
UNIVERSIDADE FEDERAL DE PERNAMBUCO

Milton José Vieira Souto Maior

Análise Comparativa de Performance de Frameworks para APIs Rest

Recife,

2023

UNIVERSIDADE FEDERAL DE PERNAMBUCO

Sistemas de informação

Milton José Vieira Souto Maior

Análise Comparativa de Performance de Frameworks para APIs Rest

TCC apresentado ao Curso de Sistemas de
Informação da Universidade Federal de
Pernambuco, como requisito para a obtenção
do título de bacharel em Sistemas de
informação.

Orientador(a): Breno Alexandro Miranda

Recife

2023

Ficha de identificação da obra elaborada pelo autor,
 através do programa de geração automática do SIB/UFPE

Maior, Milton José Vieira Souto.
 Análise comparativa de performance de frameworks para APIs Rest /
Milton José Vieira Souto Maior. - Recife, 2023.
 55 : il., tab.

 Orientador(a): Breno Alexandro Ferreira Miranda
 Trabalho de Conclusão de Curso (Graduação) - Universidade Federal de
Pernambuco, Centro de Informática, Sistemas de Informação - Bacharelado,
2023.

 1. framework. 2. API. 3. performance. I. Miranda, Breno Alexandro
Ferreira. (Orientação). II. Título.

 000 CDD (22.ed.)

Milton José Vieira Souto Maior

Análise Comparativa de Performance de Frameworks para APIs Rest

TCC apresentado ao Curso de Sistemas de
Informação da Universidade Federal de
Pernambuco, como requisito para a obtenção
do título de bacharel em Sistemas de
informação..

Aprovado em: ___/___/______.

BANCA EXAMINADORA

__
Profº. Dr. Breno Alexandro Ferreira Miranda (Orientador)

Universidade Federal de Pernambuco

Profº. Dr. Juliano Manabu Iyoda (Examinador Interno)

Universidade Federal de Pernambuco

RESUMO

O desenvolvimento de software, sobretudo de Application Programming Interfaces

(APIs) vem evoluindo e mudando de maneira muito rápida devido à alta quantidade

de tecnologias no mercado. Diversas linguagens de programação e frameworks são

utilizados para implementar essas interfaces, cada uma com suas peculiaridades,

vantagens e desvantagens, o que dificulta tomar decisões, como qual tecnologia

utilizar para fazer uma API? Qual framework mostraria mais desempenho? Nesse

sentido, esse trabalho apresenta um comparativo de desempenho de uma mesma

implementação de API desenvolvida nos em diferentes frameworks utilizados por

programadores no mercado.

Palavras-chave: framework ; API; performance.

ABSTRACT

Software development, especially Application Programming Interfaces (APIs) has

been evolving and changing very quickly due to the high number of technologies on

the market. Several programming languages and frameworks are used to implement

these interfaces, each with its own peculiarities, advantages and disadvantages,

which makes it difficult to make decisions, such as which technology to use to make

an API? Which framework would show more performance? In this sense, this work

presents a performance comparison of the same API implementation developed in

different frameworks used by programmers in the market.

Keywords: framework ; API; performance.

SUMÁRIO

1 INTRODUÇÃO 6

2 FUNDAMENTAÇÃO TEÓRICA 7

2.1 O que são web frameworks. 7

2.1.1 Application Programming Interface 7

2.1.2 Rest e API RestFul 8

2.2 - Stack Overflow 9

2.3 - Linguagens de programação 9

2.4 ORMs 10

2.5 Frameworks 11

2.5.1 Spring boot 11

2.5.2 ExpressJs 11

2.5.3 ASP.NET Core 12

2.5.4 Django 12

3 METODOLOGIA 12

3.1- O Problema 12

3.2 Definição da arquitetura e do modelo relacional 13

3.2.1 - A arquitetura 13

3.2.1 - O modelo relacional 14

3.3 O Modelo de testagem 15

4. TRABALHOS RELACIONADOS 16

5. SISTEMA DESENVOLVIDO PARA TESTES 17

5.1 VISÃO GERAL 17

5.2 Arquitetura de implementação 23

6 TESTAGEM 24

6.1 Configuração do ambiente de testes 24

6.2 Endpoints 24

Foram feitos dois endpoints nas implementações das aplicações de backend. 24

6.2.1 - GET Suppliers 24

6.2.2 - Resultados GET Suppliers 37

6.2.3 - GET Customers 38

6.2.4 - Resultados GET Customers 48

7 LIÇÕES APRENDIDAS 48

7.1 Diferenças 48

7.2 Por que usar queries nativas? 49

7.3 Comportamentos diferentes 49

8 CONCLUSÃO 49

REFERÊNCIAS 51

6

1 INTRODUÇÃO

No cenário atual, com a tecnologia da informação utilizada em diversos contextos

diferentes, fez surgir uma alta demanda de serviços informatizados e online. Com

diversas linguagens de programação surgindo com o tempo e sendo utilizadas no

mercado e em pesquisas em inúmeros contextos.

No contexto mais específico de um dos ramos da programação, os serviços de

Application Programming Interfaces (APIs) são serviços utilizados para enviar ou

receber informações de um cliente (sistema).

Devido a isso surgiram diversos frameworks que auxiliam a programar essas

interfaces, cada uma com suas qualidades e peculiaridades, o que leva a questão de

qual escolher? Qual linguagem? Qual framework utilizar? Qual seria mais

performático? A escolha de uma linguagem para resolver esses problemas de criar

APIs vai, muitas vezes, muito além de qual seria mais performático, mas também

observando-se outras características específicas, como afinidade das pessoas

relacionadas com tal tecnologia, capacidade de recursos de hardware e até mesmo

funcionalidades específicas em dados contextos que seriam melhores aproveitadas

se fossem feitas em dada linguagem.

É possível assim demonstrar que seria difícil fazer uma comparação abstrata e

genérica que mostraria que tal linguagem se sobressairia sobre outras de maneira

incontestável em todos os cenários.

No entanto, ao definir um problema real que utiliza-se de uma API, em que todos

esses frameworks fossem implementados da mesma forma e utilizassem as

mesmas configurações de infraestrutura e mesma arquitetura, seria possível mostrar

qual conseguiria ser sobressair sobre o outro e demonstrar também que

características dos frameworks corroboram para ele ser mais performático nesse

caso.

Esse trabalho mostra uma comparação de desempenho entre os 4 frameworks mais

utilizados por programadores para esse fim no ano de 2022, conforme as pesquisas

da comunidade do Stackoverflow.

