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ABSTRACT

At zero temperature, thermal fluctuation is eliminated and phase transitions will occur due to

quantum fluctuations that arise from the Heisenberg uncertainty principle. Magnetic insulators,

described by the Heisenberg model Hamiltonian, are a known class of physical systems that can

undergo quantum phase transitions when submitted to a magnetic field. The magnetic field

induces the transition by closing energy gaps through the Zeeman effect. Examples of systems

that undergo these transitions are the antiferromagnetic spin-1 chain, the antiferromagnetic

spin-1
2 ladder, the ferrimagnetic mixed spin-1 and spin-1

2 chains and ladders. The presence of

a gap in the energy spectrum with zero magnetic field leads to a magnetization plateau in

the magnetization curve. We use the density matrix renormalization group to investigate the

magnetization curves of the mixed spin-1 and spin-1
2 ladder, for antiferromagnetic and ferro-

magnetic couplings between the ladder legs 𝐽⊥. For 𝐽⊥ > 0, the ground-state is ferrimagnetic

with the total spin equal to 1
3 of the saturation value, in accord with the Lieb-Mattis theorem.

The magnetization curve presents a plateau at total magnetization 1
3 of the saturation value,

the 1
3 -plateau since the ground state has a gap to excitations that increase the total spin by 1

unit. Decreasing 𝐽⊥ below zero, the ground state becomes a singlet, but the 1
3 -plateau survives

down to a critical value 𝐽⊥ = 𝐽𝑐. Given that the gap closes with the magnetization fixed, it is a

Kosterlitz-Thouless transition type. To determine 𝐽𝑐, we have made a finite-size scale analysis

of the plateau width.

Keywords: quantum phase transitions; Heisenberg model Hamiltonian; mixed spin-1 and spin-
1
2 ladder.



RESUMO

Em temperatura zero, flutuação térmica é eliminada e transições de fase irão ocorrer

devido à flutuações que surgem do princípio da incerteza de Heisenberg. Isolantes magnéticos,

descritos pelo modelo do Hamiltoniano de Heisenberg, são uma conhecida classe de siste-

mas que podem ser submetidos a transições de fase quântica quando expostos a um campo

magnético. O campo magnético induz a transição fechando gaps de energia através do efeito

Zeeman. Exemplos de sistemas que passam por essas transições são a cadeia antiferromag-

nética de spin-1, a cadeia escada antiferromagnética de spin-1
2 , a cadeia ferrimagnética e a

cadeia escada ferrimagnética de spin misturado com spin-1 e spin-1
2 . A presença do gap no es-

pectro de energia com campo magnético zero leva a um plateau de magnetização na curva de

magnetização. Usamos o grupo de renormalização da matriz densidade para investigar curvas

de magnetização da cadeia escada de spin misturado com spin-1 e spin-1
2 , para acoplamento

antiferromagnético e ferromagnético entre as pernas da escada 𝐽⊥. Para 𝐽⊥ > 0, o estado

fundamental é ferrimagnético com spin total igual a 1
3 do valor de saturação, o 1

3 -plateau dado

que o estado fundamental possui um gap para excitações que aumentam o spin total em 1

unidade. Diminuindo 𝐽⊥ abaixo de zero, o estado fundamental se torna um singleto, mas o
1
3 -plateau sobrevive até o valor crítico 𝐽⊥ = 𝐽𝑐. Dado que o gap fecha sob magnetização

constante, é uma transição do tipo Kosterlitz-Thouless. Para determinar 𝐽𝑐, fizemos análise

de escala finita da largura do plateau.

Palavras-chaves: transições de fase quântica; modelo do Hamiltoniano de Heisenberg; cadeia

escada de spin misturado com spin-1 e spin-1
2 .
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1 INTRODUCTION

Phase transitions are well-known phenomena in nature, displaying a fundamental and abun-

dant role throughout physical research, ranging from the more popular examples such as the

water phase transitions (usually found in textbooks) to more specific ones like the Kosterlitz-

Thouless transition.

Temperature (𝑇 ) is commonly found to be an important parameter for transitions on many

physical systems: it can determine the physical states of water (solid, liquid, gaseous); it is

fundamental for the operation of enzymes, a phenomenon known as enzyme temperature de-

pendence (PINNEY et al., 2021); it determines conductivity properties of conductors (OHKAWA,

1978) and semiconductors (O’DONNELL; CHEN, 1991), ensuring that electrical devices will per-

form properly. These types of transitions that are determined by temperature occur due to

thermal fluctuations. Pressure (𝑃 ) is another parameter commonly referred to as an inducer

of phase transitions, as it can determine the physical state of a variety of substances.

Magnetic field (𝐵⃗) is also a parameter that can induce phase transition in magnetic mate-

rials. Magnetic dipoles have a tendency to align with the magnetic field. As 𝐵 grows, so does

the magnetization in the direction of 𝐵⃗, up to a saturation limit. The interaction between

the magnetic field and magnetic moments in the system is usually expressed through the Ze-

eman term. Magnetic systems’ phase transitions are described using interacting models, two

important models being the Heisenberg and Ising models.

1.1 ISING AND HEISENBERG MODEL

One of the models that introduced phase transitions for magnetic systems was the Ising

model (KOBE, 2000). It presents a formula to evaluate a magnetic system’s energy for a

given configuration of its magnetic dipoles, describing a magnetic system as a lattice with

a distribution of interacting spins. In the Ising model, the interaction occurs between the 𝑧

component of spin 𝑆𝑧
𝑖 . It predicts phase transitions from ordered to disordered states in both

antiferromagnetic and ferromagnetic materials by either varying the applied magnetic field or

the temperature. The model is known to have exact solutions. The first exact solution obtained

for the model treated a one-dimensional chain and it presented no phase transition: correlation

between sites spin decays exponentially and there is no long-range order between spins for
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𝑇 > 0. An analytical solution for the two-dimensional lattice was obtained later by Onsager

in a zero magnetic field. It exhibits a continuous phase transition from ordered to disordered

phases by varying the temperature for the ferromagnetic case. At low temperatures (𝑇 < 𝑇𝑐,

with 𝑇𝑐 the critical temperature), ferromagnetic order is expected and magnetization will be

non-null. Increasing temperature, the magnetization will continuously drop from the saturation

value (at low temperature) to zero (above critical temperature).

Although the exact solutions were obtained for one and two dimensions, a solution of

the Ising model in a three-dimensional lattice was never obtained. Analytical solutions for

the Ising model are not easy to come by. An alternative is to use numerical approaches to

simulate Ising model systems. The numerical alternative consists in using the Monte Carlo

method through the Metropolis algorithm (FRICKE, 2006) to plot the magnetization curve as

a function of temperature. For the ferromagnetic case, the algorithm provides the result of a

decreasing magnetization with the temperature. Below the critical temperature 𝑇𝑐, it is possible

to observe a non-null magnetization. At minimum temperature (𝑇 = 0), the system will be

in the most ordered phase, with magnetization at the saturation value. The antiferromagnetic

case can also be described with a numerical approach. The result, naturally, will differ from the

ferromagnetic case. Although there is order at low temperatures as spin covariance between

sites is low, there will be no net magnetization at any temperature.

The Ising model only deals with one direction of spin interaction, usually modeled between

𝑧 components of spin. Its natural generalization at a three-dimensional spin space is the Hei-

senberg model Hamiltonian, which accounts for interaction between the vector spins 𝑆𝑖. A

significant distinction between the Ising and the Heisenberg model resides in the models’ sym-

metries. While Heisenberg has continuous symmetry, Ising only has discrete symmetry. This

leads to Heisenberg’s model having no spontaneous symmetry breaking for finite temperature

in 𝑑 ≤ 2 dimensions, according to the Mermin-Wagner-Hohenberg theorem (MERMIN; WAG-

NER, 1966; HOHENBERG, 1967). However, for materials to be in the quantum regime, some

specific environmental conditions must be satisfied. A fundamental condition for quantum

phase transitions is that temperature must be set to zero (𝑇 = 0). This ensures systems will

have no thermal fluctuations, and phase transitions will happen due to energy fluctuations of

the ground state energy caused by variations of other parameters. Generally, the Hamiltonian

will depend on a parameter 𝑔, having the generic form 𝐻(𝑔), and the system ground state will

be a function of this parameter. Phase transitions continue to occur due to fluctuations, but
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unlike the transitions depicted by the Ising model (which happens due to thermal fluctuation),

the fluctuations will arise from Heisenberg’s uncertainty principle.

Quantum phase transitions are observed in spin models formed by systems of fermions or

bosons. They provide spin to the sites of magnetic materials. The disposition, structure, and

spin value of sites affect the magnetic properties the material will display. An interesting class

of materials is the ferrimagnetic ones.

1.2 FERRIMAGNETIC MATERIALS AND LADDER CHAINS

Ferrimagnetic materials (KONG et al., 2018) are formed by lattices whose spin sites have an

antiferromagnetic coupling, but with different magnitudes of spin (SILVA, 2019). The lowest

energy state would have all sites spin contrary aligned but, since the spins have different magni-

tudes, the magnetic material will display a spontaneous magnetization, as in the ferromagnetic

case. These different magnitude spins can be due to unit cell structure, as well as magnetic

ions with a different spin. When these systems are exposed to a magnetic field at zero tempera-

ture, they can go through quantum phase transitions. They involve transitions from gapped to

gapless phases (RÜEGG et al., 2008), magnetic susceptibility divergences (WANG; YU, 2000), as

well as the magnetization plateaus (LANGARI; MARTÍN-DELGADO, 2000), an important subject

of this text.

Plateaus in the magnetization curves are not present in all types of materials. The open spin-
1
2 chain, for instance, has no magnetization plateau in its magnetization curve, while the open

spin-1 chain does, in accordance with Haldane’s conjecture (AFFLECK, 1989). Magnetization

plateaus can be observed in varied structures of ferrimagnetic mixed-spin chains, as observed

in the multiple spin-(1
2 , S) chains (SILVA; MONTENEGRO-FILHO, 2021).

The mixed spin-1 and spin-1
2 ladder is composed of two coupled linear chains with mixed

spins. There are two coupling variables that describe it: the coupling between chains 𝐽1 and

the coupling between spins throughout each linear chain 𝐽0. The ferrimagnetic mixed spin-1

and spin-1
2 ladder is composed of positive couplings 𝐽0 > 0 and 𝐽1 > 0. It presents an energy

degenerescence in the energy levels as a function of the total magnetization curve, in accor-

dance with the Lieb-Mattis description of the energy levels. It also presents a magnetization

plateau at magnetization 1
3 of the saturation value, the 1

3 -plateau. The energy degenerescence

at the energy levels curve corresponds to constant values of energy when magnetization ranges
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at the interval between 0 and 1
3 of the saturation value. These degenerate values of energy are

the lowest energy values available. When submitted to a small magnetic field, magnetization

immediately tends to the value of 1
3 , and the magnetization curve will present a plateau. With

𝐽1 < 0, the 1
3 plateau decreases its size, indicating a transition from a gapped to a gapless

phase. Since this transition occurs at constant magnetization, it has no symmetry breaking,

and it consists of a Kosterlitz-Thouless phase transition.

A system of spin-1
2 trimers, for example, may as well present a Kosterlitz-Thouless phase

transition, depending on the system’s Hamiltonian. Isotropic interacting spin-1
2 trimers (MONTENEGRO-

FILHO; SILVA-JÚNIOR; COUTINHO-FILHO, 2022) will have the 1
3 -plateau in the magnetization

curve (figure 1), but has no Kosterlitz-Thouless phase transition in its phase diagram (figure

2). Anisotropic interacting spin-1
2 trimers modeled with an anisotropic Heisenberg Hamilto-

nian (MONTENEGRO-FILHO; MATIAS; COUTINHO-FILHO, 2020), however, presents a Kosterlitz-

Thouless phase transition in its phase diagram (figure 3).

Figura 1 – Magnetization per trimer as a function of the applied magnetic field for positive (a) and negative
(b) spin coupling.

Source: (MONTENEGRO-FILHO; SILVA-JÚNIOR; COUTINHO-FILHO, 2022).
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Figura 2 – a) Spin- 1
2 trimers magnetic field (ℎ) vs spin coupling ratio 𝐽 phase diagram, with gapped phases ( 1

3 -
plateau) and gapless phases (Luttinger liquid). Note there is no Kosterlitz-Thouless phase transition,
as the 1

3 -plateau does not close. b) Visual representation of the average spin orientation as a function
of the spin coupling ratio 𝐽 .

Source: (MONTENEGRO-FILHO; SILVA-JÚNIOR; COUTINHO-FILHO, 2022).
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Figura 3 – a) Anisotropy of the Heisenberg Hamiltonian of the spin- 1
2 trimer chain. b) Magnetization as

a function of the applied magnetic field for different values of 𝜆, the anisotropy parameter. c)
Anisotropic spin- 1

2 trimers magnetic field (ℎ) vs anisotropy parameter (𝜆) phase diagram. There
are gapped phases ( 1

3 -plateau) and gapless phases (Luttinger liquid), as well as a Kosterlitz-Thouless
phase transition.

Source: (MONTENEGRO-FILHO; MATIAS; COUTINHO-FILHO, 2020).

Examples of ferrimagnetic lattice structures would be the open ferrimagnetic chain (figure

4) and the ferrimagnetic ladder (figure 5) with spin-1 and spin-1
2 . The ladder structure is a

recurrent and important structure family. There are many known compounds that have ladder

structures. An example would be the vanadyl pyrophosphate (𝑉 𝑂)2𝑃2𝑂7 (JOHNSTON et al.,

1987), while the cuprates 𝑆𝑟𝐶𝑢2𝑂3 (ISHIDA et al., 1994) and 𝑆𝑟2𝐶𝑢3𝑂5 (AZUMA et al., 1994)

have a two leg and three leg ladder structure, respectively (figure 6). Quasi-unidimensional

compounds (COUTINHO-FILHO et al., 2008) with ferrimagnetic order can be highlighted. The

bimetallic compound NiCu(pba)(H2O)3.2H2O (figure 7) has nickel atoms with spin 𝑆𝑁𝑖 = 1,

while copper atoms have spin 𝑆𝐶𝑢 = 1
2 is an example of ferrimagnetic compound. Another
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example would be the CuMn(S2C2O2)·7.5H2O, as the copper atoms will have different spin

than the manganese atom (𝑆𝐶𝑢 ̸= 𝑆𝑀𝑛) (VERDAGUER et al., 1984).

Figura 4 – Ferrimagnetic chain with spin-1 and spin- 1
2 .⌃⎮⎮

𝑆 = 1 ↓

𝑆 = 1
2

⌃⎮⎮
𝑆 = 1 ↓

𝑆 = 1
2... ...

Source: the author (2022).

Figura 5 – Ferrimagnetic ladder with spin-1 and spin- 1
2 .

⎮⎮⌄𝑆 = 1
↑

𝑆 = 1
2

⎮⎮⌄ 𝑆 = 1

↑ 𝑆 = 1
2 ⎮⎮⌄

𝑆 = 1 ↑ 𝑆 = 1
2

... ...

Source: the author (2022).

Figura 6 – Examples of compounds with ladder structure. a) (VO)2P2O7 compound with ladder structure. b)
SrCu2O3 compound with two-legged ladder structure. c) Sr2Cu3O5 compound with three-legged
ladder structure. 𝐽 ′ and 𝐽 are parameters of coupling between spins.

Source: (DAGOTTO; RICE, 1996).



20

Figura 7 – a) Bimetallic compound NiCu(pba)(H2O)3.2H2O. b) Mixed-spin chain.

Source: (IVANOV, 2009).

1.3 DISSERTATION OUTLINE

This dissertation’s main goal was to study quantum phase transitions of mixed spin-1 and

spin-1
2 ladders. To accomplish this goal, multiple steps were taken.

The Hamiltonian of the Heisenberg model is defined in chapter 2, at first under no mag-

netic field, followed by a demonstration of its symmetry properties. The energy levels of the

Heisenberg model under no magnetic field are shown to be eigenstates of the total spin 𝑆

as well as the total spin in the 𝑧 direction 𝑆𝑧, depicted by 𝐸0(𝑆𝑧). Exact diagonalizations of

the spin-1
2 and the mixed spin-1 and spin-1

2 Heisenberg dimers are obtained as an example.

Later, it is discussed how an applied magnetic field introduces the Zeeman term into the Hei-

senberg model Hamiltonian, changing the energy levels of the Hamiltonian. It then concludes

how magnetization curves are drawn using the energy levels 𝐸0(𝑆𝑧) obtained at zero magnetic

field.

The classification of phase transitions is elaborated in chapter 3 with the discussion of

order parameters and correlation lengths. Then, there is a discussion of gapped and gapless

systems, a fundamental concept for quantum phase transitions. The chapter is finalized with

a description of quantum phase transitions, caused by a generic Hamiltonian parameter 𝑔.

