VIRTUS IMPAVIDA
v vy

Universidade Federal de Pernambuco

Centro de Informatica

Graduagao em Engenharia da Computagao

Estudo comparativo entre ferramentas de teste unitario para

Angular ao programar com o paradigma reativo utilizando RxJS

Aluno: André Luiz Figueirba de Barros (alfb@cin.ufpe.br)

Orientador: Leopoldo Motta Teixeira (Imt@cin.ufpe.br)

Area: Engenharia de Software

Recife, 2023

mailto:lmt@cin.ufpe.br

Ficha de identificacdo da obra elaborada pelo autor,
através do programa de geragdo automatica do SIB/UFPE

Barros, André Luiz Figueirba de.

Estudo comparativo entre ferramentas de teste unitério para Angular ao
programar com o paradigma reativo utilizando RxJS/ André Luiz Figueirda de
Barros. - Recife, 2023.

46: il., tab.

Orientador(a): Leopoldo Motta Teixeira
Trabalho de Conclusdo de Curso (Graduacdo) - Universidade Federal de
Pernambuco, Centro de Informética, Engenharia da Computacéo - Bacharelado,
2023.
Inclui referéncias, apéndices.

1. Engenharia de Software. 2. Frontend. 3. Testes Unitarios. |. Teixeira,
Leopoldo Motta. (Orientacdo). Il. Titulo.

000 CDD (22.ed.)

RESUMO

Angular € um framework frontend, construido em TypeScript, baseado em
componentes para construir aplicagdes web.

Parte da comunidade do Angular defende o uso do paradigma de
programagcao reativa para ter ganhos em manutenibilidade. No Angular isso pode ser
alcangado com o uso da biblioteca RxJS, porém o codigo da aplicagdo pode
tornar-se mais complexo.

Independentemente do paradigma de programacao escolhido, os testes sao
parte fundamental no ciclo de desenvolvimento de software quando se busca atingir
niveis altos de qualidade. O intuito desse trabalho € comparar trés estratégias que
podem ser utilizadas para fazer testes unitarios em uma aplicagcdo Angular que
utiliza programagao reativa com RxJS, sendo elas: O uso do método subscribe dos
Observables do RxJS, o uso da APl de Marble Diagrams que também é fornecida
pelo RxJS e o uso da biblioteca Observer-spy que foi criada com o intuito de facilitar
os testes de Observables do RxJS.

As estratégias utilizadas foram comparadas com as seguintes métricas:
quantidade de linhas, legibilidade do teste e finalidade das asser¢des. O objetivo da
comparacgao é identificar quais das estratégias sdo melhores e piores em diversos
cenarios comumente encontrados no desenvolvimento de software frontend.

Palavras-chaves: Frontend, Testes, Angular, RxJS, Programacao reativa.

ABSTRACT

Angular is a frontend framework, built in TypeScript, based on components for
building web applications.

Part of the Angular community advocates for the use of reactive programming
paradigm to achieve gains in maintainability. In Angular, this can be achieved using
the RxJS library, but the source code becomes more complex.

Regardless of the chosen programming paradigm, testing is a fundamental
part of the software development cycle that aims to achieve high levels of quality. The
purpose of this work is to compare three strategies that can be used for unit testing in
an Angular application that uses reactive programming with RxJS, namely: using the
subscribe method of RxJS Observables, using the Marble Diagrams API also
provided by RxJS, and using the Observer-spy library that was created to facilitate
testing of RxJS Observables.

The strategies used were compared with the following metrics: amount of
lines, test readability, and purpose of assertions. The objective of the comparison is
to identify which strategies are better and worse in various scenarios commonly
encountered in frontend software development.

Keywords: Frontend, Tests, Angular, RxJS, Reactive programming.

LISTA DE TABELAS

Tabela 4.1 - Abordagem vs Linhas de cédigo do teste

LISTA DE FIGURAS

Figura 3.1 - Tela da apliCaga0.........c.oeiriiiii e 17
Figura 3.2 - Estrutura do projeto.........ooii i 18
Figura 3.3 - Estrutura do projeto vs Tela da aplicag&o..............ccooiiiiiiiiiiinnnnn. 18
Figura 4.1 - Cobertura de testes........ ..o 39

LISTA DE CODIGOS

Cddigo 2.1 - Exemplo cOdigo imperativo............oiviiiii i, 13
Codigo 4.1 - pOKE-aPIi.SEIVICE.AS. ...ui i 19
COdigo 4.2 - pOKedeX.StOre.1S.ue e 21
COdigo 4.3 - app-MOAUIEES. .. .o s 25
Codigo 4.4 - team.effeCts.As. ..o 26
Caodigo 4.5 - pokedex.componentds.......o.iiiiiii 28
Caodigo 4.6 - pokedex.component.html.............coo i 30
Cdbdigo 4.7 - Trecho comum aos codigos que utilizam subscribing strategy............ 32

Cddigo 4.8 - should be able to retry last request using same parameters, but
incrementing the retry count by 1 (subscribing strategy)..........ccooovrriiicccicee. 32
COdIgo 4.9 - 1St dS. i 33
Cddigo 4.10 - should only trigger search if new text is different from last one
(ODSErVEr-spY SIrategY).....coii i 34
Cddigo 4.11 - should only trigger search if new text is different from last one
((S10] oX=Ted] o] [aTo =3 i = 1(=Te |) PP 34
Cdbdigo 4.12 - it should be able to fetch data by search text (subscribing strategy)...35
Cddigo 4.13 - it should be able to fetch data by search text (observer-spy strategy)36
Cddigo 4.14 - it should be able to fetch data by search text (marble strategy).......... 36
Cdédigo 4.15 - it should dispatch addPokemon action when addPokemonToTeam
event emits (SUbSCrIDING Srategy).......oooiiiiiiiii e 38
Cddigo 4.16 - it should dispatch addPokemon action when addPokemonToTeam
event emits (observer-spy strategy)........oouvuviiiiiiiiiiiee e 38
Caodigo 4.17 - it should dispatch addPokemon action when addPokemonToTeam

event emits (marble Strategy)...........ue e 38

SUMARIO

1. INTRODUGAOD........cuuiiiiinneeeiietieeeernneserrnneeerrnneeersnnnesersnnesersnnssersnsseeens 8
1.1 Contexto € MOLIVAGAOD.ooviii s 8
1.2 ODbJetivOS geraiS. et 9
1.3 ODbjetivos €SPEeCIfICOS.ui i 9
1.4 Seg0es dO AOCUMEBNTO.viiti i 10

© 2. REVISAO DA LITERATURAL........cootuiieteieeineeeeneeenneeeennesesnnessnnneernneeenes 1"
200t 0 T =Y | (o 11

20 ANQUIAT. ... 11
2.1.1.1 COMPONENTES. ...ttt 11
2 I A 1Y Y/ Tt 1= 11
2113 ANQUIAr CLI. ..o 11

2.1.2 TeSteS UNITAMIOS. ... 12
2.1.2.1 Testando Componentes...........ovveiiiiiiiiiii e 12
2.1.2.2 Testando ServiCOS.ouiieiii i 12

2 1.3 TSt RUNNET. ... e 12

2.1.3Jasmine € Karma........ccoiiuiiiii i 12
2.1.4 Programagao Imperativa............ccooiiiiiiiiii i 12
2.1.5 Programacédo Declarativa.............ccocooiiiiiiiic 12
2.1.6 Programagao Reativa.............coooiiiiiiii e 13

2.7 RXU S 13

2. 8 NGRX 13

2.2 Trabalhos relacionados.coouiiiiii e 14

3 DESENVOLVIMENTO DO PROJETO......ciiiiiieiirererreere s s s e nna e e ens 15
3.1 Ferramentas de teste. ... 15

B RXU S 15

3. 1.2 Marble DiagramsS.o 15

3.1.8 0DSEIVEI-SPY . e e 15

3.2 Aplicagao desenvolVida. 15

3.2.1 BACKENA. .. .o e 16

.22 FrONteNd. .. .o 16
3.2.2.1 DEPENAENCIAS. ...t 17
3.2. 2.2 EStrutUra. ..o 17

4. TESTES E COMPARAGOES.......couiiiiiiiiiiiciceieeeeeeeee e e s e e e eaa e nan e 19

i I N AV o W [0 B (=11 (=1 T 19

4.2 POKEAEX STOM@. ... et 20
T I =] (T 24

4.3 Global State.o e 25
G TR I =] (Y 27

4.4 PokedexX COmMPONENt......oouiiii i e 28
T I =T S] (T 31

R 0] g T 07T r= o0 1= T 32

T o3 0]\ [of I 0= Y o T 41
5.1 Trabalhos fUtUrOS.o e 42
REFERENCIAS BIBLIOGRAFICAS..........uiiiiiiiieiiieeeeeeeeeiee e e e e eerennaeesseeeenns 43

1. INTRODUGAO
1.1 Contexto e motivagao

Uma aplicacdo web consiste em um software que executa em um navegador
web, que se comunica com um ou mais servidores para troca e manipulagcdo de
dados. O software que executa no navegador da maquina do usuario é chamado de
frontend e é responsavel pela interface visual do sistema e pela interface com o
usuario da aplicagdo. Ja o coddigo que executa nos servidores e que sao
responsaveis por gerenciar os dados da aplicagcao é chamado de backend [1].

Testes de software sdo um processo para avaliar se um software funciona da
forma desejada. Os testes sao feitos para encontrar falhas no sistema, de forma que
elas sejam corrigidas antes que os usuarios do sistema usem a aplicagao [2].
Existem diversos tipos de teste de software, sendo o mais basico deles os testes
unitarios que sao responsaveis por testar métodos, classes, componentes ou
modulos de forma independente do resto do sistema [3].

O paradigma de programacéo reativa € baseado na criagcédo de fluxo de dados
e na observagao desses fluxos para reagir a mudangas no mesmo [4, 5].

