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ABSTRACT

The broadcast nature of wireless communications and the widespread adoption of con-

nected things increase attack surfaces and enable attackers to launch several cyber-attacks.

Moreover, the increasing adoption of machine learning (ML) in many applications, including

wireless communications, introduces new risks and vulnerabilities. Adversarial attacks craft and

introduce small perturbations that fool ML models into making wrong decisions. Hence, they

may compromise wireless communications tasks based on ML and jeopardize communication

availability and connected objects’ security. Therefore, cyber-attacks and adversarial attacks

may compromise security goals, causing severe damage and financial losses and even putting

people’s lives at risk. In this thesis, we advance the state-of-the-art in the security field by

considering both the cyber-attacks and adversarial attacks problems. We enhance the secu-

rity of connected objects by e�ectively and e�ciently detecting cyber-attacks while defending

systems that rely on machine learning from adversarial attacks. In Chapter 3, we verify that

although unsupervised ML-based intrusion detection systems (IDSs) are necessary due to the

di�culty and cost of obtaining labeled data, they usually present high false positive rates and

long detection times. Thus, we propose a novel unsupervised IDS that detects known and

unknown attacks using generative adversarial networks (GANs). Our approach combines the

GAN discrimination and reconstruction losses, and uses an encoder neural network that accel-

erates the reconstruction loss computation, significantly reducing detection times compared

to state-of-the-art approaches. Since many attacks have multiple steps and are launched from

di�erent applications and devices, Chapter 4 concerns di�erent strategies for considering time

dependencies among data in the detection of cyber-attacks. We propose a novel unsupervised

GAN-Based IDS that uses temporal convolutional networks (TCNs) and self-attention to re-

place LSTM networks for considering time dependencies among data. Our proposed approach

successfully replaces LSTM networks for attack detection and achieves better detection results.

Moreover, it allows di�erent configurations of TCN and self-attention layers to achieve di�er-

ent trade-o�s between detection rates and detection times and satisfy di�erent requirements.

In Chapter 5, we verify that the existing adversarial attack techniques either require complete

knowledge about the classifier’s model, which is an unrealistic assumption, or take too long to

craft adversarial perturbations, such that they cannot tamper with modulated signals received

by wireless receivers. Thus, we propose a novel black-box adversarial attack technique that

reduces the accuracy of modulation classifiers more than other black-box adversarial attacks



and crafts adversarial perturbations significantly faster than them. Our proposed technique

is essential for assessing the risks of using machine learning-based modulation classifiers in

wireless communications. Finally, given the damage that adversarial attacks may cause and

the ine�ectiveness of the existing defense techniques, in Chapter 6, we propose a defense tech-

nique for protecting modulation classifiers from adversarial attacks so that those attacks do not

harm the availability of wireless communications. Our proposed approach detects and removes

adversarial perturbations while reducing the sensitivity of machine learning-based classifiers to

them. Hence, it successfully diminishes the accuracy reduction caused by di�erent adversarial

attack techniques.

Keywords: internet of things; security; intrusion detection systems; machine learning; gener-

ative adversarial networks; adversarial attacks.



RESUMO

A natureza broadcast da comunicação sem fio e a adoção em larga escala de objetos

conectados aumentam as superfícies de ataques e permitem que atacantes realizem diversos

ciberataques. Além disso, a adoção crescente de aprendizagem de máquina (ou ML: machine

learning) em várias aplicações introduz novos riscos e vulnerabilidades. Ataques adversariais in-

troduzem pequenas perturbações que enganam modelos de ML para que eles tomem decisões

erradas, também comprometendo a segurança de objetos conectados. Portanto, ciberataques e

ataques adversariais podem comprometer os objetivos da segurança, causando danos severos e

prejuízos financeiros, bem como colocando em risco a vida das pessoas. Nesta tese, avançamos

o estado da arte na área da segurança considerando os problemas de ciberataques e ataques ad-

versariais. Melhoramos a segurança de objetos conectados detectando ciberataques de maneira

eficaz e eficiente, e defendendo sistemas baseados em aprendizagem de máquina de ataques

adversariais. No Capítulo 3, verificamos que embora sistemas de detecção de intrusão (ou

IDS: intrusion detection systems) baseados em modelos de ML não supervisionados sejam

necessários devido a dificuldade e custo de se obter dados rotulados, eles geralmente apresen-

tam taxas de falsos positivos altas e tempos de detecção longos. Assim, propomos um IDS

não supervisionado para detectar ataques conhecidos e desconhecidos usando redes genera-

tivas adversariais (ou GANs: generative adversarial networks). Nossa abordagem combina as

perdas do discriminador e do gerador da GAN, e usa uma rede neural encoder que acelera

o cálculo da perda de reconstrução, reduzindo significativamente os tempos de detecção em

comparação com abordagens do estado da arte. Como muitos ataques possuem vários passos

e são lançados de diferentes aplicações e dispositivos, o Capítulo 4 trata de diferentes es-

tratégias para considerar dependências temporais entre os dados na detecção de ciberataques.

Propomos um IDS não supervisionado baseado em GAN que usa redes convolucionais tempo-

rais (ou TCN: temporal convolutional networks) e self-attention para considerar dependências

temporais entre os dados sem usar redes LSTM. Nossa abordagem substitui com sucesso re-

des LSTM na detecção de ataques, obtendo resultados de detecção melhores e permitindo

diferentes configurações para atingir diferentes taxas e tempos de detecção. No Capítulo 5,

verificamos que as técnicas de ataques adversariais existentes ou requerem total conhecimento

sobre o classificador ou demoram muito para criar perturbações adversariais, não conseguindo

adulterar sinais modulados recebidos em dispositivos de comunicação sem fio. Assim, propo-

mos uma técnica de ataque adversarial caixa-preta que reduz a acurácia de classificadores de



modulação mais do que outras técnicas existentes e constrói perturbações adversariais signifi-

cantemente mais rápido do que elas. Nossa técnica é essencial para avaliar os riscos do uso de

classificadores de modulação baseados em aprendizagem de máquina em comunicações sem

fio. Finalmente, mediante os danos que ataques adversariais podem causar e da ineficácia das

técnicas de defesa existentes, no Capítulo 6, propomos uma técnica de defesa para proteger

classificadores de modulação contra ataques adversariais. Nossa abordagem detecta e remove

perturbações adversariais enquanto também reduz a sensibilidade de classificadores baseados

em aprendizagem de máquina, diminuindo com sucesso a redução de acurácia causada por

diferentes técnicas de ataques adversariais.

Palavras-chaves: internet das coisas; segurança; sistemas de detecção de intrusão; apren-

dizagem de máquina; redes generativas adversariais; ataques adversariais.
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1 INTRODUCTION

1.1 MOTIVATION

The increasing growth of connected devices, such as sensors, actuators, home appliances,

vehicles, and many others, is changing the way we interact with our surroundings. This is

reducing the gap between the physical and digital worlds and integrating devices into large-

scale platforms that acquire and process data to produce automated decisions while also

generating knowledge and information [(RODRIGUEZ, 2015; Santos et al., 2018)]. This plethora

of smart and connected devices compose smart-cities, industry 4.0, and, in general, the Internet

of Things (IoT). It creates a whole new world of possibilities and services, such as intelligent

tra�c lights, automated water treatment plants, and personal health monitoring applications

[(LI; XU; ZHAO, 2018; OSSEIRAN; MONSERRAT; MARSCH, 2016)]. Moreover, this connected

environment is expected to even further increase with the deployment of the Fifth-Generation

(5G) and the development of the Sixth-Generation (6G) of wireless/mobile communications,

which are expected to provide connectivity to a massive number of devices with highly diverse

requirements [(Illy et al., 2019; Sharma et al., 2011; SAAD; BENNIS; CHEN, 2020)].

On the other hand, the broadcast nature of wireless communications enables attackers

to eavesdrop and inject malicious data into the network and launch several cyber-attacks to

compromise the cyber-security goals, i.e., confidentiality, integrity, and availability [(FINNEY,

2014; HACHIMI et al., 2020; POURRANJBAR; KADDOUM; SAAD, 2022)]. Confidentiality aims to

protect information such that it can only be understood by the receiver and sender, i.e., third

parties must not be able to understand the data even if they have access to it. Integrity, on

the other hand, aims to ensure that data is not changed without authorization, i.e., that data

is not tampered. Finally, availability aims to guarantee that data is available and accessible

whenever it is needed, i.e., that systems are always fully functional and reliable. Therefore,

the widespread adoption of IoT introduces several security threats that may cause inaccurate

sensing and control of systems [(ALGULIYEV; IMAMVERDIYEV; SUKHOSTAT, 2018; Han et al.,

2014)].

Among those threats, cyber-attacks targeting availability may completely interrupt the

operation of systems, causing financial losses and putting at risk people’s lives [(ALI et al.,

2020; Jia et al., 2020; IBITOYE et al., 2019; MEFTAH et al., 2022; POURRANJBAR; KADDOUM;

AGHABABAIYAN, 2022)]. Denial of Service (DoS) and Distributed Denial of Service (DDoS)
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attacks, for example, attempt to exhaust a system’s or network’s resources by forcing compro-

mised devices to unnecessarily request resources until there is no resource left for legitimate

users [(Jia et al., 2020)]. Recently, a DDoS attack on a large Domain Name System (DNS)

provider caused disruptions to many services, such as Airbnb, Netflix, PayPal, Visa, Amazon,

The New York Times, and GitHub [(CLOUDFARE, ; NICHOLSON, )]. Similarly, cyber-criminals

have disrupted Internet service providers and Voice-Over-IP (VoIP) operations worldwide and

threatened several organizations with DDoS incursions unless extortion demands are met [(R.

Dobbins and S. Bjarnason, ; Roland Dobbins and Steinthor Bjarnason, )]. Consequences can be even

worse on critical systems. Autonomous vehicles cannot a�ord to lose access to their obsta-

cle recognition or breaking systems [(BAZA et al., 2021)]; otherwise, accidents could occur.

Likewise, one cannot a�ord their implantable medical devices, such as pacemakers and insulin

pumps, to run out of battery due to the multiple message transmissions of DoS attacks, as

such failures could be fatal [(VAKHTER et al., 2022)].

Moreover, while machine learning (ML) is being largely adopted in many applications and

domains due to its powerful classification capabilities, it also introduce new risks and vul-

nerabilities. Adversarial attacks craft and introduces small perturbations that fool machine

learning models into making wrong decisions, which then may significantly impact the security

of applications [(CHAKRABORTY et al., 2018; YUAN et al., 2019)]. Hence,just as cyber-attacks

do, adversarial attacks may compromise the security of systems and networks, impacting their

confidentiality, integrity, and availability. For instance, while deep learning models have been

increasingly adopted for several wireless communication tasks [(GINGRAS; POURRANJBAR; KAD-

DOUM, 2020; NGUYEN et al., 2022)], such as channel encoding and decoding [(LIANG; SHEN; WU,

2018)], resource allocation [(SANGUINETTI; ZAPPONE; DEBBAH, 2018; SUN et al., 2017)], and

automatic modulation classification (AMC) [(O’SHEA; CORGAN; CLANCY, 2016; O’SHEA; ROY;

CLANCY, 2018)], adversarial attacks may compromise them and jeopardize the wireless com-

munication’s availability. The works in [(ARAUJO-FILHO et al., 2022; LIN et al., 2021)] show, for

example, that adversarial attacks compromise ML-based modulation classifiers used in wireless

receivers to identify which scheme has been used to modulate signals in wireless transmitters.

As a result, wireless receivers cannot correctly demodulate signals, and communication is

interrupted [(ARAUJO-FILHO et al., 2022; LIN et al., 2021)].

Despite numerous security solutions available on the traditional Internet, the IoT’s phys-

ical constraints, highly heterogeneous environment, and the use of ML impose new security

challenges [(MIRANDA et al., 2022; NAEEM; ALI; KADDOUM, 2023; ILLY et al., 2022; GARG et
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al., 2020; POURRANJBAR et al., 2023)]. For instance, the heterogeneity brought by di�erent

access technologies, applications, and requirements significantly increases the attacks surfaces

and the threat from new types of attacks [(ABESHU; CHILAMKURTI, Feb, 2018; Papamartzivanos;

Gómez Mármol; Kambourakis, 2019; Midi et al., 2017)]. On the other hand, the limited battery and

computing power of most IoT devices thwart the deployment of most security mechanisms

based on cryptography and authentication [(ABESHU; CHILAMKURTI, Feb, 2018; Yang et al.,

2017)]. Finally, since adversarial attacks have yet to be exploited in many fields, it is still not

clear the extent to which they can compromise the availability of systems and how to make

ML-based systems resistant to them.

To overcome these challenges, Intrusion Detection Systems (IDSs), which detect attacks

when other security mechanisms fail, have emerged as a fundamental component to protect and

secure systems and networks [(Chaabouni et al., 2019; LI et al., 2019; Jia et al., 2020)]. In contrast

to other approaches, anomaly-based IDSs detect attacks by measuring deviations between data

patterns and what is considered to be a normal behavior [(Nisioti et al., 2018)]. Unsupervised

anomaly-based IDSs go one step further by not requiring any knowledge or previous occurrences

of attacks. Thus, they can detect both known and unknown attacks, which is an essential

feature as new types of attacks are launched daily [(Nisioti et al., 2018)]. Although existing

ML-based IDSs have been showing promising results at detecting cyber-attacks [(ABESHU;

CHILAMKURTI, Feb, 2018; VIGNESWARAN et al., 2018; SHONE et al., Feb, 2018)], there are still

several challenges and open issues that limit their e�ciency and e�ectiveness. Furthermore,

detecting adversarial attacks that jeopardize wireless communication tasks, such as the correct

demodulation of signals, might not be enough, as their availability would still be compromised

despite our awareness. Therefore, in addition to e�ectively and e�ciently detecting cyber-

attacks, it is also urgently necessary to protect ML-based systems from adversarial attacks.

1.2 PROBLEM STATEMENT

Since new cyber-attacks are constantly launched, IDSs must be able to detect both known

and zero-day attacks. In addition, since obtaining labeled attack data is very challenging and

time-consuming, if not impossible, e.g., for zero-day attacks, IDSs need to consider unlabeled

data [(CHOI et al., Sep, 2019; SCHLEGL et al., May, 2019; OZGUMUS, 2019)]. Thus, unsupervised

learning techniques are deemed best for detecting cyber-attacks [(MITCHELL; CHEN, Apr, 2014;

ZARPELAO et al., Apr, 2017; Nisioti et al., 2018)]. However, most existing unsupervised techniques
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are not able to deal with the non-linearity and inherent correlations in multivariate time series,

which is the case of a considerable amount of real-world data, including data streams generated

by sensors in IoT and Cyber-Physical Systems (CPSs) [(LI et al., 2019; LI; WEN, Jan, 2014;

GOH et al., 2017)]. Moreover, even when using state-of-the-art deep learning algorithms, most

existing unsupervised IDSs present high false positive rates, which can make the operation

of Security Operation Centers (SOCs) unfeasible as security analysts would have to analyze

many false alarms [(Prabavathy; Sundarakantham; Shalinie, 2018)]. Therefore, it is necessary to

investigate and propose novel unsupervised IDSs that simultaneously achieve low false positive

and negative rates.

Moreover, since cyber-attacks need to be detected and stopped before causing damage,

the detection time, i.e., the time between the start and the detection of an attack, needs to

be as short as possible. However, most state-of-the-art IDSs have long detection times [(LI et

al., 2019)] because they rely on complex neural networks that have many layers, and on Long

Short-Term Memory (LSTM) neural networks. Although LSTM networks improve detection

results by considering time dependencies among data, their limited capacity to parallelize com-

putations increases the detection time [(HOLLIS; VISCARDI; YI, 2018; BAI; KOLTER; KOLTUN,

2018; VASWANI et al., 2017; Huang et al., 2020)]. In addition, recent studies show that LSTM’s

sequential processing of data significantly increases the computational complexity and chal-

lenges LSTM’s performance on devices with limited computational power and memory [(Duc

et al., 2020)]. Therefore, it is necessary to optimize detection algorithms and investigate other

neural network architectures that consider time dependencies among data while allowing the

fast detection of intrusions such that cyber-attacks are stopped before causing damage.

Finally, it has been shown that ML-based systems are vulnerable to adversarial attacks,

which can cause severe security issues by putting at risk the availability of systems that

rely on ML [(IBITOYE et al., 2019)]. Adversaries can, for example, craft perturbations and

manipulate legitimate inputs to force ML-based modulation classifiers to produce incorrect

outputs and interrupt wireless communications [(CHAKRABORTY et al., 2018; ARAUJO-FILHO

et al., 2022)]. Despite such risks, most studies on adversarial attacks are focused on image

classifiers [(USAMA et al., 2019; SAMANGOUEI; KABKAB; CHELLAPPA, 2018)]. Moreover, only

a few works have proposed techniques to defend connected objects from such attacks, most

of which only marginally reduce the impact of the attacks [(ZHANG et al., 2022; ZHANG et

al., 2021b)]. Therefore, further investigations are required to ensure the security of systems

against adversarial attacks.
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Despite the existing security solutions and the di�erent approaches that have been pre-

sented to detect cyber-attacks and protect systems from adversarial attacks, there are still a

variety of issues to be tackled. After conducting an extensive literature review, we reached a

few concluding remarks and identified the following open challenges that our thesis aims to

solve:

• While IDSs should not rely on labelled data, most of them present high false positive

rates and struggle with the time required to detect intrusions. Thus, it is necessary to

propose new detection solutions that reduce the detection time and achieve low false

positive and false negative rates.

• While LSTM networks are heavily used by state-of-the-art intrusion detection systems,

they present several drawbacks that put in doubt their status as the standard architecture

for sequence modeling tasks. Thus, it is necessary to investigate novel strategies for

considering time-dependencies among data.

• Although adversarial attacks may significantly compromise the security of systems that

rely on ML, their study is still in its early stages. Thus, it is necessary to investigate the

impact of adversarial attacks on di�erent application domains and propose techniques

to enhance systems’ security against them.

1.3 RESEARCH OBJECTIVES

Although cyber-attacks and adversarial attacks represent di�erent techniques for compro-

mising security, their e�ects are the same, as they can severely compromise confidentiality,

integrity, and availability. Hence, given their potential impact, the hypothesis that guides our

research is whether artificial intelligence enhances security by e�ectively and e�ciently detect-

ing attacks or harms security due to the vulnerabilities it adds. Therefore, in our research,

we aim to advance the state-of-the-art in the security field by addressing the aforementioned

identified challenges. Our main goal is to enhance the security of systems by e�ectively and ef-

ficiently detecting cyber-attacks while also defending systems that rely on ML from adversarial

attacks. To achieve our goal, we define the following four specific objectives:

1. Propose an unsupervised IDS that reduces the detection time of the current state-of-

the-art solutions, making it more suitable for latency-constrained applications.
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2. Propose an unsupervised IDS that considers time-dependencies among data without

relying on LSTM networks, such that their drawbacks are avoided.

3. Propose an adversarial attack technique and investigate the extent to which it may

jeopardize security by compromising the availability of systems.

4. Investigate and propose a defense technique that protects ML-based systems from ad-

versarial attacks.

1.4 CONTRIBUTIONS AND OUTLINE

Our thesis is structured as shown in Fig. 1, and detailed as follows.

Figure 1 – Summary of the thesis structure
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Source: The author (2023).

Chapter 2 presents the technical background and literature review necessary for our work.

We first introduce intrusion detection systems and their taxonomy. Then, we discuss neural

network architectures and frameworks used in our work, such as Convolutional Neural Networks

(CNNs), LSTMs, Temporal Convolutional Networks (TCNs), self-attention, and Generative

Adversarial Networks (GANs). Finally, we formulate adversarial attacks and introduce their

taxonomy.

In Chapter 3, we evaluate the unsupervised detection of cyber-attacks problem using LSTM

networks and GANs, which is a promising deep learning framework that simultaneously trains

two neural networks: a generator and a discriminator. We show that we can combine the

generator and discriminator networks to compute an anomaly detection score that indicates

whether samples are malicious with higher detection rates than when only one of those networks
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is used. Moreover, we show that relying on an additional third neural network can accelerate

the anomaly detection score computation, thus significantly reducing the detection time.

In Chapter 4, we focus on detecting DDoS attacks, which significantly impact the avail-

ability of systems, and investigating di�erent neural network architectures that could replace

LSTM networks for considering time dependencies among data in GAN-based IDSs. We show

that IDSs can combine TCN and self-attention layers to achieve di�erent trade-o�s between

detection rates and detection times while outperforming IDSs that rely on LSTM networks.

In Chapter 5, we formulate adversarial attacks and show how they pose a serious secu-

rity problem by significantly compromising the availability of wireless communications. We

show that powerful adversarial perturbations can be crafted by modifying GANs and combin-

ing them to the multi-task loss [(KENDALL; GAL; CIPOLLA, 2018)] so that they significantly

reduce the accuracy of modulation classifiers in wireless receivers, consequently interrupting

communication.

In Chapter 6, we review the existing techniques for defending modulation classifiers from

adversarial attacks. Then, we show that it is possible to significantly diminish the impact

of adversarial attacks by estimating and removing large adversarial samples with a specially

trained Denoising Autoencoder (DAE).

Finally, we conclude our thesis by summarizing the conclusions from the main chapters and

presenting recommendations for future works in Chapter 7.

1.5 RELATED PUBLICATIONS

The author’s Ph.D. research contributed to the following published and submitted journal

research articles.

P. Freitas de Araujo-Filho, G. Kaddoum, D. R. Campelo, A. Gondim Santos, D. Macêdo and

C. Zanchettin, "Intrusion Detection for Cyber–Physical Systems Using Generative Adversarial

Networks in Fog Environment", in IEEE Internet of Things Journal, vol. 8, no. 8, pp. 6247-

6256, April 15, 2021, doi: 10.1109/JIOT.2020.3024800.

P. Freitas de Araujo-Filho, M. Naili, G. Kaddoum, E. T. Fapi and Z. Zhu, "Unsupervised

GAN-Based Intrusion Detection System Using Temporal Convolutional Networks and Self-

Attention", in IEEE Transactions on Network and Service Management, doi: 10.1109/TNSM.

2023.3260039.



26

P. Freitas de Araujo-Filho, G. Kaddoum, M. Naili, E. T. Fapi and Z. Zhu, "Multi-Objective

GAN-Based Adversarial Attack Technique for Modulation Classifiers", in IEEE Communications

Letters, April, 2022, doi: 10.1109/LCOMM.2022.3167368.

P. Freitas de Araujo-Filho, G. Kaddoum, M. C. B. Nasr, H. F. Arcoverde, and D. R.

Campelo, "Defending Wireless Receivers Against Adversarial Attacks on Modulation Classi-

fiers", submitted to IEEE Internet of Things Journal.

Besides the above articles, which contribute to the main contents of this thesis, the com-

plete list of publications that the author was involved in during his Ph.D. research is given at

the end of this thesis.

1.6 RELATED GRANTS AND AWARDS

The author’s Ph.D. research was recognized with the following grants and awards:

• Microsoft Research Ph.D. Fellowship (2022)

One of the two 2022 Microsoft Research Ph.D. Fellowship recipients in Security, Privacy,

and Cryptography, from a total of 36 recipients in all areas worldwide.

• Fonds de recherche du Québec - B2X Scholarship (2021-2022)

First place in the FRQNT’s B2X Doctoral Scholarship in the 2021-2022 competition.



27

2 BACKGROUND AND LITERATURE REVIEW

In this chapter, we present the technical background and literature review necessary for

the development and understanding of our thesis.

2.1 INTRUSION DETECTION SYSTEMS

Intrusion Detection Systems are reactive systems that monitor the network tra�c and

system-level applications to detect and report malicious activities carried out by internal or

external intruders. Internal intruders are users that already have some degree of legitimate

access to a system or network and that are attempting to raise that access privilege and

misuse it. On the other hand, external intruders do not have any access authorization to a

system or network and attempt to gain and misuse it.

