‘Centro L
wnformama
al . Lt s e e e

Pos-Graduacdo em Ciéncia da Computacao

Israel Bruno dos Santos Duarte

Analise de Desempenho de Sistemas em Ambientes Virtualizados: um
estudo de caso do SIG@

e
L=4
e

®

T,
Universidade Federal de Pernambuco
ibsd@cin.ufpe.br

www.cin.ufpe.br/~ibsd

Recife
2023

www.cin.ufpe.br/~ibsd

Israel Bruno dos Santos Duarte

Anadlise de Desempenho de Sistemas em Ambientes Virtualizados: um
estudo de caso do SIG@

Trabalho apresentado ao Programa de Graduag¢do em Enge-
nharia da Computagdo do Centro de Informédtica da Univer-
sidade Federal de Pernambuco como requisito parcial para
obtenc¢ao do grau de Bacharel em Engenharia da Computa-

¢do.

Area de Concentracao: Redes de Computadores e
Sistemas Distribuidos

Orientador: Andson Marreiros Balieiro

Recife
2023

Ficha de identificacdo da obra elaborada pelo autor,
através do programa de geragdo automatica do SIB/UFPE

Duarte, | srael Bruno dos Santos.
Andlise de Desempenho de Sistemas em Ambientes Virtualizados: um
estudo de caso do SIG@ / Israel Bruno dos Santos Duarte. - Recife, 2023.
52 :il., tab.

Orientador(a): Andson Marreiros Balieiro

Trabalho de Conclusdo de Curso (Graduagao) - Universidade Federal de
Pernambuco, Centro de Informética, Engenharia da Computacéo - Bacharelado,
2023.

1. SIG@. 2. Hipervisor. 3. Avaliagdo de Desempenho. 4. Contéiner. 5.
Virtualizacdo. |. Balieiro, Andson Marreiros. (Orientacdo). I1. Titulo.

000 CDD (22.ed.)

AGRADECIMENTOS

A minha familia, especialmente meus pais e irmdos, que sempre me apoiaram em todos
0s momentos.

A Marco e suas notas de revisdo. Aos meus amigos do NTI pelo apoio técnico na
execugdo dos experimentos descritos nesse documento. Em especial ao quadrado mégico: Rafael
Santana, Domingos, Artur e Tarcisio.

E também ao meu orientador Andson Balieiro pelo apoio e chance de finalmente concluir

o curso de Engenharia da Computac¢ao

“One day I will find the right words, and they will be simple."

—Jack Kerouac

ABSTRACT

Since 2002, the Integrated Academic Management System (SIGA) has been maintained
and used by the Federal University of Pernambuco (UFPE) to manage institutional processes.
During this period, various versions of the system have been hosted on different physical and
virtual hardware configurations, with hardware virtualization by hypervisors currently being
employed. However, container-based virtualization is already included in future plans in which
the available employment options are under analysis. Thus, this study aims at analyzing the
comparative performance of SIGA running in the current virtual machine-based environment
to that executed in containers. To do so, a production-like test environment was designed and
subjected to a test load with volume and behavior analogous to the period of maximum system
utilization, student enrollment, and the two deployment scenarios were analyzed. The results
indicate that the containerization of the system can be adopted without noticeable impacts on the
end-user and providing memory resource savings with a slight increase in the number of disk

aCCesSes.

Keywords: SIG@, Hypervisor, ESXI, Container, Virtualization

RESUMO

Desde 2002, o Sistema Integrado de Gestdo Académica (SIGA) € mantido e utilizado
pela Universidade Federal de Pernambuco (UFPE) para gerenciar os processos institucionais.
Neste periodo as vdrias versdes do sistema foram hospedadas sobre diferentes configuracdes de
hardwares fisicos e virtuais, sendo a virtualiza¢do de hardware por hipervisores a atualmente
empregada. No entanto, a virtualizacao baseada em conté€ineres ja estd incluida nos planos de
adocdo futuros e encontra-se atualmente em fase de andlise das opg¢des disponiveis. Desta forma,
este trabalho busca analisar o desempenho comparativo do SIGA no ambiente atual, baseado em
maquinas virtuais, com o executado em conté€ineres. Para isso, um ambiente de testes similar ao
de producdo foi criado, submetido a uma carga de testes com volume e comportamento andlogo
ao periodo de médxima utilizac¢do do sistema, a matricula e os dois cendrios de implantag¢do foram
analisados. Os resultados obtidos indicam que a conteinerizacdo do sistema pode ser adotada
sem impactos perceptiveis para o usudrio final e ainda gerar economia de recursos de memoria

com leve aumento no ndmero de acessos ao disco.

Palavras-chave: SIG@, Hipervisor, Avaliacdo de Desempenho, Contéiner, Virtualizacio

Figura 1
Figura 2
Figura 3
Figura 4
Figura 5

Figura 6
Figura 7
Figura 8
Figura 9
Figura 11

Figura 10
Figura 12
Figura 13

Figura 14
Figura 15
Figura 16
Figura 17
Figura 18
Figura 19
Figura 20
Figura 21
Figura 22
Figura 24
Figura 23
Figura 25
Figura 26
Figura 27
Figura 28
Figura 29
Figura 30
Figura 31

LISTA DE FIGURAS

Hipervisor Tipo-1 vs Hipervisor Tipo-2. 17
Contéiner em bare-metal. oL 18
Contéiner sobre miquina virtual.o 19
Estrutura do ambiente virtualizado VMware vSphere. 20
Camadas em detalhes ubuntu:jammy. 21
Ambiente em produgdo (2023).o 25
Diagrama légico dos ambientes de testes. 26
Infraestrutura do cendrio andlogo ao de produgd@o. 29
Infraestrutura do cendrio conteinerizado. 29

Quantidade de acessos ao Sistema de Informagoes e Gestao Académica

(SIG@) durante o periodo de matriculas para o semestre 2022.2. . . . 30
Acessos ao SIG@ durante matriculas de 2022.2 31
BlazeMeter, ferramenta utilizada na captura das agdes para matricula. . 32
Carga de testes executada pelo Apache Jmeter sobre o sistema. 33
Processamento do Balanceadorde Carga. 35
Utilizacao de Memoria RAM pelo Balanceador de Carga. 36
Instrugdes de entrada e saida por segundo no Balanceador de Carga. . 36
Trafego de rede no Balanceadorde Carga. 37
Processamento do Bancode Dados. 38
Utilizacao de Memoéria RAM pelo Bancode Dados. 38
Instrugdes de entrada e saida por segundo no Banco de Dados. 39
Trafego de rede no Bancode Dados. 39
Uso de CPU nas VMS da camada de aplicacdo vs Tempo. 40
Uso agregado de CPU em % ajustado a curvanormal 41
Boxplot dousode CPU das VMS. 41
Comparativo do uso de disco CPU nas VMS da camada de aplicagdo. . 43
Boxplot dousode discodas VMS. 43
Comparativo do uso de memoria nas VMS da camada de aplicacdo. . . 45
Boxplot do uso de memoériadas VMS 45
Comparativo do uso rede nas VMS da camada de aplicacdo 46
Uso agregado de rede em MBps ajustado a curvanormal 47
Boxplot dousoderededas VMS. 47

LISTA DE TABELAS

Tabela1 — Comparativo entre modelos de virtualizagdo 17
Tabela2 — Hardware virtual do SIG@ em producao 26
Tabela3 — Maquinas virtuais (VMs) utilizadas nos experimentos. 28
Tabela4 — Configuracdo de Memoria da Java Virtual Machine para a execucao do
SIG@. . . . e 28
Tabela 5 — Dispositivos utilizados no acesso ao SIG@ e no momento de confirmar a
matricula.o L oL 31
Tabela 6 — Utilizacdo percentual de CPU nas 21 mil medi¢des. 42
Tabela7 — Utilizacdo de discos medidos em IOPS nas 21 mil medi¢des. 44
Tabela 8 — Utilizagdo de memoria RAM em GB nas 21 mil medi¢des. 46
Tabela9 — Uso de rede agregado em MBps nas 21 mil medi¢des. 48

LISTA DE ACRONIMOS

CPU Central Processing Unit

DC Data Center

HTTP Hypertext Transfer Protocol

JVM Java Virtual Machine

MVC Model-View-Controller

RHEL Red Hat Enterprise Linux

SGBDR Sistema Gerenciador de Bancos de Dados Relacional
SI Sistema de Informacdes

SIG@ Sistema de Informagdes e Gestdo Académica
SO Sistema Operacional

SSD Solid State Drive

STI Superintendéncia de Tecnologia da Informagaes
UF Universidade Federal

UFPE Universidade Federal de Pernambuco

US EPA United States Environmental Protection Agency
VM Maquina virtual- Virtual Machine

VMM Virtual Machine Monitor

VMs Magquinas virtuais

LISTA DE ALGORITMOS

Algoritmo 1 — Pseudocédigo do Script Jmeter

1.1
1.2

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13

3.1
32
3.2.1
3.2.2
33

4.1

4.1.1
4.1.2
4.2

4.2.1
4.2.2
4.2.3
4.24

SUMARIO

INTRODUCAO s e e e 13
OBJETIVOS e e 14
ESTRUTURA DODOCUMENTO 14
REFERENCIAL TEORICO 15
CONTEXTUALIZACAOHISTORICA 15
VIRTUALIZACAO BASEADA EM HIPERVISOR 16
VIRTUALIZACAO BASEADA EM CONTEINER 17
VMWARE VSPHERE, 19
CENTOS e 20
DOCKER e 20
APACHE e 21
GOOGLE ANALYTICS e e e e 21
APACHEJMETER 22
BLAZEMETER e 22
DSTAT e 22
ZABBIX . . . e 22
ORACLEDB 22
ARQUITETURA DOS AMBIENTES 24
AMBIENTEEM PRODUCAO 24
AMBIENTE EXPERIMENTAL 26
SIG@ Tradicional 28
SIG@ Conteinerizado 29
CARGADETESTES s 29
RESULTADO DOS EXPERIMENTOS 34
BALANCEADOR DE CARGA EBANCODEDADOS 35
Balanceadorde Carga 35
BancodeDados 37
CAMADADEAPLICACAO 40
Usode CPU e 40
Usodedisco e 42
Usodememéria 44

Usoderede 46

CONCLUSAO
TRABALHOS FUTUROS

REFERENCIAS

13

INTRODUCAO

Em um semestre tipico, uma Universidade Federal (UF) do porte da Universidade Federal
de Pernambuco (UFPE) pode ter cerca de cinquenta mil alunos ativos, sem contar com milhares
de técnicos administrativos e docentes. Para auxiliar na administra¢ao das UFs, sdo utilizados
Sistema de Informagdes (SI) capazes de coletar e gerenciar dados de vérios subsistemas, apoiando
as operagdes e tomada de decisdes.

