UNIVERSIDADE FEDERAL DE PERNAMBUCO

Milton José Vieira Souto Maior

Analise Comparativa de Performance de Frameworks para APIs Rest

Recife,

2023

UNIVERSIDADE FEDERAL DE PERNAMBUCO

Sistemas de informagao

Milton José Vieira Souto Maior

Analise Comparativa de Performance de Frameworks para APIs Rest

TCC apresentado ao Curso de Sistemas de
Informacdo da Universidade Federal de
Pernambuco, como requisito para a obtencéao
do titulo de bacharel em Sistemas de
informacao.

Orientador(a): Breno Alexandro Miranda

Recife

2023

Ficha de identificacdo da obra elaborada pelo autor,
através do programa de geragdo automatica do SIB/UFPE

Maior, Milton José Vieira Souto.

Andlise comparativa de performance de frameworks para APIs Rest /
Milton José Vieira Souto Maior. - Recife, 2023.

55:il., tab.

Orientador(a): Breno Alexandro Ferreira Miranda

Trabalho de Conclusdo de Curso (Graduagao) - Universidade Federal de
Pernambuco, Centro de Informética, Sistemas de Informacao - Bacharelado,
2023.

1. framework. 2. API. 3. performance. |. Miranda, Breno Alexandro
Ferreira. (Orientagdo). I1. Titulo.

000 CDD (22.ed.)

Milton José Vieira Souto Maior

Analise Comparativa de Performance de Frameworks para APIs Rest

TCC apresentado ao Curso de Sistemas de
Informagdo da Universidade Federal de
Pernambuco, como requisito para a obtencéao
do titulo de bacharel em Sistemas de
informacao..

Aprovado em: I

BANCA EXAMINADORA

Prof°. Dr. Breno Alexandro Ferreira Miranda (Orientador)
Universidade Federal de Pernambuco

Prof°. Dr. Juliano Manabu lyoda (Examinador Interno)
Universidade Federal de Pernambuco

RESUMO

O desenvolvimento de software, sobretudo de Application Programming Interfaces
(APIs) vem evoluindo e mudando de maneira muito rapida devido a alta quantidade
de tecnologias no mercado. Diversas linguagens de programacéao e frameworks sao
utilizados para implementar essas interfaces, cada uma com suas peculiaridades,
vantagens e desvantagens, o que dificulta tomar decisées, como qual tecnologia
utilizar para fazer uma API? Qual framework mostraria mais desempenho? Nesse
sentido, esse trabalho apresenta um comparativo de desempenho de uma mesma
implementacdo de API desenvolvida nos em diferentes frameworks utilizados por

programadores no mercado.

Palavras-chave: framework ; API; performance.

ABSTRACT

Software development, especially Application Programming Interfaces (APIs) has
been evolving and changing very quickly due to the high number of technologies on
the market. Several programming languages and frameworks are used to implement
these interfaces, each with its own peculiarities, advantages and disadvantages,
which makes it difficult to make decisions, such as which technology to use to make
an API? Which framework would show more performance? In this sense, this work
presents a performance comparison of the same API implementation developed in

different frameworks used by programmers in the market.

Keywords: framework ; API; performance.

SUMARIO

1 INTRODUGAO
2 FUNDAMENTACAO TEORICA
2.1 O que sdo web frameworks.
2.1.1 Application Programming Interface
2.1.2 Rest e API RestFul
2.2 - Stack Overflow
2.3 - Linguagens de programacgao
2.4 ORMs
2.5 Frameworks
2.5.1 Spring boot
2.5.2 ExpresslJs
2.5.3 ASP.NET Core
2.5.4 Django
3 METODOLOGIA
3.1- O Problema
3.2 Defini¢do da arquitetura e do modelo relacional
3.2.1- Aarquitetura
3.2.1 - O modelo relacional
3.3 O Modelo de testagem
4. TRABALHOS RELACIONADOS
5. SISTEMA DESENVOLVIDO PARA TESTES
5.1 VISAO GERAL
5.2 Arquitetura de implementacdo
6 TESTAGEM
6.1 Configuragdo do ambiente de testes
6.2 Endpoints

Foram feitos dois endpoints nas implementagdes das aplicagcdes de backend.

6.2.1 - GET Suppliers
6.2.2 - Resultados GET Suppliers
6.2.3 - GET Customers
6.2.4 - Resultados GET Customers
7 LICOES APRENDIDAS
7.1 Diferencas
7.2 Por que usar queries nativas?
7.3 Comportamentos diferentes
8 CONCLUSAO
REFERENCIAS

O O 0 N N N O

10
11
11
11
12
12
12
12
13
13
14
15
16
17
17
23
24
24
24
24
24
37
38
48
48
48
49
49
49
51

1 INTRODUCAO

No cenario atual, com a tecnologia da informacéo utilizada em diversos contextos
diferentes, fez surgir uma alta demanda de servigos informatizados e online. Com
diversas linguagens de programacao surgindo com o tempo e sendo utilizadas no
mercado e em pesquisas em inumeros contextos.

No contexto mais especifico de um dos ramos da programagdo, os servicos de
Application Programming Interfaces (APIs) sdo servigos utilizados para enviar ou
receber informagdes de um cliente (sistema).

Devido a isso surgiram diversos frameworks que auxiliam a programar essas
interfaces, cada uma com suas qualidades e peculiaridades, o que leva a questao de
qual escolher? Qual linguagem? Qual framework utilizar? Qual seria mais
performatico? A escolha de uma linguagem para resolver esses problemas de criar
APls vai, muitas vezes, muito além de qual seria mais performatico, mas também
observando-se outras caracteristicas especificas, como afinidade das pessoas
relacionadas com tal tecnologia, capacidade de recursos de hardware e até mesmo
funcionalidades especificas em dados contextos que seriam melhores aproveitadas
se fossem feitas em dada linguagem.

E possivel assim demonstrar que seria dificil fazer uma comparacdo abstrata e
genérica que mostraria que tal linguagem se sobressairia sobre outras de maneira

incontestavel em todos os cenarios.

No entanto, ao definir um problema real que utiliza-se de uma API, em que todos
esses frameworks fossem implementados da mesma forma e utilizassem as
mesmas configuragdes de infraestrutura e mesma arquitetura, seria possivel mostrar
qual conseguiria ser sobressair sobre o outro e demonstrar também que
caracteristicas dos frameworks corroboram para ele ser mais performatico nesse
caso.

Esse trabalho mostra uma comparagao de desempenho entre os 4 frameworks mais
utilizados por programadores para esse fim no ano de 2022, conforme as pesquisas

da comunidade do Stackoverflow.

2 FUNDAMENTAGAO TEORICA

Esta secado pretende detalhar os tdopicos abordados nesta pesquisa de
maneira mais teodrica, explicando os principios e conceitos, detalhando o que sao
web frameworks, APIs Rest. Como também, explorar as caracteristicas das
linguagens e dos frameworks utilizados neste estudo.

2.1 O que sao web frameworks

Web framework € um framework de software desenvolvido para facilitar o
processo de desenvolvimento web, fazendo com que seja mais facil de se fazer um
site ou sistema. Um web framework inclui todo o processo de desenvolvimento de

apresentacao de conteudo no navegador como também nas APls.
2.1.1 Application Programming Interface
Application Programing Interface(APl) € um conjunto de definicbes e

protocolos para construir e integrar aplicacdes de softwares. E utilizada como meio

de comunicagao entre aplicagoes.

Figura 1: Diagrama de um cliente para uma API.

Banco de

dados

Regras de
negocio

Fonte: O autor (2023)

Na figura 1, pode-se ver o fluxo de uma aplicagdo monolitica simples que utiliza um
cliente que consome uma API de instancia unica para ter acesso a dados, em
questdes de leitura e escrita, respeitando as regras que estédo estabelecidas dentro
da APL.

2.1.2 Rest e API RestFul

Figura 2: llustragdo do fluxo Rest API.

vatabase

Fonte: Seobility - licenga CC BY-SA 4.0

A arquitetura Rest foi criada pelo cientista da computagdo Roy Fielding nos
anos 2000. No intuito de padronizar os protocolos de comunicacdo e
desenvolvimento na internet, Fielding com um time de especialistas desenvolveu as
caracteristicas da Representational State Transfer (REST), que foi definida na sua
tese de PhD.
Podendo-se definir como um conjunto de principios e restrigdes, REST segue um
padrao de transferéncia do estado do recurso ao solicitante ou endpoint, onde essa
transferéncia é feita pelo protocolo HTTP, utilizando diversos formatos como JSON,
HTML, XLT e plaintext, sendo o JSON o mais utilizado.
Uma API Restful, é definida por uma APl que estd conforme os critérios
estabelecidos pela arquitetura REST, nos quais podem-se destacar os seguintes

critérios:

« Arquitetura cliente-servidor: Dividir a interface do usuario da persisténcia de
dados com pelo menos dois servigos para o sistema. Um responsavel pela
interface (cliente) e outro pelo servidor (API).