Chapter 4 discusses the DMRG, an approximation method for solving the Heisenberg model

Hamiltonian for one-dimensional systems. This method is fundamental to obtain the energy

levels 𝐸0(𝑆𝑧), used to obtain the magnetization curves since the Hilbert space dimension is



21

shown to grow exponentially with the chain size. The mathematical formulation of the density

matrix and reduced density matrix are shown, and how these concepts apply to the DMRG

method is elaborated. The steps of the DMRG iteration process are listed. At last, energy

levels and magnetization curves of other spin-models are reproduced to show the DMRG is

providing good results.

Chapter 5 shows the results of the DMRG for the mixed spin-1 and spin-1
2 ladder. This

chapter is divided into three parts. At first, it discusses the energy levels and magnetization

curve of a chain with purely antiferromagnetic coupling between sites (i.e. the chain has ferri-

magnetic order) and shows the average magnetization orientation along the chain. It is shown

that these chains will have a magnetization plateau. The second part shows these results

(energy levels, magnetization curve, and average magnetization orientation) when the verti-

cal coupling between sites is ferromagnetic while maintaining an antiferromagnetic coupling

between horizontally neighboured sites. The magnetization plateau is seen to decrease as the

vertical coupling between sites decreases below zero. An exponential dependence is obtained

for the magnetization plateau size. A Kosterlitz-Thouless phase transition is observed, as the

system transits from a gapped to a gapless phase by varying the spin coupling.

Chapter 6 summarizes the results obtained throughout the text and presents conclusions.
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2 HEISENBERG MODEL HAMILTONIAN

The Hamiltonian is always a fundamental observable in the study of any physical system.

It is through it that the system’s available energies are calculated, as well as the time evolution

of states and operators. This section will define the Hamiltonians used in the description of

the magnetic materials in this text’s scope.

2.1 HEISENBERG MODEL

The Hamiltonian of the Heisenberg model (MALVEZZI, 2003) for a magnetic insulator under

no magnetic field is given by

𝐻0 =
∑︁
𝑖,𝑗

𝐽𝑖𝑗𝑆𝑖 · 𝑆𝑗, (2.1)

where 𝑆𝑖 is the spin vector at the site 𝑖. The term 𝐽𝑖𝑗 is such that 𝐽𝑖𝑗 = 𝐽𝑗𝑖 and usually zero

for sites that are not first neighbours, such that

𝐻0 =
∑︁

<𝑖,𝑗>

𝐽𝑖𝑗𝑆𝑖 · 𝑆𝑗, (2.2)

where the notation < 𝑖, 𝑗 > represents that it must be counted only terms associated with the

interaction of first neighbors. The interaction between two neighboring spins must be counted

only once.

The calculation of eigenvalues of 𝐻0 can be fairly complicated depending on the structure

and size (number of unit cells 𝐿) of the magnetic material. The dimension of the Hilbert space

is known to grow exponentially with the number of sites and exact diagonalization becomes a

difficult task as 𝐿 increases.

2.1.1 Dimension of Hilbert space and symmetries

For a single spin-1
2 site, a possible Hilbert space basis is the eigenstates of angular momen-

tum in the 𝑧 direction, given by

|↑⟩ ; |↓⟩ (Dimension: 2),

so that the two sites with spin-1
2 basis can be written as
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|↑↑⟩ ; |↑↓⟩ ; |↓↑⟩ ; |↓↓⟩ (Dimension: 4).

The Hilbert space dimension can be generalized for a spin-1
2 chain with 𝐿 unit cells: its

dimension will be equal to 𝑑 = 2 × 2...× 2⏟  ⏞  
L times

= 2𝐿. Naturally, as 𝐿 increases, diagonalization

becomes quite difficult to be performed, since 𝑑 will diverge exponentially to infinity. Therefore,

an approximation method is important to the subsequent evaluation of eigenstates of energy.

However, there are symmetry properties that can simplify the determination of the Heisenberg

model eigenstates. Those properties arise from commutation relations. The interest will lie in

the two particular commutators

[𝐻0, 𝑆
𝑧] ; [𝐻0, 𝑆

2],

with 𝑆𝑧 as the total angular momentum in the 𝑧 direction and 𝑆2 is the total angular momen-

tum, that is

𝑆2 = (𝑆𝑥)2 + (𝑆𝑦)2 + (𝑆𝑧)2;

𝑆𝑙 =
∑︁

𝑖

𝑆𝑙
𝑖, with 𝑙 = 𝑥, 𝑦, 𝑧.

In order to evaluate these commutators, the angular momentum commutation relations,

valid for any angular momentum observable 𝑆⃗, will be used. They are given by

𝑆⃗ = 𝑆𝑥x̂ + 𝑆𝑦ŷ + 𝑆𝑧ẑ; (2.3)

[𝑆𝑥, 𝑆𝑦] = 𝑖ℏ𝑆𝑧; (2.4)

[𝑆𝑦, 𝑆𝑧] = 𝑖ℏ𝑆𝑥; (2.5)

[𝑆𝑧, 𝑆𝑥] = 𝑖ℏ𝑆𝑦. (2.6)

The commutation [𝐻0, 𝑆
𝑧
𝑘 ] between 𝐻0 and the spin observable in 𝑧 direction of a generic

site 𝑘 is equal to

[𝐻0, 𝑆
𝑧
𝑘 ] =

∑︁
<𝑖,𝑗>

𝐽𝑖𝑗[𝑆𝑖 · 𝑆𝑗, 𝑆
𝑧
𝑘 ].

The inner product term of interaction between spins 𝑖 and 𝑗 𝑆𝑖 · 𝑆𝑗 is equal to
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𝑆𝑖 · 𝑆𝑗 = 𝑆𝑥
𝑖 𝑆

𝑥
𝑗 + 𝑆𝑦

𝑖 𝑆
𝑦
𝑗 + 𝑆𝑧

𝑖 𝑆
𝑧
𝑗 .

The commutation relation [𝑆𝑖 · 𝑆𝑗, 𝑆
𝑧
𝑘 ] is then given by

[𝑆𝑖 · 𝑆𝑗, 𝑆
𝑧
𝑘 ] = [𝑆𝑥

𝑖 𝑆
𝑥
𝑗 , 𝑆

𝑧
𝑘 ] + [𝑆𝑦

𝑖 𝑆
𝑦
𝑗 , 𝑆

𝑧
𝑘 ] + [𝑆𝑧

𝑖 𝑆
𝑧
𝑗 , 𝑆

𝑧
𝑘 ].

The first term to be analyzed will be [𝑆𝑥
𝑖 𝑆

𝑥
𝑗 , 𝑆

𝑧
𝑘 ] and the analysis for [𝑆𝑦

𝑖 𝑆
𝑦
𝑗 , 𝑆

𝑧
𝑘 ] is analogous.

[𝑆𝑧
𝑖 𝑆

𝑧
𝑗 , 𝑆

𝑧
𝑘 ] is always zero.

[𝑆𝑥
𝑖 𝑆

𝑥
𝑗 , 𝑆

𝑧
𝑘 ] = −([𝑆𝑧

𝑘 , 𝑆
𝑥
𝑖 ]𝑆𝑥

𝑗 + 𝑆𝑥
𝑖 [𝑆𝑧

𝑘 , 𝑆
𝑥
𝑗 ]);

[𝑆𝑖
x𝑆𝑗

x, 𝑆𝑘
z] = −𝑖ℏ(𝑆𝑦

𝑖 𝑆
𝑥
𝑗 𝛿𝑖𝑘 + 𝑆𝑥

𝑖 𝑆
𝑦
𝑗 𝛿𝑗𝑘). (2.7)

For [𝑆𝑦
𝑖 𝑆

𝑦
𝑗 , 𝑆

𝑧
𝑘 ], it is valid that

[𝑆𝑦
𝑖 𝑆

𝑦
𝑗 , 𝑆

𝑧
𝑘 ] = −([𝑆𝑧

𝑘 , 𝑆
𝑦
𝑖 ]𝑆𝑦

𝑗 + 𝑆𝑦
𝑖 [𝑆𝑧

𝑘 , 𝑆
𝑦
𝑗 ]);

[𝑆𝑦
𝑖 𝑆

𝑦
𝑗 , 𝑆

𝑧
𝑘 ] = 𝑖ℏ(𝑆𝑥

𝑖 𝑆
𝑦
𝑗 𝛿𝑖𝑘 + 𝑆𝑦

𝑖 𝑆
𝑥
𝑗 𝛿𝑗𝑘). (2.8)

It follows that

[𝐻0, 𝑆
𝑧
𝑘 ] = 𝑖ℏ

∑︁
<𝑖,𝑗>

𝐽𝑖𝑗(−𝑆𝑦
𝑖 𝑆

𝑥
𝑗 𝛿𝑖𝑘 − 𝑆𝑥

𝑖 𝑆
𝑦
𝑗 𝛿𝑗𝑘 + 𝑆𝑥

𝑖 𝑆
𝑦
𝑗 𝛿𝑖𝑘 + 𝑆𝑦

𝑖 𝑆
𝑥
𝑗 𝛿𝑗𝑘).

Given that

𝑆𝑧 =
∑︁

𝑘

𝑆𝑧
𝑘 ,

it follows that

[𝐻0, 𝑆
𝑧] = 𝑖ℏ

∑︁
<𝑖,𝑗>

𝐽𝑖𝑗

∑︁
𝑘

(−𝑆𝑦
𝑖 𝑆

𝑥
𝑗 𝛿𝑖𝑘 − 𝑆𝑥

𝑖 𝑆
𝑦
𝑗 𝛿𝑗𝑘 + 𝑆𝑥

𝑖 𝑆
𝑦
𝑗 𝛿𝑖𝑘 + 𝑆𝑦

𝑖 𝑆
𝑥
𝑗 𝛿𝑗𝑘);

[𝐻0, 𝑆
𝑧] = 𝑖ℏ

∑︁
<𝑖,𝑗>

𝐽𝑖𝑗(−𝑆𝑦
𝑖 𝑆

𝑥
𝑗 − 𝑆𝑥

𝑖 𝑆
𝑦
𝑗 + 𝑆𝑥

𝑖 𝑆
𝑦
𝑗 + 𝑆𝑦

𝑖 𝑆
𝑥
𝑗 ) = 0.

Then

[𝐻0, 𝑆
𝑧] = 0. (2.9)
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This leads to the conclusion that the Heisenberg Hamiltonian has rotation symmetry since

angular momentum is the generator of rotations towards some axis. In this case, there will be

rotation symmetry relative to the three-axis: 𝑥, 𝑦, and 𝑧. However, introducing a magnetic

field, the remaining rotation symmetry axis will only be the one parallel to the magnetic field.

Hence, in general, the magnetic field is described as being in the 𝑧 direction. In order to obtain

[𝐻0, 𝑆
2], symmetry properties can be used. Equation (2.9) must remain valid if 𝑧 → 𝑥 or

𝑧 → 𝑦, therefore [𝐻0, 𝑆
𝑧] = [𝐻0, 𝑆

𝑦] = [𝐻0, 𝑆
𝑥] = 0. Then

𝑆2 = (𝑆𝑥)2 + (𝑆𝑦)2 + (𝑆𝑧)2;

[𝐻0, 𝑆
2] = [𝐻0, (𝑆𝑥)2]⏟  ⏞  

[𝐻0,𝑆𝑥]𝑆𝑥+𝑆𝑥[𝐻0,𝑆𝑥]=0

+ [𝐻0, (𝑆𝑦)2]⏟  ⏞  
=0

+ [𝐻0, (𝑆𝑧)2]⏟  ⏞  
=0

= 0;

[𝐻0, 𝑆
2] = 0. (2.10)

With these commutation relations demonstrated, it is possible to conclude that the ei-

genstates of 𝐻0 are eigenstates of 𝑆z (total angular momentum in direction 𝑧) and 𝑆2 (total

angular momentum) (MALVEZZI, 2003). So, for a lattice with any number of sites, there are

two bases that should be highlighted:

Option A) Basis is given by the tensor product of the eigenstates of 𝑆𝑖
2 and 𝑆𝑖

z of each

individual site. This is the basis normally used.

Option B) Basis is given by eigenstates of 𝑆2 (total angular momentum) and 𝑆z (total

angular momentum in 𝑧 direction). This base can be written in terms of the previous basis

using Clebsch-Gordon coefficients. These states are the eigenstates of 𝐻0.

2.1.2 Heisenberg model, antiferromagnetism and ferromagnetism

The term ⟨𝑆𝑖 · 𝑆𝑗⟩, with 𝑖 and 𝑗 corresponding to two first neighbors spins, is either positive

or negative. If it is positive, there is an increase in energy, while if it is negative, there is a

decrease in energy. On the other hand, for 𝐽𝑖𝑗 ≤ 0, if it is positive, there will be a decrease in

energy, while if it is positive, there will be an energy increase.

In accordance with the minimum energy principle, when 𝐽𝑖𝑗 ≥ 0, the tendency will be

of antiparallel alignment since this decreases energy. However, when 𝐽𝑖𝑗 ≤ 0, the parallel

orientation has lower energy, being the more probable state. It can be concluded that 𝐽𝑖𝑗 ≥ 0
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corresponds to an antiferromagnetic coupling while 𝐽𝑖𝑗 ≤ 0 corresponds to a ferromagnetic

coupling between the sites 𝑖 and 𝑗.

2.1.3 Lieb-Mattis theorem

The Lieb-Mattis theorem (LIEB; MATTIS, 1962) describes an energy level ordering of the

Heisenberg model Hamiltonian under no magnetic field for some specific spin couplings condi-

tion. The eigenstates of the Heisenberg model Hamiltonian are eigenstates of both total spin

𝑆 and total spin in the 𝑧 direction 𝑆𝑧. The values of 𝑆𝑧 for a given value of 𝑆 are given

by 𝑆𝑧 = −𝑆, −𝑆 + 1, ..., 0, ..., 𝑆 − 1, 𝑆 and the level with total spin 𝑆 has a degeneracy

of 2𝑆 + 1. The values of 𝑆 can have a multitude of ranges, with the minimum value most

commonly found to be 0 and the maximum value of 𝑆 will be represented here by the generic

value 𝑆𝑚𝑎𝑥. The state 𝑆𝑧 = 0 will have a representation in any 𝑆 space, while the 𝑆𝑧 = 1

state will have a representation in any 𝑆 > 0 space, the 𝑆𝑧 = 2 will have a representation in

any 𝑆 > 1 space and so on.

For lattices with sites that have different total spin, here represented by spin 𝐴 and 𝐵

(with values 𝑠𝑖
𝐴 and 𝑠𝑖

𝐵), there is a total spin difference S given by

S = |𝑠𝐴 − 𝑠𝐵|; (2.11)

with

𝑠𝐴 =
∑︁

𝑖

𝑠𝑖
𝐴 (2.12)

and

𝑠𝐵 =
∑︁

𝑖

𝑠𝑖
𝐵. (2.13)

The Lieb-Mattis theorem establishes conditions at which the total spin 𝑆 state with the

lowest energy available will correspond to the state with 𝑆 = S. Consider 𝐸(𝑆) the lowest

energy value of a total 𝑆 state. The theorem consists of two equations:

𝐸(𝑆) > 𝐸(S), with 𝑆 < S; (2.14)

𝐸(𝑆 + 1) > 𝐸(𝑆), with 𝑆 ≥ S. (2.15)
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2.1.4 Oshikawa-Yamanaka-Affleck conjecture

The importance of obtaining the energy levels at zero magnetic field is that they are fun-

damental to determining the curve magnetization as a function of a magnetic field. For curves

with magnetization plateaus, it is valid that the magnetization at the plateau is quantized.

The Oshikawa-Yamanaka-Affleck conjecture consists on the following: if the maximum spin

of a unit cell is 𝑆 and the magnetization per unit cell of the state with translation symmetry

is 𝑚, the magnetization plateau exists only if 𝑆 − 𝑚 = 𝑁 , with 𝑁 an integer (OSHIKAWA;

YAMANAKA; AFFLECK, 1997). However, the conjecture does not state that if 𝑆−𝑚 = 𝑁 , with

𝑁 an integer, there is a magnetization plateau.

2.2 MIXED SPIN LADDER COUPLING

The mixed spin ladder is formed by the repetition of the structure depicted in figure 8. The

coupling 𝐽𝑖𝑗 between spins is depicted in figure 8 as well, indicating the interaction is different

between vertically and horizontally neighboring spins.

Figura 8 – Unit cell of mixed spin ladder with sites spin-1 and spin- 1
2 chain.

𝑆 = 1

𝑆 = 1
2

𝑆 = 1
2

𝑆 = 1

𝐽1

𝐽0

𝐽0

𝐽1

Source: the author (2022).