Neste contexto, desde 2003, a UFPE utiliza o SIG@ (2023), que gerencia 0s processos
institucionais de ensino (graduacdo e pds-graduacdo), pesquisa, extensao, restaurante universitd-
ri0, eleicdo de reitor e gestdo de bens e pessoas. Em seus primeiros anos, o SIG@ foi alvo de
fortes criticas relacionadas ao alto tempo de resposta no acesso e até mesmo indisponibilidade do
sistema. Porém, por via de vdrias iteracdes de versdo, correcdes de bugs e modernizacdo do Data
Center (DC), melhoras significativas nos indices de satisfacdo dos usudrios foram alcancadas
Madeira (2018).

O sistema inicia sua segunda década de vida na versao 3.97.0.27, executando em um
ambiente bem menos modesto que o servidor torre que o abrigou em suas primeiras versoes.
Desde meados de 2014, quando o DC da Superintendéncia de Tecnologia da Informagaes (STI)
adotou a tecnologia de virtualizacdo de hardware, o sistema ganhou flexibilidade, resiliéncia,
seguranca e facilidade no gerenciamento (Sahoo et al., 2010).

Porém, tem-se uma questdo fundamental para o bom desempenho da aplicacdo: qual o
requisito fisico necessdrio para o seu funcionamento 6timo? Apesar de ser a principal ferramenta
da UFPE, o SIG@ nio € tnico sistema hospedado no DC e o mau dimensionamento de recursos
alocados ao sistema pode impactar negativamente o seu proprio desempenho, assim como o
desempenho de outras aplicagdes que compartilham o hardware (Shirinbab & Lundberg, 2015).

Atualmente a STI faz o uso da virtualizacdo de hardware com hipervisores, porém a
virtualizagdo ao nivel de sistema operacional, conhecida como conteinerizagdo, j4 faz partes dos
planos e estd em fase de andlise. Dentre as solucdes de conteinerizacio estudadas, a implementa-
cao hibrida, utilizada nos provedores de computagao na nuvem que oferecem hospedagem de
contéineres al dhuraibi et al. (2017), na qual os contéineres rodam sobre maquinas virtuais, se
destaca como op¢do vidvel para a atual infraestrutura, mas requer a avaliacdo da estrutura mais

adequada da aplicacdo do SIG@ na decisao de se adotar ou ndo contéineres, ou permanecer no

14

uso de maquinas virtuais.

Neste aspecto, este trabalho propde uma andlise comparativa do desempenho do SIG@
implementado em dois cendrios que utilizam conceitos de virtualizacdo distintos. Um com a
aplicacdo hospedada em mdquinas virtuais que se utilizam de um ambiente com conectividade,
armazenamento e processamento. Outro com a aplicaciao executando em cont€ineres hospedados
em mdquinas virtuais, isto é, uma camada extra de virtualizagcdo, gerando overhead no sistema.
Resultados mostram que no primerio cendrio 95,5% das requisi¢coes de matricula foram atendidas
com sucesso com tempo médio resposta de 2679 ms. Ao passo que no segundo cenério, alcangou-
se 95,6% de atendimentos com tempo médio resposta de 2215 ms e um consumo menor de

memoria RAM, porém de CPU e rede similares.

1.1 OBIJETIVOS

Este trabalho tem como objetivo analisar comparativamente o desempenho do SIG@ em

cendrios de virtualizagdo distintos e assim dar suporte:

= a0 dimensionamento de recursos adequados para o funcionamento 6timo do SIG@;

= atomada de decisdo sobre a tecnologia que resultard em melhor utilizacio de recursos

publicos.

1.2 ESTRUTURA DO DOCUMENTO

Este trabalho estd dividido em 5 capitulos e uma bibliografia. Na presente secao sdo
apresentadas algumas das caracteristicas gerais desse Trabalho de Conclusdo de Curso, além
de descrever sua organizagdo. O capitulo 2 apresenta o referencial teérico, que contém toda
fundamentagdo de base sobre o tema deste trabalho. O capitulo 3 apresenta os ambientes
experimentais, suas especificacdes de hardware e software, a descri¢do dos testes , assim como
as ferramentas de coleta e andlise de dados. No capitulo 4, os resultados obtidos nos testes sdao
apresentados e comentados. Finalizando, no capitulo 5 sdo apresentadas acerca do trabalho

desenvolvido e as sugestdes de trabalhos futuros.

15

REFERENCIAL TEORICO

Neste capitulo serdo apresentados a contextualizagdo histdrica da virtualizacio de hard-
ware, conceitos de virtualizacdo, hipervisor e conteinerizacdo, bem como algumas ferramentas

de software relevantes para este trabalho.

2.1 CONTEXTUALIZACAO HISTORICA

O conceito de virtualizagdo data do final da década de 60 quando a IBM introduziu
o monitor de maquina virtual, também conhecido com hipervisor. Esta ferramenta € uma
camada de abstracdo entre o hardware e o software, que desassocia o hardware fisico do sistema
operacional, possibilitando a existéncia de mais de uma Maquina virtual- Virtual Machine (VM)
com diferentes sistemas operacionais e que compartilham os mesmo recursos de hardware. Esta
técnica permitiu que mainframes caros, como o IBM S/360, fossem compartilhados por multiplas
aplicagdes sob a supervisdo do hipervisor Rosenblum & Garfinkel (2005).

Anos mais tarde, com o surgimento dos sistemas operacionais multitarefas e do baratea-
mento do hardware, a virtualizacdo foi perdendo espaco, uma vez que as instituigdes conseguiam
adquirir servidores que conseguiam suprir suas demandas e por um valor acessivel. Porém,
esta abordagem trouxe alguns problemas consigo, dentre eles a baixa eficiéncia energética. Em
2007, a United States Environmental Protection Agency (US EPA) descreve em seu Report
to Congress on Server and Data Center Energy Efficiency que servidores na época possuiam
taxa de utilizagdo do processador entre 5-15% e mesmo sob estas condi¢des tais servidores
consumiam de 60-90% da energia maxima. O mesmo texto aponta a virtualizagdo como uma
das principais ferramentas no aumento da eficiéncia energética, uma vez que ela permite a
consolidacio de multiplas maquinas virtuais no mesmo servidor fisico, diminuindo o volume de
hardware necessario e compensando carga extra de processamento associada a introduc¢ao do
hipervisor (Jin et al. (2013)).

O ganho na eficiéncia dos recursos aliado as facilidades no gerenciamento das maquinas
virtuais fizeram da virtualizagdo por hipervisor a principal forma de virtualizacdo nos data
centers nas ultimas décadas. Porém, nos ultimos anos outro tipo de virtualizagdo vem ganhando

destaque ao conseguir melhorias consideraveis de desempenho, a virtualiza¢ao a nivel Sistema

16

Operacional (SO), também conhecida como conteinerizacdo(Felter ef al. (2015)).

2.2 VIRTUALIZACAO BASEADA EM HIPERVISOR

Segundo Sahoo et al. (2010), a virtualizacao é comumente definida como a tecnologia
que introduz uma camada de abstracdo de software entre o hardware e o SO. Tal camada é
chamada de Monitor de Mdquina Virtual (Virtual Machine Monitor (VMM)), ou hipervisor, pe¢a
responsavel pelo controle de quando e quais recursos fisicos sao entregues ao SO diretamente
acima.

O hipervisor € capaz de criar, gerenciar e executar maquinas virtuais, escalonando
recursos do hardware fisico, host, para as maquinas virtuais e guests, que os requerem. Recursos
como Central Processing Unit (CPU), memodria e armazenamento, sao tratados pelo hipervisor
como um pool de recursos dinamicamente alocados para os guests que necessitem em tempo de

execugdo. Um hipervisor deve possuir as trés propriedades listadas a seguir:

= propriedade de equivaléncia: declara que um programa em execugao deve possuir
comportamento idéntico seja ele executado diretamente no hardware real ou sobre

virtualizacdo, exceto por overhead causado pela virtualiza¢do ou escassez de recursos;

= propriedade de eficiéncia: declara que a maioria das instru¢cdes de maquinas referen-
tes a CPU sejam executadas diretamente pelo processador fisico sem a interferéncia
do hipervisor. Esta propriedade é o maior diferencial entre hipervisor e emuladores

ou interpretador;

= propriedade de controle de recursos: declara que o hipervisor administre todos os
recursos de hardware. Nao deve ser permitido que qualquer programa em uma VM

acesse o hardware sem a permissdo do hipervisor.

Na Figura 1 s@o apresentados dois tipos de VMM. O Tipo-1, que é executado diretamente
sobre o host fisico e controla os recursos de hardware, e tipo-2, que roda como um programa
no SO do host. O acesso direto ao hardware do Tipo-1 possibilita melhor desempenho em
relagcdo ao tipo-2, que por sua vez ganha flexibilidade ao ponto de uma mesma maquina fisica
poder executar diferentes versdes do hipervisor. Porém, alguns hipervisores como o Xen possui
tanto caracteristicas do Tipo-1 quanto do Tipo-2 (Hwang et al. (2013)). Exemplos populares de
hipervisores do Tipo-1 sdo Citrix/Xen Server, VMware ESXi e Microsoft Hyper-V. Enquanto
Oracle Virtual Box e VMware Workstation sao exemplo de hipervisores do Tipo-2.

17

Figura 1: Hipervisor Tipo-1 vs Hipervisor Tipo-2 .

VM] [WM
W] [W ‘ rHiperuisnr] [Hiperuisnr‘
Hipervisor ‘ r Sistema Operacional
Hardware ‘ r Hardware

Fonte: Adaptado de Mavridis & Karatza (2017).

Além da classificag@o por tipo, hipervisores podem ser classificados pelas técnicas utiliza-
das em sua implementacdo. Segundo Adams & Agesen (2006), embora a virtualizagdo completa
nio demande nem a modificagdo do SO guest e nem de suporte de hardware, essas virtualizagdes
sao complexas e necessitam de técnicas avancadas para alcancar um bom desempenho, como
traducao bindria em tempo de execucdo a fim de detectar instrucdes e capturas instrugdes que
nao poder ser virtualizadas. A para-virtualizagdo € a técnica que utiliza um SO modificado para
chamar o hipervisor apenas quando for executar uma instrucdo sensivel, que pode alterar o estado
do sistema, evitando assim que VMM teste instru¢do por instru¢do e por consequéncia, atingindo
desempenho superior. A virtualizacao assistida por hardware, permitida com as instrugdes de
virtualizacdo nos processadores modernos, pode trazer ainda mais ganhos ao possibilitar que o
guest execute diretamente na CPU fisica certas instrug¢des privilegiadas. A Tabela 1 resume as

caracteristicas de cada tecnologia.

