample of rubidium atoms. Both vapor cells, the reference

one in the SAS setup and the one in the CBL setup, contain the two stable isotopes of

rubidium in natural abundance, i.e. 72.2% of 85Rb and 27.8% of 87Rb.

Separately, the pump and probe beam absorption lines in the atomic vapor are
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Figure 9 – Saturated absorption spectroscopy of the Rb. The zero of the horizontal axis corresponds to the closed
transition |F = 2〉 → |F ′ = 3〉 of 87Rb. The inset graph is a zoom of this last transition with the crossover
between |F ′ = 1〉 and |F ′ = 3〉 circled.

Source: The author (2023).

broadened by the Doppler effect. However, when both lasers have the correct frequency

of one of the hyperfine levels and interact with the same velocity group of atoms, the

probe beam is less absorbed resulting in a peak in the transmission measurement, as

shown in Fig. 9. Notice that there are four absorption dips in this result because each

isotope has two hyperfine ground states. Inside each one of these dips, there are six

peaks, meaning that on six occasions the pump and probe beams were interacting with

the same atoms.

Due to angular momentum selection rules, only three transitions are allowed

from the hyperfine ground states. Thus, only in three out of these six peaks, both beams

are interacting with the same hyperfine level. The other three peaks are crossover

transitions, i.e. the pump beam is resonant with one hyperfine level while the probe

interacts with a different one, for the same group of atoms.

3.3 Autler-Townes splitting

In the previous sections, we have presented the basic tools and experimental

setup for the generation of the CBL signal. We focus now on the experimental results

regarding the dynamic Stark shift observed in this signal, under particular conditions.

Furthermore, we aim to understand why this phenomenon does not present itself in the



Section 3. Coherent Blue Light Generation in a Doppler-Broadened Four-Wave Mixing Process 52

typical way seen in the literature.

The dynamic Stark shift, also known as the AC Stark effect, is a phenomenon

that causes the splitting of energy levels in a transition driven by a strong field that is

near resonant. This effect can be observed in fluorescent spectroscopy as the Mollow

triplet [71, 72], which is caused by the splitting of the “bare” atom states into two

“dressed” states with a separation that is proportional to the Rabi frequency. In three-

level systems, this effect is known as Autler-Townes (AT) splitting [28]. In this case, the

Stark-shifted levels stimulated by a strong laser field are probed by a weak field in a

different transition, resulting in a double peak structure in the weak field transmission

curve. In our experiment, the diode laser serves as the strong field in the first transition,

while the optical modes of the fs laser act as the weak field (power per mode ≈ 50µW)

in the second transition of this three-level ladder system.

The Autler-Townes doublet has been extensively studied in atomic and molecular

spectroscopy for various purposes. For example, the AT splitting has been used to

measure transition dipole moments and lifetimes of highly excited states [73, 74], to

store information in quantum memories [75], and to study microwave propagation in

transmission lines [76]. However, in our experiment, we aim to understand why the

dynamic Stark shift does not present itself in the usual way seen in the literature.

In a typical three-level cascade system, counterpropagating laser beams are

used to explore the almost Doppler-free configuration when the wavelength difference

between the two transitions is small. Early studies investigating the AT splitting in a

Doppler-broadened medium were conducted in the 1970s [77, 78, 79]. In these cases,

it can be challenging to analyze the system analytically, especially in the high-intensity

regime. Therefore, numerical methods are often used to study the system, such as the

work of Ahmed and Lyyra [80], which investigates the impact of the Doppler width on

the observation of the AT splitting for co- and counter-propagating beams. They show

that the presence of the AT splitting in the fluorescence depends not only on the Rabi

frequency but also on the ratio between the wavenumbers of the coupling and probe

laser beams. In particular, the AT doublet is difficult to observe in the copropagating

beams configuration, as it does not cancel the Doppler broadening. However, as our

results demonstrate, the AT doublet can be distinguished in the CBL signal using a
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copropagating setup. In addition, we want to explore how the AT manifests itself in the

CBL under two different frequency scanning scenarios: scanning either the repetition

rate of the pulsed laser or the cw laser frequency.

Overall, the Autler-Townes effect is an important and widely studied phenomenon

that has a wide range of applications in a variety of fields. By understanding the

underlying physics of the effect and developing new techniques to control and manipulate

the Autler-Townes sublevels, it is possible to harness the full potential of this effect and

to advance our understanding of atomic and molecular systems.

3.3.1 Experimental results

Let us begin the discussion of the experimental results with the scenario in which

we scan the repetition rate of the fs laser. By proceeding in this manner we change

the spacing of the optical modes delivered by the femtosecond laser. We show in Fig.

10 the intensity of the CBL as a function of the Ti:sapphire optical mode detuning (δ23)

(bottom axis) or repetition rate (top axis), for different intensities of the diode laser. The

diode laser was almost resonant with the closed transition 5S1/2,F = 3→ 5P3/2,F = 4

for the zero velocity group, though its frequency may have varied slightly from curve to

curve as we did not use a frequency lock. Instead, we turned off any current modulation

in the laser head using the SAS curve as a reference. However, this may have caused

the frequency to drift slightly. These measurements were taken with the Rb cell at a

temperature of 74 oC, which corresponds to an atomic density of approximately 1012

atoms/cm3 [81]. Based on measurements of the laser power before and after the Rb

cell, we estimate that the intensity of the diode laser at the center of the cell ranged

from I12 = 1.27 to 14.5 mW/cm2, while the intensity per optical mode of the Ti:sapphire

laser was approximately I23 ≈0.42 mW/cm2.

As the power of the strong field increases, we observe a doublet structure in the

results shown in Fig. 10. The separation between the peaks depends on the power of

the diode laser as well. This structure is typically caused by the energy level splitting

resulting from the dynamic Stark shift. However, in this case, the frequency separation

is much larger than what would be expected based on the Rabi frequency of the strong

field. Normally, the frequency separation scales linearly with the Rabi frequency (or the
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Figure 10 – CBL as a function of the optical mode detuning in the |2〉→ |3〉 transition, for diode laser intensities from
1.27 mW/cm2 up to 14.5 mW/cm2 (estimate at the middle of the cell). Bottom axis: detuning of the optical
mode nearest to resonance. Top axis: the correspondent repetition rate variation from fR = 990.410 MHz.

Source: Ref. [59].

square root of the laser power) and is of the order of the Rabi frequency itself. In the

results shown in Fig. 10, the frequency separation is hundreds of MHz, while the Rabi

frequency of the diode laser (strong field) is only in the tens of MHz. In the following

sections, we will use a theoretical model to try to explain these characteristics. It is

important to note that, even though this is a more typical setup with the strong laser

fixed in frequency and the weak laser scanning, the copropagating configuration of

the experiment does not eliminate the effects of Doppler broadening. It is much more

common to study the AT splitting using counter-propagating configurations, as these

lead to Doppler-free results.

In addition to the doublet structure, our model will also address the asymmetry

in the double peak shape and the behavior of the signal amplitude as a function of the

strong laser power. The asymmetry may be connected to the fact that the diode laser
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was not locked in frequency and may have drifted slightly. The signal amplitude appears

to have a saturation behavior, as the curve with the highest laser power is much smaller

than the others.

To calibrate the horizontal axis of this graph we remember that, for a resonant

mode of the frequency comb (δ23 = 0, for the zero velocity atoms), the transition fre-

quency ω23 must match an integer multiple of the repetition rate (see Eq. 72). Therefore

ω23

2π
= m fR. (73)

If we treat m as a continuous variable, then a small change ∆m implies in

∆ fR =− ω23

2πm2 ∆m, (74)

=− 2π

ω23
f 2
R∆m. (75)

For neighboring modes (∆m= 1), the change in the repetition rate is |∆ fR| ≈ 2.5 kHz. With

this, we can connect the variations in the repetition rate with the changes in the optical

frequency. Note that each curve in Fig. 10 includes a pair of doublets that correspond

to the CBL signal generated by two adjacent modes of the frequency comb. We can

use the frequency difference between these two doublets to calibrate the bottom axis

(optical frequency), with a repetition rate of approximately 990.4 MHz, and consequently,

calibrate the top axis (repetition rate variation).

In Fig. 11, we present the results for the second frequency scanning scenario,

where the frequency of the diode laser (strong field) is varied while the fs laser (weak

field) has a fixed frequency. In this case, the repetition rate is locked, but the offset

frequency of the pulse trains is free running. The characteristics of these results are

similar to the previous ones. Again, as the power of the strong field increases, a double

peak structure appears. Now, we see a contribution from only one mode of the frequency

comb. The asymmetry in these results is more pronounced and could be caused by two

factors: differences in diode laser absorption across the three hyperfine transitions of the

Rb D2 line, and the mode of the Ti:sapphire laser not being precisely on resonance due

to the drifting offset laser frequency. The first factor could be addressed by using large
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Figure 11 – Normalized CBL as a function of the diode laser detuning, for a fixed Ti:sapphire laser intensity and
diode laser intensities ranging from I12 =1.52 up to 10.6 mW/cm2 (estimate at the middle of the cell).
The calibration of the diode laser detuning is obtained with saturated absorption spectroscopy (top
curve).

Source: Ref. [59].

magnetic fields as proposed in Refs.[82, 83]. We will show in the theoretical subsection

that even a small detuning can change the symmetry of the FWM signal. As for the

splitting of the doublet, we again see a linear dependence on the square root of the

diode laser power, and a frequency separation that is at least one order of magnitude

larger than the Rabi frequency of the strong field (see Fig. 20). This is the main feature

we will attempt to explain in the following subsection.

3.3.2 Theoretical model

In this subsection, we aim to model our experimental results and identify the

physical mechanisms responsible for the characteristics we observed. To do this, we
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consider a four-level system based on the rubidium excitation route 5S1/2→ 5P3/2→

5D5/2→ 6P3/2, labeled as |1〉, |2〉, |3〉, and |4〉, respectively (see Figs. 7 and 12). Our

focus is on the CBL generated near the |4〉 → |1〉 transition (420 nm) when three input

fields with Rabi frequencies Ω12, Ω23, and Ω34 copropagate through Doppler-broadened

rubidium atoms. We assume that the interaction between the atomic system and the fs

laser satisfies the conditions for coherent accumulation, as the atomic relaxation time is

much longer than the time interval between pulses. Additionally, our frequency comb

has a repetition rate such that only one or two modes can interact simultaneously with

the velocity groups. Therefore, our theoretical treatment will only consider cw fields.

The electric fields present in the Hamiltonian can be written as

El (r, t) = εεε lEle−i(kl ·r−ωlt)+ c.c, (76)

where εεε l is the polarization vector, El is the field amplitude, kl is the wavevector, ωl is the

frequency of each field, and c.c. represents the complex conjugate. The Rabi frequency

for the | j〉 → |k〉 transition is defined as Ω jk =
µ jkEl
} , where µ jk = 〈 j|(µ̂µµ · εεε l) |k〉, with j 6= k,

is the transition dipole matrix element. For simplicity, we will ignore the spatial part of

the fields in our calculations, as we are only interested in the spectral response of the

FWM process that leads to CBL generation.

There are a few approaches we can take to understand the energy level splitting

observed in our results. One approach is to use the dressed state formalism, which

naturally introduces new energy levels. In this case, the field in the |1〉 → |2〉 transition

is intense, causing the Stark effect to split the energy level structure and create new

resonances associated with the dressed states |1;±〉 and |2;±〉 (see Fig. 12). These

new states have an energy shift given by [49]:

ω1± = −δ12

2
± 1

2

√
4Ω2

12 +δ 2
12, (77a)

ω2± = +
δ12

2
± 1

2

√
4Ω2

12 +δ 2
12, (77b)

where δi j is the detuning of the field regarding the |i〉 → | j〉 transition.

This formalism might ease some of our analysis and notation. However, we

choose a different path. We will solve numerically the Bloch equations using the atom
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Figure 12 – Stark-shifted rubidium level diagram considering a strong field in the |1〉 → |2〉 transition. Ωi j and δi j are
the Rabi frequency and the detuning of the field regarding the |i〉 → | j〉 transition, respectively.
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states basis, in a similar procedure of the previous section. We begin the analysis

employing the density-matrix formalism with Liouville’s equation (see Eq. 27). In this

four-level case, the matrix representation of the hamiltonian Ĥ, in the rotating frame, is

Ĥ = }


0 −Ω′12 0 −Ω′14

−Ω′∗12 ω21 −Ω′23 0

0 −Ω′∗23 ω31 −Ω′34

−Ω′∗14 0 −Ω′∗34 ω41

 . (78)

In this notation, Ω′jk ≡Ω jkeiωη t , in which ωη is the frequency of the laser in a particular

transition. The density-matrix elements should be similar to the example in section 2.

However, we add the velocity component v, in the direction of the propagation of the

lasers, to the detuning terms. Hence, we write the Bloch equations as
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ρ̇11 = −iΩ12σ12 + c.c.− iΩ14σ14 + c.c+Γ22ρ22 +Γ41ρ44, (79a)

ρ̇22 = iΩ12σ12 + c.c.− iΩ23σ23 + c.c.−Γ22ρ22 +Γ32ρ33, (79b)

ρ̇33 = iΩ23σ23 + c.c.− iΩ34σ34 + c.c.− (Γ32 +Γ34)ρ33, (79c)

ρ̇44 = −iΩ34σ23 + c.c.+ iΩ14σ14 + c.c.+Γ34ρ33−Γ41ρ44, (79d)

σ̇12 = [i(δ12− k12v)− γ12]σ12 + iΩ14σ42− iΩ23σ13 + iΩ12(ρ22−ρ11), (79e)

σ̇23 = [i(δ23− k23v)− γ23]σ23 + iΩ12σ13− iΩ43σ24 + iΩ23(ρ33−ρ22), (79f)

σ̇14 = [i(δ14− k14v)− γ14]σ14 + iΩ12σ24− iΩ43σ13 + iΩ14(ρ44−ρ11), (79g)

σ̇43 = [i(δ43− k43v)− γ43]σ43 + iΩ14σ13− iΩ23σ42 + iΩ43(ρ33−ρ44), (79h)

σ̇13 = [i(δ12 +δ23− (k12 + k23)v)− γ13]σ13 +

+ iΩ12σ23 + iΩ14σ43− iΩ23σ12− iΩ43σ14, (79i)

σ̇24 = [i(δ14−δ12− (k14− k12)v)− γ24]σ24 +

+ iΩ12σ14 + iΩ23σ34− iΩ14σ21− iΩ43σ23. (79j)

where γ jk represent the relaxation rates of the coherences, Γ jk is the population spon-

taneous relaxation rate from a |k〉 state to a | j〉 state, δ jk and k jk are the detuning and

wavenumber of the field associated to the Rabi frequency Ω jk, and σ jk ≡ ρ jke−iωη t is the

slow envelope of the coherence ρ jk.

Out of all elements of the density matrix, we are interested in the coherence σ14

and the population of the state |3〉, ρ33. The square modulus of σ14 connects with the

FWM signal while the upper state population represents the fluorescence emitted by the

atoms. To compare the results with the experimental data, one must take into account

the contribution of all velocity groups of the hot vapor:

ρ̄33 =
∫

∞

−∞

ρ33(v) f (v)dv, (80a)

σ̄14, =
∫

∞

−∞

σ14(v) f (v)dv. (80b)

where f (v) is the Maxwell-Boltzmann velocity distribution.

In order to obtain the results presented in the following sections, we solved

the Bloch equations (Eqs. 79) numerically using the fourth-order Runge-Kutta method
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Table 1 – Numerical parameters for the theoretical model.

Decay rates (MHz)
Γ22 2π×6.06
Γ33 2π×0.66
Γ44 2π×1.3
Γ32 0.65Γ33
Γ34 0.35Γ33
γ12 Γ22/2
γ23 (Γ33 +Γ22)/2
γ34 (Γ33 +Γ44)/2
γ14 Γ44/2
γ13 Γ33/2
γ24 (Γ44 +Γ22)/2
Wavelengths (nm)
λ12 780
λ23 776
λ34 5300
λ14 420

Source: Ref. [46, 45].

over a time period of t = 0 to t = 2 µs (code available in Ref. [84]). This integration

time is approximately the average transit time of the atoms through laser beams with

a diameter of 0.2 mm. The initial conditions we used were ρ11(0) = 1 and ρ22(0) =

ρ33(0) = ρ44(0) = σi j(0) = 0. This calculation is computationally intensive, so we used

three graphics processing units (Nvidia RTX 2070 Super ) to solve the differential

equations simultaneously for all velocity groups. The numerical parameters we used

in all our computations are listed in Table 1. The decay rates and wavelengths come

from Ref. [46, 45]. To simulate the amplified spontaneous emission that occurs in the

5D→ 6P transition [69], we set a small Rabi frequency value for the 5.23 µm field (Ω34

= 1 rad/s) to act as a seed in the FWM process. Additionally, we fixed the frequency

of this field on resonance (δ34 = 0) and, as a result, δ14 = δ12 +δ23−δ34 due to energy

conservation.

3.3.2.1 Velocity dependence of the fluorescence and CBL

Before including the contribution of all atoms and therefore introducing Doppler

broadening, it may be helpful to examine the dependence of the fluorescence and CBL

signal on each atomic velocity group. As in the experiment, we consider two frequency

scanning scenarios, where either the frequency of the weak beam (Ω23) or the frequency
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Figure 13 – (a) ρ33 as a function of δ23 and v, considering Ω12/(2π) = 12 MHz, Ω23/(2π) = 0.6 MHz and δ12 = 0. (b)
ρ33 for three velocity groups. (c) ρ33 integrated over the Maxwell-Boltzmann distribution.
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of the strong beam (Ω12) is varied.

First, let us consider the case where we scan the frequency of the weak beam

Ω23 while the strong beam is in resonance with the |1〉 → |2〉 transition (δ12 = 0) for the

zero velocity group. In Fig. 13(a), we present the population of the upper state ρ33 as a

function of δ23 for various velocity groups. The fluorescence signal is proportional to this

term in the density matrix, so all the analysis regarding this signal will be based on ρ33.

We highlight the behavior of the population ρ33 for three specific velocity groups

in Fig. 13(b), where it is possible to see the doublet structure due to the dynamic Stark

shift. If we consider k12 ≈ k23 ≡ k, then the peaks of the doublets shown in Fig. 13(b)

arise when the two-photon condition is satisfied. Therefore, we solve the equation
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δ23− kv+ω2± = 0 and find that ([77])

δ23 =
3kv
2
± 1

2

√
4Ω2

12 + k2v2. (81)

Whenever v 6= 0, the doublet is asymmetric as the red curve in Fig. 13(b) indicates.

Moreover, the nearest side-band from the resonance is always smaller [85]. Even though

specific velocity groups might have a level splitting, the Doppler-broadening hides the

AT effect, as it is possible to observe in Fig. 13(c). This result is also in agreement with

the discussion in Ref. [77]: one should observe a larger power broadening without any

splitting in the fluorescence signal. Consequently, it is unlikely to observe the splitting

in experiments that detect only fluorescence. However, as we will show, the FWM can

reveal this effect in the CBL signal, even after the Doppler integration.

In Fig. 14, we present a similar analysis for the coherence σ14, where we first

examine the response of each velocity group and then obtain the total response of the

Doppler-broadened medium. We are interested in the FWM signal, so we look at the

squared modulus of σ14 rather than the coherence itself. The color map in Fig. 14(a)

shows a doublet structure, similar to Fig. 13(a), but the overall curve shape is different.

To understand this curve in more detail, we can look at specific velocity groups in Fig.