2.3 INTERACTION WITH AN APPLIED MAGNETIC FIELD

When an external magnetic field 𝐵⃗ is applied, the Hamiltonian of the system will be given

by

𝐻 =
∑︁

<𝑖,𝑗>

𝐽𝑖𝑗𝑆𝑖 · 𝑆𝑗 − ℎ𝐵𝑆
𝑧. (2.16)

Here, ℎ𝐵 = 𝛾𝐵, with 𝛾 the system’s gyro magnetic factor. The Heisenberg Hamiltonian

under magnetic field can then be written as
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𝐻 = 𝐻0 − ℎ𝐵𝑆
𝑧. (2.17)

Through commuting relations, it’s possible to conclude that the eigenstates of 𝐻 are the

same of 𝐻0, since

[𝐻,𝑆𝑧] = [𝐻0, 𝑆
𝑧]⏟  ⏞  

=0

−ℎ𝐵 [𝑆𝑧, 𝑆𝑧]⏟  ⏞  
=0

= 0;

[𝐻,𝑆2] = [𝐻0, 𝑆
2]⏟  ⏞  

=0

−ℎ𝐵[𝑆𝑧, 𝑆2].

Breaking down the term [𝑆𝑧, 𝑆2], it is valid that

[𝑆𝑧, (𝑆𝑥)2]+ [𝑆𝑧, (𝑆𝑦)2]+ [𝑆𝑧, (𝑆𝑧)2] = [𝑆𝑧, 𝑆𝑥]𝑆𝑥 +𝑆𝑥[𝑆𝑧, 𝑆𝑥]+ [𝑆𝑧, 𝑆𝑦]𝑆𝑦 +𝑆𝑦[𝑆𝑧, 𝑆𝑦]+0;

[𝑆𝑧, (𝑆𝑥)2] + [𝑆𝑧, (𝑆𝑦)2] + [𝑆𝑧, (𝑆𝑧)2] = 𝑖ℏ(𝑆𝑦𝑆𝑥 + 𝑆𝑥𝑆𝑦 − 𝑆𝑥𝑆𝑦 − 𝑆𝑦𝑆𝑥) = 0;

[𝐻,𝑆2] = [𝐻,𝑆𝑧] = 0. (2.18)

Conclusion: the eigenstates of 𝐻0 are eigenstates of 𝐻. However, the magnetic field provo-

kes a shift in energy in states with 𝑆𝑧 ̸= 0. These shifts will be analyzed using the Heisenberg

dimer as an example in the following section.

2.3.1 Heisenberg dimer

Consider two spin-1
2 sites with antiferromagnetic coupling (figure 9).

Figura 9 – Two spin- 1
2 with antiferromagnetic coupling (𝐽 > 0) sites. Heisenberg dimer.

𝐽 > 0
𝑠 = 1/2 𝑠 = 1/2

Source: the author (2022).

First, consider ℎ𝐵 = 0 and as a basis the eigenstates of 𝑆𝑧
1 and 𝑆𝑧

2 : |↑↑⟩, |↑↓⟩, |↓↑⟩, |↓↓⟩,

which is used to write (2.2) in matrix form. For the lattice shown, 𝐻0 will be given by
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𝐻0 = 𝐽(𝑆𝑥
1𝑆

𝑥
2 + 𝑆𝑦

1𝑆
𝑦
2 + 𝑆𝑧

1𝑆
𝑧
2).

Some useful identities are given by

𝑆𝑥 |↑⟩ = ℏ
2 |↓⟩ , 𝑆𝑥 |↓⟩ = ℏ

2 |↑⟩ ;

𝑆𝑦 |↑⟩ = 𝑖ℏ
2 |↓⟩ , 𝑆𝑦 |↓⟩ = −𝑖ℏ

2 |↑⟩ ;

𝑆𝑧 |↑⟩ = ℏ
2 |↑⟩ ; 𝑆𝑧 |↓⟩ = −ℏ

2 |↓⟩ .

Applying 𝐻0 to the basis’ vectors, it is valid that

𝐻0 |↑↑⟩ = 𝐽

(︃
ℏ
2

)︃2

(|↑↑⟩);

𝐻0 |↑↓⟩ = 𝐽

(︃
ℏ
2

)︃2

(2 |↓↑⟩ − |↑↓⟩);

𝐻0 |↓↑⟩ = 𝐽

(︃
ℏ
2

)︃2

(2 |↑↓⟩ − |↓↑⟩);

𝐻0 |↓↓⟩ = 𝐽

(︃
ℏ
2

)︃2

(|↓↓⟩).

𝐻0 in matrix form is equal to

𝐻0 = 𝐽

(︃
ℏ
2

)︃2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 −1 2 0

0 2 −1 0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Proceeding with diagonalization of 𝐻0, it is valid that

det

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − 𝜆 0 0 0

0 −1 − 𝜆 2 0

0 2 −1 − 𝜆 0

0 0 0 1 − 𝜆

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0.
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The characteristic polynomial is then given by

(1 − 𝜆)[(−1 − 𝜆)2(1 − 𝜆) − 4(1 − 𝜆)] = 0.

Values for 𝜆: 𝜆 = 1 and 𝜆 = −3.

Eigenvalues of energy: 𝐸0 = 𝐽(ℏ2)2 and 𝐸0 = −3𝐽(ℏ2)2.

The eigenstates and the energies are given by

𝜆 = 1, 𝐸0 = 𝐽

(︃
ℏ
2

)︃2

(Triplet states)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

|↑↑⟩

|↑↓⟩+|↓↑⟩√
2

|↓↓⟩

𝜆 = −3, 𝐸0 = −3𝐽
(︃
ℏ
2

)︃2

(Singlet state)
{︂

|↑↓⟩−|↓↑⟩√
2

The eigenstates could be written in the base of total 𝑆2 and total 𝑆𝑧 as

𝜆 = 1, 𝐸0 = 𝐽

(︃
ℏ
2

)︃2

(Triplet states)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

|𝑠 = 1,𝑚 = 1⟩

|𝑠 = 1,𝑚 = 0⟩

|𝑠 = 1,𝑚 = −1⟩

𝜆 = −3, 𝐸0 = −3𝐽
(︃
ℏ
2

)︃2

(Singlet state)
{︂

|𝑠 = 0,𝑚 = 0⟩

Now, consider ℎ𝐵 ̸= 0. The Hamiltonian will correspond to equation (2.17), and states

with 𝑆𝑧 ̸= 0 will have a shift in its energy level.

The energy levels will be shifted in the following form

𝐸(𝑚) = 𝐸0(𝑚) − ℎ𝐵𝑚ℏ⏟  ⏞  
Energy shift

. (2.19)

𝐸0(𝑚) is the energy level when ℎ𝐵 = 0 and m the eigenvalue associated with 𝑆𝑧.

For the triplet states (𝜆 = 1 , 𝐸0 = 𝐽(ℏ2)2), it is valid that

|𝑠 = 1,𝑚 = 1⟩. This state has an energy shift when ℎ𝐵 ̸= 0, since 𝑚 = 1, so 𝐸(𝑚) =

𝐽(ℏ2)2 − ℎ𝐵ℏ.

|𝑠 = 1,𝑚 = 0⟩. This state does not have an energy shift when ℎ𝐵 ̸= 0, since 𝑚 = 0, so

𝐸(𝑚) = 𝐽(ℏ2)2.
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|𝑠 = 1,𝑚 = −1⟩. This state has an energy shift when ℎ𝐵 ̸= 0, since 𝑚 = −1, so 𝐸(𝑚) =

𝐽(ℏ2)2 + ℎ𝐵ℏ.

For the singlet state (𝜆 = −3 , 𝐸0 = −3𝐽(ℏ2)2), it is valid that

|𝑠 = 0,𝑚 = 0⟩. This state does not have an energy shift when ℎ𝐵 ̸= 0, since 𝑚 = 0, so

𝐸(𝑚) = −3𝐽(ℏ2)2.

The energy levels 𝐸(𝑚) become functions of ℎ𝐵 (figure 10).

Figura 10 – 𝐸(𝑚) as a function of ℎ𝐵 for the triplet and singlet states.

ℎ𝐵

𝐸(𝑚)

|𝑠 = 0,𝑚 = 0⟩

|𝑠 = 1,𝑚 = 0⟩

|𝑠 = 1,𝑚 = −1⟩

|𝑠 = 1,𝑚 = 1⟩

Source: the author (2022).

There is a value of ℎ𝐵 in which the energies of the triplet state |𝑠 = 1,𝑚 = 1⟩ and singlet

state |𝑠 = 0,𝑚 = 0⟩ become the same. This transition describes an increase in the magneti-

zation (GIAMARCHI; RÜEGG; TCHERNYSHYOV, 2008). An increase in ℎ𝐵 provoked a leap in the

magnetization from 𝑚 = 0 to 𝑚 = 1, an increase of Δ𝑚 = 1. In terms of 𝑆𝑧, there was an

increase of Δ𝑆𝑧 = ℏ.

Classically, magnetic dipole tends to align with the magnetic field. With a magnetic field

increase, the magnetization grows in the direction of the field up to a saturation value, where

the magnetization curve reaches a plateau.

The antiferromagnetic spin-1
2 Heisenberg dimer is a good representation for some magnetic

insulators such as the KCuCl3 and the TiCuCl3 (RÜEGG et al., 2003). The ground state corres-
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ponds to magnetization zero per dimer at zero magnetic field, the state of the insulator at zero

temperature. As the magnetic field increases, the energy level with magnetization saturated

will decrease due to the Zeeman term, leading to a magnetization increase once this energy

level becomes the new ground state.

2.3.2 Heisenberg dimer with mixed spin-1 and spin-1
2

Consider now a Heisenberg dimer with mixed spin-1 and spin-1
2 with antiferromagnetic

coupling (figure 11) under no magnetic field (ℎ𝐵 = 0).

Figura 11 – Spin-1 and spin- 1
2 with ferromagnetic coupling (𝐽 > 0).

𝐽 > 0
𝑠 = 1 𝑠 = 1/2

Source: the author (2022).

The Hilbert space dimension automatically increases from 4 for the case of two spin-1
2 sites

to 6 for the spin-1 and spin-1
2 sites. The matrix for 𝐻0 will become a 6 by 6 (opposed to the

4 by 4 in the previous case). The eigenstates are known to be the basis vectors of the total

angular momentum operators 𝑆2 and 𝑆𝑧. This information will be used in this section to show

a different approach to diagonalizing 𝐻0.

Consider that each site is labeled by 1 and 2, with 1 referring the site with spin-1, while 2

references the site with spin-1
2 . Then, the basis for the spin at each site will be represented by

a generic ket of the form |𝑚1,𝑚2⟩, with

𝑆𝑧
1 |𝑚1,𝑚2⟩ = 𝑚1ℏ |𝑚1,𝑚2⟩ ;

𝑆𝑧
2 |𝑚1,𝑚2⟩ = 𝑚2ℏ |𝑚1,𝑚2⟩ ;

𝑆2
1 |𝑚1,𝑚2⟩ = 2ℏ2 |𝑚1,𝑚2⟩ ;

𝑆2
2 |𝑚1,𝑚2⟩ = 3

4ℏ
2 |𝑚1,𝑚2⟩ .
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The values of 𝑚1 and 𝑚2 are given by 𝑚1 = −1, 0, 1 and 𝑚2 = −1
2 , 1

2 . The total 𝑚

associated with the total 𝑆𝑧 will then have values of 𝑚 = −3
2 , −1

2 , 1
2 , 3

2 . The eigenstates of

𝐻0 will be represented in the same way as before: |𝑠,𝑚⟩.

Starting with the state |𝑠 = 3/2,𝑚 = 3/2⟩ = |1, 1/2⟩ the other states are obtained using

the 𝐽+ and 𝐽− angular momentum operators, in the same way through which the Clebsch-

Gordon coefficients are obtained, that is

𝐽+ = 𝐽𝑥 + 𝑖𝐽𝑦;

𝐽− = 𝐽𝑥 − 𝑖𝐽𝑦.

When applied to a generic |𝑗,𝑚⟩, they operate as the relations

𝐽+ |𝑗,𝑚⟩ = ℏ
√︁
𝑗(𝑗 + 1) −𝑚(𝑚+ 1) |𝑗,𝑚+ 1⟩ (2.20)

𝐽− |𝑗,𝑚⟩ = ℏ
√︁
𝑗(𝑗 + 1) −𝑚(𝑚− 1) |𝑗,𝑚− 1⟩ (2.21)

The state |1, 1/2⟩ must correspond to the state |𝑠 = 3/2,𝑚 = 3/2⟩, since |1, 1/2⟩ has the

highest value of 𝑚 = 𝑚1 +𝑚2 = 3
2 . From |1, 1/2⟩ = |𝑠 = 3/2,𝑚 = 3/2⟩ and

𝑆− = 𝑆1− + 𝑆2−;

it is possible to find

𝑆− |𝑠 = 3/2,𝑚 = 3/2⟩ = ℏ
√

3 |𝑠 = 3/2,𝑚 = 1/2⟩ ;

𝑆− |𝑠 = 3/2,𝑚 = 3/2⟩ = ℏ(
√

2 |0, 1/2⟩ + |1,−1/2⟩ ;

Then,

|𝑠 = 3/2,𝑚 = 1/2⟩ =
√︃

2
3 |0, 1/2⟩ +

√︃
1
3 |1,−1/2⟩ .

The state |𝑠 = 1/2,𝑚 = 1/2⟩ must be a linear combination of the states |0, 1/2⟩ and

|1,−1/2⟩, so that

|𝑠 = 1/2,𝑚 = 1/2⟩ = 𝑎 |0, 1/2⟩ + 𝑏 |1,−1/2⟩ .
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Also, |𝑠 = 1/2,𝑚 = 1/2⟩ must be orthonormal to |𝑠 = 3/2,𝑚 = 1/2⟩. A possible solution for

𝑎 and 𝑏 is given by 𝑎 =
√︁

1
3 and 𝑏 = −

√︁
2
3 , which leads to

|𝑠 = 1/2,𝑚 = 1/2⟩ =
√︃

1
3 |0, 1/2⟩ −

√︃
2
3 |1,−1/2⟩ .

Both states |𝑠 = 3/2,𝑚 = 1/2⟩ and |𝑠 = 1/2,𝑚 = 1/2⟩ have the same total 𝑆𝑧, but the

interest will lie in the state with the least energy, since this state will have a level crossing

sooner, as in figure 10. It is unnecessary to analyze the states with negative 𝑆𝑧 value since

the Hamiltonian is invariant under the transformation 𝑆𝑧
𝑖 → − 𝑆𝑧

𝑖 for all 𝑖. In general,

magnetization curves can be plotted using only the energy levels with positive total 𝑆𝑧: the

negative 𝑆𝑧 region will have the same results due to symmetry. The states found are listed

below.

|𝑠 = 3/2,𝑚 = 1/2⟩ =
√︃

2
3 |0, 1/2⟩ +

√︃
1
3 |1,−1/2⟩ ;

|𝑠 = 1/2,𝑚 = 1/2⟩ =
√︃

1
3 |0, 1/2⟩ −

√︃
2
3 |1,−1/2⟩ ;

|𝑠 = 3/2,𝑚 = 3/2⟩ = |1, 1/2⟩ .

It is convenient to write the Hamiltonian 𝐻0 as

𝐻0 = 𝐽
[︂1
2(𝑆1+𝑆2− + 𝑆1−𝑆2+) + 𝑆1𝑧𝑆2𝑧

]︂
; (2.22)

Applying 𝐻0 to these states, it is expected to find 𝐻0 |𝑠,𝑚⟩ = 𝐸0 |𝑠,𝑚⟩ and one can verify

that

𝐻0 |𝑠 = 3/2,𝑚 = 1/2⟩ = 𝐽ℏ2

2 |𝑠 = 3/2,𝑚 = 1/2⟩ ;

𝐻0 |𝑠 = 1/2,𝑚 = 1/2⟩ = −𝐽ℏ2 |𝑠 = 1/2,𝑚 = 1/2⟩ ;

𝐻0 |𝑠 = 3/2,𝑚 = 3/2⟩ = 𝐽ℏ2

2 |𝑠 = 3/2,𝑚 = 3/2⟩ ;

The energy levels 𝐸0(𝑆𝑧) as functions of total 𝑆𝑧 are then given by
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𝐸0(3ℏ/2) = 𝐽ℏ2

2 ;

𝐸0(ℏ/2) = −𝐽ℏ2.

The energy level of the state |𝑠 = 3/2,𝑚 = 1/2⟩ is the same energy of the state |𝑠 = 3/2,𝑚 = 3/2⟩,

meaning there is a degeneracy. A magnetic field in the 𝑧 direction will break this invariance.

The energy levels that will interest will always be the lowest value available for each total 𝑆𝑧

since they will cross first with the previous 𝑆𝑧 level as the magnetic field increases. At zero

magnetic field, the system state will be |𝑠 = 1/2,𝑚 = 1/2⟩. As the magnetic field increases,

the state |𝑠 = 3/2,𝑚 = 3/2⟩ energy will decrease and, eventually, become lower than the

|𝑠 = 1/2,𝑚 = 1/2⟩, and magnetization will increase from the 𝑚 = 1/2 to 𝑚 = 3/2.

