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Abstract. Sensors available in wearable devices can monitor their user's
physical and mental health by recognizing the daily routine of physical
activities. Because the area of human activity recognition can be complex due
to a large amount of information, this work aims to facilitate the
understanding of the area by providing a systematic mapping. A search using
the Scopus database was conducted and resulted in 44 correspondences. The
results were then classified according to their usage of primary techniques,
preprocessing, feature extraction, sensors, datasets, most found activities, and
considerations of lightweight algorithms. To better visualize the data, an
online platform was also developed.

1. Introduction

Recognizing daily human activities automatically can be helpful in many areas designed
around user behavior, such as home care support, postoperative trauma, rehabilitation,
abnormal activities, exercise, and fitness [Gupta 2020].

There are many ways to detect activities, e.g., using sensors, smartphones, or images
[Jobanputra 2019]. Sensor-based detection can include a gyroscope, an accelerometer,
wireless technologies, sound sensors, and others [Wang 2019] which can be packed
inside a wearable smartphone or attached to the body, while video-based detection uses
cameras. The latter does not require the user to wear any object but raises privacy
concerns due to the usage of the person's video [Ann 2014], and it is difficult to capture
all daily activities since the camera is usually attached to the environment [Ann 2014],
not being able to follow the user's activities constantly.

More specifically, wearables are mobile devices created to be worn. They can
collect, process, and upload data, but unlike smartphones, they can be more present in
daily routines [Seneviratne 2017]. As a result, much information can be extracted,
ranging from indoor localization and navigation to financial payments [Seneviratne
2017]. However, wearables stand out in physical and mental health monitoring. This
monitoring is done by several sensors in the devices, such as accelerometer and
gyroscope, most commonly found in those apparatus, and more specific ones, such as
heart rate, temperature, GPS, and oxygen saturation [Seneviratne 2017]. By processing



the data provided by those sensors, it can be possible to understand a user's routine and
provide feedback and recommendations about their health status.

The usage of wearables has been rising [Spil 2019]. Due to that boom in its usage, the
area of Human Activity Recognition (HAR) also followed the same path, and HAR
using wearable technology has also been under many studies, from how to analyze and
process the data from its sensors to methods that can get that data and process it,
recognizing the current activity.

A subarea of HAR is the recognition of activities of daily living (ADL)
[Pashmdarfard 2020], such as eating, dressing, bathing, watching television, and
sweeping the house [Zheng 2008], and physical exercise, such as walking and running.
With the usage of wearables and recognition of daily physical activities, which includes
some ADL and physical exercises, it can be possible to understand a user's routine and
provide feedback and recommendations about their health status.

As a result of the many studies, many techniques have been developed. However, it
can be difficult to assimilate all that knowledge because of all the available data. To
understand the recognition of daily physical activities, i.e., what it is capable of,
challenges, and which techniques are being mainly used, a great commencement is to
use a systematic mapping which is a method of secondary study that can provide an
overview of a topic area, identify current gaps or provide background for new research
[Kitchenham 2004]. Researchers can use it and, if necessary, it can precede a systematic
review [Barbosa 2011], which is more specific and in-depth.

This work aims to provide background for future researchers on daily physical
activity recognition using wearables by providing a systematic mapping. Not only that
but there will be a focus on the user's ease and practicality. Because of that, there will be
a restriction on the types of wearables considered: smartwatches, smartbands,
wristbands, earbuds, and smartglasses. Although there are other wearable devices, such
as smart clothing [Cho 2009], they are not commonly available since some are still in
development, as is the case of smart clothing, or have found a specific niche. Therefore,
this work focuses only on those devices easily found on the market since they are more
common and available.

Furthermore, some works propose the fusion of data from multiple devices. That would
force users to necessarily possess these equipment sets to benefit from the proposed
system. Therefore, this work focuses only on research that uses only one piece of
equipment.

The remaining of this work is organized as follows: the related works are
presented in Section 2. The methodology used in this work is introduced in Section 3.
Section 4 presents and discusses the mapping results. Finally, the conclusion is stated at
the end, in Section 5.

2. Related Works

It is searched in Scopus1 for systematic works with the following keywords:
"Systematic," "Wearable," and "HAR," or "Human Activity Recognition," or "Human

1 Scopus search is found at: https://www.scopus.com/search/form.uri?display=advanced



Activity Decoding" in title, abstract, or keywords. Scopus is considered one of the best
databases for searching articles [Falagas 2008]. Its content is obtained from the archives
of 60 major publishers. These major publishers include Springer Nature, Wiley
Blackwell, Taylor & Francis, IEEE, American Physical Science, and Elsevier [Scopus
2020]. As of March 2023, it only generated four results. Although all are systematic
works, only one of them is a systematic mapping. The others are an evaluation of
techniques, a study, and a review. They are seen next.

