
Universidade Federal de Pernambuco

Centro de Informática

Graduação em Engenharia da Computação

Estudo comparativo entre ferramentas de teste unitário para
Angular ao programar com o paradigma reativo utilizando RxJS

Aluno: André Luiz Figueirôa de Barros (alfb@cin.ufpe.br)

Orientador: Leopoldo Motta Teixeira (lmt@cin.ufpe.br)

Área: Engenharia de Software

Recife, 2023

mailto:lmt@cin.ufpe.br

Ficha de identificação da obra elaborada pelo autor,
 através do programa de geração automática do SIB/UFPE

Barros, André Luiz Figueirôa de.
 Estudo comparativo entre ferramentas de teste unitário para Angular ao
programar com o paradigma reativo utilizando RxJS / André Luiz Figueirôa de
Barros. - Recife, 2023.
 46 : il., tab.

 Orientador(a): Leopoldo Motta Teixeira
 Trabalho de Conclusão de Curso (Graduação) - Universidade Federal de
Pernambuco, Centro de Informática, Engenharia da Computação - Bacharelado,
2023.
 Inclui referências, apêndices.

 1. Engenharia de Software. 2. Frontend. 3. Testes Unitários. I. Teixeira,
Leopoldo Motta. (Orientação). II. Título.

 000 CDD (22.ed.)

RESUMO
Angular é um framework frontend, construído em TypeScript, baseado em

componentes para construir aplicações web.

Parte da comunidade do Angular defende o uso do paradigma de

programação reativa para ter ganhos em manutenibilidade. No Angular isso pode ser

alcançado com o uso da biblioteca RxJS, porém o código da aplicação pode

tornar-se mais complexo.

Independentemente do paradigma de programação escolhido, os testes são

parte fundamental no ciclo de desenvolvimento de software quando se busca atingir

níveis altos de qualidade. O intuito desse trabalho é comparar três estratégias que

podem ser utilizadas para fazer testes unitários em uma aplicação Angular que

utiliza programação reativa com RxJS, sendo elas: O uso do método subscribe dos

Observables do RxJS, o uso da API de Marble Diagrams que também é fornecida

pelo RxJS e o uso da biblioteca Observer-spy que foi criada com o intuito de facilitar

os testes de Observables do RxJS.

As estratégias utilizadas foram comparadas com as seguintes métricas:

quantidade de linhas, legibilidade do teste e finalidade das asserções. O objetivo da

comparação é identificar quais das estratégias são melhores e piores em diversos

cenários comumente encontrados no desenvolvimento de software frontend.

Palavras-chaves: Frontend, Testes, Angular, RxJS, Programação reativa.

1

ABSTRACT
Angular is a frontend framework, built in TypeScript, based on components for

building web applications.

Part of the Angular community advocates for the use of reactive programming

paradigm to achieve gains in maintainability. In Angular, this can be achieved using

the RxJS library, but the source code becomes more complex.

Regardless of the chosen programming paradigm, testing is a fundamental

part of the software development cycle that aims to achieve high levels of quality. The

purpose of this work is to compare three strategies that can be used for unit testing in

an Angular application that uses reactive programming with RxJS, namely: using the

subscribe method of RxJS Observables, using the Marble Diagrams API also

provided by RxJS, and using the Observer-spy library that was created to facilitate

testing of RxJS Observables.

The strategies used were compared with the following metrics: amount of

lines, test readability, and purpose of assertions. The objective of the comparison is

to identify which strategies are better and worse in various scenarios commonly

encountered in frontend software development.

Keywords: Frontend, Tests, Angular, RxJS, Reactive programming.

2

LISTA DE TABELAS
Tabela 4.1 - Abordagem vs Linhas de código do teste…………………………………40

3

LISTA DE FIGURAS
Figura 3.1 - Tela da aplicação…………………………………………………………….17

Figura 3.2 - Estrutura do projeto………………………………………………………….18

Figura 3.3 - Estrutura do projeto vs Tela da aplicação…………………………………18

Figura 4.1 - Cobertura de testes………………………..39

4

LISTA DE CÓDIGOS
Código 2.1 - Exemplo código imperativo…………………….…………………………..13

Código 4.1 - poke-api.service.ts…………………………………………………………..19

Código 4.2 - pokedex.store.ts……………………………………………………………..21

Código 4.3 - app.module.ts………………………………………………………………..25

Código 4.4 - team.effects.ts……………………………………………………………….26

Código 4.5 - pokedex.component.ts……………………………………………………...28

Código 4.6 - pokedex.component.html.………………………………………………….30

Código 4.7 - Trecho comum aos códigos que utilizam subscribing strategy………...32

Código 4.8 - should be able to retry last request using same parameters, but

incrementing the retry count by 1 (subscribing strategy)..32

Código 4.9 - test.ts………………………………………………………………………….33

Código 4.10 - should only trigger search if new text is different from last one

(observer-spy strategy)...34

Código 4.11 - should only trigger search if new text is different from last one

(subscribing strategy)...34

Código 4.12 - it should be able to fetch data by search text (subscribing strategy)...35

Código 4.13 - it should be able to fetch data by search text (observer-spy strategy)36

Código 4.14 - it should be able to fetch data by search text (marble strategy)..........36

Código 4.15 - it should dispatch addPokemon action when addPokemonToTeam

event emits (subscribing strategy)..38

Código 4.16 - it should dispatch addPokemon action when addPokemonToTeam

event emits (observer-spy strategy)...38

Código 4.17 - it should dispatch addPokemon action when addPokemonToTeam

event emits (marble strategy)...38

5

SUMÁRIO
1. INTRODUÇÃO…………………………………………………………………………….8

1.1 Contexto e motivação……………………………………………………………….8

1.2 Objetivos gerais……………………………………………………………………...9

1.3 Objetivos específicos………………………………………………………………..9

1.4 Seções do documento……………………………………………………………..10

● 2. REVISÃO DA LITERATURA………………………………………………………...11
2.1 Conceitos……………………………………………………………………………11

2.1.1 Angular……………………………………………………………………….. 11

2.1.1.1 Componentes…………………………………………………………..11

2.1.1.2 Serviços…………………………………………………………………11

2.1.1.3 Angular CLI……………………………………………………………..11

2.1.2 Testes unitários………………………………………………………………12

2.1.2.1 Testando Componentes……………………………………………….12

2.1.2.2 Testando Serviços……………………………………………………..12

2.1.3 Test Runner………………………………………………………………….. 12

2.1.3 Jasmine e Karma…………………………………………………………….12

2.1.4 Programação Imperativa……………………………………………….. 12

2.1.5 Programação Declarativa……………………………………………….12

2.1.6 Programação Reativa……………………………………………………13

2.1.7 RxJS………………………………………………………………………….. 13

2.1.8 NgRx…………………………………………………………………………..13

2.2 Trabalhos relacionados……………………………………………………………14

3 DESENVOLVIMENTO DO PROJETO…………………………………………………15
3.1 Ferramentas de teste………………………………………………………………15

3.1.1 RxJS………………………………………………………………………….. 15

3.1.2 Marble Diagrams……………………………………………………………..15

3.1.3 observer-spy………………………………………………………………….15

3.2 Aplicação desenvolvida……………………………………………………………15

3.2.1 Backend……………………………………………………………………….16

3.2.2 Frontend………………………………………………………………………16

3.2.2.1 Dependências………………………………………………………….17

3.2.2.2 Estrutura……………………………………………………………….. 17

4. TESTES E COMPARAÇÕES…………………………………………………………. 19
6

4.1 Alvo dos testes…………………………………………………………………….. 19

4.2 Pokedex Store……………………………………………………………………...20

4.2.1 Testes………………………………………………………………………….24

4.3 Global State…………………………………………………………………………25

4.3.1 Testes………………………………………………………………………….27

4.4 Pokedex Component………………………………………………………………28

4.4.1 Testes………………………………………………………………………….31

4.5 Comparações……………………………………………………………………….32

5. CONCLUSÃO……………………………………………………………………………41
5.1 Trabalhos futuros………………………………………………………………….. 42

REFERÊNCIAS BIBLIOGRÁFICAS……………………………………………………..43

7

1. INTRODUÇÃO
1.1 Contexto e motivação

Uma aplicação web consiste em um software que executa em um navegador

web, que se comunica com um ou mais servidores para troca e manipulação de

dados. O software que executa no navegador da máquina do usuário é chamado de

frontend e é responsável pela interface visual do sistema e pela interface com o

usuário da aplicação. Já o código que executa nos servidores e que são

responsáveis por gerenciar os dados da aplicação é chamado de backend [1].

Testes de software são um processo para avaliar se um software funciona da

forma desejada. Os testes são feitos para encontrar falhas no sistema, de forma que

elas sejam corrigidas antes que os usuários do sistema usem a aplicação [2].

Existem diversos tipos de teste de software, sendo o mais básico deles os testes

unitários que são responsáveis por testar métodos, classes, componentes ou

módulos de forma independente do resto do sistema [3].

O paradigma de programação reativa é baseado na criação de fluxo de dados

e na observação desses fluxos para reagir a mudanças no mesmo [4, 5].

O Angular é um framework para desenvolvimento frontend no contexto de

aplicações web [6]. Ele é um dos frameworks mais utilizados no universo de

desenvolvimento frontend, ocupando a 2ª posição como framework frontend mais

utilizado no levantamento feito pelo State of JS de 2022 [7].