O Angular é um framework para desenvolvimento fronfend no contexto de
aplicacbes web [6]. Ele € um dos frameworks mais utilizados no universo de
desenvolvimento frontend, ocupando a 22 posicao como framework frontend mais
utilizado no levantamento feito pelo State of JS de 2022 [7].

O Angular utiliza RxJS [8] internamente, uma biblioteca que é utilizada para
programar de forma reativa. Por estar integrada com o framework, o RxJS se tornou
bastante popular dentro da comunidade Angular, a ponto de gerar discussoes sobre
basear toda uma aplicacdo sobre o uso de programacao reativa com RxJS [9, 10].

Este trabalho tem como objetivo fazer um estudo comparativo entre 3
ferramentas que podem ser utilizadas para realizar testes unitarios em uma
aplicacao frontend desenvolvida em Angular que utiliza o paradigma de
programacao reativa baseada em RxJS [8]. A motivagcao para realizar esse estudo
foi o trabalho “Estudo comparativo entre ferramentas de teste para React” [11].

O entendimento do que é e como funciona o RxJS é fundamental para a
compreensao desse trabalho, segundo a prépria documentagdo a biblioteca se
define como: “ReactiveX combines the Observer pattern with the Iterator pattern and
functional programming with collections to fill the need for an ideal way of managing

sequences of events” [8]. Na pratica a biblioteca define classes que séo utilizadas na
8

criagdo e gerenciamento de fluxos de dados, sendo a mais importante delas a classe
Observable.

A primeira ferramenta utilizada para realizar os testes unitarios € a prépria
biblioteca do RxJS. Nesses testes, 0 método subscribe € chamado nos objetos da
classe Observable, que representam os fluxos de dados, para ler os dados que
serao utilizados para fazer as asser¢des dos testes.

A segunda ferramenta utiliza Marble Diagrams para realizar os testes. Estes
diagramas representam uma forma de visualizar os fluxos de dados e sao utilizados
com uma AP/ especifica para testes disponibilizada pela propria biblioteca do RxJS
[12]. Com essa solucgao é possivel comparar os fluxos de dados inteiros entre si.

A terceira estratégia recorre ao uso de outra biblioteca, a observer-spy,

que foi criada com o propdsito de facilitar os testes de cddigo feito com o RxJS [13].

1.2 Objetivos gerais

O objetivo do trabalho é comparar 3 ferramentas diferentes que podem ser
utilizadas para realizar testes unitarios em uma aplicagao feita em Angular com
programagcao reativa utilizando RxJS.

A primeira ferramenta € o proprio RxJS e utiliza o método subscribe da
classe Observable para leitura de dados. A segunda ferrramenta € a AP/ de testes
baseada em marble diagrams também fornecida pela biblioteca do RxJS. Ja a
terceira ferramenta € a biblioteca observer-spy criada para facilitar os testes de
codigo RxJS.

O resultado dessa comparacao € de interesse ndo apenas para profissionais
que usam Angular como framework como também pode interessar aos profissionais
que trabalham com frontend de maneira geral o Angular € uma das tecnologias mais
utilizadas do mercado. Além disso, o debate sobre reatividade n&do é exclusivo do

Angular.

1.3 Objetivos especificos
e Implementacédo de uma aplicagdo web com frontend desenvolvido em Angular
para realizacao dos testes.
e Escrever testes analogos utilizando as 3 estratégias definidas citadas na

Secgao 3.1.

e Utilizar a cobertura de testes para certificar que os testes feitos com cada uma
das ferramentas s&o analogos
e Comparar os testes feitos utilizando as diferentes estratégias utilizando as
métricas definidas a seguir com o fim de apontar quais dos métodos € mais
apropriado para cada situacgao.
o Quantidade de linhas
o Legibilidade do cédigo
o Finalidade das assercdes
Essas meétricas foram escolhidas com base no trabalho utilizado como
referéncia [11]. Outras métricas que também poderiam ser utilizadas mas foram
descartadas sao tempo de execugdo e uso de memoria, pois seria necessario uma
aplicacao de grande para ter uma real diferenca nesses valores, o que nao foi viavel

devido ao tempo e escopo do projeto.

1.4 Sec¢des do documento

A Secgado 2 apresenta os conceitos fundamentais para o entendimento do
projeto.

A Secédo 3 apresenta as 3 abordagens avaliadas neste trabalho e o codigo do
projeto desenvolvido.

A Secéo 4 apresenta os codigos desenvolvidos para testar a aplicagao e
compara as 3 abordagens.

A Secao 5 encerra o trabalho mostrando as conclusdes obtidas com o final do

estudo e aponta uma sugestao para trabalho futuro.

10

e 2. REVISAO DA LITERATURA

Os conceitos fundamentais para o entendimento do projeto sdo apresentados
nesta segao.
2.1 Conceitos
2.1.1 Angular

Angular € um framework construido em TypeScript, baseado em componentes
para construir aplicagcbes web. O framework é formado por varias bibliotecas que
fornecem diversas funcionalidades, como gerenciamento de formulario, roteamento,
comunicacgao cliente-servidor, e muitas outras [6].
2.1.1.1 Componentes

As principais pegas de uma aplicacdo Angular sao os componentes [14]. Eles
representam fragmentos da Ul de uma aplicagao e sao compostos por:
e Um arquivo HTML que representa a visdo daquele componente. E nesse
arquivo que sao definidos os elementos visiveis [14].
e Um arquivo TypeScript com uma declaracdo de classe que representa o
modelo daquele componente. E nessa classe que é definido o
comportamento do componente. E também nesse arquivo que é definido o
seletor CSS do componente para que ele possa ser utilizado por outros
componentes [14].
e Um arquivo de estilizagdo opcional, utilizado para aplicar estilos ao arquivo
HTML do componente [14].
2.1.1.2 Servigcos

Servigos sao classes com objetivos bem definidos que podem ser acessados
por outros elementos do sistema através do sistema de injecdo de dependéncia
nativo do Angular. Os servicos normalmente sio utilizados para reduzir as
responsabilidades dos componentes, tornando o coédigo mais modularizado e
reutilizavel [15].
2.1.1.3 Angular CLI

Como o proprio nome ja diz, Angular CL/ trata-se de uma interface de linha de
comando para o Angular. Com essa ferramenta & possivel criar um projeto Angular,
criar componentes, criar servigos, criar modulos, executar testes, e muitas outras

funcionalidades através de comandos em um terminal [16].

11

2.1.2 Testes unitarios

Teste unitario € o tipo de teste mais baixo nivel de um software e esta
bastante préximo do codigo fonte. Esse tipo de teste consiste em testar as classes,
componentes e modulos da aplicacao através de suas funcdes e métodos. Os testes
unitarios sdo os mais baratos de se automatizar e normalmente executam
rapidamente [3].
2.1.2.1 Testando Componentes

Como explicado na Segéao 2.1.1.1 o componente é uma combinagdo de um
template HTML com uma classe em TypeScript. Apesar de ser possivel testar a
classe isoladamente, o que torna os testes mais simples, o teste se torna mais
completo quando ele verifica o funcionamento da classe do componente trabalhando
em conjunto com o seu template [17].
2.1.2.2 Testando Servicos

Como explicado na Secao 2.1.1.2 os servigcos sao compostos por apenas uma
classe. Os testes unitarios do mesmo se resumem a testar seus métodos e funcdes
[18].
2.1.3 Test Runner

Test runner € um software que se responsabiliza pela execugao dos testes e

exportagao dos resultados.[19].
2.1.3 Jasmine e Karma

O Karma é um test runner, ele é instalado por padrao quando se cria um novo
projeto Angular através da CLI [20].

O Jasmine é um framework de teste, e assim como o Karma ele também é
instalado por padrao quando se cria um projeto através do Angular CLI [20].
2.1.4 Programagao Imperativa

No paradigma de programagédo imperativa o programador passa uma
sequéncia de comandos para a maquina para que ela possa desempenhar sua
funcdo. Nesse paradigma as instru¢des sao passadas para o computador como um
passo a passo [21].
2.1.5 Programacéo Declarativa

Se no paradigma de programagéao imperativa o desenvolvedor deve descrever
como o computador deve fazer determinada tarefa, no paradigma de programacao
declarativa o desenvolvedor deve descrever o qué deve ser feito. Ou seja, o foco

esta no resultado da tarefa e ndo em como ela é executada [22].
12

2.1.6 Programacéo Reativa

A programacao reativa € um tipo de programacao declarativa que foca no uso
de fluxo de dados e em como novos valores em cada um dos fluxos impactam o
resto do programa [4, 5].

O codigo 2.1 foi escrito em JavaScript, o resultado desse cédigo imprime na
tela a mensagem “Ola Pessoa”. Mesmo ao alterar o valor da variavel b, nenhum
efeito vai se refletir no valor da variavel c¢. Esse é um exemplo de programagao
imperativa. Se pensarmos em a, b e ¢ como fluxos de dados ao invés de variaveis
tradicionais do JavaScript, uma mudang¢a no valor de b seria automaticamente
refletida no valor de ¢, resultando a mensagem “Ola André”.

Caddigo 2.1 - Exemplo cédigo imperativo

'ola’';

' Pessoa';

a + b;

Fonte: Elaborado pelo autor, 2023.
2.1.7 RxJS

RxJS é uma biblioteca que fornece as ferramentas necessarias para a criacéo
e manuseio de eventos. Seus conceitos assim como um guia inicial de como usar
essa ferramenta encontram-se na documentacéo oficial em [8].
2.1.8 NgRx
NgRx é um conjunto de bibliotecas que auxiliam no desenvolvimento de
aplicagdes reativas em Angular [23]. Esse projeto utilizou as seguintes bibliotecas:
e @ngrx/store - Utilizada para gerenciamento de estado global da aplicagéo

e (@ngrx/effects - Utilizada para registrar efeitos colaterais ao interagir com
o estado global da aplicagao
® @ngrx/component-store - Utilizada para gerenciamento de estado local
da aplicagao
As 3 bibliotecas acima sédo baseadas no RxJS. Os conceitos de cada uma
delas assim como um guia contendo exemplo de uso encontram-se na

documentacéo oficial [23].

