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But I cannot conceive man without thought;

he would be a stone or a brute.
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Resumo

Desde tempos imemoriais, o homem tem aprendido a lidar com a incerteza na busca de dirimir

perdas advindas de fatores imprevisíveis. Várias teorias de probabilidade surgiram na busca de evoluir

nesse aprendizado, sendo a teoria de probabilidade proposta por Kolmogorov a mais utilizada. No

entanto ela deixa de atender a uma serie de situações. Muito tem sido desenvolvido para trabalhar

essas situações nas quais a probabilidade clássica falha como, por exemplo, a capacidade de Choquet,

a teoria da evidência de Dampster-Shafer, probabilidades superiores e inferiores, entre outras. Este

trabalho continua o desenvolvimento do modelo de representação e cálculo da incerteza introduzido em

Campello de Souza (1993), baseado em programação linear, cujos últimos resultados estão em Campello

de Souza (2007). O modelo usa famílias de distribuições de probabilidade para representar e quantificar

a incerteza. Algumas aplicações do modelo na edução do conhecimento de especialistas foram feitas

e um novo indicador para medir a habilidade inferencial dos especialistas foi proposto. O modelo

foi utilizado para trabalhar a inferência estatística quando os dados são escassos, trabalhando-se as

estimativas de médias de distribuições de probabilidade, as quais foram comparadas com o método da

freqüência relativa. O construto Decidabilidade foi usado para medir a associação entre duas variáveis

aleatórias. Foi verificado que tal construto é linearmente correlacionado com a correlação de Pearson.

Palavras-Chave: Famílias de probabilidade, edução, programação matemática, incerteza.
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Abstract

Since immemorial times, man has learned to deal with uncertainty in trying to prevent losses derived

from unexpected factors. Several probability theories were proposed in such a search, KolmogorovŠs

having been the most used. However, it fails to serve a number of situations. A great deal has

been done in order to work out the situations where the classic probability fails, such as the Choquet

capacity, the theory of evidence by Dampster-Shafer, upper and lower probabilities, among others.

This work gives continuity to developing the model of representation and calculation of the uncertainty

based on the linear programming introduced by Campello de Souza (1993), whose latest results are in

Campello de Souza (2007). The model uses probability distribution families to represent and quantify

uncertainty. Some applications of the model in the elicitation of specialistsŠ knowledge have been

made and a new measurement for the specialistsŠ inferential skills has been proposed. The model was

used to work with the statistical inference when data were scarce, working on estimates of averages

of probability distributions, which were compared to the relative frequency method. Decidability was

used to measure the association between two random variables, which was discovered to be linearly

correlated to Pearson’s correlation.

Keywords: Probabilities families, elicitation, mathematical programming, uncertainty.
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1 Introdução

“The most decisive conceptual event of twentieth century physics has been the discovery that the

world is not deterministic”

Ian Hacking

1.1 Introdução

Uma questão que suscita a curiosidade é saber porque uma teoria da chance e da probabilidade

demorou tanto para emergir. Sabe-se que os jogos de azar estiveram presentes em muitas culturas

da antiguidade (talus, etc.) e estas desenvolveram outros ramos da matemática e da ciência em

geral. Barrow (2005) apresenta duas possíveis razões para isso. Uma possibilidade é que os primeiros

aparatos usados em jogos de azar eram assimétricos na sua forma; eles eram usualmente feitos de ossos

de articulações (stochos) — do qual deriva a palavra estocástico, que significa randômico, ou aleatório

— a palavra grega para mirar (apontar)). Isto significa que cada um destes dispositivos era único e não

havia uma teoria geral baseada em resultados igualmente verossímeis como existe para o caso de um

dado usado hoje em dia. A outra possibilidade é que a chance era vista como a maneira pela qual os

deuses falavam e influenciavam o mundo. Isto pode ser visto no Velho Testamento da Bíblia Hebraica

onde a tirada da sorte era usada para determinar-se a vontade divina.

O estudo da incerteza e da sua representação e cálculo é um tema recorrente. Com o passar

dos anos os avanços na área matemática permitiram que a teoria da probabilidade passasse de um

brinquedo de apostadores em um instrumento poderoso de organização, interpretação e aplicação de

informações. Marcos importantes no desenvolvimento dessa área de estudo incluem o trabalho de

Kolmogorov, De Finetti, Fine, Walley, entre outros. Mais recentemente os modelos de probabilidades

imprecisas têm apresentado grandes contribuições nesta área ao ponto de formar sociedades científicas

que reune pessoas interessadas em problemas de incerteza, um exemplo dessas sociedades é o SIPTA

(Society for Imprecise Probability: Theories and Applications) que reuni pesquisadores a cada dois

anos no simpósio ISIPTA (Symposia on Imprecise Probabilities and Their Applications).

1
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1.2 Objetivos

1.2.1 Objetivos Gerais

1. Continuar o desenvolvimento do modelo de representação e cálculo da incerteza introduzido em

Campello de Souza (1993), baseado em programação linear, cujos últimos resultados estão em

Campello de Souza (2007). O modelo envolve a representação da incerteza por meio de família

de distribuições de probabilidade.

1.2.2 Objetivos Específicos

1. Estudar os diversos aspectos da inferência estatística quando se tem poucos dados, e quando se

quer incorporar a opinião de especialistas, mesmo quando vaga.

2. Verificar a reprodutibilidade do modelo baseado no questionário de edução ao fazer estimativas

de médias de distribuições de probabilidade.

3. Elaborar e desenvolver novas formas de expressar a correlação entre variáveis aleatórias.

1.3 Organização do Trabalho

O Trabalho está organizado em seis capítulos, a saber:

Capítulo 2: A incerteza e os Modelos Probabilísticos, aborda a questão da incerteza e da

probabilidade apresentando algumas classificações para a probabilidade. Além disso, discute

alguns dos principais modelos probabilísticos.

Capítulo 3: Método de Edução do Conhecimento A Priori , neste capítulo é feito um estudo

detalhado do modelo de edução de famílias de distribuições de probabilidade baseado em pro-

gramação matemática. São apresentadas varias aplicações deste método em diferentes situações.

Um indicador que mede a habilidade inferencial do especialista é proposto.

Capítulo 4: Edução, fez-se um apanhado histórico das pesquisas que culminaram na elaboração do

modelo de famílias de distribuição de probabilidade. Além disso, uma revisão de outros métodos

de edução utilizados na literatura.

2
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Capítulo 5: O Uso do Modelo de Programação Matemática na Inferência Estatística,

apresenta-se uma nova forma de representar a relação entre duas variáveis. Foi feito um estudo

para avaliar a convergência do modelo.

Capítulo 6: Conclusões, Comentários e Sugestões, aqui estão resumidas as conclusões sobre o

estudo do modelo de famílias de distribuições de probabilidade.
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2 A Incerteza e os Modelos

Probabilísticos

“The problem with conventions is that we may lose sight of their arbitrary origin.”

Terrence Fine

2.1 Introdução

Como afirma Campello de Souza (2007): “A incerteza é a marca indelével do universo.” Desde

tempos imemoriais, o homem tem aprendido a lidar com a incerteza na busca de dirimir perdas ad-

vindas de fatores imprevisíveis e conseguir algum tipo de vantagem em disputas. O texto de William

Shakespeare a seguir é uma demonstração que a preocupação em lidar com a incerteza é algo antigo.

“Eu agradeço a minha sorte por isso, meus empreendimentos não estão confiados a um

só navio, nem num único lugar; nem está o total das minhas propriedades na sorte do

presente ano: portanto meu comércio não me faz triste.”1

Se quiser ir um pouco mais trás no tempo, no ano de 49 a.C. tem a famosa frase de Julio César,

dita ao atravessar o rio Rubicão dando início a guerra que culminou com seu triunfo sobre as tropas

de Pompeu.

“A sorte está lançada.”

No entanto há relatos bem mais antigos. Cerca de 3500 a.C jogos de azar eram praticados no Egito

utilizando um objeto feito do osso do calcanhar de alguns animais. Este que pode ser considerado o

predecessor do dado era denominado de astragalus ou talus.

2.2 Conceitos e teorias de probabilidade

No chamado mundo prático, a vasta maioria dos raciocínios e sistemáticas de abordagem

envolvem premissas e conclusões que são incertas. Isto gera, de um lado, a questão de

1Shakespeare. O mercador de Veneza. Ato 1, cena 1.
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enunciação e interpretação do conceito de probabilidade e, do outro lado, o problema da

construção de modelos matemáticos que levem isso em consideração.

Existem muitos modelos matemáticos para a incerteza, e a qualquer um desses mo-

delos podem ser dadas várias interpretações do conceito de probabilidade. Além disso,

pode-se associar diversos modelos matemáticos a qualquer interpretação de probabilidade.

Desta forma, faz-se necessário uma compreensão clara e precisa deste conceito para que

se possa aplicar conscientemente as diversas teorias com suas extensões e aproximações.

(Campello de Souza, 2007c)

2.2.1 Definição Clássica da Probabilidade

A definição clássica de probabilidade esta baseada na razão de casos favoráveis da ocorrência do

evento de interesse pelo total de possíveis eventos, supondo que todos os eventos são igualmente possí-

veis. Esta definição foi dada por Laplace em função dos problemas resolvidos na célebre correspondência

Pascal-Fermat. Sua definição está baseada no conceito de eventos igualmente possíveis. Ou seja, a

probabilidade de que cada resultado ocorra é 1/n em um processo com n possíveis resultados. Por

exemplo, ao se lançar uma moeda não viciada, a probabilidade de cada face da moeda é 1/2, isto é, os

resultados são igualmente possíveis. Vale salientar que este tipo de raciocínio é puramente dedutivo,

não sendo necessário que nenhuma moeda seja lançada para que a probabilidade seja calculada.

Esta abordagem apresenta algumas dificuldades. A primeira é que a noção de eventos “igualmente

possíveis” torna a definição de Laplace circular e exige simetria. Ou seja, assumir que os eventos são

igualmente possíveis é o mesmo que assumir que os eventos têm a mesma probabilidade. Laplace tenta

dirimir essa circularidade usando o princípio da razão insuficiente o qual estabelece que os eventos são

igualmente prováveis se não há razão para que um ocorra ao invés do outro.

A probabilidade clássica esta baseada na contagem ou enumeração dos possíveis resultados, satis-

fazendo uma série de condições necessárias para que o evento ocorra.

2.2.2 Definição Frequentista da Probabilidade

O primeiro que levantou a questão de como atribuir probabilidade a um evento a partir de amostra

de dados foi Jacob (James) Bernoulli, (Campello de Souza (2006); Stigler (1986); Bernstein (1997)) .

Seus questionamentos estavam relacionados ao fato de ser conhecida a chance de se obter uma das faces
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de um dado em seu lançamento, mas ser desconhecida a probabilidade de que um indivíduo de uma

certa idade seja acometido por uma doença e venha a morrer. O trecho a seguir mostra a preocupação

de Bernoulli com a “impossibilidade” de enumerar todos os possíveis casos, os quais também não são

igualmente possíveis (Campello de Souza, 2006).

“Porém, eu lhes pergunto, quem dentre os mortais será um dia capaz de definir como

sendo tantos casos, o número, por exemplo, das doenças que invadem as incontáveis partes

do corpo humano em qualquer idade e podem causar nossa morte? . . .Mais uma vez, quem

tem conhecimento suficiente da mente humana ou da admirável estrutura do nosso corpo de

forma a poder, em jogos, dependendo da agudeza da mente ou agilidade do corpo, enumerar

casos em que um ou outro dos participantes irá vencer? . . . Contudo existe uma outra forma

de obter o que queremos. E o que é impossível de ser obtido a priori pode, ao menos, ser

encontrado a posteriori; ou seja pelo registrar dos resultados das observações efetuadas um

grande número de vezes.”

A lei dos grandes números (expressão cunhada por Poisson) funciona bem quando n → ∞. Como

disse Keynes, entretanto,

“In the long run all we will be dead.2”

Independentemente da questão conceitual e filosófica, existe a questão prática que emerge em muitas

situações onde dispõe-se apenas de um número pequeno de observações. Abre-se espaço então para

modelos mais realistas da incerteza.

2.2.3 Definição Subjetiva da Probabilidade

A abordagem subjetiva é de fundamental importância nas situações onde se dispõe de poucos dados

ou mesmo nenhum dado está disponível e desta forma não faz sentido falar em frequência relativa. Por

exemplo, pode-se querer responder questões tais como: Qual a probabilidade de que a situação da

economia no país esteja melhor ao final do próximo ano? Ou deseja-se estimar a probabilidade da

ocorrência de eventos raros tais como os acidentes com os aviões da Gol e da TAM, o desabamento

no metrô de São Paulo. Sendo assim, em situações onde a abordagem freqüentista não faz sentido,
2No longo prazo todos estaremos mortos.
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o conhecimento a priori que um especialista tem a respeito da variável em questão não pode ser

desprezado.

O conhecimento do especialista é expresso em termos de distribuições de probabilidade a priori,

também chamada de probabilidade subjetiva e reflete o grau de crença que o especialista tem na

ocorrência do evento em estudo. Alguns autores, por exemplo Jaynes (1968), chamam este conheci-

mento a priori de informação inicial e utilizam π(θ|I) para caracterizar que tal distribuição depende

da informação inicial (I) que o especialista possui. Um dos pontos mais delicados e controversos da

inferência bayesiana é a determinação e a interpretação da distribuição a priori, sendo considerada um

dos principais obstáculos a sua implementação (Paulino et. al. (2003)).

2.2.4 Definição Axiomática da Probabilidade

A partir dos anos de 1930 a teoria da probabilidade tornou-se uma parte autônoma da matemática.

Os desenvolvimentos que se deram nesta área nas ultimas décadas deve-se ao desenvolvimento da teoria

axiomática de Kolmogorov de 1933. Depois do trabalho de Kolmogorov a probabilidade passa a ser

tudo que satisfaz aos axiomas. A abordagem de Kolmogorov para probabilidade consiste de um espaço

de probabilidade (Ω,A, P ), tendo como componentes:

• Um espaço amostral Ω;

• Uma σ−álgebra A de subconjuntos de Ω;

• E uma medida de probabilidade P .

O espaço amostral Ω é composto por elementos ω denominados de eventos elementares. Na teoria

de Kolmogorov Ω é formado por todos os possíveis resultados ω de um experimento ou observação.

Considere um espaço amostral Ω não vazio. Uma classe A de subconjuntos de Ω é dita uma álgebra

se contém Ω e é fechada sobre a formação de complemento e união finita. Ou seja A satisfaz às seguintes

propriedades:

1. Ω ∈ A;

2. A ∈ A, então Ac ∈ A;

3. A,B ∈ A, então A ∪ B ∈ A
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Uma classe A de subconjuntos de Ω é uma σ−álgebra se é uma álgebra e é fechada sobre a formação

de união enumerável. Ou seja:

4. A1, A2, · · · ∈ A, então A1 ∪ A2 ∪ · · · ∈ A

A medida de probabilidade P é um conjunto de funções de A no intervalo [0, 1], P : A → [0, 1]

satisfazendo os seguintes axiomas:

Axioma 2.2.1 P (Ω) = 1, P (∅) = 0;

Axioma 2.2.2 ∀ A ∈ A, 0 ≤ P (A) ≤ 1;

Axioma 2.2.3 Se Ai ∈ A,∀i, e Ai ∩ Aj = ∅ para todo i 
= j, então:

P

(
∞⋃
i=0

Ai

)
=

∞∑
i=0

P (Ai).

Mais detalhes sobre a probabilidade clássica podem ser encontrados em Billingsley (1995), Fine

(1973) e Campello de Souza (2006)

A formulação de Kolmogorov presume que o “experimentador” pode unicamente (sem repetição) e

exaustivamente (sem omissão) indexar ou listar todos os resultados do seu experimento com o nível

de detalhe suficiente para seu interesse. O que presume também, que os resultados do experimento

podem ser determinados com certeza. A habilidade para indexar unicamente os resultados pode não

ser um trabalho trivial (por exemplo faz necessário o uso de um teorema não trivial para verificar

que dois “labels” indexam o mesmo objeto). Uma lista exaustiva de resultados pode ser difícil de se

obter em situações de grande incerteza; essa é uma das críticas encontradas em Fine (1973) . Ainda

de acordo com Fine (1973) outro ponto negativo é que ao se usar uma álgebra, A, para a coleção de

eventos aleatórios tem-se que garantir que a mesma contém todos os eventos de interesse. Desta forma

tem-se que ter dados sobre a ocorrência destes eventos na álgebra e além disso atribuir probabilidade

aos mesmos.

Uma vez que estas condições especiais podem deixar de ser atendidas, os conceitos e definições

da probabilidade clássica tornam-se insuficiente para modelar todas as situações onde a incerteza

encontra-se presente.
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2.3 A dualidade da probabilidade

A distinção básica entre os conceitos de probabilidade é a existente entre os conceitos de probabi-

lidade aleatória e epistêmica como apresentado em Hald (1990) e Walley (1996), onde tem-se:

• Probabilidade Aleatória – modelam o acaso em fenômenos empíricos. Como por exemplo, a

chance de um indivíduo ter um acidente cardiovascular em uma determinada idade. As pro-

babilidades aleatórias são divididas em: Probabilidades Clássicas (casos favoráveis sobre casos

possíveis) e Probabilidades Frequentistas (está relacionada com a estabilidade de frequências

relativas).

• Probabilidades Epistêmicas – Descrevem os graus de crença parcial lógicos ou psicológicos de

uma pessoa ou sistema intencional. Estas probabilidades refletem o conhecimento imperfeito e

indireto que seres humanos possuem sobre as coisas e eventos sob observação. Por exemplo, o

médico acredita que é provável que o indvíduo venha a ter um acidente cardiovascular em uma

determinada idade dada as evidencias sobre esse indivíduo.

Essa dualidade, segundo Hacking (2006), emergiu nos anos 1660. O mesmo autor defende que a

probabilidade tem a face do deus Janus, por um lado, ela é estatística e diz respeito as leis estocásticas

de processos que envolvem chance; tem a ver com as coisas. Por outro lado, ela é epistemológica e trata

da avaliação de graus razoáveis de crenças em situações em que não se tem um histórico estatístico; as

probabilidades têm sede na mente. Entre outros, pode-se citar os trabalhos de Pascal como exemplo

desta dualidade. Em suas correspondências com Fermat, as quais tratavam o problema da divisão

das apostas de um jogo de azar que por algum motivo foi interrompido, a abordagem utilizada era

inteiramente aleatória. No entanto, os argumentos utilizados na famosa aposta de Pascal sobre a crença

na existência de Deus são de natureza epistêmica.

De acordo com o exposto em Walley (1996) a probabilidade epistêmica pode ter três tipos de

interpretação dependendo das evidências que estão sendo avaliadas.

• Lógica – a probabilidade de uma hipótese relativa a um corpo de evidência é determinada de modo

único sendo a mesma a relação entre duas proporções. Em outras palavras, a probabilidade mede

quanto uma evidência implica na ocorrência de uma dada hipótese. Esta escola de pensamento

foi desenvolvida por Harold Jeffreys e J. M. Keynes.
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• Personalista – a probabilidade mede a “confiança” que um indivíduo tem na veracidade de uma

determinada proposição, por exemplo, a proposição que irá chover amanhã. Estas probabilidades

são limitadas apenas por axiomas de coerência e não pela evidência, a probabilidade neste caso é

um problema do julgamento pessoal. Este tipo de interpretação foi introduzido por F. P. Ramsey

e B. de Finetti.

• Racionalista – é uma condição intermediária entre os conceitos lógicos e personalistas, dessa

forma requer que as probabilidades sejam consistentes de certa maneira com as evidências, sem

exigir que elas sejam unívocamente determinadas.

Ainda no conceito epistêmico, pode-se distinguir também:

• Interpretações Comportamentais – são interpretadas primeiramente em termos de comporta-

mento, como por exemplo atitudes de aposta ou escolha de ações;

• Interpretações Evidenciais – a probabilidade de uma hipótese mede a relação lógica ou linguística

entre a hipótese e a evidência.

A interpretação personalista tende a ser comportamental quando as interpretações lógicas são

usualmente evidencias.

A distinção sobre a definição de probabilidade epistêmica é facilmente confundida com a idéia de

medida. De uma forma geral pode-se medir ou aprender sobre probabilidade de formas distintas:

• Observação de quantidades que ela influencia;

• Construção proveniente do conhecimento dos fatos que as influenciam.

Desta forma as probabilidades epistêmicas podem ser medidas por meio da observação dos processos

de escolha e afirmativas em um processo de edução ou por meio de avaliação das evidências disponíveis

num processo de avaliação. As teorias comportamentais ou personalista enfatizam a edução como fonte

de probabilidade. Já para as teorias lógicas ou evidênciais a ênfase está na avaliação como fonte de

probabilidade.

Do ponto de vista frequentista, a probabilidade está baseada na regularidade estatística das freqüên-

cias relativas, que envolvem uma longa sequência de repetições da mesma situação. Por exemplo, ao se

afirmar que a probabilidade de sair a face 1 no lançamento de um dado não viesado é 1/6 significa dizer
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que ao se lançar o dado um grande número de vezes, a face 1 vai aparecer aproximadamente 1/6 das

vezes. Em outras palavras, a frequência relativa da ocorrência da face 1 converge com probabilidade 1

a medida que o número de jogadas aumenta.

2.4 Alguns Resumos das Teorias de Probabilidade

2.4.1 A Contribuição de Bayes

Bayes, em seu trabalho An essay towards solving a problem in the doctrine of chances, apresenta

a primeira solução para o problema da probabilidade inversa, que consiste em a partir de eventos

observados fazer afirmações probabilísticas sobre as causas. O problema que Bayes resolveu tinha o

seguinte enunciado:

Um evento M ocorreu (sob as mesmas circunstâncias) p vezes e falhou em ocorrer q

vezes. Como se pode estimar a probabilidade de ocorrência deste evento?

Bayes imaginou uma mesa representada pelo retângulo ABCD (veja Figura 2.1 a seguir) e duas

bolas W e O. A bola W é rolada ao longo da mesa de tal forma que ela possa parar em qualquer

ponto da mesa com a mesma probabilidade. Em seguida a bola O é rolada n vezes sobre a mesa da

mesma forma que W foi lançada. A quantidade de vezes que a bola O parar do lado direito da bola

W é contado. Este número é a quantidade de vezes que um evento desconhecido ocorre. A falha, que

significa o número de vezes que o evento não acontece, ocorrerá sempre que a bola O parar à esquerda

de W .