The work of [De Nardin 2020] systematically mapped 21 papers published
between 2010 and 2019 to identify resources as variables and associated values used in
developing HAR systems for older people. However, not only if it focuses on older
people, some points could be improved. For example, it does not consider only
wearables but also smartphones in the same mapping. In addition, it includes articles
from 2010 that could be considered old in technology. For example, the most used
algorithms do not include any deep learning model, which has significantly been
explored in recent years.

In the same year, a systematic evaluation was also published by [Le 2020]. It
evaluated several deep learning models for HAR from wearable sensors. Convolutional
Neural Network (CNN), DeepConvLSTM - a combination of CNN and Long Short
Term Memory (LSTM), and SensCapsNet, a Capsule Neural Network for wearable
sensor-based HAR, were implemented and evaluated on three benchmark datasets. This
work explores HAR, but it does by evaluating three models, which is insufficient to
understand the area.

Also, in 2020, [Chang 2020] systematically studied Unsupervised Domain
Adaptation for Robust Human-Activity Recognition. They study the problem of wearing
diversity which pertains to the placement of the wearable sensor on the human body,
and demonstrates that even state-of-the-art deep learning models are not robust against
these factors. The core contribution lies in presenting a first-of-its-kind in-depth study of
unsupervised domain adaptation (UDA) algorithms in the context of wearing diversity.
They discuss the problem of placement of wearable devices in the body, but placement
is just one of many aspects to be considered in daily physical activity recognition.

The last result from Scopus is the work of [Cerón 2018], 2018. They perform a
systematic review of Human Activity Recognition (HAR) approaches supported on
Indoor Localization (IL) and vice versa, describing the methods they have used, the
accuracy they have obtained, and whether they have been directed towards the AAL
domain or not. Because their work focuses on the relationship between HAR and IL, it
does not provide a general description of the area of ADL detection.

After analyzing those results, a systematic mapping of the area of daily physical
activity recognition could help understand a general idea of it so that it could be used to
improve the life of wearable users. Therefore, in the following sections, it is possible to
understand how the mapping is done and the results of it.



3. Method

The systematic mapping process has been done according to [Petersen 2008] and
[Clapton 2009], and its results were scanned and presented by following the PRISMA
protocol. The following subsections explain each process.

3.1. Research questions

Since this is a systematic mapping study, its primary objective is to understand the
research area comprehensively. In order to achieve this, the study needs to address
several fundamental questions that provide a clear direction and framework for the
overview of current research regarding daily physical activity recognition techniques.
Therefore, the following set of questions can serve as a summary of the main objectives
of the mapping study:

1. What are the techniques most frequently used in daily physical activity
recognition?

2. What data is frequently used in the recognition?
a. Which are the most commonly used sensors?
b. Where are the sensors typically positioned?
c. Is the raw sensor's data used, or is any processing applied?
d. Which datasets are being used?

3. Which and how many activities are recognized?
4. Are the computational capabilities of the wearables taken into consideration?

Mainly, are the recognition methods lightweight?

The first question aims to identify the primary methods or algorithms used to
recognize daily physical activities using wearable technology. The second one aims to
identify how the data is applied to those systems, which includes understanding which
data is needed, how it is passed to the techniques, and where they can be found. The
third question aims to understand what has been recognized. At last, what the literature
review shows about using lightweight methods.

3.2. Search methodology

In this section, the search methodology is explained. The search was conducted by
creating a search string applied to the Scopus search, as shown next:

TITLE-ABS-KEY ( "Human Activity Recognition" OR "Human Activity Decoding" )

AND TITLE-ABS-KEY ( "Neural Network" OR "Artificial Intelligence" OR "AI" OR
"Machine Learning" OR "Deep Learning" )

AND PUBYEAR AFT 2019

AND ( LIMIT-TO ( LANGUAGE , "English" ) OR LIMIT-TO ( LANGUAGE ,
"Portuguese" ) )

AND ( LIMIT-TO ( PUBSTAGE , "final" ) )

AND TITLE-ABS-KEY ( "Wearable Sensor" )

OR CONFNAME ( "Wearable" )



In the first condition, it is checked for all works that include the phrases "Human
Activity Recognition" or "Human Activity Decoding" in the title, abstract, or keywords.
Then it is looked for the ones that use AI, so the phrases "Neural Network," "Artificial
Intelligence," "AI," "Machine Learning," or "Deep Learning" are expected in the result.
This work has considered what was done in 2020 and after since it was considered three
years an acceptable margin for state of the art in technology. Because the languages the
authors are familiar with are Portuguese and English, they were also a constraint.
Moreover, most academic works are written in English [Rao 2019], especially in
technology. Therefore, it was also considered only the ones at the final publication stage
and considered the usage of wearables. By experimentation, it was found that some
works did not mention wearables in their title, abstract, or keywords, including
"wearable" in their conference names as the only indication, so that was also included in
the research string.

