
UNIVERSIDADE FEDERAL DE PERNAMBUCO
CENTRO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

Guto Leoni Santos

An artificial Intelligence Powered Framework for Automatic Service Function Chain
Placement in Distributed Scenarios

Recife
2023

Guto Leoni Santos

An artificial Intelligence Powered Framework for Automatic Service Function Chain
Placement in Distributed Scenarios

Trabalho apresentado ao Programa de Pós-
graduação em Ciência da Computação do Centro de
Informática da Universidade Federal de Pernambuco
como requisito para obtenção do grau de Doutor em
Ciência da Computação.

Área de Concentração: Inteligência Computa-
cional

Orientador (a): Judith Kelner

Coorientador (a): Patricia Takako Endo

Recife
2023

Catalogação na fonte
Bibliotecária Nataly Soares Leite Moro, CRB4-1722

S237a Santos, Guto Leoni
An artificial intelligence powered framework for automatic service function

chain placement in distributed scenarios / Guto Leoni Santos – 2023.
186 f.: il., fig., tab.

Orientador: Judith Kelner.
Tese (Doutorado) – Universidade Federal de Pernambuco. CIn, Ciência da

Computação, Recife, 2023.
Inclui referências e apêndices.

1. Inteligência computacional. 2. Network function virtualisation. 3. Service
function chain. 4. Gerenciamento de rede. 5. Rede distribuída. 6. Aprendizado
de máquina. I. Kelner, Judith (orientador). II. Título

006.31 CDD (23. ed.) UFPE - CCEN 2023 – 77

Guto Leoni Santos

“An Artificial Intelligence Powered Framework for Automatic Service
Function Chain Placement in Distributed Scenarios”

 Tese de Doutorado apresentada ao Programa
de Pós-Graduação em Ciência da
Computação da Universidade Federal de
Pernambuco, como requisito parcial para a
obtenção do título de Doutor em Ciência da
Computação. Área de Concentração:
Inteligência Computacional.

Aprovado em: 22/03/2023.

__
Orientadora: Profa. Dra. Judith Kelner

BANCA EXAMINADORA

Prof. Dr. Nelson Souto Rosa

Centro de Informática / UFPE

Prof. Dr. Paulo Romero Martins Maciel

Centro de Informática / UFPE

Prof. Dr. Edmundo Roberto Mauro Madeira

Instituto de Computação / UNICAMP

__
Prof. Dr. Antonio Alfredo Ferreira Loureiro

Departamento de Ciência da Computação / UFMG

Prof. Dr. Carmelo Jose Albanez Bastos Filho

Escola Politécnica de Pernambuco / UPE

I dedicate this work to all my friends. The people who always supported me and made me

get this far. Thank you, I love you.

ACKNOWLEDGEMENTS

I would first like to thank God for giving me the strength, patience and resilience to
complete this work at such a complicated and difficult time.

I would like to thank my parents, Marcos and Cicera, for always doing everything so that
I could study and work with what I love. I am very grateful to them for always encouraging
me to study and follow my dreams. Mom, thank you so much for always understanding me
and giving me the best advice, always respecting my limits and being there for everything.
Dad, thank you so much for always being with me, through the best and worst times, for
encouraging me to be strong and keep going, despite everything. I love you guys more than
anything in this world. I would also like to thank Naially Sabrine, the best sister anyone could
ask for. She, with her maximum sincerity and delicacy of a horse’s kick, was always with me,
supporting and helping me. I love you so much.

I would like to thank my supervisor, Judith Kelner, for all her patience, advice and guidance
during this work. I repeat, we managed to do a good job in one of the most difficult moments
that humanity has ever gone through, and all of this was only possible thanks to her, who
opened so many doors for me. I would also like to thank Professor Djamel Sadok, who always
wanted to guide me too and gave me so much advice with his usual good humour.

Again, for the third time, a special thanks to Patricia Takako Endo. This person I was very
lucky to meet while still an undergraduate and to work with for so many years. The person who
first opened doors for me and always believed in me so much. Know that you are a reference
to me and that I will never know how to thank you for everything you have already done for
me. Thanks also to Professor Theo Lynn, who helped me in so many moments in this work.

I would like to thank Elaine Santos, my psychologist. She was essential to maintain my
mental health during my PhD. Always supporting me and teaching me to learn more about
myself and my limits. Congratulations on being an incredible professional, and thank you for
everything.

I would like to thank all my friends. Thank goodness, the list is long, so it would be
impossible to mention them all here. However, know that you make all the difference in my
life, and if I finished this PhD it was because you helped me to deal with my problems and
conflicts. Although I did most of this PhD alone in my room because of a damn pandemic,
I would like to thank my laboratory friends who saw my moments of difficulties up close for

a few moments: Elisson Rocha, Diego Bezerra, Daniel Bezerra (they are not brothers), Iago
Richard, Assis Tiago and Marrone Dantas. A very special thank you to Leylane Ferreira, my
best friend and sister who has always been with me. She knows everything I’ve been through,
and she’s always been there helping and supporting me. Thank you for everything! I would
like to thanks to all those who have passed in my life before this work, I have not forgotten
you, and you have helped me to get here (see acknowledgements of my TCC and my master
dissertation).

Finally, I would like to thank the Fundação de Amparo a Ciência e Tecnologia do Estado
de Pernambuco for funding this work through grant IBPG-0059-1.03/19.

“E o caminho da felicidade ainda existe, é uma trilha estreita, é em meio à selva triste.”
Racionais MC’s (DEEZER, 2023)

ABSTRACT

Software Defined Network (SDN) and Network Function Virtualisation (NFV) are making net-
works programmable and consequently much more flexible and agile. To meet service level
agreements, achieve greater utilisation of legacy networks, faster service deployment, and re-
duce expenditure, telecommunications operators are deploying increasingly complex Service
Function Chains (SFCs). Besides the advantages from service virtualisation, it is expected
that network performance and availability do not be affected by SFC usage. However, several
factors that may compromise the SFC availability are added in a virtualised scenario such as
software failures, misconfiguration, cyberattacks, and so on. In order to mitigate the impact
of these factors, redundancy mechanisms can be used, i.e., to add redundant Virtual Network
Functions (VNFs) in the servers to keep the SFC operation in case of failures. On the other
hand, the network operators desire, of course, to allocate the SFCs optimising the resources
utilisation in order to reduce Operational Expenditures (OPEX), which is a challenge since the
replication mechanisms demand additional computational resources. In addition, the place-
ment of SFCs in distributed scenarios can improve their availability, since an isolated failure
would not impact the whole SFC operation. However, the placement in geo-distributed scenar-
ios increases the management complexity, where different hardware and additional delay may
compromise the SFC performance. Therefore, intelligent strategies are needed to optimise the
SFC placement. This thesis presents the Sfc Placement framework focused on avaIlability for
DistributEd scenaRios (SPIDER), a framework for SFC placement with focus on distributed
scenarios and SFC availability. SPIDER is designed to make SFC placement in different dis-
tributed scenarios, i.e., scenarios with different hardware and software characteristics. To do
that, SPIDER uses context information in order to define the SFC placement strategy. In
addition, machine learning techniques are used to predict the traffic of allocated SFCs and
reinforcement learning to select the servers for the SFC placement. We compare the perfor-
mance of LSTM and GRU models to predict traffic using a real dataset of cellular network. In
order to define the placement of an SFC request, we proposed a reinforcement learning based
algorithm to select the suitable candidate node and define the redundancy strategy to meet
availability requirements. We implemented a proof-of-concept of SPIDER in order to show
the feasibility of the framework. We implemented the SFCs using containers and Kubernetes
to manage them. We assess the framework by assessing the placement time for SFCs with

different numbers of VNFs. In order to evaluate the SFCs placed, we also evaluate the SFC
delay for a centralized and a distributed scenario.

Keywords: network function virtualisation; service function chain; network management; dis-
tributed network; machine learning; deep learning; reinforcement learning.

RESUMO

Software Defined Networks (SDN) e Network Function Virtualisation (NFV) estão tornando
as redes programáveis e, consequentemente, muito mais flexíveis e ágeis. Para cumprir acor-
dos de nível de serviço, obter maior utilização de redes legadas, implantação de serviço mais
rápida e reduzir despesas, as operadoras de telecomunicações estão implantando Service Func-

tion Chains (SFCs) cada vez mais complexas. Apesar dos benefícios das SFCs, o aumento da
heterogeneidade e do dinamismo da computação em nuvem para a computação em borda
apresenta desafios significativos de posicionamento de SFC, não menos importante, adicio-
nando ou removendo funções de rede, mantendo a disponibilidade, qualidade de serviço e
minimizando custos. Além das vantagens da virtualização de serviços, espera-se que o desem-
penho e a disponibilidade da rede não sejam afetados pelo uso de SFCs. No entanto, vários
fatores que podem comprometer a disponibilidade da SFC são adicionados em um cenário vir-
tualizado, como falhas de software, errors de configuração, ataques cibernéticos entre outros.
Para mitigar o impacto desses fatores, mecanismos de redundância podem ser utilizados, ou
seja, adicionar Virtual Network Functions (VNFs) redundantes nos servidores para manter o
funcionamento da SFC em caso de falhas. Por outro lado, as operadoras de rede desejam,
obviamente, alocar as SFCs otimizando a utilização dos recursos de forma a reduzir os Gastos
Operacionais (OPEX), o que é um desafio visto que os mecanismos de replicação demandam
recursos computacionais adicionais. Além disso, a alocação de SFCs em cenários distribuídos
pode melhorar sua disponibilidade, pois uma falha isolada não impactaria no funcionamento da
SFC como um todo. No entanto, a alocação em cenários geo-distribuídos aumenta a complex-
idade de gerenciamento, onde diferentes hardwares e atrasos adicionais podem comprometer
o desempenho da SFC. Portanto, estratégias inteligentes são necessárias para otimizar o posi-
cionamento do SFC. Esta tese apresenta o Sfc Placement framework focused on avaIlability

for DistributEd scenaRios (SPIDER), um framework para posicionamento de SFC com foco
em cenários distribuídos e disponibilidade dessa SFC. O SPIDER foi projetado para fazer a
alocação da SFC em diferentes cenários distribuídos, ou seja, cenários com diferentes carac-
terísticas de hardware e software. Para fazer isso, o SPIDER usa informações contextuais para
definir a estratégia de alocação da SFC. Além disso, técnicas de aprendizado de máquina são
usadas para prever o tráfego das SFCs alocadas e aprendizado de reforço para selecionar os
servidores para a alocação da SFC. Comparamos o desempenho dos modelos LSTM e GRU
para prever o tráfego usando um conjunto de dados real de uma rede celular. Para definir

o alocação de uma requisição SFC, propusemos um algoritmo baseado em aprendizado por
reforço para selecionar o nó candidato adequado e definir a estratégia de redundância para
atender aos requisitos de disponibilidade. Implementamos uma prova de conceito do SPIDER
para mostrar a viabilidade do framework. Implementamos as SFCs utilizando containers e Ku-
bernetes para gerenciá-los. Avaliamos o framework avaliando o tempo de colocação de SFCs
com diferentes números de VNFs. Para avaliar os SFCs alocadas, também avaliamos o atraso
das SFCs para um cenário centralizado e um distribuído.

Palavras-chave: network function virtualisation; service function chain; gerenciamento de
rede; rede distribuída; aprendizado de máquina; aprendizado profundo; aprendizado por reforço.

LIST OF FIGURES

Figure 1 – Stages of SFC orchestration. 30
Figure 2 – SFC placement example . 31
Figure 3 – SPN Components . 34
Figure 4 – Example of an SPN model to represent the availability of a generic component 34
Figure 5 – MAPE-K loop. 36
Figure 6 – Example of a LSTM block . 39
Figure 7 – Actor-critic method . 43
Figure 8 – A2C algorithm schema . 45
Figure 9 – Example of SFC system operation . 58
Figure 10 – Example of generic SFC request. 59
Figure 11 – SPIDER Framework overview. 61
Figure 12 – Data Monitor module and daemon. 69
Figure 13 – SPIDER core overview. 70
Figure 14 – Agent module description . 72
Figure 15 – JSON examples for the Traffic Prediction module 73
Figure 16 – The Milan Metropolitan Area. 76
Figure 17 – Number of Internet activities of cells 1 and 1000 in the Telecom Italia dataset. 78
Figure 18 – Cell internet traffic prediction pipeline. 79
Figure 19 – Elbow method results. 80
Figure 20 – Overlay of the 12 clusters on a map of the metropolitan area of Milan. . . 82
Figure 21 – Mean RMSE of LSTM model for (a) cluster 1, (b) cluster 2, (c) cluster 3,

(d) cluster 4, (e) cluster 5, (f) cluster 6, (g) cluster 7, (h) cluster 8, (i)
cluster 9, (j) cluster 10, (k) cluster 11, and (l) cluster 12. 84

Figure 22 – Average RMSE of GRU model for (a) cluster 1, (b) cluster 2, (c) cluster
3, (d) cluster 4, (e) cluster 5, (f) cluster 6, (g) cluster 7, (h) cluster 8, (i)
cluster 9, (j) cluster 10, (k) cluster 11, and (l) cluster 12. 86

Figure 23 – Box plot of the RMSE of the best LSTM configurations for Cluster 12. . . 87
Figure 24 – Boxplot of the RMSE of the best configurations of (a) cluster 1, (b) cluster

2, (c) cluster 3, (d) cluster 5, (e) cluster 6, (f) cluster 7, (g) cluster 8, and
(h) cluster 9. 88

Figure 25 – Comparison against ground truth Internet activity and the predictions of
LSTM and GRU models for (a) cluster 1, (b) cluster 2, (c) cluster 3, (d)
cluster 4, (e) cluster 5, (f) cluster 6, (g) cluster 7, (h) cluster 8, (i) cluster
9, (j) cluster 10, (k) cluster 11, and (l) cluster 12. 90

Figure 26 – Placement examples of VNFs of the same type 94
Figure 27 – Placement examples of SFCs with two VNF types 95
Figure 28 – Generation of SPN models based on the SFC placement 97
Figure 29 – Generation of SPN models with different VNFs types placed in shared servers 98
Figure 30 – Sample physical infrastructure and associated graph. 102
Figure 31 – SFC request example. 102
Figure 32 – SFC request represented as a directed graph. 103
Figure 33 – SFC placement represented as a graph matching. 104
Figure 34 – Selection of candidate nodes. 110
Figure 35 – SFC Request represented as an MDP. 113
Figure 36 – The availability difference impact on the reward. 118
Figure 37 – Example of candidate nodes selection in Cand-RL algorithm. 122
Figure 38 – AS graph with 50 nodes. 125
Figure 39 – Parametrization results of Cand-RL algorithm using a PPO agent. 128
Figure 40 – Acceptance rate results for different numbers of customers. 130
Figure 41 – Acceptance rate results for different availability requirements. 131
Figure 42 – Comparison about SFC aspects. 132
Figure 43 – Basic Kubernetes concepts. 136
Figure 44 – Traffic flow configuration. 141
Figure 45 – SFC request sequence diagram. 142
Figure 46 – The face detection application represented as an SFC. 142
Figure 47 – Network topology considered for the experiments. 144
Figure 48 – Scenarios considered in the experiments. 145
Figure 49 – Placement runtime results. 146
Figure 50 – VNF processing runtime results. 147
Figure 51 – SFC placement scenarios . 175

LIST OF TABLES

Table 1 – Comparison among the related works (Y-yes, N-no, and *-not specified in
the work) . 54

Table 2 – SPIDER Requirements. 56
Table 3 – Repository scripts. 61
Table 4 – Physical node data model. 62
Table 5 – Physical link data model. 64
Table 6 – Infrastructure data model. 64
Table 7 – SFC request data model. 65
Table 8 – VNF template data model. 65
Table 9 – SFC traffic data model. 66
Table 10 – API endpoints. 67
Table 11 – Periods of the day. 80
Table 12 – Grid Search parameters and levels. 81
Table 13 – Parameters used to train the DL models. 82
Table 14 – Comparison of the LSTM, GRU, Random Forest, and Decision Tree models. 89
Table 15 – Summary of parameters used in the model. 100
Table 16 – Simulation parameters about the physical infrastructure. 124
Table 17 – VNF types. 126
Table 18 – Angular coefficient and variance results of the PPO algorithm for different

parameter configurations. 129
Table 19 – Network configuration of servers in Scenario 2. 148
Table 20 – Communication SFC delay results (in seconds). 148
Table 21 – Overall SFC delay results. 149
Table 22 – Scientific papers produced related to this thesis. 156
Table 23 – Parameters of different VNF types . 174
Table 24 – Availability, downtime, and placement cost results for all scenarios 176
Table 25 – Runtime comparison of baseline SPN models and proposed algorithm 177

LIST OF ABBREVIATIONS AND ACRONYMS

A2C Advantage Actor-Critic

AS Authonous System

CAPEX Capital Expenditure

CDR Call Detail Record

CNN Convolutional Neural Network

CSDL Cloud Service Declarative Definition Language

CTMC Continuous Time Markov Chain

DL Deep Learning

DPI Deep Packet Inspection

DRL Deep Reinforcement Learning

ETSI European Telecommunications Standards Institute

GRU Gated Recurrent Unit

IaaS Infrastructure as a Service

IDS Intrusion Detection Systems

ILP Integer Linear Programming

IoT Internet of Things

ISP Internet Service Provider

LSTM Long Short-Term Memory

MAE Mean Absolute Error

MANO Management and Orchestration

MDP Markov Decision Process

MEC Mobile Edge Computing

MILP Mixed-Integer Linear Programming

ML Machine Learning

MLP Multi Layer Perceptron

MTTF Mean Time to Failure

MTTR Mean Time to Repair

NAT Network Address Translation

NDA Non-disclosure Agreement

NFV Network Function Virtualisation

NSD Network Service Description

ONOS Open Network Operating System

OPEX Operational Expenditure

PPO Proximal Policy Optimisation

QoS Quality of Service

RBM Restricted Boltzmann Machine

RL Reinforcement Learning

RMSE Root Mean Square Error

RNN Recurrent Neural Network

SDN Software Defined Network

SFC Service Function Chain

SLA Service Level Agreement

SMS Short Message Service

SPN Stochastic Petri Net

SVR Support Vector Regression

TOs telecommunications operators

TOSCA Topology and Orchestration Specification for Cloud Applications

USDL Unified Service Description Language

VIM Virtual Infrastructure Manager

VM Virtual Machine

VNF Virtual Network Function

WSDL Web Service Description Language

CONTENTS

1 INTRODUCTION . 20

1.1 OBJECTIVES . 25
1.2 CONTRIBUTIONS OF THE THESIS . 25
1.3 ORGANISATION OF THE THESIS . 27
2 BACKGROUND . 29

2.1 SFC PLACEMENT . 29
2.2 AVAILABILITY CONCEPTS . 32
2.3 MAPE-K . 35
2.4 DEEP LEARNING . 37
2.4.1 Recurrent Neural Networks . 38

2.4.1.1 Long Short-Term Memory Networks . 38

2.4.1.2 Gated Recurrent Unit . 40

2.5 REINFORCEMENT LEARNING . 41
2.5.1 Advantage Actor-Critic . 44

2.5.2 Proximal Policy Optimisation . 45

2.6 CONCLUDING REMARKS . 46
3 RELATED WORKS . 47

3.1 FRAMEWORK FOR SFC PLACEMENT 47
3.2 COMPARISON . 52
4 SPIDER . 55

4.1 SPIDER REQUIREMENTS . 55
4.2 SFC REQUEST EXAMPLE . 58
4.3 SPIDER OVERVIEW . 60
4.3.1 Repositories and Data Models . 61

4.3.2 SPIDER API . 66

4.3.3 SPIDER Core . 68

4.3.4 Agent Module of SPIDER . 72

5 TRAFFIC PREDICTION FOR SFC PLACEMENT 76

5.1 DATASET . 76
5.2 TRAFFIC PREDICTION PIPELINE . 77

5.3 CLUSTERING THE CELLS . 79
5.4 DL MODEL CONFIGURATION . 81
5.5 METRICS FOR EVALUATING DL MODELS 83
5.6 RESULTS . 83
5.6.1 Statistical analysis . 85

5.6.2 Comparison of LSTM and GRU models. 87

5.7 CONCLUDING REMARKS . 92
6 REINFORCEMENT LEARNING FOR SFC PLACEMENT 93

6.1 MODELLING SFC PLACEMENT . 93
6.1.1 Generating SFC Availability models Automatically 95

6.2 SYSTEM MODEL FOR SFC PLACEMENT PROBLEM 99
6.2.1 Problem Definition . 105

6.3 THE CAND ALGORITHM FOR SELECTING CANDIDATE NODES 107
6.3.1 An Illustrative Example of How the Cand Algorithm Works 109

6.4 RL FOR SFC PLACEMENT . 111
6.4.1 Characteristics of SFC requests . 112

6.4.2 Environment State Representation . 114

6.4.3 Action representation . 115

6.4.4 Reward function . 116

6.5 THE CAND-RL ALGORITHM . 119
6.6 EVALUATION . 123
6.6.1 Simulation setup . 123

6.6.2 RL Agent Parametrization . 126

6.6.3 Scenario Variation . 129

6.7 CONCLUDING REMARKS . 134
7 SPIDER PROOF OF CONCEPT . 135

7.1 CONTAINER-BASED SFCS USING KUBERNETES 135
7.2 PROTOTYPE EVALUATION . 142
7.2.1 Scenario Setup . 143

7.2.2 Placement Time . 144

7.2.3 VNF processing Runtime . 146

7.2.4 Communication SFC Delay . 147

7.2.5 Overall SFC delay . 149

7.3 CONCLUDING REMARKS . 150
8 GENERAL CONSIDERATIONS . 151

8.1 LIMITATIONS . 153
8.2 SCIENTIFIC CONTRIBUTIONS . 154
8.3 FUTURE WORKS . 154

REFERENCES . 157

APPENDIX A – SFC AVAILABILITY ANALYSIS 174

APPENDIX B – SFC REQUEST DETAILS 179

APPENDIX C – DAEMON CONFIGURATION 182

APPENDIX D – SFC PLACEMENT DECISION BY THE AGENT 185

20

1 INTRODUCTION

Historically, telecommunications operators (TOs) have deployed special purpose, network-
specific, fixed-function hardware with standardised protocols. This hardware-centric approach
often relied on fragmented, non-commodity hardware with physical installs for each appliance.
As a result, innovation and competition was constrained by both the development of, access to,
and maintenance of hardware development (JIM, 2015). The rapid emergence and adoption of
the so-called third IT platform (GENS, 2013), a convergence of mobile technology, cloud com-
puting, big data analytics, and social media, by both enterprises and consumers has resulted
in dramatic shifts in bandwidth demand, network infrastructure requirements, and associated
economic models that the traditional to approach cannot scale or adapt to easily. Against the
backdrop increasing competition, TOs needed new ways to achieve greater legacy infrastruc-
ture utilisation, faster service deployment and new service time-to-market, improved greater
agility and flexibility, new revenue streams, while at the same time reducing both Operational
Expenditure (OPEX) and Capital Expenditure (CAPEX) (LYNN et al., 2018).

Software Defined Network (SDN) and Network Function Virtualisation (NFV) abstract the
implementation of new network functions and decouple them from the hardware infrastruc-
ture and associated topological constraints, thus making networks programmable and as a
result much more flexible and agile (RAY; KUMAR, 2021). The European Telecommunications
Standards Institute (ETSI) defines NFV as the

“implementation of network functions in software that can run on a range
of industry standard server hardware, and that can be moved to, or instan-
tiated in, various locations in the network as required, without the need for
installation of new equipment” (INSTITUTE, 2018).

By virtualising network functions while retaining the same capabilities as the corresponding
physical instances, multiple virtualised network functions can share physical hardware in the
form of Virtual Machines (VMs), a concept that can be massively scaled to encompass large
volumes of physical hardware (GROUP, 2013). As a result, TOs need no longer limit themselves
to special-purpose hardware and can achieve the same, if not more, capacity with commercial
off the shelf commoditised equipment thus reducing both CAPEX and OPEX. Consequently,
TOs can benefit from reduced total cost of ownership and operational complexity, real-time
bandwidth and network scalability, reduced service deployment and time to market, increased
security, and improved visibility and integration (LYNN et al., 2018). Unsurprisingly, there are

21

a myriad of virtual network functions commonly used by TOs. These include firewalls, load
balancing, Intrusion Detection Systems (IDS), Network Address Translation (NAT), amongst
others (BHAMARE et al., 2016; KAUR; MANGAT; KUMAR, 2020).

A Service Function Chain (SFC) is defined as one or more Virtual Network Functions
(VNFs) in an ordered sequence and subsequent steering of flows through them to provide
end-to-end services (KAUR; MANGAT; KUMAR, 2020). The implementation of an SFC typically
comprises four stages (MIRJALILY; ZHIQUAN, 2018):

1. Description – details the functional and non-functional properties of the network services
including interfaces and constraints;

2. Composition – defines the order of network services to compose a functional service.
Although these services can work independently, some network functions require a se-
quenced order to work properly;

3. Placement - determines in which physical nodes of the infrastructure the virtual functions
will be deployed. This stage is essential in the pipeline because the physical resources
must be managed optimally in terms of usage to avoid overloading some servers or
wasting resources; and

4. Scheduling - defines the time an SFC will be deployed in the infrastructure and the time
it will be removed, releasing resources to other deployed SFCs. The scheduling stage is
important to minimise the whole execution time of the network services.

While SFCs have many advantages, they are not without challenges. In the same way that
TOs must meet the Service Level Agreement (SLA) with their customers, SFCs must meet the
policy constraints under which the SLA demands including network capacity and acceptable
total latency for end users. These challenges are exacerbated by the increasing dynamism and
heterogeneity of modern network environments. Thus there is a need for robust, well-tested,
dynamic and automatic SFC models, and associated research (BHAMARE et al., 2016). Service
reliability and availability have been the hallmark for trustworthy computing since the turn of
the century (MUNDIE et al., 2002). They are the cornerstone of modern SLAs and failure to
meet Quality of Service (QoS) can result in significant financial penalties to TOs as well as lost
customers and reputational damage. In dynamic network environments, the dynamic addition
or removal of network functions must be executed in such a way that it does not interfere with

22

the availability and quality of network services while at the same time minimising CAPEX and
OPEX.

As highlighted by (XIE et al., 2016), there are many effort for SFC management and orches-
tration in centralised scenarios, such as traditional data centers. However, the SFC centralised
solution can be not suitable in many situations such as multiple providers and multiple admin-
istrative domains. In addition, centralised infrastructures suffer from the scalability problem,
which is a desired requirement for large network infrastructures. A natural improvement is
to adopt a distributed architecture for the SFC placement, such as federated and/or Geo-
distributed cloud. Considering the context of cellular networks, where a shorter communication
delay is increasingly expected, the Mobile Edge Computing (MEC) paradigm can be applied
in combination with the NFV paradigm (PANDEY et al., 2021). Therefore, the VNFs can be
allocated in a distributed manner at the different levels of the network (from the edge to the
cloud) meeting the delay and computation requirements. However, the management of this
architecture and the SFC placement in these scenarios is a very complex task, due to scenario
scale and constraints required by various applications (ESPOSITO, 2017). The complexity of
SFC placement increases due to the different traffic conditions of different networks and the
increased communication delay related to geographic distribution (ABU-LEBDEH et al., 2017).

Besides all challenges previously mentioned, with the adoption of NFV paradigm, obviously
the availability of the SFC is expected to be guaranteed (MOUALLA; TURLETTI; SAUCEZ, 2018)
(WANG et al., 2021a). Indeed, as the NFV paradigm relies on virtualisation for sharing physical
network and computing resources, to guarantee the downtime avoid and failure recovery is
important in order to respect SLA and the contracts established between consumers and
providers (SOUALAH et al., 2017). Due to unplanned interruptions, the service providers can
pay penalties because of SLA violations, while the costumers experience will degrade. For
instance, unplanned interruptions can be translated into about $336,000 per hour in lost
revenue for companies such as Microsoft and Amazon. Other more critical example is credit-
card authorisation service, where a disruption can result in losses about $2.6 million per hour
in transactions that can’t be completed (ENDO et al., 2017).

Replication mechanism is usually used in order to mitigate failures and improve the avail-
ability of computer systems (CARPIO; BZIUK; JUKAN, 2017; ATTAR; RAISSI; KHALILI-DAMGHANI,
2017; KAYEDPOUR et al., 2017; ALAMDARI; SHARIFI, 2020). The VNFs from an SFC can be
replicated in different nodes in order to decrease the failure probability of the whole SFC. How-
ever, the SFC placement problem is NP-hard (SUN et al., 2020) and the problem complexity

23

increases when the SFC must be deployed in a distributed scenario, due to the heterogeneity of
computing resources and the common link delay (CAI et al., 2020); and ensuring the availabil-
ity of the SFC, as adding replicas to increase availability can unnecessarily increase resource
consumption, impacting the allocation cost and energy consumption (LIRA et al., 2019).

It is desired that the placement and orchestration of SFCs be done automatically or with
minimum human intervention, which can be named as zero-touch service deployment and oper-
ation (RECSE; SZABO; NEMETH, 2020). However, the heterogeneity of NFV environment about
the virtualisation stacks and the placement options need to be considered (LINGUAGLOSSA et

al., 2019). These aspects increase the management complexity, resulting in a huge parameter
space, “rendering many traditional optimisation techniques either incompatible with the strict

runtime constraints or entirely inapplicable due to hardware limitations” (LANGE et al., 2020).
In this way, the SFC placement problem can be modelled as a mathematical problem and
solved by using computational techniques. Machine Learning (ML), heuristics, metaheuris-
tics among other techniques can be applied for the autonomous network management, where
several tasks can be done such as resource allocation, configuration optimisation, and traffic
prediction (BOUTABA et al., 2018) (MASOUDI; GHAFFARI, 2016). These techniques can be ap-
plied for the network management in distributed scenarios, with a focus on service availability.
These techniques can be used to define the replication configuration in order to mitigate the
failures and downtime of distributed network infrastructure. For the point of view of customer,
its SLA will be met, while for the point of view of network manager, the near optimal placement
will be made, reducing CAPEX and OPEX.

Against this backdrop, in this thesis, we consider as the main research question: “How

to allocate and orchestrate SFCs in distributed scenarios, meeting availability requirements

defined by the customers, in an automatic way?”. We propose the SFC Placement framework
focused on avaIlability for DistributEd scenaRios (SPIDER), which considers the customers’
requirements and a variety of information about the substrate network in order to choose
the best SFC placement, focusing on how to optimise the SFC availability. SPIDER monitors
information about the network environment, in order to decide the best strategy for the SFC
placement. Then, when a customer sends an SFC request, SPIDER retrieves the relevant
information, takes into account the customer requirements and decide the more appropriated
SFC placement. As mentioned above, different techniques can be used for SFC placement
and orchestration, as well as implemented in SPIDER. However, for the experiments and the
implementation of the SPIDER in this work, we explored the usage of artificial intelligence

24

techniques for automatic SFC placement. Specifically, we used Deep Learning (DL) models and
Reinforcement Learning (RL) agents combined to process the context information monitored
from the network infrastructure to define the SFC placement. In our studies, we implemented
an RL-based algorithm to define the SFC placement that meets the availability requirement
defined by the customer, while the placement cost and energy consumption are minimized, in
order to reduce OPEX. In addition, the SPIDER takes into account the computational and
network requirements for the VNF and virtual links of the SFC.

We considered the following research questions to guide the development of this thesis:

• How to allocate SFCs in distributed scenarios efficiently? To answer this question,
we performed a literature review to identify works that propose solutions for allocating
SFCs in distributed scenarios. Although the focus of this thesis is to consider the avail-
ability of SFC, we will not limit our searches to just that topic, since other solutions,
with different placement objectives, can contribute to the development of the framework
proposed in this thesis.

• How can contextual information about the infrastructure be organised and

stored to enable quick consultation and updating? Since we will have to deal
with contextual information about the infrastructure to define better SFC placement
strategies, we defined data models that are simple and extensible to be used in the
proposed framework. The data models the physical and logic components considered in
the SPIDER: physical nodes, physical nodes, physical links, VNFs, virtual links, SFC,
among others. We used NoSQL schema in order to be easy to update the data schema,
and due to the good performance of NoSQL databases.

• How can computational algorithms be used to provide intelligent placement

strategies, with a focus on SFC availability? To process the contextual information
of the infrastructure and create SFC placement strategies automatically, we use compu-
tational algorithms. This is due to the fact that such algorithms are able to learn how
to perform such tasks, without the need to define deterministic placement strategies
previously.

• How effective can an SFC availability-focused solution be? SFC availability can
be achieved in different ways, however other metrics need to be taken into account.
Thus, to evaluate the performance of the framework in the role of defining placement

25

strategies, as well as in the allocation process, we carried out experiments with simulation
and prototype.

1.1 OBJECTIVES

Despite the benefits of the NFV paradigm, it cannot be assumed that the usage of SFC will
not impact the network service performance and availability. Solutions for the SFC placement
and orchestration need to consider the main customer requirements as well as the current
network status, in order to provide a placement solution that does not violate the SLA. In
addition, in order to reduce OPEX, it is expected that SFC placement will be done in an
automated manner, with as little human intervention as possible.

Against this backdrop, the main objective of this thesis is to propose a framework, called
SPIDER, which considers a set of context information about the infrastructure combined with
computational algorithms to define an SFC placement solution. The definition of the solution
takes into account the availability requirement of the user and the current information about
the infrastructure. Then, a placement solution is created by the SPIDER in order to meet
the availability requirements without violating computational requirements, while considering
placement cost and the energy consumption of the SFC placement.

In order to validate the solution proposed, we evaluate the SPIDER by its modules as well
as the whole SPIDER in different studies. The specific objectives of this thesis proposal are:

• To define algorithms which can be used for the SFC placement task;

• To specify data models to represent the context information as internal information of
the SPIDER;

• To define automatic placement solution for the SFC placement with focus on the SFC
availability; and

• To assess the SPIDER performance in different application scenarios.

1.2 CONTRIBUTIONS OF THE THESIS

The main contributions of this thesis are:

26

• We proposed the SPIDER framework for the SFC placement (Chapter 4). We present
the framework architecture, defining the main modules and how they interact with each
other. We detail how we model the infrastructure data and the SFC data are modelled in
the framework. We also present the monitoring module to collect data and store it into
the database. We detail how the context information is processed by an agent module
by using computational algorithms to define the SFC placement. Finally, we present how
the placement decision is processed and the SFC is placed in the infrastructure.

• In order to define the future status of the physical links, we predict the traffic about the
SFCs already placed in the infrastructure. We proposed DL models to perform the traffic
prediction (Chapter 5). We use real datasets about cellular networks to represent the
traffic of SFCs. We propose different model architectures and compare their performance
in order to identify the model which provides the lowest error prediction.

• We propose the Cand-RL algorithm, which uses RL to select the suitable candidate
node and define the redundancy strategy to meet availability requirements (Chapter
6). The main advantage of using RL to create the placement solution is to find the
near optimal solution automatically, thus dispensing with the need of human experience
or labelled training datasets (SUN et al., 2020). Since RL is based on a trial-and-error
learning approach (QIANG; ZHONGLI, 2011), we create an agent that learns how to create
placement strategies to meet availability requirements by interacting with the network
equipment and taking into account placement cost and energy consumption. The Cand-
RL algorithm is used in the SPIDER in the module that defines the SFC placement based
on the infrastructure status and the SFC request.

• In order to show the feasibility of SPIDER, we propose a proof-of-concept and implement
it in a real scenario using virtual machines (Chapter 7). Based on the work presented in
(SANTOS et al., 2020b), we implement a container-based SFC by using Kubernetes. We
show how the VNFs can be created and connected using Kubernetes. We also perform
experiments in order to assess the SPIDER performance in terms of placement time as
well as the delay of the SFCs created in the infrastructure, comparing a centralized and
a distributed scenario.

27

1.3 ORGANISATION OF THE THESIS

This thesis proposal handle the challenges of SFC placement in distributed scenarios and
present the SPIDER, which is a framework for automatic placement based on context infor-
mation and artificial intelligence algorithms. The remainder of this document is organised as
follows:

Chapter 2 presents some basic concepts needed for the reader understand the proposal
of this document. Concepts about SFC placement, availability modelling, DL, and RL are
explained.

Chapter 3 presents the related works and a brief qualitative comparison between our pro-
posal and other works from the literature.

Chapter 4 presents the SPIDER, which is the main contribution of the thesis. We present
the data models, detailing the main context information considered in the framework. After-
wards, we detail the SPIDER API, describing the endpoints and how the SPIDER functions
can be accessed. We also describe the main modules of SPIDER, and how they interact to
process an SFC request, collecting context information from the infrastructure and using ML
models to define the best SFC placement.

In Chapter 5, we present DL models proposed for the traffic prediction. We used these
models in the framework to map the virtual links into physical links, with the purpose to
compose the virtual path that connect the VNFs. We used real data about cellular networks
to train the models, and combined a cluster approach to create group of cells with similar
statistics in order to reduce the number of models created. We also compared the proposed
models with traditional ML models in order to show the gain of use DL models.

Chapter 6 presents a solution for SFC placement based on RL taking into account SFC
availability, operational costs, and energy consumption. This solution is used in SPIDER to
define the SFC placement based on the context information collected from the infrastructure.
We present the Cand-RL algorithm, which uses RL based on Proximal Policy Optimisation
(PPO) to select the suitable candidate node and define the redundancy strategy to meet
availability requirements. We compare Cand-RL against two greedy algorithms in a variety of
simulated scenarios. The results show that the Cand-RL outperforms the greedy algorithms,
achieving a higher acceptance rate and a good balance between availability, placement cost,
and energy consumption.

Chapter 7 presents the proof-of-concept of SPIDER. We show how we implement the SPI-

28

DER using Kubernetes, to deploy the VNFs as containers. We also use Kubernetes mechanisms
to connect the VNFs and to forward the traffic among them. We also conduct experiments to
assess the SPIDER placement runtime and SFCs delay in two different networks.

Chapter 8 presents the general consideration of this thesis proposal, the scientific contri-
butions and the next steps for the conclusion of the thesis.

29

2 BACKGROUND

This chapter describes some basics concepts needed to better understand the proposal of
this thesis. Firstly, in Section 2.1, we describe the SFC paradigm, detailing the main steps in
the SFC orchestration process. After, in Section 2.2 we describe the availability concepts and
how the system availability can be calculated through Stochastic Petri Net (SPN) models.
Afterwards, we present concepts about DL in Section 2.4, presenting more details about
recurrent networks, which is important to understand a module of the framework proposed.
Finally, we present concepts about RL in Section 2.5, focusing in the actor-critic paradigm,
which is used to create other important module of the framework.

2.1 SFC PLACEMENT

The NFV paradigm was proposed by the ETSI to achieve flexible scaling, redundancy
and lower total cost of operation (GUPTA et al., 2017). It emerged to meet the challenge
of exponential growth resulting from user demand for new diverse, agile, and high-quality
mobile-enabled services (MIRJALILY; ZHIQUAN, 2018). In the NFV paradigm, network functions
are deployed as virtual functions in commodity servers rather than special-purpose hardware
(CHAI et al., 2019). This results in both lower CAPEX and OPEX for the service provider and
offers new ways to design and deploy different network services types (KHEZRI et al., 2019).
NFV providers usually offer the network services as part of a SFC, a set of VNFs have to be
processed in a predefined order (XIAO et al., 2019a).

As mentioned by Mirjalily et al. (MIRJALILY; ZHIQUAN, 2018), there are four stages needed
to deliver an SFC. The stages are identified for handling possible issues related to automatic
SFC deployment in network infrastructures: description, composition, placement, and schedul-
ing. Figure 1 shows an example with an SFC composed of three generic functions (VNF1,
VNF2, and VNF3) as well as their source and destination.

The first stage is the description which is responsible for describing each VNF and detailing
its functional and nonfunctional properties. This stage is important for network providers to
specify the functionalities and requirements of each VNF needed to make the SFC completely
operational.

There are several alternatives that can be applied for VNF description. Both the Web

30

Figure 1 – Stages of SFC orchestration.

Source: the author (2023).

Service Description Language (WSDL) (BOUBENDIR et al., 2017) and Unified Service Descrip-
tion Language (USDL) (CARDOSO et al., 2010; SUN; DONG; ASHRAF, 2012) are efforts for web
services description, while Cloud Service Declarative Definition Language (CSDL) and its vari-
ations (GHAZOUANI; SLIMANI, 2017) focus on the description of cloud services. As highlighted
by the authors in (MEHRAGHDAM; KARL, 2016), the YANG data model can be used for VNF
description. An additional data model that can be used is the Topology and Orchestration
Specification for Cloud Applications (TOSCA), that provides a data model and templates to
orchestrate and manage application services with NFV in cloud environments (KATSAROS et

al., 2014).
The second stage in SFC deployment is the composition. This step defines how the VNFs

will be ordered in an SFC. Although most of these network functions can run in an independent
way, their order must be defined carefully and is determined by the service they seek to offer.
For example, considering an Internet of Things (IoT) scenario, where one can have large data
to transmit, the first VNF of an SFC can perform data compression, in order to reduce the
bandwidth consumption in the network (REN et al., 2019).

The third stage is the SFC placement. It establishes where each VNF from a given chain
will be hosted. The main goal of this phase is to ensure an efficient allocation, taking into

31

account several constraints from the infrastructure and customers (MIRJALILY; ZHIQUAN, 2018).
However, some authors present other concerns for this stage. The authors in (KOUAH et al.,
2018) divided the SFC placement into two sub steps: VNF placement and SFC chaining.
They see placement as one step that consists in assigning VNFs to the physical infrastructure,
whereas chaining is defined as interconnecting VNFs in order to deploy an SFC. In other words,
the SFC placement defines the servers where the VNFs are deployed, and the SFC chaining
defines the physical links that will connect these servers. A different definition is presented in
(CHEN; LIAO, 2019), where the SFC placement can be considered in two distinct moments:
when an SFC request arrives in the system and when it is needed to migrate an already deployed
one. Finally, SFC migration is an important operation invoked in order to overcome service
interruption. A placement example of the SFC considered in Figure 1 is showed in Figure 2.
The VNFs are allocated across different distributed data centers and connected through virtual
links.

Figure 2 – SFC placement example

Source: the author (2023).