Tabela 1: Comparativo entre modelos de virtualiza¢do

S.0. Modificado Hardware especial ~Alto Desempenho

Virtualizagdo Completa - - -

Para-Virtualizacio v - v

Assistida por Hardware - v v
Fonte: Elaborado pelo autor (2023).

2.3 VIRTUALIZACAO BASEADA EM CONTEINER

A virtualizagdo ao nivel de sistema operacional, também chamada de conteinerizacgao, é
usada para fornecer gestao e isolamento dos recursos, principalmente em ambiente Linux. Ao
combinar em um mesmo pacote a aplicacio, dependéncias, bibliotecas e arquivos de configuragao,

esta tecnologia possibilita uma arquitetura autossuficiente que abstrai o sistema operacional

18

abaixo, assim como a infraestrutura, tornando-a extremamente agil e portatil. Segundo Soltesz

et al. (2007), o isolamento € criado mediante trés componentes principais:

s Chroot: permite alterar o diretério raiz de um processo e seus filhos para um local

visivel apenas para esta hierarquia de processos;
» Cgroups: permite atribuir quotas de recursos aos processos;

= Namespaces do kernel: permitem a todos os contéineres receberem as suas proprias

configuracdes de rede e comunicacgdo entre processos (IPC) e namespaces.

Como ilustrado na Figura 2 , este modelo permite a criacdo multiplas instancias isoladas
entre si sobre o mesmo kernel de um tinico SO. Embora haja redundéancia, uma vez que em cada
contéiner exista uma camada composta por arquivos bindrios e bibliotecas, BIN/LIB, a economia
no compartilhamento do kernel do SO confere a arquitetura da Figura 2 uma substancial economia

de recursos.

Figura 2: Contéiner em bare-metal.

-~ - -~ .

Aplicactes Aplicactes

" Contéiner | [Conteiner |
Libs/Bins | | Libs/Bins

Container Engine

5.0. do Host

Hardware

., v,

Fonte: Adaptado de Mavridis & Karatza (2017)

Apesar da conteinerizagdo descrita na Figura 2 ser eficiente ao eliminar a camada do
hipervisor, redundancias de SO, bibliotecas e bindrios, esta configura¢do nio € utilizada na maior
parte dos provedores de servico em nuvem. A configuragdo descrita na Figura 3, na qual os
contéineres sdo implantados em uma VM, garante ao ambiente flexibilidade na reconfiguracao de
recursos fisicos, versionamento dos snapshots, tolerancia a falhas, escalabilidade, etc. (al dhuraibi
et al. (2017)). De maneira geral, a decisdo € entre o desempenho de se utilizar contéineres
diretamente sobre o SO do host ou as facilidades de se gerenciar um ambiente virtualizado com

hipervisores.

19

Figura 3: Contéiner sobre maquina virtual.

Aplicactes Aplicacbes

., - ., ",

" Contéiner | [Contéiner |
| Libs/Bing | | Libs/Bins

" Container | [Container |
Engine | | Engine

S.0.1 1 5.0 2

Hipervisor

Hardware

Fonte: Adaptado de Mavridis & Karatza (2017)

24 VMWARE VSPHERE

VMware vSphere VMware (2023) € uma plataforma de virtualizacdo de servidores
proprietaria capaz de fornecer uma infraestrutura de virtualizacdo completa que possibilita
aos usudrios criar, gerenciar e executar maquinas virtuais. A solug¢do € composta por varios

componentes, dentre os quais se destacam:

= vCenter Server: ¢ o software central do ambiente. Ele gerencia, monitora e orquestra

as agoes sobre a infraestrutura virtual e fisica;

= vSphere Web Client: ¢ a interface web que permite aos usudrios acessar e gerenciar

a infraestrutura vSphere via navegador web;

= vSphere ESXi hypervisor: € o hipervisor tipo-1 responsével pela virtualizacao.

O vSphere oferece varios recursos avancados, como alta disponibilidade, balanceamento
de carga, recuperacao de desastres, migracdo de maquinas virtuais em tempo real, backup e
replicacdo de dados. Esses recursos sdo projetados para maximizar a disponibilidade, a segurancga
e a eficiéncia da infraestrutura de virtualiza¢do de um data center. A Figura 4 ilustra um ambiente
que emprega a solucdo VMware vSphere, onde os usudrios acessam o vCenter Server por meio
do cliente vSphere. Esse servidor € responsdvel por gerenciar os hosts e as maquinas virtuais
(VMs) usando o hipervisor ESX.

20

Figura 4: Estrutura do ambiente virtualizado VMware vSphere.

vSphere Client vSphere Client vSphere Client
Manage
VM VM VM VM VM VM VM VM VM
o L e I=E=E o=

Sez

Fonte: VMware (2023)

2.5 CENTOS

O CentOS (Community Enterprise Operating System) é uma distribui¢do Linux de c6digo
aberto, baseada no cddigo-fonte do Red Hat Enterprise Linux (RHEL), mantida pela comunidade
e distribuida pela Red Hat. Segundo o levantamento ‘2022 State of Open Source Report’ realizado
pela OpenLogic (2022), o CentOS ainda figura como a terceira distribuicao mais utilizada em
servidores linux, apesar do anuncio do fim do seu desenvolvimento em dezembro de 2020.
Esta fidelidade se da pelos aspectos que tornaram a distribuicao tao popular durante sua vida:
estabilidade, seguranca e confiabilidade. Todas as VM mencionadas neste trabalho utilizam o
CentOS 7 como SO.

2.6 DOCKER

Docker (2023a) € uma plataforma de cddigo aberto que simplifica a criagdo, implantacio
e execugdo de aplicativos em contéineres, que sao unidades de software encapsuladas com todas
as suas dependéncias, de cédigo a bibliotecas, tudo necessdrio para a execu¢do da aplicacao.
Docker utiliza imagens para rodar novos contéineres, cada contéiner € entdo uma instancia de
uma imagem em particular.

As imagens s@o camadas do sistema de arquivos, onde cada camada é um arquivo
imutdvel e representa a execu¢ao de uma instrucdo ou conjuntos de instru¢des executadas na
construcdo da imagem de contéiner. Na Figura 5, temos um exemplo das camadas utilizadas na

constru¢do de uma imagem do Ubuntu Jammy.

21

Além de possuirem gerenciamento simplificado, ciclo de desenvolvimento mais curto, o

uso de conté€ineres, segundo Enberg et al. (2016), gera menos overhead de virtualizagao.

Figura 5: Camadas em detalhes ubuntu:jammy.

ubuntuzjammy

697e1e9d5bo7c5Te649849e79f2¢Tc3bf11d10bbd5218b4eb61716aches

DIGEST: sha256:7a57¢

0S/ARCH COMPRESSED SIZE LAST PUSHED TYPE VULNERABILITIES

linux/amd64 28.17 MB 21 days ago by doijanky Image OH oM 0L
@ Get advanced image analysis for your own images with Docker Scout (Early Access) Learn more and upgrade
Image hlerarchy Images (1) Vulnerabilities (10) Packages (143) Give feedback (%
‘ ALL ubuntujammy]
Q E = [Fixable packages
Layers (6) et i
0 ARG RELEASE 0B @ Package Vulnerabilities
L 1 ARG LAUNCHPAD_BUILD_ARCH 08 © > ubuntu/openss| 3.0.2-Oubuntul.8 OH [oM 4L
L 2 LABELorg. image.ref. 8 @
> ubuntu/pcre3 2:8.39-13ubuntu0.22.04.1 OH oM 1L
L 3 LABEL org.opencontainers.image.version=22.04 0B @
> ubuntu/ncurses 6.3-2 0H oM 1L
L 4 ADD file:c8ef6447752cab2541ffca9e3cfa27d58134.. 29.53 MB
L 5 CMD[/bin/bash’] 0B @ > ubuntu/gnupg2 2.2.27-3ubuntu2.1 OH oM 1L
> ubuntu/glibc 2.35-0ubuntu3.1 OH oM 1L
FONTE: Docker (2023b)
2.7 APACHE

Em abril de 2023, a W3Techs (2023) lista o Apache HTTP Server como o segundo
servidor web mais utilizado, hospedando cerca de 32,2% dos sites conhecidos. Langado inicial-
mente em 1995, é um software gratuito e de cddigo aberto desenvolvido e mantido pela Apache
Software Foundation. E tido pela comunidade como bastante personalizdvel, seguro, escaldvel e
oferece suporte a varias tecnologias de aplicativos web. O Apache HTTP Server € o servidor
web utilizado pela STI no sistema do SIG@.

2.8 GOOGLE ANALYTICS

Ferramenta de andlise de dados oferecida pela Google que permite aos administradores
de sites rastrear e analisar o trifego em seus sites. O Google Analytics (2023) facilita o
monitoramento de métricas importantes, como o nimero de visitantes, de onde eles vém, como
navegam pelo site, quanto tempo passam nele, dentre vérias outras. Este servigo € utilizado pela
STI e os dados capturados na matricula do segundo semestre letivo de 2022 foi utilizado como

base no dimensionamento da carga de testes descrita no Capitulo 3.

22

2.9 APACHE JMETER

Apache Jmeter (2023) € um software gratuito e de codigo aberto utilizado nos testes de
aplicacgdes e servicos web. Criado pela Apache Software Foundation em 2007, ele pode realizar
testes de carga, no qual € buscado o limite de usudrios simultaneos, e de stress, no qual o objetivo
¢ determinar a capacidade de recuperacio e estabilidade do sistema. O JMeter € utilizado na

execucdo do teste de carga deste trabalho.

2.10 BLAZEMETER

BlazeMeter (2023) é uma plataforma online capaz de realizar teste de desempenho uteis
na andlise de desempenho de aplicacdes, APIs e sites em escala global. A plataforma oferece
de forma gratuita a funcionalidade de gravacao de trafego http e geragdo roteiros no formato
JSON, que pode ser utilizado no Apache Jmeter. O BlazeMeter foi utilizado na captura do

comportamento de navegagdo esperado de um aluno durante a matricula via sistema SIG@.

2.11 DSTAT

O Dstat (2023) € uma ferramenta leve e de c6digo aberto utilizada para monitorar o
desempenho do SO em tempo real. Capaz de oferecer dados na saida do console ou em arquivos,
o Dstat consegue capturar razodveis volumes de dados com impacto relativamente baixo no
sistema. O Dstat foi utilizado na captura de consumo de recursos computacionais a nivel de SO

durante os experimentos deste trabalho com seguinte comando:

$ dstat —tcldrmsny

2.12 ZABBIX

Criado por Alexei Vladishev em 1998, o Zabbix (2023) ¢ um software de c6digo aberto
utilizado no monitoramento de redes, servidores, maquinas virtuais e aplicacdes. Ele consegue
monitorar a saude e integridade de ativos de TI coletando milhares de métricas por intermédio de
um agente localizado no item estudado. Possui também mecanismos de envio de alerta quando
algum evento ocorre e pode também atuar de forma automatizada na resoluciao do problema, por
exemplo, reiniciando um servi¢o que parou de responder. Neste trabalho o Zabbix foi utilizado

na coleta de dados dos recursos computacionais utilizados pelo hipervisor e VMs.