14(b). The peak positions of each of these curves are dictated by Eq. (81), linking their

origin to the FWM process.

It is important to note that we present the squared modulus of σ14 for each

velocity group in Fig. 14(a) and (b). However, if the phases between each velocity group

are relevant, we must first integrate the coherence σ14 with the Maxwell-Boltzmann

distribution, and only then take its squared modulus, as shown in the blue curve of

Fig. 14(c). There are situations, which we explore in the following subsection, where

we can neglect these phases and integrate the squared modulus of the coherence

directly, but for modeling the AT splitting, it is crucial to perform these calculations in

the correct order. As discussed in Ref. [86], the macroscopic field polarization from

different ensembles of atoms within the atomic velocity groups can interfere, leading to

a modification of the FWM spectra. To illustrate the difference between the two ways of

calculating the signal, we present the dashed curve in Fig. 14(c), where we first take the
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Figure 14 – (a) |σ14(v)|2 as a function of δ23, for many velocity groups, considering Ω12/2π = 12 MHz, Ω23/2π =
0.6 MHz and δ12 = 0. (b) |σ14(v)|2 for three velocity groups. (c) Blue: σ14 integrated over the Maxwell-
Boltzmann distribution and then squared; Dashed line: |σ14|2 integrated over the Maxwell-Boltzmann
distribution.
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squared modulus of the coherence and then integrate it. It is clear that, although the

splitting is present, the frequency distance between the peaks is larger than in the blue

curve

The comparison between Figs. 13(b) and 14(b) renders interesting results. One

can see that the behavior of the coherence σ14 is significantly different from the popula-

tion ρ33 when it comes to the nonzero velocity groups (see the green and red curves).

Once the velocity increases, there is a dramatic difference in the coherence response

near resonance. The AC Stark effect takes place and splits the level structure for each

velocity group, as in the red curve of Fig. 14(b). However, the peak near resonance is

very small. Once all the groups add up in the Doppler integration, they contribute to

the FWM signal in the blue curve of Fig. 14(c) with a doublet-like structure. The same

argument applies to the population ρ33. However, in this case, the difference between
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the peak’s amplitude is not as dramatic as with the coherence, so once the groups add

up, the splitting is gone.

Let us analyze the second frequency sweeping scheme. This is an unusual case,

in which we investigate the presence of Stark shift as a function of the strong field

detuning, δ12. That is, the same field that splits the energy level is the one we scan.

Using again Eq. (77b) and the resonance of two photons with the frequency of the

weak field fixed at the resonance (δ23 = 0), we obtain the following equation for the peak

position, considering v 6= 0:

δ12 =
2k2v2−Ω2

12
kv

. (82)

The analysis is very similar for this case. We examine the behavior of the upper

population ρ33 as a function of the detuning δ12, while keeping the Rabi frequencies

Ω12 and Ω23 constant at 2π×12 MHz and 2π×0.6 MHz, respectively, and setting the

detuning δ23 to zero. The results are shown in Figs. 15(a) and (b). It is interesting to

note that the two-photon resonance condition is never satisfied for a velocity of v = 0.

However, for very small velocities (v < 3 m/s), a far detuned Ω12 field is necessary to

achieve two-photon resonance. The black and red curves in Fig. 15(b) correspond to

a non-resonant situation, where the Ω23 field does not resonate with the Stark-shifted

sidebands ω2±. In contrast, the green curve in Fig. 15(b) corresponds to an exact

two-photon resonance, which results in a higher, narrow peak. Since Equation (82) has

a single solution, there is not a doublet-like structure. When the Doppler integration is

performed, the contribution of the non-resonant two-photon transition near δ12 = 0 for

many velocity groups is sufficient to produce a large value of ρ̄33 near resonance, which

hides the Autler-Townes (AT) splitting, as can be seen in Fig. 15(c).

The copropagating setup is a key factor in explaining the absence of the Autler-

Townes (AT) splitting in the upper population of a Doppler medium. In this geometric

arrangement, an experimental fluorescence measurement would not show the cha-

racteristic two peaks of the AT doublet. This is because the observation of the AT

splitting depends on the relationship between the wavevectors and intensities of the

incident beams, as noted by Feneuille and Schweighofer [77]. In contrast, in the typical
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Figure 15 – (a) ρ33 as a function of δ12 and v, considering Ω12/(2π) = 12 MHz, Ω23/(2π) = 0.6 MHz and δ23 = 0. (b)
ρ33 for three velocity groups. (c) ρ33 integrated over the Maxwell-Boltzmann distribution.
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counterpropagating setup, the AT splitting can be observed regardless of which beam is

sweeping, the strong or the weak [87]. However, if the atoms are at rest, the behavior is

the same for copropagating and counterpropagating beams.

We present the results for the coherence σ14 in Fig. 16, using the same parame-

ters as in Fig. 15. As with ρ33, we examine the squared modulus of σ14. In comparison

to ρ33, σ14 is even more sensitive to the velocities of the atoms, leading to a small value

near v = 0, as shown in Figs. 16(a) and (b). When the Doppler integration is performed,

the doublet structure becomes dominant, resulting in a dip in the squared modulus of

the integrated coherence, |σ̄14|2, as shown by the blue curve in Fig. 16(c). This dip is a

consequence of the Stark shift combined with a non-satisfied two-photon transition for

low velocities.

It is important to notice that in this frequency-sweeping regime, the phase

between velocity groups is not as relevant to the frequency distance between the
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two peaks as it was for the weak field frequency-sweeping results. The dashed line

of Fig. 16(c), obtained first by taking the squared modulus of the coherence and then

integrating it, is slightly wider than the blue curve. Nevertheless, the following results

have the same calculation procedure as the blue curves of Figs. 14(c) and 16(c).

We must emphasize that, while for copropagating beams, the results for fluores-

cence and FWM are different whether it is the strong or the weak beam that is scanning,

for a configuration of counterpropagating beams, the AT splitting can be observed both

in fluorescence and in FWM, no matter which laser beam is being swept [88].

It appears that different physical mechanisms contribute to the presence of the

doublet structure in the FWM signal and the lack of it in the fluorescence when the

Doppler integration is performed for the two frequency sweeping mechanisms. We will

delve deeper into these mechanisms and highlight their differences in the following

subsection.

3.3.2.2 Doppler integration

For a group of atoms with a velocity of v = 0, there are an infinite number of

combinations of laser frequencies that satisfy the two-photon resonance condition for

the transition |1〉 → |3〉. These combinations are given by the equation δ12 + δ23 = 0.

However, as shown in Fig 17, where |σ14|2 is plotted as a function of the laser detunings

δ12 and δ23, this coherence is dominated by the two-photon transition when one-photon

resonances are also present (δ12 = δ23 = 0). The color map in Fig. 17 is plotted on a

logarithmic scale.

The integration of the Maxwell-Boltzmann distribution of velocities introduces

additional possibilities, as shown in Fig. 18(a). This figure displays the square modulus

of |σ̄14|2 for the same intensities as in Fig. 17, but with the integration of the coherence

with the Maxwell-Boltzmann distribution as previously discussed. The configuration

where δ12 = δ23 = 0 still dominates, but for copropagating beams, |σ̄14|2 is much higher

when δ12 = δ23 compared to δ12 = −δ23. This is because there is always a group of

atoms with velocities around δ23/k23 that are simultaneously in one- and two-photon

resonance when δ12 = δ23 is selected since k23 ≈ k12 for the rubidium energy levels.
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Figure 16 – (a) |σ14(v)|2 as a function of δ12, for many velocity groups, considering Ω12/2π = 12 MHz, Ω23/2π =
0.6 MHz and δ23 = 0. (b) |σ14(v)|2 for three velocity groups. (c) Blue: σ14 integrated over the Maxwell-
Boltzmann distribution and then squared; Dashed line: |σ14|2 integrated over the Maxwell-Boltzmann
distribution.
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Now, consider an increase in the Rabi frequency of the field in the lower transition

(|1〉 → |2〉). There is a significant impact in the FWM due to the Stark shift, as Fig. 18(b)

shows. In this figure, we plot |σ̄14|2 as a function of δ12 and δ23 when the lower transition

is driven by a strong field (Ω12/2π = 12 MHz) and the weaker field (Ω23/2π = 0.6 MHz)

stimulates the upper transition |2〉 → |3〉. It can be seen that the single peak in Fig. 18(a)

splits into two peaks located above the line δ12 =−δ23. As a result, there is a doublet

structure in the typical configuration (weak beam varying its frequency with the strong

beam on resonance) and in the opposite situation (strong beam scanning with the weak

beam fixed on resonance), as shown in Figs. 18(c) and (d).

Additionally, the asymmetry observed in the experimental data can be explained

by considering the velocity group of atoms that the fixed frequency laser is resonant

with. If the fixed frequency laser is resonant with a different velocity group that is, δ23 or
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Figure 17 – Coherence |σ14|2 as a function of δ12 and δ23, for a group of atoms with v = 0 in a weak field regime:
Ω12 = Ω23 = 2π×0.6 MHz. Logarithmic scale.
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δ12 6= 0, the signal becomes asymmetric, regardless of the frequency scanning scheme.

It is important to remember the results from the previous subsection. The Autler-

Townes splitting appears for each velocity group in both scanning configurations in

the coherence |σ14(v)|2, but the final FWM spectra can only be obtained after proper

Doppler integration. Therefore, the splitting observed in the FWM is not solely due to

the Stark effect but is also connected to the Doppler integration as the velocity groups

contribute differently to the final FWM output (see Figs. 14(c) and 16(c)).

It is interesting that this particular combination of effects only manifests itself as a

double peak structure in the FWM. We hypothesize that it is connected to the scaling of

the FWM with the one- and two-photon coherences. In a perturbative analysis, a more

intuitive way to view the system, is that fluorescence (or absorption) scales linearly with

the one- and two-photon coherences (σ12, σ23, and σ13), while the FWM signal scales

with the square of these same coherences. This behavior should hold in our numerical
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solution with all orders of interaction.

However, it is important to note that this manifestation of the AT effect is unusual.

The typical interpretation of the separation between peaks in the FWM signal as the

actual energy difference between split levels does not apply here. Our results from the

previous subsection show that each velocity group has its energy split, even if this split

behaves differently depending on which field is scanning. We argue that, when added

together, the contributions of all atoms near resonance are very small compared to the

contribution far from resonance, forming the doublet-like structure of Fig. 18(b). The

frequency separation between the peaks is about one order of magnitude greater than

the Rabi frequency, while the actual energy split for each group must be of the order of

the Rabi frequency.

In Figs. 19(a) and (b), we further investigate the relationship between the FWM

signal (|σ̄14|2) and the intensity of the lower transition beam, Ω12, for the two frequency

scanning setups. In both cases, the splitting increases linearly, but with different slope

coefficients. For the scenario where the weak beam is sweeping, the splitting is approxi-

mately 1.9Ω12, which is very close to the Autler-Townes splitting for a single group of

atoms with v = 0 (2Ω12). On the other hand, if the strong beam frequency varies, the

splitting is much higher, at approximately 4.2Ω12. We can interpret this greater separa-

tion by looking at the results in Fig. 16(b) for this scanning configuration. It is clear that

the contribution to |σ̄14|2 from one of the AT doublet peaks, which is closer to resonance,

is negligible. Therefore, this greater separation corresponds to the distance between

the most distant peaks of the resonance due to two AT doublets of different velocity

groups. The experimental results do not show a significant difference between the two

frequency scanning configurations. However, small changes in the model parameters

may improve the agreement.

The peak amplitude of the doublet also behaves differently in the two frequency

scanning configurations: it saturates when the weak beam is sweeping its frequency,

while it reaches a maximum and then decreases when the strong beam is sweeping.

These different behaviors are due to distinct physical mechanisms at play in the two

configurations. In the typical experiment, with the weak beam sweeping, the strong

field in the lower transition splits the intermediate level into two due to the Stark effect.
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Figure 18 – |σ̄14|2 as a function of δ12 and δ23, for (a) Ω12/2π = 0.6 MHz and (b) Ω12/2π = 12 MHz. (c) and (d): |σ̄14|2
for δ12 or δ23 constant, as indicated by the dashed curves in (b). The green curve in (c) and the black
curve in (d) are the same as presented in figures 14(c) and 16(c), respectively.
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The weak beam in the upper transition then probes these split levels. Since we are

considering a closed system, there will always be atoms that can satisfy the two-photon

resonance and induce the FWM process. In the other frequency scanning setup, the

weak beam has a fixed frequency, so eventually, the strong beam will lead to splitting so

large that a two-photon resonance can no longer occur, resulting in a decrease in the

signal.

3.3.3 CBL amplitude and frequency separation in the AT splitting

We have discussed the experimental results and developed a model to unders-

tand the mechanisms behind this unusual manifestation of the dynamic Stark shift. The
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Figure 19 – |σ̄14|2 as a function of Ω12 and (a) δ23 or (b) δ12.
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final point to consider is whether the theory can produce spectra with similar amplitude

and frequency separation between the peaks as in the experiment. Let us start by

analyzing the signal amplitude. In Fig. 20(a), we present the experimental results for

this parameter as a function of the square root of the diode laser intensity. It is clear

that there is an amplitude decay for high-intensity beams in both frequency scanning

regimes. However, our theoretical model (Fig. 20(b)) cannot predict the experimental

behavior when the weak beam is scanning. As we discussed previously, if we consider

a closed system, there will always be atoms with the proper velocity to satisfy the

two-photon condition. This type of intensity saturation behavior of the FWM signal was
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observed in a pure four-level system [89]. However, in the experiment we describe here,

three possible hyperfine transitions can be induced by the diode laser. In the weak beam

frequency scanning regime, the diode laser is fixed on a cyclic transition, and therefore,

the system is closed. But if the diode laser is strong enough, it will pump atoms to the

open transitions, meaning that the system will no longer be closed as the atoms fall into

a different fundamental hyperfine level of rubidium [90]. To include this possibility in the

model in a simple way, we introduce a 1 MHz decay rate in the population ρ22, allowing

for the loss of about 1/6 of the atoms when solving the Bloch equations. This results in

the peak amplitude as a function of the strong beam Rabi frequency shown in Fig. 20(c).

This way, the model achieves a behavior compatible with the experiment and reveals

that the observed decay of the signal in the two frequency scanning configurations has

different mechanisms behind it for each situation: optical pumping for other hyperfine

levels and far detuning from resonance.

Another feature we highlighted in the experimental results was the frequency

separation between the peaks of the signal or the “splitting” of the doublet. The experi-

mental splitting appears to be the same for both frequency scanning setups, as shown

in Fig. 20(d). However, our theoretical model not only predicts a difference in the splitting

between the two scanning regimes but also gives lower values, as shown in Fig. 20(e).

Once again, if we consider that the system is open due to the high intensity of the strong

field, these results do improve, as shown in Fig. 20(f). A final consideration is the error

bar of the experimental frequency measurement. Each scanning regime uses a different,

and therefore, more or less precise, calibration parameter. If the diode laser is scanning,

we use the saturation absorption curve, while for the Ti:sapphire scanning, the repetition

of the signal, due to two consecutive frequency modes, gives the time-frequency conver-

sion factor. Therefore, there could be a difference between the experimental splittings,

but it could be masked by a systematic error in the time-frequency conversion.

3.4 Interference between excitation pathways

Until this point, we have described an experimental setup in which two copropa-

gating beams, a continuous field at 780 nm, and an optical mode of a frequency comb at

776 nm, drive the steps of a two-photon transition from 5S1/2 to 5P3/2 to 5D5/2 in 85Rb.
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Figure 20 – Experimental and theoretical curves for amplitude and splitting of the doublet as a function of square
root intensity or Rabi frequency of the strong field. Red circles/lines: weak beam scanning (δ23); Green
triangles/lines: strong beam scanning (δ12). (a) and (d) are the experimental results. (b) and (e) are the
theoretical results for a closed system, while (c) and (f) are the same results for an open system.
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However, if the repetition rate of the pulsed laser is carefully chosen, something else

can occur: another optical mode can have a frequency near the first transition 5S1/2

to 5P3/2 and then induce the FWM process without the participation of the continuous

wave laser 22. This is the case we want to discuss now.

In this scenario, we are interested in the frequency scanning scheme in which

the repetition rate of the fs laser varies while the diode laser has a fixed frequency. In

particular, we scan the repetition rate around f 0
R = 987749.886 MHz at a temperature of

T = 74oC. With these specific parameters, we present the CBL signal in Fig. 21 as a

function of the repetition rate of the frequency comb. Recall that for a change of ≈ 2.5

kHz in the repetition rate the optical frequency variation is equal to an integer multiple of

fR (see Eq. 75), meaning that in Fig. 21 the range δ fR encloses two adjacent modes of

the pulsed laser, similarly to Fig. 10.

In this graph, we present the curves for three different values of the diode

laser intensity, showcasing the doublet structure due to the dynamic Stark shift with

the features we have previously discussed. However, there is an additional intriguing

feature present: a narrow peak that appears superimposed on the broader AT peaks,

as indicated by the arrows in Fig. 21. This narrow peak is observed depending on the

value of the repetition rate, and a close-up of the doublet structure on the right of the

curve (II) is displayed in the upper curve of Fig. 21.

Our task now is to verify if this narrow peak is caused by the fact that, for this

particular repetition rate, there are two resonant modes of the pulsed laser, one in the

first transition, and another in the second transition. To do this, we use our theoretical

model considering that the first two transitions can be driven by different routes: (i) two

modes of the frequency comb, ωn and ωm (fs-fs pathway) and/or (ii) by the continuous

wave laser and one of the frequency comb modes, ωd and ωm (cw-fs pathway).

As before, we solve the set of Bloch equations non-perturbatively considering

each excitation route separately. This time, instead of using the fourth-order Runge-Kutta

method, we experimented with applying a cofactor expansion method on the system’s

matrix similarly to the example of section 2, which yields similar results. Our variable of

interest is still the coherence σ14. After obtaining the full solution for the elements of the
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Figure 21 – Coherent blue light intensity as a function of the repetition rate variation (δ fR), for different intensities of
the diode laser as indicated in each curve. The diode frequency is fixed near the closed transition and
δ fR = 0 for fR = 987.749 886 MHz. The upper curve is a zoom of the right structure in the curve (II).

Source: The author (2023).

Figure 22 – Theoretical model considering the two resonant lasers in the first transition

Source: The author (2023).
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Figure 23 – Theoretical results scanning the repetition rate for a fixed diode frequency.
∣∣ρdm

14

∣∣2 is the result for the
cw-fs pathway, while

∣∣ρnm
14

∣∣2 accounts for the fs-fs pathway considering the same repetition rate of Fig.
21. The green and dashed curves are the two possible ways of adding these coherence pathways.

Source: The author (2023).

density matrix, we perform Doppler integration. As an extra approximation, we neglect

the phase between velocity groups, that is, we first take the squared modulus of the

coherence and then integrate it. This speeds up the calculations and these phases are

not crucial for answering the current problem.

In the bottom two curves of Fig. 23, we plot the CBL signal for each excitation

route. The parameters are the same as in previous sections, with the same specific

repetition rate as the experiment. To consider only the cw-fs pathway, we fix the field in

the |1〉 → |2〉 transition. On the other hand, for the fs-fs pathway, we scan the first two

fields, keeping the frequency difference given by the experimental repetition rate.

