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ABSTRACT

The importance of the discrete Fourier transform (DFT) stems from its rich physical inter-

pretation and its mathematical principles. In signal processing, the DFT plays a key role in

spectral estimation, filtering, and fast signal convolutions. In order to reduce the computa-

tional cost of the DFT, a series of algorithms called fast Fourier transforms (FFT) have

been developed. Capable of reducing the multiplicative complexity, the FFT has allowed

the widespread use of the DFT. However, even with the reduced arithmetic complexity

derived from the FFT, the DFT computation can still be an obstacle in applications with

restrictive conditions, such as energy consumption, chip occupancy area, and time. If small

inaccuracies are allowed under such conditions, the DFT computation can be approximated.

The present work approaches four different topics related to the DFT estimation. First,

based on iterations of Cooley-Tukey’s radix-N algorithm, approximate transforms for sig-

nals of lengths Nˆ2ˆn are proposed. Second, an approximate version of the Good-Thomas

algorithm capable of performing the DFT calculation without multiplications is presented.

Thirdly, using the canonical signed digit (CSD) representation, we present approximations

for the transformation and twiddle factor matrices to also propose a multiplication-free

Cooley-Tukey algorithm. Finally, a low-complexity estimator is proposed to calculate the

autocorrelation of a given signal based on the properties of the DFT. All proposals include

(i) construction of fast algorithms, (ii) evaluation of arithmetic complexity, and (iii) error

analysis.

Keywords: discrete Fourier transform; fast algorithms; approximate transforms; signal

processing; autocorrelation.



RESUMO

A importância da transformada discreta de Fourier (DFT) decorre da sua rica interpretação

física e de seus princípios matemáticos. Em processamento de sinais, a DFT desempenha

um papel fundamental em estimação espectral, filtragem e convolução rápidas de sinais.

Para reduzir o custo computacional da DFT, uma série de algoritmos, denominados

transformadas rápidas de Fourier (FFT) têm sido desenvolvidos. Capazes de reduzir a

complexidade multiplicativa, os algoritmos rápidos permitiram que o uso da DFT fosse

difundido. No entanto, mesmo com a redução da complexidade aritmética oriunda das

FFTs, o cômputo da DFT pode ser um obstáculo em aplicações que apresentam condições

restritivas, como consumo de energia, área de ocupação no chip e tempo de processamento.

Se pequenos desvios de acurácia forem permitidos em tais condições, o cálculo da DFT

pode ser realizado de forma aproximada. O presente trabalho aborda quatro diferentes

tópicos relacionados com a estimação da DFT. Primeiramente, baseado em iterações do

algoritmo Cooley-Tukey de base N, são propostas transformadas aproximadas para sinais

de comprimento Nˆ2ˆn. Segundo, uma versão aproximada do algoritmo de Good-Thomas

capaz de realizar o cálculo da DFT sem necessidade de multiplicações é apresentada.

Terceiro, utilizando a representação em dígito de sinal canônico (CSD), nós apresentamos

aproximações para as matrizes de transformação e fatores de rotação com o intuito de

também propor um algoritmo de Cooley-Tukey livre de multiplicações. Por último, um

estimador de baixa complexidade é proposto para o cálculo da autocorrelação baseado nas

propriedades da DFT. Todas as propostas contêm (i) construção de algoritmos rápidos, (ii)

avaliação da complexidade aritmética e (iii) análise de erro.

Palavras-chave: transformada discreta de Fourier; algoritmos rápidos; transformadas

aproximadas; processamento de sinais; autocorrelação.
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1 INTRODUCTION

In this chapter, we present the motivation and state-of-the-art for the research

topics. At the end of this chapter, we detail the main goals, document structure, and

computational resources employed to conduct the simulations, obtain, and evaluate the

approximations.

1.1 MOTIVATION

The discrete Fourier transform (DFT) is a central tool in signal processing [1],

finding applications in a very large number of contexts, such as spectral estimation [2],

filtering [3], data compression [4], machine learning [5], and fast convolution [6], to cite

but a few. The widespread usage of the DFT is due to its rich physical interpretation [7]

and the existence of efficient algorithms for its computation [8]. The DFT presents good

properties that allow its immediate applicability in a variety of problems. For example,

we can mention: its relationship with the correlation (estimation of the auto- and cross-

correlation) [9, p.44]; the circular convolution, which can be implemented in terms of the

DFT in popular software such as Matlab [10], Python [11], and R [12]; the linearity that

enables us to separate and choose the components of a signal which is the principle of

filtering [7, p. 72]; and its use to accurately compute derivatives [13, p. 63], fractional

derivatives [14], partial differential equations, and integrals [7, p. 113].

In general, the resources to apply the DFT are limited at some level either by

time (e.g., real-time applications [15]), energy (e.g. portable devices [16]), or space (chip

area [17]). Therefore, reducing the computational cost is a key procedure to make a

DFT-based tool implementable in hardware [18].

For this purpose, a series of algorithms have been developed to reduce the compu-

tational cost of the DFT. Although there are different ways to evaluate the cost/performance

of the algorithms, the number of mathematical operations is usually considered because

it is independent of the available technology [3, p. 748]. In terms of arithmetic complex-

ity, the direct computation of the 1D N-point DFT is an operation in O(N2)— which
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is prohibitively expensive [19] for most applications. Efficient algorithms [7, 8, 20] col-

lectively known as fast Fourier transforms (FFTs) [21] are capable of evaluating the

DFT with much fewer numerical operations placing, for example, the resulting com-

plexity in O(N log2 N) [20] when the signal length is a power of two or approximately

N(N1 +N2) when N can be expressed as the product of two relatively prime numbers, N1

and N2 [21, p. 81].

FFT algorithms have contributed to the development of numerous digital signal

processing (DSP) applications from which we can highlight speech [22–24] and image pro-

cessing [25–27], statistical signal analysis [28–30], and communication systems [31–33].

Despite the substantial reduction in arithmetic operations provided by the FFT algorithms,

the remaining complexity can still be significant in contexts were severe restrictions in com-

putational power and/or in energy autonomy [34] are present. Such restrictive conditions

are met in the framework of wireless communication [35, 36], embedded systems [37, 38],

and the internet of things (IoT) [39, 40]. Even in scenarios with powerful hardware avail-

able, computing time can be a restrictive factor, as is the case in artificial intelligence (AI)

that works with problems involving billions to trillions of data points [41, 42] in applica-

tions like gaming (interactive virtual environments) [43], finances (stock marketing) [44],

and vehicle control systems (to prevent accidents) [45]. In the context of image and

video coding, where the DFT-related [46] discrete cosine transform (DCT) is the tool of

choice [47], scenarios of extreme resource limitations are present in image fusion [48] and

diffusion [49], spatial decorrelation in video tracking [50], unmanned aerial vehicles [51],

and low-powered devices in real-time applications in general [15, 52, 53]. Although FFT

algorithms made real-time digital signal processing possible [54], under such restrictive

conditions, time and power consumption must be alleviated [55]. A possible solution

is the trade-off between accuracy and low-cost computation, where a degree of error is

tolerated [56]. This scenario might concern the design of low-end technology such as

digital signal processors [57] or high-end technology (beyond 5G) especially in wideband

services of wireless networks [55].

To address such issues, designers of DCT-based methods resort to matrix ap-
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proximation techniques [47, 58] aiming at deriving integer matrices whose complexity is

regarded as extremely low [59–61], while retaining the desired properties of the DCT com-

puted by the definition [60]. A number of DCT approximations have been successfully de-

veloped such as the SDCT [62], the approximations by Bouguezel–Ahmad–Swamy [63,64],

and the Cintra–Bayer approximations [59,65,66]. Such approximations make use of trivial

multiplications, as for example multiplications by −2, −1, 0, +1, +2 that cane be imple-

mented in hardware by simple additions or bit-shifting operations. The cost to perform

a multiplication, particularly of floating-point, depends on the specifics of the hardware.

However, it is well known that even on modern hardware a double-precision floating-point

multiplication requires several clock cycles restricting the implementation of transforms

on low-powered hardware [53, 67]. In general, approximate transforms are multiplierless

methods [68] that require only a reduced number of addition operations [59] becoming an

alternative for such scenarios.

