
Israel Bruno dos Santos Duarte

Análise de Desempenho de Sistemas em Ambientes Virtualizados: um
estudo de caso do SIG@

Universidade Federal de Pernambuco
ibsd@cin.ufpe.br

www.cin.ufpe.br/~ibsd

Recife
2023

www.cin.ufpe.br/~ibsd

Israel Bruno dos Santos Duarte

Análise de Desempenho de Sistemas em Ambientes Virtualizados: um
estudo de caso do SIG@

Trabalho apresentado ao Programa de Graduação em Enge-
nharia da Computação do Centro de Informática da Univer-
sidade Federal de Pernambuco como requisito parcial para
obtenção do grau de Bacharel em Engenharia da Computa-
ção.

Área de Concentração: Redes de Computadores e
Sistemas Distribuídos
Orientador: Andson Marreiros Balieiro

Recife
2023

Ficha de identificação da obra elaborada pelo autor,
 através do programa de geração automática do SIB/UFPE

Duarte, Israel Bruno dos Santos.
 Análise de Desempenho de Sistemas em Ambientes Virtualizados: um
estudo de caso do SIG@ / Israel Bruno dos Santos Duarte. - Recife, 2023.
 52 : il., tab.

 Orientador(a): Andson Marreiros Balieiro
 Trabalho de Conclusão de Curso (Graduação) - Universidade Federal de
Pernambuco, Centro de Informática, Engenharia da Computação - Bacharelado,
2023.

 1. SIG@. 2. Hipervisor. 3. Avaliação de Desempenho. 4. Contêiner. 5.
Virtualização. I. Balieiro, Andson Marreiros. (Orientação). II. Título.

 000 CDD (22.ed.)

AGRADECIMENTOS

A minha família, especialmente meus pais e irmãos, que sempre me apoiaram em todos
os momentos.

A Marco e suas notas de revisão. Aos meus amigos do NTI pelo apoio técnico na
execução dos experimentos descritos nesse documento. Em especial ao quadrado mágico: Rafael
Santana, Domingos, Artur e Tarcísio.

E também ao meu orientador Andson Balieiro pelo apoio e chance de finalmente concluir
o curso de Engenharia da Computação

“One day I will find the right words, and they will be simple."

–Jack Kerouac

ABSTRACT

Since 2002, the Integrated Academic Management System (SIGA) has been maintained
and used by the Federal University of Pernambuco (UFPE) to manage institutional processes.
During this period, various versions of the system have been hosted on different physical and
virtual hardware configurations, with hardware virtualization by hypervisors currently being
employed. However, container-based virtualization is already included in future plans in which
the available employment options are under analysis. Thus, this study aims at analyzing the
comparative performance of SIGA running in the current virtual machine-based environment
to that executed in containers. To do so, a production-like test environment was designed and
subjected to a test load with volume and behavior analogous to the period of maximum system
utilization, student enrollment, and the two deployment scenarios were analyzed. The results
indicate that the containerization of the system can be adopted without noticeable impacts on the
end-user and providing memory resource savings with a slight increase in the number of disk
accesses.

Keywords: SIG@, Hypervisor, ESXI, Container, Virtualization

RESUMO

Desde 2002, o Sistema Integrado de Gestão Acadêmica (SIGA) é mantido e utilizado
pela Universidade Federal de Pernambuco (UFPE) para gerenciar os processos institucionais.
Neste período as várias versões do sistema foram hospedadas sobre diferentes configurações de
hardwares físicos e virtuais, sendo a virtualização de hardware por hipervisores a atualmente
empregada. No entanto, a virtualização baseada em contêineres já está incluída nos planos de
adoção futuros e encontra-se atualmente em fase de análise das opções disponíveis. Desta forma,
este trabalho busca analisar o desempenho comparativo do SIGA no ambiente atual, baseado em
máquinas virtuais, com o executado em contêineres. Para isso, um ambiente de testes similar ao
de produção foi criado, submetido a uma carga de testes com volume e comportamento análogo
ao período de máxima utilização do sistema, a matrícula e os dois cenários de implantação foram
analisados. Os resultados obtidos indicam que a conteinerização do sistema pode ser adotada
sem impactos perceptíveis para o usuário final e ainda gerar economia de recursos de memória
com leve aumento no número de acessos ao disco.

Palavras-chave: SIG@, Hipervisor, Avaliação de Desempenho, Contêiner, Virtualização

LISTA DE FIGURAS

Figura 1 – Hipervisor Tipo-1 vs Hipervisor Tipo-2 17
Figura 2 – Contêiner em bare-metal. 18
Figura 3 – Contêiner sobre máquina virtual. 19
Figura 4 – Estrutura do ambiente virtualizado VMware vSphere. 20
Figura 5 – Camadas em detalhes ubuntu:jammy. 21

Figura 6 – Ambiente em produção (2023). 25
Figura 7 – Diagrama lógico dos ambientes de testes. 26
Figura 8 – Infraestrutura do cenário análogo ao de produção. 29
Figura 9 – Infraestrutura do cenário conteinerizado. 29
Figura 11 – Quantidade de acessos ao Sistema de Informações e Gestão Acadêmica

(SIG@) durante o período de matrículas para o semestre 2022.2. . . . 30
Figura 10 – Acessos ao SIG@ durante matrículas de 2022.2 31
Figura 12 – BlazeMeter, ferramenta utilizada na captura das ações para matrícula. . 32
Figura 13 – Carga de testes executada pelo Apache Jmeter sobre o sistema. 33

Figura 14 – Processamento do Balanceador de Carga. 35
Figura 15 – Utilização de Memória RAM pelo Balanceador de Carga. 36
Figura 16 – Instruções de entrada e saída por segundo no Balanceador de Carga. . 36
Figura 17 – Tráfego de rede no Balanceador de Carga. 37
Figura 18 – Processamento do Banco de Dados. 38
Figura 19 – Utilização de Memória RAM pelo Banco de Dados. 38
Figura 20 – Instruções de entrada e saída por segundo no Banco de Dados. 39
Figura 21 – Tráfego de rede no Banco de Dados. 39
Figura 22 – Uso de CPU nas VMS da camada de aplicação vs Tempo. 40
Figura 24 – Uso agregado de CPU em % ajustado a curva normal 41
Figura 23 – Boxplot do uso de CPU das VMS. 41
Figura 25 – Comparativo do uso de disco CPU nas VMS da camada de aplicação. . 43
Figura 26 – Boxplot do uso de disco das VMS. 43
Figura 27 – Comparativo do uso de memória nas VMS da camada de aplicação. . . 45
Figura 28 – Boxplot do uso de memória das VMS 45
Figura 29 – Comparativo do uso rede nas VMS da camada de aplicação 46
Figura 30 – Uso agregado de rede em MBps ajustado a curva normal 47
Figura 31 – Boxplot do uso de rede das VMS. 47

LISTA DE TABELAS

Tabela 1 – Comparativo entre modelos de virtualização 17

Tabela 2 – Hardware virtual do SIG@ em produção 26
Tabela 3 – Máquinas virtuais (VMs) utilizadas nos experimentos. 28
Tabela 4 – Configuração de Memória da Java Virtual Machine para a execução do

SIG@. 28
Tabela 5 – Dispositivos utilizados no acesso ao SIG@ e no momento de confirmar a

matrícula. 31

Tabela 6 – Utilização percentual de CPU nas 21 mil medições. 42
Tabela 7 – Utilização de discos medidos em IOPS nas 21 mil medições. 44
Tabela 8 – Utilização de memória RAM em GB nas 21 mil medições. 46
Tabela 9 – Uso de rede agregado em MBps nas 21 mil medições. 48

LISTA DE ACRÔNIMOS

CPU Central Processing Unit
DC Data Center
HTTP Hypertext Transfer Protocol
JVM Java Virtual Machine
MVC Model-View-Controller
RHEL Red Hat Enterprise Linux
SGBDR Sistema Gerenciador de Bancos de Dados Relacional
SI Sistema de Informações
SIG@ Sistema de Informações e Gestão Acadêmica
SO Sistema Operacional
SSD Solid State Drive

STI Superintendência de Tecnologia da Informaçães
UF Universidade Federal
UFPE Universidade Federal de Pernambuco
US EPA United States Environmental Protection Agency
VM Máquina virtual- Virtual Machine

VMM Virtual Machine Monitor
VMs Máquinas virtuais

LISTA DE ALGORITMOS

Algoritmo 1 – Pseudocódigo do Script Jmeter . 33

SUMÁRIO

1 INTRODUÇÃO . 13
1.1 OBJETIVOS . 14
1.2 ESTRUTURA DO DOCUMENTO . 14

2 REFERENCIAL TEÓRICO . 15
2.1 CONTEXTUALIZAÇÃO HISTÓRICA . 15
2.2 VIRTUALIZAÇÃO BASEADA EM HIPERVISOR 16
2.3 VIRTUALIZAÇÃO BASEADA EM CONTÊINER 17
2.4 VMWARE VSPHERE . 19
2.5 CENTOS . 20
2.6 DOCKER . 20
2.7 APACHE . 21
2.8 GOOGLE ANALYTICS . 21
2.9 APACHE JMETER . 22
2.10 BLAZEMETER . 22
2.11 DSTAT . 22
2.12 ZABBIX . 22
2.13 ORACLE DB . 22

3 ARQUITETURA DOS AMBIENTES 24
3.1 AMBIENTE EM PRODUÇÃO . 24
3.2 AMBIENTE EXPERIMENTAL . 26
3.2.1 SIG@ Tradicional . 28
3.2.2 SIG@ Conteinerizado . 29
3.3 CARGA DE TESTES . 29

4 RESULTADO DOS EXPERIMENTOS 34
4.1 BALANCEADOR DE CARGA E BANCO DE DADOS 35
4.1.1 Balanceador de Carga . 35
4.1.2 Banco de Dados . 37
4.2 CAMADA DE APLICAÇÃO . 40
4.2.1 Uso de CPU . 40
4.2.2 Uso de disco . 42
4.2.3 Uso de memória . 44
4.2.4 Uso de rede . 46

5 CONCLUSÃO . 49
5.1 TRABALHOS FUTUROS . 49

REFERÊNCIAS . 51

131313

1
INTRODUÇÃO

Em um semestre típico, uma Universidade Federal (UF) do porte da Universidade Federal
de Pernambuco (UFPE) pode ter cerca de cinquenta mil alunos ativos, sem contar com milhares
de técnicos administrativos e docentes. Para auxiliar na administração das UFs, são utilizados
Sistema de Informações (SI) capazes de coletar e gerenciar dados de vários subsistemas, apoiando
as operações e tomada de decisões.