Despite the di�erent security mechanisms used, systems and networks might still be subject

to cyber-attacks. Therefore, intrusion detection systems have a fundamental role as a second

line of defense and are the last resource when other security solutions fail. In order to be

e�ective, IDSs need to meet several requirements. For instance, they need to allow dynamic

reconfiguration, run continually with minimal human supervision, produce minimal overhead

and degradation of service, and be scalable to serve a large number of users.

Typical IDSs are usually composed of three components: agents, directors, and notifier.

Agents, or sensors, are responsible for collecting and sending data to the directors, which then

analyze all data received and reach a decision of whether an intrusion is occurring or not.

Finally, the notifier system receives the directors’ decisions and generates an alert when an

intrusion is detected. Depending on the number, distribution, and working mode of agents

and directors, IDSs can be classified according to their monitoring environment, placement

strategy, operation mode, and detection method.

2.1.1 Monitoring Environment

IDSs can have di�erent monitoring environments, and then be classified as Host-Based In-

trusion Detection Systems (HIDSs) or as Network-Based Intrusion Detection Systems (NIDSs).

HIDSs monitor and analyze activities related to a single host machine. They detect intrusions



28

by monitoring running processes, file-system changes, inter-process communications, applica-

tion logs, and operating system logs. HIDSs are preferred for insider intrusions detection and

benefit from lower volumes of tra�c, overheads, and detection times. However, they only de-

tect intrusions on a specific host, they become vulnerable when the host operating system is

compromised, and they are more expensive and challenging to implement.

On the other hand, instead of monitoring and analyzing information from a single host,

NIDSs detect intrusions by monitoring and analyzing the tra�c that passes through a network.

They are preferred against external intrusions and network-based attacks, such as the DoS

attacks. In addition, they can protect the whole network and are less expensive and less

complex to implement. However, NIDSs generate large amounts of data, large overheads, and

cannot deal with encrypted network tra�c.

2.1.2 Placement Strategy

Intrusion detection systems may have di�erent placement strategies, depending on where

they are deployed. In the centralized approach, IDSs are placed in a central location, such as a

router or a dedicated host, to which all data is sent for analysis. In this context, a single node

may o�er more computing and battery resources for deploying the IDS; however, the IDS may

be completely jeopardized is the node is compromised. On the other hand, in the distributed

approach, IDSs are placed in di�erent nodes to which all data or part of the data is sent for

analysis. Since most of the nodes usually have constrained resources, e.g., computing power

and battery, such IDSs must be very optimized. Finally, the hybrid strategy combines concepts

of centralized and distributed placements to take advantage of their strengths and overcome

their drawbacks. One possible hybrid approach is to organize a network in clusters, where the

IDSs placed in each cluster are responsible for monitoring the nodes within the cluster. Such

strategy requires only a few nodes to have more resources for deploying the detection solutions.

2.1.3 Operation Mode

Regarding the operation, IDSs can work in an o�ine or a real-time manner. In the former,

the detection of intrusions does not need to respect a deadline, i.e., intrusions can be detected

whenever possible, regardless of possible damages. On the other hand, real-time IDSs are

required to detect intrusions promptly, such that an alert is emitted while the intrusion is
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still occurring. Here, although more challenging, real-time detection is essential for stopping

intrusions and preventing damages.

2.1.4 Detection Method

Depending on their detection method, IDSs can be classified into signature-based IDS,

anomaly-based IDS, specification-based IDS, and hybrid IDS. Signature-based IDSs, also known

as misuse IDSs, detect intrusions by comparing events and data patterns that correspond to

the system or network behavior to signatures of known attacks stored in the IDS. If there is

a match with a stored signature, an intrusion represented by that signature is detected. This

approach is usually very accurate and e�ective for detecting known threats, and achieves low

false positive rates. However, it has two major drawbacks, where it may require a large memory

for storing signatures and can only detect known attacks, i.e., zero-day attacks for which there

is no signature available cannot be detected.

On the other hand, instead of comparing events to signatures looking for a match, Anomaly-

based IDSs compare events to a normal behavior profile, such that large deviations from this

profile indicate attacks. The normal behavior profile, which corresponds to the system’s or

network’s normal functioning, can be built through thresholds or ML algorithms that identify

patterns corresponding to the normal behavior. Although anomaly-based IDSs usually present

higher false positive rates, they are capable of detecting unknown attacks.

Specification-based IDSs also detect intrusions by comparing observed events to what is

considered to be a normal system or network behavior. However, in addition to that, the input

data is also compared to the specifications of the system. For instance, a vehicle manufac-

turer knows that the engine oil temperature of their car ranges between two values. Thus,

in addition to the normal behavior profile, an IDS can also use that range to detect intru-

sions. The specification-based approach usually achieves lower false positive rates than the

anomaly-based approach, at the expense of requiring knowledge of the system. Finally, hybrid-

approaches combine the previous methods to take advantage of their strengths and overcome

their limitations.
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2.2 NEURAL NETWORKS

Neural networks are composed of neurons that perform a dot product and apply an optional

non-linear function to a received input. These neurons are organized and divided into one input

layer, one or more hidden layers, and one output layer. Each neuron is fully connected to all

neurons in the previous layer and is entirely independent of the other neurons in its own layer.

Although useful for many problems, this architecture does not consider dependencies among

data and does not scale well for high dimensional inputs, such as images, due to the large

number of connections and parameters required. For instance, a single fully-connected neuron

in the first hidden layer of a neural network would have 3072 (32*32*3) weights for input

images of size 32x32x3 (32 wide, 32 high, 3 color channels), or 120,000 (200*200*3) weights

for input images of size 200x200x3.

2.2.1 Convolutional Neural Networks

Just as regular neural networks, CNNs are composed of layers of neurons with learnable

weights and biases. The whole network expresses a single di�erentiable score function, such that

class scores are obtained from the input patterns. However, by encoding some properties into

its architecture, the network may have much fewer parameters, and its forward function also

becomes more e�cient. In contrast to regular neural networks, the neurons of a CNN’s layers

are arranged in three dimensions: width, height, and depth. Accordingly, the inputs considered

for that architecture are also three dimensional volumes, instead of a single dimensional pattern.

Figure 2a shows the architecture of a regular neural network with two hidden layers while Figure

2b exhibits the architecture of a CNN.

Figure 2 – Neural network and convolutional neural network architectures

(a) Neural network architecture
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(b) CNN architecture
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Convolutional neural networks may include sequences of di�erent layers, such as fully-

connected layer, convolutional layer, and pooling layer. The neurons of fully-connected layers

are connected to all neurons in the previous layers and work just as the layers of regular neural

networks. On the other hand, the neurons of convolutional layers are connected to only small

regions of the previous layer, which significantly reduces the network’s number of parameters.

These layers use filters and perform convolution operations, which reduces the network’s size.

Pooling layers perform a downsampling operation, by for example taking the maximum or

average value along the network’s width and height dimensions, consequently reducing the

network’s size. Finally, the output layer reduces the inputs into a single vector of class scores

in the depth dimension. Figures 3a, 3b, and 3c show a fully-connected, convolutional, and max

pooling layers, respectively.

Figure 3 – Di�erent layers of a CNN (obtained from [(AMIDI; AMIDI, 2018)])

(a) Fully-connected layer (b) Convolutional layer (c) Max pooling layer

Source: (AMIDI; AMIDI, 2018).

2.2.2 Recurrent Neural Networks / Long Short-Term Memory

Traditional neural networks consider that all input patterns are independent of each other

and cannot deal with dependencies among data. However, some applications have inherent

dependencies among their data and need to consider sequences of data and how one pattern

relates and a�ects the other. For instance, in natural language processing or speech recogni-

tion tasks, neural networks are required to process sequences of words and sounds to recognize

meaningful information. Similarly, data streams generated by sensors in cyber-physical systems

have time dependencies between them that could contribute to classification tasks if consid-

ered. In order to deal with sequences of data, Recurrent Neural Networks (RNNs) allow the

previous outputs to be used, and computations are performed for every element of a sequence

such that the computation outputs for one element of the sequence serves as input for the
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computation of the following element in that sequence.

Besides considering dependencies among data, RNNs have the advantages of not increasing

the model size with the input size and the possibility of processing inputs with any length.

On the other hand, RNNs usually present longer computation times, di�culties in connecting

previous information to the present task when there is a large gap between them, and vanishing

and exploding gradient problems. Since the derivatives of the hidden layers are multiplied by

each other, if they are too large, the gradient exponentially increases through the network and

eventually explodes, making the model unstable. However, if the derivatives are too small, the

gradient exponentially decreases through the model until it vanishes, and thus the model is

unable to learn by not having its weights su�ciently updated.

In this context, LSTM units have been proposed to deal with the vanishing gradient prob-

lem, and with significant gaps between past and current data, i.e., they are capable of learning

long-term dependencies. LSTM networks are a modified version of RNNs that have, for its

repeating module, a di�erent structure composed of an input gate, a forget gate, and an

output gate. The input gate decides what new information should be stored in the cell state.

The forget gate decides what information should be discarded from the cell state. Finally, the

output gate filters the cell state and decides what information should be outputted. Figures

4a and 4b depict the RNN and LSTM architectures, respectively.

Figure 4 – Recurrent neural network and LSTM architectures

(a) RNN Architecture (b) LSTM Architecture

Source: (MITTAL, 2019).

2.2.3 Temporal Convolutional Networks

TCNs refer to modified convolutional architectures for sequence prediction tasks. They

map input sequences to output sequences of the same length and use causal convolutions, i.e.,

convolutions that use only information from the past. Thus, an output at time t is convolved
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only with elements from times earlier than t in the previous layer. In addition, TCNs also use

dilated convolutions to enable the architecture to look far into the past. Thus, for an input

sequence x œ Rn and a filter f : {0, ..., k ≠ 1} æ R, the dilated convolution on element s of

the sequence is defined as

F (s) = (x úd f)(s) =
k≠1ÿ

i=0
f(i)xs≠di, (2.1)

where k is the filter size and d is the dilation factor. Finally, TCN networks allow a residual

connection so the architecture learns what modifications are imposed on the data rather than

only modifying it. This connection contributes to avoiding the gradient vanishing problem and

consists of adding the input x to the output of a series of transformations T . It is given by

O(x) = �(x + T (x)), (2.2)

where � is an activation function.

TCNs provide a powerful way to extract temporal dependencies from data and have been

shown to have several advantages over LSTM networks for modeling sequences. For instanve,

computations can be performed in parallel since the same filter can be used in all layers, and

input sequences can be processed as a whole. This means TCNs do not need to store the partial

results of computations and thus consume less memory during training. Finally, TCNs have

been shown to have more stable gradients, which avoids the gradient vanishing and exploding

problems [(BAI; KOLTER; KOLTUN, 2018; Duc et al., 2020)].

2.2.4 Self-Attention

Attention functions are defined as the mapping of a matrix of queries Q, a matrix of keys

K, and a matrix of values V to an output. Scaled dot product attention is one type of attention

function, which computes a context matrix C as

C = Attention(Q, K, V ) = Softmax

A
QKT

Ô
dk

B

V, (2.3)

where dk is the dimension of Values. Matrices K and V usually correspond to input sequences

x, whereas matrix Q is composed of randomly initialized trainable parameters. The dot product

of Q and KT gives a measure of the pairwise similarity between the query and key matrices,

which results in an attention score. Thus, the matrix C represents the intrinsic dependencies

between representations of a sequence.
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Moreover, it has been shown that using linearly projected queries, keys, and values h times

with learned linear projections contributes to extracting relationships between data [(LI et al.,

2021; VASWANI et al., 2017)]. Thus, Multi-Head Attention (MHA) modules perform attention

functions in parallel on each of the projected versions of queries, keys, and values, and then

concatenate their outputs as

MHA(Q, K, V ) = W 0Concat(head1, ..., headh), (2.4)

where W 0 is a parameter matrix for the concatenation operation and headi = Attention(QW Q
i ,

KW K
i , V W V

i ). W Q
i , W K

i , and W V
i are parameter matrices that project queries, keys, and val-

ues, respectively. Finally, self-attention considers that all the keys, values, and queries come

from the same place, such as the output of the previous layer in a neural network. This allows

modules to capture in-depth contextual information and relationships between data.

Similarly to TCNs, attention mechanisms make it possible to extract dependencies among

data and have been shown to outperform LSTM networks in several sequence modeling tasks.

They are more capable of extracting features than LSTM networks, which produces more

accurate models [(LI et al., 2021)]. In addition, they can process sequences as a whole and they

enable more computation parallelization as MHA heads can run in parallel. Furthermore, while

LSTM networks require O(n) sequential operations, TCN, self-attention, and MHA layers have

a constant number of sequentially executed operations.

2.3 GENERATIVE ADVERSARIAL NETWORKS

Generative Models are a powerful method for learning the probabilistic distribution of a

training set, such that it is possible to generate new samples of that same distribution. One of

the most e�cient generative models are GANs, which provide a powerful modeling framework

able to cope with high-dimensional data.

GANs estimate generative models through an adversarial process by simultaneously training

two competing networks: a generator G and a discriminator D. The generator network is

trained to produce synthetic data examples that are similar to real data patterns by taking

a random vector z, drawn from an input distribution Pz(z) in a latent Z-Space. Thus, it

captures the hidden distribution of the training samples and can be seen as an implicit model

of the system. On the other hand, the discriminator network is trained to distinguish and

classify synthetic examples produced by the generator and real data samples from the training
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set. The two models are trained together in a zero-sum adversarial minimax game, in which

the generator tries to maximize the probability of producing outputs recognized as real, and

the discriminator tries to minimize that same probability [(GOODFELLOW; BENGIO; COURVILLE,

2016; GOODFELLOW et al., 2014; SCHLEGL et al., May, 2019)]. Thus, they can be regarded as

two agents playing a minimax game with value function V (G, D) as in

min
G

max
D

V (D, G) = Ex≥Pdata(x)[log D(x)] + Ez≥Pz(z)[1 ≠ log D(G(x))]. (2.5)

Since GANs might be challenging to train and su�er from the gradient vanishing problem

[(ARJOVSKY; CHINTALA; BOTTOU, 2017; CRESWELL et al., 2018)], researchers have proposed

variations of the original GAN formulation to solve such drawbacks. Thus, the Wasserstein

GAN (WGAN) trains a GAN by relying on the Wasserstein distance between two probability

distributions [(CRESWELL et al., 2018)]. Its discriminator estimates the Wasserstein distance

by maximizing the di�erence between average critic score on real and fake samples, i.e.,

by minimizing the discriminator loss given by LD = D(G(z)) ≠ D(x). On the other hand,

the WGAN generator has the opposite goal of maximizing the average critic score on fake

samples by minimizing the generator loss given by LG = ≠D(G(z)) [(ARJOVSKY; CHINTALA;

BOTTOU, 2017; CRESWELL et al., 2018)]. Furthermore, as generative artificial intelligence is an

active research field, other GAN formulations, such as WGAN Gradient Penalty (WGAN-GP)

[(GULRAJANI et al., 2017)] and Instance-Conditioned GAN [(CASANOVA et al., 2021)], are being

proposed to further advance the remarkable results that GANs have been achieving.

Regardless of the GAN formulation, since no labels are required, GANs are used in unsu-

pervised problems to find an implicit probability distribution and model of the system, while

also providing a model D to detect generated or fake samples. Thus, they present a promis-

ing approach to tackle the challenge of developing e�ective unsupervised anomaly detection

methods for cyber-attacks with probability distributions di�cult to estimate. Figure 5 exhibits

a general diagram of GANs.
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Figure 5 – General diagram of GANs

Source: (SILVA, 2018).

2.4 ADVERSARIAL ATTACKS

Although deep learning models may be trained with large amounts of data, it is impractical

to train them to cover all possible input feature vectors. As a result, the decision boundary

found by a trained model may di�er from the real one. Such discrepancy creates room for a

trained model to make mistakes [(LIN et al., 2021)]. Thus, adversarial attacks craft perturbations

to adulterate data samples so that they fall within that discrepancy area and are misclassified by

a trained model, as shown in Figure 6. However, this is not a trivial task as those perturbations

must be large enough to cause misclassifications but small enough not to be perceptible.

Therefore, given a sample x, the goal of an adversarial attacker is to find a perturbation ” and

construct an adversarial sample xadv = x + ” while satisfying

min ||xadv ≠ x|| < fl (2.6)

and

f(xadv) ”= f(x), (2.7)

where || · || represents a chosen distance metric, fl is the maximum imperceptible perturbation

according to that metric, and f is the already trained classifier target of the attack.
2.4.1 Adversarial Attacks Taxonomy

Adversarial attacks can be classified according to di�erent criteria, such as knowledge,

specificity, purpose, and impact. Moreover, based on the knowledge that they require about

their target model f , adversarial attacks can be classified as white and black-box attacks.

White-box attacks require complete knowledge of the classifier’s model, such as training data,

neural network architecture, learning algorithm, hyper-parameters, and learned model [(YUAN et
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Figure 6 – Adversarial
sample crossing

decision boundary

x xadv

Source: The author (2023).

al., 2019)]. On the other hand, black-box attacks assume a more realistic and feasible scenario,

in which the attacker has access to only the model’s output [(YUAN et al., 2019)]. Furthermore,

in real-world systems, threat models might be even more restrictive. The work in [(ILYAS et al.,

2018)] defines three more realistic threat models: query-limited, partial-information, and label-

only. The query-limited scenario considers that attackers have access to only a limited number

of queries to the classifier, i.e., only a limited number of model’s outputs may be accessed.

The partial-information scenario considers that attackers have access to only the probabilities

of some of the model’s classes or scores that do not sum to one. Finally, the label-only or

decision-based scenario refers to when the attacker has access only to the model’s decision,

i.e., the class to which it assigns a given data sample.

According to their specificity, adversarial attacks can be classified as targeted or untargeted.

The former refers to attacks that aim to induce ML models to make specific mistakes. In a

classification problem, for example, targeted adversarial attacks want classifiers to assign data

samples to a particular wrong class. On the other hand, untargeted attacks are only concerned

with inducing wrong results, e.g., they do not care to what class classifiers assign data samples

as long as it is not the correct one.

According to their purpose, the two main categories in which adversarial attacks can be

classified are evasion and poisoning. Evasion attacks craft and introduce perturbations to data

samples during inference time, i.e., the target of the attack is to tamper with data that is

being sent to the ML model. On the other hand, poisoning attacks aim to craft and introduce

adversarial perturbations to data samples that are used for training the ML model. Their goal

is to compromise the model during training so that it produces wrong results once in operation.
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Finally, as adversarial attacks create security issues, they can also be classified according

to their impact on the confidentiality, integrity, and availability of data. Thus, adversarial

attacks compromise the confidentiality of the data when the perturbations they introduce

reveal confidential information by, for example, granting unauthorized access to a system.

They compromise the integrity of the data when the adversarial perturbations introduced

tamper with a data sample, such as a sensor measurement or the contents of a message

transmitted through a wireless network. Adversarial attacks compromise the availability of the

data when they interrupt the functioning of a system, such as when adversarial perturbations

cause wrong classification results on modulation classifiers, causing an interruption of wireless

communications.
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3.1 ABSTRACT

Cyber-attacks on CPSs can lead to sensing and actuation misbehavior, severe damages

to physical objects, and safety risks. Machine learning algorithms have been proposed for

hindering cyber-attacks on CPSs, but the absence of labeled data from novel attacks makes

their detection quite challenging. In this context, GANs are a promising unsupervised approach

to detect cyber-attacks by implicitly modeling the system. However, the detection of cyber-

attacks on CPSs has strict latency requirements, since the attacks need to be stopped before

the system is compromised. In this paper, we propose FID-GAN, a novel fog-based, unsuper-

vised IDS for CPSs using GANs. The IDS is proposed for a fog architecture, which brings

computation resources closer to the end nodes and thus contributes to meeting low-latency

requirements. In order to achieve higher detection rates, the proposed architecture computes

a reconstruction loss based on the reconstruction of data samples mapped to the latent space.

Other works that follow a similar approach struggle with the time required to compute the

reconstruction loss, which renders them impractical for latency constrained applications. We

address this problem by training an Encoder that accelerates the reconstruction loss compu-

tation. Experiments show that the proposed solution achieves higher detection rates and is at

least 5.5 times faster than a baseline approach in the three studied datasets.
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3.2 INTRODUCTION

Cyber-physical systems integrate computing and physical processes, such that e�ective

control is performed through computation, e�cient communication, and connected sensors and

actuators [(DING et al., 2018)]. CPSs enable remote access and control of systems, devices,

and machines, and thus are essential in industrial environments, especially for Industry 4.0

[(DING et al., 2018; ALGULIYEV; IMAMVERDIYEV; SUKHOSTAT, 2018)]. However, the widespread

adoption of CPSs introduces several security threats that may cause inaccurate sensing and

actuation. Such misbehavior can lead to severe damages to the controlled physical objects and

harm the people that rely on them [(ALGULIYEV; IMAMVERDIYEV; SUKHOSTAT, 2018; Han et

al., 2014)].

Intrusion detection systems, which detect intrusions that other security mechanisms were

not able to prevent, work as a second line of defense and have a significant role in secur-

ing cyber-physical systems [(LI et al., 2019)]. IDSs based on anomaly detection build a nor-

mal behavior profile and classify behaviors that do not match this normal profile as attacks

[(MITCHELL; CHEN, Apr, 2014; ZARPELAO et al., Apr, 2017)]. In contrast to other approaches,

anomaly-detection IDSs can detect unknown attacks, which is an essential feature for CPSs.

CPSs connect a wide range of devices with di�erent computation resources, communication

technologies, battery capacity, software, and operating systems. Such heterogeneity challenges

the deployment of security solutions and increases the attack surfaces, making CPSs more

vulnerable to new and unknown attacks [(ABESHU; CHILAMKURTI, Feb, 2018; Papamartzivanos;

Gómez Mármol; Kambourakis, 2019; Midi et al., 2017)]. Traditional ML algorithms were shown

to identify data patterns and detect cyber-attacks successfully in IDSs. However, they were

also shown to not scale e�ectively with large datasets and to achieve low accuracy for the

detection of cyber-attacks when network nodes are significantly distributed [(ABESHU; CHIL-

AMKURTI, Feb, 2018; ZENATI et al., 2018b)]. On the other hand, advances in deep learning

foment new IDS mechanisms capable of handling the current’s cyber-attacks, level of sophisti-

cation and complexity [(ABESHU; CHILAMKURTI, Feb, 2018; VIGNESWARAN et al., 2018; SHONE

et al., Feb, 2018)].

Obtaining labels for attacks can be very time consuming, challenging, and sometimes even

impossible. Therefore, unsupervised learning techniques, capable of detecting cyber-attacks

without a need for labels, are deemed best for this task [(CHOI et al., Sep, 2019; SCHLEGL et al.,

May, 2019; OZGUMUS, 2019)]. However, most existing unsupervised techniques are not able to
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deal with the non-linearity and inherent correlations of multivariate time series, which represent

a considerable amount of real-world data, including data streams generated by sensors in CPSs

[(LI et al., 2019; LI; WEN, Jan, 2014; GOH et al., 2017)]. Therefore, a new unsupervised technique

independent from any prior knowledge of cyber-attacks is needed to detect intrusions in CPSs.

Moreover, the detection latency, i.e., the time interval between the start or penetration

of an attack and its detection, is a critical challenge in the detection of attacks [(MITCHELL;

CHEN, Apr, 2014)], as they need to be detected quickly enough to be prevented. On the one

hand, many devices and sensors within CPSs have limited battery and processing resources,

which complicate the deployment of sophisticated security solutions [(Papamartzivanos; Gómez

Mármol; Kambourakis, 2019; Midi et al., 2017; MOURAD; LAVERDIERE; DEBBABI, 2007; MOURAD;

LAVERDIÈRE; DEBBABI, 2008)]. On the other hand, if an IDS is deployed in the cloud, the net-

work transmission load, bandwidth requirement, and latency will significantly increase, and thus

intrusions might not be detected in real-time [(AAZAM; ZEADALLY; HARRAS, 2018; YOUSEF-

POUR et al., 2018)]. However, a fog-based IDS architecture is well suited to meet low-latency

detection requirements, as it provides computation, storage, and networking services to end

users along the thing-to-cloud continuum for a better Quality of Service (QoS) [(AN et al.,

2018; MOATI et al., 2014; HU et al., 2017)]. In addition, through virtualization, fog nodes could

use virtual machines to achieve higher e�ciency and flexibility [(LI et al., 2017; Wahab et al.,

2020)]. Thus, a new unsupervised cyber-attack detection system could take advantage of the

fog-computing paradigm and be deployed in the fog as a virtual function.