O Angular utiliza RxJS [8] internamente, uma biblioteca que é utilizada para

programar de forma reativa. Por estar integrada com o framework, o RxJS se tornou

bastante popular dentro da comunidade Angular, a ponto de gerar discussões sobre

basear toda uma aplicação sobre o uso de programação reativa com RxJS [9, 10].

Este trabalho tem como objetivo fazer um estudo comparativo entre 3

ferramentas que podem ser utilizadas para realizar testes unitários em uma

aplicação frontend desenvolvida em Angular que utiliza o paradigma de

programação reativa baseada em RxJS [8]. A motivação para realizar esse estudo

foi o trabalho “Estudo comparativo entre ferramentas de teste para React” [11].

O entendimento do que é e como funciona o RxJS é fundamental para a

compreensão desse trabalho, segundo a própria documentação a biblioteca se

define como: “ReactiveX combines the Observer pattern with the Iterator pattern and

functional programming with collections to fill the need for an ideal way of managing

sequences of events” [8]. Na prática a biblioteca define classes que são utilizadas na
8

criação e gerenciamento de fluxos de dados, sendo a mais importante delas a classe

Observable.

A primeira ferramenta utilizada para realizar os testes unitários é a própria

biblioteca do RxJS. Nesses testes, o método subscribe é chamado nos objetos da

classe Observable, que representam os fluxos de dados, para ler os dados que

serão utilizados para fazer as asserções dos testes.

A segunda ferramenta utiliza Marble Diagrams para realizar os testes. Estes

diagramas representam uma forma de visualizar os fluxos de dados e são utilizados

com uma API específica para testes disponibilizada pela própria biblioteca do RxJS

[12]. Com essa solução é possível comparar os fluxos de dados inteiros entre si.

A terceira estratégia recorre ao uso de outra biblioteca, a observer-spy,

que foi criada com o propósito de facilitar os testes de código feito com o RxJS [13].

1.2 Objetivos gerais

O objetivo do trabalho é comparar 3 ferramentas diferentes que podem ser

utilizadas para realizar testes unitários em uma aplicação feita em Angular com

programação reativa utilizando RxJS.

A primeira ferramenta é o próprio RxJS e utiliza o método subscribe da

classe Observable para leitura de dados. A segunda ferrramenta é a API de testes

baseada em marble diagrams também fornecida pela biblioteca do RxJS. Já a

terceira ferramenta é a biblioteca observer-spy criada para facilitar os testes de

código RxJS.

O resultado dessa comparação é de interesse não apenas para profissionais

que usam Angular como framework como também pode interessar aos profissionais

que trabalham com frontend de maneira geral o Angular é uma das tecnologias mais

utilizadas do mercado. Além disso, o debate sobre reatividade não é exclusivo do

Angular.

1.3 Objetivos específicos

● Implementação de uma aplicação web com frontend desenvolvido em Angular

para realização dos testes.

● Escrever testes análogos utilizando as 3 estratégias definidas citadas na

Seção 3.1.

9

● Utilizar a cobertura de testes para certificar que os testes feitos com cada uma

das ferramentas são análogos

● Comparar os testes feitos utilizando as diferentes estratégias utilizando as

métricas definidas a seguir com o fim de apontar quais dos métodos é mais

apropriado para cada situação.

○ Quantidade de linhas

○ Legibilidade do código

○ Finalidade das asserções

Essas métricas foram escolhidas com base no trabalho utilizado como

referência [11]. Outras métricas que também poderiam ser utilizadas mas foram

descartadas são tempo de execução e uso de memória, pois seria necessário uma

aplicação de grande para ter uma real diferença nesses valores, o que não foi viável

devido ao tempo e escopo do projeto.

1.4 Seções do documento

A Seção 2 apresenta os conceitos fundamentais para o entendimento do

projeto.

A Seção 3 apresenta as 3 abordagens avaliadas neste trabalho e o código do

projeto desenvolvido.

A Seção 4 apresenta os códigos desenvolvidos para testar a aplicação e

compara as 3 abordagens.

A Seção 5 encerra o trabalho mostrando as conclusões obtidas com o final do

estudo e aponta uma sugestão para trabalho futuro.

10

● 2. REVISÃO DA LITERATURA
Os conceitos fundamentais para o entendimento do projeto são apresentados

nesta seção.

2.1 Conceitos

2.1.1 Angular

Angular é um framework construído em TypeScript, baseado em componentes

para construir aplicações web. O framework é formado por várias bibliotecas que

fornecem diversas funcionalidades, como gerenciamento de formulário, roteamento,

comunicação cliente-servidor, e muitas outras [6].

2.1.1.1 Componentes

As principais peças de uma aplicação Angular são os componentes [14]. Eles

representam fragmentos da UI de uma aplicação e são compostos por:

● Um arquivo HTML que representa a visão daquele componente. É nesse

arquivo que são definidos os elementos visíveis [14].

● Um arquivo TypeScript com uma declaração de classe que representa o

modelo daquele componente. É nessa classe que é definido o

comportamento do componente. É também nesse arquivo que é definido o

seletor CSS do componente para que ele possa ser utilizado por outros

componentes [14].

● Um arquivo de estilização opcional, utilizado para aplicar estilos ao arquivo

HTML do componente [14].

2.1.1.2 Serviços

Serviços são classes com objetivos bem definidos que podem ser acessados

por outros elementos do sistema através do sistema de injeção de dependência

nativo do Angular. Os serviços normalmente são utilizados para reduzir as

responsabilidades dos componentes, tornando o código mais modularizado e

reutilizável [15].

2.1.1.3 Angular CLI

Como o próprio nome já diz, Angular CLI trata-se de uma interface de linha de

comando para o Angular. Com essa ferramenta é possível criar um projeto Angular,

criar componentes, criar serviços, criar módulos, executar testes, e muitas outras

funcionalidades através de comandos em um terminal [16].

11

2.1.2 Testes unitários

Teste unitário é o tipo de teste mais baixo nível de um software e está

bastante próximo do código fonte. Esse tipo de teste consiste em testar as classes,

componentes e módulos da aplicação através de suas funções e métodos. Os testes

unitários são os mais baratos de se automatizar e normalmente executam

rapidamente [3].

2.1.2.1 Testando Componentes

Como explicado na Seção 2.1.1.1 o componente é uma combinação de um

template HTML com uma classe em TypeScript. Apesar de ser possível testar a

classe isoladamente, o que torna os testes mais simples, o teste se torna mais

completo quando ele verifica o funcionamento da classe do componente trabalhando

em conjunto com o seu template [17].

2.1.2.2 Testando Serviços

Como explicado na Seção 2.1.1.2 os serviços são compostos por apenas uma

classe. Os testes unitários do mesmo se resumem a testar seus métodos e funções

[18].

2.1.3 Test Runner

Test runner é um software que se responsabiliza pela execução dos testes e

exportação dos resultados.[19].

2.1.3 Jasmine e Karma

O Karma é um test runner, ele é instalado por padrão quando se cria um novo

projeto Angular através da CLI [20].

O Jasmine é um framework de teste, e assim como o Karma ele também é

instalado por padrão quando se cria um projeto através do Angular CLI [20].

2.1.4 Programação Imperativa

No paradigma de programação imperativa o programador passa uma

sequência de comandos para a máquina para que ela possa desempenhar sua

função. Nesse paradigma as instruções são passadas para o computador como um

passo a passo [21].

2.1.5 Programação Declarativa

Se no paradigma de programação imperativa o desenvolvedor deve descrever

como o computador deve fazer determinada tarefa, no paradigma de programação

declarativa o desenvolvedor deve descrever o quê deve ser feito. Ou seja, o foco

está no resultado da tarefa e não em como ela é executada [22].
12

2.1.6 Programação Reativa

A programação reativa é um tipo de programação declarativa que foca no uso

de fluxo de dados e em como novos valores em cada um dos fluxos impactam o

resto do programa [4, 5].

O código 2.1 foi escrito em JavaScript, o resultado desse código imprime na

tela a mensagem “Olá Pessoa”. Mesmo ao alterar o valor da variável b, nenhum

efeito vai se refletir no valor da variável c. Esse é um exemplo de programação

imperativa. Se pensarmos em a, b e c como fluxos de dados ao invés de variáveis

tradicionais do JavaScript, uma mudança no valor de b seria automaticamente

refletida no valor de c, resultando a mensagem “Olá André”.

Código 2.1 - Exemplo código imperativo
let a = 'Olá';

let b = ' Pessoa';

let c = a + b;

b = ' André';

console.log(c)

Fonte: Elaborado pelo autor, 2023.

2.1.7 RxJS

RxJS é uma biblioteca que fornece as ferramentas necessárias para a criação

e manuseio de eventos. Seus conceitos assim como um guia inicial de como usar

essa ferramenta encontram-se na documentação oficial em [8].

2.1.8 NgRx

NgRx é um conjunto de bibliotecas que auxiliam no desenvolvimento de

aplicações reativas em Angular [23]. Esse projeto utilizou as seguintes bibliotecas:

● @ngrx/store - Utilizada para gerenciamento de estado global da aplicação

● @ngrx/effects - Utilizada para registrar efeitos colaterais ao interagir com

o estado global da aplicação

● @ngrx/component-store - Utilizada para gerenciamento de estado local

da aplicação

As 3 bibliotecas acima são baseadas no RxJS. Os conceitos de cada uma

delas assim como um guia contendo exemplo de uso encontram-se na

documentação oficial [23].