Neste contexto, desde 2003, a UFPE utiliza o SIG@ (2023), que gerencia os processos
institucionais de ensino (graduação e pós-graduação), pesquisa, extensão, restaurante universitá-
rio, eleição de reitor e gestão de bens e pessoas. Em seus primeiros anos, o SIG@ foi alvo de
fortes críticas relacionadas ao alto tempo de resposta no acesso e até mesmo indisponibilidade do
sistema. Porém, por via de várias iterações de versão, correções de bugs e modernização do Data

Center (DC), melhoras significativas nos índices de satisfação dos usuários foram alcançadas
Madeira (2018).

O sistema inicia sua segunda década de vida na versão 3.97.0.27, executando em um
ambiente bem menos modesto que o servidor torre que o abrigou em suas primeiras versões.
Desde meados de 2014, quando o DC da Superintendência de Tecnologia da Informaçães (STI)
adotou a tecnologia de virtualização de hardware, o sistema ganhou flexibilidade, resiliência,
segurança e facilidade no gerenciamento (Sahoo et al., 2010).

Porém, tem-se uma questão fundamental para o bom desempenho da aplicação: qual o
requisito físico necessário para o seu funcionamento ótimo? Apesar de ser a principal ferramenta
da UFPE, o SIG@ não é único sistema hospedado no DC e o mau dimensionamento de recursos
alocados ao sistema pode impactar negativamente o seu próprio desempenho, assim como o
desempenho de outras aplicações que compartilham o hardware (Shirinbab & Lundberg, 2015).

Atualmente a STI faz o uso da virtualização de hardware com hipervisores, porém a
virtualização ao nível de sistema operacional, conhecida como conteinerização, já faz partes dos
planos e está em fase de análise. Dentre as soluções de conteinerização estudadas, a implementa-
ção híbrida, utilizada nos provedores de computação na nuvem que oferecem hospedagem de
contêineres al dhuraibi et al. (2017), na qual os contêineres rodam sobre máquinas virtuais, se
destaca como opção viável para a atual infraestrutura, mas requer a avaliação da estrutura mais
adequada da aplicação do SIG@ na decisão de se adotar ou não contêineres, ou permanecer no

141414

uso de máquinas virtuais.
Neste aspecto, este trabalho propõe uma análise comparativa do desempenho do SIG@

implementado em dois cenários que utilizam conceitos de virtualização distintos. Um com a
aplicação hospedada em máquinas virtuais que se utilizam de um ambiente com conectividade,
armazenamento e processamento. Outro com a aplicação executando em contêineres hospedados
em máquinas virtuais, isto é, uma camada extra de virtualização, gerando overhead no sistema.
Resultados mostram que no primerio cenário 95,5% das requisições de matrícula foram atendidas
com sucesso com tempo médio resposta de 2679 ms. Ao passo que no segundo cenário, alcançou-
se 95,6% de atendimentos com tempo médio resposta de 2215 ms e um consumo menor de
memória RAM, porém de CPU e rede similares.

1.1 OBJETIVOS

Este trabalho tem como objetivo analisar comparativamente o desempenho do SIG@ em
cenários de virtualização distintos e assim dar suporte:

■ ao dimensionamento de recursos adequados para o funcionamento ótimo do SIG@;

■ a tomada de decisão sobre a tecnologia que resultará em melhor utilização de recursos
públicos.

1.2 ESTRUTURA DO DOCUMENTO

Este trabalho está dividido em 5 capítulos e uma bibliografia. Na presente seção são
apresentadas algumas das características gerais desse Trabalho de Conclusão de Curso, além
de descrever sua organização. O capítulo 2 apresenta o referencial teórico, que contém toda
fundamentação de base sobre o tema deste trabalho. O capítulo 3 apresenta os ambientes
experimentais, suas especificações de hardware e software, a descrição dos testes , assim como
as ferramentas de coleta e análise de dados. No capítulo 4, os resultados obtidos nos testes são
apresentados e comentados. Finalizando, no capítulo 5 são apresentadas acerca do trabalho
desenvolvido e as sugestões de trabalhos futuros.

151515

2
REFERENCIAL TEÓRICO

Neste capítulo serão apresentados a contextualização histórica da virtualização de hard-
ware, conceitos de virtualização, hipervisor e conteinerização, bem como algumas ferramentas
de software relevantes para este trabalho.

2.1 CONTEXTUALIZAÇÃO HISTÓRICA

O conceito de virtualização data do final da década de 60 quando a IBM introduziu
o monitor de máquina virtual, também conhecido com hipervisor. Esta ferramenta é uma
camada de abstração entre o hardware e o software, que desassocia o hardware físico do sistema
operacional, possibilitando a existência de mais de uma Máquina virtual- Virtual Machine (VM)
com diferentes sistemas operacionais e que compartilham os mesmo recursos de hardware. Esta
técnica permitiu que mainframes caros, como o IBM S/360, fossem compartilhados por múltiplas
aplicações sob a supervisão do hipervisor Rosenblum & Garfinkel (2005).

Anos mais tarde, com o surgimento dos sistemas operacionais multitarefas e do baratea-
mento do hardware, a virtualização foi perdendo espaço, uma vez que as instituições conseguiam
adquirir servidores que conseguiam suprir suas demandas e por um valor acessível. Porém,
esta abordagem trouxe alguns problemas consigo, dentre eles a baixa eficiência energética. Em
2007, a United States Environmental Protection Agency (US EPA) descreve em seu Report

to Congress on Server and Data Center Energy Efficiency que servidores na época possuíam
taxa de utilização do processador entre 5-15% e mesmo sob estas condições tais servidores
consumiam de 60-90% da energia máxima. O mesmo texto aponta a virtualização como uma
das principais ferramentas no aumento da eficiência energética, uma vez que ela permite a
consolidação de múltiplas máquinas virtuais no mesmo servidor físico, diminuindo o volume de
hardware necessário e compensando carga extra de processamento associada a introdução do
hipervisor (Jin et al. (2013)).

O ganho na eficiência dos recursos aliado as facilidades no gerenciamento das máquinas
virtuais fizeram da virtualização por hipervisor a principal forma de virtualização nos data

centers nas últimas décadas. Porém, nos últimos anos outro tipo de virtualização vem ganhando
destaque ao conseguir melhorias consideráveis de desempenho, a virtualização a nivel Sistema

161616

Operacional (SO), também conhecida como conteinerização(Felter et al. (2015)).

2.2 VIRTUALIZAÇÃO BASEADA EM HIPERVISOR

Segundo Sahoo et al. (2010), a virtualização é comumente definida como a tecnologia
que introduz uma camada de abstração de software entre o hardware e o SO. Tal camada é
chamada de Monitor de Máquina Virtual (Virtual Machine Monitor (VMM)), ou hipervisor, peça
responsável pelo controle de quando e quais recursos físicos são entregues ao SO diretamente
acima.

O hipervisor é capaz de criar, gerenciar e executar máquinas virtuais, escalonando
recursos do hardware físico, host, para as máquinas virtuais e guests, que os requerem. Recursos
como Central Processing Unit (CPU), memória e armazenamento, são tratados pelo hipervisor
como um pool de recursos dinamicamente alocados para os guests que necessitem em tempo de
execução. Um hipervisor deve possuir as três propriedades listadas a seguir:

■ propriedade de equivalência: declara que um programa em execução deve possuir
comportamento idêntico seja ele executado diretamente no hardware real ou sobre
virtualização, exceto por overhead causado pela virtualização ou escassez de recursos;

■ propriedade de eficiência: declara que a maioria das instruções de máquinas referen-
tes à CPU sejam executadas diretamente pelo processador físico sem a interferência
do hipervisor. Esta propriedade é o maior diferencial entre hipervisor e emuladores
ou interpretador;

■ propriedade de controle de recursos: declara que o hipervisor administre todos os
recursos de hardware. Não deve ser permitido que qualquer programa em uma VM
acesse o hardware sem a permissão do hipervisor.