2.4 MAGNETIZATION CURVE

Since the Heisenberg model Hamiltonian’s energy levels are eigenstates of the total 𝑆𝑧, the

lowest energy values for each 𝑆𝑧 at zero magnetic field (ℎ𝐵 = 0) will be depicted as 𝐸0(𝑆𝑧).

Naturally, the total 𝑆𝑧 relates to the eigenvalue 𝑚 through the relation 𝑆𝑧 = 𝑚ℏ. When

ℎ𝐵 = 0, antiferromagnetic materials display energy levels 𝐸0(𝑆𝑧) that are more energetic the

greater the value of total 𝑆𝑧. However, when the magnetic field is turned on (ℎ𝐵 > 0), the

levels with higher 𝑆𝑧 will have higher decreases in energy. Since the lowest value of total 𝑆𝑧

is zero (which corresponds to 𝑚 = 0), in general, this tends to be the lowest energy level of

antiferromagnetic materials when ℎ𝐵 = 0, depicted by 𝐸0(𝑚 = 0) = 𝐸0(0). The level 𝑚 = 1

has higher energy than the 𝑚 = 0 level, but its energy decreases as ℎ𝐵 increases. Eventually,

the levels 𝑚 = 0 and 𝑚 = 1 will cross at some value of ℎ𝐵, and the level 𝑚 = 1 becomes

the new ground state. If ℎ𝐵 keeps increasing, the energy level of 𝑚 = 2 will decrease even

further than the level 𝑚 = 1, and the level 𝑚 = 2 will become the new lowest energy state,

at which the 𝑚 eigenvalue will increase by one. Consider the lowest energy values 𝐸0(𝑚) for

each possible 𝑚 of the Heisenberg Hamiltonian with ℎ𝐵 = 0. According to equation (2.19),

the levels 𝐸(𝑚+ 1) and level 𝐸(𝑚) will be given by

𝐸(𝑚+ 1) = 𝐸0(𝑚+ 1) − ℎ𝐵(𝑚+ 1)ℏ;
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𝐸(𝑚) = 𝐸0(𝑚) − ℎ𝐵𝑚ℏ.

The level crossing occurs when ℎ𝐵 is such that the two energy levels match, that is

𝐸(𝑚+ 1) = 𝐸0(𝑚+ 1) − ℎ𝐵(𝑚+ 1)ℏ = 𝐸(𝑚) = 𝐸0(𝑚) − ℎ𝐵𝑚ℏ;

𝐸0(𝑚+ 1) − 𝐸0(𝑚) = ℎ𝐵ℏ;

ℎ𝐵 = 𝐸0(𝑚+ 1) − 𝐸0(𝑚)
ℏ

. (2.23)

This is the value of ℎ𝐵 for which the levels 𝑚 and 𝑚 + 1 have the same energy and

the eigenvalue 𝑚 difference is Δ𝑚 = 1. The investigation towards magnetization increase

is achieved through the determination of the energy levels 𝐸0(𝑚), so exact diagonalization

of 𝐻0 must be achieved. As was discussed in section 2.1.1, exact diagonalization becomes

increasingly hard as the system size increases. Therefore, it is necessary to use computational

algorithms to diagonalize 𝐻0. While implementing a computational algorithm, it is common

to set ℏ = 1. The crossing of energy levels is described by the equations

Δ𝑆𝑧 = 1 (Increase from 𝑆𝑧 to 𝑆𝑧 + 1); (2.24)

ℎ𝐵 = 𝐸0(𝑚+ 1) − 𝐸0(𝑚) = 𝐸0(𝑆𝑧 + 1) − 𝐸0(𝑆𝑧). (2.25)

Once these equations are set, it can now be answered what magnetic field it is expected

that magnetization will grow for both cases of Heisenberg dimer discussed at 2.3.1 and 2.3.2.

For the Heisenberg dimer with spin-1
2 , it is valid that

|𝑠 = 0,𝑚 = 0⟩ , with energy 𝐸0 = −3𝐽
4 ;

|𝑠 = 1,𝑚 = 1⟩ , with energy 𝐸0 = 𝐽

4 .

The magnetic field that increases magnetization from state |𝑠 = 0,𝑚 = 0⟩ to state |𝑠 = 1,𝑚 = 1⟩

is then given by

ℎ𝐵 = 𝐽.



37

For the mixed spin-1 and spin-1
2 Heisenberg dimer, the levels are given by

|𝑠 = 1/2,𝑚 = 1/2⟩ , with energy 𝐸0 = −𝐽 ;

|𝑠 = 3/2,𝑚 = 3/2⟩ , with energy 𝐸0 = 𝐽

2 .

To increase magnetization from state |𝑠 = 1/2,𝑚 = 1/2⟩ to state |𝑠 = 3/2,𝑚 = 3/2⟩,

the applied magnetic field must be

ℎ𝐵 = 3𝐽
2 .

The magnetization curves are obtained using the energy levels of the Heisenberg Hamilto-

nian at zero magnetic field 𝐸0(𝑆𝑧). The plot usually takes a step form for finite systems, since

the value ℎ+
𝐵 (or ℎ−

𝐵) is the value at which the levels 𝑆𝑧 + 1 and 𝑆𝑧 have the same energy (or

𝑆𝑧 and 𝑆𝑧 − 1 match). This means that, at these values of a magnetic field, the system can

be at either state of magnetization. For the ℎ+
𝐵 curve, at slightly higher values of a magnetic

field, the magnetization leaps to 𝑆𝑧 + 1, while at slightly smaller values of a magnetic field

the magnetization stays at 𝑆𝑧. The discussion is similar to the ℎ−
𝐵 curve. In order to obtain

the magnetization curve’s points, there are two point-generating equations. They are

ℎ+
𝐵 = 𝐸0(𝑆𝑧 + 1) − 𝐸0(𝑆𝑧), point (ℎ+

𝐵, 𝑆𝑧); (2.26)

ℎ−
𝐵 = 𝐸0(𝑆𝑧) − 𝐸0(𝑆𝑧 − 1), point (ℎ−

𝐵, 𝑆𝑧). (2.27)

2.4.1 Magnetization plateau and second order phase transition

In the thermodynamic limit, an increase of 1 at the total 𝑆𝑧 corresponds to a small

increase compared to the saturation value: an infinitesimal increase. It is expected that the

magnetization increases little when leaping from a total 𝑆𝑧 level to the level 𝑆𝑧 + 1, and the

step form of the magnetization curve as a function of the applied magnetic field will become

unnoticeable. The value of magnetic field ℎ𝐵 that increases the system magnetization is the

one that makes the energy levels of the total 𝑆𝑧 state have the same energy as the level 𝑆𝑧 +1.

At this value of a magnetic field, the partial derivative of the total 𝑆𝑧 energy level under an

applied magnetic field 𝐸(𝑆𝑧) with respect to the total 𝑆𝑧 will be zero, that is

𝜕𝐸

𝜕𝑆𝑧

⃒⃒⃒⃒
ℎ𝐵

= 0.
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Demonstration of this relation is straightforward: since 𝐸(𝑆𝑧) = 𝐸(𝑆𝑧 + Δ𝑆𝑧) at this value

of magnetic field ℎ𝐵, it follows that

[𝐸(𝑆𝑧 + Δ𝑆𝑧) − 𝐸(𝑆𝑧)]
⃒⃒⃒⃒
ℎ𝐵

= 0,

then

𝜕𝐸

𝜕𝑆𝑧

⃒⃒⃒⃒
ℎ𝐵

= 𝐸(𝑆𝑧 + Δ𝑆𝑧) − 𝐸(𝑆𝑧)
Δ𝑆𝑧

⃒⃒⃒⃒
ℎ𝐵

= 0.

The energy level of the state with total 𝑆𝑧 is equal to

𝐸(𝑆𝑧) = 𝐸0(𝑆𝑧) − ℎ𝐵𝑆
𝑧, (2.28)

with 𝐸0(𝑆𝑧) the lowest energy state with total 𝑆𝑧 under no magnetic field, the transition field

ℎ𝐵 is the one at which, in the thermodynamic limit, it is valid that

𝜕𝐸

𝜕𝑆𝑧

⃒⃒⃒⃒
ℎ𝐵

= 0. (2.29)

Replacing (2.28) at (2.29) will result in

𝜕𝐸

𝜕𝑆𝑧
= 𝜕𝐸0

𝜕𝑆𝑧
− ℎ𝐵 = 0;

ℎ𝐵 = 𝜕𝐸0

𝜕𝑆𝑧
. (2.30)

Hence, the slope of the energy levels 𝐸0(𝑆𝑧) at zero magnetic field curve will provide the

magnetic field at each total 𝑆𝑧 value, making possible the plot of the magnetization as a

function of the magnetic field.

Some energy curves will lead to magnetization plateaus in the thermodynamic limit, where

magnetization remains constant at a finite interval of ℎ𝐵. Magnetization plateaus occur due

to sharp points at the energy curve, since the derivative in equation (2.30) will have a dis-

continuity. Magnetic susceptibility 𝜒 is another important variable of magnetic systems. It is

defined as the total magnetization response to an applied magnetic field, given by

𝜒 = 𝜕𝑆𝑧

𝜕ℎ𝐵

. (2.31)

It is connected to the second partial derivative of the energy levels 𝐸0 through the cyclic

chain rule
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𝜒 =
(︃
𝜕ℎ𝐵

𝜕𝑆𝑧

)︃−1

. (2.32)

Equation (2.32) is connected to the second partial derivative of the energy levels 𝐸0, that

is

𝜕ℎ𝐵

𝜕𝑆𝑧
= 𝜕2𝐸0

𝜕𝑆𝑧2 . (2.33)

The partial derivative of (2.33) will be connected to the difference between the fields ℎ+
𝐵

and ℎ−
𝐵 defined at equations (2.26) and (2.27) and it is given by

ℎ+
𝐵 − ℎ−

𝐵 = 𝐸0(𝑆𝑧 + 1) − 2𝐸0(𝑆𝑧) + 𝐸0(𝑆𝑧 − 1).

This difference will depend on the structure of the magnetic chain. Some chains’ magne-

tization curves will lead to divergences in the magnetic susceptibility at critical points. This is

the case of the mixed spin-1 and spin-1
2 ladder, which will be presented later. At magnetization

plateaus, total 𝑆𝑧 remains constant at a ℎ𝐵 interval, meaning that

𝜕𝑆𝑧

𝜕ℎ𝐵

= 0,

and susceptibility 𝜒 will be null. If the difference ℎ+
𝐵 − ℎ−

𝐵 tends to zero, the partial derivative
𝜕ℎ𝐵

𝜕𝑆𝑧 will tend to zero as well, that is
𝜕ℎ𝐵

𝜕𝑆𝑧
→ 0.

In this case, the susceptibility will diverge according to equation (2.32), configuring a second-

order phase transition.
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3 PHASE TRANSITIONS

This section will elaborate on fundamental concepts of phase transitions (such as order

parameters and correlation length), describe first- and second-order phase transitions, discuss

the topological phase transition of Kosterlitz-Thouless, elaborate the concept of gapped and

gapless systems and quantum phase transitions.

3.1 ORDER PARAMETER, CORRELATION LENGTH, AND CLASSIFICATION OF PHASE

TRANSITIONS

Phase transitions can be mathematically described by a variable known as order parameter

Θ. It usually is non-null when the applied field (temperature, pressure, magnetic field, etc)

is below a critical value, and null when the applied field is greater than the critical value.

As an example, the Ising model describes a phase transition for ferromagnetic materials, as

magnetization is non-null below a critical limit 𝑇𝑐 and null for 𝑇 > 𝑇𝑐. The appropriate

order parameter Θ here would be the net magnetization. Another example would be the

water thermal phase transitions. At atmospheric pressure, water can exist as a solid when

the temperature is below 273K and as a liquid for temperatures above 273K. The critical

temperature then is given by 𝑇𝑐 = 273𝐾 and it is convenient to define the order parameter

by Θ = 𝜌−𝜌𝑙, with 𝜌𝑙 the density at liquid phase and 𝜌 the density at any phase. For 𝑇 < 𝑇𝑐,

it is valid that Θ ̸= 0 and, for 𝑇 > 𝑇𝑐, Θ = 0 (assuming that 𝑇 is below 373𝐾), configuring

a phase transition.

The correlation length 𝜉 is another variable that provides essential information about phase

transitions. It measures the range of correlation of any physical system. Consider a ferromag-

netic chain described by the Ising model for example. For temperatures above 𝑇𝑐, the system

is not organized and spin orientation will be random, with no long-range order, and the cor-

relation length will be zero. Decreasing the temperature towards 𝑇𝑐, the order is increased as

the spins will tend to have the same orientation. The correlation length increases continuously

as the temperature approaches 𝑇𝑐 from above. Below 𝑇𝑐, there will be long-range order, and

the correlation length is expected to diverge to infinity. In this case, the correlation length is

given by a power law, with 𝜉 ∝ (𝑇 − 𝑇𝑐)−𝛾 and 𝛼 a positive constant.

There is a difference between the described water phase transition and the ones described
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by the Ising model. Water has an abrupt change in its density. Ferromagnetic materials, on

the other hand, will have a continuous (yet fast) decreasing magnetization with the tempe-

rature. This distinction leads to a different classification for each type of phase transition. In

Ehrenfest classification, first-order phase transitions would exhibit discontinuities in the first

derivative of the free energy with respect to some thermodynamic variable. In this sense, the

second-order phase transition would exhibit a discontinuity in the second derivative of the free

energy. There could be higher-order phase transitions, depending on the discontinuities of the

higher-order derivatives of free energy. The modern classification of phase transitions differs

slightly from Ehrenfest’s classification. First-order phase transitions are transitions that require

receiving or releasing a typically large amount of energy to happen. In transitions like these,

order parameters would not have a continuous form, as the water ice-liquid phase transition

described previously. Second-order phase transitions are continuous phase transitions, in which

the correlation length is a continuous function with a power law dependence.

Another phase transition form is the quantum phase transition. They are transitions

between different quantum states provoked by an applied field at zero temperature.

The Kosterlitz-Thouless phase transition (KOSTERLITZ; THOULESS, 1973; KOSTERLITZ,

1974) is a topological phase transition (CONTINENTINO, 2017). It is continuous, but with no

symmetry breaking. Some spin-interacting systems display this transition, such as the ones

studied in (MONTENEGRO-FILHO; MATIAS; COUTINHO-FILHO, 2020). The correlation length will

have an exponential form dependency in this transition (ZHENG; SCHULZ; TRIMPER, 1999),

instead of a power law as in a second-order phase transition.

3.2 GAPPED AND GAPLESS HAMILTONIAN

The systems of interest while studying phase transitions are ones composed of many parti-

cles. The many-particles condition is referenced as the thermodynamic limit, when the number

of particles would tend to infinity. In order for a Hamiltonian to be denominated gapped, there

must be a finite energy difference between the system’s ground state and the first excited state

when the energy levels are evaluated in the thermodynamic limit. Else, it is gapless.

Infinity, however, is an abstract concept. The numeric process can not portray precisely an

idea of infinity. A possibility to investigate gapped or gapless phases is to evaluate the energy

levels for multiple system sizes 𝐿𝑖. For distinct 𝐿𝑖 values, the energy levels will be different.
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Consider 𝐸0 the ground state and 𝐸1 the first excited state. The energy gap is then given by

Δ = 𝐸1 −𝐸0. Should Δ converge to a finite value as 𝐿𝑖 increases, the Hamiltonian is gapped.

Else, the Hamiltonian is gapless. This is a piece of important information since the investigation

of thermodynamic limit for spin interacting systems can be achieved by performing finite-size

scale analysis.

3.3 QUANTUM PHASE TRANSITIONS

Quantum phase transitions occur at zero temperature and are caused by a Hamiltonian

parameter. The parameter that induces transitions will be denoted by 𝑔 and its value changes

the system’s ground state, leading up to quantum phase transitions (SACHDEV, 2011; SACHDEV;

KEIMER, 2011). Let a system’s Hamiltonian 𝐻 have an arbitrary dependence on a parameter

𝑔 such that 𝐻 = 𝐻(𝑔) and the temperature 𝑇 be set to zero. Its energy eigenvalues 𝐸(𝑔)

will also be a function of the parameter 𝑔. The system will necessarily be on the ground state.

Since the eigenvalues of energy are functions of 𝑔, this parameter can transit the system to

different quantum states.

As a way to illustrate the system’s state dependency on the value of 𝑔, consider 𝐻(𝑔) =

𝐻0 + 𝑔𝐻1, with [𝐻0, 𝐻1] = 0. The eigenstates of 𝐻(𝑔) are simultaneously eigenstates of 𝐻0

and 𝐻1. Then, for an eigenstate of 𝐻0 and 𝐻1 |𝑎0, 𝑎1⟩ with

𝐻0 |𝑎0, 𝑎1⟩ = 𝑎0 |𝑎0, 𝑎1⟩ ;

𝐻1 |𝑎0, 𝑎1⟩ = 𝑎1 |𝑎0, 𝑎1⟩ ;

𝑎0 > 0;

𝑎1 > 0.