13

2.2 Trabalhos relacionados

Em 2021, o trabalho de graduação “Estudo comparativo entre ferramentas de

teste para React” [11] por Ferreira, Pamella compara Enzyme e React Testing Library

(RTL), duas ferramentas utilitárias para desenvolver testes em aplicações web feitas

em React. Neste trabalho a autora conclui que apesar de ambas as ferramentas

empatarem na cobertura de teste, e os testes possuírem em média praticamente a

mesma quantidade de linhas, os testes do RTL eram mais legíveis e simulavam a

interação do usuário com a aplicação, enquanto que o Enzyme era mais voltado

para testar o comportamento interno dos componentes [11].

Em 2016, o artigo “Comparison of Angular JS framework testing tools” [24]

publicado por Nina Fat, Marijana Vujovic, Istvan Papp e Sebastian Novak compara o

Karma e o Protractor no AngularJS para avaliar qual o mais apropriado em achar

problemas de otimização. O trabalho conclui que o Karma se saiu melhor nesse

contexto [24].

Assim como os trabalhos citados acima, esse trabalho faz um estudo

comparativo entre ferramentas que podem ser utilizadas em testes de aplicações

web. A diferença é que o estudo é feito em um contexto diferente: aplicações web

feitas em Angular utilizando de programação reativa com RxJS.

14

3 DESENVOLVIMENTO DO PROJETO
3.1 Ferramentas de teste

3.1.1 RxJS

A primeira ferramenta utilizada para testar a aplicação é o próprio RxJS.

Nessa abordagem é utilizado o método subscribe da classe Observable para ler

o valores existentes nos fluxos de dados da aplicação. Após a leitura dos valores é

possível fazer as devidas asserções. No escopo desse trabalho essa abordagem

será chamada de subscribing strategy.

3.1.2 Marble Diagrams

Além das ferramentas para criação e manipulação de Observables, a

biblioteca RxJS também fornece ferramentas para testá-los focada em diagramas de

Marble [12]. Essa sub-biblioteca de testes fornecida pelo RxJS permite a criação de

Observables a partir de um diagrama de Marble, manipulação de um relógio virtual

para simular a passagem do tempo nos testes e comparação entre Observables.

Nessa abordagem é possível comparar fluxos de dados como um todo. No escopo

desse trabalho essa abordagem será chamada de marble strategy.

3.1.3 observer-spy

A biblioteca observer-spy foi criada especificamente para testar

Observables do RxJS [13]. Essa abordagem resume-se a utilizar as funções

disponíveis nessa biblioteca para realizar os testes.

3.2 Aplicação desenvolvida

Devido ao escopo do trabalho, não foi viável o desenvolvimento de um projeto

complexo como uma aplicação empresarial, e-commerce ou rede social. Contudo, o

projeto desenvolvido, apesar de simples, implementa funcionalidades comuns à

esses tipos de aplicações como:

● Listagem e filtragem de dados vindo de uma API REST

● Paginação

● Gerenciamento de estado global

● Gerenciamento de estado local

No escopo desse trabalho essa abordagem será chamada de observer-spy

strategy.

15

3.2.1 Backend

O backend desenvolvido utiliza dados que foram obitidos da PokeAPI [25],

uma RestAPI pública feita para fins educacionais que disponibiliza dados referentes

aos jogos da franquia Pokémon.

De acordo com a documentação da PokeAPI [25], não existe um endpoint

que retorne a lista com as informações completas de cada Pokémon. O que existe é

um endpoint que retorna uma lista de recursos, ou seja, ao invés de cada item da

lista conter as informações de um Pokémon, cada item na lista contem apenas duas

informações:

● name: O nome do Pokémon

● url: A URL para o endpoint que contém as informações daquele Pokémon.

Devido a essa característica, para adquirir informações de N Pokémon seria

necessário fazer N+1 requisições:

● 1 requisição para obter a lista de recursos

● N requisições, sendo 1 para receber os dados de cada Pokémon da lista

Foi desenvolvido um servidor que fez estas requisições uma única vez,

salvando assim localmente as informações de todos os Pokémon disponíveis na

PokeAPI. Isso foi feito para não quebrar as políticas de uso justo da PokeAPI [25],

que solicita que os usuários salvem localmente os dados para evitar um alto volume

de requisições.

Além disso, essa solução foi conveniente pois remove do frontend a

necessidade de gerenciar essas requisições.

O código do backend foi desenvolvido pelo autor deste trabalho e encontra-se

disponível em [26], assim como suas instruções de uso.

3.2.2 Frontend

A aplicação frontend consiste em uma página capaz de listar Pokémon, os

dados de Pokémon vem da aplicação backend detalhada na seção anterior. A

apliação também é capaz de buscar por Pokémon através de seus nomes. Além

disso, o usuário também é capaz de formar um time de até 6 Pokémon.

O código frontend também foi desenvolvido pelo autor deste trabalho e

encontra-se disponível em [27], assim como suas instruções de uso.

16

Figura 3.1 - Tela da aplicação

Fonte: Elaborado pelo autor, 2023.

3.2.2.1 Dependências

Algumas dependências bastante utilizadas no ecossistema Angular foram

adicionadas ao projeto:

● Angular Material: Uma biblioteca de UI que possui diversos componentes

disponíveis para usar em aplicações Angular [28]

● Ngrx: Bibliotecas para gerenciamento de estado em aplicações reativas feitas

com Angular. Mais detalhes na Seção 2.1.8.

3.2.2.2 Estrutura

A aplicação possui a estrutura representada pela Figura 3.2. Os retângulos

representam os componentes e os círculos representam serviços. Em amarelo

encontram-se os componentes e serviços que foram testados usando as

abordagens escolhidas por esse trabalho.

17

Figura 3.2 - Estrutura do projeto

Fonte: Elaborado pelo autor, 2023.

A Figura 3.3 mapeia os componentes mostrados na Figura 3.2 com a tela da

aplicação representada pela Figura 3.1, com exceção dos componentes loader e

pokedex-error-message que não estão renderizados na figura pois representam

estados de carregamento e de erro respectivamente.
Figura 3.3 - Estrutura do projeto vs Tela da aplicação

Fonte: Elaborado pelo autor, 2023.

18

4. TESTES E COMPARAÇÕES
4.1 Alvo dos testes

A Figura 3.2 mostra a estrutura da aplicação baseada em seus componentes

e serviços, apenas os elementos com o fundo da cor amarela foram utilizados para

comparação dos testes.

Os componentes que não foram testados tem apenas a responsabilidade de

renderizar, logo não possuem lógica que faça sentido ser testada por alguma das

abordagens escolhidas.

O serviço Poke Api é responsável por configurar requisições HTTP, utilizando

o HttpClient que faz parte do framework Angular (Código 4.1). Para esse cenário

específico a documentação do Angular é bem direta quanto a forma na qual esse

código deve ser testado [29].
Código 4.1 - poke-api.service.ts

import { HttpClient } from '@angular/common/http';

import { Injectable } from '@angular/core';

import { Observable } from 'rxjs';

import { ListResult } from '../models/list-result.model';

import { Pokemon } from '../models/pokemon.model';

export const LIST_POKEMON_URL = 'http://localhost:3000/pokemon';

@Injectable({

providedIn: 'root'

})

export class PokeApiService {

constructor(private http: HttpClient) {}

getPokemonList(page: number = 0, searchText: string = ''):

Observable<ListResult<Pokemon>> {

return this.http.get<ListResult<Pokemon>>(LIST_POKEMON_URL, {

params: {

page,

searchText

}

});

}

}

Fonte: Elaborado pelo autor, 2023.

19

https://github.com/FigueiroaAndre/pokedex-tcc/blob/main/src/app/shared/data-access/poke-api.service.ts

4.2 Pokedex Store

Esse serviço é utilizado para o gerenciamento de estado local do componente

pokedex utilizando as ferramentas disponíveis pela biblioteca

@ngrx/component-store, citada na Seção 3.1.8. No Código 4.2 a classe

PokedexStore estende a classe genérica ComponentStore que por sua vez é

importada de @ngrx/component-store.

As responsabilidades desse serviço são as seguintes:

● Armazenar o estado do componente Pokedex
● Disponibilizar o estado do componente Pokedex de forma reativa
● Disponibilizar métodos para que seja possível atualizar o estado atual
● Reagir a mudança de estados e utilizar de forma reativa o serviço PokeApi

para fazer requisições de mais Pokémon
O estado inicial é configurado na chamada no método super do

constructor e possui o tipo da interface PokedexState, que é o tipo

especificado ao estender a classe ComponentStore.

A interface PokedexState, possui 3 propriedades:

● pokemonList: responsável por armazenar a lista de Pokémon que deve ser

renderizada pelo componente PokedexComponent e seus filhos

● requestStatus: pode assumir os valores pending, processing,

success ou error e é utilizada para sinalizar o estado atual da requisição

feita ao backend. A depender do estado, a aplicação pode mostrar os dados

atuais, mostrar uma animação de carregamento ou exibir uma mensagem de

erro.