« Comunicagao stateless: A comunicagao feita entre cliente e servidor néo
deve armazenar nenhuma informagéo entre as solicitagdes. Em uma REST
API, cada solicitagdo contém todos os dados necessarios para ser atendida,

nao dependendo de informagdes ja armazenadas em outras sessdes.

« Cache: A API deve conseguir salvar em cache recursos e dados para
melhorar o desempenho.

« Interface uniforme: Uma REST API deve conter uma interface uniforme, pois
ela oferece uma comunicagdo padronizada entre o usuario e o software. A
manipulagao de recursos é feita por meio de representagcdes (como JSON ou
XML).

. Sistema de camadas: cada camada do sistema deve possuir uma
funcionalidade especifica (como seguranga ou carregamento). Assim, cada
camada é responsavel por uma etapa diferente dos processos de requisigao

de usuario e de resposta do servidor.

2.2 - Stack Overflow

O StackOverflow € um plataforma e comunidade online de perguntas e
respostas mais utilizada por programadores profissionais e nao profissionais em
diversas areas de tecnologia da informacdo, sobretudo na area de engenharia de
software. A comunidade dissemina conhecimento mediante discussdes entre as
pessoas da comunidade. Devido a comunidade ser muito forte, é feita uma pesquisa
anualmente entre a comunidade, respondendo a questionarios que vao desde
localizagdo geografica da comunidade a linguagens de programacao e frameworks

que a comunidade mais utilizou naquele periodo.
2.3 - Linguagens de programagao
As linguagens de programagcéao utilizadas foram escolhidas selecionando as 4

primeiras mais utilizadas no contexto de desenvolvimento web para APIs segundo

as pesquisas do StackOverflow em 2022, essas demonstradas na tabela 1.

Tabela 1: Comparativo entre linguagens de programagao.

Linguagens Java JavaScript Python C#
Execucgao Compilada Interpretada Interpretada Compilada
Modelo de Multi threads Single thread | Single thread Multi threads

concorréncia e Multi threads

https://www.hostinger.com.br/tutoriais/text=O%20JSON%20

10

de pacotes

Ant

Tipagem Estatica Dinamica Dinamica Estatica e
Dinamica
Paradigma Orientada a Orientado a Orientado a Orientado a
objetos, eventos, objetos, objetos, baseada
imperativa e funcional e procedural e | em componentes
funcional procedural funcional e imperativa
Garbage Sim Sim Sim Sim
collection
Suporte a Sim Sim Sim Sim
async
Tipagem Forte Fraca Fraca Forte
Tipo de JIT ou AOT JIT JIT JIT ou AOT
compilagao
Gerenciamento | maven, Gradle e npm pip nuGet

Fonte: O autor(2023)

A tabela 1 mostra as principais caracteristicas a respeito das linguagens utilizadas

pelos frameworks escolhidos. De maneira geral, multiplas threads podem ajudar a

lidar com concorréncias, o que pode ser um fator a ser considerado quando a API

lida com multiplas requisicdes de varios usuarios ao mesmo tempo.

2.4 ORMs

ORM (Object-Relational Mapping) € uma técnica de programacao que permite

desenvolvedores interagirem com o banco de dados usando paradigmas da

programagao objeto relacional para muitas vezes suprir as necessidades de

escrever queries nativas SQL. ORM mapeia uma tabela e suas relagées com outras

tabelas para classes, usando conceitos como heranga, encapsulamento para

manipular os dados no banco de dados.

2.5 Frameworks

Tabela 2: Comparativo entre os frameworks escolhidos.

11

Framework | Linguagem | Multithread ORM Async | Suporte | Versao
a cache
Spring Java suportado Hibernate Sim Sim 3.0.1
Boot
Express.js | JavaScript Nao sequelize Sim Sim 4.18.2
suportado
ASP.NET c# suportado dapper Sim Sim 7.0.101
Core
Django Python suportado | djangoORM | Sim Sim 4.1.7

A tabela 2 mostra as principais caracteristicas dos frameworks a serem utilizados

para a comparagao.

2.5.1 Spring boot

Criado pelo time spring na Pivotal Software, € o framework de cédigo aberto
Java mais utilizado para implementagdes de servigos de APIl, com uma comunidade
muito forte e diversas bibliotecas para aumentar a robustez do framework. Sua
qualidade mais atrativa é “Convengao sobre a configuragdo” que reduz a quantidade

de cddigo que seria necessario para configurar uma aplicagao.

2.5.2 ExpressJs

Criado por TJ Holowaychuk em 2010, se tornou o mais popular framework do
Node.js. E um framework de cédigo aberto que prové simplicidade e um conjunto
leve de recursos utilizados para fazer as aplicagbes de REST. Possui uma grande
comunidade ativa e abundante de plugins e moddulos que estendem suas
capacidades além de ser implementado em JavaScript, que até a data que esse
estudo esta sendo feito, é considerado a linguagem de programacéo mais utilizada

no mundo.

12

2.5.3 ASP.NET Core

Criado por um time de desenvolvedores da Microsoft, € um framework de
codigo aberto, multiplas plataformas, e € o sucessor do ASP.NET framework original
langado em 2016. Ele foi feito para ser modular, leve, flexivel e feito no topo do
runtime do .NETCore que é um runtime de multipla plataforma de codigo aberto para
desenvolver aplicagdes web, como API. Possui multiplas features sendo langadas
constantemente, com uma comunidade forte e o apoio da Microsoft no suporte de

suas tecnologias.

2.5.4 Django

Criado em 2003 por Adrian Holovaty and Simon Wilson, Django € um
framework de aplicagcdo web baseado em Python e de cédigo aberto. Foi feito no
intuito de construir aplicagbes web complexas de maneira rapida e facil. Com
diversas features como ORMSs, roteamento de URLs, middlewares e varios outros
que fizeram ele ser popular, possui uma comunidade forte e engajada, sendo

também bastante utilizado pela industria.

3 METODOLOGIA

3.1- O Problema

A escolha das linguagens foi baseada na pesquisa anual do stackoverflow, na
qual a comunidade de desenvolvedores pelo mundo responde essa pesquisa.
Consoante a pesquisa, com 58.743 respostas, os mais utilizados na area de web
frameworks foram ExpressJS (22.99%), ASP.NET Core (18,59%), Spring (16.3%) e
Django (14,65%).

Esse trabalho fara uma analise comparativa entre esses frameworks da forma
mais justa possivel, dado que eles funcionam de maneiras diferentes e suas
linguagens tém diferentes limitagdes e features implementadas de maneira diferente.
Para isso, vamos utilizar a mesma arquitetura de camadas para implementacao de
uma API para tentar colocar esses frameworks nas mesmas condi¢gdes e na mesma
complexidade. Assim podemos observar o comportamento de cada um com a

mesma implementacao diante dos mesmos cenarios de testes.

13

A escolha dos frameworks

Os frameworks foram selecionados a partir da pesquisa anual do
stackoverflow, na qual a comunidade responde um questionario com as tecnologias
mais utilizadas, questbes salariais e geograficas. Foi selecionado o top 4 das

tecnologias mais utilizadas na area de desenvolvimento web de backend.
3.2 Defini¢ao da arquitetura e do modelo relacional
3.2.1 - A arquitetura

Para podermos nivelar os frameworks e tentar fazer um comparativo com
condi¢des iguais, o autor propde um modelo de arquitetura para ser utilizado na
implementagado da API dos frameworks a serem testados. A arquitetura foi feita com
base no conhecimento do autor derivado de seu tempo no curso de bacharelado e

no mercado de trabalho trabalhando como desenvolvedor.

Figura 3: Modelo de arquitetura definido pelo autor

N
[Controller
J
N
[Service
l J
[Repository]

Database

Fonte: O autor (2023)

14

A arquitetura foi elaborada conforme a figura 3, com 3 camadas de abstragédo e o
acesso a banco de dados.

Controller: Camada responsavel por receber os requests e tratar os erros, status e
retorno para o cliente que fez a requisigao.

Service: Camada responsavel pelas regras de negdécio da aplicagdo, contendo a
maioria da légica e do pds-processamento dos dados.

Repository: Camada responsavel por ter acesso ao banco de dados, com Unica
responsabilidade de estabelecer a conexdo com o banco e fazer operacbes de

leitura e escrita.

3.2.1 - O modelo relacional

O modelo relacional foi feito pelo autor no intuito de forgar os frameworks a
fazerem consultas nao triviais e que requeiram pos-processamento desses dados
para se obter um retorno desejado, esses que serdo descritos mais adiante neste

trabalho.