The fourth step is the SFC scheduling. After composing and defining which servers the
VFNs will be allocated, the scheduling step determines when that allocation will happen. The
main focus of this step is to minimise the total execution time of the SFCs allocated (MIRJALILY;

ZHIQUAN, 2018). As highlighted by Alameddine et al. (ALAMEDDINE et al., 2019), the scheduling

32

step is still a field under investigation, and received little attention by researchers. For instance,
the authors in (RIERA et al., 2014) formulated the scheduling problem as a flexible job-shop
problem. The authors in (MIJUMBI et al., 2015) proposed a Tabu search based algorithm to
solve the scheduling problem. The work presented in (QU; ASSI; SHABAN, 2016), formulated
the scheduling problem as an Mixed-Integer Linear Programming (MILP) and solved it using
a genetic algorithm.

In this thesis, we focus on the SFC availability, and in the next section we describe the
main concepts about availability and how to model it.

2.2 AVAILABILITY CONCEPTS

Dependability is related to the ability of systems to avoid failures and interruptions in a
given period of time without negatively affecting the user experience (AVIZIENIS et al., 2004). It
is a critical aspect in modern systems, both technically and commercially, from the design of
systems (both hardware and software) to their implementation and operation (ANDRADE et al.,
2017). It is often used as an umbrella term for reliability, availability, security, confidentiality,
integrity, and maintainability (COSTA et al., 2016). Although these terms are closely related,
they differ from each other. For example, reliability refers to the probability that a system will
deliver a service properly until a certain time without any failure (DÂMASO; ROSA; MACIEL,
2017). On the other hand, availability is defined as the percentage of time that the service
has worked properly during the total operation time, and as such assumes that the system can
be repaired during its operation (ARAUJO et al., 2018). In this proposal, we will focus on the
availability evaluation.

The availability of a system component can be calculated using Equation 2.1 (FAN et al.,
2017):

𝐴 = 𝑈𝑝𝑡𝑖𝑚𝑒

𝑇𝑜𝑡𝑎𝑙𝑇 𝑖𝑚𝑒
= 𝑈𝑝𝑡𝑖𝑚𝑒

𝑈𝑝𝑡𝑖𝑚𝑒 + 𝐷𝑜𝑤𝑛𝑡𝑖𝑚𝑒
, (2.1)

which is defined by the system uptime, i.e., how much time the system remains operational
divided by the total operation time (the sum of the uptime and the downtime of system). The
system uptime can also be defined as the Mean Time to Failure (MTTF), the time when the
system is not at fault and working properly. Conversely, system downtime can be defined as
the Mean Time to Repair (MTTR), that is, the mean time the system fails and is under repair.

33

Thus, availability can be defined as:

𝐴 = 𝑀𝑇𝑇𝐹

𝑀𝑇𝑇𝐹 + 𝑀𝑇𝑇𝑅
. (2.2)

Numerous techniques exist for evaluating the availability of complex systems, such as
stochastic Petri nets (MOLLOY, 1982a), continuous Markov chains (BOLCH et al., 2006), and
fault trees (DÂMASO; ROSA; MACIEL, 2014). In this proposal, we make use of the SPN which
is a mathematical formalism to define the relationships of system components.

Petri Nets are a graphical and mathematical modelling tool used to represent different
types of systems. They are a robust tool to describe systems characterized mainly by their
concurrency, asynchrony, distribution, parallelism, non-determinism, and/or stochastic, such
as distributed computing, telecommunication, control systems, workflow management (CHEN;

HA, 2018).
Since Petri’s seminal work, many representations and extensions have been proposed, al-

lowing more concise descriptions and representing system features not observed in early models
(MURATA, 1989). SPN models are a special case of Petri Nets and the proposals regarding
performance evaluation sought an equivalence between SPN and Continuous Continuous Time
Markov Chain (CTMC) (GERMAN, 2000). In order to obtain an equivalence between a PN and
a CTMC, it was necessary to introduce temporal specifications such that the future evolution
of the model, given present marking, was independent of the marking history. Therefore, SPNs
can be translated to CTMC, which may then be solved to reach the desired performance or
dependability results (MOLLOY, 1982b; MARSAN et al., 1994; TRIVEDI, 2001).

Considering the Figure 3, the rectangles represent SPN transitions. The black rectangle
represents immediate transitions, and fire when it is enabled, without wait any period of
time. The white transitions are called stochastic, and they fire following a stochastic process,
according to a probability distribution function. The gray rectangles are unrefined transitions
and are used to represent that no event occurred and nothing was collected. The white circles
represent places, while the small black circles are tokens; a set of tokens assigned to a given
place is called markup. The arcs (directed edges) are used to connect places to transitions.

The data flow is the main aspect of the SPN behaviour. Tokens are created and consumed
according to the transition firing conditions (GERMAN, 2000). The immediate transitions have
higher priority than other transitions, but the user may define the priority among the existing
immediate transitions. There are also guard functions (represented by boolean expressions) that

34

Figure 3 – SPN Components

Timed
Refined

Timed
Unrefined

Imediate

Transitions

Place Arc Token

Source: the author (2023).

control the transitions, declaring specific conditions regarding the model marking. Therefore, if
the guard function produces a true value, it is enabled and will fire, otherwise, it is considered
disabled (MARSAN et al., 1994).

Figure 4 – Example of an SPN model to represent the availability of a generic component

component_up

component_down

failure_eventrepair_event

Source: the author (2023).

Figure 4 presents an example of an SPN that represents a generic component availabil-
ity. If there is a token at place component_up, it means that the component is operating
properly. If the transition failure_event fires, it will represent that the component is in failure;
this event consumes one token from place component_up and produces on token at place
component_down, representing that the component is unavailable. This transition is modelled
according to a stochastic process (usually following an exponential distribution) defined by

35

the MTTF parameter. The transition repair_event also follows a stochastic process and rep-
resents the repair event of the component, defined by the MTTR parameter. Thus, when this
transition fires, one token is consumed from place component_down and generated at place
component_up, turning the component available.

In this example, the availability of the component is the probability of having, at least, one
token at place component_up.

SPN can be used to model different SFC configurations and assess their availability. Usually,
SFCs are deployed as sequential functions (CAI et al., 2020), and can be considered a series
system, where the failure of any function makes the whole SFC unavailable. Adding redundant
functions (in a parallel configuration) can increase the availability of an SFC, however, these
additional components also increase the system costs, a key consideration in SFC placement.
ML algorithms are an option for planning SFC placement that takes into account the actual
network resources as well as others metrics of interest (LI et al., 2019), including availability.
We will introduce two different ML algorithms later in this chapter.

In the next subsection, we will present concepts about the MAPE-K, a framework which
served as inspiration for the creation of SPIDER.

2.3 MAPE-K

MAPE-K (COMPUTING et al., 2005) is a control loop mechanism introduced in by IBM
in 2005 created for the implementation of autonomic systems. Figure 5 illustrates the basic
MAPE-K loop, which can be divided in four steps.

The first step is the monitor function, which is responsible to collect, aggregate, filter,
and report details collected from a managed element. The information collected can comprise
topology information, metrics, configuration property settings, and so on. It is important to
highlight that these components can be software (databases, APIs, piece of software packages,
etc) or hardware (servers, routers, and other IT equipment), and it must have an interface
that allows it to be monitored, which is named sensor. The information collected is stored in
the knowledge source, which is a collection of data that is shared with other steps of the loop.

The second step of MAPE-K loop is the analyse function, which is responsible to observe
and analyse situations and determine if some change needs to be made. This function usually
models complex situations such as time-series forecasting and queuing models. Then, the mon-
itored information from the system components can be used to learn about the environment

36

Figure 5 – MAPE-K loop.

Source: adapted from (ASLANPOUR; GHOBAEI-ARANI; TOOSI, 2017).

and help predict future situations.
The plan function is the third step of the loop, which defines the actions needed to achieve

the goals and objectives of the system manager. In the original document, IBM defines that
the planning mechanism uses policy information to guide its work. Therefore, tanking into
account the information monitored by the monitor step and processed by the analyse step, the
plan function defines actions according to the policy previously defined by the system manager.
These actions can be a single command or starts a complex workflow.

The last step of the MAPE-K loop is the execute function, which is responsible to schedule
and perform the changes needed to the system, according to the actions defined in the plan
function. In this way, this step can change the system context, updating the components of
the systems based on the actions defined in the plan function. The mechanisms used to change
the behaviour of the resources are aggregated into an effector. In addition to the changes, the
execute function can also update the knowledge source.

These four steps work together to provide the autonomous loop control for an IT sys-
tem. Therefore, each step sends and receives information to/from other steps, exchanging
appropriate knowledge and data. All these steps are usually executed automatically, i.e., run
without a human intervention. However, some of the steps can be executed with the human
intervention, for instance, the system manager can set up the loop only to monitor and analyse
automatically and send the information generated to a console or to another system.

37

To create the SPIDER modules that make decisions, we use different machine learning
algorithms. In the next subsections, we present the concepts of deep learning (more precisely
recurrent neural networks) and reinforcement learning.

2.4 DEEP LEARNING

ML, at a high level, “enables an algorithm to make predictions, classifications or decisions
based on data, without being explicitly programmed” (ZHANG; PATRAS; HADDADI, 2019). In
the last years, deep neural networks, DL, have increased in prominence in research and practice.
DL is a sub-branch of ML that addresses the limitations of single-layer neural networks by using
multiple layers to transform their input into higher-dimensional representations and then into
the output. The emergence of DL is largely driven by increased computational power through
heterogeneous processors such as GPUs, the availability of large data sets for training, and
advances in optimization algorithms (KRAUS; FEUERRIEGEL; OZTEKIN, 2020).

In contrast to traditional ML and neural networks, DL can cater for high dimensionality
in data thus enabling DL networks to model highly complex non-linear relationships between
variables (KRAUS; FEUERRIEGEL; OZTEKIN, 2020). As such, it is particularly suitable to the
mobile and wireless networking domain which is characterized by massive volumes of high
velocity unlabeled heterogeneous data (ZHANG; PATRAS; HADDADI, 2019). In addition, DL
can significantly reduce operational and capital expenditure by reducing or eliminate the time
and effort required by valuable and scarce human resources in feature extraction (ZHANG;

PATRAS; HADDADI, 2019). However, DL is not without its limitations. It hides its internal
logic to the user thereby sacrificing accuracy for interpretability with practical and ethical
consequences (GUIDOTTI et al., 2018). Other limitations include vulnerabilities to adversarial
and privacy attacks (ANSARI et al., 2020), computational demands unsuitable to small-form
computing in edge networks, and the time taken to find optimal configurations, particularly for
highly-parameterised data and multi-step network prediction (MA; GUO; ZHANG, 2020; ZHANG;

PATRAS; HADDADI, 2019).
Common DL architectures include, Restricted Boltzmann Machine (RBM), auto-encoders,

Convolutional Neural Network (CNN), and Recurrent Neural Network (RNN) (ZHANG; PATRAS;

HADDADI, 2019). These can be differentiated by the data structures that they target, and their
respective tuning parameters (KRAUS; FEUERRIEGEL; OZTEKIN, 2020). For example, Multi Layer
Perceptron (MLP) targets feature vectors of fixed length and are tuned by the activation

38

function setting and the number of layers and units (KRAUS; FEUERRIEGEL; OZTEKIN, 2020).
In contrast, CNNs target high-dimensional data with local dependencies and are tuned by the
number and width of convolutional kernels or filters (KRAUS; FEUERRIEGEL; OZTEKIN, 2020).
Because both MLP and CNN assume that all inputs are independent of each other, they are
not suited to modelling sequential data, where sequential correlations exist between samples.
RNNs specifically target sequential data, like time series data flows from mobile networks. As
such, we focus on the use of RNNs in this proposal.

2.4.1 Recurrent Neural Networks

As discussed earlier, traditional ML, MLPs and CNNs, typically target input vectors with
fixed dimensions. The formalization for sequential data is fundamentally different and thus MLP
and CNN are not suitable for time series data. RNN architectures were specifically designed to
model sequential data by producing output via recurrent connections (cells) between hidden
units (ZHANG; PATRAS; HADDADI, 2019). These recurrent connections are the memory that
stores the previous data allowing RNNs to learn the temporal dynamicity of the sequential
data (ORDÓÑEZ; ROGGEN, 2016). In RNNs, the output of the current timestamp is influenced
by the output of the previous timestamps, which is critical when the sequence of events
or data is important to determine the outcome of a problem. Despite being designed to
model sequential data, early RNNs suffer from long time dependencies resulting from both
vanishing and exploding gradient problems (HOCHREITER, 1998) that negatively impacted
training using the Back-Propagation Through Time (BPTT) algorithm. To overcome this
limitation, a variation of traditional RNNs was proposed, Long Short-Term Memory (LSTM),
which introduces the concept of gates to mitigate gradient problems (ORDÓÑEZ; ROGGEN,
2016; JOZEFOWICZ; ZAREMBA; SUTSKEVER, 2015; GREFF et al., 2017).

2.4.1.1 Long Short-Term Memory Networks

Figure 6 presents the basic schema of an LSTM unit (adapted from (YAN, 2016a)).
The LSTM unit state updates through specific gate operations: write (input gate), read

(output gate), or reset (forget gate). These operations consist of component-wise multipli-
cations and apply different functions in the input data as shown in the following equations

39

Figure 6 – Example of a LSTM block

Source: adapted from (YAN, 2016b).

(ORDÓÑEZ; ROGGEN, 2016):

𝑖𝑡 = 𝜎𝑖(𝑊𝑥𝑖𝑥𝑡 + 𝑊ℎ𝑖ℎ𝑡−1 + 𝑊𝑐𝑖𝑐𝑡−1 + 𝑏𝑖) (2.3)

𝑓𝑡 = 𝜎𝑓 (𝑊𝑥𝑓𝑥𝑡 + 𝑊ℎ𝑓ℎ𝑡−1 + 𝑊𝑐𝑓𝑐𝑡−1 + 𝑏𝑓) (2.4)

𝑐𝑡 = 𝑓𝑡𝑐𝑡−1 + 𝑖𝑡𝜎𝑐(𝑊𝑥𝑐𝑥𝑡 + 𝑊ℎ𝑐ℎ𝑡−1 + 𝑏𝑐) (2.5)

𝑜𝑡 = 𝜎𝑜(𝑊𝑥𝑜𝑥𝑡 + 𝑊ℎ𝑜ℎ𝑡−1 + 𝑊𝑐𝑜𝑐𝑡 + 𝑏𝑜) (2.6)

ℎ𝑡 = 𝑜𝑡𝜎ℎ(𝑐𝑡) (2.7)

where 𝑖, 𝑜, 𝑓 , and 𝑐 are, respectively, the input gate output, the output gate output, the forget
gate output, and the unit activation vector. ℎ𝑡 is the hidden value of the unit (i.e. the memory
state) and has the same size of the previous vectors. The non-linear functions of the input,

40

forget, and output gates are represented by 𝜎𝑖, 𝜎𝑓 , and 𝜎𝑜, respectively. The weight matrices
of the unit state (c), input (i), output (o), and forgot (f) gates are represented by 𝑊𝑥𝑖,
𝑊ℎ𝑖, 𝑊𝑐𝑖, 𝑊𝑥𝑓 , 𝑊ℎ𝑓 , 𝑊𝑐𝑓 , 𝑊𝑥𝑐, 𝑊ℎ𝑐, 𝑊𝑥𝑜, 𝑊ℎ𝑜, and 𝑊𝑐𝑜, where 𝑥 is the input and ℎ the
hidden value of LSTM unit. Finally, 𝑏𝑖, 𝑏𝑓 , 𝑏𝑐, and 𝑏𝑜 are, respectively, the bias of input gate,
forget gate, cell, and output gate (ORDÓÑEZ; ROGGEN, 2016). While LSTM addresses gradient
problems, critics have noted that the LSTM architecture is ad hoc, has a substantial number
of components whose purpose is not immediately apparent, and that it is characterized by
long training times (JOZEFOWICZ; ZAREMBA; SUTSKEVER, 2015; LIN; HSUEH; LIE, 2016).

Previous works showed that LSTM models provides better results for traffic prediction
for long-term dependencies due to the ability to keep relevant information from the input
data in the "additional gates" incorporated into the cells (ABDULJABBAR; DIA; TSAI, 2021). As
shown in (AZARI et al., 2019), LSTM models can outperform traditional approaches for traffic
prediction. Therefore, in this study, we compare LSTM with other traditional ML approaches.

2.4.1.2 Gated Recurrent Unit

Gated Recurrent Unit (GRU) is a variation of LSTM which only uses two gates, an update
gate and a reset gate. Indeed the update gate in a GRU replaces the input and forget gates
used in LSTM and decides what input data will be kept (CHUNG et al., 2014). Furthermore and
unlike LSTM, GRU exposes its memory content at each step balancing between the previous
and new memory content (CHUNG et al., 2015).

The GRU activation, ℎ𝑗
𝑡 , is represented in Equation 2.8. Considering the input data as a

time series, at the timestamp 𝑡, ℎ𝑗
𝑡 is the linear interpolation between the previous unit data

(ℎ𝑗
𝑡−1) and the current data (ℎ̃𝑗

𝑡).

ℎ𝑗
𝑡 = (1− 𝑧𝑗

𝑡)ℎ𝑗
𝑡−1 + 𝑧𝑗

𝑡 ℎ̃𝑗
𝑡 (2.8)

where 𝑧𝑗
𝑡 is the output gate, and defines what should be forgotten and what should be kept

in the GRU unit. The output gate is defined in Equation 2.9 (CHUNG et al., 2015):

𝑧𝑗
𝑡 = 𝜎(𝑊𝑧𝑥𝑡 + 𝑈𝑧ℎ𝑡−1) (2.9)

where the current and previous weight matrices are 𝑊𝑧 and 𝑈𝑧, respectively. In a simplified
way, this procedure taking a linear sum between the previous hidden states ℎ𝑡−1 and the current

41

input 𝑥𝑡 and applies the sigmoid function (𝜎).
The new memory unit is calculated as described in Equation 2.10:

ℎ̃𝑡 = 𝑡ℎ𝑎𝑛(𝑊𝑥𝑡 + 𝑟𝑡 ⊙ 𝑈ℎ𝑡−1) (2.10)

where ⊙ is the element-wise multiplication, 𝑟𝑡 refers to reset gate, and its output can be
calculated as defined in Equation 2.11:

𝑟𝑡 = 𝜎(𝑊𝑟𝑥𝑡 + 𝑈𝑟ℎ𝑡−1) (2.11)

Researches suggests that GRUs are easier to generalize with faster training times while
achieving comparable performance outcomes (JOZEFOWICZ; ZAREMBA; SUTSKEVER, 2015;
CHUNG et al., 2015; KAISER; SUTSKEVER, 2015; TROFIMOVICH, 2016). As such, we also propose
a GRU for comparison against an LSTM in this study.

2.5 REINFORCEMENT LEARNING

RL is a learning paradigm that has featured more prominently in recent literature. It refers
to the use of autonomous software agents that learn to perform a task by trial and error without
any human intervention (GOODFELLOW et al., 2016). In other words, in RL, the learning process
happens through the iterative interaction of the agent with the environment. As such, unlike
DL, RL does not use a fixed data set for training, validation and testing (TROIA; ALVIZU; MAIER,
2019). Instead, RL uses the feedback from the environment in which the agent is inserted. In
the learning process, the agent tries to maximise a reward by observing the consequences of
its actions (ARULKUMARAN et al., 2017).

The tasks performed by RL agent can be classified as episodic tasks or continuing tasks
(RAVICHANDIRAN, 2018). In episodic tasks, there are one or more final states. When the agent
achieves a given state, the task restarts. To use an analogy, the agent is like a driver in a racing
car video game where each race is an episode. The agent starts each race and plays until the
end of a race, concluding an episode. When the race is over, the agent can starts again from
the initial state; each episode is independent of the others. In continuing tasks, there is no
terminal state. The agent actuates in the environment achieving rewards indefinitely, more like
a robot that continuously responds to commands and completes tasks.

42

RL is supported by a formalism called the Markov Decision Process (MDP), which is
composed of (ARULKUMARAN et al., 2017):

• A finite set of states 𝒮, plus a distribution of starting states 𝑝(𝑠0).

• A finite set of actions 𝒜.

• A set of dynamic transition 𝒫(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡) that maps an action to a state at time t onto
a distribution of states at time 𝑡 + 1.

• A reward function ℛ(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1).

• A discount factor 𝛾 ∈ [0, 1], where lower values means more immediate rewards.

In general, a policy 𝜋(𝑎𝑡|𝑠𝑡) defines the agent behavior. At instant t, the policy maps
an action 𝑎𝑡 into a state 𝑠𝑡. A reward 𝑟𝑡 is calculated, and transitions to the next state
𝑠𝑡+1 following a state transition probability 𝒫(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡). Considering an episodic MDP, this
process continues until the terminal state is reached. For each step, the reward is accumulated
from the environment resulting into the returned value 𝑅 = ∑︀𝑇 −1

𝑡=0 𝛾𝑡𝑟𝑡+1. The main goal of
RL is to find the optimal policy 𝜋* (Equation 2.12) that results in the maximum expected
return (reward) for all states.

𝜋* = argmax E[𝑅|𝜋]
𝜋

(2.12)

A widely-used class of algorithms in the literature are value-based methods (OSBAND et al.,
2016; MOUSAVI; SCHUKAT; HOWLEY, 2017; PAN et al., 2018). These algorithms try to extract
the near optimal policy based on the value function, which is defined in Equation 2.13. The
value (𝑉) is the expected long-term reward achieved by the policy (𝜋) from a state 𝑠.

𝑉 𝜋(𝑠𝑡) = E𝜋[𝐺𝑡|𝑆𝑡 = 𝑠] = E𝜋

[︃ ∞∑︁
𝑘=0

𝛾𝑘𝑅𝑡+𝑘+1|𝑆𝑡 = 𝑠

]︃
(2.13)

The Q-learning is a family of algorithms which learn how to optimize the quality of an
action (𝑄 value). Equation 2.14 defines the 𝑄 value of an action 𝑎 in a given state 𝑠 following
a policy 𝜋 at time 𝑡.

𝑄𝜋(𝑠, 𝑎) = E𝜋[𝐺𝑡|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] = E𝜋

[︃ ∞∑︁
𝑘=0

𝛾𝑘𝑅𝑡+𝑘+1|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

]︃
(2.14)

43

The best policy is derived from the 𝑄 value of each state, e.g., select the action which
returns the maximum expected reward for a given state. The 𝑄 value is learned in an interactive
way during agent training. The Bellman Equation (Equation 2.15) updates the 𝑄 value during
the training (HASSELT, 2010).

𝑄(𝑠𝑡, 𝑎𝑡)← 𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼(𝑟𝑡+1 + 𝛾𝑚𝑎𝑥
𝑎

𝑄𝑡(𝑠𝑡+1, 𝑎)−𝑄𝑡(𝑠𝑡, 𝑎𝑡)) (2.15)

The new estimation of 𝑄 value is the sum of the old estimation and the error. The error is
defined by the reward achieved, 𝑟𝑡+1, plus the difference between the new 𝑄 value obtained,
𝑚𝑎𝑥

𝑎
𝑄𝑡(𝑠𝑡+1, 𝑎) minus the old value, 𝑄𝑡(𝑠𝑡, 𝑎𝑡). 𝛾 is the discount factor and is a value between

0 and 1 t that defines the importance of the immediate reward. 𝛼 is the learning rate that
defines how much the 𝑄 values updated.

Another method to find the policy 𝜋 is called Actor Critic (SUTTON; BARTO, 2018).
Figure 7 shows the architecture of a traditional Actor Critic method. The actor is responsible
to choose the action which guides the agent; the critic learns the quality of the actions from
actor based on the reward from the environment i.e. the 𝑄 value.

Figure 7 – Actor-critic method

Source: adapted from (WANG; VELSWAMY; HUANG, 2017).

The actor and critic are two independent functions as shown in Equation 2.16 and Equation
2.17, respectively. These functions have parameters, 𝜃 for actor function and 𝑤 for the critic
function, which are learned during the training. These functions are usually defined as neural
networks, but other functions can be used.

𝑎𝑐𝑡𝑜𝑟 = 𝜋(𝑠, 𝑎, 𝜃) (2.16)

𝑐𝑟𝑖𝑡𝑖𝑐 = 𝑞(𝑠, 𝑎, 𝑤) (2.17)

44

For each time step 𝑡, the state is forwarded to the actor and critic. The actual policy
takes the state and outputs an action 𝑎, which results in a new stat 𝑆𝑡+1 and a reward 𝑟𝑡+1.
Afterwards, the critic calculates the 𝑄 value (𝑞𝑤) and the actor updates its parameters using the
𝜃 variation as calculated in Equation 2.18. After updating its parameters, the actor produces
a new action and the critic updates its parameters using 𝑤 variation which is calculated as
shown in Equation 2.19. The actor and critic functions have different learning rates, 𝛼 and 𝛽,
respectively.

Δ𝜃 = 𝛼∇𝜃(ln 𝜋𝜃(𝑠, 𝑎))𝑞𝑤(𝑠, 𝑎) (2.18)

Δ𝑤 = 𝛽(𝑟(𝑠, 𝑎) + 𝛾𝑞𝑤(𝑠𝑡+1, 𝑎𝑡+1)− 𝑞𝑤(𝑠𝑡, 𝑎𝑡))∇𝑤𝑞𝑤(𝑠𝑡, 𝑎𝑡) (2.19)

The parameters of actor and critic functions are updated, respectively, as shown in Equa-
tions 2.20 and 2.21.

𝜃 ← 𝜃 + Δ𝜃 (2.20)

𝑤 ← 𝑤 + Δ𝑤 (2.21)

2.5.1 Advantage Actor-Critic

The Advantage Actor-Critic (A2C) method is variant of the actor-critic method which
includes an advantage concept derived from the Q value as shown in Equation 2.22. While
the state value 𝑉 defines how good is to be at a state (Equation 2.13), in effect the expected
return from a policy (SUTTON; BARTO, 2018), the advantage 𝐴 defines how good an action
is when compared with other actions. In A2C, the RL agent uses the advantage value instead
of the Q value during training, which reduces the high variance of the policy networks and
stabilizes the model training (PENG et al., 2018).

𝑄(𝑠, 𝑎) = 𝑉 (𝑠) + 𝐴(𝑠, 𝑎)

𝐴(𝑠, 𝑎) = 𝑄(𝑠, 𝑎)− 𝑉 (𝑠)

𝐴(𝑠, 𝑎) = 𝑟 + 𝛾𝑉 (𝑠𝑡+1)− 𝑉 (𝑠)

(2.22)

45

In the A2C algorithm, multiple agents explore different parts of the environment in parallel
thus increasing exploration efficiency compared to a single agent (MNIH et al., 2016). The
parameters of all the agents are used to update a set of global parameters. These global
parameters are the actor parameters (see Equations 2.16 and 2.17) and they are used by
all parallel agents during the training in a set of environments, as shown in Figure 8. A
coordinator controls the update of global parameters, which happens after each agent finishes
its exploration based on the values of all agents. Then, in the next iteration, all agents use the
same global parameters to explore the environment. This parameter synchronisation makes
the training more cohesive and potentially faster.

Figure 8 – A2C algorithm schema

Source: adapted from (SIMONINI, 2018).

2.5.2 Proximal Policy Optimisation

PPO combines the idea of having many agents from A2C with the idea of exploring the
policy region in the optimisation problem during the training (SCHULMAN et al., 2017). Instead
of using the log of 𝜋 to update the policy parameters (Equation 2.18), PPO uses the ratio
between the probability of action under the current policy (𝜋𝜃) divided by the probability of
action under the previous policy (𝜋𝜃𝑜𝑙𝑑). Equation 2.23 describes the ratio.

𝑟𝑡(𝜃) = 𝜋𝜃(𝑎𝑡|𝑠𝑡)
𝜋𝜃𝑜𝑙𝑑(𝑎𝑡|𝑠𝑡)

(2.23)

The policy loss in PPO can be defined as Equation 2.24.

46

𝐿(𝜃) = Ê𝑡 =
[︂

𝜋𝜃(𝑎𝑡|𝑠𝑡)
𝜋𝜃𝑜𝑙𝑑(𝑎𝑡|𝑠𝑡)𝐴𝑡

]︂
(2.24)

If the variation probability from the previous policy compared to the current policy is too
high, it can cause an excessive policy update resulting in a large policy gradient step. In order
to mitigate the exploding gradient problem resulting from a large step, PPO uses the clipped
surrogate objective function (Equation 2.25).

𝐿𝐶𝐿𝐼𝑃 (𝜃) = Ê[𝑚𝑖𝑛(𝑟𝑡(𝜃)𝐴𝑡, 𝑐𝑙𝑖𝑝(𝑟𝑡(𝜃), 1− 𝜖, 1 + 𝜖)𝐴𝑡)] (2.25)

As per Equation 2.25, we have two probability ratios, one non clipped and one clipped
between 1 − 𝜖 and 1 + 𝜖, where 𝜖 is a hyper parameter which defines the clip range. The
minimum between these ratios is taken as the final objective in the PPO algorithm, which is
the lower (pessimistic) bound of the unclipped objective.

In this work, we used the PPO algorithm since it was shown to outperform several other
“on-policy” gradient methods and also provide relatively stable training behaviour (SCHULMAN

et al., 2017).

2.6 CONCLUDING REMARKS

In this chapter, we presented the main concepts necessary to understand the main contribu-
tions of this thesis. We started the chapter presenting the main concepts about SFC placement
in Section 2.1, describing the main stages and how they interact with each other. Afterwards,
we explained the basic concepts about availability and how to estimate it using SPN models
in Section 2.2. These concepts are needed to understand how we estimated the availability of
a SFC placement. Then in Section 2.3 we presented the MAPE-K framework, which as used
as reference to propose the SPIDER. We presented the concepts about ML in Sections 2.4
and 2.5. In Section 2.4 we presented the concepts about recurrent neural networks, with focus
on LSTM and GRU. Finally, in Section 2.5 we presented the concepts about RL, describing
the mains concepts about the A2C method and the PPO algorithm. In the next chapter, we
describe the main related works found in the literature.

47

3 RELATED WORKS

In this chapter, we present some works that also proposed frameworks for the SFC place-
ment. Firstly, we provide a brief description about the related works found in the literature,
and after we compare these works with the proposal of this thesis. In Section 3.1 we provide
a brief description of the frameworks for SFC placement found in the literature. Section 3.2
presents a comparison between the frameworks and highlights how our work differs from the
another ones. The results obtained in this chapter were the result of a systematic review that
was published in (SANTOS et al., 2022).

3.1 FRAMEWORK FOR SFC PLACEMENT

It is important to highlight that we do not consider works that only proposed algorithms
for the SFC placement, but do not present a complete solution for the SFC placement. For
instance, several works proposed algorithms or heuristics for SFC placement (BHAMARE et al.,
2017; BHAMARE et al., 2018; CAI et al., 2020; MARTÍN-PÉREZ; BERNARDOS, 2018; SUBRAMANYA;

HARUTYUNYAN; RIGGIO, 2020), but do not detail relevant aspects of SFC placement such as
how the information from the environment is treated in their solution, what the communication
protocols are used to communicate with the infrastructure, how the placement is done in a
real infrastructure (Management and Orchestration (MANO) tool or Virtual Infrastructure
Manager (VIM) tool used). We also do not consider works that have no focus on distributed
scenarios, which is out of scope of this thesis proposal.

In (GUPTA et al., 2017), Gupta et al. propose the cost optimised latency aware placement
(COLAP) which is a framework that implements a randomised selection of clouds for optimum
cost in SFC placement and a heuristic for placement based on the latency prediction through
Support Vector Regression (SVR). The COLAP framework consists in two phases. In the
first phase, a set of clouds to deploy the SFC is selected using random search taking into
account the cost (The cost is composed of cloud resources and inter-cloud links) and latency
as constraints. For each iteration, the set of clouds that provides the lowest cost and meet the
latency requirements is stored. After many iterations, the algorithm is able to select the best
cloud to deploy the SFC (using random search). In the second phase, the latency is predicted
using SVR. This prediction can be used for both initial SFC placement and scheduling. The

48

model takes as input a feature vector that describes two clouds and predicts the latency
between them.

The work presented in (SHEN; ZHANG, 2018) proposes a framework to scale the components
of an SFC without compromise its performance. This framework is based on the monitoring of
traffic, which is used to decide the scale strategy for the SFCs. Then, the framework tries to
estimate the amount of demanded resources in order to scale up/down the VNFs present in a
server. This estimation is done based on an equation which considers the CPU core frequency
and application computing intensity. In this case, the number of packets in a traffic flow servers
as base to estimate the number of CPU cores needed to process them. In addition, a hashing
algorithm is proposed to distribute packets between the dedicated threads of same VNF.

The work presented in (GUO et al., 2019) proposes a cloud-edge SFC orchestration archi-
tecture based on blockchain and Deep Reinforcement Learning (DRL). The blockchain is used
to establish trust between service providers and smart devices, selecting high-ability through
the consensus. Then the blockchain is responsible for the resource and user registration, au-
thentication and transaction registration, ensuring the guarantee of credibility and reliability
for the SFC placement. The DRL module is used to support automatic SFC orchestration and
dynamic adjustment. A DRL algorithm is used for the SFC placement in order to reduce the
SFC cost (considering the SFC orchestration and migration), subject to resources and link
constraints. An algorithm based on Asynchronous Advantage Actor Critic is proposed for the
SFC placement.

In (NGUYEN et al., 2019), the authors propose a system that enables the deployment of
common IoT applications as SFCs, where these functions are placed across multiple edges
and clouds. The system is composed of three main components. The Edge Orchestrator is
responsible to expose the resource information of the edge for the Global Optimiser, which is
hosted at cloud and is responsible to make the SFC placement in a optimised way. There is
also the Network Controller that manages the network resources and establishing connectivity
among the VNFs that implement the SFCs. For the SFC placement, the authors formulate
the problem as a non-convex Integer Programming problem. They consider latency for IoT
devices while taking into account the specifications of connection between clouds (where are
VNFs deployed) and IoT gateways, such as the distance to IoT devices and the connectivity
to multiple edges and clouds. Furthermore two algorithms to solve the problem are proposed.
The former is a Markov approximation that uses multistart and batching techniques, while
the latter is a heuristic named node ranking-based placement algorithm that is based on the

49

number of VNFs that each node, creating a ranking that serves as base for the placement.
In (SANTOS et al., 2020b) the authors propose a controller to allocate container-based

SFCs in Fog computing environments, specifically for smart cities use cases. The controller
is implemented as an extension of the Kubernetes platform. The default container scheduler
of Kubernetes calls the extension proposed when a scheduling decision is needed in order
to optimise the SFC allocation. The SFC controller can select the most suitable nodes to
allocate the SFC based on two approaches: location-aware and latency-aware. If the latency-
aware schema is selected, the SFC controller best candidate node based on the calculation of
Dijkstra’s shortest path algorithm. If the location-aware schema is selected, the node selected
is made based on the latency minimisation depending on the target location defined by the
network manager.

The work presented in (SURIANO et al., 2020) proposes a methodology based on the ETSI-
NFV framework to assess the trustworthiness and reliability of SFCs through remote attes-
tation. Similar to the work presented in (SHEN; ZHANG, 2018), this methodology is based on
the monitoring of VNFs deployed in the infrastructure. Some VNF properties and performance
indicators are monitored by SDN controllers and reported to an orchestrator. The orchestrator
is responsible to associates VNFs for an SFC based on the information gathered and integrity
validation taking into account both trustworthiness and reliability requirements. The reliability
requirements can be defined by the network manager and examples are: bandwidth conditions,
CPU and memory usage, etc. These requirements are calculated through a “reliability func-
tion”, which determines the reliability level of each VNF. Therefore, the VNFs with highest
reliability levels are selected to compose the SFC.

Similar to the work presented in (NGUYEN et al., 2019), the work presented in (HU et

al., 2020) also proposed a SFC management framework for IoT scenarios. The framework
contemplates the first three steps of the SFC orchestration, as detailed in the Subsection
2.1: description, composition, and placement (they do not focus on scheduling). For the SFC
placement, which is the more detailed part of the framework, the authors used a greedy
approach to select the nodes to deploy the VNFs and the shortest path method to select the
links.

The work presented in (LANGE et al., 2020) proposes a framework for the automated SFC
placement. The authors propose an architecture which uses ML for the resource demand
prediction for the SFC placement. In addition, they implement a testbed using the OpenStack.
This testbed is used to conduct experiments and generate real data about the infrastructure.

50

Then,the data is used to evaluate deep learning models in the traffic prediction task. An
additional use case about VNF anomaly detection is also presented, which can be used for the
SFCs migration in case of problem detection.

The work presented in (SHAH; ZHAO, 2020) proposes a framework for NFV based resource
allocation for IoT networks. The authors assume that the IoT devices are connected to a
cellular network and cellular network is connected to the cloud network, where the framework
executes. The SFCs are allocated as virtual nodes and links in the cellular network. The authors
considered the placement problem in two stages. Firstly, the IoT devices are selected to be
served, and after the framework selects the physical resources where the SFC will be placed.
The objective function addressed in the paper is to optimise the utility of the system “is the

gain achieved from mapping the SFCs and the data rate achieved while subtracting the cost

incurred over mapping to the substrate” (SHAH; ZHAO, 2020). The problem formulation also
considers several constraints about the nodes and links capacities, number of hops between
the start and end node, and the power supply of IoT devices. To solve this problem, the
authors considered a RL approach using multi-agents. Firstly, an agent (located in the network
controller) decides the IoT devices will be served by the requested SFC. After, a set of agents
decides in which physical nodes and links the SFC will be allocated. The action of these
agents is then combined to compose the SFC placement. Then, the parameters of the network
controller agent are updated based on the final action (SFC placement).

The authors in (TOUMI et al., 2020) proposed a physical programming based solution for
multi-domain SFCs placement. A centralized framework was proposed for the SFC placement
in distributed and multi domain networks. They formulated the SFC placement problem us-
ing three Physical Programming approaches: linear, non-linear, and global. In addition, they
modelled the problem as a multi objective, where the end-to-end latency, the bandwidth per
user, and the overall cost were considered. As constraints, the authors considered node affinity,
end-to-end latency, and the SFC placement cost. Two different solutions are proposed to solve
the optimization problem. The former is an exact solution, which is implemented as a Branch
and Bound based algorithm which recursively creates solutions by eliminating branches that do
not satisfy the constraints, as well as those with a fitness worse than the current best complete
solution. The latter is a heuristic that combines genetic algorithm and local search to provide
a scalable solution.

The work presented by Toumi et al. in (TOUMI; BAGAA; KSENTINI, 2021b) and (TOUMI;

BAGAA; KSENTINI, 2021a) propose an RL based framework for the SFC placement with focus

51

on multi domain scenario. The framework architecture is composed of different orchestrators
for a respective domain, the centralized Multi-Domain Orchestrator, and the Multi-Domain
Interface. The RL agent is deployed in Multi-Domain Orchestrator, and is responsible to define
placement of each VNF taking into account resource requirements (computing and network)
and authorized domains. The Multi-Domain Interface is responsible to collect the information
of each domain and build an abstracted view of the global network topology, which will be
used to create the state fed to the agent. The local orchestrators perform a local placement
and return to the Multi-Domain Interface the real cost and latency.

The previous two works are focused on the algorithms for the SFC placement and how to
integrate them in the placement framework, but the work presented in (TOUMI et al., 2021)
focuses on the solution itself. To implement the local domain orchestrator, the authors based
on the ETSI’s specification, where each domain is only aware of its local context, and ignores
details about the other domains. When the SFC request arrives in the system, the Multi-
Domain Orchestrator determines where the VNFs should be placed taking into account the
information detailed in the Network Service Description (NSD). Afterwards, sub-NSDs are
created based on the domains where the VNFs are placed. If two or more VNFs of the same
SFC are placed in different domains, external links are created between the domains. Then,
network service headers are created to determine the data flow of the SFC, inside and among
domains. The authors proposed a proof-of-concept of the proposed framework. The VNFs are
defined as LXC containers that are connected through OVS (Open vSwitch) switches.

Chen et al. (CHEN et al., 2021) proposed a lightweight SFC placement framework for wireless
networks. The framework uses the Q-learning, an RL algorithm, to define the SFC placement
with the purpose to minimize the wired and wireless delays delay of an SFC request. The
authors argue that they used the Q-learning algorithm to ensure that the proposed framework
would be lightweight. The framework is divided in three places. The first one is the data plane,
which is composed of physical devices and links in the network. The second one is the control
plane, which monitors the network status, such as topology information, link bandwidth, and
resource usage. The control plane shares the information with the knowledge plane, which
contains the RL, and is responsible to define the placement policy. In order to show the
feasibility of the framework proposed, the authors presented a prototype based on Kubernetes
and Open Network Operating System (ONOS). The Kubernetes is used to control the Docker
container’s life cycle, while the ONOS was used for the network controlling.

52

3.2 COMPARISON

In order to compare these approaches with the solution proposed in this thesis, we need
to consider some relevant features about SFC placement frameworks. It is desired that the
SFC placement are done in a dynamic environment and with the minimum human intervention
(BHAMARE et al., 2016). These requirements are directly related to the need of handle context
information about the infrastructure (to decide the best SFC placement according to the
network situation) and the zero-touch paradigm (to place the SFC in an automatic way).
Focused on the SFC placement, ML algorithms can be used to process this information and
to choose the best SFC placement in an automatic way (CHEN et al., 2018b), instead to use
deterministic solutions. In addition, it is desired that SFC management frameworks can be used
in different scenarios, regardless of the software solutions used, thus regardless of management
solutions (e.g., if the tool is based on VM or containers). Finally, the last feature considered
for comparison is about the SFC availability, since customers’ availability requirements need
to be met (MOUALLA; TURLETTI; SAUCEZ, 2018).

Table 1 presents a comparison among the related work. One can note that to use the
context information from environment is a very common feature in the works, since the infor-
mation can guide the SFC placement and provide more satisfactory results. Many related works
found also address the zero-touch paradigm, where the SFC placement is done without human
intervention, i.e., fully automated. Only the work proposed by (GUPTA et al., 2017) does not
specify mechanisms for the automated placement. The works proposed by (GUO et al., 2019)
and (NGUYEN et al., 2019) specify approaches that can be used for automated SFC placement,
but do not show how they implemented it. The works presented in (TOUMI; BAGAA; KSENTINI,
2021b) and (TOUMI; BAGAA; KSENTINI, 2021a) also did not present the implementation ex-
ample of how to implement the automated solution, but the work presented in (TOUMI et al.,
2021) illustrates it.