● apiTrigger: essa propriedade é utilizada para disparar requisições feitas ao

servidor quando modificada. Ela possui o tipo ApiEffectTrigger que

também está definido no Código 4.2 e possui as seguintes propriedades:

○ currentPage: página atual da lista de Pokémon

○ lastPage: booleano que indica se está ou não na última página da

lista de Pokémon

○ searchText: utilizado como parâmetro para fazer a filtragem de

Pokémon por seus nomes

○ requestRetryCount: utilizado para contar quantas tentativas foram

feitas caso a requisição para o backend falhe

20

https://github.com/FigueiroaAndre/pokedex-tcc/blob/main/src/app/pokedex/pokedex.store.ts
https://github.com/FigueiroaAndre/pokedex-tcc/blob/main/src/app/pokedex/pokedex.store.ts

O serviço disponibiliza para o componente apenas os estados pokemonList,

requestStatus e lastPage através dos Observables pokemonList$,

requestStatus$ e lastPage$ respectivamente (acima do constructor).

Sendo as demais propriedades do estado utilizadas apenas internamente pelo

serviço.

O método fetchPokemons configura um efeito colateral que, quando

executado faz uma requisição ao servidor caso a aplicação não esteja na última

página da lista. Em caso de sucesso ele atualiza a lista de Pokémon, em caso de

falha uma mensagem é exibida ao usuário. No constructor esse método é

chamado e configurado para reagir às mudanças que ocorrem no estado

apiTrigger, sendo assim, executado de forma reativa toda vez que uma mudança

for detectada.

O método resetRequestStatus é utilizado para resetar o estado da

requisição para pending 1 segundo após a sua chamada. Ele é chamado pelo

método fetchPokemons após a requisição resultar em falha ou sucesso.

Os demais métodos são utilizados apenas para modificar o estado atual do

serviço. Dependendo de como o estado for alterado, o componente Pokedex e o

efeito colateral fetchPokemons podem reagir a essa mudança.

Código 4.2 - pokedex.store.ts
import { Injectable } from "@angular/core";

import { ComponentStore } from "@ngrx/component-store";

import { catchError, concatMap, delay, distinctUntilChanged, EMPTY,

filter, map, Observable, tap } from "rxjs";

import { isEqual } from 'lodash-es';

import { PokeApiService } from

"../shared/data-access/poke-api.service";

import { ListResult } from "../shared/models/list-result.model";

import { Pokemon } from "../shared/models/pokemon.model";

import { RequestStatus } from "../shared/models/request-status.model";

import { MatSnackBar } from "@angular/material/snack-bar";

export interface PokedexState {

pokemonList: Pokemon[];

requestStatus: RequestStatus;

apiTrigger: ApiEffectTrigger;

}

21

interface ApiEffectTrigger {

currentPage: number;

lastPage: boolean;

searchText: string;

requestRetryCount: number;

};

@Injectable()

export class PokedexStore extends ComponentStore<PokedexState> {

readonly pokemonList$ = this.select(state => state.pokemonList);

readonly requestStatus$ = this.select(state => state.requestStatus);

private readonly fetchData$ = this.select(state => state.apiTrigger);

readonly lastPage$ = this.fetchData$.pipe(map(data => data.lastPage));

constructor(

private readonly pokeApi: PokeApiService,

private readonly snackBar: MatSnackBar

) {

super({

pokemonList: [],

requestStatus: 'pending',

apiTrigger: {

requestRetryCount: 0,

currentPage: 0,

lastPage: false,

searchText: ''

}

});

this.fetchPokemons(this.fetchData$.pipe(distinctUntilChanged((a,b)

=> isEqual(a,b))));

}

readonly loadNextPage = this.updater(state => ({

...state,

apiTrigger: {

...state.apiTrigger,

requestRetryCount: 0,

currentPage: state.apiTrigger.currentPage + 1

}

}));

readonly searchPokemon = this.updater((state, searchText: string) =>

22

({

...state,

pokemonList: [],

apiTrigger: {

requestRetryCount: 0,

currentPage: 0,

lastPage: false,

searchText: searchText

}

}));

readonly retryLastRequest = this.updater(state => ({

...state,

apiTrigger: {

...state.apiTrigger,

requestRetryCount: state.apiTrigger.requestRetryCount + 1

}

}));

private readonly fetchPokemons = this.effect((data$:

Observable<ApiEffectTrigger>) => data$.pipe(

filter(fetchData => !fetchData.lastPage),

tap(() => this.updateRequestStatus('processing')),

concatMap(fetchData =>

this.pokeApi.getPokemonList(fetchData.currentPage,

fetchData.searchText)

.pipe(

tap({

next: result => {

if (fetchData.currentPage === 0) {

this.setPokemonList(result);

} else {

this.addPokemonsToList(result);

}

},

error: err => {

this.snackBar.open(err.message, 'Dismiss', {

horizontalPosition: 'end', verticalPosition: 'top'});

this.updateRequestStatus('error');

},

finalize: () => this.resetRequestStatus()

}),

catchError(err => EMPTY)

23

)),

));

private resetRequestStatus = this.effect($ => $.pipe(

delay(1000),

tap(() => this.updateRequestStatus('pending'))

));

private updateRequestStatus = this.updater((state, requestStatus:

RequestStatus) => ({

...state,

requestStatus

}));

private addPokemonsToList = this.updater((state, pokemonListResult:

ListResult<Pokemon>) => ({

...state,

pokemonList: [...state.pokemonList, ...pokemonListResult.content],

requestStatus: 'success',

apiTrigger: {

...state.apiTrigger,

lastPage: pokemonListResult.last

}

}));

private setPokemonList = this.updater((state, pokemonListResult:

ListResult<Pokemon>) => ({

...state,

pokemonList: pokemonListResult.content,

requestStatus: 'success',

apiTrigger: {

...state.apiTrigger,

lastPage: pokemonListResult.last

}

}));

}

Fonte: Elaborado pelo autor, 2023.

4.2.1 Testes

Os seguintes testes foram desenvolvidos utilizando as 3 abordagens:

● it should be able to fetch first page of pokemons on initialization

● it should be able to fetch more pages of pokemons when calling loadNextPage

when not in last page
24

● it should not be able to fetch more pages of pokemons when calling

loadNextPage when in last page

● it should be able to fetch data by search text

● it should be able to retry last request using same parameters, but

incrementing the retry count by 1

● it should be able to reset requestStatus to pending after 1 second

Comparações a respeito dos testes, mostrando trechos de código, são feitas na

Seção 4.5.

4.3 Global State

É utilizado para o gerenciamento de estado global da aplicação, utilizando a

biblioteca @ngrx/store, citada na Seção 3.1.8. O estado global é configurado no

módulo raiz da aplicação, como pode ser visto no Código 4.3.
Código 4.3 - app.module.ts

import { NgModule } from '@angular/core';

import { BrowserModule } from '@angular/platform-browser';

import { AppRoutingModule } from './app-routing.module';

import { AppComponent } from './app.component';

import { BrowserAnimationsModule } from

'@angular/platform-browser/animations';

import { HttpClientModule } from '@angular/common/http';

import { HeaderComponent } from './header/header.component';

import { FooterComponent } from './footer/footer.component';

import { StoreModule } from '@ngrx/store';

import { MatSnackBarModule } from '@angular/material/snack-bar';

import { teamReducer } from './shared/state/team/team.reducer';

import { EffectsModule } from '@ngrx/effects';

import { TeamEffects } from './shared/state/team/team.effects';

@NgModule({

declarations: [

AppComponent

],

imports: [

BrowserModule,

AppRoutingModule,

BrowserAnimationsModule,

HttpClientModule,

HeaderComponent,

FooterComponent,

StoreModule.forRoot({

25

https://github.com/FigueiroaAndre/pokedex-tcc/blob/main/src/app/app.module.ts

team: teamReducer

}),

EffectsModule.forRoot([TeamEffects]),

MatSnackBarModule

],

providers: [],

bootstrap: [AppComponent]

})

export class AppModule { }

Fonte: Elaborado pelo autor, 2023.

O estado global é adicionado na aplicação ao importar o StoreModule.

Como o @ngrx/store é inspirado no Redux [23], foi preciso configurar Reducers,

Actions e Selectors. Mas nenhuma dessas configurações necessitou de código

reativo por parte da aplicação.

Entretanto, o @ngrx/store é responsável apenas pelo gerenciamento do

estado e não da execução de efeitos colaterais. Para adicionar efeitos colaterais em

reação a mudanças no estado global é necessário utilizar a biblioteca

@ngrx/effects, também citada na Seção 3.1.8.

A adição dos efeitos colaterais também é feita no módulo raiz (Código 4.3)

através da importação de EffectsModule. Nessa aplicação foi configurado apenas

um estado global, team, que representa um time de até 6 Pokémons que são

adicionados ou removidos a partir da UI da aplicação. O Código 4.4 contém o efeito

colateral TeamEffects que é utilizado na importação do EffectsModule.