A posição em que W para determina θ e o número de vezes que a bola O para do lado direito de

W será X. Para representar o ponto desconhecido onde a bola W irá parar Bayes usou uma linha os

paralela aos lados BC e AD. O θ será então a razão:

θ =
Ao

AB
1 − θ =

oB

AB

O X (a observação) será então o número de vezes que a bola O parar no retângulo osDA, esse

evento Bayes chamou de M .
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Bayes calculou a probabilidade conjunta de que θ caia entre b e f e M ocorra p vezes. Na notação

moderna (ver detalhes em (Stigler, 1986; Campello de Souza, 2006)),

P (b < θ < f ∩ X = p) =

∫ f

b

(
n

p

)
θp(1 − θ)n−pdθ

Fazendo b = 0 e f = 1 ele obteve

P (X = p) =

∫ 1

0

(
n

p

)
θp(1 − θ)n−pdθ,

mais tarde calculada como sendo 1/(n + 1). Calculou também

P (b < θ < f | X = p) =
P (b < θ < f ∩ X = p)

P (X = p)
=

∫ f

b

(
n

p

)
θp(1 − θ)n−pdθ∫ 1

o

(
n

p

)
θp(1 − θ)n−pdθ

.

Figura 2.1: Mesa de Bilhar.
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A idéia principal de Bayes é a de que existe uma probabilidade a priori da ocorrência de um

evento (θ) e por meio de observações (X) sobre a sua ocorrência é possível fazer estimativas sobre a

probabilidade do evento, mais detalhes podem ser encontrados em (Molina, 1931)(Campello de Souza,

2006) e (Stigler, 1986).

2.4.2 A Teoria de Bruno De Finetti

De Finetti inicia seu livro com a seguinte frase

Probabilidade não existe.

Para ele não há necessidade de assumir que a probabilidade de um certo evento tem um único

valor determinado (como considera a abordagem clássica e frequentista). Sua visão da probabilidade é

que a mesma seria um grau de crença subjetivo que um indivíduo tenha na ocorrência de um evento.

Existem quatro axiomas para a probabilidade qualitativa de De Finetti.

Dados os eventos A1, A2, A3, tem-se:

• Por A1 � A2 , que lê-se como “o evento A1 é pelo menos tão provável quanto o evento A2”.

• Se A1 � A2 e A2 � A1, A1 e A2 são definidos como identicamente prováveis, A1
∼= A2.

• Se A1 � A2 mas não A2 � A1, A1 é mais provável do que A2, A1 
 A2.

• Por A1 + A2 denota-se o evento composto A1ouA2

Axioma 2.4.1 A1 � A2 ou A2 � A1 para qualquer dois eventos.

Axioma 2.4.2 A1 
 A3 
 A2 se A1 é certo, A2 é impossível e A3 é nenhum desses.

Axioma 2.4.3 � é transitiva: A1 � A2 e A2 � A3 então A1 � A3

Axioma 2.4.4 Se A1 e A2 são ambos incompatíveis com A3, A1 + A3 � A2 + A3 se e somente se

A1 � A2. Especificamente, se A1
∼= A2, A1 + A3

∼= A2 + A3.

Uma referência importante é Plato (1998), onde é feito um estudo detalhado dessa teoria.
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2.4.3 Probabilidades Superiores e Inferiores Induzidas por um Mapeamento Mul-

tívoco

O trabalho de Dampster de 1967 apresenta os conceitos de probabilidades superior e inferior indu-

zidas por um mapeamento multivalorado.

Considere-se um espaço de medida (X,F, μ) e uma função multivalorada (ponto-conjunto) definida

por:

Γ : X
x
−→
�−→

S
Γx⊂S

Caso de uma função unívoca:

Γ : X
x
−→
�−→

S
Γx=s

Se Γ fosse univalorada ela induziria a partir de μ uma medida nos subconjuntos de S.

Γx

x

X S
Γ

Figura 2.2: Função Multivalorada.

Fazendo o paralelo com a estatística clássica é como se o conjunto X fosse a observação e o conjunto

S contivesse o parâmetro de interesse. O que se deseja é a partir de observações em X calcular a

probabilidade de um evento em S.

Definição de Probabilidade Superior e Inferior

Seja T um subconjunto de S. Então conjuntos superiores e inferiores gerados por esse mapeamento

multívoco, Γ, são definidos para todo T contido em S por:

T ∗ = {x ∈ X | Γx ∩ T 
= ∅} (2.4.1)

T∗ = {x ∈ X | Γx 
= ∅, Γx ⊂ T} (2.4.2)
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As figuras 2.3 e 2.4 são uma representação gráfica das expressões 2.4.1 e 2.4.2 e servem para tornar

mais claro tais expressões.

T

Γx1

Γx2T ∗

x2

x1

X S
Γ

Γ

Figura 2.3: Conjunto dos T ∗

T
Γx1T∗

x1

X S
Γ

Figura 2.4: Conjunto dos T∗

Sendo assim, T∗ é o conjunto dos x ∈ X tais que Γx esta totalmente contido em T . Fazendo um

paralelo com um um feixe de luz é como se cada ponto em T∗ iluminasse todo o conjunto T por dentro.

Já o conjunto T ∗ não apenas ilumina o que esta dentro do conjunto T mas também ilumina parte que

esta fora do conjunto, o que permite conhecer bem a fronteira do conjunto T . Desta forma, é fácil

concluir que T ∗ ⊂ T∗ que leva a definição de probabilidade superior e inferior.

Em particular, S∗ = S∗ = domínio de Γ. Em que S∗ é o conjunto dos x ∈ X tais que Γx ∩ S 
= ∅ e

S∗ é o conjunto dos x ∈ X tais que Γx ⊂ S.

Define-se ξ como sendo ξ = {T ⊂ S | T ∗, T∗ ∈ F }.

Suponha que S ∈ ξ

P ∗(T ) =
μ(T ∗)

μ(S∗)
; P∗(T ) =

μ(T∗)

μ(S∗)
(μ(S∗) 
= 0)

Como T ∗ consiste daqueles x ∈ X os quais podem corresponder, possivelmente, sob Γ, a um s ∈ T ,

pode-se encarar naturalmente μ(T ∗) como sendo a maior quantidade possível de probabilidade da

medida μ que pode ser transferida para resultados s ∈ T .
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Similarmente, T∗ consiste daqueles x ∈ X que necessariamente levarão a um s ∈ T , de forma que

μ(T∗) representa a mínima quantidade de probabilidade que pode ser transferida para resultados s ∈ T .

O denominador μ(S∗) é um fator de renormalização necessário pelo fato de que o modelo permite,

em geral, resultados em X que não mapeiam em algum subconjunto de S que faça sentido. O sub-

conjunto ofensor {x ∈ X | Γx = ∅} deve ser removido de X e a medida do conjunto remanescente S∗

renormalizada para a unidade.

Na probabilidade clássica o que se faz é particionar o espaço amostral de tal forma que exista uma

partição ótima, no sentido de que seja possível fazer uma melhor avaliação da probabilidade dos eventos

(θ) a partir da observações e a conectividade entre o conjunto de observações e o conjunto de eventos

é feito pela função de verossimilhança, P (x|θ). No caso de Dampster, ele também deseja saber como

conjuntos em X podem informar sobre eventos em S que são representados por T . O mapeamento é

feito ponto a conjunto que vão formar conjuntos superiores e inferiores de probabilidade que modelam

de forma mais realista os fenômenos tanto quando as observações são escassas bem como quando as

mesma são conflitantes. Amplia-se assim os conceitos da estatística clássica e Γx se comporta como

uma função de verossimilhança.

Caso Finito

S = {s1, s2, ..., sm}

Sδ1δ2...δm
contém si se δi = 1 e exclui si se δi = 0, para i = 1, 2, ..., m.

Os 2m subconjuntos de S assim definidos são os possíveis Γx e eles determinam uma partição de

X em:

X = ∪δ1δ2...δm
Xδ1δ2 ...δm

onde

Xδ1δ2...δm
= {x ∈ X | Γx = Sδ1δ2...δm

}.

Para todo T ⊂ S os subconjuntos T ∗ e T∗ são uniões de subconjuntos da forma Xδ1δ2...δm
e portanto

P ∗(T ) e P∗(T ) são univocamente determinadas pelas 2m quantidades

pδ1δ2...δm
= μ(Xδ1δ2...δm

)

16
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Supõe-se, é claro, que cada Xδ1δ2...δm
está em F. Note que qualquer conjunto de 2m números não

negativos pδ1δ2...δm
cuja soma é um determina um possível conjunto de probabilidades superiores e

inferiores para todo T ⊂ S = {s1, s2, ..., sm}.

O exemplo a seguir encontra-se no trabalho de Dampster(1967).

Exemplo para m = 3

Neste caso

S = {s1, s2, s3}

ξ = {∅, S, {s1}, {s2}, {s3}, {s1, s2}, {s1, s3}, {s2, s3}}

Então, se T = S110 = {s1, s2}, por exemplo, ter-se-á:

T ∗ = X100 ∪ X010 ∪ X110 ∪ X101 ∪ X011 ∪ X111

T∗ = X100 ∪ X010 ∪ X110

e portanto

μ(T ∗) = p100 + p010 + p110 + p101 + p011 + p111

μ(T∗) = p100 + p010 + p110.

Tem-se também μ(S∗) = 1 − p000 e pode-se então calcular as probabilidades superiores e inferiores.

Outras Definições

Dempster(1967) apresentou outras definições, tais como: variate, que representa uma função de

valores reais definida em S. Para qualquer variate V tem-se uma função de distribuição superior F ∗(v)

e inferior F∗(v) definida por

F ∗(v) = P ∗(V ≤ v), para −∞ < v < ∞

F∗(v) = P∗(V ≤ v), para −∞ < v < ∞
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O correspondente valores esperados superior e inferior de V são definidos pelas expressões a seguir:

E∗(V ) =

∫ ∞

−∞
vdF∗(v)

E∗(V ) =

∫ ∞

−∞
vdF ∗(v)

A Classe de Medidas Compatíveis sobre S

C = {medidas P | P∗(T ) ≤ P (T ) ≤ P ∗(T )},∀T ∈ ξ

2.4.4 Probabilidade Superior e Inferior

A probabilidade superior e inferior está baseada no par (P , P ) de conjunto de funções tomando

valores no intervalo unitário [0, 1], onde P e P representam as probabilidades inferiores e superiores,

respectivamente (Fine, 1987; Walley & Fine, 1982). Considere, um espaço amostral Ω e uma álgebra

de eventos A de subconjuntos de Ω, sendo assim tem-se:

P : A −→ [0,1]

P : A −→ [0,1]

As probabilidades superiores e inferiores atendem os axiomas a seguir:

1. P (A) + P (Ac) = 1;

2. P (Ω) = 1;

3. P (A) ≥ 0;

4. Se A e B são eventos disjuntos então P (A ∩ B) ≥ P (A) + P (B);

5. Se A e B são eventos disjuntos então P (A ∪ B) ≤ P (A) + P (B);

2.4.5 Teoria Matemática da Evidência

A teoria da evidência de Shafer(1976) permite combinar as evidências provenientes de fontes dis-

tintas sem que seja necessário um conhecimento a priori de suas distribuições de probabilidade. Além
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disso, permite que se possa atribuir valores de probabilidade a conjuntos de possibilidades ao invés de

apenas a eventos simples. Utiliza, para tanto, a função de massa, m, definida da seguinte forma:

m : 2Θ → [0, 1]

m(∅) = 0

∑
A∈Θ

m(A) = 1

Suponha Θ um conjunto finito e denote por 2Θ o conjunto de todos os subconjuntos de Θ. A

função crença mede o quanto as informações fornecidas por uma fonte sustentam um dado elemento

A pertencente a família de subconjuntos de Θ.

Suponha que a função Bel: 2Θ → [0, 1] satisfaz às seguintes condições:

(1) Bel(∅) = 0;

(2) Bel(Θ) = 1;

(3) Para todo inteiro positivo n e toda coleção A1, A2, ..., An de subconjuntos de Θ,

Bel(A1 ∪ A2 ∪ ... ∪ An) ≥

≥
∑

i

Bel(Ai) −
∑
i<j

Bel(Ai ∩ Aj) + − · · · +

+ · · · (−1)n+1Bel(A1 ∩ ... ∩ An)

Então a função Bel é chamada de função crença sobre Θ.

Além disso,

m(A) =
∑
B⊂A

(−1)|A−B|Bel(B)

para todo A ⊂ Θ.

A regra de combinação de Dampster (Shafer, 1976) é utilizada para combinar corpos de evidência.
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A regra é composta por uma soma ortogonal e uma normalização (Campos, 2005):

m1 ⊕ m2(A) = X

∑
B∪C=A

A�=∅

m1(B)m2(C), ∀A ⊆ Θ

Onde X é a constante de normalização, definida por:

X =
1

k

e k é igual 1 menos a soma das massas após a operação da multiplicação das interseções:

k = 1 −
∑

Ai∩Bi=∅

m1(Ai)m2(Bj)

A constante de normalização mede a extensão do conflito entre as evidências. O peso do conflito

entre as funções de crença é denotado por

Con(Bel1,Bel2) = log(X)

A Representação da Ignorância: Função Crença Vacuosa

Bel(A) = 0 se A 
= Θ; Bel(A) = 1 se A = Θ

Exemplo: Existe ou não seres vivos orbitando a estrela Sirius? θ1 denota a existência de vida e θ2

denota a não existência de vida. Adota-se a função crença vacuosa em Θ = {θ1, θ2}. Um conjunto

mais refinado de possibilidades seria: Ω = {ζ1, ζ2, ζ3}, onde ζ1 denota a existência de vida, ζ2 denota

a existência de planetas mas não de vida e ζ3 denota a inexistência de planetas.

O conjunto Ω está relacionado ao conjunto Θ, pois ζ1 corresponde a θ1, e {ζ2, ζ3} corresponde a

θ2. A adoção de uma função crença vacuosa em Ω é consistente com a adoção de uma função crença

vacuosa em Θ.

Um bayesiano terá dificuldades em especificar graus de crença consistentes sobre Θ e Ω que ele

possa defender como representação da ignorância, pois, seguindo o paradigma bayesiano ele faria:

Bel({θ1}) = Bel({θ2}) =
1

2
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Bel({ζ1}) = Bel({ζ2}) = Bel({ζ3}) =
1

3
,

o que implicaria em

Bel({ζ1}) =
1

3
e

Bel({ζ2, ζ3}) =
2

3
.

Como {θ1} tem o mesmo significado de {ζ1} e {θ2} tem o mesmo significado de {ζ2, ζ3}, as

atribuições são inconsistentes.

2.4.6 Uma Melhoria na Teoria Matemática da Evidência

Campos (2005), na sua tese de doutorado, verificou alguns inconvenientes na regra de combinação de

Dampster-Shafer (Shafer, 1976) que aparecem quando as evidências que serão combinadas apresentam

um conflito elevado ou quando as mesmas concentram crença em hipóteses disjuntas e possuem uma

hipótese comum que é menos acreditada. Ele propôs uma nova regra de combinação que além de

corrigir este inconveniente incorpora ao resultado a representação da incerteza advinda das hipóteses

conflitantes ou do conhecimento insuficiente. A regra de combinação é a seguinte:

m1Ψm2(A) =

X
∑

B∩C=A
A�=∅

m1(B)m2(C)

1 + log

(
1

k

) ,∀A ⊂ Θ

Introduziu um novo construto (Campos & Campello de Souza, 2005), lateo definido por:

Λ = m1Ψm2(Θ) = (Xm1(Θ)m2(Θ))|m1(Θ)�=0∧m2(Θ)�=0 + 1 −
∑

m1Ψm2(A)

que incorpora à crença inicial a crença adicional, restante do rebaixamento das crenças.

O autor destaca algumas vantagens do Lateo, são elas:

• “A combinação de evidências com a maioria de suas crenças atribuídas a elementos disjuntos,

sem o efeito de produzir um comportamento contra-intuitivo.

• O uso de evidências com altos valores de conflito, tornando úteis evidências que de outra forma

seriam inúteis.
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• Evitar a necessidade de descarte de evidências com alto grau de conflito, o que poderia causar

uma modelagem sub-ótima da evolução das crenças.”

2.5 Probabilidade Imprecisa

Conforme exposto em Walley (1996) e Walley (2002), probabilidade imprecisa é um termo genérico

para representar muitos modelos matemáticos que mensuram chance e incerteza sem utilizar distribui-

ções únicas, como faz a medida de probabilidade de Kolmogorov ou a teoria Bayesiana. Como exemplo

desses modelos de probabilidades imprecisas, tem-se a probabilidade superior e inferior, previsões su-

periores e inferiores, classes de probabilidades aditivas, etc. As probabilidades imprecisas são usadas

especialmente em modelos de ignorância parcial, incompleteza, indeterminância e indecisão.

A intenção ao se introduzir a imprecisão é tornar os modelos probabilísticos mais realistas, mais

robustos e largamente aplicáveis.

Segundo Walley (1996) existem muitos argumentos que dão suporte ao uso da imprecisão, alguns

deles são:

• Quantidade de informação

A imprecisão irá refletir a quantidade de informação na qual a mesma está baseada. Suponha,

por exemplo, que se está interessado em estimar a distribuição de probabilidade com máximo

(πmax) e mínimo (πmin) valor esperado de um evento A de que uma determinada face de um dado

chumbado (viciado) venha a sair num lançamento. Se você não tem nenhuma experiência com

este tipo de situação ou com alguma situação semelhante, a diferença entre suas distribuições

de máximo e mínimo valor esperado tende a ser grande refletindo sua falta de informação com

relação ao problema. No entanto, se você possui alguma informação sobre o fenômeno, seja por

observar vários lançamentos desse dado ou por conhecer os pesos que foram chumbados ao mesmo

e dessa forma ser capaz de estabelecer alguma relação entre a chance de uma determinada face

vir a sair com seu pesos, a diferença entre as probabilidades πmax e πmin tende a diminuir de

acordo com a informação acumulada.

• Completa Ignorância

Um estado de completa ignorância significa uma total falta de informações relevantes sobre o

evento sobre o qual se está querendo fazer inferência. Esta completa ignorância pode ser modelada
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por probabilidades vacuosas, que têm uma imprecisão máxima ou, em termos do modelo proposto

por Campello de Souza (2007) e Nadler Lins (2000), seria um mecanismo inferencial de vagueza

máxima (V = 1).

• Realismo Descritivo

Os modelos de probabilidade imprecisa são capazes de modelar situações de indecisão e indeter-

minação. Como se sabe, as crenças a respeito de determinados problemas são indeterminadas

e, além disso, há muitas situações em que o indivíduo encontra-se indeciso com relação a suas

crenças. A probabilidade imprecisa modela de forma mais realista estes tipos de problema.

• Edução;

• Racionalidade limitada;

• Extensão natural;

• Grupos de crenças e decisões;

• Inferência estatística;

• Robustez;

• Conflito de dados a priori.

2.5.1 Fontes de Imprecisão

Indeterminação

Falta de Informação

Caso haja pouca evidência com respeito a Θ, então as crenças a respeito desse conjunto podem ser

indeterminadas e os modelos de probabilidades imprecisas refletem essa falta de informação. Segundo

Walley (1996) , as crenças a respeito de Θ são indeterminadas quando existe uma falta de preferência

que pode conduzir à indecisão em alguns problemas de decisão.

Conflito de Informação

Podem existir várias fontes de informação a respeito de Θ. Tipicamente, a junção dessas fontes

formará um corpo de informação melhor do que quando se considera cada fonte isoladamente. Porém

isso deixa de acontecer quando existe um conflito entre as fontes de informação.
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Conflito de Crença

Esse tipo de conflito ocorre quando as estimativas de probabilidade obtidas de fontes diferentes são

conflitantes. Um exemplo disto é o conflito entre a opinião de dois especialistas.

Informação de Relevância Limitada

Estimativas de probabilidades de eventos futuros são sempre baseadas em analogias entre estes

eventos e observações passadas. As analogias são sempre parciais, sendo assim as observações têm uma

relevância limitada para os eventos de interesse.

Incompleteza

• Falta de Introspecção;

• Falta de Avaliação Estratégica;

• Limites na habilidade computacional;

• Modelos Não Tratáveis;

• Instabilidade;

• Ambigüidade;

2.6 Uma Taxonomia da Incerteza

Uma classificação de teorias de probabilidade com base em cinco dimensões é apresentado em Fine

(1973), que são:

1) O domínio da aplicação

2) A forma das aplicações probabilísticas

3) As relações entre as afirmações probabilísticas;

4) As informações de entrada e os procedimentos a serem usados na mensuração ou para se chegar

nas primeiras afirmações probabilísticas

5) Os propósitos ou objetivos da teoria

Com base nestas dimensões, Fine (1973) classifica várias teorias de probabilidade que são cuida-

dosamente tratadas em seu trabalho. Um resumo desta classificação pode ser visto na Tabela 2.6 a

seguir:
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3 Edução

Desde pelo menos a época de Arquimedes que métodos aproximados para o cálculo de características

(ou parâmetros) de figuras geométricas e outros construtos matemáticos são usados. Muitas vezes

calcula-se uma cota superior e uma cota inferior para a magnitude procurada. Este processo foi, de

fato, introduzido por Arquimedes de Siracusa1. Este, por exemplo, fez cálculos estimando cotas para

o número π baseando-se em um polígono de 96 lados iguais. Ele estimou que:

3
1

7
< π < 3

10

71
·

Quando não se dispõe de simetrias, o “cálculo das probabilidades” torna-se um desafio. Uma

primeira resposta a este desafio foi dada por James Bernoulli no seu famoso Ars conjecandi, que na

sua Pars quarta expõe a lei dos grandes números (termo cunhado por Poisson, muito mais tarde),

provando-a na sua versão fraca (convergência em probabilidade).

Uma série de outros argumentos e considerações sobre incerteza e probabilidade, tornam o problema

de estimação de probabilidades (em qualquer que seja a versão para a definição do conceito) um

problema em estudo até hoje. Bernoulli dispensa, por assim dizer, a simetria, mas, em contrapartida,

exige que o número de extrações de bolas da sua notória urna contendo bolas brancas e pretas seja

sem limite. Ou seja, quando n tende para o infinito. Ora, no infinito, como disse Keynes, estaremos

todos mortos. Fica-se portanto com as estimativas, e daí as cotas superiores e inferiores.

Coleciona-se a seguir, com o intuito de mostrar a importância, o interesse e as dificuldades, bem

como a evolução da pesquisa, alguns estudos que vêm sendo feitos a respeito da edução da distribuição

a priori de especialistas. Alguns dos documentos consultados são de difícil acesso e por isso parte deles

estão nos anexos deste trabalho.

3.1 A Viabilidade Econômica da Energia Solar

Em 1984/1985, uma pesquisa conjunta de Campello de Souza e Walley (1985) (UFPE e University

of Warwick) introduziu um modelo de probabilidades imprecisas para avaliar a viabilidade econômica

da energia solar. O projeto começou a ser escrito em 1981. Envolveu a edução da distribuição a

1Existe uma versão digital em <http://www.math.ubc.ca/~cass/archimedes/circle.html>. Último acesso em
04/12/2007.
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priori de especialistas (Ministério das Minas e Energia e Companhia Hidrelétrica do São Francisco)

sobre os preços futuros da energia elétrica. Quanto mais altos fossem esses preços (inflação relativa da

energia com respeito à inflação da economia), mais viável seria o uso da energia solar para aquecimento

d’água para fins domésticos, em lugar do chuveiro elétrico. O decisor era o consumidor residencial.