The cw-fs pathway gives a result similar to previous sections. In contrast, the fs-fs

result is quite different. Since both fields that induce the first two transitions are scanning,

a much broader spectrum arises. This is due to the AT effect caused by the frequency

comb mode ωn, but it is blurred by the other scanning mode. The maximum intensity of
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the CBL generated in this case occurs when the system meets the double-resonance

condition [91]:

fR =
ω23−ω12

2π(m−n)
, (83)

where m and n are integer numbers that determine a pair of comb modes that satisfies

the resonant condition for both excitation steps: |1〉 → |2〉 and |2〉 → |3〉.

To get the final signal, we must add the two possible coherence pathways.

This operation can be done in two ways. Either we assume that these processes are

independent, taking the square modulus of each coherence and adding them (dashed

curve in Fig. 23) or we say that these coherences may interfere. If that is the case, we

must first add the coherences and then take the square modulus of this sum. This leads

to the green curve in Fig. 23, with the narrow peak over the AT doublet, just as it is in

the experiment.

The narrow interference peak appears to shift from the resonance regarding

the v = 0 group. It does so because the frequency comb ωn and the diode laser field

must be simultaneously in resonance with the |1〉 → |2〉 transition for the same group

of atoms. For the repetition rate used both in experiment and theory, this condition is

satisfied for a group of atoms with some velocity.

It is possible to shift the narrow peak by tuning the repetition rate, as we show

in Fig. 24 using our theoretical model. These changes must be in a certain range to

ensure that there is still a group of atoms interacting simultaneously with both lasers

(the cw laser and two modes of the frequency comb) [92]. If the change in repetition

rate is 463.998 kHz (Eq. 83), another pair of modes will be able to produce the same

interference pattern, i.e, with similar frequency position and amplitude.

The linewidth of the observed narrow interference peak, of about 10 MHz, is

mainly limited by experimental conditions such as the repetition rate scanning. In

opposition, the theoretical model shows that the peak has a linewidth of about 1 MHz, a

result that appears to be connected with the lifetime of the 5D5/2 state [93].

Since this is an interference process, the phase must play an important role [94].

While the theory assumes that the lasers are in phase, there was no phase control in the
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Figure 24 – Theoretical results scanning the repetition rate for a fixed diode frequency with different repetition rates.

Source: The author (2023).

experiment. This means that we were unable to observe the full range of interference

effects, including both constructive and destructive signals (peaks and dips). However,

we believe that by locking the phase of the lasers and carefully adjusting the optical

path of one of them, it would be possible to shift the narrow peak.

Our numerical analysis suggests that it may also be possible to observe this

type of interference using only continuous-wave (cw) lasers. Specifically, we believe

that using at least three cw lasers and carefully engineering the frequency scan to

vary the frequency of two of them simultaneously could simulate the role played by the

mode-locked laser. While using a pulsed laser with a high repetition rate makes it easier

to find this interference pattern, it may still be possible to achieve the same results using

cw lasers with careful planning.

The results described in this section were published in two regular articles in the Physical Review

A [59, 60]:
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M. P. M. de Souza, A. A. C. de Almeida, and S. S. Vianna, ‘’Interference effect and Autler-Townes

splitting in coherent blue light generated by four-wave mixing”, Phys. Rev. A 99, 043410 (2019).

M. P. M. de Souza, A. A. C. de Almeida, and S. S. Vianna, ‘’Dynamic Stark shift in Doppler-

broadened four-wave mixing”, Phys. Rev. A 105, 053128 (2022).
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4 DEGENERATE FOUR-WAVE MIXING IN ATOMIC VAPOR: FREQUENCY SHIFT
AND PHASE-MATCHING

In this section, we focus on a particular configuration of degenerate four-wave

mixing (FWM) that will be our subject henceforth. We investigate an experimental setup

with two symmetrical nonlinear signals being generated in rubidium vapor through the

copropagating interaction of two laser beams with wave vectors ka and kb. These signals

are detected simultaneously in the 2ka−kb and 2kb−ka directions. We observe a single

peak in each signal when the input fields are resonant with the 85Rb 5S1/2(F = 3)→

5P3/2(F = 4) transition. There are reports in the literature of experiments in which all

fields are almost resonant with the same optical transition, with the degenerate FWM

signals studied considering a pure [95, 96] or degenerate two-level system [97], with

one strong field, and arbitrary polarizations of the drive fields [98, 99].

The typical experimental setup for inducing these degenerate FWM processes is

with a counterpropagating beam configuration, used to explore the phase-matching ob-

tained when the generated beam is phase-conjugated with the probe beam. In contrast,

in our experiment, we employ a copropagating beam configuration and simultaneously

detect the transmission of the incident beams and the generated FWM signals. There

are also previous published results using a similar scheme with two FWM fields detected

simultaneously, but with a non-degenerate system. In this case, the result is that the

generated fields with different frequencies, like Stoke and anti-Stokes processes, can

be correlated or anticorrelated depending on the incident beams [38]. In our experiment,

the degeneracy of the nonlinear process combined with incident beams of the same

intensity leads to two symmetric signals, both in space and frequency, regardless of

which beam is being scanned.

Although the two signals in our experiment are generated by two separate FWM

processes, they provide information about the dynamics of an ensemble of atoms

that simultaneously interact with the same drive fields. In a spatially uniform atomic

medium, the coherent superposition of the generated fields at different positions along

the nonlinear medium must satisfy the well-known phase-matching condition. This

condition not only determines the propagation direction of the outgoing FWM field in
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terms of the wave vectors of the incident waves but also the frequencies at which the

signals will be maximal. Recent studies in a non-degenerate three-level system have

shown that the phase-matching condition is crucial for achieving high efficiency in the

FWM signal when the excitation fields are detuned from the atomic transition [29]. In

that case, with counterpropagating beams, the predominant contributions are attributed

to electromagnetically induced absorption (EIA) grating effects [100].

One interesting result in this work is the small frequency separation between the

two FWM peaks revealed by the excitation spectra. While it is well known that phase-

matching conditions can determine the characteristics of the new fields generated in this

nonlinear process, the frequency shift observed in our results is unusual, as it goes in

the opposite direction compared to usual cases, where the phase-matching is controlled

only by the refractive indices of the field whose frequency is being scanned. Given

that we detect the two signals simultaneously, we can distinguish a frequency shift

towards the red or blue from each peak associated with the FWM signals, depending

on how the beam whose frequency is being swept contributes to the observed signal.

Understanding how to effectively control the properties of the atomic media in which

the nonlinear process takes place is of widespread interest, not only for fundamental

aspects of atom-light interaction but also due to the potential for application in quantum

communication and quantum information processing.

To provide supporting arguments for our claims, we have developed a theoretical

model using the same basic tools detailed so far. The theoretical results indicate that,

for a correct description of the frequency position of each peak, we must solve the

Bloch equations including higher-order terms. Moreover, it is crucial to obtain the correct

spectra to write the phase-matching conditions including a variable refractive index

for both lasers, in which the scanning laser experiences an anomalous window in the

refractive index near resonance.

4.1 Experimental setup and results

Let us begin the description of our experimental procedure by presenting a

simplified scheme of the setup in Fig. 25(a) together with the hyperfine structure of the
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D2 line of 85Rb. We use two independent cw diode lasers, Ea and Eb, to drive the two

FWM processes. These beams Ea and Eb, with wave-vectors ka and kb, respectively,

have orthogonal and linear polarizations and they converge inside a 5 cm long cell

containing a natural concentration of rubidium atoms at an angle 2θ ≈ 40 mrad (see

Fig. 25(b)). The rubidium cell was heated to ∼ 55 oC to increase the atomic density.

Both beams are tuned on the same Doppler line of 85Rb starting in the hyperfine ground

state F = 3, as shown in the inset of Fig. 25(a). Finally, we use a SAS signal to control

and monitor the frequency of each laser.

The acquired data is composed of the four signals: transmission of both incidents

beams Ta and Tb and the two FWM signals in the 2ka−kb and 2kb−ka directions, as

shown in Fig. 25(b). In this type of forward geometry and with a degenerate process,

the clean detection of the signals can be a challenge. There is no longer the option

of using bandpass filters as we did in the previous section since all four signals have

the same wavelength. In this situation, the main difficulty is that scattered light from

one beam may reach the detection position of another beam. To deal with this we take

advantage of the linear and orthogonal polarization of the signals and use polarizing

beamsplitters before each detector. The incident beams are typically strong allowing

the use of regular photodiode detectors to acquire Ta and Tb. On the other hand, the

FWM signals are very weak, so we use avalanche photodiodes (Thorlabs APD120A)

to detect them. Moreover, we use masks to align the input beams within the sample,

together with guide laser beams in the direction of the generated signal.

The measurements are carried out by scanning the frequency of one laser

through the three allowed hyperfine transitions of rubidium, while the other laser has a

fixed frequency. The intensity of the input lasers at the cell entrance is 10-100 times the

saturation intensity of the cyclic transition 5S1/2(F = 3)→ 5P3/2(F = 4). The absorption

is increased due to the temperature of the vapor, but not enough to completely absorb

the fields Ea and Eb, so we are operating in a high-intensity regime.

A typical experimental result is in Fig. 26(a), with the transmission of the two

beams Ta and Tb and the two generated FWM signals, 2ka− kb and 2kb− ka, as a

function of the detuning (δa/2π) of the scanning field Ea. We chose the intensities of the

input fields Ea and Eb at the cell entrance to be approximately the same (I ∼50 mW/cm2)



Section 4. Degenerate Four-Wave Mixing in Atomic Vapor: frequency shift and phase-matching 83

Figure 25 – (a) Experimental setup with relevant energy levels of 85Rb. PBS and HWP indicate polarizing beams-
plitter and half wave-plate, ka and kb are the wave-vectors of the Ea and Eb beams and 2ka−kb and
2kb−ka indicate the directions of the two detected FWM signals. (b) Schematic representation of phase-
matching for the generation of the two FWM signals.

Source: Ref. [101].

and the frequency of Eb beam was fixed near the center of the Doppler broadened

spectrum. It is important to state that the fixed-frequency laser was not locked in

frequency. However, since we are dealing with an atomic vapor, as long as the laser is

inside the Doppler-broadened frequency range there will be atomic velocity groups to

interact with the laser. In this graph, all curves are independently normalized to ease the

comparison and we define the frequency detuning to the 5S1/2(F = 3)→ 5P3/2(F = 4)

closed transition.

One notices in the transmission signals that there are three peaks in each curve.

The frequency difference between these peaks matches the hyperfine transitions from
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Figure 26 – (a) Experimental result presenting the transmission of the two incident beams and the two generated
FWM signals as a function of δa. (b) Boxes I and II show the transitions from the ground state 85Rb
F = 3, involved on each peak of the transmission signals.

Source: Ref. [101].

the ground state F = 3 of 85Rb. Moreover, these peaks only appear in the spectra due

to the simultaneous interaction of the two incident fields with the atomic medium. The

presence of these sub-Doppler peaks comes from the so-called velocity selective optical

pumping (VSOP) [102], and they have been studied when the transmission of a weak

beam is measured in the presence of a strong fixed frequency field. In our experiment,

the configuration is slightly different, as we measure the transmission of the two beams

with both of them strong.

The peaks in the transmission curve of the fixed frequency laser appear in the

order of increasing energy as if the hyperfine energy structure is being directly probed.

However, this is not the case for the transmission of the scanning frequency laser. This
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can be explained by considering the different groups of atoms with different velocities

that interact with the lasers. The field Eb causes a closed transition (5S1/2(F = 3)→

5P3/2(F = 4)) for a group of atoms with velocity v1, as shown by the dashed lines in

the box I of Fig. 26(b). As the frequency of Ea is scanned, it induces each one of the

allowed transitions, resulting in a reduction in the absorption of the field Eb at specific

frequencies, leading to the peaks in the Tb curve.

On the other hand, for the transmission signal Ta the field Eb now selects three

groups of atoms with velocities v1, v2 and v3, promoting the transition to the excited

states F = 4, F = 3 and F = 2, respectively. Once again, as we scan Ea, it will have the

resonance frequency of the closed transition, as box II indicates in Fig. 26(b). For each

velocity group, the optical pumping due to Eb lowers the absorption of Ea and generates

the three peaks in the opposite order of increasing energy [103, 102, 68].

We obtain an FWM signal due to a degenerate process when both fields interact

with the velocity group v1. In this case, as shown in Fig. 26(b), the two incident fields

induce a closed transition to the excited state F = 4. Additionally, there is a noticeable

frequency shift between the two FWM signals in Fig. 26(a). This shift is somewhat

unexpected because both processes are nearly identical, meaning that the output

signals should not have different frequency positions in the spectrum. We hypothesize

that this shift is caused by phase-matching conditions enclosing a steep variation of the

refractive index due to the interaction of the medium with both incident beams. This kind

of behavior of the refractive index has also been observed in some coherent effects

such as EIA [104]. We provide further support for this hypothesis in the subsection on

theoretical results.

In some of our experimental configurations, we could also observe the presence

of the EIA phenomenon. We present one of the transmission curves and the two

correspondent FWM signals in Fig. 27. In this case, the ratio between the intensities

of the incident beams is ≈ 3, with Ea being more powerful. In Fig. 27(a), we scan the

frequency of the field Ea while Eb has a fixed frequency and vice versa for Fig. 27(b).

Since the FWM signals are related to the same incident fields, involving only an

interchange of the role of each beam, they present the same intensity relation given
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Figure 27 – Measurements of Ta and FWM signals as a function of the frequency detuning of the scanning beam,
for a ratio intensity of incident beams of three. (a) Curves for Ea scanning and Eb fixed in frequency. (b)
Curves for Eb scanning and Ea fixed in frequency. Insets, zoom of the peak corresponding to the cyclic
transition on the Ta curve in each measurement.

Source: Ref. [101].

by the incident beams. Hence, we normalize the FWM signals using the highest value

between them to ease the interpretation of the graph. As in Fig. 26(a), these generated

signals appear again with a small frequency separation. However, in Fig. 27, we notice

an interchange in the frequency positions depending on which beam is scanning. The

relative frequency position of the signal 2ka−kb remains the same concerning the peak

corresponding to the cyclic transition in Ta curve (see Figs. 26 and 27). The same occurs

for the 2kb−ka signal in relation to the peak corresponding to the cyclic transition in Tb

curve.

An interesting feature of Fig. 27 is in the insets: the presence of a narrow

absorption dip inside the cyclic transition peak in the Ta curve. This absorption dip

occurs in the middle of the two nonlinear signals which indicates that both lasers are

resonant with the closed transition. The narrow dip is the signature of an EIA-type

process [105] and it is easier to observe when one of the beams is more intense than

the other, as in Fig. 27.
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EIA is a nonlinear optical effect that occurs in the presence of two resonant

driving fields interacting with the same ground-state hyperfine level of an atomic sample.

If the system ground state has a lower total angular momentum than the excited state,

then the system might exhibit a narrow peak in an absorption spectrum indicating the

EIA phenomenon. In this sense, EIA is an analog phenomenon to EIT, but with the

opposite effect. It was first observed in atomic vapors by Akulshin et al. in 1998 [24] and

has since been an object of several studies since then.

EIA has several interesting and useful applications in a variety of fields, especially

for techniques that rely on steep variations of the absorption or the refractive index of

an atomic medium. In our experimental configuration, this phenomenon can also be

detected in a regime where both lasers are strong [106], like in the following results.

There is also an EIA dip in the other two peaks of the transmission curves, although

they are quite smaller.

Finally, to complete our experimental analysis, we examine the FWM spectra for

four different intensities of the incident laser beams. To obtain these measurements, we

scan the frequency of one of the fields (Ea) while keeping the frequency of the other field

( Eb) fixed. As the intensity of the input laser increases, we observe a power-broadening

effect in the FWM signals, as well as an increase in the frequency separation between

them. However, this increase in frequency separation appears to saturate for intensities

above 200 mW/cm2. Additionally, we noticed an asymmetry in the signal that becomes

more pronounced at higher intensities. These findings are depicted in Fig. 28.

4.2 Theoretical model

We follow a similar procedure to model the FWM process as we did in the

previous section. Naturally, there are some adaptations to this particular experimental

scenario. The first is that the energy level structure is different as we are dealing with a

degenerate process. One could then assume that a simple two-level system would fit to

model this type of FWM process. However, this is not the case due to the polarizations

of the input fields. They have linear and orthogonal polarizations and therefore can be
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Figure 28 – Behavior of the two FWM signals at different intensities of the beams Ea and Eb at the entrance of the
Rb cell. All curves are normalized.

Source: Ref. [101].

written on a circular basis as

Ea =
[
εa(t)e−i(ωat−kaz)+ c.c.

] (σ̂++ σ̂−)√
2

;

Eb =
[
εb(t)e−i(ωbt−kbz)+ c.c.

] (iσ̂+− iσ̂−)√
2

,

(84)

where εl is the amplitude of the electric field; ωl is the optical frequency, and kl is the

associated wave-vector.

We chose to write the polarization vector in the circular base as it highlights how

these fields interact with Zeeman sublevels. This means that our quantization axis is in

the direction of propagation. Naturally, we are considering for now that the beams are

copropagating, as the angle between them in the experiment is very small.

The circular components can only induce σ transition in the Zeeman sublevels,
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Figure 29 – Zeeman sublevels of |F = 2〉 → |F ′ = 3〉 and the allowed transitions for the experimental input laser
beams. Blue arrows indicate σ− transitions while red arrows indicate σ+ transitions.

Source: The author (2023).

due to the selection rules. We detail these levels within the closed transition |F = 2〉 →

|F ′ = 3〉 in Fig. 29 together with the possible transitions the input beams can induce.

As a consequence of this energy-level structure, FWM generation could be

modeled by an effective three-level system. Notice that if the choice in the quantization

axis is different the energy level structure might be different, even though the final result

is the same. For instance, if one chooses as the quantization axis the polarization

direction of one of the input beams. Then this input beam would induce π transitions and

the basic level structure for generating the FWM process would be a four-level system.

However, we choose to work with a three-level system as it leads to a smaller set of

coupled Bloch equations.

The same three-level system can be replicated throughout the Zeeman sublevels,

leading to several FWM processes happening simultaneously. These multiple processes

must add with the appropriate phases to build up the final signal with proper linear

polarization. Therefore, the basic systems behind each component of the two FWM

signals we want to study are presented in Fig. 30.

Finally, notice that the theoretical treatment would be much simpler if we could

use a two-level system. However, this scenario would only be possible if in the expe-

riment the input laser fields had only parallel circular components, as we did in the

previous section. On the other hand, this would lead to a much harder detection in

the experiment, as all four acquired signals would have the same polarization and the

scattered light would not be easily filtered out by the polarizers in the experiment. So

we chose this compromise to achieve better experimental results.
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Figure 30 – Three-level theoretical model with (a) and (b) being the processes that generate the two circular compo-
nents of the signal, with frequency ωs, in the 2ka−kb direction; (c) and (d) are analogous to the 2kb−ka
direction.

Source: Ref. [101].

Since our main hypothesis for the frequency shift between the FWM signals is

connected to the phase-matching conditions, only solving the set of coupled Bloch equa-

tions as in the previous section will not be sufficient. We must consider the propagation

of the fields within the atomic sample. To do so, we must solve the Bloch equations

self-consistently with the Maxwell equations. The FWM signals of interest are in the

2ka−kb and 2kb−ka directions, so we calculate the induced coherence ρ13 between

the two ground states |1〉 and |3〉 in all orders of the incident fields and then add the

interaction with one of the fields, either Ea or Eb, to generate the ρ ′21 or ρ ′23 coherences

at the frequencies ωs = 2ωa−ωb and ωs = 2ωb−ωa, respectively. For each direction,

both coherences ρ ′21 and ρ ′23 contribute to the generated signal, each one behind a

certain circular component of the signal, as shown in Figs. 30(a) and (b).