Código 4.4 - team.effects.ts
import { Injectable } from "@angular/core";

import { MatSnackBar } from "@angular/material/snack-bar";

import { Actions, createEffect, ofType } from "@ngrx/effects";

import { Store } from "@ngrx/store";

import { pairwise, startWith, tap, withLatestFrom } from "rxjs";

import { AppState } from "../app.state";

import { addPokemon } from './team.actions';

import { selectTeam} from './team.selectors';

@Injectable()

export class TeamEffects {

constructor(

26

https://github.com/FigueiroaAndre/pokedex-tcc/blob/main/src/app/app.module.ts
https://github.com/FigueiroaAndre/pokedex-tcc/blob/main/src/app/shared/state/team/team.effects.ts

private actions$: Actions,

private store: Store<AppState>,

private snackBar: MatSnackBar

) {}

warnInvalidAddition$ = createEffect(() => this.actions$.pipe(

ofType(addPokemon),

withLatestFrom(this.store.select(selectTeam).pipe(startWith([]),

pairwise())),

tap(([actions , [previousTeam, currentTeam]]) => {

const isTeamComplete = previousTeam.length === 6;

if (isTeamComplete) {

this.snackBar.open(

'Your team cannot have more than 6 pokemons.',

'Dismiss',

{ horizontalPosition: 'end', verticalPosition: 'top'}

);

}

})

), { dispatch: false });

}

Fonte: Elaborado pelo autor, 2023.

O efeito colateral utiliza o Observable actions$ que é fornecido para o

sitema de injeção de dependências pelo sistema de gerenciamento de estado global

da aplicação. Esse Observable emite as Actions que foram despachadas para o

sistema, podendo ter vindo de qualquer lugar da aplicação. A lógica do efeito

colateral é então executada quando a Action do tipo addPokemon for emitida.

A lógica do TeamEffects é responsável por exibir uma mensagem para o

usuário quando ele tenta adicionar Pokémon ao time após ter atingido a capacidade

máxima de 6 Pokémon do time.

4.3.1 Testes

Os seguintes testes foram desenvolvidos utilizando as 3 abordagens:

● it should open a snackbar if attempts to create a team with more than 6
pokemon

● it should not open a snackbar if attempts to create a team within the size limit
Comparações a respeito dos testes, mostrando trechos de código, são feitas na

Seção 4.5.

27

4.4 Pokedex Component

Esse é o único componente da aplicação que contém alguma lógica, sendo os

demais componentes apenas apresentacionais. Ele consegue utilizar métodos do

Pokedex Store (Seção 4.2) para atualizar o estado local. Esse componente também

consegue despachar Actions para o sistema de gerenciamento de estado global

para atualizar o estado global. Como consequência da alteração desses estados,

efeitos colaterais podem ser executados em respostas a essas modificações.

Além de conseguir atualizar estados através dos mecanismos disponibilizados

pelos serviços de gerenciamento de estados, esse componente também é capaz de

ler os estados disponibilizados por esses serviços em forma de Observable. Sempre

que os estados forem atualizados, esses Observables vão emitir o novo valor e a UI

da aplicação irá reagir a essas mudanças automaticamente.

Os códigos 4.5 e 4.6 contém o modelo (arquivo Typescript) e a visão (arquivo

HTML) respectivamente desse componente.
Código 4.5 - pokedex.component.ts

import { Component } from '@angular/core';

import { CommonModule } from '@angular/common';

import { MatIconModule } from '@angular/material/icon';

import { MatInputModule } from '@angular/material/input';

import { MatFormFieldModule } from '@angular/material/form-field';

import { GridViewComponent } from './ui/grid-view/grid-view.component';

import { PokedexStore } from './pokedex.store';

import { FormControl, ReactiveFormsModule } from '@angular/forms';

import { combineLatest, debounceTime, distinctUntilChanged, filter,

map, Observable, startWith } from 'rxjs';

import { Store } from '@ngrx/store';

import { addPokemon, removePokemon } from

'../shared/state/team/team.actions';

import { AppState } from '../shared/state/app.state';

import { Pokemon } from '../shared/models/pokemon.model';

import { selectTeam } from '../shared/state/team/team.selectors';

import { LoaderComponent } from '../shared/ui/loader/loader.component';

import { PokedexErrorMessageComponent } from

'./ui/pokedex-error-message/pokedex-error-message.component';

interface ViewModel {

lastPage: boolean;

pokemonList: Pokemon[];

hasLastRequestFailed: boolean;

28

https://github.com/FigueiroaAndre/pokedex-tcc/blob/main/src/app/pokedex/pokedex.component.ts
https://github.com/FigueiroaAndre/pokedex-tcc/blob/main/src/app/pokedex/pokedex.component.html

isLoading: boolean;

team: Pokemon[];

}

@Component({

selector: 'app-pokedex',

standalone: true,

imports: [

CommonModule,

MatIconModule,

ReactiveFormsModule,

MatInputModule,

MatFormFieldModule,

GridViewComponent,

LoaderComponent,

PokedexErrorMessageComponent

],

templateUrl: './pokedex.component.html',

styleUrls: ['./pokedex.component.scss'],

providers: [PokedexStore]

})

export class PokedexComponent {

private lastPage$ = this.pokedexStore.lastPage$;

private pokemonList$ = this.pokedexStore.pokemonList$;

private isLoading$ =

this.pokedexStore.requestStatus$.pipe(map(requestStatus =>

requestStatus === 'processing'));

private hasLastRequestFailed$ = this.pokedexStore.requestStatus$.pipe(

filter(requestStatus => requestStatus === 'success' || requestStatus

=== 'error'),

map(requestStatus => requestStatus === 'error')

);

private team$: Observable<Pokemon[]>;

protected searchControl = new FormControl('', { nonNullable: true });

protected vm$: Observable<ViewModel>;

constructor(private readonly pokedexStore: PokedexStore, private

readonly store: Store<AppState>) {

const searchUpdateTrigger$ = this.searchControl.valueChanges.pipe(

distinctUntilChanged(),

debounceTime(500)

);

29

this.pokedexStore.searchPokemon(searchUpdateTrigger$);

this.team$ = this.store.select(selectTeam);

this.vm$ = combineLatest({

isLoading: this.isLoading$.pipe(startWith(false)),

hasLastRequestFailed:

this.hasLastRequestFailed$.pipe(startWith(false)),

lastPage: this.lastPage$.pipe(startWith(false)),

pokemonList: this.pokemonList$.pipe(startWith([])),

team: this.team$.pipe(startWith([]))

});

}

protected onLoadMorePokemon(): void {

this.pokedexStore.loadNextPage();

}

protected onAddPokemonToTeam(pokemon: Pokemon): void {

this.store.dispatch(addPokemon({ pokemon}));

}

protected onRemovePokemonFromTeam(pokemon: Pokemon): void {

this.store.dispatch(removePokemon({ id: pokemon.id }));

}

protected onTryAgain(): void {

this.pokedexStore.retryLastRequest();

}

}

Fonte: Elaborado pelo autor, 2023.

Código 4.6 - pokedex.component.html
<div class="page-section-container" *ngIf="vm$ | async as vm">

<app-loader *ngIf="vm.isLoading"></app-loader>

<ng-container *ngIf="!vm.isLoading && !vm.hasLastRequestFailed">

<mat-form-field class="search-bar" appearance="fill">

<input matInput [formControl]="searchControl" placeholder="Search

pokemon..." value="Sushi">

</mat-form-field>

<app-grid-view

[pokemonList]="vm.pokemonList"

[loadMoreVisible]="!vm.lastPage"

[team]="vm.team"

30

(loadMore)="onLoadMorePokemon()"

(addPokemonToTeam)="onAddPokemonToTeam($event)"

(removePokemonFromTeam)="onRemovePokemonFromTeam($event)"

></app-grid-view>

</ng-container>

<app-pokedex-error-message *ngIf="!vm.isLoading &&

vm.hasLastRequestFailed" (tryAgain)="onTryAgain()">

</app-pokedex-error-message>

</div>

Fonte: Elaborado pelo autor, 2023.

No Código 4.5 o componente define searchUpdateTrigger$ que nada

mais é do que um Observable. Ele emite valores toda vez que se passam 500

milissegundos após alguma alteração no conteúdo da barra de pesquisa. Esse

Observable é utilizado para atualizar o estado da Pokedex Store, e reagindo a essa

alteração é esperado que o efeito colateral faça uma requisição HTTP ao servidor

usando a cadeira de caracteres emitida para filtrar Pokémon.

O componente também consegue mudar o estado de outras formas, como na

função onLoadMorePokemon que é chamada quando o componente filho emite o

evento loadMore (Código 4.6). Ao mudar o estado da Pokedex Store dessa

maneira é esperado que o efeito colateral faça uma requisição HTTP ao servidor

para trazer o resultado da próxima página de Pokémon.

O componente também consegue interagir com o estado global, despachando

Actions do tipo addPokemon e removePokemon através dos métodos

onAddPokemonToTeam e onRemovePokemonFromTeam respectivamente. Ambos

os métodos também estão associados com eventos emitidos pelo componente filho.

Além de interagir ativamente atualizando os estados da aplicação, o

componente também lê os estados relevantes para a sua necessidade. Esses

estados são então combinados em um único Observable vm$ e o template do

componente (Código 4.6) consome o Observable vm$, logo, sempre que um estado

de interesse é alterado essa mudança é propagada para vm$ que resulta em uma

atualização automática dos elementos que são renderizados por esse componente.