13

2.2 Trabalhos relacionados

Em 2021, o trabalho de graduacao “Estudo comparativo entre ferramentas de
teste para React” [11] por Ferreira, Pamella compara Enzyme e React Testing Library
(RTL), duas ferramentas utilitarias para desenvolver testes em aplicagdes web feitas
em React. Neste trabalho a autora conclui que apesar de ambas as ferramentas
empatarem na cobertura de teste, e os testes possuirem em média praticamente a
mesma quantidade de linhas, os testes do RTL eram mais legiveis e simulavam a
interacdo do usuario com a aplicagdo, enquanto que o Enzyme era mais voltado
para testar o comportamento interno dos componentes [11].

Em 2016, o artigo “Comparison of Angular JS framework testing tools” [24]
publicado por Nina Fat, Marijana Vujovic, Istvan Papp e Sebastian Novak compara o
Karma e o Protractor no AngularJS para avaliar qual o mais apropriado em achar
problemas de otimizagdo. O trabalho conclui que o Karma se saiu melhor nesse
contexto [24].

Assim como os trabalhos citados acima, esse trabalho faz um estudo
comparativo entre ferramentas que podem ser utilizadas em testes de aplicagbes
web. A diferenga € que o estudo é feito em um contexto diferente: aplicacdes web

feitas em Angular utilizando de programacgao reativa com RxJS.

14

3 DESENVOLVIMENTO DO PROJETO
3.1 Ferramentas de teste
3.1.1 RxJS
A primeira ferramenta utilizada para testar a aplicagédo € o proprio RxJS.
Nessa abordagem é utilizado o método subscribe da classe Observable para ler
o valores existentes nos fluxos de dados da aplicagdo. Apéds a leitura dos valores é
possivel fazer as devidas assergdes. No escopo desse trabalho essa abordagem
sera chamada de subscribing strategy.
3.1.2 Marble Diagrams
Além das ferramentas para criagdo e manipulacdo de Observables, a
biblioteca RxJS também fornece ferramentas para testa-los focada em diagramas de
Marble [12]. Essa sub-biblioteca de testes fornecida pelo RxJS permite a criagdo de
Observables a partir de um diagrama de Marble, manipulagao de um reldgio virtual
para simular a passagem do tempo nos testes e comparagao entre Observables.
Nessa abordagem é possivel comparar fluxos de dados como um todo. No escopo
desse trabalho essa abordagem sera chamada de marble strategy.
3.1.3 observer-spy
A Dbiblioteca observer-spy foi criada especificamente para testar
Observables do RxJS [13]. Essa abordagem resume-se a utilizar as fungdes
disponiveis nessa biblioteca para realizar os testes.
3.2 Aplicagao desenvolvida
Devido ao escopo do trabalho, nao foi viavel o desenvolvimento de um projeto
complexo como uma aplicagdo empresarial, e-commerce ou rede social. Contudo, o
projeto desenvolvido, apesar de simples, implementa funcionalidades comuns a
esses tipos de aplicagdes como:
e Listagem e filtragem de dados vindo de uma APl REST
e Paginacéao
e Gerenciamento de estado global
e Gerenciamento de estado local
No escopo desse trabalho essa abordagem sera chamada de observer-spy

Strategy.

15

3.2.1 Backend
O backend desenvolvido utiliza dados que foram obitidos da PokeAPI [25],
uma RestAPI publica feita para fins educacionais que disponibiliza dados referentes
aos jogos da franquia Pokémon.
De acordo com a documentacdo da PokeAPI [25], ndo existe um endpoint
que retorne a lista com as informagdes completas de cada Pokémon. O que existe é
um endpoint que retorna uma lista de recursos, ou seja, ao invés de cada item da
lista conter as informag¢des de um Pokémon, cada item na lista contem apenas duas
informacoes:
e name: O nome do Pokémon
e url: A URL para o endpoint que contém as informacdes daquele Pokémon.
Devido a essa caracteristica, para adquirir informagdes de N Pokémon seria
necessario fazer N+1 requisicoes:
e 1 requisicao para obter a lista de recursos
e N requisi¢cbes, sendo 1 para receber os dados de cada Pokémon da lista
Foi desenvolvido um servidor que fez estas requisi¢gdes uma unica vez,
salvando assim localmente as informagdes de todos os Pokémon disponiveis na
PokeAPI. Isso foi feito para ndo quebrar as politicas de uso justo da PokeAPI [25],
que solicita que os usuarios salvem localmente os dados para evitar um alto volume
de requisigdes.
Além disso, essa solugcdo foi conveniente pois remove do frontend a
necessidade de gerenciar essas requisicoes.
O cdédigo do backend foi desenvolvido pelo autor deste trabalho e encontra-se
disponivel em [26], assim como suas instru¢des de uso.
3.2.2 Frontend
A aplicagao frontend consiste em uma pagina capaz de listar Pokémon, os
dados de Pokémon vem da aplicagcdo backend detalhada na sec¢ao anterior. A
apliacédo também € capaz de buscar por Pokémon através de seus nomes. Além
disso, 0 usuario também é capaz de formar um time de até 6 Pokémon.
O caddigo frontend também foi desenvolvido pelo autor deste trabalho e

encontra-se disponivel em [27], assim como suas instru¢des de uso.

16

Figura 3.1 - Tela da aplicagao

‘B BOS

Search pokemon.

- o e ¥ &

Bulbasaur Ivysaur Venusaur Charmander Charmeleon

D D LD
- + + - +
¥y
¢ {
) % B W v
Charizard Squirtle Wartortle Blastoise Caterpie
@ 5.3
+ + + + +
¢ 7)) %
2

Metapod Butterfree Weedle Kakuna Beedrill

Powered by ?oY\éAﬁ

Fonte: Elaborado pelo autor, 2023.
3.2.2.1 Dependéncias

Algumas dependéncias bastante utilizadas no ecossistema Angular foram
adicionadas ao projeto:
e Angular Material: Uma biblioteca de Ul que possui diversos componentes
disponiveis para usar em aplicagdes Angular [28]
e Ngrx: Bibliotecas para gerenciamento de estado em aplicagdes reativas feitas
com Angular. Mais detalhes na Sec¢ao 2.1.8.
3.2.2.2 Estrutura
A aplicagdo possui a estrutura representada pela Figura 3.2. Os retangulos
representam os componentes e o0s circulos representam servicos. Em amarelo
encontram-se 0s componentes e servicos que foram testados usando as

abordagens escolhidas por esse trabalho.

17

Figura 3.2 - Estrutura do projeto

Global Store FLELES Poke Api
Store
App
Y
header | pokedex — footer
Y ¥ Y
team-miniature loader grid-view pokedex-emor-message
¥

pokemon-type-tag

Fonte: Elaborado pelo autor, 2023.

A Figura 3.3 mapeia os componentes mostrados na Figura 3.2 com a tela da

aplicacao representada pela Figura 3.1, com excecédo dos componentes loader e

pokedex-error-message que ndo estdo renderizados na figura pois representam

estados de carregamento e de erro respectivamente.

Figura 3.3 - Estrutura do projeto vs Tela da aplicagéo

team-miniature

header

pokedex | grid-view

+

Bulbasaur |>okemon-type—ta(_| Ivysaur Venusaur Charmander Charmeleon
- + - +
By
7
&3 % B o %
Charizard Squirtle Wartortle Blastoise Caterpie
@ ®
+ + + +
¢ W v v e
Metapod Butterfree Weedle Kakuna Beedrill
footer
Powered by QAT

Fonte: Elaborado pelo autor, 2023.

18

4. TESTES E COMPARAGOES
4.1 Alvo dos testes

A Figura 3.2 mostra a estrutura da aplicacdo baseada em seus componentes
e servigos, apenas os elementos com o fundo da cor amarela foram utilizados para
comparacgao dos testes.

Os componentes que nao foram testados tem apenas a responsabilidade de
renderizar, logo ndo possuem légica que faga sentido ser testada por alguma das
abordagens escolhidas.

O servigo Poke Api é responsavel por configurar requisicdes HTTP, utilizando
o HittpClient que faz parte do framework Angular (Codigo 4.1). Para esse cenario
especifico a documentagcdo do Angular € bem direta quanto a forma na qual esse

codigo deve ser testado [29].
Caodigo 4.1 - poke-api.service.ts
HttpClient from '@angular/common/http';

Injectable from '@angular/core';

}
}

Observable } from 'rxjs';
}

import ListResult from '../models/list-result.model’';

import Pokemon } from '../models/pokemon.model’';

export const LIST POKEMON URL = 'http://localhost:3000/pokemon’';

@Injectable ({
providedIn: 'root'

b

export class PokeApiService {

constructor (private http: HttpClient) ({}

getPokemonList (page: number = 0, searchText: string = ''):
Observable<ListResult<Pokemon>> {
return this.http.get<ListResult<Pokemon>>(LIST POKEMON URL, {
params: {
page,

searchText

Fonte: Elaborado pelo autor, 2023.

19

https://github.com/FigueiroaAndre/pokedex-tcc/blob/main/src/app/shared/data-access/poke-api.service.ts

4.2 Pokedex Store

Esse servigo é utilizado para o gerenciamento de estado local do componente
pokedex utilizando as ferramentas disponiveis pela biblioteca
@ngrx/component-store, citada na Seg¢do 3.1.8. No Cddigo 4.2 a classe
PokedexStore estende a classe genérica ComponentStore que por sua vez é
importada de @ngrx/component-store.