Figura 4: Modelo de arquitetura definido pelo autor

m Supplier v

id INT

] supplier_Product v 1 product v
name VARCHAR (45) i d T
bype INT
P ¥ productld INT name VARCHAR(255)
getals VARGHAR(300) @ supplierld INT MeEa=E= detsils VARCHAR(SO...
isActive TINYINT T E e INT

>
>
>
_ customer v

B i id id INT
:ild?:rpﬂla_“wmt_mung . docum ent VARCHAR(1... :l Customer_Order b
price DECIMAL (13,2) docum entType INT id INT
dtCreated DATETIME isActive TINYINT ’ orderDate DATETIME
! supplierProductld INT name ¥ ARCHAR (255) customerTd INT
______ >
¥
> | >
m] o o :
I | !
I l e — 3
| | i
| | |
A A |
1 supplier_Product_Pricing_Customer_Order ¥ *

Id INT _| customer_Address ¥
@ supplierProductPricingld INT

id INT
@ customerOrderld INT address VARCHAR(255)

Ld @ customerld INT

>

Fonte: O autor(2023)

15

O banco de dados mostrado na figura 4, € uma esquematizagcédo para uma operagao
de E-commerce, na qual existem fornecedores, produtos, clientes e pedidos. Toda a

l6gica sobre o modelo sera melhor explicada e detalhada mais adiante.

3.3 O Modelo de testagem
Para fazer testes de performance de APIs é necessario separar critérios para
serem pontuados e avaliados. Considerando apenas o desempenho dos

frameworks, os seguintes critérios serdo avaliados.

o Tempo de request
o tempo médio
o tempo minimo
o tempo maximo
o vazao de request / tempo
« Percentual de erro (erros que podem acontecer ao se fazer uma request em
modos de estresse)

« Andlise de comportamento nos diferentes cenarios de teste

A ferramenta de testagem

Para testar as APIls fazendo requisicdes de maneira a simular mais usuarios
ou até mesmo simular picos de requisicoes, a ferramenta apache Jmeter foi utilizada
nesse trabalho.
Para realizar testes de desempenho entre as APIs é preciso fazer testes de estresse
para medir o tempo de respostas para as requisicoes do cliente para a API.
Esse trabalho utilizara chamadas HTTP para fazer os testes nas 4 aplicacdes
implementadas. Como todos os testes foram realizados numa uUnica maquina local e

devido ao tempo de pesquisa foi optado o uso do HTTP ao invés do HTTPS.

16

Figura 5: Ambiente do apache Jmeter

Apache IMeter (5.5) m] X

st Plan Express.jmy) -

Content-Type

Adicionar Add from Clipboard

Fonte: O autor (2023)

O Jmeter (Figura 5) consegue simular, multiplos usuarios fazendo requisi¢ées, com
configuragdes de intervalo de tempos, assim permitindo ser explorado varios casos

de testes.

4. TRABALHOS RELACIONADOS

Ha alguns trabalhos na literatura que fizeram avaliagbes de desempenho de
frameworks, alguns que compararam frameworks diferentes de uma mesma
linguagem, outros que compararam o desempenho de um framework em um
problema especificos como de persisténcia de dados. Por fim, a literatura também
tem pesquisas que comparavam de 2 a 3 frameworks diferentes, realizando analise
de desempenho entre eles.

O trabalho relacionado mais préximo da pesquisa deste trabalho foi feito por
DALBARD, Axel; ISACSON, Jesper (2021). Eles compararam Dotnet Core com
ExpressJs em uma API que tinha uma ferramenta que, dadas as dimensdes de um
produto e as dimensdes de um container padronizado, calculava quantos produtos
poderiam ser armazenados. O teste de desempenho mensurou o consumo de
recursos e capacidade das APIs em responder a inUumeros requests. A pesquisa
concluiu que o Dotnet core conseguiu ter um desempenho melhor do que o

ExpressJs.

17

Na pesquisa de Dhalla, Hardeep Kaur.(2021), Dhalla faz uma comparagao entre o
Spring e Asp.Net Core de uma API Restful utilizando como critérios o tempo de
resposta médio de uma requisi¢cao e o percentual de erro nas requisicoes feitas para
os dois frameworks para operacdes de Create, Retrieve, Update, Delete (CRUD)
Com o banco do MySQL. O trabalho mostrou que, no aspecto geral, o .Net Core
conseguiu ter um tempo médio menor, consumindo menos recursos, e quando a
carga de requisigbes foi para 64.000 usuarios, a faixa de erro nas requisi¢gdes

chegou a 85%.

5. SISTEMA DESENVOLVIDO PARA TESTES

O sistema proposto para ser desenvolvido de base para essas API se trata de
uma aplicagdo de e-commerce, contendo fornecedores, produtos e clientes e
compras, cada um com seus atributos e relagdes.
A escolha do modelo relacional para mapear o sistema foi feita para forcar os
sistemas a fazerem buscas complexas e terem pds-processamento para conseguir
retornar resultados especificos. Bancos de dados né&o relacionais como o mongoDB
poderiam ser utilizados para fazer testes, porém a abordagem seria um pouco

diferente da proposta deste trabalho.

5.1 VISAO GERAL

O sistema representa um modelo de e-commerce, feito com praticas de
modelagem utilizadas no mercado. O sistema foi modelado pensando unicamente
em benchmarking e nao para ser um banco de dados que resolveria um problema
da realidade, apesar de estar bem proximo disso.
Como requisitos varios fornecedores vendem produtos que podem ser fornecidos ou
nao por fornecedores diferentes. O produto tera um histérico de precos, onde o
preco atual sera o mais recente, definido por sua data de criagao.
Os clientes desse e-commerce podem ter mais de um endereco e realizar compras

armazenadas no banco de dados.

18

Supplier

Figura 6: Representacdo ER Supplier

m Supplier ¥
id INT
name ¥ ARCHAR(45)
type INT FH-
detsils VARCHAR(500)

isActive TINYINT

Fonte: O autor (2023)

A entidade Supplier representa um fornecedor, contendo propriedades como:

Id: Inteiro sequencial autogerado pelo banco para representar um atributo unico.
Name: Representa o nome do fornecedor.

type: Um identificador variando de 0 ou 1 para representar se o fornecedor é do tipo
big ou small.

isActive: Binario com 0 ou 1 representando se o fornecedor esta ativo ou nao.

Product
Figura 7: Representacédo ER do Product

_| Product v
id INT
name VARCHAR(255)
— #- “ detals VARCHAR(S0...
type INT

Fonte: O autor(2023)

19

A entidade Product representa um produto, contendo propriedades como:

Id: Inteiro sequencial autogerado pelo banco para representar um atributo unico
Name: Representa o nome do produto

details: Detalhes do produto

type: Um identificador para saber se o produto é fisico ou digital

Supplier_Product

Figura 8: Representacdo ER de produto e fornecedor

_| Supplier v

id INT

_| Supplier_Product v I Product i
name WARCHAR(45) dINT id INT
type INT ————
Y . |_ T % productid INT name VARCHAR(255)
details VARCHAR(500) % suppliertd INT |———— details VARCHAR(S0...
isActive TINYINT —_—— type INT

>

Fonte: O autor (2023)

A entidade Supplier_Product representa a relacado MxN entre Supplier e Product.

Essa tabela contém atributos como:

Id: Inteiro sequencial autogerado pelo banco para representar um atributo unico
productld: Chave estrangeira da entidade Supplier

supplierld: Chave estrangeira da entidade Product.

A Relacdo Supplier e Product foi mapeada dessa forma para poder ter o id

autogerado como chave primaria da tabela.

20

Supplier_Product_Princing
Figura 9: Representacdo ER do supplier_Product e Supplier_Product_Pricing

_ Supplier_Product v
id INT
| % productld INT
: @ supplierld INT
>
w]
_| Supplier_Product_Pricing v
id INT
price DECIMAL (13,2)
dtCreated DATETIME
! supplierProductId INT
>
m Q u
T

Fonte: O autor(2023)

A Entidade Supplier_Product Pricing representa os pregcos do produto oferecidos
pelo fornecedor, estabelecendo a relacdo entre Supplier Product e
Supplier_Product_Pricing.

A relacao estabelecida é que, para cada 1 produto oferecido pelo fornecedor, havera

N precos. Para se obter o prego atual sera definido pelo preco com o campo
dtCreated com a data mais atual.

Os atributos do Supplier_Product_Pricing sdo definidos como:

Id: Inteiro sequencial autogerado pelo banco para representar um atributo unico.
price: Decimal que representa o preco do produto.
supplierProductld: Chave estrangeira da entidade Supplier_Product.

dtCreated: Campo date que representa a data que o preco foi criado.

21

Customer

Figura 10: Representagéo do modelo ER do Customer

_| customer ¥
id INT
docum ent VARCHAR(1..
docum entType INT L—
isActive TINYINT
name ¥V ARCHAR(255)

F
Fonte: O autor(2023)

A tabela Customer representa o cliente do sistema, com propriedades como:

Id: Inteiro sequencial autogerado pelo banco para representar um atributo unico.
document: String que representa o CPF ou CNPJ do cliente.

documentType: Identificador que representa o tipo do documento, sendo 1 para
CPF e 0 para CNPJ.

isActive: Booleano para representar se o cliente esta ativado ou desativado.

name: String que representa o nome do cliente.

22

Customer_Address
Essa entidade modela representagdo do endereco de um cliente, tendo a relagao de

1 cliente tendo N enderecos.