3.3. Inclusion/Exclusion criteria

After applying the search string, the results must be checked to see if they are relevant to
answer the research questions. For that, the inclusion/exclusion criteria are applied. The
ones used in this work are:

● It must only use commercially available wearables (or sensors that simulate
one). As mentioned before, the following wearables are considered:
smartwatches, smartbands, wristbands, earbuds, and smartglasses;

● It must be able to function even if only one wearable device is available;
● Must be able to recognize daily physical activities, e.g., sweeping the house,

going up and down the stairs, running, and walking;
● Must be able to detect at least two different activities;
● It must not be a short paper. In this case, the works with four or fewer pages are

discarded based on the premise that the available information needs to be more
detailed;

● Must be submitted after 2019. It was considered three years an acceptable
margin for understanding what is being done with state of the art in technology,
including the emergence of new types of technology, such as blood oxygen
sensors;

● Must be written in Portuguese or English, the languages that are familiar to the
authors;

3.4. Selection Process

In the selection process, the criteria are applied to the results of the string search. It can
be divided into three stages:

1. Firstly, papers with at most four pages are discarded, following the criteria that it
must not be a short paper;

2. The title and abstract are checked for each result to see if it is according to the
criteria. At this stage, even if some criteria cannot be checked, it is moved to the
next stage. That is done to avoid removing a work that some information is only
found in another section;



3. Each result from the previous stage was checked to see if it matched all the
criteria.

3.5. Online Visualizer

After the results are obtained, they are analyzed to answer the research questions. In the
next section, it is possible to see the selected works. To better visualize the data, an
online platform will be made by compiling the data into JSON files and, by using
GitHub sites2, HTML, and google charts3, provide a tool for searching datasets based on
one or more specific activities or searching the works based on the techniques that a
researcher is looking for. Finally, there will also be an option to see interactive and
customizable results graphs.

3.6. Threats to validity

Since the primary author has mainly conducted the mapping process, a few regards
should be considered. They can be summarized in the following points: selection and
interpretation bias and human error. The bias has been minimized as best as possible:
the primary author discussed the topics of any ongoing work that he did not feel 100%
sure of and followed the inclusion/exclusion criteria as strictly as possible. As to human
error, the authors tried to minimize it by structuring the resulting data well and
reviewing the parts most prone to error.

4. Results and discussion

The search string on Scopus was conducted on December 6, 2022. As shown in Figure
1, It returned 395 results4. After applying the first selection process, 35 results were
eliminated. Five results were also discarded at this stage since they were entire
conferences or workshops, and their papers were already listed. After the second
selection process, only 188 results remained. Finally, after the last one, 44 results
remained.

Of those 44, some articles propose configurations and scenarios incompatible
with the defined criteria, in addition to at least one compatible. In these cases, only the
part of the technique compatible with the defined criteria was considered in this
research.

All the results, techniques, datasets, and sensors used can be seen in Table 1 and are
detailed in the following subsections, which try to map the area of daily physical
activity recognition. To answer the first research question, all the techniques used for
recognition are analyzed. To answer the second and third ones, the types of
preprocessing, feature extraction, sensors, and datasets frequently used in this kind of
application are examined, and the most found activities are studied. Finally, the last

4 All the results can be found at:
https://github.com/vhlk/Systematic-Mapping-Activities-Wearables/blob/main/data/search_articles.csv

3 Google charts provides interactive charts for browsers and mobile devices. It is available at:
https://developers.google.com/chart

2 Github sites is available at: https://pages.github.com/

https://github.com/vhlk/Systematic-Mapping-Activities-Wearables/blob/main/data/search_articles.csv
https://developers.google.com/chart
https://pages.github.com/


question is acknowledged by investigating if the state of the art considers lightweight
algorithms.

The online Visualizer is also presented at the end of the results, discussing how some
data can be interactively visualized and searched.

Figure 1. PRISMA flow diagram5 of this work systematic mapping.

Table 1. Results and its techniques, datasets, sensors used, and year.