Envolveu também a edução da distribuição a priori de especialistas (engenheiros mecânicos de fábricas

de equipamentos térmicos e fábrica de equipamentos de aquecimento solar (ESSE) sobre o tempo de

vida útil de coletores, reservatórios e controles de equipamentos de aquecimento d’água por energia

solar para fins domésticos. Quanto maior fosse esse tempo, mais viável seria o uso da energia solar.

As primeiras entrevistas com os engenheiros da CHESF, sem questionário, foram feitas pelos citados

pesquisadores. A elaboração e redação das cartas e questionários de edução foram feitas depois, no

primeiro semestre de 1985, por Campello de Souza (vide anexo 6.2). Os documentos em anexo dão uma

idéia da dificuldade dos problemas de mediação cognitiva. As perguntas dos questionários envolviam

sempre algum tipo de desigualdade procurando mostrar ao entrevistado a importância de se poder

acomodar alguma vagueza nas afirmações. Além de não terem uma formação mais consistente em

probabilidade e estatística, os entrevistados eram solicitados a responderem dentro de uma concepção

de vagueza (família de distribuições de probabilidade). As perguntas tiveram então que ser elaboradas

tendo em vista essa dificuldade de mediação cognitiva.

Os resultados das análises destes questionários foram apresentados em Walley e Campello de Souza

(1990). Alguns anos depois, um outro questionário, já baseado no método da programação linear

(como apresentado em Campello de Souza (1993)), foi aplicado ao engenheiro Sergio Rochadel Lima,

da ESSE.2

3.2 Edução de Especialistas da Companhia Hidrelétrica do São Fran-

cisco quanto às Falhas dos Equipamentos

Na sua dissertação de mestrado, Almeida (1985) e Almeida e Campello de Souza (1993) fez a edução

do conhecimento a priori de um especialista em microondas a respeito da taxa de falhas deste tipo de

equipamento
2ESSE — Engenharia de Serviços e Sistemas Energéticos Indústria e Comércio Ltda (SIA — Trecho 6 — no 55 —

Térreo — Fones: (061) 233/5888/1096 — Fax: (061) 233-1450, Telex; 61-4919—Brasília / DGF CEP 71200).
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3.3 Edução de Especialistas da Companhia Hidrelétrica do São Fran-

cisco quanto às Falhas dos Equipamentos

No seu trabalho de conclusão da disciplina Teoria da Decisão, no curso de graduação em Engenharia

Elétrica, Barros de Mello e Silva Jr. (1987) e Cavalcanti Filho e Silva Jr. (1987), fizeram eduções do

conhecimento a priori de especialistas da CHESF, com respeito à taxa de falhas de equipamentos.

(Vide anexo 3).

3.3.1 Questionário de Barros de Mello e Silva Jr.

Os autores usaram o procedimento “FDA (função de distribuição acumulada) partição.” O sis-

tema em questão consistia de 36 (trinta e seis) equipamentos SHF (Super High Frequency) da linha

entre Sobradinho e Paulo Afonso do Sistema Integrado de Telecomunicações (SIT) da CHESF. Os

equipamentos trabalham em tandem. (Vide anexo 3).

3.3.2 Questionário de Cavalcanti Filho e Silva Jr.

Estes autores trataram o problema de estimação do número de falhas como um problema de teoria

da decisão. (Vide anexo 3).

3.4 Distribuição A Priori do Tempo de Tramitação de um Empenho

na Universidade Federal de Pernambuco

Leal Neto (1988), na sua dissertação, usou dois métodos para a edução do conhecimento a priori

de especialistas (“ordenadores de despesa”) sobre o tempo de tramitação de um empenho (documento

contábil que representa uma ordem de pagamento): o método CDF (Cumulative Distribution Function)

e o método do intervalo fixo. O método CDF consiste em ter o especialista que especificar alguns fractis

da distribuição cumulativa (função de distribuição). O método do intervalo fixo é similar, porém difere

do método CDF porque são apresentados ao entrevistado diversos intervalos de mesmo tamanho, para

que ele possa associar as respectivas probabilidades.

Para cada método foi elaborado um questionário.

Nota-se que a função de distribuição do método CDF está por cima da função de distribuição do

método do intervalo fixo. Barros Leal interpretou isso como uma inconsistência, embora tenha chamado
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à atenção o fato de que “técnicas diferentes levam a distribuições diferentes, porque a maneira de se

questionar a pessoa pode ter algum efeito sobre a maneira como o problema é visto.” O problema é

saber qual a “maneira certa” de ver o problema. É muito mais natural pensar-se que existe mesmo

uma vagueza mínima irremovível. Barros Leal continuou, seguindo o que Walley (1991) chamou de

“o dogma da precisão” dos bayesianos, e procedeu à uma revisão das respostas junto ao entrevistado,

para chegar a uma distribuição a priori mais precisa. O resultado está mostrado na Tabela 5. (Vide

anexo 4).

É claro que o procedimento de “ajuste” (revisão das respostas pelo entrevistado) foi ad hoc. Barros

Leal aplicou os mesmos métodos a três outros entrevistados, sobre a mesma variável (tempo de trami-

tação de um empenho), fazendo os mesmos ajustes ad hoc. De uma maneira geral ele verificou que os

dados ajustaram-se à densidade de Gompetz:

f(x) = α exp(−β exp(−x)).

Nas suas conclusões ele afirma que:

“ O que se nota ao comparar os resultados obtidos é que existe alguma identificação

no tocante ao tipo de distribuição. Mas, no tocante aos valores numéricos, houve uma

discordância acentuada. Assim é que o maior valor para um dos entrevistados (ex-diretor

de centro) era quarenta, enquanto para outro do setor de contabilidade este não passaria

de nove. Dois entrevistados (um da assessoria do reitor e outro pró-reitor) apresentaram

resultados muito similares, tendo inclusive apontado o intervalo de 8 a 10 dias como o mais

provável (veja distribuições).

Outro ponto a destacar no trabalho foi a diferença entre as distribuições geradas por

métodos distintos de questionário. Em geral, as curvas eram diferentes. Para um dos entre-

vistados (do setor de contabilidade), estes, no entanto, não diferiram muito. Uma revisão

de tais distribuições gerou, no entanto, resultados bem satisfatórios, como se encontra no

capítulo 5.” Barros Leal (1988), p. 95.
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3.5 O Método da Programação Linear

O método da programação matemática foi introduzido por Campello de Souza (1993) na sua tese

do concurso de professor titular do Departamento de Eletrônica e Sistemas da UFPE.

3.5.1 Chances do Parlamentarismo ser aprovado no próximo Plebiscito no Brasil

Campello de Souza (1993) apresenta o questionário Tabela 3.1 a seguir, o qual foi aplicado a vários

indivíduos de diversos perfis e formações, e com níveis distintos de conhecimento sobre a questão

política em análise.

As idéias centrais do método, incluindo os conceitos de vagueza, concordância (entre dois ou mais

especialistas), conflito, etc., foram lançadas em Campello de Souza (1993), e vários experimentos

(eduções) foram realizados. Método semelhante foi desenvolvido para a edução da função utilidade.
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3.5.2 As Chances das 6 Faces de um Dado Chumbado

O modelo da programação matemática foi aplicado à edução do conhecimento a priori de um

especialista (um professor de mecânica racional) a respeito das chances das diversas faces de um dado

chumbado (viciado) resultarem de um lançamento aleatório. Os pesos das diversas faces do dado

foram informados ao especialista, e este respondeu algumas questões comparativas de probabilidade.

Em seguida o dado foi lançado 850 vezes, e os resultados foram comparados. A Tabela 3.2 mostra os

resultados da edução. Os π’s são as probabilidades das 6 faces do dado.

Tabela 3.2: As respostas do especialista, já na matriz de restrições do modelo de programação mate-
mática, para o caso do dado chumbado.

π1 π2 π3 π4 π5 π6 Sentido da desigualdade
1 1 1 1 1 1
1 -1 0 0 0 0 ≥ 0
0 1 -1 0 0 0 ≥ 0
0 0 1 -1 0 0 ≥ 0
0 0 0 1 -1 0 ≤ 0
0 0 0 0 1 -1 ≥ 0
3 0 0 0 0 -11 = 0
0 5 0 0 -9 0 = 0
0 0 13 -15 0 0 = 0

Numa mesma unidade de medida, os pesos das faces dos dados encontram-se na Tabela 3.3:

O que o especialista disse, em outras palavras, foi que as probabilidades de faces opostas estão na

proporção inversa dos seus respectivos pesos. A sétima linha da Tabela 3.2, por exemplo, significa que:

3π1 − 11π6 = 0,

ou seja:

π1 =
11

3
π6.

Ou seja, o especialista explicitou a relação de chances de alguns eventos. Outra informação dada

Tabela 3.3: Os pesos das seis faces do dado chumbado.
Face Peso

1 3
2 5
3 13
4 15
5 9
6 11
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pelo especialista foi que as probabilidades das faces estão na ordem inversa dos seus pesos. É o que

expressam as desigualdades das linhas de 2 a 7 da Tabela 3.3.

A função objetivo usada foi a entropia (de Shannon) da distribuição de probabilidade, que se

pretendia maximizar.

3.6 A Edução da Distribuição de Probabilidade do Tempo de Vida

Útil de um Aquecedor Solar

O questionário usado para a edução do conhecimento a priori de Sérgio Rochadel Lima, da ESSE,

foi o desenvolvido e apresentado em Stamford da Silva (1994). A tabela 3.4 mostra o questionário com

as respostas.
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3.7 Os Especialistas do Porto do Recife

Na sua dissertação de mestrado, Stamford da Silva (1994) desenvolveu mais o questionário de edu-

ção, procurando garantir a simetria das perguntas e uma progressividade na dificuldade das perguntas.

O questionário do protocolo tem 42 perguntas (comparações de probabilidades de eventos). Ele elabo-

rou e implementou uma macro na planilha Quattro Pro para o protocolo de edução de um e de dois

especialistas, que calcula todos os construtos do método, e apresenta também gráficos dos resultados.

O método foi aplicado na administração do porto do Recife (CODERN-APR), tendo sido eduzidas as

distribuições a priori de vários especialistas, dentro de um projeto de desenvolvimento de ferramentas

de apoio à decisão naquela instituição.

A referida macro é usada até hoje em pesquisas aplicadas sobre o assunto.

3.8 Avaliação da Mantenabilidade no Sistema de Telecomunicações

da CHESF

Barros Filho (1995), na sua dissertação de mestrado, usou o método da programação matemática

(linear) e o questionário usado em Stamford da Silva (1994) para diversas variáveis relativas ao sistema

de gestão da manutenção do sistema de telecomunicações da CHESF. As variáveis analisadas são

tempos de duração das ações de manutenção, em particular o chamado TTR (Time To Recover ou

Time To Repair). Quatro engenheiros tiveram as suas distribuições eduzidas e comparadas duas a

duas. O método foi usado também para os dados disponíveis no banco de dados da CHESF; outra

forma de conhecimento a priori. Os resultados foram comparados aos dos especialistas, dentro de um

processo de busca de um benchmark. O conceito da conformidade foi introduzido nesta dissertação.

Segundo suas próprias palavras:

“A resposta da aplicação dos questionários, com os especialistas (gerentes), mostra que o

Modelo do Conhecimento a priori se transformou numa rotina dentro da empresa tornando-

se uma realidade.” Barros Filho (1995), p. 192.
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3.9 Trabalhos Mais Recentes

• Nadler Lins (2000), na sua dissertação de mestrado, elaborou novos construtos que serviram de

base para um grande avanço na qualidade do questionário de edução baseado em programação

linear. Os resultados dessa dissertação foram apresentados no ISIPTA (2001) (International

Symposium on Imprecise Probabilities and Their Applications),(Nadler Lins & Campello de

Souza, 2001).

• Silva (2002), na sua dissertação de mestrado, aplicou o método a problemas de edução no campo

da cardiologia. Foi apresentado o caso onde a variável de interesse é bidimensional, representando

a pressão sitólica e diastólica de um indivíduo. Os construtos apresentados em Nadler Lins e

Campello de Souza (2001) foram adaptados para construção do questionário.

• Moraes (2003), na sua dissertação de mestrado, também aplicou o método em alguns problemas de

aplicação da teoria da decisão. Os resultados da aplicação do modelo de edução foram comparados

com os dados obtidos pelo modelo impreciso de Dirichlet.

• Silva e Campello de Souza (2005) introduzem o conceito de inferential skill, um novo construto

do modelo. Detalhes e algumas aplicações desse construto podem ser vistos no capítulo 4.

• Bezerra e Campello (2004) utilizou o modelo para edução da distribuição de probabilidade de 16

cenarios economicos para tomada de decisão em carteira de investimento.

• Lins (2006), no seu trabalho de iniciação científica, elaborou alguns programas de computador

para a solução de problemas de teoria da decisão, incluindo o questionário de edução de especi-

alistas.

• Campello de Souza (2007a), na sua dissertação de mestrado, fez estudos comparativos detalhados

a partir de um experimento.

• No III REDS (2007) foi feito um experimento semelhante ao realizado por Campello de Souza

(2007) cujos resultados encontram-se detalhados no capítulo 4.

Em todas essas pesquisas, de 1981 até 2007, estudou-se vários tipos de fenômenos, em vários con-

textos, onde se esteve frente a frente com problemas de mediação cognitiva, falta de uma base de
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conhecimentos básicos de probabilidade e estatística por parte dos entrevistados, problemas compu-

tacionais, dificuldades físicas nos experimentos, etc. De qualquer forma, houve um aprendizado e um

avanço.

3.10 Métodos de Edução

Uma classe dos métodos de edução que são utilizados impõe uma estrutura para a distribuição

que será usada para representar o conhecimento do especialista. Deste modo, os métodos assumem

que tal conhecimento pode ser bem representado por algum membro de alguma família especifica de

distribuição paramétrica. Exemplos podem ser encontrados em Gosling (2005), O’Hagan (1998) onde

são apresentados métodos usando as distribuições uniforme e beta. Oakley e O’Hagan (2007) aponta

desvantagens no uso deste tipo de abordagem, uma vez que ela força as crenças do especialista a se ajus-

tarem a uma distribuição dada, não levando em consideração que outras densidades de probabilidade

poderiam se ajustar muito bem aos inputs fornecidos pelo especialista.

Há vários critérios para a escolha da família de distribuição que será utilizada. Entre tais critérios,

se a distribuição eduzida será utilizada para atualizar à informação em análise bayesiana, é comum

assumir que a distribuição a priori que será eduzida pertença à família de distribuições conjugadas.

Ao utilizar uma distribuição conhecida para representar a opinião do especialista o problema de

edução passa a ser determinar os valores dos parâmetros da mesma, tais como parâmetros de localização

(média, mediana e moda) e parâmetros de forma (variância e desvio padrão). Por exemplo, no caso de

assumir-se a distribuição normal o processo de edução consiste em determinar os valores da média e da

variância dessa distribuição. A seguir apresenta-se uma breve revisão de alguns métodos que utilizam

este tipo de abordagem.

Ajustando as Distribuições Uniforme e Triangular

A forma mais simples de edução é perguntar ao especialista o intervalo [a, b] para o qual ele acredita

que a variável de interesse pertença. Por exemplo, pode estar-se interessado em avaliar a pressão

sistólica de um indivíduo com determinadas características, como índice de massa corpórea, sexo,

idade, tabagismo, entre outras. No processo de edução o especialista irá fornecer o intervalo no qual

acredita que a pressão sistólica do indivíduo com as características descritas se encontre. Quando

apenas esta informação é fornecida pelo especialista, a distribuição usualmente ajustada é a uniforme.
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Esta abordagem tem sofrido algumas críticas pela sua forma simplificada de abordar o problema.

Em Garthwaite et. al.(2005) e O’Hagan et. al. (2006), duas críticas a esta técnica são apresentadas.

A primeira afirma que o especialista pode não acreditar que o valor da variável em análise esteja muito

próxima dos extremos do intervalo (a e b) bem como do centro do mesmo. A segunda crítica está

relacionada ao fato que não é razoável atribuir probabilidade zero aos eventos, cujos valores estejam

fora do intervalo especificado pelo especialista.

A distribuição triangular surge como uma alternativa mais flexível ao uso da distribuição uniforme.

Mais detalhes sobre a aplicação esta distribuição no processo de edução podem ser vistos em O’Hagan

et. al. (2006) e Gosling(2005). As questões feitas ao especialista são para especificar a moda da

distribuição, que será representada por c, e a função de densidade de probabilidade, dada por:

f(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

2(x − a)

(b − a)(c − a)
se a ≤ x ≤ c

2(b − x)

(b − a)(b − c)
se c ≤ x ≤ b.

Distribuição Beta

Um grande número de métodos de edução tem sido desenvolvido para quantificar o conhecimento

sobre a probabilidade ou a proporção p quando o modelo subjacente é de Bernoulli ou segue uma

distribuição binomial (O’Hagan et. al., 2006) e (Gosling 2005). A distribuição conjugada de uma

distribuição binomial é a distribuição beta, e sendo assim, é matematicamente conveniente ajustar a

distribuição beta ao conhecimento do especialista. Além disso, para construir a distribuição beta são

necessários apenas dois parâmetros (α e β). Sua forma é bastante flexível, o que permite a ela ser

ajustada, com uma razoável acurácia, a uma grande variedade de julgamentos dos especialistas.

Os trabalhos de Winkler (1967a) apresenta quatro técnicas diferentes de edução. O estudo considera

apenas um processo de Bernoulli, eduzindo a distribuição de probabilidade que representa a incerteza do

especialista sob a proporção de uma população que tem característica particular. Em outras palavras,

a distribuição eduzida será uma distribuição sobre a variável p que representa a probabilidade de

sucesso em um processo de Bernoulli. Um conjunto de processos de Bernoulli independentes forma

uma amostra de um modelo binomial.

Segundo Winkler(1967a) as duas primeiras técnicas, HFS (Hypothetical Future Sample) e EPS
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(Equivalent Prior Sample) são técnicas indiretas, pois a distribuição subjetiva, que é eduzida do es-

pecialista, não fica clara para o mesmo durante o processo de edução. Em ambas as ténicas, inicia-se

pedindo ao especialista uma estimativa para o valor de p, que será interpretado como a média da dis-

tribuição do especialista. Por exemplo, p pode representar a proporção de estudantes do sexo feminino

no curso de engenharia de produção da UFPE.

A técnica EPS consiste em perguntar ao especialista uma estimativa do tamanho da amostra para a

qual o mesmo está baseando suas avaliações. No exemplo dado anteriormente o especialista será alguém

que conhece muito bem o curso de engenharia de produção da UFPE. Sendo assim, tal indivíduo poderá

dar uma estimativa de r, a quantidade de estudantes do sexo feminino, e n a quantidade de alunos do

curso. Já as perguntas feitas na técnica HFS têm o intuito de fazer com que o especialista atualize sua

estimativa inicial quando for exposto a uma amostra hipotética da população de interesse.

O outro par de técnicas proposto por Winkler(1967a) são a CDF (Cumulative Distribution Func-

tion) e PDF (Probability Density Function) que são consideradas técnicas diretas pois a distribuição

torna-se clara (ou conhecida) para o especialista durante o processo de edução. Em outras palavras,

estas ténicas envolvem questões diretas sobre a distribuição de probabilidade. No método CDF o

especialista informa uma estimativa para a mediana da distribuição de probabilidade sobre p, além

de fornecer um ou mais quantis desta distribuição. Com estes pontos, constrói-se o gráfico da função

de distribuição acumulada o que irá fornecer uma representação não paramétrica da distribuição do

especialista.

3.10.1 Métodos Não Paramétricos

Os métodos de edução que assumem que o conhecimento do especialista pode ser bem representado

por uma distribuição sofre algumas críticas. Winkler (1967) argumenta que o especialista não tem uma

“verdadeira” função de densidade esperando para ser eduzida. Sendo assim, diferentes métodos podem

eduzir diferentes distribuições do mesmo especialista sobre o mesmo fenômeno.

Oakley & Hagan (2007) propõem um método não paramétrico para edução que oferece maior

flexibilidade e uma maior acurácia ao modelar a opinião do especialista. O método assume que a

função de densidade de probabilidade a ser eduzida, f(.), pode ser modelada por um processo gaussiano.

Gosling (2005) tratou as propriedades do processo gaussiano para incluir julgamentos sobre as derivadas

da função de densidade, que permitem incorporar julgamentos sobre a moda da distribuição além de

fazer julgamentos sobre o sinal da função densidade para qualquer ponto dado.
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4 Um Método de Edução do

Conhecimento A Priori

“The magnitude of the probability of an argument . . . depends upon a balance between what way

be termed the favourable and unfavourable evidence.”

John Maynard Keynes

4.1 Introdução

A chamada inferência Bayesiana fornece um método para combinar a informação proveniente de

uma fonte de dados, por meio de uma função de verossimilhança, com o conhecimento a priori acumu-

lado que se tem sobre o estado da natureza. A probabilidade a priori usada neste contexto, também

chamada de probabilidade subjetiva ou epistêmica, representa o grau de crença que um indivíduo

tem na ocorrência de um evento que é representada em termos da variável aleatória θ e precisa ser

eduzida de um especialista. Um dos problemas dessa abordagem, como é exposto em (Nadler Lins &

Campello de Souza, 2001), é que uma distribuição a priori precisa para a variável aleatória θ é reque-

rida. Os modelos de probabilidades imprecisas tentam resolver essa desvantagem, como por exemplo

probabilidades superior e inferior (Dempster, 1966), previsões superiores e inferiores (Walley, 1996) e

trabalhar com famílias de distribuição de probabilidade.

O protocolo de edução proposto em (Nadler Lins & Campello de Souza, 2001; Campello de Souza,

2007b; Nadler Lins, 2000), e que será usado neste trabalho, é parte de um método que fornece um

procedimento sistemático para a edução da distribuição a priori da variável aleatória θ de um espe-

cialista. O método leva em consideração que o conhecimento do especialista tem um certo grau de

vagueza no que diz respeito a distribuição de probabilidade sobre θ. Isto evita uma fonte de confu-

são comumente presente nos esquemas de aposta, onde o julgamento pode ser eduzido por meio de

preferências, envolvendo dessa forma dois mecanismos psicológicos diferentes. Este novo método usa

pares de comparações de asserções probabilísticas envolvendo eventos que podem ser representados

por variáveis aleatórias. O método geral não requer que θ seja uma variável aleatória, pode ser apenas

uma categoria.
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4.2 Método de Edução

Para tornar clara a discussão, faz-se necessário expor algumas definições básicas do protocolo de

edução proposto em (Nadler Lins, 2000; Nadler Lins & Campello de Souza, 2001) e depois desenvolvido

em (Campello de Souza, 2007b). Considere-se que as estimativas das probabilidades (distribuições)

são sempre imprecisas e que o interesse maior concentra-se nos casos de variâncias palpáveis.