4.4.1 Testes

Os seguintes testes foram desenvolvidos utilizando as 3 abordagens:

● it should only trigger search if new text is different from last one
● it should only trigger search when values have at least a 500ms time span

31

https://github.com/FigueiroaAndre/pokedex-tcc/blob/main/src/app/pokedex/pokedex.component.ts
https://github.com/FigueiroaAndre/pokedex-tcc/blob/main/src/app/pokedex/pokedex.component.html
https://github.com/FigueiroaAndre/pokedex-tcc/blob/main/src/app/pokedex/pokedex.component.html

● it should dispatch addPokemon action when addPokemonToTeam event emits
● it should dispatch removePokemon action when removePokemonFromTeam

event emits
Comparações a respeito dos testes, mostrando trechos de código, são feitas na

Seção 4.5.

4.5 Comparações

Nos códigos referentes aos testes utilizando subscribing strategy, o trecho

representado pelo Código 4.7 é utilizado.
Código 4.7 - Trecho comum aos códigos que utilizam subscribing strategy

afterEach(() => {

subscription?.unsubscribe();

});

Fonte: Elaborado pelo autor, 2023.

Esse trecho de código é necessário pois os Observables causam problemas

de vazamento de memória caso eles não completem ou a inscrição seja cancelada.

Em um projeto suficientemente grande com uma enorme quantidade de testes, se

esta prática não for adotada, é possível que a execução de testes consuma muito

mais memória do que necessária. Em um time grande, com pressão para realizar

uma entrega é um detalhe que pode passar despercebido na etapa de revisão de

código e causar um problema ou gastos desnecessários a longo prazo.

Existem cenários onde subscribing strategy é forçado a quebrar o padrão

Organizar (Arrange), Agir (Act) e Verificar (Assert) [30], já bem definido na industria,

o que prejudica a legibilidade do teste. Esse problema foi inicialmente detectado no

teste “it should be able to retry last request using same parameters, but

incrementing the retry count by 1” (Código 4.8) onde é preciso fazer uma inscrição

no Observable apiTrigger$ antes da etapa de Agir.

Código 4.8 - should be able to retry last request using same parameters, but incrementing the
retry count by 1 (subscribing strategy)

it('should be able to retry last request using same parameters, but

incrementing the retry count by 1', () => {

service = TestBed.inject(PokedexStore);

const emittedValues: any[] = [];

const apiTrigger$ = service.select(state => state.apiTrigger);

subscription = apiTrigger$.subscribe(state => {

emittedValues.push(state);

});

service.searchPokemon('test1');

32

https://github.com/FigueiroaAndre/pokedex-tcc/blob/main/src/app/pokedex/pokedex.store.subscribing.spec.ts

pokeApiServiceSpy.getPokemonList.and.returnValue(of({ last: true,

content: secondPageOfPokemonData }));

service.loadNextPage();

service.retryLastRequest();

const currentValue = emittedValues.slice(-1)[0];

const previousValue = emittedValues.slice(-2,-1)[0];

expect(currentValue).toEqual({

...previousValue,

requestRetryCount: previousValue.requestRetryCount + 1

});

});

Fonte: Elaborado pelo autor, 2023.

As verificações estavam sendo feitas no callback do método subscribe

fazendo com que a etapa de Verificar estivesse fora de ordem. Para contornar o

problema, foi necessário utilizar o callback para preencher um vetor com os valores

emitidos pelo Observable durante o teste. Por fim, os valores no vetor eram

utilizados para fazer as verificações. Ainda que essa solução tenha sido capaz de

resolver o problema da ordem das etapas do teste, ela também tem um custo na

legibilidade. Essa mesma solução foi aplicada em outros testes como “it should only

trigger search if new text is different from last one” e “it should only trigger search

when values have at least a 500ms time span”.

Os testes feitos com observer-spy strategy no geral foram bem semelhantes

ao testes do subscribing strategy, porém sem os pontos negativos citados acima. A

biblioteca observer-spy tira do desenvolvedor a responsabilidade de gerenciar as

inscrições dos Observables [13], evitando a necessidade de repetir o Código 4.7 nos

arquivos de teste e eliminando o risco de vazamento de memória causado pela

possível falha no cancelamento de inscrições. Para que isso ocorra, basta configurar

uma única vez durante a vida do projeto, que o método autoUnsubscribe seja

executado no arquivo de configuração de testes [13]. No Angular esse é o arquivo

test.ts mostrado pelo Código 4.9.
Código 4.9 - test.ts

import 'zone.js/testing';

import { getTestBed } from "@angular/core/testing";

import {

BrowserDynamicTestingModule,

platformBrowserDynamicTesting

} from '@angular/platform-browser-dynamic/testing';

33

https://github.com/FigueiroaAndre/pokedex-tcc/blob/main/src/test.ts

import { autoUnsubscribe } from '@hirez_io/observer-spy';

getTestBed().initTestEnvironment(BrowserDynamicTestingModule,

platformBrowserDynamicTesting(), {

errorOnUnknownElements: true,

errorOnUnknownProperties: true

});

autoUnsubscribe();

Fonte: Elaborado pelo autor, 2023.

Os testes utilizando observer-spy strategy também não causam problemas na

estrutura Organizar, Agir e Verificar. Tomando como exemplo o teste “it should only

trigger search if new text is different from last one” do Código 4.10 e comparando

com o mesmo teste no Código 4.11 fica perceptível que o código utilizando

observer-spy strategy não impacta a estrutura do teste.
Código 4.10 - should only trigger search if new text is different from last one (observer-spy

strategy)
it('should only trigger search if new text is different from last one',

fakeAsync(() => {

const searchTriggerSpy = subscribeSpyTo(searchTrigger$);

typeInSearch('test1');

tick(500);

typeInSearch('test1');

tick(500);

typeInSearch('test2');

tick(500);

expect(searchTriggerSpy.getValues().length).toBe(2);

expect(searchTriggerSpy.getValueAt(0)).toBe('test1');

expect(searchTriggerSpy.getValueAt(1)).toBe('test2');

}));

Fonte: Elaborado pelo autor, 2023.

Código 4.11 - should only trigger search if new text is different from last one (subscribing
strategy)

it('should only trigger search if new text is different from last one',

fakeAsync(() => {

const emittedValues: string[] = [];

subscription = searchTrigger$.subscribe(text =>

emittedValues.push(text));

typeInSearch('test1');

34

https://github.com/FigueiroaAndre/pokedex-tcc/blob/main/src/app/pokedex/pokedex.component.observer-spy.spec.ts
https://github.com/FigueiroaAndre/pokedex-tcc/blob/main/src/app/pokedex/pokedex.component.subscribing.spec.ts

tick(500);

typeInSearch('test1');

tick(500);

typeInSearch('test2');

tick(500);

expect(emittedValues.length).toBe(2);

expect(emittedValues[0]).toBe('test1');

expect(emittedValues[1]).toBe('test2');

}));

Fonte: Elaborado pelo autor, 2023.
O método subscribeSpyTo inscreve-se automaticamente no Observable de

interesse e retorna um Spy que possui métodos que facilitam verificações feitas com

valores emitidos pelo Observable. Ao fim do teste a inscrição é automaticamente

cancelada.

Nos testes que utilizam marble strategy, os diagramas de marble ajudam, por

utilizar uma abordagem mais visual para representar os fluxos de dados dos

Observables. Entretanto, é necessário aprender uma sintaxe específica, complexa e

bastante verbosa [12] para poder ter essa representação visual, o que compromete

a legibilidade do teste.

Esse problema de legibilidade da marble strategy fica bastante nítido ao

comparar os testes gerados pelas 3 ferramentas. Um bom exemplo é o teste “it

should be able to fetch data by search text” que nos códigos 4.12 e 4.13 são bem

mais simples do que no Código 4.14.
Código 4.12 - it should be able to fetch data by search text (subscribing strategy)

it('should be able to fetch data by search text', () => {

service = TestBed.inject(PokedexStore);

const state$ = service.select(state => state);

const searchStream$ = of('test1','test2','test3');

service.searchPokemon(searchStream$);

subscription = state$.subscribe(state => {

expect(state.apiTrigger.currentPage).toBe(0);

expect(state.apiTrigger.searchText).toBe('test3');

});

expect(pokeApiServiceSpy.getPokemonList).toHaveBeenCalledTimes(4);

expect(pokeApiServiceSpy.getPokemonList).toHaveBeenCalledWith(0,

'test1');

35

https://github.com/FigueiroaAndre/pokedex-tcc/blob/main/src/app/pokedex/pokedex.store.subscribing.spec.ts
https://github.com/FigueiroaAndre/pokedex-tcc/blob/main/src/app/pokedex/pokedex.store.observer-spy.spec.ts
https://github.com/FigueiroaAndre/pokedex-tcc/blob/main/src/app/pokedex/pokedex.store.marble.spec.ts

expect(pokeApiServiceSpy.getPokemonList).toHaveBeenCalledWith(0,

'test2');

expect(pokeApiServiceSpy.getPokemonList).toHaveBeenCalledWith(0,

'test3');

});

Fonte: Elaborado pelo autor, 2023.

Código 4.13 - it should be able to fetch data by search text (observer-spy strategy)
it('should be able to fetch data by search text', () => {

service = TestBed.inject(PokedexStore);

const searchStream$ = of('test1','test2','test3');

const stateSpy = subscribeSpyTo(service.select(state => state));

service.searchPokemon(searchStream$);

expect(stateSpy.getLastValue()?.apiTrigger.currentPage).toEqual(0);

expect(stateSpy.getLastValue()?.apiTrigger.searchText).toEqual('test3')

;

expect(pokeApiServiceSpy.getPokemonList).toHaveBeenCalledTimes(4);

expect(pokeApiServiceSpy.getPokemonList).toHaveBeenCalledWith(0,

'test1');

expect(pokeApiServiceSpy.getPokemonList).toHaveBeenCalledWith(0,

'test2');

expect(pokeApiServiceSpy.getPokemonList).toHaveBeenCalledWith(0,

'test3');

});

Fonte: Elaborado pelo autor, 2023.