Na Figura 1 são apresentados dois tipos de VMM. O Tipo-1, que é executado diretamente
sobre o host físico e controla os recursos de hardware, e tipo-2, que roda como um programa
no SO do host. O acesso direto ao hardware do Tipo-1 possibilita melhor desempenho em
relação ao tipo-2, que por sua vez ganha flexibilidade ao ponto de uma mesma máquina física
poder executar diferentes versões do hipervisor. Porém, alguns hipervisores como o Xen possui
tanto características do Tipo-1 quanto do Tipo-2 (Hwang et al. (2013)). Exemplos populares de
hipervisores do Tipo-1 são Citrix/Xen Server, VMware ESXi e Microsoft Hyper-V. Enquanto
Oracle Virtual Box e VMware Workstation são exemplo de hipervisores do Tipo-2.

171717

Figura 1: Hipervisor Tipo-1 vs Hipervisor Tipo-2 .

Fonte: Adaptado de Mavridis & Karatza (2017).

Além da classificação por tipo, hipervisores podem ser classificados pelas técnicas utiliza-
das em sua implementação. Segundo Adams & Agesen (2006), embora a virtualização completa
não demande nem a modificação do SO guest e nem de suporte de hardware, essas virtualizações
são complexas e necessitam de técnicas avançadas para alcançar um bom desempenho, como
tradução binária em tempo de execução a fim de detectar instruções e capturas instruções que
não poder ser virtualizadas. A para-virtualização é a técnica que utiliza um SO modificado para
chamar o hipervisor apenas quando for executar uma instrução sensível, que pode alterar o estado
do sistema, evitando assim que VMM teste instrução por instrução e por consequência, atingindo
desempenho superior. A virtualização assistida por hardware, permitida com as instruções de
virtualização nos processadores modernos, pode trazer ainda mais ganhos ao possibilitar que o
guest execute diretamente na CPU física certas instruções privilegiadas. A Tabela 1 resume as
características de cada tecnologia.

Tabela 1: Comparativo entre modelos de virtualização

S.O. Modificado Hardware especial Alto Desempenho

Virtualização Completa - - -

Para-Virtualização ✓ - ✓

Assistida por Hardware - ✓ ✓

Fonte: Elaborado pelo autor (2023).

2.3 VIRTUALIZAÇÃO BASEADA EM CONTÊINER

A virtualização ao nível de sistema operacional, também chamada de conteinerização, é
usada para fornecer gestão e isolamento dos recursos, principalmente em ambiente Linux. Ao
combinar em um mesmo pacote a aplicação, dependências, bibliotecas e arquivos de configuração,
esta tecnologia possibilita uma arquitetura autossuficiente que abstrai o sistema operacional

181818

abaixo, assim como a infraestrutura, tornando-a extremamente ágil e portátil. Segundo Soltesz
et al. (2007), o isolamento é criado mediante três componentes principais:

■ Chroot: permite alterar o diretório raiz de um processo e seus filhos para um local
visível apenas para esta hierarquia de processos;

■ Cgroups: permite atribuir quotas de recursos aos processos;

■ Namespaces do kernel: permitem a todos os contêineres receberem as suas próprias
configurações de rede e comunicação entre processos (IPC) e namespaces.

Como ilustrado na Figura 2 , este modelo permite a criação múltiplas instâncias isoladas
entre si sobre o mesmo kernel de um único SO. Embora haja redundância, uma vez que em cada
contêiner exista uma camada composta por arquivos binários e bibliotecas, BIN/LIB, a economia
no compartilhamento do kernel do SO confere a arquitetura da Figura 2 uma substancial economia
de recursos.

Figura 2: Contêiner em bare-metal.

Fonte: Adaptado de Mavridis & Karatza (2017)

Apesar da conteinerização descrita na Figura 2 ser eficiente ao eliminar a camada do
hipervisor, redundâncias de SO, bibliotecas e binários, esta configuração não é utilizada na maior
parte dos provedores de serviço em nuvem. A configuração descrita na Figura 3, na qual os
contêineres são implantados em uma VM, garante ao ambiente flexibilidade na reconfiguração de
recursos físicos, versionamento dos snapshots, tolerância a falhas, escalabilidade, etc. (al dhuraibi
et al. (2017)). De maneira geral, a decisão é entre o desempenho de se utilizar contêineres
diretamente sobre o SO do host ou as facilidades de se gerenciar um ambiente virtualizado com
hipervisores.

191919

Figura 3: Contêiner sobre máquina virtual.

Fonte: Adaptado de Mavridis & Karatza (2017)

2.4 VMWARE VSPHERE

VMware vSphere VMware (2023) é uma plataforma de virtualização de servidores
proprietária capaz de fornecer uma infraestrutura de virtualização completa que possibilita
aos usuários criar, gerenciar e executar máquinas virtuais. A solução é composta por vários
componentes, dentre os quais se destacam:

■ vCenter Server: é o software central do ambiente. Ele gerencia, monitora e orquestra
as ações sobre a infraestrutura virtual e física;

■ vSphere Web Client: é a interface web que permite aos usuários acessar e gerenciar
a infraestrutura vSphere via navegador web;

■ vSphere ESXi hypervisor: é o hipervisor tipo-1 responsável pela virtualização.

O vSphere oferece vários recursos avançados, como alta disponibilidade, balanceamento
de carga, recuperação de desastres, migração de máquinas virtuais em tempo real, backup e
replicação de dados. Esses recursos são projetados para maximizar a disponibilidade, a segurança
e a eficiência da infraestrutura de virtualização de um data center. A Figura 4 ilustra um ambiente
que emprega a solução VMware vSphere, onde os usuários acessam o vCenter Server por meio
do cliente vSphere. Esse servidor é responsável por gerenciar os hosts e as máquinas virtuais
(VMs) usando o hipervisor ESX.

202020

Figura 4: Estrutura do ambiente virtualizado VMware vSphere.

Fonte: VMware (2023)

2.5 CENTOS

O CentOS (Community Enterprise Operating System) é uma distribuição Linux de código
aberto, baseada no código-fonte do Red Hat Enterprise Linux (RHEL), mantida pela comunidade
e distribuída pela Red Hat. Segundo o levantamento ‘2022 State of Open Source Report’ realizado
pela OpenLogic (2022), o CentOS ainda figura como a terceira distribuição mais utilizada em
servidores linux, apesar do anúncio do fim do seu desenvolvimento em dezembro de 2020.
Esta fidelidade se dá pelos aspectos que tornaram a distribuição tão popular durante sua vida:
estabilidade, segurança e confiabilidade. Todas as VM mencionadas neste trabalho utilizam o
CentOS 7 como SO.

2.6 DOCKER

Docker (2023a) é uma plataforma de código aberto que simplifica a criação, implantação
e execução de aplicativos em contêineres, que são unidades de software encapsuladas com todas
as suas dependências, de código a bibliotecas, tudo necessário para a execução da aplicação.
Docker utiliza imagens para rodar novos contêineres, cada contêiner é então uma instância de
uma imagem em particular.

As imagens são camadas do sistema de arquivos, onde cada camada é um arquivo
imutável e representa a execução de uma instrução ou conjuntos de instruções executadas na
construção da imagem de contêiner. Na Figura 5, temos um exemplo das camadas utilizadas na
construção de uma imagem do Ubuntu Jammy.

212121

Além de possuírem gerenciamento simplificado, ciclo de desenvolvimento mais curto, o
uso de contêineres, segundo Enberg et al. (2016), gera menos overhead de virtualização.

Figura 5: Camadas em detalhes ubuntu:jammy.

FONTE: Docker (2023b)

2.7 APACHE

Em abril de 2023, a W3Techs (2023) lista o Apache HTTP Server como o segundo
servidor web mais utilizado, hospedando cerca de 32,2% dos sites conhecidos. Lançado inicial-
mente em 1995, é um software gratuito e de código aberto desenvolvido e mantido pela Apache

Software Foundation. É tido pela comunidade como bastante personalizável, seguro, escalável e
oferece suporte a várias tecnologias de aplicativos web. O Apache HTTP Server é o servidor
web utilizado pela STI no sistema do SIG@.

2.8 GOOGLE ANALYTICS

Ferramenta de análise de dados oferecida pela Google que permite aos administradores
de sites rastrear e analisar o tráfego em seus sites. O Google Analytics (2023) facilita o
monitoramento de métricas importantes, como o número de visitantes, de onde eles vêm, como
navegam pelo site, quanto tempo passam nele, dentre várias outras. Este serviço é utilizado pela
STI e os dados capturados na matrícula do segundo semestre letivo de 2022 foi utilizado como
base no dimensionamento da carga de testes descrita no Capítulo 3.

222222

2.9 APACHE JMETER

Apache Jmeter (2023) é um software gratuito e de código aberto utilizado nos testes de
aplicações e serviços web. Criado pela Apache Software Foundation em 2007, ele pode realizar
testes de carga, no qual é buscado o limite de usuários simultâneos, e de stress, no qual o objetivo
é determinar a capacidade de recuperação e estabilidade do sistema. O JMeter é utilizado na
execução do teste de carga deste trabalho.

2.10 BLAZEMETER

BlazeMeter (2023) é uma plataforma online capaz de realizar teste de desempenho úteis
na análise de desempenho de aplicações, APIs e sites em escala global. A plataforma oferece
de forma gratuita a funcionalidade de gravação de tráfego http e geração roteiros no formato
JSON, que pode ser utilizado no Apache Jmeter. O BlazeMeter foi utilizado na captura do
comportamento de navegação esperado de um aluno durante a matrícula via sistema SIG@.