The use of ML algorithms for the implementation of frameworks for SFC placement has
becoming more popular in recent works. One can note that seven works used ML in their
solutions (GUPTA et al., 2017; GUO et al., 2019; LANGE et al., 2020; SHAH; ZHAO, 2020; CHEN et

al., 2021; TOUMI; BAGAA; KSENTINI, 2021b; TOUMI; BAGAA; KSENTINI, 2021a), the majority of
found works. The work presented in (TOUMI et al., 2021) mentions explicitly that the placement
algorithm is out of the scope, but different solutions can be used.

No work presented solutions that are independent of MANO or VIM tools. For instance, the

53

works presented in (SANTOS et al., 2020b) and (CHEN et al., 2021) present specific solutions for
Kubernetes, while the framework presented in (LANGE et al., 2020) is specific for the OpenStack.
The work presented in (TOUMI et al., 2021) presents a proof-of-concept, but the authors do
not use MANO tools, they only use LXC containers and OVS switches in the implementation.
However, they mention that different software solutions could be used since the interfaces
and protocols are implemented. The other works do not provide an implementation of their
solutions, then is not clear if the solutions are specific for a VIM or not. Finally, one can see
that no solution for SFC allocation takes into account the availability of SFC, even though
it is an interesting point to take into account, especially in critical systems. For example,
considering 5G scenarios, ultra reliable communication and keeping services running most of
the time “is envisaged as an important technology pillar for providing anywhere and anytime

services to end users” (MENDIS; LI, 2017).
It is important to mention that, although the works considered in the comparison did

not propose frameworks for the allocation of SFCs with a focus on availability, other works
contemplate the SFC availability.

Araújo et al. (ARAÚJO et al., 2020) propose an SFC placement solution, ’Optional Backup
with Shared Path and Shared Function’ (OBSPSF), that assigns backup resources only when
strictly needed. When an SFC request arrives in the system, OBSPSF attempts to place the
SFC that satisfies the connectivity, processing, and availability requirements. If there is more
than one solution, the one with the lowest cost is selected. If no solution can satisfy the
availability requirement, the backup resources for nodes and links are allocated to increase
SFC availability. To find the “backup path”, k-shortest paths are calculated offline and are
used during the SFC placement. Our proposal differs from OBSPSF in that it is an RL based
solution that can run online.

Wang et al. (WANG et al., 2021b) propose a strategy to guarantee the availability of a
parallelized SFC based on placing multi-flow backups. Three different placement strategies and
an algorithm to map the SFC onto the physical infrastructure are proposed. The placement
strategies are based on affinity, which determines if the VNFs of the sub-flows will be placed
in the same or different physical machines. Then, the placement algorithm uses different
affinity strategies to map the VNFs and the flows into the infrastructure. Again, while there
are similarities between Wang et al. (WANG et al., 2021b) and our proposal, Wang et al. only
consider fixed redundancy strategies, while we use an RL agent to define to select the suitable
candidate node and define the redundancy strategy to meet availability requirements during

54

the placement process.

Table 1 – Comparison among the related works (Y-yes, N-no, and *-not specified in the work)

Work Context Information Sensitive Zero-touch Paradigm ML Based Independent of Management Tool Focus on the SFC availability

(GUPTA et al., 2017) Y N Y * N
(SHEN; ZHANG, 2018) Y Y N * N

(GUO et al., 2019) Y * Y * N
(NGUYEN et al., 2019) Y * N * N
(SANTOS et al., 2020b) Y Y N N N
(SURIANO et al., 2020) Y Y N * N

(HU et al., 2020) Y Y N * N
(LANGE et al., 2020) Y Y Y N N
(SHAH; ZHAO, 2020) Y Y Y * N
(TOUMI et al., 2020) Y * N * N

(TOUMI; BAGAA; KSENTINI, 2021b) Y * Y * N
(TOUMI; BAGAA; KSENTINI, 2021a) Y * Y * N

(TOUMI et al., 2021) Y Y * Y N
(CHEN et al., 2021) Y Y Y N N

SPIDER (our proposal) Y Y Y Y Y

Source: the author (2023).

The framework proposed in this thesis, SPIDER, contemplates all aspects mentioned in
Table 1. Our solution uses context information through ML approaches in order to make the
SFC placement in an automated way (zero-touch paradigm). In addition, we propose a frame-
work that is not focused in a specific VIM, allowing network managers to adapt our solution
according to their infrastructure and the software used. Finally, our solution takes into ac-
count the SFC availability as requirement for its placement, while also consider computational
and network requirements, placement cost, and energy consumption. In the next chapter, we
describe the SPIDER with more details.

55

4 SPIDER

In this chapter, we describe SPIDER, its architecture and main modules. In Section 4.1, we
detail the main requirements and features of SPIDER. Afterwards, in Section 4.2, we describe a
simple SFC request scenario, which is useful to understand the SPIDER working. The SPIDER
architecture and its components are described in Section 4.3, detailing their role for the SFC
placement. We also detailed the Agent module in Section 4.3.4, which is the core of SPIDER
and is responsible to make the SFC decisions using artificial intelligence algorithms. The results
obtained from this chapter were published in (SANTOS et al., 2022).

4.1 SPIDER REQUIREMENTS

A requirement can be defined as “a condition or capability that must be met or possessed

by a system or system component to satisfy a contract, standard, specification, or other

formally imposed documents”(PANDEY; SUMAN; RAMANI, 2010). The requirement engineering
is one of the key processes in software development (OCHODEK; KOPCZYŃSKA, 2018). It is
very important to specify what are the requirements about the software in order to define its
main functionalities and to guide the software development process. In this way, we need to
specify the main requirements of SPIDER and, consequently, define its main features.

Table 2 presents the SPIDER requirements. A very important requirement of SFC place-
ment systems is that the allocation of resources and the placement of network functions need
to be performed dynamically (based on the actual infrastructure condition) and automati-
cally (with the minimum human intervention) (BHAMARE et al., 2016). The automation of
SFC placement decisions is crucial to reduce the deployment time and to enable the zero-
touch orchestration and management (RECSE; SZABO; NEMETH, 2020). In order to meet these
requirements, an SFC management system need to be able to deal with its context informa-
tion. Context is any information that can be used to characterise the situation of an entity
(HONG; SUH; KIM, 2009). Considering the SFC placement, for example, information about the
infrastructure can comprise the context. In this way, context-sensitive systems are able to use
context information in order to provide more relevant services, adapting the system output
according to which is important for the actual context (VIEIRA; TEDESCO; SALGADO, 2011).
SPIDER should be context-sensitive, it can perceive and react to the dynamic changes in the

56

environment automatically (REDDY; MURALI; RAJESHWAR, 2019). Then, the framework should
be able to collect static and real time information about the network in order to decide the
best SFC placement. Context-aware applications can support three different features about the
context information: presentation, execution, and tagging (ABOWD et al., 1999). Therefore, our
framework should be able to represent internally the environmental information (presentation),
to make decisions based on it (execution), and to classify all components of the infrastructure
based on the information (tagging).

Table 2 – SPIDER Requirements.

Requirement Description

Be sensitive to the context information

SPIDER must be able to process context information
monitored from the physical infrastructure in order to
define the placement for an SFC request which meets
the availability requirements.

Present learning aspects to define the SFC placement

In order to define the placement for an SFC request,
the SPIDER must be able to learn how to define the
best placement for an SFC automatically. This dispenses with
manually configuring algorithms and allows the framework to
adapt to different network conditions.

Be able to consider different metrics during
the SFC placement

In addition to the SFC availability, SPIDER have to consider
other metrics during the SFC placement.

Be able to deal with different VIM/Management tools The SPIDER must be able to deal with different network infrastructures
and, consequently, to interact with different network management tools.

Source: the author (2023).

Considering that the SPIDER handles context information, other requirement rises. As
mentioned by Chen et al. (CHEN et al., 2018b), a smart SFC should be “adaptive to the changing

environment so that it can learn to approximate the optimal SFC orchestration policy with

minimal human interference for automation purpose, i.e., the learning aspect”. To process the
static and dynamic context information and be able to learn how to process SFC requests,
the SPIDER is based on ML algorithms. ML algorithms have been used in different fields
of society: “from web searches to content filtering on social networks to recommendations on

e-commerce websites, and it is increasingly present in consumer products such as cameras and

smartphones” (LECUN; BENGIO; HINTON, 2015). Recent researches suggest the use of ML for
handling many network problems such as resource usage optimisation, automatic configuration,
and automated decision-making (BOUTABA et al., 2018). As we will explain later in this chapter,
we can implement different algorithms in the SPIDER to define the SFC placement, but in
this work we used the state-of-the-art algorithms, i.e. DL and RL, in order to make the SFC
placement automatically in an efficient manner.

Another important requirement of SPIDER is the focus on the SFC availability. Once the

57

user specifies the level of requirements desired for the SFC, the SPIDER needs to guarantee
the level of availability, in order to avoid financial losses due to breach of SLA. However, other
conflicting metrics should be considered during the placement decision. For example, to place
redundant VNFs in distributed servers may increase the SFC, but also increases the overall
energy consumption (LIU; CHENG; WANG, 2020). Therefore, SPIDER is able to consider

different metrics during placement, provided these have been previously determined and
implemented in the placement algorithm. Different metrics can be considered (or optimised)
during the SFC placement process: operational cost (CHEN et al., 2018; PEI et al., 2018; YAO et

al., 2020), network delay (MARTÍN-PÉREZ; BERNARDOS, 2018; SUBRAMANYA; HARUTYUNYAN;

RIGGIO, 2020), resource utilisation (LI et al., 2019; SHANG; LI; YANG, 2018), revenue (XIE; WANG;

DAI, 2020; LI et al., 2019), among others. However, different metrics have different weights for
different customers. For instance, besides the high service availability, a telecommunications
operator may require as little delay as possible, while a small company that is outsourcing its
IT services may prioritise a lower cost, even if other metrics may be impacted. The framework
proposed in this thesis should be able to consider different metrics for different customers
during the SFC placement. As we add redundant VNFs to increase availability, the allocation
cost increases, as more computational resources will be required to run the redundant VNFs,
which also increases power consumption. Thus, in addition to SFC availability, we consider
placement cost and energy consumption as conflicting metrics that need to be considered
when defining placement.

Besides the SFC availability is a common concern of network managers, an SFC can be
allocated in different distributed scenarios, each one with its requirements and features. For
instance, an IoT scenario can be composed of edge devices with limited computing resources
(XU et al., 2020), while an Internet Service Provider (ISP) can have distributed data centers with
hundred of servers. In addition, different infrastructures can use different SFC management
software solutions, in other words, different VIMs. It happens because different VIMs have
different hardware requirements (VENTRE et al., 2016), then another desired requirement of
SFC solutions is to handle different hardware and software platforms. Against this backdrop,
the SPIDER can be used with different VIMs and/or management tools. Some previous
works proposed SFC placement and orchestration solutions based on specific VIMs, such as
the work presented in (LANGE et al., 2020) is based on Openstack1, while the work presented in
(SANTOS et al., 2020b) is based on Kubernetes. However, the SPIDER is not planned to deal
1 <https://www.openstack.org/>

https://www.openstack.org/

58

with a specific VIM, and new modules could be created in order to address API based VIMs.
Therefore, network managers could use SPIDER with VIM that manages their infrastructure,
avoiding significant changes in the software and architecture to which they are accustomed.

Before describing how SPIDER works, in the next section, we describe an example of an
SFC request and what kind of information is needed for the placement.

4.2 SFC REQUEST EXAMPLE

Figure 9 shows a simple example of SFC placement and management scenario. Firstly, the
network manager provides predefined SFC templates that the customers could require. The
SFC template has a list of VNFs that composes the SFC, their order, and SLA information of
the SFC. An example of predefined template can be an SFC for security, composed of firewalls,
Deep Packet Inspection (DPI), and IDS (XU et al., 2018).

Figure 9 – Example of SFC system operation

Source: the author (2023).

The network manager also provides static information about the network infrastructure
that can be useful for the SFC placement and management such as the computing cost of
allocate a VNF, the mean energy consumption of a server, the total bandwidth capacity of
a link, the geographical location of a data center, the SFC templates, among others. This
information is needed for the SPIDER operation in order to define in which servers the SFC
will be allocated.

Since the SPIDER is operating, the customers can send SFC requests, either describing

59

the VNFs desired and their order or using a predefined SFC template (provided by the network
manager). The SFC request also includes SLA requirements of user, such as minimum delay,
maximum cost, and availability levels desired. Afterwards, the system, which implements the
SPIDER, makes the SFC placement in the infrastructure. Then, each SFC allocated handle
different network traffic, according to the customer service.

In SPIDER, the customer sends the SFC request through an API (or indirectly through
a graphic user interface which access the API). We consider the SFC request as illustrated
in Figure 10. The SFC request defines two fixed nodes in the infrastructure, representing the
source and the destination of the SFC, similar to the representation presented in (WANG et

al., 2021a). The source node refers to the node through which the traffic enters the SFC (for
example the gateway of a data center), while the destination node indicates the last one that
receives traffic from the SFC (e.g. the database server that stores the data referring to the
SFC).

Figure 10 – Example of generic SFC request.

Source: the author (2023).

The SFC request also specifies a list of VNFs, each one having specific computing require-
ments according to the function it performs. For example, simple functions like a rule-based
firewall used for filtering traffic usually demands less processing resources than a IDS that
analyses traffic using advanced regular expressions and algorithms (LANGE et al., 2020).

We also establish a list of virtual links that connect the source, the list of VNFs, and
destination nodes. Each virtual link defines bandwidth requirements for each VNF. This repre-
sentation allows to model the data transformation, due to events such as traffic compression,
where the required bandwidth changes at the egress after VNF processing.

It is important to highlight that other information could be considered in the SFC rep-
resentation. In addition to the computing and storage requirements, it is possible to define
requirements based on VNFs affinity, geolocation, node type, among others. With regard to
the virtual links requirements, one may also specify requirements related to delay, type of

60

link (wired and wireless), among others. Such information can be easily described as a JSON
document and expanded to define new requirements for both VNFs and virtual links.

The SFC placement task that SPIDER performs can be defined as selecting physical nodes
to place the VNFs and physical links to place the virtual links. The selection of physical
nodes takes into account the resources requirements of the VNF in terms of CPU, memory,
and storage; while the selection of physical links considers the bandwidth requirements of the
virtual links. During the SFC placement, the SPIDER must address the availability requirement
specified by the user. To do this, the SPIDER defines the redundancy strategy for each VNF
specified in the request. The most simple way to increase the SFC availability would be to
add replica for all VNFs, however this strategy increases the placement cost and the energy
consumption, since more resources from the server would be required and an extra processing
is required to place the SFC. Therefore, in this work, we consider minimising the placement
cost and energy consumption while the SFC availability is guaranteed.

In the next section we describe the architecture of SPIDER, its modules, and how it
processes the SFC requests from users.

4.3 SPIDER OVERVIEW

To address SFC requests, SPIDER adopts the high level view illustrated in Figure 11.
It offers an API that exposes all SPIDER endpoints to external applications and interfaces.
Therefore, this makes it easy to create different user interfaces (e.g. for web, mobile, and
desktop applications) as they share the same API. The architecture also integrates a database
that stores SPIDER infrastructure information (nodes and links status), the VNF catalog, and
data describing placed SFC. This information can be accessed through data repositories, that
provide a set of functions to create, retrieve, update, and delete entries within.

The heart of the proposed SPIDER architecture is the core module. It consists of a set of
functions that, in fact, provides the main SPIDER services. This core module embeds several
others, such as one that collects and monitors information about the infrastructure; a second
module that specifies and executes the SFC placement based on user requirements; and a
third module that performs the placement across the underlying infrastructure. We explain the
core modules with more details in Section 4.3.3 The SPIDER core leverages functions from
the repository to continuously gather information representing the state of the infrastructure.
This is important and useful for the definition and execution of the SFC placement. Note that

61

Figure 11 – SPIDER Framework overview.

Source: the author (2023).

all the supported functions of repositories and SPIDER core modules can be accessed through
the API. The next subsections detail each of the above modules.

4.3.1 Repositories and Data Models

SPIDER repositories consist of a set of Python scripts that interacts with the database to
create, retrieve, update, or delete data of relevant SPIDER components. Table 3 shows the
main Python scripts that compose the repositories.

Table 3 – Repository scripts.

Python Script Functionality

Node Repository Manages the information about the physical nodes present in the infrastructure.
This script is also used by the Infrastructure repository.

Link Repository
Interacts with the database to manage information about

the physical links from the infrastructure.
It is used by the infrastructure repository.

Infrastructure Repository Interacts with the database to manipulate information
about the infrastructure where the SFCs are placed.

SFC Request Repository

Manipulates the information about the SFC already
placed in the infrastructure. Since the VNFs and virtual links placed

are related with the physical infrastructure, this script uses the
Infrastructure Repository.

VNF Template Repository This script interacts with the database to manage the information
about the VNF templates that are available in the SPIDER

Source: the author (2023).

We create a set of scripts to manipulate physical infrastructure information where the SFCs
are placed. Each repository provides functions to create, retrieve, update, and delete data of
specific system components. As database technology, SPIDER uses MongoDB which is a

62

NoSQL and document-based database. MongoDB, differently from traditional relational SQL
databases, stores data as a document (usually in JSON format) which increases its flexibility,
enabling it to store new data with prior knowledge of its format. In addition, MongoDB has a
superior performance than a relational MySQL database, considering the basic operations of
creating, retrieving, updating, and deleting (GYŐRÖDI et al., 2015).

The Node Repository manages all information about the physical nodes present in the
infrastructure. Therefore, when the information about one or more node needs to be updated
(for instance due to changes in the amount of available resources) or retrieved from the
database, the Node Repository is invoked. Table 4 summarizes the information about the
physical node that we store in the database.

Table 4 – Physical node data model.

Database Field Data Type Description

ID Int Node ID
Name String Node name
Status String Node status (operational or failed)
Resources JSON Total of resources of the node
Available_resources JSON Amount of available resources of the node
Cost Float Cost of the node in $
MTTF Float MTTF value of node (in hours)
MTTR Float MTTR value of node (in hours)
Availability Float Availability value of node (in %)

Energy Float Energy consumption
of node (in kWh)

Metadata JSON Additional information about the node
Capabilities JSON The VNF types that can be placed in the node

Source: the author (2023).

The basic information of a physical node are its ID, name, and status (where we consider
as operational or in fail state). We store two different attributes regarding node resources: the
overall resources of a node and its current amount of available resources. Both fields are in
JSON format and contain node information describing its CPU, memory, and storage. The
difference being that the former indicates the total (used and unused) available resources of a
node, whereas the latter lists only the amount of currently available ones.

When new SFCs are placed, they consume node resources and consequently there is a
need to update information related to available resources. This information is needed to guide

63

the SFC placement. We store in the database values that describe availability parameters
for different SPIDER components. These entries include the MTTF, the MTTR, and the
availability metric itself. The values about the physical devices are usually provided by the
manufacturers, while the values about the software can be measures through fault injection.
However, these values need to be provided by the customer. The availability value can be
estimated based on the following Equation 2.2.

In addition to availability constraints, the SPIDER framework considers energy consump-
tion as an important aspect for its resource allocation decision-making. As a result, it stores
information on the energy consumption of nodes. This is used in calculating the operational
costs of placing a VNF at a physical node. As mentioned in Section 4.2, the MTTF, MTTR,
and energy consumption values must be provided by the network operator when the network
is built into the SPIDER. Additionally, we have a field called metadata to take into account
any additional information about the nodes, such as manufacturer name, year of acquisition,
among others.

Since we are using MongoDB, and the data is saved as a JSON document, should a
network operator not using any additional metadata, an empty document can be inserted in
the database. The last field of Node Repository is the node affinity, which defines a list of
VNFs that this node is able to serve. This can be used to state that not all nodes may host all
network functions due to performance, compatibility or simply policy constraints, for example.

The Link Repository manages data that describe physical links. Table 5 shows all fields
related to links that one may save in the database. We store the node ID and the IDs of
two physical nodes that are connected by this link. We save the propagation delay needed to
transmit data between the two nodes connected by a given link (in the milliseconds unit), as
well as the cost of placing a virtual link in the link. These values must be provided by the
user. Similarly to the node data model, we also save the total and current available amount
of resources for each link.

In order to handle information representing the overall physical infrastructure, we propose
the Infrastructure Repository. It uses both previously described Node and Link Repositories.
Prior to a placement operation, the current status of the nodes and links must be taken into
account. Next, the Infrastructure Repository can be used to select relevant information and
generate a graph reflecting the current status of the network. Table 6 illustrates the data
model of the Infrastructure. We save the ID of the infrastructure and two different lists: the
list of nodes and links IDs. Then, using the Node and Link Repositories, one can select all

64

Table 5 – Physical link data model.

Database Field Data Type Description

ID Int Link ID
Source_node Int Source node of link
Destination_node Int Destination node of link
Delay Float Link delay (in milliseconds)
Cost Float Link cost (in $)
Resources JSON Overall resources of link
Available_resources JSON Current resources of link

Source: the author (2023).

information about the nodes and links of a specific infrastructure.

Table 6 – Infrastructure data model.

Database Field Data Type Description

ID Integer Infrastructure ID
Nodes JSON List of nodes
Links JSON List of links

Source: the author (2023).

The previous repositories dedicate themselves to the describing the physical infrastructure,
in other words, the physical level managed by SPIDER. In addition, there two repositories that
deal with the logical level type of resources. First, there is the SFC Request Repository which
manages data for already placed SFCs. It also stores information about the physical nodes
and links in which the VNFs and virtual links are placed. Then, the SFC Request Repository
uses the Node and Link repositories to load their information. Table 7 shows the fields of SFC
request data model. We save the SFC request ID and name (for example, it could be the
name of the overall service). We also store the ID of source and destination nodes specified in
the SFC request; and the list of VNFs and virtual links. Each VNF of the list has information
about the computation requirements (CPU, memory, and storage), number of replicas placed
(to ensure the overall SFC availability), and the nodes ID list where the replicas were placed.
For each virtual link, we save the list of links where the virtual link is placed. We adopt a list
because more than one link could be needed to connect nodes where two sequential VNFs are
placed.

Finally, there is the VNF Template Repository. This repository maintains the VNF template

65

Table 7 – SFC request data model.

Database Field Data Type Description

ID Int SFC request ID
Name String SFC request name
Source Int ID of the source node of SFC
Destination Int ID of the destination node of SFC
VNFs JSON List of VNFs placed
Virtual links JSON Virtual links placed

Source: the author (2023).

data that is used to define characteristics of a VNF. Therefore, as shown in Table 8, we save
the ID and name of the VNF template (for instance, firewall, an IDS, load balancer, etc).
We also store the computing resources required by the VNF. It is interesting to differentiate
functions that require more computational resources, such as applications that run machine
learning models, from applications that demand less resources, such as, a simple load balancer
or a firewall. Similar to the Node data model, we also store availability related parameters,
including MTTF and MTTR of a VNF. These values are required to estimate VNF availability,
which is then copied to the database. The last field of VNF template data model is the
path pointing to where all files needed to create the Docker image for a given VNF type are
located. In other words, this template includes pointers to files that contain the source code,
libraries, dependencies, tools, and others needed for an application to run. For more details,
see Subsection 7.1.

Table 8 – VNF template data model.

Database Field Data Type Description

ID Integer VNF template ID
Name String VNF template name
Resources JSON List of computing resources required by the VNF
MTTF Float MTTF value of VNF
MTTR Float MTTR value of VNF
Availability Float Availability value of VNF
Files_path String Path where the files about the VNF application are saved

Source: the author (2023).

We assume that the traffic about the SFCs placed in the infrastructure is stored in the
MongoDB and are managed by the SFC Traffic Repository. Table 9 illustrates the data model

66

regarding the SFC traffic. We store an ID of the traffic and the ID of the SFC that this traffic is
associated with, both are of type Integer. We also store the physical links of the infrastructure
that are impacted by the traffic. The list of links can be easily retrieved from the database
using the SFC Request Repository, as illustrated in Table 7, and since it is a list, we store it
in the JSON format. The last field is the traffic data itself. MongoDB provides time series
collection2 that store sequences of measurements over a period of time efficiently. Time series
collections store measurements, that are composed of at least a timestamp and the metric
value. Then, we save the timestamp and the respective traffic that arrives to be processed in
by the SFC.

Table 9 – SFC traffic data model.

Data field Data type Description

ID Integer Traffic ID
SFC ID Integer SFC ID the traffic is associated with
Physical Links JSON List of physical links where this traffic will pass through
Traffic Time series Traffic data

Source: the author (2023).

Both the API and SPIDER core modules use repositories to manage data of the SPIDER
framework. The next subsections describe both modules.

4.3.2 SPIDER API

The SPIDER API controls access to all functionalities of the framework by user applications.
The API exposes the resources implemented in SPIDER Core and different user interfaces can
be developed to access them. Table 10 summarizes all endpoints of the API.

The endpoints of the SPIDER API fall into three groups. The first group of endpoints is
related to the VNF templates. As shown in Table 10, Endpoint 1 (POST method) is used
to create a new VNF template, where the user must specify the data for the new template,
illustrated according to Table 8. Endpoints 2 and 3, which are GET methods, are used to
retrieve information about the VNF templates already saved in the system: the former retrieves
data for all VNFs, while the latter obtains information about a specific VNF, specified by its
ID. Endpoint 4, which is a PUT method, is used to update the information about a specific
2 <https://www.mongodb.com/docs/manual/core/timeseries-collections/>

https://www.mongodb.com/docs/manual/core/timeseries-collections/

67

Table 10 – API endpoints.

Endpoint Method Description

1 /vnf POST Create new VNF template in the system. The user must pass the VNF data as a JSON
2 /vnf GET Get information about all VNFs templates saved in the SPIDER
3 /vnf/<id> GET Get information about a specific VNF template
4 /vnf PUT Update an existing VNF template in the system. The user must pass the new VNF template data as a JSON
5 /vnf/<id> DELETE Delete an existing VNF template in the system. The use must specify the ID of VNF to be deleted
6 /infra/ GET Get information about all infrastructures managed by the SPIDER
7 /infra/<id> GET Get information about a specific infrastructure according to its ID
8 /infra/ PUT Update the information of an infrastructure saved in the system
9 /infra/<id> DELETE Delete the information of an infrastructure saved in the system according to its ID
10 /sfc_request POST Create new SFC request in the system. The user must pass the SFC request data as a JSON
11 /sfc_request GET Get the information of all SFC requests already created in the system
12 /sfc_request/<id> GET Get the information about a specific SFC request created in the system
13 /sfc_request/ PUT Update the information about a specific SFC request created in the system. The user must pass the new information as a JSON
14 /sfc_request/<id> DELETE Delete an SFC request already created in the system according to its ID

Source: the author (2023).

VNF template. A user should provide a JSON with the information to be updated for the VNF
template. The last endpoint related to the VNF template, Endpoint 5, is a DELETE method
and is used to delete an existing VNF template. A user needs to specify the ID of the template
to be removed.

The second group of endpoints is concerned with the infrastructure managed by the SPI-
DER framework. However, unlike the VNF template methods, the current API implementation
does not provide a method for creating an infrastructure in the system. A user needs to provide
information about the physical nodes of the infrastructure, as well as initiate the monitoring
software to collect information about the infrastructure (see Section 4.3.3). Then, the infras-
tructure information (specified in Tables 4, 5, and 6) is generated and saved in the database by
the SPIDER framework, as opposed to being created by the user through an API call. There
are two endpoints (6 and 7), which are GET methods, used to gather information about the
infrastructure. A user may also call the Endpoint 7 to obtain information about an infras-
tructure, specifying an infrastructure by its ID. Endpoint 8 is used to update the information
about the infrastructure. However, it is important to point out that information on physical
nodes and links cannot be updated through the API, as this information is saved and updated
in the database through the Data Monitor module and monitoring tools (please check the
Section 4.3.3). Finally, Endpoint 9 is used to delete an infrastructure. This method removes
all information about the infrastructure from the database. However, the user must prior stop
the monitoring tool from running in the physical nodes of the infrastructure.

The third group of endpoints is related to the SFC request. Similar to the previous groups,
there are two endpoints (11 and 12), which are GET methods. These are used to retrieve
information about the SFC request already placed in the infrastructure. Endpoint 11 gathers

68

information about the complete list of SFCs placed previously in the system, while the Endpoint
12 retrieves information about a specific SFC by its ID. Endpoint 13, which is a PUT method,
is used to update the information of an SFC. However, only the information about the ID
and name of an SFC can be updated, because the information about the source, destination,
VNFs list, and virtual link list (as detailed in Table 7) are defined during the placement by
the SPIDER framework. Endpoint 14 (DELETE method) is used to delete an SFC request
given its ID as input. When a user calls this endpoint, the VNFs placed in the system will be
removed from the physical infrastructure, as well as the used virtual links. Endpoint 10, listed
in Table 10, is used to create a new SFC request, It implements a POST method. In Appendix
B we detail the information about a new SFC request in JSON format.

As mentioned previously, the API provides the main functionalities of SPIDER framework
to the interfaces and different applications. In the next section, we describe the SPIDER Core,
which is the part of the framework that implements these functions.

4.3.3 SPIDER Core

The SPIDER core is based on the MAPE-K loop described in Section 2.3 and its compo-
nents assumes roles of different steps of the loop. Foremost, the user must set up the physical
infrastructure to be monitored by the SPIDER framework. Under the current implementation,
as shown in Figure 12, we implement a daemon which is executed on all nodes of the physical
infrastructure. In addition, we implement a Data Monitor module that obtains information
about all nodes and stores them in the database through the repositories (see Subsection
4.3.1). Considering the MAPE-K loop (Figure 5) the Data Monitor plays the role of a monitor
step, while the Daemon is the sensor.

The daemon module is presented through an API capable of collecting the updated infor-
mation describing the computing and network status of a node. The daemon is able to collect
updated information about computing and network resources used by a node. When a node
is included to be monitored by SPIDER, the user must specify a set of information about it,
such as ID, name, location, MTTF, MTTR, availability, cost, and energy consumption. This
information is used by SPIDER during the SFC placement definition. For more information
about the node configuration, please see Appendix C.

A user also provides a list of links connected to the node. In the JSON example, we consider
only a single link. As part of link information, we consider the link ID, the interface of the

69

Figure 12 – Data Monitor module and daemon.

Source: the author (2023).

node connected to this link, the destination, and the network resources of the link. Please note
that a link is only a means of connecting a physical node to another one (it could be a wired
or wireless link). In the destination field, the user defines the ID, name, latitude, longitude,
port, and IP of the other connected node. In the resources field, the user defines the overall
resources for each link, including delay (in milliseconds), bandwidth (in Mbps), and the cost
of this link (in $). Such link information is interesting to differentiate nodes that are located
geographically close, with a smaller delay; from nodes located geographically distant, where
the delay and allocation cost may be higher.

Considering all information collected and defined for each node of the physical infrastruc-
ture, the Data Monitor module communicates with all daemons running in the infrastructure
to collect and update information about nodes and links (as illustrated in Figure 12). For this,
the user needs to define the list of IPs of all nodes in the physical infrastructure. Then the Data
Monitor can invoke the API of the daemon running in each node, aggregate all information
and use the repositories to save this information in the database.

Assuming that the updated information about the infrastructure is saved in the database,
SPIDER can perform the SFC placement, taking into account the submitted requests. The
main functions of SPIDER framework are implemented in its core, and they are illustrated in
Figure 13. When a customer sends an SFC request through the API, it is forwarded to the
SPIDER core, which processes the request, and then places the SFC.

The first module of SPIDER core is the Data Collector, which is developed as an API
using the Flask framework. The Data Collector module is responsible for gathering updated
information about the infrastructure to be considered during the placement. The Data Collector
can gather the infrastructure information in two ways, both configurable by the SPIDER user:

70

Figure 13 – SPIDER core overview.

Source: the author (2023).

1) through the repositories and 2) by calling the Data Monitor module.
On the one hand, when the Data Collector uses the repositories, it calls the Infrastructure

Repository to obtain updated information of the infrastructure. It is saved by the Data Monitor
module, as shown in Figure 12. The Data collector calls the API to have access to updated
infrastructure information using the Infrastructure Repository (which uses Node and Link
Repositories). On the other hand, when the Data Collector is configured to gather information
directly through the Data Monitor, the information is collected directly from Daemons running
on all nodes, as illustrated in Figure 12. However, instead of saving the information in the
database, Data Monitor sends the information about nodes and links to the Data Collector. In
this case, the information about the infrastructure may or may not be saved in the database.
If the SPIDER user wishes to keep historical information about the infrastructure, it can use
the repository to save it. However, this functionality is not implemented yet in the current
version of SPIDER, and we plan to support it in future versions.

As the information is returned by the API, an undirected graph is created to model the
physical infrastructure, which is a Python package for creation, manipulation, and study of
graphs. The graph is used to define the placement for the SFC request. Then, the infrastructure
graph and the SFC request information are merged into a JSON representation, and forwarded
to the Agent module.

The Agent module defines the placement for the SFC request. To do this, the Agent
considers the updated infrastructure graph and the availability requirement defined by the
customer. One can use different algorithms and solutions to define the SFC placement. The

71

Agent module has functions associated with the analysis step from MAPE-K loop (Figure 5).
This is due to the fact that the Agent analyses the information forwarded by the Data Collector
and defines the placement decision.

SPIDER uses an RL agent that was trained to obtain the best placement solution, when
seeking to add redundant VNFs to achieve a required availability level (defined by the customer)
and minimize the operational costs (represented by the energy consumption of the nodes where
the VNFs instances are placed). Therefore, the Agent defines in which nodes each VNF and
the replicas have to be placed in the infrastructure. We describe the RL agent implementation
with more details in Chapter 6. In addition, DL models are used for traffic prediction in order
to estimate the future bandwidth available on the physical links. This information is useful to
select the paths to place the virtual links that connect the VNFs from the SFC request. We
describe the DL models with more details in Chapter 5. However, it is important to mention
that as we implemented the Agent module as an API, we can easily use another algorithm as
the underlying SFC placement.

Appendix D illustrates how the Agent module structures the placement decision information
into a JSON representation, which is forwarded to the Environment Controller, which interacts
with the tools that, in fact, manage the VNFs and perform the enforcement of the actual
placement in the physical infrastructure. In this way, the Environment Controller plays the
role of execute step from the MAPE-K loop, responsible to make changes in the system
status. Once the Agent defines the placement decision for an SFC request and forward it
to the Environment controller, there is just to possible situations: 1) place the SFC into the
infrastructure or 2) discard the SFC request, in case that the SFC requirements not being
met. In this way, the planning phase from MAPE-K is not necessary, because SPIDER does
not perform any complex planning action in those situations. However, for future work, we
can consider a planning step, where when an SFC request is rejected, we can plan migrations
and/or reallocations of the previously allocated SFCs, in order to allocate the new SFC request.

The Environment Controller module submits HTTP requests to the API of these tools,
indicating the placement configuration defined by the Agent module for the SFC request. The
implementation of the Environment Controller module depends on the management tool used
in the infrastructure. For instance, the Tacker3 tool considers that the information about the
SFC needs be defined following the TOSCA standard (BINZ et al., 2014). In this case, the
Environment controller needs to translate the JSON data sent by the Agent into a TOSCA
3 <https://wiki.openstack.org/wiki/Tacker>

https://wiki.openstack.org/wiki/Tacker

72

document.
The Agent model is the "smart" part of SPIDER. It is responsible to define the placement

for each SFC request from user, taking into account the context information from the infras-
tructure and the user requirements. In the following section, we describe in more details the
Agent module of SPIDER.

4.3.4 Agent Module of SPIDER

Figure 14 shows the SPIDER Agent in more details. The agent is responsible for two tasks:
predict traffic based on the SFCs already placed in the infrastructure, and define the placement
for a specific SFC request. We define a module named Agent Manager, which is responsible for
receiving the requests from other modules. Then, the Agent Manager calls two other modules:
Traffic Prediction and Placement Planner.

Figure 14 – Agent module description

Source: the author (2023).

Before define the best SFC placement, SPIDER predicts the traffic taking into account
the SFCs already placed in the infrastructure. We use this information to estimate future
information about the links bandwidth with the purpose to place new virtual links. In this way,
we defined this problem as a time series prediction, where the Agent module uses the SFC
Traffic Repository to collect the historial traffic for all SFCs placed and the Traffic Prediction
module is used to predict the traffic of each SFC. Since the traffic of an SFC has information
on the links that have been allocated, it is possible to estimate how much bandwidth will
be available on each link based on the traffic predictions. Thus, we consider the predicted

73

Figure 15 – JSON examples for the Traffic Prediction module

(a) (b)
Source: the author (2023).

bandwidth and define it as weight in the infrastructure graph. Therefore, we consider the
prediction data when choosing the physical links to allocate the SFC virtual links.

Several techniques can be used for traffic prediction such as autoregression Moving Average
(IQBAL et al., 2019), Fourier-Series based forecasting method (YAO et al., 2020), RBM (SUN

et al., 2019), among others. In this work, we use DL models for the traffic prediction since,
more recently, a combination of DL techniques and new data sources have emerged that show
promising results in mobile traffic prediction (NAREJO; PASERO, 2018; HUA et al., 2018; QIU et

al., 2018). Then, considering network traffic divided into time slots, recurrent neural networks,
such as LSTM and GRU, could be used to predict the traffic for the next time slot taking
into account the historical data from the previous time slots. In Chapter 5, we describe the
DL models used for traffic prediction in this thesis. We present the models architecture and
compared with other strategies from the literature.

Since different techniques could be used in the Traffic Prediction module, it should call
the implemented technique through a rest API, in order to define a common interface for all
techniques. Figure 15 shows a JSON example of data for the Traffic prediction module and the
response expected. The historical data (Figure 15a)) is defined as a list of data, each one with
the timestamp and the respective traffic, while the response JSON (Figure 15b)) contains the
prediction about the historical data.

The Placement Planner is another module of Agent that is responsible for selecting a set
of nodes to place the VNFs for the SFC requirement. To do this task, the Placement Planner
module can use many techniques: Integer Linear Programming (ILP) (MOUALLA; TURLETTI;

SAUCEZ, 2018)(SUN et al., 2019), genetic algorithm (TAVAKOLI-SOMEH; REZVANI, 2019), Markov
models (XU et al., 2018)(ZHANG et al., 2019), among others as mentioned by (BHAMARE et al.,
2016) and (MIRJALILY; ZHIQUAN, 2018).

In order to implement the Placement Planner module, we use RL which was highlighted by

74

Souza et al. (SOUZA; DIAS; FERNANDES, 2020) as a good alternative to determine the optimal
SFC placement for a given workload in real time. Indeed, RL has been used in several works
in the literature for the SFC placement (KHEZRI et al., 2019; GUO et al., 2019; LUO et al., 2019;
CHAI et al., 2019). As mentioned in the Section 2.5, a RL agent learns how to perform a task
interacting with an environment, receiving positive and/or negative rewards. Therefore, in
order to train the RL for the SPIDER, the environment representation is defined based on the
information gathered by the Data Collector module (Figure 13), and the reward function could
be defined based on the SFC placement success, for example. However, this representation
could be adjusted according to the needs of the network manager.

Depending on the amount of available resources from the physical nodes, the RL agent
defines in which each VNF will be placed and the redundancy strategy in order to meet
the availability requirements. After defining the best nodes to place the VNFs, the links are
selected in order to define the virtual links between the VNFs. The Placement Planner uses the
information about the traffic prediction and information about the links, such as the location
of data centers in order to estimate the delay. Then, a weight is calculated for each link and
an algorithm to find the shortest path (e.g. Dijkstra) is used to define the shortest path which
connects the servers selected.

It is important highlight that we consider RL and DL modules in SPIDER as presenting
in the Figure 14, but this does not require that these modules be implemented together with
the framework. For example, these modules can be located on the cloud and accessed through
Rest APIs, or provided by other public services such as Amazon SageMaker4, Google cloud5,
and Azure Machine Learning6. This allows network managers to use their own models in the
framework, as well as outsource this service and pay according to usage.

Since the Agent module is the most important and complex of SPIDER, we will describe
its implementation with more details in the next chapters. Firstly, we will describe the use of
recurrent neural networks for the traffic prediction in Chapter 5. These networks are important
for the development of the Traffic Prediction module of Agent, as illustrated in Figure 14.
Afterwards, we describe in Chapter 6 the use of RL for the SFC placement. We conduct a study
and propose algorithms to use RL to define the SFC placement in order to meet the availability
requirements. The RL agent is used in the Placement Planner module of Agent (Figure 14).
4 <https://aws.amazon.com/pt/sagemaker/?c=ml&sec=srv#sm_studio>
5 <https://cloud.google.com/products/ai?hl=pt-br>
6 <https://azure.microsoft.com/pt-br/services/machine-learning/>

https://aws.amazon.com/pt/sagemaker/?c=ml&sec=srv#sm_studio
https://cloud.google.com/products/ai?hl=pt-br
https://azure.microsoft.com/pt-br/services/machine-learning/

75

Finally, in Chapter 7, we present a proof of concept of SPIDER, by implementing it using
the Kubernetes. The VNFs are deployed as containers, and we use Kubernetes mechanisms
to allow the communication among them. We also present experiments in order to show the
performance of SPIDER in a real scenario.

76

5 TRAFFIC PREDICTION FOR SFC PLACEMENT

In this chapter, we present DL models that are used to implement the Traffic Prediction
module of the SPIDER, as shown in Figure 14. We compare the performance of two recurrent
units types - LSTM and GRU - for predicting mobile Internet traffic using two months of
Telecom Italia data for the metropolitan area of Milan. K-Means clustering was used a priori

to group cells based on Internet activity and the Grid Search method was used to identify the
best configurations for each model. The predictive quality of the models was evaluated using
Root Mean Square Error (RMSE). We find variations in performance across clusters within
the city. Overall, the LSTM outperformed the GRU in our experiments. These models can be
used in the Traffic Prediction module (Figure 14) of SPIDER framework. The results obtained
from this chapter were published in (SANTOS et al., 2020) and (SANTOS et al., 2020a).

5.1 DATASET

The metropolitan area of Milan is located in northern Italy and consists of nine different
municipalities (see Figure 16). Milan is the largest metropolitan area in Italy and one of the
ten most populous in the European Union (EUROSTAT, 2020).

Figure 16 – The Milan Metropolitan Area.

Source: adapted from (GUARINI; MAGLI; NOBOLO, 2018).