It is valid that 𝐻(𝑔) |𝑎0, 𝑎1⟩ = (𝑎0 +𝑔𝑎1) |𝑎0, 𝑎1⟩ and this state’s energy 𝐸(𝑔) will be equal

to

𝐸𝑎(𝑔) = 𝑎0 + 𝑔𝑎1.
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Suppose another eigenstate of 𝐻0 and 𝐻1 |𝑏0, 𝑏1⟩ with

𝐻0 |𝑏0, 𝑏1⟩ = 𝑏0 |𝑏0, 𝑏1⟩ ;

𝐻1 |𝑏0, 𝑏1⟩ = 𝑏1 |𝑏0, 𝑏1⟩ ;

𝑏0 > 𝑎0;

𝑏1 < 0.

This state’s energy will be equal to

𝐸𝑏(𝑔) = 𝑏0 + 𝑔𝑏1.

It will be assumed that 𝑎0 is the ground state energy of 𝐻0, while 𝑏0 is the first excited

state energy. When 𝑔 = 0, the state |𝑎0, 𝑎1⟩ is the ground state, which will be the system’s

state. As 𝑔 grows, with 𝑎1 > 0 and 𝑏1 < 0, it comes clear that the energy levels must cross at

some point 𝑔 = 𝑔𝑐 (figure 12). When 𝑔 > 𝑔𝑐, there is an inversion: the state |𝑏0, 𝑏1⟩ becomes

the new ground state and the system will transit to this new ground state.

Figura 12 – Energy levels for the states |𝑎0, 𝑎1⟩ and |𝑏0, 𝑏1⟩.

𝑔

𝐸(𝑔)

|𝑎0, 𝑎1⟩

|𝑏0, 𝑏1⟩

𝑔 = 𝑔𝑐

Source: the author (2022).
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Figura 13 – Lowest energy states of 𝐻(𝑔) displaying an avoided level crossing.

𝑔

𝐸(𝑔)

𝑔 = 𝑔𝑐

Source: the author (2022).

The Hamiltonian need not necessarily have the form 𝐻(𝑔) = 𝐻0 + 𝑔𝐻1, this was only

used to set an example. Some systems not in thermodynamic limit can present the energy

level structure of the avoided level crossing (figure 13), where the energy levels don’t cross but

come close to at value 𝑔 = 𝑔𝑐 (SACHDEV, 2011). Since energy is extensive, the gap between

the energy curves of an avoided level crossing will tend to zero as the system’s size grows. In

the thermodynamic limit, the avoided level crossing will tend to display a level cross at the

value 𝑔 = 𝑔𝑐 and the ground state will change. Again, the system will move to this new ground

state when 𝑔 > 𝑔𝑐.

Quantum phase transitions induced by magnetic fields in alternating spin chains were

studied in this project. Spin-interacting systems are a known class of systems that can undergo

quantum phase transitions. Mixed-spin Heisenberg chains can exist in varied quantum phases,

as seen in (TENÓRIO; MONTENEGRO-FILHO; COUTINHO-FILHO, 2011).
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4 DENSITY MATRIX RENORMALIZATION GROUP (DMRG)

In order to determine values of ℎ𝐵 that increase the magnetization of the lattice, it is

necessary to calculate the energy levels 𝐸0(𝑆𝑧). The interest will lie in the lowest energy

eigenvalues 𝐸0(𝑆𝑧) for each total 𝑆𝑧 level so that the magnetization curve can be plotted using

equations (2.26) and (2.27). This section will focus on elaborating the fundamentals of the

numerical method known as Density Matrix Renormalization Group (or DMRG) (WHITE, 1992;

WHITE, 1993), which allows us, through truncation, to reduce the dimension of the Hilbert

space and evaluate the eigenvalues of energy of 𝐻0 of one-dimensional chains (SCHOLLWÖCK,

2005). This is an important process, given the increasing difficulty of an exact diagonalization

as the lattices become bigger.

4.1 DENSITY MATRIX

The density matrix operator is a fundamental part of the DMRG method and will have

its formulation done in this section. Consider that a system is formed by an ensemble of pure

states (mixture of states) |𝛼𝑖⟩ with probability 𝛼𝑖. Define the density probability operator 𝜌 as

𝜌 =
∑︁

𝑖

𝛼𝑖 |𝛼𝑖⟩ ⟨𝛼𝑖|. (4.1)

The states |𝛼𝑖⟩ are not necessarily orthonormal, so ⟨𝛼𝑖|𝛼𝑗⟩ is not necessarily equal to 𝛿𝑖𝑗.

However, ⟨𝛼𝑖|𝛼𝑖⟩ = 1.

Consider a generic basis represented by vectors |𝑏𝑖⟩. Then

𝐼 =
∑︁

𝑖

|𝑏𝑖⟩ ⟨𝑏𝑖|. (4.2)

𝐼 is the identity operator. Let 𝐴 be an observable and ⟨𝐴⟩ its average value. For the system

described by 𝜌, ⟨𝐴⟩ is given by the relation

⟨𝐴⟩ =
∑︁

𝑖

𝛼𝑖 ⟨𝛼𝑖|𝐴 |𝛼𝑖⟩. (4.3)

Rewriting (4.3) using, it is valid that (4.2)

⟨𝐴⟩ =
∑︁

𝑖

𝛼𝑖 ⟨𝛼𝑖|𝐴 |𝛼𝑖⟩ =
∑︁
𝑖,𝑗,𝑘

𝛼𝑖 ⟨𝛼𝑖|𝑏𝑗⟩ ⟨𝑏𝑗|𝐴 |𝑏𝑘⟩ ⟨𝑏𝑘|𝛼𝑖⟩;
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⟨𝐴⟩ =
∑︁
𝑗,𝑘

𝐴𝑗𝑘⏟ ⏞ 
⟨𝑏𝑗 |𝐴|𝑏𝑘⟩

⟨𝑏𝑘| (
∑︁

𝑖

𝛼𝑖 |𝛼𝑖⟩ ⟨𝛼𝑖|) |𝑏𝑗⟩⏟  ⏞  
𝜌𝑘𝑗

=
∑︁
𝑗,𝑘

𝐴𝑗𝑘𝜌𝑘𝑗;

⟨𝐴⟩ = Tr (𝜌𝐴). (4.4)

Naturally, ∑︀𝑖 𝑤𝑖 = 1, so 𝑇𝑟(𝜌) = 1. If the system is described by a pure state, a state

vector |𝜓⟩ can be attributed, and the density matrix is reduced to 𝜌 = |𝜓⟩ ⟨𝜓|, and 𝜌2 =

|𝜓⟩ ⟨𝜓|𝜓⟩ ⟨𝜓| = |𝜓⟩ ⟨𝜓| = 𝜌. A pure state is given by

𝜌2 = 𝜌 = |𝜓⟩ ⟨𝜓| . (4.5)

4.1.1 Diagonalization of the density matrix

The density operator is Hermitian, with

𝜌† =
∑︁

𝑖

𝛼𝑖* |𝛼𝑖⟩ ⟨𝛼𝑖| =
∑︁

𝑖

𝛼𝑖 |𝛼𝑖⟩ ⟨𝛼𝑖|.

The density operator can be diagonalized on some basis with real eigenvalues. Such basis

is here represented by the vectors |𝑤𝑖⟩, with 𝜌 |𝑤𝑖⟩ = 𝑤𝑖 |𝑤𝑖⟩. It will be convenient sort 𝑤𝑖 in

the form 𝑤1 > 𝑤2 > 𝑤3 > ... > 𝑤𝑛, with 𝑛 the Hilbert space dimension. Unlike in section 4.1,

where kets |𝛼𝑖⟩ were not necessarily orthonormal, here, orthonormality is valid: ⟨𝑤𝑖|𝑤𝑗⟩ = 𝛿𝑖𝑗.

Since |𝑤𝑖⟩ is a basis, equation (4.2) is valid with |𝑏𝑖⟩ → |𝑤𝑖⟩. Using the identity 𝜌𝐼 = 𝜌,

it is valid that

𝜌𝐼 =
∑︁

𝑖

𝜌 |𝑤𝑖⟩ ⟨𝑤𝑖| =
∑︁

𝑖

𝑤𝑖 |𝑤𝑖⟩ ⟨𝑤𝑖| ;

𝜌 =
∑︁

𝑖

𝑤𝑖 |𝑤𝑖⟩ ⟨𝑤𝑖| . (4.6)

Comparing equation (4.1) and (4.6), the system has a probability 𝑤𝑖 to be found in the

state |𝑤𝑖⟩.
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4.2 REDUCED DENSITY MATRIX

Consider a subsystem A in contact with a subsystem B. Subsystem A has for a basis of

Hilbert space the vectors |𝑖⟩, while subsystem B has as its basis the vectors |𝑗⟩. A state ket

|𝜓⟩ for this combination will be given by

|𝜓⟩ =
∑︁
𝑖,𝑗

𝐶𝑖𝑗 |𝑖, 𝑗⟩ . (4.7)

The state bra ⟨𝜓| is given then by

⟨𝜓| =
∑︁
𝑖′,𝑗′

𝐶*
𝑖′𝑗′ ⟨𝑖′, 𝑗′| . (4.8)

The density matrix of the composite the system 𝜌𝐶𝑜𝑚𝑝 is given by

𝜌𝐶𝑜𝑚𝑝 =
∑︁

𝑖,𝑖′,𝑗,𝑗′
𝐶𝑖𝑗𝐶

*
𝑖′𝑗′ |𝑖, 𝑗⟩ ⟨𝑖′, 𝑗′| . (4.9)

There is a density matrix associated with each subsystem, known as the reduced density

matrix. Those matrices will be represented by 𝜌A for subsystem A and 𝜌B for subsystem B. In

order to obtain each, it is necessary to use the partial trace, defined as

Tr 𝐴(|𝐴1, 𝐵1⟩ ⟨𝐴2, 𝐵2|) = |𝐵1⟩ ⟨𝐵2| Tr (|𝐴1⟩ ⟨𝐴2|); (4.10)

Tr 𝐵(|𝐴1, 𝐵1⟩ ⟨𝐴2, 𝐵2|) = |𝐴1⟩ ⟨𝐴2| Tr (|𝐵1⟩ ⟨𝐵2|). (4.11)

It will be demonstrated how the partial trace is used to determine the reduced density

matrices. A composite system formed by an ensemble of pure states |𝑖, 𝑗⟩ with probabilities

𝑤𝑖𝑗, in which 𝑤𝑖𝑗 is the probability of simultaneously having subsystem A in state 𝑖 and

subsystem B in state 𝑗, while ∑︀𝑗 𝑤𝑖𝑗 is the probability that system A is in state 𝑖, regardless

of the state of subsystem B. The density matrix for subsystem A will then be given by

𝜌𝐴 =
∑︁

𝑖

⎛⎝∑︁
𝑗

𝑤𝑖𝑗

⎞⎠ |𝑖⟩ ⟨𝑖| . (4.12)

The density matrix of subsystem B has an analogous form and is given by

𝜌𝐵 =
∑︁

𝑗

(︃∑︁
𝑖

𝑤𝑖𝑗

)︃
|𝑗⟩ ⟨𝑗| . (4.13)
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The composite density matrix is equal to

𝜌𝐶𝑜𝑚𝑝 =
∑︁
𝑖,𝑗

𝑤𝑖𝑗 |𝑖, 𝑗⟩ ⟨𝑖, 𝑗| . (4.14)

Applying partial trace in equation (4.14), one will find that

Tr 𝐴𝜌
𝐶𝑜𝑚𝑝 =

∑︁
𝑖,𝑗

𝑤𝑖𝑗 |𝑗⟩ ⟨𝑗|𝑇𝑟(|𝑖⟩ ⟨𝑖|)⏟  ⏞  
=1

;

Tr 𝐵𝜌
𝐶𝑜𝑚𝑝 =

∑︁
𝑖,𝑗

𝑤𝑖𝑗 |𝑖⟩ ⟨𝑖|𝑇𝑟(|𝑗⟩ ⟨𝑗|)⏟  ⏞  
=1

.

Then, it is valid that

Tr 𝐴𝜌
𝐶𝑜𝑚𝑝 =

∑︁
𝑖,𝑗

𝑤𝑖𝑗 |𝑗⟩ ⟨𝑗| = 𝜌𝐵; (4.15)

Tr 𝐵𝜌
𝐶𝑜𝑚𝑝 =

∑︁
𝑖,𝑗

𝑤𝑖𝑗 |𝑖⟩ ⟨𝑖| = 𝜌𝐴. (4.16)

The reduced density matrix of each subsystem is then obtained using the partial trace,

such that

𝜌A = Tr 𝐵𝜌
𝐶𝑜𝑚𝑝; (4.17)

𝜌B = Tr 𝐴𝜌
𝐶𝑜𝑚𝑝. (4.18)

Equations (4.17) and (4.18) result in

𝜌𝐴 =
∑︁

𝑖,𝑖′,𝑗,𝑗′
𝐶𝑖𝑗𝐶

*
𝑖′𝑗′ |𝑖⟩ ⟨𝑖′| Tr (|𝑗⟩ ⟨𝑗′|); (4.19)

𝜌𝐵 =
∑︁

𝑖,𝑖′,𝑗,𝑗′
𝐶𝑖𝑗𝐶

*
𝑖′𝑗′ |𝑗⟩ ⟨𝑗′| Tr (|𝑖⟩ ⟨𝑖′|). (4.20)

Now, using the relations Tr (|𝑖⟩ ⟨𝑖′|) = 𝛿𝑖𝑖′ and Tr (|𝑗⟩ ⟨𝑗′|) = 𝛿𝑗𝑗′ , one will find that

𝜌𝐴 =
∑︁
𝑖,𝑖′,𝑗

𝐶𝑖𝑗𝐶
*
𝑖′𝑗 |𝑖⟩ ⟨𝑖′| ; (4.21)

𝜌𝐵 =
∑︁
𝑖,𝑗,𝑗′

𝐶𝑖𝑗𝐶
*
𝑖𝑗′ |𝑗⟩ ⟨𝑗′| . (4.22)
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Finally, defining 𝜌𝐴
𝑖𝑖′ = ⟨𝑖| 𝜌𝐴 |𝑖′⟩ and 𝜌𝐵

𝑗𝑗′ = ⟨𝑗| 𝜌𝐵 |𝑗′⟩, it is valid that

𝜌𝐴
𝑖𝑖′ =

∑︁
𝑗

𝐶𝑖𝑗𝐶
*
𝑖′𝑗; (4.23)

𝜌𝐵
𝑗𝑗′ =

∑︁
𝑖

𝐶𝑖𝑗𝐶
*
𝑖𝑗′ . (4.24)

4.3 BLOCK, ENLARGED BLOCK, AND SUPERBLOCK

Consider a chain with 𝐿 unit cells. A block 𝐵(𝑙𝐴,𝑚𝐴) containing 𝑙𝐴 unit cells (𝑙𝐴 ≤ 𝐿)

and 𝑚𝐴 as its Hilbert space dimension are next to a single unit cell (figure 14), configuring

an enlarged block.

Figura 14 – Block of 𝑙𝐴 unit cells and a single unit cell. Enlarged block.

Unit cell
𝐵(𝑙𝐴,𝑚𝐴)

Source: the author (2022).

𝑁𝑐 will denote the Hilbert space dimension of a single unit cell, then the combination block

+ unit cell, here called enlarged block, will have dimension 𝑁𝐴
𝑒𝑛 = 𝑚𝐴𝑁𝑐 > 𝑚𝐴. Adding a

unit cell to the block increased the Hilbert space dimension.

The question that drives the DMRG method is the following: how can the dimension of

the enlarged block be reduced back to 𝑚𝐴 maintaining precision? In order to progress and

answer this question, consider subsystem A corresponding to the enlarged block surrounded by

subsystem B, another identical enlarged block, forming a superblock (figure 15). This structure

will be at the epicenter of the DMRG formulation.

Figura 15 – Superblock formed by combining two enlarged blocks: subsystem A (block 𝐵(𝑙𝐴, 𝑚𝐴)+ unit cell)
and subsystem B (block 𝐵(𝑙𝐵 , 𝑚𝐵)+ unit cell).