Figura 11: Representacdo ER do Customer Address

_| customer ¥
id INT

docum ent VARCHAR(L...
docum entType INT

isActive TINYINT i | customer Address ¥
name VARCHAR(255) .: id INT
> l address VARCHAR(255)

@ customerId INT

Fonte: O autor(2023)

A tabela Customer_Address possui atributos como:

Id: Inteiro sequencial autogerado pelo banco para representar um atributo unico.
address: String que representa o enderego completo do cliente

documentType: Identificador que representa o tipo do documento, sendo 1 para
CPF e 0 para CNPJ.

Customer_Order
A entidade Customer_Order representa uma compra realizada por um cliente, tendo
relagao de 1 cliente podendo ter N pedidos.

Figura 12: Representagédo ER do Customer_Order

_] Customer ¥ D:l Cuslane.rljordu' ¥
id INT id INT
docum ent VARCHAR(L... orderDate DATETIME
docum entType INT ! customerId INT C
isActive TINYINT
name Y ARCHAR (255) B
o »
a O u

Fonte: O autor(2023)

A entidade possui atributos como:

Id: Inteiro sequencial autogerado pelo banco para representar um atributo unico.

23

orderDate: Data que o pedido foi feito.

customerld: Chave estrangeira que identifica o cliente que fez o pedido.

Supplier_Product_Pricing_Customer_Order

Essa relagao representa o relacionamento MxN da tabela que representa o preco
dos produtos e da tabela que representa a compra feita pelo cliente. Nesse modelo,
a compra pode ter varios produtos (nesse caso a referéncia é feita pelo id do prego

do produto comprado).

Figura 13: Representacao ER do Supplier_Product_Pricing_Customer_Order

M

] Supplier_Product_Pricing ¥

id INT

price DECIMAL (13,2)

dttreated DATETIME m Supplier_Product_Pricing_Customer_Order ¥
¥ supplierProductld INT == Id INT

[¥ supplierProductPricingld INT
A% # customerOrderTd INT
> >
| Customer_order v

id INT
orderDate DATETIME

—————— s

¥ customerld INT

Fonte: O autor (2023)

A entidade possui atributos como:

Id: Inteiro sequencial autogerado pelo banco para representar um atributo unico.
supplierProductPricingld: Chave estrangeira que identifica o prego do produto que
foi comprado.

customerOrderld: Chave estrangeira que identifica o pedido.

5.2 Arquitetura de implementacgao
A Arquitetura desenvolvida pelo autor se baseia em camadas com responsabilidades

unicas como mostradas na figura 3.

24

A camada de servigos contém a parte logica, as quais foram feitas utilizando fungbes
com mesma logica e estrutura de dados para todas as implementagbes nos
diferentes frameworks.

A camada de acesso ao banco de dados tem a responsabilidade de estabelecer a
conexao com o banco e executar a query, fechando a conex&do assim que a consulta

retorna os resultados.

6 TESTAGEM

6.1 Configuragao do ambiente de testes

Todos os testes foram realizados no mesmo computador, com as configuragdes

destacadas a seguir.

Processador: Intel(R) Core(TM) i5-8265U CPU @ 1.60GHz - 1.80 GHz
Meméria ram: 16gb ddr4

Sistema operacional: Windows 11 Home Single Language, versdo 22H2
Banco de dados: MySQL server 8.0

Para os testes foi utilizado um banco de dados que possui 10 mil instancias para as
tabelas principais e 20 mil instancias para as tabelas que representam

relacionamento. O banco de dados foi povoado por um script feito pelo autor.

6.2 Endpoints

Foram feitos dois endpoints nas implementacdes das aplicagdes de backend.

6.2.1 - GET Suppliers

Esse endpoint faz a consulta para trazer todos os suppliers e os produtos
relacionados a eles. Para fazer essa consulta em um banco relacional que possui as
configuragbes de modelagem descrita nas se¢des anteriores, € preciso consultar 3

tabelas e processar os dados para serem retornados segundo a figura 14.

25

O retorno € um JSON que contém o fornecedor e uma lista com outro JSON

contendo os produtos que estao relacionados a ele.

Figura 14: Representacao dos dados que seréo retornados na requisicéo

{B

"“name" :"name_1",

"isActive":1,

"id":1,

"products":[&

{B

"name"” : "name_1
"id":1,
"details":"details details

"id":2,
"details":"details details

Todos os frameworks utilizam a mesma query SQL para consultar as informagdes no
banco de dados. A query na figura 15 retorna todas as instancias de fornecedores
com seus produtos que representam um total de 19.999 instancias a serem
retornadas e posteriormente feito um pds-processamento para ficarem no padrao da

figura 14.

Figura 15: Query SQL feita pelo autor para retornar todos os fornecedores e seus produtos

pplierActive,

5. id : y.id AS productIld, p.details AS productDetails

FROM supplier
INNER JOIN supplier product sp ON sp.supplierId = s.id
INNER JOIN product p ON sp.productId = p.id

Fonte: O autor (2023).

26

A implementacgéo da parte l6gica de cada framework € mostrada abaixo:

Figura 16: Implementagéo da parte logica no ASP.NET Core e Spring respectivamente

T0>> getSuppliersAndProducts()

t> result = supplierRepository.getAllSupplierAndProductsByNativeSql();
TO> supplierDTOMap = Q;

sp in result)

isOnDict = supplierDTOMap.ContainsKey(sp.supplierId);
if (isOnDict)
{
currentSp = supplierDTOMap[sp.supplierId];
if (currentSp !=)
{

entSp. products . Add(

productDTO =

supplierDTO =

(sp.productName, sp.productId, sp.productDetails));

TO(sp.productName, sp.productId, sp.productDetails);

(sp.supplierName, sp.supplierActive, sp.supplierld,

{
product
I H
supplierDTOMap.Add(supplierDT0.id, supplierDTO);
}

rn supplierDTOMap.Values.ToList(

self
SupplierRepository

pplie
sqlResults

supplierProductMap

dict

supplierProduct of sql

supplier pplierProductMap.get (supplierProduct.

upplie supplier
suppli~= ==
upplierProduct: any
supplierProduct. ,

supplierProduct.

newSuppli
supplierProduct.
3 pplierProduct.

supplierProduct.

supplierProduct .

supplierProduct.

"productName'), : supplierProduct.

(' produc

supplierProductMap.set (newSupplier.id, newSupplier);

Array. supplierProductMap,

27

Basicamente, é feito um for para percorrer os resultados e processa-los, utilizando
uma estrutura de dados como um HashMap para lidar com o retorno da query. Por
fim é feito um parse para serem retornados os valores do HashMap em uma lista
para ficar igual a figura 14.

Cenario 1: 50 requisi¢cdes por segundo, durante 5s, totalizando 250

requisigcoes

Utilizando conexdo com banco de dados e executando a mesma query para todos

os frameworks, foram obtidos os seguintes resultados.

ExpressJs

Para executar todas as requisicbes, foi levado um tempo total de 22 segundos
(figura 18).

Figura 18: Numero de transagdes por tempo total de teste

I Get Suppliers Express (success)
20

Number of transactions/sec
\
\
)
/
/
=
™
~
-
_~
-
=
(
S
~
<
#
7
=
el
.

i
00:00:00 00:00:02 00:00:04 00:00:06 00:00:08 00:00:11 00:0013 00:00:15 00:0017 00:00:19 00:00:22
Elapsed time (granularity. 1 sec)

E possivel perceber que, ao atingir a metade do tempo total, foi-se atingido o melhor

numero de requisigdes por milissegundo.

Figura 19: Tempo de resposta de uma request x tempo total do teste

M Gat Suppliers Express

5000
4500
4000

3500

0
00:00:00

00:00:02 00:00:04

00:00:06

00:00:08 00:00:11
Elapsed time (granulanity: 500 ms)

00:0013 000015 000017

28

0000:19 0000:22

O tempo de resposta da requisicao (figura 19) foi subindo com o tempo, muito

possivelmente por ter que esperar uma requisi¢do acabar para poder comecgar a

outra.

Figura 20: Distribuicdo do numero de requisi¢des com seu tempo de resposta total

[Get Suppliers Express

800 1500 2200 2900 3600 4300 5000 5700 6400

20

Number of responses

J 1
100

Response times in ms

A distribuicdo (figura 20) mostra que a maioria das requisi¢des estdao entre 3,6

segundos e 4,3 segundos.

Tabela 3: Representagéo dos resultados do expressJs

Total Média Minimo Max Vazao (requisi¢ao/tempo) Percentual de
erro
250 3818 ms 198 ms | 6720 ms 11,2 req/sec 0%

29

No resultado geral (tabela 3), teve um tempo minimo bom e sem nenhuma

requisicado com falha.

ASP.NET CORE
Para executar esses testes, foi levado um total de 11 segundos, sendo a metade do

tempo do expressJS.

Figura 21: Transagdes por segundo durante o tempo de teste

I Get Suppliers dotnet (success)

Number of transactions /sec

0
00:00:00 00:00:01 00:00:02 00:00:03 00:00:04 00:00:06 00:00:07 00:00:08 00:00:09 00:00:11

00:00:05
Elapsedtime (granularty. 1 sec)

Nesse caso, a maior quantidade de transacbes por segundo foi alcangada bem

proximo as ultimas requisicoes a serem feitas (ver figura 21).