As responsabilidades desse servigo sao as seguintes:

Armazenar o estado do componente Pokedex

Disponibilizar o estado do componente Pokedex de forma reativa
Disponibilizar métodos para que seja possivel atualizar o estado atual

Reagir a mudanga de estados e utilizar de forma reativa o servigo PokeApi
para fazer requisicdes de mais Pokémon

O estado inicial é configurado na chamada no método super do

constructor e possui o tipo da interface PokedexState, que € o tipo
especificado ao estender a classe ComponentStore.
A interface PokedexState, possui 3 propriedades:

e pokemonList: responsavel por armazenar a lista de Pokémon que deve ser
renderizada pelo componente PokedexComponent e seus filhos

e requestStatus: pode assumir o0s valores pending, processing,
success OU error e € utilizada para sinalizar o estado atual da requisigdo
feita ao backend. A depender do estado, a aplicagdo pode mostrar os dados
atuais, mostrar uma animacao de carregamento ou exibir uma mensagem de
erro.

e apiTrigger: essa propriedade é utilizada para disparar requisi¢des feitas ao
servidor quando modificada. Ela possui o tipo ApiEffectTrigger que
também esta definido no Codigo 4.2 e possui as seguintes propriedades:

o currentPage: pagina atual da lista de Pokémon

o lastPage: booleano que indica se estd ou ndo na ultima pagina da
lista de Pokémon

o searchText: utilizado como paréametro para fazer a filtragem de
Pokémon por seus nomes

o requestRetryCount: utilizado para contar quantas tentativas foram

feitas caso a requisicao para o backend falhe

20

https://github.com/FigueiroaAndre/pokedex-tcc/blob/main/src/app/pokedex/pokedex.store.ts
https://github.com/FigueiroaAndre/pokedex-tcc/blob/main/src/app/pokedex/pokedex.store.ts

O servigo disponibiliza para o componente apenas os estados pokemonList,
requestStatus e lastPage através dos Observables pokemonList$,
requestStatus$ e lastPage$ respectivamente (acima do constructor).
Sendo as demais propriedades do estado utilizadas apenas internamente pelo
servigo.

O método fetchPokemons configura um efeito colateral que, quando
executado faz uma requisigdo ao servidor caso a aplicagédo nédo esteja na ultima
pagina da lista. Em caso de sucesso ele atualiza a lista de Pokémon, em caso de
falha uma mensagem é exibida ao usuario. NO constructor esse método é
chamado e configurado para reagir as mudangas que ocorrem no estado
apiTrigger, sendo assim, executado de forma reativa toda vez que uma mudanca
for detectada.

O método resetRequestStatus € utilizado para resetar o estado da
requisicdo para pending 1 segundo apos a sua chamada. Ele € chamado pelo
método fetchPokemons apos a requisi¢ao resultar em falha ou sucesso.

Os demais métodos sao utilizados apenas para modificar o estado atual do

servico. Dependendo de como o estado for alterado, o componente Pokedex € 0

efeito colateral fetchPokemons podem reagir a essa mudanga.

Cadigo 4.2 - pokedex.store.ts
import { Injectable } from "@angular/core";
import { ComponentStore } from "@ngrx/component-store";
import { catchError, concatMap, delay, distinctUntilChanged, EMPTY,
filter, map, Observable, tap } from "rxjs";
import { isEqual } from 'lodash-es';
import { PokeApiService } from
"../shared/data-access/poke—-api.service";
import ListResult } from "../shared/models/list-result.model";

import Pokemon } from "../shared/models/pokemon.model";

import RequestStatus } from "../shared/models/request-status.model";

import MatSnackBar } from "@angular/material/snack-bar";

export interface PokedexState {
pokemonList: Pokemonl|];
requestStatus: RequestStatus;
apiTrigger: ApiEffectTrigger;
}

interface ApiEffectTrigger {
currentPage: number;
lastPage: boolean;
searchText: string;
requestRetryCount: number;

17

@Injectable ()
export class PokedexStore extends ComponentStore<PokedexState> {
readonly pokemonList$ = this.select(state => state.pokemonList) ;

readonly requestStatus$ = this.select (state => state.requestStatus);

’

readonly lastPages$

private readonly fetchData$ = this.select(state => state.apiTrigger) ;
)

this.fetchData$.pipe (map (data => data.lastPage)) ;

constructor (
private readonly pokeApi: PokeApiService,
private readonly snackBar: MatSnackBar
) A
super ({
pokemonList: [],
requestStatus: 'pending',
apiTrigger: {
requestRetryCount: O,
currentPage: O,
lastPage: false,
searchText: ''
}
})
this.fetchPokemons (this.fetchData$.pipe (distinctUntilChanged((a, b)
=> isEqual (a,b)))):;
}

readonly loadNextPage = this.updater (state => ({
..State,
apiTrigger: {
...State.apiTrigger,
requestRetryCount: O,

currentPage: state.apiTrigger.currentPage + 1

) 7

readonly searchPokemon = this.updater ((state, searchText: string) =>

.. State,
pokemonList: [],
apiTrigger: {
requestRetryCount: O,
currentPage: 0,
lastPage: false,

searchText: searchText

By

readonly retrylLastRequest = this.updater (state => ({
..state,
apiTrigger: |
...State.apiTrigger,

requestRetryCount: state.apiTrigger.requestRetryCount + 1

) 7

private readonly fetchPokemons = this.effect((datas:

Observable<ApiEffectTrigger>) => data$S.pipe (

filter (fetchData => ! fetchData.lastPage),
tap(() => this.updateRequestStatus ('processing')),
concatMap (fetchData =>
this.pokeApi.getPokemonList (fetchData.currentPage,
fetchData.searchText)
.pipe (
tap ({
next: result => {
if (fetchData.currentPage === 0) {
this.setPokemonlList (result) ;
} else {

this.addPokemonsToList (result) ;

by

error: err => {
this.snackBar.open (err.message, 'Dismiss', {
horizontalPosition: 'end', verticalPosition: 'top'}):
this.updateRequestStatus ('error');
bo
finalize: () => this.resetRequestStatus ()

),
catchError (err => EMPTY)

private resetRequestStatus = this.effect (S => S.pipe (
delay(1000),

tap(() => this.updateRequestStatus ('pending'))
))

private updateRequestStatus = this.updater((state, requestStatus:
RequestStatus) => ({

- o BEAILEE,
requestStatus

1))

private addPokemonsTolList = this.updater ((state, pokemonListResult:
ListResult<Pokemon>) => ({

..state,
pokemonList: [...state.pokemonlList, ...pokemonListResult.content],
requestStatus: 'success',
apiTrigger:
..State.apiTrigger,

lastPage: pokemonListResult.last

1))

private setPokemonlList = this.updater ((state, pokemonListResult:
ListResult<Pokemon>) => ({

..8tate,
pokemonList: pokemonListResult.content,
requestStatus: 'success',
apiTrigger: |
..state.apiTrigger,

lastPage: pokemonListResult.last

Fonte: Elaborado pelo autor, 2023.
4.2.1 Testes

Os seguintes testes foram desenvolvidos utilizando as 3 abordagens:

it should be able to fetch first page of pokemons on initialization

it should be able to fetch more pages of pokemons when calling loadNextPage
when not in last page

24

e it should not be able to fetch more pages of pokemons when calling
loadNextPage when in last page
e it should be able to fetch data by search text
e jt should be able to retry last request using same parameters, but
incrementing the retry count by 1
e jt should be able to reset requestStatus to pending after 1 second
Comparagdes a respeito dos testes, mostrando trechos de cdédigo, sédo feitas na
Secao 4.5.
4.3 Global State
E utilizado para o gerenciamento de estado global da aplicaco, utilizando a
biblioteca @ngrx/store, citada na Secdo 3.1.8. O estado global é configurado no

modulo raiz da aplicagao, como pode ser visto no Cdodigo 4.3.
Cdbdigo 4.3 - app.module.ts

import NgModule } from '@angular/core';

import BrowserModule } from '@angular/platform-browser';
import AppRoutingModule } from './app-routing.module';
import AppComponent } from './app.component';

import BrowserAnimationsModule } from

'@angular/platform-browser/animations';

import HttpClientModule } from '@angular/common/http';

import HeaderComponent } from './header/header.component';
import FooterComponent } from './footer/footer.component';
import StoreModule } from '@ngrx/store';

import MatSnackBarModule } from '@angular/material/snack-bar';
import teamReducer } from './shared/state/team/team.reducer';
import EffectsModule } from '@ngrx/effects';

import TeamEffects } from './shared/state/team/team.effects';

@NgModule ({

declarations: [
AppComponent

i

imports: [
BrowserModule,
AppRoutingModule,
BrowserAnimationsModule,
HttpClientModule,
HeaderComponent,
FooterComponent,

StoreModule. forRoot ({

https://github.com/FigueiroaAndre/pokedex-tcc/blob/main/src/app/app.module.ts

team: teamReducer
1),
EffectsModule.forRoot ([TeamEffects]),
MatSnackBarModule
i

providers: [],
bootstrap: [AppComponent]

)
export class AppModule { }

Fonte: Elaborado pelo autor, 2023.

O estado global é adicionado na aplicagdo ao importar 0 StoreModule.
Como o0 @ngrx/store € inspirado no Redux [23], foi preciso configurar Reducers,
Actions e Selectors. Mas nenhuma dessas configuragbes necessitou de cdodigo
reativo por parte da aplicacao.

Entretanto, o @ngrx/store € responsavel apenas pelo gerenciamento do
estado e ndo da execucgao de efeitos colaterais. Para adicionar efeitos colaterais em
reagdo a mudangas no estado global é necessario utilizar a biblioteca
@ngrx/effects, também citada na Segéo 3.1.8.

A adicdo dos efeitos colaterais também é feita no moédulo raiz (Codigo 4.3)

através da importacéo de EffectsModule. Nessa aplicagao foi configurado apenas
um estado global, team, que representa um time de até 6 Pokémons que sao

adicionados ou removidos a partir da Ul da aplicagado. O Cdodigo 4.4 contém o efeito

colateral TeamEffects que € utilizado na importacdo do Ef fectsModule.