2.13 ORACLE DB

O Oracle (2023) Database ¢ um Sistema Gerenciador de Bancos de Dados Relacional

(SGBDR) desenvolvido pela Oracle Corporation. E um dos bancos de dados mais utilizados por

23

grandes empresas por todo o mundo, conhecido por ser confidvel, escaldvel e ter alto desempenho.
O Oracle DB 11g, langado em 2007, € o banco de dados utilizado pelo SIG@ durante a confec¢ao
deste trabalho.

24

ARQUITETURA DOS AMBIENTES

Neste capitulo serdo descritos os ambientes de producdo e os ambientes experimentais
utilizados neste trabalho, os recursos de hardware e software utilizados.

Existem algumas arquiteturas possiveis quando se utiliza conté€ineres, como ja menci-
onado na Sec¢do 2.3. Tais arquiteturas podem variar conforme a funcionalidade que se deseja,
mas sempre ha o trade-off entre desempenho e seguranca. Uma determinada arquitetura pode
favorecer o alto desempenho das aplica¢des ou focar na seguranca e facilidade no gerenciamento
do ambiente, mas ndo € possivel atingir um 6timo nas duas frentes. Segundo Mavridis & Karatza
(2017), quando uma aplicagdo em contéiner é executada sobre maquinas virtuais, invariavel-
mente, haverd perdas no desempenho que podem ou nao ser compensadas pelas funcionalidades
de gerenciamento e seguranca trazidas com a virtualizacdo. Visando definir de quanto € este
custo de desempenho quando a aplicag@o é conteinerizada, este trabalho cria ambientes de testes

e analisa os dados coletados.

3.1 AMBIENTE EM PRODUCAO

Buscando robustez e resiliéncia, a arquitetura do SIG@ vem sendo aperfeicoada com
o passar dos anos. A medida que problemas eram catalogados, contramedidas foram tomadas
buscando mitigd-los. Assim foi a adicao de um segundo balanceador de carga, a pulverizagdo
da camada de aplicacdo em diversas VMs e o isolamento do banco de dados em um host fisico
proprio. Na Figura 6 € apresentada a estrutura atual do sistema, na qual s@o utilizadas oito VMs,

sendo duas para o balanceamento de carga, cinco para aplicagdo e uma para o banco de dados.

25

Figura 6: Ambiente em produgéo (2023).

-_— e . .,

s
1

Balanceador del
carga (02 VMs) |

- - . e

I - 1
|
m I
|

Banco de
I dados (01 VM)
ey 4

Aplicacao
(05 VMs)

o e e .

Fonte: adaptado de Clemente et al. (2022).

Todas as VMs rodam dentro do mesmo ambiente virtualizado VMware Vsphere, sdao
gerenciadas pelo VMware Vcenter 6.7, utilizam o VMware ESXi 6.5 como hipervisor e estao
hospedados em um pool de 18 servidores HP ProLiant DL360p, sendo quinze Gen8 e trés
Gen9. Os dados sdo consolidados em discos Solid State Drive (SSD) localizados na unidade
de armazenamento HPE 3PAR StoreServ 8200, que recebe os dados dos hosts mediante uma
conexao Fiber Channel de 16GB/s e um Switch San, modelo HP SN6000B.

As duas VMs que estdo trabalhando como balanceadores de carga correspondem a
camada do sistema responsdvel pela interacao com o cliente. Elas recebem as requisi¢des dos
cliente e as encaminha para a camada seguinte, de aplicacdo. A sua principal fun¢do € identificar
qual VM da camada seguinte possui mais recursos disponiveis e redireciona as requisi¢des para
ela, tal técnica é conhecida como balanceamento de carga. Ambas VMs utilizam o Apache
Server 2.4.6 e possuem o CentOS 7 como SO guest.

Composta de cinco VMs idénticas rodando CentOS 7, a camada de aplicagdo € responsa-
vel por toda a légica e processamento das informagdes do sistema. Cada VM utiliza o Apache
Tomcat para hospedar a aplicagdo do SIG@ (versdo 3.96.0.3), escrita em Java Enterprise Edition
6 (JEE 6) com uma arquitetura em camadas e utilizando o padrao Model-View-Controller (MVC)
no front-end.

A tltima camada, banco de dados, possui apenas uma VM de grande porte. Responsavel
pelo armazenamento de dados, guarda todas as informacdes persistentes do sistema em um
banco de dados Oracle 11g rodando sobre CentOS 7. A Tabela 2 resume o hardware virtual

disponibilizado pelo hipervisor para cada VM das trés camadas.

26

Tabela 2: Hardware virtual do SIG@ em producao

Balanceador-2VMs Aplicacdo-5VMs Banco-1VM

CPU 4 4 12
Memoria 20 GB 20 GB 32 GB
Disco 66 GB 55 GB 146 TB

Fonte: Elaborado pelo autor (2023).

3.2 AMBIENTE EXPERIMENTAL

Visando responder a pergunta fundamental deste trabalho, qual o desempenho do SIG@
conteinerizado quando comparado a arquitetura atual, foram criados dois ambientes para a
realizagdo dos estudos de casos. Um representando uma versdo reduzida do ambiente de
producdo atual e outra representando o ambiente conteinerizado, o ambiente proposto. A
diferenca entre elas estd restrita as VMs da camada de aplicac¢do, enquanto no cendrio 1 temos
uma versao reduzida do SIG@ ndo-conteinerizado, no cenario 2 temos a versio conteinerizada
do mesmo.

A Figura 7 ilustra como estes ambientes sdo compostos por apenas um balanceador
de carga, duas VMs na camada de aplicacao e um banco de dados. Esta reducao foi pensada
para que todas as VMs envolvidas nos testes estivessem em um unico host retirado do pool de
servidores do DC da STI, livrando-as da concorréncia com outras VMs por acesso a CPU e a
memoria. O host utilizado € um servidor HP ProLiant DL.360 Gen 9 com 512GB de memoria
DDR4 2133 MHz, 2 processadores Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz de 20 nucleos
cada. Este servidor estd conectado a um pool de discos SSD na unidade de armazenamento HPE
3PAR StoreServ 7400.

Figura 7: Diagrama 16gico dos ambientes de testes.

Aplicagdo | ~ ~

Tema de estudo
had -

Balanceador™~ _ e

- Banco de
de carga VM Dados

Aplicacao

Fonte: Elaborado pelo autor (2023).

27

Visando reduzir o numero de varidveis envolvidas e para aferir o quanto as maquinas
conteinerizadas interferirdo no ambiente, a maquina do balanceador de carga é a mesma utilizada
nos dois cendrios. O mesmo vale para a maquina de banco de dados, que deve se comportar da
mesma forma independentemente da tecnologia utilizada pela aplicacdo. Ja as VMs da camada
de aplicacdo variam consoante o cendrio do experimento. Apesar de terem o mesmo hardware
virtualizado (4 vCPUs, 20 GB de RAM e disco com 55 GB), possuem distintas tecnologias na
implantacdo da aplicagdo.

Fazendo-se uso das funcionalidades de um ambiente virtualizado, foi possivel clonar
algumas VMs do ambiente de producdo e realizar apenas a configuragdo de parametros de
configuracdo de rede, geracao de chaves de seguranca, criacao de regras de firewall e outros
ajustes.

O balanceador de carga utilizado nos experimentos € um clone de um dos balanceadores
do ambiente de producdo, porém configurado para encaminhar as requisicdes recebidas baseada
no URL. Caso o pacote seja enderecado para sigatcc.ufpe.br, o Apache Server o direciona
para rota ‘App’, composta pelas duas VMs da camada de aplicacao do cendrio 1, que aqui
serdo denominadas Appl e App2. Caso a requisicao tenha siga-docker.ufpe.br como endereco,
o Apache Server o direciona para rota ‘Contéiner’, que tem como destino as duas VMs de
aplicacdo do cendrio 2, que aqui serdo denominadas Contl e Cont2.

Para o banco de dados foi feito um clone da VM da maquina atualmente no ambiente de
producdo. Para a realizacdo das matriculas sdo executadas rotinas preparatdrias que consistem
em operacoes cuja finalidade € garantir a matricula correta de cada aluno da universidade.
Inicialmente, verifica-se a situacdo académica de cada individuo, por exemplo, a quantidade de
aprovacoes, cadeiras ja cursadas, matérias dispensadas e perfil curricular ativo. Durante essas
verificagoes, se aplicam regras pré-definidas que fazem sugestdes personalizadas para cada aluno
realizar a matricula para o semestre seguinte. Essas sugestdes ainda consideram as disciplinas
ofertadas pela coordenacdo para o periodo, o niimero de vagas e a prioridade de cada aluno para
conseguir realizar a matricula.

As VMs da camada de aplicagdo do cendrio 1 sdo idénticas as maquinas em producao,
salvos alteracdes nas configuracdes de rede e chaves de acesso. Por outro lado, as VMs da
camada de aplicacdo do cendrio 2 foram construidas do zero, mantendo-se apenas a versao
do SO e hardware disponibilizado. Nestas VMs foi instalado o Docker Engine - Community
na versao 20 para executar a imagem do SIG@ conteinerizado desenvolvida pela equipe de
desenvolvimento da STI. A Tabela 3 resume as caracteristicas das VMs criadas para os casos de

estudos.

28

Tabela 3: VMs utilizadas nos experimentos.

Experimentos | Balanceador Appl, App2 ContI, Cont2 Banco
Aplicacao Apache Server Siga ndo-conteinerizado Siga Docker Oracle DB T1g
CPU 4 4 4 12
Memoria 20 GB 20 GB 20 GB 32GB
Disco 66 GB 55 GB 55 GB 1.46 TB
Cenario 1 v v X v
Cenario 2 v X v v

Fonte: Elaborado pelo autor (2023).

O processo da criagdo da imagem Docker foi iniciado com uma andlise de quais softwares
participam do sistema do SIG@ e como eles se relacionam. Partindo deste levantamento, foi
possivel construir o Dockerfile, arquivo que contém uma série de instru¢des que definem a
configuragdo do ambiente em que o aplicativo serd executado, incluindo a escolha do sistema
operacional, a instalacdo de bibliotecas e dependéncias, a copia de arquivos de cddigo-fonte e
a configuracdo de varidveis de ambiente. Em seu contetudo, o Dockerfile do SIG@ define as
varidveis de ambiente sobre uma imagem base do SO, CentOS 7, instala a versdo apropriada
do Java com suas dependéncias, assim como o Tomcat, permissdes de usudrio e configura os
acessos de rede. Por razdes de seguranga, informagdes mais detalhadas sobre estas configuracdes
ndo podem ser divulgadas. O limite médximo de memoria a ser utilizado pela aplicacdo em ambos

os cendrios € definido pelas configuracdes da Java Virtual Machine (JVM), listadas na Tabela 4.