Figura 22: Tempo de resposta de uma request x tempo total do teste

W Get Suppliers dotnet
2800

2600 SN
— A

\
2400 . \
\ i \
\ - \
— A
2200 \ == \
N\ " \,\
2000] \\\ L \
.y ~_ \
~———— \
1800 i \
— \

1600 7 \

Response times in ms

1400 /
1200 7/

1000 /

800
00:00:00 00:00:01 00:00:02 00:00:03 00:00:04 00:00:05 00:00:06 00:00:07 00:00:08 00:00:09 00:00:11
Elapsed time (granularity: 500 ms)

O tempo de resposta (figura 22) oscilou menos que o do Express.js, tendo valores

menores com uma queda ao chegar no tempo final do teste.

[Get Suppliers dotnet
10

Number of responses

200

Figura 23: Distribuicdo do tempo de resposta das requisigoes

1100

1700

Response times in ms

2000 2300 2600

30

2900 3200

A maioria do tempo das requisigdes se encontram entre 1700 a 2000 milissegundos

(ver figura 23). Uma diferenga de comportamento interessante € que, mesmo tendo

um tempo de resposta menor que o Expressjs, o tempo minimo do dotnet &€ maior e

a quantidade de requests que levaram menos tempo € menor que a do framework

de Javascript devido ao comportamento do dotnet de lidar com maior numero de

requisicdées no mesmo momento.

Tabela 4: Representagao dos resultados do ASP NET CORE

Total

Media

Minimo

Max

Vazao (requisigdo/tempo)

Percentual de
erro

250

1994 ms

294 ms

2991 ms

23,1 req/sec

0%

A vazao do ASP .NET Core chegou a ser pouco mais de 2 vezes maior que a do

ExpressJS. Um dos fatos que pode colaborar nisso € o suporte nativo a multi

threads que melhoram a execugao concorrente.

31

Spring Boot

O framework do Java levou 12 segundos para responder todas as requisi¢oes.

Figura 24: Transagdes por segundo durante o tempo de teste

B Get Suppliers Java (success)
26 =y

Number of transactions /sec
@

- / \

[}
00:00:00 0000 00:00:02 00:00:03 00:00:04 00:00:08 00:00:07 00:00:08 00:00:09 00:00:10 00:0012
Elapsed time (granularity: 1 sec)

As transacbes por segundo se mantiveram muito mais estaveis no pico do que os

outros dois citados anteriormente.(ver figura 24)

Figura 25: Tempo de resposta durante o tempo do teste

B Get Suppliers Java
2800

2600
2400

2200 !

N
=
g
g

rd
/
/
N
\
A1
\
{
i
\
|
\

Response times in ms
@
=
8

1 600 \

1400 /

1200
1000
800
00:00:00 00:00:01 00:00:02 00:00:03 00:00:04 00:00:05 00:00:06 00:00:08 00:00:08 00:00:10 00:00:11
Elapsed time (granularity: 500 ms)

O tempo de gasto total do teste foi de 12 segundos, com oscilagdes do tempo de resposta (ver figura
25).

[Get Suppliers Java

ag

Number of responses
=
&

Figura 26: Distribuicdo do tempo de resposta das requisigoes

600

1800 2200

Response times in ms

2600 3000 3400

32

3800 4200

O desempenho foi muito parecido com o do framework do C#, mas manteve o tempo

mais estavel por mais tempo no meio do tempo do teste, conforme a figura 26.No

entanto, o Dotnet ainda conseguiu manter um tempo menor, oscilando mais.

Tabela 5: Representacao dos resultados do Spring boot

Total

Média

Minimo

Max

Vazao (requisicao/tempo)

Percentual de
erro

250

1908 ms

261 ms

3702 ms

22,1 req/sec

0%

A vazao do ASP .NET CORE e do Spring Boot se mantiveram bem parecidas, com o

dotnet conseguindo fazer em média uma requisigcdo a mais por segundo (ver tabela

5). Outro fato a ser considerado € que no tempo maximo do Spring Boot foi pior que

o0 ASP .NET CORE, mesmo os dois possuindo suporte a multi thread nativamente.

Django

O tempo de execugao do teste durou um total de 17 segundos, porém grande parte

das requisigdes falharam por motivos do Django no comportamento default com as

configuragbes do ambiente de teste descritas acima ndo aguentar um pouco mais

que 30 requisicbes por segundo. O numero de requisi¢es limitadas foi pequeno

devido a limitagcdes de hardware de testes.

33

No entanto, isso pode ocorrer em producédo e devido a isso a documentacao do
Django recomenda utilizar alguns middlewares na requisicdo http que melhoram
performance por cache, ou até mesmo utilizar o Django com PyPy que funcionaria
como um novo compilador para Python, tendo resultados 4,2 vezes mais rapidos em
performance de acordo com sua documentagcdo. Como a ideia desse trabalho é
comparar os frameworks de maneira mais “nativa” e justa possivel, foi utilizado o
padrao de todos os frameworks, n&o utilizando nenhum plugin ou biblioteca a mais

além do framework e seu respectivo ORM.

Figura 27: Transagdes por segundo durante o tempo de teste

[Get Suppliers dotnet (failure) W Get Suppliers dotnet (success)
70

63

56

=
o

=
[

Number of transactions /sec
(=] Ty
(==} wm

b

=

0
00:00:00 00:00:01 00:00:03 00:00:05 00:00:08 00:00:08 00:00:10 00:00:11 00:00:113 00:00:15 00:00:17
Elapsed time (granularity: 1 sec)

O Django comega com as primeiras requisicdes dando falha (requisicdes em
vermelho) pelo fato de ao se utilizar multithreads, sofrer com problemas de alcangar
um limite de conexdes abertas no protocolo HTTP (ver figura 27).

A figura 28 mostra o grafico don tempo de respostas ndo separando requisi¢des

falhadas das de sucesso.

3600

3200

2800

2400

2000

1600

Response times in ms

1200

800

400

4000

A
— \ /, \\\\/j +

0
00:00:00 00:00:01

Figura 28: Tempo de resposta durante o tempo do teste

/ '*.

00:00:03 00:00:04 00:00:06 00:00:08 00:00:09 00:00:11 00:00:13 00:00:14 00:00:16
Elapsed time (granularity: 500 ms)

Figura 29: Distribuicdo do tempo de resposta das requisicoes

[Get Suppliers dotnat

200

180

160

140

Number of responses

120 £

100 F

80 |

60|

IR

20

0

0 500

1000 1500 2000 2500 3000 3500 4000 4500 5000
Response times in ms

34

A maioria da distribuicdo ficou em 0 segundos pelo fato do comportamento ter

sobrecarregado a quantidade de requisi¢cbes ativas (ver figura 29).

Quadro 6: Representagéo dos resultados do Django

Total Média Minimo Max Vazao (requisicao/tempo) Percentual de
erro
250 936 ms 0O ms 4337 ms | 15,1 req/sec 60,80%

A tabela 6 mostra o resultado geral do teste, com destaque de 60,80% das

requisicdes com falha.

35

Cenario 2: 250 requisicoes feitas em 1s, simulando 250 usuarios

tentando consumir a mesma APl ao mesmo tempo.

Express.js

O Express.js levou um total de 30 segundos para responder todas as requisicoes

(ver figura 30).

B Get Suppliers Express
30000

27000
24000
,, 21000
g
< 18000
g
= 15000
H
2 12000
@
9000
6000

3000

g —
oz000

[Get Suppliers Express
10

El

Number of responses

8
7
6
5
4
3
2
1
0

100

Figura 30: Tempo de resposta durante o tempo do teste

00:00:03 00:00:06

00:00:09

00:00:12

00:00:15

Elapsedtime (granularity: 500 ms)

00:00:18 00:00:21 00:00:24

Figura 31: Distribuicdo do tempo de resposta das requisicoes

3100 6100

9100

15100

Response times in ms

18100 21100 24100

00:00:27 00:00:30

27100 30100

O tempo de resposta subiu conforme o tempo de teste, ndo apresentando nenhuma

queda ou oscilagdo para baixo, diferente do cenario que teve que lidar com as

requisicdes feitas com intervalo de tempo (figura 31).

Tabela 7: Representagao dos resultados do ExpressJs

ms

Total Média Minimo Max Vazao (requisicao/tempo) Percentual de
erro
250 16821 ms 188 ms 29460 8,2 req/sec 0%

36

A tabela 7 mostra o resultado geral, com destaque da vazao estar a 8,2 requisi¢des

por segundo, mostrando-se ser menor do que o primeiro caso de teste.

ASP.NET CORE

Ele levou 3 minutos e 11 segundos para realizar o teste e teve 20% das requisigdes
retornadas com erro de limite de conex&o de pool no banco.

O que aumentou incrivelmente o tempo de resposta quando comparado ao fazer 50
requisicdes por segundo durante 5 segundos (figura 32).