77

In this study, we use the Telecom Italia dataset for Milan from the Big Data Challenge

(BARLACCHI et al., 2015). The dataset is organized into 10,000 cells (100 x 100) comprising
over 10 million user activity logs, each related to a particular cell. The dataset has log data
for two months (62 days) from 1 November 2013 to 1 January 2014 (HUSSAIN et al., 2019).
Although this dataset was collected between 2013 and 2014, it still proves to be quite valuable
for researchers exploring mobile traffic prediction and it has been used in a number of recently
published articles (see, for example, (MEDEDOVIC; DOUROS; MÄHÖNEN, 2019; ZHANG et al.,
2020; AMIN; CHOI, 2020)). The Telecom Italia dataset adopted in this study in fact is one
of the few telecommunication datasets that are publicly available in contrast to the large
number of datasets that are typically accessible to a restricted number of researchers under
Non-disclosure Agreements (NDAs), or by third parties that have a contractual relationship
with telecommunication providers.

The log activity is structured as Call Detail Records (CDRs) on the following activities:
(i) incoming and outgoing voice calls, (ii) Short Message Service (SMS) messages, and (iii)
Internet activity. A CDR is generated every time a user starts or finishes a voice call, sends
or receives an SMS, and starts or terminates an Internet session (the data is recorded if the
connection takes more than 15 minutes, or more than 5 MB is transferred during the session).
In this thesis, we specifically focus on predicting Internet traffic.

As the dataset has periods with no Internet traffic (e.g., a few minutes at night where
there are no records), we aggregate all CDRs for Internet traffic into 30-minute periods.
Consequently, we have 48 records per day related to Internet traffic. We use a sliding window
strategy, which is a common strategy for time series prediction using neural networks (FRANK;

DAVEY; HUNT, 2001), with a window size of four time periods thus we use the previous two
hours to predict the Internet activity of the subsequent 30 minutes.

To create the training and testing datasets, the original dataset is divided in two parts: the
first 80% of the time series for training and the last 20% for testing (PRAJAM; WECHTAISONG;

KHAN, 2022). We also normalized these datasets to the [0,1] range to facilitate the training
of DL models, since their parameters are very small, close to zero.

5.2 TRAFFIC PREDICTION PIPELINE

Analysing the traffic of the cells present in the Telecom Italia dataset, we noted that there
are different traffic patterns. For example, Figures 18(a) and 18(b) show the traffic of the cells

78

Figure 17 – Number of Internet activities of cells 1 and 1000 in the Telecom Italia dataset.

(a) Cell 1 Traffic (b) Cell 1000 Traffic
Source: the author (2023).

1 and 1000, respectively. The traffic of these cells is quite different. Cell 1 has some peaks
at the beginning of the time series, with the biggest peak at middle of November 2013; in
December the traffic is more stable. On the other hand, Cell 1000 traffic has regular peaks
across November and December. At the end of December, Cell 1000 traffic drops, this does
not happen in any other period of the time series, nor in Cell 1 traffic.

The traffic of these cells reinforces the complexity and dynamism of the scenario under
study; different parts of Milan present different traffic across the periods. This poses a challenge
when using just one model to predict the traffic for all cells, since DL models learn the pattern
from the input data. Therefore, if a DL model trained with the Telecom Italia dataset learns
the pattern of Cell 1 traffic, it may present a high error to predict the traffic of the Cell 1000,
due to the different patterns. On the other hand, to create a prediction model for each cell
present in the dataset will result in 10,000 models, which can be complex to manage, since
these models must be trained and re-trained if the traffic pattern of the cells changes.

In order to deal with these issues, we create clusters of cells based on their traffic prediction
patterns. Figure 18 illustrates the pipeline used to create the cells’ clusters to make the traffic
prediction. Initially, we calculate the traffic of each cell present in the Telecom Italia dataset.
Afterwards, we create clusters of cells based on the traffic statistics, as we will explain in
Section 5.3. We group all cells with similar traffic patterns into a cluster. Once the clusters
of cells are created, we calculate the mean traffic of all cells for each cluster, composing N

time series, where N is the number of clusters. These time series (mean traffic of each cluster)
are used to train DL models for traffic prediction. Instead of training one model for each cell,
which results in a high number of models to train (e.g. for the Milan region, approximately
10,000 DL models would need to be trained and managed), we create N DL models, one for
each cluster. Since the traffic for cells in a given cluster have a similar pattern, the model of

79

the respective cluster can be used to predict traffic of the cells that compose that cluster. Cell
clusters are discussed in more detail in the next subsection.

Figure 18 – Cell internet traffic prediction pipeline.

Source: the author (2023).

Since the DL models of each cluster are trained with the mean traffic of the respective
cluster, we can use these models to predict the mean traffic for each cluster, the last step in
our pipeline. To evaluate the performance of the DL models, we use RMSE and Mean Absolute
Error (MAE) as metrics as detailed later in Subsection 5.5.

5.3 CLUSTERING THE CELLS

The dataset is composed of traffic data for different cells for Milan. As discussed previously,
we propose created clusters using Internet activity as a statistical metric to propose DL models
to predict Internet traffic. The aggregated Internet traffic can represent the traffic for the
different SFCs allocated in the distributed scenarios (as shown in the Figure 9) We calculate
the total number of Internet activities considering six periods in each day, as described in Table
111

Each cell can be represented by a vector containing six values based on the average Internet
activity for each period of the day. Based on these values, we create clusters of cells using the
K-Means algorithm (ARORA; VARSHNEY et al., 2016) which has been widely used in a number of
different research domains such as document classification, recommendation systems based on
1 In Northern Italy, unlike other countries where lunch is 1230-1400, the working day often includes a break

from 1200-1330 or 1430-1600. For the purposes of this study, we have aggregated this as a four hour block.
Researchers may need to modify this for other countries.

80

Table 11 – Periods of the day.

Period Time (in hour)
Late Night 00:00 - 04:00

Early Morning 04:00 - 08:00
Morning 08:00 - 12:00

Afternoon 12:00 - 16:00
Evening 16:00 - 20:00
Night 20:00 - 00:00
Source: the author (2023).

user interests, classification based on user purchase behavior etc. The K-Means algorithm has
many advantages compared to other clustering techniques including ease of implementation
and fast convergence, even for Big Data (YUAN; YANG, 2019).

To automatically estimate the optimal number of clusters (𝑘) of cells, we applied the Elbow
method. This method varies the number of clusters within a range to find the optimal 𝑘 based
on the sum of square error (SYAKUR et al., 2018). We varied 𝑘 from one to 50 as shown in
Figure 19. As the number of cluster increases, the sum of squared distance tends towards zero
with the elbow of curve being the optimal value. In our case, we select 𝑘 = 12 since it is at the
end of the elbow and the beginning of the stabilization of the sum of the squared distances.
Based on the results presented in Figure 19, using more than 12 clusters would only increase
the complexity of the algorithm with no significant gains in terms of performance.

Figure 19 – Elbow method results.

Source: the author (2023).

The 12 clusters have a similar Internet activity pattern across different time periods within
each day, regardless of the cell location. Figure 20 shows the 12 clusters overlaid on a map
of the Milan Metropolitan Area. To some extent, Cluster 1 represents the external areas of

81

Milan; Cluster 10 represents the border of the municipalities (excluding the municipality 1 in
the center), while Cluster 6 is at the center of such municipalities. Other Clusters (2, 3, 4, 5,
7, 8, 9, 11 and 12) are regions within the city.

We calculate the mean Internet traffic for each of the 12 clusters using the 30-minute
aggregated traffic of all cells included in each cluster divided by the number of cells of the
cluster. Thus, for each cluster, we have a time series related to their mean cell’s traffic. This
time series is used to train and test the proposed DL models.

5.4 DL MODEL CONFIGURATION

In this thesis, we propose two different RNNs that are widely used in the DL literature
for regression problems, LSTM and GRU (CAUX; BERNARDINI; VITERBO, 2020; ZHANG et al.,
2017; CHNITI; BAKIR; ZAHER, 2017; CAO; LI; LI, 2019). To find the best configuration of the
models, we apply a technique called Grid Search. This technique performs an exhaustive search
in a subset of the previously defined parameters and provides the near optimal parameter
combination within the given range (SYARIF; PRUGEL-BENNETT; WILLS, 2016). To apply the
Grid Search, we vary the number of hidden layers and their units for both LSTM and GRU
(see the parameters and levels in Table 12), which was adapted from the methodology used
in (PONTES et al., 2016).

Table 12 – Grid Search parameters and levels.

Parameters Levels
Number of layers 1 to 4, step 1
Number of units 50 to 150, step 50

Source: the author (2023).

The first layer of the model is a fixed recurrent layer (the same as the hidden layers) where
the number of units equals the input data length. The last layer is a fully connected layer with
one neuron that gives the prediction value. Table 13 shows the fixed parameters (empirically
chosen) to train the DL models.

Due to the random characteristics that exist in training (e.g. initialization of weights,
selection of batches etc.), we perform the experiments 30 times and calculate the average
RMSE and the average MAE.

82

Figure 20 – Overlay of the 12 clusters on a map of the metropolitan area of Milan.

Source: the author (2023).

Table 13 – Parameters used to train the DL models.

Parameter Value

Activation function of recurrent layers hard sigmoid
Activation function of last layer sigmoid
Number of epochs 50
Optimizer ADAM (KINGMA; BA, 2014)
Learning rate 0.001
Batch size 32
Loss function mean squared error
Number of runs 30

Source: the author (2023).

83

5.5 METRICS FOR EVALUATING DL MODELS

To assess the performance of the models, we use two metrics: RMSE and MAE. The RMSE
metric is calculated as per Equation 5.1:

𝑅𝑀𝑆𝐸 =

⎯⎸⎸⎷ 1
𝑁

𝑁∑︁
𝑖=1

(𝑓𝑖 − 𝑦𝑖)2 (5.1)

where 𝑁 is the number of points from the traffic series, 𝑓𝑖 is the model prediction at timestamp
𝑖, and 𝑦𝑖 is the the real value at timestamp 𝑖 (WANG; LU, 2018). We use RMSE because it
measures the deviation between the true value and the value predicted by the model, and is
widely used in extant literature for evaluating traffic prediction models (ZHANG et al., 2018;
ZENG et al., 2020; KUBER; SESKAR; MANDAYAM, 2021; SHEN et al., 2021).

We also used MAE to evaluate the DL models. In contrast to RMSE, MAE assigns the
same weight to all errors (CHAI; DRAXLER, 2014). MAE can be calculated as per Equation 5.2:

𝑀𝐴𝐸 = 1
𝑁

𝑁∑︁
𝑖=1
|𝑓𝑖 − 𝑦𝑖| (5.2)

where 𝑁 is the length of time series, 𝑓𝑖 is the prediction, and 𝑦𝑖 is the actual value of timestamp
𝑖. Similar to the RMSE, MAE is widely used in the literature to evaluate traffic prediction
models (ZANG et al., 2015; TROIA et al., 2018; CAO; LIU, 2019).

5.6 RESULTS

We use only the RMSE metric to assess the different DL architectures performance and
find the best configuration for each one. In the Section 5.6.2 we use both RMSE and MAE to
compare the best configurations of DL models between them and against ML models. Figures
21 and 22 present the Grid Search RMSE results for each cluster for each of the LSTM and
GRU models, respectively. For the LSTM models (Figure 21), for the majority of the clusters,
the best configuration has one layer and 250 units. The only exception is Cluster 12, where
the best overall average RMSE is achieved using a configuration with one layer and 150 units
(LSTM-12-1L-150U) and one layer with 200 units (LSTM-12-1L-200U). Cluster 1 achieves the
worth average RMSE result (0.084) while Cluster 12 achieves the best average RMSE result
(0.068).

84

Figure 21 – Mean RMSE of LSTM model for (a) cluster 1, (b) cluster 2, (c) cluster 3, (d) cluster 4, (e) cluster
5, (f) cluster 6, (g) cluster 7, (h) cluster 8, (i) cluster 9, (j) cluster 10, (k) cluster 11, and (l)
cluster 12.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)
Source: the author (2023).

For GRU (Figure 22), the configurations with one layer present the best average RMSE,
however the performance of different clusters varies based on the number of units. From Cluster
2 to Cluster 9 (GRU-2-1L-200U, GRU-3-1L-200U, GRU-4-1L-200U, GRU-5-1L-200U, GRU-6-
1L-200U, GRU-7-1L-200U, GRU-8-1L-200U, and GRU-9-1L-200U), the configuration with the
lowest average RMSE is one layer with 200 units. For Clusters 1 and 10, the configuration that
provides the best average RMSE is one layer with 250 units (GRU-1-1L-250U and GRU-10-1L-
250U). In Clusters 11 and 12, two configurations have the best average RMSE, all with only
one layer. For Cluster 11, the best configurations have 150 units (GRU-11-1L-150U) and 250
(GRU-11-1L-250U) units while for Cluster 12 the best performing configuration has 150 units
(GRU-12-1L-150U) and 200 units (GRU-12-1L-250U). Similar to LSTM, the clusters with the

85

worst and best average RMSE are Cluster 1 (0.0091) and Cluster 12 (0.0045), respectively.
The complexity of the model is directly related to the number of layers and units i.e. the

more layers and units, the more complex the model becomes. The number of layers and units
of the model has to be adjusted according to the input data. Figures 21 and 22 illustrate that
very complex models (those with many layers and units) resulted in poorer performance, due
to model overfitting. Simpler models with less complexity also performed poorly, most likely
due to model underfitting.

In general, the DL models with one hidden layer obtain better average RMSE results than
models with more layers; while those with 150 units or more result in better average RMSE
results. Fine-tuning the models by increasing the number of units rather than layers result in
better performance. Adding hidden layers results in performance degradation.

For the LSTM models (Figure 21), for the majority of the clusters, the best configuration
had one layer and 250 units. The only exception is Cluster 12, where the best overall average
RMSE was achieved using a configuration with one layer and 150 units (LSTM-12-1L-150U)
and one layer with 200 units (LSTM-12-1L-200U). Cluster 1 achieved the worth average RMSE
result (0.084) while Cluster 12 achieved the best average RMSE result (0.068).

5.6.1 Statistical analysis

Some configurations achieved by the Grid Search obtained very similar average RMSE. To
explore this further, we use Kruskal-Wallis non-parametric analysis to compare independent
samples to check whether they are similar or not, based on the mean ranks of these samples
(ELLIOTT; HYNAN, 2011).

In our LSTM results, Cluster 12 (LSTM-12-1L-150U and LSTM-12-1L-200U) has two
configurations with the same average RMSE. Figure 23 presents the box plot of the RMSE of
these Cluster 12 configurations.

While the best Cluster 12 configurations have the same average RMSE (0.068), they have
different RMSE distributions. We can note that the LSTM-12-1L-200U has a lower dispersion
and a lower median than LSTM-12-1L-150U. LSTM-12-1L-200U has an outlier below the
minimum RMSE value, and LSTM-12-1L-150U has an outlier above of the maximum RMSE
value. This analysis suggests that LSTM-12-1L-200U is the best configuration since it has the
lowest dispersion and the lowest median.

For the GRU models, Clusters 1-3 and 5-9 each had at least one statistically similar best

86

Figure 22 – Average RMSE of GRU model for (a) cluster 1, (b) cluster 2, (c) cluster 3, (d) cluster 4, (e)
cluster 5, (f) cluster 6, (g) cluster 7, (h) cluster 8, (i) cluster 9, (j) cluster 10, (k) cluster 11, and
(l) cluster 12.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)
Source: the author (2023).

configuration (Figure 24). For Clusters 1-3 and 5-7, the configurations with 250 units (GRU-
1-1L-250, GRU-2-1L-250, GRU-3-1L-250, GRU-5-1L-250, GRU-6-1L-250 and GRU-7-1L-250)
presented a higher dispersion than the configurations with 200 units (GRU-1-1L-200, GRU-
2-1L-200, GRU-3-1L-200, GRU-5-1L-200, GRU-6-1L-200 and GRU-7-1L-200); GRU-1-1L-200
presented a higher median than GRU-1-1L-250. For Cluster 8, three models are statistically
similar, those with one layer and 150, 200, and 250 units. Again, the configuration with 200
units presented lower dispersion and a lower median than the other configurations. Finally, both
configurations of Cluster 9 (GRU-9-1L-200 and GRU-1-1L-250) had very similar distributions,
with similar dispersion and a similar median. In general, for these clusters with statistically
similar configurations, the configuration with one layer and 200 units presented a lower dis-

87

Figure 23 – Box plot of the RMSE of the best LSTM configurations for Cluster 12.

Source: the author (2023).

persion and lower median; this is considered the best performing configuration for the GRU
models.

5.6.2 Comparison of LSTM and GRU models.

Table 14 presents the results for the RMSE and MAE metrics, comparing the LSTM and
GRU models against two traditional ML models as baseline: Random Forest and Decision Tree.
We chose these ML models as baseline for the comparison, but they were widely used for time
series prediction (KANE et al., 2014; TYRALIS; PAPACHARALAMPOUS, 2017; KARASU; ALTAN,
2019). For each cluster, we created the DL and ML models, then trained and evaluated with
the same training and testing datasets 30 times and calculated the average RMSE and MAE.

The DL models outperform the ML models for all clusters based on the RMSE and the
MAE results. For the Cluster 1, the LSTM has a reduction of 50.32% in average RMSE and
a reduction of 51.99% in average MAE when compared with Random Forest. Considering the
Decision Tree, the LSTM presents a reduction of 62.67% in the average RMSE and a reduction
of 62.96% in the average MAE. In the Cluster 1, comparing the GRU and Random Forest, the
GRU has a reduction of 43.78% in the average RMSE and 45.66% in the average MAE. In
the same cluster, the GRU presents a reduction of 57.64% and 58.08%, for the average RMSE
and MAE respectively, when compared with Decision Tree.

The DL models are clearly superior to the conventional ML models for traffic prediction
tasks; the ML models cannot achieve the same level of prediction error of DL models based

88

Figure 24 – Boxplot of the RMSE of the best configurations of (a) cluster 1, (b) cluster 2, (c) cluster 3, (d)
cluster 5, (e) cluster 6, (f) cluster 7, (g) cluster 8, and (h) cluster 9.

(a) (b)

(c) (d)

(e) (f)

(g) (h)
Source: the author (2023).

on the RMSE and the MAE.
ML model results suggest that the Random Forest model outperforms the Decision Tree

model for all clusters. For Cluster 1, the Random Forest model presents an average RMSE
of 0.1695, while the Decision Tree model presented an average RMSE of 0.2251, a difference
of 24.70%. For Cluster 1, the Random Forest and Decision Tree present an average MAE of

89

Table 14 – Comparison of the LSTM, GRU, Random Forest, and Decision Tree models.

Cluster LSTM GRU Random Forest Decision Tree

RMSE MAE RMSE MAE RMSE MAE RMSE MAE
1 0.0842 0.0653 0.0953 0.0739 0.1695 0.1360 0.2251 0.1763
2 0.0809 0.0639 0.0917 0.0716 0.1664 0.1330 0.2200 0.1677
3 0.0803 0.0634 0.0922 0.0720 0.1645 0.1316 0.2202 0.1670
4 0.0796 0.0629 0.0896 0.0701 0.1699 0.1348 0.2052 0.1630
5 0.0800 0.0632 0.0909 0.0709 0.1602 0.1276 0.2007 0.1567
6 0.0806 0.0636 0.0928 0.0724 0.1665 0.1331 0.2198 0.1671
7 0.0807 0.0638 0.0920 0.0718 0.1675 0.1339 0.2185 0.1654
8 0.0808 0.0639 0.0929 0.0725 0.1684 0.1347 0.2208 0.1680
9 0.0805 0.0636 0.0917 0.0716 0.1680 0.1345 0.2219 0.1699
10 0.0683 0.0544 0.0715 0.0564 0.0957 0.0740 0.1084 0.0824
11 0.0712 0.0564 0.0719 0.0565 0.0842 0.0627 0.1072 0.0788
12 0.0677 0.0546 0.0671 0.0539 0.0784 0.0580 0.1035 0.0772

Source: the author (2023).

0.1360 and 0.1763, respectively, a difference of 29.63%.
We compared the best configurations for the LSTM and GRU models for each cluster using

the Kruskal-Wallis test. The best configurations of LSTM and GRU based on the number of
layers and RNN units were selected using the lowest average RMSE values (see Figures 21
and 22). We consider 30 RMSE values obtained from experiments. For all clusters, the RMSE
distributions of the LSTM and GRU models are statistically different. From Table 14, one can
note that the LSTM models obtain better average RMSE and MAE results except for Cluster
12, where the GRU slightly outperforms the LSTM.

Cluster 1 presents the worst results for RMSE and MAE. LSTM presents an average RMSE
of 0.0842, while the GRU presents 0.0953, a difference of 13.18%. In the MAE results for
Cluster 1, the LSTM presents 0.0653, while the GRU presents 0.0739, a difference of 13.17%.
In contrast, Cluster 12 has the best average RMSE, 0.0677 and 0.0671 for LSTM and GRU,
respectively, with a difference of 0.89%. For the same cluster, the LSTM and GRU present an
average MAE of 0.0546 and 0.0539, respectively, with a difference of 1.28%.

To help understand the difference between the performance of the models across the
clusters, we visualise the actual Internet activity (green line), the LSTM model internet traffic
predictions (blue line), and the GRU model internet predictions (orange line) (see Figure 25).
For visualisation and sensemaking purposes, we omit the ML model predictions. Both models

90

Figure 25 – Comparison against ground truth Internet activity and the predictions of LSTM and GRU models
for (a) cluster 1, (b) cluster 2, (c) cluster 3, (d) cluster 4, (e) cluster 5, (f) cluster 6, (g) cluster
7, (h) cluster 8, (i) cluster 9, (j) cluster 10, (k) cluster 11, and (l) cluster 12.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)
Source: the author (2023).

91

learned the pattern of Internet activity data, capturing its seasonality. For Clusters 1-9, the
models’ predictions are slightly lower than the ground truth data in some periods, with the
GRU prediction values lower than the LSTM predictions, consistent with the GRU models’
higher average RMSE and MAE results. For Clusters 10-12, the predictions of both models
are closer to the ground truth data in comparison to the other clusters, with the LSTM model
closer to the ground truth data in more periods than the GRU models. It is important to notice
that Cluster 10 is situated at the outskirt of the metropolitan area of Milan while Clusters 11
and 12 are closer to the center of the city.

The periods where the predictions of the DL models (for all clusters) are more distant from
the ground truth data are in the Christmas period (24-26 December). During this period, the
predictions of both models are much lower than the ground truth data. This can be explained
easily by the seasonal, although predictable, traffic at that time. This could be addressed by
augmenting the overall DL scheme with historical statistics that summarize prior knowledge
of predictable long-term trends as per (ZHANG; PATRAS, 2018).

Based on our statistical tests, the LSTM models outperform the GRU models in all but one
cluster. In that case, Cluster 12, the superior performance of the GRU model is relatively small.
As shown in Figure 25, both RNNs capture the data pattern, however, the values predicted
by the LSTM models are closer to the ground truth Internet activity data. This is not entirely
surprising. As discussed in Section 2.4.1.2, typically LSTM is expected to outperform its less
complex variant, GRU. We attribute the lower performance of the GRU to the lower complexity
of the GRU units in comparison to the LSTM. Figure 25 shows that the predictions of the GRU
model follow a similar pattern as the LSTM, but with lower values. These lower values increase
prediction error, resulting in a higher RMSE and MAE. Notwithstanding this, the GRU model
took less time to train, and thus, where a model needs to be retrained for multi-step traffic
prediction, the benefits of efficiency gains (e.g. faster decision making, and computational and
economic cost savings) may outweigh the differences in accuracy.

The work presented by Chen et al. (CHEN et al., 2018a) also used the Telecom Italia dataset
for Milan and an LSTM to predict base station traffic. While they used a clustering strategy
at a group base stations level, it was post hoc i.e. they forecast the traffic patterns using the
LSTM and then cluster complementary base stations to BBUs based on the traffic patterns.
As such, the results presented by Chen et al. (CHEN et al., 2018a) are not entirely comparable
with this study since they considered a different clustering strategy and a different time interval
in their experiments. In fact, the different clustering approaches may result in different traffic

92

patterns resulting in a direct impact on the model performance. Finding related works for
direct comparison in the context of traffic prediction is a complex task as different studies may
vary dataset, evaluation metrics, transformations, and data preprocessing. Notwithstanding the
differences, Chen et al. (CHEN et al., 2018a) is the closest to study identified to that presented
in this article, and consequently we use it as a basis for comparison. All average MAE values
obtained for LSTM models were lower than the best result presented in (CHEN et al., 2018a),
which was 0.074. For the GRU models, Cluster 1 obtained the same MAE as Chen et al. (CHEN

et al., 2018a) (0.0739) while the models for the other clusters performed better. Cluster 12
achieved the best MAE. The LSTM presented an improvement of 26.22% and the GRU model
presented an improvement of 27.16% when compared to the reported results in Chen et al.
(CHEN et al., 2018a).

5.7 CONCLUDING REMARKS

In this chapter, we proposed and compared the performance of two RNNs, LSTM and
GRU, to predict mobile Internet traffic in a large metropolitan area, Milan. We proposed a
novel a priori clustering to group cells using K-Means clustering and used the Grid Search
method to identify the best configurations for each RNN. We compared RNN performance
using RMSE and MAE, and testing against ground truth data for Milan. Both RNNs were
effective in modelling Internet activity and seasonality, both within days and across two months
however were sub-optimal in predicting anomalies e.g. Christmas. In this case, this could have
been addressed by augmenting the training with historic trend data as per (ZHANG; PATRAS,
2018). We also find variations by in clusters across the city. While the LSTM outperformed
the GRU, the GRU had faster training times which may be relevant for multi-step prediction
scenarios. We compared our results with Random Forest and Decision Tree, common ML
model techniques used for time series prediction. Both LSTM and GRU models outperformed
the ML models for all clusters of cells. We also compared our proposed RNN models against
the results in Chen (CHEN et al., 2018a) using MAE. Notwithstanding the validity issues in such
a comparison, results suggest our models present significantly better performance. In the next
Chapter, we present the RL-based algorithm proposed to define the SFC placement, which is
used to implement the Placement Planner module of SPIDER, as shown in Figure 14.

93

6 REINFORCEMENT LEARNING FOR SFC PLACEMENT

In this chapter, we describe how we use RL for the SFC placement task, which is used for
the Placement Planner module of SPIDER agent, as shown in Figure 14. Firstly, we describe an
algorithm to calculate the SFC availability by using SPN models in Section 6.1. The algorithm
generates SPN models based on the SFC placement, i.e., in which each VNF is placed and
the redundancy strategy. In Section 6.2, we present the model system considered for the SFC
placement. We also formulate the SFC placement as a multi objective problem. Then, we
propose the Cand algorithm, which is used to select candidate nodes to place the VNFs. The
main advantage of use the Cand algorithm is to reduce the search space to define the node
where each VNF is placed. After we formulate the SFC placement problem to be solved using
RL, and the Cand algorithm is combined with a RL agent to create the Cand-RL algorithm,
which is used to define the SFC placement. Finally, in Section 6.6, we present the evaluation
of Cand-RL against greedy algorithms. The results obtained from this chapter were published
in (SANTOS et al., 2021), (SANTOS et al., 2021), and (SANTOS et al., 2022).

6.1 MODELLING SFC PLACEMENT

Firstly, we generate the computational models to estimate the availability of the SFC
placement. The model needs to represent the state of the hardware and software components
as well as the interdependency between the VNFs and the physical nodes. We use SPN to
model the SFC placement since it is a powerful technique to represent complex systems capable
of accommodating a variety of aspects including concurrency, synchronization, communication
mechanisms, deterministic, mutual exclusion, and conflict (ANDRADE et al., 2017). In addition,
SPN, different of other modelling approaches, has a great representation power with a simple
visual notation. Using SPN models, it is possible to model the operational states of physical
nodes and VNFs, and calculate the overall SFC placement availability. In addition, an SPN
model can be converted to a CTMC and solved using numerical or analytic methods; simulation
methods could be used to derive the same results. In this work, we solved our SPN models
through analytical methods in order to obtain the exact solution. For more information about
SPN, please see (BAUSE; KRITZINGER, 2002).

Figure 26 illustrates two SFC placements in physical servers. These illustrations are com-

94

Figure 26 – Placement examples of VNFs of the same type

(a) Most simple placement example (b) Placement example with redundant
VNFs

Source: the author (2023).

posed of just one VNF for simplicity, but in practice the SFC can be composed of many VNFs.
Figure 27(a) assumes only one VNF is placed in a server. Server 1 and VNF1 are modeled
as a building block composed of two places and two stochastic transitions. When there is a
token in the place server_1_up, Server 1 is operational and working properly. In this state,
Server 1 may fail; this event is represented by the stochastic transition s_1_failure. When this
transition fires, one token is consumed from the place server_1_up and one token is produced
in the place server_1_down. When there is a token in the place server_1_down, Server 1 is
down, compromising all VNFs placed in this server. When Server 1 is down, it can be repaired
thus making it available again. The transition s_1_repair represents the Server 1 repair event.
When fired, one token is consumed from the place server_1_down and another is produced
in the place server_1_up. VNF1 is modeled with a similar building block. The placement
illustrated in Figure 27(a) is available if Server 1 and VNF1 are operational. Therefore, the
availability can be calculated as the probability of one token being in the place server_1_up

and in the place vnf_1_up.
Figure 27(b) shows an SFC placement example where the main VNF (VNF1_1) has a

replica (VNF1_2). VNF1_1 and VNF_2 provide the same function, and both can keep the
SFC available i.e. should any VNF fail, the other one can keep the function available. This
redundancy approach can be used to increase SFC availability. The availability of overall SFC
depends on whether Server 1 and VNF1_1 or VNF1_2 are operational. Using the SPN model
illustrated in Figure 27(b), the overall SFC availability can be calculated as the probability of
one token being in the place server_1_up and either one token being in the place vnf_1_1_up

or one token being in the place vnf_1_2_up.

95

Figure 27 – Placement examples of SFCs with two VNF types

(a) SFC placement with two VNF types without
redundancy

(b) SFC placement with two VNF types with re-
dundancy in one VNF type

Source: the author (2023).

Figure 27 illustrates the SPN models for SFC placements with two VNF types. Figure 28(a)
illustrates a placement without redundancy where each VNF is placed in different servers. Since
the overall SFC depends on VNF1 and VNF2, these functions must be operational as well as
the servers in which they are placed. Therefore, the availability of SFC represented in Figure
28(a) is calculated as the probability of one token being in the places server_1_up, vnf_1_up,
server_2_up, and vnf_2_up.

In Figure 28(b), there is a replica of VNF2 (VNF2_2) to increase the overall SFC avail-
ability. Similar to Figure 27(b), if any replica of VNF2 is working, this function is operational
for the SFC. Thus, the availability of the SFC is calculated as the probability of a token being
in places server_1_up, vnf_1_up, server_2_up, and either vnf_2_up or vnf_2_up.

6.1.1 Generating SFC Availability models Automatically

As can bee seen in the SPN models presented in Figures 26 and 27, as more components
are considered (additional servers and VNFs) the models become larger. This increase in the
SPN model results in a larger CTMC. This can be seen in the SPN models presented in Figures
27(a) and 27(b). When just one building block is added in the SPN, it results in CTMC models
with four and eight states, respectively. Similarly, in the SPN model presented in Figure 28(a),

96

the respective CTMC has 16 states, while the CTMC of the SPN presented in Figure 28(b) has
32 states. As the SFC placement components increases, the size of the respective CTMC also
increases. The generation process, and the CTMC resolution to obtain the probabilities of its
states, can be computationally costly. To avoid large SPN models, we proposed an algorithm
to generate relatively smaller SPN models and combine the results of these models in order
to calculate the overall SFC availability.

Figure 28 presents the basic functioning of our algorithm. We generate an SPN model for
the placement of each VNF type. The models are composed of building blocks relating to
the VNF instances of a VNF type and the servers in which those instances are placed. Then,
the respective CTMC models are generated and solved in order to calculate the availability
for each VNF type. For instance, considering the SFC placement example showed in Figure
28, two SPN models are generated, one each for VNF1 and VNF2. Then, the availability of
VNF1 and VNF2 are calculated. Since we assume that the SFC availability depends on the
availability of VNF1 and VNF2, the overall SFC availability is calculated as the multiplication
of availability values in regard to VNF1 and VNF2.

Figure 28 illustrates a placement where VNF instances of different types are placed in
different servers. However, it is possible to place VNFs of different types in shared servers.
Figure 29 shows an example where VNFs of different types are placed in the same server.
There is one instance of VNF1 and one instance of VNF2 in Server 1. Since these two VNFs
instances, of different types, are placed in the same server, we generate an SPN model to
calculate the availability of these two VNF types. On the other hand, as VNF3 is placed in
another server (Server 2), an SPN model is generated for this VNF type. As a result, these
two SPN models are solved and two availability values are calculated: the availability of VNF1
and VNF2, and the availability of VNF3. These availability values are multiplied in order to
calculate the overall SFC availability.

Algorithm 1 illustrates how the SPN models are generated and solved to calculate the
overall SFC availability. The input, sfc_placement, is defined using the following JSON format:
{vnf_type:server_id:[vnf_instance_id]}. Thus, for each vnf_type, we define on which servers
(server_id) the instances (vnf_instance_id) are allocated, where it is possible to have several
instances of the same vnf_type on the same server. For example, the input data for the SFC
presented in Figure 28 is {1:{1:[1]}, 2:{2:[1,2]}}, while the input data for the SFC placement
presented in Figure 29 is {1:{1:[1]}, 2:{1:[1]}, 3:{2:[1]}}. The output of the algorithm is the
availability of SFC, which is a value between 0 and 1, depending on the server and the VNF

97

Figure 28 – Generation of SPN models based on the SFC placement

Source: the author (2023).

instances.
The first step in our algorithm is to find where VNF instances of different types are placed

on shared servers. In Line 2, we create a variable that stores the mapping between the server
IDs and the VNF types that are stored in this map. In the for loop of Line 3, we iterate over
all VNF types present in the input data, while the for loop of Line 4 iterates over the servers.
The mapping between the servers and VNF instances that are placed in these servers is carried
out in Line 5.

After discovering the VNF instances of different types that are placed on shared servers, we
create a list with just the IDs of these VNF types in Line 8 by the function get_vnfs_shared_servers.
The variable vnfs_list holds the IDs of VNFs, and in cases of VNFs located in shared servers,
their IDs are grouped in a list. In Line 9, we define the SFC availability variable and initialise
it to 1.

The for loop in Line 10 iterates over the VNF types that are placed on shared servers. It

98

Figure 29 – Generation of SPN models with different VNFs types placed in shared servers

Source: the author (2023).

is important highlight that if the SFC placement does not present VNF types placed in shared
servers (such as those in Figures 26, 27, and 28), our algorithm will generate an SPN for each
VNF type. In Line 11, the function get_sub_placement obtains the placement information
about a specific VNF type. For example, assuming the input data {1:{1:[1]}, 2:{2:[1,2]}},
the placement information about the VNF type 1 is {1:{1:[1]}}. However, information about
more than one VNF can be generated depending on the number of VNF types that are placed
on shared servers (as defined in variable vnf_id in Line 10).

The placement information about these VNFs that are placed on shared servers acts as the
input of function generate_spn, that in turn generates the SPN model (line 12). The function
do_spn_analysis converts the SPN model into a CTMC and solves it analytically in Line 13.
In Line 14, the function calc_placement_availability calculates the availability based on the
solution from the SPN and multiplies it by the sfc_availability variable. The availability is

99

Algorithm 1: Pseudocode for algorithm to generate SPN models of SFC placements
Input : sfc_placement
Output: sfc_availability

1 begin
2 servers_vnfs ← {∅}
3 for vnf_type ∈ sfc_placement do
4 for server_id ∈ sfc_placement[vnf_type] do
5 servers_vnfs[server_id].append(vnf_type)
6 end
7 end
8 vnfs_list ← get_vnfs_shared_servers (servers_vnfs)
9 sfc_availability ← 1

10 for vnf_id ∈ vnfs_list do
11 vnf_placement ← get_sub_placement (vnf_id,sfc_placement)
12 spn ← generate_spn (vnf_placement)
13 do_spn_analysis (spn)
14 sfc_availability ← sfc_availability * calc_placement_availability

(vnf_placement)
15 end
16 return sfc_availability
17 end

calculated taking into account the probability of have tokens in specific places of SPN model,
as explained previously. Therefore, the availability of all VNFs types are multiplied to calculate
the overall availability of the SFC, which is returned in Line 16.

We carried out experiments about different SFC placements strategies and how they im-
pact the overall SFC availability. We also compared the simplified SPN models generated by
Algorithm 1 against traditional SPN models. These results are presented in Appendix A.

As we use RL agents to define the SFC placement, the SFC availability must be calculated
during the agent training. We use the Algorithm 1 to generate SPN models and estimate the
availability of the SFC placement configuration defined by the RL agent. In the next section,
we present the system model considered and in the next sections we present the algorithm
proposed for the SFC placement.

6.2 SYSTEM MODEL FOR SFC PLACEMENT PROBLEM

We assume an infrastructure composed of a set of physical nodes and physical links that
connect them. Table 15 summarizes all the parameters used in the model.

The physical nodes can be different kind of devices in which VNFs can be placed, such

100

Table 15 – Summary of parameters used in the model.

Notation Definition

𝐺𝑛𝑒𝑡 Graph of network infrastructure.
𝑁𝑛𝑒𝑡 Set of all physical nodes in 𝐺𝑛𝑒𝑡.
𝑅𝑐𝑝𝑢𝑛 CPU Resources from node 𝑛.
𝑅𝑚𝑒𝑚𝑛 Memory Resources from node 𝑛.
𝑅𝑠𝑡𝑜𝑛 Storage Resources from node 𝑛.
𝐴𝑛 Availability of node 𝑛.
𝐿𝑛𝑒𝑡 Set of all links in 𝐺𝑛𝑒𝑡.
𝐵𝑙 Bandwidth of link 𝑙 that connects two different nodes.
𝐷𝑙 Delay of link 𝑙 that connects two different nodes.
𝐺𝑠𝑓𝑐 graph of an SFC request.
𝑁𝑠𝑟𝑐 Source node of an SFC request.
𝑆𝑑𝑠𝑡 Destination node of an SFC request.
𝑉 𝑐𝑝𝑢𝑣 CPU requirements for a VNF 𝑣.
𝑉 𝑚𝑒𝑚𝑣 Memory requirements for a VNF 𝑣.
𝑉 𝑠𝑡𝑜𝑣 Storage requirements for a VNF 𝑣.
𝐵𝑟𝑓 Bandiwdth requirement of virtual link 𝑓 .

Source: the author (2023).

as servers, switches, routers, etc. Physical nodes have limited computational capabilities in
terms of CPU, memory, and storage. These resources are consumed by the VNFs placed in
the nodes. The resources are represented as a vector: 𝑅𝑛 = {𝑅𝑐𝑝𝑢𝑛, 𝑅𝑚𝑒𝑚𝑛, 𝑅𝑠𝑡𝑜𝑛, 𝑛 ∈

{1, 2, ..., 𝑁𝑛𝑒𝑡}}, where, for the node 𝑛 of a set of nodes 𝑁𝑛𝑒𝑡, 𝑅𝑐𝑝𝑢𝑛, 𝑅𝑚𝑒𝑚𝑛, and 𝑅𝑠𝑡𝑜𝑛,

are the CPU, memory, and storage, respectively.
Each node in the physical infrastructure has associated MTTF and MTTR values. The

MTTF refers to the meantime a node has failed since it started operating. In computational
systems, failures can happen due to several reasons, such as hardware or software failures,
planning mistakes, human error, or external attacks (ENDO et al., 2017). On the other hand,
the MTTR is the mean time the node takes to be repaired after a failure. The repair time is
composed of the failure discover time and the repair time itself, which can be the equipment
replacement, the hardware repair, the software reboot, and so on. Although the failure and
repair rates can vary during the infrastructure operation, a common assumption in the works
that model computing systems is to assume that these rates are constant (ALMURSHED; RANA;

CHARD, 2022) (PEREIRA et al., 2022), i.e., the MTTF and MTTR are fixed. These values are
essential to estimate the availability, 𝐴𝑛, of a node 𝑛.

101

The physical nodes also have constraints relating to the VNF types that they can receive.
For instance, in a cellular network scenario, some nodes close to the base stations, with low
computational capability, may receive VNFs about signal processing, while nodes in the cloud
may receive VNFs that demand computational resources. Naturally, some nodes may receive
all VNFs types defined by the network manager while other nodes may not be capable of
receiving any VNF.

The physical links (𝐿𝑛𝑒𝑡) provide connectivity between two physical nodes and are char-
acterized by the bandwidth capacity and delay. The bandwidth, 𝐵𝑙, of a link 𝑙 between the
source and the destination nodes is consumed by the data flow between the VNFs placed in
those nodes, since these VNFs belong to the same SFC. The link delay, 𝐷𝑙, defines the time
to send data between the source and destination nodes connected by the link 𝑙.

We model the physical infrastructure as an undirected graph, 𝐺𝑛𝑒𝑡, as illustrated in Figure
30, which shows five servers connected by three switches totalling eight physical nodes. Each
server lists the respective computational resources and the list of VNF types that it can receive.
One can note that the switches don’t have information about the computational resources; we
omit this information in the figure because it is not capable of receiving any VNF type. The
physical nodes present in the infrastructure are represented as nodes in the undirected graph,
each one with a unique ID. Please note that while the switches are not able to receive the
VNFs, they are modelled in the graph as they provide connectivity between other nodes. The
edges in the graph are identified using the IDs of the nodes that are connected. For instance,
the link that connects Server 1 to Switch 1 is represented by the ID (1,2), the associated IDs
of these nodes in the graph.

We store the information about the nodes and links in a JSON file, which allows storage
of a substantial variety of characteristics about the physical infrastructure.

The SFC request specifies the requirements from a customer with respect to VNFs and
generally. Figure 31 shows an example of an SFC request. The customer must specify the
source and destination nodes, which define the nodes of the physical infrastructure where
the traffic that will be processed by the SFC start and end. Then, the customer specifies
the ID of the source and destination of the physical nodes, which, in this case, are 1 and 8,
respectively (see Figure 31). We assume that these IDs are related to the IDs of the nodes in
the physical infrastructure graph. For instance, in Figure 30, if the customer defines the source
and destination as nodes 1 and 8, the source and destination of SFC are, respectively, Server
1 and Server 4.

102

Figure 30 – Sample physical infrastructure and associated graph.

Source: the author (2023).