3.2.1 SIG@ Tradicional

Este ambiente € uma versdo simplificada do SIG@ atualmente em produgdo. Em vez de
oito méquinas virtuais, foram utilizas quatro. Foi retirado o segundo balanceador de carga, que
tem como principal funcdo evitar um ponto tnico de falha no sistema, reduziu-se de cinco para
duas as maquinas virtuais com as aplicagdes SIG@ e manteve-se um banco de dados Oracle 11,

como apresentado na Figura 8.

Tabela 4: Configuragdo de Memoria da Java Virtual Machine para a execugdo do SIG@.

Parametro Valor
Heap Size 15 GB
Max Heap Size 15 GB
Permgen Size 512 MB
Max Permgen Size 512 MB
Fonte: Elaborado pelo autor (2023)

29

Figura 8: Infraestrutura do cendrio andlogo ao de producio.

& 4
J = =’ ORACLE
! Java |ava
Bin/Libs Bin/Libs Hin/Libs Bin/Libs

Centos 7 Centos 7 Centos 7 Centos 7

Hypervisar - ESXI

HP ProLiant DL360

Fonte: Elaborado pelo autor (2023).

3.2.2 SIG@ Conteinerizado

Neste ambiente, o balanceador é mantido, assim como o banco de dados. A alteracao
se da nas maquinas virtuais que abrigam a aplicac@o. Estas duas maquinas virtuais utilizam a
distribuicdo Linux CentOS 7 e utilizam a Docker Engine - Community na versao 20 para executar

a imagem do SIG@ Docker. Figura 9 ilustra o ambiente de teste na versdo conteinerizada.

Figura 9: Infraestrutura do cendrio conteinerizado.

& <,
i Jd-:'.:i];;'d
; Hin/Libs Hin/Libs CRACLE
] Dioker Engine Dioker Engine
Hin/Libs Bin/Libs
Centos 7 Centos 7 Centos 7 Centos 7

Hypervisar - ESXI

HP ProLiant DL360

Fonte: Elaborado pelo autor (2023).

3.3 CARGA DE TESTES

Em um periodo de matriculas tipico, que dura por volta de uma semana, o SIG@ da
UFPE atende cerca de 30 mil alunos ativos. A fim de evitar a sobrecarga do sistema, o acesso €
liberado apenas para determinados centros académicos conforme uma escala pré-divulgada pelos

meios oficiais da institui¢do. Desta forma, consegue-se controlar os picos de acessos simultaneos

30

ao sistema e o volume de escrita no banco de dados. Como exemplo, na Figura 10 € apresentado
o somatdrio de acessos didrios realizados ao SIG@ durante o periodo de matricula do segundo
semestre letivo de 2022. Tal informacao foi obtida através do Google Analytics, onde é possivel
observar que o pico de acessos foi atingido no dia 16 de novembro, com 7034 matriculas ao
longo de todo o dia. Além disso, houve por volta de 2800 acessos entre as dez e as onze horas do
mesmo dia.

Todavia, estas requisi¢cdes ndo representam a totalidade dos acessos ao sistema, uma vez
que através do Google Analytics foram registrados cerca de 2,8 mil usudrios no mesmo intervalo
de uma hora. Como indicado na Figura 11, durante a semana de matriculas foram contabilizados
141.965 sessoes de 53.807 usudrios, totalizando 425.112 visualizagdes de paginas. Neste periodo,
um usudrio acessa o sistema em média 2,69 vezes e a cada acesso visualiza, em média, 2,99
paginas num periodo de 5 minutos e 30 segundos, sendo que em 19,59% das vezes ele ndo entra

no sistema, apena carrega a tela inicial.

Figura 11: Quantidade de acessos ao SIG@ durante o perfodo de matriculas para o semestre 2022.2.

Pagina inicial do Google Analytics

Usuérios Sessdes Taxa de rejeigdo Duragéo da sessdo

53 mil 142 mil 19,59% 5min29s

t41,7% 126,7% +8,8% t350%

25 mil

20 mil

15 mil

10 mil

5 mil

15 de nov. — 22 de nov. de 2022 =

Fonte: Captura de tela realizada pelo autor da ferramenta Google Analytics (2023).

Outro dado interessante capturado pelo Google Analytics é sobre a relagdo do tipo
de dispositivo utilizado pelo usudrio na navegacdo do sistema com o seu intuito do acesso.
Conforme ilustrado na Tabela 5, o telefone celular € o dispositivo utilizado em mais da metade
dos acessos ao SIG@, porém para confirmar a matricula nas disciplinas do semestre letivo, ele
ndo € empregado nem por 30% dos usudrios, ao passo que o computador ¢ utilizado por 69%
com a finalidade de realizar a matricula. Isto indica que geralmente o aluno da UFPE realiza de

um a dois acessos prévios ao sistema, preferencialmente no telefone celular, antes de confirmar a

31

Figura 10: Acessos ao SIG@ durante matriculas de 2022.2

(a) Acessos por dia (b) Acessos por hora
Pagina inicial do Google Analytics]| | 12am
2am
Usudrios Sessdes Taxa de rejeigdo Duragéo da sessdo 4am
53 mil 142 mil 19,59% 5min 29 s p— fam
t41.7% 126,7% 18.8% 1350% || 8am
||
|| 10am
1 1
25mil = “om
| 2pm
|
20 mil I 4pm
||
| 6pm
S |
Smil I 8pm
||
| Opm
10 mil
dom. seg. fer. qua. qui. sex. sdb.
5mil 1 1 |
0 700 14mil 2,1 mil 28 mil
0
J]Su 16 17 e e 0 21 2 15de nov. — 22 de nov. de 2022

15 de nov. - 22 de nov. de 2022 « VISAO GERAL DO PUBLICO >

Fonte: Captura de tela realizada pelo autor da ferramenta Google Analytics (2023).

Tabela 5: Dispositivos utilizados no acesso ao SIG@ e no momento de confirmar a matricula.

Acessos Matricula
Computador 48,9% 69,0%
Celular 50,1% 29.8%
Tablet 1,0% 1,2%

Fonte: Elaborado pelo autor (2023).

matricula utilizando um computador.

Quando o trafego capturado durante o periodo € analisado sob a ética da estrutura fisica
do sistema (Figura 6), € possivel afirmar que cada servidor da camada de balanceamento de carga
tratou no maximo 1400 usudrios por hora e que cada servidor da camada de aplicacdo recebeu
ndo mais que 560 usudrios no mesmo intervalo. Apesar de valiosos, estes dados ndo possuem
granularidade suficiente para determinarmos a quantidade de sessdes simultaneas atendidas
pelo ambiente neste intervalo. Porém, se assumirmos o pior caso, no qual cada usudrio gera
duas 2 sessdes dentro do intervalo de uma hora, podemos determinar a carga mdxima aplicada
no sistema. Assim, cada VM da camada de aplicacdo trata 1120 sessdes neste intervalo com
102,67 acessos simultaneos. Esse valor de acessos simultaneos pode ser calculado utilizando-se
a Equacdo 3.1, onde NUC € o nimero de usudrios concorrentes, NSH é o ntimero de sessdes por

hora, DMS € a duracdo média da sess@o em segundos e TU € tempo de utilizagdo em horas.

NSHxDMS

32

Definida a carga de trabalho que serd aplicada sobre o objeto de estudo, as maquinas
virtuais da camada de aplicacdo, um plugin do Blazemeter para navegador foi utilizado na captura
do comportamento simulado de um usudrio no ato da matricula. Uma vez que o comportamento
de navegacdo interna ao sistema nao € monitorado pelo Google Analytics (2023) por razdes de
privacidade e seguranca, foi criado um fluxo de cliques visando gerar o impacto similar aos dos

acessos discutidos anteriormente, como exposto na Figura 12.

Figura 12: BlazeMeter, ferramenta utilizada na captura das acdes para matricula.

=8 EDITOR

s —

T FFY

object » POST https://sigatce ufpe. briufpe/serviet/siga. ServietControlador?tmsSIGA=1680109970188 [undefinad] »
w object {14}

GET https://sigatcc.ufpe.br/ [undefined] {8}

GET https://sigatcc.ufpe.br/ufpe/index.jsp [undefined] {8}

POST https://waw.google-analytics.com/j/collect?v=14 v=]298a=643685332&t=pageviend_
POST https://sigatcc.ufpe.br/ufpe/jsp/acesso/pages/inicio.jsf [undefined] {9}

POST https://sigstcc.ufpe.br/ufpe/servliethiutenticacacsiga [undefined] {29}

GET https://sigatcc.ufpe.br/ufpe/serviet/siga.avaliacaoInstitucional .HandlerAvaliac

>
>
>
>
>
>
p POST https://www.google-analytics.com/j/collect?v=14 v=]299&5=1534480819&t=pagevieud
p POST https://sigatcc.ufpe.br/ufpe/logade.jsf [undefined] {9}

p GET https://sigatcc.ufpe.br/ufpe/jsp/HandlerCarregandoModal.jsp?jsp=siga/matricula/
p POST https://sigatcc.ufpe.br/ufpe/jsp/siga/matricula/matricula/HandlerTelaMatricule
» GET https://sigatcc.ufpe.br/ufpe/jsp/HandlerCarregandoModal.jsp?Handler=siga.matric
p POST https://sigatcc.ufpe.br/ufpe/servliet/siga.ServletControlador?tms5IGA=16801899¢
» GET https://sigatcc.ufpe.br/ufpe/jsp/HandlerCarregandoModal.jsp?visualizar=falselm:
>

POST https://sigatcc.ufpe.br/ufpe/serviet/siga.5ervletfontrolador *tms5IGA=16801053597

Fonte: Captura de tela realizada pelo autor da ferramenta BlazeMeter (2023) .

Esta série de requisi¢cdes do protocolo Hypertext Transfer Protocol (HTTP) indicam
a ordem e conteido das mensagens trocadas entre a aplicacdo do SIG@ e o navegador do
usudrio. Estas informagdes sao utilizadas como base do script da aplicacdo que serd utilizada
na ferramenta responsdvel pelo teste de carga, o Apache Jmeter. Com o uso de varidveis,
parametrizagdes e condicdes para tratamento de erros, chega-se a um roteiro de agdes que pode
ser executado de forma controlada na simulacdo dos acessos. O algoritmo 1 ilustra as atividades
do script codificado. Ele carrega uma lista de CPFs previamente selecionados (6 mil), alunos
aptos a realizar a matricula com ao menos uma sugestao automatica de disciplina fornecida pelo
sistema, e os utiliza como base durante a execucdo dos testes.