2.11 DSTAT

O Dstat (2023) é uma ferramenta leve e de código aberto utilizada para monitorar o
desempenho do SO em tempo real. Capaz de oferecer dados na saída do console ou em arquivos,
o Dstat consegue capturar razoáveis volumes de dados com impacto relativamente baixo no
sistema. O Dstat foi utilizado na captura de consumo de recursos computacionais à nível de SO
durante os experimentos deste trabalho com seguinte comando:

$ d s t a t − t c l d r m s n y

2.12 ZABBIX

Criado por Alexei Vladishev em 1998, o Zabbix (2023) é um software de código aberto
utilizado no monitoramento de redes, servidores, máquinas virtuais e aplicações. Ele consegue
monitorar a saúde e integridade de ativos de TI coletando milhares de métricas por intermédio de
um agente localizado no item estudado. Possui também mecanismos de envio de alerta quando
algum evento ocorre e pode também atuar de forma automatizada na resolução do problema, por
exemplo, reiniciando um serviço que parou de responder. Neste trabalho o Zabbix foi utilizado
na coleta de dados dos recursos computacionais utilizados pelo hipervisor e VMs.

2.13 ORACLE DB

O Oracle (2023) Database é um Sistema Gerenciador de Bancos de Dados Relacional
(SGBDR) desenvolvido pela Oracle Corporation. É um dos bancos de dados mais utilizados por

232323

grandes empresas por todo o mundo, conhecido por ser confiável, escalável e ter alto desempenho.
O Oracle DB 11g, lançado em 2007, é o banco de dados utilizado pelo SIG@ durante a confecção
deste trabalho.

242424

3
ARQUITETURA DOS AMBIENTES

Neste capítulo serão descritos os ambientes de produção e os ambientes experimentais
utilizados neste trabalho, os recursos de hardware e software utilizados.

Existem algumas arquiteturas possíveis quando se utiliza contêineres, como já menci-
onado na Seção 2.3. Tais arquiteturas podem variar conforme a funcionalidade que se deseja,
mas sempre há o trade-off entre desempenho e segurança. Uma determinada arquitetura pode
favorecer o alto desempenho das aplicações ou focar na segurança e facilidade no gerenciamento
do ambiente, mas não é possível atingir um ótimo nas duas frentes. Segundo Mavridis & Karatza
(2017), quando uma aplicação em contêiner é executada sobre máquinas virtuais, invariavel-
mente, haverá perdas no desempenho que podem ou não ser compensadas pelas funcionalidades
de gerenciamento e segurança trazidas com a virtualização. Visando definir de quanto é este
custo de desempenho quando a aplicação é conteinerizada, este trabalho cria ambientes de testes
e analisa os dados coletados.

3.1 AMBIENTE EM PRODUÇÃO

Buscando robustez e resiliência, a arquitetura do SIG@ vem sendo aperfeiçoada com
o passar dos anos. A medida que problemas eram catalogados, contramedidas foram tomadas
buscando mitigá-los. Assim foi a adição de um segundo balanceador de carga, a pulverização
da camada de aplicação em diversas VMs e o isolamento do banco de dados em um host físico
próprio. Na Figura 6 é apresentada a estrutura atual do sistema, na qual são utilizadas oito VMs,
sendo duas para o balanceamento de carga, cinco para aplicação e uma para o banco de dados.

252525

Figura 6: Ambiente em produção (2023).

Fonte: adaptado de Clemente et al. (2022).

Todas as VMs rodam dentro do mesmo ambiente virtualizado VMware Vsphere, são
gerenciadas pelo VMware Vcenter 6.7, utilizam o VMware ESXi 6.5 como hipervisor e estão
hospedados em um pool de 18 servidores HP ProLiant DL360p, sendo quinze Gen8 e três
Gen9. Os dados são consolidados em discos Solid State Drive (SSD) localizados na unidade
de armazenamento HPE 3PAR StoreServ 8200, que recebe os dados dos hosts mediante uma
conexão Fiber Channel de 16GB/s e um Switch San, modelo HP SN6000B.

As duas VMs que estão trabalhando como balanceadores de carga correspondem a
camada do sistema responsável pela interação com o cliente. Elas recebem as requisições dos
cliente e as encaminha para a camada seguinte, de aplicação. A sua principal função é identificar
qual VM da camada seguinte possui mais recursos disponíveis e redireciona as requisições para
ela, tal técnica é conhecida como balanceamento de carga. Ambas VMs utilizam o Apache
Server 2.4.6 e possuem o CentOS 7 como SO guest.

Composta de cinco VMs idênticas rodando CentOS 7, a camada de aplicação é responsá-
vel por toda a lógica e processamento das informações do sistema. Cada VM utiliza o Apache
Tomcat para hospedar a aplicação do SIG@ (versão 3.96.0.3), escrita em Java Enterprise Edition
6 (JEE 6) com uma arquitetura em camadas e utilizando o padrão Model-View-Controller (MVC)
no front-end.

A última camada, banco de dados, possui apenas uma VM de grande porte. Responsável
pelo armazenamento de dados, guarda todas as informações persistentes do sistema em um
banco de dados Oracle 11g rodando sobre CentOS 7. A Tabela 2 resume o hardware virtual
disponibilizado pelo hipervisor para cada VM das três camadas.

262626

Tabela 2: Hardware virtual do SIG@ em produção

Balanceador-2VMs Aplicação-5VMs Banco-1VM

CPU 4 4 12

Memória 20 GB 20 GB 32 GB

Disco 66 GB 55 GB 1.46 TB

Fonte: Elaborado pelo autor (2023).

3.2 AMBIENTE EXPERIMENTAL

Visando responder a pergunta fundamental deste trabalho, qual o desempenho do SIG@
conteinerizado quando comparado a arquitetura atual, foram criados dois ambientes para a
realização dos estudos de casos. Um representando uma versão reduzida do ambiente de
produção atual e outra representando o ambiente conteinerizado, o ambiente proposto. A
diferença entre elas está restrita as VMs da camada de aplicação, enquanto no cenário 1 temos
uma versão reduzida do SIG@ não-conteinerizado, no cenário 2 temos a versão conteinerizada
do mesmo.

A Figura 7 ilustra como estes ambientes são compostos por apenas um balanceador
de carga, duas VMs na camada de aplicação e um banco de dados. Esta redução foi pensada
para que todas as VMs envolvidas nos testes estivessem em um único host retirado do pool de
servidores do DC da STI, livrando-as da concorrência com outras VMs por acesso à CPU e à
memória. O host utilizado é um servidor HP ProLiant DL360 Gen 9 com 512GB de memória
DDR4 2133 MHz, 2 processadores Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz de 20 núcleos
cada. Este servidor está conectado a um pool de discos SSD na unidade de armazenamento HPE
3PAR StoreServ 7400.

Figura 7: Diagrama lógico dos ambientes de testes.

Fonte: Elaborado pelo autor (2023).

272727

Visando reduzir o número de variáveis envolvidas e para aferir o quanto as máquinas
conteinerizadas interferirão no ambiente, a máquina do balanceador de carga é a mesma utilizada
nos dois cenários. O mesmo vale para a máquina de banco de dados, que deve se comportar da
mesma forma independentemente da tecnologia utilizada pela aplicação. Já as VMs da camada
de aplicação variam consoante o cenário do experimento. Apesar de terem o mesmo hardware
virtualizado (4 vCPUs, 20 GB de RAM e disco com 55 GB), possuem distintas tecnologias na
implantação da aplicação.

Fazendo-se uso das funcionalidades de um ambiente virtualizado, foi possível clonar
algumas VMs do ambiente de produção e realizar apenas a configuração de parâmetros de
configuração de rede, geração de chaves de segurança, criação de regras de firewall e outros
ajustes.

O balanceador de carga utilizado nos experimentos é um clone de um dos balanceadores
do ambiente de produção, porém configurado para encaminhar as requisições recebidas baseada
no URL. Caso o pacote seja endereçado para sigatcc.ufpe.br, o Apache Server o direciona
para rota ‘App’, composta pelas duas VMs da camada de aplicação do cenário 1, que aqui
serão denominadas App1 e App2. Caso a requisição tenha siga-docker.ufpe.br como endereço,
o Apache Server o direciona para rota ‘Contêiner’, que tem como destino as duas VMs de
aplicação do cenário 2, que aqui serão denominadas Cont1 e Cont2.

Para o banco de dados foi feito um clone da VM da máquina atualmente no ambiente de
produção. Para a realização das matrículas são executadas rotinas preparatórias que consistem
em operações cuja finalidade é garantir a matrícula correta de cada aluno da universidade.
Inicialmente, verifica-se a situação acadêmica de cada indivíduo, por exemplo, a quantidade de
aprovações, cadeiras já cursadas, matérias dispensadas e perfil curricular ativo. Durante essas
verificações, se aplicam regras pré-definidas que fazem sugestões personalizadas para cada aluno
realizar a matrícula para o semestre seguinte. Essas sugestões ainda consideram as disciplinas
ofertadas pela coordenação para o período, o número de vagas e a prioridade de cada aluno para
conseguir realizar a matrícula.