Caodigo 4.4 - team.effects.ts
Injectable } from "@angular/core";
MatSnackBar } from "@angular/material/snack-bar";

import Actions, createEffect, ofType } from "@ngrx/effects";

import Store } from "@ngrx/store";

import pairwise, startWith, tap, withLatestFrom } from "rxjs";
import RAppState } from "../app.state";
import addPokemon } from './team.actions';

import selectTeam} from './team.selectors';

Injectable ()

t class TeamEffects {

26

https://github.com/FigueiroaAndre/pokedex-tcc/blob/main/src/app/app.module.ts
https://github.com/FigueiroaAndre/pokedex-tcc/blob/main/src/app/shared/state/team/team.effects.ts

actionsS: Actions,
> Store: Store<AppState>,
snackBar: MatSnackBar

) {1}

warnInvalidAddition$ = createEffect (() => this.actionsS.pipe (
ofType (addPokemon) ,
withLatestFrom(this.store.select (selectTeam) .pipe (startWith([]),
pairwise())),

[previousTeam, currentTeam]]) =>

{
mComplete = previousTeam.length === 6;

mComplete) {
this.snackBar.open (
'Your team cannot have more than 6 pokemons.',
'Dismiss’',
{ horizontalPosition: 'end', verticalPosition: 'top'}

) g

1)
), { dispatch:

}
Fonte: Elaborado pelo autor, 2023.

O efeito colateral utiliza o Observable actions$ que é fornecido para o
sitema de injecao de dependéncias pelo sistema de gerenciamento de estado global
da aplicagcdo. Esse Observable emite as Actions que foram despachadas para o
sistema, podendo ter vindo de qualquer lugar da aplicagdo. A légica do efeito
colateral é entdo executada quando a Action do tipo addPokemon for emitida.

A légica do TeamEffects € responsavel por exibir uma mensagem para o
usuario quando ele tenta adicionar Pokémon ao time apos ter atingido a capacidade
maxima de 6 Pokémon do time.

4.3.1 Testes
Os seguintes testes foram desenvolvidos utilizando as 3 abordagens:

e it should open a snackbar if attempts to create a team with more than 6
pokemon
e jt should not open a snackbar if attempts to create a team within the size limit
Comparagdes a respeito dos testes, mostrando trechos de cdédigo, sédo feitas na

Secao 4.5.

27

4.4 Pokedex Component

Esse é o unico componente da aplicagdo que contém alguma logica, sendo os
demais componentes apenas apresentacionais. Ele consegue utilizar métodos do
Pokedex Store (Segao 4.2) para atualizar o estado local. Esse componente também
consegue despachar Actions para o sistema de gerenciamento de estado global
para atualizar o estado global. Como consequéncia da alteragcdo desses estados,
efeitos colaterais podem ser executados em respostas a essas modificagdes.

Além de conseguir atualizar estados através dos mecanismos disponibilizados
pelos servicos de gerenciamento de estados, esse componente também é capaz de
ler os estados disponibilizados por esses servicos em forma de Observable. Sempre
que os estados forem atualizados, esses Observables vao emitir o novo valor e a Ul
da aplicagao ira reagir a essas mudancas automaticamente.

Os codigos 4.5 e 4.6 contém o modelo (arquivo Typescript) e a viséo (arquivo

HTML) respectivamente desse componente.

Cddigo 4.5 - pokedex.component.ts
Component } from '@angular/core';
CommonModule } from '@angular/common';
MatIconModule } from '@angular/material/icon';
MatInputModule } from '@angular/material/input';
import GridViewComponent } from './ui/grid-view/grid-view.component';

import PokedexStore } from './pokedex.store';

{
{
{
{
import { MatFormFieldModule } from '@angular/material/form-field';
{
{
{

import FormControl, ReactiveFormsModule } from '@angular/forms';
import { combinelatest, debounceTime, distinctUntilChanged, filter,
map, Observable, startWith } from 'rxjs';

import { Store } from '@ngrx/store';

import { addPokemon, removePokemon } from
'../shared/state/team/team.actions’;

import { AppState } from '../shared/state/app.state';

import Pokemon } from '../shared/models/pokemon.model’';

import

{

import { selectTeam } from '../shared/state/team/team.selectors';
{ LoaderComponent } from '../shared/ui/loader/loader.component';
{

import PokedexErrorMessageComponent } from

'./ui/pokedex-error-message/pokedex-error-message.component';

interface ViewModel {
lastPage: boolean;
pokemonList: Pokemonl];

hasLastRequestFailed: boolean;

https://github.com/FigueiroaAndre/pokedex-tcc/blob/main/src/app/pokedex/pokedex.component.ts
https://github.com/FigueiroaAndre/pokedex-tcc/blob/main/src/app/pokedex/pokedex.component.html

isLoading: boolean;
team: Pokemonl|];

}

@Component ({
selector: 'app-pokedex',
standalone: true,
imports: [
CommonModule,
MatIconModule,
ReactiveFormsModule,
MatInputModule,
MatFormFieldModule,
GridViewComponent,
LoaderComponent,
PokedexErrorMessageComponent
i
templateUrl: './pokedex.component.html',
styleUrls: ['./pokedex.component.scss'],
providers: [PokedexStore]
})
export class PokedexComponent ({
private lastPage$ = this.pokedexStore.lastPage$;
private pokemonList$ = this.pokedexStore.pokemonList$;
private isLoading$ =
this.pokedexStore.requestStatus$.pipe (map (requestStatus =>

requestStatus === 'processing'));

private hasLastRequestFailed$ = this.pokedexStore.requestStatusS$S.pipe (

filter (requestStatus => requestStatus === 'success' || requestStatus

map (requestStatus => requestStatus === 'error')
) 7

private team$: Observable<Pokemon[]>;

protected searchControl = new FormControl('', { nonNullable: true });

protected vm$: Observable<ViewModel>;

constructor (private readonly pokedexStore: PokedexStore, private
readonly store: Store<AppState>) {
const searchUpdateTrigger$ = this.searchControl.valueChanges.pipe (
distinctUntilChanged (),
debounceTime (500)
) i

this.pokedexStore.searchPokemon (searchUpdateTriggers$) ;

this.team$ = this.store.select (selectTeam) ;

this.vm$ = combinelLatest ({
isLoading: this.isLoading$.pipe (startWith (false)),
hasLastRequestFailed:
.hasLastRequestFailedS$.pipe (startWith (false)),
lastPage: this.lastPage$.pipe (startWith (false)),
pokemonList: this.pokemonListS.pipe (startWith([])),
team: this.team$.pipe (startWith([]))

B

protected onLoadMorePokemon () : void {

this.pokedexStore.loadNextPage () ;

protected onAddPokemonToTeam (pokemon: Pokemon) :

this.store.dispatch (addPokemon ({ pokemon})) ;

protected onRemovePokemonFromTeam (pokemon: Pokemon) : void {

this.store.dispatch (removePokemon ({ id: pokemon.id }));

protected onTryAgain(): void {
this.pokedexStore.retryLastRequest () ;

Fonte: Elaborado pelo autor, 2023.

Cddigo 4.6 - pokedex.component.html

<div class="page-section-container" *ngIf="vm$ | async as vm">

<app-loader *ngIf="vm.isLoading"></app-loader>

<ng-container *ngIlf="!vm.isLoading && !vm.hasLastRequestFailed">
<mat-form-field class="search-bar" appearance="£fill">
<input matInput [formControl]="searchControl" placeholder="Search
pokemon..." value="Sushi">
</mat-form-field>
<app-grid-view
[pokemonList]="vm.pokemonList"

[loadMoreVisible]=""!vm.lastPage

[team]="vm.team"

(loadMore)="onLoadMorePokemon ()"
(addPokemonToTeam)="onAddPokemonToTeam (Sevent)"
(removePokemonFromTeam)="onRemovePokemonFromTeam (Sevent) "

></app-grid-view>

</ng-container>

<app-pokedex-error-message *ngIlf="!vm.isLoading &&
vin.hasLastRequestFailed" (tryAgain)="onTryAgain()">

</app-pokedex—-error-message>

</div>
Fonte: Elaborado pelo autor, 2023.

No Cddigo 4.5 o componente define searchUpdateTrigger$ que nada
mais é do que um Observable. Ele emite valores toda vez que se passam 500
milissegundos apos alguma alteragdo no conteudo da barra de pesquisa. Esse
Observable ¢ utilizado para atualizar o estado da Pokedex Store, e reagindo a essa
alteracido é esperado que o efeito colateral faca uma requisicido HTTP ao servidor
usando a cadeira de caracteres emitida para filtrar Pokémon.

O componente também consegue mudar o estado de outras formas, como na
funcdo onLoadMorePokemon que € chamada quando o componente filho emite o
evento loadMore (Codigo 4.6). Ao mudar o estado da Pokedex Store dessa
maneira € esperado que o efeito colateral fagca uma requisicdo HTTP ao servidor
para trazer o resultado da préxima pagina de Pokémon.

O componente também consegue interagir com o estado global, despachando
Actions do tipo addPokemon € removePokemon através dos métodos
onAddPokemonToTeam € onRemovePokemonFromTeam respectivamente. Ambos
os métodos também estdo associados com eventos emitidos pelo componente filho.