The joint contribution of the two coherences to the FWM signal in each direction

can be considered equivalent to the scattering of the two circular components of each

field Ea or Eb by the coherence ρ13. As the fields co-propagate at a small angle, the

scattered fields will travel in different directions.
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Figure 31 – Simplified three-level theoretical model with a single field in each transition.

Source: The author (2023).

We can model both signals generated in the experiment with the same set

of equations. Therefore, we choose to derive the equations that describe the 2ka−kb

process. A further approximation is to treat transition with only field, effectivelly modelling

the system from Fig. 31. We then extrapolate the expressions for each FWM signal

from this set of equations. In this case, the Bloch equations, obtained with a similar

hamiltonian of section 2, with the rotating wave approximation, and in the steady state,

can be written as:

ρ11 =
−iσ12Ωa + iσ21Ω∗a +Γ21ρ22 + γ ′ρ0

11
γ ′

;

ρ22 =
iσ12Ωa− iσ21Ω∗a− iσ23Ω∗b + iσ32Ωb

Γ21 +Γ23 + γ ′
;

ρ33 =
iσ23Ω∗b− iσ32Ωb +Γ23ρ22 + γ ′ρ0

33
γ ′

;

σ12 =
−i(ρ11−ρ22)Ω

∗
a− iσ13Ω∗b

iδa + γ12 + γ ′
;

σ13 =
−iσ12Ωb + iσ23Ω∗a
iδa− iδb + γ13 + γ ′

;

σ32 =
−i(ρ33−ρ22)Ω

∗
b− iσ13Ω∗a

iδb + γ32 + γ ′
.

(85)

The σ jk terms are the coherences in the rotating frame, whereas Γ jk are the

decay rates of the populations; the Rabi frequency has been redefined to include the

spatial phase Ωl = Ω̃leikl ·r; δl is the detuning of each laser to the | j〉 → |k〉 transition; ρ0
j j

are the populations in the absence of the fields and represent the terms that compensate

the loss of atoms from the interaction region with an arrival of new atoms in the ground

state at a rate γ ′. The missing coherence equations are the complex conjugate of the
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ones presented.

One may obtain the coherence σ13 through algebraic manipulations, although

the final expressions are intricate [54]. We will write the beginning of this analytical

solution, but the final expressions will be achieved with the help of a linear algebra suite

(see the Mathematica notebook in the Appendix B). We begin isolating the σ13 equation

from Eq. 85 and substituting the one-photon coherences

σ13 =
−iσ12Ωb + iσ23Ω∗a
iδa− iδb + γ13 + γ ′

;

σ13 =
−i
(
−i(ρ11−ρ22)Ω

∗
a−iσ13Ω∗b

iδa+γ12+γ ′

)
Ωb + i

(
−i(ρ33−ρ22)Ω

∗
b−iσ13Ω∗a

iδb+γ32+γ ′

)
Ω∗a

iδa− iδb + γ13 + γ ′
.

After simplification, we may write the coherence of interest with a dependency on the

population terms of the density matrix. The population terms are obtained through a

Gaussian elimination of the system of equations

σ13 =
−Ω̃∗aΩ̃b

[
(ρ11−ρ22)

(iδa+γ12+γ ′) +
(ρ33−ρ22)

(−iδb+γ23+γ ′)

]
e−i(ka−kb)·r

iδa− iδb + γ13 + γ ′+ |Ωb|2
iδa+γ12+γ ′ +

|Ωa|2
−iδb+γ23+γ ′

. (86)

With the complete set of solutions of the Bloch equations, we write the cohe-

rences σ ′21 and σ ′23. These terms are connected with the FWM field with frequency

ωs = 2ωa−ωb and wave-vector ks in the direction of 2ka−kb. We can extrapolate them

from the set of Eqs. 85 in the form of

σ
′
21 =

i(ρ11−ρ22)Ω̃seiksz

−i(2δa−δb)+ γ12 + γ ′
+

iσ̃31Ω̃aei(2ka−kb)z

−iδa + γ12 + γ ′
; (87)

σ
′
23 =

i(ρ33−ρ22)Ω̃seiksz

−i(2δa−δb)+ γ32 + γ ′
+

iσ̃31Ω̃aei(2ka−kb)z

−iδa + γ32 + γ ′
, (88)

where the coherence σ̃31 is the complex conjugate of Eq. 86 without the spatial de-

pendency. Henceforth, we neglect the transversal components in the spatial terms,

projecting the fields in the ẑ direction, taken to be the bisector between the incident

fields (see Fig. 25(b)), i.e., kl · r≈ klz. Moreover, it is worth noting that this procedure
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of considering all the important contributions to σ13 that can affect the response of the

medium is present in some studies of EIT [23] and EIA [25],

If one assumes the phase-matching conditions to be satisfied, i.e. ∆k = 2ka−

kb− ks = 0 then the final FWM signals would be proportional to the square of the

sum σ ′21 +σ ′23. However, as we discussed, we need to propagate the fields within the

sample to obtain the observed experimental features, namely asymmetry and frequency

separation. Let us find then the generated electric field Es (z, t) = εs (z, t)e−i(ωst−ksz)+ c.c..

Consider the wave equation (see Eq. 16)

∂ 2Es (z, t)
∂ z2 − 1

c2
∂ 2Es (z, t)

∂ t2 =
1

ε0c2
∂ 2Ps (t)

∂ t2 , (89)

where P is the macroscopic polarization, that is, the dipole moment per unit volume. In

this last step, we also neglected the transversal spatial derivatives. The polarization is

given in terms of the off-diagonal elements of the density matrix [49]

Ps (t) = NTr(ρ̂ µ̂) = N (µ12ρ21 +µ32ρ23 + c.c.) , (90)

where N is the number density of atoms. The polarization P can be written in terms of a

complex amplitude that oscillates with the frequency of the field

Ps (t) = Pe−iωst + c.c. (91)

We can then rewrite the wave equation keeping only the terms that oscillate with

e−iωst

∂ 2

∂ z2

[
εs (z, t)e−i(ωst−ksz)

]
− 1

c2
∂ 2

∂ t2

[
εs (z, t)e−i(ωst−ksz)

]
=

1
ε0c2

∂ 2

∂ t2 N (µ12ρ21 +µ32ρ23) . (92)

Let us treat each term individually
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∂ 2

∂ z2

[
εs (z, t)e−i(ωst−ksz)

]
=− k2

s εs (z, t)e−i(ωst−ksz)+2ikse−i(ωst−ksz) ∂

∂ z
εs (z, t) (93)

+ e−i(ωst−ksz)

�
��

�
��∂ 2

∂ z2 εs (z, t); (94)

∂ 2

∂ t2

[
εs (z, t)e−i(ωst−ksz)

]
=−ω

2
s εs (z, t)e−i(ωst−ksz)−2iωse−i(ωst−ksz)

��
�
��
�*0

∂

∂ t
εs (z, t) (95)

+ e−i(ωst−ksz)
��

�
��
�*0

∂ 2

∂ t2 εs (z, t) ; (96)

1
ε0c2

∂ 2

∂ t2 N (µ12ρ21 +µ23ρ32) =−
Nω2

s
ε0c2 (µ12σ21 +µ32σ23)e−iωst . (97)

In the spatial derivative, we use the slowly varying amplitude approximation to neglect

the second-order derivative ∣∣∣∣∂ 2εs(z, t)
∂ z2

∣∣∣∣� ∣∣∣∣ks
∂εs(z, t)

∂ z

∣∣∣∣ . (98)

As for the time derivatives, we are treating the system in a steady state so they all go to

zero. By collecting all the terms and substituting them back into the wave equation we

get

−k2
s εs (z)eiksz +2ikseiksz ∂

∂ z
εs (z)+

ω2
s

c2 εs (z)eiksz =−Nω2
s

ε0c2 (µ12σ21 +µ32σ23) ;

2iks
∂

∂ z
εs (z) =−

Nω2
s

ε0c2 (µ12σ21 +µ32σ23)e−iksz;

∂

∂ z
Ω̃s (z) =

i |µ|2 Nωs

2ε0}c
(σ21 +σ23)e−iksz.

(99)

where Ω̃s is the Rabi frequency of the FWM field and we consider µ12 = µ32 = µ since

the system is symmetrical. Finally, we substitute the coherences of Eq. 87 into the wave
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equation

∂

∂ z
Ω̃s (z) =

i |µ|2 Nωs

2ε0}c

(
i(ρ11−ρ22)Ω̃s

−i(2δa−δb)+ γ12 + γ ′
+

iσ̃31Ω̃aei∆kz

−iδa + γ12 + γ ′

+
i(ρ33−ρ22)Ω̃s

−i(2δa−δb)+ γ32 + γ ′
+

iσ̃31Ω̃aei∆kz

−iδa + γ32 + γ ′

)
;

=− |µ|
2 Nωs

2ε0}c

([
(ρ11−ρ22)

−i(2δa−δb)+ γ12 + γ ′
+

(ρ33−ρ22)

−i(2δa−δb)+ γ32 + γ ′

]
Ω̃s

+

[
σ̃31Ω̃a

−iδa + γ12 + γ ′
+

σ̃31Ω̃a

−iδa + γ32 + γ ′

]
ei∆kz

)
;

=X (1)
Ω̃s +X (3)ei∆kz,

(100)

where we used the couplings X (1) and X (3) that are proportional the the first-order and

third-order susceptibilities. We define them as

X (1) ≡−|µ|
2 Nωs

2ε0}c

[
(ρ11−ρ22)

−i(2δa−δb)+ γ12 + γ ′
+

(ρ33−ρ22)

−i(2δa−δb)+ γ32 + γ ′

]
; (101)

X (3) ≡−|µ|
2 Nωs

2ε0}c

[[
σ̃31Ω̃a

−iδa + γ12 + γ ′
+

σ̃31Ω̃a

−iδa + γ32 + γ ′

]]
. (102)

We solve this differential equation for the Rabi frequency of the FWM field in the

non-depleted input approximation, i.e., we assume that the input fields Ea and Eb are

strong enough to allow us to neglect their absorption. To find the solution, we first define

Ω
′
s ≡Ωse−i∆kz. Then

∂Ωs

∂ z
=

∂

∂ z
Ω
′
se

i∆kz = X (3)ei∆kz +X (1)
Ωs; (103)

��
�ei∆ky ∂

∂ z
Ω
′
s + i∆kΩ

′
s�
��ei∆kz = X (3)

��
�ei∆kz +X (1)

Ω
′
s�
��ei∆ky; (104)

∂

∂ z
Ω
′
s = X (3)+

(
X (1)− i∆k

)
Ω
′
s. (105)

The general solution is

Ω
′
s = c1e(X (1)−i∆k)z− X (3)(

X (1)− i∆k
) . (106)
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To determine the constant c1 we impose the condition Ωs(z = 0) = 0, which is a fair

condition since no signal must be generated at the very beginning of the sample.

Therefore we find that

c1 =
X (3)(

X (1)− i∆k
) , (107)

and consequently, the final solution is

Ωs =
X (3)(

X (1)− i∆k
) (eX (1)z− ei∆kz

)
. (108)

Notice that if we neglect the first-order coupling, the FWM intensity after propagating

through a sample with length L is modulated by the well-known sinc2 (∆kL) [49].

We must turn our attention to the phase-matching conditions at this point. In

an FWM process, phase-matching conditions refer to requirements that must be met

for the FWM process to occur efficiently. These conditions arise from the momentum

and energy conservation and may depend on the wavelengths and polarizations of the

incident fields, as well as the properties of the nonlinear medium in which the FWM

process takes place.

Several factors can affect the phase-matching conditions in an FWM process.

Some of the most important factors include: the refractive indices of the nonlinear

medium, as they determine the phase velocities of the incident fields; The dispersion

of the nonlinear medium or how the refractive index changes with frequency; and the

polarization of the incident fields as different polarizations can couple differently to the

nonlinear medium.

In our case, we may calculate the phase-matching conditions in detail using Fig.

25(b). Let us consider that ∆k = |∆k| hence, for both FWM processes, generated in the

2ka−kb and 2kb−ka directions, and with the field Eb with a fixed frequency while we
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scan the field Ea,

∆k2ka−kb = |ka +ka +kb +ks|

= 2kacos(θ)− kbcos(θ)− kscos(3θ)

=
2naωa

c
cos(θ)− nbωb

c
cos(θ)− nbωs

c
cos(3θ)

=
2naωa

c
cos(θ)− nbωb

c
cos(θ)− nb (2ωa−ωb)

c
cos(3θ)

=
2naωa

c
cos(θ)− nbωb

c
cos(θ)− 2nbωa

c
cos(3θ)+

nbωb

c
cos(3θ)

=
2ωa

c
(nacos(θ)−nbcos(3θ))− nbωb

c
(cos(θ)− cos(3θ))

∆k2kb−ka = |kb +kb +ka +ks|

= 2kbcos(θ)− kacos(θ)− kscos(3θ)

=
2nbωb

c
cos(θ)− naωa

c
cos(θ)− nbωs

c
cos(3θ)

=
2nbωb

c
cos(θ)− naωa

c
cos(θ)− nb (2ωb−ωa)

c
cos(3θ)

=
2nbωb

c
cos(θ)− naωa

c
cos(θ)− 2nbωb

c
cos(3θ)+

nbωa

c
cos(3θ)

=
2nbωb

c
(cos(θ)− cos(3θ))− ωa

c
(nacos(θ)−nbcos(3θ)) .

(109)

We write only the phase-matching in the bisector direction between the incident fields,

since the perpendicular direction might be neglected as θ is small. This leads to a rather

symmetrical result. We also consider the index of refraction for the generated signal as

the index of the field with a fixed frequency.

To model the refractive indexes na or nb we use the real part of the electric

susceptibilities of the transition with which each laser is resonant. Since these suscepti-

bilities are connected to the coherences that we extract solving the Bloch equations to

all orders, we may write the refractive indexes for both beams in the 2ka−kb process as

na = 1+
Nµ2

21
2}ε0

Re(σ21)

Ωa
;

nb = 1+
Nµ2

23
2}ε0

Re(σ23)

Ωb
.

(110)

The refractive index as a function of the detuning of the Ea field is plotted in

Fig. 32(a) for a stationary atom. The numerical parameters to plot these curves, and
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Figure 32 – (a) refractive index for both input fields; (b) Phase-matching conditions for both FWM signals. All curves
are in function of the detuning of the a field.

Source: Ref. [101].

the ones that follow, come from Ref. [46]. Only the coherence decay rate between the

ground states γ13 is not available in this reference and it was assumed to be much

smaller than the other decay rates of the system. Notice that nb exhibits the expected

behavior of increasing with frequency, with an anomalous dispersion window around

the resonance. The interesting thing is that nb is the refractive index of the field with

a fixed frequency, meaning that this is a manifestation of the interaction of the beams,

intermediated by the atomic medium. On the other hand, na does not display a typical

behavior: in its anomalous dispersion window, there is a small interval in which the

refractive index changes to a positive slope. We believe this small inversion is crucial to

building up the correct phase-matching curve that modulates the FWM fields. This is

a feature seen in the EIA process [104], which is observed in the transmission of the

input beams. We could only obtain these refractive index curves by solving the Bloch

equations in all orders, allowing for high-intensity coherent effects to play a role in the

model.

For these curves of the refractive index, the resulting phase-matching conditions
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Figure 33 – Theoretical FWM signals with velocity integration and propagation with phase-matching from Eq. 109
(solid line) and with ∆k = 0 (dashed line). All curves are in function of the detuning of the a field.

Source: Ref. [101].

for both FWM signals are in Fig. 32(b), again for an atom with no velocity. Notice that

the ∆k for the 2ka−kb signal is much closer to zero below the resonance and therefore

the FWM signal itself should appear on the same region of the spectrum, as presented

in the solid curves of Fig. 33. The same argument applies to the other signal, 2kb−ka,

as its phase-matching curve is closer to zero above resonance. If one considers ∆k = 0,

i.e. no phase mismatch, the result is shown in the dashed curve of Fig. 33. In this case,

both FWM spectra are overlapping, broad, and identical.

The modeling of the refractive index is crucial for reproducing the features of the

experimental signal. If this refractive index behaves as it usually does in a resonant

interaction with an atomic medium, i.e. it generally increases with frequency but it has

an anomalous dispersion window around the resonance, then the FWM signal 2ka−kb

would only exist above resonance since the resulting phase-matching curve would

only come closer to zero for δ > 0. This is in disagreement with the spectra of the

experiment. See for example the results of Fig. 28, in which the signal 2ka−kb is below

resonance. Moreover, if we choose to neglect any dispersion effects, a phase mismatch

due exclusively to the angle could be obtained, but only for a very large detuning (of

hundreds of MHz). Therefore, angle alone does not provide the proper ∆k that can be

compensated by only adjusting the laser detuning. This could be the case if the ground

states were not degenerate and therefore, lasers Ea and Eb had different wave numbers,

as the authors of Ref. [29] demonstrate.
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The high temperature of the vapor causes a significant Doppler broadening,

which must be taken into account when calculating the FWM spectra. To obtain the

spectra shown in Fig. 33, we used the Maxwell-Boltzmann velocity distribution to

integrate Eq. 108, similarly to the previous section. The atomic density in these curves is

approximately 1012 cm−3, and the intensity of both input fields is ten times the saturation

intensity of the transition. These values of intensity and atomic density are consistent

with the range of experimental parameters. However, it should be noted that the model

does not fit the experimental data perfectly, particularly when these parameters are

modified. It is possible to modify the intensity, for example, in the experiment to obtain

FWM results for a wide range of values while the theoretical results are not as robust.

Our model suggests that the nonlinear interaction between the fields in the

medium leads to two fundamental responses: (i) a window with two dispersive curves in

the behavior of the refractive index of the scanning laser, similar to what is seen in the

EIA process; (ii) a variable refractive index for the laser with a fixed frequency. These

two effects work together to create the necessary phase-matching condition to generate

a signal below resonance and another above.

The results described in this section were published in a regular article in the Journal of Physics

B [101]:

A. S. Alvarez, A. A. C. de Almeida, and S. S. Vianna, ‘’Two symmetric four-wave mixing signals

generated in a medium with anomalous refractive index”, J. Phys. B: At. Mol. Opt. Phys. 54 045403

(2021).
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5 DEGENERATE FOUR-WAVE MIXING WITH COLD ATOMS: INTENSITY 
CORRELATIONS

In the previous section, we modeled results that were connected to the inho-

mogeneously broadening of the atomic medium. The goal from now on is to continue

exploring the same experimental setup but switch the sample to cold rubidium atoms in a

magneto-optical trap (MOT). In this context, without the Doppler-broadening, we present

a study of the correlation between field intensity fluctuations of the two independent

four-wave mixing (FWM) signals and between the transmission signals as well.

There are different approaches to address the issues related to these fluctuations,

including both frequency domain and time domain analyses. In the latter approach,

the group led by M. O. Scully has produced a set of articles [107, 108, 40] that are

relevant to the problem we present here. Our experiment employs a similar setup using

a single continuous-wave laser. However, in addition to examining correlations between

transmitted beams, we also investigate correlations between two nonlinear signals

generated by the FWM process of the previous section.

In this section, we present a set of experimental observations of strong cor-

relations between the intensity fluctuations of two FWM signals generated through

the interaction of laser light with a cold rubidium sample. We examine the correlation

between the input laser fields, and our observations are consistent with previous findings

in the literature. We also compare different polarization configurations, which allow us to

access distinct internal energy level structures. Since we use a cold atomic sample with

a narrow Maxwell-Boltzmann distribution, we can study how the correlations behave as

a function of laser detuning. This is an advantage of the cold system compared to an

atomic vapor, in which multiple velocity groups can respond to the input laser over a

range of detunings determined by the Doppler broadening.