As VMs da camada de aplicação do cenário 1 são idênticas às máquinas em produção,
salvos alterações nas configurações de rede e chaves de acesso. Por outro lado, as VMs da
camada de aplicação do cenário 2 foram construídas do zero, mantendo-se apenas a versão
do SO e hardware disponibilizado. Nestas VMs foi instalado o Docker Engine - Community
na versão 20 para executar a imagem do SIG@ conteinerizado desenvolvida pela equipe de
desenvolvimento da STI. A Tabela 3 resume as características das VMs criadas para os casos de
estudos.

282828

Tabela 3: VMs utilizadas nos experimentos.

Experimentos Balanceador App1, App2 Cont1, Cont2 Banco

Aplicação Apache Server Siga não-conteinerizado Siga Docker Oracle DB 11g

CPU 4 4 4 12

Memória 20 GB 20 GB 20 GB 32 GB

Disco 66 GB 55 GB 55 GB 1.46 TB

Cenário 1 ✓ ✓ X ✓

Cenário 2 ✓ X ✓ ✓

Fonte: Elaborado pelo autor (2023).

O processo da criação da imagem Docker foi iniciado com uma análise de quais softwares
participam do sistema do SIG@ e como eles se relacionam. Partindo deste levantamento, foi
possível construir o Dockerfile, arquivo que contém uma série de instruções que definem a
configuração do ambiente em que o aplicativo será executado, incluindo a escolha do sistema
operacional, a instalação de bibliotecas e dependências, a cópia de arquivos de código-fonte e
a configuração de variáveis de ambiente. Em seu conteúdo, o Dockerfile do SIG@ define as
variáveis de ambiente sobre uma imagem base do SO, CentOS 7, instala a versão apropriada
do Java com suas dependências, assim como o Tomcat, permissões de usuário e configura os
acessos de rede. Por razões de segurança, informações mais detalhadas sobre estas configurações
não podem ser divulgadas. O limite máximo de memória a ser utilizado pela aplicação em ambos
os cenários é definido pelas configurações da Java Virtual Machine (JVM), listadas na Tabela 4.

3.2.1 SIG@ Tradicional

Este ambiente é uma versão simplificada do SIG@ atualmente em produção. Em vez de
oito máquinas virtuais, foram utilizas quatro. Foi retirado o segundo balanceador de carga, que
tem como principal função evitar um ponto único de falha no sistema, reduziu-se de cinco para
duas as máquinas virtuais com as aplicações SIG@ e manteve-se um banco de dados Oracle 11,
como apresentado na Figura 8.

Tabela 4: Configuração de Memória da Java Virtual Machine para a execução do SIG@.

Parâmetro Valor
Heap Size 15 GB

Max Heap Size 15 GB
Permgen Size 512 MB

Max Permgen Size 512 MB
Fonte: Elaborado pelo autor (2023)

292929

Figura 8: Infraestrutura do cenário análogo ao de produção.

Fonte: Elaborado pelo autor (2023).

3.2.2 SIG@ Conteinerizado

Neste ambiente, o balanceador é mantido, assim como o banco de dados. A alteração
se dá nas máquinas virtuais que abrigam a aplicação. Estas duas máquinas virtuais utilizam a
distribuição Linux CentOS 7 e utilizam a Docker Engine - Community na versão 20 para executar
a imagem do SIG@ Docker. Figura 9 ilustra o ambiente de teste na versão conteinerizada.

Figura 9: Infraestrutura do cenário conteinerizado.

Fonte: Elaborado pelo autor (2023).

3.3 CARGA DE TESTES

Em um período de matrículas típico, que dura por volta de uma semana, o SIG@ da
UFPE atende cerca de 30 mil alunos ativos. A fim de evitar a sobrecarga do sistema, o acesso é
liberado apenas para determinados centros acadêmicos conforme uma escala pré-divulgada pelos
meios oficiais da instituição. Desta forma, consegue-se controlar os picos de acessos simultâneos

303030

ao sistema e o volume de escrita no banco de dados. Como exemplo, na Figura 10 é apresentado
o somatório de acessos diários realizados ao SIG@ durante o período de matrícula do segundo
semestre letivo de 2022. Tal informação foi obtida através do Google Analytics, onde é possível
observar que o pico de acessos foi atingido no dia 16 de novembro, com 7034 matrículas ao
longo de todo o dia. Além disso, houve por volta de 2800 acessos entre as dez e as onze horas do
mesmo dia.

Todavia, estas requisições não representam a totalidade dos acessos ao sistema, uma vez
que através do Google Analytics foram registrados cerca de 2,8 mil usuários no mesmo intervalo
de uma hora. Como indicado na Figura 11, durante a semana de matrículas foram contabilizados
141.965 sessões de 53.807 usuários, totalizando 425.112 visualizações de páginas. Neste período,
um usuário acessa o sistema em média 2,69 vezes e a cada acesso visualiza, em média, 2,99
páginas num período de 5 minutos e 30 segundos, sendo que em 19,59% das vezes ele não entra
no sistema, apena carrega a tela inicial.

Figura 11: Quantidade de acessos ao SIG@ durante o período de matrículas para o semestre 2022.2.

Fonte: Captura de tela realizada pelo autor da ferramenta Google Analytics (2023).

Outro dado interessante capturado pelo Google Analytics é sobre a relação do tipo
de dispositivo utilizado pelo usuário na navegação do sistema com o seu intuito do acesso.
Conforme ilustrado na Tabela 5, o telefone celular é o dispositivo utilizado em mais da metade
dos acessos ao SIG@, porém para confirmar a matrícula nas disciplinas do semestre letivo, ele
não é empregado nem por 30% dos usuários, ao passo que o computador é utilizado por 69%
com a finalidade de realizar a matrícula. Isto indica que geralmente o aluno da UFPE realiza de
um a dois acessos prévios ao sistema, preferencialmente no telefone celular, antes de confirmar a

313131

Figura 10: Acessos ao SIG@ durante matrículas de 2022.2

(a) Acessos por dia (b) Acessos por hora

Fonte: Captura de tela realizada pelo autor da ferramenta Google Analytics (2023).

Tabela 5: Dispositivos utilizados no acesso ao SIG@ e no momento de confirmar a matrícula.

Acessos Matrícula
Computador 48,9% 69,0%
Celular 50,1% 29,8%
Tablet 1,0% 1,2%
Fonte: Elaborado pelo autor (2023).

matrícula utilizando um computador.
Quando o tráfego capturado durante o período é analisado sob a ótica da estrutura física

do sistema (Figura 6), é possível afirmar que cada servidor da camada de balanceamento de carga
tratou no máximo 1400 usuários por hora e que cada servidor da camada de aplicação recebeu
não mais que 560 usuários no mesmo intervalo. Apesar de valiosos, estes dados não possuem
granularidade suficiente para determinarmos a quantidade de sessões simultâneas atendidas
pelo ambiente neste intervalo. Porém, se assumirmos o pior caso, no qual cada usuário gera
duas 2 sessões dentro do intervalo de uma hora, podemos determinar a carga máxima aplicada
no sistema. Assim, cada VM da camada de aplicação trata 1120 sessões neste intervalo com
102,67 acessos simultâneos. Esse valor de acessos simultâneos pode ser calculado utilizando-se
a Equação 3.1, onde NUC é o número de usuários concorrentes, NSH é o número de sessões por
hora, DMS é a duração média da sessão em segundos e TU é tempo de utilização em horas.

NUC =
NSHxDMS

3600
TU

�
 �	3.1

323232

Definida a carga de trabalho que será aplicada sobre o objeto de estudo, as máquinas
virtuais da camada de aplicação, um plugin do Blazemeter para navegador foi utilizado na captura
do comportamento simulado de um usuário no ato da matrícula. Uma vez que o comportamento
de navegação interna ao sistema não é monitorado pelo Google Analytics (2023) por razões de
privacidade e segurança, foi criado um fluxo de cliques visando gerar o impacto similar aos dos
acessos discutidos anteriormente, como exposto na Figura 12.

Figura 12: BlazeMeter, ferramenta utilizada na captura das ações para matrícula.

Fonte: Captura de tela realizada pelo autor da ferramenta BlazeMeter (2023) .

Esta série de requisições do protocolo Hypertext Transfer Protocol (HTTP) indicam
a ordem e conteúdo das mensagens trocadas entre a aplicação do SIG@ e o navegador do
usuário. Estas informações são utilizadas como base do script da aplicação que será utilizada
na ferramenta responsável pelo teste de carga, o Apache Jmeter. Com o uso de variáveis,
parametrizações e condições para tratamento de erros, chega-se a um roteiro de ações que pode
ser executado de forma controlada na simulação dos acessos. O algoritmo 1 ilustra as atividades
do script codificado. Ele carrega uma lista de CPFs previamente selecionados (6 mil), alunos
aptos a realizar a matrícula com ao menos uma sugestão automática de disciplina fornecida pelo
sistema, e os utiliza como base durante a execução dos testes.