7

2 FUNDAMENTAÇÃO TEÓRICA

Esta seção pretende detalhar os tópicos abordados nesta pesquisa de
maneira mais teórica, explicando os princípios e conceitos, detalhando o que são
web frameworks, APIs Rest. Como também, explorar as características das
linguagens e dos frameworks utilizados neste estudo.

2.1 O que são web frameworks
Web framework é um framework de software desenvolvido para facilitar o

processo de desenvolvimento web, fazendo com que seja mais fácil de se fazer um

site ou sistema. Um web framework inclui todo o processo de desenvolvimento de

apresentação de conteúdo no navegador como também nas APIs.

2.1.1 Application Programming Interface

Application Programing Interface(API) é um conjunto de definições e

protocolos para construir e integrar aplicações de softwares. É utilizada como meio

de comunicação entre aplicações.

Figura 1: Diagrama de um cliente para uma API.

Fonte: O autor (2023)

Na figura 1, pode-se ver o fluxo de uma aplicação monolítica simples que utiliza um

cliente que consome uma API de instância única para ter acesso a dados, em

questões de leitura e escrita, respeitando as regras que estão estabelecidas dentro

da API.

8

2.1.2 Rest e API RestFul

Figura 2: Ilustração do fluxo Rest API.

Fonte: Seobility - licença CC BY-SA 4.0

A arquitetura Rest foi criada pelo cientista da computação Roy Fielding nos

anos 2000. No intuito de padronizar os protocolos de comunicação e

desenvolvimento na internet, Fielding com um time de especialistas desenvolveu as

características da Representational State Transfer (REST), que foi definida na sua

tese de PhD.

Podendo-se definir como um conjunto de princípios e restrições, REST segue um

padrão de transferência do estado do recurso ao solicitante ou endpoint, onde essa

transferência é feita pelo protocolo HTTP, utilizando diversos formatos como JSON,

HTML, XLT e plaintext, sendo o JSON o mais utilizado.

Uma API Restful, é definida por uma API que está conforme os critérios

estabelecidos pela arquitetura REST, nos quais podem-se destacar os seguintes

critérios:

● Arquitetura cliente-servidor: Dividir a interface do usuário da persistência de
dados com pelo menos dois serviços para o sistema. Um responsável pela
interface (cliente) e outro pelo servidor (API).

● Comunicação stateless: A comunicação feita entre cliente e servidor não
deve armazenar nenhuma informação entre as solicitações. Em uma REST
API, cada solicitação contém todos os dados necessários para ser atendida,
não dependendo de informações já armazenadas em outras sessões.

9

● Cache: A API deve conseguir salvar em cache recursos e dados para
melhorar o desempenho.

● Interface uniforme: Uma REST API deve conter uma interface uniforme, pois
ela oferece uma comunicação padronizada entre o usuário e o software. A
manipulação de recursos é feita por meio de representações (como JSON ou
XML).

● Sistema de camadas: cada camada do sistema deve possuir uma
funcionalidade específica (como segurança ou carregamento). Assim, cada
camada é responsável por uma etapa diferente dos processos de requisição
de usuário e de resposta do servidor.

2.2 - Stack Overflow

O StackOverflow é um plataforma e comunidade online de perguntas e
respostas mais utilizada por programadores profissionais e não profissionais em
diversas áreas de tecnologia da informação, sobretudo na área de engenharia de
software. A comunidade dissemina conhecimento mediante discussões entre as
pessoas da comunidade. Devido à comunidade ser muito forte, é feita uma pesquisa
anualmente entre a comunidade, respondendo a questionários que vão desde
localização geográfica da comunidade a linguagens de programação e frameworks
que a comunidade mais utilizou naquele período.

2.3 - Linguagens de programação

As linguagens de programação utilizadas foram escolhidas selecionando as 4

primeiras mais utilizadas no contexto de desenvolvimento web para APIs segundo

as pesquisas do StackOverflow em 2022, essas demonstradas na tabela 1.

Tabela 1: Comparativo entre linguagens de programação.

Linguagens Java JavaScript Python C#

Execução Compilada Interpretada Interpretada Compilada

Modelo de
concorrência

Multi threads Single thread Single thread
e Multi threads

Multi threads

https://www.hostinger.com.br/tutoriais/text=O%20JSON%20

10

Tipagem Estática Dinâmica Dinâmica Estática e
Dinâmica

Paradigma Orientada a
objetos,

imperativa e
funcional

Orientado a
eventos,
funcional e
procedural

Orientado a
objetos,

procedural e
funcional

Orientado a
objetos, baseada
em componentes
e imperativa

Garbage
collection

Sim Sim Sim Sim

Suporte a
async

Sim Sim Sim Sim

Tipagem Forte Fraca Fraca Forte

Tipo de
compilação

JIT ou AOT JIT JIT JIT ou AOT

Gerenciamento
de pacotes

maven, Gradle e
Ant

npm pip nuGet

Fonte: O autor(2023)

A tabela 1 mostra as principais características a respeito das linguagens utilizadas

pelos frameworks escolhidos. De maneira geral, múltiplas threads podem ajudar a

lidar com concorrências, o que pode ser um fator a ser considerado quando a API

lida com múltiplas requisições de vários usuários ao mesmo tempo.

2.4 ORMs
ORM (Object-Relational Mapping) é uma técnica de programação que permite

desenvolvedores interagirem com o banco de dados usando paradigmas da

programação objeto relacional para muitas vezes suprir as necessidades de

escrever queries nativas SQL. ORM mapeia uma tabela e suas relações com outras

tabelas para classes, usando conceitos como herança, encapsulamento para

manipular os dados no banco de dados.

11

2.5 Frameworks

Tabela 2: Comparativo entre os frameworks escolhidos.

Framework Linguagem Multithread ORM Async Suporte
a cache

Versão

Spring
Boot

Java suportado Hibernate Sim Sim 3.0.1

Express.js JavaScript Não
suportado

sequelize Sim Sim 4.18.2

ASP.NET
Core

c# suportado dapper Sim Sim 7.0.101

Django Python suportado djangoORM Sim Sim 4.1.7

A tabela 2 mostra as principais características dos frameworks a serem utilizados

para a comparação.

2.5.1 Spring boot

Criado pelo time spring na Pivotal Software, é o framework de código aberto

Java mais utilizado para implementações de serviços de API, com uma comunidade

muito forte e diversas bibliotecas para aumentar a robustez do framework. Sua

qualidade mais atrativa é “Convenção sobre a configuração” que reduz a quantidade

de código que seria necessário para configurar uma aplicação.

2.5.2 ExpressJs

Criado por TJ Holowaychuk em 2010, se tornou o mais popular framework do

Node.js. É um framework de código aberto que provê simplicidade e um conjunto

leve de recursos utilizados para fazer as aplicações de REST. Possui uma grande

comunidade ativa e abundante de plugins e módulos que estendem suas

capacidades além de ser implementado em JavaScript, que até a data que esse

estudo está sendo feito, é considerado a linguagem de programação mais utilizada

no mundo.