Generative adversarial networks estimate generative models through an adversarial process

simultaneously training a generative model G and a discriminative model D. While the lat-

ter estimates the probability that a sample came from the training rather than G, the former

captures the data distribution without using labels. GANs are then used for unsupervised prob-

lems to find an implicit probability distribution and model of the system, while also providing

a model D to detect generated or fake samples [(GOODFELLOW et al., 2014; SALIMANS et al.,

2016)]. Thus, they present a promising approach to tackle the challenge of developing e�ective

unsupervised anomaly detection methods for multivariate time series, such as network attacks

with probability distributions that are challenging to estimate.
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3.2.1 Related Works

Recent artificial intelligence methods have a fundamental role in many domains. The work

in [(PENG et al., 2020)] proposed a novel Visual Question Answering (VQA) model to generate

candidate answers and explore their semantics to facilitate the final answer prediction. In

[(LU et al., 2020)], a novel hashing method is suggested to overcome existing deep hashing

approaches challenges. The work in [(XU et al., 2020)] proposed to integrate multimodal feature

synthesis, common space learning, and knowledge transfer for zero-shot cross-modal retrieval

by using Wasserstein GANs. Finally, the limitations of artificial intelligence techniques and the

promising potential of unsupervised learning are presented in [(LU et al., 2018)].

The work in [(LI et al., 2018)] proposed a GAN-based anomaly detection (GAN-AD) method

to detect deviant behaviors as possible attacks in complex networked CPSs. LSTM-RNN are

used to capture the distribution of multivariate time series of the CPSs’ sensors and actua-

tors under normal working conditions. Anomalies are detected by combining the discriminator

outputs to a reconstruction loss given by the residual between the actual data and its recon-

struction through the generator. Experimental results demonstrated the high detection and low

false-positive rates of this scheme compared to other existing methods. The GAN-AD approach

was extended in [(LI et al., 2019)], which proposed a Multivariate Anomaly Detection with GAN

(MAD-GAN) framework to detect attacks using a novel anomaly score called DR-Score. This

score exploits both the discriminator and generator networks, which are LSTM-RNN networks,

by computing and combining a reconstruction loss to the discrimination loss. In contrast to the

LSTM-RNN approach, the work in [(SCHLEGL et al., 2017)] proposed AnoGAN, a deep convo-

lutional GAN, and a scoring scheme that also combines the discrimination and reconstruction

loss to detect anomalies in medical images.

Although GAN-AD [(LI et al., 2018)], MAD-GAN [(LI et al., 2019)], and AnoGAN [(SCHLEGL

et al., 2017)] showed satisfactory performances in detecting anomalies, they all rely on an

iterative approach to find a latent z by solving an optimization problem that minimizes the

di�erence between the generated sample and the actual data. Since this optimization problem

is solved for each data sample during the detection of intrusions, this strategy might take too

long and not be feasible for latency constrained applications. In the face of this challenge, a few

other works proposed alternative approaches to find latent representations of data samples.

The works E�cient GAN (EGAN) [(ZENATI et al., 2018a)] and Adversarially Learned Anomaly

Detection (ALAD) [(ZENATI et al., 2018b)] use a class of GANs that simultaneously learn a
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third network, which maps data samples to the latent space during training. However, they

cannot be used to pre-trained GAN models as that third network is limited to be trained along

with the GAN. The work fast AnoGAN (f-AnoGAN) [(SCHLEGL et al., May, 2019)] proposed

three di�erent architectures for mapping images to the latent space. However, it lacked an

evaluation on the time e�ciency of these architectures. In addition, the works in [(ZENATI

et al., 2018a; ZENATI et al., 2018b; SCHLEGL et al., May, 2019)] are mainly focused on images

and haven’t been explored for multivariate time series, such as the data streams generated by

CPSs, which present significant particularities and complexity. Thus, the literature still lacks a

fast method to invert the GAN generator and find latent representations of multivariate time

series data samples.

A few works explore fog computing and virtualization for IoT and Industry applications. The

work in [(AAZAM; ZEADALLY; HARRAS, 2018)] presented an architectural overview of Industrial

IoT and Industry 4.0, and discussed how the fog can provide local processing support with

acceptable latency to actuators and robots. The work in [(ZHANG et al., 2019)] presented a

novel fog-based encryption-as-a-service architecture, which was shown to significantly improve

security performance and real-time communication of substation networks. The work in [(AN

et al., 2018)] presented a new lightweight IDS called sample selected extreme learning machine

(SS-ELM). This IDS showed, through experimental simulations, good performance in terms

of accuracy and Receiver Operating Characteristic (ROC). However, it followed a supervised

approach and required labels. In [(LI et al., 2017)], virtualization is investigated to overcome

resource constraints on sensory-level nodes and network service provisioning. A case verification

and quantitative analysis showed the mitigation of delay and jitter, as well as the achievement

of low-latency and high scalability.

3.2.2 Contributions

In this paper, we propose FID-GAN, a novel low-latency unsupervised intrusion detection

system for cyber-physical systems that uses a GAN and is deployed in the fog. The proposed

architecture models data as multivariate time series and the GAN discriminator and generator

as LSTM-RNN networks to acknowledge and deal with temporal dependencies among data.

While the GAN discriminator already evaluates whether a data sample is an intrusion or not,

the generator is used to compute a reconstruction loss and an intrusion score. In order to

improve detection rates, we investigate the individual contributions of the discrimination and
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reconstruction losses and take advantage of both in the detection of cyber-attacks. Moreover,

we improve the architecture of [(LI et al., 2019)] by replacing their iterative GAN generator

inversion technique, required for computing the reconstruction loss, for a trained Encoder.

The Encoder accelerates the reconstruction loss computation and significantly reduces the

detection latency by eliminating the need for solving an optimization problem during the

detection of intrusions. Besides, the architecture proposed for training the Encoder allows pre-

trained GAN models, since the Encoder is trained independently and after the GAN training,

and also enhances the generator by updating its parameters. Furthermore, in order to achieve

an even lower detection latency, our IDS architecture takes advantage of the fog-computing

paradigm. Although the cloud, being more resourceful, is used to train the neural networks of

our detection solution, the IDS itself is deployed in the fog as a virtual function.

In a nutshell, the main contributions of our work are:

1. An unsupervised anomaly-based IDS for CPSs using GAN, which is capable of detecting

unknown attacks and overcomes the challenge of obtaining labels.

2. Evaluation of the individual contribution of the GAN discrimination and reconstruction

losses in the detection of cyber-attacks to improve the detection rates.

3. Proposal of a novel and faster method for inverting the GAN generator, which is useful

for latency constrained classification and retrieval tasks.

4. Proposal of a fog-based architecture for our IDS, which enables our security solution to

take advantage of the low-latency of fog nodes-based applications.

3.2.3 Organization

The remainder of this paper is organized as follows. Section 3.3 introduces our proposed

architecture by describing the system model, the GAN and Encoder training procedure, and the

anomaly score strategy used to detect attacks. Section 3.4 explains the conducted experiments.

In Section 3.5, we present and discuss the achieved results. Finally, Section 3.6 concludes the

paper and proposes possible future extensions to this work.
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3.3 PROPOSED FID-GAN ARCHITECTURE

In this section, we briefly explain how GANs work and how they can be leveraged with

LSTM-RNN networks to consider temporal dependencies among data. Moreover, we describe

our system architecture and the trained Encoder, which accelerates the reconstruction loss

computation and makes our system suitable for latency constrained applications. Finally, we

define the attack detection score used to distinguish intrusions, and present the fog architecture

proposed to deploy our IDS.

3.3.1 GAN with LSTM-RNN

Generative Adversarial Networks are powerful modeling frameworks for high-dimensional

data that build two competing networks: a generator G and a discriminator D. The generator

network is trained to produce synthetic data examples that are similar to real data patterns by

taking a random vector z, drawn from an input distribution Pz(z) in a latent Z-Space. If trained

only with normal data patterns, the generator captures the hidden multivariate distribution of

the training sequences and can be seen as an implicit model of the system at normal status.

On the other hand, the discriminator network is trained to distinguish between the generated

synthetic examples and real data patterns, and then classify data patterns in one of these two

classes. The two models are trained together in a zero-sum adversarial minimax game, in which

the generator tries to maximize the probability of producing outputs recognized as real, and

the discriminator tries to minimize that same probability [(GOODFELLOW; BENGIO; COURVILLE,

2016; SCHLEGL et al., May, 2019)]. Thus, they can be regarded as two agents playing a minimax

game with value function V (G, D) as in

min
G

max
D

V (D, G) = Ex≥Pdata(x)[log D(x)] + Ez≥Pz(z)[1 ≠ log D(G(x))]. (3.1)

The continuous measurements of CPSs’ sensors and actuators produce multivariate time

series data streams, which are used to monitor the system working conditions. In order to

deal with these intrinsically multivariate time series data, the discriminator and the generator

are constructed as LSTM-RNN networks. Such networks assume that data samples are not

independent of each other and that there is a temporal dependency among them. Thus, instead

of dealing with isolated data samples, sequences of data are considered and stored in memory
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units. In this context, computations are performed for every element of a sequence such that

the computation outputs for one element of the sequence serve as input for the computation

of the following element in that sequence.

3.3.2 System Architecture and Fast Mapping Encoder

The discriminator D has its weights initialized with the Xavier approach, and is trained

with the Gradient Descent Optimizer to minimize the mean negative cross-entropy between

its predictions and sequence labels. Its loss is thus given by

LD = 1
m

mÿ

i=1
[log D(xi) + log(1 ≠ D(G(zi)))], (3.2)

where m is the number of samples, xi ’i œ {1, ..., m} are the training samples, which should be

recognized as real and identified as normal by our IDS, and zi ’i œ {1, ..., m} are samples from

the latent Z-Space, such that G(zi) should be recognized as false and detected as intrusions

by our IDS. On the other hand, the generator’s weights are initialized with a truncated normal

distribution, and it is trained with the Adam Optimizer to fool the discriminator into recognizing

as many generated samples as possible as real. Its loss is given by

LG =
mÿ

i=1
(1 ≠ log D(xi)). (3.3)

Although the GAN discriminator network learns to distinguish between real and synthetic

data, the literature has shown that the generator can also play a fundamental role in classifica-

tion tasks [(LI et al., 2018; LI et al., 2019; SCHLEGL et al., 2017)]. Thus, our proposed architecture

consists of a novel strategy to detect time series attacks with a GAN by computing an attack

detection score through the combination of a discrimination loss LD and a reconstruction loss

LR. The former corresponds to the discriminator’s output, as it already indicates whether an

evaluated data xt is the result of an attack, while the latter corresponds to the residual di�er-

ence between xt and its reconstruction, i.e., the di�erence between an evaluated pattern and

the generator’s output when that pattern representation in the latent space is passed through

the generator. Since the generator learns an implicit model of the system, patterns that lie

far away from the patterns produced by the generator are likely the result of attacks. Thus,

the reconstruction loss measures how much an evaluated pattern seems to be the result of an

attack.
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In order to compute LR, it is first necessary to find the representation of a pattern x being

evaluated in the latent Z-Space, i.e., the vector z œ Z that, passed through the generator,

provides the most similar pattern to x. Even though the GAN generator provides a mapping

from the latent Z-Space to the data pattern space, it does not provide a direct mapping from

the data pattern space to the latent space. Such mapping is not trivial to achieve, as it requires

the inversion of the generator, which is often a non-linear model with many layers [(CRESWELL;

BHARATH, Jul, 2018)]. For this purpose, our architecture builds and trains an Encoder that

maps data patterns to the latent space. In contrast to other approaches that find z by solving

an optimization problem for every data pattern [(LI et al., 2018; LI et al., 2019; SCHLEGL et al.,

2017; CRESWELL; BHARATH, Jul, 2018)], the mapping performed by our Encoder is fast and

suitable for latency constrained applications, such as the detection of cyber-attacks.

Therefore, in our architecture, in addition to the GAN’s discriminator and generator, we

also train an Encoder E that maps data patterns x, from the data pattern space X, to

representations z of those patterns in the latent space Z. Thus, E is designed to do the

mapping: E(x) : X ‘≠æ Z. The proposed Encoder, depicted in Figure 7, follows an autoen-

coder configuration and is obtained from the training of an autoencoder. The Encoder part

of the autoencoder maps input data into the latent space. The Decoder part, on the other

hand, corresponds to the GAN generator, which reconstructs the data from its representation

in the latent space by performing the mapping: G(z) : Z ‘≠æ X. Figure 8 shows the En-

coder and Decoder space mappings. The purpose of the autoencoder is to ensure that x and

G(E(x)), described in Figure 8, are as similar as possible. Thus, it is trained by minimizing

the Mean Squared Error (MSE) residual loss between the input data x and reconstructed data

xÕ = G(E(x)) as

Lautoencoder =
ı̂ıÙ( 1

n
)

nÿ

i=1
[xi ≠ G(E(xi))]2, (3.4)

where n is the data pattern dimension.

3.3.3 Attack Detection Score

Since both the discrimination and reconstruction losses, LD and LR, respectively, measure

how much a data pattern seems to be the result of an attack, we define an Attack Detection

Score ADScore as a combination of these two values as
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Figure 7 – Autoencoder used to train the proposed Encoder
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Figure 8 – Encoder and Decoder mapping
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ADScore = ·LD + (1 ≠ ·)LR, (3.5)

where · is a parameter that varies between 0 and 1 and balances the contributions of LD

and LR in the attack detection score. Note that if · is one, only the discrimination loss is

considered for computing the anomaly detection score. In the same way, if · is zero, only

the reconstruction loss is considered. In a nutshell, the novel unsupervised strategy that we

propose to detect time series attacks is described in Algorithm 1.

3.3.4 Fog Architecture and System Model

The architecture of our proposed IDS is based on the fog-computing paradigm and deployed

in three layers: End Point layer, Fog layer and Cloud layer. The End Point layer is where the

cyber-physical systems are located. It is from this layer that the normal data patterns used to

train the GAN and the Encoder come from. The unknown data patterns that are evaluated

by our IDS also come from the CPSs in this layer. The Cloud layer is endowed with more
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Algorithm 1: Novel attack detection system
1: Train the GAN D and G according to equations (3.1), (3.2), and (3.3)
2: Train the Encoder within the autoencoder using G as the Decoder and minimizing

the loss function (3.4)
3: for Each evaluated data pattern xt do
4: Compute LD(xt)
5: Obtain the latent representation of xt by computing E(xt)
6: Compute LR(xt) =

Ò
( 1

n) qn
i=1[xi ≠ G(E(xi))]2

7: Compute ADScore = ·LD + (1 ≠ ·)LR, · œ [0, 1]
8: Decide whether xt is an intrusion using ADScore

9: end for

computing resources and it is where the training of the GAN and the Encoder takes place.

This layer tends to be distant from the CPS nodes, thus resulting in a higher latency. However,

since there is no real-time requirement for the training, this is not an issue. Finally, the Fog

layer is where the proposed detection system is deployed as a virtual function. Since it is closer

to the CPSs in the End Point layer, a lower latency is achieved, which is suitable for the

real-time requirements of attacks detection.

Figure 9a exhibits the architecture of the proposed IDS training model. The CPSs in

the End Point layer send normal data to the cloud layer, as only normal data patterns are

used for training. The GAN generator and discriminator are trained and then the Encoder is

trained within the autoencoder architecture by using the trained generator as the Decoder. The

architecture of the proposed IDS detection model is shown in Figure 9b. The CPSs in the End

Point layer send unknown data patterns to be evaluated by the IDS in the Fog layer. To decide

whether the evaluated pattern is an intrusion or not, the IDS computes the discrimination and

reconstruction losses, and the attack detection score, as described in Algorithm 1. The total

latency for this architecture is given by

TTotal = TComm + TNet + TComp, (3.6)

where TComm is the communication latency, TNet is the network latency, and TComp is the com-

puting latency. The communication latency corresponds to the propagation and transmission

time of a packet, which depends on the physical medium and distance between nodes. The

network latency corresponds to the network’s delays, such as queuing delays caused by network

congestion. These depend on the communication medium and network infrastructure. Thus,

although they might impact the overall latency of the system, the communication and network

latency do not a�ect the IDS accuracy and are therefore out of the scope of our work. On the
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Figure 9 – Proposed FID-GAN system model
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other hand, the computing latency corresponds to the detection latency, i.e., the time taken to

detect whether a data pattern is an intrusion. The Encoder trained in our architecture allows

the latent representation of a data pattern to be quickly obtained, and thus the reconstruction

loss computation is fast. This is an essential feature for our IDS to achieve low detection

latency.
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3.4 METHODOLOGY AND PERFORMANCE EVALUATION

In this section, we briefly present the datasets used in our experiments, which contain

both normal and attack data. Then, we explain the conducted experiments and metrics used

for performance evaluation. Information on the platform and environment used as well as the

github link for the reproduction of our experiments are given.

3.4.1 Datasets Presentation

We evaluated the proposed IDS, FID-GAN, using the Secure Water Treatment (SWaT)

and the Water Distribution (WADI) datasets for CPSs, and the NSL-KDD dataset for network

cyber-attacks. The SWaT dataset, built in the Singapore University of Technology and Design,

represents a test-bed for a modern water treatment plant in which the water goes through

a six-stage process equipped with several sensors and actuators. It contains 946,722 records,

with 51 attributes of sensor and actuator data, of either normal or attack data, recorded over

seven days of normal operation and four days in which 36 di�erent attacks were conducted

[(iTrust Singapore University of Technology and Design (SUTD), a)]. The WADI dataset is built by the

same authors of the SWaT dataset and represents an extension of that system by considering a

complete and realistic water treatment, storage, and distribution network. It contains 1,209,610

data patterns with 126 features [(iTrust Singapore University of Technology and Design (SUTD), b)].

On the other hand, the NSL-KDD dataset is a refined version of the KDDCUP99 dataset setup

by Lincoln Labs, which represents nine weeks of raw Transmission Control Protocol (TCP)

dump data for a Local-Area Network (LAN) simulating a typical U.S. Air Force LAN. The LAN

was operated as a true Air Force environment, a�ected by (1) DoS attacks, (2) unauthorized

access from a remote machine, Remote to Local (R2L) attacks, unauthorized access to local

superuser with root privileges, User to Root (U2R) attacks, and surveillance and other probing

attacks [(Canadian Institute for Cybersecurity, )]. For each dataset, we constructed a training, a

validation, and a testing set. The former with only normal data and the other two with both

normal and attack data. The training and validation sets are used to train the models and

to find the optimal hyper-parameters of the algorithms, respectively. On the other hand, the

testing set is used to evaluate the performance of our system in the detection of intrusions.
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3.4.2 Simulation Experiments

The attack detection problem is for multivariate time series, where the temporal depen-

dency between the data examples is considered. For this purpose, following [(LI et al., 2019)],

we assume a sliding window of size 30 across the raw data streams with shift length 10. We use

LSTM networks with depth 3 and 100 hidden layers for the discriminator, Generator/Decoder,

and Encoder. In addition, since [(LI et al., 2019)] evaluated di�erent dimensions for the latent

space and found 15 to generate better samples, we also consider a latent space dimension of

15 in our study. We improve the work in [(LI et al., 2019)] by introducing an Encoder that

maps data to the latent space, and then we compare our results to that work. For a fair

comparison, we follow many project decisions taken by [(LI et al., 2019)], such as the number

of hidden layers and the dimension of the latent space. However, by introducing an Encoder,

our proposal is expected to improve both the detection rates and the detection latency TComp.

Furthermore, we also compare our results to the work in [(ZENATI et al., 2018b)], which detects

intrusions using a GAN and a third network that reconstructs data samples. The architecture

in [(ZENATI et al., 2018b)] is much simpler than ours, and therefore might achieve a lower

detection latency. On the other hand, this simplicity might cause di�culties in the detection

of intrusions on more complex datasets. Thus, our IDS is expected to achieve better detection

rates. The detection rates are evaluated using the Area Under The Curve (AUC) of the ROC.

The detection latency is evaluated by measuring the mean computing time to detect whether

a data sample is an intrusion.

Since it increases the detection latency, the reconstruction loss computation only makes

sense if it improves the detection performance. Thus, we evaluate the individual contribution

of the discrimination and reconstruction losses in the detection of attacks. This is done by

varying the parameter · in (3.5) from 0 to 1. If · = 1, ADScore contains only the discrimination

loss LD. However, if · = 0, ADScore only represents the reconstruction loss LR. Finally, if

0 < · < 1, ADScore contains a combination of both the reconstruction and discrimination

losses. We expect that a better detection rate can be achieved when considering a combination

of both discrimination and reconstruction losses, such that the reconstruction loss computation

enhances the detection results.

In our experiments, for each dataset, we trained the GAN for 100 epochs and saved the

models for each epoch. Then, we consider · = 1 and compute the ADScore(·=1) = LD for

the samples within the validation set considering the 100 trained models saved. We save the
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model that achieves the highest AUC, considering only the discrimination loss. The generator’s

parameters of this model are then used to initialize the decoder part of the autoencoder.

Following this, the autoencoder is trained for 300 epochs with the training set. Each trained

model is saved and then used to compute the AUC for the validation set, considering only

the reconstruction loss, i.e., with · = 0 and ADScore = LR. The autoencoder model that

achieves the highest AUC is then saved. The discriminator of the first saved model and the

encoder and generator of the second saved model are then used on the testing set to obtain

the detection results considering only the discrimination loss, only the reconstruction loss,

and a combination of both. All experiments were conducted on an AMD Ryzen Threadripper

1920X 12-Core Processor 2.2GHz with 64GB of RAM and an NVIDIA GeForce RTX 2080

under the Tensorflow 2.1 environment. The code to reproduce the experiments is available at

https://github.com/pfreitasaf/FIDGAN.

3.5 RESULTS AND DISCUSSIONS

In our experiments, we evaluated both the detection rate and latency using equation (3.5)

for models with di�erent contributions of discrimination and reconstruction losses. Specifically,

we consider

1. ADscore(·=1) = LD, which uses only the discrimination loss;

2. ADscore(·=0) = LR, which uses only the reconstruction loss;

3. ADScore(0<·<1) = ·LD + (1 ≠ ·)LR, which uses a combination of the discrimination

and reconstruction losses.

The obtained results are compared to the results of the works in MAD-GAN [(LI et al., 2019)]

and ALAD [(ZENATI et al., 2018b)], which also compute discrimination and reconstruction

losses to detect intrusions using a GAN.

3.5.1 Detection Rates

We use the AUC as the performance metric to evaluate the detection of intrusions and

compare our results with [(LI et al., 2019)] and [(ZENATI et al., 2018b)]. Thus, we obtain the

ROC curves for the detection results of the data samples in the testing sets of the three

considered datasets. Di�erent contributions for the discriminant and reconstruction losses are

investigated, and the model that achieves the highest AUC is considered the best one. Figures
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10a, 10b, and 10c show the ROC curves obtained by our IDS for the SWaT, WADI, and

NSL-KDD datasets, respectively. In the same way, Figures 11a, 11b, and 11c depict the ROC

curves of the IDS proposed by MAD-GAN, and Figures 12a, 12b, and 12c exhibit the ROC

curves of the IDS proposed by ALAD. In contrast to our IDS and MAD-GAN’s IDS, ALAD’s

IDS explores anomaly detection scores that considers only LD, only LR and a combination of

LD and LR without relying on a parameter · .

Figure 10 – ROC curves of the proposed FID-GAN

(a) SWaT dataset

(b) WADI dataset (c) NSL-KDD dataset

Source: The author (2023).