Additionally, we observe an oscillatory behavior consistent with Rabi oscillations

[39] in the correlation functions. This behavior is detectable long after the transient

period, and we can retrieve the frequency information through the correlation function.

This concept of extracting an oscillation frequency using the correlation function has
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been used in other contexts such as the observation of quantum beats in spontaneous

emission or the detection of temporal beats in Raman Stokes fields [109]. Our theoretical

model supports the idea that it is only due to fluctuations that we can detect this

oscillatory behavior of the system.

Finally, the spectra of each of the polarization configurations are significantly

different due to the distinct level structures. If the input lasers have linear and orthogonal

polarization, the situation is the same as it was in the previous section, i.e. the system

might be modeled with a three-level system. However, if the polarization of the input

beams is circular and parallel then the population is pumped to the extreme Zeeman

sublevels restricting the FWM to a pure two-level system. These differences remain

throughout all spectra, so we draft a theoretical model by the end of the section.

Although we do not consider our results satisfactory, we find them sufficient to identify

the phenomena responsible for these differences.

5.1 Magneto-Optical Trap

Since the experiment described in this section is performed within a sample of

cold rubidium atoms trapped in a MOT, it is useful to first provide some details about

this device.

A magneto-optical trap is a device used to capture and manipulate atoms or

molecules using a combination of lasers and magnetic fields. The MOT was first de-

monstrated by the late 1980s, and eventually rendered the Nobel prize to Steven Chu,

Claude Cohen-Tannoudji, and William D. Phillips [42], and has since become an impor-

tant tool in the fields of atomic physics, molecular physics, and quantum optics. The

basic principle behind a MOT is to use laser light to cool and trap atoms or molecules in

a three-dimensional trap formed by the forces that arise from the interaction of the laser

light and the magnetic field with the atoms.

One of the main advantages of a MOT is that it allows for the precise control

and manipulation of atoms or molecules over a wide range of conditions. This makes

it an ideal tool for studying the properties of these systems and for developing new

technologies based on these properties. Some of the applications include: compact
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atomic clocks [110], as a MOT can be used to create a highly stable and accurate

atomic clock by trapping a large number of atoms and measuring the frequencies of

their transitions between energy levels; the study of cold collisions [111, 112], since the

extremely low temperature highly suppresses the interactions between particles, which

can provide insight into the underlying physics of these systems, and can be used to

develop new technologies based on these interactions.

Let us describe briefly the physics behind the MOT. Light carries linear mo-

mentum, meaning that when a photon interacts with a moving atom there might be

a momentum transference if the atom absorbs the photon. The force exerted in this

phenomenon is the radiation force [44]

F =
σabsI

c
, (111)

where σabs is the peak absorption cross-section of the atom, I is the laser intensity and c

is the light velocity in vacuum. Usually, for the resonance frequency, this peak absorption

cross-section is much larger than the actual size of the atom, making the radiation force

quite significant.

Even though this description of the force does not need to consider a quantized

light, it is insightful to look at the problem in such a way. Each photon absorbed by the

atoms must be re-emitted by spontaneous emission in a random direction. Hence, the

whole process can be seen as a scattering of photons. The force in this case is given by

the multiplication of the photon momentum }k and the scattering rate. If we consider a

two-level atom as a model, then this force is [44]

Fscatt = }k
Γ

2
I/Isat

1+ I/Isat +4δ 2/Γ2 , (112)

where Γ is the decay rate of the excited state, Isat is the saturation intensity, and δ is the

detuning from resonance. For a moving atom, we might already take into account the

Doppler effect, i.e. δ = ω−ω0 + kv, where ω is the laser frequency, ω0 is the resonance

frequency, k is the wavevector, and v is the atomic velocity.

From Eq. 112 one derives the optical molasses technique developed by Chu et

al in 1985 [113]. Still with the simple model of a two-level atom, consider the interaction

with a pair of counter-propagating lasers, as presented in Fig. 34.
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Figure 34 – Optical molasses technique: counter-propagating lasers acting on a moving two-level atom.

Source: The author (2023).

Since the atoms are moving in the direction of propagation of light, there will be a shift

in the frequency of the lasers as seen by the atoms, caused by the Doppler effect. It is

then possible to choose the correct detuning to make one of the lasers resonant with a

set of velocity groups, leading to an absorption. Only these atoms will be slowed. Let

us try to see the behavior of the combined forces in this situation. The net force on the

atom is

Fmolasse = Fscatt(ω−ω0− kv)−Fscatt(ω−ω0 + kv), (113)

and if we make an expansion of the force to consider only low velocities, i.e. kv < Γ we

get

Fmolasses ≈ Fscatt(ω−ω0)− kv
∂F
∂ω
−
[

Fscatt(ω−ω0)+ kv
∂F
∂ω

]
,

≈−2kv
∂F
∂ω

,

≈−αv,

(114)

where α = 2k ∂F
∂ω

. This is a force similar to the one a particle experiences when it moves

through a viscous fluid, therefore the name of the technique: optical molasses. In the

actual experiment, it is important to use pairs of counter-propagating beams in all three

directions to effectively slow down the atoms.

This is a very successful technique for cooling neutral atoms. Consider alkali

metals as an example: the lowest temperature achievable is of hundreds of µK [114],

which is an outstanding result. This lower limit is imposed by the spontaneous emission
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of the atoms, i.e., once a photon of the cooling beam is absorbed, the atom must re-emit

this photon in a random direction. To preserve momentum conservation, the atom must

move in the opposite direction with a certain recoil velocity. By associating a temperature

with this velocity, we may find the recoil cooling limit, which is the lowest temperature

we can achieve through the optical molasses technique.

In this technique, although the atoms may accumulate in the region of the

intersection of the beams, because of their small velocities, they are not trapped.

Eventually, the atoms leave the interaction region and regain speed. To trap them, we

must use a specific type of polarization in the beams combined with a magnetic field

gradient, as first suggested by Jean Dalibard [115].

In this scheme, called magneto-optical trap, we add to the experimental setup of

the optical molasses a pair of coils in the anti-Helmholtz configuration, i.e. their currents

have different directions. This pair of coils generates a uniform field gradient near the

point in the middle of them. This means that the atoms will experience a Zeeman shift

in their energy levels. This shift can be explored, along with the selection rules, to add a

new term in the force of Eq. 114.

Let us look in detail at how this field gradient and the lasers act together. For

that, consider a simple transition |F = 0〉 → |F ′ = 1〉 as shown in Fig. 35. The pair of

counter-propagating beams have orthogonal and circular polarizations, so they will only

interact with the set of velocity groups that have the correct position regarding the center

of the trap. This is caused by the selection rule of angular momentum. A σ+ beam may

only cause transitions that increase the angular momentum by one unity, while a σ−

polarization causes only transitions that decrease the angular momentum.

We might rewrite Eq. 113 if we consider the Zeeman effect in the detuning of the

lasers, i.e. δ = ω + kv− (ω0−β z). The Zeeman shift is given by β z, where β depends

on dB
dz . By doing the same previous expansion, we arrive at:

FMOT ≈−αv− αβ

k
z. (115)

There is a new term, a restoring force, meaning that the dynamics of the atoms in the

trap follows a harmonic motion, typically over-damped [44]. A simplified representation

of the apparatus to trap the atoms is presented in Fig. 36.
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Figure 35 – Magneto-optical trap: counter-propagating lasers with circular polarization acting on a moving atom
through a magnetic field gradient.

Source: The author (2023).

Figure 36 – Magneto-optical trap scheme.

Source: The author (2023).
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Magneto-optical traps provide good sources of cold atoms for a wide range of

experiments. It is an easy-to-load trap, with typical capture velocities of tens of m/s

[116], and up to 1010 trapped atoms. Surely, these numbers may change significantly

from one specific setup to another. We must also emphasize that this is not a magnetic

trap. The field gradient in a MOT is much smaller than in pure magnetic traps (not even

enough to hold the atoms against gravity) so the forces in play are effectively due to the

lasers.

From a practical point of view, the cooled atoms must stay in a very low-pressure

environment to avoid collisions with background atoms and consequently the escape

from the trap. This implies that the experiment requires a good vacuum system. For the

MOT, the often used type of pump is an ionic pump, in our case, a Starcell from Varian.

This pump operates typically in an ultra-high vacuum regime, i.e. ~10−9 Torr. It ionizes

the gas inside the chamber and accelerates these ions with a high electric potential,

ranging from 3 kV to 7 kV. One of the main reasons for using ionic pumps in cold atoms

experiments is that it does not have moving parts or the need for oil. Thus, they require

little maintenance and produce almost no noise.

The vacuum pump is connected to a glass chamber, henceforth labeled science

chamber, where the lasers can interact with the atoms. It is also in the science chamber

that lies the rubidium dispenser. This dispenser contains a mixture of a rubidium

compound and a reducing agent [117]. The alkali metal is released in a controllable way

via ohmic heating, with currents typically from 5 A to 7 A and reaching temperatures up

to ~800 ◦C.

Regarding the magnetic field, we use a pair of circular coils with a radius of 27

mm and made of 1.1 mm diameter copper wire, with 50 turns. As mentioned before,

the coils are in an anti-Helmholtz configuration with a 1.5 A current, i.e. the currents

circulate in different directions. The final arrangement is similar to the one presented in

Fig. 36, with a typical magnetic field gradient of 10 G/m inside the science chamber.

In addition to this magnetic field, there are also compensation coils that balance

external fields, especially the Earth’s magnetic field. The cage is made of three pairs

of square coils, arranged to form a cube so that each pair can generate a field in a
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Figure 37 – Level diagram of the D2 line of 87Rb with the cooling and repump transitions in red and blue, respectively.

Source: The author (2023).

specific direction. The sum of these vectors can act against the earth’s magnetic field

and cancel it. For our system, we coarsely tuned the currents in the cage, but a precise

procedure can be used as shown in Ref. [118].

In the optical setup of the experiment, we use two diode lasers of the same type

as in the previous sections (Sanyo DL7140-201S). An extra step that we perform in this

setup compared to what we presented so far, is to use a homemade locking frequency

system to prevent the lasers to drift away from a desired frequency position. This system

uses the peaks from a saturated absorption spectroscopy (SAS) signal as a reference

to correct the frequency of the laser. The key feature of it is that it takes the time control

pulses of the experiment (which we detail further along) to correct the laser frequency

only when a measurement is not being made. Typical frequency locking devices involve

introducing a periodic pertubation into the laser reference signal. Our system assures

that the locking device does not disturb any acquired data. It is used not only to lock the

frequency of the MOT lasers but also for the laser that induces the FWM process of this

section.

The two diode lasers used in the MOT are labeled "cooling"and "repump"(see

Fig. 37). The cooling laser is primarily responsible for the MOT mechanism, transferring

momentum to the atoms through absorption. It is tuned near the transition |F = 2〉 →

|F ′ = 3〉 of 87Rb. Although this transition is closed, meaning it can only relax back to its
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ground state, some atoms may still be able to reach the state |F ′ = 2〉. These atoms

may then fall into the state |F = 1〉, which is a dark state where they can no longer

interact with the cooling laser. To address this issue, the repump laser is tuned to the

open transition |F = 1〉 → |F ′ = 2〉.

During the operation of the MOT, we use the SAS signal to monitor the frequen-

cies of both the cooling and repump lasers. In order to properly trap the atoms, the

cooling laser is set to a frequency that is near the crossover between the states |F ′ = 1〉

and |F ′ = 3〉. An acoustic-optical modulator (AOM) is used to bring the frequency of the

laser closer to the closed transition, but it is still slightly detuned from the state |F ′ = 3〉.

This is important because it allows the laser to interact with a larger number of atoms. If

the laser frequency is set to be completely in resonance, only the stationary group of

atoms will be able to interact with it.

We use the AOM for two reasons: first, the AOM modulates the cooling laser in

order to switch the MOT in a controlled temporal scheme; second, the cooling laser must

have a small detuning to optimally cool the atoms. In this case, the chosen crossover

transition to fix the laser frequency is 212 MHz below the |F ′ = 3〉 level. The AOM blue

shifts the laser frequency by 200 MHz for the first order, leaving it only 12 MHz from the

cyclic transition. We also use the zero order of the AOM, in other parts of the experiment,

e.g. as a guide beam for alignments or to measure the optical density of the MOT.

Since there are many optical elements in the path of the cooling beam before

arriving at the atoms, significant power is lost. Our diode lasers have typical powers of

tens of mW, making necessary the use of an amplifier to compensate for the losses.

We use a Boosta amplifier from Toptica Photonics. In an optimal alignment situation, an

input power of 20 mW renders an output power of 700 mW, which is enough for all of

the MOT beams.

The MOT can be observed using an IR camera because of the spontaneously

emitted light produced by the trapping process. It is also possible to capture an image

of the trapped atoms using a CCD (charge-coupled device) camera, which can be used

to measure the diameter of the cloud, as shown in Fig. 38, by converting the image into

a matrix that contains the information for each pixel. The data from the sum of the rows
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Figure 38 – CCD image of the atomic cloud. The red line indicates the diameter taken from the Gaussian fit.

Source: The author (2023).

or the sum of the columns can then be plotted and fit with a Gaussian curve. The waist

of this curve is used as the diameter of the MOT and in our case, the cloud measures 4

mm.

The same fluorescence that allows the CCD to capture images of the cloud

might be used to measure the number of atoms. In this case, we use a photodetector

(DET36 from Thorlabs) that captures this fluorescence with the aid of a lens. Using the

peak response of the photodetector we may calculate the total power detected at that

solid angle. By generalizing to a sphere, we know the total power emitted by the atoms.

Finally, we divide this total power by the energy of a single photon and the scattering

rate, finding the number of atoms. For our experimental setup, this number typically has

the order of 109 atoms. The MOT diameter and number of atoms are a fraction of the

several parameters that can be obtained from characterization measurements [119].

5.2 Experimental setup and results

The experimental configuration is similar to the one in the previous section.

However, a key difference is that now we use a single cw laser instead of two. This

means that the two input fields that induce the FWM process come from the same laser.
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Figure 39 – Simplified scheme of the four-wave mixing setup. PBS and APD are polarizing beam-splitter and ava-
lanche photodiode, respectively.

Source: The author (2023).

As the initial goal is to investigate the connection between resonant conversion of phase

fluctuation into intensity fluctuations and the FWM process, it is interesting to use this

single pump setup, as it eliminates the need of locking the phase of one input field to

the other one. That is, both input fields necessarily have the same phase fluctuations

since they come from the same laser.

We present the experimental setup in Fig. 39, in which the two input laser beams

are labeled by their wave-vectors ka and kb. As mentioned previously, the cw laser is

similar to the cooling and repump lasers of the MOT and therefore can be locked in

frequency and then modulated with an AOM. These two beams interact with our sample

of cold 87Rb atoms in the MOT.

We explore two cases regarding the polarization of the input laser fields. In the

configuration depicted in Fig. 39, the polarizations are linear and orthogonal. In this

case the fields are aligned in the atomic cloud using a PBS. In the second case, with

circular and parallel polarizations, we substitute the first and last PBS for beam-splitters

and add two quarter-wave plates before and after the atomic cloud.

As in the previous experiment with the atomic vapor, we are mainly interested in

the two similar FWM signals. For this end we set the input beam powers to be almost the

same so that the system generates the two signals shown in Fig. 40. The input beams

are in an almost copropagating configuration, with a small angle of 10 mrad between
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Figure 40 – Spatial distribution of the input beams and FWM signals.

Source: The author (2023).

them to allow for the spatial separation of all four signals. This type of forward geometry

is challenging since scattered light from one beam might arrive at the detection position

of the other beams. To prevent this, we couple each signal in optical fibers, which results

in cleaner detections.

The two FWM signals and the transmissions of the input beams a and b are

detected by avalanche photodiodes (APD) of the models APD120A/M (max responsivity

at 800 nm) and APD120A2/M (max responsivity at 600 nm) from Thorlabs, respectively.

We use these detectors because they are highly sensitive and, for our experimental

situation, the FWM light can be fairly small. To achieve this great sensitivity, APDs

provide gain in the input signal via the process of avalanche multiplication.

The beams that induce the degenerate FWM processes are tuned near the

closed transition |F = 2〉 → |F ′ = 3〉, of the D2 line of 87Rb. Since this is the same

transition of the cooling laser of the MOT, there could be a competition between the

lasers, making the FWM process inefficient. To avoid this, we use a temporal scheme to

generate and acquire the signal of interest with the MOT lasers off. In our case, we built

a time control apparatus using an Arduino board that temporally manages the entire

experiment. Fig. 41 shows a scheme of this temporal control.

All trapping fields, i.e. cooling laser and anti-Helmholtz (AH) coil, are shut down

in a 2 ms window. This time is small enough so that the atoms cannot gain much speed

and therefore move away from the center of the science chamber. It is in this window that

we obtain the whole FWM signal. The trigger (red curve in Fig. 41) has a small delay of
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Figure 41 – Temporal control of the FWM experiment.

Source: The author (2023).

hundreds of µs, allowing the repump laser to properly prepare the atoms in the ground

state |F = 2〉, where they can interact with the FWM laser. In fact, the repump laser is

always active throughout the measurement. This trigger controls a signal generator that

generates a DC Offset (green curve in Fig. 41) to control the AOM. The same trigger

that turns the MOT on and off controls the frequency locking circuit. This way, the circuit

only corrects the frequency of the laser while the MOT is on and therefore no data is

being acquired. If, on the other hand, we want to scan the frequency of the input lasers

to generate a spectrum, we switch the DC offset in the signal generator to a ramp and

connect it directly to the laser to modulate the injection current, scanning the frequency

of beams a and b. We detail more of these spectra measurements by the end of the

section.

In the time interval in which the MOT fields are off, we acquire data from a time

series with typically 100 µs intervals of all four signals. In these measurements, one

must be careful with the detuning to the resonance because, for small detunings, or

high laser intensities, the radiation pressure can disperse the atomic cloud. Therefore,

there is a practical limitation in our experiment, since the FWM signal increases when

the input laser is closer to resonance and for higher laser intensities, the same regime

increases the radiation pressure.

Because of this limitation, the experimental setup with linear and orthogonal

polarizations has an advantage: its spectrum (see Fig. 42(a)) is wider than the spectrum

for the circular and parallel case (see Fig 42(b)). Furthermore, it has a dip around

the resonance so that the maximum signal is slightly off-resonance. The fundamental
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Figure 42 – FWM spectra with input laser intensity Ia = Ib = 10 mW/cm2 for (a) linear and orthogonal polarizations;
(b) circular and parallel polarizations.
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difference between these cases is in the energy level structure behind each setup.

That is, while the circular case is modeled by a pure two-level system, the linear case

has to be modeled as we discussed in the previous section, with at least a three-level

system. We believe this dip is due to the presence of two degenerate ground levels

together with the equally powerful input laser beams which we scan their frequencies

simultaneously, inducing a coherent population trapping that prevents the signal from

being generated on resonance [54, 120, 121]. We detail this hypothesis by the end

of the section. The important point, for now, is that the measurements with linear and

orthogonal polarizations are easier to obtain and render better results in terms of

signal-to-noise ratio.