Title Authors Technique
s used Datasets Sensors

used
Yea
r

A Deep Learning Architecture for
Human Activity Recognition Using
PPG and Inertial Sensor Dataset

Bondugula R.K.;
Sivangi K.B.;
Udgata S.K. CNN

Dataset from
PPG wireless
sensor for
activity PPG; ACC

202
2

5 PRISM flow datagram was created with Shiny App [Haddaway 2022]



monitoring

Hierarchical Deep Learning Model
With Inertial And Physiological
Sensors Fusion For
Wearable-based Human Activity
Recognition

Hwang D.Y.; Ng
P.C.; Yu Y.; Wang
Y.; Spachos P.;
Hatzinakos D.;
Plataniotis K.N. CNN; LSTM PPG-DaLiA

ACC, PPG;
EDA 2022

Hierarchical Human Activity
Recognition Based on Smartwatch
Sensors Using Branch
Convolutional Neural Networks

Hnoohom N.;
Maitrichit N.;
Mekruksavanich
S.; Jitpattanakul
A. CNN WISDM ACC; GYRO 2022

DANA: Dimension-Adaptive Neural
Architecture for Multivariate Sensor
Data

Malekzadeh M.;
Clegg R.;
Cavallaro A.;
Haddadi H. CNN; LSTM UTwente

ACC, GYRO;
MAG 2021

Improving Human Activity
Recognition using ML and
Wearable Sensors

Mubibya G.S.;
Almhana J.

LDA; QDA;
KNN; DT;
RF PAMAP2

Temperature;
ACC; GYRO;
MAG 2022

Human activity recognition by
wearable sensors in the smart
home control problem

Nebogatikov I.Y.;
Soloviev I.P.

MLP; KNN;
RF; Naive
Bayes;
AdaBoost;
SVM

An Open
Dataset for
Human
Activity
Analysis HR; ACC 2021

Human activity recognition based
on hybrid learning algorithm for
wearable sensor data

Athota R.K.;
Sumathi D.

CNN;
LSTM; GRU WISDM GYRO; ACC 2022

Deep Learning Approach for
Complex Activity Recognition using
Heterogeneous Sensors from
Wearable Device

Hnoohom N.;
Jitpattanakul A.;
You I.;
Mekruksavanich
S. LSTM WISDM GYRO; ACC 2021

Human activity recognition by
combining external features with
accelerometer sensor data using
deep learning network model

Varshney N.;
Bakariya B.;
Kushwaha
A.K.S.; Khare M. CNN; LSTM

Recognition
of Daily
Human
Activity Using
an Artificial
Neural
Network and
Smartwatch ACC 2022

ResNet-SE: Channel
Attention-Based Deep Residual
Network for Complex Activity
Recognition Using Wrist-Worn
Wearable Sensors

Mekruksavanich
S.; Jitpattanakul
A.;
Sitthithakerngkiet
K.; Youplao P.;
Yupapin P. CNN

WISDM;
UT-Smoke;
UTwente GYRO; ACC 2022

An Integrated ARMA-Based Deep
Autoencoder and GRU Classifier
System for Enhanced Recognition

Rivera P.;
Valarezo E.; Kim
T.-S. GRU Opportunity

ACC; GYRO;
MAG 2021



of Daily Hand Activities

Complex Human Activity
Recognition Using a Local
Weighted Approach Asuroglu T. RF

PAAL ADL
Accelerometr
y dataset ACC 2022

Deep convolutional neural network
with rnns for complex activity
recognition using wrist-worn
wearable sensor data

Mekruksavanich
S.; Jitpattanakul
A. CNN; GRU UTwente

ACC; GYR;
MAG 2021

A multi-sensor deep learning
approach for complex daily living
activity recognition

Woodward K.;
Kanjo E.; Taylor
K.; Hunt J.A. CNN; LSTM own dataset ACC 2022

Validation of human activity
recognition using a convolutional
neural network on accelerometer
and gyroscope data

Hysenllari E.;
Ottenbacher J.;
McLennan D. CNN own dataset ACC;GYRO 2022

NoFED-Net: Nonlinear Fuzzy
Ensemble of Deep Neural
Networks for Human Activity
Recognition

Ghosal S.; Sarkar
M.; Sarkar R. CNN; LSTM WHARF ACC 2022

Deep learning based human
activity recognition (HAR) using
wearable sensor data Gupta S. CNN; GRU WISDM ACC; GYRO 2021

Exploring Artificial Neural Networks
Efficiency in Tiny Wearable
Devices for Human Activity
Recognition

Lattanzi E.;
Donati M.;
Freschi V. CNN; MLP RWHAR ACC; GYRO 2022

Simultaneous Recognition
Algorithm of Human Activity and
Phone Position Based on
Multi-sensor Data Fusion

Ai D.; Hao R.;
Feng C.; Li Y.; Liu
Y. LSTM RWHAR ACC; GYRO 2022

Comparison Study of Inertial
Sensor Signal Combination for
Human Activity Recognition based
on Convolutional Neural Networks

Nazari F.;
Mohajer N.;
Nahavandi D.;
Khosravi A.;
Nahavandi S. CNN PAMAP2 ACC; GYRO 2022

Deep Learning Approaches for
Unobtrusive Human Activity
Recognition using Insole-based
and Smartwatch Sensors

Hnoohom N.;
Maitrichit N.;
Mekruksavanich
S.; Jitpattanakul
A. CNN 19NonSens ACC; GYRO 2022