Para replicar a carga de trabalho observada durante o pico de acessos para o período de
matrícula em 2022.2, no qual foi registado 1120 sessões no período de uma hora e calculado 103
sessões simultâneas por VM na camada de aplicação, teríamos de executar o script para 2247
alunos durante a duração do experimento, uma hora. Porém, foi utilizada uma carga 25% maior,
2800 acessos, dando a este teste características de um teste de carga, uma vez que o sistema

333333

Algoritmo 1: Pseudocódigo do Script Jmeter
1 for Aluno← CPF.txt to EOF do
2 Abre página inicial do SIG@
3 Envia CPF e senha do Aluno
4 Recebe Hash de acesso
5 Carrrega página de logado com sucesso
6 Carrega módulo de matrícula
7 Aceita sugestão de uma cadeiras à ser cursada
8 Confirma a matrícula
9 Fecha janela de popup de impressão de comprovante

10 Desloga do sistema

11 Gera relatório

recebe um volume de acesso semelhante à carga de pico durante um período relativamente longo
a e assim obter métricas da qualidade do acesso e o uso de recursos (de Sousa Santos & dos
Santos Neto (2008)). Esta quantidade de acessos, quando distribuídos no intervalo de uma hora,
fornecem 128 acessos simultâneos a cada VM da camada de aplicação, conforme indicando na
Figura 13.

Figura 13: Carga de testes executada pelo Apache Jmeter sobre o sistema.

Fonte: Elaborado pelo autor (2023).

Durante a execução dos testes os dados sobre o uso de recursos computacionais foram
capturados à nível de SO pelo Dstat e ao nível de hipervisor pelo VCenter.

343434

4
RESULTADO DOS EXPERIMENTOS

Para cada teste em ambos os cenários propostos, o script discutido na Sessão 3.3 é
executado pelo Apache Jmeter em um computador externo a infraestrutura estudada durante o
período de uma hora. Neste período são enviadas 2800 requisições de matrícula separadas entre
si pelo intervalo de 0,77 segundos.

Durante os testes, cada cenário recebe sua carga de requisições, o Dstat é executado em
cada uma das VMs com parâmetros que o faz coletar uma amostra a cada segundo durante setenta
minutos, totalizando 4200 medições por VM. Enquanto isto, o hipervisor envia suas métricas de
utilização de recursos ao sistema de gerenciamento do Vcenter, que os repassa ao Zabbix, onde
são guardadas e visualizadas. No decorrer de cada teste, as VMs não pertencentes ao cenário são
desligadas visando não consumir recursos e influenciar as medições que estão sendo realizadas.
No cenário 1 a carga de trabalho é direcionada para o SIG@ não conteinerizado. Já no cenário
2 as requisições têm como destino a versão conteinerizada do sistema.

Cada cenário recebeu cinco testes de carga e responderam de forma similar às requisições.
Enquanto o cenário 1 realizou em média 2675,2 das 2800 matrículas demandas com o tempo
médio de 2215 ms por requisição, o cenário 2 atendeu 2676,4 matrículas em média no com o
tempo médio de resposta de 2198 ms.

Visando apresentar o volume de dados, os resultados foram exibidos nas subseções
seguintes através de diagramas de caixa. Esses diagramas agregam as medições de cada máquina
virtual juntamente com as VMs que compõem seus respectivos cenários, facilitando a visualiza-
ção do uso de recursos no ambiente de teste. Foram selecionadas quatro métricas primárias para
essa visualização, sendo uma referente ao uso de CPU, outra ao uso de disco, uma terceira ao
uso de rede e a última ao uso de memória.

Considerando que todas as VMs testadas estavam hospedadas em um servidor ProLiant
DL360 Gen9 com 2 processadores, cada um com 10 núcleos e 20 threads, o uso percentual de
CPU representa o valor máximo de processamento fornecido à VM pelo hipervisor, dependendo
da quantidade de processadores lógicos configurados. As demais métricas se referem a valores
absolutos. O uso de memória é medido em megabytes de RAM ocupados. Já o uso de rede é
expresso em megabytes por segundo do fluxo de rede agregado, ou seja, a soma do que a VM
recebe e envia por segundo através de sua interface de rede. Por fim, o uso de disco é medido em

353535

IOPS, que em português significa "operações de entrada/saída por segundo".

4.1 BALANCEADOR DE CARGA E BANCO DE DADOS

Tanto na camada de balanceamento de carga quanto na camada de banco de dados do
sistema, apenas uma máquina virtual foi utilizada nos ambientes experimentais discutidos neste
trabalho. Estas duas VMs são reutilizadas em ambos os cenários sem modificações em todas as
cinco repetições de cada cenário. Após cada realização de teste, cada VM tem seu estado anterior
restaurado mediante uma funcionalidade do Vcenter, o snapshot. Ao todo elas são utilizadas dez
vezes, sendo que para cada utilização são geradas 4200 amostras de dados, totalizando 42 mil.

4.1.1 Balanceador de Carga

Responsável por receber as requisições dos usuários por meio de Apache Server 2.4.6,
esta VM possui o SO CentOS 7, 20 GB de memória RAM e 4 vCPUs. Historicamente, apresenta
baixas taxas de utilização de disco, memória e CPU, porém valores altos na utilização de rede.

Figura 14: Processamento do Balanceador de Carga.

Fonte: Elaborado pelo autor (2023).

363636

Figura 15: Utilização de Memória RAM pelo Balanceador de Carga.

Fonte: Elaborado pelo autor (2023).

Figura 16: Instruções de entrada e saída por segundo no Balanceador de Carga.

Fonte: Elaborado pelo autor (2023).

373737

Figura 17: Tráfego de rede no Balanceador de Carga.

Fonte: Elaborado pelo autor (2023).

As Figuras 14, 15, 16 e 17 agrupam as 42 mil medições que descrevem o comportamento
da VM de balanceamento de carga durante os dez testes realizados. Os resultados obtidos para o
uso de CPU, escrita em disco e uso de rede apresentam uma grande similaridade, enquanto o
uso de memória no cenário conteinerizado é ligeiramente inferior. No entanto, ao compararmos
as medianas mostradas na Figura 15, que são de 646,4 MB no primeiro cenário e 636,6 MB no
segundo, com o total de memória disponível para a máquina virtual, que é de 20 GB, percebemos
que a diferença é desprezível.

4.1.2 Banco de Dados

É composto por uma única VM que concentra a escrita de todas as informações pertinen-
tes do sistema em uma instância do Oracle DB 11g que ocupa cerca de 1,5 TB. Possui 32 GB de
memória RAM, 12 vCPUs e historicamente faz o uso intensivo de disco e memória.

383838

Figura 18: Processamento do Banco de Dados.

Fonte: Elaborado pelo autor (2023).

Figura 19: Utilização de Memória RAM pelo Banco de Dados.

Fonte: Elaborado pelo autor (2023).

393939

Figura 20: Instruções de entrada e saída por segundo no Banco de Dados.

Fonte: Elaborado pelo autor (2023).

Figura 21: Tráfego de rede no Banco de Dados.

Fonte: Elaborado pelo autor (2023).

As Figuras 18, 19, 20 e 21 agrupam as 42 mil medições que descrevem o comportamento
da VM de banco de dados durante os dez testes realizados. Os resultados obtidos para as quatro
métricas estudadas apresentam alto grau de similaridade, sendo que o uso de memória no cenário
conteinerizado é ligeiramente inferior e o uso de disco é ligeiramente maior. No entanto, como

404040

era esperado, essas diferenças não são significativas e podemos afirmar que o desempenho do
banco de dados nos dois cenários é equivalente.

4.2 CAMADA DE APLICAÇÃO

Embora as duas soluções de implementação do SIG@ tenham atendido as solicitações
de matrículas de forma similar, cerca de 96% das requisições de matrícula com sucesso, o
consumo de recursos computacionais apresentou particularidades em cada cenário. Através das
métricas apresentadas e discutidas nas seguintes subseções, o custo computacional de cada um
dos cenários será exposto.

4.2.1 Uso de CPU

Toda tecnologia de virtualização possui sobrecargas características. Ao passo que o
cenário 1 possui todos os overheads inerentes ao uso do hipervisor, o cenário 2 herda todas as
sobrecargas conhecidas da virtualização por VM e ainda tem as penalidades de desempenho
da virtualização ao nível de sistema operacional. Segundo Enberg et al. (2016), as sobrecargas
do hipervisor ligadas ao uso de CPU são originadas pelo agendamento duplo, equidade de
escalonamento, gestão de interrupções e assimetria nas vCPU.

Figura 22: Uso de CPU nas VMS da camada de aplicação vs Tempo.

Cenário 1

Cenário 2

Fonte: Elaborado pelo autor (2023).

A Figura 22 mostra a utilização da capacidade total de processamento de cada VM

414141

Figura 24: Uso agregado de CPU em % ajustado a curva normal

(a) App01 e App02 (b) Cont01 e Cont02

Fonte: Elaborado pelo autor (2023).

durante o primeiro teste de carga recebido pelo ambiente. Nela, nota-se uma grande variação de
valores, especialmente no ambiente não conteinerizado. Tal flutuação no uso de CPU é comum,
mas requer atenção especial para a alocação de máquinas virtuais com comportamento similar
no mesmo servidor físico, uma vez que várias delas podem solicitar acesso ao processador ao
mesmo tempo, sobrecarregando o escalonador do hipervisor.

Figura 23: Boxplot do uso de CPU das VMS.

Fonte: Elaborado pelo autor (2023).

Já a Figura 23 agrega os valores captados nos dez testes realizados, cinco em cada
cenário, e os dispõem lado a lado mostrando a simetria entre as máquinas envolvidas no cenário.
A Figura 24 mostra o quão a distribuição normal se ajusta aos dados observados com paramêtros
µ =32.38 e σ = 14.21 no cenário 1 e µ =22.58 e σ = 11.02 para o cenário 2, com exceção
aos picos de utilização nula da CPU nos dois gráficos que correspondem aos instantes finais
do experimento, nos quais a carga de trabalha já havia sido processada. A Tabela 6 referendas
os valores apresentados nas figuras anteriores. Nela observamos que a média se aproxima da

424242

Tabela 6: Utilização percentual de CPU nas 21 mil medições.