Para replicar a carga de trabalho observada durante o pico de acessos para o periodo de
matricula em 2022.2, no qual foi registado 1120 sessdes no periodo de uma hora e calculado 103
sessoes simultaneas por VM na camada de aplicacao, teriamos de executar o script para 2247
alunos durante a duracdo do experimento, uma hora. Porém, foi utilizada uma carga 25% maior,

2800 acessos, dando a este teste caracteristicas de um teste de carga, uma vez que o sistema

33

Algoritmo 1: Pseudocédigo do Script Jmeter

1 for Aluno <— CPF.txt to EOF do

2 Abre pégina inicial do SIG@

3 Envia CPF e senha do Aluno

4 Recebe Hash de acesso

5 Carrrega pagina de logado com sucesso
6

7

8

9

Carrega médulo de matricula

Aceita sugestdo de uma cadeiras a ser cursada
Confirma a matricula

Fecha janela de popup de impressao de comprovante
10 Desloga do sistema

11 Gera relatério

recebe um volume de acesso semelhante a carga de pico durante um periodo relativamente longo
a e assim obter métricas da qualidade do acesso e o uso de recursos (de Sousa Santos & dos
Santos Neto (2008)). Esta quantidade de acessos, quando distribuidos no intervalo de uma hora,
fornecem 128 acessos simultaneos a cada VM da camada de aplicacdo, conforme indicando na

Figura 13.

Figura 13: Carga de testes executada pelo Apache Jmeter sobre o sistema.

Balanceador /—"
de carga 1400 RIH A\

128 NUC

2800 RIH R
ARACH A Aplicagao; ~
/ Meter plicagso,
256 NUC /

| 1400 RiH

P
128 NUG T Banco de
=g VM Dados

Aplicagéo@

Fonte: Elaborado pelo autor (2023).

Durante a execucdo dos testes os dados sobre o uso de recursos computacionais foram

capturados a nivel de SO pelo Dstat e ao nivel de hipervisor pelo VCenter.

34

RESULTADO DOS EXPERIMENTOS

Para cada teste em ambos os cendrios propostos, o script discutido na Sessdo 3.3 é
executado pelo Apache Jmeter em um computador externo a infraestrutura estudada durante o
periodo de uma hora. Neste periodo sdo enviadas 2800 requisi¢des de matricula separadas entre
si pelo intervalo de 0,77 segundos.

Durante os testes, cada cendrio recebe sua carga de requisi¢des, o Dstat é executado em
cada uma das VMs com parametros que o faz coletar uma amostra a cada segundo durante setenta
minutos, totalizando 4200 medi¢des por VM. Enquanto isto, o hipervisor envia suas métricas de
utilizagcdo de recursos ao sistema de gerenciamento do Vcenter, que os repassa ao Zabbix, onde
sdo guardadas e visualizadas. No decorrer de cada teste, as VMs ndo pertencentes ao cendrio sao
desligadas visando ndo consumir recursos e influenciar as medi¢des que estdo sendo realizadas.
No cenario 1 a carga de trabalho é direcionada para o SIG@ nio conteinerizado. Ja no cenario
2 as requisi¢des tém como destino a versao conteinerizada do sistema.

Cada cendrio recebeu cinco testes de carga e responderam de forma similar as requisi¢des.
Enquanto o cendrio 1 realizou em média 2675,2 das 2800 matriculas demandas com o tempo
médio de 2215 ms por requisi¢do, o cendrio 2 atendeu 2676,4 matriculas em média no com o
tempo médio de resposta de 2198 ms.

Visando apresentar o volume de dados, os resultados foram exibidos nas subsecdes
seguintes através de diagramas de caixa. Esses diagramas agregam as medicdes de cada maquina
virtual juntamente com as VMs que compdem seus respectivos cendrios, facilitando a visualiza-
cdo do uso de recursos no ambiente de teste. Foram selecionadas quatro métricas primdrias para
essa visualizacao, sendo uma referente ao uso de CPU, outra ao uso de disco, uma terceira ao
uso de rede e a ultima ao uso de memoria.

Considerando que todas as VMs testadas estavam hospedadas em um servidor ProLiant
DL360 Gen9 com 2 processadores, cada um com 10 nucleos e 20 threads, o uso percentual de
CPU representa o valor méximo de processamento fornecido a VM pelo hipervisor, dependendo
da quantidade de processadores 16gicos configurados. As demais métricas se referem a valores
absolutos. O uso de memoria € medido em megabytes de RAM ocupados. Ja o uso de rede é
expresso em megabytes por segundo do fluxo de rede agregado, ou seja, a soma do que a VM

recebe e envia por segundo através de sua interface de rede. Por fim, o uso de disco € medido em

35

IOPS, que em portugués significa "operacdes de entrada/saida por segundo".

4.1 BALANCEADOR DE CARGA E BANCO DE DADOS

Tanto na camada de balanceamento de carga quanto na camada de banco de dados do
sistema, apenas uma maquina virtual foi utilizada nos ambientes experimentais discutidos neste
trabalho. Estas duas VMs sdo reutilizadas em ambos os cendrios sem modificagdes em todas as
cinco repeticoes de cada cendrio. Apds cada realizacdo de teste, cada VM tem seu estado anterior
restaurado mediante uma funcionalidade do Vcenter, o snapshot. Ao todo elas sdo utilizadas dez

vezes, sendo que para cada utilizacao sdo geradas 4200 amostras de dados, totalizando 42 mil.

4.1.1 Balanceador de Carga

Responsavel por receber as requisi¢des dos usudrios por meio de Apache Server 2.4.6,
esta VM possui o SO CentOS 7, 20 GB de memoéria RAM e 4 vCPUs. Historicamente, apresenta

baixas taxas de utilizacdo de disco, memoéria e CPU, porém valores altos na utilizacao de rede.

Figura 14: Processamento do Balanceador de Carga.

Uso de CPU
[]
50 1
40 i
30 1
ES
20 1
10
0
T T
Cenario 1 Cenario 2

Fonte: Elaborado pelo autor (2023).

36

Figura 15: Utilizagdo de Meméria RAM pelo Balanceador de Carga.

Uso de memoria

650.0 4

647.5 4

645.0 4

642.5 1

MB

640.0 1

637.5 1

635.0

632.5 1

T
Cenario 1 Cenario 2

Fonte: Elaborado pelo autor (2023).

Figura 16: Instrucdes de entrada e saida por segundo no Balanceador de Carga.

Uso de disco

25 1

20 A

IOPS

15 ~

10 ~

Cenario 1 Cenario 2

Fonte: Elaborado pelo autor (2023).

37

Figura 17: Trafego de rede no Balanceador de Carga.

Uso de rede

17.5 +

15.0 ~ 4

12.5 1 '

10.0 ~

MBps

7.5 7

5.0 A

2.5 7

0.0

Cenario 1 Cenario 2

Fonte: Elaborado pelo autor (2023).

As Figuras 14, 15, 16 e 17 agrupam as 42 mil medic¢des que descrevem o comportamento
da VM de balanceamento de carga durante os dez testes realizados. Os resultados obtidos para o
uso de CPU, escrita em disco e uso de rede apresentam uma grande similaridade, enquanto o
uso de memoria no cendrio conteinerizado € ligeiramente inferior. No entanto, a0 compararmos
as medianas mostradas na Figura 15, que sdo de 646,4 MB no primeiro cendrio e 636,6 MB no
segundo, com o total de memoria disponivel para a maquina virtual, que € de 20 GB, percebemos

que a diferenca € desprezivel.

4.1.2 Banco de Dados

E composto por uma tnica VM que concentra a escrita de todas as informagdes pertinen-
tes do sistema em uma instancia do Oracle DB 11g que ocupa cerca de 1,5 TB. Possui 32 GB de

memoria RAM, 12 vCPU s e historicamente faz o uso intensivo de disco e memoria.

%

MB

Figura 18: Processamento do Banco de Dados.

Uso de CPU
60 1 ¢
L]
: L]
50 | Al; '
ol i
30 -
20 A _ _
10 1
0 ‘ '
Cenario 1 Cenario 2

Fonte: Elaborado pelo autor (2023).

Figura 19: Utilizacdo de Meméria RAM pelo Banco de Dados.

Uso de meméria

1350 4
1300 4
1250
1200 A)
1150 A ‘ |
)
L 4
T T
Cenario 1 Cenario 2

Fonte: Elaborado pelo autor (2023).

39

Figura 20: Instrugdes de entrada e saida por segundo no Banco de Dados.

Uso de disco

160 []
140 A
120 - ¢
L]
100 L]
L
% 80 ¢
o R ‘
60 1
40 -
20
0-
Cenario 1 Cenario 2
Fonte: Elaborado pelo autor (2023).
Figura 21: Trafego de rede no Banco de Dados.
Uso de rede
25 A
[]
' L]
20 A
15 1
75
o
@
=
5 -
0 - l

Cenario 1 Cenario 2

Fonte: Elaborado pelo autor (2023).

As Figuras 18, 19, 20 e 21 agrupam as 42 mil medi¢des que descrevem o comportamento
da VM de banco de dados durante os dez testes realizados. Os resultados obtidos para as quatro
métricas estudadas apresentam alto grau de similaridade, sendo que o uso de memdria no cendrio

conteinerizado é ligeiramente inferior e o uso de disco € ligeiramente maior. No entanto, como

40

era esperado, essas diferencgas ndo sdo significativas e podemos afirmar que o desempenho do

banco de dados nos dois cendrios € equivalente.

4.2 CAMADA DE APLICACAO

Embora as duas solu¢des de implementacao do SIG@ tenham atendido as solicitagcdes
de matriculas de forma similar, cerca de 96% das requisi¢cdes de matricula com sucesso, o
consumo de recursos computacionais apresentou particularidades em cada cendrio. Através das
métricas apresentadas e discutidas nas seguintes subsecdes, o custo computacional de cada um

dos cendrios serd exposto.

4.2.1 Usode CPU

Toda tecnologia de virtualizacdo possui sobrecargas caracteristicas. Ao passo que o
cendrio 1 possui todos os overheads inerentes ao uso do hipervisor, o cenario 2 herda todas as
sobrecargas conhecidas da virtualizacdo por VM e ainda tem as penalidades de desempenho
da virtualizag@o ao nivel de sistema operacional. Segundo Enberg ef al. (2016), as sobrecargas
do hipervisor ligadas ao uso de CPU sao originadas pelo agendamento duplo, equidade de

escalonamento, gestdo de interrupgdes e assimetria nas vCPU.

Figura 22: Uso de CPU nas VMS da camada de aplicacéo vs Tempo.

Cendrio 1

Cendrio 2

Fonte: Elaborado pelo autor (2023).