Highly-accurate binary tiny neural
network for low-power human
activity recognition

De Vita A.; Pau
D.; Di Benedetto
L.; Rubino A.;
Pétrot F.;
Licciardo G.D. CNN PAMAP2 ACC; GYRO 2021



Deep ConvLSTM with
Self-Attention for Human Activity
Decoding Using Wearable Sensors

Singh S.P.;
Sharma M.K.;
Lay-Ekuakille A.;
Gangwar D.;
Gupta S. CNN; LSTM WHARF ACC 2021

Heterogeneous Recognition of
Human Activity with CNN and
RNN-based Networks using
Smartphone and Smartwatch
Sensors

Mekruksavanich
S.; Jantawong P.;
Hnoohom N.;
Jitpattanakul A.

CNN;
LSTM; GRU HHAR ACC; GYRO 2022

Human activity recognition based
on smartphone and wearable
sensors using multiscale DCNN
ensemble

Sena J.; Barreto
J.; Caetano C.;
Cramer G.;
Schwartz W.R. CNN

WHARF;
UTD-MHAD1 ACC; GYRO 2021

A machine learning approach for
human activity recognition

Papoutsis A.;
Botilias G.;
Karvelis P.;
Stylios C. LSTM

RWHAR; own
dataset ACC; GYRO 2020

ADLs Detection with a Wrist-Worn
Accelerometer in Uncontrolled
Conditions

Fioretti S.;
Olivastrelli M.;
Poli A.; Spinsante
S.; Strazza A.

KNN; DT;
RF; Naive
Bayes;
SVM own dataset ACC 2021

A lean and performant hierarchical
model for human activity
recognition using body-mounted
sensors

Debache I.;
Jeantet L.;
Chevallier D.;
Bergouignan A.;
Sueur C.

KNN; SVM;
LR; GB DaLiAc ACC; GYRO 2020

SensCapsNet: Deep Neural
Network for Non-Obtrusive
Sensing Based Human Activity
Recognition

Pham C.;
Nguyen-Thai S.;
Tran-Quang H.;
Tran S.; Vu H.;
Tran T.-H.; Le
T.-L. CNN

19NonSens
(own dataset) ACC; GYRO 2020

Feature Engineering for Human
Activity Recognition

Atalaa B.A.;
Ziedan I.;
Alenany A.;
Helmi A. RF WHARF ACC 2021

Human Activity Recognition Using
Elliptical and Archimedean R-Vine
Copulas with Multimodal Data

Kulkarni S.;
Shreyas R.; Rk
R.; Harshith M.;
Srikanth S.;
Gurugopinath S. MLP

PESHAR
(own dataset) ACC; GYRO 2021

Human Activity Recognition Using
Wearable Sensors: Review,
Challenges, Evaluation Benchmark

Abdel-Salam R.;
Mostafa R.;
Hadhood M. MLP

UTD-MHAD1;
WHARF ACC; GYRO 2021

Accurate human activity
recognition with multi-task learning

Li Y.; Zhang S.;
Zhu B.; Wang W. CNN RWHAR ACC 2020



Characterizing Peaks in
Acceleration Signals-Application to
Physical Activity Detection Using
Wearable Sensors

Abbas M.;
Jeannes R.L.B. SVM own dataset ACC 2020

Deep Neural Networks for Time
Series Classification in Human
Activity Recognition

Joshi S.;
Abdelfattah E. CNN; LSTM WISDM ACC; GYRO 2021

Smart system for recognizing daily
human activities based on wrist
IMU sensors

Ayman A.;
Attalah O.;
Shaban H.

DT; RF;
SVM

Handy;
PAMAP2

MAG; ACC;
GYRO

202
0

Deep Human Activity Recognition
with Localisation of Wearable
Sensors

Lawal I.A.; Bano
S. CNN RWHAR ACC; GYRO

202
0

Improving Deep Learning for HAR
with Shallow LSTMs

Bock M.;
Hölzemann A.;
Moeller M.; Van
Laerhoven K. CNN; LSTM

RWHAR;
HHAR ACC 2020

Comparative Analysis of Different
Approaches to Human Activity
Recognition Based on
Accelerometer Signals Gomaa W.

RF; SVM;
Histogram
Based
Measures;
Kernel
Density
Estimate;
Estimations
Using
Discrete
Distribution
s

Dataset for
ADL
Recognition
with
Wrist-worn
Acceleromete
r Data Set ACC 2021

Recognition of human activities for
wellness management using a
smartphone and a smartwatch: A
boosting approach

Tarafdar P.; Bose
I.