O método é um procedimento sistemático para eduzir a distribuição a priori de um especialista

para algum valor real de uma variável aleatória contínua θ. O especialista anuncia um valor máximo

e um mínimo plausível para θ. Em sua mente, o especialista avalia que a probabilidade do verdadeiro

valor de θ estar fora desse dois limites, θmin e θmax, é zero.

θmin θmax θ

Assume-se que θ está distribuída no intervalo [θmin, θmax] de acordo com uma densidade de pro-

babilidade π. Este intervalo é então particionado em 2n subintervalos de igual medida de Lebes-

gue, [θj−1, θj), j = 1, 2, . . . , 2n − 1; [θ2n−1, θ2n]. O valor de n depende da precisão almejada. Caso

considere-se que 5% seja uma boa precisão para o especialista então pode-se adotar n = 10 (o que

corresponde a 20 sub-intervalos de 5%). Este é um procedimento usual de quantização de uma va-

riável aleatória contínua. É conveniente representar o intervalo [θj−1, θj) por θj. Define-se também

πj = Pr{θ ∈ [θj−1, θj)} = π(θj), a probabilidade de que θ pertença ao j-ésimo sub-intervalo. A

probabilidade de que θ pertença ao intervalo [θj−1, θj+k) é
∑k

i=1 πj+i para j + k ≤ 2n. É claro que∑2n
j=1 πj = 1.

As questões que são apresentadas ao especialista são do seguinte tipo: Qual delas é maior que a

outra

Pr
{
θ ∈ [θj, θj+k)

}
ou Pr

{
θ ∈ [θl, θl+m)}?

A superposição de intervalos pode causar confusão, então não pode haver superposição dos dois

intervalos presentes em cada questão. Usando essa premissa foi elaborado um indicador para a cons-

trução do questionário de edução, detalhes podem ser vistos em (Nadler Lins & Campello de Souza,

2001) e (Nadler Lins, 2000). O método propõe que a primeira questão apresentada ao especialista

deve ser a mais fácil (qual das metades do intervalo é o mais provável) como definido pelo indicador

presente em (Nadler Lins & Campello de Souza, 2001). A questão seguinte é um pouco mais difícil, os

intervalos são progressivamente refinados. As questões também não devem ser repetidas com o intuito
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de evitar os efeitos da ancoragem psicológica. Além de garantir a simetria e evitar a indução de viés o

questionário construído baseado em tais indicadores garante que o especialista tenha uma percepção

progressiva, gradual e suave do parâmetro (estado da natureza; a variável aleatória θ), a medida que

vai respondendo ao questionário. A idéia na construção proposta em (Nadler Lins & Campello de

Souza, 2001) foi de não confundir o especialista com retrocessos de raciocínio. O especialista pode

escolher não responder a alguma questão por não se sentir seguro em escolher qual dos intervalos é

mais provável. Caso isso ocorra ele não deverá responder as questões subseqüentes uma vez que o

questionário foi construído com um nível de dificuldade crescente.

Pense-se em uma moeda comum, uma moeda de 10 centavos, por exemplo. Imagine-se que se queira

avaliar a probabilidade de ocorrência de uma das faces dessa moeda. Caso se estivesse pensando na

probabilidade clássica dir-se-ia que cada face teria probabilidade de ocorrer igual a 1/2. Estar-se-ia

admitindo uma perfeita simetria. No entanto, sabe-se que, por menor que seja, existe diferença entre

as faces da moeda considerada, seja pelas reentrâncias das figuras que estão gravadas em suas faces ou

por alguma deformação não perceptível. Então, poder-se-ia pensar em outro tipo de probabilidade. Se

a moeda fosse lançada um número infinito de vezes, a probabilidade de ocorrer uma das faces da moeda

se aproxima de 1/2. Isto é, a idéia subjacente é a de que existiria uma “verdadeira probabilidade” para

a qual tenderia a freqüência relativa. Seria uma definição de probabilidade (inatingível, a fortiori, na

prática, é claro). No dizer de Bernoulli, ter-se-ia apenas uma “certeza moral”. Lembrando Keynes, “no

longo prazo todos nós estaremos todos mortos”. Desta forma, pode-se lançar essa moeda um razoável

número de vezes que garanta um certo intervalo de confiança para a estimativa desta probabilidade;

ou mesmo aquele intervalo do teorema de Bernoulli. É claro que ninguém apostaria que uma das faces

tivesse 0,90 de chance de ocorrer, ou até mesmo 0,70. Assim, se o questionário fosse utilizado para

estimar esta probabilidade, o especialista, ao especificar o seu θmin e o seu θmax, não iria considerar o

intervalo [0, 1] e sim algo em torno de 0,5, como, por exemplo, [0, 495; 0, 505]. Ou talvez [0, 48; 0, 52].

Observe-se que o conceito de “estimar”, aqui, significa encontrar uma família plausível de distribuições

de probabilidade, no sentido de Kolmogorov, onde todos os seus membros são compatíveis com o

número finito de respostas ao questionário dadas pelo especialista.

A primeira pergunta do questionário seria, sem dúvida, a mais fácil, pois não se tem praticamente

nenhuma idéia, prima facie, sobre qual seria a face com mais chance de se apresentar, num lançamento

aleatório. Neste caso, qualquer resposta serviria. Ou, se se tivesse, por qualquer razão (uma boa
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acuidade visual ou um exame cuidadoso das reentrâncias e saliências de cada uma das faces, etc.),

um bom motivo para se acreditar que uma das faces teria uma maior verossimilhança de se apresentar

num lançamento aleatório, poder-se-ia responder de acordo. De qualquer forma, a diferença seria muito

pequena. Note-se, en passant, a inexistência de uma idéia precisa, operacional, do que poderia ser a

“verdadeira” probabilidade.

No enfoque usado neste trabalho, não se propõe a existência de uma “verdadeira” distribuição de

probabilidade. Pode-se até imaginar uma, mas apenas como uma ancoragem psicológica. O que se

busca é uma família. Na tentativa de se imaginar uma “verdadeira” distribuição (uma “verdadeira”

densidade de probabilidade, no sentido de Kolmogorov), fica bem mais difícil para o especialista res-

ponder a uma questão do tipo, por exemplo: qual é o mais provável (verossímil), é que o “verdadeiro”

valor da probabilidade esteja entre 0,5010 e 0,5015, ou entre 0,5015 e 0,5020? Esta pergunta é muito

mais difícil de responder do que a pergunta: qual é o mais provável (verossímil), é que o “verdadeiro”

valor da probabilidade esteja entre 0,4950 e 0,5000, ou entre 0,5000 e 0,5050?

Observe-se também que não se pode afirmar que intervalos de mesma largura, afastando-se do

valor central 0,5000, terão probabilidades necessariamente progressivamente menores. No caso de

uma distribuição uniforme, por exemplo, isto não é verdade. No caso de uma distribuição uniforme

“perturbada” por algum “ruído” (de introspecção, por exemplo), essas probabilidades oscilariam ou

poderiam mesmo aumentar, à medida que se afastasse do centro do intervalo total.

Ora, se não se tem nem uma idéia precisa da “verdadeira” distribuição, que dirá fazer-se comparações

entre dois intervalos estreitos, comparados ao intervalo total? É por isso que questões envolvendo

subintervalos menores (no sentido da medida de Lebesgue), sem sobreposição, são sempre mais fáceis

de responder, quaisquer que sejam as suas posições relativas dentro do intervalo total. Do ponto de

vista cognitivo, ou organoléptico, isto é intuitivo. Use-se a metáfora da acuidade visual, por exemplo,

para auxiliar na mediação cognitiva. A idéia central, pois, está contida no termo “probabilidades

imprecisas”.

A Tabela 4.1 explicita talvez mais claramente as características do questionário, tais como simetria,

dificuldade crescente nas perguntas, etc.
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π(θ)

θmin θmaxθ10

Figura 4.1: Primeira questão do protocolo de edução.

A Figura 4.1 ilustra a primeira questão que o especialista irá responder, supondo que o intervalo

[θmin, θmax] tenha sido dividido em 20 subintervalos. Aqui esta-se usando o histograma para repre-

sentar a distribuição que o especialista tem em mente e com base na qual irá responder a questão. A

pergunta quer saber qual dos dois intervalos ([θmin, θ10) e [θ10, θmax]) o especialista, com base no seu

conhecimento a priori, acredita ser o mais provável.

A Figura 4.2 mostra uma questão que usa intervalos um pouco mais refinados que a questão

anterior, o que, segundo os indicadores propostos por (Nadler Lins, 2000), tornam a questão mais

difícil. Esta questão quer saber qual é mais provável; o intervalo [θ5, θ6) ou [θ12, θ15). O primeiro

intervalo corresponde a π6 e o segundo intervalo corresponde ao somatório π13 + π14 + π15.

π(θ)

θmin θmaxθ5 θ6 θ12 θ15

π6 π13 + π14 + π15

Figura 4.2: Exemplo de uma questão do protocolo de edução.
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O método foi estendido para o caso de não se ter variável aleatória em Silva (2002) e Campello

de Souza (2007b). Neste caso, tem-se um conjunto finito de categorias Θ = {θ1, θ2, . . . , θn}, onde θj,

j = 1, 2 . . . , n, não é nem um número nem representa um intervalo como no caso contínuo explicado

anteriormente. Em outras palavras, θ não pode ser uma variável aleatória.

O input do especialista consiste então em responder um certo número de comparações entre duas

probabilidades, uma de cada evento e assim expressar a relação de chances desses eventos. Dois

problemas de programação linear são propostos:

Max
πj

(Min)

2n∑
j=1

cjπj (4.2.1)

sujeito a:

ajk

k∑
i=0

πj+i − alm

m∑
i=0

πl+i ≤ bs (4.2.2)

αjπj ≤ πj+1, j = 1, 2, ..., 2n − 1, αj > 0 (4.2.3)

βjπj+1 ≤ πj , j = 1, 2, ..., 2n − 1, βj > 0 (4.2.4)

πj ≥ 0, j = 1, 2, . . . , 2n (4.2.5)

2n∑
j=1

πj = 1 (4.2.6)

Seja q o número de questões postas ao especialistas, então ter-se-á q restrições semelhantes a

equação 4.2.2, onde para cada restrição as desigualdades podem ser ≤ bs ou ≥ bs, dependendo da

resposta do especialista, ajk > 0, alm > 0, e j + k < l para evitar sobreposição entre dois intervalos.

Uma vez que o especialista respondeu consistentemente a um certo número de questões, as restrições

envolvendo αj e βj servem para evitar que a distribuição de probabilidade, por exemplo, apresente

algum πj com probabilidade alta e seus vizinhos (πj−1 e πj+1) com probabilidades muito baixas. Isto

significaria que o especialista estaria dando muito informação que não é garantida pela resposta. A

idéia é que, além da informação advinda das respostas, não se deve atribuir nenhuma outra organização

na informação, ou seja, a entropia de π deve ser máxima.
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Há muitas possibilidades para escolha de cj ’s. Caso se deseje obter todas as distribuições de

probabilidade consistentes com as respostas do especialista, todos os vértices do conjunto viável terão

que ser obtidos. Em seguida, basta considerar todas as combinações convexas desses vértices. Por outro

lado, se o objetivo for obter distribuições de probabilidade com menor valor esperado para θ (problema

de maximização) e distribuições com máximo valor esperado para θ (problema de minimização) deve-se

fazer

cj = 2n − j + 1 (4.2.7)

Vai-se agora provar que maximizar

2n∑
j=1

(2n − j + 1)πj (4.2.8)

é o mesmo que maximizar
θ1 + θ2n

2
−

2n∑
j=1

θjπj (4.2.9)

no que diz respeito a escolha de πj, j = 1, 2, . . . , 2n. Como os valores de θ1, θ2, . . . , θ2n estão em

progressão aritmética, tem-se θj+1 − θj = a para j = 1, 2, . . . , 2n − 1 onde a > 0. Então

2n∑
j=1

(2n − j + 1)πj ←→
θ1 + θ2n

2
−

2n∑
j=1

θjπj

θ1 + θ2n

2
=

θ1 + θ1 + (2n − 1) a

2
= θ1 +

2n − 1

2
a

Então

θ1 + θ2n

2
−

2n∑
j=1

θjπj =

= θ1 +
2n − 1

2
a − θ1π1 − (θ1 + a)π2 − · · · − (θ1 + (2n − 1)a)π2n

= θ1 − θ1

⎛
⎝ 2n∑

j=1

πj

⎞
⎠ +

2n − 1

2
a −

2n∑
j=2

(j − 1)aπj
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=
2n − 1

2
a −

2n∑
j=2

(j − 1)aπj

= a

⎡
⎣2n − 1

2
−

2n∑
j=2

(j − 1)πj

⎤
⎦

= a

⎡
⎣2n − 1

2
−

⎛
⎝

⎛
⎝ 2n∑

j=1

jπj

⎞
⎠ − 1

⎞
⎠

⎤
⎦

θ1 + θ2n

2
−

2n∑
j=1

θjπj = a

⎡
⎣2n + 1

2
−

2n∑
j=1

jπj

⎤
⎦

Por outro lado,
2n∑

j=1

(2n − j + 1)πj = 2n + 1 −
2n∑
j=1

jπj

Vê-se então que maximizar ∑
(2n − j + 1)πj

é a mesma coisa que minimizar
2n∑
j=1

θjπj

É claro que diferentes c′js produzirão diferentes resultados.

O conjunto de restrições garante que {πj}
2n
j=1 é de fato uma distribuição de probabilidade, tanto

para o problema de maximização quanto para o problema de minimização. Se os c′js são definidos pela

expressão 4.2.7, toda combinação convexa das duas soluções (uma correspondendo a distribuição com

menor valor esperado para θ, isto é, o problema de maximização e outra distribuição com máximo valor

esperado para θ, isto é o problema de minimização) será consistente com as respostas do especialista.

Este conjunto convexo de distribuições de probabilidade também pode ser usado em inferência ou

procedimentos de decisão. É claro que esta família, em princípio, é menor do que o conjunto de todas

as possíveis distribuições de probabilidade compatíveis com a resposta do especialista. Especificar este

conjunto não é uma tarefa simples. O “tamanho” da família de distribuição pode ser estimada pelo

volume do conjunto viável do problema de otimização.

Poder-se-ia usar o mesmo conjunto viável, mas com uma função objetivo diferente. Por exemplo,

pode-se usar a entropia de uma distribuição como funcional objetivo que é definida por
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H = −
2n∑
j=1

πj log πj

o problema de otimização neste caso passa a ser de programação não linear, mas o raciocínio é o

mesmo.

Tipicamente a solução dos problemas de programação linear são diferentes e serão obtidas duas

funções de distribuição como mostrado na Figura 4.3.

θ

Π(θ)

1

Πmax(θ) Πmin(θ)

Figura 4.3: Conjunto convexo das Distribuições de Probabilidade.

Se o número de perguntas do questionário for pequeno, umas poucas perguntas, não se vai obter

muita informação sobre o parâmetro. Uma distribuição vai ficar muito afastada da outra. Por outro

lado, se o número de perguntas for muito elevado, provavelmente o especialista não terá paciência

para responder a todas e se o fizer é maior a chance dele cometer erros. Há que se pensar então num

número adequado. Tem-se feito uma série de eduções usando um questionário com 42 perguntas no

qual o intervalo [θmin, θmax] foi dividido em 20 subintervalos e os resultados encontram-se em (Silva,

2002; Bezerra, 2003; Moraes, 2003). Em (Nadler Lins, 2000; Nadler Lins & Campello de Souza, 2001) e

(Campello de Souza, 2007b) são apresentados e estudados detalhadamente indicadores de detalhamento

da questão e do intervalo elementar. Esses indicadores permitiram uma sistemática de elaboração de

questionários de edução de conhecimento de especialistas que sejam de dificuldade progressiva e tenham

simetria, de modo a serem receptivos a qualquer forma de distribuição de probabilidade. Todos os

detalhes deste método assim como os de um método que também usa a programação linear para a

edução da função utilidade podem ser encontrados em (Campello de Souza, 2007b).

Sejam Πmax e Πmin funções de distribuição em θ. Estas distribuições são construídas a partir da

solução dos respectivos problemas de programação linear e qualquer combinação delas será compatível

com as respostas dadas pelo especialista. Note que uma área será formada entre as duas curvas
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quando se constrói o gráfico das mesmas. A razão entre a área formada entre as curvas e a área total

[θmax − θmin] × 1 do retângulo foi definido em (Nadler Lins & Campello de Souza, 2001; Campello de

Souza, 2007b) como a vagueza, V , do especialista. Isto é,

V =
1

2n

2n∑
j=1

∣∣Πmax(θj) − Πmin(θj)
∣∣ (4.2.10)

A vagueza será mínima se o especialista responder consistentemente todas as questões, ou seja,

o conjunto viável do problema de programação linear não é vazio. Caso o especialista não responda

nenhuma questão, ele será totalmente consistente, e sua vagueza será máxima (V = 1). Consistência,

portanto, neste contexto, não significa “nitidez” da família de distribuições de probabilidade eduzidas.

A precisão do especialista será definida por

P = 1 − V (4.2.11)

A partir dessa relação, quanto mais vago é o especialista, menor será sua precisão.

Caso se disponha de dois corpos de evidência, sejam eles provenientes de dois especialistas, ou um

especialista e uma base de dados ou ainda duas bases de dados, existirá dois conjuntos de vagueza

como mostrado na Figura 4.3. A área da interseção desses dois conjuntos dividida pela área da união

dos mesmos é definida como a concordância, C, dos corpos de evidência. O conceito é ilustrado

na Figura 4.4. Ainda quando se está trabalhando com mais de um corpo de evidência estes podem

discordar sobre a probabilidade de ocorrência de determinados eventos. Esta discordância será captada

pelo modelo quando as faixas, correspondentes aos dois ou mais especialistas, não se superpõe e dessa

forma um “vácuo” será formado entre elas. O conflito, K, entre será definido pela área total do “vácuo”

dividida pela área total do retângulo. Outro construto apresentado em Campello de Souza (2007b)

que surge quando se trabalha com mais de um especialista é a vagueza global VG que é definida como

a área da união das faixas dividida pela área do retângulo.
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Figura 4.4: Dois Especialistas.

4.3 O Inferential Skill

O inferencial skill é um indicador elaborado para aferir a “habilidade” ou “traquejo” inferencial de

um especialista ou sistema inferencial. Na elaboração de tal indicador são levados em consideração

três parâmetros:

1. A diferença entre as médias das distribuições máxima e mínima (Δμ), normalizadas por Δμmax,

que é o valor máximo de Δμ;

2. A fração de questões respondidas consistentemente (R), (número de questões respondidas con-

sistentemente dividido pelo total de perguntas do questionário não esquecendo que, consistência

esta relacionada ao conjunto viável);

3. A vagueza (V ).

Um indicador global, S, do inferential skill seria então:

S �
Δμ

Δμmax
+ R − V (4.3.1)

Se o especialista for bom, a escassez de evidência disponível (a entrada de dados e fatos para ele),

será refletida numa vagueza compatível (V ) e a diferença entre as médias das distribuições também

compatível
(

Δμ

Δμmax

)
. Isto posto, quanto maior o valor de R melhor será o especialista. Se o espe-

cialista não for tão bom assim, R tende a ser menor, indicando uma falsa nitidez diante da escassez

de evidência. Se o especialista fixa um valor em sua mente, por exemplo, a vagueza em torno desse
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ponto tende a ser menor, o que irá contribuir para um decrescimento da vagueza global. Neste caso,

também,
(

Δμ

Δμmax

)
tenderá a ser menor. Isto é um indicador que o especialista não é tão bom.

O melhor inferential skill de um especialista corresponde à melhor “conexão” entre a escassez dos

inputs e as afirmações probabilísticas que ele faz a partir desses inputs. Numa analogia com a teoria

de informação de Shannon, é como se o inferential skill fosse a capacidade de canal.

4.3.1 Aplicação Numérica

Um intervalo de 0% a 100% ( ou seja θmin = 0% e θmax = 100%) foi particionado em 20 intervalos

elementares e 42 questões, seguindo as orientações presentes em (Nadler Lins & Campello de Souza,

2001), foram especificadas. Os 20 subintervalos de θ são: [0, 5), [5, 10), [10, 15), . . . , [90, 95), [95, 100],

todos em percentual. Algumas das questões são mostradas na Tabela 4.2.

Tabela 4.2: Questionário de Edução.

[IA; IB ] 1|0 [IA; IB]
1 [0 − 50] [50 − 100]
2 [0 − 40] [40 − 100]
3 [0 − 60] [60 − 100]
4 [0 − 65] [65 − 100]
5 [0 − 35] [35 − 100]
...

...
...

42 [0 − 10] [90 − 100]

A primeira pergunta do questionário, por exemplo, é a seguinte: Qual é mais provável, que a

probabilidade de ocorrência de θ esteja entre 0 e 50% ou entre 50% e 100%? Se o especialista sentir

que é mais provável que a probabilidade de ocorrência de θ se situe no primeiro intervalo, ele deve

colocar 1 na coluna do meio. Caso contrário deve colocar 0 na respectiva coluna.

Para responder ao questionário foram usados especialistas fictícios, gerados a partir de uma base

de dados. Buscou-se gerar esses especialistas de tal forma que os mesmo representassem o perfil de

alguns especialistas. Foram utilizados três especialistas fictícios distintos.

O primeiro especialista (E1) foi representado por uma distribuição normal com 1000 observações

e média e variância tais que fosse possível atribuir probabilidade a todos os 20 θ’s. Esse seria um

especialista mais experiente, capaz de atribuir probabilidade a todos os eventos. Mais uma vez com

base nos dados da amostra, gerada segundo a normal citada anteriormente, calculou-se a probabilidade

de cada um dos intervalos elementares e em seguida respondeu-se ao questionário.
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Para representar o segundo especialista (E2), escolheu-se uma distribuição uniforme com 1000

observações. Esse seria o especialista que não conhece bem o fenômeno que se está querendo estudar.

Sendo assim, o mesmo atribui igual probabilidade a todos os eventos. Com base nesses dados calculou-

se a probabilidade de ocorrência de cada um dos 20 intervalos elementares. Com essa informação o

questionário foi respondido.

Para representar o terceiro especialista (E3), mais uma vez, foi utilizada uma distribuição normal

com média 0,5 mas, agora, com uma variância bem menor que a do primeiro especialista. Pode-se

interpretar esse especialista como aquele que ancora em um valor, ou seja, ele acha que sabe com

certeza qual a probabilidade de ocorrência de θ; esse não seria um especialista bom. Em outras

palavras, esta-se tentando representar o fenômeno da ancoragem psicológica (Kahneman et al. , 1982).

O primeiro especialista foi consistente em todas as questões e obteve assim uma vagueza de 13,33%.

O segundo especialista conseguiu responder consistentemente apenas 16 das 42 questões, obteve uma

vagueza de 37,5%. O terceiro especialista respondeu apenas 7 das 42 questões consistentemente,

obtendo uma vagueza de 45%. Os resultados dos problemas de programação linear são mostrados nas

figuras a seguir.
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1

(
)
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Figura 4.5: Resultado da Edução do Especialista E1.
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Figura 4.6: Resultado da Edução do Especialista E2.
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Figura 4.7: Resultado da Edução do Especialista E3.