These ROC plots demonstrate that the proposed FID-GAN achieves higher AUCs when

combining both the discrimination and reconstruction losses. Moreover, the use of only the

reconstruction loss achieves better detection results than the use of only the discrimination loss

for the SWaT and WADI datasets. Therefore, the reconstruction loss computation is shown

to enhance the detection performance of FID-GAN. In addition, the AUC results of FID-GAN

are higher than the AUC results of MAD-GAN [(LI et al., 2019)] for all considered models
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Figure 11 – ROC curves of the IDS in MAD-GAN [(LI et al., 2019)]

(a) SWaT dataset

(b) WADI dataset (c) NSL-KDD dataset

Source: The author (2023).

and datasets. Therefore, our IDS is shown to achieve better detection results than the IDS

proposed by MAD-GAN. On the other hand, FID-GAN and ALAD essentially achieve the same

AUCs for the SWaT dataset. However, FID-GAN achieves significantly better detection results

than ALAD for the WADI and the NSL-KDD datasets, which are more complex and more

challenging to detect intrusions from, since their AUCs are, in general, lower than the AUCs

of the SWaT dataset. In addition, in contrast to our proposal, ALAD also does not support

pre-trained GAN models, i.e., previously trained GANs. Precisely, the Encoder proposed by

our architecture is trained independently from the GAN, and can thus be easily applied to

enhance existing GAN based IDSs. On the other hand, ALAD requires their third network,

which is responsible for reconstructing data samples, to be trained along with the GAN, such

that previously trained GANs have to be re-trained. Since training GANs is not always an easy

task due to mode collapse and stabilization issues [(ARJOVSKY; BOTTOU, 2017; SRIVASTAVA
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Figure 12 – ROC curves of the IDS in ALAD [(ZENATI et al., 2018b)]

(a) SWaT dataset

(b) WADI dataset (c) NSL-KDD dataset

Source: The author (2023).

et al., 2017; SALIMANS et al., 2016)], this is a disadvantage in the use of ALAD for improving

existing GAN based IDSs.

Furthermore, we also evaluate the Equal Error Rate (EER), a performance metric derived

from the ROC that represents the point where the false positive rate and the false negative rate

are equal. Table 1 exhibits the EER values for the model that combines LD and LR. According

to the AUCs, FID-GAN achieves lower EER than MAD-GAN for all considered datasets, and

lower EER than ALAD for the two more complex datasets.

Table 1 – Equal error rate (EER)

SWaT WADI NSL-KDD
FID-GAN 0.1861 0.2049 0.2844

MAD-GAN 0.2416 0.2280 0.2921
ALAD 0.1768 0.2295 0.3485

Source: The author (2023).
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3.5.2 Detection Latency

Since the detection of intrusions is a latency constrained application, the anomaly detection

score needs to be computed in a short time. This time mainly depends on the computation time

of the discrimination and reconstruction losses. Therefore, we compare the detection latency

of our proposed IDS to that of the IDS in [(LI et al., 2019)] and in [(ZENATI et al., 2018b)]

when considering only the discrimination loss, only the reconstruction loss and a combination

of both losses. Figures 13a, 13b, and 13c show the latency obtained for the SWaT, WADI,

and NSL-KDD datasets, respectively.

Figure 13 – Mean detection latency

(a) SWaT dataset

(b) WADI dataset (c) NSL-KDD dataset

Source: The author (2023).

For the three considered datasets, our IDS and the IDS in MAD-GAN achieved the same

detection latency when considering only the discrimination loss. On the other hand, the latency

increased when the reconstruction loss was also considered. This is because finding the latent
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representation of a sample and computing its reconstruction loss demands time. Although

the detection latency has increased for these two IDSs, our IDS shows a much lower latency

compared to that of MAD-GAN. While other works solve optimization problems during the

detection of intrusions, the Encoder in our architecture enables a major reduction in the time

taken to detect intrusions because it obtains the latent representation of patterns through

a direct mapping. Our IDS is shown to achieve a detection latency at least 5.5 times lower

than MAD-GAN’s IDS when only the reconstruction loss is used. Therefore, it is much more

suitable for latency constrained applications, such as the detection of intrusions in CPSs. On

the other hand, the IDS proposed by ALAD achieves the shortest detection latency for the three

considered datasets. In contrast to our proposed architecture, ALAD does not model data as

time series or use RNN-LSTM networks to consider dependencies among data. In fact, ALAD

uses neural networks with only fully-connected and convolutional layers, and therefore does not

su�er from the limited parallelization allowed by RNN-LSTM networks. Thus, it requires a lower

computing time, and consequently a shorter detection latency than our solution. However, as

already presented, ALAD’s IDS is also the one that achieves the poorest AUCs for the WADI

and NSL-KDD datasets, which indicates that it may not work well for more complex datasets

and more sophisticated attacks. Thus, our IDS is more suitable than ALAD’s IDS to detect

intrusions in cyber-physical systems.

3.6 CONCLUSIONS

In this paper, we proposed FID-GAN, a novel unsupervised strategy to detect cyber-attacks

in CPSs using a GAN. The detection is based on a combination of the discrimination and

reconstruction losses, which requires the mapping of data samples to the latent space. In

contrast to other works, that mapping is performed by a Encoder, such that the reconstruction

loss computation is accelerated. Furthermore, to address the strict latency requirements that

challenge the detection of cyber-attacks, our system is proposed within a fog architecture to

benefit from the low-latency provided by fog nodes.

In our experiments, we evaluated both the detection performance and detection latency

when the attack detection relied on (i) only the discrimination loss, (ii) only the reconstruction

loss, and (iii) a combination of the discrimination and reconstruction losses. Three datasets

were used: the SWaT and the WADI for CPSs, and the NSL-KDD for network cyber-attacks.

We evaluated and compared the detection rates and latency of FID-GAN to the IDSs proposed
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in [(LI et al., 2019)] and [(ZENATI et al., 2018b)]. Our proposed FID-GAN achieves significantly

higher detection rates than [(ZENATI et al., 2018b)] for the WADI and NSL-KDD datasets.

Moreover, our proposed solution is also shown to achieve higher detection rates and to be at

least 5.5 times faster than the IDS proposed in [(LI et al., 2019)] when considering only the

reconstruction loss. Therefore, it is much more suitable for latency constrained applications,

such as the detection of cyber-attacks in CPSs. In future works, we will investigate the use

of Variational Autoencoders in the unsupervised detection of cyber-attacks and approaches to

further reduce the detection latency of our IDS.
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4.1 ABSTRACT

Fifth-generation networks provide connectivity to a massive number of devices and boost a

plethora of applications in several di�erent domains. However, the large adoption of connected

devices increases attack surfaces and introduces several security threats that can severely

damage physical objects and risk people’s lives. Despite existing IDSs, there are still several

challenges to be addressed in the detection of cyber-attacks. For instance, while unsupervised

IDSs are required to detect zero-day attacks, they usually present high false positive rates.

Moreover, most existing IDSs rely on LSTM networks to consider time-dependencies among

data. However, LSTM networks have recently been shown to present several drawbacks and

limitations, which put into question their performance on sequence modeling tasks. Thus, in

this paper, we investigate GANs, a promising unsupervised approach to detecting attacks by

implicitly modeling systems, and alternatives to LSTM networks to consider temporal depen-

dencies among data. We propose a novel unsupervised GAN-based IDS that uses TCNs and

self-attention to detect cyber-attacks. The proposed IDS leverages edge computing and is

proposed for edge servers, which bring computation resources closer to end nodes. Experiment

results show that our proposed IDS can be configured to satisfy di�erent detection rate and
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detection time requirements. Moreover, they show that our IDS is more accurate and at least

3.8 times faster than two state-of-the-art GAN-based IDSs that are used as baselines.

4.2 INTRODUCTION

The increasing growth of connected devices, such as sensors, actuators, home appliances

and vehicles is changing how we interact with our surroundings. It is reducing the gap between

the physical and digital worlds and integrating devices into large-scale platforms that acquire

and process data to produce automated decisions while also generating knowledge and infor-

mation [(RODRIGUEZ, 2015; Santos et al., 2018)]. Smart and connected devices compose smart

cities, Industry 4.0, and, in general, the IoT. They create a whole new world of services and

applications, such as intelligent tra�c lights, automated water treatment plants, and personal

health monitoring applications [(LI; XU; ZHAO, 2018; OSSEIRAN; MONSERRAT; MARSCH, 2016)].

Moreover, they are expected to grow even further with the adoption of the 5G, since it can

provide connectivity to a massive number of devices with highly diverse requirements [(Illy et

al., 2019; Sharma et al., 2011)].

On the other hand, the broadcast nature of wireless communications enables attackers

to eavesdrop on the network, inject malicious data into it, and launch cyber-attacks [(Ghafir

et al., 2018)]. Therefore, the widespread adoption of IoT introduces several security threats

that may impair network integrity and cause inaccurate sensing and control of systems. Such

vulnerabilities could severely damage physical objects and risk people’s lives [(ALGULIYEV;

IMAMVERDIYEV; SUKHOSTAT, 2018; Han et al., 2014)]. Despite numerous security solutions

being available for the traditional Internet, the IoT’s physical constraints and highly hetero-

geneous environment impose new security challenges. For instance, the heterogeneity brought

by di�erent access technologies, applications, and requirements significantly increases the at-

tack surfaces and the threat from new types of attacks [(ABESHU; CHILAMKURTI, Feb, 2018;

Papamartzivanos; Gómez Mármol; Kambourakis, 2019; Midi et al., 2017)]. On the other hand, the

limited battery and computing power of most IoT devices thwart the deployment of most

cryptography- and authentication-based security mechanisms [(ABESHU; CHILAMKURTI, Feb,

2018; Yang et al., 2017)].

To overcome these challenges, IDSs have emerged as a fundamental component to protect

and secure networks and systems. They detect cyber-attacks when other security mechanisms

fail [(Chaabouni et al., 2019; LI et al., 2019; Jia et al., 2020)]. In contrast to other detection
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approaches, anomaly-based IDSs detect cyber-attacks by measuring deviations between data

patterns and what is considered normal behavior. Although recent advances in ML foment new

IDS mechanisms to detect cyber-attacks [(ABESHU; CHILAMKURTI, Feb, 2018; VIGNESWARAN

et al., 2018; SHONE et al., Feb, 2018)], there are still several challenges to be addressed.

First, sophisticated distributed cyber-attacks, such as modern DDoS attacks, significantly

challenge current IDSs, as they might have multiple steps and be launched on di�erent appli-

cations and devices. DDoS attacks attempt to exhaust a system’s or network’s resources by,

for example, forcing multiple compromised devices to unnecessarily request resources so that

there are no resources left for legitimate users. Google, Amazon Web Services, DNS providers,

and many others have been the target of DDoS attacks. For instance, recently, a DDoS at-

tack on a large DNS provider caused disruptions to many services, such as Airbnb, Netflix,

PayPal, Visa, Amazon, The New York Times, and GitHub [(CLOUDFARE, ; NICHOLSON, )]. In

addition, cyber-criminals have threatened several organizations with DDoS incursions unless

extortion demands are met. In 2021, such attacks disrupted internet service providers and VoIP

operations worldwide [(R. Dobbins and S. Bjarnason, ; Roland Dobbins and Steinthor Bjarnason, )].

Moreover, since new attacks are constantly being launched, IDSs must be able to detect

zero-day attacks, for which there is no data available. Even for known attacks, it is challenging,

time-consuming, and sometimes impossible to obtain labeled data. Therefore, unsupervised

IDSs, which detect both known and zero-day attacks without relying on labeled attack data,

are deemed the best to use [(CHOI et al., Sep, 2019; Nisioti et al., 2018; ZARPELAO et al., Apr,

2017; MITCHELL; CHEN, Apr, 2014)]. However, most existing state-of-the-art unsupervised

IDSs usually have high false positive rates and long detection times [(LI et al., 2019; Nisioti et

al., 2018; ARAUJO-FILHO et al., 2021)], which make them unsuitable for latency constrained

applications.

Furthermore, most existing IDSs rely on LSTM networks to consider time dependencies

among data, which are present in a considerable amount of real-world data, including network

tra�c. However, recent studies show that LSTM networks present several drawbacks, which

put in doubt their status as the standard architecture for sequence modeling tasks [(HOLLIS;

VISCARDI; YI, 2018; BAI; KOLTER; KOLTUN, 2018; VASWANI et al., 2017; Huang et al., 2020)].

For instance, they process data sequentially, which significantly increases their computational

complexity and challenges their performance on devices with limited computational power

[(Duc et al., 2020)]. Moreover, LSTM networks can easily consume a lot of memory just to

store the partial results of multiple cell gates during training [(BAI; KOLTER; KOLTUN, 2018)].
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Therefore, it is urgently necessary to propose novel unsupervised IDSs that are capable of

tackling the aforementioned challenges while avoiding the drawbacks of LSTM networks.

4.2.1 Related Works

The work in [(Sayad Haghighi; Farivar; Jolfaei, 2020)] proposes a learning firewall that automat-

ically updates itself with new rules to minimize false negatives and eliminate false positives. The

authors of [(Jia et al., 2020)] propose FlowGuard, an intelligent defense mechanism that pro-

tects IoT networks against DDoS attacks. It identifies, classifies, and mitigates cyber-attacks

by leveraging an edge-IoT architecture to meet the real-time requirements of IoT applications.

The work in [(INJADAT; MOUBAYED; SHAMI, 2020)] combines the Bayesian Optimization-Based

Gaussian Process (BO-GP) and the Decision Tree (DT) classification algorithm to detect bot-

net attacks on IoT devices. Similarly, the authors of [(MOUBAYED; INJADAT; SHAMI, 2020)] rely

on a genetic algorithm to optimize a random forest model that detects botnet attacks based on

their DNS queries. However, the approaches proposed in [(Jia et al., 2020)] and [(Sayad Haghighi;

Farivar; Jolfaei, 2020; INJADAT; MOUBAYED; SHAMI, 2020; MOUBAYED; INJADAT; SHAMI, 2020)]

follow a supervised learning approach so they cannot detect unknown attacks and require

labeled attack data to detect known attacks.

Several other works propose unsupervised IDSs that leverage GANs to detect both known

and unknown attacks without requiring labeled attack data. The works on generative adversar-

ial networks-based anomaly detection (GAN-AD) [(LI et al., 2018)] and multivariate anomaly

detection with GAN (MAD-GAN) [(LI et al., 2019)] propose GAN-based anomaly detection sys-

tems to find deviant behaviors resulting from cyber-attacks in CPSs. They detect anomalies

by combining GAN discrimination and reconstruction losses. However, they detect attacks by

solving an optimization problem for every data pattern under evaluation, which significantly in-

creases detection time and makes them unsuitable for low-latency constrained applications. On

the other hand, the work in [(ARAUJO-FILHO et al., 2021)] proposes a low-latency unsupervised

IDS for CPSs, called FID-GAN, that also uses GANs. It enhances MAD-GAN’s architecture by

training an encoder such that no optimization problem is solved at detection time and attacks

are detected much faster than with MAD-GAN. However, it still presents considerable false

positive rates.

Despite their interesting proposals, the works on FlowGuard [(Jia et al., 2020)], GAN-AD [(LI

et al., 2018)], MAD-GAN [(LI et al., 2019)], and FID-GAN [(ARAUJO-FILHO et al., 2021)] rely on
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LSTM networks to consider time dependencies among data. LSTM networks are heavily used

by existing IDS solutions, which then result in several drawbacks [(Duc et al., 2020; BAI; KOLTER;

KOLTUN, 2018; VASWANI et al., 2017)]. In contrast, the work on adversarially learned anomaly

detection (ALAD) [(ZENATI et al., 2018b)] proposes a GAN-based anomaly detection system

that uses only fully-connected and convolutional neural networks. However, it is significantly

worse than FID-GAN at detecting attacks [(ARAUJO-FILHO et al., 2021)].

To avoid LSTM’s drawbacks, recent works have been proposing alternative architectures

for considering time dependencies among data. The work in [(BAI; KOLTER; KOLTUN, 2018)]

proposes TCNs by leveraging causal and dilated convolutions, and shows that TCNs can

outperform LSTM networks in several sequence modeling tasks. The work in [(VASWANI et

al., 2017)] proposes transformers by replacing recurrent networks for attention mechanisms

in sequence transduction models. The authors of [(Huang et al., 2020)] propose an anomaly

detection system for logs that uses transformers and show that transformers outperform LSTM

networks in log sequences modeling. Finally, the work in [(Tan et al., 2019)] proposes an IDS that

uses attention mechanisms adapted from the transformer’s architecture and is more accurate

than an LSTM-based model. However, it follows a supervised learning strategy and cannot

detect zero-day attacks.

4.2.2 Contributions

In this paper, we propose a novel unsupervised IDS that uses a GAN to detect both known

and zero-day attacks. GANs simultaneously train two competing neural networks, namely, a

generator and a discriminator. The generator learns the probabilistic distribution of a training

set so that it can produce data similar to the training data. The discriminator, on the other

hand, learns how to distinguish between real data and data produced by the generator. Thus, if

the training set contains only normal data, the discriminator learns how to distinguish between

normal data and anomalies regardless of whether they represent known or unknown attacks.

Moreover, in contrast to most state-of-the-art unsupervised IDSs, which have high false positive

rates and long detection times [(ARAUJO-FILHO et al., 2021; LI et al., 2018; LI et al., 2019)], our

proposed IDS does not rely on LSTM networks. Instead, it uses TCNs and self-attention in the

GAN generator and discriminator networks. TCNs and self-attention enable more computation

parallelization, have a constant number of sequentially executed operations, and have been

shown to yield more accurate results than LSTM networks in specific sequence modeling tasks
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[(BAI; KOLTER; KOLTUN, 2018; Duc et al., 2020; VASWANI et al., 2017; LI et al., 2021)]. We

conduct a comparative evaluation of di�erent TCN and self-attention GAN architectures so

that di�erent trade-o�s between detection rates and detection times are achieved and our IDS

can be configured to satisfy di�erent requirements. Furthermore, to achieve e�cient service

delivery with reduced end-to-end latency, our proposed system leverages edge computing by

being deployed on edge servers closer to the network nodes under surveillance. In summary,

the main contributions of our proposed TCN/self-attention GAN-based IDS are:

1. An unsupervised GAN-based IDS that is capable of detecting both known and zero-

day attacks without relying on labeled attack data, which is di�cult and sometimes

impossible to obtain.

2. Experiments using TCNs and self-attention in a GAN to detect cyber-attacks with better

detection results than existing GAN-based IDSs.

3. An evaluation of the trade-o� between detection rates and detection times for di�erent

TCN and self-attention GAN architectures so that our proposed IDS can be configured

to satisfy di�erent requirements.

4.2.3 Organization

The remainder of this paper is organized as follows. Section 4.3 describes the DDoS threat

scenario considered in our work. Section 4.4 presents our proposed architecture by describing

the system model and the TCN and self-attention GAN architectures. Section 4.5 explains the

experiments that were conducted. In Section 4.6, we present and discuss the results. Finally,

Section 4.7 concludes the paper and proposes possible future extensions to this work.

4.3 DDOS THREAT SCENARIO

While the goal of denial of service attacks is to prevent legitimate users from access-

ing specific network services and resources, they can achieve their goal by following di�erent

strategies: protocol exploration, network flooding, reflection amplification, and slow request/re-

sponse. In our work, we consider DDoS attack types of all aforementioned strategies so that

the adversaries’ capabilities are described as follows.
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Protocol exploration attacks rely on protocol features and implementation bugs, such as

the three-way handshake mechanism of the TCP. An adversary can leverage this mechanism

and send a large number of SYN messages to a server without transmitting ACK messages

to acknowledge the server’s responses. Thus, since the server persistently waits for the non-

transmitted ACK messages, its limited bu�er queue is exhausted and new connections cannot

be processed. On the other hand, in network flooding attacks, the adversary sends many

repetitive communication requests to fill the victim’s bu�er until the victim cannot accept

new messages and legitimate requests are disrupted. Several network protocols may be used

for flooding. For instance, the adversary can send a large number of User Datagram Protocol

(UDP) packets to random ports on the victim’s host so that the victim is forced to send Internet

Control Message Protocol (ICMP) packets persistently and eventually reaches a resource-

exhausted condition.

Similarly, reflection amplification attacks flood the victim by leveraging third-party servers,

called reflectors, that respond to requests by transmitting large responses that significantly

increase network tra�c. Hence, the adversary sends many requests to reflectors by spoofing

their source IP with the victim’s IP so that reflectors send a large amount of tra�c to the

victim. Finally, slow request/response attacks exhaust a victim’s resources by holding the

communication channel for a long time. The adversary establishes multiple valid Hypertext

Transfer Protocol (HTTP) connections with a victim and segments legitimate HTTP packets

into tiny fragments sent in each connection as slowly as possible within the maximum allowed

communication time. Thus, as all victim’s sockets are taken up, the victim becomes unavailable

for legitimate connections.

In addition to the di�erent strategies they can adopt, denial of service attacks become extra

powerful and di�cult to detect and trace back when they are launched from distributed sources

with spoofed IPs. Moreover, adversaries usually take advantage of botnets, i.e., networks of

computers infected by malware that can carry out commands under the attacker’s control, to

generate a significant amount of tra�c from systems spread across the Internet. When large

botnets are used, each system may only need to send out a small amount of tra�c to produce

enough volume to saturate the target network, making it extremely di�cult to distinguish

between DDoS and legitimate tra�c. Therefore, DDoS attacks significantly impact network

service and management while being very challenging to detect.
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4.4 PROPOSED IDS ARCHITECTURE

In this section, we briefly explain how GANs work and how they can leverage TCNs and

self-attention to consider dependencies among data. Moreover, we describe the architecture

of our proposed IDS and the di�erent configurations it can adopt to achieve di�erent trade-

o�s between detection rates and detection times. Finally, we present our system’s deployment

architecture.

4.4.1 GAN-based IDSs

GANs are powerful frameworks for training generator and discriminator neural networks.

When trained with only normal data, the generator implicitly models the system and learns

how to produce data patterns similar to those of normal data. It learns to map random vectors

z, drawn from a distribution P (z) in a latent Z-space, to data patterns similar to those of

normal data so that xfake = G(z). On the other hand, the discriminator learns to distinguish

between real normal data patterns, xreal, and data patterns produced by the generator, xfake.

Thus, the discriminator’s output, D(x), indicates whether a data sample x is real or produced

by the GAN generator, i.e., it measures deviations from normal behavior and hence detects

cyber-attacks regardless of whether they are known or unknown.

The generator and discriminator neural networks are trained together in an adversarial

process so that the generator tries to maximize the probability of producing outputs that

are recognized as real and the discriminator tries to minimize that same probability. In our

proposed system, we train a GAN according to the WGAN framework, in which the generator

maximizes GLoss = D(G(z)) and the discriminator minimizes DLoss = D(G(z)) ≠ D(x). In

contrast to the original GAN formulation, the WGAN is easier to train and does not su�er

from the gradient vanishing problem [(ARJOVSKY; CHINTALA; BOTTOU, 2017; CRESWELL et al.,

2018)]. Figure 14 shows the adopted WGAN’s training mechanism.

Existing GAN-based IDS solutions rely heavily on LSTM networks to consider temporal

dependencies among data. However, since LSTM’s sequential data processing significantly

increases computational complexity and memory consumption during training, recent studies

have been investigating alternative approaches for sequence modeling tasks. In our work, we

investigate and propose replacing LSTM networks by TCNs and self-attention in both the

GAN generator and discriminator for cyber-attack detection.
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Figure 14 – The WGAN training framework used in our proposed IDS

GAN Generator GAN Discriminator Lossz

DLoss = D(x) � D(G(z))GLoss = � D(G(z))Latent Space 
 ~ z N(0,1)

G(z)

Normal 
Data

x

GAN Generator GAN Discriminator Lossz

DLoss = D(G(z)) � D(x)GLoss = D(G(z))Latent Space 
 ~ z N(0,1)

G(z)

Normal 
Data

x

Source: The author (2023).

4.4.2 TCNs

TCNs refer to modified convolutional architectures for sequence prediction tasks. They

map input sequences to output sequences of the same length and use causal convolutions, i.e.,

convolutions that use only information from the past. Thus, an output at time t is convolved

only with elements from times earlier than t in the previous layer. In addition, since sequence

modeling tasks may require more history, TCNs also use dilated convolutions to enable the

architecture to look far into the past. Thus, for an input sequence x œ Rn and a filter

f : {0, ..., k ≠ 1} æ R, the dilated convolution on element s of the sequence is defined as

F (s) = (x úd f)(s) =
k≠1ÿ

i=0
f(i)xs≠di, (4.1)

where k is the filter size, d is the dilation factor, and úd is the dilated convolution operation.