Inspired by such approximation-based methodology, in [69], a suite of multi-

plierless DFT approximations was derived for N=3, 5, 7, 8, 16, and 32 [70–72]. These

DFT approximations were demonstrated to provide spectral estimates close to the DFT

computation by definition while requiring only additions. Such approximations can be

used as building blocks to obtain approximate transforms of larger blocklengths [73–75]

and for the approximate estimation in applications that use the DFT [76–78].

In general, data blocklengths that are powers of two are most commonly used [21,

p. 5]. In addition to their simpler factorization, it is often possible to use FFT algorithms

recursively. On the other hand, prime lengths can be used in algorithms such as the prime

factor algorithm (PFA) [79, 80], which do not need twiddle factors [81]. Twiddle factors

are auxiliary complex multiplications by roots of unity that are unavoidable when the

transform length is composite with non-coprime factors [81].

The non-power of two DFTs [82–84] is a promising field in 5G broadcasting

which usually presents input of the form 2n×3m(n and m are positive integers) [85]. Such

DFTs are also useful when the signal length can not be chosen (digital radio mondiale [86],

channel equalization [87, 88], or specific convolutions), or when it is irrelevant (encryp-
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tion [89] and beam-forming [90]).

In light of the above discussion, it is possible to notice that technological trends

suggest an ever-increasing demand for faster and more efficient algorithms and approximate

transforms. The need to process massive amounts of data in real-time and/or under

restrictive conditions keeps this line of research attractive [91].

1.2 STATE-OF-THE-ART

Broadly, finding good approximate transforms is a challenging task, because it

is often posed as an integer non-linear matrix optimization problem with a large num-

ber of variables [92]. Thus, as N increases, obtaining good approximations becomes an

exceedingly demanding problem to be solved [75]. As a consequence, designers of DFT ap-

proximations make use of indirect methods such as (i) mathematical relationships between

small-sized and large-sized DFT matrices [20], (ii) matrix functional recursions [93] and,

(iii) matrix decompositions [94]. The systematic derivation of good DFT approximations

for large blocksizes is still an open problem and technical advances occur in a case-by-case

fashion due to the inherent numerical difficulties of finding good integer matrices. In the

following, we present the main works on DFT approximations and their obtaining methods

found in the literature.

In [69], the author proposed multiplierless approximations using Pareto optimality

[95, p. 19], integer functions [65], and matrix parameterization [96] along with a collection

of factorizations to minimize the remaining additions. In this work, approximations for odd

lengths N = 3, 5, and 7 and power-of-two lengths N = 8, 16, and 32 were considered. The

approximation for N = 8 contributed to the papers in [70, 97–99] and the patent in [100];

for N = 16 contributed to [72, 99]; and for N = 32 was used to obtain approximations for

the 1024-point DFT [73, 74] and one million-point DFT approximation [75].

In [101], multiplierless approximations for the 3-, 5-, 7-, 8-, 9-, and 16-point

DFTs were proposed using scaling factors [47, p. 274]. The approach involved choosing

the factors based on the desired accuracy. The author also presented frameworks for N =

30, 72, 240, and 504 employing the PFA and the Winograd small fast Fourier transform
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algorithm [102].

In competition with [72], approximations for the 16- and 32-point DFT were

proposed in [103]. These approximations combined twiddle factor merging [104] and

common subexpression to share duplicated multiplications using the Cooley–Tukey radix-

2 decimation-in-time [21, p. 72]. Although this technique reduces the approximation error,

multiplications are still required.

In [105], the authors expanded the low-complexity subspace (set of values that the

coefficients of the approximate can assume) to propose an approximation for the 8-point

DFT and compete with [70]. This approximation would later be used in [106] to obtain an

approximation for the 16-point DFT using the Cooley-Tukey algorithm.

A method to obtain multiplierless DFT approximations is to use the Cooley-Tukey

radix-2 or radix-4 algorithm (which requires trivial multiplications in the fundamental

blocks) and approximate the twiddle factor matrices. This is the case of the work presented

in [107] and [108]. In the first, the authors used a truncated representation of the canonical

signed digit (CSD) [109] to find the nearest neighbors for the twiddle factor matrix

coefficients. This method was employed to obtain approximations for N = 32, 64, 128,

and 256. In the second, the twiddle factors were approximated using sum-of-powers-of-

two [110] and CSD, and the work considered N = 8, 16, 32, 64, and 128.

The growing demand for new applications in the fields of IoT, IA, big data, and

machine learning allowed approximation techniques to gain popularity and it is expected

that the use of these methods will be more common than the traditional ones [91].

1.3 MAIN GOALS

Our main objective is to develop recursive algorithms capable of performing spectral

estimation using the DFT and the estimation of the autocorrelation with low

arithmetic complexity .
Specifically, we aim at:

1. Propose a scaling method based on the Cooley-Tukey algorithm with reduced

multiplicative complexity;
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2. Propose a multiplication-free algorithm based on the Good-Thomas algorithm;

3. Propose a method to obtain an approximation for the blocklengths used in the

algorithm proposed in Item 2;

4. Propose a multiplication-free algorithm based on the Cooley-Tukey algorithm;

5. Explore efficient numerical representations for the required matrices in Item 4;

6. Propose low-complexity estimators for the autocorrelation based on the algorithms

proposed in item 4;

7. Propose factorizations for the approximate matrices to reduce the remaining com-

plexity;

8. Evaluate the performance of the proposed approximations using error measures;

9. Compare the proposed approximations against competing methods found in the

current literature.

1.4 DOCUMENT STRUCTURE

The rest of the document is organized as follows. Chapter 2 contains the required

mathematical tools for the proposals presented in the following chapters. Chapters 3, 4, 5,

and 6 detail a proposed method each, with their methodology, assessment metrics, fast

algorithms, and computational complexity. Chapter 7 concludes the work and summarizes

the important points.

In Chapter 3, we present a version of the Cooley-Tukey algorithm in which low-

complexity transforms are applied to input signals that can be expressed in length of N(2n),

where n is a positive integer. We applied the proposed method to the 220-point DFT.

In Chapter 4, we introduce an approach to obtain multiplierless transforms. Then,

we combine the proposed methodology with the prime factor algorithm to maintain the

entire computation of the DFT approximation free of multiplications. The method is

demonstrated for the 1023-point DFT.

In Chapter 5, we use the CSD to obtain approximations for the transform and

twiddle factor matrices required in the Cooley-Tukey algorithm. The method allows

approximate computation of the DFT for signals with length 2m without multiplications.
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We employed such approach to present approximations for the 1024-point DFT.

In Chapter 6, we propose a low-complexity estimator to compute the autocor-

relation function based on the properties of the DFT. The approximations obtained in

Chapter 5 are used to estimate the autocorrelation parameters of autoregressive processes.

Finally, in Chapter 7, we present some concluding remarks, main contributions

and published works of each line of research are listed, and the next steps to be taken are

provided.

1.5 COMPUTATIONAL RESOURCES

The optimization and simulation problems were solved in C (Chapter 3) and

R (Chapters 4, 5, and 6) languages on a machine with the following specifications: a

computer equipped with Hexa-core 4.5 GHz Intel(R) Core(R) I7-9750H CPU, 32 GB

RAM running Ubuntu 20.04 LTS 64-bit, and GPU GeForce RTX 2060. In parallel, we also

used a virtual machine from the Google Cloud Platform with the following specifications:

8 cores 3.8 GHz Intel (Cascade Lake) with 32 GB RAM running Ubuntu 20.04 LTS 64-bit.
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2 MATHEMATICAL BACKGROUND

In this chapter, we review essential tools and concepts required in the next chapters.

First, the DFT and inverse discrete Fourier transform (IDFT) are presented. Second, the

Cooley-Tukey and Good-Thomas algorithms are presented in both traditional and matrix

forms. Third, an algorithm for computing complex multiplications is explained in detail.

2.1 THE DISCRETE FOURIER TRANSFORM

Discrete Fourier transform (DFT) DFT The DFT and IDFT are linear transforma-

tions. While the DFT maps an N-point discrete signal x = [x[0]x[1] . . .x[N−1]]⊤ into an

output signal X = [X [0]X [1] . . .X [N−1]]⊤, the IDFT does the opposite process. The DFT

and IDFT [3, p. 750] are given, respectively, by

X [k]≜
N−1

∑
i=0

ω
ik
N · x[i], k = 0,1, . . . ,N−1, (2.1)

x[i] =
1
N

N−1

∑
k=0

ω
−ik
N ·X [k], i = 0,1, . . . ,N−1, (2.2)

where X [k] is the kth DFT coefficient, ωN ≜ e− j 2π

N is the Nth root of unity, and j ≜
√
−1.