AdaBoost;
XgBoost;
Boosted
C5.0 extrasensory

ACC;
Compass 2021

A deep learning approach for
human activities recognition from
multimodal sensing devices

Ihianle I.K.;
Nwajana A.O.;
Ebenuwa S.H.;
Otuka R.I.; Owa
K.; Orisatoki M.O. CNN; LSTM WISDM ACC; GYRO 2020

A Comparison of Wearable Sensor
Configuration Methods for Human
Activity Recognition Using CNN

Tong L.; Lin Q.;
Qin C.; Peng L. CNN

Daily and
Sports
Activities

ACC; GYRO;
MAG 2021

CNN-Based Deep Learning
Network for Human Activity
Recognition During Physical
Exercise from Accelerometer and
Photoplethysmographic Sensors

Mekruksavanich
S.; Jitpattanakul
A. CNN PPG Dataset ACC; PPG 2022



Classification of Physical Exercise
Activity from ECG, PPG and IMU
Sensors using Deep Residual
Network

Mekruksavanich
S.; Jantawong P.;
Hnoohom N.;
Jitpattanakul A. CNN Wrist PPG

PPG; ECG;
ACC; GYRO;
MAG 2022

4.1. Techniques

This subsection aims to understand what are the techniques that have been applied in the
area of physical exercise detection. Two main types of techniques were found: those that
use classical machine learning (10) methods and those that use neural networks (34).
They are shown next.

4.1.1. Classical Machine Learning

From the papers included, ten works presented at least one type of Classical Machine
Learning technique. Most of them (70%) used multiple machine learning techniques so
that it could be verified which one could achieve better results for this specific task.
Random Forest has been the most used of the many options employed, as seen in Figure
2, which shows all algorithms used more than once. Other commonly used include
Support Vector Machine (SVM), k-Nearest Neighbors (KNN), Decision Trees (DT),
Naive Bayes (NB), and AdaBoost. Used only once were: Linear Discriminant Analysis
(LDA), Quadratic Discriminant Analysis (QDA), Linear Regression (LR), Gradient
Boosting (GB), XgBoost, Boosted C5.0, Histogram Based Measures, Kernel Density
Estimation, and Estimations Using Discrete Distributions. It is worth mentioning that
GB, XgBoost, and Boosted C5.0 all used Decision Trees as their weak prediction
model.



Figure 2. Most used Classical Machine Learning techniques. Only the
techniques used more than once are shown.

4.1.2 Deep Learning

Most (approximately 77%) of the results showed the usage of Deep Learning (DL)
models. Some of them included special algorithms, i.e., Convolutional Neural Networks
(CNN), Recurrent Neural Networks (namely, Long Short-Term Memory, LSTM, and
Gated Recurrent Units, GRU), and others are composed of only neurons, which in this
work are called MLP (Multilayer Perceptron). The most used algorithm is CNN,
corresponding to approximately 82% of all works that use Deep Learning. One of the
reasons for its popularity is the ability to extract local features from the data, sometimes
used in association with an RNN (Recurrent Neural Network) to replace feature
engineering and data preprocessing, which would need some domain expertise [Dua
2021]. Of the 34, 4 (approximately 12%) were MLPs, not using any special algorithm,
as seen in Figure 3.

Figure 3. Deep Learning techniques.

When comparing the usage of Classical Machine Learning and Deep Learning, it
is possible to see a preference for the latter in recent years. However, when analyzing
the number of works, there is also an indication of decreasing works using the Classical
Machine Learning approach (Figure 4), while the other seems to gain popularity (Figure
5). One reason could be that it is still being refined, and its results are constantly
improving. Another reason could be related to the need for data processing, as discussed
later and in more detail next.



Figure 4. Classical Learning techniques each year.

Figure 5. Deep Learning techniques each year.

4.2. Preprocessing

From the results, 38 (or approximately 86%) of the works used some kind of
preprocessing. Of the 38, 29 are used in DL models (approximately 85% of DL models)
and 9 in Classical Machine Learning models (90% of them). This result is not enough to
suggest that one model uses more preprocessing than the other.



The most currently found type of preprocessing is the sliding window technique,
as seen in Figure 6. It involves using a fixed-length window that moves or slides over
the data, allowing analysis on each window and capturing temporal features and
patterns. It is used in 34 works, approximately 77%. It is used in 27 of the 34 DL
models (approximately 79%) and 7 of the 10 Classical Machine Learning (70%), which
is insufficient to suggest a preference for using it in any of the two models. Nineteen
used a fixed overlap, ranging from 20 to 75 percent. Out of those, 12 (approximately
63%) used a 50% overlap, as seen in Figure 7.

The second most applied preprocessing is the normalization of the input data,
which is done in approximately 32% of the cases. Normalization aims to bring the data
into a consistent range that allows for more effective analysis and modeling. It can be
used because many machine learning algorithms are sensitive to the scale of the input
features. Other techniques include noise reduction, removal or grouping of classes,
signal downsampling, class balancing, and removal or inference of missing values.