The dilation factor indicates how far into the past convolution operation úd looks. Hence,

while d = 1 reduces Equation (4.1) to a regular convolution operation, the larger the dilation

factor, the further back úd looks. Finally, TCN networks allow a residual connection so the

architecture learns what modifications are imposed on the data rather than only modifying it.

This connection contributes to avoiding the gradient vanishing problem and consists of adding

the input x to the output of a series of transformations T . It is given by

O(x) = �(x + T (x)), (4.2)

where � is an activation function.

TCNs provide a powerful way to extract temporal dependencies from data and have been

shown to have several advantages over LSTM networks for modeling sequences. More specif-

ically, when our proposed solution uses TCNs, the filter f convolves across a sequence of



69

incoming network flows by considering features only from network flows that have already oc-

curred (causal convolution). A dilation factor is also considered (dilated convolution) so that

network flows that occurred a long time ago are also taken into account. Computations can

be performed in parallel since the same filter can be used in all layers, and input sequences

can be processed as a whole. This means TCNs do not need to store the partial results of

computations and thus consume less memory during training. Finally, TCNs have been shown

to have stabler gradients, which avoids the gradient vanishing and exploding problems [(BAI;

KOLTER; KOLTUN, 2018; Duc et al., 2020)].

4.4.3 Self-Attention

Attention functions are defined as the mapping of a matrix of queries Q, a matrix of keys

K, and a matrix of values V to an output. Scaled dot product attention is one type of attention

function, which computes a context matrix C as

C = Attention(Q, K, V ) = Softmax(QKT

Ô
dk

)V, (4.3)

where dk is the dimension of values. Matrices K and V usually correspond to input sequences

x, whereas matrix Q is composed of randomly initialized trainable parameters. The dot product

of Q and KT gives a measure of the pairwise similarity between the query and key matrices,

which results in an attention score. Thus, the C matrix represents the intrinsic dependencies

between representations of a sequence.

Moreover, it has been shown that using linearly projected queries, keys, and values h times

with learned linear projections contributes to extracting relationships between data [(LI et al.,

2021; VASWANI et al., 2017)]. Thus, MHA modules perform attention functions in parallel on

each of the projected versions of queries, keys, and values, and then concatenate their outputs

as

MHA(Q, K, V ) = W 0Concat(head1, ..., headh), (4.4)

where W 0 is a parameter matrix for the concatenation operation and headi = Attention(QW Q
i ,

KW K
i , V W V

i ). W Q
i , W K

i , and W V
i are parameter matrices that project queries, keys, and val-

ues, respectively. Finally, self-attention considers that all the keys, values, and queries come

from the same place, such as the output of the previous layer in a neural network. This allows

modules to capture in-depth contextual information and relationships between data.
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Similarly to TCNs, attention mechanisms make it possible to extract dependencies among

data and have been shown to outperform LSTM networks in several sequence modeling tasks.

They are more capable of extracting features than LSTM networks, which contributes to more

accurate models [(LI et al., 2021)]. In addition, they can process sequences as a whole and they

enable more computation parallelization as MHA heads can run in parallel. Furthermore, while

LSTM networks require O(n) sequential operations, TCN, self-attention, and MHA layers have

a constant number of sequentially executed operations. Table 2 summarizes the computational

complexity of LSTM, TCN, self-attention, and MHA layers, where n is the sequence length,

d is its depth, and k is the kernel size of convolutions [(VASWANI et al., 2017; KAISER, 2017)].

Table 2 – Computational complexity

Layer Type Complexity per Layer Sequential Operations
LSTM O(nd2) O(n)
TCN O(knd2) O(1)

Self-Attention O(n2d) O(1)
MHA O(n2d + nd2) O(1)

Source: The author (2023).

4.4.4 Proposed Detection Architecture

Our proposed architecture consists of a GAN that relies on TCNs and self-attention to

consider time dependencies among data. Since di�erent applications may have di�erent re-

quirements and constraints, we propose di�erent architectures for the GAN generator and

discriminator neural networks so that di�erent trade-o�s are achieved between detection rates

and detection times. More specifically, we design generator and discriminator networks with

one fully connected input layer, one fully connected output layer, and hidden layers of one or

more TCN or self-attention blocks. Figure 15 shows the proposed high-level architectures of

the GAN generator and discriminator.

Figure 15 – The GAN generator and discriminator architectures
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The proposed TCN block allows the architecture to learn from experience and consists of

a single dilated causal convolution and a Rectified Linear Unit (ReLU) activation function. In

addition, to avoid overfitting, it has a normalization layer and a dropout layer for regularization.

This block can be replicated N times such that a single convolution layer is responsible for

the TCN residual connection. The number of dilated causal convolutions, i.e., the value of

N , directly impacts the detection rates and detection times. While higher values of N may

increase our IDS’s ability to learn and detect attacks, it also increases detection times, as

the more layers there are, the longer the detection times. Figure 16 shows the TCN block

architecture.

Figure 16 – The TCN block architecture
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Source: The author (2023).

On the other hand, the proposed self-attention block consists of an MHA module that

uses self-attention. Similarly to the TCN block, normalization and dropout layers are used

to avoid overfitting. Moreover, a residual connection is included to help with the network’s

training, as it allows gradients to flow through the network. Finally, N self-attention blocks

can be cascaded to increase our IDS’s ability to learn and detect attacks, at the expense of

also increasing detection time. Figure 17 shows the self-attention block architecture.

4.4.5 Proposed Deployment Architecture

Edge computing provides cloud computing capabilities closer to consumers and the data

generated by applications. It is one of the main pillars for meeting low latency and bandwidth
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Figure 17 – The self-attention
block architecture
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Source: The author (2023).

e�ciency requirements [(KEKKI et al., 2018; YOUSEFPOUR et al., 2019)]. More specifically, edge

computing architectures introduce edge servers, to which devices can o�oad computational

tasks and receive back their results in real time [(Shi; Pallis; Xu, 2019; Jia et al., 2020)]. Thus,

our proposed IDS is deployed as an application on edge servers so that IoT devices can

send their network flows for analysis and receive back attack detection alerts. Depending on

their criticality and sensitivity, IoT devices may be configured to adopt di�erent actions upon

receiving alerts, such as dropping packets, resetting connections, or blocking the tra�c from

suspicious nodes.

We suggest using the open-source Kafka-ML [(MARTÍN et al., 2022)] framework to deploy

our IDS’s ML models and transfer data between IoT devices and edge nodes. It uses data

streams to manage ML pipelines and the Apache Kafka distributed publish/subscribe messag-

ing system [(Apache Kafka, )] to transfer large amounts of data with low latency. In addition,

using the framework in all edge nodes and the cloud significantly reduces the ML models’

response time [(CARNERO et al., 2021; TORRES et al., 2021)]. Finally, Kafka-ML relies on con-

tainerization and container orchestration platforms to ensure portability, easy distribution, and

high availability.

Moreover, we propose that instances of our IDS that are deployed on edge servers in

di�erent regions interact with each other to exchange attack detection reports so that they

become aware of attacks occurring in neighboring regions. In addition, they also send attack

detection reports to a cloud service, which has a large-scale view and becomes aware of
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attacks that simultaneously target di�erent locations. This awareness is essential for evaluating

the potential risks and impacts of sophisticated distributed cyber-attacks to take appropriate

countermeasures. Figure 43 in Appendix A.1 shows the deployment of our proposed IDS on

multiple edge servers.

4.5 METHODOLOGY AND PERFORMANCE EVALUATION

In this section, we briefly present the dataset used in our experiments, which contains

both normal and attack data. Then, we explain the models implemented and experiments

conducted.

4.5.1 Dataset Presentation

In order to evaluate our proposed IDS, we use the CICDDoS2019 dataset provided by

the Canadian Institute for Cybersecurity (CIC) and the University of New Brunswick (UNB)

[(CYBERSECURITY, ; SHARAFALDIN et al., 2019)]. This dataset contains benign tra�c data

and the most modern and common DDoS attacks, such as Syn, UDP, UDPLag, MSSQL, Net-

BIOS, LDAP, and Portmap, covering the four DDoS attack strategies presented in Section 4.3.

The dataset provides 83 network flow features extracted from raw tra�c data using the

CICFlowMeter-V3 tool [(AHLASHKARI, )]. While many traditional network-based IDSs rely on

deep packet inspection, this approach is computationally costly and challenging to implement

when network tra�c is encrypted [(UMER; SHER; BI, 2017)]. Thus, like most state-of-the-art

IDSs [(Jia et al., 2020; ARAUJO-FILHO et al., 2021; OZGUMUS, 2019)], in our work, we rely on

network flow features to detect malicious activities. We use the 35 most relevant network flow

features from those defined in [(Jia et al., 2020)], such as flow duration and the total number

of packets in the forward and backward directions, as well as five features that identify net-

work flows: source IP, destination IP, source port, destination port, and protocol. Table 14 in

Appendix A.2 lists all the features used in our work.

To train and evaluate our IDS, we constructed a training, a validation, and a testing set.

The training set, which is used to train the GAN, was constructed by sampling 80% of the

normal network flows of a training day defined by the dataset. The validation set, which is

used to optimize our models’ hyper-parameters, was formed by the remaining 20% of the

normal network flows of the training day in question and DDoS attacks sampled from the
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training day. Finally, the testing set, which is used to evaluate our IDS’s performance, was

constructed by sampling 50,000 normal network flows and 50,000 malicious network flows

from a testing day defined by the dataset. Since our testing set contains samples collected

from a di�erent day and is only used after the training of all models has been completed, it

provides unbiased results. Moreover, although the testing set’s malicious network flows result

from various types of DDoS attacks, our IDS relies on a binary classifier that distinguishes

between normal and malicious network flows rather than classifying by attack type. Hence, the

testing set is considered balanced. Table 3 depicts the number of normal and DDoS network

flows in the constructed sets. Table 4 indicates the number of malicious network flows per

DDoS attack type.

As shown in Tables 3 and 4, our proposed IDS relies only on normal network flows to train

its neural networks. Although malicious network flows of the Syn, UDP, UDPLag, MSSQL,

NetBIOS, and LDAP attacks are present in the validation set, they are used only to tune the

models’ hyper-parameters. Moreover, since the Portmap type of DDoS attack is present only

in the testing set, it represents a zero-day attack for which no information is available.

Table 3 – Training, validation, and testing sets

Normal
Network Flows

DDoS Attacks
Network Flows

Training Set 45,408 0
Validation Set 11,342 68,052

Testing Set 50,000 50,000
Source: The author (2023).

Table 4 – Malicious network flows per DDoS attack type

DDoS Attack Type Training Set Validation Set Testing Set
Syn 0 11,342 8,021

UDP 0 11,342 8,021
UDPLag 0 11,342 1,873
MSSQL 0 11,342 8,021

NetBIOS 0 11,342 8,021
LDAP 0 11,342 8,021

Portmap 0 0 8,022
Source: The author (2023).
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4.5.2 Simulation Experiments

We conducted multiple experiments by training and evaluating the GAN depicted in Figure

15 using di�erent numbers of TCN and self-attention blocks, which are depicted in Figures

16 and 17, respectively. In addition, we trained the GAN using LSTM networks instead of the

proposed blocks as hidden layers to have a baseline for comparing our IDS’s performance. All

models were optimized using the Optuna framework [(AKIBA et al., 2019)], which automatically

searches for optimal hyper-parameter values by trial and error, and employed the early stopping

mechanism to avoid overfitting. Several hyper-parameters were tuned, such as learning rate,

optimizer, batch size, kernel and dilation of convolutions, number of hidden units, and latent

dimension. Moreover, we experimented with concatenating several layers of the TCN and

self-attention blocks by varying the parameter N defined in Figures 16 and 17. Finally, we

replicated our training experiments twenty times to reduce bias from the stochastic training.

Table 15 in Appendix A.3 lists the hyper-parameter values used in our work.

4.6 RESULTS AND DISCUSSIONS

In our experiments, we evaluated the detection rate, detection time, and complexity of

our proposed IDS when using one or more TCN and self-attention blocks as hidden layers.

The goal was to identify a trade-o� between detection rates and detection times so that our

IDS can employ di�erent configurations and satisfy di�erent requirements. In addition, we

evaluated whether TCN and self-attention blocks outperform LSTM networks in our proposed

GAN-based IDS. Finally, we compared our IDS to two state-of-the-art GAN-based IDSs: FID-

GAN [(ARAUJO-FILHO et al., 2021)] and ALAD [(ZENATI et al., 2018b)]. FID-GAN considers

temporal dependencies among data by using LSTM networks in both the GAN generator

and discriminator. ALAD, on the other hand, does not use LSTM networks or consider time

dependencies among data. It relies only on fully connected and regular convolutional networks.

4.6.1 Detection Rates

We used the AUC of the ROC curve (collectively, Area Under The Receiver Operating

Characteristic Curve (AUCROC)) as the metric to evaluate our proposed IDS’s cyber-attack

detection performance on the testing set samples. Each point on the curves represents both
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the true positive and false positive rates achieved for a threshold. Hence, the AUCROC metric

allows us to evaluate our solution for many di�erent thresholds at once rather than for only one

at a time. Moreover, it shows which threshold yields the best results in terms of maximizing

the true positive rate or minimizing the false positive rate.

Figure 18 shows the ROC curves obtained when using LSTM networks, one TCN block,

two TCN blocks, and one self-attention block as the hidden layers in our proposed architecture.

Other TCN and self-attention block configurations did not improve the AUCROC results but

increased the detection times, as the IDS takes longer to detect attacks the more layers it has.

The plots verify that our IDS achieves the highest AUCROCs results when using two TCN

blocks or one self-attention block. Moreover, since the AUCROC values achieved are close to

1, our IDS ensures low false positive and false negative rates simultaneously. While minimizing

false positives is essential for keeping the network operational, minimizing false negatives is

essential for ensuring security.

Figure 18 – Our proposed IDS’s ROC curves

Source: The author (2023).

Moreover, we compared the AUCROC results of our proposed IDS to those of ALAD

[(ZENATI et al., 2018b)] and FID-GAN [(ARAUJO-FILHO et al., 2021)]. Our proposed IDS out-

performed ALAD in all its configurations, as ALAD uses only fully connected and regular

convolutional layers, and does not consider dependencies among data. It also outperforms
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FID-GAN, which relies on LSTM networks, when it is configured with two TCN blocks or a

single self-attention block. ALAD’s and FID-GAN’s ROC curves are shown in Figures 19 and

20, respectively.

Figure 19 – ALAD’s ROC curve

Source: The author (2023).

Figure 20 – FID-GAN’s ROC curve

Source: The author (2023).
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Furthermore, we also conducted hypothesis tests to verify whether there were statistical

di�erences between the AUCROCs of our proposed IDS, ALAD, and FID-GAN. Hence, we first

conducted D’Agostino and Pearson’s hypothesis test to verify whether a normal distribution

could approximate the AUCROC values obtained for each model. This verification allowed

us to conduct the one-way ANOVA hypothesis test to verify whether there was a significant

di�erence between at least two of the models evaluated. The ANOVA test confirmed that at

least one of the models di�ered from the others, such that there was a statistically significant

di�erence among them. Since ANOVA cannot determine which model di�ered from the others,

we conducted Tukey’s honestly significant di�erence (HSD) post hoc test, which evaluates the

models two-by-two. Table 5 shows the p-values of the models’ comparison obtained from the

post hoc test. We reject the null hypothesis that there is no significant di�erence between the

model’s AUCROCs whenever the post hoc test p-value does not exceed 0.05. Thus, our results

show that when it uses self-attention or two TCN layers, our IDS is statistically di�erent from

its LSTM-based version. Therefore, self-attention and two TCN blocks successfully replace

LSTM networks for attack detection and achieve better detection results.

Table 5 – Tukey’s HSD
pairwise group comparisons
(95.0% confidence interval)

Comparison p-value
Self-Attention TCN (N=2) 0.989
Self-Attention TCN (N=1) 0.017
Self-Attention LSTM 0.011
Self-Attention FID-GAN 0.212
Self-Attention ALAD 0.000
TCN (N=2) TCN (N=1) 0.024
TCN (N=2) LSTM 0.012
TCN (N=2) FID-GAN 0.349
TCN (N=2) ALAD 0.000
TCN (N=1) LSTM 0.999
TCN (N=1) FID-GAN 0.920
TCN (N=1) ALAD 0.299

LSTM FID-GAN 0.973
LSTM ALAD 0.065

FID-GAN ALAD 0.029
Source: The author (2023).

Finally, we evaluated our proposed IDS, ALAD, and FID-GAN at the EER, which corre-
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sponds to the threshold at which the false positive and false negative rates are equal. Table 6

shows the accuracy, precision, recall, and F1-scores of our IDS in four di�erent configurations,

ALAD, and FID-GAN. While our IDS outperforms ALAD and FID-GAN in all its configurations

according to all the metrics used, it achieves the best results when it is configured with two

TCN blocks. Finally, although our goal is not to identify di�erent types of attacks, we provide

in Table 7 the overall normal and attack (recall) detection rates as well as the detection rates

for each type of DDoS attack in the testing set. Our IDS can detect the Portmap attack,

which represents a zero-day attack, with a detection rate as high as 0.9993, which is higher

than it can achieve for the other attack types. Therefore, our proposed IDS is considered able

to detect unknown attacks.

Table 6 – Accuracy, precision, recall, and F1-scores
of our IDS, ALAD, and FID-GAN

Accuracy Precision Recall F-1
LSTM 0.9405 0.9405 0.9405 0.9405

TCN Block (N=1) 0.9588 0.9588 0.9588 0.9588
TCN Block (N=2) 0.9707 0.9705 0.9710 0.9707

Self-Attention Block (N=1) 0.9682 0.9682 0.9682 0.9682
FID-GAN 0.9203 0.9203 0.9203 0.9203

ALAD 0.8860 0.8860 0.8860 0.8860
Source: The author (2023).

Table 7 – Detection rates by DDoS attack type

Normal Attack Syn UDP UDPLag MSSQL NetBIOS LDAP Portmap
LSTM 0.9405 0.9405 0.7290 0.9994 0.9215 0.9999 0.9479 0.9996 0.9718

TCN Block (N=1) 0.9588 0.9588 0.9728 0.9946 0.6610 0.9868 0.935544 0.9994 0.9333
TCN Block (N=2) 0.9704 0.9710 0.8242 1.0000 0.9856 1.000 0.9990 1.000 0.9993

Self-Attention Block (N=1) 0.9682 0.9682 0.8897 1.0000 0.9770 1.000 0.9439 0.9998 0.9739
FID-GAN 0.9203 0.9203 0.6052 0.9516 0.8655 0.9898 0.9925 0.9998 0.9960

ALAD 0.8860 0.8860 0.5726 0.8193 0.8831 0.9662 0.9736 0.9999 0.9848
Source: The author (2023).

4.6.2 Detection Times

To evaluate how long our IDS takes to detect attacks, we measured its mean detection

time when using LSTM networks, TCN blocks, and self-attention blocks. The configuration

with a single TCN block had the shortest detection time, hence it is the preferred configuration

for latency constrained applications. Moreover, we compared the detection times our solution
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achieved to those of ALAD and FID-GAN, which took longer than our proposed solution to

detect attacks. Particularly, FID-GAN has a much longer detection time than our IDS because

it relies on a more complex GAN architecture and computes a reconstruction loss using an

encoder neural network. Similarly, such complexity and the need for training an encoder neural

network in addition to the GAN make the training time of FID-GAN much longer than that

of our IDS. Therefore, our IDS is considered the best IDS of the three. Figure 21 shows the

detection times of our proposed IDS, ALAD, and FID-GAN.

Figure 21 – Detection times of our IDS, ALAD, and FID-GAN

Source: The author (2023).

Furthermore, the results in Figures 18 and 21 verify a trade-o� between detection rates

and detection times. For instance, our IDS achieves the highest AUCROC value and the

longest detection time when configured with a single self-attention block. On the other hand,

it achieves the lowest AUCROC value and the shortest detection time when configured with

a single TCN block. Therefore, depending on the application’s requirements and whether it is

more important to achieve higher detection rates or shorter detection times, our IDS can be

configured with di�erent blocks as hidden layers and satisfy di�erent constraints.

4.6.3 Complexity Analysis

To evaluate the complexity of our IDS, we present in Table 8 the number of epochs trained,

the mean training time per epoch, the total convergence time, and the number of parameters
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in the GAN discriminator and generator. In addition, we detail in Table 9 the number of

parameters of each model’s input layer, hidden layers, and output layer. The models are trained

for di�erent numbers of epochs due to the early stopping mechanism, the LSTM model trains

for the fewest number of epochs and converges fastest. However, the model with a single TCN

block has the lowest number of parameters and the shortest training time per epoch, which

is reflected in the detection time results in Figure 21, as it has the shortest detection times.

Finally, even though the self-attention model converges slowest, it achieves the best detection

rates.

Table 8 – Computational complexity
of each configuration of our IDS

LSTM TCN
(N=1)

TCN
(N=2)

Self-Attention
(N=1)

Number
of Epochs

33 50 45 42

Training
Time (s/epoch)

12.03 10.07 13.64 19.42

Convergence
Time (s)

397.00 503.29 613.80 815.80

Number of
Parameters on
Discriminator

4,234 3,101 4,961 5,921

Number of
Parameters on

Generator
3,618 2,330 8,180 5,520

Source: The author (2023).

Usually, the more parameters a neural network has, the longer it takes to converge. How-

ever, although a few works have proposed a correlation between the number of parameters of

a neural network and its convergence time, they are not too accurate and depend on many

other variables, such as the optimizer and the number and complexity of training samples [(RO-

NEN et al., 2019; BACH; CHIZAT, 2021)]. For that reason, dynamic learning techniques and the

early stopping mechanism have been developed and largely adopted to let the models decide

when they have learned enough and must stop training to reduce the training time and avoid

overfitting [(PRECHELT, 1998; CARUANA; LAWRENCE; GILES, 2000)]. Therefore, although all

models evaluated were given the same computational resources and training time, so they had

the same computational budget, they were allowed to stop training earlier, i.e., after di�erent

numbers of epochs using the early stopping mechanism as it is commonly done in machine



82

Table 9 – Number of parameters
of each configuration of our IDS

LSTM TCN
(N=1)

TCN
(N=2)

Self-Attention
(N=1)

Number of
Parameters on
Discriminator

Input
Layer

1,640 1,640 1,640 1,640

Hidden
Layers

2,568 1,450 3,300 3,440

Output
Layer

26 11 21 841

Number of
Parameters on

Generator

Input
Layer

840 440 4,040 440

Hidden
Layers

2,568 1,450 3,300 3,440

Output
Layer

210 440 840 1,640

Source: The author (2023).

learning. Precisely, all the models had a maximum time of 15 minutes (900 seconds) to train

on an AMD Ryzen Threadripper 1920X 12-core processor 2.2GHz with 64GB of RAM and

an NVIDIA GeForce RTX 2080 in a Pytorch environment. On the other hand, providing less

time than what is required for training the models, i.e., forcing them to stop training before

convergence, would unnecessarily compromise their detection results as we adopt an o�ine

training procedure that deploys models only after they have been trained. Moreover, even

though we consider 15 minutes a very reasonable maximum training time, since the models

will only work and detect malicious network flows after they have been trained, our primary

concern is not the training time but the detection time.