Com base nessas informações, calculou-se o inferencial skill para todos os especialistas. Os espe-

cialistas E1, E2 e E3 obtiveram respectivamente os seguintes valores para o inferencial skill (S), 0,97,

0,38 e 0,17. Como era de se esperar, o primeiro especialista foi o melhor dentre os três, pois o mesmo

apresentou um maior valor para o inferencial skill, sua vagueza foi pequena e ele conseguiu responder

a todas as questões. O terceiro especialista foi o pior dentre os três. O mesmo conseguiu responder

consistentemente a apenas 7 questões com isso sua vagueza foi alta e, conseqüentemente, seu inferencial

skill foi o mais baixo dos três. O segundo melhor especialista foi E2, que respondeu a uma quantidade

de questões intermediaria entre os dois outros especialistas e também teve uma vagueza intermediária

entre os outros dois especialistas. Um resumo dos resultados pode ser visto na tabela 4.3.
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Tabela 4.3: Resultados.

Especialista R V S
E1 42 13,33% 0,97
E2 16 37,5% 0,38
E3 7 45,5 % 0,17

4.4 Aplicações do Questionário

4.4.1 Experimento 1

O experimento consiste na edução de famílias de distribuição de probabilidade sobre a proporção

de bolas pretas dentro de um recipiente transparente contendo unicamente bolas brancas e pretas.

Para realizar o experimento, primeiramente foi preparado um recipiente contendo bolas brancas e

pretas, em proporções desconhecidas aos indivíduos que irão participar do experimento. Em seguida,

um filme deste recipiente foi feito de tal forma que fosse permitida uma inspeção visual do manuseio

da urna sobre diversos ângulos. Depois de assistir ao filme o individuo responde ao questionário, a

respeito da proporção de bolas pretas na urna.

Ao se observar a urna percebe-se claramente que a proporção de bolas pretas é maior que zero

e menor que 100%, uma vez que existem bolas brancas na urna. Desta forma, achou-se conveniente

utilizar o intervalo total de 10% a 90% que foi particionado em 20 intervalos elementares e 42 questões

foram construídas seguindo as orientações encontradas em Nadler Lins (2000), Nadler Lins e Campello

de Souza (2001), Campello de Souza (2007). O questionário encontra-se na Tabela 4.4 a seguir:
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Tabela 4.4: Questionário de edução da distribuição a priori.

% 1|0 % % 1|0 %
1 [10 − 50] [50 − 90] 22 [10 − 50] [70 − 90]

2 [10 − 42] [42 − 90] 23 [10 − 30] [30 − 70]

3 [10 − 58] [58 − 90] 24 [10 − 46] [50 − 70]

4 [10 − 62] [62 − 90] 25 [30 − 50] [54 − 90]

5 [10 − 38] [38 − 90] 26 [10 − 42] [50 − 70]

6 [10 − 66] [66 − 90] 27 [30 − 50] [58 − 90]

7 [10 − 34] [34 − 90] 28 [10 − 42] [42 − 58]

8 [10 − 46] [54 − 90] 29 [42 − 58] [58 − 90]

9 [18 − 50] [50 − 90] 30 [42 − 74] [74 − 90]

10 [10 − 50] [50 − 82] 31 [10 − 26] [42 − 74]

11 [10 − 30] [30 − 90] 32 [30 − 50] [70 − 90]

12 [10 − 70] [70 − 90] 33 [10 − 30] [30 − 50]

13 [14 − 46] [54 − 90] 34 [30 − 50] [50 − 70]

14 [10 − 46] [54 − 86] 35 [10 − 30] [50 − 70]

15 [10 − 42] [58 − 90] 36 [10 − 30] [70 − 90]

16 [18 − 46] [54 − 86] 37 [50 − 70] [70 − 90]

17 [14 − 46] [54 − 82] 38 [34 − 50] [50 − 66]

18 [30 − 70] [70 − 90] 39 [10 − 18] [66 − 90]

19 [10 − 50] [50 − 70] 40 [10 − 34] [82 − 90]

20 [30 − 50] [50 − 90] 41 [26 − 34] [66 − 74]

21 [10 − 30] [50 − 90] 42 [10 − 18] [82 − 90]

Para responder o questionário o indivíduo deve marcar 1 se acha mais verossímil que o percentual

de bolas pretas esteja na faixa apresentada no lado esquerdo ou marcar 0 caso contrário.

O experimento foi aplicado a dois grupos diferentes. O primeiro grupo é formado por 70 pessoas

que participavam da Escola de Apoio a Decisão do Recife (REDs) que ocorreu em maio de 2007 na Uni-

versidade Federal de Pernambuco (grupo I). Os indivíduos desse grupo apresentam níveis de formação

diversas, há desde alunos da graduação até indivíduos com doutorado completo. O segundo grupo é

formado por 21 alunos da disciplina sistemas probabilísticos da graduação em engenharia eletrônica da

Universidade Federal de Pernambuco (grupo II). Para ambos os grupos as urnas apresentadas foram

as mesmas.

A tabela 4.5 mostra as estatísticas descritivas da quantidade de questões respondidas (R), precisão

(P ), vagueza (V ), inferencial skill (S) e as médias máxima (Medmax), mínima (Medmin) e a média

entre as duas. Lembrando que, tais médias foram calculadas usando-se as expressões
∑2n

j=1 θjπj(max)

e
∑2n

j=1 θjπj(min).
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Tabela 4.5: Estatística descritiva dos construtos.

Média Lim. de Conf. In-
ferior {95%}

Lim. de Conf. Su-
perior {95%}

Mediana Min Máx Desvio Padrão

Grupo I

R 19,3429 17,1150 21,5707 23,0000 2,0000 39,0000 9,3435
P 0,7384 0,7100 0,7669 0,7407 0,4468 0,9643 0,1192
V 0,2616 0,2331 0,2900 0,2593 0,0357 0,5533 0,1192
S 0,4603 0,4073 0,5134 0,5476 0,0476 0,9274 0,2224

Medmin 40,0346 37,4671 42,6020 42,0094 13,0007 51,0725 10,7675
Medmax 60,7300 58,8363 62,6237 59,4132 42,7426 83,0783 7,9420
Média 50,3823 48,4354 52,3292 51,0057 27,8717 64,1941 8,1652

Grupo II

R 23,38095 18,73111 28,03080 25,00000 2,00000 42,00000 10,21507
P 0,78553 0,74205 0,82900 0,75163 0,65099 0,97349 0,09552
V 0,21447 0,17100 0,25795 0,24837 0,02651 0,34901 0,09552
S 0,55590 0,44537 0,66642 0,59524 0,04762 1,00000 0,24281

Medmin 41,88568 38,71426 45,05711 43,14056 31,43686 53,47720 6,96718
Medmax 58,89039 56,32867 61,45212 58,16360 46,70680 68,60788 5,62776
Média 50,38804 48,09924 52,67684 50,31042 41,89556 61,04254 5,02818

4.4.2 Estimativa da Área da Figura

Um outro experimento foi feito com um grupo de 24 alunos da disciplina sistemas probabilísticos

da graduação em engenharia eletrônica da Universidade Federal de Pernambuco. O experimento está

baseado na edução de distribuições de probabilidade sobre a área da Figura 4.8.
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Figura 4.8: Figura que teve a área estimada pelo método de edução.
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A Figura 4.8 foi construída com uma área de 32cm2. Sendo assim escolheu-se os valores 25cm2 e

45cm2 para serem usados como limites do intervalo total que foi então particionado em 20 intervalos

elementares e 42 questões foram construídas seguindo as orientações de Nadler Lins (2000), Nadler

Lins e Campello de Souza (2001) e Campello de Souza (2007). O questionário apresentado aos alunos

encontra-se na Tabela 4.6. Para responder o questionário o indivíduo dever marcar 1 se acha mais

verossímil que a área da figura em cm2 esteja na faixa apresentada do lado esquerdo ou 0 caso

contrário.

Tabela 4.6: Questionário de edução da área da figura.

cm2 1|0 cm2 cm2 1|0 cm2

1 [25 − 35] [35 − 45] 22 [25 − 35] [40 − 45]

2 [25 − 33] [33 − 45] 23 [25 − 30] [30 − 40]

3 [25 − 37] [37 − 45] 24 [25 − 34] [35 − 40]

4 [25 − 38] [38 − 45] 25 [30 − 35] [36 − 45]

5 [25 − 32] [32 − 45] 26 [25 − 33] [35 − 40]

6 [25 − 39] [39 − 45] 27 [30 − 35] [37 − 45]

7 [25 − 31] [31 − 45] 28 [25 − 33] [33 − 37]

8 [25 − 34] [36 − 45] 29 [33 − 37] [37 − 45]

9 [27 − 35] [35 − 45] 30 [33 − 41] [41 − 45]

10 [25 − 35] [35 − 43] 31 [25 − 29] [33 − 41]

11 [25 − 30] [30 − 45] 32 [30 − 35] [40 − 45]

12 [25 − 40] [40 − 45] 33 [25 − 30] [30 − 35]

13 [26 − 34] [36 − 45] 34 [30 − 35] [35 − 40]

14 [25 − 34] [36 − 44] 35 [25 − 30] [35 − 40]

15 [25 − 33] [37 − 45] 36 [25 − 30] [40 − 45]

16 [27 − 34] [36 − 44] 37 [35 − 40] [40 − 45]

17 [26 − 34] [36 − 43] 38 [31 − 35] [35 − 39]

18 [30 − 40] [40 − 45] 39 [25 − 27] [39 − 45]

19 [25 − 35] [35 − 40] 40 [25 − 31] [43 − 45]

20 [30 − 35] [35 − 45] 41 [29 − 31] [39 − 41]

21 [25 − 30] [35 − 45] 42 [25 − 27] [43 − 45]
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A Tabela 4.7 mostra as estatísticas descritivas da quantidade de questões respondidas (R), precisão

(P ), vagueza (V ), inferencial skill (S) e as médias, minima, máxima e média das duas anteriores.

Pode-se ver que a média das médias fornecidas pelo modelo foi de 32, 47cm2 e sabe-se que a figura foi

contruída com área de 32cm2

Tabela 4.7: Estatística descritiva dos construtos para o experimento da área da figura.

Média Lim. de Conf. In-
ferior {95%}

Lim. de Conf. Su-
perior {95%}

Mediana Min Máx Desvio Padrão

R 19,2917 17,5867 20,9966 20,0000 9,0000 27,0000 4,0376
P 0,6861 0,6482 0,7240 0,6884 0,5244 0,8089 0,0898
V 0,3139 0,2760 0,3518 0,3116 0,1911 0,4756 0,0898
S 0,4592 0,4186 0,4997 0,4762 0,2136 0,6399 0,0960

Medmin 29,3741 28,1142 30,6339 30,5753 25,7507 33,8079 2,9836
Medmax 35,5595 34,7467 36,3724 35,0453 33,0909 39,8707 1,9250
Média 32,4668 31,4644 33,4692 32,9324 29,4208 36,8393 2,3738

4.4.3 Estimativa do Comprimento da Linha

Um outro experimento foi feito com o mesmo grupo de 24 alunos da disciplina sistema probabilístico

da graduação em engenharia eletrônica. O experimento está baseado na edução de distribuições de

probabilidade sobre o comprimento da linha da Figura 4.9.
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Figura 4.9: Figura que teve o comprimento estimada pelo método de edução.

A Figura 4.9 foi construída com comprimento de 13, 9cm. Sendo assim escolheu-se os valores 6cm

e 20cm para serem usados como limites do intervalo total que foi então particionado em 20 intervalos

elementares e 42 questões foram construídas seguindo as orientações de Nadler Lins (2000), Nadler
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Lins e Campello de Souza (2001) e Campello de Souza (2007). O questionário apresentado aos alunos

encontra-se na Tabela 4.8. Para responder o questionário o indivíduo dever marcar 1 se acha mais

verossímil que a comprimento da figura em cm esteja na faixa apresentada do lado esquerdo ou 0

caso contrário.

Tabela 4.8: Questionário de edução da comprimento da linha.

cm 1|0 cm cm 1|0 cm

1 [6 − 13] [13 − 20] 22 [6 − 13] [16, 5 − 20]

2 [6 − 11, 6] [11, 6 − 20] 23 [6 − 9, 5] [9, 5 − 16, 5]

3 [6 − 14, 4] [14, 4 − 20] 24 [6 − 12, 3] [13 − 16, 5]

4 [6 − 15, 1] [15, 1 − 20] 25 [9, 5 − 13] [13, 7 − 20]

5 [6 − 10, 9] [10, 9 − 20] 26 [6 − 11, 6] [13 − 16, 5]

6 [6 − 15, 8] [15, 8 − 20] 27 [9, 5 − 13] [14, 4 − 20]

7 [6 − 10, 2] [10, 2 − 20] 28 [6 − 11, 6] [11, 6 − 14, 4]

8 [6 − 12, 3] [13, 7 − 20] 29 [11, 6 − 14, 4] [14, 4 − 20]

9 [7, 4 − 13] [13 − 20] 30 [11, 6 − 17, 2] [17, 2 − 20]

10 [6 − 13] [13 − 18, 6] 31 [6 − 8, 8] [11, 6 − 17, 2]

11 [6 − 9, 5] [9, 5 − 20] 32 [9, 5 − 13] [16, 5 − 20]

12 [6 − 16, 5] [16, 5 − 20] 33 [6 − 9, 5] [9, 5 − 13]

13 [6, 7 − 12, 3] [13, 7 − 20] 34 [9, 5 − 13] [13 − 16, 5]

14 [6 − 12, 3] [13, 7 − 19, 3] 35 [6 − 9, 5] [13 − 16, 5]

15 [6 − 11, 6] [14, 4 − 20] 36 [6 − 9, 5] [16, 5 − 20]

16 [7, 4 − 12, 3] [13, 7 − 19, 3] 37 [13 − 16, 5] [16, 5 − 20]

17 [6, 7 − 12, 3] [13, 7 − 18, 6] 38 [10, 2 − 13] [13 − 15, 8]

18 [9, 5 − 16, 5] [16, 5 − 20] 39 [6 − 7, 4] [15, 8 − 20]

19 [6 − 13] [13 − 16, 5] 40 [6 − 10, 2] [18, 6 − 20]

20 [9, 5 − 13] [13 − 20] 41 [8, 8 − 10, 2] [15, 8 − 17, 2]

21 [6 − 9, 5] [13 − 20] 42 [6 − 7, 4] [18, 6 − 20]
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A Tabela 4.9 mostra as estatísticas descritivas da quantidade de questões respondidas (R), precisão

(P ), vagueza (V ), inferencial skill (S) e as médias máxima, minima e a média de ambas. Pode-se ver

que a média das médias fornecidas pelo modelo foi de 12, 8cm e sabe-se que a figura foi contruída com

comprimento de 13, 9cm

Tabela 4.9: Estatística descritiva dos construtos para o experimento do comprimento da figura.

Média Lim. de Conf. In-
ferior {95%}

Lim. de Conf. Su-
perior {95%}

Mediana Min Máx Desvio Padrão

R 16,00000 13,75867 18,24133 16,00000 6,00000 26,00000 5,307910
P 0,71653 0,67909 0,75396 0,69021 0,52119 0,86458 0,088659
V 0,28347 0,24604 0,32091 0,30979 0,13543 0,47881 0,088659
S 0,38045 0,32719 0,43371 0,38095 0,14286 0,61905 0,126131

MedMin 10,82437 10,10011 11,54864 11,33336 6,52522 13,60340 1,715194
MedMax 14,70355 14,15591 15,25120 14,64345 12,34749 18,78854 1,296931
Media 12,76396 12,17921 13,34871 12,74331 9,43635 15,90776 1,384803

4.4.4 Aplicação em Cardiologia

Em Silva (2002) o protocolo de edução foi aplicado a dois cardiologistas com o intuito de medir o seu

conhecimento a priori a respeito da pressão sistólica (PS) e pressão diastólica (PD) de um indivíduo.

Neste trabalho estendeu-se o experimento utilizando o conceito de pressão de pulso e os especialistas

foram tiveram sua habilidade inferencial comparada por meio do inferential skill. O primeiro médico

é um jovem cardiologista (especialista 1), um estudante de mestrado em medicina. O segundo médico

é um cardiologista experiente (especialista 2), professor de cardiologia do Departamento de Medicina

Clínica da Universidade Federal de Pernambuco. Aos dois especialistas foi dada a mesma evidência no

que diz respeito às características de um indivíduo fictício:

Sexo masculino, 46 anos de idade, índice de massa corpórea de 27 kg/m2, não é fu-

mante, é policial com segundo grau completo, não tem queixas de saúde e foi escolhido

aleatoriamente entre os indivíduos da sua cidade com características similares.

As perguntas do questionário de edução dizem respeito as pressões sistólicas (PS) e diastólica (PD)

desse indivíduo. O protocolo de edução segue a mesma estrutura do protocolo presente em (Nadler Lins

& Campello de Souza, 2001). Para a pressão sistólica foi estabelecido um valor mínimo de 90 mm Hg e

um valor máximo de 190 mm Hg, e para a pressão diastólica (PD) também foram estabelecidos valores

mínimo e máximos de 40 mm Hg e 100 mm Hg respectivamente.
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Diferentemente da edução apresentada em (Nadler Lins & Campello de Souza, 2001), onde apenas a

PS foi considerada, no presente trabalho o desconhecido estado da natureza é um vetor no subconjunto

do espaço Euclidiano R
2. Para aplicar a programação linear baseada no método de edução, o retângulo

PS×PD foi dividido em 20 células denominadas θj , j = 1, 2, . . . , 20, como mostrado na Figura 4.10.

Por exemplo, θ10 = [170 − 190, 55 − 70].

θ1 θ2 θ3 θ4 θ5

θ6 θ7 θ8 θ9 θ10

θ11 θ12 θ13 θ14 θ15

θ16 θ17 θ18 θ19 θ20

90 110 130 150 170 190

40

55

70

85

100

PS

PD

Figura 4.10: Estado da Natureza

Pode-se notar que os θj ’s não são naturalmente ordenados como acontece no caso unidimensional.

Para atribuição dos cj ’s, foi utilizada a noção de pressão de pulso (PP) que é a diferença entre

a PS e a PD. É conhecido na fisiologia que a pressão sistólica (PS) é sempre maior que a pressão

diastólica (PD). Em cada célula θj ( com exceção do θ16 ) o valor da PS é sempre maior do que

o valor da PD. Essa é uma condição lógica necessária para a dinâmica cardiovascular. Note que a

pressão de pulso é uma variável aleatória unidimensional e naturalmente ordenável e cada θj aqui

corresponde à média da pressão de pulso. A aplicação que está sendo feita não deve ser entendida

como uma tentativa de generalizar o método apresentado em (Nadler Lins & Campello de Souza,

2001) para o caso bidimensional. O fato é que, neste contexto, os médicos pensam melhor em termos

de ambas as pressões, PS e PD. Quando se reduz o problema para o caso de uma variável, de fato

está-se trabalhando essencialmente com o mesmo caso unidimensional presente em (Nadler Lins &

Campello de Souza, 2001) e (Nadler Lins, 2000).

Ao reduzir-se a variável bidimensional (PS e PD) para uma variável unidimensional (PP) deve-se

mencionar que os médicos estão cientes que existe essa correlação entre a PS e a PD e os mesmos

levam isso em consideração quando respondem ao questionário (além disso essa correlação varia com

a idade). Além disso, a PP é um importante indicador da saúde cardiovascular. A pressão de pulso
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(PP) foi discretizada tomando o valor médio da PD e da PS por exemplo, θ8 corresponde a pressão de

pulso 140.0 − 62.5 = 77.5 mm Hg (veja Figura 4.10).

Os cardiologistas responderam ao questionário independentemente um do outro. Este experimento

foi realizado e seus resultados foram analisados em (Silva, 2002), onde são apresentadas muitas apli-

cações de teoria da decisão em cardiologia.

Algumas das questões apresentadas aos cardiologistas são mostradas na Tabela 4.10, onde cada

pergunta são comparações de probabilidade da PS e da PD estarem em um ou outro de dois grupos,

os quais são formados por intervalos da PS e PD. A primeira pergunta, por exemplo, é a seguinte:

Qual é mais provável, que a PS deste indivíduo esteja entre 90mmHg e 190mmHg e

PD entre 40mmHg e 70mmHg ou que a PS esteja entre 90mmHg e 190mmHg e PD entre

70mmHg e 100mmHg?

Caso o cardiologista ache que é mais provável que as pressões sistólica e diastólica encontrem-se

no primeiro grupo, ele deve colocar 1 na coluna do meio e, caso ache que as pressões encontram-se no

segundo grupo deverá colocar 0 na coluna do meio.

Tabela 4.10: Questionário de Edução.
[PS, PD] 1|0 [PS, PD]

1 [90 − 190, 40 − 70] [90 − 190, 70 − 100]
2 [90 − 150, 40 − 100] [150 − 190, 40 − 100]
3 [90 − 130, 40 − 100] [130 − 190, 40 − 100]
4 [90 − 190, 40 − 70] [110 − 190, 70 − 100]
5 [90 − 170, 40 − 70] [90 − 190, 70 − 100]
...

...
...

42 [110 − 130, 55 − 70] [150 − 170, 70 − 85]

Resultados da Aplicação

As evidências postas a disposição dos cardiologistas foram propositadamente escassas. O primeiro

especialista (o jovem cardiologista) foi consistente apenas nas 17 primeiras questões obtendo assim

uma vagueza de 18.75%. O cardiologista mais experiente foi consistente em 31 das 42 questões do

questionário de edução e obteve uma vagueza de 26.50%. Os resultados do problema de programação

linear são mostrados nas Figura 4.11 e Figura 4.12.
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Figura 4.11: Resultado da Edução do Especialista 1.
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Figura 4.12: Resultado da Edução do Especialista 2.

Era de se esperar que o cardiologista mais experiente tivesse uma vagueza menor que o especialista

mais jovem, porém o resultado numérico obtido foi de encontro ao que se esperava. A escassez de

evidência exposta aos especialistas não poderia ser suficiente para se obter uma família de distribuições

de probabilidade “estreita”. No entanto o cardiologista mais jovem obteve uma vagueza realmente

menor que a do cardiologista mais experiente. Porém conseguir essa menor vagueza sendo consistente

em apenas 17 das 42 questões, enquanto que o cardiologista mais experiente foi consistente em 31

questões no entanto com uma vagueza maior.