Figure 31 – SFC request example.

Source: the author (2023).

Next, the customer defines the functions that comprise its SFC by creating a list of VNFs
and their order. For each VNF, the customer specifies a type and the computational require-
ments in terms of CPU, memory, and storage. The information about the computational
requirements can also be defined by the network manager and made available to customers
in VNF template formats. In Figure 31, the SFC is composed of just two VNFs, VNF1 and
VNF2, each one with associated computational requirements.

The customer also defines requirements about the links between the source, the destination,
and the VNFs, referred to as virtual links. In Figure 31, the virtual link specify requirements in
terms of bandwidth, but other requirements could be defined. This representation is flexible
to model different operations that VNFs can perform on the traffic and the requirements
between the VNFs. For instance, by taking into account the bandwidth requirements, the
customer could define the behaviour of the traffic data size after the processing of VNFs; the

103

size could change depending on the function applied, e.g., data compression or addition of
headers.

We represent the SFC request as a tuple 𝑠𝑓𝑐𝑟𝑒𝑞 = {𝑁𝑠𝑟𝑐, 𝑁𝑑𝑠𝑡, 𝐺𝑠𝑓𝑐}. 𝑁𝑠𝑟𝑐 and 𝑁𝑑𝑠𝑡

are, respectively, the source and destination nodes from physical infrastructure specified by
the customer. 𝐺𝑠𝑓𝑐 is the directed graph that models the SFC request, as shown in Figure
32. We use a directed graph to model the order of the VNFs as defined by the customer.
The VNFs are represented as nodes in the graph (𝑁𝑠𝑓𝑐). Each node has the tuple 𝑟𝑒𝑞𝑣 =

{𝑉 𝑐𝑝𝑢𝑣, 𝑉 𝑚𝑒𝑚𝑣, 𝑉 𝑠𝑡𝑜𝑣, 𝑣 ∈ 1, ..., 𝑁𝑠𝑓𝑐}, where 𝑉 𝑐𝑝𝑢𝑣, 𝑉 𝑚𝑒𝑚𝑣, and 𝑉 𝑠𝑡𝑜𝑣 are the CPU,
memory, and storage requirements of VNF 𝑣, respectively. The virtual links are the edges of
the graph (𝐿𝑠𝑓𝑐). For each edge, we define a bandwidth requirement of the virtual link, 𝐵𝑟𝑓 ,
where 𝑓 ∈ {1, ..., 𝐿𝑠𝑓𝑐}.

Figure 32 – SFC request represented as a directed graph.

Source: the author (2023).

We store the requirements data about the VNFs and virtual links in JSON format. However,
there is a difference between the format of the data about the source and destination nodes,
and the VNFs. On one hand, the nodes in the graph that represent source and destination of the
SFC request have only information about the physical node. On the other hand, the nodes in
the graph that represent the VNFs have information regarding the computation requirements.
Our SFC placement problem is basically a graph match where the SFC request graph needs

104

to be mapped into the infrastructure graph. Figure 33 illustrates a placement based on the
infrastructure graph of Figure 30 and the SFC request graph of Figure 32.

Figure 33 – SFC placement represented as a graph matching.

Source: the author (2023).

The source node is Server 1 and the destination node is Server 4, since the customer
specified these nodes as 1 and 8, respectively. The first step is to place the first VNF (node
2 of SFC graph), and then select the candidate nodes. The candidate nodes must have the
minimum computational requirements and be able to receive the VNF type. As illustrated in
Figure 30, all servers are able to place VNF1, and accordingly these are the candidate nodes
for such a VNF.

To illustrate, let’s assume that VNF1 is placed on Server 5. Now, the first virtual link must
be placed on the physical links between Server 1 and Server 5. Many paths can be considered
for the virtual link placement, but for simplicity let’s assume the shortest path which passes
through Switch 2. Please note that a virtual link can be placed on one or more physical links.
Afterwards, VNF2 is placed on Server 2, and the virtual link between VNF1 and VNF2 is
placed on the links through Switch 1. Since VNF2 is the last VNF, the last virtual link is
placed between Server 2 and Server 4 (destination), through Switch 3.

After placing the VNFs on the server, the computational resources are consumed based

105

on the requirements of each VNF type. At the same time, the bandwidth of all physical links
where a virtual link is placed is consumed. Updating physical infrastructure status is important
because it impacts the selection of candidate nodes to place the VNFs of future SFC requests.

We consider the SFC placement as a graph matching problem, where the nodes of SFC
requests graph need to be mapped into the infrastructure graph, the main challenge is to select
the nodes of infrastructure graph for each VNF, i.e., the candidate nodes.

6.2.1 Problem Definition

For the SFC placement, we formulate a multi-objective problem, as showed by Equations
6.1-6.8:

𝑚𝑖𝑛

⎛⎝𝑁𝑛𝑒𝑡∑︁
𝑛=0

𝑁𝑠𝑓𝑐∑︁
𝑣=0

𝑋𝑣,𝑛(𝐶𝑛 + 𝐶𝑣)
⎞⎠ (6.1)

𝑚𝑖𝑛

⎛⎝𝑁𝑛𝑒𝑡∑︁
𝑛=0

𝑁𝑠𝑓𝑐∑︁
𝑣=0

𝑋𝑣,𝑛𝐸𝑛

⎞⎠
𝑠.𝑡.

(6.2)

1 =<
𝑁𝑛𝑒𝑡∑︁

𝑛

𝑋𝑣,𝑛 <= 2, 𝑣 ∈ {1, ..., 𝑁𝑠𝑓𝑐} (6.3)

𝐴𝑣(𝑋𝑣,𝑛) >= 𝐴𝑣𝑟𝑒𝑞∀𝑛 ∈ {1, ..., 𝑁𝑛𝑒𝑡}, ∀𝑣 ∈ {1, ..., 𝑁𝑠𝑓𝑐} (6.4)

𝑁𝑠𝑓𝑐∑︁
𝑣

𝑋𝑣,𝑛 ×𝑅𝑐𝑝𝑢𝑛 ≤ 𝑉 𝑐𝑝𝑢𝑣, ∀𝑛 ∈ 𝑁𝑛𝑒𝑡 (6.5)

𝑁𝑠𝑓𝑐∑︁
𝑣

𝑋𝑣,𝑛 ×𝑅𝑚𝑒𝑚𝑛 ≤ 𝑉 𝑚𝑒𝑚𝑣, ∀𝑛 ∈ 𝑁𝑛𝑒𝑡 (6.6)

𝑁𝑠𝑓𝑐∑︁
𝑣

𝑋𝑣,𝑛 ×𝑅𝑠𝑡𝑜𝑛 ≤ 𝑉 𝑠𝑡𝑜𝑣, ∀𝑛 ∈ 𝑁𝑛𝑒𝑡 (6.7)

𝐿𝑠𝑓𝑐∑︁
𝑙

𝑌𝑙𝑝 ×𝐵𝑟𝑓 ≤ 𝑏𝑤𝑝, ∀ 𝑝 ∈ 𝐿𝑛𝑒𝑡 (6.8)

Equations 6.1 and 6.2 are the main goals of our problem. Equation 6.1 calculates the
placement cost. 𝑋𝑣,𝑛 is a binary variable that define if the VNF 𝑣 is placed in the physical

106

node 𝑛, 𝐶𝑛 is the cost of each node 𝑛, and 𝐶𝑣 is the cost of each VNF 𝑣. Then, we sum all
costs to calculate the overall placement cost.

The second objective is to minimize the energy consumption of the placement, which is
described in Equation 6.2. 𝐸𝑛 is the energy consumption of node 𝑛 which is considered for the
placement. If the node 𝑛 was considered, its energy consumption, 𝐸𝑛, is calculated as shown
in Equation 6.9. We assume that the CPU (𝐸𝑐𝑝𝑢𝑛) and memory (𝐸𝑚𝑒𝑚𝑜𝑟𝑦𝑛) operation of
the node impacts on the energy consumption.

𝐸𝑛 = 𝐸𝑐𝑝𝑢𝑛 + 𝐸𝑚𝑒𝑚𝑜𝑟𝑦𝑛 (6.9)

We also consider constraint functions in our optimisation problem. Equation 6.3 defines the
maximum number of VNFs of the same type that we can place in different nodes. Since 𝑋𝑣,𝑛

is a binary decision variable, only one instance of the same VNF can be placed in a node. We
define that, for each VNF, the maximum of two replicas can be placed in different nodes and
at least one replica must be placed. In Subsection 6.4.1 we explain the redundancy mechanism
adopted in our placement solution in order to guarantee the required SFC availability.

Equation 6.4 defines that the availability of the SFC (𝐴𝑣(𝑋𝑛, 𝑣)) placed must be higher
than or equals to the requested availability (𝐴𝑣𝑟𝑒𝑞). Please note that the availability depends on
the physical nodes chosen for the placement and the VNFs instances that will be placed. This
equation is directly related to the two objective functions, because as more servers and VNF
instances are considered to increase the availability, the greater the energy consumption and
cost. The availability of systems can be estimated using different techniques, and in Subsection
6.4.4 we describe how we use SPN models to estimate it.

Equations 6.5, 6.6, and 6.7 define constraints about CPU, memory, and storage, respec-
tively. The binary variable 𝑋𝑣,𝑛 defines if the node 𝑛 is considered to place the VNF 𝑣. Then,
the sum of amount of resources for each component of that node 𝑛 (𝑅𝑐𝑝𝑢𝑛, 𝑅𝑚𝑒𝑚𝑛, 𝑅𝑠𝑡𝑜𝑛

for CPU, memory, and storage, respectively) must be equals or higher than the resources re-
quired by the VNF 𝑣 (𝑉 𝑐𝑝𝑢𝑣, 𝑉 𝑐𝑝𝑢𝑣, and 𝑉 𝑐𝑝𝑢𝑣 for requirements about CPU, memory, and
storage, respectively). Equation 6.8 defines that the bandwidth required by the virtual link 𝐵𝑟𝑓

must be lower than the bandwidth available (𝑏𝑤𝑝) in the physical link 𝑝. The binary variable
𝑌𝑙𝑝 defines if the physical link 𝑝 is considered to place the virtual link 𝑙.

We propose the Cand-RL algorithm to solve the SFC optimisation problem. The goal is
to minimize placement cost and energy consumption while meeting availability requirements.

107

In the next section, we present the Cand algorithm to select the candidate nodes during SFC
placement. In Subsection 6.4, we describe how the SFC placement problem is modelled to
be solved with RL, defining the state representation, the action representation and reward
function. In Subsection 6.5 we describe the Cand-RL algorithm, which combines the Cand
algorithm and use an RL agent to define the SFC placement (nodes to place the VNFs) and
the redundancy strategy to meet the availability requirements.

6.3 THE CAND ALGORITHM FOR SELECTING CANDIDATE NODES

The Cand algorithm is used to select sequentially the candidate nodes to place a VNF; its
pseudocode is shown in Algorithm 2.

Algorithm 2: Pseudocode of Cand algorithm
Input : vnf_requirements, flow_entry_requirements, infra_graph, source_node,

destination_node, k
Output: candidate_nodes

1 begin
2 infra_graph ← get_subgraph_enough_band (infra_graph,

flow_entry_requirements)
3 paths_lenght ← calc_shortest_path_length (infra_graph)
4 scores ← {∅}
5 for phy_node ∈ infra_graph.nodes do
6 meet_requeriments ← False
7 if vnf_requirements.type ∈ phy_node.supported_vnfs then
8 meet_requeriment ← True
9 end

10 for req_name, req_value ∈ vnf_requirements.computational_req do
11 if phy_node[req_name] < req_value then
12 meet_requeriment ← False
13 break
14 end
15 end
16 if meet_requirement == True then
17 scores[phy_node[id]] ← paths_lenght[phy_node[id]][source_node] +

paths_lenght[phy_node[id]][destination_node]
18 end
19 end
20 scores ← sort(scores)
21 candidate_nodes ← get_k_nodes (scores, k)
22 return candidate_nodes
23 end

108

The Cand algorithm receives several input data. The computational requirements of a VNF,
in terms of CPU, memory, and storage are modelled as a vector of numbers, 𝑣𝑛𝑓_𝑟𝑒𝑞𝑢𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑠.
The requirements about the virtual link, 𝑓𝑙𝑜𝑤_𝑒𝑛𝑡𝑟𝑦_𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑠, is a number that defines
the bandwidth required by the VNF. However, if necessary, more requirements about virtual
links can be specified; in this case, the input variable 𝑓𝑙𝑜𝑤_𝑒𝑛𝑡𝑟𝑦_𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑠 would be-
come a vector. The infrastructure graph is also an input of the Cand algorithm as a variable
𝑖𝑛𝑓𝑟𝑎_𝑔𝑟𝑎𝑝ℎ. The source and destination nodes of a SFC request are the input of the Cand
algorithm (𝑠𝑜𝑢𝑟𝑐𝑒_𝑛𝑜𝑑𝑒 and 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛_𝑛𝑜𝑑𝑒, respectively). Finally, the last input is the
parameter 𝑘, which defines how many candidate nodes will be selected for the VNF. The
output of the Cand algorithm is a list of the IDs of candidate nodes.

The first step of the Cand algorithm is to get a subgraph from the infrastructure graph
where all edges have enough bandwidth to place the virtual link. The function 𝑔𝑒𝑡_𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ

_𝑒𝑛𝑜𝑢𝑔ℎ_𝑏𝑎𝑛𝑑() checks all edges of the input graph and returns a subgraph, where all edges
have bandwidth higher or equals to 𝑓𝑙𝑜𝑤_𝑒𝑛𝑡𝑟𝑦_𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑠. The infrastructure graph
then receives this subgraph as shown in Line 2.

We select the candidate nodes based on a score, which is the sum of the distance from
the source to the candidate node and the distance from the candidate node to the destination
node. The idea is to select candidate nodes near to the shortest path between the source and
destination nodes of the SFC in order to reduce the consumption of the physical links in the
network.

Then, we calculate the shortest path length of all-pairs in the infrastructure graph using
the Dijkstra algorithm as shown in Line 3. In Line 4, we declare the 𝑠𝑐𝑜𝑟𝑒𝑠 variable as an
empty map. This variable will store the score of all nodes in the infrastructure graph.

The loop in Line 5 iterates over all physical nodes in the infrastructure, considering the
links that meet the bandwidth requirements of virtual link. The goal is to evaluate what nodes
meet the computational requirements of the VNF and check what nodes can receive the VNF.

In Line 7, we check if the physical node can receive the VNF based on its type. In a
positive case, the variable meet_requirements is true. In the loop of Line 10, we iterate over
all computational requirements of the VNF. In Line 11, we check if the node has less resources
than required by the VNF, considering all resources types (𝑟𝑒𝑞_𝑛𝑎𝑚𝑒) and the value specified
in the VNF requirement (𝑟𝑒𝑞_𝑣𝑎𝑙𝑢𝑒). If the node does not have enough computational resource
of any type (CPU, memory, or storage), the variable 𝑚𝑒𝑒𝑡_𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡 is false, and this node
will not be considered as a candidate.

109

Then, we check if the physical node meets the requirements of the VNF and can receive
the VNF in Line 16. When this happens, the score of the node is calculated as the sum of the
distance from the source node to the node and the distance from the node to the destination
node. The score is stored in the variable 𝑠𝑐𝑜𝑟𝑒𝑠, where it is associated with the node ID in
Line 17. It is important to highlight that the if in Line 16 is there to ensure that only the
score nodes that meet the requirements of the VNF are calculated.

The score of candidate nodes are sorted in Line 20 as the nodes score in descending fashion.
Thus, the first 𝐾 nodes are selected in Line 21, i.e., the nodes with the lowest scores. There
is a possibility of the number of candidate nodes being lower than 𝑘. In this situation, we
complete the 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑛𝑜𝑑𝑒𝑠 list with a fake ID (-1) in Function 𝑔𝑒𝑡_𝑘_𝑛𝑜𝑑𝑒𝑠 until its
length equals 𝑘. This is needed for the correct working of the RL agent; more details are
provided later in Section 6.4.3. Finally, the Cand algorithm returns the IDs of candidate nodes
in Line 22.

6.3.1 An Illustrative Example of How the Cand Algorithm Works

To illustrate how the concept of the score used in Algorithm 2 works, Figures 35(a) and
35(b) illustrate the candidate node selection for a VNF assuming a graph with 50 nodes. The
graph models an Authonous System (AS) network (ELMOKASHFI; KVALBEIN; DOVROLIS, 2010)
generated using the NetworkX tool1. The source and destination nodes are nodes 45 and 37,
respectively, and they are highlighted in orange in the graph. For illustrative purposes, we as-
sume that all physical nodes in the graph can receive the VNF and have enough computational
resources.

Figure 35(a) shows the candidate nodes selected (in pink) with 𝑘 = 5. The black edges in
the graph are the shortest path between the source and destination nodes, and the selected
nodes are located close to this path. The nodes that are in the shortest path (10, 2, and 6)
were selected as candidate nodes. If the VNF was placed in one of these nodes, only links
close to the shortest path between destination and source nodes would be occupied by the
virtual link of this VNF. If the VNF were allocated to a node very far from the source and
destination nodes (for example, Node 28), the virtual link of that VNF would use too many
links to connect the source to the chosen node.

The 𝑘 value can be increased if more candidate nodes can be considered to place the VNF.
1 <https://networkx.org/documentation/stable/index.html>

https://networkx.org/documentation/stable/index.html

110

Figure 34 – Selection of candidate nodes.

(a) 𝑘 = 5

(b) 𝑘 = 10
Source: the author (2023).

Figure 35(b) shows the result of candidate selection with 𝑘 = 10. One can note that the same
nodes selected with 𝑘 = 5 were selected in addition to more five nodes (1, 7, 13, 9, and 8),
but all nodes are close to the shortest path between the source and destination nodes. The
difference is that these additional nodes have a higher score than the nodes shown in Figure
35(a).

It is important to highlight that in some cases, the candidate nodes for a VNF can be
located far away from the shortest path between the source and destination nodes. Consider
the graphs illustrated in Figures 35(a) and 35(b). If the only nodes that met the requirements
of the VNF were, for example, Nodes 28, 33, 25, and 43 (in the upper left corner of the graph),
these nodes would be selected in the loop of Line 5 of Algorithm 2, and their scores calculated.
Therefore, even if the candidates nodes are located far away from the source and candidate
nodes, they will be selected and ordered based on their score by the Cand algorithm.

111

Another possibility is a situation where any node can receive the VNF, e.g, if all nodes that
can support such type of VNF do not have enough computational resources. In this case, the
variable 𝑚𝑒𝑒𝑡_𝑟𝑒𝑞𝑢𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑠 will be false for all nodes of the physical infrastructure graph,
and consequently the variable 𝑠𝑐𝑜𝑟𝑒𝑠 will be empty at the end of the Cand algorithm. In this
case, we assume that the VNF cannot be placed in the infrastructure, and the SFC request is
rejected.

Using the Cand algorithm, we can restrict the number of nodes to place on a VNF. This
is useful in large-scale infrastructure situations where we may have hundreds or thousands of
possible nodes to allocate a VNF. As we will explain in the next subsection, we can use RL
algorithms to define the best candidate node to place a VNF and define if a backup replica
needs to be placed in order to meet the availability requirements. However, if we consider the
multidimensional information about all nodes of the infrastructure (e.g. CPU, memory, storage,
among others) and a large scale infrastructure, with dozens, hundred or even thousands of
nodes, both input and output could have high dimensionality, and training neural networks on
high-dimensional data poses a significant problem (WÓJCIK; KURDZIEL, 2019). Thus, we can
use the Cand algorithm to select only nodes that have the computational capacity to allocate
the VNF, that accept that type of VNF and that are close to the shortest path between the
source and destination nodes of the SFC. It contributes to the reduction of input and output
dimensionality data of RL agent, since the input of RL agent will be the information about
the candidate node to place a VNF.

In the next subsection, we will describe how we can use an RL agent to select the candidate
nodes to place the SFC and then we will describe how the Cand algorithm is used with the
RL agent for the SFC placement.

6.4 RL FOR SFC PLACEMENT

We use RL to create an agent to select the best candidate node to place a VNF. The Cand
algorithm explained in the previous section is used to select the candidate nodes to avoid
having the agent evaluate all nodes in the physical infrastructure. In the next subsections, we
present the characteristics of SFC requests and the RL formulation for the SFC placement
problem for large-scale scenarios. We define the environment state representation, the action
representation, and the reward function.

112

6.4.1 Characteristics of SFC requests

We represent the SFC request detailed in Section 6.2 as a MDP based on Xiao et al. (XIAO et

al., 2019b), where the VNFs are processed sequentially. For the SFC request {𝑁𝑠𝑟𝑐, 𝑁𝑑𝑠𝑡, 𝐺𝑠𝑓𝑐}

that arrives at time 𝑇 , we split it into subrequests for each VNF in 𝑁𝑠𝑓𝑐. Then, each sub-
sresquest is processed in different sub slots {𝑇1, 𝑇2, ...𝑇𝑁}, where 𝑁 is the number of VNFs.

When a subrequest is processed, a physical node (𝑛𝑖 ∈ 𝑁𝑛𝑒𝑡) needs to be selected to
place the respective VNF. The node needs to meet the requirements for CPU, memory, and
storage. After placing the VNF in the node, its resources are consumed, changing the network
status. The changes of network status are related to the different states of the MDP. For each
MDP state, the candidate nodes are selected to place a new VNF, and when it is placed, the
resources of nodes will be consumed changing the MDP states.

After place a VNF in the node, the respective virtual link must be placed. The virtual link
is placed in the same subrequest of the VNF, consequently, in the same sub slot time. If the
previous VNF was placed in node 𝑛𝑗, where 𝑛𝑗 ∈ 𝑁𝑛𝑒𝑡, the links that connect the node 𝑛𝑗

and 𝑛𝑖 would be selected to place the virtual link. Then, the resources of physical links are
consumed, i.e. the available bandwidth (𝐵𝑖,𝑗), according to the virtual link requirement (𝐵𝑟𝑖).

In order to increase the overall SFC availability, many replicas can be considered and placed
on the physical infrastructure. We assume that VNF instances of the same type can assume
two different roles. The main instance is connected to the VNF instances of different types, and
is responsible for receiving/forwarding the flow from/to other VNFs. The backup instance of a
VNF works only in cases where a failure occurs in the main instance. As the backup instance
keeps the SFC working in the case of main instance failure, the SFC is impacted when the
main instance and all backup instances fail. The decision to place a backup instance of a VNF
is done in the same subrequest and sub slot time. We assume that both main and backup
instance of the same VNF type consume the same computing resources from the respective
nodes.

An example is illustrated in Figure 35. We assume an SFC request composed of three
VNFs and an infrastructure composed of just two servers connected by a physical link as
shown in Figure 36(a). As discussed previously, the servers have limited capacity in terms of
CPU, memory, and storage. For the sake of simplicity, we assume that the two servers can
receive all VNFs from the SFC request, i.e., they are candidate nodes for all VNFs types. To
aid comprehension, we do not present the source and destination nodes of SFC in Figure 35.

113

Figure 35 – SFC Request represented as an MDP.

(a) (b)

(c)
Source: the author (2023).

The SFC request arrives at time 𝑇 , and is divided into three subrequests, one for each
VNF as illustrated in Figure 36(b). These three subrequests are processed in the same instant
time 𝑇 , but we divide it in three sub slots, 𝑇1, 𝑇2, and 𝑇3, in order to define the processing
order. The first VNF, VNF1, is processed and placed in Server 1, consuming computational
resources required by VNF1.

Next, the subrequest for VNF2 is also placed in Server 1, consuming the resources of this
server. Since VNF1 and VNF2 are placed in the same server, no links will be affected by the
virtual link between these two VNFs.

Finally, the last subrequest (VNF3) is processed and the complete SFC is placed in the
physical infrastructure. The virtual link from VNF2 to VNF3 is placed in the physical link that
connects Server 1 and Server 2.

114

While the placement illustrated in Figure 36(b) assumes just one replica of each VNF,
Figure 36(c) shows an example of a placement where main and backup instances of VNF3 are
placed in Server 2 in order to increase the SFC availability.

The approach of using redundant replicas can increase SFC availability however it also
increases the resource consumption of servers, and may increase the overall energy consumption
(SANTOS et al., 2021). Therefore, an intelligent approach to find a balance between availability
and resource consumption should be applied in the context of SFC placement to meet the
SLA requirements of customers and to mitigate the risk of over-consumption. Based on the
candidate nodes selected by the Cand algorithm, we use RL to select the best candidate
node to place each VNF and also define with a redundant replica needs to be allocated. It is
expected that the agent RL, after training, will be able to select the candidate nodes as well
as the redundancy strategy to meet the availability requirements and also minimize the costs
of allocation and energy consumption. In the next sections, we will describe the details about
the RL implementation.

6.4.2 Environment State Representation

The state representation is the information that the RL agent receives from the environment
to take an action at a time 𝑡, that will return a given reward in the long run (SUTTON; BARTO,
2018). This information must be relevant for the agent to take the right action for a given
state.

In our context, the RL agent will decide the candidate node where the main instance of
VNF from the SFC request will be placed and if a backup instance of such VNF will be placed
in another candidate node. Therefore, the state representation relates to the list of candidate
nodes for the VNF being processed. Equation 6.10 shows the state representation at time 𝑡

(𝑆𝑡).

𝑆𝑡 = {𝑅, 𝐶𝑖, 𝐴𝑠}, 𝑖 ∈ {1, 2, ..., 𝑉 𝑁𝐹𝑠𝑠}, 𝑠 ∈ {1, 2, ..., 𝑆𝐹𝐶𝑠} (6.10)

where 𝑅 is a matrix composed of the percentage of available computational resources of each
candidate node:

115

𝑅 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
𝐶𝑃𝑈1 𝑀𝑒𝑚1 𝑆𝑡𝑜1 𝐴𝑣1

...

𝐶𝑃𝑈𝑘 𝑀𝑒𝑚𝑘 𝑆𝑡𝑜𝑘 𝐴𝑣𝑘

⎤⎥⎥⎥⎥⎥⎥⎥⎦
where 𝑘 is the number of candidate nodes. We assume three computational resources for each
node (CPU, memory, and storage) and the availability of the node. To calculate the percentage
of available computational resources of candidate nodes, we divide the total of resources of a
type by the number of available resources of this type. The goal is to avoid using absolute values
of resources (for example, memory and storage in terms of GB, or CPU in terms of number of
cores), and use values between 0 and 1. As modern RL agents are typically implemented using
neural networks, the input normalization must be used to disentangle the natural magnitude
of each component from input data and improve the learning process (HASSELT et al., 2016).
Accordingly, these input values were normalized. As mentioned previously, there is a possibility
that the number of candidate nodes is lower than 𝑘. In this case, we fill the matrix 𝑅 with
zero-valued rows until we have 𝑘 rows in the matrix. For example, if three candidate nodes
are selected and 𝑘 = 5, two zero-valued rows are added in matrix 𝑅.

𝐶𝑖 is a vector in Equation 6.10 with the requirements of the VNF 𝑖 that is being processed
at time 𝑡 from the SFC request 𝑠. The vector is composed of the CPU, memory, and storage
values required by the VNF. 𝐴𝑠 is the availability requirement of the overall SFC 𝑠 from the
list of all SFC requests 𝑆𝐹𝐶𝑠.

The matrix 𝑅 gives a picture of the available resources of the candidate nodes for the
RL agent. The agent can select a candidate node with more or less resources depending on
the requirements of the VNF, which is specified in the vector 𝐶𝑖. Based on the availability
value, 𝐴𝑠, the agent can decide if the VNF will be duplicated or not in order to achieve the
availability required for the SFC.

6.4.3 Action representation

The action representation is a numerical representation of the action that the agent can
take at a given time, 𝑡, and affect the future state of the environment, and will give a reward
in the future (SUTTON; BARTO, 2018). In our context, the action relates to the placement
decision for each VNF sequentially, as illustrated in Equation 6.11.

116

𝐴𝑡 = {𝑠, 𝑟}, 𝑠 ∈ {0, 1, ..., 𝑘}, 𝑟 ∈ {0, 1} (6.11)

The agent action, 𝐴𝑡, at time, 𝑡, is composed of just two values. 𝑠 is the index of node
from the 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑛𝑜𝑑𝑒𝑠 list where the VNF will be placed, assuming 𝑘 candidate nodes.
As mentioned in Section 6.3, in cases where there are less candidate nodes for a VNF than
𝑘, the 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑛𝑜𝑑𝑒𝑠 list is padded with a fake ID until its size equals to 𝑘. It is needed
because to implement the RL agent, we need to define lower and upper bound values for 𝑠.
Therefore, when the 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑛𝑜𝑑𝑒𝑠 list has a size equal to 𝑘, the agent will always select
a valid candidate node to place the VNF. When the size of the 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑛𝑜𝑑𝑒𝑠 list is lower
than 𝑘, the RL agent can select the “fake ID” from the list. In this case the VNF will not be
placed in a node, and the agent will be penalized as we will explain in Section 6.4.4.

𝑟 is the decision if the VNF will be replicated (𝑟 = 1) or not (𝑟 = 0). The strategy to define
where the VNF backup instance will be placed can vary depending on the network operator’s
goals. For instance, the backup instance can be placed in the same node of the main instance
or in another candidate node.

6.4.4 Reward function

In the context of RL, reward is a signal that the environment returns to the agent after it
takes an action. The reward can be negative or positive depending on the action taken at a
time, 𝑡, given a state of the environment. The agent’s goal is to maximize the total reward it
receives over the long run (SUTTON; BARTO, 2018).

For the SFC placement, the reward is defined based on the success of the agent in placing an
SFC that meets the availability requirements. However, adding replicas can increase OPEX due
to the cost to place a VNFs instance in the node and associated greater energy consumption
(ERAMO; AMMAR; LAVACCA, 2017). Therefore, our reward function takes into account the
availability of the SFC, the availability required, and the energy consumption and cost resulting
from the SFC placement defined by the agent.

Equation 6.12 shows our reward function. A reward signal is returned to the agent after
the placement of each VNF. We have different reward values if the VNF is the last VNF of
an SFC or not. This difference is because when the last VNF of an SFC request is placed, the
overall SFC availability, placement cost, and energy consumption can be calculated.

117

ℛ(𝑠𝑡, 𝑎) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−10, invalid node selected

0, valid node selected

−100, r is rejected

((𝐴𝑉𝑑𝑖𝑓𝑓)𝜚(−𝑂𝑠𝑓𝑐)) + 𝑐, r is accepted

(6.12)

Firstly, we will explain the reward for processing a non-final VNF from the SFC request.
When the RL agent selects an invalid node to place the VNF (in cases where there are less
candidate nodes than 𝑘), the agent receives a penalty of -10. On the other hand, if a valid
candidate node is selected to place the VNF, the agent receives a reward of 0, i.e., it is not
penalized.

When the last VNF from the SFC request is processed, the placement defined by the
reinforcement agent can be evaluated. If the SFC is rejected, i.e., if any VNF is placed in
an invalid node, the agent receives the highest penalty, -100. When all VNFs from the SFC
requests are placed in valid nodes, we can evaluate the placement quality. To do this, we
calculate the availability, cost, and energy consumption of the SFC placement defined by the
RL agent.

As illustrated in Section 6.1, the availability is estimated through SPN models, considering
the failure and repair events of nodes and VNF instances. The reader can also refer (SANTOS

et al., 2021) and the Appendix A to see the evaluation of SPN models. Since the SPN models
are considered for the SFC availability estimation, the constraint shown in 6.4 is not linear,
which makes our problem non-linear. In addition, as we generate a different SPN model for
each different SFC placement, the constraint 6.4 will be not the same for different solutions
evaluations.

As mentioned in Section 6.2.1, we need to meet the availability constraint defined in the
SFC request. Therefore, the availability of the allocated SFC must be greater than or equal
to the requirement. However, if the availability is much higher than the requirement, the
energy consumption and placement cost will increase. Based on the SFC availability, we need
to define the impact on the reward based on the availability requirement for that SFC. This
impact is defined in Equation 6.12 by 𝐴𝑉𝑑𝑖𝑓𝑓 , which is detailed in Equation 6.13. When the
SFC availability, 𝑎𝑣𝑠𝑓𝑐, is lower than the requirement, 𝑎𝑣𝑟𝑒𝑞, 𝐴𝑉𝑑𝑖𝑓𝑓 will be 𝑎𝑣𝑠𝑓𝑐− 𝑎𝑣𝑟𝑒𝑞, i.e.,
𝐴𝑉𝑑𝑖𝑓𝑓 is negative, and it gets smaller as the availability of the SFC is less than the requirement.
On the other hand, when 𝑎𝑣𝑠𝑓𝑐, is greater than or equal to 𝑎𝑣𝑟𝑒𝑞, the SFC availability meets

118

the availability requirement or surpasses it.

𝐴𝑉𝑑𝑖𝑓𝑓 =

⎧⎪⎪⎨⎪⎪⎩
𝑎𝑣𝑠𝑓𝑐 − 𝑎𝑣𝑟𝑒𝑞, 𝑎𝑣𝑠𝑓𝑐 < 𝑎𝑣𝑟𝑒𝑞

𝑒−(𝑎𝑣𝑠𝑓𝑐−𝑎𝑣𝑟𝑒𝑞), 𝑎𝑣𝑠𝑓𝑐 ≥ 𝑎𝑣𝑟𝑒𝑞

(6.13)

As the availability difference increases, the SFC availability is higher than the requirement
resulting in higher placement cost and energy consumption, since more VNFs will be placed. To
avoid placements of SFCs with availability in excess of the requirement, the reward decreases
following an exponential function as the availability difference increases, as shown in Figure
36. When the availability difference increases considerably, the impact on the reward tends to
zero, and the RL agent will tend not to carry out this SFC placement, but rather those that
approach the user’s requirement.

Figure 36 – The availability difference impact on the reward.

Source: the author (2023).

We define the operational placement impact, 𝑂𝑠𝑓𝑐, as the sum of the energy consumption
and the placement cost, which is illustrated in Equation 6.14.

𝑂𝑠𝑓𝑐 = 𝐶𝑛𝑜𝑑𝑒𝑠𝜎 + 𝐶𝑣𝑛𝑓𝑠𝜈 + 𝐸𝑛𝑜𝑑𝑒𝑠𝜍 (6.14)

The placement cost for the nodes, 𝐶𝑛𝑜𝑑𝑒𝑠, is calculated using the first sum of Equation 6.1,
while the placement cost for the VNFs, 𝐶𝑣𝑛𝑓𝑠, is calculated using the second sum of Equation

119

6.1. The energy consumption for the nodes chosen for the placement, 𝐸𝑛𝑜𝑑𝑒𝑠, is calculated
using Equation 6.2.

The node cost, VNFs cost, and energy consumption can have different scales, which can
result in a different impact on the reward. In order to deal with this problem, we multiply the
node cost, VNF cost, and energy consumption by constants, 𝜍, 𝜎, and 𝜈, respectively, to bring
these values to the same scale.

Since the goal of the RL agent is to maximize the reward, 𝑂𝑠𝑓𝑐 is negative in Equation 6.12
because we try to minimize it. The greater the 𝑂𝑠𝑓𝑐, the greater the discount on the difference
in availability as explained previously. Thus, the agent will try to minimize operating costs as it
maximizes the value of SFC availability. We multiply the availability difference (𝐴𝑉𝑠𝑓𝑐−𝜃𝑠) by
the operational placement impact (𝑂𝑠𝑓𝑐), however it is important to note that these values can
be in different scales. Similar to the solution used in Equation 6.14, we multiply the availability
difference by a constant 𝜚, in order to use the same scale of the operational placement impact
(𝑂𝑠𝑓𝑐). The values of constants 𝜚, 𝜍, and 𝜎, were defined empirically by evaluating the values
calculated in each part of the equation with the aim of keeping all values on the same scale,
and not favoring any factor.

6.5 THE CAND-RL ALGORITHM

We combine the Cand algorithm (Algorithm 2) and the RL agent described in Section 6.4
in order to create a unique algorithm for SFC placement - the Cand-RL algorithm, as described
in Algorithm 3.

The input of the Cand-RL algorithm is the SFC request (𝑠𝑓𝑐_𝑟𝑒𝑞𝑢𝑒𝑠𝑡) that the agent
will process, the infrastructure graph where the SFC will be placed (𝑖𝑛𝑓𝑟𝑎_𝑔𝑟𝑎𝑝ℎ), and the
number of candidate nodes (𝑘) that will be evaluated to place each VNF. The output of
Cand-RL is a variable that indicates whether the SFC placement was successful or not.

The first step of the Cand-RL algorithm is to select the source and destination nodes that
are specified in the SFC request as per Lines 2 and 3, respectively. These nodes will be used
in the Cand algorithm to calculate the score of the candidate nodes to place each VNF, as
explained in Section 6.3.

The loop in Line 4 iterates over all VNFs of the SFC request to process one by one
sequentially. In Line 5, the candidate nodes to place the VNF are selected using the Cand
algorithm. If there is no candidate nodes to place the processed VNF, the SFC request is

120

Algorithm 3: Pseudocode of the Cand-RL algorithm for SFC placement.
Input : sfc_request, infra_grapgh, k
Output: placement_success

1 begin
2 source_node ← sfc_request.source_node
3 destination_node ← sfc_request.destination_node
4 for vnf_request in sfc_request.vnf_requests do
5 candidates_nodes ← cand_algorithm (vnf_request.requirements,

vnf_request.flow_entry_requirements, infra_graph, source_node,
destination_node, k)

6 if length(candidate_nodes)==0 then
7 return False
8 end
9 candidates_resources ← get_nodes_resources (candidates_nodes,

infra_graph)
10 action ← RL_agent ({candidates_resources, vnf_request.requirements,

sfc_request.availability})
11 node_chosen ← action[0]
12 redundancy ← action[1]
13 infra_graph ← allocate_vnf (node_chosen, vnf_request, infra_graph)
14 links ← find_shortest_path (source, node_chosen,

vnf_request.flow_entry_requirements, infra_graph)
15 infra_graph ← allocate_flow_entry (links, infra_graph)
16 if redundancy == 1 then
17 redundant_node ← get_redundant_node (candidates_nodes)
18 infra_graph ← allocate_vnf (redundant_node, vnf_request,

infra_graph)
19 end
20 source_node ← node_chosen
21 end
22 links ← find_shortest_path (source, destination_node)
23 infra_graph ← allocate_flow_entry (links, infra_graph)
24 return True
25 end

121

discarded and the algorithm returns false. This condition is checked in Line 6.
As explained previously, the nodes selected by the Cand algorithm are potential candi-

dates to place the VNF, but just one must be selected. The Cand-RL algorithm uses an
RL agent to make such a decision. As detailed in Section 6.4.2, the RL agent considers the
available resources of candidate nodes to take an action. Therefore, in Line 9, the function
𝑔𝑒𝑡_𝑛𝑜𝑑𝑒𝑠_𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 returns the percentage of available computational resources of candi-
date nodes, considering the status of physical infrastructure. Since the Cand algorithm selects
only 𝑘 candidate nodes, we can control the input size of the RL agent irrespective of infras-
tructure size.

The RL agent takes an action in Line 10, taking into account the percentage of available
resources, the VNF requirements, and the availability requirements of the SFC. The action
defines the suitable candidate node to place the main VNF instance in and if a backup instance
will be placed in another candidate node. To increase the overall SFC availability requires a
decision to place a redundant VNF. The selected candidate node is extracted from the action
in Line 11, while the decision to place a backup instance is obtained from the action in Line
12.

The VNF is placed in the chosen node in Line 13, consuming the resources from the
physical infrastructure. The infrastructure graph status is updated after the VNF placement.
Since the VNF is placed in the infrastructure, the virtual link from the source to the VNF
needs to be placed in the physical links. The function, 𝑓𝑖𝑛𝑑_𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡_𝑝𝑎𝑡ℎ, in Line 14, finds
the shortest path from the source to the chosen node in the infrastructure graph, where the
links in the shortest path must meet the requirements of virtual link in terms of bandwidth. To
find the shortest path, we apply the Dijkstra algorithm. Afterwards, the virtual link is placed
in Line 15, consuming the resources of physical links which are updated in the infrastructure
graph.

In Line 16, whether the agent decided to place a backup instance of the VNF is checked.
If the variable 𝑟𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦 is equal to 1, a backup instance will be placed, and we opt to
place it in a candidate node different of the main instance. This is due to the fact that in
situations where a failure happens in the node where the main instance is allocated, only that
VNF instance will be impacted.

If the RL agent decided to place a backup replica, a node from the infrastructure graph
must be selected in which to place it. In Line 17, the function 𝑔𝑒𝑡_𝑟𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡_𝑛𝑜𝑑𝑒 selects
the candidate node that has the highest quantity of available resource, and in Line 18 the

122

Figure 37 – Example of candidate nodes selection in Cand-RL algorithm.

(a) (b) (c)
Source: the author (2023).

backup replica is placed in the redundant node, which changes the status of the physical
infrastructure.

After the placement of the VNF instance (main and backup, if defined by the RL agent),
the new source will be the node chosen to place the main instance of VNF (Line 20). Thus, in
the next iteration of the loop in Line 4, the Cand-RL will select candidate nodes (through the
Cand algorithm) calculating their score from the new source (i.e., the chosen node to place
the main VNF instance) to the destination.

Figures 38(a), 38(b), and 38(c) illustrate how the successive selection of candidate nodes
works in the Cand-RL algorithm. We assume the infrastructure graph is composed of 40 nodes,
and the source and destination nodes are, respectively, Nodes 37 and 14.

Assuming 𝑘 = 4, Nodes 9, 7, 9, and 10 are candidate nodes to place the first VNF of an
SFC request, as shown in Figure 38(a). If the RL agent chooses Node 9 to place the main
instance (Figure 38(b)), Node 9 will act as the new source to select the candidate nodes for
the next VNF of SFC.

In the next iteration of the loop in Line 4 of Algorithm 3, the source node will be Node
9, and the candidate nodes will be selected based on the shortest path between Node 9 and
Node 14. As illustrated in Figure 38(c), Nodes 0, 1, 7, and 8 are the candidate nodes selected
to place the second VNF.

After processing all VNFs, the virtual link between the last VNFs and the destination must
be placed. Then, the shortest path is selected in Line 22, placed in the infrastructure in Line
23, and the algorithm returns true in Line 24, since the entire SFCs was allocated.