4.6.4 Combining Protection Techniques

Despite our solution’s results, security is usually constructed in layers to enhance protection

against cyber-attacks. Thus, our proposed IDS may be combined with other techniques to

protect against DDoS attacks. For instance, we can limit attack surface areas by not exposing

applications and resources to ports and protocols from which they do not expect to receive any

communication [(Amazon Web Services, )]. Moreover, we can rely on firewalls, Web Application

Firewalls (WAFs), and traditional signature-based IDSs, which are rule-based, to reduce the

burden on our proposed IDS [(PRASEED; THILAGAM, 2022)]. Finally, we can rely on scalable

architectures that quickly adjust their resources to accommodate high tra�c volumes and

maintain availability in critical systems [(Amazon Web Services, )].
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Furthermore, since DDoS attacks create large volumes of tra�c, they are usually launched

from botnets, i.e., networks of computers infected by malware that can carry out commands

under the attacker’s control. Therefore, a fundamental aspect of protecting against DDoS

attacks is thwarting botnet recruitment, which requires protection techniques, such as limiting

attack surfaces, and using firewalls and botnet detection systems [(GARCIA et al., 2014; SRI-

RAM et al., 2020)]. In future works, we will combine our proposed IDS with botnet detection

techniques.

4.6.5 Strengths and Limitations

One of the main strengths of our proposed IDS is its ability to be more accurate and at

least 3.8 times faster than the two state-of-the-art GAN-based IDSs we used as baselines.

Moreover, it can use di�erent hidden layers to satisfy di�erent requirements depending on

whether it is more important to have higher detection rates or shorter detection times. Finally,

our solution follows an unsupervised approach so that it does not require labeled attack data

and can detect unknown attacks, such as Portmap attacks.

On the other hand, our IDS is limited to detecting attacks, as mitigating them is outside of

the scope of our work. In addition, it has not been combined with other protection mechanisms,

such botnet detection techniques, which we will investigate in future works. Finally, our IDS

uses only the discriminator’s output. However, the reconstruction loss, which is computed using

the GAN generator, could improve detection rates at the expense of increasing the detection

time as is noted in [(LI et al., 2019; ARAUJO-FILHO et al., 2021)].

Furthermore, another limitation of our proposed IDS is its o�ine training procedure. Since

the normal behavior of systems and networks under surveillance may change with time, our

IDS needs to be retrained from time to time so that it keeps up to date. However, since large

environments usually have a massive amount of network data, which may reach several giga-

bytes per hour, constantly retraining our IDS might be operationally challenging. In addition,

acquiring training data from multiple nodes may raise privacy issues as such data may con-

tain sensitive information that must not be shared. In the face of those limitations, in future

works, we will investigate and propose an online federated training procedure for our IDS that

leverages federated learning to preserve privacy while always being up to date.
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4.7 CONCLUSION

In this paper, we propose a novel unsupervised GAN-based IDS that is capable of detecting

both known and zero-day attacks without relying on labeled attack data. In contrast to most

existing IDSs, which rely on LSTM networks, our proposed architecture considers dependencies

among data by relying on TCNs and self-attention. In our experiments, we verify the trade-

o� between detection rates and detection times for di�erent configurations of our IDS. Our

solution can be configured to satisfy di�erent requirements depending on whether it is more

important to achieve higher accuracies or shorter detection times. Moreover, our simulation

experiments show that our proposed IDS achieves higher AUCROC values and shorter detection

times than two state-of-the-art GAN-based IDSs. Therefore, not only does our IDS achieve

better detection rates than LSTM-based IDSs, it is also more suitable than them for latency

constrained applications.

Finally, although Variational Autoencoders (VAEs) are conceptually di�erent than GANs,

they have also yielded promising results in terms of learning data representations and detecting

malicious activities [(ZAVRAK; �SKEFIYELI, 2020; XU et al., 2021)]. Thus, in future works, we

will investigate the use of VAEs and combinations of VAEs and GANs for unsupervised attack

detection, and combine them with botnet detection techniques. Moreover, we will propose

an online federated training procedure so that our IDS is constantly retrained and kept up

to date while preserving privacy by sharing only the weights of neural networks in di�erent

nodes instead of sensitive data. Furthermore, we will construct a new DDoS dataset with more

DDoS attack types compared to the existing datasets to better evaluate our IDS’s general-

ization and performance. For instance, we will consider the detection of DoS attacks caused

by adversarial attacks that compromise the functionality of machine learning models, such as

the one proposed in (ARAUJO-FILHO et al., 2022), which interrupts wireless communications by

compromising machine learning-based modulation classifiers on wireless receivers.
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5.1 ABSTRACT

Deep learning is increasingly being used for many tasks in wireless communications, such

as modulation classification. However, it has been shown to be vulnerable to adversarial at-

tacks, which introduce specially crafted imperceptible perturbations, inducing models to make

mistakes. This letter proposes an input-agnostic adversarial attack technique that is based

on GANs and multi-task loss. Our results show that our technique reduces the accuracy of

a modulation classifier more than a jamming attack and other adversarial attack techniques.

Furthermore, it generates adversarial samples at least 335 times faster than the other tech-

niques evaluated, which raises serious concerns about using deep learning-based modulation

classifiers.

5.2 INTRODUCTION

Due to its success in the most diverse fields, deep learning has been increasingly investi-

gated and adopted in wireless communications. It has been recently used for channel encoding

and decoding [(LIANG; SHEN; WU, 2018)], resource allocation [(SANGUINETTI; ZAPPONE; DEB-

BAH, 2018; SUN et al., 2017)], and AMC [(O’SHEA; CORGAN; CLANCY, 2016; O’SHEA; ROY;
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CLANCY, 2018)]. More specifically, deep learning-based modulation classifiers have been re-

placing traditional AMC techniques because they achieve better classification performance

without requiring manual feature engineering [(FLOWERS; BUEHRER; HEADLEY, 2020; LIN et al.,

2021; SAHAY; BRINTON; LOVE, 2022)].

However, deep learning models have been shown to be vulnerable to adversarial attacks,

which puts into question the security and reliability of wireless communication systems that rely

on such models [(LIN et al., 2020; MANOJ; SADEGHI; LARSSON, 2021; SADEGHI; LARSSON, 2019;

IBITOYE et al., 2019; FLOWERS; BUEHRER; HEADLEY, 2020)]. Adversarial attacks introduce

specially crafted imperceptible perturbations that cause wrong classification results. Thus,

they can force a deep learning-based modulation classifier on a receiver to misidentify the

modulation mode used so that a signal is not correctly demodulated and the communication

compromised.

Adversarial attacks can be classified as white or black-box attacks, depending on the knowl-

edge they require from their target models. White-box attacks require a complete knowledge

of the classifier’s model, such as training data, architecture, learning algorithms, and hyper-

parameters [(YUAN et al., 2019)]. Black-box attacks, on the other hand, assume a more feasible

scenario in which the attacker has access to only the model’s output [(YUAN et al., 2019)].

Furthermore, the authors of [(ILYAS et al., 2018)] define three more restrictive and realistic

black-box threat models: query-limited, partial-information, and decision-based. The query-

limited scenario considers that attackers have access to only a limited number of the model’s

outputs. The partial-information scenario considers that attackers have access to only the

probabilities of some of the model’s classes. Finally, the decision-based scenario considers that

attackers have access to only the model’s decision, i.e., the class to which it assigns a given

data sample.

Although existing adversarial attacks pose risks to the use of deep learning in wireless

communications, they require a complete knowledge about the target model [(LIN et al., 2021;

ZHAO et al., 2020)] or take too long to craft adversarial perturbations [(BRENDEL; RAUBER;

BETHGE, 2017; MOOSAVI-DEZFOOLI et al., 2017; SADEGHI; LARSSON, 2019)]. In this letter,

we propose a novel input-agnostic decision-based adversarial attack technique that reduces

the accuracy of modulation classifiers more and crafts perturbations significantly faster than

existing techniques. Our technique is necessary for assessing the risks of using deep learning-

based AMC in the more realistic scenario of decision-based black-box attacks. Moreover, it can

significantly contribute to developing classifiers that are robust against adversarial attacks. The
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main contributions of our work are as follows: First, we combine GANs [(GOODFELLOW et al.,

2014)] and multi-task loss [(KENDALL; GAL; CIPOLLA, 2018)] to generate adversarial samples, by

simultaneously optimizing their ability to cause wrong classifications and not being perceived.

Second, we reduce the accuracy of modulation classifiers more and craft adversarial samples in

a shorter time than existing techniques while following the decision-based black-box scenario.

Third, we propose an input-agnostic adversarial attack technique that does not depend on

the original samples to craft perturbations. It allows adversarial perturbations to be prepared

in advance, further reducing the time for executing the adversarial attack. Finally, our work

verifies that modulation classifiers are at an increased risk and urgently need to be enhanced

against adversarial attacks.

5.3 RELATED WORKS

Although adversarial attacks were initially explored in computer vision applications, they

have recently been investigated for wireless communication applications, such as AMC. The

authors of [(LIN et al., 2021)] and [(ZHAO et al., 2020)] evaluate the robustness of a modula-

tion classifier against four white-box adversarial attack techniques: Fast Gradient Sign Method

(FGSM), Projected Gradient Descent (PGD), Basic Iterative Method (BIM), and Momentum

Iterative Method (MIM). The works show that the classifier’s accuracy is significantly com-

promised. However, they do not measure the extent of the perturbation or the time it takes

to craft adversarial samples. The work in [(MANOJ; SADEGHI; LARSSON, 2021)] extends the

white-box techniques FGSM, Momentum Iterative Fast Gradient Sign Method (MI-FGSM),

and PGD to a power allocation application. It shows that adversarial attacks also pose a

significant risk to regression-based applications, such as power allocation.

Several other works focus on black-box attacks, as they are more realistic for not requir-

ing complete knowledge about the model [(YUAN et al., 2019)]. The authors of [(BRENDEL;

RAUBER; BETHGE, 2017)] propose a boundary attack technique that requires access to only

the classifier’s decision. It relies on a probabilistic distribution to iteratively craft adversarial

samples and reduce their distance to the original sample. Although it compromises the ac-

curacy of classifiers, it takes more than a minute to craft a single adversarial sample. The

authors of [(MOOSAVI-DEZFOOLI et al., 2017)] propose an iterative algorithm to produce uni-

versal perturbations and show that state-of-the-art image classification neural networks are

highly vulnerable. However, it takes more than 20 seconds to craft each adversarial sample.
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The authors of [(SADEGHI; LARSSON, 2019)] propose an algorithm to craft adversarial attacks

that is shown to require significantly less power than conventional jamming attacks to compro-

mise the performance of a modulation classifier. Although the algorithm reduces the craft time

of adversarial perturbations, it still requires hundreds of milliseconds to craft each adversarial

sample.

5.4 ADVERSARIAL ATTACKS FORMULATION

Although deep learning models may be trained with a large amount of data, it is impractical

to train them to cover all possible input feature vectors. As a result, the decision boundary

found by a trained model may di�er from the real one. The discrepancy creates room for a

trained model to make mistakes [(LIN et al., 2021)]. Adversarial attacks craft perturbations to

corrupt data samples so that they fall within that discrepancy area and are misclassified by a

trained model. However, this is not a trivial task as the perturbations must be large enough

to cause misclassifications but small enough to not be perceived. Therefore, given a sample

x, the goal of an adversarial attacker is to find a perturbation ” and construct an adversarial

sample xadv = x + ” while satisfying

min ||xadv ≠ x|| < fl (5.1)

and

f(xadv) ”= f(x), (5.2)

where || · || represents a chosen distance metric, fl is the maximum imperceptible perturbation

according to that metric, and f is the trained classifier target of the attack.

5.5 PROPOSED ADVERSARIAL ATTACK TECHNIQUE

In our work, we consider that our proposed adversarial attack technique is deployed as a

malicious software on software-defined wireless receivers, an essential piece of modern wireless

communication and 5G/6G. Although injecting such malicious software is out of the scope of

our work, it may be done by infecting software-defined radios with malware [(LI et al., 2018)].

The malware can send samples to the receiver’s modulation classifier and has access to its

decisions. It intercepts incoming signals, craft perturbations ”, add the perturbations to original

samples to form adversarial samples xadv = x + ”, and forward adversarial samples xadv to
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the modulation classifier. Thus, the receiver’s modulation classifier f identifies the modulation

mode of x as f(xadv). Since f(xadv) ”= f(x), the signal is not correctly demodulated, and

the communication is compromised. Figure 22 shows our attack model. The Analog-to-Digital

Converter (ADC) forwards clean samples to the modulation classifier, but they are tampered

by the adversarial attacker.

Figure 22 – Our attack model considers the adversarial attacker as malicious
software on the wireless receiver
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We propose a novel multi-objective adversarial attack technique by combining a GAN and

multi-task loss. GANs estimate generative models by simultaneously training two competing

neural networks: generator and discriminator [(ARAUJO-FILHO et al., 2021)]. The generator

learns the probabilistic distribution of training data, and the discriminator learns how to dis-

tinguish between real data and data produced by the generator. We train a GAN so that

its generator produces adversarial perturbations ” = G(z) from random latent vectors z

and its discriminator learns to distinguish between clean samples x and adversarial samples

xadv = x + G(z). We adopt the WGAN, which minimizes the Wasserstein distance between

two probability distributions. It is easier to train than the original GAN, and does not su�er

from the gradient vanishing problem [(ARJOVSKY; CHINTALA; BOTTOU, 2017; CRESWELL et al.,

2018)]. Although other GAN formulations, such as WGAN-GP [(GULRAJANI et al., 2017)[, try

to overcome WGAN’s di�culty in enforcing the Lipschitz constant, the work in [(LUCIC et al.,

2017)] shows that WGAN-GP does not necessarily outperform WGAN. In future work, we will

evaluate our technique with other GAN formulations, such as WGAN-GP.

The WGAN discriminator estimates the Wasserstein distance by maximizing the di�erence

between average critic score on real and fake samples. Besides, since we want the generator to

produce perturbations rather than adversarial samples, fake samples are designated as x+G(z)
instead of G(z). Thus, we minimize the discriminator loss given by LD = D(x+G(z))≠D(x).
On the other hand, the WGAN generator has the opposite goal of maximizing the average critic

score on fake samples. Hence, we minimize the generator loss given by LG = ≠D(x + G(z)).
However, such a LG only accounts for minimizing the di�erence between x and xadv, which
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corresponds to the condition of equation (5.1). It does not consider the condition of equation

(5.2), which is to ensure that x and xadv are assigned to di�erent classes.

To ensure that our GAN considers the conditions of both equation (5.1) and equation

(5.2), we modify the generator’s loss to simultaneously optimize two objective functions that

are given by LG1 and LG2. LG1 represents the task of minimizing the di�erence between x and

xadv and is given by the original generator loss, hence LG1 = ≠D(x+G(z)). LG2 represents the

task of ensuring that x and xadv are assigned to di�erent classes. It is given by the cross entropy

loss between the class f assigns to xadv and the label of x, hence LG2 = CE(f(x+G(z)), y),
where CE stands for the Cross Entropy (CE) loss largely adopted in classification problems

and y is the label of x. During training, our technique leverages its access to the classifier’s

decisions to simultaneously optimize its ability to cause wrong classifications and not being

perceived.

While most works that simultaneously learn multiple tasks manually tune a weighted sum

of losses, we leverage the multi-task loss proposed in [(KENDALL; GAL; CIPOLLA, 2018)]. That

work uses aleatoric uncertainty, which is a quantity that stays constant for all input data and

varies between di�erent tasks, to simultaneously optimize any two losses by optimally balancing

their contributions as

L = 1
2‡2

1
L1 + 1

2‡2
2
L2 + log ‡1‡2, (5.3)

where L1 and L2 are any two losses, and ‡1 and ‡2 are learnable weights automatically tuned

when training a neural network. Thus, while we train the GAN discriminator with

LD = D(x + G(z)) ≠ D(x), (5.4)

we combine LG1 and LG2 with equation (5.3), where L1 = LG1 and L2 = LG2, so that our

generator loss becomes

LG = ≠D(x + G(z))
2‡2

1
+ CE(f(x + G(z)), y)

2‡2
2

+ log ‡1‡2. (5.5)

Figure 23 shows the training model, and Algorithm 2 shows the execution steps of our proposed

adversarial attack technique.
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Figure 23 – Our proposed training model
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Algorithm 2: Proposed adversarial attack technique
1: Train a GAN according to equations (5.4) and (5.5)
2: for Each incoming sample x do
3: Compute G(z)
4: Construct the adversarial sample xadv = x + G(z)
5: end for

5.6 METHODOLOGY AND EXPERIMENTAL EVALUATION

We use the RADIOML 2016.10A dataset and VT-CNN2 modulation classifier designed by

DeepSiG and publicly available in [(O’SHEA; CORGAN; CLANCY, 2016; O’SHEA; WEST, 2016)] to

evaluate our proposed adversarial attack technique. The dataset is constructed by modulating

and exposing signals to an Additive White Gaussian Noise (AWGN) channel that includes

sampling rate o�set, random process of center frequency o�set, multipath, and fading e�ects,

as described in [(O’SHEA; CORGAN; CLANCY, 2016; O’SHEA; WEST, 2016)]. Since our technique

crafts adversarial samples on receivers, it is not subject to channel e�ects. In future work, we

will consider them to enhance our proposed technique so that it sends adversarial samples over

the air.

After modulation and channel modeling, the signals are normalized and packaged into

220,000 samples of in-phase and quadrature components with length 128, each associated

with a modulation scheme and a Signal-to-Noise Ratio (SNR). SNR is a measure of a signal’s

strength. It is the ratio between the power of the signal and of the background noise, i.e.,

SNR[dB] = 10 log(Psignal

Pnoise
), where P is the signal power. Eleven di�erent modulation schemes

(eight digital and three analog) are possible: 8PSK, BPSK, QPSK, QAM16, QAM64, CPFSK,
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GFSK, PAM4, WBFM, AM-DSB, and AM-SSB. Twenty di�erent SNRs, ranging from -20 dB

to 18 dB in steps of 2 dB, are possible. Twenty percent of the samples are reserved as a

testing set to measure the VT-CNN2 modulation classifier’s accuracy on clean and adversarial

samples.

The VT-CNN2 modulation classifier relies on deep convolutional neural networks and classi-

fies samples among the eleven modulation schemes in the dataset. Figure 24 shows VT-CNN2’s

architecture. Although the softmax layer gives the probability of membership for each class,

we consider the classifier’s output to be only its final decision, i.e., the modulation class that

has the highest probability. Thus, f(x + G(z)) is the predicted label of one of the modulation

schemes considered.

Figure 24 – VT-CNN2 neural network architecture
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Finally, Figures 25 and 26 show the GAN’s generator and discriminator architectures.

They were optimized using the Optuna framework [(AKIBA et al., 2019)], which automati-

cally searches for the optimal hyper-parameters, and the early stopping mechanism to avoid

overfitting. Table 10 shows the hyper-parameter values used in the GAN after tuning. All ex-

periments were conducted using an AMD Ryzen Threadripper 1920X 12-core 2.2GHz processor

with 64GB of RAM and an NVIDIA GeForce RTX 2080 in a Pytorch environment.
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Figure 25 – GAN generator architecture
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Figure 26 – GAN discriminator architecture
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Table 10 – Hyper-parameters values

Hyper-Parameter Value
Optimizer Adam

Generator Learning Rate 0.00049
Discriminator Learning Rate 0.00055

Batch Size 128
Latent Dimension 100

Dropout Rate 0.10
Source: The author (2023).

5.7 RESULTS AND DISCUSSION

As previously mentioned, the goal of adversarial attacks is to introduce imperceptible per-

turbations capable of reducing the accuracy of a modulation classifier. Therefore, we evaluated

our proposed attack technique by measuring the VT-CNN2’s accuracy on clean and adversarial

samples, and the Perturbation-to-Noise Ratio (PNR). PNR measures the ratio between the

perturbation and noise power levels so that PNR[dB] = 10 log(Pperturbation

Pnoise
), where P is the
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signal power. The larger the PNR, the larger the perturbation is in comparison to the noise,

becoming more distinguishable and more likely to be detected. Perturbations are considered

imperceptible when they are in the same order as or below the noise level, i.e., PNR < 0 dB.

Figure 27 shows the VT-CNN2’s accuracy versus PNR for SNRs of 10, 0, and -10 dB.

Without attacks, the classifier achieves di�erent accuracy depending on the SNR because

larger noises make it harder for the classifier to achieve correct results. Under our proposed

adversarial attack, the classifier’s accuracy is significantly reduced in all cases. At 0 dB PNR,

our technique reduces the accuracy by 37% for 10 dB SNR, 56% for 0 dB SNR, and 7%

for -10 dB SNR. Our technique reduces the accuracy more for 0 dB than for 10 dB SNR

because, for signals with the same strength, larger SNRs mean lower noise levels so that it is

more challenging to produce imperceptible perturbations that still significantly compromise the

accuracy. However, although the noise at -10 dB SNR is the highest, allowing our technique

to produce larger perturbations, the accuracy reduction is not as significant as at 0 dB SNR

or 10 dB SNR. If f(x + G(z)) in equation (5) gives too many wrong results regardless of

the adversarial perturbation G(z), it is harder for our technique to find what perturbation

would reduce the classifier’s accuracy the most. Thus, the fact that our technique relies on the

classifier’s decisions to train the GAN diminishes its capacity to produce wrong classifications

when the classifier’s accuracy is low. Since the classifier’s accuracy is around only 22% at -10

dB SNR, the adversarial perturbations that our proposed technique crafts are less e�ective.

Nevertheless, our proposed adversarial attack technique still significantly reduces the classifier’s

accuracy.

We further examine the influence of perturbations on signal waveforms. We verify that the

signal waveform after perturbation (adversarial sample) is consistent with the original waveform

(clean sample), i.e., amplitude, frequency, and phase do not significantly change. Thus, while

our technique’s perturbations mislead the classifier, they are not easily recognized by human

eyes. Figure 28 illustrates the time domain waveform of an 8PSK signal before and after

the perturbation is introduced. Similar results were achieved for the other modulation schemes

considered, such that clean and adversarial samples always have very similar waveforms without

significant changes in their amplitude, frequency, and phase.

Moreover, we compare our results to those of a jamming attack, which adds Gaussian

noise to signals, and two other adversarial attack techniques: those proposed in [(MOOSAVI-

DEZFOOLI et al., 2017)] and [(SADEGHI; LARSSON, 2019)]. Figure 29 shows the VT-CNN2’s

accuracy on clean samples and adversarial samples produced by the jamming attack and the
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Figure 27 – Modulation classifier’s accuracy versus PNR
with and without our proposed adversarial attack technique

Source: The author (2023).

Figure 28 – Waveform comparison of a 8PSK signal with
SNR=10 dB before (clean sample) and after

(adversarial sample) our proposed adversarial attack

Source: The author (2023).

three adversarial attack techniques evaluated for SNR=10 dB. Perturbations introduced by

adversarial attacks are specially crafted to reduce the classifier’s accuracy the most while

not being perceived. Thus, our technique and the techniques from [(MOOSAVI-DEZFOOLI et
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al., 2017)] and [(SADEGHI; LARSSON, 2019)] are significantly more harmful than attacks that

introduce random noises, such as the jamming attack. Moreover, our proposed attack technique

is the one that reduces the accuracy the most.

Figure 29 – Modulation classifier’s accuracy versus PNR
without and subject to di�erent adversarial attack techniques

Source: The author (2023).

Finally, we evaluate how long it takes for each technique to craft adversarial samples.

Table 11 shows the mean execution time for crafting adversarial samples. Our proposed tech-

nique achieves significantly shorter times than the other two techniques by crafting adversarial

samples in less than 0.7 ms. Thus, it is more than 335 times faster than the second-fastest at-

tack technique. Techniques that take too long to craft perturbations might be too late so that

the signals they aim to perturb have already been correctly demodulated. Thus, such a time

reduction is essential to compromise fast modulation classifiers and is a great advantage of

our technique. Moreover, since our technique is input-agnostic, it can prepare perturbations in

advance and just add them to incoming signals. Therefore, our proposed technique represents

a severe risk to using deep learning-based modulation classifiers.
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Table 11 – Mean execution time
for crafting adversarial samples

Adversarial Attack Technique Mean Execution
Time per Sample

Technique from [(MOOSAVI-DEZFOOLI et al., 2017)] 20189 ms

Technique from [(SADEGHI; LARSSON, 2019)] 234 ms

Our Proposed Technique 0.6980 ms

Source: The author (2023).