12

2.5.3 ASP.NET Core

Criado por um time de desenvolvedores da Microsoft, é um framework de

código aberto, múltiplas plataformas, e é o sucessor do ASP.NET framework original

lançado em 2016. Ele foi feito para ser modular, leve, flexível e feito no topo do

runtime do .NETCore que é um runtime de múltipla plataforma de código aberto para

desenvolver aplicações web, como API. Possui múltiplas features sendo lançadas

constantemente, com uma comunidade forte e o apoio da Microsoft no suporte de

suas tecnologias.

2.5.4 Django

Criado em 2003 por Adrian Holovaty and Simon Wilson, Django é um

framework de aplicação web baseado em Python e de código aberto. Foi feito no

intuito de construir aplicações web complexas de maneira rápida e fácil. Com

diversas features como ORMs, roteamento de URLs, middlewares e vários outros

que fizeram ele ser popular, possui uma comunidade forte e engajada, sendo

também bastante utilizado pela indústria.

3 METODOLOGIA

3.1- O Problema
A escolha das linguagens foi baseada na pesquisa anual do stackoverflow, na

qual a comunidade de desenvolvedores pelo mundo responde essa pesquisa.

Consoante a pesquisa, com 58.743 respostas, os mais utilizados na área de web

frameworks foram ExpressJS (22.99%), ASP.NET Core (18,59%), Spring (16.3%) e

Django (14,65%).

Esse trabalho fará uma análise comparativa entre esses frameworks da forma

mais justa possível, dado que eles funcionam de maneiras diferentes e suas

linguagens têm diferentes limitações e features implementadas de maneira diferente.

Para isso, vamos utilizar a mesma arquitetura de camadas para implementação de

uma API para tentar colocar esses frameworks nas mesmas condições e na mesma

complexidade. Assim podemos observar o comportamento de cada um com a

mesma implementação diante dos mesmos cenários de testes.

13

A escolha dos frameworks
Os frameworks foram selecionados a partir da pesquisa anual do

stackoverflow, na qual a comunidade responde um questionário com as tecnologias

mais utilizadas, questões salariais e geográficas. Foi selecionado o top 4 das

tecnologias mais utilizadas na área de desenvolvimento web de backend.

3.2 Definição da arquitetura e do modelo relacional

3.2.1 - A arquitetura

Para podermos nivelar os frameworks e tentar fazer um comparativo com

condições iguais, o autor propõe um modelo de arquitetura para ser utilizado na

implementação da API dos frameworks a serem testados. A arquitetura foi feita com

base no conhecimento do autor derivado de seu tempo no curso de bacharelado e

no mercado de trabalho trabalhando como desenvolvedor.

Figura 3: Modelo de arquitetura definido pelo autor

Fonte: O autor (2023)

14

A arquitetura foi elaborada conforme a figura 3, com 3 camadas de abstração e o

acesso a banco de dados.

Controller: Camada responsável por receber os requests e tratar os erros, status e

retorno para o cliente que fez a requisição.

Service: Camada responsável pelas regras de negócio da aplicação, contendo a

maioria da lógica e do pós-processamento dos dados.

Repository: Camada responsável por ter acesso ao banco de dados, com única

responsabilidade de estabelecer a conexão com o banco e fazer operações de

leitura e escrita.

3.2.1 - O modelo relacional

O modelo relacional foi feito pelo autor no intuito de forçar os frameworks a

fazerem consultas não triviais e que requeiram pós-processamento desses dados

para se obter um retorno desejado, esses que serão descritos mais adiante neste

trabalho.
Figura 4: Modelo de arquitetura definido pelo autor

Fonte: O autor(2023)

15

O banco de dados mostrado na figura 4, é uma esquematização para uma operação

de E-commerce, na qual existem fornecedores, produtos, clientes e pedidos. Toda a

lógica sobre o modelo será melhor explicada e detalhada mais adiante.

3.3 O Modelo de testagem
Para fazer testes de performance de APIs é necessário separar critérios para

serem pontuados e avaliados. Considerando apenas o desempenho dos

frameworks, os seguintes critérios serão avaliados.

● Tempo de request

○ tempo médio

○ tempo mínimo

○ tempo máximo

○ vazão de request / tempo

● Percentual de erro (erros que podem acontecer ao se fazer uma request em

modos de estresse)

● Análise de comportamento nos diferentes cenários de teste

A ferramenta de testagem
Para testar as APIs fazendo requisições de maneira a simular mais usuários

ou até mesmo simular picos de requisições, a ferramenta apache Jmeter foi utilizada

nesse trabalho.

Para realizar testes de desempenho entre as APIs é preciso fazer testes de estresse

para medir o tempo de respostas para as requisições do cliente para a API.

Esse trabalho utilizará chamadas HTTP para fazer os testes nas 4 aplicações

implementadas. Como todos os testes foram realizados numa única máquina local e

devido ao tempo de pesquisa foi optado o uso do HTTP ao invés do HTTPS.

16

Figura 5: Ambiente do apache Jmeter

Fonte: O autor (2023)

O Jmeter (Figura 5) consegue simular, múltiplos usuários fazendo requisições, com

configurações de intervalo de tempos, assim permitindo ser explorado vários casos

de testes.

4. TRABALHOS RELACIONADOS

Há alguns trabalhos na literatura que fizeram avaliações de desempenho de

frameworks, alguns que compararam frameworks diferentes de uma mesma

linguagem, outros que compararam o desempenho de um framework em um

problema específicos como de persistência de dados. Por fim, a literatura também

tem pesquisas que comparavam de 2 a 3 frameworks diferentes, realizando análise

de desempenho entre eles.

O trabalho relacionado mais próximo da pesquisa deste trabalho foi feito por

DALBARD, Axel; ISACSON, Jesper (2021). Eles compararam Dotnet Core com

ExpressJs em uma API que tinha uma ferramenta que, dadas as dimensões de um

produto e as dimensões de um container padronizado, calculava quantos produtos

poderiam ser armazenados. O teste de desempenho mensurou o consumo de

recursos e capacidade das APIs em responder a inúmeros requests. A pesquisa

concluiu que o Dotnet core conseguiu ter um desempenho melhor do que o

ExpressJs.