Na presente aplicação o cardiologista mais experiente obteve um S = 0.72 e o cardiologista menos

experiente um S = 0.36. O fato das duas distribuições do cardiologista mais jovem se tocarem pode

ser um forte indicador que o mesmo fixou sua atenção em um certo θj, criando um mecanismo de

ancoragem psicológica.
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Comparação com a Base de Dados

Os resultados obtidos da eduação de cada especialista foi comparado com dados provenientes de

uma amostra da população brasileira com 2129 indivíduos. Nenhum dos especialistas teve acesso a base

de dados. Selecionando um subconjunto dessa amostra contendo indivíduos com aproximadamente as

mesmas características do indivíduo descrito aos dois especialistas, foi obtida a familia de distribuição

de probabilidade presente na Figura 4.13. Os dados foram usados para responder o mesmo questionário

de edução. A base de dados foi consistente em todas as questões, obtendo uma vagueza de 42.5% com

um inferential skill de 0.88.

O cardiologista mais experiente e a base de dados tiveram uma concordância de 50% enquanto que

o cardiologista menos experiente e a base de dados apresentaram uma concordância de 22.50%.
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Figura 4.13: Resultados da Edução com a Base de Dados.

É importante deixar claro que os especialistas tiveram a informação de que o indivíduo era um

policial. Enquanto que, a base de dados não continha essa informação.

Não foi dito ao especialista se o indivíduo dispunha de uma boa ou má condição de saúde. Foi

dito apenas que o indivíduo não tinha nenhuma queixa de saúde. Por sua vez, os indivíduos na base

de dados foram selecionados aleatoriamente em lugares públicos, e não tinham problemas cardíacos

explícitos. A base de dados foi usada apenas para checar se não havia grande discrepância entre as

probabilidades obtidas por meio dos especialistas e as provenientes desta base de dados. Os valores

mostrados nas Figuras 4.14, 4.15 e 4.16 não mostram grande discrepância.
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Figura 4.14: Especialista 1
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Figura 4.15: Especialista 2
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Figura 4.16: Base de Dados

É razoável admitir que o conhecimento do especialista mais experiente é maior que o obtido de uma

amostra de 115 indivíduos (quantidade de indivíduos na amostra de 2129 que satisfazem as descrições

do indivíduo descrito aos cardiologistas). O cardiologista mais experiente conseguiu atribuir massa
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probabilística a um maior número de eventos (pressão sanguínea). Isto é um forte indício de que

seria necessária uma amostra muito maior para que a base de dados pudesse dar a mesma informação

que o especialista informou. Isto é um dos grande motivos que torna tão importante a utilização do

conhecimento de especialistas nos processos decisórios.

4.5 O Caso Aleatório

O caso aleatório se dá quando dispõe-se de dados que guardam informações a respeito do parâmetro

de interesse θ. Esses dados podem ser diretamente sobre o próprio θ; caso onde se tem amostras de θ.

Quando isso ocorre responder ao questionário tornasse uma tarefa simples e de acordo com o tamanho

da amostra disponível ter-se-á uma vagueza maior ou menor. Quando a amostra for pequena algumas

das perguntas do questionário deixarão de ser respondidas o que acarretará uma maior vagueza. Já

para um tamanho de amostra maior todas as perguntas serão respondidas e de acordo com a lei dos

grandes números quanto maior for a mesma, mais próxima da distribuição real será a distribuição

obtida pelo método o que proporcionará uma vagueza mínima.

Quando não existe informação direta sobre θ usa-se dados que são relacionados com θ pela função

de verossimilhança P (x|θ). Neste caso as restrições dos dois problemas de programação linear serão

diferentes. Além das restrições que garantem que πj siga uma distribuição de probabilidade ter-se-á

ainda a mais um conjunto de 2n restrições. Os problemas de otimização serão:

Max
πj

(Min)

2n∑
j=1

cjπj (4.5.1)

sujeito a:

πj ≥ 0, j = 1, 2, . . . , 2n (4.5.2)

2n∑
j=1

πj = 1 (4.5.3)

1

P (x|θj)
πj ≤

1

Max
θj

P (x|θj)
, j = 1, 2, . . . , 2n (4.5.4)

Caso um determinado θj tenha seu valor bem diferente do valor de θ que corresponde ao máximo de

verossimilhança isto será refletido num valor de P (x|θj) pequeno e conseqüentemente o valor de 1
P (x|θj)
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no problema de programação linear será grande. O problema de maximização escolherá portanto um

valor pequeno para πj . Quando θj corresponder ao máximo de verossimilhança 1
P (x|θj)

assumirá seu

menor valor. A maximização fará com que o valor de πj seja o maior possível neste caso. Para o pro-

blema de minimização ocorrerá o contrário. Com o aumento do tamanho da amostra das observações,

x, o valor de πj irá aumentar e a massa probabilística irá se concentrar em torno do θj referente ao

máximo de verossimilhança.

O Caso Binomial

A função distribuição binomial é da por:

P (x|θ) =

(
n

x

)
θx (1 − θ)n−x (4.5.5)

O máximo de verossimilhança para essa distribuição ocorre em θ =
x

n
(freqüência relativa)= θ̂.

Como pode ser visto nos cálculos a seguir:

d P (x|θ)

d θ
=

(
n

x

)
θx(1 − θ)n−x

[
x θ−1 − (n − x)(1 − θ)−1

]
= 0

x

θ
−

(n − x)

(1 − θ)
= 0

θ =
x

n

O valor máximo de P (x|θ) é:

Max
θ

P (x|θ) =
n!

x!(n − x)!

xx(n − x)n−x

nn
(4.5.6)

Quando θj é bem diferente de
x

n
, P (x|θj) decresce e conseqüentemente os coeficientes aij da matriz

“tecnológica” aumentam. E como dito anteriormente o problema de maximização fará com que o valor

de πj seja o maior possível neste caso.

4.6 Caso sem Variável Aleatória

A forma como vem sendo abordado até agora o problema de edução leva em consideração a existên-

cia de uma variável aleatória. Dessa forma faz sentido usar a função de distribuição como base para a
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elaboração dos construtos vagueza, concordância, conflito, etc. uma vez que o eixo dos θ′s é ordenado.

Para o caso geral admite-se que existe um número finito n de eventos, representados por θ1, θ2, . . . , θn

e cujas probabilidades são, respectivamente, π1, π2, . . . , πn. No caso geral a ordem dos eventos não é re-

levante, sendo assim os construtos vagueza, concordância e conflito não podem depender dessa ordem,

mais detalhes podem ser encontrados em (Campello de Souza, 2007b).

Para resolver esse tipo de problema é conveniente usar como funcional objetivo a função entropia

que não depende que o conjunto dos θ′s seja ordenado. Por definição a entropia é representada por

H = −
n∑

j=1

πj log πj

Para πj = 0 a quantidade πj log πj é definida como sendo zero.

Usando a entropia como funcional objetivo o problema de otimização agora passa a ser um pro-

blema de programação não linear. Onde, tal função é interpretada como a quantidade de incerteza da

distribuição de probabilidade.

Na solução deste tipo de problema são usadas as condições de Karush-Kuhn-Tucker que são

condições necessárias e suficientes para um ótimo local desde que a função objetivo seja (estrita-

mente)côncava e as funções de restrição sejam convexas (detalhes em (Intriligator, 1971)). A entropia

e as restrições 4.6.2 são côncavas e convexas respectivamente o que torna possível encontrar uma solução

para o problema.

O problema será formulado da mesma forma que antes. As diferenças são que agora tem-se a

entropia como funcional objetivo e pode-se ter um número par ou ímpar de eventos.

Max
πj

n∑
j=1

−πj log πj (4.6.1)

sujeito a:

aik

k∑
j=i

πj − alm

m∑
j=l

πj ≤ bs (4.6.2)

(ou ≥ bs dependendo da resposta do especialista)

πj ≥ 0, j = 1, 2, . . . , n (4.6.3)
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n∑
j=1

πj = 1 (4.6.4)

Os construtos vagueza, concordância, conflito, etc. de acordo com (Campello de Souza, 2007b) não

dependerão do funcional objetivo e sim das relações entre a região do conjunto viável do problema

de otimização com a região do simplex. O problema de otimização será resolvido e ter-se-á uma

distribuição de probabilidade que será utilizada no problema de decisão, sabendo-se que o especialista

terá uma vagueza associada que dependerá das suas respostas ao protocolo de edução. Para calcular

esta vagueza pode-se usar diretamente o volume do conjunto viável, que não é uma tarefa das mais

simples, e uma outra maneira de fazer esse cálculo é por simulação probabilística que permite não só

calcular a vagueza como todos os construtos. Mais detalhes e algumas aplicações podem ser encontrados

em (Campello de Souza, 2007b), (Silva, 2002) e (Moraes, 2003).

Caso o especialista não consiga responder a nenhuma pergunta do questionário a sua vagueza será

máxima e a solução do problema de otimização será o ponto π1 = π2 = · · · = πn = 1
n

para mais

detalhes (Berger, 1985). Ou seja, a solução será a distribuição uniforme.

Então, por exemplo, no caso com três eventos a vagueza será determinada por:

V =
Área do corpo de evidência

Área do simplex

As Restrições 4.6.3 e 4.6.4 garantem que o conjunto viável do problema de otimização está contido

no simplex da Figura 4.17. A Figura 4.18 apresenta o simplex com alguns corpos de evidência que

são provenientes das respostas dos especialistas. Por exemplo, a região E na Figura 4.18 representa as

respostas do especialista E e assim sucessivamente para quantos especialistas se esteja trabalhando.

Um Exemplo com Três Eventos

No caso da última eleição para presidente da república considerou-se três possíveis candidatos:

• θ1 = Lula

• θ2 = Alckmin

• θ3 = outros
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Figura 4.17: O conjunto simplex.
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Figura 4.18: O conjunto simplex com alguns corpos de evidência.

Neste problema o interesse é pela probabilidade de cada um dos possíveis candidatos ganhar a

eleição, ou seja qual o valor de π1, π2 e π3. Como tem-se apenas três possíveis θ′s pode-se colocar no

questionário de edução todas as possíveis perguntas, que são:
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a12π1 − a21π2 ≤ b1

a13π1 − a31π3 ≤ b2

a23π2 − a32π3 ≤ b3

a123π1 − a231(π2 + π3) ≤ b4

a213π2 − a132(π1 + π3) ≤ b5

a312π3 − a321(π1 + π2) ≤ b6

(4.6.5)

(ou ≥ bs dependendo da resposta do especialista).

O questionário de edução foi aplicado a um especialista que forneceu as seguintes respostas:

π1 − 2π2 ≥ 0.5

π1 − 20π3 ≥ 0

π2 − 10π3 ≥ 0

π1 − 1.5(π2 + π3) ≥ 0

π2 − 0.5(π1 + π3) ≤ 0.25

π3 − 4(π1 + π2) ≤ 0

(4.6.6)

Note-se que o especialista foi além de dizer se a razão de chances é maior ou menor que 1 uma vez

que o mesmo forneceu valores para aik, alm e bs. Suas respostas foram consistentes e resolvendo-se o

problema de programação não linear obteve-se a distribuição com entropia máxima a seguir:

Tabela 4.11: Distribuição de Entropia Máxima.
π1 π2 π3

0.8226 0.1613 0.0161

Com base nessas respostas simulações foram feitas para estimar o vagueza do especialista que foi

de 5.65 × 10−4 com uma variância associada de 4.86 × 10−10. As simulações foram feitas usando o

software MATLAB cujo os códigos produzidos encontram-se nos anexos.

Com o intuito de verificar o impacto na vagueza do especialista quando o mesmo só consegue

informar se a razão de chances é maior ou menor que 1 omitiu-se os valores dados pelo mesmo, ou seja

considerou-se os aik = alm = 1 e bs = 0. Desta forma a distribuição com máxima entropia fornecida
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pelo especialista foi a seguinte:

Tabela 4.12: Distribuição de Entropia Máxima 2.
π1 π2 π3

0.5 0.25 0.25

Com uso de simulações estimou-se a vagueza para esta situação que foi de 0.07 com uma variância

de 6.16 × 10−8.
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5 O Uso do Modelo de Programação

Matemática na Inferência Estatística

“By chance, I mean the same as probability.”

Thomas Bayes

5.1 Algumas Considerações sobre o Questionário

O questionário, fruto de pesquisas sobre novos métodos para se eduzir uma família de distribuições

a priori de um especialista, tem como uma das características principais o fato de não pretender ser

“preciso demais”; seria uma incongruência se assim não o fosse. O conhecimento a priori, por melhor

que seja, tem sempre um grau de vagueza. Há que se abandonar o dogma bayesiano da precisão. Isto

se manifesta de várias formas:

• O tamanho do menor subintervalo considerado é de 5% do tamanho total do intervalo expresso

pelo especialista, isto é, [θmin, θmax]. Admite-se que nenhum especialista possa ser tão preciso a

ponto de especificar ou comparar probabilidades de eventos com essa precisão. Não faz sentido

admitir densidades de probabilidade com picos pontiagudos; seria uma precisão não condizente

com a evidência (dados, inputs) disponíveis que são, nessa área de pesquisa, supostos escassos.

Isto significa que se espera, no melhor dos casos, ter-se uma vagueza mínima. Tem-se, pois, uma

vagueza mínima, irredutível; ou seja, uma precisão máxima, intransponível (P = 1 − V ).

• Nas perguntas ao especialista não se inclui nenhum intervalo de largura 5% do intervalo máximo.

O intervalo mais estreito que aparece nos questionários é de 10% do intervalo total especificado

pelo especialista.

Se o especialista não tem nenhuma noção de probabilidade, e se fixa num determinado valor do

parâmetro, a tendência é que ele afirme que se um dado intervalo contém esse valor e o outro da

comparação não o contenha, então o primeiro intervalo é mais provável do que o primeiro. Isto pode

acontecer seja no caso de variável aleatória, seja no de eventos que não são representados por variáveis

aleatórias. O que vai acontecer nesses casos é que o especialista não consegue responder a todas as
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perguntas do questionário, pois vai-se chegar logo a uma inconsistência, isto é, o conjunto viável do

problema de programação linear torna-se logo vazio. Este fenômeno é o que se chama de ancoragem

psicológica (Campello de Souza (1993)). Em muitos casos não se consegue responder nem metade

das perguntas do questionário. Rodando-se o modelo com as perguntas consistentes (da primeira

até aquela, exclusive, que provocou a inconsistência, lembrando que a dificuldade das perguntas é

progressiva), o resultado é que a vagueza pode se tornar artificialmente pequena (vagueza pequena

baseada em input escasso significa inadequação do especialista, como medida pelo inferential skill).

As funções de distribuição máxima e mínima podem inclusive se cruzar (Silva & Campello de Souza,

2005).

O especialista quanto mais consciente, melhor. Sabe que a partir de uma fonte “rala” de fatos não

pode fazer afirmações que levem a uma família “estreita” de distribuição de probabilidades. Isto se

manifesta nos resultados por uma vagueza maior e um inferential skill maior. Noutras palavras, há

que se admitir uma amplitude maior de possibilidades.

5.2 O Questionário sendo respondido por Dados

O questionário derivado do modelo de programação matemática para representar e calcular a incer-

teza, introduzido por Campello de Souza (1993), pode ser respondido a partir de dados de experimentos

ou observacionais. O racional é o mesmo. O modelo será útil para se fazer afirmações probabilísticas

sobre o parâmetro, θ, a partir de dados; dentro do paradigma freqüentista da probabilidade.

O procedimento é direto.

1. Identifica-se o mínimo e o máximo da amostra (ou o valor mínimo e o máximo do parâmetro

para o fenômeno, se for conhecido).

2. Divide-se o intervalo entre o mínimo e o máximo em vinte partes iguais, definindo-se pois θ1, θ2,

. . . , θ20. O questionário é então montado automaticamente.

3. Responde-se a cada pergunta do questionário em função do número de observações que caem em

cada um dos dois intervalos não superpostos que constituem cada pergunta de comparação.

Se a amostra for pequena, não serão respondidas, tipicamente, todas as perguntas. Ter-se-á então

uma vagueza compatível com uma amostra pequena. Esta é a idéia central. Se o “fenômeno” for
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determinístico, isto é, todos os pontos (observações) da amostra forem iguais, e se se tentar responder

ao questionário com esses pontos, o resultado é que estes pontos não conseguirão responder a todas

as perguntas do questionário. Apenas um subconjunto pequeno das questões é que serão respondidas

consistentemente (isto é, o conjunto viável não será vazio). Ter-se-á então, tipicamente, uma vagueza

grande (contrariamente ao que se poderia, erroneamente, esperar, e um inferential skill pequeno. É

exatamente o análogo ao caso da ancoragem psicológica, no caso da probabilidade subjetiva. Se a

amostra for pequena, mas o fenômeno for mesmo probabilístico, isto é, tenha incerteza embutida,

esta variabilidade emergirá nos dados (na amostra). Conseguir-se-á então responder a um número de

questões maior do que no caso da “amostra determinística”, embora ainda pequena, o que é plausível.

Afinal de contas, a amostra é pequena. Ter-se-á então uma vagueza compatível, e o inferential skill

será maior.

Devido à “granulação”, ou tamanho mínimo do questionário, veja o que acontece quando a “amostra”

é determinística (Figura 5.1)
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Figura 5.1: Exemplo de fenômeno determinístico.

Quando aparecer, nos resultados do modelo de programação linear, um gráfico parecido com o

da Figura 5.1, o que provavelmente aconteceu foi que a “amostra” era “determinística” demais para a

“rede” do questionário.

Tenha-se em mente então o seguinte. No caso de uma “amostra” determinística, ou numa amostra de
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pequena variabilidade dentro de um subintervalo pequeno do intervalo global, vai ocorrer esse fenômeno

da “ancoragem psicológica” (seja no caso subjetivo, seja no freqüentista). Ter-se-ia que ter então um

questionário com o maior número possível de perguntas. O número total de perguntas que podem ser

construídas com os 2n subintervalos é representado por:

q =
2n−1∑
j=1

C(2nj+1),2.

Mesmo que o número de perguntas consistentemente respondidas fosse uma fração pequena do número

total máximo de perguntas possíveis, obter-se-ia uma vagueza muito pequena. Pode-se portanto imple-

mentar um modelo assim, inclusive com um número bem maior de intervalos. O esforço computacional

seria, no entanto, formidável. Mesmo no caso de vinte intervalos, ter-se-ia 7315 restrições no modelo

de programação linear, o que representaria um grande esforço computacional.

Mas não é este o interesse do método. Baixa variabilidade e grandes amostras são casos bem re-

solvidos por métodos clássicos. Ainda assim, o método novo seria útil na combinação de corpos de

evidência, evitando os conhecidos problemas da regra de Bayes (dogma da precisão, conflito verossimi-

lhança – distribuição a priori, por exemplo). O questionário está portanto, calibrado para um mínimo

de variabilidade. Pode-se pensar, por exemplo, em termos do Quincunx de Galton. Se o diâmetro dos

pinos for igual ao diâmetro das bolas, e a distância entre os pinos for muito maior do que o seu diâme-

tro, as bolinhas vão cair praticamente todas dentro de um mesmo slot. O Quincunx não responderá a

todas as perguntas do questionário. Muitos slots ficarão vazios.

Figura 5.2: O quincunx de Francis Galton.
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A comparação do questionário com o Quincunx é que aquele é para inferência, enquanto este é

para implementar fisicamente mecanismos probabilísticos. Alterando-se a disposição dos pinos, no

Quincunx pode-se simular várias distribuições. Existem modelos com uma gaveta para cada uma de

uma série de distribuições. Então o Quincunx é um gerador de distribuições. Ele mimetiza mecanismos

probabilísticos. O questionário é um “detetor” de distribuições. Neste caso, as bolas não caem apenas

de um funil, como no Quincunx, numa posição única. No questionário é como se as bolas dos slots

estivessem sendo derramadas (os slots de cabeça para baixo), caindo mais bolas em certas regiões do

intervalo do que em outras. A matemática do modelo de programação matemática seria como que

uma “pinagem”, que recolocaria as bolinhas na sua posição original antes de serem derramadas. As

bolinhas cairiam de todo o travessão horizontal superior deste hipotético Quincunx reverso, com uma

distribuição a ser inferida. Se não houver uma “pinagem” adequada (questionário) as bolinhas podem

distorcer a distribuição original (desconhecida!).

5.3 A Média Estimada pelo Modelo de Programação Matemática

comparada com a Média obtida pela Freqüência Relativa

Foi feito um estudo para comparar a média estimada pelo modelo de programação linear com a

média proveniente da freqüência relativa. Neste estudo, é bom que fique claro que está-se pensando no

caso em que se dispõe de dados diretos sobre θ, o que é conhecido na inferência bayesiana como “Bayes

Empiríco com o professor”, cujo procedimento para estimação de π(θ) consiste em obter observações

identicamente distribuídas (iid) da variável de interesse θ, e a partir destas observações uma estimação

de π(θ) é obtida por meio da freqüência relativa.

Para fazer esta avaliação, foram geradas amostras de distribuições de médias conhecidas. Escolheu-

se a distribuição beta por apresentar uma maior flexibilidade para representar uma grande variedade

de possíveis distribuições sobre θ’s. Algumas propriedades dessa distribuição são:

Valor esperado =
α

α + β

Variância =
αβ

(α + β)2(α + β + 1)

Foram consideradas três situações:
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• Distribuição Simétrica.

• Distribuições com assimetria para direita.

• Distribuições com assimetria para esquerda.

Em todos os casos foi construída uma base de dados com 50 variáveis, X1,X2, . . . ,X50, seguindo

uma distribuição beta com parâmetros α e β conhecidos. Com base nesses parâmetros as médias das

distribuições foram calculadas. Uma particularidade desta distribuição é que os valores gerados por

ela encontram-se entre zero e um. Sendo assim os valores máximo e mínimo serão zero e um, que irão

determinar o intervalo a ser particionado como descrito na Seção 5.2. Com os dados dessas variáveis,

respondeu-se ao questionário para diferentes tamanhos de amostra, 2, 5, 10, 15, e 25, respectivamente.

5.3.1 Situação 1: Distribuição Simétrica

Para tratar o caso de distribuições simétricas foi escolhida uma distribuição beta com α = 4 e

β = 4. Para esses parâmetros a distribuição tem média 0,5 e variância 0,028. Em seguida respondeu-se

ao questionário com os diferentes tipos de amostra. A média da distribuição obtida pelo questionário

foi comparada com a média da freqüência relativa, a Tabela 5.1 mostra essa comparação. A média

da distribuição obtida pelo questionário foi calculada usando-se a expressão
∑2n

j=1 θjπj (esta foi a

expressão usada em todos os experimentos desta Seção).

Tabela 5.1: Teste t comparando a diferenças das médias do modelo e da freqüência relativa para beta
de parâmetros (4,4).