As expected, the most used combination is the sliding window with some other
types of preprocessing. The combinations are with normalization, with 13 occurrences;
noise reduction, with ten instances; downsampling, and removal or grouping of classes,
with three events each; removal or inference of missing values, with two occurrences;
and class balancing, with one occurrence.

Downsampling had only three occurrences, but all of them also used
normalization. In addition, normalization was also applied in approximately half of the
times that were used: noise reduction (6 out of 11 occurrences), balancing (1 out of 2
events), and missing values (1 out of 2 times).

Figure 6. Most used preprocessing techniques.



Figure 7. Fixed sliding window overlaps.

4.3. Feature extraction

Feature extraction was used in 14 of the 44 works (approximately 32%). Out of those
14, 6 were applied to DL models (representing approximately 18% of them) and 8 of the
Classical Machine Learning methods (80%). Feature extraction is significantly more
used in Classical Machine Learning methods than DL, confirming what was discussed
in subsection 4.1.

There were three main groups of feature extraction used. The most usually applied
(approximately 27%) was the extraction of statistical data from the time and frequency
domain, as seen in Figure 8. These types of extraction include several features, e.g.,
mean, standard deviation, energy, skewness, entropy, spectral centroid, spectral power,
and many others. There were also three that extracted data components, for example,
separating accelerometer signals into dynamic and gravitational components, as done in
[Debache 2020]. Finally, one also used a Gaussian mixture model to model the data
distribution.



Figure 8. Usage of types of feature extraction.

4.4.Wearable and sensors

There is a visible preference for using the accelerometer, which has low cost and power
consumption and can measure the acceleration in the three orthogonal axes [Shakya
2018]. All 44 authors used the accelerometer. In the second place, gyroscopes are used,
with approximately 61% of usage in all works. The other sensors found are, in order of
usage: magnetometer (nearly 16% usage) and photoplethysmograph (about 9% usage).
Electrodermal activity, heart rate, compass, electrocardiograph, and temperature were
used in one method each. The results can be seen in Figure 9.

It is possible to see that the assumption that blood oxygen sensors would be
relevant in the studies was not validated. It could be for two reasons: its usage does not
reflect significant changes in the recognition, or it is an option not very explored. The
latter could be because the presence of this sensor is relatively new, or it is more
frequently found only on high-end devices, restricting its usage.



Figure 9. Usage of sensors.

4.5. Position

All the results used a wearable (or a wearable sensor) on the wrist. One work has also
used one dataset that considers smartwatch usage for retrieving heart rate and a
smartglass for retrieving the accelerometer data [Nebogatikov 2021]. This distribution
could be due to the restriction of eligible wearables, which were all commonly available
in the market.

4.6. Datasets and recognized activities

There were many datasets employed for this type of application. Most authors used
datasets available online, but approximately 14% created their own for their work. To
the best of this work's authors' knowledge, they are not publicly available. The most
used are described next, and the percentage of usage of the datasets with more than one
utilization can be seen in Figure 10.

The most used was the "WISDM Smartphone and Smartwatch Activity and
Biometrics Dataset Data Set"6 [Weiss 2019], which recorded gyroscope and
accelerometer data of 18 activities from 51 subjects.

The second most used was the "RealWorld Dataset"7 [Sztyler 2016], which
covers acceleration, GPS, gyroscope, light, magnetic field, and sound level data of the
activities climbing stairs down and up, jumping, lying, standing, sitting,
running/jogging, and walking of fifteen subjects. For each activity, it was recorded the

7 RealWorld dataset homepage:
https://www.uni-mannheim.de/dws/research/projects/activity-recognition/dataset/dataset-realworld/

6 WISDM dataset homepage:
https://archive.ics.uci.edu/ml/datasets/WISDM+Smartphone+and+Smartwatch+Activity+and+Biometrics
+Dataset+

https://www.uni-mannheim.de/dws/research/projects/activity-recognition/dataset/dataset-realworld/
https://archive.ics.uci.edu/ml/datasets/WISDM+Smartphone+and+Smartwatch+Activity+and+Biometrics+Dataset+
https://archive.ics.uci.edu/ml/datasets/WISDM+Smartphone+and+Smartwatch+Activity+and+Biometrics+Dataset+


acceleration of the chest, forearm, head, shin, thigh, upper arm, and waist. Each subject
performed each activity for roughly 10 minutes except for jumping due to the physical
exertion (~1.7 minutes).

"Wearable Human Activity Recognition Folder (WHARF)"8 [Bruno 2014] is the
third most used dataset. It is a collection of labeled accelerometer data recordings
obtained by a single wrist-worn tri-axial accelerometer. It consists of over 1000
recordings of 17 volunteers doing 14 activities.