Além de interagir ativamente atualizando os estados da aplicacédo, o
componente também |é os estados relevantes para a sua necessidade. Esses
estados sdo entdo combinados em um unico Observable vm$ e o template do
componente (Cddigo 4.6) consome o Observable vm$, logo, sempre que um estado
de interesse ¢é alterado essa mudanga € propagada para vm$ que resulta em uma
atualizagcao automatica dos elementos que s&o renderizados por esse componente.
4.4.1 Testes

Os seguintes testes foram desenvolvidos utilizando as 3 abordagens:

e jt should only trigger search if new text is different from last one
e jt should only trigger search when values have at least a 500ms time span

31

https://github.com/FigueiroaAndre/pokedex-tcc/blob/main/src/app/pokedex/pokedex.component.ts
https://github.com/FigueiroaAndre/pokedex-tcc/blob/main/src/app/pokedex/pokedex.component.html
https://github.com/FigueiroaAndre/pokedex-tcc/blob/main/src/app/pokedex/pokedex.component.html

e it should dispatch addPokemon action when addPokemonToTeam event emits

e it should dispatch removePokemon action when removePokemonFromTeam
event emits

Comparagdes a respeito dos testes, mostrando trechos de cdédigo, sédo feitas na

Secao 4.5.
4.5 Comparacgoes
Nos codigos referentes aos testes utilizando subscribing strategy, o trecho

representado pelo Cédigo 4.7 é utilizado.

Cdédigo 4.7 - Trecho comum aos codigos que utilizam subscribing strategy

afterEach (()
subscription?.unsubscribe () ;
}) s
Fonte: Elaborado pelo autor, 2023.

Esse trecho de cddigo € necessario pois os Observables causam problemas
de vazamento de memoria caso eles nao completem ou a inscrigdo seja cancelada.
Em um projeto suficientemente grande com uma enorme quantidade de testes, se
esta pratica ndo for adotada, é possivel que a execucéo de testes consuma muito
mais memoria do que necessaria. Em um time grande, com pressao para realizar
uma entrega € um detalhe que pode passar despercebido na etapa de revisdo de
codigo e causar um problema ou gastos desnecessarios a longo prazo.

Existem cenarios onde subscribing strategy € forgado a quebrar o padrao
Organizar (Arrange), Agir (Act) e Verificar (Assert) [30], ja bem definido na industria,
0 que prejudica a legibilidade do teste. Esse problema foi inicialmente detectado no
teste “it should be able to retry last request using same parameters, but
incrementing the retry count by 17 (Codigo 4.8) onde é preciso fazer uma inscrigao
no Observable apiTrigger$ antes da etapa de Agir.

Caodigo 4.8 - should be able to retry last request using same parameters, but incrementing the

retry count by 1 (subscribing strateg
it ('should be able to retry last request using same parameters, but

incrementing the retry count by 1', > |
service = TestBed.inject (PokedexStore) ;
const emittedValues: anyl[] = [];

const apiTrigger$ = service.select (state => state.apiTrigger):;

subscription = apiTriggerS$.subscribe (state => {

emittedValues.push (state) ;

) ;

service.searchPokemon ('testl') ;

32

https://github.com/FigueiroaAndre/pokedex-tcc/blob/main/src/app/pokedex/pokedex.store.subscribing.spec.ts

pokeApiServiceSpy.getPokemonList.and.returnValue (of ({ last:

content: secondPageOfPokemonData }));
service.loadNextPage () ;

service.retryLastRequest () ;

const currentV e emittedValues.slice(-1) [0];
const previousValue = emittedValues.slice(-2,-1)[0];
expect (currentValue) . toEqual ({

...previousValue,

requestRetryCount: previousValue.requestRetryCount + 1

Fonte: Elaborado pelo autor, 2023.
As verificagbes estavam sendo feitas no callback do método subscribe

fazendo com que a etapa de Verificar estivesse fora de ordem. Para contornar o
problema, foi necessario utilizar o callback para preencher um vetor com os valores
emitidos pelo Observable durante o teste. Por fim, os valores no vetor eram
utilizados para fazer as verificagcdes. Ainda que essa solugao tenha sido capaz de
resolver o problema da ordem das etapas do teste, ela também tem um custo na
legibilidade. Essa mesma solugao foi aplicada em outros testes como “it should only
trigger search if new text is different from last one” e ‘it should only trigger search
when values have at least a 500ms time span’.

Os testes feitos com observer-spy strategy no geral foram bem semelhantes
ao testes do subscribing strategy, porém sem os pontos negativos citados acima. A
biblioteca observer-spy tira do desenvolvedor a responsabilidade de gerenciar as
inscricdes dos Observables [13], evitando a necessidade de repetir o Codigo 4.7 nos
arquivos de teste e eliminando o risco de vazamento de memodria causado pela
possivel falha no cancelamento de inscri¢des. Para que isso ocorra, basta configurar
uma unica vez durante a vida do projeto, que o0 método autoUnsubscribe seja

executado no arquivo de configuragdo de testes [13]. No Angular esse € o arquivo

test.ts mostrado pelo Cdodigo 4.9.

Cobdigo 4.9 - test.ts

import 'zone.js/testing';

import { getTestBed } from "@angular/core/testing";
import {

BrowserDynamicTestingModule,

platformBrowserDynamicTesting

} from '@angular/platform-browser-dynamic/testing’;

33

https://github.com/FigueiroaAndre/pokedex-tcc/blob/main/src/test.ts

import { autoUnsubscribe } from '@hirez io/observer-spy';

getTestBed () .initTestEnvironment (BrowserDynamicTestingModule,
platformBrowserDynamicTesting (), {

errorOnUnknownElements: true,

errorOnUnknownProperties: true

)

autoUnsubscribe () ;

Fonte: Elaborado pelo autor, 2023.
Os testes utilizando observer-spy strategy também nao causam problemas na

estrutura Organizar, Agir e Verificar. Tomando como exemplo o teste “it should only
trigger search if new text is different from last one” do Cddigo 4.10 e comparando
com o mesmo teste no Cddigo 4.11 fica perceptivel que o cddigo utilizando

observer-spy strategy nao impacta a estrutura do teste.

Cabdigo 4.10 - should only trigger search if new text is different from last one (observer-spy
Strateg
it ('should only trigger search if new text is different from last one',

fakeAsync (() => {

const searchTriggerSpy =

subscribeSpyTo (searchTriggers) ;

typeInSearch ('testl');
tick (500) ;
typeInSearch ('testl');
tick (500) ;
typeInSearch ('test2');
tick (500) ;

expect (s y Spy.getValues () . length) .toBe (2) ;
(searchTrigger .getValueAt (0)) .toBe ('testl') ;
(searchTriggerSpy. (1)) .toBe('test2');

Fonte: Elaborado pelo autor, 2023.

Cddigo 4.11 - should only trigger search if new text is different from last one (subscribing
strateg
it ('should only trigger search if new text is different from last one',

fakeAsync (() => {

const emittedValues: stringl[] = []:

subscription = searchTrigger$.subscribe (text =>

push (text)) ;

typeInSearch ('testl');

34

https://github.com/FigueiroaAndre/pokedex-tcc/blob/main/src/app/pokedex/pokedex.component.observer-spy.spec.ts
https://github.com/FigueiroaAndre/pokedex-tcc/blob/main/src/app/pokedex/pokedex.component.subscribing.spec.ts

tick (500) ;
typeInSearch ('testl');
tick (500) ;

typeInSearch ('test2');

tick (500) ;

expect (emittedValues.length) .toBe (2) ;

expect (emittedValues[0]) .toBe('testl');

expect (emittedValues[1l]) .toBe('test2');
By

Fonte: Elaborado pelo autor, 2023.
O método subscribeSpyTo inscreve-se automaticamente no Observable de

interesse e retorna um Spy que possui métodos que facilitam verificagbes feitas com
valores emitidos pelo Observable. Ao fim do teste a inscrigdo é automaticamente
cancelada.

Nos testes que utilizam marble strategy, os diagramas de marble ajudam, por
utilizar uma abordagem mais visual para representar os fluxos de dados dos
Observables. Entretanto, é necessario aprender uma sintaxe especifica, complexa e
bastante verbosa [12] para poder ter essa representacao visual, 0 que compromete
a legibilidade do teste.

Esse problema de legibilidade da marble strategy fica bastante nitido ao
comparar os testes gerados pelas 3 ferramentas. Um bom exemplo é o teste ‘it
should be able to fetch data by search text’” que nos codigos 4.12 e 4.13 sao bem

mais simples do que no Cdodigo 4.14.

Codigo 4.12 - it should be able to fetch data by search text (subscribing strateg
it ('should be able to fetch data by search text', () => {

service = TestBed.inject (PokedexStore) ;
const state$ = service.select (state => state);

const searchStream$ = of ('testl', '"test2', "test3'):;

service.searchPokemon (searchStream$) ;

subscription = state$S.subscribe (state => {
expect (state.apiTrigger.currentPage) .toBe (0) ;
expect (state.apiTrigger.searchText) .toBe ('test3"') ;

1)

expect (pokeApiServiceSpy.getPokemonList) . toHaveBeenCalledTimes (4) ;

expect (pokeApiServiceSpy.getPokemonList) . toHaveBeenCalledWith (0,
'testl') ;

35

https://github.com/FigueiroaAndre/pokedex-tcc/blob/main/src/app/pokedex/pokedex.store.subscribing.spec.ts
https://github.com/FigueiroaAndre/pokedex-tcc/blob/main/src/app/pokedex/pokedex.store.observer-spy.spec.ts
https://github.com/FigueiroaAndre/pokedex-tcc/blob/main/src/app/pokedex/pokedex.store.marble.spec.ts

expect (pokeApiServiceSpy.getPokemonList) . toHaveBeenCalledWith (0,
'test2');

expect (pokeApiServiceSpy.getPokemonList) . toHaveBeenCalledWith (0,
'test3');
}) i
Fonte: Elaborado pelo autor, 2023.