17

Na pesquisa de Dhalla, Hardeep Kaur.(2021), Dhalla faz uma comparação entre o

Spring e Asp.Net Core de uma API Restful utilizando como critérios o tempo de

resposta médio de uma requisição e o percentual de erro nas requisições feitas para

os dois frameworks para operações de Create, Retrieve, Update, Delete (CRUD)

Com o banco do MySQL. O trabalho mostrou que, no aspecto geral, o .Net Core

conseguiu ter um tempo médio menor, consumindo menos recursos, e quando a

carga de requisições foi para 64.000 usuários, a faixa de erro nas requisições

chegou a 85%.

5. SISTEMA DESENVOLVIDO PARA TESTES

O sistema proposto para ser desenvolvido de base para essas API se trata de

uma aplicação de e-commerce, contendo fornecedores, produtos e clientes e

compras, cada um com seus atributos e relações.

A escolha do modelo relacional para mapear o sistema foi feita para forçar os

sistemas a fazerem buscas complexas e terem pós-processamento para conseguir

retornar resultados específicos. Bancos de dados não relacionais como o mongoDB

poderiam ser utilizados para fazer testes, porém a abordagem seria um pouco

diferente da proposta deste trabalho.

5.1 VISÃO GERAL
O sistema representa um modelo de e-commerce, feito com práticas de

modelagem utilizadas no mercado. O sistema foi modelado pensando unicamente

em benchmarking e não para ser um banco de dados que resolveria um problema

da realidade, apesar de estar bem próximo disso.

Como requisitos vários fornecedores vendem produtos que podem ser fornecidos ou

não por fornecedores diferentes. O produto terá um histórico de preços, onde o

preço atual será o mais recente, definido por sua data de criação.

Os clientes desse e-commerce podem ter mais de um endereço e realizar compras

armazenadas no banco de dados.

18

Supplier

Figura 6: Representação ER Supplier

Fonte: O autor (2023)

A entidade Supplier representa um fornecedor, contendo propriedades como:

Id: Inteiro sequencial autogerado pelo banco para representar um atributo único.

Name: Representa o nome do fornecedor.
type: Um identificador variando de 0 ou 1 para representar se o fornecedor é do tipo

big ou small.

isActive: Binário com 0 ou 1 representando se o fornecedor está ativo ou não.

Product
Figura 7: Representação ER do Product

Fonte: O autor(2023)

19

A entidade Product representa um produto, contendo propriedades como:

Id: Inteiro sequencial autogerado pelo banco para representar um atributo único

Name: Representa o nome do produto
details: Detalhes do produto
type: Um identificador para saber se o produto é físico ou digital

Supplier_Product

Figura 8: Representação ER de produto e fornecedor

Fonte: O autor (2023)

A entidade Supplier_Product representa a relação MxN entre Supplier e Product.

Essa tabela contém atributos como:

Id: Inteiro sequencial autogerado pelo banco para representar um atributo único

productId: Chave estrangeira da entidade Supplier
supplierId: Chave estrangeira da entidade Product.
A Relação Supplier e Product foi mapeada dessa forma para poder ter o id

autogerado como chave primária da tabela.

20

Supplier_Product_Princing
Figura 9: Representação ER do supplier_Product e Supplier_Product_Pricing

Fonte: O autor(2023)

A Entidade Supplier_Product_Pricing representa os preços do produto oferecidos

pelo fornecedor, estabelecendo a relação entre Supplier_Product e

Supplier_Product_Pricing.

A relação estabelecida é que, para cada 1 produto oferecido pelo fornecedor, haverá
N preços. Para se obter o preço atual será definido pelo preço com o campo

dtCreated com a data mais atual.

Os atributos do Supplier_Product_Pricing são definidos como:

Id: Inteiro sequencial autogerado pelo banco para representar um atributo único.

price: Decimal que representa o preço do produto.
supplierProductId: Chave estrangeira da entidade Supplier_Product.

dtCreated: Campo date que representa a data que o preço foi criado.

21

Customer

Figura 10: Representação do modelo ER do Customer

Fonte: O autor(2023)

A tabela Customer representa o cliente do sistema, com propriedades como:

Id: Inteiro sequencial autogerado pelo banco para representar um atributo único.

document: String que representa o CPF ou CNPJ do cliente.

documentType: Identificador que representa o tipo do documento, sendo 1 para

CPF e 0 para CNPJ.

isActive: Booleano para representar se o cliente está ativado ou desativado.
name: String que representa o nome do cliente.

22

Customer_Address
Essa entidade modela representação do endereço de um cliente, tendo a relação de

1 cliente tendo N endereços.

Figura 11: Representação ER do Customer Address

Fonte: O autor(2023)

A tabela Customer_Address possui atributos como:

Id: Inteiro sequencial autogerado pelo banco para representar um atributo único.

address: String que representa o endereço completo do cliente
documentType: Identificador que representa o tipo do documento, sendo 1 para

CPF e 0 para CNPJ.

Customer_Order
A entidade Customer_Order representa uma compra realizada por um cliente, tendo

relação de 1 cliente podendo ter N pedidos.

Figura 12: Representação ER do Customer_Order

Fonte: O autor(2023)

A entidade possui atributos como:

Id: Inteiro sequencial autogerado pelo banco para representar um atributo único.

23

orderDate: Data que o pedido foi feito.
customerId: Chave estrangeira que identifica o cliente que fez o pedido.

Supplier_Product_Pricing_Customer_Order

Essa relação representa o relacionamento MxN da tabela que representa o preço

dos produtos e da tabela que representa a compra feita pelo cliente. Nesse modelo,

a compra pode ter vários produtos (nesse caso a referência é feita pelo id do preço

do produto comprado).

Figura 13: Representação ER do Supplier_Product_Pricing_Customer_Order

Fonte: O autor (2023)

A entidade possui atributos como:

Id: Inteiro sequencial autogerado pelo banco para representar um atributo único.

supplierProductPricingId: Chave estrangeira que identifica o preço do produto que

foi comprado.

customerOrderId: Chave estrangeira que identifica o pedido.

5.2 Arquitetura de implementação
A Arquitetura desenvolvida pelo autor se baseia em camadas com responsabilidades

únicas como mostradas na figura 3.

24

A camada de serviços contém a parte lógica, as quais foram feitas utilizando funções

com mesma lógica e estrutura de dados para todas as implementações nos

diferentes frameworks.

A camada de acesso ao banco de dados tem a responsabilidade de estabelecer a

conexão com o banco e executar a query, fechando a conexão assim que a consulta

retorna os resultados.

6 TESTAGEM

6.1 Configuração do ambiente de testes

Todos os testes foram realizados no mesmo computador, com as configurações

destacadas a seguir.

Processador: Intel(R) Core(TM) i5-8265U CPU @ 1.60GHz - 1.80 GHz

Memória ram: 16gb ddr4
Sistema operacional:Windows 11 Home Single Language, versão 22H2

Banco de dados: MySQL server 8.0

Para os testes foi utilizado um banco de dados que possui 10 mil instâncias para as

tabelas principais e 20 mil instâncias para as tabelas que representam

relacionamento. O banco de dados foi povoado por um script feito pelo autor.