123

6.6 EVALUATION

The PPO algorithm is an evolution of the A2C algorithm; they are both actor-critic based
RL algorithms. This class of RL algorithms combines a value-based approach and a policy-
based approach (DU; DING, 2021). In actor-critic algorithms, two different functions (usually
neural networks) are created with different roles - the actor and the critic. The actor network
is responsible for optimising the policy model, 𝜋(𝑠, 𝑎), by defining an action at each time step
according to the current state. The critic network evaluates the quality of action to optimise
the value function 𝑄(𝑠, 𝑎). In this way, since the critic learns which states are better, the actor
uses this information to seek these states, avoiding bad states (HAN; LIANG, 2022). The PPO
algorithm improves the A2C by implementing the idea of exploring the policy region in the
optimisation problem during the agent training. It tries to make small updates using a clipped
surrogate objective function thereby stabilizing the training process. For more information
about the PPO algorithm, the reader can refer to (SCHULMAN et al., 2017).

The PPO algorithm has been proven to be very effective in dealing with different types
of challenging problems, while being relatively simple to implement and tune (SCHULMAN et

al., 2017; WANG; CAO; YANG, 2020), and also applied in recent works for the SFC placement
problem (NING et al., 2022) (LI; KORDI, 2023). Notwithstanding this, Wang et al. (WANG; HE;

TAN, 2020) note that it is less studied than other policy gradient methods. In this work, we
use the PPO algorithm to create the RL agent in the RL-Cand algorithm.

6.6.1 Simulation setup

In this work, we use a simulation approach to evaluate the performance of the Cand-RL
algorithm in an SFC placement task. We built a simulator using the Python language to
represent the main aspects about the physical infrastructure and the SFC requests.

We assume that the arrival of SFC requests follows a Poisson process defined by a constant
arrival rate, 𝜆. Each SFC placed in the physical infrastructure has a lifetime defined by an
exponential distribution with rate, 1/𝜇, where 𝜇 is the average SFC lifetime (LI et al., 2018).
These parameters, 𝜆 and 𝜇, are used to represent different types of customers, where each
one has its own demand for SFC placement on the physical infrastructure.

Based on the 𝜆 and 𝜇 parameters, the simulator generates a list of SFC requests, each one
with an associated arrival time and lifetime. Therefore, each SFC request has a time to be

124

processed by the Cand-RL algorithm and a time to be removed from the physical infrastructure
(if it is placed). As explained in Section 6.4.1, each SFC request is divided into VNF requests
that are processed sequentially by the Cand-RL algorithm. All VNF requests of an SFC request
are processed in the same simulation time.

Regarding the physical infrastructure, the nodes may fail and be repaired during their
operation. The failure and repair events are simulated through exponential distribution with
constant failure and repair rates, respectively (LIMA; NETO; MACIEL, 2020; TORQUATO et al.,
2019). For a given node in the physical infrastructure, the failure rate is defined by the inverse
of the MTTF, while the repair rate is the inverse of the MTTR. These parameters are defined in
the nodes of the physical infrastructure graph and can be modified in order to model different
scenarios in our simulator.

The VNFs instances created in the nodes also have MTTF and MTTR values associated
with them. Similar to the physical nodes, the failure and repair events of VNFs instances are
defined by exponential distributions.

Table 16 presents the simulation parameters about the physical infrastructure of our basic
scenario. It’s important to highlight that we considered these parameters for the experiments
in this thesis, but other parameters can be considered to simulate other scenarios, such as
network topology, number of node, nodes and links configuration, etc. We assume a physical
infrastructure graph generated using the NetworkX tool. The graph follows an Internet Au-
tonomous System (AS) network (ELMOKASHFI; KVALBEIN; DOVROLIS, 2010) and has 50 nodes
and 79 links, as illustrated in Figure 38.

Table 16 – Simulation parameters about the physical infrastructure.

Parameter Value

Number of physical nodes 50
Network type Internet AS network (ELMOKASHFI; KVALBEIN; DOVROLIS, 2010)
Number of CPUs of physical nodes 32 cores (GUO et al., 2019)
Memory size of physical node 64 GB (XIAO et al., 2019a)
Storage of physical node 300 GB (GUO et al., 2019)
Physical node MTTF 8760 h (ARAUJO et al., 2014)
Physical node MTTR 1.667h (ARAUJO et al., 2014)
Physical node energy consumption (CPU) 40 W (ALI et al., 2015)
Physical node energy consumption (memory) 30.17 W (ALI et al., 2015)
Physical node cost 1 (JIN; ZHU; ZHAO, 2019)
Link bandwidth 40 Gbps (ERAMO et al., 2017)

Source: the author (2023).

125

Figure 38 – AS graph with 50 nodes.

Source: the author (2023).

We assume the base number of CPU, memory, and storage as 32 cores (GUO et al., 2019),
64 GB (XIAO et al., 2019a), and 300 GB (GUO et al., 2019), respectively. Physical nodes have
MTTF and MTTR values of 8760 hours and 1.667 hours, respectively (ARAUJO et al., 2014).
These values are used as input for SPN models to calculate the overall SFC availability (see
Section 6.4.4). As shown in Equation 6.9, we assume the total node energy consumption as
the sum of CPU and memory energy consumption, and we assume these values as 40W and
30.17W, respectively (ALI et al., 2015). For simplicity, we also assume that when a physical
node is chosen to place a VNF, its cost will be 1 (JIN; ZHU; ZHAO, 2019). The link capacity
to place the virtual links from SFC requests is 40Gbps (ERAMO et al., 2017). It is important to
highlight that these parameters could be easily updated to model different scenarios.

We consider a list of customers sending SFC requests to be placed. The customers have
an arrival rate (𝜆) of 0.04 request/hours and the SFC average lifetime (𝜇) is 1000 hours (PAL-

HARES et al., 2014). To compose the SFC, we assume four different VNFs types as presented
by Tashtarian et al. (TASHTARIAN et al., 2019). The VNFs are related to Amazon EC2’s flavors,
and are illustrated in Table 17. Each VNF type has different requirements in terms of CPU,

126

memory, and storage. In addition, the different VNF types have relative prices according to
the computational requirements.

Table 17 – VNF types.

VNF type CPU (cores) Memory (GB) Price ($)

1 1 1 0.01
2 1 2 0.02
3 2 4 0.04
4 4 16 0.16

Source: the author (2023).

We also assume that different VNFs have different MTTF values. We assume that the
VNF of type 1 has an MTTF value of 2880 hours (ARAUJO et al., 2014). For the other types of
VNFs, we assume that as the price increases, the MTTF increases 5% based on the assumption
that the more expensive a VNF is, the more reliable it is. Therefore, the MTTF value of VNF
types 2, 3, and 4 are 3024 hours, 3175.2 hours, and 3333.96 hours, respectively. We also
assume that the virtual links of the SFC request requires 1Gpbs from the physical links of
infrastructure.

For each customer, we assume that the source and destination nodes of the SFC requested
are generated randomly from all nodes of the physical infrastructure graph using a uniform
distribution. The availability requirement of the customer is 0.9995%.

6.6.2 RL Agent Parametrization

We adjust the learning rate (𝛼) and the discount factor (𝛾) of the PPO algorithm, since
these parameters directly impact the learning when an agent is interacting with the environ-
ment. For the parametrization, we consider 50000 steps, which represents c. 650 SFC requests
during the training. We assume SFC placement as an episodic task, where one episode is
approximately 1000 hours. To evaluate the performance of an RL agent during the training,
we consider the total reward at the end of an episode. We carried out 10 rounds of training
to calculate the average reward at the end of each episode.

Figures 40(a)-40(i) show the parametrization results of the Cand-RL algorithm using the
PPO algorithm. We also plot a regression line regarding the average reward at the end of
each episode. The larger the slope of the line, the better the performance of the algorithm,

127

reflecting that it is learning to get good rewards faster. In general, the accumulated reward at
the end of each episode increases during the training, which means that after some episodes
the agent learned good strategies for SFC placement that met the customer requirements with
low energy consumption and operational cost. It is important to note that depending on the
parameter configuration, the reward growth may occur in different ways. The configuration
𝛼 = 0.00005 and 𝛾 = 0.9 presents a good performance (Figure 40(a)), since the reward grows
fast and achieves the highest reward value in comparison with other parameter configurations
(about 38). In addition, after Episode 60 the reward starts to grow faster, while in other
configurations it takes more episodes to start the reward growth. As we increase the learning
rate 𝛼 (Figures 40(b) and 40(c)), the rewards in the later episodes are lower, never reaching
more than 35.

As we increase the discount factor (𝛾) to 0.95 (Figure 40(d)), the reward behavior is similar
to 𝛾 = 0.90. However, by keeping 𝛾 = 0.95 and increasing the learning rate (Figures 40(e)
and 40(f)), the reward grows slowly and reaches values of about 20, a clear degradation in
the performance.

For 𝛾 = 0.99, the agent’s learning deteriorates. For 𝛼 = 0.00005 and 𝛼 = 0.00025, as
per Figures 40(g) and 40(h), respectively, the reward starts to grow only around Episode 100,
and does not exceed 20. Therefore, in our SFC placement problem, a high discount factor
value results in a degradation of agent’s learning. The only exception is when 𝛾 = 0.99 and
𝛼 = 0.0005, as shown in Figure 40(i). In this configuration, the reward in the later episodes
of training reaches around 30, but it starts to grow only after approximately 80 episodes,
substantially different from the best configuration (Figure 40(a)).

When evaluating the learning rate impact, 𝛼, one can note that it does not have a constant
impact on agent learning. For instance, evaluating when 𝛾 = 0.9, the increasing of 𝛼 from
0.00005 to 0.0005 (Figures 40(a), 40(b), and 40(c)) results in minor degradation of agent
learning, since the reward in the later episodes decreases. When 𝛾 = 0.95 and we increase
the learning rate (Figures 40(d), 40(e), and 40(f)) the reward in the later episodes of training
decreases, but not significantly. In contrast, for 𝛾 = 0.99 (Figures 40(g), 40(h), and 40(i)),
increasing the learning rate improves agent learning, since the reward in the later episodes
increases in comparison to 𝛼 = 0.00005 and 𝛼 = 0.0005. In sum, compared to the impact of
the discount factor, learning rate impact is not as constant and significant.

We define two different strategies to define the best configuration for the agent using
the PPO algorithm. The first strategy is based on the angular coefficient of linear regression,

128

Figure 39 – Parametrization results of Cand-RL algorithm using a PPO agent.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Source: the author (2023).

illustrated in Figure 40(a) - Figure 40(i). In this case, the best configuration presents the
highest angular coefficient, i.e., the agent got the highest reward values from this configurations
during training when compared to other configurations. The second strategy is based on the
variance of the average reward at the end of an episode. The best configuration is the one that
presents the lowest variance, i.e., there is a low oscillation in the reward during the training, a
stabilization of the training. Table 18 shows the results of angular coefficient and variance of
the PPO algorithm for the different parameter configurations.

The configuration 𝛾 = 0.9 and 𝛼 = 0.00005 presented the best results for the angular
coefficient strategy. As shown in Figure 40(a), this configuration also obtains the highest
reward during the training. For the variance, the configuration 𝛾 = 0.99 and 𝛼 = 0.00025

presented the best results. As shown in Figure 40(h), this configuration achieves a reward in
the last episode of approximately 15. While other configurations achieve higher reward values,
we use this configuration for benchmarking as it presents a stabilization of reward during the
training.

129

Table 18 – Angular coefficient and variance results of the PPO algorithm for different parameter configurations.

Parameters configuration Angular Coefficient Variance
𝛾: 0.9, 𝛼: 0.00005 0.3580 223.2028
𝛾: 0.9, 𝛼: 0.00025 0.2002 83.0839
𝛾: 0.9, 𝛼: 0.0005 0.2808 146.5101
𝛾: 0.95, 𝛼: 0.00005 0.3332 199.7468
𝛾: 0.95, 𝛼: 0.00025 0.1950 76.9777
𝛾: 0.95, 𝛼: 0.0005 0.1761 64.2130
𝛾: 0.99, 𝛼: 0.00005 0.2132 96.4584
𝛾: 0.99, 𝛼: 0.00025 0.1609 55.6205
𝛾: 0.99, 𝛼: 0.0005 0.2878 161.4473

Source: the author (2023).

6.6.3 Scenario Variation

After defining the best parameters for the PPO agent in the Cand-RL algorithm, we varied
the basic simulation scenario to assess performance. We also compare the Cand-RL algorithm
with two variations of greedy algorithms. As mentioned by Gupta et al. (GUPTA et al., 2017)
greedy algorithms are suitable for SFC placement, an NP-hard problem. The greedy algorithm
selects the candidate node with the most resources. The first greedy algorithm variation adds
a redundant VNF following a random distribution, which we label Greedy Random Redun-
dancy (RR). The second greedy algorithm variation always adds a redundant VNF, which we
label Greedy Always Redundancy (AR). We compare the acceptance rate of the two greedy
algorithms and the Cand-RL algorithm using PPO with the best parameter configuration for
the angular coefficient (AC) and the best parameter configuration for the variance (VA). We
varied the number of customers sending SFC requests for the system as per Figure 40.

When there are 45 customers sending SFC requests to the system, the PPO AC presents
the best acceptance rate with a median of 84.58%. The greedy RR presents the second-
best acceptance rate with a median of 65.85%, followed by the PPO VA with a median of
62.06%. The greedy AR algorithm presents the worst performance with the lowest median
acceptance rate with 45 customers, i.e., 51.79%. As illustrated in Figure 40(a), the Cand-RL
with PPO AC achieved the highest reward. Therefore, the PPO AC obtains the best results
when compared to the other algorithms. Since the greedy AR adds a redundant VNF, this
algorithm consumes the nodes resources faster, making it difficult to place new SFCs, explaining
the low acceptance rate. Evaluating the PPO VA and the greedy RR, these algorithms present

130

Figure 40 – Acceptance rate results for different numbers of customers.

Source: the author (2023).

a similar performance based on the median acceptance rate. As presented in Figure 40(h), the
PPO configuration that presents the best results for the variance obtains low reward values at
the end of the training, explaining the similar results to the greedy RR.

When we increase the number of customers to 50, the acceptance rate of all algorithms
decreases. This is expected because more SFC requests will require more resources from the
nodes in the infrastructure, which makes it difficult to find candidate nodes to place the
VNF. The PPO AC still presents the best performance of the algorithms evaluated with a
median acceptance rate of 76.26%; the median of other algorithms decreases considerably.
The greedy AR presents the second best median acceptance rate (43.66%) followed by the
PPO VA (41.35%) and greedy RR (35.40%). Even the greedy RR outperforms the PPO VA
although the difference is relatively small at 2.31%. Based on the median acceptance rate, the
Cand-RL algorithm using the PPO AC outperforms the two different greedy algorithms.

When we consider 55 customers sending SFC requests, the PPO AC performance de-
creases significantly, since the median acceptance rate only achieves 61.67%. However, PPO
AC still has a better performance than other algorithms. PPO VA presents the second best
performance, with a median acceptance rate of 40.72%, while the greedy algorithms present
the worst results. The median acceptance rate of greedy AR and greedy RR are, respectively,

131

33.33% and 30.12%.
As the number of customers increases, the superiority of the Cand-RL algorithm using PPO

increases in comparison to the two greedy algorithms. In addition, the PPO AC outperformed
the other algorithms significantly in terms of acceptance rate. For instance, assuming 55
customers, the PPO AC outperformed the PPO VA, the greedy AR, and the greedy RR with
a difference of 20.95%, 28.34%, and 31.55%, respectively. Therefore, the results suggest that
PPO AC is the best solution to deal with an increasing number of customers in the system,
with a superior performance than greedy solutions.

We also varied the availability requirement of the SFC requests using the basic simulation
scenario. Figure 41 shows the results.

Figure 41 – Acceptance rate results for different availability requirements.

Source: the author (2023).

When we define an availability requirement of 99.9%, the PPO AC, the PPO VA, and
the greedy RR obtains a 100% acceptance rate. This happens because it is a low availability
requirement, which requires few redundant VNFs. On the other hand, the greedy AR presents
a median acceptance rate of 44.74% since it adds a redundant VNF for all VNFs of the
SFC request, consuming the nodes resources quickly. Furthermore, the performance of greedy
algorithms are almost the same for the different availability requirements, since the redundancy
strategy is always the same, regardless of the level of redundancy required.

132

Figure 42 – Comparison about SFC aspects.

(a) (b)

(c)
Source: the author (2023).

When we increase the availability requirement to 99.95%, the algorithms (except the greedy
AR) are impacted. This is because a high availability requirement requires more complex
placement strategies and redundant VNFs that consume more resources. The PPO AC presents
the best median acceptance rate, 76.26%, followed by the greedy AR, 43.66%. The PPO VA
presents a median acceptance rate of 41.35%, and the greedy RR, which presents the worst
result, presents a median of acceptance rate of 35.40%.

When we assume an availability requirement of 99.99%, all algorithms obtain a median
acceptance rate below 40% with the exception of the greedy AR which achieves 42.86%. This
was because the algorithms were unable to create placement strategies that met a higher
availability requirement. Even adding redundancy in all VNFs (greedy AR), the acceptance
rate is low. This underlines the difficulty of achieving a good acceptance rate in this scenario
configuration. The PPO AC obtains a median acceptance rate of 27.93% followed by the PPO
VA (8.84%) and greedy RR (5.96%).

We also compare different aspects of the SFC placed by the algorithms assuming the basic

133

simulation scenario. We first calculate the average of all SFCs allocated during simulation,
then we calculate the average for 30 simulations. We also plot the standard deviation.

Figure 43(a) shows the average availability of the SFCs placed by the algorithms. It is im-
portant to highlight that the availability requirement of customers is 99.95% for the scenario
considered. The PPO VA achieves the lowest average availability, 99.9371%, which explains
the low acceptance rate illustrated in Figure 40 and 41. The greedy RR achieves an average
availability of 99.9527%, which is the closest to the customer availability requirement. How-
ever, as shown in Figure 40, the greedy RR achieves a median acceptance rate below to 40%,
which can be explained by the fact that many SFC requests still have an availability below
the customer requirement, as the standard deviation shows. The PPO AC presents an average
availability of 99.9581% with a small standard deviation. This result demonstrates the superi-
ority of PPO over other approaches evaluated. It has a high acceptance rate (Figure 40) and
competitive levels of availability. The greedy AR presents, as expected, the highest average
availability, since it places the SFC with redundancy in all VNFs. Therefore, the greedy AR
presents an average availability of 99.9996%. However, there is a trade-off between availability
and SFC placement cost and energy consumption, as illustrated in Figures 43(b) and 43(c).
The PPO VA, which presents the lowest average availability, also presents the lowest average
cost ($5.19) and the lowest average energy consumption (341.43W). The greedy RR presents
an average cost of $5.85 and an average energy consumption of 384.44W, while the PPO AC
presents the average cost and average energy consumption of $6.20 and 405.78W, respec-
tively. The greedy AR presents the highest cost and energy consumption: $7.49 and 490.48W,
respectively, since it places a fully redundant SFC.

The trade-off must be considered by the network operator during SFC placement. While
the PPO VA achieves low energy consumption and cost, the placed SFCs has a small average
availability. On the other hand, the greedy AR is always able to place SFCs with high avail-
ability, but with high cost and energy consumption. The PPO AC and the greedy RR are able
to allocate SFCs with a better balance between availability, cost, and energy consumption.
Notwithstanding this, the acceptance rate must also be considered. For example, PPO AC
presents a better acceptance rate than other algorithms evaluated in most of the scenarios
considered, while at the same time it is able to achieve relatively good average availability and
low cost and energy consumption. On the other hand, the greedy AR can achieve high levels
of availability, but with low acceptance rates.

134

6.7 CONCLUDING REMARKS

In this chapter, we present a solution for SFC placement on large-scale networks with a
focus on availability. We formulate the SFC placement problem as an MDP where the VNFs
are processed sequentially and candidate nodes are selected to place them. We propose the
Cand algorithm for selecting candidate nodes based on the computing and network require-
ments of the VNF, as well as the shortest path between the source and destination nodes
of the SFC. The main goal of Cand algorithm is to reduce the amount of information from
the physical infrastructure thereby reducing the input size of RL agent. We then combine the
Cand algorithm with a RL agent to create the Cand-RL algorithm for defining the placement
of SFC requests. The Cand-RL algorithm is based on an RL agent and, after training, is able
to define the SFC placement that meets the customer availability requirements while mini-
mizing cost and energy consumption. To create the RL agent, we used the PPO technique,
which is the state of the art in actor-critic based techniques, surpassing other RL techniques in
the literature. Simulation results show that the Cand-RL algorithm outperforms two different
greedy approaches in terms of acceptance rate, and also presents the best balance between
availability, energy consumption, and cost. In the next chapter, we present the prototype of
SPIDER developed in this thesis. We show how we implemented the SPIDER using Kuber-
netes, as well as the example of an SFC was implemented using containers. We also present
experiments to measure the placement time and the processing and communication delays of
the SFCs placed.

135

7 SPIDER PROOF OF CONCEPT

In this chapter, we present a proof of concept of SPIDER framework. The main goal is
to present how the SPIDER can be implemented in a real scenario and conduct experiments
to assess the SPIDER performance. We detail how we use Kubernetes mechanisms to imple-
ment the VNFs. Afterwards, we present experiments in order to assess the placement time of
SPIDER using a real SFC implemented using the Python language. We also carried out ex-
periments to assess the communication and processing delay of VNFs under different network
conditions (centralized and geographically distributed). The results obtained from this chapter
were published in (SANTOS et al., 2022).

7.1 CONTAINER-BASED SFCS USING KUBERNETES

Under Kubernetes, applications (for example, web front-ends, back-end applications, APIs,
databases, etc) are deployed as a group of containers, which is the smallest working unit
named pod1. A pod is a group of one or more containers where they share the same storage
and network resources, and runs over the same specification. For example, consider a web
application composed of a front-end, a back-end, and a database, as shown in Figure 44(a).
One can deploy each part of the application as one or more pods, where each pod consists of
one or more Linux containers. In order to define the launching conditions of the pods, such as
the number of replicas, we can define a deployment2. A deployment is responsible to define
declarative updates for Pods. On can describe the desired state for a pod in a deployment,
and the Deployment Controller changes the actual state to the desired state. For instance,
we can define in the deployment of front-end that two pods need to be created, and these
pods will consider the Docker image of the front-end. We can also define in which ports these
containers listen for requests.

During the application runtime, Kubernetes could destroy and recreate the pods in order
to meet the requirements of the deployment. However, the IP of these containers will be not
the same after a recreation. In this context, considering that the front-end needs to access
functions of the API implemented in the back-end, it is necessary to solve how the front-
end finds out and keeps track of which IP address of the back-end. In order to mitigate this
1 <https://kubernetes.io/docs/concepts/workloads/pods/>
2 <https://kubernetes.io/docs/concepts/workloads/controllers/deployment/>

https://kubernetes.io/docs/concepts/workloads/pods/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/

136

Figure 43 – Basic Kubernetes concepts.

(a) Simple web application (b) Service example in Kubernetes
Source: adapted from (SANTOS et al., 2020b).

problem, Kubernetes provides an abstract way to access the pods named service3. It defines
a logical set of pods and a policy by which to access them. A service exposes an application
running on Kubernetes (in a pod, specified by a deployment) as a network service. Therefore,
the user does not need to modify the application deployed in the Kubernetes to use a service
discovery mechanism. Through the service, Kubernetes gives to the pods their own IP addresses
and a DNS name, that allows them to be accessed. Usually, a label selector is defined for a
deployment, and it can be used to access the associated pods. Figure 44(b) illustrates how
the web application could be deployed as pods and exposed as different services. A front-end
can call the API (running on Pod 1 or 2) through the back-end service, and Kubernetes will
forward the request to the container of a pod.

Using the deployments to define how pods of an application will be launched and services
to expose the pods, we can create container-based SFCs using the environment controller. For
each VNF specified in JSON created by the Agent module, we create some files to launch the
SFC.
3 <https://kubernetes.io/docs/concepts/services-networking/service/>

https://kubernetes.io/docs/concepts/services-networking/service/

137

The first file contains the application code for the implementation of the VNF itself. The
implemented VNF examples were created using the Python language, but other programming
languages could be used. In order to facilitate the development of VNFs, we implemented an
auxiliary Python class that uses the Flask framework to provide the service to other VNFs.
Hence, to implement a new VNF, a developer needs to create a class that extends our auxiliary
Python class and implements an abstract method called process_data. This method receives
as a parameter a request object from the Flask framework, which contains the data sent
to the VNF to be processed. Therefore, the developer only needs to implement the data
processing method (e.g. data inspection, data compression, etc.), while the auxiliary class
handles receiving and forwarding the data from/to the next VNF.

The second file is a configuration (config) file that defines three information fields: the
name of the next VNF service, a field that shows if the VNF is the last one of the SFC,
and the port at which the VNF will listen for requests from other VNFs (as default we used
port 5000). The auxiliary Python class (that the developer uses to implement a VNF) reads
the information from the config file to setup the Kubernetes service to receive and send the
data. When the SFC is created, the SPIDER builds automatically the VNF configuration file,
defining which is the next VNF and the listening port (as default we used port 5000). Then,
the auxiliary class (that the developer uses to implement a VNF) can listen for requests from
other VNF and use the service mechanism of Kubernetes to access the next VNF of SFC.

The last file needed to create a VNFs is the Dockerfile that can be used to assemble a
Docker image. The commands for defining the operating system, installing dependencies and
starting the application that provides the VNF functionality are defined in the Dockerfile. A
common approach is to create Docker images based on the Docker hub. In this case, we do
not need to have a Dockerfile in our machine, since the Docker downloads the image from
the Internet. However, we are assuming that the images of VNFs will be created from the
Dockerfile and stored in the local Docker repository. For future implementations of SPIDER,
we can consider that the Docker images for the VNFs could be downloaded from the Docker
hub. All these files need to be located in the same path, which is defined in the VNF template,
as described in Table 8.

Based on these files, the Environment Controller module creates the image of VNF in
the local Docker repository and calls the Kubernetes API to create the deployment and the
service of each VNF. The deployment and services can be defined following two different data
modeling standards: YAML or JSON. We choose to use JSON since it is the main format

138

for exchanging information over the web (PEZOA et al., 2016), and we chose it to define the
default communication data formatting among the other SPIDER modules.

An example of JSON to define the VNF deployment in Kubernetes is showed below:

1

2 {

3 "apiVersion": "apps/v1",

4 "kind": "Deployment",

5 "metadata":{

6 "name": "firewall",

7 "labels":{

8 "app":"firewall"

9 }

10 },

11 "spec": {

12 "replicas" : 2,

13 "selector": {

14 "matchLabels" : {

15 "app":"firewall"

16 }

17 },

18 "template" : {

19 "metadata" : {

20 "labels" : {

21 "app":"firewall"

22 }

23 },

24 "spec":{

25 "containers":[

26 {

27 "name":"firewall",

28 "image":"firewall:latest",

29 "ports":[

139

30 {

31 "containerPort": 5000

32 }

33],

34 "imagePullPolicy": "Never",

35 "limits":{

36 "cpu": 1,

37 "memory": 100Mib,

38 "storage": 10Gib

39 }

40 }

41],

42 "nodeSelector": {

43 "nodetype": "node_name"

44 }

45 }

46 }

47 }

48 }

The example defines a VNF of a firewall. In addition to the information previously described,
the imagePullPolicy is defined as Never because Kubernetes will create the container from
the local repository. The limits field defines the amount of computing resources required by
the VNF, and defined in its template. Finally the field nodeSelector defines the label of the
physical node from the infrastructure where the VNF instance will be placed.

The JSON illustrated below is an example of service definition used to expose the firewall
deployment:

1

2 {

3 "apiVersion": "v1",

4 "kind": "Service",

5 "metadata":{

6 "name": "firewall -service"

140

7 },

8 "spec":{

9 "selector":{

10 "app": "firewall -service"

11 },

12 "ports":[{"protocol": "TCP","port": 5000,"targetPort"

: 5000}],

13 "type": "LoadBalancer"

14 }

15 }

One can note that we only need to specify the name of the service (firewall-service), the
protocol and ports where the service is listening for requests (TCP and 5000 respectively).
Kubernetes allows defining different of services types. We used the LoadBalancer type, where
Kubernetes tries to distribute network traffic across the pods equally, but other service types
could also be used.

Therefore, when the Agent module sends the SFC placement to the Environment Controller
module, the latter creates the Docker Image for each VNF and, based on the number of replicas
and resources required, it creates a deployment and exposes it as a service. To access the SFC,
it must send a request to the first VNF (using the service name, since it is exposed by service
in Kubernetes) and, after processing data, the VNFs are then able to communicate with each
other in order to provide the entire service.

In addition to the definition of VNFs, we need to define a mechanism to route the flow
among them. For instance, consider the infrastructure shown in Figure 45(a), where the VNF1
is placed on Machine 1 and the VNF2 is placed on the Machine 4. We need to steer traffic
between those machines, and decide how may one configure traffic to pass through the Machine
2 instead of Machine 3 for example.

By default, Kubernetes does not control traffic between the pods deployed in a cluster. To
deal with this limitation, we implement the idea of place proxies (named Spider Proxy). They
are placed on machines that compose the path between the machines on which the VNFs are
placed. Figure 45(b) illustrates an example where a proxy is placed on Machine 2, composing
the path between the VNF1 and VNF2. Therefore, instead the VNF1 sending data to the
VNF2 directly, it sends data to Spider Proxy, which forwards to the VNF2. Spider Proxy does

141

Figure 44 – Traffic flow configuration.

(a) (b)
Source: the author (2023).

not perform any kind of processing, it just receives the data and forwards it to the defined
destination. Please note that we can define many Spider Proxies in sequence, in order to define
a path composed of many machines. In order to create the proxies, we use the virtual links
defined by the Agent module. We deploy these proxies as a simple pod in Kubernetes, and
expose them using services in order to be accessible by other VNFs of SFC.

Figure 45 shows the sequence diagram that summarizes the whole process adopted to
make an SFC request to the SPIDER framework. The customer sends an SFC request to
the SPIDER API, which forwards it to the Data Collector (first module of SPIDER core).
The Data Collector gathers information about the infrastructure calling the Daemons that are
running in the nodes. Afterwards, the Data Collector forwards both infrastructure data and the
SFC request to the Agent module, which defines the SFC placement to ensure the availability
required by the customer. Then, the Environment controller invokes the Docker API to create
the docker image (if it does not exist in local repository) and next the Kubernetes API to
create the deployment and the services for all VNFs.

In the next section, we will present the implementation of a proof-of-concept of SPIDER,
as well as the results of its evaluation.

142

Figure 45 – SFC request sequence diagram.

Source: the author (2023).

7.2 PROTOTYPE EVALUATION

In this section, we present a proof-of-concept of the SPIDER framework. We carried out
experiments in order to assess the SPIDER performance and some aspects about the SFC
placed. For the SFC example considered in the experiments, we consider a face detection
service. Face detection systems can be applied in many contexts, such as gender classification,
facial feature extraction, marketing, among others (KUMAR; KAUR; KUMAR, 2019). We design
a simple system where a photograph must be sent to a server in order to check the number
of faces to be detected within the image. This system can be considered in the context of
smart home for access control or, more recently, in the context of COVID-19 pandemic, where
it is important to control the number of people present in proximity in order to ensure social
distancing.

Figure 46 – The face detection application represented as an SFC.

Source: the author (2023).

Figure 46 presents the application considered for the experiments. The first VNF is an
image compressor, which reduces the original image dimension and resolution in order to

143

decrease the network consumption. In scenarios where the camera captures information in a
high-resolution, the reduction of image dimension results in a smaller amount of image data,
which in turn lowers the amount of bandwidth required. To implement the image compressor
VNF, we use the OpenCV library4. This is a well-known and powerful library used for the
analysis of images or videos. Next, the VNF receives the image, compresses and forwards it to
the next VNF with a reduced dimension.

The second VNF is a firewall. We implemented a simple rule-based firewall, where the
developer can define a set of rules to define if the traffic will be forwarded or excluded. For the
sake of simplicity, we define three different rules to exclude traffic from the previous VNF: i) a
list of prohibited IP addresses, ii) a list of denied ports, and iii) a list of excluded IP prefixes.

The last VNF is the face detector application itself. We also use the OpenCV library to
implement the face detection application. The adopted algorithm to detect the faces in images
is the Haar feature-based cascade classifier (VIOLA; JONES, 2001). The OpenCV function
returns the boundary rectangles for the detected faces. Therefore, it is possible to know the
quantity and the exact location of the faces in the image. Since the Haar feature-based cascade
algorithm is a machine learning technique, we need to load the features generated by the
algorithm training. To implement our face detection VNF, we download the XML file with
the default features to detect the frontal face. In addition, OpenCV provides a set of different
features to detect different objects in images5, such as faces, eyes, full body, upper body, smile,
and others.

7.2.1 Scenario Setup

We create a network composed of several VMs using the VirtualBox hypervisor, since it
is easy to replicate the machine configuration and change the network conditions. The VMs
are running in a machine with an Intel(R) Core(TM) i7-7700 CPU processor with a 3.60GHz
clock, 16 gigabytes of DD4 memory, and an SSD SATA with 480 gigabytes of storage space.

Figure 47 illustrates the network topology considered composed of six VMs. We considered
that the machines are connected to a gateway which provides connectivity among them. Each
VM has one CPU core, two gigabytes of memory, and a storage of 30 gigabytes. Each machine
connects to the gateway through a link with 100 Mbps. We use the Ubuntu server 20.04 as
4 <https://opencv.org/>
5 <https://github.com/opencv/opencv/tree/master/data/haarcascades>

https://opencv.org/
https://github.com/opencv/opencv/tree/master/data/haarcascades

144

the operating system of all machines. Since SPIDER is based on Kubernetes and containers,
in each VM we installed Docker version 20.10.7 and the Kubernetes version 23.3. Following
the Kubernetes architecture, we need to define the main and worker nodes (SHAH; DUBARIA,
2019). The main node, which is responsible for the management of Kubernetes cluster (control
plane), is the machine named Sansa Stark, while the remaining nodes are the worker nodes.
As a requirement of Kubernetes, the node which runs the control plane must have at least
two CPU cores. As a result, the Sansa Stark machine has two CPU cores, while the other ones
have only one CPU core.

Figure 47 – Network topology considered for the experiments.

Source: the author (2023).

7.2.2 Placement Time

We evaluate the time to place an SFC in the infrastructure by measuring the time spent
since sending a request to the API until the creation of the containers for all VNFs in the
infrastructure. In order to assess the impact of SFC size on the placement time, we vary the
number of VNFs from one to three, as shown in Figure 48. In Scenario 1, we consider only
the compress image VNF, in the Scenario 2 we add the firewall VNF, and finally in Scenario
3, we also include the face detection VNF. We use images with width and height of 520x408
pixels, respectively. In our experiments, we reduce the original image to 224x224 pixels as part
of its compression within the first VNF.

For these experiments, we establish the source and destination nodes randomly following

145

Figure 48 – Scenarios considered in the experiments.

Source: the author (2023).

a uniform distribution. We defined an availability requirement of 99%. We also assume that
all machines have containers images of all VNFs created in the local repository. This speeds
up the downloading of their VNF packages and mitigates any Internet connectivity issues
from affecting performance results. For each scenario, we call the API for the placement and
calculate the runtime. Next, we invoke the API again to delete the SFC from the infrastructure,
deleting the deployments, services, and pods. We repeat the process 30 times in order to
calculate the average and standard deviation of SFC placement runtime. The runtime results
are presented in Figure 49.

As expected, when we add VNFs in the SFC request, the average runtime increases. This
happens because more containers need to be placed, leading to the creation of more image
containers as well as having more containers launched. For Scenario 1, where only one VNF
is considered, the average runtime is 0.3379 seconds. In scenario 2, with the addition of a
second VNF, the average runtime increased to 0.6201 seconds, corresponding to an increase
of 83.52% in comparison with scenario 1. In Scenario 3, with three VNFs, the achieved average
runtime is 1.3877 seconds, showing a 123.79% increase when compared with Scenario 2, and
a 310.68% increase when compared with Scenario 1.

One can also note that as we increase the number of VNFs in the scenario, the standard
deviation increases. This happens because some containers may take longer to start than
others, due to other operations that may be taking place at the time of allocation by the

146

Figure 49 – Placement runtime results.

Source: the author (2023).

operating system. Hence, when more containers need to be created, some can be created
faster than others, which increases placement time variability. For the scenarios 1, 2, and 3 the
standard deviation values of placement runtime are 0.1618, 0.2007, and 0.5673, respectively.

7.2.3 VNF processing Runtime

We also evaluate the processing runtime of the VNFs implemented in our prototype. The
goal is to evaluate the performance of SFCs allocated by SPIDER using Kubernetes. Figure
50 shows the results. The VNFs that handles image processing presents a high runtime, i.e.,
the compress image and face detection functions. The compress image presents the highest
runtime median, 0.5161 seconds, since this VNF processes the image in the original resolution.
The face detection function processes the image in the reduced resolution, which results in a
lower median of 0.0913 seconds delay.

The firewall function presents the lowest processing runtime, with a median of 0.0028
seconds. The firewall implementation is very simple, we only retrieve the IP and port from
the data that arrives in VNF and check for the presence of a list of prohibitive IPs and port
numbers. This justifies a lower processing runtime obtained when compared with others VNFs.

It is also important to highlight that the functions that deal with images present greater
variability of the processing runtime. The compress image function has a standard deviation

147

Figure 50 – VNF processing runtime results.

Source: the author (2023).

of 0.0167, while the face detection function has a standard deviation of 0.0101. The firewall
function has the smallest standard deviation among all VNFs: 0.0010.

7.2.4 Communication SFC Delay

We also evaluate the communication delay of the SFC for two different scenarios. In
Scenario 1, all machines are in a local network, which means that the connection delay between
the servers is too small. In Scenario 2, we use the Netem tool6 to emulate a distributed network.
Based on Figure 47, the different groups of servers are located in different cities, as illustrated
in Table 19. The different delays are based on (SANTOS et al., 2018) and we emulate the
delay on each server’s link using the Netem tool. For these experiments, we define as source
and destination nodes the servers Tyrion Lannister and Ned Stark, respectively. We selected
these machines because they fall in the group of nodes with the highest delays. We consider
the complete SFC illustrated in Figure 46 composed of the three VNFs, i.e., compress image,
firewall, and the face detection application.
6 <https://wiki.linuxfoundation.org/networking/netem>

https://wiki.linuxfoundation.org/networking/netem

148

Table 19 – Network configuration of servers in Scenario 2.

Servers Location Delay (in ms)
Daenerys Targaryen São Paulo (Brazil) 179
Aerys Targaryen
Ned Stark London (England) 427
Sansa Stark
Tyrion Lannister Tokyo (Japan) 567
Cersei Lannister

Source: the author (2023).

Table 20 shows the results for the Scenarios 1 and 2. In Scenario 1, we can see that the
communication SFC delay remains very small, below one second. The median of communi-
cation SFC delay is 0.0455 second, while the minimum and maximum values are 0.0359 and
0.0617 seconds, respectively. It is important to highlight that the standard deviation of com-
munication SFC delay is also very small: 0.0073, which means that all SFCs allocated by the
framework during the experiment had a very low delay.

Table 20 – Communication SFC delay results (in seconds).

Scenario Min Q1 Median Q3 Max Standard deviation

1 0.035918 0.040332 0.045478 0.052216 0.061684 0.007283
2 2.651789 2.681213 2.689708 2.705447 2.743413 0.019979

Source: the author (2023).

On the other hand, the communication SFC delay increased considerably in the distributed
scenario. The median of communication SFC delay of Scenario 2 increases to 2.6897 seconds.
This surge in the communication SFC delay can be explained by two main factors. The first
one is due to having a higher delay in the links that connect the servers in the network.
As a result, when a VNF sends the data to another one, it will take more time to arrive at
the destination VNF. The second reason is due to the communication overhead between the
network machines suffered to gather information about the VNFs. As mentioned in Subsection
7.1, after processing data, a VNF needs to forward it to the next VNF, and we use the Service
resource provided by the Kubernetes to implement this feature. However, a VNF needs to
discover the Service IP of the next VNF in order to forward data, and this discovery is achieved
by communicating with the main Kubernetes node. Therefore, this new request to the main
node increases the communication delay of SFC, which justifies the delay of approximately

149

two seconds, even though the longest link delay is just over 500ms.
Similar to the Scenario 1, Scenario 2 presents a lower variability in the communication SFC

delay. The minimum and maximum delays are 2.6518 and 2.7434 seconds, respectively. The
standard deviation is 0.0110, which shows that the framework is able to allocate SFCs with
low delay variability.

7.2.5 Overall SFC delay

Table 21 shows the results of overall SFC delay, which is the sum of communication delay
and the processing runtime of VNFs for the Scenarios 1 and 2. We also calculate the percentage
of communication delay and VNFs processing delay from the overall SFC delay, in order to
assess their impact.

Table 21 – Overall SFC delay results.

Scenario Overall SFC delay (in seconds) Impact of communication delay (in %) Impact of VNFs processing delay (in %)

1 0.655255 7.062167 92.937833
2 3.300723 81.550097 18.449902

Source: the author (2023).

For the Scenario 1, the overall SFC delay is less than one second, or more exactly 0.6553
seconds. However, 92.94% of the delay in this scenario is due to the VNFs processing delay,
while the communication delay represents only 7.06%. This behaviour is expected since the
communication delay is very small in this scenario, due to the fact that the machines are
located in the same local network, as explained in Subsection 7.2.4. On the other hand, in
Scenario 2, we experience a different behaviour. The overall SFC delay is 3.3007 seconds, and
the communication delay is responsible for as much as 81.55% of the overall delay, while the
VNFs processing delay represents only 18.45% of the overall delay. Therefore, depending on
network scenario, i.e., whether or not we have a distributed network, the communication delay
may cause an expressive impact on the overall SFC delay. Nonetheless, for the scenario where
the delay between the links is small, the VNFs processing delay can represent the biggest share
of the total delay of the SFC.

150

7.3 CONCLUDING REMARKS

In this chapter, we implemented a proof-of-concept of SPIDER in order to conduct ex-
periments considering a scenario where the SFC is a face detection application. Our results
showed that SPIDER is able to place SFCs within around one second, and that this time is
impacted by the number of VNFs that compose the requested SFC. We also evaluate the
VNFs processing delay, communication delay, and overall SFC delay in a local network and
in an emulated geographical distributed network. Our results showed that the communication
and VNFs processing delays have different impact on the overall SFC delay depending on the
network types (geographically distributed or centralized).