App01 App02 Cont01 Cont02
Média 33.35 31.41 22.38 22.78

Desvio Padrão 14.38 14.04 10.79 11.24
Mínimo 0.0 0.0 0.0 0.0

25% 24.81 23.17 15.24 15.50
50% 33.76 31.75 22.11 22.51
75% 42.45 40.42 29.20 29.69

Máximo 87.02 78.10 73.89 77.75
Fonte: Elaborado pelo autor (2023)

mediana, comportamento típico da distribuição normal. Outro fato importante observado é a
alta variância na utilização da CPU em ambos cenários e o uso levemente inferior no ambiente
conteinerizado.

4.2.2 Uso de disco

O tempo de acesso ao disco é ordens de grandeza maior que tempo de acesso à memória,
logo quantos menos acesso a disco, mais rápida tende a ser a aplicação. Enquanto o hipervisor
lida com overhead relacionado ao escalonamento das requisições de acesos ao disco vindo
de múltiplas VMs, uma aplicação conteinerizada lida com o atraso relacionado a estrutura
em camadas do sistema de arquivos que compõe um contêiner. A Figura 25 mostra quantas
instruções de leitura ou escrita, IOPS, foram geradas durante o primeiro experimento em cada
cenário. Nela é clara a discrepância de comportamento entre os dois ambientes, visto que o
ambiente em contêiner gera instruções de acesso ao disco constantemente, enquanto as máquinas
no ambiente não-conteinerizado raramente acessam o disco, mas quando o fazem, é em grandes
volumes.

A Figura 26 agrega os valores de instruções de escrita/leitura em disco (IOPS) geradas
nos dez testes realizados, cinco em cada cenário, e os dispõem lado a lado. Apesar de ambos os
cenários apresentarem valores médios baixos, 2 IOPS no primeiro e 15 no segundo, graficamente
podemos notar que o cenário de containers gerou mais outliers relevantes. Este comportamento
não é desejável, pois tem poder de contribuir na formação de gargalos no acesso à unidade de
armazenamento.

434343

Figura 25: Comparativo do uso de disco CPU nas VMS da camada de aplicação.

Fonte: Elaborado pelo autor (2023).

Figura 26: Boxplot do uso de disco das VMS.

Fonte: elaborado pelo autor (2023).

444444

Tabela 7: Utilização de discos medidos em IOPS nas 21 mil medições.

App01 App02 Cont01 Cont02
Média 1.56 1.60 15.16 15.28

Desvio Padrão 6.23 6.73 15.28 15.03
Mínimo 0.0 0.0 0.0 0.0

25% 0.0 0.0 8.0 8.0
50% 0.0 0.0 13.0 12.0
75% 0.0 0.0 23.0 23.0

Máximo 82.0 90 224.0 196
Fonte: Elaborado pelo autor (2023)

4.2.3 Uso de memória

Tanto a virtualização baseada em hipervisores, quanto a virtualização ao nível de sistema
operacional, gera degradação de desempenho no uso de memória.

Dois mecanismos são responsáveis por esta degradação de desempenho, perda na recu-
peração de memória(ballooning) e a deduplicação. O Ballooning é uma técnica utilizada pelos
hipervisores modernos que consiste em gerar um processo no SO de suas VMs guests com a
intenção de ter posse sobre parte da memória de VM e por redistribuí-lo quando necessário.
Já a deduplicação é uma técnica que visa diminuir o consumo de memória ao identificar que
conteúdos iguais repetidos. O hipervisor comumente utiliza a deduplicação quando possui mais
de uma VM com o o mesmo SO e o container engine utiliza esta técnica para evitar que uma lib
ou arquivo seja alocado em memória mais vezes do que o necessário Enberg et al. (2016). Como
o cenário 2 emprega as duas tecnologias de virtualização, contêiner sobre máquinas virtuais
gerenciadas por hipervisor, ele sofre duplamente com este overhead.

A Figura 25 mostra a utilização de memória RAM durante o primeiro experimento em
cada cenário. O comportamento do gráfico em ambos cenários sugere que a aplicação tende a
reter dados referente a sessão ativa na memória sem a devida liberação no período observado.
Além disto, é observado que as máquinas do cenário conteinerizado no momento de início da
medição consomem quase 3 GB a menos que as VMs do primeiro cenário.

Já Figura 28 agrega os valores de ocupação de memória RAM capturadas nos dez testes
executados, sendo cinco em cada cenário, e os dispõem lado a lado. A simetria deste gráfico
mostra a consistência no consumo de memória durante os experimentos. Este comportamento
pode ser explicado pela recuperação de snapshot realizado antes do início de cada teste, que
força que cada máquina comece cada teste com o mesmo estado salvo.

454545

Figura 27: Comparativo do uso de memória nas VMS da camada de aplicação.

Fonte: Elaborado pelo autor (2023).

Figura 28: Boxplot do uso de memória das VMS

Fonte: Elaborado pelo autor (2023).

.

464646

Tabela 8: Utilização de memória RAM em GB nas 21 mil medições.

App01 App02 Cont01 Cont02
Média 10.58 10.57 7.60 7.61

Desvio Padrão 0.34 0.33 0.27 0.27
Mínimo 9.98 9.97 7.14 7.15

25% 10.29 10.28 7.37 7.37
50% 10.58 10.57 7.61 7.61
75% 10.87 10.86 7.84 7.83

Máximo 11.12 11.12 8.04 8.04
Fonte: Elaborado pelo autor (2023)

4.2.4 Uso de rede

Uma vez que o SIG@ é uma aplicação web, sobrecargas nas interfaces de rede podem
ter resultados facilmente percebidos pelos usuários. A multiplexação dos pacotes realizada pelo
hipervisor traz sobrecargas quando comparado a um servidor físico. Porém, uma aplicação
conteinerizada tende a sofrer com instabilidades de rede, conforme descrito por Whiteaker et al.

(2011).

Figura 29: Comparativo do uso rede nas VMS da camada de aplicação

Fonte: Elaborado pelo autor (2023).

Os gráficos na Figura 29 mostram o fluxo agregado das interfaces de rede, a soma
do tráfego que chega e do que sai de cada uma das VMs durante o primeiro teste em cada
cenário.Durante este experimento, o cenário 1 apresentou um fluxo médio de 5,6 MBps, enquanto
o cenário 2 apresentou um fluxo médio de 9 MBps. O comportamento em rajadas, comumente

474747

Figura 30: Uso agregado de rede em MBps ajustado a curva normal

(a) App01 e App02 (b) Cont01 e Cont02

Fonte: Elaborado pelo autor (2023).

observado no monitoramento de redes, foi caracterizado em ambos os cenários devido ao desvio
padrão das amostras ter sido superior à metade da média.

Na Figura 31, é possível visualizar os valores do tráfego de rede capturados nos cinco
testes executados para cada cenário. É notável através da grande dispersão das medidas o
comportamento em rajadas, comum em aplicações de rede, e também é possível observar que a
versão conteinerizada do ambiente apresenta um fluxo de rede maior. Estes dados são dispostos
na Tabela 9, onde podemos notar que o fluxo de dados no ambiente conteinerizado é em média
2.14 vezes maior do que no cenário tradicional. Na Figura 30 é notado o ajuste dos dados
capturados nos cinco experimentos medidos à distribuição normal com parâmetros µ =5.64 e σ

= 2.68 no cenário 1 e µ =12.05 e σ = 6.97 no cenário 2.

Figura 31: Boxplot do uso de rede das VMS.

Fonte: Elaborado pelo autor (2023).

Tabela 9: Uso de rede agregado em MBps nas 21 mil medições.

App01 App02 Cont01 Cont02
Média 5.63 5.64 8.81 15.28

Desvio Padrão 2.64 2.71 4.99 8.95
Mínimo 0.0 0.0 0.0 0.0

25% 3.92 3.90 5.30 5.40
50% 5.71 5.66 8.44 8.79
75% 7.44 7.48 12.04 12.31

Máximo 14.65 15.60 32.76 30.37
Fonte: Elaborado pelo autor (2023)

494949

5
CONCLUSÃO

Dada a sua capacidade de simplificar a implantação de aplicativos e melhorar a eficiência
operacional em ambientes de computação em nuvem e de microsserviços, a conteinerização
tem se tornado cada vez mais popular nos últimos anos. Este trabalho comparou o desempenho
do SIG@ em máquinas virtuais e uma versão em contêineres executada em um ambiente que
também utiliza máquinas virtuais, analisando o desempenho delas no uso do SIG@.

Assim, realizou-se uma análise prévia da estrutura, tendo como foco o período de maior
criticidade e utilização do sistema, a matrícula, e criou-se uma carga de trabalho equivalente. Na
análise de desempenho, notou-se que no cenário somente com VMs, 95,5% das requisições de
matrícula foram atendidas com sucesso com tempo médio resposta de 2679 ms. No segundo
cenário, contendo a versão conteinerizada da aplicação executada sobre máquinas virtuais,
obteve-se sucesso de 95,6% das requisições de matrícula e tempo médio resposta de 2215
ms. Em termos de uso de recursos computacionais, o cenário com a aplicação conteinerizada
apresentou um consumo inferior de memória RAM, porém de CPU e rede similares.