5.8 CONCLUSION

In this letter, we verified that deep learning is exposed to security risks that must be

considered despite its advantages. Our results showed that it is possible to quickly craft small

imperceptible perturbations that completely compromise modulation classifiers’ accuracy and

hence wireless receivers’ performance. Therefore, it is urgently necessary to enhance deep

learning-based modulation classifiers’ robustness against adversarial attacks. As future work,

we will evaluate the use of other GAN formulations, such as WGAN-GP, modify our attack

model to consider adversarial attacks transmitted over the air, and investigate adversarial

attack defense strategies.
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6.1 ABSTRACT

Deep learning has been adopted for a wide range of wireless communication tasks, including

modulation classification, because of its great classification capability. However, deep learning

models have been shown to also introduce risks and vulnerabilities. For instance, adversarial

attacks craft and introduce imperceptible perturbations that compromise the accuracy of deep

learning-based modulation classifiers on wireless receivers. Therefore, in this paper, we propose

a novel wireless receiver architecture that enhances deep learning-based modulation classifiers

to defend them against adversarial attacks. Our experimental results show that our defense

technique significantly diminishes the accuracy reduction that is caused by adversarial attacks

by protecting modulation classifiers at least 18% more than existing defense techniques.

6.2 INTRODUCTION

The recent increase in connected devices and wireless communication tra�c, which has

been boosted by 5G/6G technology, has made the radio spectrum overcrowded and ine�-

cient [(SAHAY; BRINTON; LOVE, 2022; LIN et al., 2021)]. To mitigate this issue, modern wireless

transmitters dynamically change how the radio spectrum is shared by automatically switch-

ing between di�erent modulation schemes. As a result, wireless receivers must automatically
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recognize what modulation schemes are being used; otherwise, signals will not be demodu-

lated correctly and communication will be compromised. Automatic modulation classification,

which is an essential piece of cognitive and software-defined radio, has therefore become crucial

to wireless communications [(FLOWERS; BUEHRER; HEADLEY, 2020; SAHAY; BRINTON; LOVE,

2022; SAHAY; LOVE; BRINTON, 2021)].

Deep learning has been increasingly investigated for many tasks in wireless communica-

tions, such as channel encoding and decoding [(LIANG; SHEN; WU, 2018)], resource allocation

[(SANGUINETTI; ZAPPONE; DEBBAH, 2018; SUN et al., 2017)], and AMC [(O’SHEA; CORGAN;

CLANCY, 2016; O’SHEA; ROY; CLANCY, 2018)]. Deep learning-based modulation classifiers, for

example, have been found to perform better than traditional techniques that usually rely on

statistical approaches [(SAHAY; BRINTON; LOVE, 2022)]. Moreover, they do not require manual

feature engineering, which significantly reduces the cost of involving an expert [(FLOWERS;

BUEHRER; HEADLEY, 2020; LIN et al., 2021; SAHAY; BRINTON; LOVE, 2022)]. Hence, deep learn-

ing has been gaining ground and is being widely adopted for AMC [(O’SHEA; CORGAN; CLANCY,

2016; O’SHEA; ROY; CLANCY, 2018; LIN et al., 2021; SAHAY; BRINTON; LOVE, 2022)].

However, deep learning models have recently been shown to introduce vulnerabilities and

security risks. While wireless communications’ shared and broadcast nature allows attackers to

tamper with signals transmitted over the air, adversarial attacks introduce small imperceptible

perturbations that fool ML models into making wrong decisions. Unlike jamming attacks,

which tamper signals by adding Gaussian noise, adversarial attacks craft precisely the right

perturbation to compromise a classifier’s accuracy the most. Hence, they are much more

harmful than jamming attacks and present a severe risk to modulation classifiers that could

significantly compromise wireless communications [(ARAUJO-FILHO et al., 2022; LIN et al., 2020;

MANOJ; SADEGHI; LARSSON, 2021; SADEGHI; LARSSON, 2019; IBITOYE et al., 2019; FLOWERS;

BUEHRER; HEADLEY, 2020)].

Adversarial attacks can be classified as white- or black-box attacks depending on what

knowledge they require from the target models. White-box attacks represent the worst-case

scenario in which the attacker has complete knowledge about the target model, such as training

data, architecture, learning algorithm, and hyper-parameters [(YUAN et al., 2019)]. Black-box

attacks, on the other hand, are more feasible and realistic as they assume that the attacker

has access to only the model’s output or decision [(YUAN et al., 2019)]. Both types of attacks

have been shown to severely compromise the accuracy of modulation classifiers.

The works in [(LIN et al., 2021)] and [(ZHAO et al., 2020)] show that four white-box ad-
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versarial attack techniques significantly compromised the accuracy of modulation classifiers:

the FGSM, the PGD, the BIM, and the MIM. The work in [(SADEGHI; LARSSON, 2019)], on

the other hand, proposes a black-box adversarial attack technique that requires significantly

less power than other attacks techniques to compromise the performance of a modulation

classifier. Finally, the work in [(ARAUJO-FILHO et al., 2022)] combines GANs and multi-task

loss to generate adversarial samples that can simultaneously optimize their ability to cause

wrong classifications and not be perceived. That technique reduces the accuracy of a modu-

lation classifier more and crafts adversarial samples much faster than other adversarial attack

techniques. It is therefore urgently necessary to enhance the resistance of deep learning-based

classifiers to adversarial attacks.

In this paper, we propose a novel wireless receiver architecture that enhances the resistance

of the receiver’s modulation classifier to adversarial attacks. Our proposed defense technique

is threefold. First, the amount of adversarial perturbation in a modulated signal is estimated

by relying on a DAE that has been specially trained to remove Gaussian noise and adversarial

perturbations. Then, signals with considerable perturbations are preprocessed using the DAE

to remove those undesirable attributes. Signals with small amounts of noise and adversarial

perturbations, on the other hand, are not preprocessed as the DAE could introduce errors

that are more significant than the perturbations. Finally, the signal’s modulation scheme is

identified with an enhanced classifier that has been trained using noisy and adversarial samples

to make it resistant to sample variation.

In contrast, most existing defense techniques do not e�ectively remove adversarial per-

turbations as they focus only on detecting adversarial samples and improving the classifier.

Thus, compared to existing defense schemes, our proposed solution’s first major technical

improvement is our technique for estimating and removing adversarial perturbations, which

significantly alleviates the burden on the classifier. Moreover, while most existing defense

schemes enhance the classifier’s resistance to adversarial attacks by including adversarial sam-

ples in training, they are e�ective only against the adversarial attacks whose samples were

considered. On the other hand, our proposed defense technique relies on our previous work in

[(ARAUJO-FILHO et al., 2022)] to quickly craft and include in training adversarial samples that

generalize other adversarial attacks. Therefore, our proposed solution’s second major technical

improvement is its ability to enhance modulation classifiers’ resistance to various adversarial

attack techniques while requiring only adversarial samples crafted using a single fast attack

technique [(ARAUJO-FILHO et al., 2022)]. These improvements enable our technique to diminish
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the accuracy reduction that is caused by adversarial attacks by at least 18% more than existing

defense techniques. In a nutshell, the main contributions of our work are as follows:

• We propose a DAE that has been specially trained to estimate and remove noise and

adversarial perturbations from modulated signals.

• We propose an Enhanced Modulation Classifier (EMC) that is resistant to a variety of

adversarial attack techniques.

• We propose a novel wireless receiver architecture that is resistant to adversarial attacks

by combining our proposed DAE and EMC to remove adversarial perturbations and make

the classifier less a�ected by them.

The remainder of this article is organized as follows. Section 6.3 reviews the existing tech-

niques to defend against adversarial attacks on modulation classifiers. In Section 6.4, we for-

mulate adversarial attacks and describe the threat model and assumptions considered in our

work. In Section 6.5, we present our proposed wireless receiver architecture by describing our

proposed DAE and EMC. Section 6.6 describes the dataset used, the experiments conducted,

and the adversarial attacks considered in our evaluation. In Section 6.7, we present and discuss

our solution’s results and compare them to the results of state-of-the-art defense techniques.

Finally, Section 6.8 concludes our paper and proposes future extensions to our work.

6.3 RELATED WORKS

Despite the severe risks adversarial attacks on deep learning-based modulation classifiers

pose to wireless communications, only a few techniques have been proposed to defend modula-

tion classifiers against them. The work in [(SAHAY; BRINTON; LOVE, 2022)] proposes a wireless

transmission receiver architecture that reduces the risks of a modulation classifier experiencing

adversarial attacks. The defense technique consists of using an ensemble of eight classifiers to

recognize modulation schemes as it is more challenging for an attacker to simultaneously fool

several classifiers than just one. However, considering many classifiers significantly increases

the computational resources required and the time it takes to recognize a signal’s modulation

scheme.

The work in [(SHTAIWI et al., 2022)] proposes a defense technique that discards adversar-

ial samples before they are sent to the modulation classifier. It relies on Mixture Generative
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Adversarial Networks (MGANs) and trains a GAN for each modulation scheme considered.

However, the technique proposed in [(SHTAIWI et al., 2022)] also significantly increases the

computational resources required as one GAN is trained for each modulation scheme. More-

over, the authors of [(SHTAIWI et al., 2022)] evaluate their proposal against only adversarial

samples that are crafted using the FGSM technique and do not indicate the size of adversarial

perturbations or if they are imperceptible.

The authors of [(SAHAY; LOVE; BRINTON, 2021)] propose a defense technique for modula-

tion classifiers that detects large adversarial perturbations by computing a reconstruction loss

with an autoencoder. Moreover, it includes adversarial samples that have been crafted using

the FGSM technique when training the classifier so that the classifier learns how to classify

them correctly. However, while large perturbations are detected but not correctly classified,

small perturbations are correctly classified only if they were crafted using the FGSM technique,

as only those types of perturbations are considered when training the classifier. Similarly, the

work in [(KIM et al., 2021)] enhances a modulation classifier’s resistance by augmenting its train-

ing data with Gaussian noise. However, it does not significantly prevent adversarial attacks

from reducing the classifier’s accuracy as they optimally find perturbations that compromise

classifiers.

The authors of [(MANOJ et al., 2022)] evaluate the performance of modulation classi-

fiers enhanced using three defense techniques: randomized smoothing, hybrid PGD adversarial

training, and fast adversarial training. Randomized smoothing augments the classifier’s train-

ing data with Gaussian noise as it is also done by the work in [(KIM et al., 2021)]. The hybrid

PGD adversarial training and fast adversarial training techniques, on the other hand, augment

the classifier’s training data with adversarial samples crafted using the PGD and Universal Ad-

versarial Perturbation (UAP) techniques, respectively. However, the results in [(MANOJ et al.,

2022)] show that none of those three techniques is e�ective as they do not prevent white-box

attacks from reducing the classifier’s accuracy to less than 20%.

The work in [(ZHANG et al., 2021a)] proposes a Neural Rejection (NR) system that detects

adversarial attacks on modulation classifiers. It trains a Support Vector Machine (SVM) model

for each modulation scheme considered so that they detect samples that di�er from the

clean samples used in training and consider them to contain adversarial perturbations. The

authors of [(ZHANG et al., 2022)] propose a Hybrid Training-Time and Run-Time Defense

(HTRD) technique that combines the Customized Adversarial Training (CAT) technique with

the NR system developed in [(ZHANG et al., 2021a)]. The CAT technique enhances classifiers
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by augmenting their training samples with adversarial samples crafted using a modified PGD

attack. Since adversarial samples are used in training, the classifier learns how to classify

them correctly. However, the authors of [(ZHANG et al., 2021a)] and [(ZHANG et al., 2022)]

evaluate their defense techniques against only one adversarial attack technique. Moreover,

their NR system significantly increases the computational resources needed as one SVM model

is required for each modulation class.

Finally, the authors of [(ZHANG et al., 2021b)] propose a defense mechanism that combines

the NR mechanism proposed in [(ZHANG et al., 2021a)] with two techniques that enhance

the classifier’s resistance to adversarial attacks: Gaussian Noise Augmentation (GNA) and

Label Smoothing (LS). The GNA technique adds Gaussian noise to training samples. The LS

technique converts labels that were encoded using the one-hot encoding technique, such as

(1, 0, 0, 0), into smoothed vectors that reduce the classification confidence, such as (0.91,

0.03, 0.03, 0.03). These techniques help the neural network classifier to better generalize by

not being overconfident. Although the work in [(ZHANG et al., 2021b)] diminishes the degree

to which FGSM adversarial samples reduce the classifier’s accuracy, it does not consider other

types of adversarial attacks. In addition, as in [(ZHANG et al., 2021a)] and [(ZHANG et al.,

2022)], it also significantly increases the computational resources needed since it employs the

NR mechanism.

6.4 ADVERSARIAL ATTACK THREAT MODEL

Deep learning-based classifiers are trained to find decision boundaries between the decision

regions of each class. However, as shown in Figure 30, adversarial attacks craft and introduce

perturbations that modify data samples and force them to cross decision boundaries and lie in

other decision regions. However, these perturbations must be small enough to not be perceived.

Thus, adversarial attacks aim to find a perturbation ” that, when added to a sample x, modifies

it just enough so that the adversarial sample xadv = x + ” satisfies

min ||xadv ≠ x|| < fl (6.1)

and

f(xadv) ”= f(x), (6.2)

where || · || represents a chosen distance metric, fl is the maximum imperceptible perturbation

according to that metric, and f is the trained classifier that is the target of the attack.
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Figure 30 – Adversarial
sample crossing

decision boundary

x xadv

Source: The author (2023).

In our work, we consider the worst-case scenario in which the attacker has complete knowl-

edge about the classifier. That is, we evaluate our proposed defense technique against white-

box adversarial attacks. Furthermore, we consider that adversarial attacks can be launched

directly on wireless receivers, from wireless transmitters, or from separate malicious emitters.

When launched on receivers, attackers need to infect the receiver with malware or a malicious

piece of hardware that tampers with incoming signals to add adversarial perturbations. Simi-

larly, when launched from transmitters, attackers need to infect the transmitter so that it can

tamper with outgoing signals and add adversarial perturbations to them. Attackers must also

consider channel e�ects as the adversarial perturbations are transmitted over the air. Finally,

when launched from separate malicious emitters, as shown in Figure 31, attackers must eaves-

drop on the transmitter’s signals and consider the perfect synchronization of perturbations

and signals, as they are transmitted from di�erent nodes. Since our focus is on defending

against adversarial attacks, we assume that attackers are successful in crafting, transmitting,

and synchronizing perturbation signals. We therefore consider those tasks to be outside the

scope of our work.
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Figure 31 – Adversary attack model
as a perturbation transmitted

over the air
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6.5 PROPOSED WIRELESS RECEIVER ARCHITECTURE

In our work, we propose a novel wireless receiver architecture that protects against ad-

versarial attacks on deep learning-based modulation classifiers. Our proposed system has two

goals. The first is to remove adversarial perturbations from samples so that they are not forced

across decision boundaries. The second is to make the modulation classifier less sensitive to

the changes caused by adversarial perturbations so that it is more di�cult to force samples

across decision boundaries.

To achieve those goals, our proposed system consists of two modules, namely, an Adver-

sarial Perturbation Preprocessor (APP) and an enhanced modulation classifier (EMC). Figure

32 shows our proposed architecture. The ADC forwards the received samples to our proposed

APP module, which processes and forwards them to the EMC module. Finally, the EMC mod-

ule classifies the samples and indicates the recognized modulation scheme to the receiver’s

demodulator.

6.5.1 Adversarial Perturbation Preprocessor

The APP module trains a DAE using Gaussian and adversarial samples so that it learns

how to remove noise and adversarial perturbations from samples. During training, the DAE

learns how to map samples that have been corrupted with Gaussian noises and adversarial
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Figure 32 – Proposed wireless receiver architecture
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perturbations to clean samples. It is trained to minimize the loss function

LDAE = 1
N

Nÿ

j=1
(xoj ≠ xij )2, (6.3)

where xi = xclean + ÷ + ” is the input sample that may or may not have been corrupted by

noise ÷ and adversarial perturbations ”, xo is the DAE’s output after noise and adversarial

perturbations have been removed, and N is the length of samples xi and xo.

The cosine distance between xi and xo measures the dissimilarity between them, which

represents the correction c that is applied by the DAE to remove noise and adversarial pertur-

bations. Small cosine distances correspond to null or small corrections that happen when input

samples have not been tampered with or when they have been altered by small perturbations.

Large cosine distances, on the other hand, correspond to large corrections that are applied as

a result of large perturbations. Thus, this cosine distance allows us to estimate the amount of

perturbation in a sample.

However, since it is impractical to train the DAE (or any other deep learning model) to

cover all possible input feature vectors, the DAE may also introduce small errors. Thus, the

DAE’s output is given by xo = xi + c + e, where c is the correction that the DAE applies

to input samples and e is the error that it introduces. As a result, our proposed defense

technique must use the DAE to preprocess data samples only when the perturbations removed

are larger than the errors introduced. Otherwise, the DAE may harm classification more than

it helps. Therefore, our APP module first estimates the amount of perturbation in a sample

by computing the cosine distance between xi and xo, and then forwards to the EMC module

either xi when the perturbation is small or xo when the perturbation is large.
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6.5.2 Enhanced Modulation Classifier

The EMC trains deep convolutional neural networks to classify samples of modulated signals

by their modulation scheme. Similarly to the DAE, the modulation classifier is trained using

samples that have been corrupted with Gaussian noise and adversarial samples in addition

to clean samples. Augmenting the training set with Gaussian noise increases the classifier’s

resistance to multiple directions, i.e., samples that have been slightly dislocated in random

directions are still assigned to the same class of x. Similarly, augmenting the training set

with adversarial perturbations increases the classifier’s resistance to the direction that makes

a sample optimally cross the decision boundary according to an adversarial attack technique.

As a result, our proposed EMC makes the classifier’s prediction of a sample x constant within

a small neighborhood around x. Therefore, the decision boundaries become less sensitive, and

the classifier becomes more resistant to changes caused by noise and adversarial perturbations.

Algorithm 3 summarizes how our proposed defense technique works.

Algorithm 3: Proposed defense technique
1: Train a DAE with samples tampered with Gaussian noise and adversarial

perturbations
2: Train a EMC with samples tampered with Gaussian noise and adversarial

perturbations
3: for Each incoming sample xi do
4: Compute xo = DAE(xi)
5: Compute — = CD(xi, xo)
6: if — Ø t then
7: Preprocess data sample x = xo

8: else
9: Do not preprocess data sample x = xi

10: end if
11: Classify data sample y = f(x)
12: end for

6.5.3 Adversarial Samples for Training

Our proposed architecture relies on adversarial samples to train both the DAE and the EMC.

The DAE leverages adversarial samples to learn how to remove adversarial perturbations. The

EMC uses them to enhance its resistance to them. Thus, the choice of adversarial samples

considered has a significant impact on the resistance our technique provides. For instance, if
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our proposed DAE and EMC are trained with adversarial samples crafted using only the FGSM

technique, our defense will be e�ective against only FGSM adversarial samples. Similarly,

if we consider adversarial samples crafted using only the FGSM and PGD techniques, our

defense technique will protect wireless receivers from only those two specific adversarial attacks.

However, it is not feasible to consider many di�erent adversarial attack techniques as doing so

would significantly increase our defense technique’s computational requirements and training

time.

Therefore, a crucial part of our proposed defense technique is to consider an adversarial

attack technique that generalizes other types of adversarial attacks. We want our defense

technique to protect against di�erent types of adversarial attacks while being trained with

adversarial samples crafted using a single attack technique. For this purpose, we leverage our

previous work in [(ARAUJO-FILHO et al., 2022)], in which we proposed an input-agnostic adver-

sarial attack technique. This type of attack combines GANs [(GOODFELLOW et al., 2014)] and

multi-task loss [(KENDALL; GAL; CIPOLLA, 2018)] to generate adversarial samples by simultane-

ously optimizing their ability to cause wrong classifications and not be perceived. Furthermore,

it crafts adversarial samples much faster than other adversarial attack techniques. Thus, by

using the adversarial attack technique proposed in [(ARAUJO-FILHO et al., 2022)], our proposed

defense technique enhances modulation classifiers’ resistance to di�erent types of adversarial

attacks while also significantly reducing the time it takes to craft the adversarial samples used

to train the DAE and EMC.

6.6 METHODOLOGY AND EXPERIMENTAL EVALUATION

In this section, we present the dataset that we used in our experiments to validate our

proposed defense technique and then explain the experiments we conducted and the neural

network architectures of our proposed DAE and EMC modules.

6.6.1 Dataset

To evaluate our proposed defense architecture, we used DeepSig’s publicly available RA-

DIOML 2016.10A dataset [(O’SHEA; CORGAN; CLANCY, 2016; O’SHEA; WEST, 2016)]. The

dataset contains signals that have been modulated using one of eleven modulation schemes

(eight digital and three analog): 8PSK, BPSK, QPSK, QAM16, QAM64, CPFSK, GFSK,
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PAM4, WBFM, AM-DSB, and AM-SSB. The signals are then exposed to an AWGN chan-

nel that includes sampling rate o�set, random process of center frequency o�set, multipath,

and fading e�ects, as described in [(O’SHEA; CORGAN; CLANCY, 2016; O’SHEA; WEST, 2016)].

Since our goal is to defend against adversarial attacks, we consider an AWGN channel rather

than other channel models that could negatively impact the attacks’ performance [(FLOW-

ERS; BUEHRER; HEADLEY, 2020; KIM et al., 2021)]. Moreover, we assume adversarial attacks

successfully account for channel and transmission e�ects without compromising their harm-

fulness. Finally, the signals are normalized and packaged into 220,000 samples of in-phase

and quadrature components of length 128 that are each associated with one of the eleven

modulation schemes and a SNR. The SNR indicates the signal’s strength. It is the ratio be-

tween the power P of the signal and of the background noise, i.e., SNR[dB] = 10 log(Psignal

Pnoise
).

The dataset covers twenty SNRs ranging from -20 dB to 18 dB in steps of 2 dB. Sixty four

percent of the samples were used for training our proposed DAE and EMC, 16% were used as

a validation set, and 20% were reserved as a testing set to measure and evaluate our proposed

architecture’s performance.

6.6.2 DAE Experiments

Our proposed DAE relies on fully connected neural networks to encode and decode samples

of modulated signals. It encodes clean, noisy, and adversarial samples into a lower-dimensional

space, and reconstructs them as clean samples that are free of noise and adversarial perturba-

tions. Noisy samples are produced by adding to clean samples Gaussian noise generated with

zero mean and standard deviation ‡. Adversarial samples, on the other hand, are produced by

crafting and adding to clean samples adversarial perturbations generated using the technique

proposed in [(ARAUJO-FILHO et al., 2022)]. Figure 33 shows our proposed DAE’s architecture.

While large standard deviations allow the DAE to remove more considerable noises, they

may also induce the DAE to produce more significant errors. Moreover, the more noisy and

adversarial samples that are considered in training, the better the DAE gets at removing noise

and adversarial perturbations. However, considering too many noisy and adversarial samples

may significantly increase the DAE’s training time. Thus, we balance these trade-o�s by ex-

perimenting with several di�erent standard deviations and proportions of noisy and adversarial

samples to each clean sample. Furthermore, we optimize the DAE’s hyper-parameters, such

as learning rate and batch size, using the Optuna framework [(AKIBA et al., 2019)], which



110

Figure 33 – DAE neural
network architecture
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automatically searches for the optimal hyper-parameters and the early stopping mechanism.

Table 12 shows the hyper-parameter values used in the DAE after tuning.

Table 12 – Hyper-parameter values of the DAE

Hyper-Parameter Value
Optimizer Adam

Learning Rate 0.001
Batch Size 128

Maximum Number of Epochs 100
Early Stopping Patience 5

Standard deviation of Gaussian samples 0.0025
Number of Gaussian samples per clean sample 5

Number of adversarial samples per clean sample 5
Source: The author (2023).

Finally, we define the threshold t to which the cosine distance is compared in Algorithm

3 as t = “· , where “ is a hyper-parameter and · represents the average error introduced by

the DAE. Since the DAE is supposed to not change input samples when they do not contain

noise or adversarial perturbations, the cosine distance between clean training samples and

their reconstructions corresponds to the error introduced by the DAE. Thus, we compute · by

averaging the cosine distances of clean training samples.