𝐵(𝑙𝐴,𝑚𝐴) 𝐵(𝑙𝐵,𝑚𝐵)

Source: the author (2022).
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4.4 SUPERBLOCK STATE KET AND BRA; DENSITY MATRIX OPERATOR

The block’s 𝐵(𝑙𝐴,𝑚𝐴) basis will be denoted by |𝑚𝑏𝐴⟩, with𝑚𝑏𝐴 = 1, 2, 3, ...,𝑚𝐴. Similarly,

for the block 𝐵(𝑙𝐵,𝑚𝐵), its basis will be denoted by |𝑚𝑏𝐵⟩, with 𝑚𝑏𝐵 = 1, 2, 3, ...,𝑚𝐵. As for

the unit cells, their states will be represented |𝑛𝑐𝐴⟩ for the site next to 𝐵(𝑙𝐴,𝑚𝐴), and |𝑛𝑐𝐵⟩

for the site next to 𝐵(𝑙𝐵,𝑚𝐵), with 𝑛𝑐𝐴 = 1, 2, 3, ..., 𝑁𝑐 and the same goes for 𝑛𝑐𝐵. Hence,

a superblock’s state ket 𝜓 can be written as

|𝜓⟩ =
∑︁
𝑚𝑏𝐴

∑︁
𝑛𝑐𝐴

∑︁
𝑚𝑏𝐵

∑︁
𝑛𝑐𝐵

𝐶𝑚𝑏𝐴𝑛𝑐𝐴𝑚𝑏𝐵𝑛𝑐𝐵
|𝑚𝑏𝐴⟩ |𝑛𝑐𝐴⟩ |𝑚𝑏𝐵⟩ |𝑛𝑐𝐵⟩ . (4.25)

The tensor product |𝑚𝑏𝐴⟩ |𝑛𝑐𝐴⟩ |𝑚𝑏𝐵⟩ |𝑛𝑐𝐵⟩ can be written as

|𝑚𝑏𝐴⟩ |𝑛𝑐𝐴⟩ |𝑚𝑏𝐵⟩ |𝑛𝑐𝐵⟩ = |𝑚𝑏𝐴, 𝑛𝑐𝐴;𝑚𝑏𝐵, 𝑛𝑐𝐵⟩ . (4.26)

The values of 𝐶𝑚𝑏𝐴𝑛𝑐𝐴𝑚𝑏𝐵𝑛𝑐𝐵
are determined using orthonormality, that is

⟨𝑚𝑏𝐴, 𝑛𝑐𝐴;𝑚𝑏𝐵, 𝑛𝑐𝐵|𝑚′
𝑏𝐴, 𝑛

′
𝑐𝐴;𝑚′

𝑏𝐵, 𝑛
′
𝑐𝐵⟩ = 𝛿𝑚𝑏𝐵𝑚′

𝑏𝐴
𝛿𝑛𝑐𝐴𝑛′

𝑐𝐴
𝛿𝑚𝑏𝐵𝑚′

𝑏𝐵
𝛿𝑛𝑐𝐵𝑛′

𝑐𝐵
; (4.27)

𝐶𝑚𝑏𝐴𝑛𝑐𝐴𝑚𝑏𝐵𝑛𝑐𝐵
= ⟨𝑚𝑏𝐴, 𝑛𝑐𝐴;𝑚𝑏𝐵, 𝑛𝑐𝐵|𝜓⟩ . (4.28)

Dual conjugation of (4.25) is given by

⟨𝜓| =
∑︁
𝑚′

𝑏𝐴

∑︁
𝑛′

𝑐𝐴

∑︁
𝑚′

𝑏𝐵

∑︁
𝑛′

𝑐𝐵

𝐶*
𝑚′

𝑏𝐴
𝑛′

𝑐𝐴𝑚′
𝑏𝐵

𝑛′
𝑐𝐵

⟨𝑛′
𝑐𝐵| ⟨𝑚′

𝑏𝐵| ⟨𝑛′
𝑐𝐴| ⟨𝑚′

𝑏𝐴| . (4.29)

Equation (4.26) can be written in the form

|𝑚𝑏𝐴, 𝑛𝑐𝐴;𝑚𝑏𝐵, 𝑛𝑐𝐵⟩ = |𝑖⟩ |𝑗⟩ = |𝑖, 𝑗⟩ . (4.30)

Rewriting (4.25) and (4.29), it is valid that

|𝜓⟩ =
𝑁𝐴

𝑒𝑛∑︁
𝑖=1

𝑁𝐵
𝑒𝑛∑︁

𝑗=1
𝐶𝑖𝑗 |𝑖, 𝑗⟩; (4.31)

⟨𝜓| =
𝑁𝐴

𝑒𝑛∑︁
𝑖′=1

𝑁𝐵
𝑒𝑛∑︁

𝑗′=1
𝐶*

𝑖′𝑗′ ⟨𝑖′, 𝑗′|. (4.32)

At this point, one may recall the subsection (4.2). The reduced density matrix 𝜌A for the

subsystem A (enlarged block 𝐵(𝑙𝐴 + 1, 𝑁A
𝑒𝑛)) is given using equation (4.23).
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4.5 THE TRUNCATION PROCESS

Consider the two enlarged blocks forming a superblock of section 4.3, each with Hilbert

space dimensions 𝑑𝐴 = 𝑁𝐴
𝑒𝑛 and 𝑑𝐵 = 𝑁𝐵

𝑒𝑛, respectively. The superblock has a Hamiltonian

𝐻0(𝑙𝐴 +1, 𝑁𝐴
𝑒𝑛; 𝑙𝐵 +1, 𝑁𝐵

𝑒𝑛) and Hilbert space dimension equal 𝑑 = 𝑁𝐴
𝑒𝑛𝑁

𝐵
𝑒𝑛. The Hamiltonian

is assumed to be practical to diagonalize using any available method.

From equation (2.9), the eigenstates of Hamiltonian are eigenstates of 𝑆𝑧 (total angular

momentum in 𝑧 direction). The interest will lie in studying the lowest energy states |𝜓⟩ for

each value of total 𝑆𝑧. The states |𝜓⟩ will have coefficients in the form of equation (4.31) and

the reduced density matrix 𝜌 can be obtained from (4.23).

Diagonalization of 𝜌 will lead to equation (4.6), with 𝑤𝑖 the probability of the system

existing in the pure state |𝑤𝑖⟩. So, when 𝑤𝑖 is small, there is a low probability that the system

will be found in the pure state |𝑤𝑖⟩, hence the argument to truncation: it is possible, at cost

of accuracy, to truncate the Hilbert space by keeping only the most probable states (states

with higher values of 𝑤𝑖).

4.5.1 The infinite DMRG process

The infinite DMRG infinite process consists of increasing system sizes while maintaining a

Hilbert space dimension lower than the defined max number. Here, it will be considered that

the maximum Hilbert space dimension is 𝑚𝐴.

The steps on how to proceed with DMRG to perform truncation for an infinite-size chain

are listed below:

1. From a block 𝐵(𝑙𝐴,𝑚𝐴), form an enlarged block 𝐵(𝑙𝐴 + 1, 𝑁𝐴
𝑒𝑛) by adding a unit

cell. This enlarged block will have an environment of the same size 𝐵(𝑙𝐴 + 1, 𝑁𝐴
𝑒𝑛).

The combination of the two enlarged blocks is the superblock. It is assumed that it is

practical to diagonalize the Hamiltonian of this superblock.

2. Obtain the lowest energy states for each possible total 𝑆𝑧. From the eigenstates |𝜓⟩,

with coefficients given by equation (4.28), determine the reduced density matrix 𝜌 for

block 𝐵(𝑙𝑎 + 1, 𝑁𝐴
𝑒𝑛) using equation (4.23).



52

3. Diagonalize 𝜌 and find the probabilities 𝑤𝑖. Sort the vectors |𝑤𝑖⟩ in a way so that the

probabilities are ordered: 𝑤1 > 𝑤2 > ... > 𝑤𝑁𝐴
𝑒𝑛

. The initial block 𝐵(𝑙𝐴,𝑚𝐴) had its

Hilbert space dimension given by 𝑚𝐴. When a unitary cell was added to the block, the

dimension increased to 𝑁𝐴
𝑒𝑛 = 𝑚𝐴𝑁𝑐.

4. Perform the truncation: the eigenstates of |𝑤𝑖⟩ (that constitute a basis), once spammed

from 𝑖 = 1 to 𝑖 = 𝑁𝐴
𝑒𝑛 = 𝑚𝐴𝑁𝑐 will now spam from 𝑖 = 1 to 𝑖 = 𝑚𝐴. This corresponds

to discarding the least probable states, and a reduction of the number of vectors in the

basis. The result: the Hilbert space dimension was reduced back to the original size 𝑚𝐴,

even though it has been added a unit cell to the block.

5. Return to step 1, but with a block 𝐵(𝑙𝐴 +1,𝑚𝐴), with 𝑙𝐴 +1 corresponding to a unit cell

added. Note that the dimension 𝑚𝐴 has remained unchanged, thanks to the truncation

process.

6. The process is to be repeated until the energies per unit cell converge.

4.5.2 The finite DMRG process

The finite process seeks to evaluate a finite system with 𝐿 unit cells. It ends up having more

precision than the infinite process. For simplicity, one should look to use always even sizes.

This process starts as the infinite process, forming a block with 1 unit cell, proceeding to an

enlarged block of 2 unit cells, and forming a superblock with 4 unit cells. The infinite process

steps are followed until the superblock has size 𝐿, with the maximum Hilbert space dimension

allowed given by 𝑚𝐴. From this point, the algorithm starts to perform sweeps. There are two

blocks with the same size, given by 𝐿
2 , one on the right, and another on the left.

The sweeping process consists of enlarging one block by a unit cell, while decreasing the

other block size, maintaining the number of unit cells constant at 𝐿. Starting by increasing

the block on the left, the superblock Hamiltonian is evaluated, the eigenstates of energy are

established, the density operator of the superblock is obtained, the reduced density matrix of

the left block is determined, truncation (if necessary) is performed, and the process follows

up to the point that the right block has a single unit cell. This counts as one sweep. From

this point, the right block is enlarged while the left block is decreased in an identical process

until the left block is left with just one unit cell. The finite process consists of a repetition
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of the sweeping process by a determined number of sweeps. The DMRG algorithm used in

this dissertation is the one provided by the Algorithms and Libraries for Physics Simulations

(ALPS) project (BAUER et al., 2011).

4.6 DISCARDED WEIGHT

An important measure of the accuracy while performing the DMRG method is the discarded

weight 𝜖. In the |𝑤𝑖⟩ basis the reduced density matrix is equal to

𝜌 =
𝑁𝑠

𝑒𝑛∑︁
𝑖=1

𝑤𝑖 |𝑤𝑖⟩ ⟨𝑤𝑖| .

Since 𝑇𝑟(𝜌) = 1, it is valid that

𝑁𝐴
𝑒𝑛∑︁

𝑖=1
𝑤𝑖 = 1. (4.33)

Equation (4.33) can be broken down into the two summations

𝑁𝐴
𝑒𝑛∑︁

𝑖=1
𝑤𝑖 =

𝑚𝐴∑︁
𝑖=1

𝑤𝑖 +
𝑁𝐴

𝑒𝑛∑︁
𝑖=𝑚𝐴+1

𝑤𝑖 = 1. (4.34)

Define discarded weight 𝜖 as

𝜖 =
𝑁𝐴

𝑒𝑛∑︁
𝑖=𝑚𝐴+1

𝑤𝑖 = 1 −
𝑚𝐴∑︁
𝑖=1

𝑤𝑖. (4.35)

In order to maintain precision, 𝜖 is required to be as small as possible. It is a measure of how

different the approximate result will be from the real result. For a qualitative demonstration,

consider a generic observable 𝐴 and its real average value ⟨𝐴⟩. It is valid that

⟨𝐴⟩ =
𝑁𝐴

𝑒𝑛∑︁
𝑖=1

𝑤𝑖 ⟨𝑤𝑖|𝐴 |𝑤𝑖⟩ ;

⟨𝐴⟩ =
𝑚𝐴∑︁
𝑖=1

𝑤𝑖 ⟨𝑤𝑖|𝐴 |𝑤𝑖⟩ +
𝑁𝐴

𝑒𝑛∑︁
𝑖=𝑚𝐴+1

𝑤𝑖 ⟨𝑤𝑖|𝐴 |𝑤𝑖⟩ .

Truncating, the approximate value ⟨𝐴⟩𝑎𝑝𝑟𝑜𝑥 is equal to

⟨𝐴⟩𝑎𝑝𝑟𝑜𝑥 =
𝑚𝐴∑︁
𝑖=1

𝑤𝑖 ⟨𝑤𝑖|𝐴 |𝑤𝑖⟩ . (4.36)
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Then, the difference between the real value ⟨𝐴⟩ and the approximate value ⟨𝐴⟩𝑎𝑝𝑟𝑜𝑥 is

given by

⟨𝐴⟩ − ⟨𝐴⟩𝑎𝑝𝑟𝑜𝑥 =
𝑁𝐴

𝑒𝑛∑︁
𝑖=𝑚𝐴+1

𝑤𝑖 ⟨𝑤𝑖|𝐴 |𝑤𝑖⟩ . (4.37)

Let 𝐴𝑚𝑎𝑥 represent the maximum positive value of ⟨𝑤𝑖|𝐴 |𝑤𝑖⟩. Then, it is valid that

| ⟨𝐴⟩ − ⟨𝐴⟩𝑎𝑝𝑟𝑜𝑥 | ⩽
𝑁𝐴

𝑒𝑛∑︁
𝑖=𝑚𝐴+1

𝑤𝑖𝐴𝑚𝑎𝑥 = 𝐴𝑚𝑎𝑥𝜖. (4.38)

Ultimately, the error associated with the DMRG process is bound by the discarded weight 𝜖.

Implementing the DMRG algorithm to obtain the energy levels for each total 𝑆𝑧, the truncated

error did not exceed the magnitude of 10−10.

4.7 DMRG PARAMETERS

The DMRG algorithm uses some parameters that can either augment its precision or

decrease its running time. Such parameters are important in order to determine how the

algorithm should run. They will be listed in this section for the sake of enlightenment.

The model of the simulation will be the spin model, which institutes the Heisenberg Ha-

miltonian with zero magnetic field (ℎ𝐵 = 0), which accounts for the interaction of spin

between sites through the Hamiltonian. Also, it was demonstrated, the total 𝑆𝑧 states are

the eigenvalues of the Hamiltonian, and the DMRG can run for specific values of total 𝑆𝑧.

This corresponds to diagonalizing the Hamiltonian at subspaces of total 𝑆𝑧. Since the chain’s

Hamiltonian eigenstates are also eigenstates of total 𝑆𝑧, the process of diagonalization can

be done in any subspace of total 𝑆𝑧. Defining which subspace that is, the DMRG process

will evaluate the lowest energy available for the specified 𝑆𝑧. Naturally, this process will be

repeated until all available total 𝑆𝑧 are covered.

Another variable of interest is the truncation error. In order to maintain precision, it is

necessary to make sure this error is not high. The DMRG algorithm allows the user to choose

the maximum truncation error allowed. However, it can be rather difficult to follow this path

since, if chosen poorly, the error may exceed this maximum value for such chain size and

the simulation will not run. An alternative is to choose the maximum number of states that

are kept. Increasing this number lowers the number of states that are discarded when adding

unit cells to the block, as described in the previous sections. As the number of states kept
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increases, it is expected that the truncation error decreases. In the scope of this text, it was

set that the maximum number of states kept was 240. This refers to the maximum Hilbert

space dimension allowed throughout the iteration process while covering the entire chain. Once

the number of basis vectors surpasses the defined max states number, the truncation process

must be done in order to reestablish the maximum value allowed. It was observed that the

truncation error did not exceed the magnitude of 10−10, which can be argued to be very low,

confirming a good choice of max states kept. The downside, however, is that the algorithm

becomes computationally demanding, taking more time to run. The number of sweeps in the

finite DMRG process was chosen to be 8.

4.8 EXAMPLES OF DMRG APPLICATION

In order to be sure the DMRG is accurate, it was used to obtain the results for known

spin models. Three types of chains were tested: the antiferromagnetic spin 1
2 ladder, the open

spin-1
2 and the open spin-1 chains. The spin-1

2 chain will be seen to have no magnetization gap,

while the spin-1 and the antiferromagnetic ladder do, in agreement with articles on condensed

matter physics. For each type of chain, it will be shown the energy levels 𝐸0(𝑆𝑧) obtained

at zero magnetic field using the DMRG algorithm. This energy curve is used to obtain the

magnetization as a function of an applied magnetic field.

Of course, the curves have a dependency on the chain size 𝐿. As the size increases, the

levels of energy are expected to grow, since, with more spin, there will be more interaction

terms. However, it is expected that the energy difference between levels will not increase, only

fluctuate, but overall remain comparable. With that in mind, it is convenient to plot the energy

levels normalized by the chain size and plot the total magnetization per unit cell. Since the

magnetic field measure ℎ𝐵 depends on the energy difference between levels, it will also fluctuate

for different sizes of chain. Although the major interest would lie in the thermodynamic limit,

where 𝐿 → ∞, this section seeks only to evaluate the results provided by the DMRG algorithm.

For that purpose, a single value for the chain size will suffice. However, in the results section,

it will be necessary to vary the chain size in order to investigate how the physical properties

would behave in thermodynamic limit.
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4.8.1 Open spin-1
2 chain

The one-dimensional spin-1
2 chain is one of the simplest forms of magnetic chains. Its

energy curve has no energy degeneracy or sharp points (figure 16). Instead, the energy simply

grows with the total magnetization, an expected behavior for a material with antiferromagnetic

coupling. For an antiferromagnetic coupling, the lowest energy state would be all sites counter-

aligned, making the total 𝑆 = 0 the ground state. The ground state energy found of −0.44

is in agreement with the value shown at (WHITE, 1992). At zero temperature, the chain will

have this magnetization. As the magnetic field increases, the levels with higher 𝑆𝑧 will lower

their energies, and the magnetization will start to grow since these 𝑆𝑧 become energetically

accessible. With no sharp points, the energy curve leads to a magnetization curve with just

one plateau: the saturation plateau (figure 17). The curve has no magnetization jump, and

the magnetization simply increases with the magnetic field.