A Figura 22 mostra a utilizagdo da capacidade total de processamento de cada VM

41

Figura 24: Uso agregado de CPU em % ajustado a curva normal

(a) App01 e App02 (b) Cont01 e Cont02

norm(loc=32.3807, scale=14.245) normiloc=22.5819, scale=11.017))

Fonte: Elaborado pelo autor (2023).

durante o primeiro teste de carga recebido pelo ambiente. Nela, nota-se uma grande variagdo de
valores, especialmente no ambiente ndo conteinerizado. Tal flutuagcdo no uso de CPU é comum,
mas requer aten¢do especial para a alocagdo de mdquinas virtuais com comportamento similar
no mesmo servidor fisico, uma vez que vdrias delas podem solicitar acesso ao processador ao

mesmo tempo, sobrecarregando o escalonador do hipervisor.

Figura 23: Boxplot do uso de CPU das VMS.

Uso de CPU

80+

>e

60 4

204

Appo1 Appo2 Cont0l Contoz

Fonte: Elaborado pelo autor (2023).

Ja a Figura 23 agrega os valores captados nos dez testes realizados, cinco em cada
cendrio, e os dispdem lado a lado mostrando a simetria entre as maquinas envolvidas no cendrio.
A Figura 24 mostra o quio a distribui¢do normal se ajusta aos dados observados com paramétros
u =32.38 e 0 = 14.21 no cendrio 1 e u =22.58 e 6 = 11.02 para o cendrio 2, com excecao
aos picos de utilizacao nula da CPU nos dois graficos que correspondem aos instantes finais
do experimento, nos quais a carga de trabalha ja havia sido processada. A Tabela 6 referendas

os valores apresentados nas figuras anteriores. Nela observamos que a média se aproxima da

42

Tabela 6: Utilizacao percentual de CPU nas 21 mil medicdes.

App01 App02 Cont01 Cont02

Média 33.35 3141 2238 22.78

Desvio Padriao 14.38 14.04 10.79 11.24
Minimo 0.0 0.0 0.0 0.0

25% 24.81 23.17 15.24 15.50

50% 33.76 3175 22.11 22.51

75% 4245 4042 29.20 29.69

Miaximo 87.02 78.10 73.89 717.75

Fonte: Elaborado pelo autor (2023)

mediana, comportamento tipico da distribui¢do normal. Outro fato importante observado € a
alta variancia na utilizacdo da CPU em ambos cendrios e o uso levemente inferior no ambiente

conteinerizado.

4.2.2 Uso de disco

O tempo de acesso ao disco € ordens de grandeza maior que tempo de acesso a memdria,
logo quantos menos acesso a disco, mais rapida tende a ser a aplicagdo. Enquanto o hipervisor
lida com overhead relacionado ao escalonamento das requisi¢des de acesos ao disco vindo
de multiplas VMs, uma aplicagcdo conteinerizada lida com o atraso relacionado a estrutura
em camadas do sistema de arquivos que compde um contéiner. A Figura 25 mostra quantas
instrucdes de leitura ou escrita, IOPS, foram geradas durante o primeiro experimento em cada
cendrio. Nela € clara a discrepancia de comportamento entre os dois ambientes, visto que o
ambiente em contéiner gera instrucdes de acesso ao disco constantemente, enquanto as maquinas
no ambiente ndo-conteinerizado raramente acessam o disco, mas quando o fazem, € em grandes
volumes.

A Figura 26 agrega os valores de instrugdes de escrita/leitura em disco (IOPS) geradas
nos dez testes realizados, cinco em cada cendrio, e os dispdem lado a lado. Apesar de ambos os
cendrios apresentarem valores médios baixos, 2 IOPS no primeiro e 15 no segundo, graficamente
podemos notar que o cendrio de containers gerou mais outliers relevantes. Este comportamento
ndo é desejavel, pois tem poder de contribuir na formacgdo de gargalos no acesso a unidade de

armazenamento.

43

IOPS

IOPS

Figura 25: Comparativo do uso de disco CPU nas VMS da camada de aplicagdo.

10PS

Fonte: Elaborado pelo autor (2023).

Figura 26: Boxplot do uso de disco das VMS.

Uso de disco

200

150

+
+
L
i—

o g
A & &
FQ e e e -

Appo1 App02 Conto1 Conto2

Fonte: elaborado pelo autor (2023).

— App01
—— App02

— Cont01
——Cont02

44

Tabela 7: Utilizac@o de discos medidos em IOPS nas 21 mil medigdes.

App01 App02 Cont01 Cont02
Média 1.56 1.60 15.16 15.28
Desvio Padrao 6.23 6.73 15.28 15.03
Minimo 0.0 0.0 0.0 0.0
25% 0.0 0.0 8.0 8.0
50% 0.0 0.0 13.0 12.0
75% 0.0 0.0 23.0 23.0
Miaximo 82.0 90 224.0 196
Fonte: Elaborado pelo autor (2023)

4.2.3 Uso de memoria

Tanto a virtualizacdo baseada em hipervisores, quanto a virtualizacao ao nivel de sistema
operacional, gera degradacao de desempenho no uso de memdria.

Dois mecanismos sdo responsaveis por esta degradacao de desempenho, perda na recu-
peragdo de memoria(ballooning) e a deduplicacdo. O Ballooning é uma técnica utilizada pelos
hipervisores modernos que consiste em gerar um processo no SO de suas VMs guests com a
inten¢do de ter posse sobre parte da memoria de VM e por redistribui-lo quando necessério.
J4 a deduplicacdo € uma técnica que visa diminuir o consumo de memoria ao identificar que
conteudos iguais repetidos. O hipervisor comumente utiliza a deduplicacdo quando possui mais
de uma VM com o o mesmo SO e o container engine utiliza esta técnica para evitar que uma lib
ou arquivo seja alocado em memoria mais vezes do que o necessario Enberg et al. (2016). Como
o cendrio 2 emprega as duas tecnologias de virtualizacdo, contéiner sobre maquinas virtuais
gerenciadas por hipervisor, ele sofre duplamente com este overhead.

A Figura 25 mostra a utilizacdo de memoria RAM durante o primeiro experimento em
cada cenario. O comportamento do grafico em ambos cendrios sugere que a aplicagdo tende a
reter dados referente a sess@o ativa na memoria sem a devida liberac@o no periodo observado.
Além disto, é observado que as méaquinas do cendrio conteinerizado no momento de inicio da
medi¢do consomem quase 3 GB a menos que as VMs do primeiro cendrio.

Ja Figura 28 agrega os valores de ocupacdo de memoria RAM capturadas nos dez testes
executados, sendo cinco em cada cendrio, e os dispdem lado a lado. A simetria deste grafico
mostra a consisténcia no consumo de memoria durante os experimentos. Este comportamento
pode ser explicado pela recuperagdo de snapshot realizado antes do inicio de cada teste, que

for¢a que cada maquina comece cada teste com o mesmo estado salvo.

45

Meméria (GB)

Meméria (GB)

11

10.8

10.6

10.4

10.2

10

Figura 27: Comparativo do uso de memoria nas VMS da camada de aplicacao.

— App0O1
—— App02

— Cont01
——Cont02

Fonte: Elaborado pelo autor (2023).

Figura 28: Boxplot do uso de memoria das VMS

Uso de memodria

11.04

10.5 1

10.0 1

T T T T
App0l App02 Cont0O1 Cont02

Fonte: Elaborado pelo autor (2023).

46

Tabela 8: Utilizagdo de memoéria RAM em GB nas 21 mil medigdes.

App01 App02 Cont01 Cont02

Média 10.58 10.57 7.60 7.61

Desvio Padrao 0.34 0.33 0.27 0.27

Minimo 9.98 9.97 7.14 7.15

25% 1029 1028 7.37 7.37

50% 10.58 10.57 17.61 7.61

75% 10.87 10.86 7.84 7.83

Miaximo 11.12 11.12 8.04 8.04
Fonte: Elaborado pelo autor (2023)

4.2.4 Uso de rede

Uma vez que o SIG@ € uma aplicacdo web, sobrecargas nas interfaces de rede podem
ter resultados facilmente percebidos pelos usudrios. A multiplexacdo dos pacotes realizada pelo
hipervisor traz sobrecargas quando comparado a um servidor fisico. Porém, uma aplicacdo
conteinerizada tende a sofrer com instabilidades de rede, conforme descrito por Whiteaker et al.
(2011).

Figura 29: Comparativo do uso rede nas VMS da camada de aplicagdo

— App01

10 —— App02
0] .
é.. 6
4
2
0
20 — Cont01
——Cont02
15
n
éﬁ' 1

Fonte: Elaborado pelo autor (2023).

Os gréficos na Figura 29 mostram o fluxo agregado das interfaces de rede, a soma
do trdfego que chega e do que sai de cada uma das VMs durante o primeiro teste em cada
cendrio.Durante este experimento, o cendrio 1 apresentou um fluxo médio de 5,6 MBps, enquanto

o cendrio 2 apresentou um fluxo médio de 9 MBps. O comportamento em rajadas, comumente

47

Figura 30: Uso agregado de rede em MBps ajustado a curva normal

(a) AppO1 e App02 (b) Cont01 e Cont02

norm(loc=5.6389, scale=2.67867) norm(loc=8.87976, scale=5.02719)

20

15
Rede (MBps)

Fonte: Elaborado pelo autor (2023).

observado no monitoramento de redes, foi caracterizado em ambos os cenarios devido ao desvio
padrdo das amostras ter sido superior a metade da média.

Na Figura 31, € possivel visualizar os valores do trafego de rede capturados nos cinco
testes executados para cada cendrio. E notdvel através da grande dispersdo das medidas o
comportamento em rajadas, comum em aplicacdes de rede, e também € possivel observar que a
versdo conteinerizada do ambiente apresenta um fluxo de rede maior. Estes dados sdo dispostos
na Tabela 9, onde podemos notar que o fluxo de dados no ambiente conteinerizado ¢ em média
2.14 vezes maior do que no cendrio tradicional. Na Figura 30 € notado o ajuste dos dados
capturados nos cinco experimentos medidos a distribuicdo normal com pardmetros it =5.64 ¢ ©

=2.68 no cendrio 1 e 4 =12.05 e 6 = 6.97 no cendrio 2.

Figura 31: Boxplot do uso de rede das VMS.

Uso de rede

3
-

254

04 JE JR S

. . ‘ .
Appo1 Appo2 Cont01 Conto2

Fonte: Elaborado pelo autor (2023).

Tabela 9: Uso de rede agregado em MBps nas 21 mil medicoes.