Figura 32: Tempo de resposta durante o tempo do teste

W Get Suppliers dotnet
161 200

140 400
189 600
,, 188800

S 188 000

nse time:

167 200

U

5004

186 400

Re

185 600
184 800 P
184 000

183 200
00:00:00 00:00:19 00:00:38 00:00:57 00:01:16 00:01:35 00:01:54 00:02:14 00:02:33 00:02:52 00:03:11
Elapsed time (granularity: 500 ms)

Ao ver os resultados, € um tanto quanto assustador e contraintuitivo ver que ele
demorou praticamente o mesmo tempo para retornar todas as requisicoes.

O problema estd no multi-thread que tenta acessar o banco de dados ao mesmo
tempo, em varias threads diferentes. Isso sobrecarrega o banco de dados, podendo
até retornar erros de conexdao devido ao limite de pool que esta atrelada a
quantidade de conexdes abertas que um banco de dados pode ter sem retornar
excecgoes.

Tabela 8: Representagéo dos resultados do ASP NET Core

Total Média Minimo Max Vazéao(requisigdo/tempo) Percentual de
erro
250 187216ms | 183396m | 191413m 1,3 req/sec 20%
S S

O tempo minimo e o tempo maximo estao muito préximos (tabela 8), isso aconteceu
porque o framework utilizou o poder de concorréncia para fazer a maioria das
consultas do request ao mesmo tempo, no banco de dados.

O desempenho foi influenciado pelo banco de dados, que nao suportou tantas
consultas e conexbes ao mesmo tempo. Isso mostra o poder do dotnet em seu

multi-thread, pois foi 0 Unico a conseguir sobrecarregar o banco de dados no mesmo

37

cenario. Em uma operagao que ndo dependesse de APIs externas ou de banco de
dados, o multithreading do dotnet seria muito mais util para realizar operagdes de

processamento.

Spring Boot

Foi levado um tempo total de 13 segundos para terminar os testes.

Figura 33: Tempo de resposta durante o tempo do teste

W Get Suppliers Java
20000

18000
16 000
14 000
12000
10000

8000

Response times in ms

6000
4000

2000

0
00:00:00 00:00:01 00:00:02 00:00:03 00:00:05 00:00:06 00:00:07 00:00:08 0o0:00:10 00:00:11 00:00:13
Elapsed time (granularity: 500 ms)

Da mesma forma que o Express, o Spring Boot também teve seu tempo de resposta
s6 aumentado, sem nenhuma oscilagao para diminuir e depois aumentar (figura 33).

Figura 34: Distribuicdo do tempo de resposta das requisi¢cdes

[Get Suppliers Java
10

Number of responses
o

=

0
600 1800 3000 4200 5400 6 600 7800 8000 10 200 11 400 12 600

Response times in ms

A figura 34 mostra a distribuicdo do tempo de resposta das requisi¢des do cenario 2.

38

Tabela 9: Representacao dos resultados do Spring boot

Total Média Minimo Max Vazao(requisicao/tempo) Percentual de
erro
250 6019 ms 687 ms 11937 ms | 19,3 reqg/sec 0%

A vazao foi mais lenta do que do cenario anterior, porém ainda conseguiu um bom

desempenho para retornar as requisicbes sem erros (tabela 9).

DJANGO

O tempo do teste durou 5s, tendo o pior desempenho dos 4 frameworks nesse

cenario também (figura 34).

Figura 34: Tempo de resposta pelo tempo de teste no django com 250 requisigdes

M Get Suppliers dotnet
5000

4500

4000

Response times in ms

3500
3000
2500
2000
1500

1000

500

0
00:00:00 00:00:00

[Get Suppliers dotnet
300

0 600

00:00:01 00:00:01 00:00:02 00:00:03 00:00:03 00:00:04 00:00:04 00:00:05 00:00:06
Elapsed time (granularity: 300 ms)

Figura 35: Distribuicdo do tempo de resposta das requisicoes

1200 1800 2400 3000 3600 4200 4800 5400 G000
Response limes in ms

O tempo de distribuicdo se manteve majoritariamente no Os devido ao grande

numero de erros por perda de conexao com cliente que o django teve ao receber as

250 requisicdes ao mesmo tempo (figura 35).

39

Quadro 10: Representacgao dos resultados do Django

Total Média Minimo Max Vazao(requisi¢ao/tempo) | Percentual de
erro

250 336 ms 1ms 4944 ms 42,8 reqg/sec 91.20%

O percentual de erro aumentou mais ainda nesse cenario mais dificil de lidar, com

apenas 22 requisigdes retornadas com sucesso (tabela 10).

6.2.2 - Resultados GET Suppliers

Com a execucao dos testes foi possivel entender que cada um tem sua estratégia
para lidar com possiveis estresses, o que faz com que resultados diferentes sejam
alcangados. Mesmo com resultados diferentes e indicadores que mostrariam qual foi
melhor, ha outros fatores que podem influenciar nos resultados.

Por exemplo, se o ASP .NET Core estivesse em um ambiente em produgédo sem
limitar a quantidade de conexdes abertas com o banco de dados, ele teria o melhor
desempenho para esse numero de requisi¢cdes. No entanto, haveria um numero
maior de requisigdes que chegariam no mesmo problema.

Para todos os efeitos, em um cenario ideal ndo € interessante sobrecarregar uma
APl desse modo sem um tipo de estratégia como orquestragcdo de pods com
multiplas instancias e um proxy para dividir o estresse ou até mesmo uma “fila” de
espera para ndo haver sobrecarga de infraestrutura externas como outras APls
externas e bancos de dados.

6.2.3 - GET Customers

Esse endpoint ira retornar todos os clientes e seus pedidos, contendo o nome do
produto e o preco do produto no momento da compra. Essa query utilizara 6 tabelas
diferentes para pegar a informagdo necessaria, tornando assim o endpoint mais
pesado. O banco de dados possui um total de 10 mil registros.

Figura 36: Query SQL feita pelo autor para buscar todos os clientes e seus respectivos pedidos com produtos

Fonte: O autor (2023)

40

Tendo como base no retorno das requisicées, uma colecao desse JSON abaixo:

Figura 37: JSON de retorno na requisi¢cao de customers

[B
{&
"customerName” : "teste_1",
"customerId" -1,
"customerActive" -true,
"orders”:[&
{B
"orderDate" :"2623-81-13T@1:809:21"
"orderId":1,
"products”:[&
{B
"name" : "name_1",
"id" -1,
"details":"detalls details"”,
"price":20.89
H
{B
"name" : "name_2",
"id" -2,
"details":"details details”,
"price":28 .89
}
]
}
]
}

A parte légica implementada para esse endpoint nos 4 servicos € mostrada nas
figuras 37, 38, 39 e 40.

Figura 37: Implementacgéao parte logica no ASP.NET CORE

rt>> getAllCustomerAndOrders
> result = customerRepository.getFullCustomerData();
erOrderReport> customerHashMap = Q;

foreach (C customerReport in result)
L

isOnDict =

if (isOnDict)

{

customerHashMap.ContainsKey(customerReport.customerId);

currentCustomerReport = customerHashHap[customerﬂeport customerId];
if (currentCustomerReport

{

newProduct = createProduct(customerReport)
currentOderDTO = currentCustomerReport.orders.Find(ord ord.orderId

)

Order newOrder = createOrderDTO(customerReport);
newOrder . products.Add(newProduct);
currentCustomerReport.orders.Add(newOrder);

derReport newCustomerOrderReport = stomerOrderRe t(customerReport . customerName,
customerReport .customerId, customerReport.customerActive, ist< rb10>());

productDTO = createProduct(customerReport);
d 0 orderDTO = createOrderDTO(customerReport);
orderDTO. products . Add(productDT0);

newCustomerOrderReport . orders.Add(orderDTO0);

customerHashMap.Add(newCustomerOrderReport. customerId, newCustomerOrderReport);

}

return customerHashMap.Values.ToList(

Figura 38: Implementagao parte légica no Spring

.toList();

customerReport.orderld);

41

42

Figura 39: Implementacgéao parte légica no ExpressJS

sqlResults

customerOrderMap Map();

repository.

customerReport sqlResults

currentCustomerReport customerOrderMap. customerReport.
currentCustomerReport
newProduct th
currentOrder currentCustom
currentOrder
currentOrder.products. newProduct) ;

newOrder this. customerReport) ;

newOrde newProduct) ;

currentCustomerRepo newOrder

newCurrentCustomerReport
customerReport.
customerReport.

omerReport.

this. st r

newOrder .cr r [

newProduct
customerReport);
newOrder. -push(newProduct

newCurrentCustomerReport. newOr

omerOrderMap. newCurrentCustomerReport. ~

Array. custome derMap,

ustomerN customerName

customerId

customerReport

customerReport

customerReport.

newCurrentCustomerReport) ;

43

Cenario 1: 50 requisicdées por segundo, durante 5s, totalizando 250

requisicoes

Express.js
Com essa query mais pesada, o ExpressJS levou 1 minuto e 11 segundos para

responder as requisi¢oes (figura 41).