The DFT and the IDFT can also be expressed in matrix format according to the

following expressions:

X ≜FN ·x, (2.3)

x =
1
N

FN ·X, (2.4)

where the bar symbol denotes the complex conjugate [94, p. 79] and FN is the DFT matrix

defined by

FN =



1 1 1 . . . 1

1 ωN ω2
N . . . ω

N−1
N

1 ω2
N ω4

N . . . ω
2(N−1)
N

1 ω3
N ω6

N . . . ω
3(N−1)
N

...
...

... . . . ...

1 ω
N−1
N ω

2(N−1)
N . . . ω

(N−1)(N−1)
N


.
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The exact computation of the DFT in computers is impossible due to finite

arithmetic precision which leads to round-off errors [111, p. 600]. Therefore, when the

exact computation of the DFT is mentioned is referred to the computation of the DFT and

IDFT by the definitions established in Sections 2.1 and 2.2.

2.2 COOLEY-TUKEY ALGORITHM

Let N = N1 ·N2 represent the blocklength of the input signal where N1 and N2

are integers. To rewrite (2.1) into a two-dimensional transform consider the following

indexing:

i =i1 +N1i2,

k =N2k1 + k2,

where i1,k1 = 0, . . . ,N1−1, and i2,k2 = 0, . . . ,N2−1. Then,

X [N2k1 + k2] =
N2−1

∑
i2=0

N1−1

∑
i1=0

ω
(i1+N1i2)(k2+N2k1)
N x[i1 +N1i2]. (2.5)

Expanding the product in the exponent we obtain

X [N2k1 + k2] =
N1−1

∑
i1=0

N2−1

∑
i2=0

[
ω

(i1N2k1)
N ω

(i1k2)
N ω

(N1N2i2k1)
N ω

(N1i2k2)
N

]
x[i1 +N1i2] (2.6)

=
N1−1

∑
i1=0

ω
(i1N2k1)
N

[
ω

(i1k2)
N

N2−1

∑
i2=0

ω
(N1N2i2k1)
N ω

(N1i2k2)
N x[i1 +N1i2]

]
. (2.7)

Since ωN has multiplicative order equals to N = N1 ·N2, then we have that ω
(N1N2i2k1)
N = 1.

Therefore, the expression (2.7) is reduced to

X [N2k1 + k2] =
N1−1

∑
i1=0

ω
(i1N2k1)
N

[
ω

(i1k2)
N

N2−1

∑
i2=0

ω
(N1i2k2)
N x[i1 +N1i2]

]
. (2.8)

The mapping detailed in (2.8) applied to the signal components is known as address

shuffling [21, p. 69] and the terms ω
(i1k2)
N are referred to as twiddle factors [81, 112].

As detailed in (2.8), the Cooley-Tukey algorithm [81, 113] is traditionally pre-

sented in terms of a mathematical formalism based on: (i) Fourier-kernel weighted sum-

mations and (ii) index-variable substitutions to account for Fourier transformation and the
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1D to 2D array indexing. However, a matrix-based presentation [21, 74] can be adopted

which can be useful because popular software packages such as Matlab, R, Octave, and

Julia are matrix oriented. In this way, by explicitly following the Cooley-Tukey algorithm,

the N-point DFT can be computed by means of:

1. address-shuffling the 1D input column vector into a 2D N1×N2 array;

2. computing the N2-point DFT of each array column of the 2D N1×N2 array using

FFT calls;

3. element-wise multiply the resulting matrix by the twiddle-factors;

4. computing the N1-point DFT of each row of the resulting 2D N1×N2 array using

FFT calls; and

5. undoing the address shuffling to convert the obtained 2D N1×N2 array into the final

1D output column vector.

The 1D to 2D mapping can be accomplished by means of the inverse vectorization

operator [114–116] which obeys the following mapping:

invvec
([

x[0] x[1] · · · x[N−1]
]⊤)

=


x[0] x[N1] · · · x[N1(N2−1)]

x[1] x[N1 +1] · · · x[N1(N2−1)+1]
...

... . . . ...

x[N1−1] x[2N1−1] · · · x[N−1]

.

(2.9)

Based on the 1D to 2D mapping in (2.9) we can show that the N-point DFT can

be represented in the following matrix expression based on the Cooley-Tukey algorithm:

X = FN ·x = vec

({
FN1 ·

[
ΩΩΩN2×N1 ◦

(
FN2 · (invvec(x))⊤

)]⊤}⊤)
, (2.10)

where x and X are N-point vectors, vec(·) is the matrix vectorization operator [94, p. 239],

◦ is the Hadamard element-wise multiplication [94, p. 251], the superscript ⊤ denotes

simple transposition (non-Hermitian), and ΩΩΩN2×N1 is the twiddle-factor matrix given by

ΩΩΩN2×N1 = (ω i·k
N )i=0,1,...,N1−1,k=0,1,...,N2−1.

A specific case of the Cooley-Tukey algorithm is the radix-N algorithm when

N2 = N1. In this way, considering the transposition properties, ΩΩΩN2×N1 =ΩΩΩ⊤N1×N2
, FN1 =
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F⊤N1
, and FN2 = F⊤N2

, (2.10) can be written as

X =vec
([

ΩΩΩN2×N1 ◦
(

FN2 · (invvec(x))⊤
)]
·FN1

)
. (2.11)

The inner DFT call corresponds to row-wise transformation of invvec(x), whereas the outer

DFT performs column-wise transformations on the resulting intermediate computation.

2.3 PRIME FACTOR ALGORITHM

Comparable to the more popular Cooley-Tukey FFT [21, p. 80], the PFA is

a factorization-based FFT capable of computing the N-point DFT, where N = N1 ×

N2, with N1 and N2 relatively prime, i.e., gcd(N1,N2) = 1, being gcd(·, ·) the greatest

common divisor of two integers operator. The method is based on a number-theoretical re-

indexing [8, p. 144] of the input signal coefficients into a two-dimensional array [3, p. 846]

which is based on the Chinese remainder theorem [21, p. 58].

The PFA mapping requires a shuffle of the input and output as follows:

i =i1N2n2 + i2N1n1 (mod N), (2.12)

k =N2k1 +N1k2 (mod N), (2.13)

where n1 and n2 are integers that satisfy (n1 ·N1 +n2 ·N2) mod N = 1 [8, p. 167].

Rewriting (2.1) with the indexing in (2.12), we obtain:

X [N2k1 +N1k2] =
N2−1

∑
i2=0

N1−1

∑
i1=0

ω
(i1N2n2+i2N1n1)(N2k1+N1k2)
N x[i1N2n2 + i2N1n1]. (2.14)

Then, expanding the product in the exponent

X [N2k1 +N1k2] = ∑
N1−1
i1=0 ∑

N2−1
i2=0

[
ω

(i1N2n2N2k1)
N ω

(i1N2n2N1k2)
N ω

(i2N1n1N2k1)
N ω

(i2N1n1N1k2)
N

]
x[i1N2n2 + i2N1n1].

(2.15)

Dropping the terms of ωN that involve N1N2, (2.15) is reduced to

X [N2k1 +N1k2] =
N1−1

∑
i1=0

ω
(i1N2

2 n2k1)
N

[
N2−1

∑
i2=0

ω
(i2N2

1 n1k2)
N x[i1N2n2 + i2N1n1]

]
. (2.16)

In matrix format, the PFA can be computed according to the following description:
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1. Obtain n1 and n2 that satisfy (n1 ·N1 +n2 ·N2) mod N = 1 [8, p. 167];

2. Map x into a block of size N1×N2 according to the following 1D to 2D rearrange-

ment of elements:

map





x[0]

x[1]

x[2]
...

x[N−1]




=


x[0] x[N1n1] . . . x[(N2−1)N1n1]

x[N2n2] x[N1n1+N2n2] . . . x[N1n1+(N2−1)N1n1]
...