N Méd. Mod Med. Freq t-value df p Std Dev Mod Std Dev Freq F-ratio Variances p Variances
2 0,579435 0,533216 1,863151 98 0,065436 0,119887 0,128047 1,140769 0,646630
5 0,533435 0,524377 0,552764 98 0,581684 0,077105 0,086497 1,258455 0,423927
10 0,522187 0,510900 0,917252 98 0,361262 0,061538 0,061516 1,000698 0,998061
15 0,507473 0,502261 0,619002 98 0,537351 0,041750 0,042446 1,033596 0,908394
25 0,508795 0,503740 0,634943 98 0,526945 0,043257 0,036022 1,441981 0,203718

O teste-t mostrou que as diferenças entre as médias não foram significativas e pode-se ver na

Tabela 5.1 que a média do modelo converge para o valor da média estabelecido a priori a medida que

o tamanho da amostra aumenta. As Figuras 5.3, 5.4, 5.5, 5.6 e 5.7 mostram gráficos com a freqüência

acumulada das médias dos dois mecanismos, modelo de programação matemática e freqüência relativa.
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Figura 5.3: Freqüência acumulada dos dados dos dois métodos para N = 2 usando a distribuição
beta(4,4).
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Figura 5.4: Freqüência acumulada dos dados dos dois métodos para N = 5 usando a distribuição
beta(4,4).
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Figura 5.5: Freqüência acumulada dos dados dos dois métodos para N = 10 usando a distribuição
beta(4,4).
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Figura 5.6: Freqüência acumulada dos dados dos dois métodos para N = 15 usando a distribuição
beta(4,4).
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Figura 5.7: Freqüência acumulada dos dados dos dois métodos para N = 25 usando a distribuição
beta(4,4).

5.3.2 Situação 2: Distribuição Assimétrica para Direita

O procedimento anterior foi repetido agora para a distribuição beta com parâmetros α = 2 e β = 6

obtendo-se assim, uma distribuição de média 0,25 e variância 0,021. Os resultados dos teste-t estão na

Tabela 5.2

Tabela 5.2: Teste t comparando a diferenças das médias do modelo e da freqüência relativa para beta
de parâmetros (2,6).

N Med Mod Med Freq t-value df p Std.Dev. Mod Std.Dev. Freq F-ratio Variances p Variances
2 0,3582 0,2515 5,0226 98 0,0000 0,0935 0,1175 1,5804 0,1125
5 0,2968 0,2628 2,1744 98 0,0321 0,0818 0,0746 1,2013 0,5234
10 0,2892 0,2570 2,7977 98 0,0062 0,0669 0,0460 2,1130 0,0100
15 0,2575 0,2586 -0,1069 98 0,9151 0,0607 0,0394 2,3745 0,0030
25 0,2374 0,2523 -1,8937 98 0,0612 0,0485 0,0272 3,1791 0,0001

O teste-t mostrou que apenas a partir de amostras de tamanho 15 que o teste não deu significativo.

Analisando a Tabela 5.2 percebe-se que a média do modelo converge para média a priori no entanto há

uma discrepância com relação a média da freqüência relativa. Os gráficos das Figuras 5.8, 5.9, 5.10, 5.11

e 5.12 ilustram esse fato.
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Figura 5.8: Freqüência acumulada dos dados dos dois métodos para N = 2 usando a distribuição
beta(2,6).
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Figura 5.9: Freqüência acumulada dos dados dos dois métodos para N = 5 usando a distribuição
beta(2,6).
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Figura 5.10: Freqüência acumulada dos dados dos dois métodos para N = 10 usando a distribuição
beta(2,6).
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Figura 5.11: Freqüência acumulada dos dados dos dois métodos para N = 15 usando a distribuição
beta(2,6).
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Figura 5.12: Freqüência acumulada dos dados dos dois métodos para N = 25 usando a distribuição
beta(2,6).

5.3.3 Situação 3: Distribuição Assimétrica para Esquerda

O mesmo racional foi aplicado para a situação onde há assimetria para esquerda. Usou-se aqui os

parâmetro α = 6 e β = 2 obtendo-se assim, uma distribuição de média 0,75 e variância 0,021. Os

resultados dos teste-t estão na Tabela 5.3

Tabela 5.3: Teste t comparando a diferenças das médias do modelo e da freqüência relativa para beta
de parâmetros (6,2).

N Med Mod Med Freq t-value df p Std.Dev. Mod Std.Dev. Freq F-ratio Variances p Variances
2 0,7029 0,7508 -3,2948 98 0,0014 0,0579 0,0850 2,1569 0,0082
5 0,7035 0,7560 -5,5812 98 0,0000 0,0456 0,0482 1,1173 0,6994
10 0,7340 0,7569 -3,3831 98 0,0010 0,0346 0,0331 1,0932 0,7564
15 0,7293 0,7579 -4,0620 98 0,0001 0,0348 0,0357 1,0524 0,8589
25 0,7234 0,7557 -5,0155 98 0,0000 0,0324 0,0320 1,0256 0,9298

O teste-t mostrou-se significativo para todos os tamanhos de amostra avaliado. Analisando a

Tabela 5.3 percebe-se que a média do modelo converge para média a priori no entanto há uma discre-

pância com relação a média da freqüência relativa. Os gráficos das Figuras 5.13, 5.14, 5.15, 5.16 e 5.17

ilustram esse fato.
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Figura 5.13: Freqüência acumulada dos dados dos dois métodos para N = 2 usando a distribuição
beta(6,2).
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Figura 5.14: Freqüência acumulada dos dados dos dois métodos para N = 5 usando a distribuição
beta(6,2).
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Figura 5.15: Freqüência acumulada dos dados dos dois métodos para N = 10 usando a distribuição
beta(6,2).
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Figura 5.16: Freqüência acumulada dos dados dos dois métodos para N = 15 usando a distribuição
beta(6,2).
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Figura 5.17: Freqüência acumulada dos dados dos dois métodos para N = 25 usando a distribuição
beta(6,2).

Usou-se dois métodos distintos para estimar a média de uma distribuição de probabilidade. Faz

sentido então testar a concordância entre os métodos usando o teste de Bland e Altman (Bland &

Altman, 1999). O teste consiste em fazer o gráfico da média dos valores obtidos pelos dois métodos

pela diferença desses valores. Se 95% da amostra estiver contido dentro da faixa para a média daquelas

diferenças (mais ou menos 2 desvios-padrões) está caracterizada, então, a repetibilidade do método.

O teste foi feito para os diversos tamanhos de amostra usado para os três tipos de distribuição e foi

identificada a concordância entre os métodos. As Figuras 5.18, 5.19 e 5.20 a seguir apresentam os

resultados para as amostras de tamanho n = 2.
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Figura 5.18: Bland e Altman para as médias da distribuição beta (2,6).

Figura 5.19: Bland e Altman para as médias da distribuição beta (6,2).

89



Alane Alves Silva — Cap. 5 — O Uso do Modelo de Programação Matemática na Inferência Estatística

Figura 5.20: Bland e Altman para as médias da distribuição beta (4,4).

5.4 A “Correlação” entre duas Variáveis Aleatórias

A idéia é usar os construtos 1 do método para desenvolver novos construtos que possam expressar

algum tipo de conectividade parcial entre duas variáveis aleatórias, a exemplo da correlação de Pearson,

correlação de Spearman, informação mútua de Shannon, correlação tetracórica, etc.

Dadas duas amostras de duas variáveis aleatórias, deseja-se saber se existe algum tipo de relação,

mesmo parcial, entre elas. No caso de se suspeitar de uma relação linear subjacente, o construto

clássico é a correlação de Pearson:

r =
n

∑
xiyi − (

∑
xi)(

∑
(yi)√[

n
∑

x2
i − (

∑
xi)2

] [
n

∑
y2

i − (
∑

yi)2
] ·

5.4.1 O Construto Decidabilidade

Se a correlação de Pearson entre duas variáveis aleatórias, X e Y , for grande, imaginando-se que

elas estão no primeiro quadrante (senão coloque-se-as lá por uma transformação linear, o que não
1O filósofo e físico alemão Henry Margenau introduziu o termo “construto”. Trata-se de instrumentos mentais para se

levar a cabo uma investigação ou estudo. É uma imagem ou idéia inventada para um dado propósito de pesquisa. The
Nature of Physical Reality: A Philosophy of Modern Physics (1950) (Paperback) by Henry Margenau (Author).
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alterará a correlação), então a sua diferença, Y − X, será centrada em zero, isto é, terá uma média

zero, e uma pequena variância, e a sua relação, isto é, Y/X, terá uma média unitária e uma pequena

variância. As distribuições de probabilidade de Y −X e Y/X terão pois um grande conflito (K) e uma

pequena concordância (C).

Se a correlação de Pearson entre Y e X for diminuindo, o conflito entre Y −X e Y/X vai diminuindo

e a concordância também diminui. Pode-se então usar o construto decidabilidade para captar essa

associação parcial entre Y e X, mesmo a partir de amostras pequenas, por:

D = 1 − (K + VG) (5.4.1)

Para se verificar a plausibilidade dessa “correlação”, foi construída uma base de dados com 101

variáveis, Y , X1, X2, . . . , X100 de tal forma que a correlação entre Y e X1 é 1, 00 e vai diminuindo à

medida que se consideram as variáveis de X2 a X100. As correlações de Pearson de Y com todas as

Xi’s estão mostradas na Tabela 5.4.

Tabela 5.4: As correlações de Pearson de Y com todas as 100 Xi’s; amostra de tamanho 1000. São
estatisticamente significativas até a variável X46; a partir daí tem-se que p cresce de p = 0, 053 (i = 47)
até p = 0, 327 (i = 100).

Variável Correlação Variável Correlação Variável Correlação Variável Correlação
1 1,0000 26 0,1085 51 0,0567 76 0,0393
2 0,9343 27 0,1045 52 0,0557 77 0,0389
3 0,7954 28 0,1008 53 0,0547 78 0,0384
4 0,6591 29 0,0974 54 0,0537 79 0,0380
5 0,5499 30 0,0942 55 0,0528 80 0,0376
6 0,4666 31 0,0913 56 0,0520 81 0,0371
7 0,4031 32 0,0885 57 0,0511 82 0,0367
8 0,3537 33 0,0859 58 0,0503 83 0,0363
9 0,3146 34 0,0834 59 0,0495 84 0,0360

10 0,2830 35 0,0811 60 0,0487 85 0,0356
11 0,2571 36 0,0790 61 0,0480 86 0,0352
12 0,2354 37 0,0769 62 0,0473 87 0,0349
13 0,2171 38 0,0750 63 0,0466 88 0,0345
14 0,2015 39 0,0731 64 0,0459 89 0,0342
15 0,1879 40 0,0714 65 0,0453 90 0,0338
16 0,1761 41 0,0697 66 0,0447 91 0,0335
17 0,1656 42 0,0681 67 0,0441 92 0,0334
18 0,1564 43 0,0666 68 0,0435 93 0,0329
19 0,1481 44 0,0652 69 0,0429 94 0,0326
20 0,1407 45 0,0638 70 0,0423 95 0,0323
21 0,1340 46 0,0625 71 0,0418 96 0,0320
22 0,1280 47 0,0612 72 0,0413 97 0,0317
23 0,1224 48 0,0600 73 0,0408 98 0,0314
24 0,1174 49 0,0589 74 0,0403 99 0,0311
25 0,1127 50 0,0578 75 0,0398 100 0,0309
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Para uma dada variável Xi, quanto menor for o tamanho da amostra, a partir de um certo ponto,

a correlação estimada torna-se sem significância estatística, embora saiba-se, por construção, que a

correlação existe. Este “fenômeno” aparece mais rapidamente para valores menores da correlação, isto

é, para variáveis Xi de grandes valores de i (Tabela 5.4).

Nos cálculos feitos considerou-se uma faixa de correlações de Pearson de r > 0, 10 até r < 1, 0.

Nesta faixa, para a amostra de tamanho 1000, todas as correlações são estatisticamente significativas.

Com as novas variáveis Y − Xi e Y/Xi respondeu-se ao questionário usando os procedimentos

mencionados na Seção 5.2. Teve-se o cuidado de trazer todas as variáveis para o mesmo intervalo

usando uma transformação que guardasse as relações entre elas. A transformação usada foi a seguinte:

(Y/Xi)
T =

Y/Xi − (Y − Xi)min

(Y/Xi)max − (Y − Xi)min

(Y − Xi)
T =

Y − Xi − (Y − Xi)min

(Y/Xi)max − (Y − Xi)min

Com esta transformação todas as variáveis ficaram no intervalo [0, 1]. A média da diferença para a

Y −X2 foi de 0,18 e as médias para as demais diferenças (Y −Xi) foram aumentando com o aumento

de i, chegando a 0,338 para Y −X100. Para a relação, a média ficou em torno de 0,56 gradativamente

com o aumento de i.

Considerando-se as correlações entre Y e Xi, para i = 1, 2, . . . , 8, que são significativas (N = 1000),

pode-se estimá-las por um modelo de regressão em função da relação Decidabilidade para uma amostra

50 vezes menor (N = 20).

Tabela 5.5: Tabela para a construção do modelo de regressão para r em função da decidabilidade.
Variavel Correl20 Concord20 Conflit20 VagGlob20 D20 Correl1000 Concord1000 Conflit1000 VagGlob1000 D1000

1 1,00 0,191 0,0216 0,506 0,4724 1,0000 0,191 0,0216 0,506 0,4724

2 0,93 0,113 0,222 0,372 0,406 0,9342 0,113 0,222 0,372 0,406

3 0,80 0,245 0,132 0,273 0,595 0,7951 0,0299 0,192 0,363 0,445

4 0,69 0,176 0,138 0,229 0,633 0,6587 0,027 0,173 0,201 0,626

5 0,60 0,405 0,0646 0,209 0,7264 0,5495 0,0089 0,128 0,201 0,671

6 0,53 0,405 0,0646 0,209 0,7264 0,4662 0,0089 0,128 0,201 0,671

7 0,48 0,497 0,0647 0,188 0,7473 0,4026 0,0089 0,128 0,201 0,671

8 0,44 0,497 0,0647 0,188 0,7473 0,3533 0,0089 0,128 0,201 0,671

r1000 = 1, 700084 − 0, 95D20, R2 = 0, 90. (5.4.2)

O ponto a salientar é que o construto, D (decidabilidade, das variáveis relação e diferença das

variáveis originais), representa um grau de associação entre duas variáveis aleatórias. Viu-se que
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esse indicador, derivado de dois outros, introduzidos por Campello de Souza (1993, 2002, 2007), está

linearmente correlacionado com a correlação de Pearson entre as duas mencionadas variáveis aleatórias.

Quando esta linearidade não existir, para tipos quaisquer de variáveis aleatórias, a idéia é que o

construto se mantenha, libertando-se da correlação de Pearson. Há que se pesquisar isto, com mais

simulações.

O procedimento é:

• Normalizar as duas variáveis originais;

• Fazer a relação das variáveis normalizadas;

• Fazer a diferença das variáveis normalizadas;

• Com os dois últimos resultados calcular a vagueza global, o conflito e conseqüentemente a deci-

dabilidade;

• Aplicar a equação de regressão 5.4.2 para calcular a correlação de Pearson.
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6 Conclusões, Comentários e

Sugestões

6.1 Conclusões

1. Um indicador para medir a habilidade do especialista foi proposto. Trata-se do inferential skill.

2. O uso dos construtos do modelo de programação matemática na inferência estatística. O cons-

truto decidabilidade guarda uma relação linear com a correlação de Pearson. Esta relação repre-

senta um grau de associação entre duas variáveis aleatórias.

3. O modelo foi utilizado para fazer estimativas de médias de distribuição de probabilidade que foi

comparado com o método da freqüência relativa. Para tanto, fez-se simulações com distribuições

de probabilidade beta com parâmetros diferentes. O método de Bland Altman mostrou que existe

reprodutibilidade entre os dois métodos de inferência.

4. O modelo para distribuições simétricas não apresentou diferença estatística com as estimativas

feitas pela freqüência relativa. As distribuições assimétricas apresentaram diferença estatística

significativas. O que sugere a necessidade de ajustes (correções) no modelo a exemplo dos ajustes

de Yates e Bartlett.

5. Na avaliação da convergência verificou-se que a variância em torno dessas médias foram menores

que pela freqüência relativa.

6. O construto D e outros que possam surgir foi utilizado para captar a associação entre variáveis

aleatórias que não necessariamente precisam ter uma associação linear.

6.2 Comentários e Sugestões

O modelo de programação linear presta-se não apenas para tratar o problema da edução do co-

nhecimento a priori do especialista como para fazer inferência estatística. Aqui trabalhou-se nessas

duas abordagens. Alguns experimentos onde a opinião de especialistas foi eduzida utilizando o método
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foram mostrados no capítulo 3. No capítulo 4 mostrou-se como o modelo presta-se para fazer inferência

estatística.

Sugestões para trabalhos futuros são:

• Interpretação dos elementos do modelo de programação linear;

• Estabelecer um ajuste para melhorar as estimativas da inferência;

• Estabelecer um procedimento para a montagem do questionário;
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Código Fonte

Códigos usados nas simulações da estimação da vagueza do problema da seção 4.5.

Problema com os aij e bs do Especialista

Código das Restrições do Conjunto Viável

function Area=simula(N,A,b)

format long; randn(’state’,sum(100*clock))

%A=[-1,2,0;-1,0,20;0,-1,10;-1,1.5,1.5;-0.5,1,-0.5;-4,-4,1];

%b=[-0.5;0;0;0;0.25;0];

%N=500000;

n=1:N;

% NANN-> Numeros Aleatorios Nao Normalizados

NANN=rand([N,3]);

% Normalizando sum(PP,2) SUML*[1 1 1]

Fator=sum(NANN,2)*[1 1 1]; % Fator de Normalização (Soma das Linhas)

NAN=NANN./Fator; % NAN-> Numeros Aleatorios Normalizados

b1=(1-sign(sum((ones(N,1)*A(1,:)).*NAN,2)-b(1)))./2;
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b2=(1-sign(sum((ones(N,1)*A(2,:)).*NAN,2)-b(2)))./2;

b3=(1-sign(sum((ones(N,1)*A(3,:)).*NAN,2)-b(3)))./2;

b4=(1-sign(sum((ones(N,1)*A(4,:)).*NAN,2)-b(4)))./2;

b5=(1-sign(sum((ones(N,1)*A(5,:)).*NAN,2)-b(5)))./2;

b6=(1-sign(sum((ones(N,1)*A(6,:)).*NAN,2)-b(6)))./2;

bsim=b1.*b2.*b3.*b4.*b5.*b6;

%sum(bsim);

SomaAcumulada=cumsum(bsim); FreqRelativa=SomaAcumulada’./n;

Area=FreqRelativa(N);

Estimativa da Área do Conjunto Viável

clc

clear

echo

off

A=[-1,2,0;-1,0,20;0,-1,10;-1,1.5,1.5;-0.5,1,-0.5;-4,-4,1];

b=[-0.5;0;0;0;0.25;0];

ks=1000000;

k=5000;

FR=zeros(k,1); for i=1:k,

FR(i)=simula(ks,A,b)*sqrt(3)/2;

disp(num2str(i))

end FRm=mean(FR) FRvar=var(FR)
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Problema com os aij = 1 e bs = 0

Código das Restrições do Conjunto Viável

function Area=simula2(N,A,b)

format long; randn(’state’,sum(100*clock))

%A=[-1,2,0;-1,0,20;0,-1,10;-1,1.5,1.5;-0.5,1,-0.5;-4,-4,1];

%b=[-0.5;0;0;0;0.25;0];

%N=500000;

n=1:N;

% NANN-> Numeros Aleatorios Nao Normalizados

NANN=rand([N,3]);

% Normalizando sum(PP,2) SUML*[1 1 1]

Fator=sum(NANN,2)*[1 1 1]; % Fator de Normalização (Soma das Linhas)

NAN=NANN./Fator; % NAN-> Numeros Aleatorios Normalizados

b1=(1-sign(sum((ones(N,1)*A(1,:)).*NAN,2)-b(1)))./2;

b2=(1-sign(sum((ones(N,1)*A(2,:)).*NAN,2)-b(2)))./2;

b3=(1-sign(sum((ones(N,1)*A(3,:)).*NAN,2)-b(3)))./2;

b4=(1-sign(sum((ones(N,1)*A(4,:)).*NAN,2)-b(4)))./2;

b5=(1-sign(sum((ones(N,1)*A(5,:)).*NAN,2)-b(5)))./2;

b6=(1-sign(sum((ones(N,1)*A(6,:)).*NAN,2)-b(6)))./2;

bsim=b1.*b2.*b3.*b4.*b5.*b6;
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%sum(bsim);

SomaAcumulada=cumsum(bsim); FreqRelativa=SomaAcumulada’./n;

Area=FreqRelativa(N);

Estimativa da Área do Conjunto Viável

clc

clear

echo

off

A=[-1,1,0;-1,0,1;0,-1,1;-1,1,1;-1,1,-1;-1,-1,1];

b=[0;0;0;0;0;0];

ks=1000000;

k=2000;

FR=zeros(k,1); for i=1:k,

FR(i)=Simula2(ks,A,b)*sqrt(3)/2;

disp(num2str(i))

end FRm=mean(FR) FRvar=var(FR)
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A Edução das Opiniões dos

Especialistas Sobre os Preços Da

Energia

Carta aos Setores

A carta a seguir foi enviada à Companhia Hidrelétrica do São Francisco (CHESF) e ao

Ministério das Minas e Energia.

“Recife, 25 de abril de 1985

Ilmo. Sr.

Prezado Senhor

O Laboratório de Estudos Energéticos (LEE) do Departamento de Eletrônica e

Sistemas (DES) da Universidade Federal de Pernambuco (UFPE) estuda de uma

forma abrangente a problemática energética, em particular a do Nordeste brasileiro,

e participa efetivamente do esforço desenvolvimentista no setor.

É redundante insistrir na importância do setor energético, e daí é fácil entender

porque um grupo trabalhando em Engenharia de Sistemas convergiu os interesses e

esforços no estudo de problemas ligados à energia solar. Esse estudo, inclusive, é de

natureza nitidamente interdisciplinar, e o interesse deve-se à importância do recurso

solar no Nordeste brasileiro.

Entre outras pesquisas estamos desenvolvendo uma "Metodologia para Análise

de Risco no Uso da Energia Solar", que inclui estudo de viabilidade econômica em
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situações de incerteza, e além de considerar dados históricos e informações de campo,

incorpora opiniões de especialistas do setor energético.

Ficaríamos muito gratos se V.Sa. pudesse responder às questões que seguem

em anexos, e devolve-las o mais breve possível ao nosso Departamento. Caso V.Sa.

conheça outras pessoas especializadas que pudessem também contribuir seria inte-

ressante fotocopiar as questões e distribuir.

Quando a pesquisa estiver concluída, enviaremos a V.Sa. os resultados, incluindo

as opiniões de outros especialistas.

Certos da atenção e do interesse de V.Sa. com relação ao assunto, subscrevemo-

nos.

Atenciosamente

Fernando Menezes Campello de Souza

- Chefe do DES -

Nosso Endereço: Departamento de Eletrônica e Sistemas Centro de Tecnologia

Universidade Federal de Pernambuco Cidade Universitária, S/No RECIFE - PE -

CEP.: 50.000.