151

8 GENERAL CONSIDERATIONS

The virtualisation paradigm makes possible the sharing of computational resources, al-
lowing to allocate different VMs at the same commodity hardware. This paradigm improves
the hardware utilisation, flexibility management, can reduce the energy consumption, and in-
creases the scalability (SAHOO; MOHAPATRA; LATH, 2010). Since the network managers suffer
similar issues with network management, such as deploying service functions at proprietary ex-
pensive middle-boxes (MIRJALILY; ZHIQUAN, 2018), the NFV paradigm emerges as a solution,
bringing virtualisation for the network environment. NFV and SDN allow to allocate SFCs
in commercial-off-the-shelf devices, improving the network performance, security, as well as
reducing the CAPEX and OPEX (PEI et al., 2018).

Besides all benefits of NFV paradigm, it is not without challenges. Considering distributed
scenarios, where may there exists a high variety of hardware and software, the SFC placement
is a challenge (MECHTRI et al., 2017). The SFC availability is an aspect that deserves attention
by the network manager with the purpose to guarantee the downtime avoid and failure recovery
(SOUALAH et al., 2017).

Against this backdrop, this thesis presents SPIDER, which is a framework for SFC place-
ment in distributed scenarios with focus on optimise the availability. The SPIDER operation
is based on infrastructure context information and ML algorithms in order to make the SFC
placement with minimum human intervention as possible. SPIDER collects and stores context
information from the infrastructure in order to choose the best solution of placement for an
SFC request. The automation is based on DL models and RL agents that are used to map the
VNFs and virtual links into the physical nodes and links of the infrastructure.

We presented the SPIDER architecture and its modules. We show the data modules used by
SPIDER to store the context information about the physical infrastructure. Then, we present
the SPIDER core, which contains the main modules of the framework. We describe how
SPIDER can collect information about the nodes and use it to create the SFC placement in
order to meet the customer requirements (specially the SFC availability).

The SFC placement is done by the agent module, the most important module of SPIDER.
It is based on ML algorithms. We proposed DL models combined with clustering algorithms
for the traffic prediction, which is used to predict traffic from the SFCs already placed in the
infrastructure. Our results showed that the DL models outperformed traditional ML algorithms,

152

obtaining lower prediction error. Using the context information and the traffic prediction,
the agent module uses RL to define the best SFC placement. We proposed the Cand-RL
algorithm, that selects candidate nodes based on the computing requirements of the VNFs
and the shortest path between the source and destination nodes of the SFC. Based on the
candidate nodes, Cand-RL algorithm uses RL to define the best node and the redundancy
strategy. Our studies showed that the Cand-RL (empowered by a PPO agent) outperformed
greedy solutions in terms of acceptance rate, while provides best balance between availability,
energy consumption, and cost.

We also presented a proof-of-concept of SPIDER using the Kubernetes. We showed how to
use Kubernetes mechanisms to deploy the VNFs as containers and forward the traffic among
them. We carried out experiments to evaluate the placement time of SPIDER considering a
real network, composed of virtualized nodes and a real SFC implemented using the Python
language. In addition, in order to demonstrate how the SFC allocated by the SPIDER using
Kubernetes are functional, we evaluated the runtime and the communication delay considering
a local network and a distributed network.

Following, we show how we answer the research questions considered in this thesis that
are presented in Chapter 1:

• How to allocate SFCs in distributed scenarios efficiently? The answer of this
question is presented in Chapter 3, where we present the main frameworks found in
the literature for SFC placement. The related works were the result of a systematic
review published in (SANTOS et al., 2022). We discussed briefly the frameworks and the
algorithms that they used for the SFC placement. Also, we compared the solutions with
the SPIDER, and how our proposal differs from the others.

• How can contextual information about the infrastructure be organised and

stored to enable quick consultation and updating? In Chapter 4, specifically in
Section 4.3.1, we present the data models and repositories that we used to represent
the infrastructure (nodes and links), VNF, and SFC information. We show how the
information are modelled in the SPIDER, describing each of the fields and data types.

• How can computational algorithms be used to provide intelligent placement

strategies, with a focus on SFC availability? In Chapters 5 and 6 we present the ML
algorithms for traffic prediction and SFC placement, respectively. These algorithms are

153

used to implement the Agent module of SPIDER (see Figure 14). In Chapter 5, we carried
out experiments comparing two different DL techniques for traffic prediction, LSTM and
GRU. The goal is to evaluate the technique that provides the lowest error prediction.
In Chapter 6, we present the Cand-RL algorithm, which uses an agent implemented
with the PPO algorithm for the SFC placement. The Cand-RL algorithm considers the
availability requirement as well as the placement cost and energy consumption during
the SFC placement decision.

• How effective can an SFC availability-focused solution be? In order to validate
the different modules of SPIDER, we carried out several experiments considering real
data, simulated scenario and real scenarios as shown in Chapters 5, 6, and 7.

8.1 LIMITATIONS

Although we have conducted studies to show that SPIDER can be implemented in real
networks, and the proposed modules have results that surpass traditional algorithms in the
literature, it has some limitations.

The first limitation is about the traffic prediction module. We use a specific data set on
mobile networks, which has particular characteristics and can differ from traffic from other types
of networks. Thus, depending on the type of SFC that will be allocated to the infrastructure
and the respective traffic it will receive, the models may need to be retrained. However, this
update can be done on a rolling basis in the model, as the traffic prediction module is exposed
an API to the SPIDER core. Another limitation about the prediction module is that we assume
that historical information about the traffic of each placed SFC is stored in the database and
accessible through the repository.

Like the prediction module, the placement planner module, which is based on RL, needs
to be retrained when network conditions change dramatically. This can happen in cases where
new nodes are added to the network, and they have very different resources from the previous
ones. However, like the traffic prediction models, the RL agent training can be done offline
and replaced only by making the newly trained agent available through the placement planner
module API.

Another limitation is about the SPIDER prototyping using the Kubernetes tool. Although
Kubernetes is currently the most used tool for orchestrating containers, by default it is very

154

limited in handling network traffic. For the implementation of SFCs, we needed mechanisms for
handling and discovering containers (in order to chain VNFs) and also mechanisms to direct
traffic between nodes and physical links in the infrastructure. Although Kubernetes provides
mechanisms for handling and discovering containers, it does not natively provide tools for
directing traffic. For that, we had to implement the proxy which is a simple network function
for directing the traffic.

8.2 SCIENTIFIC CONTRIBUTIONS

Table 22 presents the scientific papers produced in scope of this thesis, including papers
published and submitted.

8.3 FUTURE WORKS

Many future works can be considered to improve the contribution of this thesis. We
plan to integrate SPIDER with existing open source monitoring tools such as Zabbix1 and
Prometheus2. These tools allow the mapping and monitoring of the entire infrastructure, col-
lecting and providing data about the devices. The purpose of such integration is due to the
popularity of such tools, which would facilitate the implementation of SPIDER in different
environments without major changes in the software solutions currently used by network man-
agers. In addition, while we integrated SPIDER with Kubernetes in our proof of concept, we
plan to integrate it with other management tools. Open Source MANO3 and Tacker4 are tools
that are based on traditional virtual machines to allocate VNFs, which can be considered in
future SPIDER implementations. Another important module to be developed in SPIDER is the
one that monitors the traffic of each SFC to store the history in each database. As mentioned
earlier, historical traffic information is important for the prediction module.

Taking into account the traffic prediction models, used in the Traffic Prediction module
of SPIDER, we plan to compare additional machine learning and deep learning architectures
including ensemble approaches and augmenting the model with longer-term historical trend
data. Furthermore, we will extend the dataset with more heterogeneous data sources including
1 <https://www.zabbix.com/>
2 <https://prometheus.io/>
3 <https://osm.etsi.org/>
4 <https://wiki.openstack.org/wiki/Tacker>

https://www.zabbix.com/
https://prometheus.io/
https://osm.etsi.org/
https://wiki.openstack.org/wiki/Tacker

155

SMS and voice call log data, amongst others, as well as other areas, e.g. Trentino, available
in the Telecom Italia dataset. Improved mobile network prediction can be applied to a wide
range of network planning and optimization use cases to optimise utilization, reduce cost and
meet QoS. In future works, we will explore the efficacy of these models in a variety of use cases
particularly where the faster training times of GRUs may provide advantages over LSTM, such
as multi-step prediction and faster optimization time scales.

In order to improve the Placement Planner module of SPIDER, we plan to use different
machine learning algorithms, including other deep model-free RL algorithms, in the agent mod-
ule and compare these with the Cand-RL. We can also increase the system model complexity
to consider more requirements about the flow entries. In this paper, we consider only the
bandwidth requirements, but we can also define delay and cost requirements, which demand
a different solution to select the candidate nodes to place the VNFs, considering only physical
links that meet all requirements.

We also plan to extend the SPIDER to address multi-domain scenarios. Even we consider
the SPIDER is able to deal with distributed infrastructure, we assume that all devices are
managed by the same manager. However, many use cases consider that many networks are
managed by different managers, such as Industrial IoT and autonomous vehicles (TOUMI et

al., 2021). In this way, we plan to consider the challenges of these scenarios, such as forward
traffic across different networks and security issues.

156

Table 22 – Scientific papers produced related to this thesis.

Reference Type Status Qualis

1
Santos, G. L., Bezerra, D., Rocha, E., Ferreira, L., Gonçalves, G., Moreira, A.,
... and Endo, P. T. (2020, October). Analyzing the Impact of Micro Data Centers
Failures in Cellular Networks: a Road Race Study. In 2020 IEEE International
Conference on Systems, Man, and Cybernetics (SMC) (pp. 3096-3102). IEEE.

Conference Published A3

2
Santos, G. L., Kelner, J., Sadok, D., and Endo, P. T. (2020, November). Using
Reinforcement Learning to Allocate and Manage SFC in Cellular Networks. In 2020
16th International Conference on Network and Service Management (CNSM) (pp.
1-5). IEEE.

Conference Published A3

3

Santos, G. L., Endo, P. T., Lynn, T., Sadok, D.,
Kelner, J. (2021, September). Automating the service function chain availability
assessment. In 2021 IEEE Symposium on Computers and Communications (ISCC)
(pp. 1-7). IEEE.

Conference Published A3

4 Santos, G. L., Endo, P. T., Sadok, D., and Kelner, J. (2020). When 5G meets
deep learning: a systematic review. Algorithms, 13(9), 208. Journal Published A4

5
Bezerra, D. de F., Santos, G. L., Gonçalves, G., Moreira, A.,da Silva L. G. F,
Rocha E. S., Marquezini, M. V., Kelner, J., Sadok, D., Mehta A., Wildeman, M.,
and Endo, P. T. (2021). Optimizing NFV placement for distributing micro-data
centers in cellular networks. Journal of Supercomputing.

Journal Published A2

6

Santos, G. L., Lynn, T., Kelner, J.,
Endo, P. T. (2021). Availability-aware and energy-aware dynamic SFC placement
using reinforcement learning. The Journal of Supercomputing, 77(11), 12711-
12740.

Journal Published A2

7
Santos, G. L., Rosati, P., Lynn, T., Kelner, J., Sadok, D., and Endo, P. T.
(2022). Predicting Short-term Mobile Internet Traffic from Internet Activity using
Recurrent Neural Networks. International Journal of Network Management.

Journal Published A4

8
Santos, G. L., Bezerra, D. de F., Rocha. E., da Silva L. G. F, Moreira, A.,
Gonçalves, G., Marquezini, M. V., Mehta A., Kelner, J., Sadok, D., and Endo, P.
T. (2022). Service Function Chain placement in distributed scenarios: a systematic
review. Journal of Network and Systems Management.

Journal Published A3

9

Santos, G. L., Endo, P. T., Lynn, T., Sadok, D.,
Kelner, J. (2022). A reinforcement learning-based approach for availability-aware
service function chain placement in large-scale networks. Future Generation Com-
puter Systems.

Journal Published A1

10
Santos, G. L., Endo, P. T., Sadok, D.,
Kelner, J. (2022). SPIDER: A Framework for SFC Placement in Distributed Sce-
narios with Focus on Availability. Journal of Software Practice and Experience.

Journal Published A3

Source: the author (2023).

157

REFERENCES

ABDULJABBAR, R. L.; DIA, H.; TSAI, P.-W. Development and evaluation of bidirectional
lstm freeway traffic forecasting models using simulation data. Scientific reports, Springer,
v. 11, n. 1, p. 1–16, 2021.

ABOWD, G. D.; DEY, A. K.; BROWN, P. J.; DAVIES, N.; SMITH, M.; STEGGLES,
P. Towards a better understanding of context and context-awareness. In: SPRINGER.
International symposium on handheld and ubiquitous computing. [S.l.], 1999. p. 304–307.

ABU-LEBDEH, M.; NABOULSI, D.; GLITHO, R.; TCHOUATI, C. W. On the placement of
vnf managers in large-scale and distributed nfv systems. IEEE Transactions on Network and
Service Management, IEEE, v. 14, n. 4, p. 875–889, 2017.

ALAMDARI, A. B.; SHARIFI, M. Solving a joint availability-redundancy optimization model
with multistate components and metaheuristic approach. International Journal of Industrial
Mathematics, v. 12, n. 1, p. 59–70, 2020.

ALAMEDDINE, H. A.; ASSI, C.; TUSHAR, M. H. K.; YU, J. Y. Low-latency service
schedule orchestration in nfv-based networks. In: IEEE. 2019 IEEE Conference on Network
Softwarization (NetSoft). [S.l.], 2019. p. 378–386.

ALI, H. M. M.; LAWEY, A. Q.; EL-GORASHI, T. E.; ELMIRGHANI, J. M. Energy efficient
disaggregated servers for future data centers. In: IEEE. 2015 20th European Conference on
Networks and Optical Communications-(NOC). [S.l.], 2015. p. 1–6.

ALMURSHED, O.; RANA, O.; CHARD, K. Greedy nominator heuristic: Virtual function
placement on fog resources. Concurrency and Computation: Practice and Experience, Wiley
Online Library, v. 34, n. 6, p. e6765, 2022.

AMIN, F.; CHOI, G. S. Hotspots analysis using cyber-physical-social system for a smart city.
IEEE Access, IEEE, v. 8, p. 122197–122209, 2020.

ANDRADE, E.; NOGUEIRA, B.; MATOS, R.; CALLOU, G.; MACIEL, P. Availability
modeling and analysis of a disaster-recovery-as-a-service solution. Computing, Springer, v. 99,
n. 10, p. 929–954, 2017.

ANSARI, M.; ALSAMHI, S.; QIAO, Y.; YE, Y.; LEE, B. Security of distributed intelligence in
edge computing: Threats and countermeasures. In: LYNN JOHN MOONEY, P. E. T.; LEE,
B. (Ed.). The Cloud-to-Thing Continuum - Opportunities and Challenges in Cloud, Fog and
Edge Computing. Cham, Switzerland: Palgrave Macmillan, 2020. chap. 6.

ARAÚJO, I. M.; NATALINO, C.; CHEN, H.; ANDRADE, M. D.; CARDOSO, D. L.; MONTI,
P. Availability-guaranteed service function chain provisioning with optional shared backups.
In: IEEE. 2020 16th International Conference on the Design of Reliable Communication
Networks DRCN 2020. [S.l.], 2020. p. 1–6.

ARAUJO, J.; MACIEL, P.; ANDRADE, E.; CALLOU, G.; ALVES, V.; CUNHA, P. Decision
making in cloud environments: an approach based on multiple-criteria decision analysis and
stochastic models. Journal of Cloud Computing, Springer, v. 7, n. 1, p. 7, 2018.

158

ARAUJO, J.; MACIEL, P.; TORQUATO, M.; CALLOU, G.; ANDRADE, E. Availability
evaluation of digital library cloud services. In: IEEE. Dependable Systems and Networks
(DSN), 2014 44th Annual IEEE/IFIP International Conference on. [S.l.], 2014. p. 666–671.

ARORA, P.; VARSHNEY, S. et al. Analysis of k-means and k-medoids algorithm for big data.
Procedia Computer Science, Elsevier, v. 78, p. 507–512, 2016.

ARULKUMARAN, K.; DEISENROTH, M. P.; BRUNDAGE, M.; BHARATH, A. A. A brief
survey of deep reinforcement learning. arXiv preprint arXiv:1708.05866, 2017.

ASLANPOUR, M. S.; GHOBAEI-ARANI, M.; TOOSI, A. N. Auto-scaling web applications
in clouds: A cost-aware approach. Journal of Network and Computer Applications, Elsevier,
v. 95, p. 26–41, 2017.

ATTAR, A.; RAISSI, S.; KHALILI-DAMGHANI, K. A simulation-based optimization approach
for free distributed repairable multi-state availability-redundancy allocation problems.
Reliability Engineering & System Safety, Elsevier, v. 157, p. 177–191, 2017.

AVIZIENIS, A.; LAPRIE, J.-C.; RANDELL, B.; LANDWEHR, C. Basic concepts and
taxonomy of dependable and secure computing. IEEE transactions on dependable and secure
computing, IEEE, v. 1, n. 1, p. 11–33, 2004.

AZARI, A.; PAPAPETROU, P.; DENIC, S.; PETERS, G. Cellular traffic prediction and
classification: A comparative evaluation of lstm and arima. In: SPRINGER. Discovery Science:
22nd International Conference, DS 2019, Split, Croatia, October 28–30, 2019, Proceedings
22. [S.l.], 2019. p. 129–144.

BARLACCHI, G.; NADAI, M. D.; LARCHER, R.; CASELLA, A.; CHITIC, C.; TORRISI, G.;
ANTONELLI, F.; VESPIGNANI, A.; PENTLAND, A.; LEPRI, B. A multi-source dataset of
urban life in the city of milan and the province of trentino. Scientific data, Nature Publishing
Group, v. 2, p. 150055, 2015.

BAUSE, F.; KRITZINGER, P. S. Stochastic petri nets. [S.l.]: Citeseer, 2002.

BHAMARE, D.; ERBAD, A.; JAIN, R.; ZOLANVARI, M.; SAMAKA, M. Efficient
virtual network function placement strategies for cloud radio access networks. Computer
Communications, Elsevier, v. 127, p. 50–60, 2018.

BHAMARE, D.; JAIN, R.; SAMAKA, M.; ERBAD, A. A survey on service function chaining.
Journal of Network and Computer Applications, Elsevier, v. 75, p. 138–155, 2016.

BHAMARE, D.; SAMAKA, M.; ERBAD, A.; JAIN, R.; GUPTA, L.; CHAN, H. A. Optimal
virtual network function placement in multi-cloud service function chaining architecture.
Computer Communications, Elsevier, v. 102, p. 1–16, 2017.

BINZ, T.; BREITENBÜCHER, U.; KOPP, O.; LEYMANN, F. Tosca: portable automated
deployment and management of cloud applications. In: Advanced Web Services. [S.l.]:
Springer, 2014. p. 527–549.

BOLCH, G.; GREINER, S.; MEER, H. D.; TRIVEDI, K. S. Queueing networks and Markov
chains: modeling and performance evaluation with computer science applications. [S.l.]: John
Wiley & Sons, 2006.

159

BOUBENDIR, A.; BERTIN, E.; DIAZ, G.; SIMONI, N. Flexible and dynamic network-as-a-
service for next generation internet. Network as a Service for Next Generation Internet, IET,
v. 73, p. 51, 2017.

BOUTABA, R.; SALAHUDDIN, M. A.; LIMAM, N.; AYOUBI, S.; SHAHRIAR, N.;
ESTRADA-SOLANO, F.; CAICEDO, O. M. A comprehensive survey on machine learning for
networking: evolution, applications and research opportunities. Journal of Internet Services
and Applications, Springer, v. 9, n. 1, p. 16, 2018.

CAI, J.; HUANG, Z.; LUO, J.; LIU, Y.; ZHAO, H.; LIAO, L. Composing and deploying
parallelized service function chains. Journal of Network and Computer Applications, Elsevier,
p. 102637, 2020.

CAO, J.; LI, Z.; LI, J. Financial time series forecasting model based on ceemdan and lstm.
Physica A: Statistical mechanics and its applications, Elsevier, v. 519, p. 127–139, 2019.

CAO, S.; LIU, W. Lstm network based traffic flow prediction for cellular networks. In:
SPRINGER. International Conference on Simulation Tools and Techniques. [S.l.], 2019. p.
643–653.

CARDOSO, J.; BARROS, A.; MAY, N.; KYLAU, U. Towards a unified service description
language for the internet of services: Requirements and first developments. In: IEEE. 2010
IEEE International Conference on Services Computing. [S.l.], 2010. p. 602–609.

CARPIO, F.; BZIUK, W.; JUKAN, A. Replication of virtual network functions: Optimizing link
utilization and resource costs. In: IEEE. 2017 40th International Convention on Information
and Communication Technology, Electronics and Microelectronics (MIPRO). [S.l.], 2017. p.
521–526.

CAUX, M. de; BERNARDINI, F.; VITERBO, J. Short-term forecasting in bitcoin time series
using lstm and gru rnns. In: SBC. Anais do VIII Symposium on Knowledge Discovery, Mining
and Learning. [S.l.], 2020. p. 97–104.

CHAI, H.; ZHANG, J.; WANG, Z.; SHI, J.; HUANG, T. A parallel placement approach
for service function chain using deep reinforcement learning. In: IEEE. 2019 IEEE 5th
International Conference on Computer and Communications (ICCC). [S.l.], 2019. p.
2123–2128.

CHAI, T.; DRAXLER, R. R. Root mean square error (rmse) or mean absolute error
(mae)?–arguments against avoiding rmse in the literature. Geoscientific model development,
Copernicus GmbH, v. 7, n. 3, p. 1247–1250, 2014.

CHEN, H.; WANG, X.; ZHAO, Y.; SONG, T.; WANG, Y.; XU, S.; LI, L. Mosc: A method to
assign the outsourcing of service function chain across multiple clouds. Computer Networks,
Elsevier, v. 133, p. 166–182, 2018.

CHEN, J.; CHENG, X.; CHEN, J.; ZHANG, H. A lightweight sfc embedding framework in
sdn/nfv-enabled wireless network based on reinforcement learning. IEEE Systems Journal,
IEEE, 2021.

CHEN, L.; HA, W. Reliability prediction and qos selection for web service composition.
International Journal of Computational Science and Engineering, Inderscience Publishers
(IEL), v. 16, n. 2, p. 202–211, 2018.

160

CHEN, L.; YANG, D.; ZHANG, D.; WANG, C.; LI, J. et al. Deep mobile traffic forecast
and complementary base station clustering for c-ran optimization. Journal of Network and
Computer Applications, Elsevier, v. 121, p. 59–69, 2018.

CHEN, X.; LI, Z.; ZHANG, Y.; LONG, R.; YU, H.; DU, X.; GUIZANI, M. Reinforcement
learning–based qos/qoe-aware service function chaining in software-driven 5g slices.
Transactions on Emerging Telecommunications Technologies, Wiley Online Library, v. 29,
n. 11, p. e3477, 2018.

CHEN, Y.-T.; LIAO, W. Mobility-aware service function chaining in 5g wireless networks
with mobile edge computing. In: IEEE. ICC 2019-2019 IEEE International Conference on
Communications (ICC). [S.l.], 2019. p. 1–6.

CHNITI, G.; BAKIR, H.; ZAHER, H. E-commerce time series forecasting using lstm neural
network and support vector regression. In: Proceedings of the international conference on big
data and Internet of Thing. [S.l.: s.n.], 2017. p. 80–84.

CHUNG, J.; GULCEHRE, C.; CHO, K.; BENGIO, Y. Empirical evaluation of gated recurrent
neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

CHUNG, J.; GULCEHRE, C.; CHO, K.; BENGIO, Y. Gated feedback recurrent neural
networks. In: International Conference on Machine Learning. [S.l.: s.n.], 2015. p. 2067–2075.

COMPUTING, A. et al. An architectural blueprint for autonomic computing. IBM White
Paper, Citeseer, v. 31, n. 2006, p. 1–6, 2005.

COSTA, I.; ARAUJO, J.; DANTAS, J.; CAMPOS, E.; SILVA, F. A.; MACIEL, P. Availability
evaluation and sensitivity analysis of a mobile backend-as-a-service platform. Quality and
Reliability Engineering International, Wiley Online Library, v. 32, n. 7, p. 2191–2205, 2016.

DÂMASO, A.; ROSA, N.; MACIEL, P. Reliability of wireless sensor networks. Sensors,
Multidisciplinary Digital Publishing Institute, v. 14, n. 9, p. 15760–15785, 2014.

DÂMASO, A.; ROSA, N.; MACIEL, P. Integrated evaluation of reliability and power
consumption of wireless sensor networks. Sensors, Multidisciplinary Digital Publishing
Institute, v. 17, n. 11, p. 2547, 2017.

DEEZER. Frases dos Racionais MC’s: conheça as letras mais famosas do grupo. 2023.
Https://www.deezer-blog.com/br/frases-racionais/. Accessed in: 12 may 2023.

DU, W.; DING, S. A survey on multi-agent deep reinforcement learning: from the perspective
of challenges and applications. Artificial Intelligence Review, Springer, v. 54, n. 5, p.
3215–3238, 2021.

ELLIOTT, A. C.; HYNAN, L. S. A sas® macro implementation of a multiple comparison
post hoc test for a kruskal–wallis analysis. Computer methods and programs in biomedicine,
Elsevier, v. 102, n. 1, p. 75–80, 2011.

ELMOKASHFI, A.; KVALBEIN, A.; DOVROLIS, C. On the scalability of bgp: The role of
topology growth. IEEE Journal on Selected Areas in Communications, IEEE, v. 28, n. 8, p.
1250–1261, 2010.

161

ENDO, P. T.; SANTOS, G. L.; ROSENDO, D.; GOMES, D. M.; MOREIRA, A.; KELNER,
J.; SADOK, D.; GONÇALVES, G. E.; MAHLOO, M. Minimizing and managing cloud failures.
Computer, IEEE, v. 50, n. 11, p. 86–90, 2017.

ERAMO, V.; AMMAR, M.; LAVACCA, F. G. Migration energy aware reconfigurations of
virtual network function instances in nfv architectures. IEEE Access, IEEE, v. 5, p. 4927–4938,
2017.

ERAMO, V.; MIUCCI, E.; AMMAR, M.; LAVACCA, F. G. An approach for service
function chain routing and virtual function network instance migration in network function
virtualization architectures. IEEE/ACM Transactions on Networking, IEEE, v. 25, n. 4, p.
2008–2025, 2017.

ESPOSITO, F. Catena: A distributed architecture for robust service function chain
instantiation with guarantees. In: IEEE. 2017 IEEE Conference on Network Softwarization
(NetSoft). [S.l.], 2017. p. 1–9.

EUROSTAT. Population on 1 January by age groups and sex - cities and greater cities. 2020.
<https://bit.ly/2YqqJeW>. Accessed: April, 2020.

FAN, J.; GUAN, C.; ZHAO, Y.; QIAO, C. Availability-aware mapping of service function
chains. In: IEEE. IEEE INFOCOM 2017-IEEE Conference on Computer Communications.
[S.l.], 2017. p. 1–9.

FAN, J.; JIANG, M.; QIAO, C. Carrier-grade availability-aware mapping of service function
chains with on-site backups. In: IEEE. 2017 IEEE/ACM 25th International Symposium on
Quality of Service (IWQoS). [S.l.], 2017. p. 1–10.

FRANK, R. J.; DAVEY, N.; HUNT, S. P. Time series prediction and neural networks. Journal
of intelligent and robotic systems, Springer, v. 31, p. 91–103, 2001.

GENS, F. The 3rd platform: Enabling digital transformation. USA: IDC, v. 209, 2013.

GERMAN, R. Performance Analysis of Communication Systems with Non-Markovian
Stochastic Petri Nets. New York, NY, USA: John Wiley & Sons, Inc., 2000. ISBN
0471492582.

GHAZOUANI, S.; SLIMANI, Y. Towards a standardized cloud service description based on
usdl. Journal of Systems and Software, Elsevier, v. 132, p. 1–20, 2017.

GHRADA, N.; ZHANI, M. F.; ELKHATIB, Y. Price and performance of cloud-hosted virtual
network functions: Analysis and future challenges. In: IEEE. 2018 4th IEEE Conference on
Network Softwarization and Workshops (NetSoft). [S.l.], 2018. p. 482–487.

GOODFELLOW, I.; BENGIO, Y.; COURVILLE, A.; BENGIO, Y. Deep learning. [S.l.]: MIT
press Cambridge, 2016.

GREFF, K.; SRIVASTAVA, R. K.; KOUTNÍK, J.; STEUNEBRINK, B. R.; SCHMIDHUBER,
J. Lstm: A search space odyssey. IEEE transactions on neural networks and learning systems,
IEEE, v. 28, n. 10, p. 2222–2232, 2017.

GROUP, E. N. I. S. Network functions virtualisation (NFV)-network operator perspectives on
industry progress. ETSI, 2013.

https://bit.ly/2YqqJeW

162

GUARINI, E.; MAGLI, F.; NOBOLO, A. Accounting for community building: the municipal
amalgamation of milan in 1873–1876. Accounting History Review, Taylor & Francis, v. 28,
n. 1-2, p. 5–30, 2018.

GUIDOTTI, R.; MONREALE, A.; RUGGIERI, S.; TURINI, F.; GIANNOTTI, F.; PEDRESCHI,
D. A survey of methods for explaining black box models. ACM computing surveys (CSUR),
ACM New York, NY, USA, v. 51, n. 5, p. 1–42, 2018.

GUO, S.; DAI, Y.; XU, S.; QIU, X.; QI, F. Trusted cloud-edge network resource management:
Drl-driven service function chain orchestration for iot. IEEE Internet of Things Journal, IEEE,
2019.

GUPTA, L.; SAMAKA, M.; JAIN, R.; ERBAD, A.; BHAMARE, D.; METZ, C. Colap: A
predictive framework for service function chain placement in a multi-cloud environment. In:
IEEE. 2017 IEEE 7th Annual Computing and Communication Workshop and Conference
(CCWC). [S.l.], 2017. p. 1–9.

GYŐRÖDI, C.; GYŐRÖDI, R.; PECHERLE, G.; OLAH, A. A comparative study: Mongodb
vs. mysql. In: IEEE. 2015 13th International Conference on Engineering of Modern Electric
Systems (EMES). [S.l.], 2015. p. 1–6.

HAN, S.-Y.; LIANG, T. Reinforcement-learning-based vibration control for a vehicle
semi-active suspension system via the ppo approach. Applied Sciences, MDPI, v. 12, n. 6,
p. 3078, 2022.

HASSELT, H. P. van; GUEZ, A.; HESSEL, M.; MNIH, V.; SILVER, D. Learning values across
many orders of magnitude. Advances in Neural Information Processing Systems, v. 29, 2016.

HASSELT, H. V. Double q-learning. In: Advances in neural information processing systems.
[S.l.: s.n.], 2010. p. 2613–2621.

HOCHREITER, S. The vanishing gradient problem during learning recurrent neural nets
and problem solutions. International Journal of Uncertainty, Fuzziness and Knowledge-Based
Systems, World Scientific, v. 6, n. 02, p. 107–116, 1998.

HONG, J.-y.; SUH, E.-h.; KIM, S.-J. Context-aware systems: A literature review and
classification. Expert Systems with applications, Elsevier, v. 36, n. 4, p. 8509–8522, 2009.

HU, Y.; LOU, S.; WU, S.; YANG, L. Service function chain embedding framework
for nfv-enabled iot application. In: IEEE. 2020 IEEE/CIC International Conference on
Communications in China (ICCC Workshops). [S.l.], 2020. p. 80–84.

HUA, Y.; ZHAO, Z.; LIU, Z.; CHEN, X.; LI, R.; ZHANG, H. Traffic prediction based on
random connectivity in deep learning with long short-term memory. In: IEEE. 2018 IEEE 88th
Vehicular Technology Conference (VTC-Fall). [S.l.], 2018. p. 1–6.

HUSSAIN, B.; DU, Q.; ZHANG, S.; IMRAN, A.; IMRAN, M. A. Mobile edge computing-based
data-driven deep learning framework for anomaly detection. IEEE Access, IEEE, v. 7, p.
137656–137667, 2019.

INSTITUTE, E. T. S. Network Functions Virtualization. 2018. <https://bit.ly/3enE2mB>.
Accessed: November, 2020.

https://bit.ly/3enE2mB

163

IQBAL, M. F.; ZAHID, M.; HABIB, D.; JOHN, L. K. Efficient prediction of network traffic
for real-time applications. Journal of Computer Networks and Communications, Hindawi,
v. 2019, 2019.

JIM, M. NFV Applications - Key Considerations for Profitability. [S.l.]: Dialogic, 2015.
<https://web.dialogic.com/making-nfv-profitable>.

JIN, H.; ZHU, X.; ZHAO, C. Computation offloading optimization based on probabilistic sfc
for mobile online gaming in heterogeneous network. IEEE Access, IEEE, v. 7, p. 52168–52180,
2019.

JOZEFOWICZ, R.; ZAREMBA, W.; SUTSKEVER, I. An empirical exploration of recurrent
network architectures. In: International Conference on Machine Learning. [S.l.: s.n.], 2015. p.
2342–2350.

KAISER, Ł.; SUTSKEVER, I. Neural gpus learn algorithms. arXiv preprint arXiv:1511.08228,
2015.

KANE, M. J.; PRICE, N.; SCOTCH, M.; RABINOWITZ, P. Comparison of arima and
random forest time series models for prediction of avian influenza h5n1 outbreaks. BMC
bioinformatics, BioMed Central, v. 15, n. 1, p. 1–9, 2014.

KARASU, S.; ALTAN, A. Recognition model for solar radiation time series based on random
forest with feature selection approach. In: IEEE. 2019 11th international conference on
electrical and electronics engineering (ELECO). [S.l.], 2019. p. 8–11.

KATSAROS, G.; MENZEL, M.; LENK, A.; REVELANT, J. R.; SKIPP, R.; EBERHARDT,
J. Cloud application portability with tosca, chef and openstack. In: IEEE. 2014 IEEE
international conference on cloud engineering. [S.l.], 2014. p. 295–302.

KAUR, K.; MANGAT, V.; KUMAR, K. A comprehensive survey of service function chain
provisioning approaches in sdn and nfv architecture. Computer Science Review, Elsevier,
v. 38, p. 100298, 2020.

KAYEDPOUR, F.; AMIRI, M.; RAFIZADEH, M.; NIA, A. S. Multi-objective redundancy
allocation problem for a system with repairable components considering instantaneous
availability and strategy selection. Reliability Engineering & System Safety, Elsevier, v. 160,
p. 11–20, 2017.

KHEZRI, H. R.; MOGHADAM, P. A.; FARSHBAFAN, M. K.; SHAH-MANSOURI, V.;
KEBRIAEI, H.; NIYATO, D. Deep reinforcement learning for dynamic reliability aware
nfv-based service provisioning. In: IEEE. 2019 IEEE Global Communications Conference
(GLOBECOM). [S.l.], 2019. p. 1–6.

KINGMA, D. P.; BA, J. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

KOUAH, R.; ALLEG, A.; LARABA, A.; AHMED, T. Energy-aware placement for iot-service
function chain. In: IEEE. 2018 IEEE 23rd International Workshop on Computer Aided
Modeling and Design of Communication Links and Networks (CAMAD). [S.l.], 2018. p. 1–7.

KRAUS, M.; FEUERRIEGEL, S.; OZTEKIN, A. Deep learning in business analytics and
operations research: Models, applications and managerial implications. European Journal of
Operational Research, Elsevier, v. 281, n. 3, p. 628–641, 2020.

https://web.dialogic.com/making-nfv-profitable

164

KUBER, T.; SESKAR, I.; MANDAYAM, N. Traffic prediction by augmenting cellular data
with non-cellular attributes. In: IEEE. 2021 IEEE Wireless Communications and Networking
Conference (WCNC). [S.l.], 2021. p. 1–6.

KUMAR, A.; KAUR, A.; KUMAR, M. Face detection techniques: a review. Artificial
Intelligence Review, Springer, v. 52, n. 2, p. 927–948, 2019.

KUMAR, U. System maintenance: Trends in management and technology. In: Handbook of
performability engineering. [S.l.]: Springer, 2008. p. 773–787.

LANGE, S.; TU, N. V.; JEONG, S.-Y.; LEE, D.-Y.; KIM, H.-G.; HONG, J.; YOO, J.-H.;
HONG, J. W.-K. A network intelligence architecture for efficient vnf lifecycle management.
IEEE Transactions on Network and Service Management, IEEE, 2020.

LECUN, Y.; BENGIO, Y.; HINTON, G. Deep learning. nature, Nature Publishing Group,
v. 521, n. 7553, p. 436–444, 2015.

LI, D.; HONG, P.; XUE, K.; PEI, J. Virtual network function placement and resource
optimization in nfv and edge computing enabled networks. Computer Networks, Elsevier,
v. 152, p. 12–24, 2019.

LI, G.; ZHOU, H.; FENG, B.; LI, G. Context-aware service function chaining and its cost-
effective orchestration in multi-domain networks. IEEE Access, IEEE, v. 6, p. 34976–34991,
2018.

LI, G.; ZHOU, H.; FENG, B.; ZHANG, Y.; YU, S. Efficient provision of service function chains
in overlay networks using reinforcement learning. IEEE Transactions on Cloud Computing,
IEEE, 2019.

LI, H.; KORDI, M. E. Dsppv: Dynamic service function chains placement with parallelized
virtual network functions in mobile edge computing. Internet of Things, Elsevier, v. 22, p.
100733, 2023.

LIMA, P. A.; NETO, A. S. B.; MACIEL, P. Data centers’ services restoration based on the
decision-making of distributed agents. Telecommunication Systems, Springer, p. 1–12, 2020.

LIN, H.-Y.; HSUEH, Y.-L.; LIE, W.-N. Abnormal event detection using microsoft kinect in
a smart home. In: IEEE. Computer Symposium (ICS), 2016 International. [S.l.], 2016. p.
285–289.

LINGUAGLOSSA, L.; LANGE, S.; PONTARELLI, S.; RÉTVÁRI, G.; ROSSI, D.; ZINNER, T.;
BIFULCO, R.; JARSCHEL, M.; BIANCHI, G. Survey of performance acceleration techniques
for network function virtualization. Proceedings of the IEEE, IEEE, v. 107, n. 4, p. 746–764,
2019.

LIRA, V.; TAVARES, E.; OLIVEIRA, M.; SOUSA, E.; NOGUEIRA, B. Virtual network
mapping considering energy consumption and availability. Computing, Springer, v. 101, n. 8,
p. 937–967, 2019.

LIU, X.; CHENG, B.; WANG, S. Availability-aware and energy-efficient virtual cluster
allocation based on multi-objective optimization in cloud datacenters. IEEE Transactions on
Network and Service Management, IEEE, 2020.

165

LUO, Z.; WU, C.; LI, Z.; ZHOU, W. Scaling geo-distributed network function chains: A
prediction and learning framework. IEEE Journal on Selected Areas in Communications,
IEEE, v. 37, n. 8, p. 1838–1850, 2019.

LYNN, T.; GOURINOVITCH, A.; SVOROBEH, S.; ENDO, P. T. Software Defined
Networking and Network Functions Virtualization - Market Briefing. 2018. <https:
//recap-project.eu/media/market-briefings/>.

MA, B.; GUO, W.; ZHANG, J. A survey of online data-driven proactive 5g network
optimisation using machine learning. IEEE Access, IEEE, v. 8, p. 35606–35637, 2020.

MARSAN, M. A.; BALBO, G.; CONTE, G.; DONATELLI, S.; FRANCESCHINIS, G.
Modelling with Generalized Stochastic Petri Nets. 1st. ed. New York, NY, USA: John Wiley
& Sons, Inc., 1994. ISBN 0471930598.

MARTÍN-PÉREZ, J.; BERNARDOS, C. J. Multi-domain vnf mapping algorithms. In: IEEE.
2018 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting
(BMSB). [S.l.], 2018. p. 1–6.

MASOUDI, R.; GHAFFARI, A. Software defined networks: A survey. Journal of Network and
computer Applications, Elsevier, v. 67, p. 1–25, 2016.

MECHTRI, M.; GHRIBI, C.; SOUALAH, O.; ZEGHLACHE, D. Nfv orchestration framework
addressing sfc challenges. IEEE Communications Magazine, IEEE, v. 55, n. 6, p. 16–23, 2017.

MEDEDOVIC, E.; DOUROS, V. G.; MÄHÖNEN, P. Node centrality metrics for hotspots
analysis in telecom big data. In: IEEE. IEEE INFOCOM 2019-IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS). [S.l.], 2019. p. 417–422.

MEHRAGHDAM, S.; KARL, H. Placement of services with flexible structures specified by a
yang data model. In: IEEE. 2016 IEEE NetSoft Conference and Workshops (NetSoft). [S.l.],
2016. p. 184–192.

MENDIS, H. K.; LI, F. Y. Achieving ultra reliable communication in 5g networks: A
dependability perspective availability analysis in the space domain. IEEE Communications
Letters, IEEE, v. 21, n. 9, p. 2057–2060, 2017.

MIJUMBI, R.; SERRAT, J.; GORRICHO, J.-L.; BOUTEN, N.; TURCK, F. D.; DAVY, S.
Design and evaluation of algorithms for mapping and scheduling of virtual network functions.
In: IEEE. Proceedings of the 2015 1st IEEE conference on network softwarization (NetSoft).
[S.l.], 2015. p. 1–9.

MIRJALILY, G.; ZHIQUAN, L. Optimal network function virtualization and service function
chaining: A survey. Chinese Journal of Electronics, IET, v. 27, n. 4, p. 704–717, 2018.

MNIH, V.; BADIA, A. P.; MIRZA, M.; GRAVES, A.; LILLICRAP, T.; HARLEY, T.; SILVER,
D.; KAVUKCUOGLU, K. Asynchronous methods for deep reinforcement learning. In:
International conference on machine learning. [S.l.: s.n.], 2016. p. 1928–1937.

MOLLOY, M. K. Performance analysis using stochastic petri nets. IEEE Transactions on
computers, IEEE Computer Society, v. 31, n. 09, p. 913–917, 1982.

https://recap-project.eu/media/market-briefings/
https://recap-project.eu/media/market-briefings/

166

MOLLOY, M. K. Performance analysis using stochastic petri nets. IEEE Trans. Comput.,
IEEE Computer Society, Washington, DC, USA, v. 31, p. 913–917, September 1982. ISSN
0018-9340.