Código 4.14 - it should be able to fetch data by search text (marble strategy)
it('should be able to fetch data by search text', () => {

const requestMarble = '-----a|';

const searchMarble = '----------a--------b';

// -----x -----x -----x (requests)

const resultMarble = 'a----b----(cd)-e---(fg)-h';

pokeApiServiceSpy.getPokemonList.and.returnValue(cold(requestMarble,

{ a: { last: false, content: firstPageOfPokemonData} }));

service = TestBed.inject(PokedexStore);

const state$ = service.select(state => state);

const searchStream$ = cold(searchMarble, { a: 'test1', b: 'test2'

});

const expectedState$ = cold(resultMarble, {

36

a: { pokemonList: [], requestStatus: 'processing', apiTrigger: {

requestRetryCount: 0, currentPage: 0, lastPage: false, searchText: ''

}},

b: { pokemonList: firstPageOfPokemonData, requestStatus:

'success', apiTrigger: {requestRetryCount: 0, currentPage: 0, lastPage:

false, searchText: '' }},

c: { pokemonList: [], requestStatus: 'success', apiTrigger: {

requestRetryCount: 0, currentPage: 0, lastPage: false, searchText:

'test1' }},

d: { pokemonList: [], requestStatus: 'processing', apiTrigger: {

requestRetryCount: 0, currentPage: 0, lastPage: false, searchText:

'test1' }},

e: { pokemonList: firstPageOfPokemonData, requestStatus:

'success', apiTrigger: { requestRetryCount: 0, currentPage: 0,

lastPage: false, searchText: 'test1' }},

f: { pokemonList: [], requestStatus: 'success', apiTrigger: {

requestRetryCount: 0, currentPage: 0, lastPage: false, searchText:

'test2' }},

g: { pokemonList: [], requestStatus: 'processing', apiTrigger: {

requestRetryCount: 0, currentPage: 0, lastPage: false, searchText:

'test2' }},

h: { pokemonList: firstPageOfPokemonData, requestStatus:

'success', apiTrigger: { requestRetryCount: 0, currentPage: 0,

lastPage: false, searchText: 'test2' }},

});

service.searchPokemon(searchStream$)

expect(state$).toBeObservable(expectedState$);

expect(pokeApiServiceSpy.getPokemonList).toHaveBeenCalledTimes(3);

expect(pokeApiServiceSpy.getPokemonList).toHaveBeenCalledWith(0,

'test1');

expect(pokeApiServiceSpy.getPokemonList).toHaveBeenCalledWith(0,

'test2');

});

Fonte: Elaborado pelo autor, 2023.
Além de difíceis de ler, os testes feitos com marble também são os mais

complexos de se desenvolver. Enquanto nas outras abordagens os testes

precisavam focar apenas em um ou dois valores emitidos pelos Observables, nos

testes dessa abordagem é necessário representar o fluxo de dados como um todo,

ainda que não fossem relevantes ao que se estava de fato sendo testado.

37

Outro problema dessa abordagem aparece quando é necessário fazer testes

que simulam a ação de um usuário. O teste “it should dispatch addPokemon action

when addPokemonToTeam event emits” é consideravelmente mais simples nos

códigos 4.15 e 4.16 do que no Código 4.17.
Código 4.15 - it should dispatch addPokemon action when addPokemonToTeam event emits

(subscribing strategy)
it('should dispatch addPokemon action when addPokemonToTeam event

emits', () => {

const pokemon = createPokemonMock();

const expectedAction = addPokemon({ pokemon})

gridViewComponent.triggerEventHandler('addPokemonToTeam', pokemon);

subscription = store.scannedActions$.subscribe(action => {

expect(action).toEqual(expectedAction);

})

});

Fonte: Elaborado pelo autor, 2023.

Código 4.16 - it should dispatch addPokemon action when addPokemonToTeam event emits
(observer-spy strategy)

it('should dispatch addPokemon action when addPokemonToTeam event

emits', () => {

const pokemon = createPokemonMock();

const expectedAction = addPokemon({ pokemon});

const scannedActionsSpy = subscribeSpyTo(store.scannedActions$);

gridViewComponent.triggerEventHandler('addPokemonToTeam', pokemon);

expect(scannedActionsSpy.getLastValue()).toEqual(expectedAction);

});

Fonte: Elaborado pelo autor, 2023.

Código 4.17 - it should dispatch addPokemon action when addPokemonToTeam event emits
(marble strategy)

it('should dispatch addPokemon action when addPokemonToTeam event

emits', () => {

const dispatchMarble = '--a';

const expectedMarble = 'a-b';

const pokemon = createPokemonMock();

const expectedAction = addPokemon({ pokemon});

scheduler.run(({ cold, expectObservable }) => {

const expected$ = cold(expectedMarble, { a: INITIAL_ACTION, b:

expectedAction });

38

https://github.com/FigueiroaAndre/pokedex-tcc/blob/main/src/app/pokedex/pokedex.component.subscribing.spec.ts
https://github.com/FigueiroaAndre/pokedex-tcc/blob/main/src/app/pokedex/pokedex.component.observer-spy.spec.ts
https://github.com/FigueiroaAndre/pokedex-tcc/blob/main/src/app/pokedex/pokedex.component.marble.spec.ts

subscription = cold(dispatchMarble).subscribe(() => {

gridViewComponent.triggerEventHandler('addPokemonToTeam',

pokemon);

});

expectObservable(store.scannedActions$).toEqual(expected$);

});

});

Fonte: Elaborado pelo autor, 2023.
Enquanto nos primeiros basta simular a emição do evento por parte do

componente filho, no teste com marble é necessário definir um Observable

(dispatchMarble nesse exemplo) utilizando a syntaxe especial desse tipo de teste

que deve ser inscrito para que a emissão do evento seja feita em um momento

específico no tempo.

Em relação à cobertura de testes, as 3 abordagens resultaram exatamente na

mesma cobertura (Figura 4.1), comprovando que os testes desenvolvidos são

análogos.

Figura 4.1 - Cobertura de testes

Fonte: Elaborado pelo autor, 2023.

39

A quantidade de linhas de código que cada abordagem precisou para fazer os

testes foi registrada na Tabela 4.1. A abordagem observer-spy strategy foi a que

menos precisou de linhas para testar a aplicação, já a abordagem que mais precisou

de linhas foi a marble strategy, com quase 100 linhas a mais que a primeira

colocada. A abordagem subscribing strategy, apesar de estar na segunda colocação

na comparação por quantidade de linhas, possui um número próximo ao da primeira

colocada. Essa pequena quantidade de linhas a mais ocorre pois em algumas

situações a subscribing strategy precisa utilizar um vetor para armazenar os dados e

também precisa aplicar uma lógica para se desinscrever dos Observables.
Tabela 4.1 - Abordagem vs Linhas de código do teste

Pokedex Store Global Store Pokedex
Component

TOTAL

subscribing
strategy

137 79 130 346

marble strategy 186 100 138 424

observer-spy
strategy

136 74 120 330

Fonte: Elaborado pelo autor, 2023.
Quanto à finalidade das asserções, as abordagem subscribing strategy e

observer-spy strategy são muito semelhantes, elas utilizam de um ou mais valores

de emissões individuais que um Observable emitiu. Entretanto, a segunda ganha um

pouco de vantagem por possuir métodos que facilitam na obtenção dos valores

dessas emissões.

A marble strategy compara todos os valores emitidos por um Observable de

uma única vez, levando em consideração não só quais valores foram emitidios mas

também quando foram emitidos pois essa abordagem utiliza tempo virtual.

Por apresentar uma comparação mais completa, os testes feitos com marble

strategy ganham a comparação a respeito da finalidade das asserções.

40

5. CONCLUSÃO
Esse trabalho comparou o uso de 3 ferramentas que podem ser utilizadas

para realizar testes unitários em aplicações Angular programadas de forma reativa

utilizando RxJS.

Para alcançar esse objetivo foi desenvolvida uma aplicação web com o

framework Angular, um dos mais populares no mercado. Testes unitários análogos

foram desenvolvidos para esse software para que fosse possível a comparação

entre as ferramentas selecionadas. As métricas utilizadas para fazer essa

comparação foram: cobertura de teste, quantidade de linhas, legibilidade do teste e

finalidade das asserções.

A primeira ferramenta é a própria biblioteca RxJS que através do método

subscribe dos Observables é capaz de ler os dados emitidos por eles e usa-los para

fazer asserções.

A segunda ferramenta é uma API específica para testes disponibilizada pelo

RxJS. Essa API cria e compara todo o fluxo de dados emitidos por Observables a

partir de uma estrutura visual, os diagramas de marble.

A terceira ferramenta é uma biblioteca (observer-spy) criada

especificamente para testar código feito com a biblioteca RxJS.