Figura 41: Tempo de resposta pelo tempo de teste
20 000

18 000 A | i

1 A Ao
M SV A

f \[& L ' A ”', .,
14000 I \ \ Y| '\I I;)Y e . \."I ! A
/ e \ || I| f |I \d‘l ."
12,000 Sy LA

10 000

2000

Response times in ms

6000
4000

2000

0
00:00:00 00:00:07 00:00:14 00:00:21 00:00:28 00:00:35 00:00:42 00:00:50 00:00:57 00:01:04 00:01:11
Elapsed time {granularity: 500 ms)

Figura 42: Distribuicdo do tempo de resposta das requisicoes

Number of responses
w

2400 4200 6000 T 800 9600 11 400 13200 15000 16 800 18 600 20 400
Response times in ms

Tabela 11: Representagao dos resultados do Expressjs

Total Média Minimo Max Vazao(requisicao/tempo) Percentual de
erro

250 13288 ms | 2410 ms | 19646 ms 3,5 reqg/sec 0%

44

A figura 42 mostra a distribuicdo do tempo de resposta e a tabela 11 mostra o
resultado geral. O tempo express demorou consideravelmente mais no endpoint
customer do que no supplier, devido a quantidade de tabelas a serem processadas.

No entanto, ainda conseguiu retornar todas as requisigcdes sem erros.

Spring Boot
O tempo total do teste foi de 1 minuto (figura 43), com todas as requisicbes
realizadas com sucesso.

Figura 43: Tempo de resposta pelo tempo de teste

B GET customers
22000

20000 II
I
18000 [l
|

,, 16000 | || |“‘
E | I
= 14000 [('l
@ = | I
g NN e A .
- - 3 - E -
5 12000 T I &"\1"\. .N)'.x,ul\'/)\‘)_)v\:.‘ A
= \ 1/ -«‘\\.’_‘ ./ / !
=] \/ ¥ +
2 10000 ¥ i \
1} y I|
[:

8000

6000

4000

2000 =

00:00:00 00:00:06 00:00:12 00:00:18 00:00:24 00:00:30 00:00:36 00:00:42 00:00:48 00:00:54 00:01:00

Elapsed time (granularity: 500 ms)

Figura 44: Distribuicdo do tempo de resposta das requisicoes

E GET customers
20

Number of responses
=

1800 3800 6000 8100 10 200 12300 14 400 16 500 18 600 20700 22800
Respense times fn ms

A figura 44 mostra a distribuicao do tempo de respostas das requisi¢des, e podemos observar a maior

concentragdo em algo em torno de 1200 milisegundos.

45

Quadro 12: Representacgéo dos resultados do Spring boot

Total Média Minimo Max Vazao(requisicao/tempo) Percentual de
erro
250 10739 ms | 1861 ms | 22298 ms 4,2 req/sec 0%

O tempo de teste foi 11 segundos mais rapido que o Express.js, com sua vazao de
requisicdes sendo um pouco maior (tabela 12). O tempo médio, minimo e maximo

também foram melhores.

ASP.NET CORE
Ele levou 55 segundos para responder todas as 250 requisi¢des, com todas as

requisicdes retornadas com sucesso (figura 45).

Figura 45: Tempo de resposta pelo tempo de teste

M GET customers
20000

A
18000 o ‘ﬂl
-~
16 000 \
., 14000 /‘\
g \ y
= \ — \
» 12000 - \ = ¥ ¥ - = !
g L \ ™ e —N A = \
E L \/ \ / \ e \
= 10000 v eomsmn
3 s W \
2 \
2 \
S 8000
3
[+
6000
4000 \
\
2000 1o
0
oo:00:00 00:00:05 00:00:11 00:00:16 00:00:22 00:00:27 00:00:33 00:00:38 00:00:44 00:00:49 00:00:55
Elapsed time (granularity: 500 ms)
Figura 46: Distribuicdo do tempo de resposta das requisigoes
D GET customers
10
9
8
o 7
g
S 6
8
2
5 6
2
g 4
=
3
2
A4 LG (R
0 | L L |
1600 3800 6000 8200 10 400 12 600 14 800 17 000 19200 21 400 23 600

Response times in ms

A figura 46 mostra o comportamento da distribuicdo de tempo de resposta,
mostrando que todas as distribuicbes dos 4 frameworks se mostram bastante

diferentes.

46

Quadro 13: Representagdo dos resultados do ASP.NET CORE

Total Média Minimo Max Vazéo(requisigcdo/tempo) Percentual
de erro
250 10527 ms | 1687 ms | 23132 ms 4,5 reqg/sec 0%

Até agora o mais performatico em questdes de vazao (tabela 13), o comportamento
desse framework consegue ser bom ao ndo conseguir quebrar o limite de conexdes
ativas no banco de dados. Porém, esse comportamento padrao é perigoso mesmo
com um limite de conexbes maiores, ndo € interessante deixar esse tipo de
sobrecarga acontecer se porventura a quantidade de pessoas mandando

requisicbes consiga ser maior que a quantidade maxima de conexdes ativas com o
banco.

DJANGO

O tempo total do teste foi de 47 segundos (figura 47), porém com um percentual de

erro de 64,2%. Sendo um resultado n&o 6timo, pois mais da metade das requisi¢coes
retornaram sem sucesso.

Figura 47: Tempo de resposta pelo tempo de teste
20000
18000
16 000
14 000
12000

A =

10000 //,q‘ o \ e
| _— — \
|

8000

000 pd | N 1 ‘I""LJ__,_,.—-f—"""""i_ﬂi_i/
4000 / ‘I\ / \’/ -
e =

v
2000 /

—

0
0o:00:00 00:00:04 00:00:09 00:00:14 00:00:18 00:00:23 00:00:28 00:00:32 00:00:37 00:00:42
Elapsed time (granularity: 500 ms)

Response times in ms

00:00:47

47

Figura 48: Distribuicdo do tempo de resposta das requisigoes

@ Get Suppliers dotnet
200

180

Number of responses
S
s

0 1500 3000 4 500 6000 7500 9000 10500 12 000 13 500 15 000
Response times in ms

A maioria das requisi¢cdes teve um tempo de resposta de 0 segundos (figura 48)
devido ao fato do framework, nessa implementacido e no ambiente de testes do
autor ndo aguentar segurar um pouco mais de 35 requisigdes por segundo. Tendo
no seu comportamento as primeiras requisi¢oes retornando com erro e so apos ter
um numero de requisigdbes menor para lidar, o framework comega a retornar
algumas com sucesso. O erro ndo se da por limitagdes de conexdes com o banco de

dados, mas sim de limitagdes de requisigdes ativas.

Tabela 14: Representacéo dos resultados do Django

erro

Total Média Minimo Max Vazao(requisicao/tempo) Percentual de

250 3531 ms Oms 13971 ms 5,3 req/sec 63,2%

A tabela 14 mostra o percentual de erro de 63,2% com as requisicbes falhadas

devido aos problemas discutidos.

Cenario 2: 250 requisicoes feitas em 1s, simulando 250 usuarios

tentando consumir a mesma APl ao mesmo tempo.

Express.js
O tempo total de testes foi de 1 minuto e 6 segundos (figura 49), com o
comportamento do tempo de resposta seguindo aumentando conforme o tempo e

com um percentual de 3,2% de requisicdes com erro.

70000

Figura 49: Tempo de resposta pelo tempo de teste

48

63 000 e
-
e
56000
.-..“'"‘.’.
.r"".
., 48000 T
E /__,-
= -
= 42000
2 ’,.r"f
£ 35000 =
e
(=] .
2 28000 ol
a e
'S e
21000 L
,r"’
14 000 Lt
! ‘."
7000 e
.-*""‘
N
00:00:00 00:00:06 00:00:13 00:00:18 00:00:26 00:00:33 00:00:38 00:00:46 00:00:52 00:00:58 00:01:06
Elapsed time (granularity: 500 ms)
Figura 50: Distribuicdo do tempo de resposta das requisicoes
10
9
8
7
o
3
S 6
2
g
s 5
!
4
g
=2
3
2
gl
0
1400 7800 14 200 20 600 27 000 33400 39 800 46 200 52600 59000 65 400

Response times in ms

A figura 50 mostra que a distribuicdo desse deste ficou praticamente com um tempo

de resposta para cada requisicao.

Tabela 15: Representagéo dos resultados do Expressjs

Total Média Minimo Max Vazéo(requisigcdo/tempo) Percentual de
erro
250 36926 ms | 1455 ms | 64642 ms 3,8 req/sec 3,2%

Esse numero de requisigdes feitas no mesmo segundo alcanga o ponto em que o

Express.js nessas condigdes comecaria a ter problemas de limites de conexdes

ativas com o banco de dados com 3,2% das requisi¢cdes falhadas (tabela 15).

Spring Boot

49

O tempo total do teste foi de 40 segundos (figura 51), com 26,8% (tabela 16) das

requisi¢des atingindo o limite de conexdes ativas com o0 banco de dados e assim

tendo retornado como falha.