... . . . ...

x[(N1−1)N2n2] x[(N1−1)N1n1+N2n2] · · · x[(N1−1)N2n2+(N2−1)N1n1]

;

3. Compute the N2-point DFT of each column of the 2D array obtained in Step 2;

4. Compute the N1-point DFT of each row of the resulting 2D array from Step 3;

5. Reconstruct the vector X from the resulting block according to the following map-

ping:

invmap




X [0] X [N1] · · · X [(N2−1)N1]

X [N2] X[N1+N2] · · · X [N2+(N2−1)N1]
...

... . . . ...

X [(N1−1)N2] X [(N1−1)N2+N1] · · · X [(N1−1)N2+(N2−1)N1]



=



X [0]

X [1]

X [2]
...

X [N−1]


.

All index operations are performed in modulo N arithmetic, ensuring the correct

size of the arrays. The algorithm can be synthesized as follows:

X = invmap
(

FN1 ·
[
FN2 · (map(x))⊤

]⊤)
. (2.17)

Notice that if N1 or N2 can be decomposed into relatively prime factors, then

the algorithm can be reapplied. The N1- and N2-point transformations are referred to as

ground transformations.
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2.4 FAST ALGORITHM TO COMPUTE COMPLEX MULTIPLICATIONS

Let c and f represent complex elements, then they can be expressed in the

following forms [94, p. 2]:

c =a+ jb,

f =d + je,

where a, b, d, and e are real numbers. A simple way to express the complex multiplication

between c and f is:

c · f =(a+ jb) · (d + je) (2.18)

=ad + j(ae)+ j(bd)−be (2.19)

=ad−be+ j(ae+bd). (2.20)

If the complex multiplications are computed according to (2.20), then four real multiplica-

tions and two real additions are required. This approach is useful when multiplications

are trivial. However, if the multiplications are not trivial, then we can reduce them by

performing the computation as follows:

c · f =e(a−b)+a(d− e)+ je(a−b)+ jb(d + e) (2.21)

=e(a−b)+a(d− e)+ j(e(a−b)+b(d + e)). (2.22)

We can take advantage of the redundant term e(a−b) which reduces one multiplication

compared to (2.20). Therefore, the arithmetic cost of (2.22) is three real multiplications

and five real additions.

Rewriting (2.22) in matrix form and splitting the real and imaginary of (2.22), we

have  c

f

=

 e(a−b)+a(d− e)

e(a−b)+b(d + e)

 . (2.23)
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Notice that (2.23) can be factored as follows:

 e(a−b)+a(d− e)

e(a−b)+b(d + e)

=

 1 0 1

0 1 1




a(d− e)

b(d + e)

e(a−b)



=

 1 1 0

1 0 0




(d− e) 0 0

0 (d + e) 0

0 0 e




1 0

0 1

1 −1


 a

b

 .
(2.24)

If d and e are constants, then d− e and d + e are also constants and can be

computed off-line [21, p. 3]. Therefore, according to (2.24), one complex multiplication

can be translated into three real multiplications and three real additions.
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3 RADIX-N ALGORITHM FOR COMPUTING N2n-POINT DFT APPROXIMA-

TIONS

In this chapter, we introduce a variant of the Cooley-Tukey FFT algorithm [81,

112, 113] in which instead of breaking down an N-point transformation into smaller

blocks, our method maps an N-point transformation into an N2-point transformation with

reduced multiplicative complexity, achieved by trading computational precision. This

approach is classified as a scaling method and it can be iterated, furnishing large-sized

transformations. Large-sized FFT algorithms (i.e., millions-billions of frequency bins) are

necessary for some challenging DSP applications like radar [97, 99, 117], sonar [118–120],

radio astronomy [121–123], microwave imaging [124–126], and spectrum sensing [16,

127–129]. In areas such as machine learning and AI [130–134], where extremely large

amounts of data often need to be processed, a judicious trade-off between precision and

multiplicative complexity can generate substantial gains in computation speed [135].

The Cooley-Tukey algorithm is considered “the most important numerical algo-

rithm in our lifetime” by algorithms expert Gilbert Strang [136]. This opinion is perhaps

based on the seemingly endless number of applications where the frequency domain

representation of a discrete domain signal has to be computed in a fast, efficient, and

numerically meaningful way.

The Cooley-Tukey algorithm applies to band-limited and sampled discrete-

domain signals regardless of the spectral region of support in the Nyquist interval.

That is, the method can be used for both sparse and non-sparse signals. However, many

applications only require processing of extremely sparse signals; for example, the chip

realization in [137] assumes 0.1% sparsity—that is, 99.9% of the spectral bins are empty—

allowing sparse Fourier transforms to be efficiently realized using integrated circuits.

There has been extensive work on the design and realization of sparse FFTs in the last

10 years [138–140], with applications in DSP that assume high levels of sparsity, usually

below 6% of the spectral bins [138, 141, 142]. Unfortunately, the requirements for sparsity

prevent these algorithms to be used in applications where sparsity is either too low (more

than 10% occupancy [143]) or cannot be assumed at all, in which case, dense FFTs must
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still be used. Clearly, the realization of the FFT using factorizations of the DFT matrix

leads to significant performance improvements; however, practical realities of chip area,

power consumption, size, weight, and cost prevent direct implementation of dense FFTs for

very large numbers of frequency bins. In cases where signals are not sparse, and realizing

a traditional FFTs in custom integrated circuits is not practically feasible, a compromise

must be reached where one gives up performance in terms of numerical precision to realize

a lower complexity implementation on chip.

Consider the N2n
-point DFT where n is a nonnegative integer and N is the input

length, and, in this chapter, it is a power of two. The Cooley-Tukey algorithm allows

the use of an N-point DFT as a radix building block to realize the larger N2n
-point DFT,

where the exact sparse factorization of the DFT matrix reduces the multiplier complexity

from O(N2n+1
) down to O(N2n

log2 N2n
) [p. 779] [3] with no computational errors intro-

duced as a consequence of factorization [21]. We consider N-point DFT methods—exact

or approximate—as fundamental building blocks for the proposed methods. In particular,

we extend the work proposed in [74] to address the million-point DFT which is the dis-

cussed subject in [123, 141, 144]. The approximate DFT building block accrues a certain

computational error that prevents an exact realization of the exact DFT; however, for

many practical applications, small errors in the DFT computation can be tolerated without

much practical significance, thereby allowing for the adoption of approximate computing

methods as an alternative approach for achieving large-sized DFTs in real-time, albeit in

an approximate sense.

3.1 APPROXIMATE DFT SCALING

In the context of discrete transforms, a scaling method is a procedure that maps

a transform with smaller blocksize to a larger one. Several results are available for the

DCT [145–149], typically mapping the N-point DCT into the 2N-point DCT [150, 151].

Scaling methods are important because they facilitate the design of fast algorithms of large

blocksizes. Indeed, if a fast algorithm (an efficient factorization) for the smaller blocksize

transform is available, then a fast algorithm for the large (“scaled up”) blocksize transform
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becomes immediately available. Such an interpretation of the Cooley-Tukey algorithm in a

“reverse” way is one of the main points of this proposal. In other words, instead of breaking

a blocksize transform down into smaller ones, we use the Cooley-Tukey algorithm as a

means to generate/design transformations of large blocksize.

For the DFT-case, the Cooley-Tukey algorithm can scale up an N-point transform

square matrix into an N2-point square matrix as described in Algorithm 1.

Algorithm 1: Pseudo-algorithm for the CooleyTukeyScaling(CN)

Input: CN ; ▷ Enter an N×N matrix.
Output: DN2; ▷ The algorithm returns an N2×N2 matrix.

1 DN2 ← empty; ▷ Create an empty output matrix structure.
2 for k← 1 to N2 do
3 x← ek ; ▷ Generate the standard basis over RN2

.
4 X← vec

([
ΩΩΩN ◦

(
CN · (invvec(x))⊤

)]
·C⊤N

)
; ▷ Transform of each

basis element.
5 DN2 ←

[
DN2 | X

]
; ▷ Concatenate the result to obtain the N2

output matrix.
6 end
7 return DN2;

As a matrix mapping, Algorithm 1 could be described according to the following

matrix function:

fCTS :MC(N)→MC(N2)

CN 7→ DN2 = CooleyTukeyScaling(CN),

where fCTS(·) is the Cooley-Tukey scaling and MC(N) denotes the set of square matrices

of order N with complex entries. If CN is the N-point DFT matrix (CN = FN), then

we obtain that the output DN2 is the N2-point DFT matrix (DN2 = FN2). In symbols,

fCTS(FN) = FN2 .