The lack of a magnetization plateau means there is no energy gap between the ground

state and the first excited state (i.e. the Hamiltonian is gapless). The fact that a half-integer

spin chain is gapless is in accordance with Haldane’s conjecture. Haldane argued that integer

spin chains will be gapped, while half-integer spin chains will be gapless (HALDANE, 1983a;

HALDANE, 1983b; AFFLECK; LIEB, 1986; AFFLECK, 1990; WAMER et al., 2020).

The step form of figure 17 was anticipated. These steps will decrease with the size of

the system, which leads to say that, in the thermodynamic limit, there is no magnetization

plateau, except the saturation one. This will be a different result for the subsequent spin-1

and antiferromagnetic spin-1
2 ladder chains.
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Figura 16 – Open spin- 1
2 chain energy levels 𝐸0(𝑆𝑧) with ℎ𝐵 = 0. The number of unit cells was 𝐿 = 80,

totaling 80 sites.

Source: the author (2022).
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Figura 17 – Open spin- 1
2 chain’s magnetization per unit cell as a function of magnetic field ℎ𝐵 . Number of

unit cells 𝐿 = 80, totaling 80 sites.

Source: the author (2022).

4.8.2 Open spin-1 chain

Like the open spin-1
2 chain, the open spin-1 chain is chain of spins. Its energy levels (figure

18) also grow with total magnetization. The ground state energy was also determined by

White and the value of −1.4 is in agreement with (WHITE, 1992). It has a fundamental

difference from the spin-1
2 case: its slope has a discontinuity. This will lead to a plateau in the

magnetization curve (figure 19), since the slope abruptly changes its value from one point to

another. The plateau size will be proportional to the coupling 𝐽 between sites (JOLICOEUR;

GOLINELLI, 2019).
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Figura 18 – Open spin-1 chain energy levels 𝐸0(𝑆𝑧) with ℎ𝐵 = 0. The number of unit cells was 𝐿 = 80,
totaling 80 sites.

Source: the author (2022).
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Figura 19 – Open spin-1 chain’s magnetization per unit cell as a function of magnetic field ℎ𝐵 . Number of
unit cells 𝐿 = 80, totaling 80 sites.

Source: the author (2022).

4.8.3 Antiferromagnetic spin-1
2 ladder

The antiferromagnetic spin-1
2 ladder will be described by the ladder unit cell (figure 8),

with all sites having spin-1
2 . The coupling 𝐽0 will be maintained fixed at 1. The energy levels

have the form depicted in figure 20. The ground state energies found are in agreement with

the values shown at (BARNES et al., 1993). For instance, for 𝐽1 = 1, figure 20 indicates a

ground state with energy −0.575 per spin, in agreement with the value of −0.578 (ground

state energy in the thermodynamic limit) shown in (BARNES et al., 1993). The magnetization

curve (figure 21) will display a magnetization plateau for 𝐽1 ̸= 0 cases, with plateau size

proportional to 𝐽1.
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Figura 20 – Antiferromagnetic spin- 1
2 half ladder energy levels 𝐸0(𝑆𝑧) with ℎ𝐵 = 0. The number of unit cells

was 𝐿 = 20, totaling 80 sites.

Source: the author (2022).
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Figura 21 – Antiferromagnetic spin- 1
2 ladder magnetization per unit cell as a function magnetic of the field

ℎ𝐵 . Number of unit cells 𝐿 = 20, totaling 80 sites. There is a plateau for the 𝐽1 ̸= 0 cases. The
plateau size increases with the value of 𝐽1.

Source: the author (2022).

The ladder compounds are of ample interest throughout condensed matter physics research.

The article (DAGOTTO; RICE, 1996) covers a variety of information on ladder compounds.

For the antiferromagnetic spin-1
2 ladder, the magnetization curve has a plateau size of 0.5,

approximately, which corresponds to a gap between the energy levels 𝐸0(0) and 𝐸0(1). This

value is in agreement with the values shown at (DAGOTTO; RICE, 1996; BARNES et al., 1993),

while (WHITE; NOACK; SCALAPINO, 1994) found the value of 0.504. The energy gap between

levels 𝐸0(0) and 𝐸0(1) (evaluated in the thermodynamic limit) as a function of the coupling

𝐽1 and 𝐽0 can be seen at figure 22.
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Figura 22 – Energy gap of the antiferromagnetic spin- 1
2 ladder.

Source: (BARNES et al., 1993).

4.9 MIXED SPIN-1 AND SPIN-1
2 ANTIFERROMAGNETIC CHAIN

The mixed spin-1 and spin-1
2 chain can be described by the ladder unit cell (8) with 𝐽1 = 0.

By setting 𝐽1 = 0 and 𝐽0 = 1, there are two uncoupled chains with mixed spin-1 and spin-1
2 .

The energy curve (figure 23) has an energy gap, which leads to a magnetization plateau at

the magnetization curve (figure 24).
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Figura 23 – Mixed spin-1 and spin- 1
2 chain energy levels 𝐸0(𝑆𝑧) with ℎ𝐵 = 0. The number of unit cells was

𝐿 = 20, totaling 80 sites.

Source: the author (2022).
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Figura 24 – Mixed spin-1 and spin- 1
2 magnetization per unit cell as a function magnetic of the field ℎ𝐵 .

Number of unit cells 𝐿 = 20, totaling 80 sites.

Source: the author (2022).

The ground state energy was found to be −2.87 per unit cell or −0.718 per site. This value

is in agreement with the ground state energy shown at (PATI; RAMASESHA; SEN, 1997; BREH-

MER; MIKESKA; YAMAMOTO, 1997), obtained using spin-wave theory. It is also in agreement

with the ground state energy shown at (KOLEZHUK; MIKESKA; YAMAMOTO, 1997), obtained

using the quantum Monte Carlo (QMC) method.

There is an energy gap between the ground state and the first excited state. This gap had

an approximate value of 1.78. Increasing the system size should lead to a closer gap value to

the value of 1.759 shown at (MAISINGER et al., 1998).
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5 MIXED SPIN-1 AND SPIN-1
2 LADDER UNDER A MAGNETIC FIELD

In this section, some physical properties of the mixed spin-1 and spin-1
2 ladder are investi-

gated. In the first part, the chain has only antiferromagnetic couplings (𝐽0 > 0 and 𝐽1 > 0),

exhibiting ferrimagnetic order. The energy levels will be obtained using the DMRG algorithm,

with the parameters described in section 4.7, and the maximum truncation error obtained is

10−10. It is also considered the local magnetization and a comparison to the particle in a box

wave function is done. Passing to a vertical ferromagnetic coupling (𝐽1 < 0), there is a change

in many physical properties.

5.1 MIXED SPIN-1 AND SPIN-1
2 LADDER WITH ANTIFERROMAGNETIC COUPLINGS

For antiferromagnetic couplings, the ground state has a spin ordering with magnetization

1 per unit cell (figure 25). The energy levels 𝐸0(𝑆𝑧) of the Heisenberg model 𝐻0 under no

magnetic field (ℎ𝐵 = 0) are a function of the total spin 𝑆 and total 𝑆𝑧. The levels 𝐸0(𝑆𝑧)

presented at the plot (figure 26) are the lowest energy levels for each 𝑆𝑧 at zero magnetic field

(ℎ𝐵 = 0).

Figura 25 – Ground state ordering of the purely antiferromagnetic coupled ladder (𝐽1 > 0 and 𝐽0 > 0). The
total magnetization of this state corresponds to 1 per unit cell.
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Source: the author (2022).

5.1.1 Energy levels 𝐸0(𝑆𝑧) and magnetization curve

An important magnetization value of the ferrimagnetic ladder is the 1
3 of saturation value.

Since maximum magnetization of a unit cell corresponds to 3 (two spin-1 sites + two spin-1
2

sites), the 1
3 of the saturation value corresponds exactly to magnetization 1 per unit cell. The

coupling 𝐽0 will be maintained fixed at 1. The energy levels of the ferrimagnetic ladder (figure

26) present an energy degenerescence with 𝑆𝑧 in the interval ranging from 0 to 1 per unit
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cell (the 1
3 saturation value). This means the chain can exhibit any 𝑆𝑧 in this interval at zero

temperature and zero magnetic field, since they are all in the same energy level. However, an

arbitrarily small magnetic field would make the 𝑆𝑧 = 1 per unit cell state the lowest energy

state, since it has greater magnetization and greater downshift due to the Zeeman term.

The total 𝑆𝑧 > 1 per unit cell states, however, are out of the energy degenerescence, and

the energy levels have the same crescent tendency shown before. From this point, the 𝑆𝑧 will

grow with the magnetic field and the Hamiltonian is gapless.

In order to determine the 𝑆𝑧 as a function of ℎ𝐵, equations (2.26) and (2.27) are used to

plot the magnetization curve and there is a sharp point at the energy level curve, which will

naturally lead to a magnetization plateau in the magnetization curve (figure 27).

One may see that there are two magnetization plateau steps, with the second step getting

smaller as 𝐽1 increases. Increasing the chain size, the steps will have practically the same height,

which results in one larger magnetization plateau in the thermodynamic limit. All the physical

observables shown so far were obtained using a fixed lattice size and serve the purpose to give

an insight into the properties of each spin model. However, in order to truly determine each

physical observable, it is necessary to study the chains in the thermodynamic limit, in which

the size would tend to infinity (𝐿 → ∞). This is often achieved through the extrapolation

of data obtained after running the DMRG for multiple chain sizes. In the following sections,

there will be a discussion on how to extrapolate the data to the thermodynamic limit, where

it will be evaluated the magnetization plateau size for this mixed spin-1 and spin-1
2 ladder.
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Figura 26 – Ferrimagnetic ladder energy levels 𝐸0(𝑆𝑧) with ℎ𝐵 = 0. The number of unit cells was 𝐿 = 20,
totaling 80 sites.

Source: the author (2022).
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Figura 27 – Ferrimagnetic ladder magnetization per unit cell as a function of the magnetic field ℎ𝐵 . Number
of unit cells 𝐿 = 20, totaling 80 sites. Notice the magnetization plateau as in the spin one chain
case.

Source: the author (2022).

5.2 SPIN ORIENTATION OF THE FERRIMAGNETIC LADDER WITH SITES SPIN 1 AND
1
2

The local spin variable is an average of the spin in the 𝑧 direction throughout the chain.

For each total 𝑆𝑧 in the ket form |𝑠,𝑚⟩, there is a linear combination in the basis |𝑚1,𝑚2, ...⟩,

with 𝑚𝑖 the eigenvalue associated with the spin in the 𝑧 direction of site 𝑖. It is valid that

𝑚 =
∑︁

𝑖

𝑚𝑖.

One may recall the section where the Heisenberg dimer with mixed spin-1 and spin-1
2 was

discussed. For instance, the state |𝑠 = 1/2,𝑚 = 1/2⟩ was equivalent to

|𝑠 = 1/2,𝑚 = 1/2⟩ =
√︃

1
3 |0, 1/2⟩ −

√︃
2
3 |1,−1/2⟩ ,

and there is a 1/3 probability that the spin-1
2 site has for its 𝑧 component of spin the 1/2

value, and 2/3 of probability of having the −1/2 value. Its 𝑧 component of spin has averages
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given by

⟨𝑆𝑧
2⟩ = 1

3 · 1
2 − 2

3 · 1
2 = −1

6 ,

with ⟨𝑆𝑧
2⟩ standing for the average 𝑧 component of spin for the site 2. In this notation, ⟨𝑆𝑧

1⟩

would stand for the average value of the 𝑧 component of spin for the site 1, which would be

the spin-1 site. It follows directly that

⟨𝑆𝑧
1⟩ = 2

3 ,

and the average of total spin ⟨𝑆𝑧⟩ = ⟨𝑆𝑧
1 + 𝑆𝑧

2⟩, such that

⟨𝑆𝑧⟩ = 4
6 − 1

6 = 1
2 ,

as it should be.

The lowest energy level 𝐸0(𝑆𝑧) of a total 𝑆𝑧 state will have a ket that is a linear combination

of the basis |𝑚1,𝑚2, ...⟩, which provides for an average ⟨𝑆𝑧
𝑖 ⟩ for each site. This average is

referenced as the local 𝑆𝑧.

For a mixed spin-1 and spin-1
2 chain with antiferromagnetic coupling, the local 𝑆𝑧 th-

roughout the chain for the total 𝑆𝑧 given by 1
3 of the saturation value has, except at the

edges, a symmetric form (figure 28).
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Figura 28 – Local 𝑆𝑧 of the mixed spin-1 and spin- 1
2 chain with antiferromagnetic coupling.

Source: the author (2022).

The ferrimagnetic ladder presents an energy degenerescence at zero magnetic field (ℎ𝐵 =

0): the 1
3 magnetization plateau. For 𝐿 unit cells, the saturation value of total 𝑆𝑧 will be 3𝐿,

and the 1
3 of the saturation value would be just 𝐿. Here, it will be considered the case in which

𝐽0 = 𝐽1 = 1. Comparing the local 𝑆𝑧 at the level of total 𝑆𝑧 given by 1
3 of the saturation value

between the mixed-spin chain and the mixed-spin ladder, it can be argued that the ladder has

(again, except at the edges) a more symmetric form (figure 29).
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Figura 29 – Local 𝑆𝑧 of the mixed-spin ladder. 𝐽0 = 𝐽1 = 1.

Source: the author (2022).

There is an interest in investigating the spin orientation of the chain’s dimers for the values

of total 𝑆𝑧 = 𝐿− 1, 𝐿, 𝐿+ 1, 𝐿+ 2 and 𝐿+ 3 (figure 30).
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Figura 30 – Ferrimagnetic ladder average spin orientation for each dimer. The number of unit cells was 𝐿 = 20,
totaling 80 sites. 𝐽1 = 𝐽0 = 1.

Source: the author (2022).

As total magnetization increases, the local spin of each dimer will increase as well. However,

the increases occur first at the edges rather than the chain’s interior. When 𝑆𝑧 increases to the

𝐿 value, the magnetization at the chain’s interior starts to grow, and a comparison with the

free particle confined to a potential well can be drawn. The difference of local magnetization

between levels has an interesting format (figure 31), especially the difference of local 𝑆𝑧

between the total 𝑆𝑧 levels 𝐿+ 2 and 𝐿+ 3.
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Figura 31 – Local 𝑆𝑧 difference for different total 𝑆𝑧 levels. 𝐽1 = 𝐽0 = 1.

Source: the author (2022).
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The summation of all points in any of the curves must be equal to 1 since this is the

difference of total 𝑆𝑧 between levels. As the chain increases, it can be argued that this sum-

mation extends to an integration process that equates to 1. All this construct resembles a

wave function, with its quadratic integrated being equal to 1. The ground state wave function

(normalized) of a particle with mass 𝑚𝑝 confined in a box with length 𝐿𝑃 is equal to

𝜓1(𝑥) =
√︃

2
𝐿𝑃

sin
(︃
𝜋𝑥

𝐿𝑝

)︃
. (5.1)

The local 𝑆𝑧 difference between 𝑆𝑧 levels 𝐿+ 3 and 𝐿+ 2 is well fit by the wave function

of equation (5.1) (figure 32).

Figura 32 – Quadratic ground state wave function with 𝐿𝑝 = 39 (continuous line) and difference of local 𝑆𝑧

between states of total 𝑆𝑧 = 𝐿 + 2 and 𝑆𝑧 = 𝐿 + 3 (dots).

Source: the author (2022).

It can be concluded that the extra spin behaves as a particle confined to a unidimensional

potential box.
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5.3 MIXED SPIN-1 AND SPIN-1
2 LADDER WITH FERROMAGNETIC COUPLING FOR

VERTICALLY NEIGHBOURING SITES

So far, the results shown for the mixed spin-1 and spin-1
2 ladder only had an antiferromag-

netic coupling between spins, when 𝐽0 > 0 and 𝐽1 > 0. A question posed here is how the results

showed so far will change as the vertical coupling between sites 𝐽1 becomes ferromagnetic,

when 𝐽1 transits to negative values (𝐽1 < 0).

When 𝐽1 < 0, the vertically neighboring spins will have an alignment tendency, while

horizontal sites will tend to counter-align. This will lead to a different ground state of the

Hamiltonian 𝐻0 (figure 33).

Before, all sites had a tendency of counter alignment, since the material was purely an-

tiferromagnetic (but exhibiting a net magnetization, since sites had alternating spin values).