Figure 10. Datasets used in activity recognition. Only datasets used more than
once are shown.

It is possible to access the list of all datasets and activities found at the online
platform vhlk.github.io/Systematic-Mapping-Activities-Wearables. Figure 11 illustrates
the interface where searching for activities by writing in the text box is possible. While
typing, it suggests all the available activities that match what is being typed. After
choosing the activity, there is the option to add it to the search list, which comprises all
the added activities. Next to the add button is the option to search for the activities
added to the search list and a button to enable or disable the cleaned activities. By
default, this option is enabled, providing activities grouped from the various datasets.
By disabling it, activities that mean the same but differ in how it was written (plural,
infinite, or other variations of the same word) or synonyms will not be considered the
same activity.

8 WHARF dataset homepage: https://github.com/fulviomas/WHARF

https://github.com/fulviomas/WHARF


Figure 11. List of datasets and their activities at
vhlk.github.io/Systematic-Mapping-Activities-Wearables/.

Additionally, the most common activities present in the datasets were also
computed. In order of appearance, the datasets' top 9 most provided activities are:
walking, sitting, standing, ascending and descending stairs, biking, eating, drinking, and
running, as shown in Figure 13. After cleaning the labels, i.e., trying to match different
writing of the same activities from different datasets, there were 116 activities. The
results suggest that could be enough data to be used in daily physical activities9.

Figure 13. Top 9 activities detected.

It has also been observed how many activities are usually recognized. For
example, in Figure 14, it is possible to see that the most common is 18 activities being
used, but the range varies from 3 to 24. Increasing the number of activities could lead to

9 The list of all activities is available at:
https://github.com/vhlk/Systematic-Mapping-Activities-Wearables/blob/main/data/List_cleaned_activites.
txt

http://vhlk.github.io/Systematic-Mapping-Activities-Wearables/
https://github.com/vhlk/Systematic-Mapping-Activities-Wearables/blob/main/data/List_cleaned_activites.txt
https://github.com/vhlk/Systematic-Mapping-Activities-Wearables/blob/main/data/List_cleaned_activites.txt


an increase in the complexity of the method used. Which activities should be detected
by a reasonable recognition system will impact the number of activities needed to be
recognized.

Figure 14. The number of activities recognized.

4.7. Lightweight methods

Most of the proposed solutions did not consider techniques or methods that use fewer
resources when needed to run on wearables or mobile devices. Only 3 of them
considered ways to achieve it. One of them considered the usage of a standard
quantization scheme in Tensorflow Lite10 [Lattanzi 2022]. One optimized their methods
considering the hardware [De Vita 2021], and the last changed their technique and
experimented with fewer sensors to consume less power [Abbas 2020].

4.8. Online Visualizer

As the work primarily focuses on providing a starting point for studying techniques that
can recognize daily physical activities using wearable devices, the authors have also
made available its results online. The platform currently supports an option for
searching all datasets according to the activities being searched, as seen in Figure 15,
and an option to search all works that have used specific techniques, as shown in Figure
16. Also, almost all the figures shown in this work can be found on the platform,
including tweaks to the chart type and max number of items displayed. The platform is
hosted at vhlk.github.io/Systematic-Mapping-Activities-Wearables.

10 Tensorflow Lite is a mobile library for deploying models on mobile, microcontrollers and other edge
devices. Its homepage can be found at https://www.tensorflow.org/lite?hl=pt-br.

http://vhlk.github.io/Systematic-Mapping-Activities-Wearables


Figure 15. Searching for datasets that detect “Running.”

Figure 16. Searching for works that use specific techniques (CNN, LSTM, and
GRU).

5. Conclusion

This work presents a systematic mapping that summarizes the area of recognition of
daily physical activities using wearable devices. For that, A search string on Scopus was
conducted to provide a background for future researchers on daily physical activity
recognition using wearables. Its results were processed according to the criteria,
resulting in 44 works. After the results, each one was classified according to their usage
of primary techniques, preprocessing, feature extraction, sensors, datasets, most found
activities, and considerations to lightweight algorithms. A tool for searching datasets
based on the activities and searching works based on the techniques used was also
developed for better visualization of the data.



The results showed consensus on the usage of the accelerometer sensor, but
other types of sensors still need to be explored, for example, blood oxygen saturation.
There is also a possibility for future research on efficient and lightweight methods for
this type of application. Furthermore, there is a tendency for more studies to be done
using Deep Learning models instead of classical ones. Finally, it also needs to be
clarified how preprocessing, and feature extraction usage could impact accuracy and
time performance.

By mapping the area, this work intends to facilitate the understanding of it and
also discusses some limitations so that new studies can be made. It can also be a starting
point for a deeper understanding conducted by a systematic review.
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