The scaling is induced by the Cooley-Tukey algorithm and the factorization of

the resulting N2-point DFT approximate matrix is obtained effortlessly as a useful side-

effect of the method. Therefore, by setting CN = FN , we obtain a fast algorithm for the
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large blocksize transformation FN2 . This is a desirable result in the context of discrete

transforms. The point becomes even more relevant in the context of approximate discrete

transforms. Indeed, consider the approximate DFT case. The current literature offers

no direct procedure to obtain large DFT approximations capable of good performance,

let alone a fast algorithm for them. Therefore, by selecting as the input matrix for the

above procedure—not the exact N-point DFT—but an N-point DFT approximation we can

directly obtain an N2-point DFT approximate matrix in a very systematic manner. Then,

in symbols, we have:

fCTS(F̂N) = F̂N2.

Usually, obtaining good approximate transforms is not an easy task that involves

solving a constrained multi-criteria, multi-variable optimization problem of quadratic

complexity [92, 95, 152]. As a matter of fact, our method can be iterated to obtain larger

transforms. For example, consider two iterations of the proposed algorithm:

fCTS

(
fCTS(F̂N)

)
= fCTS

(
F̂N2

)
= F̂N4.

The proposed method can be further iterated to obtain large blocksize approximate trans-

form fully equipped with a fast algorithm.

In the next sections, we present the definition of the approximate DFT scaling

method and its multiplicative complexity.

3.1.1 Definition

The approximate DFT scaling consists of using the Cooley-Tukey algorithm and

replacing the N1- and N2-point DFT matrix FN by any N1- and N2-point approximate DFT

matrix F̂N , respectively, such as the DFT approximations described in [69]. Mathematically,

it is given by

X̂ = vec

({
F̂N1 ·

[
ΩΩΩN2×N1 ◦

(
F̂N2 · (invvec(x))⊤

)]⊤}⊤)
. (3.1)

In this first moment, we consider the radix-N algorithm with ground transform

approximations of blocklength N and the twiddle factor matrix computed in the exact
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form to control the error propagation in the scaling method. In the next chapters, full

approximations are presented in which the ground transforms and twiddle factor matrices

(when required) are approximated.

The non-linear approximate DFT scaling to obtain a N2-point approximate DFT

from ground approximate transform of blocklength N is given by

X̂1 = vec
([

ΩΩΩN ◦
(

F̂N · (invvec(x))⊤
)]
· F̂⊤N

)
. (3.2)

In addition, a suite of hybrid approximations is also considered where the column-

or row-wise DFT is maintained according to the DFT definition. The hybrid transforma-

tions are given by

X̂2 = vec
([

ΩΩΩN ◦
(

F̂N · (invvec(x))⊤
)]
·FN

)
, (3.3)

X̂3 = vec
([

ΩΩΩN ◦
(

FN · (invvec(x))⊤
)]
· F̂⊤N

)
. (3.4)

Vectors X̂1, X̂2, and X̂3 are different approximations for X. Eqs. (3.2) to (3.4)

imply therefore different approximate DFT matrices. The explicit matrix form of such

N-point approximate transformations can be obtained by submitting the vectors of the

standard (canonical) basis to (3.2), (3.3), or (3.4). Once the N×N transformation matrices

required to the N-point transforms are obtained the process can be iterated to derive

the N2×N2 approximate transformation matrices. Thus after n = 1,2, . . . iterations, an

approximate transformation matrix of size N2n−1×N2n−1 is obtained. This approach can

be understood as a non-linear scaling method where an N-point transformation is mapped

onto an N2-point transformation. The transformation matrices used before the iterations

(the fundamental blocks) are defined as ground transformations.

3.1.2 Multiplicative Complexity

In order to minimize the resulting multiplicative complexity and error propagation,

F̂N is preferably chosen to be a multiplierless DFT approximation close to the FN whenever

multiplication-free computation is a goal. Unlike the DCT scaling methods [150, 153],

in which an N-point transformation is mapped onto a 2 ·N-point transformation, the
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above scaling approach does not necessarily result in multiplierless scaled approximate

transforms. Although F̂N can be a multiplierless matrix, the matrix ΩΩΩN contains (N−1)2 =

N2−2 ·N +1 non-trivial complex multiplicands. Since roughly N2 multiplications are

required (which is comparable to the size of the resulting scaled transform N2), the

method has linear multiplicative complexity. Therefore, (3.2) to (3.4) generate scaled

approximations with, albeit small, non-null multiplicative complexity.

Considering the above discussion, we can establish a recursive equation for the

real multiplicative complexity. Let a be the number of real multiplications required to

perform a complex multiplication and µ be the real multiplicative complexity of the

exact DFT FN in the hybrid algorithms. Then, the real multiplicative complexity of the

approximate DFT scaling in (3.2) to (3.4) can be obtained by the following equation:

MR1

(
N2n+1)

=N2n
·MR1

(
N2n)

+a·(N2n+1
−2·N2n

+1)+N2n
·MR2

(
N2n)

, (3.5)

where n = 0,1,2, . . .. While the first and the last terms in the right-hand side of (3.5) refers

respectively to the inner and outer DFT multiplicative complexity and the remaining term

refers to the twiddle factor complexity [21].

In this first moment, it is considered that at least one of the DFT approximations

is multiplierless, than only one term is required, MR1

(
N2n)

or MR2

(
N2n)

. If we used (3.2)

and multiplierless approximations of the DFT, both terms are removed. Thus, without loss

of generality, for n = 0, (3.5) can be expressed as

MR1

(
N2)=N ·MR1 (N)+a · (N2−2 ·N +1), (3.6)

where MR1(N) = µ . If F̂N is fully replaced by a multiplierless approximation then µ = 0.

For n = 1, the number of real multiplications is given by

MR1

(
N4)=N2 ·MR1

(
N2)+a · (N4−2 ·N2 +1)+N2 ·MR1

(
N2) . (3.7)

For n = 2,

MR1

(
N8)=N4 ·MR1

(
N4)+a · (N8−2 ·N4 +1)+N4 ·MR1

(
N4) . (3.8)
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For n = 3,

MR1

(
N16
)
=N8 ·MR1

(
N8)+a · (N16−2 ·N8 +1)+N8 ·MR1

(
N8) , (3.9)

and so on.

With a few algebraic manipulations, (3.6), (3.7), (3.8), and (3.9) can be rewritten

respectively as

MR1

(
N2)=a · (N2)+(µ−2 ·a) ·N +a, (3.10)

MR1

(
N4)=3 ·a ·N4 · (N2)+(µ−2 ·a) ·2 ·N3 +a, (3.11)

MR1

(
N8)=7 ·a ·N8 · (N2)+(µ−2 ·a) ·4 ·N7 +a, (3.12)

MR1

(
N16
)
=15 ·a ·N16 · (N2)+(µ−2 ·a) ·8 ·N15 +a. (3.13)

Therefore, with initial condition MR1(N) = µ the recursion is satisfied by:

MR1

(
N2n
)
= (2n−1) ·N2n

·a+(µ−2 ·a) ·2n−1 ·N2n−1 +a, (3.14)

=(2n−1)·N2n
·a+2n·µ−2·a

2
·N2n−1+a, (3.15)

where n = 1,2,3, . . .. Figure 1 shows for some selected blocklengths the behavior of the

discussed scaling in terms of the number of iterations, DFT length, and the number of

real multiplications, where N represents the blocklength of the ground transform. We

considered (3.2) using multiplierless ground transformations and a = 3.