6.2 Endpoints

Foram feitos dois endpoints nas implementações das aplicações de backend.

6.2.1 - GET Suppliers

Esse endpoint faz a consulta para trazer todos os suppliers e os produtos

relacionados a eles. Para fazer essa consulta em um banco relacional que possui as

configurações de modelagem descrita nas seções anteriores, é preciso consultar 3

tabelas e processar os dados para serem retornados segundo a figura 14.

25

O retorno é um JSON que contém o fornecedor e uma lista com outro JSON

contendo os produtos que estão relacionados a ele.

Figura 14: Representação dos dados que serão retornados na requisição

Todos os frameworks utilizam a mesma query SQL para consultar as informações no

banco de dados. A query na figura 15 retorna todas as instâncias de fornecedores

com seus produtos que representam um total de 19.999 instâncias a serem

retornadas e posteriormente feito um pós-processamento para ficarem no padrão da

figura 14.

Figura 15: Query SQL feita pelo autor para retornar todos os fornecedores e seus produtos

Fonte: O autor (2023).

26

A implementação da parte lógica de cada framework é mostrada abaixo:

Figura 16: Implementação da parte logica no ASP.NET Core e Spring respectivamente

Figura 17: Implementação da parte lógica no DJANGO e no EXPRESSJS respectivamente

27

Basicamente, é feito um for para percorrer os resultados e processá-los, utilizando

uma estrutura de dados como um HashMap para lidar com o retorno da query. Por

fim é feito um parse para serem retornados os valores do HashMap em uma lista

para ficar igual à figura 14.

Cenário 1: 50 requisições por segundo, durante 5s, totalizando 250
requisições

Utilizando conexão com banco de dados e executando a mesma query para todos

os frameworks, foram obtidos os seguintes resultados.

ExpressJs
Para executar todas as requisições, foi levado um tempo total de 22 segundos

(figura 18).

Figura 18: Número de transações por tempo total de teste

É possível perceber que, ao atingir a metade do tempo total, foi-se atingido o melhor

número de requisições por milissegundo.

28

Figura 19: Tempo de resposta de uma request x tempo total do teste

O tempo de resposta da requisição (figura 19) foi subindo com o tempo, muito

possivelmente por ter que esperar uma requisição acabar para poder começar a

outra.
Figura 20: Distribuição do número de requisições com seu tempo de resposta total

A distribuição (figura 20) mostra que a maioria das requisições estão entre 3,6

segundos e 4,3 segundos.

Tabela 3: Representação dos resultados do expressJs

Total Média Mínimo Max Vazão (requisição/tempo) Percentual de
erro

250 3818 ms 198 ms 6720 ms 11,2 req/sec 0%

29

No resultado geral (tabela 3), teve um tempo mínimo bom e sem nenhuma

requisição com falha.

ASP.NET CORE
Para executar esses testes, foi levado um total de 11 segundos, sendo a metade do

tempo do expressJS.

Figura 21: Transações por segundo durante o tempo de teste

Nesse caso, a maior quantidade de transações por segundo foi alcançada bem

próximo às últimas requisições a serem feitas (ver figura 21).

Figura 22: Tempo de resposta de uma request x tempo total do teste

O tempo de resposta (figura 22) oscilou menos que o do Express.js, tendo valores

menores com uma queda ao chegar no tempo final do teste.

30

Figura 23: Distribuição do tempo de resposta das requisições

A maioria do tempo das requisições se encontram entre 1700 a 2000 milissegundos

(ver figura 23). Uma diferença de comportamento interessante é que, mesmo tendo

um tempo de resposta menor que o Expressjs, o tempo mínimo do dotnet é maior e

a quantidade de requests que levaram menos tempo é menor que a do framework

de Javascript devido ao comportamento do dotnet de lidar com maior número de

requisições no mesmo momento.

Tabela 4: Representação dos resultados do ASP NET CORE

Total Média Mínimo Max Vazão (requisição/tempo) Percentual de
erro

250 1994 ms 294 ms 2991 ms 23,1 req/sec 0%

A vazão do ASP .NET Core chegou a ser pouco mais de 2 vezes maior que a do

ExpressJS. Um dos fatos que pode colaborar nisso é o suporte nativo a multi

threads que melhoram a execução concorrente.

31

Spring Boot

O framework do Java levou 12 segundos para responder todas as requisições.

Figura 24: Transações por segundo durante o tempo de teste

As transações por segundo se mantiveram muito mais estáveis no pico do que os

outros dois citados anteriormente.(ver figura 24)

Figura 25: Tempo de resposta durante o tempo do teste

O tempo de gasto total do teste foi de 12 segundos, com oscilações do tempo de resposta (ver figura

25).

32

Figura 26: Distribuição do tempo de resposta das requisições

O desempenho foi muito parecido com o do framework do C#, mas manteve o tempo

mais estável por mais tempo no meio do tempo do teste, conforme a figura 26.No

entanto, o Dotnet ainda conseguiu manter um tempo menor, oscilando mais.

Tabela 5: Representação dos resultados do Spring boot

Total Média Mínimo Max Vazão (requisição/tempo) Percentual de
erro

250 1908 ms 261 ms 3702 ms 22,1 req/sec 0%

A vazão do ASP .NET CORE e do Spring Boot se mantiveram bem parecidas, com o

dotnet conseguindo fazer em média uma requisição a mais por segundo (ver tabela

5). Outro fato a ser considerado é que no tempo máximo do Spring Boot foi pior que

o ASP .NET CORE, mesmo os dois possuindo suporte a multi thread nativamente.

Django

O tempo de execução do teste durou um total de 17 segundos, porém grande parte

das requisições falharam por motivos do Django no comportamento default com as

configurações do ambiente de teste descritas acima não aguentar um pouco mais

que 30 requisições por segundo. O número de requisições limitadas foi pequeno

devido a limitações de hardware de testes.

33

No entanto, isso pode ocorrer em produção e devido a isso a documentação do

Django recomenda utilizar alguns middlewares na requisição http que melhoram

performance por cache, ou até mesmo utilizar o Django com PyPy que funcionaria

como um novo compilador para Python, tendo resultados 4,2 vezes mais rápidos em

performance de acordo com sua documentação. Como a ideia desse trabalho é

comparar os frameworks de maneira mais “nativa” e justa possível, foi utilizado o

padrão de todos os frameworks, não utilizando nenhum plugin ou biblioteca a mais

além do framework e seu respectivo ORM.