Apesar dos testes feitos com o diagrama de marble possuírem uma asserção

mais completa, esse poder vem com um custo muito alto pois aumenta a

complexidade dos testes, diminui drasticamente a legibilidade dos testes e

necessitam de uma quantidade muito maior de código do que as outras duas

abordagens por ser mais verbosa. Embora essa ferramenta possa ser útil em

cenários complexos onde seja necessário comparar fluxos de dados inteiros, é

importante lembrar que apenas desenvolvedores experientes com ela vão ser

capazes de desenvolver ou mesmo entender tais testes, sendo preferível quebrar

cenários complexos em múltiplos cenários mais simples sempre que possível.

Apesar da primeira abordagem, que utiliza a própria biblioteca do RxJS, ser

mais legível e necessitar menos código que a ferramenta baseada em diagramas de

marble ela perde em todos os critérios para o uso da biblioteca observer-spy,

além de poder causar problemas de vazamento de memória por exigir que o

desenvolvedor cancele as inscrições manualmente.

41

A biblioteca observer-spy se provou como sendo a melhor solução para

testar esse tipo de aplicação. Ela é mais legível, necessita de menos códigos e

verificações, apesar de menos completa que a abordagem marble é suficiente para

a grande maioria dos cenários. Além disso, a própria biblioteca é capaz de gerenciar

o cancelamento das inscrições dos Observables de forma automática, exigindo

apenas uma configuração que é feita uma única vez durante a vida do projeto.

5.1 Trabalhos futuros

Durante o desenvolvimento desse trabalho o time do Angular abriu uma RFC

para adotar o Signals [31], solução existente no SolidJS como uma nova primitiva

para reatividade do Angular [32]. Ainda que esteja planejado a interoperabilidade

dos Signals com o RxJS, essa nova solução deve substituir o uso do RxJS em

cenários mais simples quando criando aplicações Angular com o paradigma de

programação reativa, fazendo com que o poder e complexidade do RxJS sejam

necessárias apenas para funcionalidades mais complexas.

Como sugestão para trabalhos futuros, esse trabalho recomenda a exploração

de como a adoção dos Signals devem impactar o desenvolvimento e teste de

aplicações Angular com o paradigma reativo.

42

REFERÊNCIAS BIBLIOGRÁFICAS
[1] Noleto, Cairo. Aplicações web: entenda o que são e como funcionam. Blog

da Trybe, 2022. Disponível em:

<https://blog.betrybe.com/desenvolvimento-web/aplicacoes-web>. Acesso em:

01/04/2023.

[2] NETO, Arilo; CLAUDIO, Dias. Introdução a teste de software. Engenharia

de Software Magazine, v. 1, p. 22, 2007.

[3] Pittet, Sten. The different types of software testing. Atlassian. Disponível
em:

<https://www.atlassian.com/continuous-delivery/software-testing/types-of-software-te

sting>. Acesso em: 01/04/2023.

[4] Reactive programming. Wikipedia. Disponível em

<https://en.wikipedia.org/wiki/Reactive_programming>. Acesso em: 01/04/2023.

[5] Escoffier, Clement. 5 Things to Know About Reactive Programming. Red
Hat Developer, 2017. Disponível em:

<https://developers.redhat.com/blog/2017/06/30/5-things-to-know-about-reactive-pro

gramming>. Acesso em: 01/04/2023.

[6] What is Angular? Angular. Disponível em:

<https://angular.io/guide/what-is-angular>. Acesso em: 01/04/2023.

[7] FRONT-END FRAMEWORKS. State of JS, 2022. Disponível em:

<https://2022.stateofjs.com/en-US/libraries/front-end-frameworks/>. Acesso em:

01/04/2023.

[8] Introduction. RxJS. Disponível em: <https://rxjs.dev/guide/overview>.

Acesso em: 02/04/2023.

[9] Morony, Joshua. The easier way to code Angular apps. Youtube, 2023.
Disponível em <https://www.youtube.com/watch?v=skOTEbGwncE>. Acesso em:

02/04/2023.

[10] Pearson, Mike. 5 reasons to avoid imperative code. DEV, 2022.

Disponível em:

<https://dev.to/this-is-learning/5-reasons-to-avoid-imperative-code-e09> . Acesso em:

15/04/2023.

[11] Ferreira, Pamella. Estudo comparativo entre ferramentas de teste para

React. Orientador: Leopoldo Motta Teixeira. 2021. 46 f. TCC (Graduaçã) - Ciência da

43

https://blog.betrybe.com/desenvolvimento-web/aplicacoes-web
https://www.atlassian.com/continuous-delivery/software-testing/types-of-software-testing
https://www.atlassian.com/continuous-delivery/software-testing/types-of-software-testing
https://en.wikipedia.org/wiki/Reactive_programming
https://developers.redhat.com/blog/2017/06/30/5-things-to-know-about-reactive-programming
https://developers.redhat.com/blog/2017/06/30/5-things-to-know-about-reactive-programming
https://angular.io/guide/what-is-angular
https://2022.stateofjs.com/en-US/libraries/front-end-frameworks/
https://rxjs.dev/guide/overview
https://www.youtube.com/watch?v=skOTEbGwncE

Computação, Centro de Informática, Universidade Federal de Pernambuco, Recife.

2021.

[12] Testing RxJS Code with Marble Diagrams. RxJS. Disponível em:

<https://rxjs.dev/guide/testing/marble-testing>. Acesso em: 02/04/2023.

[13] @hirez_io/observer-spy. GitHub. Disponível em:

<https://github.com/hirezio/observer-spy>. Acesso em: 02/04/2023.

[14] Angular components overview. Angular. Disponível em:

<https://angular.io/guide/component-overview>. Acesso em: 08/04/2023.

[15] Creating an injectable service. Angular. Disponível em:

<https://angular.io/guide/creating-injectable-service>. Acesso em: 08/04/2023.

[16] CLI Overview and Command Reference. Angular. Disponível em:

<https://angular.io/cli>. Acesso em: 08/04/2023.

[17] Basics of testing components. Angular. Disponível em:

<https://angular.io/guide/testing-components-basics>. Acesso em: 09/04/2023.

[18] Testing services. Angular. Disponível em:

<https://angular.io/guide/testing-services>. Acesso em: 09/04/2023.

[19] What is a Test Runner. BrowserStack. Disponível em:

<https://www.browserstack.com/guide/what-is-test-runner>. Acesso em: 08/04/2023.

[20] Testing. Angular. Disponível em: <https://angular.io/guide/testing>.

Acesso em: 08/04/2023.

[21] Imperative programming. Wikipedia. Disponível em:

<https://en.wikipedia.org/wiki/Imperative_programming>.Acesso em: 08/04/2023.

[22] Declarative Programming. Wikipedia. Disponível em:

<https://en.wikipedia.org/wiki/Declarative_programming>. Acesso em: 08/04/2023.

[23] What is NgRx? NgRx. Disponível em: <https://ngrx.io/docs>. Acesso em:

08/04/2023.

[24] Fat, Nina; Vujovic, Marijana; Papp, Istvan; Novak, Sebastian.

"Comparison of AngularJS framework testing tools." 2016 Zooming Innovation in

Consumer Electronics International Conference (ZINC). IEEE, 2016. Disponível em:

<https://ieeexplore.ieee.org/document/7513659>. Acesso em: 09/04/2023.

[25] API v2. PokeAPI. Disponível em: <https://pokeapi.co/docs/v2>. Acesso
em: 15/04/2023.

[26] Figueirôa, André. Pokedex TCC Backend. Github, 2023. Disponível em:
<https://github.com/FigueiroaAndre/pokedex-tcc-backend>. Acesso em: 15/04/2023.

44

https://rxjs.dev/guide/testing/marble-testing
https://github.com/hirezio/observer-spy
https://angular.io/guide/component-overview
https://angular.io/guide/creating-injectable-service
https://angular.io/cli
https://angular.io/guide/testing-components-basics
https://angular.io/guide/testing-services
https://www.browserstack.com/guide/what-is-test-runner
https://angular.io/guide/testing
https://en.wikipedia.org/wiki/Declarative_programming
https://ngrx.io/docs
https://github.com/FigueiroaAndre/pokedex-tcc-backend

[27] Figueirôa, André. PokedexTcc. Github, 2023. Disponível em:

<https://github.com/FigueiroaAndre/pokedex-tcc>. Acesso em: 15/04/2023.

[28] Material Design components for Angular. Angular Material. Disponível
em: <https://material.angular.io/>. Acesso em: 15/04/2023.

[29] Testing HTTP requests. Angular. Disponível em:

<https://angular.io/guide/http#testing-http-requests>. Acesso em: 16/04/2023.

[30] Noções básicas de teste de unidade. Microsoft, 2022. Disponível em:
<https://learn.microsoft.com/pt-br/visualstudio/test/unit-test-basics?view=vs-2022>.

Acesso em: 16/04/2023.

[31] Introduction/Sinals. SolidJS. Disponível em:

<https://www.solidjs.com/tutorial/introduction_signals>. Acesso em: 17/04/2023.

[32] Rickabaugh, Alex; Scott, Andrew; Hunn, Dylan; Melbourne, Jeremy;

Kozlowski, Pawel. RFC: Angular Signals. Github, 2023. Disponível em:

<https://github.com/angular/angular/discussions/49685>. Acesso em: 17/04/2023.

45

https://github.com/FigueiroaAndre/pokedex-tcc
https://material.angular.io/
https://angular.io/guide/http#testing-http-requests
https://github.com/angular/angular/discussions/49685