Let Ln = N2n
be the blocklength of the scaled transform after n iterations of the

scaling procedure, starting with a ground transformation matrix of size N. Then (3.14) can
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Figure 1 – DFT length in terms of the number of iterations (a) and the number of real
multiplications (b) for selected values of N

Source: Author (2023).

be written as

MR1(Ln) =(logN Ln−1) ·Ln ·a− (2 ·a−µ) · logN Ln

2
· Ln

N
+a (3.16)

=

(
log2 Ln

log2 N
−1
)
·Ln ·a+(µ +2 ·a) · log2 Ln

log2 N
· Ln

2N
+a (3.17)

=
log2 Ln

log2 N
·Ln ·a− (2 ·a−µ) · log2 Ln

log2 N
· Ln

2N
+a−a ·Ln (3.18)

=Ln ·
[

log2 Ln

log2 N

(
a− 2 ·a−µ

2 ·N

)
−a
]
+a (3.19)

=Ln ·

[
log2 Ln

1
2n log2 Ln

(
a− 2 ·a−µ

2 ·L2−n
n

)
−a

]
+a (3.20)

=Ln

[
log2 Lβ

n −a
]
+a (3.21)

=β ·Ln · log2 Ln−a ·Ln +a, (3.22)

where β = 2n

log2 Ln

(
a− 2·a−µ

2·L2−n
n

)
. If Ln = N2n

then N = L2(−n)

n and it can generate complex

and/or negative roots, but as it is a counting measure, only integer values are considered.

Notice that since β < 1, the growth of Ln · log2 Ln is attenuated and if N is a power

of two, N = 2m, m ≥ 3, then β = 1
m

(
a− 2·a−µ

2m+1

)
. Therefore, β does not depend on the

number of iterations n. The multiplierless 32-point DFT approximation (m = 5 and a = 3)
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used in [74] results in β = 0.58125. Based on the same setting for N = 8,16,64,128,256,

we have β ≈ 0.875,0.703,0.492,0.425,0.374, respectively. The theoretical minimal of

multiplicative complexity for specific values are listed in [19, p. 137]. Considering

N = 32 as the size of the ground transformation, such as the approximate DFT in [69], the

repeated application of the above procedure generates approximations of sizes: 1024 [74],

1048576 (≈ 1.05×106), and 1099511627776 (≈ 1.1×1012), for n = 1,2,3, respectively.

In this work, we examine the case N = 32 and n = 2. In other words, we aim at deriving

and assessing a DFT approximation of size 1048576 = 324.

3.2 324-POINT DFT APPROXIMATION

The work in [74] proposed the use of (3.2), (3.3), or (3.4) to obtain approximations

to the 1024-point DFT. To propose transforms with different trade-offs in computational

complexity and computational accuracy, the authors in [74] employed the 32-point ap-

proximation to defined three different approximations, either approximating (i) the inner

32-point DFT block (over the rows), (ii) the outer 32-point DFT block (over the columns),

or (iii) approximating both the inner and outer 32-point DFT blocks.

Based on such 32-point DFT approximation, two iterations of the proposed

scaling method leads to a million-point approximation: the 324-point DFT approximation.

It results in three different 324-point DFT approximations, referred to as F̂I
324 , F̂II

324 , and

F̂III
324 obtained respectively by (3.2), (3.3), and (3.4).

3.2.1 Arithmetic Complexity

The arithmetic complexity expressed by the count of required arithmetic opera-

tions (multiplications and additions) is the main and standard figure of merit for assessing

the computational costs of discrete transforms and associate fast algorithms [3,21,154,155].

For the assessment of the arithmetic complexity, we assumed the following conditions:

(i) complex-valued input data, (ii) non-trivial multiplicands only, and (iii) that one com-

plex multiplication requires three real multiplications (a = 3) and three real additions, as

detailed in Section 2.4.
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The ground transformation to N = 32 detailed in [74] can be easily obtained by

F̂32 = round(F32), where round(·) is the rounding function as implemented in Matlab [156].

To present the sparse matrix factorization of F̂32, consider the two following butterfly-

structure. The first structure is given by

Bm =


I(m−1)/2 Ī(m−1)/2

1

−Ī(m−1)/2 I(m−1)/2

 ,
where m is an odd integer greater than 1, Im is the identity matrix of order m, and Īm/2 is

the backward identity matrix [157, p. 33] of order m/2. The second structure for when m

is an even integer is given by

Bm =

 Im/2 Īm/2

−Īm/2 Im/2

 .
The approximation F̂32 needs only 348 real additions and no multiplications by

means of the following factorization into sparse matrices:

F̂32 = G7 ·G6 ·G5 ·G4 ·G3 ·G2 ·G1 ·G0,

where

G0 =
[

B17
B15

]
, G1 =

 I16
[0

I15

][0
I15

] [1
−I15

]
 ,

G2 =

[
B9

B7
I16

]
, G3 =


B5

1
B3

1
B3

B3
E1

 ,

G4 =


B3

B2
B4

B4
B2

E2

 , G5 =

[
B2

I15
E3

]
,



37

G6 =



I16 

1 1
1 1
−1 1

1
1

1 1
1 −1

1 1
1 −1

1 1
1 −1

1
1 1

1 −1
1

1 −1




,

G7=



1

− j 1

1 − j

− j −1

1 j

− j 1

−1 − j

−1 − j

1 − j

− j −1

1 − j

− j −1

−1 j

− j −1

1 j

− j −1

1

j −1

1 − j

j −1

−1 − j

j −1

1 j

j −1

1 j

−1 j

−1 j

j 1

1 − j

j −1

1 j

j 1



,
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and E1, E2, and E3 are given by

E1 =



1 1
1

1
1

1 1
1

1
1

1 −1
1

1
1

1 −1
1

1
1


,

E2 =



1
−1 1

1
1 1

1 1 1
1 1

1 −1
1 −1

1 −1
1 −1

1
1 1

1 1 1
1 −1

1 −1
1 1

1 −1


,

and

E3 =



1 1 −1
1

1 1
1 −1

1 −1
1

1 1
1

1 1 −1
1

1 1
1

1 −1
1 −1

1 1


.

The algorithms to compute the 324-point DFT according to (3.2) to (3.4) requires

131072 calls of the twiddle factor matrix of size N = 32 and one call of the twiddle factor

matrix of size N = 1024. Thus, the twiddle factors imply (2883×131072)+3139587 =

9043971 real multiplications and (2883×131072)+3139587 = 9043971 real additions

for each approximation.

Denoted by F32, the exact 32-point DFT is computed by the radix-2 Cooley-Tukey

algorithm, requiring 88 multiplications and 408 additions [21]. To compute the exact

324-point DFT it is sufficient to use the exact methods—F32 instead of F̂32. Thus, we need
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131072 calls of F32 and twiddle factor multiplications. Therefore, the resulting arithmetic

costs of the exact 324-point DFT using the radix-2 Cooley-Tukey FFT are: (88×131072)+

9043971 = 20578307 real multiplications and (408× 131072)+ 9043971 = 62521347

real additions.

The approximations F̂II
324 and F̂III

324 present the same complexity with differences

only in the arrangement of the ground approximations. These two approximations require

65536 calls of F̂32, 65536 calls of F32, and multiplications by twiddle factors. Thus,

we have a total of (88×65536)+9043971 = 14811139 real multiplications and (348×

65536)+(408×65536)+9043971 = 58589187 real additions.

For F̂I
324 , all ground transformations were approximations. Thus, the only source

of multiplications are the twiddle factors which represent 9043971 multiplications. Due

to the 131072 calls of F̂32, F̂I
324 requires (348× 131072)+ 9043971 = 54657027 real

additions. A summary of the arithmetic complexity is shown in Table 1. While the

approximation F̂I
324 reduces ≈56% of the multiplications, the approximations F̂II

324 and

F̂III
324 reduce ≈28% when compared to the DFT computed by the Cooley-Tukey FFT

algorithm.

3.2.2 Error Analysis

We evaluate the approximations according to their numerical errors relative to the

exact N-point DFT, where N = 324. We adopted a Monte Carlo simulation experiment

where the spectrum of the chosen test signals presents constant, unit magnitude. The exper-

iment consists of generating a vector U =
[
U0 U1 . . . UN−1

]⊤
, where Un = exp( jωn),

and ωn are independent and identically distributed samples from a uniform distribution

in the interval [−π,π) for n = 0,1, . . . ,N− 1. Then we compute the inverse DFT of U

as x = F−1
324 ·U. We use x to compute the corresponding transformed signals XI, XII, and

XIII according to the 324-point DFT approximations F̂I
324 , F̂II

324 , and F̂III
324 . If a specific 324-

point DFT approximation F̂i
324 for i ∈ {I, II, III} is close to the exact 324-point DFT, then

its transformed signal Xi is expected to be close to the original signal U. This process is

repeated R = 1000 times, generating, therefore, Ur, xr, XI
r,XII

r ,XIII
r for r = 0,1, . . . ,R−1.
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For comparing each of the three different 324-point DFT approximations, the average

relative error norm is computed as follows:

ε =
1
R

R−1

∑
r=0

∥Ur−Xi
r∥2

∥Ur∥2 , (3.23)

where i ∈ {I, II, III}. Table 1 shows the error measure values which were computed using

IEEE 754 standard double floating-point precision [158]. In addition, to understand

the error behavior computed in (3.23), we divided the 1048576 bins into 256 chunks.