Cadigo 4.13 - it should be able to fetch data by search text (observer-sp
it ('should be able to fetch data by search text', () => {

service

TestBed.inject (PokedexStore) ;

const searchStream$ = of ('testl', '"test2', 'test3');

const stateSpy = subscribeSpyTo (service.select (state => state));

service.searchPokemon (searchStreams$) ;

expect (stateSpy.getlLastValue () ?.apiTrigger.currentPage) .toEqual (0) ;

expect (stateSpy.getlLastValue () ?.apiTrigger.searchText) .toEqual ('test3"')

expect (pokeApiServiceSpy.getPokemonList) . toHaveBeenCalledTimes (4) ;

expect (pokeApiServiceSpy.getPokemonlList) .toHaveBeenCalledWith (0,
'testl');

expect (pokeApiServiceSpy.getPokemonList) .toHaveBeenCalledWith (0,
'test2');

expect (pokeApiServiceSpy.getPokemonlList) .toHaveBeenCalledWith (0,
'test3');

}) i
Fonte: Elaborado pelo autor, 2023.
Cddigo 4.14 - it should be able to fetch data by search text (marble strateg

it ('should be able to fetch data by search text', () => {

const requestMarble

const searchMarble

const resultMarble = 'a----b----(cd)-e---(£g)-h"';

pokeApiServiceSpy.getPokemonList.and.returnValue (cold (requestMarble,

{ a: { last: false, content: firstPageOfPokemonData}l 1})):;

service = TestBed.inject (PokedexStore) ;

const state$ = service.select (state => state);
const searchStream$ = cold(searchMarble, { a: 'testl', b: 'test2'

1)
const expectedState$ = cold(resultMarble, {

a: { pokemonList: [], requestStatus: 'processing', apiTrigger: {
requestRetryCount: 0, currentPage: 0, lastPage: false, searchText: ''
by

b: { pokemonList: firstPageOfPokemonData, requestStatus:
'success', apiTrigger: {requestRetryCount: 0, currentPage: 0, lastPage:
false, searchText: '' }},

c: { pokemonList: [], requestStatus: 'success', apiTrigger: {
requestRetryCount: 0, currentPage: 0, lastPage: false, searchText:
'testl' }1},

d: { pokemonList: [], requestStatus: 'processing', apiTrigger: {
requestRetryCount: 0, currentPage: 0, lastPage: false, searchText:
'testl' }1},

e: { pokemonList: firstPageOfPokemonData, requestStatus:
'success', apiTrigger: { requestRetryCount: 0, currentPage: O,
lastPage: false, searchText: 'testl' }},

f: { pokemonList: [], requestStatus: 'success', apiTrigger: {
requestRetryCount: 0, currentPage: 0, lastPage: false, searchText:
'test2' }},

g: { pokemonList: [], requestStatus: 'processing', apiTrigger: {
requestRetryCount: 0, currentPage: 0, lastPage: false, searchText:
'test2' }1},

h: { pokemonList: firstPageOfPokemonData, requestStatus:
'success', apiTrigger: { requestRetryCount: 0, currentPage: O,
lastPage: false, searchText: 'test2' }},

});

service.searchPokemon (searchStream$)

expect (state$) .toBeObservable (expectedStates) ;

expect (pokeApiServiceSpy.getPokemonList) . toHaveBeenCalledTimes (3) ;

expect (pokeApiServiceSpy.getPokemonList) . toHaveBeenCalledWith (0,
'testl') ;

expect (pokeApiServiceSpy.getPokemonList) . toHaveBeenCalledWith (0,
'test2');
}) i

Fonte: Elaborado pelo autor, 2023.
Além de dificeis de ler, os testes feitos com marble também sdo os mais

complexos de se desenvolver. Enquanto nas outras abordagens os testes

precisavam focar apenas em um ou dois valores emitidos pelos Observables, nos

testes dessa abordagem € necessario representar o fluxo de dados como um todo,

ainda que nao fossem relevantes ao que se estava de fato sendo testado.

Outro problema dessa abordagem aparece quando é necessario fazer testes
que simulam a acao de um usuario. O teste it should dispatch addPokemon action
when addPokemonToTeam event emits” € consideravelmente mais simples nos

codigos 4.15 e 4.16 do que no Codigo 4.17.

Cddigo 4.15 - it should dispatch addPokemon action when addPokemonToTeam event emits
(subscribing strategy)
it ('should dispatch addPokemon action when addPokemonToTeam event

emits',

gridViewComponent.triggerEventHandler ('addPokemonToTeam', pokemon) ;

subscription = store.scannedActions$.subscribe (action => {

expect (action) .toEqual (expectedAction) ;

Fonte: Elaborado pelo autor, 2023.

Cdbdigo 4.16 - it should dispatch addPokemon action when addPokemonToTeam event emits
observer-spy strateg

pokemon = createPokemonMock () ;
st expectedAction = addPokemon ({ pokemon}) ;

scannedActionsSpy = subscribeSpyTo (store.scannedActions$);

gridViewComponent.triggerEventHandler ('addPokemonToTeam', pokemon) ;

expect (scannedActionsSpy.getLastValue ()) .toEqual (expectedAction) ;
1)
Fonte: Elaborado pelo autor, 2023.
Cabdigo 4.17 - it should dispatch addPokemon action when addPokemonToTeam event emits

marble strateg
it ('should dispatch addPokemon action when addPokemonToTeam event

{

st dispatchMarble = '--a';

t expectedMarble = 'a-b';
const pokemon = createPokemonMock () ;

const expectedAction = addPokemon ({ pokemon}) ;

scheduler.run(({ cold, expectObservable }) => {

const expected$ = cold(expectedMarble, { a: INITIAL ACTION, b:

:pectedAction });

38

https://github.com/FigueiroaAndre/pokedex-tcc/blob/main/src/app/pokedex/pokedex.component.subscribing.spec.ts
https://github.com/FigueiroaAndre/pokedex-tcc/blob/main/src/app/pokedex/pokedex.component.observer-spy.spec.ts
https://github.com/FigueiroaAndre/pokedex-tcc/blob/main/src/app/pokedex/pokedex.component.marble.spec.ts

subscription = cold(dispatchMarble) .subscribe (()

gridViewComponent.triggerEventHandler ('addPokemonToTeam',
pokemon) ;

)

expectObservable (store.scanned

Fonte: Elaborado pelo autor, 2023.
Enquanto nos primeiros basta simular a emi¢cdo do evento por parte do

componente filho, no teste com marble é necessario definir um Observable

(dispatchMarble nesse exemplo) utilizando a syntaxe especial desse tipo de teste

que deve ser inscrito para que a emissao do evento seja feita em um momento
especifico no tempo.

Em relag&o a cobertura de testes, as 3 abordagens resultaram exatamente na
mesma cobertura (Figura 4.1), comprovando que os testes desenvolvidos séo

analogos.

Figura 4.1 - Cobertura de testes

et KOOWOQIwxuqsPeGVAAAB with id 5@

Cs)

Statements 79.2% (80/101)

Branches : 81.81% (9/11)

Functions : 64% (32/50)
79.01% (64/81)

2 Connected on g PwyHbgAAAB with id 71717003
Chrome 110.8.0.0 (Lin .001 secs / @.13

Statements : 79.2% (80/101)
Branches : 81.81% (9/11)
Functions : 64% (32/50)

localhost
nlimited

el_9645DRMWY159YAAAB with id 8

Statements : 79.2% (80/101)
Branches : 81.81% (9/11)
Functions : 64% (32/50)
Lines 79.01% 81)

Fonte: Elaborado pelo autor, 2023.
39

A quantidade de linhas de codigo que cada abordagem precisou para fazer os
testes foi registrada na Tabela 4.1. A abordagem observer-spy strategy foi a que
menos precisou de linhas para testar a aplicagao, ja a abordagem que mais precisou
de linhas foi a marble strategy, com quase 100 linhas a mais que a primeira
colocada. A abordagem subscribing strategy, apesar de estar na segunda colocagao
na comparacao por quantidade de linhas, possui um numero proximo ao da primeira
colocada. Essa pequena quantidade de linhas a mais ocorre pois em algumas
situagdes a subscribing strategy precisa utilizar um vetor para armazenar os dados e

também precisa aplicar uma logica para se desinscrever dos Observables.

Tabela 4.1 - Abordagem vs Linhas de cddigo do teste

Pokedex Store Global Store Pokedex TOTAL
Component
subscribing 137 79 130 346
strategy
marble strategy 186 100 138 424
observer-spy 136 74 120 330
strategy

Fonte: Elaborado pelo autor, 2023.
Quanto a finalidade das asserc¢des, as abordagem subscribing strategy e

observer-spy strategy sao muito semelhantes, elas utilizam de um ou mais valores
de emissodes individuais que um Observable emitiu. Entretanto, a segunda ganha um
pouco de vantagem por possuir métodos que facilitam na obtengdo dos valores
dessas emissoes.

A marble strategy compara todos os valores emitidos por um Observable de
uma unica vez, levando em consideragao nao s6 quais valores foram emitidios mas
também quando foram emitidos pois essa abordagem utiliza tempo virtual.

Por apresentar uma comparacdo mais completa, os testes feitos com marble

strategy ganham a comparacao a respeito da finalidade das assergoes.

40

5. CONCLUSAO

Esse trabalho comparou o uso de 3 ferramentas que podem ser utilizadas
para realizar testes unitarios em aplicagdes Angular programadas de forma reativa
utilizando RxJS.

Para alcancar esse objetivo foi desenvolvida uma aplicagdo web com o
framework Angular, um dos mais populares no mercado. Testes unitarios analogos
foram desenvolvidos para esse software para que fosse possivel a comparagao
entre as ferramentas selecionadas. As métricas utilizadas para fazer essa
comparagao foram: cobertura de teste, quantidade de linhas, legibilidade do teste e
finalidade das assergdes.

A primeira ferramenta € a prépria biblioteca RxJS que através do método
subscribe dos Observables é capaz de ler os dados emitidos por eles e usa-los para
fazer assercgoes.

A segunda ferramenta é uma API especifica para testes disponibilizada pelo
RxJS. Essa API cria e compara todo o fluxo de dados emitidos por Observables a
partir de uma estrutura visual, os diagramas de marble.