The signal we are interested in now is the time series of the intensity fluctuations

of all four signals and the two polarizations. The acquired data typically has 100 µs

and is filtered with a high-pass ideal FFT filter with a cutoff frequency of 500 kHz, to

eliminate any slow fluctuations of the signals. Let us begin the analysis by looking at

the intensity fluctuations if there are no atoms to interact with the laser. Naturally, in
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Figure 43 – Time series of the intensity fluctuations for the transmittance of the input lasers with Ia = Ib = 0.15
mW/cm2, MOT off, and (a) circular and parallel polarizations; (b) linear and orthogonal polarizations.

Source: The author (2023).

this case, we can only study the transmission signals, as there cannot be an FWM

signal without the atomic media. We present a 1 µs section of these time series in Fig.

43. Notice that there are fluctuations in both fields but they are not at all similar. This

indicates that, without the atomic media to interact, the lasers present no correlation

[40].

The intensity fluctuations of the four signals and their two polarizations are shown

in Fig 44. In both Fig. 44(a) (circular and parallel polarization) and Fig. 44(b) (orthogonal

and linear polarization), we plot the intensity fluctuations over time for FWM signals (red

and blue lines) with input laser intensities of Ia = Ib = 3.3 mW/cm2 and a detuning from

the excited state of δ/2π = 70 MHz. While the fluctuations show similar behavior, they

are not identical. It can be challenging to obtain a high signal-to-noise ratio for a signal

far from resonance or with input lasers close to or above the saturation intensity, due to

experimental constraints related to radiation pressure.

On the other hand, the intensity fluctuations of the input lasers can be obtained

at a laser frequency much closer to resonance as long as the intensity is small. In Figs.

44(c) and (d) we show the time series of the transmission signals (orange and green
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Figure 44 – Time series of the intensity fluctuations for the FWM signal with input laser intensity of Ia = Ib = 3.3
mW/cm2, detuning from the excited state of δ/2π = 70 MHz and (a) circular and parallel polarizations;
(b) linear and orthogonal polarizations. Time series of the intensity fluctuations for the transmittance of
the input lasers with Ia = Ib = 0.15 mW/cm2, δ/2π = 15 MHz and (c) circular and parallel polarizations;
(d) linear and orthogonal polarizations.
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lines) for an input laser intensity of Ia = Ib = 0.15 mW/cm2 and a detuning from the excited

state of δ/2π = 15 MHz. It is clear that these results are remarkably synchronized and

should present near-perfect correlations, a known result [40].

These correlations can be quantified with the second-order correlation function

G(2)
i j (τ) [107, 108, 40, 38] for intensity fluctuations of two optical beams with time delay

τ. It is given by

G(2)
i j (τ) =

〈
δ Ii (t)δ I j (t + τ)

〉√〈
δ Ii (t)

2
〉〈

δ I j (t + τ)2
〉 , (116)

where the δ Ii, j(t) = Ii, j(t)−
〈
Ii, j(t)

〉
are the time-dependent intensity fluctuations, with〈

Ii, j(t)
〉

being the average intensities of the laser fields and i, j = a,b,s1,s2 are the labels

to designate the two input fields and the two FWM signals, respectively.

The second-order correlation function is a statistical measure that quantifies

the degree of correlation between two random variables at different time lags. It is

often used to analyze the temporal dynamics of a system and to identify patterns in

time-series data. In terms of applications, it can be employed to analyze a wide range

of phenomena, including the coherence of lasers and the correlations in noise signals.

The definition we provide here is normalized so that the function is bounded in the

range [-1,1], with the bottom value meaning anti-correlation and the top value meaning

correlation.

In our case, we want to use this function to quantify the correlations between the

data of Fig. 44. We present the intensity fluctuations correlation functions G(2)
i j (τ) for the

pairs of time series of Fig. 44 in Fig. 45. We implemented the calculation of the G(2)
i j (τ)

with a Python code (see appendix c). These correlation functions have peaks at zero

time delay with amplitudes (Pearson coefficient) of ≈ 0.6 for the FWM signals and over

0.95 for the transmission signals. This confirms the expectation of Fig. 44 that there is

a strong temporal positive correlation in the intensity fluctuations of the output signals.

Moreover, in Figs. 45(c) and (d) we also present the autocorrelation (orange curve) for

the intensity fluctuations of the a laser beam. These curves are remarkably similar to

the cross-correlation (dark brown curves) of the two transmission signals, especially
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Figure 45 – Second-order correlation function G(2)
i j (τ) between the FWM signals with input laser intensity of Ia = Ib =

3.3 mW/cm2, detuning from the excited state of δ/2π = 70 MHz and (a) circular and parallel polarizations;
(b) linear and orthogonal polarizations. Second-order correlation function G(2)

i j (τ) for the transmittance
of the input lasers (dark brown line) and autocorrelation (orange line) with Ia = Ib = 0.15 mW/cm2, δ/2π =
15 MHz and (c) circular and parallel polarizations; (d) linear and orthogonal polarizations.
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concerning the oscillations near zero delay.

The cross-correlation we see in the transmission beams arises from resonant

phase-noise to amplitude-noise conversion [31, 122, 123, 124, 125], which is driven

by the resonant interaction with atoms. If there were no atoms present or if the input

laser was not near resonance, there would be no correlation. Essentially, the fields are

correlated because they all come from the same laser with the same phase fluctuations.

It would be interesting to examine the correlations between the transmited laser field

and one of the FWM signals. Unfortunately, the experiment does not allow for this, as

there is no suitable choice of parameters to obtain both signals simultaneously. To obtain

the maximum FWM signal, the intensity of the input laser must be increased as much

as possible without causing excessive radiation pressure on the atomic sample. On the

other hand, to measure the intensity fluctuations of the input laser, the intensity must

be kept low to prevent saturation of the medium and minimize the number of detected

photons that do not interact with the atomic cloud.

A notable feature of these correlation curves is that the width of the FWM

correlation peak appears different from the width of the transmission correlation peak,

as expected due to the different intensities and detunings. In a similar experiment using

an atomic vapor and a magnetic field to break the degeneracy of the Zeeman sublevels

[107], the authors noted that the widths of the correlation peaks are related to the

power broadening of the single photon resonance in the Rb vapor. To further investigate

this, we repeated the time series for each pair at different intensities but with a fixed

detuning, and plotted the normalized correlation functions in Fig. 46 for the FWM signals

and transmission beams, respectively. We increased the input laser intensity by up

to a factor of 3 in most cases, but the width of the correlation peak did not change

significantly. This is likely because the atomic medium was not fully saturated in any

of these measurements, either when we measured transmission or FWM signals. In

the case of FWM signals, the input laser fields were above saturation intensity, but the

nonlinear signal itself was weak due to the efficiency of the process.

We must then investigate the behavior of the correlation as a function of the

detuning. Interestingly, the cold atomic systems are more suited to investigate this

behavior than atomic vapors. In hot systems, the Doppler broadening is significant,



Section 5. Degenerate Four-Wave Mixing with Cold Atoms: intensity correlations 120

Figure 46 – Normalized second-order correlation function G(2)
i j (τ) between intensity fluctuations of FWM signals

varying input laser intensity at δ/2π = 85 MHz with (a) linear and orthogonal polarizationa and (b)
circular and parallel polarizations. Transmission signals varying input laser intensity at δ/2π = 25 MHz
with (c) linear and orthogonal polarizations and (d) circular and parallel polarizations .
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meaning that variations of the detuning inside the Maxwell-Boltzmann curve will always

find a resonant velocity group and possibly cover any phenomena regarding detuning

variations. We provide in Fig. 47 a detailed map of the correlation between transmission

fluctuations as a function of detuning. We recall that in the case of the transmission

analysis, we can work with very low intensities, so it is easy to tune the laser frequency

without pushing away the atoms, allowing such a complete map. In this graph, the

broadening of the central peak near resonance becomes clearer. Furthermore, it is

noticeable the presence of oscillations near the central peak. It seems that the frequency

of this oscillation gets smaller near resonance.

The same behavior described for the correlation between transmission signals

can be seen in the correlations between FWM fluctuations. However, it is not possible

to produce a detailed map as the intensity necessary to induce the FWM process
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Figure 47 – Second-order correlation function G(2)
i j (τ) as a function of the detuning δ/2π between transmission

signals with (a) linear and orthogonal polarizations and (b) circular and parallel polarizations. The input
laser intensity is Ia = Ib =0.15 mW/cm2.

Source: The author (2023).

together with a small detuning will certainly exert a radiation pressure strong enough

to push the atoms away. In this sense, we show in Fig. 48 the correlation curves

between FWM signals for three different detunings. The most notable feature is that

the correlation curves become wider as the frequency of the input laser approaches

resonance. Additionally, far from resonance, an oscillation of the correlation curves

becomes more evident and has a higher frequency. There are regions of correlation

(G(2)
i j (τ)> 0) and regions of anti-correlation (G(2)

i j (τ)< 0). This behavior was also seen

in the previous correlation curves for FWM signals (Figs. 45(a) and 45(b)), as they were

all far from resonance. It is important to note that the results in Fig. 47 are for a fixed
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Figure 48 – Second-order correlation function G(2)
i j (τ) as a function of the detuning δ/2π between FWM signals with

(a) linear and orthogonal polarization and (b) circular and parallel polarization.
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input intensity of 0.15 mW/cm2, while the results for FWM signals in Fig. 48 are for

different intensities in each case. In the latter we do so to maximize the signals for each

detuning, otherwise, the signal-to-noise ratio would not allow us to properly visualize

the correlation. However, if we consider the generalized Rabi frequency Ω =
√

Ω2 +δ 2,

it is approximately equal to the detuning since the Rabi frequency of the input beams is

close to the natural linewidth of the transition.

These results show that the second-order correlation function behaves differently

when the detuning is changed. Moreover, there seems to be a main frequency com-

ponent that depends linearly on the detuning, or more precisely, on Ω. Therefore, we

hypothesize that these oscillations in the second-order correlation function are directly

connected to the generalized Rabi frequency. This means that during the process
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of conversion of phase fluctuations of the laser into intensity fluctuations through its

interaction with the atomic medium, the intensity fluctuations oscillate at approximately

the generalized Rabi frequency [39]. One could expect to see this oscillation in the raw

data, that is, in the time series shown in Fig. 44. However, these oscillations are not

noticeable in this case because the measurements were taken long after the transient

period when the oscillations would be less noticeable. Additionally, the signal we acquire

is the average signal of the light emitted by the atomic ensemble, rather than by a single

atom.

On the other hand, a higher-order measurement should be able to retrieve

the spectral information of the system [109, 126]. This is possible with the intensity

fluctuations correlation function G(2)
i j (τ), which does have a noticeable spectral peak. The

Fourier analysis of these curves (Figs. 47 and 48) shows that there is a spectral peak that

is compatible with the generalized Rabi frequency, or when the laser intensity is small,

compatible with the detuning. See, for example in Fig. 49, the Fourier transform of the

second-order correlation function for transmission signals (see of Fig. 47). In this case,

the generalized Rabi frequencies are 10, 20 and 40 MHz, while the spectral peaks are

located at 14, 24 and 37 MHz, respectively. We expect this to be an approximate result

because even for a simple two-level system, the presence of spontaneous emission

decay modifies how the temporal solution of the optical Bloch equations oscillates.

However, the values should be close to Ω.

To verify this claim, we plot in Fig. 50 the spectral peak present in each correlation

curve (red dots) compared with the absolute value of the detuning (solid line). There is

a reasonable agreement between the two results, supporting our argument. One can

see in the transmission case (see Fig. 50(c) and (d)) that, near resonance, the spectral

peak of the correlation curves moves away from the detuning as the Rabi frequency

gets more relevant to the generalized Rabi frequency.

One final comment on the results of the correlation between FWM signals is

related to why we observe a positive correlation and not a competition between signals,

that is, an anti-correlation. Yang et al [38] observed an anti-correlation between FWM

signals in an atomic vapor using a Λ-sytem. This situation compares to our results

using linear and perpendicular configurations. Our case differs from theirs because the
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Figure 49 – Fourier transform of G(2)
i j (τ), for two transmission signals with linear and orthogonal polarizations.

Source: The author (2023).

ground states are degenerate, rendering a symmetrical system that forbids competition

between the fields. The results of Ref. [40] show how this degeneracy controls the

correlation by introducing an external magnetic field that can break the degeneracy, and

change from perfect correlation to anti-correlation.

5.3 Theoretical model

In this subsection, we use the theoretical model presented in Ref. [40] to analyze

the correlations between the transmission signals in our system. While the model does

not explicitly consider the FWM signals, we believe that some of the analysis can be

extrapolated to this case. We focus on the dependence of the correlation with the

detuning, paying particular attention to the presence of Rabi oscillations. Our system is

well-suited for this analysis on the detuning dependence as the Doppler broadening can

be neglected in cold atomic systems.

To begin with, we write the Bloch equations for our three-level system, similar

to what was done in the previous sections. However, we now consider that the input

electric fields have a stochastic phase which will render in the amplitude fluctuations we
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Figure 50 – Frequency of the oscillation in the correlation function for FWM signals with (a) linear and orthogonal
polarizations and (b) circular and parallel polarizations; Transmission signals with (c) linear and ortho-
gonal polarizations and (d) circular and parallel polarizations. The solid lines are the absolute value of
the detuning.
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observe. The input fields are then

Ea =
[
εa(t)e−i(ωat+φ(t)−kaz)+ c.c.

] (σ̂++ σ̂−)√
2

,

Eb =
[
εb(t)e−i(ωbt+φ(t)−kbz)+ c.c.

] (iσ̂+− iσ̂−)√
2

,

(117)

where εl is the amplitude of the electric field, ωl is the optical frequency, φ(t) is the

fluctuating phase, and kl is the associated wave-vector. The polarization vector is

represented in the circular base as it highlights how these fields interact with the Λ

system.

The fluctuating phase φ(t) of the input fields are described by a Wiener-Levy

diffusion process [127]. For these processes, the average of the stochastic variable is
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zero and the average of the two-time correlation is given by
〈
φ̇ (t) φ̇ (t ′)

〉
= 2Dδ (t− t ′),

where D is the diffusion coefficient.

We recall that, in the previous section, we considered that the field a is tuned in

one of the transitions while the field b is tuned in the other. That is, we only take one

circular component of each field. A complete treatment of this system, including even

wave-mixing processes of superior orders, is performed in Ref. [53]. In this model, they

perform a Floquet expansion of the density-matrix elements in the frequency of the input

fields and their combinations. One could include a stochastical phase in this last model,

but it would take the system from nine coupled equations, as we write it in this work, to

a few tens of equations. The numerical solution becomes unstable and demanding in

terms of computation time.

The Bloch equations in the rotating-wave approximation can be written as (see

section 2):

ρ̇11 =−iσ12Ωa + iσ21Ω
∗
a +Γ21ρ22;

ρ̇22 = iσ12Ωa− iσ21Ω
∗
a− iσ23Ω

∗
b + iσ32Ωb− (Γ21 +Γ23)ρ22;

ρ̇33 = iσ23Ω
∗
b− iσ32Ωb +Γ23ρ22;

σ̇12 =−σ12
(
iδa + γ12− φ̇ (t)

)
− i(ρ11−ρ22)Ω

∗
a− iσ13Ω

∗
b;

σ̇13 =−σ13 (iδa− iδb + γ13)− iσ12Ωb + iσ23Ω
∗
a;

σ̇32 =−σ32
(
iδb + γ23− φ̇ (t)

)
− i(ρ33−ρ22)Ω

∗
b− iσ31Ω

∗
a.

(118)

The σ jk terms are the coherences from equation (4) in the rotating frame, whereas

Γ jk are the decay rates of the populations. The missing coherence equations are the

complex conjugate of the ones presented.

Since the set of Eqs. 118 contains stochastical terms, we must solve them

numerically using the so-called Itô’s calculus, a mathematical framework for modeling

and analyzing systems that are subject to random fluctuations. It was developed by

Kiyoshi Itô in the 1940s and has since become an important tool in fields such as finance,

physics, and engineering, where it is used to model phenomena such as Brownian

motion, option pricing, and noise in electronic circuits.

At the heart of Itô’s calculus is the concept of a stochastic differential equation
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(SDE). An SDE is a type of differential equation that contains one or more random

variables, or “noise terms”, which describe the random fluctuations in the system. These

noise terms are often modeled using Wiener processes, the stochastical process of a

Brownian motion.

To solve an SDE, Itô’s calculus introduces the concept of an Itô integral, used to

integrate functions of a random variable. This allows one to compute the expected value

and variance of the solution to an SDE, as well as to compute higher-order moments and

probability distributions. One of the key benefits of Itô’s calculus is that it allows one to

model systems that are subject to random fluctuations in a rigorous and mathematically

precise way. This is particularly useful in fields such as finance [128], where it is used to

model the random movements of financial markets, and in physics, where it is used to

model the random motion of particles in a fluid.

When it comes to laser fields, the typical stochastical process used to model the

fluctuating phase is the Ornstein-Uhlenbeck process [129, 130], which is a continuous-

time stochastic process that describes the random evolution of a system over time. It is

named after Leonard Ornstein and George Eugene Uhlenbeck, who first introduced the

process in 1930 as a model for the Brownian motion of particles suspended in a fluid. It

is often used to model systems that exhibit a certain degree of “damping” or “friction”,

meaning that the system tends to an equilibrium state over time.

This process satisfies the SDE:

dXt = α (γ−Xt)dt +βdWt (119)

where the Itô’s diffusive process dXt has a deterministic part and a stochastic one.

The deterministic term, the first one, has a magnitude of the mean drift α while the

asymptotic mean is γ . If Xt > γ the drift will be negative and the process will go towards

the mean. If Xt < γ then the opposite happens, the drift is positive and the process

moves away from the mean. As for the stochastic part, it is a Brownian motion Wt with a

magnitude constant β .

These properties make the Ornstein-Uhlenbeck process useful for modeling a

wide range of systems that have a stationary distribution, i.e., systems that reach a
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steady state over time. In addition, the Ornstein-Uhlenbeck process has a finite variance,

meaning that the state of the system exhibits a certain level of “stability”. This is in

contrast to a simple random walk, where the variance of the system grows without

bounds over time.

Once the diffusion process is chosen, we can solve the system of SDEs. There

are several different methods for solving SDEs, depending on the specific form of the

equations and the properties of the system being modeled. One common method

for solving SDEs is the Euler-Maruyama method, which is a numerical approximation

method that uses the Euler method to approximate the solution to the SDE at discrete

time steps. It is a method relatively simple to implement and is well-suited for systems

with relatively smooth dynamics. In the reference we are basing this model (Ref. [40]),

the authors use this method. However, it can be prone to numerical instability and may

not be accurate for systems with highly nonlinear or singular dynamics.

Another way to solve the SDE system is with the Runge-Kutta method. It is a

similar algorithm to the Euler-Maruyama method, as it uses a series of discrete time

steps to approximate the solution to the SDE, but with different techniques to improve

the accuracy of the approximation. In addition to numerical approximation methods,

there are also analytical methods for solving SDEs in certain cases. For example, if the

SDE has a linear form and the noise term is additive, the solution can be found using

the Laplace transform or the Fourier transform. If the SDE has a quadratic form and the

noise term is multiplicative, the solution can be found using the Fokker-Planck equation.

In our case, we opt for solving the system of SDEs numerically using the Runge-

Kutta algorithm for scalar noise (Mathematica notebook available in appendix D). It is

a generalization of the Euler method, and similarly to the deterministic Runge-Kutta

method, it involves dividing the time interval of interest into a series of discrete time

steps. At each time step, the solution to the SDE is approximated using a weighted

average of the function at the current time step and its derivative at several points

within the time step. This algorithm possesses a good accuracy for our problem, with a

thin distribution of residuals. We also use the same Brownian increment dWt for both

one-photon coherences, as the original fluctuation comes from a single laser. Finally,

we probed several choices of parameters of the Ornstein-Uhlenbeck process, but the
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outcomes are not drastically different as long as the variance of the process, given by

β 2/2α, is small.