Each chunk contains 4096 sequential bins, where the least performing bin of each chunk

is collected and plotted in Figure 2. Thus we provide a worst-case scenario analysis.

The evaluation shown in Figure 2 were designed to be a descriptive analysis with easy

reproducibility. The test signals whose spectrum has constant and unit magnitude are

useful to directly evidence any distortion in magnitude that might be relevant in the analysis

of the signal.

The DFT computation of F̂I
324 presents an approximation error of 0.9899, but

reduces the total number of multiplications in ≈56% and the additions in ≈12% when

compared with the radix-2 Cooley-Tukey algorithm. According to Figure 2a, the bin error

is at most ≈9.8 dB. On the other hand, the approximations F̂II
324 and F̂III

324 present error

equal to 0.2823 and reduces ≈28% of multiplications and ≈6% of additions compared

with the radix-2 Cooley-Tukey algorithm. Although, the approximations present the same

error, they have different behavior. While F̂II
324 presents maximum bin error of ≈ 2.46,

F̂III
324 has ≈ 2.5. Figures 2b and 2c show a greater variability of F̂III

324 , which is due to the

position of the twiddle factors matrix in the algorithm.

3.3 CHAPTER CONCLUSIONS

In this chapter, we propose a recursive scaling method generalizing the proposal

in [74]. We have provided a multiplicative complexity analysis for the proposed scaling

method including hybrid cases. The hybrid approximations can be useful in signals that

are sparsely sampled in the frequency domain [159], ,particularly for high-dimensional

signals [160] or nonequispaced discrete Fourier transformation [161, 162] to reduce com-
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Figure 2 – Least performing bin of each chunk of 4096 bins for the proposed approximations

Source: Author (2023).
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Table 1 – Arithmetic complexity and error evaluation

Arithmetic operation Reduction (%) Error

Transform Mult. Add. Mult. Add. ε

Exact 20578307 62521347 - - 0

F̂I
324 9043971 54657027 56.05 12.58 0.9899

F̂II
324 14811139 58589187 28.03 6.29 0.2823

F̂III
324 14811139 58589187 28.03 6.29 0.2823

Source: Author (2023).

putational cost while maintaining reasonable accuracy. We fully worked out the 324-point

approximation detailing the trade-off between performance in terms of numerical er-

rors and arithmetic complexity. The proposed method was able to reduce ≈56% of the

multiplications required to compute the DFT by the radix-2 Cooley-Tukey algorithm.
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4 APPROXIMATE PRIME FACTOR ALGORITHM AND A MULTIPLIERLESS

1023-POINT DFT APPROXIMATION

The 32-point DFT approximation proposed in [69] was employed as the funda-

mental block of the 1024-point DFT approximation introduced in [74]. The methodology

described in [74] revisits the Cooley-Tukey algorithm and effectively extends a given

32-point DFT approximation resulting in a 322-point DFT approximation. This extension

is possible because the Cooley-Tukey algorithm can be structured as a two-dimensional

mapping, allowing the computation of the 1024-point DFT to be performed by 2× 32

instantiations of the 32-point DFT [81]. However, from the previous chapter, we can see

that even considering multiplierless 32-point approximations, the resulting 1024-point

approximations proposed in [74] still require multiplications. Indeed, the Cooley-Tukey-

based approximations inherit the twiddle factors present in the exact formulation of the

traditional Cooley-Tukey algorithm [8]. The Cooley-Tukey-based 1024-point DFT approx-

imations in [74] require 5699 real multiplications for the hybrid algorithms and 2883 for

the full-multiplierless ground transformation algorithm. Although the proposed approx-

imations reduce respectively 44% and 72% of the real multiplications (when compared

with the Cooley-Tukey Radix-2 FFT [21, p. 76]), such remaining operations may still be a

hindrance in extremely resource-constrained scenarios.

In this chapter, a framework for deriving large DFT approximations that are fully

multiplierless is proposed. Specifically, we focus on the design of a DFT approximation

capable of directly competing with the method introduced in [74]. The 1024-point DFT

provides a sampling rate that is usually enough in terms of resolution for many applications.

The 1023-point DFT has a sampling rate close to the 1024-point DFT, and it can be

exploited by the prime-factor algorithm (PFA) [79, 80], also known as the Good-Thomas

algorithm which has distinct number-theoretical properties that eliminate intermediate

computations such as twiddle factors. Since the Good-Thomas algorithm requires the

lengths of the fundamental blocks to be coprimes, we initially provide a methodology to

obtain approximations for any blocklength.
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4.1 APPROXIMATE DFT METHODOLOGY

Being alternatives to the exact transformations, approximate transforms possess

a low computational cost and exhibit similar mathematical properties and performance

to their exact counterparts [163]. In this context, an approximate DFT matrix F̂∗N can be

derived by solving the following optimization problem:

F̂∗N = argminerror
F̂N

(F̂N ,FN), (4.1)

where error(·) is an adopted error measure and F̂N is a candidate approximation obtained

from a suitable search space.

Approximate transforms can be derived from low-complexity matrices [58] ac-

cording to an orthogonalization process referred to as polar decomposition [164]. Such

approach consists of two matrices: a low-complexity matrix and a real-valued diagonal

matrix. Thus, a candidate approximation F̂N for the exact transformation FN can be written

as

F̂N = SN ·TN , (4.2)

where TN is a low-complexity matrix and SN is a diagonal matrix expressed by

SN = diag

√[diag
(

TN ·
1
N

TH
N

)]−1
 , (4.3)

diag(·) is a function that returns a diagonal matrix, if the argument is a vector; or a

vector with the diagonal elements, if the argument is a matrix, the superscript H denotes the

Hermitian operation [94, p. 82], and
√
· is the matrix square root operation [165]. Therefore,

a suitable choice of TN is central to the above approach. To solve the optimization problem

in 4.1, it is necessary to define the search space.

4.1.1 Search Space

The low-complexity matrices TN are taken from the search space given by the

matrix space MN(P), which is the set of all N×N matrices with entries over a set of low-



45

complexity multipliers P , referred to as low-complexity subspace. Popular choices for

P are {−1,0,1} and {−1,−1
2 ,0,

1
2 ,1}, which contain only trivial multipliers [21, p. 71].

The set MN(P) can be extremely large. For instance, MN(P) contains 364 ≈

3.43× 1030 elements (distinct matrices) for N = 8 and P = {−1,0,1}. Therefore, we

propose, as a working search space, a subset of MN(P) given by the expansion factor

methodology [47, p. 274]. Thus, low-complexity matrices TN can be generated according

to the following expression:

TN = g(α ·FN), (4.4)

where g(·) is an entry-wise integer matrix function, such as rounding, truncation, ceil, and

floor functions [58] and α is a real number referred to as the expansion factor [166]. To

ensure that the integer function g(·) returns only values defined over P , the values of α

are judiciously restricted to an interval D given by

αmin ≤ α ≤ αmax, (4.5)

where αmin = inf{α ∈ R+ : g(α · γmax) ̸= 0} and αmax = sup{α ∈ R+ : g(α · γmax) =

max(P)}, being inf{·} the infimum operator [167, p. 82], sup{·} the supremum opera-

tor [168, p. 12] γmax = max
m,n

(ℜ(| fm,n|),ℑ(| fm,n|)) and fm,n, the (m,n)th entry of FN . The

symmetries of FN allow us to restrict the analysis to α ≥ 0 and since the entries of FN are

bounded by the unity, γmax = 1.