Figura 27: Transações por segundo durante o tempo de teste

O Django começa com as primeiras requisições dando falha (requisições em

vermelho) pelo fato de ao se utilizar multithreads, sofrer com problemas de alcançar

um limite de conexões abertas no protocolo HTTP (ver figura 27).

A figura 28 mostra o gráfico don tempo de respostas não separando requisições

falhadas das de sucesso.

34

Figura 28: Tempo de resposta durante o tempo do teste

Figura 29: Distribuição do tempo de resposta das requisições

A maioria da distribuição ficou em 0 segundos pelo fato do comportamento ter

sobrecarregado a quantidade de requisições ativas (ver figura 29).

Quadro 6: Representação dos resultados do Django

Total Média Mínimo Max Vazão (requisição/tempo) Percentual de
erro

250 936 ms 0 ms 4337 ms 15,1 req/sec 60,80%

A tabela 6 mostra o resultado geral do teste, com destaque de 60,80% das

requisições com falha.

35

Cenário 2: 250 requisições feitas em 1s, simulando 250 usuários
tentando consumir a mesma API ao mesmo tempo.

Express.js
O Express.js levou um total de 30 segundos para responder todas as requisições

(ver figura 30).

Figura 30: Tempo de resposta durante o tempo do teste

Figura 31: Distribuição do tempo de resposta das requisições

O tempo de resposta subiu conforme o tempo de teste, não apresentando nenhuma

queda ou oscilação para baixo, diferente do cenário que teve que lidar com as

requisições feitas com intervalo de tempo (figura 31).

Tabela 7: Representação dos resultados do ExpressJs

Total Média Mínimo Max Vazão (requisição/tempo) Percentual de
erro

250 16821 ms 188 ms 29460
ms

8,2 req/sec 0%

36

A tabela 7 mostra o resultado geral, com destaque da vazão estar a 8,2 requisições

por segundo, mostrando-se ser menor do que o primeiro caso de teste.

ASP.NET CORE

Ele levou 3 minutos e 11 segundos para realizar o teste e teve 20% das requisições
retornadas com erro de limite de conexão de pool no banco.

O que aumentou incrivelmente o tempo de resposta quando comparado ao fazer 50
requisições por segundo durante 5 segundos (figura 32).

Figura 32: Tempo de resposta durante o tempo do teste

Ao ver os resultados, é um tanto quanto assustador e contraintuitivo ver que ele
demorou praticamente o mesmo tempo para retornar todas as requisições.

O problema está no multi-thread que tenta acessar o banco de dados ao mesmo
tempo, em várias threads diferentes. Isso sobrecarrega o banco de dados, podendo
até retornar erros de conexão devido ao limite de pool que está atrelada a
quantidade de conexões abertas que um banco de dados pode ter sem retornar
exceções.

Tabela 8: Representação dos resultados do ASP NET Core

Total Média Mínimo Max Vazão(requisição/tempo) Percentual de
erro

250 187216ms 183396m
s

191413m
s

1,3 req/sec 20%

O tempo mínimo e o tempo máximo estão muito próximos (tabela 8), isso aconteceu

porque o framework utilizou o poder de concorrência para fazer a maioria das

consultas do request ao mesmo tempo, no banco de dados.

O desempenho foi influenciado pelo banco de dados, que não suportou tantas

consultas e conexões ao mesmo tempo. Isso mostra o poder do dotnet em seu

multi-thread, pois foi o único a conseguir sobrecarregar o banco de dados no mesmo

37

cenário. Em uma operação que não dependesse de APIs externas ou de banco de

dados, o multithreading do dotnet seria muito mais útil para realizar operações de

processamento.

Spring Boot

Foi levado um tempo total de 13 segundos para terminar os testes.

Figura 33: Tempo de resposta durante o tempo do teste

Da mesma forma que o Express, o Spring Boot também teve seu tempo de resposta
só aumentado, sem nenhuma oscilação para diminuir e depois aumentar (figura 33).

Figura 34: Distribuição do tempo de resposta das requisições

A figura 34 mostra a distribuição do tempo de resposta das requisições do cenário 2.

38

Tabela 9: Representação dos resultados do Spring boot

Total Média Mínimo Max Vazão(requisição/tempo) Percentual de
erro

250 6019 ms 687 ms 11937 ms 19,3 req/sec 0%

A vazão foi mais lenta do que do cenário anterior, porém ainda conseguiu um bom

desempenho para retornar às requisições sem erros (tabela 9).

DJANGO
O tempo do teste durou 5s, tendo o pior desempenho dos 4 frameworks nesse

cenário também (figura 34).

Figura 34: Tempo de resposta pelo tempo de teste no django com 250 requisições

Figura 35: Distribuição do tempo de resposta das requisições

O tempo de distribuição se manteve majoritariamente no 0s devido ao grande

número de erros por perda de conexão com cliente que o django teve ao receber as

250 requisições ao mesmo tempo (figura 35).

39

Quadro 10: Representação dos resultados do Django

Total Média Mínimo Max Vazão(requisição/tempo) Percentual de
erro

250 336 ms 1 ms 4944 ms 42,8 req/sec 91.20%

O percentual de erro aumentou mais ainda nesse cenário mais difícil de lidar, com

apenas 22 requisições retornadas com sucesso (tabela 10).

6.2.2 - Resultados GET Suppliers

Com a execução dos testes foi possível entender que cada um tem sua estratégia
para lidar com possíveis estresses, o que faz com que resultados diferentes sejam
alcançados. Mesmo com resultados diferentes e indicadores que mostrariam qual foi
melhor, há outros fatores que podem influenciar nos resultados.

Por exemplo, se o ASP .NET Core estivesse em um ambiente em produção sem
limitar a quantidade de conexões abertas com o banco de dados, ele teria o melhor
desempenho para esse número de requisições. No entanto, haveria um número
maior de requisições que chegariam no mesmo problema.

Para todos os efeitos, em um cenário ideal não é interessante sobrecarregar uma
API desse modo sem um tipo de estratégia como orquestração de pods com
múltiplas instâncias e um proxy para dividir o estresse ou até mesmo uma “fila” de
espera para não haver sobrecarga de infraestrutura externas como outras APIs
externas e bancos de dados.

6.2.3 - GET Customers

Esse endpoint irá retornar todos os clientes e seus pedidos, contendo o nome do
produto e o preço do produto no momento da compra. Essa query utilizará 6 tabelas
diferentes para pegar a informação necessária, tornando assim o endpoint mais
pesado. O banco de dados possui um total de 10 mil registros.