”

QUESTIONÁRIO PARA A EDUÇÃO DAS OPINIÕES DOS ES-

PECIALISTAS SOBRE OS PREÇOS DA ENERGIA

“Nome:

Endereço:

Um dos fatores que influenciam decisivamente sobre a atratividade e a viabilidade dos

investimentos em equipamentos de energia solar (para uso residencial e industrial) é a inflação

relativa dos preços da energia convencional (eletricidade e óleo combustível) com respeito aos
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preços dos bens e serviços da economia como um todo. O que interessa, por exemplo, é a

relação:

(preço de uma unidade de energia elétrica no tempo futuro t)
(valor final do preço atual de uma unidade de energia elétrica se investido de 0 a t)

.

A incerteza quanto aos valores futuros dessa relação dificulta bastante a apreciação, por parte

dos potenciais investidores, das vantagens do investimento em energia solar. É fundamental pois

que se combine informações provenientes de dados e fatos concretos com informações obtidas

a partir de opiniões de especialistas sobre os preços da energia.

Com relação às opiniões que se está solicitando neste questionário, é importante ser realista

quanto às incertezas. Não se está esperando nem solicitando previsões de valores exatos. A

idéia é trabalhar com desigualdades e faixas de valores.

Um dos objetivos da pesquisa sobre a viabilidade da energia solar é estabelecer perspectivas

coerentes quanto ao tempo de retorno e o valor esperado do investimento em energia solar.

1. Possíveis Cenários

Liste os possíveis fatores que influenciarão a taxa de inflação no preço da energia elétrica.

Inclua fatores políticos, econômicos, técnicos, etc., indicando especialmente aqueles que

são os mais favoráveis e os menos favoráveis a um rápido aumento no preço. Explique

resumidamente porque os cenários apresentados são possíveis e plausíveis. Considere

horizontes de um, dois, três, cinco, dez e vinte anos.

2. Uso dos Cenários

Use os cenários apresentados no item 1. para avaliar os possíveis valores numéricos das

taxas de inflação do preço da energia elétrica. Seja claro com respeito ao significado de

números como 3%, 5%, 300%, etc. Explique brevemente o que eles significam. Ordene

os cenários começando pelo mais provável, e dê uma faixa de probabilidade para cada

cenário. Considere horizontes de um, dois, três, cinco, dez e vinte anos.

3. Avalie as probabilidades dos possíveis valores numéricos das taxas

de inflação
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Para exemplificar considere o seguinte exemplo. Um indivíduo coloca Cr$ 100,00 na

caderneta de poupança, e ao final de um ano o seu saldo é Cr$ 400,00. Se Cr$ 100,00 fosse

o preço de um kilowatt-hora, qual seria o preço do kilowatt-hora no final do mesmo ano?

Suponha que, pela sua experiência e sentimento da questão, a sua opinião é de que esse

preço no final do ano seria qualquer coisa como Cr$ 420,00. A taxa relativa de inflação

seria então:

TR =

(
420

400
− 1

)
× 100% = (1, 05 − 1) × 100% = 5%.

Note que esta taxa relativa pode ser negativa.

Compare então as seguintes probabilidades:

P (TR > 5%)= Probabilidade de que a taxa relativa de inflação da energia seja maior do

que 5% (=0,3, por exemplo).

”
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1 2 3 5 10 20
P (TR > −100%) =
P (TR > −75%) =
P (TR > −50%) =
P (TR > −25%) =
P (TR > −20%) =
P (TR > −15%) =
P (TR > −10%) =
P (TR > −8%) =
P (TR > −6%) =
P (TR > −4%) =
P (TR > −2%) =
P (TR > 0%) =
P (TR > 2%) =
P (TR > 4%) =
P (TR > 6%) =
P (TR > 8%) =
P (TR > 10%) =
P (TR > 15%) =
P (TR > 20%) =
P (TR > 25%) =
P (TR > 50%) =
P (TR > 75%) =
P (TR > 100%) =

O questionário a seguir foi enviado a especialistas (tipicamente engenheiros mecânicos) do

setor de aquecimento (fabricação de boilers, trocadores de calor, evaporadores, etc.).

QUESTIONÁRIO PARA A EDUÇÃO DAS OPINIÕES DOS ES-

PECIALISTAS SOBRE O TEMPO DE VIDA ÚTIL DE EQUIPA-

MENTOS SOLARES

“Nome:

Endereço:

Entre os fatores que influenciam decisivamente sobre a atratividade e a viabilidade dos

investimentos em equipamentos de energia solar (para uso residencial e industrial) estão a

confiabilidade e a mantenabilidade desses equipamentos. O importante aqui é o tempo de vida

útil do equipamento e o custo de manutenção durante durante esse tempo operacional. Essse

custo total tem a ver com o custo dos reparos, a freqüência dos reparos, o custo do seguro, e
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1 2 3 5 10 20
P (TR < −80%) =
P (TR < −60%) =
P (TR < −40%) =
P (TR < −30%) =
P (TR < −18%) =
P (TR < −12%) =
P (TR < −9%) =
P (TR < −7%) =
P (TR < −5%) =
P (TR < −3%) =
P (TR < −1%) =
P (TR < 1%) =
P (TR < 3%) =
P (TR < 5%) =
P (TR < 7%) =
P (TR < 9%) =
P (TR < 12%) =
P (TR < 18%) =
P (TR < 30%) =
P (TR < 40%) =
P (TR < 60%) =
P (TR < 80%) =

qualquer outro custo operacional.

A confiabilidade de um equipamento ou sistema pode ser definida como a probabilidade

de que ele não deixará de operar em um dado intervalo de tempo. De forma simples, é a

probabilidade de sucesso. A freqüência na qual as falhas ocorrem é usada como um parâmetro

para a formulação matemática da confiabilidade e é chamada de taxa de falhas.

Pode-se distinguir três tipos característicos de falha:

1. A falha prematura; é resultante de técnicas infelizes de fabricação e controle de qualidade

durante o processo de produção, e ocorrem nas primeiras horas ou dias de operação.

2. A falha casual (sem causa aparente); as falhas causais são aquelas que nenhuma

boa técnica pode eliminar. São causadas por uma espécie de acumulação de fadigas

repentinas, além da resistência de projeto do componente. Assim, o mecanismo físico

dessas falhas é um acúmulo repentino de ação de fadiga. Ocorrem em intervalos aleatórios,

irregulares e inesperados. Não se pode prever sua ocorrência, mas elas seguem certas

regras de comportamento coletivo, tal que a freqüência de sua ocorrência durante períodos
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suficientemente longos é aproximadamente constante, logo o período de observação desta

freqüência deve ser dimensionado adequadamente.

Uma maneira de estimar a taxa de falhas é dividir o número total de falhas num deter-

minado intervalo de tempo, pelo número total de equipamentos em operação.

3. A falha devida ao envelhecimento; falhas causadas pela idade do equipamento ocorrem

em função do desgaste físico natural dos componentes e implicam num tempo de vida

médio de desgaste das peças.

Os três tipos de falha são diferenciados, pois cada um tem uma distribuição de probabilidade

específica, requerendo tratamento diferenciado e adequado.

A curva da taxa de falhas em função do tempo de vida tem o formato geral mostrado na

figura 1.
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Figura 1: Curva da banheira.

Tem-se três fases:

1. De t0 a tb, inicia com alta taxa de falhas que decresce rapidamente, em função de falhas

prematuras que ocorrem neste período, às vezes denominado de período de mortalidade

infantil;

2. De tb a tw, taxa de falhas aproximadamente constante e de baixo valor; período de vida

útil, com falhas casuais;

3. De tw a M , começa com o desgaste, onde a taxa de falhas aumenta muito rapidamente.

O tempo M é o de vida média de desgaste. Até tw pequena percentagem da população

tem falhado, mas cerca da metade falha entre tw ea M , por exemplo.
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A mantenabilidade pode ser definida como a probabilidade de que um dispositivo ou sistema

tendo falhado, será restaurado para operação efetiva dentro de um dado período de tempo,

quando a ação de manutenção é executada de acordo com procedimentos prescritos.

Do ponto de vista do projeto, o objetivo da mantenabilidade é projetar e desenvolver siste-

mas e equipamentos que podem ser mantidos no menor tempo, ao menor custo, e com a mínima

despesa de recursos de suporte, sem afetar adversamente as características de desempenho e

segurança.

1. Quando é que se decide que a vida útil de um equipamento de

energia solar terminou?

Procure caracterizar o que vem a ser o tempo de vida útil (TVU) de um equipamento de

energia solar para aquecimento d’água (coletor, reservatório, etc.). Apresente os dados

objetivos sobre esse assunto; fatos concretos sobre casos reais, indicando as causas do

fim do período utilizável dos equipamentos (ferrugem, corrosão, vazamentos, queda da

pintura, etc.). Quando é que se deve substituir todo o equipamento? Que equipamento?

2. Qual o tempo de vida útil dos equipamentos solares (coletor, re-

servatório,controles, etc.)?

Apresente uma cota superior (limite superior) para o tempo de vida útil desses equipa-

mentos, e uma cota inferior. Todos esses valores devem ser subjetivos. Quais são as causas

do término do período útil dos dispositivos?

3. Avalie subjetivamente as seguintes probabilidades:
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Coletores Reservatório Controles
P (TV U ≥ 30 anos) =
P (TV U ≥ 25 anos) =
P (TV U ≥ 20 anos) =
P (TV U ≥ 17 anos) =
P (TV U ≥ 14 anos) =
P (TV U ≥ 12 anos) =
P (TV U ≥ 10 anos) =
P (TV U ≥ 8 anos) =
P (TV U ≥ 6 anos) =
P (TV U ≥ 4 anos) =
P (TV U ≥ 2 anos) =

Coletores Reservatório Controles
P (TV U ≤ 27 anos) =
P (TV U ≤ 24 anos) =
P (TV U ≤ 21 anos) =
P (TV U ≤ 18 anos) =
P (TV U ≤ 15 anos) =
P (TV U ≤ 13 anos) =
P (TV U ≤ 11 anos) =
P (TV U ≤ 9 anos) =
P (TV U ≤ 7 anos) =
P (TV U ≤ 5 anos) =
P (TV U ≤ 3 anos) =

Em que tempos as probabilidades abaixo são verdadeiras?

Coletores Reservatórios Controles
P (TV U ≥ ) = 0, 50 P (TV U ≥ ) = 0, 50 P (TV U ≥ ) = 0, 50
P (TV U ≥ ) = 0, 10 P (TV U ≥ ) = 0, 10 P (TV U ≥ ) = 0, 10
P (TV U ≥ ) = 0, 25 P (TV U ≥ ) = 0, 25 P (TV U ≥ ) = 0, 25
P (TV U ≥ ) = 0, 75 P (TV U ≥ ) = 0, 75 P (TV U ≥ ) = 0, 75
P (TV U ≥ ) = 0, 90 P (TV U ≥ ) = 0, 90 P (TV U ≥ ) = 0, 90

Seja TF o tempo em que ocorre a primeira falha. Avalie as probabilidades abaixo.
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Coletores Reservatórios Controles
P (TF ≥ 1 ano) =
P (TF ≥ 2 anos) =
P (TF ≥ 5 anos) =
P (TF ≥ 7 anos) =
P (TF ≥ 10 anos) =
P (TF ≥ 13 anos) =
P (TF ≥ 18 anos) =
P (TF ≥ 25 anos) =
P (TF ≤ 3 anos) =
P (TF ≤ 6 anos) =
P (TF ≤ 8 anos) =
P (TF ≤ 9 anos) =
P (TF ≤ 12 anos) =
P (TF ≤ 15 anos) =
P (TF ≤ 20 anos) =
P (TF ≤ 30 anos) =

4. Tente especificar os tipos de equipamento e caracterizar três tipos

de manutenção:

Nenhuma, boa e de média qualidade. Quais os custos dessas manutenções, e em geral

quando é que elas ocorrem?

5. Qual o valor de sucata dos equipamentos de energia solar?

Isto é, ao fim da sua vida útil, quanto se pode obter por ele no mercado de materiais

usados (ferro velho, por exemplo)?

”
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Questionário de Barros de Mello e

Silva Jr.

“Os questionários foram respondidos por dois especialistas no equipamento tra-

tado, a saber, o engenheiro Inaldo Barbosa e o técnico Agenor. O primeiro questio-

nário apresentado a seguir foi respondido pelo engenheiro Inaldo Barbosa.”

“1. Qual a taxa de falhas do equipamento? R.

MTBF

⎧⎪⎨
⎪⎩

Transmissor = 170000 hs

Sistema de Controle = 2270000 hs

λ =
1

MTBF
= 5.882E − 6

2. Qual o número de falhas do equipamento na sua opinião? R. Para um período

de dois anos é de quatro falhas.

3. Qual a probabilidade de que o equipamento não falhe nenhuma vez? R. 10%.

4. Qual a probabilidade do equipamento falhar no máximo uma vez? R. 20%.

5. Qual a probabilidade do equipamento falhar no máximo duas vezes? R. 40%

6. Qual a probabilidade do equipamento falhar no máximo três vezes? R. 50%.

7. Qual a probabilidade do equipamento falhar no máximo quatro vezes? R.

70%.

8. Qual a probabilidade do equipamento falhar no máximo doze vezes? R. 10%.

9. Qual a probabilidade do equipamento falhar no máximo vinte vezes? R. 1%.

115



Alane Alves Silva — Anexo 3 — Questionário de Edução de Barros de Mello e Silva Jr.

10. Qual a probabilidade do equipamento falhar no máximo vinte e oito vezes?

R. 0, 50%.

11. Qual a probabilidade do equipamento falhar no máximo trinta e seis vezes?

R. 0, 50%.

O questionário a seguir foi respondido por Agenor, um dos técnicos responsáveis

pela manutenção das linhas.

1. Qual o número de falhas do equipamento na sua opinião? R. Para um período

de dois anos é de seis falhas.

2. Qual a probabilidade de que o equipamento não falhe nenhuma vez? R. 0, 10%.

3. Qual a probabilidade do equipamento falhar no máximo uma vez? R. 0, 20%.

4. Qual a probabilidade do equipamento falhar no máximo três vezes? R. 90%

5. Qual a probabilidade do equipamento falhar no máximo cinco vezes? R. 80%.

6. Qual a probabilidade do equipamento falhar no máximo seis vezes? R. 70%.

7. Qual a probabilidade do equipamento falhar no máximo treze vezes? R. 20%.

8. Qual a probabilidade do equipamento falhar no máximo vinte e uma vezes?

R. 5%.

9. Qual a probabilidade do equipamento falhar no máximo vinte e oito vezes?

R. 0, 30%.

10. Qual a probabilidade do equipamento falhar no máximo trinta e seis vezes?

R. 0, 00%.”

“Observação: Na elaboração de tais perguntas consideramos que o melhor caso seria aquele

em que não houvesse falha de qualquer dos equipamentos, e o pior caso seria aquele em que os

trinta e seis falhassem.

A partir dos pontos obtidos, traçamos as curvas de densidade de probabilidade de cada

indivíduo (neste caso obtivemos uma densidade de probabilidade de Rayleigh). As curvas vêm

a seguir. É interessante observar que a curva corespondente ao levantamento realizado com o

engenheiro Inaldo Barbosa corresponde muito mais à forma esperada da distribuição, provando
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que, apesar de já não ter um contato tão direto e constante com a referida linha — conforme

ele próprio nos informou — suas informações se aproximavam muito mais da realidade.”

Questionário de Cavalcanti Filho e Silva Jr.

“Na CHESF (Companhia Hidroelétrica do São Francisco) temos 17 enlaces que

são usados para comunicações entre as centrais regionais da mesma. Cada enlace é

composto de dois aparelhos chamados TIC’s. Temos o TIC que emite, o TICE, e

o TIC que recebe as informações, o TICR. [. . . ] calcular (estimar) a taxa de falhas

dos equipamentos.”

“3. ESTIMAÇÃO DO NÚMERO DE FALHAS MENSAL

3.1 FORMULAÇÃO DO PROBLEMA

Queremos estimar o número de falhas mensal dos aparelhos citados anterior-

mente. Temos as seguintes informações:

1. θ é fixo.

2. P (x|θ) é aproximado por uma distribuição de Poisson de parâmetro θ.

3. Temos acesso a um especialista que pode nos ajudar, respondendo a um ques-

tionário, a eduzir a função conhecimento a priori para o θ.

4. Temos acesso a uma massa de dados referentes ao número de falhas mensais

desde Jan-85 até Dez-86.

5. A perda é quadrática.

3.2 EDUÇÃO DA FUNÇÃO CONHECIMENTO A PRIORI

A função conhecimento a priori foi eduzida com as informações do engenheiro

Hélio Burle de Menezes ao responder ao seguinte questionário:

1. Qual a taxa de falhas mensal na sua opinião? (TAXA1)

2. Qual a probabilidade da taxa de falhas ser igual a TAXA1?

3. Qual a probabilidade da taxa de falhas ser igual a TAXA1/2?

4. Qual a probabilidade da taxa de falhas ser igual a TAXA1/4?
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5. Qual a probabilidade da taxa de falhas ser igual a TAXA*3/4?

6. Estime uma taxa de falhas grande o bastante de modo que seja inverossímil.

(TAXA2).

7. Qual a probabilidade da taxa de falhas ser TAXA3 = (TAXA1 + TAXA2)/2?

8. Qual a probabilidade da taxa de falhas ser (TAXA3 + TAXA2)/2?

9. Qual a probabilidade da taxa de falhas ser (TAXA1 + TAXA3)*3/4?

10. Qual a probabilidade da taxa de falhas ser 1% da TAXA1?

11. Qual a probabilidade da taxa de falhas ser 99% da TAXA3?

Concluída a abordagem do questionário partimos para estimar a função com

os dados recolhidos. Depois de algumas tentativas, tivemos que a dita função se

aproximava de uma distribuição Rayleigh de b = 15, 13.

Procedimento: b(E(X)/1, 253) ∗ ∗2, onde E(X) é a esperança feita com os dados

disponíveis.”

A Tabela 1 resume a densidade a priori de θ do especialista, o engenheiro Hélio Burle de

Menezes.

Tabela 1: A distribuição a priori eduzida do engenheiro Hélio Burle de Menezes.
Caso θ π(θ)

1 0,0 1,0
2 1,0 15,0
3 2,0 30,0
4 3,0 40,0
5 4,0 70,0
6 12,0 1,0
7 17,0 0,0
8 24,0 0,0
9 30,0 0,0

Os registros da CHESF são mostrados na Tabela 2.
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Tabela 2: Dados relativos ao número de falhas por mês (1985–1986).
Mês Número de falhas

1 4
2 5
3 4
4 8
5 8
6 9
7 2
8 2
9 10

10 5
11 4
12 5
13 3
14 1
15 1
16 9
17 5
18 4
19 3
20 6
21 5
22 3
23 6
24 8
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Edução da Distribuição A Priori do

Tempo de Tramitação de um Empenho

na Universidade

QUESTIONÁRIO PARA A EDUÇÃO DO CONHECIMENTO A PRIORI DE UM ESPECIA-

LISTA (MÉTODO CDF)

Nome do entrevistado:

Data da entrevista.

Introdução

• Introduzir o problema sob consideração.

• Inquirir sobre o grau de conhecimento do entrevistado em estatística, deixando claro que não é

necessário que a pessoa tenha qualquer familiaridade com conceitos de probabilidade.

• Discutir aspectos relacionados com a teoria subjetivista da probabilidade, estatística bayesiana,

etc.

• Reforçar o interesse no conhecimento que a pessoa tenha sobre a variável em estudo, assinalando

que não existe uma resposta correta a ser dada às perguntas (estamos interessados em obter

suas expectativas pessoais relacionadas com a variável). Seu conhecimento é de interesse, não

importando o quão vago ou geral ele seja.

1. Estabelecer o valor mínimo e o valor máximo da variável

Valor Mínimo:
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Valor Máximo:

2. Solicitar à pessoa a dividir este segmento em dois eqüiprováveis (se necessário, esclarecer a questão

de forma a tornar o ponto mais claro.

———————————————————————————————-

3. Fazer novas subdivisões de forma a encontrar mais alguns fractis da distribuições (6 pontos).

—————————- ———————————

—————————- ———————————

—————————- ———————————

4. Checar para possíveis inconsistências.

QUESTIONÁRIO PARA A EDUÇÃO DO CONHECIMENTO A PRIORI DE UM ESPECIA-

LISTA (MÉTODO DO INTERVALO FIXO)

Nome do entrevistado:

Data da entrevista.

Introdução

• Introduzir o problema sob consideração.

• Inquirir sobre o grau de conhecimento do entrevistado em estatística, deixando claro que não é

necessário que a pessoa tenha qualquer familiaridade com conceitos de probabilidade.

• Discutir aspectos relacionados com a teoria subjetivista da probabilidade, estatística bayesiana,

etc.

• Reforçar o interesse no conhecimento que a pessoa tenha sobre a variável em estudo, assinalando

que não existe uma resposta correta a ser dada às perguntas (estamos interessados em obter

suas expectativas pessoais relacionadas com a variável). Seu conhecimento é de interesse, não

importando o quão vago ou geral ele seja.
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1. Estabelecer o valor mínimo e o valor máximo da variável

Valor Mínimo:

Valor Máximo:

2. Identificar o valor mais provável para a variável em estudo.

Valor:

3. Dividir o intervalo em partes iguais e oferecer três destas ao entrevistado aleatoriamente psara

este estabelecer suas expectativas.

Mais provável:

Menos provável:

Solicitar, a seguir, as probabilidades associadas aos três eventos.

4. Descobrir a probabilidade do evento que contem o valor mais provável (procurar comparar com

as probabilidades já estabelecidas).

5. Encontrar as probabilidades dos demais eventos e checar possíveis inconsistências.”

O primeiro entrevistado é formado em engenharia elétrica e com pós-graduação em engenharia

nuclear. Já cursara estatística, mas não estava muito familiarizado com estatística bayesiana. As

respostas dele ao questionário do método CDF foram:

Menor valor: 1

Maior valor: 40

A Tabela 3 resume os resultados.

Tabela 3: Os resultados do método CDF para o primeiro entrevistado.
Caso Dias Probabilidade

1 3 0,0100
2 5 0,1250
3 7 0,2500
4 8 0,3750
5 10 0,5000
6 12 0,6250
7 15 0,7500
8 20 0,8750
9 40 0,9900
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Para o método do intervalo fixo os resultados são mostrados na Tabela 4.

Tabela 4: Os resultados do método do intervalo fixo para o primeiro entrevistado.
Caso Dias Probabilidade

1 9 0,0400
2 15 0,1300
3 21 0,2500
4 27 0,4200
5 33 0,9200
6 39 0,9900

Tabela 5: O resultado final para o primeiro entrevistado.
Caso Dias Probabilidade

1 3 0,0100
2 5 0,0450
3 7 0,0850
4 9 0,1150
5 11 0,1850
6 13 0,2950
7 15 0,4200
8 17 0,5600
9 19 0,6600

10 21 0,7300
11 23 0,7850
12 25 0,8300
13 27 0,8650
14 29 0,8900
15 31 0,9200
16 33 0,9400
17 35 0,9650
18 37 0,9750
19 39 0,9900
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