It was anticipated that the lowest energy level would correspond to a total 𝑆𝑧 of 1 per unit

cell and the magnetization curve featured a magnetization plateau. However, the gap size

decreased as the value of 𝐽1 got smaller and it can be anticipated that the gap will tend to

zero as 𝐽1 gets increasingly negative. In fact, in the limit where 𝐽1 → −∞, 𝐽1 becomes much

greater than 𝐽0 (which would be equivalent to 𝐽0 → 0) and the Hamiltonian gap is observed

to be non-existent, as the chain becomes purely ferromagnetic and the Hamiltonian becomes

gapless.

Figura 33 – Ground state ordering of the ferromagnetic vertical coupled ladder with antiferromagnetic hori-
zontal coupling (𝐽1 < 0 and 𝐽0 > 0). The total magnetization of this state corresponds to 0 per
unit cell.
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Source: the author (2022).

5.3.1 Energy levels 𝐸0(𝑆𝑧) and magnetization curve

With 𝐽1 < 0, the ground state at zero magnetic field is a singlet, displaying zero magneti-

zation. Again, for this section, the coupling 𝐽0 will be set equal to 1, and 𝐽1 will take multiple
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values for the energy levels at zero magnetic field (figure 34) and magnetization as a function

of a magnetic field (figure 35). Also, the energy curves no longer present the energy degene-

rescence at magnetization ranging from 0 to 1
3 of the saturation value, but it is possible to see

that there is a discontinuity on the slope of the curve. However, this discontinuity decreases

as 𝐽1 becomes more negative, indicating the gap size is decreasing.

The magnetization per unit cell as a function of the applied magnetic field has many

differences when compared to the ferrimagnetic case. The 1
3 -plateau is clearly decreasing its

size as 𝐽1 becomes more negative, indicating a phase transition from a gapped to gapless

phase. This transition occurs at constant magnetization given by 1 per unit cell, with no

symmetry breaks. Such transition consists of a Kosterlitz-Thouless phase transition.

Figura 34 – Mixed spin-1 and spin- 1
2 ladder energy levels 𝐸0(𝑆𝑧) with ℎ𝐵 = 0 and ferromagnetic vertical

coupling. The number of unit cells was 𝐿 = 20, totaling 80 sites.

Source: the author (2022).
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Figura 35 – Mixed spin ladder magnetization per unit cell as a function of the magnetic field ℎ𝐵 . Number of
unit cells 𝐿 = 20, totaling 80 sites. Note the magnetization gap as in the spin one chain case.

Source: the author (2022).

5.3.2 Spin orientation of the mixed spin ladder with sites spin 1 and 1
2 with ferro-

magnetic coupling

The local magnetization along the lattice (figure 36) is structurally different from the one

presented in figure 30, although the magnetization levels portrayed are the same ones. One

may see that magnetization in the chain’s interior remains uniform for all levels, something

that did not occur in the ferrimagnetic case. There will be no parallel with free particle confined

to a potential well for this case and the wave function will have a completely different format,

as can be seen from the difference of local 𝑆𝑧 between the total 𝑆𝑧 levels (figure 37).
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Figura 36 – Alternating ladder with sites spin 1 and 1
2 dimer spin orientation with ferromagnetic vertical

coupling. The number of unit cells was 𝐿 = 20, totaling 80 sites. 𝐽1 = −𝐽0 = −1.

Source: the author (2022).
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Figura 37 – Local 𝑆𝑧 difference for different total 𝑆𝑧 levels. 𝐽1 = −𝐽0 = −1.

Source: the author (2022).
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5.4 SCALE ANALYSIS

The results showed were obtained using fixed sizes of chains in the DMRG numerical

procedure. In order to investigate the physical properties in the thermodynamic limit, it is

necessary to run the DMRG for multiple chain sizes. It is necessary now to elaborate on how

it is possible to extrapolate the data obtained for DMRG runs with multiple chain sizes to the

thermodynamic limit.

There are two magnetic field values that must be highlighted in order to define the mag-

netization plateau size: ℎ−
𝐵 and ℎ+

𝐵, defined to be the magnetic fields of the beginning and

end of the magnetization plateau, respectively. The field ℎ−
𝐵 is the magnetic field that excites

the chain into the magnetization plateau, while the field ℎ+
𝐵 excites the chain to the first level

above the magnetization plateau. Then, the magnetization plateau size is simply given by

Δ𝐻𝐵 = ℎ+
𝐵 − ℎ−

𝐵. These values of fields are obtained using equation (2.25). Since the energy

levels are used to obtain both ℎ+
𝐵 and ℎ−

𝐵, it is clear that the magnetization plateau size may

fluctuate with the chain size. In order to determine the plateau size in the thermodynamic

limit, it will be done a data extrapolation to the 𝐿 → ∞ limit. To accomplish this, it is

necessary to study the dependence that the gap length has on the chain size, and then look

for a pattern to extrapolate the gap to the thermodynamic limit.

One could plot the gap size as a function of 𝐿 and try to determine a polynomial to

extrapolate the gap size as 𝐿 → ∞. However, this would possibly lead to complications, since

the limit 𝐿 → ∞ is not convergent. An intuitive alternative would be to plot the gap size as

a function of 1
𝐿

, since 1
𝐿

converges to zero as 𝐿 → ∞. It will be shown that this approach

leads to very good results to extrapolate gap size in the thermodynamic limit, since, usually,

the gap size will be a linear function of 1
𝐿

. Then, all that would be necessary to determine

the gap size in the thermodynamic limit would be to find the best linear fit for the points and

determine the linear function’s intercept with the 𝑦 axis. This is the procedure by which the

gaps are determined as a function of the couplings.

Lastly, by assembling data on the dependence of the gaps as functions of the coupling, it is

possible to investigate an analytical form of dependence between the gap in the thermodynamic

limit and the coupling of the spins. One of the subjects of interest is to determine how the

gaps approach zero by varying the spin coupling values.
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5.4.1 The 1
𝐿

dependence

The magnetization plateau size Δ𝐻𝐵 is expected to change for different values of 𝐿. Since

the gap is expected to converge to some finite value in the thermodynamic limit, the gap size

can be written as a series expansion in 1
𝐿

of the form

Δ𝐻𝐵 =
∞∑︁
𝑛

𝑎𝑛

(︂ 1
𝐿

)︂𝑛

(5.2)

Note that, for 𝐿 → ∞, the series will naturally converge to a finite value, as long as the

coefficients are finite. However, it is unnecessary to write the gap size as an infinite sum: it can

be fairly accurate to simply use a first-order expansion. The gap size equation then reduces to

the simpler form of

Δ𝐻𝐵 = 𝑎
1
𝐿

+ 𝑏 (5.3)

Of course, this is only a good approximation if the values of 𝐿 used are big enough so that

higher orders of 1
𝐿

can be dismissed.

According to equation (5.3), in the thermodynamic limit, the gap size will simply be the

intercept value 𝑏. The mixed spin-1 and spin-1
2 ladder chain have a gap in its magnetization

curve that can be seen to decrease as the value of 𝐽1 decreases. For a generic size 𝐿, the

magnetization plateau starts at total 𝑆𝑧 = 1 per unit cell. In terms of the chain total 𝑆𝑧, the

magnetization will be equal to 𝐿. Hence, the field ℎ−
𝐵 will be given by

ℎ−
𝐵 = 𝐸0(𝐿) − 𝐸0(𝐿− 1).

In finite systems, the mixed spin ladder has two magnetization plateaus steps. However,

the second step can be seen to be small as the lattice size increases. While the second step

represents a magnetization increase, in the thermodynamic limit, this increase becomes insig-

nificant and a very small increase can be interpreted as no increase at all: the magnetization

plateau becomes a longer interval at which the magnetization stays constant, with no steps

in the middle. The expression for the ℎ+
𝐵 field is equal to

ℎ+
𝐵 = 𝐸0(𝐿+ 3) − 𝐸0(𝐿+ 2).
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The magnetization plateau size is then given by the difference between ℎ+
𝐵 and ℎ−

𝐵, as

mentioned before, equal to

Δ𝐻𝐵 = ℎ+
𝐵 − ℎ−

𝐵 = 𝐸0(𝐿+ 3) − 𝐸0(𝐿+ 2) − 𝐸0(𝐿) + 𝐸0(𝐿− 1). (5.4)

Running the DMRG for multiple values of 𝐿 and evaluating the gap size, a linear fit can be

used to determine the values of 𝑎 and 𝑏. Since the expression for the gap size depends only on

the energy levels of states 𝑆𝑧 = 𝐿+3, 𝐿+2, 𝐿, and 𝐿−1, the DMRG need only to be run at

these subspaces of total 𝑆𝑧 value. It is expected that a linear fit will be a good approximation

for the multiple plot points ( 1
𝐿

, Δ𝐻𝐵) obtained running the DMRG.

In order to test the gap convergence in the thermodynamic limit, consider the case in which

𝐽1 = 𝐽0 = 1 (figure 38).

Figura 38 – Ferrimagnetic ladder gap size as a function of 1
𝐿 .

Source: the author (2022).

An important error measurement when performing a linear fit is the total quadratic distance

of the points to the linear function 𝜖2. For these points, the linear fit had the value of 𝜖2 given

by

𝜖2 = 7.12112434673 × 10−8,
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a relatively small value. This serves as an argument to show that the linear fit was a good

approximation. Also, the intercept, which is equivalent to the gap size in the thermodynamic

limit, had a value of Δ𝐻𝐵 = 2.22063615742, in agreement with the value shown at (LANGARI;

MARTÍN-DELGADO, 2000).

At this point, a conclusion can be drawn regarding how to investigate the physical properties

of the thermodynamic limit. It is expected that any physical observable will converge to some

value in the thermodynamic limit, in which 1
𝐿

→ 0. If appropriate values of 𝐿 are chosen, there

is a possibility of a good linear fit. Else, there are probably gonna be higher order terms of

(1/𝐿) in the approximation, such as depicted by equation (5.2). The points that end up falling

outside the linear fit are due to energy fluctuations and natural errors that occur in numerical

processes.

5.4.2 Ferromagnetic vertical coupling

For negative values of 𝐽1, the linear fit continues to be a good approximation to investigate

the gape size in the thermodynamic limit. The 𝐽1 = −1 and 𝐽0 = 1 (figure 39) case can be

seen to have very small error 𝜖2 and the points are well fit by a linear function. It was obtained

for the total quadratic error 𝜖2 and gap at thermodynamic limit Δ𝐻𝐵 the following values:

𝜖2 = 1.45237663547 × 10−8 and Δ𝐻𝐵 = 0.00331926049413. The gap size is considerably

smaller. This is due to the coupling 𝐽1 having such a negative value. This leads to yet another

investigation: how the system transits from gapped to gapless as 𝐽1 becomes more negative.

This will be done by setting 𝐽0 fixed at 1, while 𝐽1 will range from 0 to −1.
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Figura 39 – Mixed spin ladder gap size as a function of 1
𝐿 . 𝐽1 = −1. 𝐽0 fixed at 1.

Source: the author (2022).

There are different linear fits for multiple values of 𝐽1, with 𝐽0 fixed at 1. As 𝐽1 tends to

−∞, the linear fits will converge to having null intercept (figure 40), which corroborates with

the fact the gap is null when 𝐽0 = 0 and 𝐽1 = −1.
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Figura 40 – Mixed spin ladder gap size as a function of 1
𝐿 . Values of 𝐽1 are given by 𝐽1 = −0.1, −0.2, −0.3,

−0.4, −0.5, −0.6, −0.7, −0.8, −0.9 and −1. 𝐽0 fixed at 1.

Source: the author (2022).

The gap size in the thermodynamic limit as a function of 𝐽1 with 𝐽0 fixed at 1 has an

asymptotic behavior (figure 41). As 𝐽1 approaches the critical value 𝐽𝑐 from above, the system

will transit from a gapped phase to a gapless phase.
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Figura 41 – Mixed spin ladder magnetization plateau size at thermodynamic limit as a function of 𝐽1. 𝐽0 fixed
at 1.

Source: the author (2022).

5.4.3 Critical value 𝐽𝑐, exponential dependency, and Kosterlitz-Thouless phase

transition

In order to determine the critical value of 𝐽𝑐 using the finite chain size DMRG run, a

simple process can be argued. As 𝐽1 approaches the critical value 𝐽𝑐, the plateau size Δ𝐻𝐵

will decrease, no matter what size of 𝐿 is being used to evaluate the numeric process. For 𝐽1

below the critical value 𝐽𝑐, the Hamiltonian will be gapless. For infinite 𝐿, there will be an

infinitesimal difference between consecutive energy levels. So, as 𝐿 increases, the gap Δ𝐻𝐵

will tend to decrease. However, the product 𝐿Δ𝐻𝐵 may remain constant (VERÍSSIMO et al.,

2019). At the critical value, it is expected that the product 𝐿Δ𝐻𝐵 will converge to a finite

value (figure 42).
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Figura 42 – Product 𝐿Δ𝐻𝐵 . Note how the product converges as 𝐽1 tends to 1, meaning that 𝐽1 approaches
the critical value 𝐽𝑐.

Source: the author (2022).

The gap size with 𝐽1 above the critical value 𝐽𝑐 is modeled to have an exponential depen-

dency, with a generic form given by

Δ𝐻𝐵 = 𝐴𝑒−𝑏(𝐽1−𝐽𝑐)−𝛾

. (5.5)

Here, both 𝑏 and 𝛾 are positive constants. Note that the gap will tend to zero when 𝐽1 → 𝐽+
𝑐 .

Taking the natural logarithm in equation (5.5) will lead to

ln Δ𝐻𝐵 = ln𝐴− 𝑏(𝐽1 − 𝐽𝑐)−𝛾. (5.6)

In order to determine the parameters 𝐴, 𝑏, 𝛾 and 𝐽𝑐, it is necessary to find the linear fit of

ln Δ𝐻𝐵 as a linear function of (𝐽1 − 𝐽𝑐)−𝛾 that results in the least total quadratic error. 𝐽𝑐

and 𝛾 are varied in order to find the parameters that have the least total quadratic error.

For 𝐽𝑐 = −1 and 𝛾 = −0.5, it was possible to obtain a good linear (figure 43) fit, with a

small error 𝜖2, given by 𝜖2 = 5.92926854277065 × 10−4. In the thermodynamic limit, when 𝐽1

reaches the critical value of 𝐽𝑐, there will be a phase transition, as the system will transit from
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a gapped to a gapless phase. The exponential dependence of the gap takes the same form as

a Kosterlitz-Thouless phase transition.

The phase diagram (figure 44) will contain gapped phases (the 1
3 -plateau), gapless phases

(Luttinger liquid phase), and a Kosterlitz-Thouless phase transition.

Figura 43 – Natural logarithm of the gap in the thermodynamic limit ln Δ𝐻𝐵 as a function of (𝐽1 − 𝐽𝑐)−0.5,
with 𝐽𝑐 = −1.

Source: the author (2022).
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Figura 44 – Magnetic field vs coupling parameter phase diagram of the mixed spin-1 and spin- 1
2 ladder.

Source: the author (2022).
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6 CONCLUSION

Quantum phase transitions were investigated for multiple spin models described by the

Heisenberg Hamiltonian. Using the DMRG to determine the energy levels of the Hamiltonian

at zero magnetic field, it was observed that some chains have gapped energy levels, which

leads to magnetization plateaus in the magnetization curve. By applying a magnetic field, it

is possible to observe transitions from gapped to gapless phases. That was the case of the

antiferromagnetic spin-1 chain, the antiferromagnetic spin-1
2 ladder, and the antiferromagnetic

mixed spin-1 and spin-1
2 chain.

For the mixed spin-1 and spin-1
2 ladder, the gap size depends on the chain’s spin-coupling

𝐽1 and 𝐽0. It was observed that for antiferromagnetic coupling (𝐽0 > 0 and 𝐽1 > 0), the

ground state is gapped and the magnetization curve has a plateau at magnetization given by
1
3 of the saturation value, the 1

3 -plateau.

Another form to obtain the transition from gapped to gapless phases is achieved by varying

the spin-coupling. With 𝐽0 fixed at 1 and 𝐽1 < 0, the ground state at zero magnetic field is

a singlet and gapless. However, the system still exhibits the 1
3 -plateau depending on the value

of 𝐽1. It is observed that the plateau size decreases as 𝐽1 approaches a critical value 𝐽𝑐. With

finite scale analysis, it was possible to extrapolate the plateau size to the thermodynamic limit

using the DMRG data obtained with finite-size chains, and it was determined that the system

would have a transition to a gapless phase at 𝐽1 = −1.

The phase transition occurs with no symmetry breaking since magnetization remains cons-

tant in this transition. Because of it, the transition is a Kosterlitz-Thouless phase transition, and

the plateau size will have an exponential dependence. The applied magnetic field versus cou-

pling 𝐽1 phase diagram contains a saturated phase (when magnetization reaches the maximum

value), gapless phases (Luttinger liquid), a gapped phase (1
3 -plateau) and a Kosterlitz-Thouless

phase transition point. The lines represent second-order phase transitions.
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