Figura 36: Query SQL feita pelo autor para buscar todos os clientes e seus respectivos pedidos com produtos

Fonte: O autor (2023)

40

Tendo como base no retorno das requisições, uma coleção desse JSON abaixo:

Figura 37: JSON de retorno na requisição de customers

A parte lógica implementada para esse endpoint nos 4 serviços é mostrada nas

figuras 37, 38, 39 e 40.

41

Figura 37: Implementação parte logica no ASP.NET CORE

Figura 38: Implementação parte lógica no Spring

42

Figura 39: Implementação parte lógica no ExpressJS

Figura 40: Implementação parte lógica no Django

43

Cenário 1: 50 requisições por segundo, durante 5s, totalizando 250
requisições

Express.js
Com essa query mais pesada, o ExpressJS levou 1 minuto e 11 segundos para

responder às requisições (figura 41).

Figura 41: Tempo de resposta pelo tempo de teste

Figura 42: Distribuição do tempo de resposta das requisições

Tabela 11: Representação dos resultados do Expressjs

Total Média Mínimo Max Vazão(requisição/tempo) Percentual de
erro

250 13288 ms 2410 ms 19646 ms 3,5 req/sec 0%

44

A figura 42 mostra a distribuição do tempo de resposta e a tabela 11 mostra o

resultado geral. O tempo express demorou consideravelmente mais no endpoint

customer do que no supplier, devido à quantidade de tabelas a serem processadas.

No entanto, ainda conseguiu retornar todas as requisições sem erros.

Spring Boot
O tempo total do teste foi de 1 minuto (figura 43), com todas as requisições

realizadas com sucesso.
Figura 43: Tempo de resposta pelo tempo de teste

Figura 44: Distribuição do tempo de resposta das requisições

A figura 44 mostra a distribuição do tempo de respostas das requisições, e podemos observar a maior

concentração em algo em torno de 1200 milisegundos.

45

Quadro 12: Representação dos resultados do Spring boot

Total Média Mínimo Max Vazão(requisição/tempo) Percentual de
erro

250 10739 ms 1861 ms 22298 ms 4,2 req/sec 0%

O tempo de teste foi 11 segundos mais rápido que o Express.js, com sua vazão de

requisições sendo um pouco maior (tabela 12). O tempo médio, mínimo e máximo

também foram melhores.

ASP.NET CORE
Ele levou 55 segundos para responder todas as 250 requisições, com todas as

requisições retornadas com sucesso (figura 45).

Figura 45: Tempo de resposta pelo tempo de teste

Figura 46: Distribuição do tempo de resposta das requisições

A figura 46 mostra o comportamento da distribuição de tempo de resposta,

mostrando que todas as distribuições dos 4 frameworks se mostram bastante

diferentes.

46

Quadro 13: Representação dos resultados do ASP.NET CORE

Total Média Mínimo Max Vazão(requisição/tempo) Percentual
de erro

250 10527 ms 1687 ms 23132 ms 4,5 req/sec 0%

Até agora o mais performático em questões de vazão (tabela 13), o comportamento

desse framework consegue ser bom ao não conseguir quebrar o limite de conexões

ativas no banco de dados. Porém, esse comportamento padrão é perigoso mesmo

com um limite de conexões maiores, não é interessante deixar esse tipo de

sobrecarga acontecer se porventura a quantidade de pessoas mandando

requisições consiga ser maior que a quantidade máxima de conexões ativas com o

banco.

DJANGO
O tempo total do teste foi de 47 segundos (figura 47), porém com um percentual de

erro de 64,2%. Sendo um resultado não ótimo, pois mais da metade das requisições

retornaram sem sucesso.

Figura 47: Tempo de resposta pelo tempo de teste

47

Figura 48: Distribuição do tempo de resposta das requisições

A maioria das requisições teve um tempo de resposta de 0 segundos (figura 48)

devido ao fato do framework, nessa implementação e no ambiente de testes do

autor não aguentar segurar um pouco mais de 35 requisições por segundo. Tendo

no seu comportamento as primeiras requisições retornando com erro e só após ter

um número de requisições menor para lidar, o framework começa a retornar

algumas com sucesso. O erro não se dá por limitações de conexões com o banco de

dados, mas sim de limitações de requisições ativas.

Tabela 14: Representação dos resultados do Django

Total Média Mínimo Max Vazão(requisição/tempo) Percentual de
erro

250 3531 ms 0ms 13971 ms 5,3 req/sec 63,2%

A tabela 14 mostra o percentual de erro de 63,2% com as requisições falhadas

devido aos problemas discutidos.

Cenário 2: 250 requisições feitas em 1s, simulando 250 usuários
tentando consumir a mesma API ao mesmo tempo.

Express.js
O tempo total de testes foi de 1 minuto e 6 segundos (figura 49), com o

comportamento do tempo de resposta seguindo aumentando conforme o tempo e

com um percentual de 3,2% de requisições com erro.

48

Figura 49: Tempo de resposta pelo tempo de teste

Figura 50: Distribuição do tempo de resposta das requisições

A figura 50 mostra que a distribuição desse deste ficou praticamente com um tempo

de resposta para cada requisição.

Tabela 15: Representação dos resultados do Expressjs

Total Média Mínimo Max Vazão(requisição/tempo) Percentual de
erro

250 36926 ms 1455 ms 64642 ms 3,8 req/sec 3,2%

Esse número de requisições feitas no mesmo segundo alcança o ponto em que o

Express.js nessas condições começaria a ter problemas de limites de conexões

ativas com o banco de dados com 3,2% das requisições falhadas (tabela 15).

49

Spring Boot
O tempo total do teste foi de 40 segundos (figura 51), com 26,8% (tabela 16) das

requisições atingindo o limite de conexões ativas com o banco de dados e assim

tendo retornado como falha.
Figura 51: Tempo de resposta pelo tempo de teste

Figura 52: Distribuição do tempo de resposta das requisições

A distribuição (figura 52) foi totalmente diferente da distribuição do Express.js (figura

50).
Quadro 16: Representação dos resultados do Expressjs

Total Média Mínimo Max Vazão(requisição/tempo) Percentual de
erro

250 23377 ms 1943 ms 39542 ms 6,2 req/sec 26,8%

ASP.NET CORE
O tempo total do teste foi de 3 minutos e 36 segundos (figura 53), tendo alcançado o

maior tempo para realizar todas as requisições.

50

Figura 53: Tempo de resposta pelo tempo de teste

Tabela17: Representação dos resultados do ASP .NET Core

Total Média Mínimo Max Vazão(requisição/te
mpo)

Percentual de erro

250 194206 ms 178465 ms 216216 ms 1,2 req/sec 19,2%

Como esperado com os testes anteriores, o tempo mínimo e máximo ficam um

pouco próximos e as requisições demoram para serem retornadas devido ao

sobrecarregamento do banco de dados feitas pelo comportamento das múltiplas

threads desse framework, tendo seu desempenho influenciado por limitações

externas, nesse caso, o banco de dados (tabela 17).