Os resultados mostraram que apesar da sobrecarga gerada pelo uso de contêineres sobre
máquinas virtuais, é viável a implementação dessa arquitetura para a aplicação do SIG@,
corroborando com a literatura. Logo, a adoção gradual ou completa de contêineres não deve
afetar a qualidade do serviço prestado aos usuários finais e ainda trará vantagens, como a
autoescalabilidade do serviço em tempo de execução.

5.1 TRABALHOS FUTUROS

Embora este trabalho tenha avançado na comparação dos cenários de implantação do
SIG@, há possibilidades a serem exploradas tais como: aprimorar a carga de trabalho, simulando
diferentes dispositivos teste, visando se aproximar da carga real registrada; relizar mais repeticões
dos experimentos, dando mais confiabilidades aos resultados obtidos; avaliar o desempenho
de um ambiente híbrido contendo um número reduzido máquinas virtuais com a aplicação não
conteinerizada e outras máquinas virtuais sustentando um cluster autoescalável de contêineres
gerenciado por uma ferramenta de orquestração atrelada ao balanceador carga do sistema. Esta
arquitetura garante que o sistema esteja sempre acessível através da tecnologia utilizada há

505050

anos no SIG@, mesmo que para um número reduzido de clientes, e à medida que o sistema for
demandado novos containers são levantados para atender a carga extra.

515151

REFERÊNCIAS

Adams, K. & Agesen, O. (2006). A comparison of software and hardware techniques for x86
virtualization. ACM Sigplan Notices, 41(11):2–13.

al dhuraibi, Y., Fawaz, P., Djarallah, N., & Merle, P. (2017). Elasticity in cloud computing: State
of the art and research challenges. IEEE Transactions on Services Computing, PP:1–1.

Analytics, G. (2023). Google analytics - sdk. https://developers.google.com/
analytics [Acessado: 12/04/2023].

BlazeMeter (2023). Blazemeter chrome extension - record. https://guide.blazemeter.
com/hc/en-us/articles/13354685951505-Chrome-Extension-Record
[Acessado: 12/04/2023].

Clemente, D., Pereira, P., Dantas, J., & Maciel, P. (2022). Availability evaluation of system
service hosted in private cloud computing through hierarchical modeling process. The Journal of
Supercomputing, 78(7):9985–10024.

de Sousa Santos, I. & dos Santos Neto, P. d. A. (2008). Automaçao de testes de desempenho e
estresse com o jmeter.

Docker (2023a). Docker overview. https://docs.docker.com/get-started/ [Aces-
sado: 12/04/2023].

Docker (2023b). Image layer details. https://hub.docker.
com/layers/library/ubuntu/jammy-20211122/images/
sha256-3c3de9608507804525ff4303874525760ea36d62606e8105f515adaa761b80cb
[Acessado: 12/04/2023].

Dstat (2023). Dstat no red hat. https://access.redhat.com/documentation/
pt-br/red_hat_enterprise_linux/6/html/6.7_technical_notes/
package-dstat [Acessado: 12/04/2023].

Enberg, P. et al. (2016). A performance evaluation of hypervisor, unikernel, and container
network i/o virtualization.

Felter, W., Ferreira, A., Rajamony, R., & Rubio, J. (2015). An updated performance comparison
of virtual machines and linux containers. In 2015 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), 171–172.

Hwang, J., Zeng, S., y Wu, F., & Wood, T. (2013). A component-based performance comparison
of four hypervisors. In 2013 IFIP/IEEE International Symposium on Integrated Network
Management (IM 2013), 269–276.

Jin, Y., Wen, Y., Chen, Q., & Zhu, Z. (2013). An empirical investigation of the impact of server
virtualization on energy efficiency for green data center. The Computer Journal, 56(8):977–990.

Jmeter (2023). Get started with jmeter. https://jmeter.apache.org/usermanual/
get-started.html [Acessado: 12/04/2023].

https://developers.google.com/analytics
https://developers.google.com/analytics
https://guide.blazemeter.com/hc/en-us/articles/13354685951505-Chrome-Extension-Record
https://guide.blazemeter.com/hc/en-us/articles/13354685951505-Chrome-Extension-Record
https://docs.docker.com/get-started/
https://hub.docker.com/layers/library/ubuntu/jammy-20211122/images/sha256-3c3de9608507804525ff4303874525760ea36d62606e8105f515adaa761b80cb
https://hub.docker.com/layers/library/ubuntu/jammy-20211122/images/sha256-3c3de9608507804525ff4303874525760ea36d62606e8105f515adaa761b80cb
https://hub.docker.com/layers/library/ubuntu/jammy-20211122/images/sha256-3c3de9608507804525ff4303874525760ea36d62606e8105f515adaa761b80cb
https://access.redhat.com/documentation/pt-br/red_hat_enterprise_linux/6/html/6.7_technical_notes/package-dstat
https://access.redhat.com/documentation/pt-br/red_hat_enterprise_linux/6/html/6.7_technical_notes/package-dstat
https://access.redhat.com/documentation/pt-br/red_hat_enterprise_linux/6/html/6.7_technical_notes/package-dstat
https://jmeter.apache.org/usermanual/get-started.html
https://jmeter.apache.org/usermanual/get-started.html

525252

Madeira, S. J. P. S. (2018). Avaliação de usabilidade do sistema de informações e gestão
acadêmica da universidade federal de pernambuco (sig@/ufpe): um estudo de caso no centro de
artes e comunicação. Master’s thesis, Universidade Federal de Pernambuco.

Mavridis, I. & Karatza, H. D. (2017). Performance and overhead study of containers running on
top of virtual machines. 2017 IEEE 19th Conference on Business Informatics (CBI), 02:32–38.

OpenLogic (2022). Ranking the top enterprise and open source ope-
rating systems of 2022. https://www.openlogic.com/blog/
top-open-source-operating-systems-2022 [Acessado: 12/04/2023].

Oracle (2023). Oracle documentation library. https://docs.oracle.com/cd/
E18283_01/index.htm [Acessado: 12/04/2023].

Rosenblum, M. & Garfinkel, T. (2005). Virtual machine monitors: Current technology and future
trends. Computer, 38(5):39–47.

Sahoo, J., Mohapatra, S., & Lath, R. (2010). Virtualization: A survey on concepts, taxonomy and
associated security issues. In 2010 second international conference on computer and network
technology, 222–226.

Shirinbab, S. & Lundberg, L. (2015). Performance implications of over-allocation of virtual
cpus. In 2015 International Symposium on Networks, Computers and Communications (ISNCC),
1–6.

SIG@ (2023). Párgina inicial do siga. https://siga.ufpe.br/ufpe/index.jsp
[Acessado: 12/04/2023].

Soltesz, S., Pötzl, H., Fiuczynski, M. E., Bavier, A., & Peterson, L. (2007). Container-based
operating system virtualization: a scalable, high-performance alternative to hypervisors. In
Proceedings of the 2Nd ACM SIGOPS/EuroSys european conference on computer systems 2007,
275–287.

VMware (2023). Página do produto. https://www.vmware.com/br/products/
vsphere.html [Acessado: 12/04/2023].

W3Techs (2023). Uso do apache segundo w3techs. https://w3techs.com/
technologies/details/ws-apache [Acessado: 12/04/2023].

Whiteaker, J., Schneider, F., & Teixeira, R. (2011). Explaining packet delays under virtualization.
ACM SIGCOMM Computer Communication Review, 41(1):38–44.

Zabbix (2023). Documentação oficial do zabbix. https://www.zabbix.com/manuals
[Acessado: 12/04/2023].

https://www.openlogic.com/blog/top-open-source-operating-systems-2022
https://www.openlogic.com/blog/top-open-source-operating-systems-2022
https://docs.oracle.com/cd/E18283_01/index.htm
https://docs.oracle.com/cd/E18283_01/index.htm
https://siga.ufpe.br/ufpe/index.jsp
https://www.vmware.com/br/products/vsphere.html
https://www.vmware.com/br/products/vsphere.html
https://w3techs.com/technologies/details/ws-apache
https://w3techs.com/technologies/details/ws-apache
https://www.zabbix.com/manuals

	5918e11f84a38a549c0c3340b6c89039241b90a1984b5fab3cc82ed7b3b3f6eb.pdf
	5918e11f84a38a549c0c3340b6c89039241b90a1984b5fab3cc82ed7b3b3f6eb.pdf
	5918e11f84a38a549c0c3340b6c89039241b90a1984b5fab3cc82ed7b3b3f6eb.pdf
	Introdução
	Objetivos
	Estrutura do Documento

	Referencial Teórico
	Contextualização histórica
	Virtualização Baseada em HIPERVISOR
	Virtualização baseada em Contêiner
	VMware vSphere
	CentOS
	Docker
	Apache
	Google Analytics
	Apache JMeter
	BlazeMeter
	Dstat
	Zabbix
	Oracle DB

	Arquitetura dos Ambientes
	Ambiente em Produção
	Ambiente Experimental
	siga Tradicional
	siga Conteinerizado

	Carga de Testes

	Resultado dos Experimentos
	Balanceador de carga e Banco de dados
	Balanceador de Carga
	Banco de Dados

	Camada de aplicação
	Uso de CPU
	Uso de disco
	Uso de memória
	Uso de rede

	Conclusão
	Trabalhos Futuros

	REFERÊNCIAS