MOUALLA, G.; TURLETTI, T.; SAUCEZ, D. An availability-aware sfc placement algorithm
for fat-tree data centers. In: IEEE. 2018 IEEE 7th International Conference on Cloud
Networking (CloudNet). [S.l.], 2018. p. 1–4.

MOUSAVI, S. S.; SCHUKAT, M.; HOWLEY, E. Traffic light control using deep policy-gradient
and value-function-based reinforcement learning. IET Intelligent Transport Systems, IET,
v. 11, n. 7, p. 417–423, 2017.

MUNDIE, C.; VRIES, P. de; HAYNES, P.; CORWINE, M. Trustworthy computing. [S.l.],
2002.

MURATA, T. Petri nets: Properties, analysis and applications. Proceedings of the IEEE,
v. 77, n. 4, p. 541–580, Apr 1989. ISSN 0018-9219.

NAREJO, S.; PASERO, E. An application of internet traffic prediction with deep neural
network. Multidisciplinary Approaches to Neural Computing, Springer, p. 139–149, 2018.

NGUYEN, D. T.; PHAM, C.; NGUYEN, K. K.; CHERIET, M. Placement and chaining for
run-time iot service deployment in edge-cloud. IEEE Transactions on Network and Service
Management, IEEE, v. 17, n. 1, p. 459–472, 2019.

NING, K.; WANG, H.; ZHANG, Z.; XU, Z.; SHU, X. Parallel deployment of vnfs in service
function chain: Benefit or not? In: IEEE. 2022 IEEE Intl Conf on Parallel & Distributed
Processing with Applications, Big Data & Cloud Computing, Sustainable Computing &
Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom).
[S.l.], 2022. p. 628–635.

OCHODEK, M.; KOPCZYŃSKA, S. Perceived importance of agile requirements engineering
practices–a survey. Journal of Systems and Software, Elsevier, v. 143, p. 29–43, 2018.

ORDÓÑEZ, F. J.; ROGGEN, D. Deep convolutional and lstm recurrent neural networks
for multimodal wearable activity recognition. Sensors, Multidisciplinary Digital Publishing
Institute, v. 16, n. 1, p. 115, 2016.

OSBAND, I.; BLUNDELL, C.; PRITZEL, A.; ROY, B. V. Deep exploration via bootstrapped
dqn. In: Advances in neural information processing systems. [S.l.: s.n.], 2016. p. 4026–4034.

PALHARES, A.; SANTOS, M.; ENDO, P.; VITALINO, J.; RODRIGUES, M.; GONÇALVES,
G.; SADOK, D.; SEFIDCON, A.; WUHIB, F. Joint allocation of nodes and links with load
balancing in network virtualization. In: IEEE. 2014 IEEE 28th International Conference on
Advanced Information Networking and Applications. [S.l.], 2014. p. 148–155.

PAN, J.; WANG, X.; CHENG, Y.; YU, Q. Multisource transfer double dqn based on actor
learning. IEEE transactions on neural networks and learning systems, IEEE, v. 29, n. 6, p.
2227–2238, 2018.

PANDEY, D.; SUMAN, U.; RAMANI, A. K. An effective requirement engineering process
model for software development and requirements management. In: IEEE. 2010 International
Conference on Advances in Recent Technologies in Communication and Computing. [S.l.],
2010. p. 287–291.

167

PANDEY, S.; NGUYEN, T. V.; YOO, J.-H.; HONG, J. W.-K. Edgedqn: Multiple sfc
placement in edge computing environment. In: IEEE. 2021 17th International Conference on
Network and Service Management (CNSM). [S.l.], 2021. p. 301–309.

PEI, J.; HONG, P.; XUE, K.; LI, D. Efficiently embedding service function chains with dynamic
virtual network function placement in geo-distributed cloud system. IEEE Transactions on
Parallel and Distributed Systems, IEEE, v. 30, n. 10, p. 2179–2192, 2018.

PENG, B.; LI, X.; GAO, J.; LIU, J.; CHEN, Y.-N.; WONG, K.-F. Adversarial advantage
actor-critic model for task-completion dialogue policy learning. In: IEEE. 2018 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP). [S.l.], 2018.
p. 6149–6153.

PEREIRA, P.; MELO, C.; ARAUJO, J.; DANTAS, J.; SANTOS, V.; MACIEL, P. Availability
model for edge-fog-cloud continuum: an evaluation of an end-to-end infrastructure of
intelligent traffic management service. The Journal of Supercomputing, Springer, p. 1–28,
2022.

PEZOA, F.; REUTTER, J. L.; SUAREZ, F.; UGARTE, M.; VRGOČ, D. Foundations of json
schema. In: Proceedings of the 25th International Conference on World Wide Web. [S.l.:
s.n.], 2016. p. 263–273.

PONTES, F. J.; AMORIM, G.; BALESTRASSI, P. P.; PAIVA, A.; FERREIRA, J. R.
Design of experiments and focused grid search for neural network parameter optimization.
Neurocomputing, Elsevier, v. 186, p. 22–34, 2016.

POURSAFAR, N.; ALAHI, M. E. E.; MUKHOPADHYAY, S. Long-range wireless technologies
for iot applications: A review. In: IEEE. 2017 Eleventh International Conference on Sensing
Technology (ICST). [S.l.], 2017. p. 1–6.

PRAJAM, S.; WECHTAISONG, C.; KHAN, A. A. Applying machine learning approaches for
network traffic forecasting. Indian Journal of Computer Science and Engineering, v. 13, n. 2,
p. 324–335, 2022.

QIANG, W.; ZHONGLI, Z. Reinforcement learning model, algorithms and its application.
In: IEEE. 2011 International Conference on Mechatronic Science, Electric Engineering and
Computer (MEC). [S.l.], 2011. p. 1143–1146.

QIU, C.; ZHANG, Y.; FENG, Z.; ZHANG, P.; CUI, S. Spatio-temporal wireless traffic
prediction with recurrent neural network. IEEE Wireless Communications Letters, IEEE, v. 7,
n. 4, p. 554–557, 2018.

QU, L.; ASSI, C.; SHABAN, K. Delay-aware scheduling and resource optimization with
network function virtualization. IEEE Transactions on Communications, IEEE, v. 64, n. 9, p.
3746–3758, 2016.

RAVICHANDIRAN, S. Hands-on Reinforcement Learning with Python: Master Reinforcement
and Deep Reinforcement Learning Using OpenAI Gym and TensorFlow. [S.l.]: Packt
Publishing Ltd, 2018.

RAY, P. P.; KUMAR, N. Sdn/nfv architectures for edge-cloud oriented iot: A systematic
review. Computer Communications, Elsevier, v. 169, p. 129–153, 2021.

168

RECSE, A.; SZABO, R.; NEMETH, B. Elastic resource management and network slicing for
iot over edge clouds. In: Proceedings of the 10th International Conference on the Internet of
Things. [S.l.: s.n.], 2020. p. 1–8.

REDDY, R. V.; MURALI, D.; RAJESHWAR, J. Context-aware middleware architecture for
iot-based smart healthcare applications. In: Innovations in Computer Science and Engineering.
[S.l.]: Springer, 2019. p. 557–567.

REN, W.; SUN, Y.; LUO, H.; OBAIDAT, M. S. A new scheme for iot service function
chains orchestration in sdn-iot network systems. IEEE Systems Journal, IEEE, v. 13, n. 4, p.
4081–4092, 2019.

RIERA, J. F.; ESCALONA, E.; BATALLE, J.; GRASA, E.; GARCIA-ESPIN, J. A. Virtual
network function scheduling: Concept and challenges. In: IEEE. 2014 international conference
on smart communications in network technologies (SaCoNeT). [S.l.], 2014. p. 1–5.

SAHOO, J.; MOHAPATRA, S.; LATH, R. Virtualization: A survey on concepts, taxonomy
and associated security issues. In: IEEE. 2010 Second International Conference on Computer
and Network Technology. [S.l.], 2010. p. 222–226.

SANTOS, G. L.; BEZERRA, D. d. F.; ROCHA, E. d. S.; FERREIRA, L.; MOREIRA, A.
L. C.; GONÇALVES, G. E.; MARQUEZINI, M. V.; RECSE, Á.; MEHTA, A.; KELNER, J. et
al. Service function chain placement in distributed scenarios: a systematic review. Journal of
Network and Systems Management, Springer, v. 30, n. 1, p. 1–39, 2022.

SANTOS, G. L.; ENDO, P. T.; LISBOA, M. F. F. da S.; SILVA, L. G. F. da; SADOK, D.;
KELNER, J.; LYNN, T. et al. Analyzing the availability and performance of an e-health
system integrated with edge, fog and cloud infrastructures. Journal of Cloud Computing,
Springer, v. 7, n. 1, p. 16, 2018.

SANTOS, G. L.; ENDO, P. T.; LYNN, T.; SADOK, D.; KELNER, J. Automating the service
function chain availability assessment. In: IEEE. 2021 IEEE Symposium on Computers and
Communications (ISCC). [S.l.], 2021. p. 1–7.

SANTOS, G. L.; ENDO, P. T.; LYNN, T.; SADOK, D.; KELNER, J. A reinforcement
learning-based approach for availability-aware service function chain placement in large-scale
networks. Future Generation Computer Systems, Elsevier, 2022.

SANTOS, G. L.; ENDO, P. T.; SADOK, D.; KELNER, J. When 5g meets deep learning: a
systematic review. Algorithms, MDPI, v. 13, n. 9, p. 208, 2020.

SANTOS, G. L.; ENDO, P. T.; SADOK, D.; KELNER, J. Spider: An availability-aware
framework for the service function chain placement in distributed scenarios. Journal of
Software: Practice and Experience, Elsevier, 2022.

SANTOS, G. L.; LYNN, T.; KELNER, J.; ENDO, P. T. Availability-aware and energy-aware
dynamic sfc placement using reinforcement learning. The Journal of Supercomputing,
Springer, p. 1–30, 2021.

SANTOS, G. L.; ROSATI, P.; LYNN, T.; KELNER, J.; SADOK, D.; ENDO, P. T. Predicting
short-term mobile internet traffic from internet activity using recurrent neural networks. arXiv
preprint arXiv:2010.05741, 2020.

169

SANTOS, J.; WAUTERS, T.; VOLCKAERT, B.; TURCK, F. D. Towards delay-aware
container-based service function chaining in fog computing. In: IEEE. NOMS 2020-2020
IEEE/IFIP Network Operations and Management Symposium. [S.l.], 2020. p. 1–9.

SCHULMAN, J.; WOLSKI, F.; DHARIWAL, P.; RADFORD, A.; KLIMOV, O. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

SHAH, H. A.; ZHAO, L. Multi-agent deep reinforcement learning based virtual resource
allocation through network function virtualization in internet of things. IEEE Internet of
Things Journal, IEEE, 2020.

SHAH, J.; DUBARIA, D. Building modern clouds: using docker, kubernetes & google cloud
platform. In: IEEE. 2019 IEEE 9th Annual Computing and Communication Workshop and
Conference (CCWC). [S.l.], 2019. p. 0184–0189.

SHANG, X.; LI, Z.; YANG, Y. Placement of highly available virtual network functions through
local rerouting. In: IEEE. 2018 IEEE 15th International Conference on Mobile Ad Hoc and
Sensor Systems (MASS). [S.l.], 2018. p. 80–88.

SHEN, W.; ZHANG, H.; GUO, S.; ZHANG, C. Time-wise attention aided convolutional
neural network for data-driven cellular traffic prediction. IEEE Wireless Communications
Letters, IEEE, 2021.

SHEN, Z.; ZHANG, Y. An nfv framework for supporting elastic scaling of service function
chain. In: IEEE. 2018 IEEE 4th International Conference on Computer and Communications
(ICCC). [S.l.], 2018. p. 566–571.

SIMONINI, T. Proximal Policy Optimization (PPO) with Sonic the Hedgehog
2 and 3. [S.l.]: Towards Data Science, 2018. <https://towardsdatascience.com/
proximal-policy-optimization-ppo-with-sonic-the-hedgehog-2-and-3-c9c21dbed5e>.

SOUALAH, O.; MECHTRI, M.; GHRIBI, C.; ZEGHLACHE, D. A link failure recovery
algorithm for virtual network function chaining. In: IEEE. 2017 IFIP/IEEE Symposium on
Integrated Network and Service Management (IM). [S.l.], 2017. p. 213–221.

SOUZA, R.; DIAS, K.; FERNANDES, S. Nfv data centers: A systematic review. IEEE Access,
IEEE, v. 8, p. 51713–51735, 2020.

SUBRAMANYA, T.; HARUTYUNYAN, D.; RIGGIO, R. Machine learning-driven service
function chain placement and scaling in mec-enabled 5g networks. Computer Networks,
Elsevier, v. 166, p. 106980, 2020.

SUN, G.; LI, Y.; YU, H.; VASILAKOS, A. V.; DU, X.; GUIZANI, M. Energy-efficient
and traffic-aware service function chaining orchestration in multi-domain networks. Future
Generation Computer Systems, Elsevier, v. 91, p. 347–360, 2019.

SUN, L.; DONG, H.; ASHRAF, J. Survey of service description languages and their issues in
cloud computing. In: IEEE. 2012 Eighth International Conference on Semantics, Knowledge
and Grids. [S.l.], 2012. p. 128–135.

SUN, P.; LAN, J.; LI, J.; GUO, Z.; HU, Y. Combining deep reinforcement learning with graph
neural networks for optimal vnf placement. IEEE Communications Letters, IEEE, 2020.

https://towardsdatascience.com/proximal-policy-optimization-ppo-with-sonic-the-hedgehog-2-and-3-c9c21dbed5e
https://towardsdatascience.com/proximal-policy-optimization-ppo-with-sonic-the-hedgehog-2-and-3-c9c21dbed5e

170

SUN, X.; MA, S.; LI, Y.; WANG, D.; LI, Z.; WANG, N.; GUI, G. Enhanced echo-state
restricted boltzmann machines for network traffic prediction. IEEE Internet of Things Journal,
IEEE, v. 7, n. 2, p. 1287–1297, 2019.

SURIANO, A.; STRICCOLI, D.; PIRO, G.; BOLLA, R.; BOGGIA, G. Attestation of trusted
and reliable service function chains in the etsi-nfv framework. In: IEEE. 2020 6th IEEE
Conference on Network Softwarization (NetSoft). [S.l.], 2020. p. 479–486.

SUTTON, R. S.; BARTO, A. G. Reinforcement learning: An introduction. [S.l.]: MIT press,
2018.

SYAKUR, M.; KHOTIMAH, B.; ROCHMAN, E.; SATOTO, B. Integration k-means clustering
method and elbow method for identification of the best customer profile cluster. In: IOP
PUBLISHING. IOP Conference Series: Materials Science and Engineering. [S.l.], 2018. v. 336,
n. 1, p. 012017.

SYARIF, I.; PRUGEL-BENNETT, A.; WILLS, G. Svm parameter optimization using grid
search and genetic algorithm to improve classification performance. Telkomnika, Ahmad
Dahlan University, v. 14, n. 4, p. 1502, 2016.

TASHTARIAN, F.; ZHANI, M. F.; FATEMIPOUR, B.; YAZDANI, D. Codec: a cost-effective
and delay-aware sfc deployment. IEEE Transactions on Network and Service Management,
IEEE, v. 17, n. 2, p. 793–806, 2019.

TAVAKOLI-SOMEH, S.; REZVANI, M. H. Multi-objective virtual network function placement
using nsga-ii meta-heuristic approach. The Journal of Supercomputing, Springer, v. 75, n. 10,
p. 6451–6487, 2019.

TORQUATO, M.; TORQUATO, L.; MACIEL, P.; VIEIRA, M. Iaas cloud availability planning
using models and genetic algorithms. In: IEEE. 2019 9th Latin-American Symposium on
Dependable Computing (LADC). [S.l.], 2019. p. 1–10.

TORQUATO, M.; UMESH, I.; MACIEL, P. Models for availability and power consumption
evaluation of a private cloud with vmm rejuvenation enabled by vm live migration. The
Journal of Supercomputing, Springer, v. 74, n. 9, p. 4817–4841, 2018.

TOUMI, N.; BAGAA, M.; KSENTINI, A. Hierarchical multi-agent deep reinforcement
learning for sfc placement on multiple domains. In: IEEE. 2021 IEEE 46th Conference on
Local Computer Networks (LCN). [S.l.], 2021. p. 299–304.

TOUMI, N.; BAGAA, M.; KSENTINI, A. On using deep reinforcement learning for
multi-domain sfc placement. In: IEEE. 2021 IEEE Global Communications Conference
(GLOBECOM). [S.l.], 2021. p. 1–6.

TOUMI, N.; BERNIER, O.; MEDDOUR, D.-E.; KSENTINI, A. On using physical
programming for multi-domain sfc placement with limited visibility. IEEE Transactions on
Cloud Computing, IEEE, 2020.

TOUMI, N.; BERNIER, O.; MEDDOUR, D.-E.; KSENTINI, A. On cross-domain service
function chain orchestration: An architectural framework. Computer Networks, Elsevier,
v. 187, p. 107806, 2021.

TRIVEDI, K. S. Probability and Statistics with Reliability, Queuing, and Computer Science
Applications. New York: John Wiley and Sons, 2001.

171

TROFIMOVICH, J. Comparison of neural network architectures for sentiment analysis of
russian tweets. In: Computational Linguistics and Intellectual Technologies: Proceedings of
the International Conference Dialogue. [S.l.: s.n.], 2016. p. 50–59.

TROIA, S.; ALVIZU, R.; MAIER, G. Reinforcement learning for service function chain
reconfiguration in nfv-sdn metro-core optical networks. IEEE Access, IEEE, v. 7, p.
167944–167957, 2019.

TROIA, S.; ALVIZU, R.; ZHOU, Y.; MAIER, G.; PATTAVINA, A. Deep learning-based
traffic prediction for network optimization. In: IEEE. 2018 20th International Conference on
Transparent Optical Networks (ICTON). [S.l.], 2018. p. 1–4.

TYRALIS, H.; PAPACHARALAMPOUS, G. Variable selection in time series forecasting using
random forests. Algorithms, MDPI, v. 10, n. 4, p. 114, 2017.

VENTRE, P. L.; PISA, C.; SALSANO, S.; SIRACUSANO, G.; SCHMIDT, F.; LUNGARONI,
P.; BLEFARI-MELAZZI, N. Performance evaluation and tuning of virtual infrastructure
managers for (micro) virtual network functions. In: IEEE. 2016 IEEE Conference on Network
Function Virtualization and Software Defined Networks (NFV-SDN). [S.l.], 2016. p. 141–147.

VIEIRA, V.; TEDESCO, P.; SALGADO, A. C. Designing context-sensitive systems: An
integrated approach. Expert Systems with Applications, Elsevier, v. 38, n. 2, p. 1119–1138,
2011.

VIOLA, P.; JONES, M. Rapid object detection using a boosted cascade of simple features.
In: IEEE. Proceedings of the 2001 IEEE computer society conference on computer vision and
pattern recognition. CVPR 2001. [S.l.], 2001. v. 1, p. I–I.

WANG, L.; MAO, W.; ZHAO, J.; XU, Y. Ddqp: A double deep q-learning approach to online
fault-tolerant sfc placement. IEEE Transactions on Network and Service Management, IEEE,
v. 18, n. 1, p. 118–132, 2021.

WANG, M.; CHENG, B.; WANG, S.; CHEN, J. Availability-and traffic-aware placement
of parallelized sfc in data center networks. IEEE Transactions on Network and Service
Management, IEEE, v. 18, n. 1, p. 182–194, 2021.

WANG, S.; CAO, H.; YANG, L. A survey of service function chains orchestration in data
center networks. In: IEEE. 2020 IEEE Globecom Workshops (GC Wkshps. [S.l.], 2020. p. 1–6.

WANG, W.; LU, Y. Analysis of the mean absolute error (mae) and the root mean square
error (rmse) in assessing rounding model. In: IOP PUBLISHING. IOP Conference Series:
Materials Science and Engineering. [S.l.], 2018. v. 324, n. 1, p. 012049.

WANG, Y.; HE, H.; TAN, X. Truly proximal policy optimization. In: PMLR. Uncertainty in
Artificial Intelligence. [S.l.], 2020. p. 113–122.

WANG, Y.; VELSWAMY, K.; HUANG, B. A long-short term memory recurrent neural network
based reinforcement learning controller for office heating ventilation and air conditioning
systems. Processes, MDPI, v. 5, n. 3, p. 46, 2017.

WÓJCIK, P. I.; KURDZIEL, M. Training neural networks on high-dimensional data using
random projection. Pattern Analysis and Applications, Springer, v. 22, n. 3, p. 1221–1231,
2019.

172

XIAO, Y.; ZHANG, Q.; LIU, F.; WANG, J.; ZHAO, M.; ZHANG, Z.; ZHANG, J. Nfvdeep:
Adaptive online service function chain deployment with deep reinforcement learning. In:
Proceedings of the International Symposium on Quality of Service. [S.l.: s.n.], 2019. p. 1–10.

XIAO, Y.; ZHANG, Q.; LIU, F.; WANG, J.; ZHAO, M.; ZHANG, Z.; ZHANG, J. Nfvdeep:
Adaptive online service function chain deployment with deep reinforcement learning. In:
Proceedings of the International Symposium on Quality of Service. [S.l.: s.n.], 2019. p. 1–10.

XIE, Y.; LIU, Z.; WANG, S.; WANG, Y. Service function chaining resource allocation: A
survey. arXiv preprint arXiv:1608.00095, 2016.

XIE, Y.; WANG, S.; DAI, Y. Revenue-maximizing virtualized network function chain
placement in dynamic environment. Future Generation Computer Systems, Elsevier, 2020.

XU, Q.; GAO, D.; LI, T.; ZHANG, H. Low latency security function chain embedding across
multiple domains. IEEE Access, IEEE, v. 6, p. 14474–14484, 2018.

XU, S.; LIAO, B.; HU, B.; HAN, C.; YANG, C.; WANG, Z.; XIONG, A. A reliability-and-
energy-balanced service function chain mapping and migration method for internet of things.
IEEE Access, IEEE, v. 8, p. 168196–168209, 2020.

XU, Z.; ZHANG, X.; YU, S.; ZHANG, J. Energy-efficient virtual network function placement
in telecom networks. In: IEEE. 2018 IEEE International Conference on Communications
(ICC). [S.l.], 2018. p. 1–7.

YAN, S. Understanding LSTM and its diagrams. 2016. <https://bit.ly/2JvRwhr>. Accessed:
August, 2018.

YAN, S. Understanding LSTM and its diagrams. [S.l.]: ML Review, 2016. <https:
//medium.com/mlreview/understanding-lstm-and-its-diagrams-37e2f46f1714>.

YAO, Y.; GUO, S.; LI, P.; LIU, G.; ZENG, Y. Forecasting assisted vnf scaling in nfv-enabled
networks. Computer Networks, Elsevier, v. 168, p. 107040, 2020.

YUAN, C.; YANG, H. Research on k-value selection method of k-means clustering algorithm.
J—Multidisciplinary Scientific Journal, Multidisciplinary Digital Publishing Institute, v. 2,
n. 2, p. 226–235, 2019.

ZANG, Y.; NI, F.; FENG, Z.; CUI, S.; DING, Z. Wavelet transform processing for cellular
traffic prediction in machine learning networks. In: IEEE. 2015 IEEE China Summit and
International Conference on Signal and Information Processing (ChinaSIP). [S.l.], 2015. p.
458–462.

ZENG, Q.; SUN, Q.; CHEN, G.; DUAN, H.; LI, C.; SONG, G. Traffic prediction of wireless
cellular networks based on deep transfer learning and cross-domain data. IEEE Access, IEEE,
v. 8, p. 172387–172397, 2020.

ZHANG, C.; PATRAS, P. Long-term mobile traffic forecasting using deep spatio-temporal
neural networks. In: Proceedings of the Eighteenth ACM International Symposium on Mobile
Ad Hoc Networking and Computing. [S.l.: s.n.], 2018. p. 231–240.

ZHANG, C.; PATRAS, P.; HADDADI, H. Deep learning in mobile and wireless networking: A
survey. IEEE Communications surveys & tutorials, IEEE, v. 21, n. 3, p. 2224–2287, 2019.

https://bit.ly/2JvRwhr
https://medium.com/mlreview/understanding-lstm-and-its-diagrams-37e2f46f1714
https://medium.com/mlreview/understanding-lstm-and-its-diagrams-37e2f46f1714

173

ZHANG, C.; ZHANG, H.; YUAN, D.; ZHANG, M. Citywide cellular traffic prediction based
on densely connected convolutional neural networks. IEEE Communications Letters, IEEE,
v. 22, n. 8, p. 1656–1659, 2018.

ZHANG, D.; LIU, L.; XIE, C.; YANG, B.; LIU, Q. Citywide cellular traffic prediction based on
a hybrid spatiotemporal network. Algorithms, Multidisciplinary Digital Publishing Institute,
v. 13, n. 1, p. 20, 2020.

ZHANG, X.; SHEN, F.; ZHAO, J.; YANG, G. Time series forecasting using gru neural
network with multi-lag after decomposition. In: SPRINGER. Neural Information Processing:
24th International Conference, ICONIP 2017, Guangzhou, China, November 14–18, 2017,
Proceedings, Part V 24. [S.l.], 2017. p. 523–532.

ZHANG, X.; XU, Z.; FAN, L.; YU, S.; QU, Y. Near-optimal energy-efficient algorithm for
virtual network function placement. IEEE Transactions on Cloud Computing, IEEE, 2019.

174

APPENDIX A – SFC AVAILABILITY ANALYSIS

We conducted experiments to evaluate the SFC availability for different placement config-
urations. We assume an SFC with four VNF types as per Table 23. We assume that the VNF
will be deployed as virtual machines based on the parameters reported in (GHRADA; ZHANI;

ELKHATIB, 2018). These parameters were based on Amazon EC2, one of the leading Infras-
tructure as a Service (IaaS) providers. Each VNF type is allocated a computing requirement
in terms of vCPU and memory. The amount of resources and the respective price (in $/hour)
are based on the EC2 service.

Table 23 – Parameters of different VNF types

VNF type Instance Type vCPU Cores Memory (GiB) Price ($/hour) MTTF (hours)

1 t2.micro 1 1 0.012 2880
2 t2.small 1 2 0.023 3024
3 t2.medium 2 4 0.047 3175.2
4 t2.xlarge 4 16 0.188 3333.96

Source: the author (2023).

We also assume that the servers and VNFs failure and repair events follow an exponential
distribution (ANDRADE et al., 2017). Therefore, the stochastic transition that the SPN models
receive as input is an MTTF value, for failure events, or an MTTR value, for repair events. We
assume baseline MTTF and MTTR values for virtual machines of 2880 hours and 0.5 hours,
respectively (TORQUATO; UMESH; MACIEL, 2018). As the virtual machine price increases, we
assume that the MTTF increases 5%, in order to give different reliability characteristics for the
different VNF types. The MTTR is the same for all VNF types (0.5 hours) since it is related
to the maintenance strategies used by a firm, such as the time for finding and subsequently
repairing a fault (KUMAR, 2008). We also assume that the MTTF and MTTR values for a
server are 8760 hours and 1.67 hours, respectively (ARAUJO et al., 2014). These values can be
adapted for different scenarios according to the network manager requirements.

Figure 51 presents the SFC placement configurations evaluated in this study. The basic
scenario illustrated in Figure 52(a) presents an SFC placement without redundancy. A replica of
each type of VNF is added in the other scenarios, always on a different server than the primary
VNF, and in this way increase the availability. For example, in Scenario 2 (Figure 52(b)), a
replica of VNF1 (VNF1_2) is added on a server other than the main VNF (VNF1_1). Scenario

175

Figure 51 – SFC placement scenarios

(a) Scenario 1 (b) Scenario 2 (c) Scenario 3 (d) Scenario 4

(e) Scenario 5
Source: the author (2023).

5 (Figure 52(e)) presents a scenario where the whole SFC is redundant.
We used the GSPN Framework1 to create, visualise, execute, and analyse SPN models. This

framework is written in Python and solves the SPN models in an analytical way. It generates
the respective CTMC and calculates the probability of tokens being in the places needed to
calculate the overall SFC availability.

A.1 RESULTS

All experiments were run on a machine with an Intel(R) Core(TM) i5-3470 CPU at 3.20GHz
and 12GB of RAM running Ubuntu 18.04.5 LTS. Table 24 shows the results for all scenarios
presented in Figure 51. The availability is calculated using the SPN models, the downtime
(considering the period of one year) estimated using Equation A.1, and the placement cost is
calculated as the sum of price of all VNF instances (illustrated in Table 23) for each scenario
multiplied by 8760 (number of hours in one year).

𝑑𝑜𝑤𝑛𝑡𝑖𝑚𝑒 = 8760× (1− 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦) (A.1)

In general, as redundant VNFs are added in each scenario, the overall SFC availability
1 <https://github.com/cazevedo/gspn-framework>

https://github.com/cazevedo/gspn-framework

176

Table 24 – Availability, downtime, and placement cost results for all scenarios

Scenario Availability (%) Downtime (hours/year) Placement Cost ($/year)

1 0.998593 12.321 2365.20
2 0.998956 9.138 2470.32
3 0.999312 6.026 2671.80
4 0.999659 2.983 3083.52
5 0.999999 0.004 4730.40

Source: the author (2023).

increases considerably, which results in a reduction in downtime. For Scenario 1 (no redun-
dancy), the availability is 0.998593%, which results in a downtime of 12.321 hours. With the
addition of one replica of VNF1 (Scenario 2), the availability increases to 0.998956%, reducing
SFC downtime to 9.138 hours, a difference of 3.183 hours. When half of the SFC is replicated
(Scenario 3), the availability increases to 0.999312%, resulting in downtime of 6.026 hours,
a reduction of 51.09% in comparison to Scenario 1. For the Scenario 4, the availability in-
creases to 0.999659%, with the respective downtime of 2.983 hours. Finally, when the SFC is
fully replicated (Scenario 5), availability reaches 0.999999%, with the lowest downtime: 0.004
hours.

Although the addition of redundant VNFs in each scenario increases the SFC availability,
it also increases the SFC placement cost. The cost of Scenario 1 is $2365.20; the addition
of a VNF of type 1 (Scenario 2) increases the cost to $2470.32, a difference of $105.12.
For Scenario 3, where half of SFC presents redundancy, the placement cost is $2671.80, an
increase of 13% in comparison with Scenario 1. The cost of Scenario 4 is $3083.52, an increase
of 30.37% from the Scenario 1. In Scenario 5, with redundancy in all VNFs of the SFC, the
placement cost is 4730.40$, an increase of 77% on Scenario 3 and double of cost of Scenario
1.

As redundant VNF instances are added, the availability increases while the downtime de-
creases. These aspects must be considered by the network manager, since different customers
can have different requirements. For instance, traditional IT applications have availability in
the order of 2’9s to 3’9s (i.e., 0.99% and 0.999%), while telecommunication service providers
require their network service to be “always on" with an availability of 0.99999% or 0.999999%
(FAN; JIANG; QIAO, 2017). Therefore, based on Table 24, only Scenario 5 is capable of meet-
ing the requirements of Telecommunications services, i.e. full redundancy of the SFC. Other

177

critical applications can require a high availability level, such as traffic systems and critical
healthcare (POURSAFAR; ALAHI; MUKHOPADHYAY, 2017). For scenarios with lower availability
requirements, other redundancy configurations could be used. It is important highlight the
trade-off between availability and placement cost. To achieve the availability required for crit-
ical applications and telecommunications services, the SFC must be duplicated, which doubles
the placement cost. However, for applications with lower availability requirements, other re-
dundancy strategies can be used based on cost considerations. For example, if the client’s
requirement is two 9’s, the placement cost will be around $2365.20 (Scenario 1). On the other
hand, if the customer requirements increase to three 9’s, the allocation cost will be at least
$2671.80 (Scenario 3).

As discussed we created an algorithm that created comparatively smaller SPN models to
assess the SFC availability. To evaluate the performance gain of this algorithm, we carried
out experiments comparing the algorithm with the baseline SPN models. For each scenario
presented in Figure 51, we created an SPN with building blocks for each component presented
in the scenarios. We then calculated the SFC availability using our proposed algorithm 1. We
performed the experiments 30 times to calculate the runtime. The average results are presented
in Table 25.

Table 25 – Runtime comparison of baseline SPN models and proposed algorithm

Scenario Baseline SPN model (in seconds) Proposed Algorithm (in seconds)
1 0.68 0.02
2 2.32 0.05
3 9.21 0.28
4 40.22 0.49
5 196.34 0.89

Source: the author (2023).

The runtime increases across the scenarios as more components are considered in the
models generated by our algorithm and in the baseline SPN models. However, the runtime of
the baseline SPN models are higher than the proposed algorithm for all scenarios. One can
note that the runtime of the baseline SPN models increases significantly across the scenarios,
reaching 196.34 seconds on average. In contrast, the proposed algorithm never exceeds one
second on average to calculate the availability of the SFC; the highest runtime reported was
0.89 seconds for Scenario 5. This runtime reduction can be explained by the smaller SPNs
generated by the proposed algorithm, and the subsequent performance gain in calculating

178

the availability of each type of VNF separately. Since the SPNs are smaller, the respective
CTMCs have fewer states and therefore can be generated and resolved more quickly. This has
practical implications. Where placement decisions must be made quickly, the baseline models
are not suitable due to the substantially longer runtime. The significantly faster runtime of
the proposed algorithm suggests it represents a potentially good solution for optimisation
algorithms, where the availability need to be evaluated several times, such as meta heuristics.

179

APPENDIX B – SFC REQUEST DETAILS

Endpoint 10, listed in Table 10, is used to create a new SFC request. It implements a POST
method. A user must pass the information about the new SFC as JSON data, as illustrated
below:

1 {

2 "id": 0,

3 "name": "My SFC",

4 "destination": "master -node",

5 "source": "minion -1",

6 "VNFs": [

7 {

8 "_id": "1",

9 "name": "compress -image",

10 "id": "1",

11 "resources": {

12 "cpu": 1,

13 "memory": 1,

14 "storage": 1

15 },

16 "mttf": 1,

17 "mttr": 1,

18 "availability": 1,

19 "path_to_files": "/home/guto/vnf_catalog/compress

-image"

20 },

21 {

22 "_id": "0",

23 "name": "firewall",

24 "id": "0",

25 "resources": {

26 "cpu": 1,

180

27 "memory": 1,

28 "storage": 1

29 },

30 "mttf": 1,

31 "mttr": 1,

32 "availability": 1,

33 "path_to_files": "/home/guto/vnf_catalog/firewall

"

34 }

35],

36 "flow_entries": [

37 {

38 "source": "Source",

39 "destination": "compress -image",

40 "resources": {

41 "bandwidth": 1,

42 "cost": 1

43 }

44 },

45 {

46 "source": "compress -image",

47 "destination": "firewall",

48 "resources": {

49 "bandwidth": 1,

50 "cost": 1

51 }

52 },

53 {

54 "source": "firewall",

55 "destination": "destination",

56 "resources": {

57 "bandwidth": 1,

181

58 "cost": 1

59 }

60 }

61],

62 "requirements": {

63 "availability": 0.99

64 }

65 }

One may note that a user needs to specify some basic information about the SFC, such as
its ID, name, source and destination nodes (see Figure 10). The VNF list needs to be defined
as well. Each VNF has the information defined in the VNF template, as illustrated in Table
8. The order of VNFs specified in the list is not relevant for the SFC composition, since the
virtual links define how they are connected. In addition, a user also must define the flow entries
list. Each virtual link defines the source and the destination among the VNFs; and the source
and the destination physical nodes.

From the SFC request showed in the list defined in line 6, we can see that there are two
VNFs: a firewall and a compress image function. According to the virtual links list, the first
VNF is the compress image function, since it connects to the source node. Both VNFs are
connected by the second virtual link of the list, and finally the firewall is connected to the
destination.

A user can specify the requirements for the SFC and define these in a specific field. In
the example illustrated above, we define the availability requirement of the SFC in line 63.
Although the focus of the SPIDER is on the availability, other requirements could be considered
in the future for the placement and inserted through their JSON specification.

182

APPENDIX C – DAEMON CONFIGURATION

The daemon module is implemented using the Python language. To monitor the com-
puting resources usage, we use the psutil tool1, which is a cross-platform library designed
for monitoring information related to running processes and system utilization, such as CPU,
memory, and disks. Therefore, we may collect information about the number of CPU cores
used, the amount of memory usage, and the total storage consumption. To obtain data on
network usage, the daemon uses the vnfStat tool2, which is a network traffic monitor that uses
the network interface statistics provided by the kernel as information source. Using vnfStat,
the daemon is able to collect link usage on a given interface in the last hour (this time is
configurable, and the collection time can be increased).

Based on these two tools, the daemon is able to collect updated information about comput-
ing and network resources used by a node. When a node is included in the SPIDER framework,
a user must specify a set of data fields in a JSON file, as illustrated below:

1

2 {

3 "node":{

4 "id": "node_1",

5 "name": "node_1",

6 "latitude": 19.994326843893894,

7 "longitude": 73.78965468852559,

8 "resources": {"cpu": 10, "memory": 10, "storage": 10}

,

9 "available_resources": {"cpu": 10, "memory": 10, "

storage": 10},

10 "node_cost": 500,

11 "mttf": 2880,

12 "mttr": 1.5,

13 "availability": 0.9994794377928162,

14 "energy": 20,

15 "metadata": [],

1 <https://psutil.readthedocs.io/en/latest/>
2 <https://github.com/vergoh/vnstat>

https://psutil.readthedocs.io/en/latest/
https://github.com/vergoh/vnstat

183

16 "capabilities":

17 {"supported_VNFs":

18 [

19 {"id": 0, "type": "compress -image"},

20 {"id": 1, "type": "firewall"}

21]

22 },

23 "ports": ["wlo1"],

24 },

25

26

27 "links":[

28 {

29 "id":0,

30 "destination":{

31 "id":"router -1",

32 "name":"router -1",

33 "ip":"http://192.168.0.1",

34 "port":"router -1-p1",

35 "latitude": 19.994326843893894,

36 "longitude": 73.78965468852559

37 },

38 "interface":"wlo1",

39 "resources": {"delay": 0.5564765526145907, "

bandwidth": 10, "cost_link": 10}

40 }

41]

42 }

The user needs to specify basic information of a node, such as its ID, name, latitude, and
longitude. It is important to highlight that we can add geographically distributed nodes in the
SPIDER, since we have information about their latitude and longitude. Additional information
is needed for the placement algorithm, such as MTTF (in hours), MTTR (in hours), availability

184

(in %), cost (in $), and energy consumption (in Watts). We also consider a field metadata,
where additional information about the node can be added (e.g. manufacturer). Next, the user
must specify the VNFs that are accepted on the node. We use this field in JSON to define
which VNFs the node supports for possible placement. The goal is to avoid placing VNFs
which are not supported by a node (due to hardware restrictions, for example). Therefore, a
user defines a list of VNFs that are supported by the node and this information is considered
during the placement by the Agent module. The last information about the node is a list of
ports, which defines all network interfaces of a given node.

185

APPENDIX D – SFC PLACEMENT DECISION BY THE AGENT

Once the Agent defines the best placement strategy for a given request, it creates a JSON
representation that describes the obtained placement strategy, as illustrated below:

1

2 {

3 "id": 0,

4 "name": "my-sfc",

5 "source": "minion -1",

6 "destination": "master -node",

7 "VNFs": [

8 {

9 "name": "compress -image",

10 "node_name": "minion -1",

11 "replicas": 2,

12 "resources": {

13 "cpu": 1,

14 "memory": 1,

15 "storage": 1

16 }

17 },

18 {

19 "name": "firewall",

20 "node_name": "master -node",

21 "replicas": 1,

22 "resources": {

23 "cpu": 1,

24 "memory": 1,

25 "storage": 1

26 }

27 }

28],

186

29 "flow_entries": [

30 {

31 "source": "minion -1",

32 "destination": "master -node",

33 "path": ["minion -1_router -1"]

34 }

35]

36 }

The JSON data contains all information needed for the placement SFC in the infrastructure.
We add the name of SFC, the source and destination nodes (this information is defined in the
request). Then a list of VNFs is defined. Each element of the list has the name of the VNF,
the name of the physical node where the VNF will be placed, the number of replicas of VNF,
and the amount of resources that this VNF requires (defined in the VNF template as shown
in Table 8). We also specify the list of virtual links that connect nodes where the VNFs are
placed. For each virtual link, we specify the source node, the destination node, and the path,
which is composed of the links that connect those nodes.

	Title page
	
	Acknowledgements
	Epigraph
	Abstract
	Resumo
	List of Figures
	Listing
	List of Tables
	Contents
	Introduction
	Objectives
	Contributions of the thesis
	Organisation of the Thesis

	Background
	SFC Placement
	Availability Concepts
	MAPE-K
	Deep Learning
	Recurrent Neural Networks
	Long Short-Term Memory Networks
	Gated Recurrent Unit

	Reinforcement Learning
	Advantage Actor-Critic
	Proximal Policy Optimisation

	Concluding Remarks

	Related works
	Framework for SFC Placement
	Comparison

	SPIDER
	SPIDER requirements
	SFC Request Example
	SPIDER Overview
	Repositories and Data Models
	SPIDER API
	SPIDER Core
	Agent Module of SPIDER

	Traffic Prediction for SFC Placement
	Dataset
	Traffic Prediction Pipeline
	Clustering the Cells
	DL Model Configuration
	Metrics for evaluating DL models
	Results
	Statistical analysis
	Comparison of LSTM and GRU models.

	Concluding Remarks

	Reinforcement Learning for SFC Placement
	Modelling SFC placement
	Generating SFC Availability models Automatically

	System Model for SFC Placement Problem
	Problem Definition

	The Cand Algorithm for Selecting Candidate Nodes
	An Illustrative Example of How the Cand Algorithm Works

	RL for SFC placement
	Characteristics of SFC requests
	Environment State Representation
	Action representation
	Reward function

	The Cand-RL Algorithm
	Evaluation
	Simulation setup
	RL Agent Parametrization
	Scenario Variation

	Concluding Remarks

	SPIDER Proof of Concept
	Container-based SFCs using Kubernetes
	Prototype Evaluation
	Scenario Setup
	Placement Time
	VNF processing Runtime
	Communication SFC Delay
	Overall SFC delay

	Concluding Remarks

	General Considerations
	Limitations
	Scientific Contributions
	Future Works

	References
	SFC Availability Analysis
	Results

	SFC Request Details
	Daemon configuration
	SFC Placement decision by the agent