Figura 51: Tempo de resposta pelo tempo de teste
40000
36 000 pre
32000 S

28000

Response times in ms
oy (] ka2
o [=} -
o = o
= = o=
= = =
L]

12000
2000

4000 T

0
00:00:00 00:00:04 00:00:08 00:00:12 00:00:16 00:00:20 00:00:24

Elapsed time (granularity: 500 ms)

00:00:28 00:00:32 00:00:36

Figura 52: Distribuicdo do tempo de resposta das requisicoes

Number of responses
=

20800
Response times in ms

5700 9500 13 300 17100 24 700 28 500 32300

36100

00:00:40

39900

A distribuicéo (figura 52) foi totalmente diferente da distribuicdo do Express.js (figura

50).
Quadro 16: Representagao dos resultados do Expressjs
Total Média Minimo Max Vazao(requisicao/tempo) Percentual de
erro
250 23377 ms | 1943 ms | 39542 ms 6,2 req/sec 26,8%
ASP.NET CORE

O tempo total do teste foi de 3 minutos e 36 segundos (figura 53), tendo alcangado o

maior tempo para realizar todas as requisicoes.

50

Figura 53: Tempo de resposta pelo tempo de teste

216 000 ~

212 000 e

7

208 000 I's
E 204 000 /
S 200000 s
g 196 000 /
g 192 000
& 188 000

184 000

180 000 j/

e 0(?00'00'00 00:00:21 00:00:43 00:01:04 00:01:26 00:01:48 00:02:08 00:02:31 00:02:53 00:03:14 00:03:36

Elapsed time (granularity. 500 ms)
Tabela17: Representacao dos resultados do ASP .NET Core
Total Média Minimo Max Vazao(requisi¢ao/te Percentual de erro
mpo)
250 [194206 ms | 178465 ms | 216216 ms 1,2 reqg/sec 19,2%

Como esperado com os testes anteriores, o tempo minimo e maximo ficam um
pouco proximos e as requisicoes demoram para serem retornadas devido ao
sobrecarregamento do banco de dados feitas pelo comportamento das multiplas
threads desse framework, tendo seu desempenho influenciado por limitacbes

externas, nesse caso, o banco de dados (tabela 17).

DJANGO

O tempo total do teste foi de 14 segundos (figura 54), sendo o menor tempo entre os
frameworks, porém isso aconteceu devido a maioria das requisi¢cdes falhar quase
instantaneamente, com um percentual de erro de 88,8%. Esse cenario aconteceu
devido a limitagdes do framework com o hardware do ambiente de testes usado pelo
autor. As requisicdes foram descartadas sem mesmo antes de chegar a ativar

conexao com o banco de dados.

51

Figura 54: Tempo de resposta pelo tempo de teste

W Get Suppliers dotnet
20000

18000
16000

14000

12000 Srmmmrm—
10000 -7

8000

Response times in ms
13

6000 Hrhmr'—r”r“
4000

2000

. =
0o:00:00 00:00:01 00:00:02 00:00:04 00:00:08 00:00:07 00:00:08 00:00:09 00:00:11 00:00:12 00:00:14
Elapsed time (granularity: 500 ms)

Tabela 18: Representagéo dos resultados do Expressjs

Total Média Minimo Max Vazao(requisi¢ao/te Percentual de erro
mpo)
250 1319 ms Oms 13165 ms 17,9 reqg/sec 88,8%

A tabela 18 mostra que o Django tem um percentual de erro de 88,8%, muito mais
alto do que os outros frameworks.

6.2.4 - Resultados GET Customers

Os resultados foram parecidos com o do endpoint suppliers, porém o tempo de
resposta de todos, nos que obtiveram mais requisicbes de sucesso do que falha, foi
aumentado devido a query ser mais pesada. Deste modo, este endpoint conseguiu
alcangar o ponto de estresse mais cedo em questdes em numero de requisicoes
para alcancgar algum tipo de falha na resposta das requisicoes.

7 LICOES APRENDIDAS

7.1 Diferencgas

Ao tentar comparar os frameworks, percebi o quanto eles sdo diferentes, ndo so6 por
questdes da sintaxe ou dos paradigmas da linguagem, mas sim da forma que eles
lidam com as entradas e saidas. Esse fato influencia completamente no tempo de
respostas das requisigcdes e de possiveis erros que podem acontecer ao levar o
sistema a testes de estresse.

7.2 Por que usar queries nativas?

Durante o desenvolvimento foi percebido que os ORMs dos frameworks tinham
filosofias diferentes para lidar com relacionamento e mapeamento, podendo ter seu

52

desempenho influenciado pela maneira como o banco de dados foi modelado. Além
disso, os retornos de objetos do ORM eram bastante diferentes, o que poderia levar
a ter diferentes pds-processamentos para chegar ao resultado esperado para ser
retornado na request. Portanto, foi decidido usar queries nativas SQL, pois assim as
unicas dependéncias externas s&o a conexao com o banco de dados e a execugao
da query, que retorna o mesmo objeto para todos os frameworks.

7.3 Comportamentos diferentes

A maneira padrdo que os frameworks lidam com multiplas requests simultaneas é
diferente, o que faz com que existam resultados muito diferentes, até mesmo de
erros por exceder o limite de conexdes ativas com o banco de dados acontega mais
rapidamente ou até mesmo nao conseguindo manter a request viva antes de
conseguir conclui-la.

Se ao receber multiplas requisi¢des ao mesmo tempo, o framework tentar acessar o
banco de dados ao mesmo tempo (utilizando-se de multiplas threads), o tempo de
resposta pode ser muito maior por ndo ter um gargalo de espera devido ao fator
limitante da capacidade do banco de dados que foi utilizado nesta pesquisa. O que é
mostrado é que ele poderia trabalhar com concorréncia muito bem se ndo depender
de fatores externos como outras APIs ou conexdes com banco de dados.

Por exemplo, Express.js obteve desempenho geral melhor que o Django, mesmo
nao contando com multiplas threads para afunilar a quantidade de requisicoes e
consequentemente nao teve problemas de estourar o limite de conexdes ativas no
banco de dados.

8 CONCLUSAO

Escolher um framework vai além de desempenho, mas também é considerado
fatores como intimidade com a linguagem de programacéo, suporte a bibliotecas, e
de melhor desempenho em cenarios especificos que seriam o caso de uso de algum
sistema.

Com os resultados dos testes feitos no ambiente mencionado com as configuragdes
padroes de cada framework e tendo tentado fazé-lo de maneira justa com a mesma
implementagéo feita pelo autor, foram alcancados resultados bastantes diferentes,
0s quais ndo conseguem afirmar qual € o mais performatico de maneira geral.

Porém, pode-se dizer que nos testes feitos, nesse sistema, o ASP.NET Core e
Spring Boot tiveram o melhor desempenho em termos de processamento nos
tempos de resposta das requisicoes nos cenarios de teste. Certamente seriam boas
escolhas ao se olhar para problemas em que se teria um banco de dados robusto ou
que fosse necessario velocidade de processamento com concorréncia.

53

Para casos mais simples que nao precisassem se preocupar tanto com
desempenho, o Express.js se sairia muito bem por possuir uma configuragao
simples, ser em javaScript que é a linguagem de programagdo mais utilizada no
mundo nos ultimos anos ou por ter diversas bibliotecas para diferentes casos de
usos, dos mais simples aos complexos.

O Django seria uma boa opgao para programadores Python e para casos de uso
que as bibliotecas existentes sanaram algum tipo de problema que o caso de uso do
sistema teria. E caso seja necessario mais desempenho, a documentagao tem um
“‘workaround” sobre isso com mais dependéncias para serem instaladas e
configuragdes a serem feitas.

Para trabalhos futuros, seria interessante tentar fazer uma comparagao mais justa
com um ambiente de testes externo, banco de dados de producéo, docker para ter
multiplas instancias da API e talvez utilizar implementagdes que favorecam cada
framework para mostrar o maximo de desempenho que cada um pode entregar com
suas caracteristicas distintas.

Outrossim, seria interessante também expandir a metodologia de testes, fazendo
testes em mais cenarios para poder obter mais detalhes de comportamento em
niveis de estresse.

54

REFERENCIAS

APACHE SOFTWARE FOUNDATION. Apache JMeter - Apache JMeterTM. Disponivel em:

<https://imeter.apache.orq/>. Acesso em: 1 mar 2023.

DHALLA, H. K. A Performance Comparison of RESTful Applications Implemented in Spring
Boot Java and MS.NET Core. Journal of Physics: Conference Series, v. 1933, n. 1, p. 012041, 1
jun. 2021.

Dalbard, Axel, and Jesper Isacson. "Comparative study on performance between ASP. NET and
Node. js Express for web-based calculation tools.” (2021).

What is a REST API? Definition and Principles - Seobility Wiki. Disponivel em:
<https://lwww.seobility.net/en/wiki/REST_API>.Acesso em: 1 mar 2023.

Databases | Django documentation | Django. Disponivel em:

<https://docs.djangoproject.com/en/4.1/ref/databases/>.Acesso em: 1 mar 2023.

TEAM, T. P. PyPy. Disponivel em: <https://www.pypy.org/>.Acesso em: 1 mar 2023.

https://jmeter.apache.org/