Once the numerical simulation is complete, we can use the time series of the

elements of the density matrix to calculate the second-order correlation function for the

intensity fluctuations. However, we need to establish the connection between the density

matrix elements and the actual detected signal. To do this, we solve the wave equation

derived from Maxwell’s equations with the same procedure and approximations of the

last section, rendering the differential equation

∂Ωl

∂ z
= iκ2 jσ2 j, (120)

where κ2 j =
ωlNµ2

2 j
2}ε0c and N is the number of atoms.

Solving this equation leads to the fields we detect in the experiment after they

propagate in the sample. To do so, we can perform an approximation that simplifies the

solution: the MOT diameter L is much smaller than the Rayleigh length of the fields in

play, therefore, it is adequate to consider the thin-medium regime. This implies that, in

a first-order approximation, we detect a superposition of the input and the generated

fields

Ωl ≈Ω
0
l + iκ2 jLσ2 j. (121)

We are interested in the intensity itself, which scales with the square of the Rabi

frequency, therefore (in first-order):

Il ≈
[
Ω

0
l
]2
+Ω

0
l κ2 jLIm

(
σ2 j (t)

)
. (122)

Since the generated field is much weaker than the input fields, the first term acts

as the average signal. Hence, only the second term should present intensity fluctuations,

as it is explicitly connected to the one-photon coherence. Therefore

δ Il = Ω
0
l κ2 jLIm

(
δσ2 j (t)

)
. (123)
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To calculate the second-order correlation function of the intensity fluctuations we

can rewrite Eq. 116 as:

G(2) (τ) =
〈Im(δσ21 (t)) Im(δσ23 (t + τ))〉√〈
[Im(δσ21 (t))]

2
〉〈

[Im(δσ23 (t))]
2
〉 . (124)

Notably, in the model, as it is, only the transmission results can be directly

explored. However, as our numerical solution renders the elements of the density-matrix

in all orders, the nonlinear effects of wave-mixing are also built in the one-photon

coherence. Naturally, the stronger term should be the lower-order one, which is indeed

connected to the transmission.

5.3.1 Theoretical results

After performing a numerical simulation of the time series for the transmission

signals by solving a system of coupled SDEs, we present an example of a single reali-

zation of the series in Fig. 51(a) for a detuning of δ/2π = 30 MHz and Rabi frequencies

of Ωa = Ωb = 0.1Γ. We simulate the signal for a total of 20 µs, but we exclude the first

half of the series to ensure that the transient period is not present. Using Eq. 124, we

calculate the second-order correlation function for the series shown in Fig. 51(a) and

present the results in Fig. 51(b).

Since we use the same Brownian increment dWt for both signals, they must

be perfectly correlated as in Fig. 51(b). It is easy to introduce different increments

for each input field and control how large their correlation is by stating that dW (1)
t =

dW (2)
t +

√
1−ρ2dW (3)

t , where ρ ranges from zero to one; that is, one increment is equal

to the other with the addition of a third increment. However, we use a single cw laser, so

the stochastic phase each input field carries should be the same.

We presented the case of cross-correlation between input field intensity fluctuati-

ons for the scenario with linear and perpendicular polarizations. If we eliminate one of

the ground states and, therefore, all the equations and terms connected to it in Eqs. 118,

then we would have a two-level system. This is the scenario with circular and parallel

polarizations. However, as the results are remarkably similar to those in Fig. 51, we do

not present them here.
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Figure 51 – (a) Numerical simulation of a time series of the intensity fluctuations for the transmission signals with
input Rabi frequency Ωa = Ωb = 0.1Γ, detuning from the excited state of δ/2π = 30 MHz and linear and
orthogonal polarizations. (b) Second-order correlation function G(2)

i j (τ) between the time series of (a).
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Source: The author (2023).

A theoretical map such as the one presented in Fig. 47 can be achieved and it is

presented in Fig. 52(a). It shows a broadening of the correlation peak compatible with

the behavior of the experimental result. Moreover, the theoretical results highlight the

oscillation of the correlation curve in the generalized Rabi frequency.

A graph similar to the one shown in Fig. 50 is presented in Fig. 52(b) for the

transmission signals in the linear and perpendicular polarization case. This graph agrees

with the experimental results and therefore supports that the frequency of the oscillation

we see in the correlation curves is indeed well described by the generalized Rabi

frequency.

We must emphasize that our results were able to reveal this oscillating behavior
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Figure 52 – (a) Second-order correlation function G(2)
i j (τ) as a function of the detuning δ/2π between theoretical

transmission signals with linear and orthogonal polarizations. The input laser Rabi frequency is Ωa =
Ωb = 0.1Γ. (b) Frequency of the oscillation in the correlation function of (a). The solid line is the absolute
value of the detuning

Source: The author (2023).
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because the experiments were performed in a cold atom cloud. In a vapor cell, for

example, this signature would have been washed away due to the atomic movement.

The Doppler integration should change the observation of these oscillations, as the

correlation curve would contain the response of several velocity groups.

5.4 Analysis of the FWM spectra

We presented in the first subsection two FWM spectra (see Fig. 42), one for

each polarization configuration. The case with linear and orthogonal polarization has a

dip around the resonance, which we hypothesize is due to coherent population trapping

(CPT).

CPT is a phenomenon that occurs in atomic systems, in which a pair of laser

fields interacting with a three-level system, induces a transverse optical pumping that

accumulates all the atoms in ground levels near-resonance. This is directly connected

to the fact that the optical susceptibility in these systems is purely imaginary, meaning

that dispersive effects due to laser detuning from each ground level mutually cancels

each other. This phenomenon manifests itself as a dip near resonance in the absorption

spectrum [120].

One of the key applications of CPT is in high-precision measurements, where it

is used to measure small changes in the frequency or intensity of the laser fields. For

example, an important application of CPT is in optical frequency standards, where it is

used to create extremely stable and precise frequency references [131, 132].

There is not much literature on this specific configuration we work with, i.e.,

in which both input fields are scanned in frequency simultaneously. In Ref. [121], the

authors comment that, for this specific situation, in which both fields have the same

detuning and Rabi frequency, the population will be equally trapped in the lower levels

because of the optical pumping, i.e., CPT. This effect holds even for high intensities,

which agrees with our experimental results. Let us present them.

To obtain the FWM spectra, we perform the complete FWM measurement in a

single time window (see Fig. 41). Therefore, the scanning wave of the injection current

of the input laser has a 250 Hz frequency. The amplitude of the ramp depends on the
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Figure 53 – (a) Transmission of the input beams both with I ≈ 10 mW/cm2. (b) FWM spectra using a single laser.
Inset: 2ka−kb signal using parallel circularly polarized input beams. All curves are normalized.

Source: The author (2023).

intensity of the input beams since they are copropagating and, therefore, tend to push

the atoms away from the center of the chamber. This radiation pressure is higher on

resonance, so we cannot scan the FWM laser slowly, otherwise the atoms would gain

too much velocity and leave the trap.

We present a typical result for this single laser setup in Fig. 53, for a laser intensity

of 10 mW/cm2 for each input beam. The curves in Fig. 53(a) show the transmissions of

the input beams, while in Fig. 53(b), we show the spectra of the two FWM signals. The

transmission curves are slightly asymmetric, possibly due to the fast scanning of the

frequency or even self-focalization effects [133].

The main result is in Fig. 53(b), the FWM spectra, and it presents the dip we

are attributing to CPT. In the inset of Fig. 53(b), we present a result for the same FWM

process but using parallel and circularly polarized input beams, similar to Fig. 42. We

recall that in this case, we are dealing with a pure two-level system as the population

is pumped through the Zeeman sublevels until it reaches the larger m f state. Notice
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that there is no valley in this result, meaning that the use of beams with perpendicular

polarization is crucial to the phenomenon we are addressing.

One could state that this spectral lineshape with a dip on resonance should only

be due to absorption effects since we are dealing with highly absorbing media. Another

possibility would be an AT splitting caused by the lasers, given that they are, for this

particular result, a few times above saturation intensity. If it was the case, the lasers

would split the upper level of the transition in two, leading to more than one possible

excitation route of the FWM process.

To verify these two initial hypotheses, we change the intensity of the input beams

or the density of the atomic sample. We begin the analysis with the results of Fig.

54(a), in which we change the intensity of the two input fields. These three spectra

have different intensities of both input beams and the curves are normalized to allow a

superposition. There is a power broadening effect, considering that the higher intensity

curves have a larger width. Despite that, the valley remains with nearly the same width

and depth. In fact, if the intensity of the input beams is within a range of two orders below

to two orders above saturation intensity, the valley remains nearly the same shape. It

then becomes clear that the AT hypothesis must be ruled out because there should

be no splitting below saturation intensity and for high intensities, there should be two

well-separated peaks. The absorption hypothesis also loses strength, as it should result

in a less pronounced valley for a high-intensity regime.

An additional test to check our first hypothesis is to change the optical depth

(OD) of the atomic sample. One can achieve this by using neutral density filters to lower

the power of the cooling beams. In our case, the optical depth ranged from OD≈ 4 to a

lower density regime with OD≈ 1, as Fig. 54(c) shows. It is reasonable to expect that, if

the valley is exclusively due to absorption, a sample with lower OD would absorb less

and consequently produce a shallower dip. However, the spectra show otherwise. There

is no significant change in the valley depth regarding this variation of density.

There are additional characteristics of the signal worth mentioning. There is an

asymmetry that is possibly related to the frequency scan rate. For slower scans, that is,

with the same frequency and smaller amplitudes, the signals can become symmetrical,
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Figure 54 – (a) FWM spectra for different intensities of both input beams. (b) FWM spectra for different frequency
scan speeds. (c) FWM spectra for different optical depths. All curves are normalized.

Source: The author (2023).

as Fig. 54(b) shows. However, as mentioned previously, the geometric configuration of

the experiment limits the scan rate since, at high intensities, the atoms can be pushed

away from the trapping region.

Furthermore, one would expect that the FWM signal in a cold atomic sample

would have a narrow profile, closer to the natural linewidth Γ. However, the spectra in

Fig. 53 have widths of at least one order of magnitude larger than Γ. Once again, this

has to do with the frequency scanning setup. As both fields are varying in frequency, it

is reasonable that the signals get a lot broader.

With all this data in hand, it is hard to support the idea of the valley being a

result of only absorption or even a level-splitting phenomenon. Had this been the case,

we would expect to see the valley depth change as the intensity or sample density
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varies. Only in the low-intensity regime, absorption could justify this feature, as the

input beam could be entirely absorbed by the atoms in this case. Let us attempt to use

the theoretical model we built in section 4 to obtain this dip in the FWM spectra and

hopefully find supporting arguments for the CPT hypothesis.

5.4.1 Theoretical FWM spectra

We use the same set of the equations of section 4, that is, without any stochastical

phase, as the problem we are dealing with now is the FWM spectra. However, instead

of taking a numerical solution, let us look for an analytical expression taking Eq. 86 as

the initial step.

We calculate perturbatively the population difference between excited and ground

states. To do so we consider two approximations: first, the system is closed, that

is, ∑
3
j=1 ρ j j = 1; second, both ground states have the same populations, ρ11 = ρ33.

These two considerations eliminate part of the Bloch equations, so the solution for the

population difference becomes simple:

ρ11−ρ22 = ρ33−ρ22 =
(Γ21 +Γ23 + γ ′)

2(Γ21 +Γ23 + γ ′)+3ζ (δa,δb)
. (125)

The ζ (δa,δb) function contains all of the detuning dependence and it can be written as

ζ (δa,δb) =
2 |Ωa|2 (γ12 + γ ′)

δ 2
a +(γ12 + γ ′)2 +

2 |Ωb|2 γ32 + γ ′

δ 2
b +(γ32 + γ ′)2 . (126)

In this last step, we cut off high-order terms. Namely, we restrain our solution of the

population difference to terms of the order of
∣∣Ωa,b

∣∣2.

Once we substitute these population differences into Eq. 86, we can write the

coherence σ ′21. This density-matrix element is behind the generation of the FWM field

with frequency ωs = 2ωa−ωb, wave-vector ks in the direction of 2ka−kb, and circular

polarization. It is described by Eq. 87.

Since the angle between the input fields is small, and so is the atomic sample

length, we consider that the phase-matching condition is fulfilled, that is, ∆k = 2ka−

kb−ks = 0. Therefore, the FWM signals are proportional to the modulus square of the
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sum σ ′21 +σ ′23. However, to take into account the absorption of the generated FWM

field and the input beams we must include the propagation of these fields through the

atomic medium using the same procedure we performed in section 4. However, since

the MOT provides a highly absorbing medium, we will not use the non-depleted input

approximation as we did previously with hot vapor.

Therefore, the Rabi frequencies of the input fields and the FWM field are given

by the coupled equations

∂Ωa

∂ z
= −κ12

(ρ11−ρ22)Ωa

−iδa + γ12 + γ ′
; (127a)

∂Ωb

∂ z
= −κ32

(ρ33−ρ22)Ωb

−iδb + γ32 + γ ′
; (127b)

∂Ωs

∂ z
=
−κ12(ρ11−ρ22)Ωs

−iδa++ γ12 + γ ′
− κ12σ̃31Ωa

−iδa + γ32 + γ ′
, (127c)

where the constant κ jk =
ωlNµ2

jk
}ε0c , and kl is the wavenumber. We emphasize that we

considered the phase-matching condition to be fulfilled ∆k = 2ka−kb−ks = 0. We solve

these equations numerically with a fourth-order Runge-Kutta method from z = 0 to z = 4

mm.

Once this system of coupled Rabi frequencies is solved, we can plot the theoreti-

cal FWM spectra. Since in the experiment we scan the input fields simultaneously, in

the following plots the detunings are δa = δb = δ . We consider three scenarios in Fig.

55: (i) without absorption of the input beams, that is, it derivatives of Eq. 127(a) and (b)

are zero; (ii) with a decay rate of the coherence between ground states γ13 too large,

preventing the CPT from happening; (iii) the full solution including the absorption, that

is, using the Rabi frequencies that are the solution of Eqs. 127 to obtain |Ωs|2 and the

decay rate γ13 is set as ten orders below the population decay rate. The results will

not change as long the condition γ13� Γ21 holds. Most of the numerical parameters

for these plots come from Ref. [46], such as the natural linewidth (2π ·6.065 MHz). The

number of atoms in the MOT is estimated using the fluorescence detected at a solid

angle and set as 8 ·108 atoms.

Our theoretical result considering constant input fields (Fig. 55(b)) achieves a
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Figure 55 – (a) Experimental spectra; Theoretical spectra with (b) constant input fields; (c) γ13�Γ; (d) a Full solution,
including absorption and CPT. All curves are normalized.

Source: The author (2023).

good agreement with the experimental spectra (Fig. 55(a)) in the high-intensity regime.

The model reproduces the width and there is a dip in the spectrum. However, if the

intensity is smaller than the saturation intensity, or, the Rabi frequency is smaller than

the natural linewidth, the dip vanishes.

On the other hand, we can modify the decay rate γ13 to be much larger than any

other decay rate of the system, meaning that the coherence σ13 decays much faster

and therefore forbids the superposition of ground states to happen, which avoids the

CPT. In this case (see Fig. 55(c)) the dip only appears in the low-intensity regime due to

absorption but does not appear in the high-intensity regime.

Finally, we recover the experimental lineshape by adding the possibility of the

input fields being absorbed by the medium and stating that γ13� Γ21. With this addition,

the agreement is successful for high and low input intensities, as Fig. 55(d) shows.

The key to understanding the presence of this valley in the FWM spectrum is in

the coherence σ13. For this very particular situation, in which we scan the frequency of

both incident fields, this coherence should last longer than the other coherences of the

system, as they are connected to the resonance with the excited level. σ13, on the other

hand, exists long before the lasers arrive at the resonance frequency. Therefore, to
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plot the theoretical spectra, we must consider that γ31, the decay rate of the coherence

between ground states, is much smaller than the other rates of the system.

In this case, the real part of σ13 presents a sharp valley only at the resonance,

since the imaginary part is zero [120] (see Eq. 86). This implies that there is a non-

absorption resonance for δ = 0 [54] due to the transverse optical pumping of the

population. This supports the hypothesis that we are observing a manifestation of CPT

[120, 134].

We must emphasize, however, that this is an atypical manifestation of CPT, due

to our frequency scanning configuration with both input fields changing simultaneously.

In a typical CPT, for this type of level system, one would expect a sharp dip in an

absorption spectrum. However, we are observing the phenomenon in a forward FWM

signal with this very particular frequency scanning setup, which broadens the entire

signal. Therefore, the dip caused by the CPT is wider than usual.

When we make a different assumption for the decay rate γ13 that is to say it is

much larger than the other rates in the system, the real part of σ31 (once again, the

imaginary part is zero) would present a peak for δ = 0 and be zero elsewhere. In this

situation, the coherence between ground states vanishes so quickly that it can only

exist at the resonance, that is, there is not enough time for the CPT to happen. It is a

completely different dynamics. Evidently, in this situation, we cannot achieve the FWM

spectrum with a valley on resonance.

Using the appropriate numerical value for the decay rate of the coherence

between ground states, we present a complete comparison between experimental and

theoretical spectra in Fig. 56 for different intensity values of the incident fields. In this

case, we consider the model of Fig. 55(d).

The colormaps of Fig. 56 make it clear that we can successfully reproduce with a

good agreement the valley and the width of the spectra for this range of intensities. The

asymmetry of the experimental results is not present in the model, but as we discussed

previously, it is connected with the frequency scan rate. To model this feature, one would

need to solve the Bloch equations in the time domain and not assume a steady-state

solution as we do. We have implemented a time solution of the Bloch equations to all
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Figure 56 – Comparison between experimental and theoretical FWM spectra for different intensities of the input
fields. The plots are normalized individually.

Source: The author (2023).

orders and it supports this hypothesis of the asymmetry being connected to the scan

rate. For faster scans, the signal gets more asymmetrical as in the experiment [135].

On the other hand, the theoretical solution fails to agree with the experiment for

higher intensities of the input lasers. The dip in the FWM spectra starts to get wider,

in disagreement with the experiment that shows almost no change in the dip width

for input intensities of ten times the saturation intensity. Once again, we cite Ref. [53],

in which the authors perform a Floquet expansion of the density-matrix elements in

the frequency of the input fields and their combinations. This way they can model any

high-order phenomenon in the high-intensity regime by writing a continuous-fraction
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solution that includes all orders of interaction. This type of procedure could improve the

agreement with our experimental results.

The results described in this section were submitted as a regular article in the Physical Review A:

A. A. C. de Almeida, M. R. L. da Motta, and S. S. Vianna, “Intensity correlations in the forward

four-wave mixing driven by a single pump”, Phys. Rev. A 107, 023515 (2023).
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6 CONCLUSIONS

We have successfully executed the three four-wave mixing (FWM) experiments 

we proposed, observing in each case different aspects and phenomena. We were also 

able to build theoretical models that, to some extent, did fit the experimental data.

In the first place, we have presented our findings on the dynamic Stark shift and 

interference between excitation routes in the coherent blue light (CBL) signal obtained 

through an FWM process in section 3. The geometrical configuration with copropagating 

beams was critical to the observed phenomena and it is one of the characteristics of our 

experiment that makes the results unique. Furthermore, we have theoretically modeled 

the Autler-Townes (AT) splitting pattern in a dressed cascade three-level system using a 

numerical calculation of the Bloch equations. This allows us to compare the response 

of the CBL signal and the blue fluorescence given by the upper-level population for 

homogeneously and non-homogeneously broadened medium.