A terceira ferramenta ¢é wuma Dbiblioteca (observer-spy) criada
especificamente para testar cddigo feito com a biblioteca RxJS.

Apesar dos testes feitos com o diagrama de marble possuirem uma assergao
mais completa, esse poder vem com um custo muito alto pois aumenta a
complexidade dos testes, diminui drasticamente a legibilidade dos testes e
necessitam de uma quantidade muito maior de codigo do que as outras duas
abordagens por ser mais verbosa. Embora essa ferramenta possa ser util em
cenarios complexos onde seja necessario comparar fluxos de dados inteiros, €
importante lembrar que apenas desenvolvedores experientes com ela vao ser
capazes de desenvolver ou mesmo entender tais testes, sendo preferivel quebrar
cenarios complexos em multiplos cenarios mais simples sempre que possivel.

Apesar da primeira abordagem, que utiliza a prépria biblioteca do RxJS, ser
mais legivel e necessitar menos codigo que a ferramenta baseada em diagramas de
marble ela perde em todos os critérios para o uso da biblioteca observer-spy,
aléem de poder causar problemas de vazamento de memoria por exigir que o

desenvolvedor cancele as inscricdes manualmente.

41

A biblioteca observer-spy se provou como sendo a melhor solugéo para
testar esse tipo de aplicagdo. Ela é mais legivel, necessita de menos codigos e
verificagbes, apesar de menos completa que a abordagem marble é suficiente para
a grande maioria dos cenarios. Além disso, a propria biblioteca € capaz de gerenciar
o cancelamento das inscricdes dos Observables de forma automatica, exigindo
apenas uma configuragédo que é feita uma unica vez durante a vida do projeto.

5.1 Trabalhos futuros

Durante o desenvolvimento desse trabalho o time do Angular abriu uma RFC
para adotar o Signals [31], solugcado existente no SolidJS como uma nova primitiva
para reatividade do Angular [32]. Ainda que esteja planejado a interoperabilidade
dos Signals com o RxJS, essa nova solugdo deve substituir o uso do RxJS em
cenarios mais simples quando criando aplicagbes Angular com o paradigma de
programacao reativa, fazendo com que o poder e complexidade do RxJS sejam
necessarias apenas para funcionalidades mais complexas.

Como sugestao para trabalhos futuros, esse trabalho recomenda a exploragao
de como a adog¢do dos Signals devem impactar o desenvolvimento e teste de

aplicagdes Angular com o paradigma reativo.

42

REFERENCIAS BIBLIOGRAFICAS

[1] Noleto, Cairo. Aplicagdes web: entenda o que sdo e como funcionam. Blog
da Trybe, 2022. Disponivel em:
<https://blog.betrybe.com/desenvolvimento-web/aplicacoes-web>. Acesso em:
01/04/2023.

[2] NETO, Arilo; CLAUDIO, Dias. Introdugao a teste de software. Engenharia
de Software Magazine, v. 1, p. 22, 2007.

[3] Pittet, Sten. The different types of software testing. Atlassian. Disponivel
em:
<https://www.atlassian.com/continuous-delivery/software-testing/types-of-software-te
sting>. Acesso em: 01/04/2023.

[4] Reactive programming. Wikipedia. Disponivel em
iKi ramming>. Acesso em: 01/04/2023.

[5] Escoffier, Clement. 5 Things to Know About Reactive Programming. Red

Hat Developer, 2017. Disponivel em:

<https://developers.redhat.com/blog/2017/06/30/5-things-to-know-about-reactive-pro

gramming>. Acesso em: 01/04/2023.

[6] What is Angular? Angular. Disponivel em:
<https://angular.io/quide/what-is-angular>. Acesso em: 01/04/2023.

[7] FRONT-END FRAMEWORKS. State of JS, 2022. Disponivel em:
<https://2022.stateofjs.com/en-US/libraries/front-end-frameworks/>. Acesso em:
01/04/2023.

[8] Introduction. RxJS. Disponivel em: <htips://rxjs.dev/guide/overview>.
Acesso em: 02/04/2023.

[9] Morony, Joshua. The easier way to code Angular apps. Youtube, 2023.

Disponivel em <https://www.youtube.com/watch?v=skOTEbGwncE>. Acesso em:
02/04/2023.

[10] Pearson, Mike. 5 reasons to avoid imperative code. DEV, 2022.

Disponivel em:
<https://dev.to/this-is-learning/5-reasons-to-avoid-imperative-code-e09> . Acesso em:
15/04/2023.

[11] Ferreira, Pamella. Estudo comparativo entre ferramentas de teste para
React. Orientador: Leopoldo Motta Teixeira. 2021. 46 f. TCC (Graduacga) - Ciéncia da

43

https://blog.betrybe.com/desenvolvimento-web/aplicacoes-web
https://www.atlassian.com/continuous-delivery/software-testing/types-of-software-testing
https://www.atlassian.com/continuous-delivery/software-testing/types-of-software-testing
https://en.wikipedia.org/wiki/Reactive_programming
https://developers.redhat.com/blog/2017/06/30/5-things-to-know-about-reactive-programming
https://developers.redhat.com/blog/2017/06/30/5-things-to-know-about-reactive-programming
https://angular.io/guide/what-is-angular
https://2022.stateofjs.com/en-US/libraries/front-end-frameworks/
https://rxjs.dev/guide/overview
https://www.youtube.com/watch?v=skOTEbGwncE

Computacdo, Centro de Informatica, Universidade Federal de Pernambuco, Recife.
2021.

[12] Testing RxJS Code with Marble Diagrams. RxJS. Disponivel em:
<https://rxjs.dev/quide/testing/marble-testing>. Acesso em: 02/04/2023.

[13] @hirez_io/observer-spy. GitHub. Disponivel em:
<https://github.com/hirezio/observer-spy>. Acesso em: 02/04/2023.

[14] Angular components overview. Angular. Disponivel em:

<https://angular.io/guide/component-overview>. Acesso em: 08/04/2023.
[15] Creating an injectable service. Angular. Disponivel em:

<https://angular.io/guide/creating-injectable-service>. Acesso em: 08/04/2023.

[16] CLI Overview and Command Reference. Angular. Disponivel em:
<https://angular.io/cli>. Acesso em: 08/04/2023.

[17] Basics of testing components. Angular. Disponivel em:

<https://angular.io/guide/testing-components-basics>. Acesso em: 09/04/2023.
[18] Testing services. Angular. Disponivel em:

<https://anqular.io/quide/testing-services>. Acesso em: 09/04/2023.

[19] What is a Test Runner. BrowserStack. Disponivel em:
<https://www.browserstack.com/quide/what-is-test-runner>. Acesso em: 08/04/2023.

[20] Testing. Angular. Disponivel em: <https://angular.io/quide/testing>.
Acesso em: 08/04/2023.

[21] Imperative programming. Wikipedia. Disponivel em:

<https://en.wikipedia.org/wiki/Imperative_programming>.Acesso em: 08/04/2023.
[22] Declarative Programming. Wikipedia. Disponivel em:
<https://en.wikipedia.org/wiki/Declarative_programming>. Acesso em: 08/04/2023.
[23] What is NgRx? NgRx. Disponivel em: <https://ngrx.io/docs>. Acesso em:
08/04/2023.

[24] Fat, Nina; Vujovic, Marijana; Papp, Istvan; Novak, Sebastian.

"Comparison of AngularJS framework testing tools." 2016 Zooming Innovation in
Consumer Electronics International Conference (ZINC). IEEE, 2016. Disponivel em:
<https://ieeexplore.ieee.org/document/7513659>. Acesso em: 09/04/2023.

[25] API v2. PokeAPIl. Disponivel em: <https://pokeapi.co/docs/v2>. Acesso
em: 15/04/2023.

[26] Figueirba, André. Pokedex TCC Backend. Github, 2023. Disponivel em:

<https://github.com/FigueiroaAndre/pokedex-tcc-backend>. Acesso em: 15/04/2023.
44

https://rxjs.dev/guide/testing/marble-testing
https://github.com/hirezio/observer-spy
https://angular.io/guide/component-overview
https://angular.io/guide/creating-injectable-service
https://angular.io/cli
https://angular.io/guide/testing-components-basics
https://angular.io/guide/testing-services
https://www.browserstack.com/guide/what-is-test-runner
https://angular.io/guide/testing
https://en.wikipedia.org/wiki/Declarative_programming
https://ngrx.io/docs
https://github.com/FigueiroaAndre/pokedex-tcc-backend

[27] Figueirda, André. PokedexTcc. Github, 2023. Disponivel em:
<https://qgithub.com/FigueiroaAndre/pokedex-tcc>. Acesso em: 15/04/2023.

[28] Material Design components for Angular. Angular Material. Disponivel

em: <https://material.anqular.io/>. Acesso em: 15/04/2023.

[29] Testing HTTP requests. Angular. Disponivel em:
<https://anqular.io/quide/http#testing-http-requests>. Acesso em: 16/04/2023.

[30] Nocbes basicas de teste de unidade. Microsoft, 2022. Disponivel em:
<https://learn.microsoft.com/pt-br/visualstudio/test/unit-test-basics ?view=vs-2022>.
Acesso em: 16/04/2023.

[31] Introduction/Sinals. SolidJS. Disponivel em:
<https://www.solidjs.com/tutorial/introduction_signals>. Acesso em: 17/04/2023.

[32] Rickabaugh, Alex; Scott, Andrew; Hunn, Dylan; Melbourne, Jeremy;
Kozlowski, Pawel. RFC: Angular Signals. Github, 2023. Disponivel em:
<https://github.com/angular/angular/discussions/49685>. Acesso em: 17/04/2023.

45

https://github.com/FigueiroaAndre/pokedex-tcc
https://material.angular.io/
https://angular.io/guide/http#testing-http-requests
https://github.com/angular/angular/discussions/49685