App01 App02 Cont01 Cont02
Média 5.63 5.64 8.81 15.28
Desvio Padrao 2.64 2.71 4.99 8.95
Minimo 0.0 0.0 0.0 0.0
25% 3.92 3.90 5.30 5.40
50% 5.71 5.66 8.44 8.79
75% 7.44 7.48 12.04 12.31
Miaximo 14.65 15.60 32.76 30.37
Fonte: Elaborado pelo autor (2023)

49

CONCLUSAO

Dada a sua capacidade de simplificar a implantacdo de aplicativos e melhorar a eficiéncia
operacional em ambientes de computacdo em nuvem e de microsservicos, a conteinerizacao
tem se tornado cada vez mais popular nos tltimos anos. Este trabalho comparou o desempenho
do SIG@ em méquinas virtuais e uma versao em contéineres executada em um ambiente que
também utiliza méquinas virtuais, analisando o desempenho delas no uso do SIG@.

Assim, realizou-se uma andlise prévia da estrutura, tendo como foco o periodo de maior
criticidade e utilizacdo do sistema, a matricula, e criou-se uma carga de trabalho equivalente. Na
andlise de desempenho, notou-se que no cendrio somente com VMs, 95,5% das requisi¢oes de
matricula foram atendidas com sucesso com tempo médio resposta de 2679 ms. No segundo
cendrio, contendo a versdo conteinerizada da aplicacdo executada sobre maquinas virtuais,
obteve-se sucesso de 95,6% das requisi¢cdes de matricula e tempo médio resposta de 2215
ms. Em termos de uso de recursos computacionais, o cendrio com a aplicacao conteinerizada
apresentou um consumo inferior de memoéria RAM, porém de CPU e rede similares.

Os resultados mostraram que apesar da sobrecarga gerada pelo uso de contéineres sobre
maéaquinas virtuais, € vidvel a implementacdo dessa arquitetura para a aplicagdo do SIG@,
corroborando com a literatura. Logo, a ado¢do gradual ou completa de conté€ineres ndo deve
afetar a qualidade do servi¢o prestado aos usudrios finais e ainda trard vantagens, como a

autoescalabilidade do servico em tempo de execugdo.

5.1 TRABALHOS FUTUROS

Embora este trabalho tenha avangado na comparacgao dos cendrios de implantacao do
SIG@, ha possibilidades a serem exploradas tais como: aprimorar a carga de trabalho, simulando
diferentes dispositivos teste, visando se aproximar da carga real registrada; relizar mais repeticoes
dos experimentos, dando mais confiabilidades aos resultados obtidos; avaliar o desempenho
de um ambiente hibrido contendo um nimero reduzido méaquinas virtuais com a aplicacao nao
conteinerizada e outras maquinas virtuais sustentando um cluster autoescaldvel de cont€ineres
gerenciado por uma ferramenta de orquestracdo atrelada ao balanceador carga do sistema. Esta

arquitetura garante que o sistema esteja sempre acessivel através da tecnologia utilizada ha

50

anos no SIG@, mesmo que para um ndmero reduzido de clientes, e a medida que o sistema for

demandado novos containers sio levantados para atender a carga extra.

51
REFERENCIAS

Adams, K. & Agesen, O. (2006). A comparison of software and hardware techniques for x86
virtualization. ACM Sigplan Notices, 41(11):2—13.

al dhuraibi, Y., Fawaz, P., Djarallah, N., & Merle, P. (2017). Elasticity in cloud computing: State
of the art and research challenges. IEEE Transactions on Services Computing, PP:1-1.

Analytics, G. (2023). Google analytics - sdk. https://developers.google.com/
analytics [Acessado: 12/04/2023].

BlazeMeter (2023). Blazemeter chrome extension - record. https://guide.blazemeter.
com/hc/en-us/articles/13354685951505-Chrome-Extension—Record
[Acessado: 12/04/2023].

Clemente, D., Pereira, P., Dantas, J., & Maciel, P. (2022). Availability evaluation of system
service hosted in private cloud computing through hierarchical modeling process. The Journal of
Supercomputing, 78(7):9985-10024.

de Sousa Santos, I. & dos Santos Neto, P. d. A. (2008). Automacao de testes de desempenho e
estresse com o jmeter.

Docker (2023a). Docker overview. https://docs.docker.com/get—started/ [Aces-
sado: 12/04/2023].

Docker (2023b). Image layer details. https://hub.docker.
com/layers/library/ubuntu/jammy-20211122/images/
sha256-3c3de9608507804525££f4303874525760€a36d62606e8105f515adaa761b80cb
[Acessado: 12/04/2023].

Dstat (2023). Dstat no red hat. https://access.redhat.com/documentation/
pt-br/red_hat_enterprise_linux/6/html/6.7_technical_notes/
package—dstat [Acessado: 12/04/2023].

Enberg, P. et al. (2016). A performance evaluation of hypervisor, unikernel, and container
network i/o virtualization.

Felter, W., Ferreira, A., Rajamony, R., & Rubio, J. (2015). An updated performance comparison
of virtual machines and linux containers. In 2015 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), 171-172.

Hwang, J., Zeng, S., y Wu, E.,, & Wood, T. (2013). A component-based performance comparison
of four hypervisors. In 2013 IFIP/IEEE International Symposium on Integrated Network
Management (IM 2013), 269-276.

Jin, Y., Wen, Y., Chen, Q., & Zhu, Z. (2013). An empirical investigation of the impact of server
virtualization on energy efficiency for green data center. The Computer Journal, 56(8):977-990.

Jmeter (2023). Get started with jmeter. https://jmeter.apache.org/usermanual/
get-started.html [Acessado: 12/04/2023].

https://developers.google.com/analytics
https://developers.google.com/analytics
https://guide.blazemeter.com/hc/en-us/articles/13354685951505-Chrome-Extension-Record
https://guide.blazemeter.com/hc/en-us/articles/13354685951505-Chrome-Extension-Record
https://docs.docker.com/get-started/
https://hub.docker.com/layers/library/ubuntu/jammy-20211122/images/sha256-3c3de9608507804525ff4303874525760ea36d62606e8105f515adaa761b80cb
https://hub.docker.com/layers/library/ubuntu/jammy-20211122/images/sha256-3c3de9608507804525ff4303874525760ea36d62606e8105f515adaa761b80cb
https://hub.docker.com/layers/library/ubuntu/jammy-20211122/images/sha256-3c3de9608507804525ff4303874525760ea36d62606e8105f515adaa761b80cb
https://access.redhat.com/documentation/pt-br/red_hat_enterprise_linux/6/html/6.7_technical_notes/package-dstat
https://access.redhat.com/documentation/pt-br/red_hat_enterprise_linux/6/html/6.7_technical_notes/package-dstat
https://access.redhat.com/documentation/pt-br/red_hat_enterprise_linux/6/html/6.7_technical_notes/package-dstat
https://jmeter.apache.org/usermanual/get-started.html
https://jmeter.apache.org/usermanual/get-started.html

52

Madeira, S. J. P. S. (2018). Avaliacdo de usabilidade do sistema de informacdes e gestdo
académica da universidade federal de pernambuco (sig@/ufpe): um estudo de caso no centro de
artes e comunicac¢ao. Master’s thesis, Universidade Federal de Pernambuco.

Mavridis, I. & Karatza, H. D. (2017). Performance and overhead study of containers running on
top of virtual machines. 2017 IEEE 19th Conference on Business Informatics (CBI), 02:32-38.

OpenLogic (2022). Ranking the top enterprise and open source ope-
rating systems of 2022. https://www.openlogic.com/blog/
top-open—-source—operating-systems—2022 [Acessado: 12/04/2023].

Oracle (2023). Oracle documentation library. https://docs.oracle.com/cd/
E18283_01/index.htm[Acessado: 12/04/2023].

Rosenblum, M. & Garfinkel, T. (2005). Virtual machine monitors: Current technology and future
trends. Computer, 38(5):39-47.

Sahoo, J., Mohapatra, S., & Lath, R. (2010). Virtualization: A survey on concepts, taxonomy and
associated security issues. In 2010 second international conference on computer and network
technology, 222-226.

Shirinbab, S. & Lundberg, L. (2015). Performance implications of over-allocation of virtual
cpus. In 2015 International Symposium on Networks, Computers and Communications (ISNCC),
1-6.

SIG@ (2023). Pargina inicial do siga. https://siga.ufpe.br/ufpe/index. jsp
[Acessado: 12/04/2023].

Soltesz, S., Potzl, H., Fiuczynski, M. E., Bavier, A., & Peterson, L. (2007). Container-based
operating system virtualization: a scalable, high-performance alternative to hypervisors. In
Proceedings of the 2Nd ACM SIGOPS/EuroSys european conference on computer systems 2007,
275-287.

VMware (2023). Péagina do produto. https://www.vmware.com/br/products/
vsphere.html [Acessado: 12/04/2023].

W3Techs (2023). Uso do apache segundo w3techs. https://w3techs.com/
technologies/details/ws—apache [Acessado: 12/04/2023].

Whiteaker, J., Schneider, F., & Teixeira, R. (2011). Explaining packet delays under virtualization.
ACM SIGCOMM Computer Communication Review, 41(1):38—44.

Zabbix (2023). Documentagao oficial do zabbix. https://www.zabbix.com/manuals
[Acessado: 12/04/2023].

https://www.openlogic.com/blog/top-open-source-operating-systems-2022
https://www.openlogic.com/blog/top-open-source-operating-systems-2022
https://docs.oracle.com/cd/E18283_01/index.htm
https://docs.oracle.com/cd/E18283_01/index.htm
https://siga.ufpe.br/ufpe/index.jsp
https://www.vmware.com/br/products/vsphere.html
https://www.vmware.com/br/products/vsphere.html
https://w3techs.com/technologies/details/ws-apache
https://w3techs.com/technologies/details/ws-apache
https://www.zabbix.com/manuals

	5918e11f84a38a549c0c3340b6c89039241b90a1984b5fab3cc82ed7b3b3f6eb.pdf
	5918e11f84a38a549c0c3340b6c89039241b90a1984b5fab3cc82ed7b3b3f6eb.pdf
	5918e11f84a38a549c0c3340b6c89039241b90a1984b5fab3cc82ed7b3b3f6eb.pdf
	Introdução
	Objetivos
	Estrutura do Documento

	Referencial Teórico
	Contextualização histórica
	Virtualização Baseada em HIPERVISOR
	Virtualização baseada em Contêiner
	VMware vSphere
	CentOS
	Docker
	Apache
	Google Analytics
	Apache JMeter
	BlazeMeter
	Dstat
	Zabbix
	Oracle DB

	Arquitetura dos Ambientes
	Ambiente em Produção
	Ambiente Experimental
	siga Tradicional
	siga Conteinerizado

	Carga de Testes

	Resultado dos Experimentos
	Balanceador de carga e Banco de dados
	Balanceador de Carga
	Banco de Dados

	Camada de aplicação
	Uso de CPU
	Uso de disco
	Uso de memória
	Uso de rede

	Conclusão
	Trabalhos Futuros

	REFERÊNCIAS