DJANGO

O tempo total do teste foi de 14 segundos (figura 54), sendo o menor tempo entre os

frameworks, porém isso aconteceu devido à maioria das requisições falhar quase

instantaneamente, com um percentual de erro de 88,8%. Esse cenário aconteceu

devido a limitações do framework com o hardware do ambiente de testes usado pelo

autor. As requisições foram descartadas sem mesmo antes de chegar a ativar

conexão com o banco de dados.

51

Figura 54: Tempo de resposta pelo tempo de teste

Tabela 18: Representação dos resultados do Expressjs

Total Média Mínimo Max Vazão(requisição/te
mpo)

Percentual de erro

250 1319 ms 0ms 13165 ms 17,9 req/sec 88,8%

A tabela 18 mostra que o Django tem um percentual de erro de 88,8%, muito mais
alto do que os outros frameworks.

6.2.4 - Resultados GET Customers

Os resultados foram parecidos com o do endpoint suppliers, porém o tempo de
resposta de todos, nos que obtiveram mais requisições de sucesso do que falha, foi
aumentado devido a query ser mais pesada. Deste modo, este endpoint conseguiu
alcançar o ponto de estresse mais cedo em questões em número de requisições
para alcançar algum tipo de falha na resposta das requisições.

7 LIÇÕES APRENDIDAS

7.1 Diferenças

Ao tentar comparar os frameworks, percebi o quanto eles são diferentes, não só por
questões da sintaxe ou dos paradigmas da linguagem, mas sim da forma que eles
lidam com as entradas e saídas. Esse fato influencia completamente no tempo de
respostas das requisições e de possíveis erros que podem acontecer ao levar o
sistema a testes de estresse.

7.2 Por que usar queries nativas?

Durante o desenvolvimento foi percebido que os ORMs dos frameworks tinham
filosofias diferentes para lidar com relacionamento e mapeamento, podendo ter seu

52

desempenho influenciado pela maneira como o banco de dados foi modelado. Além
disso, os retornos de objetos do ORM eram bastante diferentes, o que poderia levar
a ter diferentes pós-processamentos para chegar ao resultado esperado para ser
retornado na request. Portanto, foi decidido usar queries nativas SQL, pois assim as
únicas dependências externas são a conexão com o banco de dados e a execução
da query, que retorna o mesmo objeto para todos os frameworks.

7.3 Comportamentos diferentes

A maneira padrão que os frameworks lidam com múltiplas requests simultâneas é
diferente, o que faz com que existam resultados muito diferentes, até mesmo de
erros por exceder o limite de conexões ativas com o banco de dados aconteça mais
rapidamente ou até mesmo não conseguindo manter a request viva antes de
conseguir concluí-la.

Se ao receber múltiplas requisições ao mesmo tempo, o framework tentar acessar o
banco de dados ao mesmo tempo (utilizando-se de múltiplas threads), o tempo de
resposta pode ser muito maior por não ter um gargalo de espera devido ao fator
limitante da capacidade do banco de dados que foi utilizado nesta pesquisa. O que é
mostrado é que ele poderia trabalhar com concorrência muito bem se não depender
de fatores externos como outras APIs ou conexões com banco de dados.

Por exemplo, Express.js obteve desempenho geral melhor que o Django, mesmo
não contando com múltiplas threads para afunilar a quantidade de requisições e
consequentemente não teve problemas de estourar o limite de conexões ativas no
banco de dados.

8 CONCLUSÃO

Escolher um framework vai além de desempenho, mas também é considerado
fatores como intimidade com a linguagem de programação, suporte a bibliotecas, e
de melhor desempenho em cenários específicos que seriam o caso de uso de algum
sistema.

Com os resultados dos testes feitos no ambiente mencionado com as configurações
padrões de cada framework e tendo tentado fazê-lo de maneira justa com a mesma
implementação feita pelo autor, foram alcançados resultados bastantes diferentes,
os quais não conseguem afirmar qual é o mais performático de maneira geral.

Porém, pode-se dizer que nos testes feitos, nesse sistema, o ASP.NET Core e
Spring Boot tiveram o melhor desempenho em termos de processamento nos
tempos de resposta das requisições nos cenários de teste. Certamente seriam boas
escolhas ao se olhar para problemas em que se teria um banco de dados robusto ou
que fosse necessário velocidade de processamento com concorrência.

53

Para casos mais simples que não precisassem se preocupar tanto com
desempenho, o Express.js se sairia muito bem por possuir uma configuração
simples, ser em javaScript que é a linguagem de programação mais utilizada no
mundo nos últimos anos ou por ter diversas bibliotecas para diferentes casos de
usos, dos mais simples aos complexos.

O Django seria uma boa opção para programadores Python e para casos de uso
que as bibliotecas existentes sanaram algum tipo de problema que o caso de uso do
sistema teria. E caso seja necessário mais desempenho, a documentação tem um
“workaround” sobre isso com mais dependências para serem instaladas e
configurações a serem feitas.

Para trabalhos futuros, seria interessante tentar fazer uma comparação mais justa
com um ambiente de testes externo, banco de dados de produção, docker para ter
múltiplas instâncias da API e talvez utilizar implementações que favoreçam cada
framework para mostrar o máximo de desempenho que cada um pode entregar com
suas características distintas.

Outrossim, seria interessante também expandir a metodologia de testes, fazendo
testes em mais cenários para poder obter mais detalhes de comportamento em
níveis de estresse.

54

REFERÊNCIAS

APACHE SOFTWARE FOUNDATION. Apache JMeter - Apache JMeterTM. Disponível em:
<https://jmeter.apache.org/>. Acesso em: 1 mar 2023.

DHALLA, H. K. A Performance Comparison of RESTful Applications Implemented in Spring
Boot Java and MS.NET Core. Journal of Physics: Conference Series, v. 1933, n. 1, p. 012041, 1
jun. 2021.

Dalbard, Axel, and Jesper Isacson. "Comparative study on performance between ASP. NET and
Node. js Express for web-based calculation tools." (2021).

What is a REST API? Definition and Principles - Seobility Wiki. Disponível em:
<https://www.seobility.net/en/wiki/REST_API>.Acesso em: 1 mar 2023.

Databases | Django documentation | Django. Disponível em:
<https://docs.djangoproject.com/en/4.1/ref/databases/>.Acesso em: 1 mar 2023.

TEAM, T. P. PyPy. Disponível em: <https://www.pypy.org/>.Acesso em: 1 mar 2023.

https://jmeter.apache.org/