6.6.3 EMC Experiments

Rather than improving modulation classifier’s accuracy, the main goal of our work is to

make them resistant to adversarial attacks, i.e., diminish the degree to which adversarial attacks

reduce their accuracy. Thus, instead of proposing a novel neural network architecture, our EMC
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module relies on deep convolutional neural networks and uses the same architecture as the

VT-CNN2 modulation classifier proposed in [(O’SHEA; CORGAN; CLANCY, 2016; O’SHEA; WEST,

2016)]. This classifier has been largely adopted by most of the works that investigate adversarial

attack defense techniques for modulation classifiers. Similarly to the DAE, we optimize the

EMC’s hyper-parameters using the Optuna framework [(AKIBA et al., 2019)] and the early

stopping mechanism. Figure 34 shows our proposed EMC’s architecture. Table 13 shows the

hyper-parameter values used in the EMC after tuning. All experiments were conducted using

an AMD Ryzen Threadripper 1920X 12-core 2.2GHz processor with 64GB of RAM and an

NVIDIA GeForce RTX 2080 in a Pytorch environment.

Figure 34 – EMC neural network architecture
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Table 13 – Hyper-parameter values of the EMC

Hyper-Parameter Value
Optimizer Adam

Learning Rate 0.001
Batch Size 1024

Dropout Rate 0.25
Maximum Number of Epochs 100

Early Stopping Patience 5
Standard deviation of Gaussian samples 0.0025

Number of Gaussian samples per clean sample 10
Number of adversarial samples per clean sample 10

Source: The author (2023).
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6.6.4 Adversarial Attacks Considered

As discussed, we evaluated our proposed defense technique against the worst-case scenario

of white-box attacks. We selected the FGSM, PGD, and MIM adversarial attacks, which

have been shown to significantly compromise the accuracy of deep learning-based modulation

classifiers [(LIN et al., 2021; LIN et al., 2020)].

The FGSM adversarial attack modifies input features by increasing and decreasing them

according to the sign of the loss function’s gradient. Hence, it is formulated as

xadv = x + Ásign(ÒxJ(◊, x, y)), (6.4)

where xadv is the adversarial sample, x is the input sample, J(◊, x, y) is the classifier’s loss

function, and Á is a control variable that scales the adversarial perturbation. While the FGSM

technique crafts adversarial samples quickly, it may modify all input features so that adversarial

samples are more likely to be perceived [(LIU et al., 2022; MANOJ; SADEGHI; LARSSON, 2021)].

While the FGSM attack technique crafts adversarial samples in a single step, the PGD

technique follows an iterative process. It starts with a randomly initialized adversarial sample

within the clean sample’s LŒ proximity. Then, it takes gradient steps in the direction of the

greatest loss until convergence is achieved. The PGD technique is formulated as
Y
__]

__[

x(t+1)
adv = r

x+�(x(t)
adv + Ásign(ÒxJ(◊, x, y)))

x(0)
adv = x

, (6.5)

where x(t+1)
adv is the adversarial sample at iteration t + 1, J(◊, x, y) is the classifier’s loss

function, Á is a control variable that scales the adversarial perturbation, and � is the set of

allowed perturbations so that xadv remains within the LŒ neighborhood of the clean sample x.

Although the PGD technique’s iterations result in a longer training time, it produces adversarial

samples that are more harmful than those produced by the FGSM technique [(LIU et al., 2022;

MANOJ; SADEGHI; LARSSON, 2021)].

Finally, while the MIM technique also follows an iterative process, it introduces momentum,

which adds a fraction of the previous weight update to the current one. Momentum speeds up

convergence and helps avoid local minima, better approximating the optimal attack direction.
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The MIM technique is formulated as
Y
___________]

___________[

x(t+1)
adv = x(t)

adv + Á
Tmax

sign(g(t+1))

g(t+1) = µg(t) + ÒxJ(◊,x
(t)
adv ,y)

||ÒxJ(◊,x
(t)
adv ,y)||

x(0)
adv = x

g(0) = ÒxJ(◊,x,y)
||ÒxJ(◊,x,y)||

, (6.6)

where x(t+1)
adv is the adversarial sample at iteration t + 1, J(◊, x, y) is the classifier’s loss

function, Á is a control variable that scales the adversarial perturbation, Tmax is the number

of iterations, and µ is a decay factor. The momentum improves stability so that the MIM

technique provides stronger generalization and MIM adversarial attacks usually outperforms

PGD adversarial attacks [(LIN et al., 2020; LIN et al., 2021)].

6.7 RESULTS AND DISCUSSION

Adversarial attacks on modulation classifiers aim to tamper with signals and reduce a clas-

sifier’s accuracy while ensuring that perturbations are not perceived. While more significant

adversarial perturbations compromise the classifier’s accuracy more, they are more distinguish-

able and likely to be detected. Adversarial perturbations are considered imperceptible when

they cannot be distinguished from the noise, i.e., they are in the same order as or below the

noise level. Hence, we measure the PNR, i.e., the ratio between the power levels of the pertur-

bation and noise PNR[dB] = 10 log(Pperturbation

Pnoise
), where Pperturbation is the power level of the

perturbation power and Pnoise is the power level of the noise, so that adversarial perturbations

are considered imperceptible when PNR < 0 dB.

We first evaluate how much adversarial attacks compromise the VT-CNN2 modulation

classifier’s accuracy. Figure 35 shows the VT-CNN2’s accuracy versus PNR for an SNR of

10 dB. While the classifier’s accuracy is around 75% without attacks, it is significantly com-

promised by the FGSM, PGD, and MIM attacks. They reduce the classifier’s accuracy by 10

percentage points with adversarial perturbations as low as -16 dB PNR. Moreover, at 0 dB

PNR, the FGSM attack reduces the classifier’s accuracy to only 30%, and the PGD and MIM

attacks reduce it to only 26%. Although the VT-CNN2’s accuracy is not very high, we use

that classifier because it is largely adopted by most of our related works. Moreover, our goal is

not to increase the classifier’s accuracy, but to prevent it from being reduced. In addition, our
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proposed defense architecture does not depend on the classifier’s architecture so it can easily

be replicated with any other deep learning-based modulation classifier.

Figure 35 – VT-CNN2 modulation classifier’s
accuracy versus PNR

Source: The author (2023).

Our proposed APP module estimates the amount of adversarial perturbation in samples by

measuring the cosine distance between them and their reconstructed versions obtained from

the DAE. Figure 36 shows the cosine distance for clean and adversarial samples with PNRs of

-20 dB to 0 dB. Small cosine distances indicate that samples are clean or that they have been

altered by small perturbations. Thus, the cosine distances of clean samples and adversarial

samples with PNRs below -7 dB are small. On the other hand, large cosine distances indicate

that samples have been altered by more substantial perturbations. Thus, the cosine distance

of adversarial samples with PNRs above -7 dB significantly increases with the PNR.

Furthermore, Figure 36 shows that the cosine distance of clean samples is small but not

zero because the DAE introduces a small error. As a result, our proposed defense technique

preprocesses samples only when the DAE removes more adversarial perturbations than the

error it adds, i.e., when the cosine distance measured between incoming sample and its re-

construction is above the threshold set by the cosine distance of clean training samples as

described in Algorithm 3.

We evaluate our proposed defense technique’s performance against FGSM, PGD, and MIM

adversarial attacks while also assessing our proposed EMC and APP modules’ individual con-
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Figure 36 – Cosine distance between clean and
adversarial samples and their reconstructions

Source: The author (2023).

tributions to the final defense result. Figures 37, 38, and 39 show the modulation classifier’s

accuracy against FGSM, PGD, and MIM attacks, respectively, for a SNR of 10 dB without any

defense technique, with our proposed defense technique, with only our proposed EMC, and

with only our proposed APP. Enhancing the modulation classifier using our EMC diminishes

the accuracy reduction that is caused by the three types of adversarial attacks considered be-

cause the classifier becomes less sensitive to perturbations. However, the larger the adversarial

perturbation, the worse the EMC performs. On the other hand, although our APP cannot

improve the classifier’s accuracy as much as the EMC does for low PNRs, it ensures less ac-

curacy reduction than the EMC does for higher PNRs because it removes large perturbations.

Therefore, by combining the EMC and APP modules, our proposed defense technique signifi-

cantly diminishes the degree to which the three adversarial attack types considered reduce the

classifier’s accuracy.

Finally, we compare the performance of our proposed defense technique to that of the

defense techniques proposed in [(ZHANG et al., 2022)] and [(ZHANG et al., 2021b)]. Figures 40,

41, and 42 show the modulation classifier’s accuracy against FGSM, PGD, and MIM attacks,

respectively, for a SNR of 10 dB without any defense technique, with our proposed defense

technique, and with the defense techniques proposed in [(ZHANG et al., 2022)] and [(ZHANG

et al., 2021b)]. While the techniques proposed in [(ZHANG et al., 2022)] and [(ZHANG et al.,

2021b)] reduce the classifier’s sensitivity to adversarial samples using NR, CAT, GNA, and LS,
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Figure 37 – Contribution of our proposed APP and EMC
to the modulation classifier’s accuracy against the

FGSM adversarial attack for a SNR of 10 dB

Source: The author (2023).

Figure 38 – Contribution of our proposed APP and EMC
to the modulation classifier’s accuracy against the

PGD adversarial attack for a SNR of 10 dB

Source: The author (2023).

our solution removes large perturbations using the APP in addition to reducing the classifier’s

sensitivity to adversarial samples using the EMC.

Although the defense techniques proposed in [(ZHANG et al., 2022)] and [(ZHANG et al.,

2021b)] diminish the degree to which small adversarial perturbations reduce the classifier’s
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Figure 39 – Contribution of our proposed APP and EMC
to the modulation classifier’s accuracy against the

MIM adversarial attack for a SNR of 10 dB

Source: The author (2023).

Figure 40 – Modulation classifier’s accuracy versus PNR
against the FGSM adversarial attack for a SNR of 10 dB

Source: The author (2023).

accuracy, they are ine�ective against larger adversarial perturbations. For instance, at 0 dB

PNR, the classifier’s accuracy when the techniques from [(ZHANG et al., 2022)] and [(ZHANG

et al., 2021b)] are employed is less than 10% greater than when no defense technique is used.

While our proposed technique performs similarly to the techniques proposed in [(ZHANG et

al., 2022)] and [(ZHANG et al., 2021b)] against small perturbations, it significantly outperforms
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Figure 41 – Modulation classifier’s accuracy versus PNR
against the PGD adversarial attack for a SNR of 10 dB

Source: The author (2023).

Figure 42 – Modulation classifier’s accuracy versus PNR
against the MIM adversarial attack for a SNR of 10 dB

Source: The author (2023).

them against larger perturbations. Our technique diminishes the degree to which accuracy

is reduced by at least 18 percentage points more than [(ZHANG et al., 2022)] does and 20

percentage points more than [(ZHANG et al., 2021b)] does at 0 dB PNR. This improvement is

a result of our proposed APP module, which preprocesses samples that have large adversarial

perturbations using our proposed DAE. By removing noise and adversarial perturbations, our
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DAE makes it much easier for the EMC to classify samples, hence the improvement achieved.

6.8 CONCLUSION

In this paper, we verified that adversarial attacks significantly compromise deep learning-

based modulation classifiers. Then, we proposed a novel wireless receiver architecture that

protects modulation classifiers from adversarial attacks by combining two modules: an APP

and an EMC. The APP estimates adversarial perturbations in incoming samples and removes

them by preprocessing samples with a specially designed DAE. The samples are then forwarded

to be classified in the EMC, which has been specially trained to be less sensitive to adversarial

perturbations.

In terms of our proposed EMC, our results show that it successfully diminishes the accuracy

reduction that is caused by the three adversarial attack types considered. However, they also

show that it degrades when it comes to large adversarial perturbations. In terms of our proposed

APP, our results show that it successfully removes large perturbations and therefore ensures

less accuracy reduction than the EMC does for higher PNRs. Finally, our results show that,

by combining both the EMC and APP modules, our proposed defense technique diminishes

the degree to which the three adversarial attacks considered reduce the classifier’s accuracy

by at least 18% more than existing defense techniques. Therefore, we verified that better

defense results are achieved by simultaneously removing adversarial perturbations and making

classifiers less sensitive to them.

In future work, we will evaluate our proposed technique against other adversarial attack

techniques and investigate how to improve it to make the modulation classifier’s accuracy even

closer to when there is no adversarial attack. Furthermore, we will also investigate how our

proposed defense technique can be adapted to protect other deep learning-dependent wireless

communication tasks, such as resource allocation, from adversarial attacks.
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7 CONCLUSION AND RECOMMENDATIONS

7.1 CONCLUSION

As the increasing number of connected devices and the use of ML introduce new security

challenges, it is necessary to enhance the security of connected things against cyber-attacks and

adversarial attacks that can compromise confidentiality, integrity, and availability. Therefore,

this thesis studies new strategies and techniques to protect connected things against cyber-

attacks and adversarial attacks. We focus on developing novel intrusion detection systems that

e�ectively and e�ciently detect cyber-attacks. Moreover, we also investigate the impact that

adversarial attacks and the development of defense techniques that mitigate their e�ects.

Chapter 3 proposed FID-GAN, a GAN-based IDS for detecting cyber-attacks on cyber-

physical systems. We combined the discrimination and reconstruction losses of the GAN to

compute an anomaly detection score that indicates the probability that the data samples cor-

respond to anomalies. Our experiments verified that combining both losses made it possible

to achieve higher AUCROC values, allowing our proposed IDS to achieve lower false positive

and negative rates simultaneously. Furthermore, our proposed IDS presented an innovative

approach to train an encoder neural network that accelerates the reconstruction loss computa-

tion, hence significantly reducing the detection time. Finally, to further minimize the detection

time, we proposed a deployment architecture in which the GAN and encoder were trained in

the cloud but deployed for inference at a fog-layer closer to the nodes under surveillance.

Chapter 4 considered the detection of known and unknown DDoS attacks that could

severely compromise the availability of networks and systems. We evaluated di�erent neural

network architectures that consider time dependencies among data by relying on a GAN-

based IDS. Our experimental results showed that LSTM networks, which were until recently

considered the architecture to go for sequence modeling tasks, were outperformed by other

neural network architectures. Precisely, using self-attention networks granted higher detection

rates than LSTM networks, while using TCNs provided shorter detection times. Therefore, this

investigation proved that self-attention and TCNs could replace LSTM networks in detecting

cyber-attacks.

Chapter 5 investigated how adversarial attacks could compromise the availability of wire-

less communications. We formulated adversarial attacks as an optimization problem that aims

to craft adversarial perturbations that induce ML-based classifiers to make mistakes while not
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being perceived. Then, we proposed a technique that leverages the multi-task loss for training

a GAN that produces adversarial perturbations simultaneously optimizing those two condi-

tions. Moreover, our proposed technique only required access to the target model decisions

and was proved to be input-agnostic. Our experiments showed that our technique was able to

cause more damage to the accuracy of a modulation classifier that other adversarial attack

techniques while being 335 times faster than them. The study in this chapter verified that

adversarial attacks could significantly impact the security of systems that rely on ML. Fur-

thermore, it served as the basis for proposing defense techniques against adversarial attacks,

as demonstrated in Chapter 6.

Finally, Chapter 6 investigated techniques for enhancing the security of machine-based

systems by reducing the extent to which adversarial attacks compromise them. We proposed a

defense technique that estimates and removes large adversarial perturbations so that samples

of modulated signals received at a wireless receiver are not forced across the decision bound-

aries of modulation classifiers using a specially trained DAE. Moreover, our proposed technique

relies on an EMC that has been specially trained to reduce the sensitivity of its decision bound-

aries, further reducing the e�ects of adversarial attacks. The DAE and the enhanced classifier

are specially trained using samples tampered with Gaussian noise and adversarial perturba-

tions crafted with the technique we proposed in Chapter 5. Experimental results showed that

our proposed technique significantly diminishes the accuracy reduction caused by adversarial

attacks on modulation classifiers, and outperforms other protection techniques by at least 18

percentage points. Therefore, this study outlines an exciting direction for developing e�ective

defense techniques that protect and secure the reliability of ML-based systems.

7.2 FUTURE WORK

This section presents future research paths that we consider worth pursuing, drawing from

the results obtained in this thesis.

7.2.1 Di�usion-Based Intrusion Detection

In recent years, generative models have been shown to implicitly model systems in various

application domains very successfully [(ARAUJO-FILHO et al., 2021)]. For instance, we showed

in Chapters 3 and 4 that GANs can successfully model sensor measurements and network flows
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to detect cyber-attacks. On the other hand, more recently, di�usion models have been gaining

interest due to their training stability, which is usually challenging for GANs, and their ability

to produce image samples with higher quality than other generative models [(Ho, Jonathan and

Saharia, Chitwan, ; KONG et al., 2020)]. Di�usion models progressively corrupt training data by

adding Gaussian noise, slowly removing data samples’ details until there is only noise left. Then,

they train a neural network to reverse the corruption process as if it were denoising a pure noise

sample until a meaningful data sample is produced [(Ho, Jonathan and Saharia, Chitwan, ; SOHL-

DICKSTEIN et al., 2015)]. Therefore, since di�usion models have been shown to model systems

better and with higher stability than GANs, a future research path is to explore di�usion models

for the detection of intrusions. Furthermore, since they are designed to reconstruct samples

by removing noise from them, another exciting research path to explore is whether di�usion

models can remove adversarial perturbations and thus increase the resistance of ML-based

systems against adversarial attacks.

7.2.2 Minimization of the Number of Training Data Required by Attack Classifiers

Since di�erent cyber-attacks might be mitigated in di�erent ways and intrusions detected

by anomaly-based IDSs might represent systems malfunctioning rather than attacks, it is

necessary to classify intrusions once they are detected. However, due to the lack of labeled

data, which is challenging and expensive to obtain, the lack of occurrences of newly identified

attacks, and the need to retrain attack classifiers every time a new type of attack is identified,

it is necessary to investigate techniques for minimizing the number of required training data.

Recent studies propose using transfer learning and few-shot learning to achieve such a goal

[(SINGLA; BERTINO; VERMA, 2019; REN et al., 2018)].

Transfer learning can reduce the number of required training data by leveraging previously

trained models. Thus, models trained on domains with more data available, e.g., Wi-Fi net-

works, can be used to minimize the need for data in domains with fewer data available, such

as 5G networks [(SINGLA; BERTINO; VERMA, 2019)]. Few-shot learning, on the other hand,

can recognize new classes given only a few examples from each of those classes. This may

significantly reduce the retraining burden when new types of attacks are discovered and must

be included in attack classifiers [(REN et al., 2018)]. However, such works on transfer learning

and few-shot learning are still preliminary studies, and more investigation is required.
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7.2.3 Security and Privacy of Digital Twins

Digital twins is an emerging concept based on creating virtual replicas of physical objects,

such as jet engines, wind farms, autonomous vehicles, and even whole smart cities. Its goal

is to use real-world data to simulate and predict the behavior of systems, thus preventing

costly failures in physical objects [(WU; ZHANG; ZHANG, 2021)]. Such technology brings great

opportunities in several domains. In 6G, for example, digital twins are being explored to improve

spectral and energy e�ciency while enabling innovative applications, such as autonomous

driving [(WU; ZHANG; ZHANG, 2021)]. On the other hand, data transmission between physical

objects and their replicas raises severe security and privacy issues, as tampering with data and

data leaks might cause significant and undesirable damage and financial losses. Although recent

works have been exploring federated learning for securing digital twins while preserving data

privacy [(LU et al., 2021)], those are still preliminary studies. Therefore, further investigation is

necessary to ensure the security and privacy of digital twins.

7.2.4 Adversarial Attacks and Defenses on Regression-Based Applications

While adversarial attacks are being recently exploited in classification-based wireless com-

munication tasks, such as modulation classification [(ARAUJO-FILHO et al., 2022; SAHAY; BRIN-

TON; LOVE, 2022)], only very few works currently exist on regression-based wireless communi-

cation tasks. Thus, the impact that adversarial attacks can cause on applications that rely on

regression-based ML models, such as resource allocation, is yet to be further evaluated. More-

over, since adversarial perturbations for regression-based applications may be crafted very

di�erently from those of classification-based applications, the question of whether defense

techniques of classification problems can be e�ectively applied to regression tasks needs to

be addressed. Therefore, it is necessary to conduct such an investigation and propose defense

techniques specifically designed for regression tasks.
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APPENDIX A – APPENDIX OF CHAPTER 2

A.1 DEPLOYMENT ARCHITECTURE

Figure 43 shows the deployment of our proposed IDS on multiple edge servers.

Figure 43 – Proposed deployment architecture

Smart 
Home

Smart 
Industry

Smart 
Agriculture

Edge Server

Proposed IDS

Edge Server

Proposed IDS

Edge Server

Proposed IDS

Cloud

Source: The author (2023).

A.2 FEATURES USED

Table 14 lists the features used in our work.

Table 14 – Features used

Feature Description

Source IP Flow source IP

Source Port Flow source port

Destination IP Flow destination IP

Destination Port Flow destination port
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Protocol Flow protocol

Flow duration Flow duration in microseconds

Total Fwd Packet Total packets in the forward direction

Total Bwd packets Total packets in the backward direction

Total Length of Fwd Packet Total size of packet in the forward direction

Total Length of Bwd Packet Total size of packet in the backward direction

Fwd Packet Length Max Maximum size of packet in the forward direction

Fwd Packet Length Min Minimum size of packet in the forward direction

Fwd Packet Length Mean Mean size of packet in the forward direction

Fwd Packet Length Std Standard deviation size of packet in the forward direction

Bwd Packet Length Max Maximum size of packet in the backward direction

Bwd Packet Length Min Minimum size of packet in the backward direction

Bwd Packet Length Mean Mean size of packet in the backward direction

Bwd Packet Length Std Standard deviation size of packet in the backward direction

Flow Byte/s Number of flow bytes per second

Flow Packets/s Number of flow packets per second

Fwd Packets/s Number of forward packets per second

Bwd Packets/s Number of backward packets per second

Flow IAT Max Maximum time between two packets sent in the flow

Flow IAT Min Minimum time between two packets sent in the flow

Flow IAT Mean Mean time between two packets sent in the flow

Flow IAT Std Standard deviation time between two packets sent in the

flow

Fwd IAT Max Maximum time between two packets sent in the forward

direction
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Fwd IAT Min Minimum time between two packets sent in the forward

direction

Fwd IAT Mean Mean time between two packets sent in the forward direc-

tion

Fwd IAT Std Standard deviation time between two packets sent in the

forward direction

Fwd IAT Total Total time between two packets sent in the forward direc-

tion

Bwd IAT Max Maximum time between two packets sent in the backward

direction

Bwd IAT Min Minimum time between two packets sent in the backward

direction

Bwd IAT Mean Mean time between two packets sent in the backward di-

rection

Bwd IAT Std Standard deviation time between two packets sent in the

backward direction

Bwd IAT Total Total time between two packets sent in the backward di-

rection

Fwd PSH flag Number of times the PSH flag was set in packets travelling

in the forward direction (0 for UDP)

Bwd PSH Flag Number of times the PSH flag was set in packets travelling

in the backward direction (0 for UDP)

Fwd Header Length Total bytes used for headers in the forward direction

Bwd Header Length Total bytes used for headers in the backward direction

Source: The author (2023).
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A.3 HYPER-PARAMETER VALUES

Table 15 lists the hyper-parameter values used in our work.

Table 15 – Hyper-parameter values

LSTM TCN (N=1) TCN (N=2) Self-Attention (N=1)
Maximum number of epochs 50 50 50 50

Early Stopping Patience 15 15 15 15
Optimizer Adam Adam Adam Adam

Discriminator’s Learning Rate 0.00284252 0.00485687 0.00753606 0.01156386
Generator’s Learning Rate 0.00004508 0.00015387 0.00000151 0.00003940

Dropout 0.25 0.25 0.25 0.20
Batch Size 64 64 64 64

Latent Dimension 20 10 100 10
LSTM Hidden Dimension 20 - - -
TCN Number of Levels - 1 1 -

TCN Kernel Size - 2 2 -
Attention Heads - - - 40

N - 1 2 1
Source: The author (2023).