We found that in the case of homogeneous broadening, the response did not 

depend on whether the beams were copropagating or counter-propagating. The AT 

doublet was present in both fluorescence a nd F WM s ignals w hen t he w eak beam 

frequency was sweeping, but this doublet pattern was indistinguishable in the strong 

field frequency scanning regime.

On the other hand, for a Doppler-broadened medium, we found that the response 

depends on whether the beams are copropagating or counterpropagating, and which 

beam is sweeping. In this case, an interesting result was observed when the beams 

traveled in the same direction: a doublet structure was seen in the FWM signal for 

both scanning regimes, but not in the fluorescence signal. Noteworthy, we highlighted 

the physical mechanism behind this doublet structure and how it varies depending on 

the scanning regime. In a weak field scanning regime, the doublet structure is directly 

related to the contribution of the AT effect from all velocity groups. However, in the 

strong field scanning regime, the two peaks correspond to the most distant peaks of the 

resonance due to two AT doublets from different velocity groups.
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We observed an interference effect between two possible FWM excitation routes

when two modes of the 1GHz mode-locked laser are resonant with one- and two-photon

transitions for the same atomic velocity group. This interference resulted in a narrow

peak on top of an Autler-Townes doublet when we scanned the repetition rate of the

frequency comb. This process allows us to selectively probe a specific velocity group of

atoms in the medium. Our model supports the idea that this narrow structure is caused

by interference between the two excitation pathways. These results demonstrate that

the combination of a continuous-wave laser and a 1 GHz frequency comb can create

different pathways that may lead to non-trivial quantum interferences.

Subsequently, in section 4, we presented a study on the excitation spectra of

two symmetrical FWM signals generated in rubidium vapor, using a copropagating laser

beam configuration. The nonlinear signals were produced by two separate lasers that

were both tuned to the closed transition of 85Rb 5S1/2(F = 3)→ 5P3/2(F = 4), resulting

in a single peak in each spectrum. While this type of degenerate FWM process is

well-known, we simultaneously detected and analyzed the symmetry between the two

signals. Our results showed anomalies in the atomic medium’s index of refraction due

to the interaction with both fields.

One interesting aspect of this experiment is that, although the two signals were

generated by separate FWM processes, they provide information on the dynamic of

an ensemble of atoms that interacted simultaneously with the same excitation fields.

This characteristic can be used to investigate the interaction between atoms within the

excitation region or to study correlations induced by the atomic system. Specifically,

the degeneracy of the nonlinear process combined with the field configuration leads to

symmetry in the signals, both spatially and in frequency, regardless of which beam is

used to probe the excitation spectrum.

The anomalies in the refractive index were revealed through two experimental

features: (i) an absorption dip in the transmission of the frequency-scanning beam,

similar to an electromagnetically induced absorption process, and (ii) a frequency shift

of both FWM signals in opposite directions, determined by the phase-matching condition.

Our theoretical analysis, which was applied to a three-level system, demonstrated how

the index of refraction seen by each beam can change during the interaction process.
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Importantly, the correct description of the frequency position of each peak is supported

by a variable refractive index for both lasers, with the scanning laser experiencing an

anomalous window in the refractive index near resonance.

Finally, in section 5, we successfully presented an experiment to study the FWM

process using atoms cooled by a magneto-optical trap (MOT), in a copropagating

configuration of the input beams. The experiment was designed to generate two similar

FWM signals in distinct directions. We have successfully demonstrated that there are

temporal correlations between intensity fluctuations of two distinct degenerate FWM

signals in a cold rubidium sample. It is noteworthy that this is the first demonstration

of these correlations in degenerate FWM processes, which due to this degeneracy,

do not present competitive signals and therefore have a positive correlation between

them. In a complementary scenario to ours are the results of Ref. [38] that present an

anticorrelation between FWM signals due to the nondegeneracy of the ground states.

Furthermore, since our cold atomic system allows a proper definition of detuning,

namely, there is not a significant Doppler broadening, we can study how the correlation

between FWM signals and transmission signals behave as a function of detuning. The

results show that the system exhibits Rabi oscillations that can be revealed by the

second-order correlation function long after the transient. The theoretical model from

Ref. [40] was used to provide numerical results for the transmission signals that support

the experimental findings. Even though the model only deals with the transmission

signals, it provides a good insight that the mechanism behind the correlations, and the

Rabi oscillations we see in them, is the conversion of phase-noise to amplitude-noise

due to the interaction of the laser with the atoms. The FWM signals should follow a very

similar behavior, so we believe that the results regarding the cross-correlation between

transmission signals can be extrapolated to the nonlinear case.

As for the spectra results, we have presented our hypothesis that the dip in

the FWM signal is due to coherent population trapping (CPT). The fact that for high

intensities there was no clear separation between the two peaks ruled out the splitting

of atomic levels due to the AC Stark effect, i.e. an Autler-Townes splitting. In addition,

the linear absorption of the input beams and the generated signal should not be enough

to produce such a deep valley in a high-intensity regime. Changing the optical density
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of the atomic sample confirmed that the dip should not be complete due to absorption

effects, since a low-density sample rendered the same usual FWM spectrum.

To support our interpretation of the features of the FWM signal, we have modeled

the process using the procedure of section 4. The model gives evidence that absorption

effects are only capable to explain the experimental results for a low-intensity regime,

as expected. For high intensities of the input beams, the real part of the Rabi frequency

of the generated FWM light dominates the spectrum, which corroborates with the

hypothesis of a CPT. However, the model does not achieve a perfect description of the

experimental data, especially if the input lasers are too intense.
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91 VUJICIć, N. et al. Velocity-selective double resonance in doppler-broadened
rubidium vapor. Phys. Rev. A, v. 87, p. 013438, Jan 2013.

92 MORENO, M. P.; VIANNA, S. S. Coherence induced by a train of ultrashort pulses
in a &#x39b;-type system. J. Opt. Soc. Am. B, v. 28, n. 5, p. 1124–1129, May 2011.

93 SHENG, D.; GALVÁN, A. P.; OROZCO, L. A. Lifetime measurements of the 5d
states of rubidium. Phys. Rev. A, v. 78, p. 062506, Dec 2008.

94 JEONG, T.; MOON, H. S. Phase correlation between four-wave mixing and
optical fields in double &#x039b;-type atomic system. Opt. Express, v. 24, n. 25, p.
28774–28783, Dec 2016.

95 BOYD, R. W. et al. Four-wave parametric interactions in a strongly driven two-level
system. Phys. Rev. A, v. 24, p. 411–423, Jul 1981.

https://github.com/marcopolomoreno/dynamic-Stark-shift


153

96 STEEL, D. G.; LIND, R. C. Multiresonant behavior in nearly degenerate four-wave
mixing: the ac Stark effect. Opt. Lett., v. 6, n. 12, p. 587–589, Dec 1981.

97 LIPSICH, A. et al. Absorption spectra of driven degenerate two-level atomic
systems. Phys. Rev. A, v. 61, p. 053803, Apr 2000.

98 AKULSHIN, A. M.; BARREIRO, S. V.; LEZAMA, A. Highly selective four-wave
mixing of low-intensity radiation in a degenerate two-level atomic system. Quantum
Electronics, v. 30, n. 3, p. 189, mar 2000.

99 LEZAMA, A.; CARDOSO, G. C.; TABOSA, J. W. R. Polarization dependence of
four-wave mixing in a degenerate two-level system. Phys. Rev. A, v. 63, p. 013805, Dec
2000.

100 ZHANG, J.-X. et al. Enhanced reflection via phase compensation from anomalous
dispersion in atomic vapor. Phys. Rev. A, v. 83, p. 053841, May 2011.

101 ALVAREZ, A. S.; ALMEIDA, A. A. C. de; VIANNA, S. S. Two symmetric four-wave
mixing signals generated in a medium with anomalous refractive index. Journal of
Physics B: Atomic, Molecular and Optical Physics, v. 54, n. 4, p. 045403, feb 2021.

102 MOON, G.; NOH, H.-R. Analytic calculation of linear susceptibility in
velocity-dependent pump-probe spectroscopy. Phys. Rev. A, v. 78, p. 032506, Sep
2008.

103 KIM, K. et al. Observation of arbitrary group velocities of light from superluminal
to subluminal on a single atomic transition line. Phys. Rev. A, v. 68, p. 013810, Jul 2003.

104 LING, H. Y.; LI, Y.-Q.; XIAO, M. Electromagnetically induced grating:
Homogeneously broadened medium. Phys. Rev. A, v. 57, p. 1338–1344, Feb 1998.

105 HOSSAIN, M. M. et al. Nonlinear resonances caused by coherent, optical
pumping and saturating effects in the presence of three laser fields for the 85rb-d2 line.
Journal of Physics B: Atomic, Molecular and Optical Physics, v. 44, n. 11, p. 115501,
may 2011.

106 KRMPOT, A. J. et al. Sub-doppler absorption narrowing in atomic vapor at two
intense laser fields. Opt. Express, v. 13, n. 5, p. 1448–1456, Mar 2005.

107 SAUTENKOV, V. A.; ROSTOVTSEV, Y. V.; SCULLY, M. O. Switching between
photon-photon correlations and raman anticorrelations in a coherently prepared rb
vapor. Phys. Rev. A, v. 72, p. 065801, Dec 2005.

108 VARZHAPETYAN, T. S. et al. Intensity correlations in a coherently prepared rb
vapor in a magnetic field. Optics Communications, v. 282, n. 1, p. 39–44, 2009. ISSN
0030-4018.

109 CHEN, L.-Q. et al. Observation of temporal beating in first- and second-order
intensity measurement between independent raman stokes fields in atomic vapor. Phys.
Rev. A, v. 82, p. 033832, Sep 2010.

110 GOLOVIZIN, A. et al. Compact magneto-optical trap of thulium atoms for a
transportable optical clock. Opt. Express, v. 29, n. 22, p. 36734–36744, Oct 2021.



154

111 DINNEEN, T. P. et al. Cold collisions of sr∗−Sr in a magneto-optical trap. Phys.
Rev. A, v. 59, p. 1216–1222, Feb 1999.

112 TELLES, G. D. et al. Inelastic cold collisions of a na/rb mixture in a
magneto-optical trap. Phys. Rev. A, v. 59, p. R23–R26, Jan 1999.

113 CHU, S. et al. Three-dimensional viscous confinement and cooling of atoms by
resonance radiation pressure. Physical Review Letters, v. 55, p. 48, 1985.

114 WALLACE, C. D. et al. Measurements of temperature and spring constant in
a magneto-optical trap. Journal of the Optical Society of America B, v. 11, n. 5, p.
703–711, 1994.

115 RAAB, E. L. et al. Trapping of neutral sodium atoms with radiation pressure.
Physical Review Letters, v. 59, p. 2631, 1987.

116 STEANE, A. M.; CHOWDHURY, M.; FOOT, C. J. Radiation force in the
magneto-optical trap. Journal of the Optical Society of America B, v. 9, n. 12, p.
2142–2158, 1992.

117 SCHERER, D. R.; FENNER, D. B.; HENSLEY, J. M. Characterization of alkali
metal dispensers and non-evaporable getter pumps in ultrahigh vacuum systems for
cold atomic sensors. Journal of Vacuum Science & Technology A, v. 30, p. 061602,
2012.

118 VEISSIER, L. Quantum memory protocols in large cold atomic ensembles. Thesis
(Phd) — Université Pierre et Marie Curie - Paris VI, Paris, France, 2013. Accessed on:
17 jan. 2019.

119 PALITTAPONGARNPIM, P. Characterization of Magneto-optical Trap For
Experiments in Light-Atom Interfacing. Dissertation (Master’s thesis) — University of
Calgary, 2012.

120 AGRAWAL, G. Phase conjugation and degenerate four-wave mixing in three-level
systems. IEEE Journal of Quantum Electronics, v. 17, n. 12, p. 2335–2340, 1981.

121 BOUBLIL, S.; WILSON-GORDON, A.; FRIEDMANN, H. Two-photon coherence
and steady-state saturated and inverted populations in three-level systems. Journal of
Modern Optics, v. 38, n. 9, p. 1739–1761, 1991.

122 MCINTYRE, D. H. et al. Diode-laser noise spectroscopy of rubidium. Opt. Lett.,
v. 18, n. 21, p. 1816–1818, Nov 1993.

123 CAMPARO, J. C.; COFFER, J. G.; FRUEHOLZ, R. P. Temporal response of an
atom to a stochastic field: Resonant enhancement of population fluctuations at the rabi
frequency. Phys. Rev. A, v. 56, p. 1007–1011, Jul 1997.

124 CAMPARO, J. C.; COFFER, J. G.; FRUEHOLZ, R. P. Rabi resonances induced by
an off-resonant, stochastic field. Phys. Rev. A, v. 58, p. 3873–3878, Nov 1998.

125 CAMPARO, J. C.; COFFER, J. G. Conversion of laser phase noise to amplitude
noise in a resonant atomic vapor: The role of laser linewidth. Phys. Rev. A, v. 59, p.
728–735, Jan 1999.



155

126 NORRIS, D. G. et al. Observation of ground-state quantum beats in atomic
spontaneous emission. Phys. Rev. Lett., v. 105, p. 123602, Sep 2010.

127 AGARWAL, G. S. Exact solution for the influence of laser temporal fluctuations on
resonance fluorescence. Phys. Rev. Lett., v. 37, p. 1383–1386, Nov 1976.

128 GARDINER, C. Stochastic Methods: A Handbook for the Natural and Social
Sciences. [S.l.]: Springer Berlin Heidelberg, 2009. (Springer Series in Synergetics).
ISBN 9783540707134.

129 GARDINER, C.; ZOLLER, P. Quantum noise: a handbook of Markovian and
non-Markovian quantum stochastic methods with applications to quantum optics. [S.l.]:
Springer Science & Business Media, 2004.

130 ORSZAG, M. Quantum Optics: Including Noise Reduction, Trapped Ions,
Quantum Trajectories, and Decoherence. [S.l.]: Springer International Publishing, 2018.
ISBN 9783319804774.

131 VANIER, J. Atomic clocks based on coherent population trapping: a review.
Applied Physics B, v. 81, n. 4, p. 421–442, Aug 2005. ISSN 1432-0649.

132 ESNAULT, F.-X. et al. Cold-atom double-Λ coherent population trapping clock.
Phys. Rev. A, v. 88, p. 042120, Oct 2013.

133 ARAÚJO, M. O. et al. Measurement of the kerr nonlinear refractive index of cs
vapor. Phys. Rev. A, v. 88, p. 063818, Dec 2013.

134 GRAY, H. R.; WHITLEY, R. M.; STROUD, C. R. Coherent trapping of atomic
populations. Opt. Lett., v. 3, n. 6, p. 218–220, Dec 1978.

135 ALMEIDA, A. A. C. de. Spectral analysis of the four-wave mixing in a cold atomic
sample using a single CW laser. Dissertation (Master’s thesis) — Universidade Federal
de Pernambuco, 2019.



156

APPENDIX A – WOLFRAM MATHEMATICA - EIT IN A 3-LEVEL SYSTEM
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APPENDIX B – WOLFRAM MATHEMATICA - FWM SPECTRA OF SECTION 4
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APPENDIX C – PYTHON CODE OF SECTION 5

1 iimport numpy as np

2

3 rangeG2=0.5E-6 #G2 Range in us. Be careful, the longer the interval, slower

the program.

4

5 def G2(tau,I1,I2, N,stepG2): #G2 function for positive delays

6

7 numerator=0

8 denominator1=0

9 denominator2=0

10

11 mean1=np.mean(I1)

12 mean2=np.mean(I2)

13

14 for i in range (0,N,stepG2):

15 denominator1=denominator1+(I1[i]-mean1)*(I1[i]-mean1)

16 denominator1=denominator1/N

17

18

19 for i in range (0,N-tau,stepG2):

20 numerator=numerator+(I1[i]-mean1)*(I2[i+tau]-mean2)

21 denominator2=denominator2+(I2[i+tau]-mean2)*(I2[i+tau]-mean2)

22 numerator=numerator/(N-tau)

23 denominator2=denominator2/(N-tau)

24

25

26 return numerator/np.sqrt(denominator1*denominator2)

27

28 def fullG2(I1,I2, timeVecG2, cut, N,Samples,stepG2): #Function to build the

final correlation curve adding positive and negative delays
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29

30 if (len(timeVecG2) % 2) == 0:

31 timeVecG2=np.arange((-1E6*(cut*N)/Samples),1E6*(cut*N)/Samples,stepG2*1E6/Samples)

32 vecG2P=np.zeros(int(len(timeVecG2)//2)+1)

33 for i in range(0,int(len(timeVecG2)//2)+1):

34 vecG2P[i]=G2(i*stepG2,I1,I2, N,stepG2)

35

36 vecG2N=np.zeros(int(len(timeVecG2)//2))

37 for i in range(0,int(len(timeVecG2)//2)):

38 vecG2N[i]=G2((i+1)*stepG2,I2,I1, N, stepG2)

39 else:

40 timeVecG2=np.arange((-1E6*(cut*N)/Samples),1E6*(cut*N)/Samples+1E6/Samples,stepG2*1E6/Samples)

41 vecG2P=np.zeros(int(len(timeVecG2)//2)+1)

42 for i in range(0,int(len(timeVecG2)//2)+1):

43 vecG2P[i]=G2(i*stepG2,I1,I2, N,stepG2)

44

45

46 vecG2N=np.zeros(int(len(timeVecG2)//2))

47 for i in range(0,int(len(timeVecG2)//2)):

48 vecG2N[i]=G2((i+1)*stepG2,I2,I1, N,stepG2)

49

50 vecG2=np.concatenate([np.flip(vecG2N),vecG2P])

51

52 return vecG2

53

54

55 def main(c1,c2,begin,end): #Choose the columns to calculate the correlation

between them.

56 for i in range(begin,end):

57 DATE = ’2022.08.05’

58 SOURCE = i

59 print(’Date: ’+DATE+’ Curve: ’+str(SOURCE))

60
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61 path = ’File_address_’+DATE+’\\{}.txt’

62 file = path.format(str(SOURCE))

63

64 sampling, s1, s2 =np.loadtxt(file, delimiter=’\t’, skiprows=1,

usecols=(0,c1,c2), unpack=True)

65

66 Samples=int(1/(sampling[1]-sampling[0]))

67 if Samples%10==9:

68 Samples+=1

69 elif Samples%10==1:

70 Samples-=1

71 CutRight = int(0E-6*Samples) #Time cut to the right -> useful for

extracting smaller intervals in big sets of data

72 CutLeft = int(0E-6*Samples)

73

74 stepG2 = 1; #For faster runs, you may choose to jump some points with

this parameters.

75

76 dataG2 = []

77 pearson = []

78 I1=s1[CutLeft:-CutRight:1]

79 I2=s2[CutLeft:-CutRight:1]

80 N=len(I1)

81 cut=rangeG2*Samples/(N)

82 timeVecG2=np.arange((-cut*1E6*N/Samples)+1E6/Samples,cut*1E6*N/Samples,stepG2*1E6/Samples)

83 dataG2.append(fullG2(I1, I2,timeVecG2, cut, N,Samples,stepG2))
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APPENDIX D – WOLFRAM MATHEMATICA - INTENSITY CORRELATIONS OF 

SECTION 5
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