4.1.2 Optimization Problem and Objective Function

The general optimization problem shown in (4.1) can be rewritten by employing

(4.2), (4.3), and (4.4). Thus, the proposed optimization problem is given by

α
∗ = argminerror

α∈D
(SN ·g(α ·FN),FN), (4.6)

and the optimal approximation is furnished by

F̂∗N = S∗N ·T∗N , (4.7)

where T∗N = g(α∗ ·FN) and S∗N is computed from T∗N as detailed in (4.3), mutatis mutandis.
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Now we aim at specifying the error function in (4.6). As shown in the litera-

ture [73, 169, 170], usual choices for such function are: (i) the total error energy [66];

(ii) the mean absolute percentage error (MAPE) [171, p. 79]; and (iii) the deviation from

orthogonality [65, 172]. These functions are detailed below.

(i) The total error energy is defined by

ε(F̂N) = π · ||FN− F̂N ||2F,

where || · ||F represents the Frobenius norm [173, p. 115];

(ii) The MAPE of the transformation matrix is obtained by

M(F̂N) = 100 · 1
N2 ·

N

∑
m=1

N

∑
n=1

∣∣∣∣ fm,n− f̂m,n

fm,n

∣∣∣∣ ,
where f̂m,n is the (m,n)th entry of F̂N ;

(iii) The deviation from orthogonality [65] is defined by:

φ(F̂N) = 1−
||diag(F̂N · F̂H

N )||F
||F̂N · F̂H

N ||F
.

Small values of φ(·) indicate proximity to orthogonality. Orthogonal matrices have

null deviation.

Combining the above error functions in a single optimization problem, we obtain

the following multicriteria problem [92, 174]:

α
∗ = argmin

α∈D

{
ε

(
SN ·g(α ·FN)

)
,M
(

SN ·g(α ·FN)
)
,φ
(

SN ·g(α ·FN)
)}

. (4.8)

4.2 APPROXIMATE PFA

In this section, we introduce the approximate prime factor algorithm (APFA) and

two variations of the method: (i) the unscaled APFA and (ii) the hybrid APFA.

4.2.1 APFA Definition

Under the assumption of the PFA, we compute an N-point DFT approximation as

follows

X̂ = invmap
(

F̂∗N1
·
[
F̂∗N2
· (map(x))⊤

]⊤)
, (4.9)
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where F̂∗N1
and F̂∗N2

are approximations of FN1 and FN2 , respectively (cf. (2.17)) being

N = N1×N2 and gcd(N1,N2) = 1.

If the approximations used in (4.9) admit the format expressed in (4.7), then the

above equation can be rewritten as

X̂ = invmap
(

S∗N1
·T∗N1

·
[
S∗N2
·T∗N2

· (map(x))⊤
]⊤)

. (4.10)

Notice that S∗N1
and S∗N2

are real diagonal matrices that can be factored out from the

mapping operator as follows:

X̂ = S · invmap
(

T∗N1
·
[
T∗N2
· (map(x))⊤

]⊤)
, (4.11)

where S is a diagonal matrix given by S = diag
[
invmap

(
diag(S∗N1

) ·diag(S∗N2
)⊤
)]

.

4.2.2 Unscaled APFA

Because the matrix S is a diagonal matrix, its effect to the approximate DFT

computation consists of scaling each spectral component individually. Depending on the

context in which the DFT is applied, the scaling can be embedded, absorbed, parallel

computed, or even neglected when the unscaled spectrum is sufficient [175–177]. The

unscaled N-point DFT approximation is obtained by

X̃ = invmap
(

T∗N1
·
[
T∗N2
· (map(x))⊤

]⊤)
. (4.12)

Thus, we have the following relationship between (4.11) and (4.12):

X̂ = S · X̃. (4.13)

Since the elements of the diagonal matrix S are real numbers, we can approximate

them. Although the same approach can be applied in Cooley-Tukey algorithms, due to the

twiddle factor, the matrix S would have complex elements which require more arithmetic

operations to be implemented and also insert more error when approximated.
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4.2.3 Hybrid APFA

We also provide hybrid algorithms approximating only part of the DFT computa-

tion. The diagonal matrix S can also be factored out in the hybrid algorithms. Thus, we

obtain two possible approximations.

First, we keep the row-wise N1-point DFT exact while the column-wise N2-point

DFT is approximated. This algorithm is given by

X̂1 = S · invmap
({

FN1 ·
[
T∗N2
· (map(x))

]⊤}⊤)
, (4.14)

where S = diag
[
invmap

(
1N1 ·diag(S∗N2

)⊤
)]

and 1r is a column vector of ones with length

equals to r. Second, the column-wise N2-point DFT is maintained exact and the row-wise

N1-point DFT is approximated. Then, the N-point DFT approximation is calculated by

X̂2 = S · invmap
({

T∗N1
· [FN2 · (map(x))]⊤

}⊤)
, (4.15)

where S = diag
[
invmap

(
diag(S∗N1

) · (1N2)
⊤
)]

.

4.3 NUMERICAL RESULTS

In this section, we advance two results. First, we employ the prime factor

algorithm detailed in Section 4.2 to obtain approximations for the 1023-point DFT. Second,

we apply the methodology described in Section 4.1 to obtain approximations for the 31-,

11- and 3-point DFT which are required for 1023-point DFT approximations.

4.3.1 1023-point DFT Approximation

Invoking (4.9) for N1 = 31 and N2 = 33, we introduce a 1023-point DFT approx-

imation according to the following equation:

X̂ = invmap
(

F̂∗31 ·
[
F̂∗33 · (map(x))⊤

]⊤)
. (4.16)

The term in square brackets in (4.16) requires several calls of a 33-point DFT approxima-

tion. Because N2 = 33 = 11×3 is suitable for the proposed APFA formalism, a 33-point
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DFT approximation can be obtained based on approximations for the 3- and 11-point

DFTs, as follows:

Ŷ = invmap
(

F̂∗11 ·
[
F̂∗3 · (map(y))⊤

]⊤)
, (4.17)

where y is a 33-point column vector corresponding individually to the rows of map(x), so

in this case there are 31 possibly distinct vectors. As shown in (4.11), the scaling matrix S

can be calculated separately and a 1023-point DFT approximation can be rewritten as

X̂ = S · invmap
(

T̂∗31 ·
[
T̂∗33 · (map(x))⊤

]⊤)
, (4.18)

and

Ŷ = invmap
(

T̂∗11 ·
[
T̂∗3 · (map(y))⊤

]⊤)
. (4.19)

Notice that the diagonal matrix S encompasses the intermediate diagonals S∗3, S∗11,

and S∗31 and is given by

S=diag
{

invmap
[

diag(S∗31)·invmap
(

diag(S∗11)·diag(S∗3)
⊤
)⊤]}

, (4.20)

where S∗31, S∗11, and S∗3 are the diagonal matrices required by the DFT approximations F̂∗31,

F̂∗11, and F̂∗3, respectively, as described in (4.7).

4.3.2 Design Parameters

The algorithm detailed in the previous section requires approximations to the

31-, 11-, and 3-point DFT. To obtain such approximations, we numerically apply the

methodology described in Section 4.1 for which g(·) and P must be specified. As sug-

gested in [170], we select P = {−1,−1
2 ,0,

1
2 ,1} as the set of low-complexity multipliers.

Among the integer functions mentioned, the round function, as implemented in Matlab/Oc-

tave [156,178], is reported to offer superior performance when compared with other integer

functions [65, 66, 170]. In Figures 3, 4, and 5 are presented the error measures (y axis) of

the matrices obtained by integer functions considering α values (x axis). In Appendix A,

we provide the same analysis for P = {−1,0,1}. Thus, as detailed in [179], we adopted



50

the following round-to-multiple function:

g(x) =
1
2
· round(2 · x) ∈P. (4.21)

The related α search space is D = [0.26,1.25] (cf. (4.5)). The α step used was

10−5 providing a total of 42, 16, and 6 different approximations for the 31-, 11-, and

3-point DFT, respectively. Smaller α steps do not alter the results.

4.3.3 31-, 11-, and 3-point DFT Approximations

According to Figures 3, 4, and 5, orthogonal matrices were not found, so priority

was given to matrices that had lower values of MAPE and error energy. In this way, the

optimal expansion factors α∗ are in the intervals [1.08859,1.15141], [0.99240,1.14528],

and [0.86603,1.25000] for the 31-, 11-, and 3-point DFT approximations, respectively.

Therefore, we selected α∗ = 9
8 for convenience. Then, the low-complexity matrices T∗31,

T∗11, and T∗3 are given by

T∗31 =
1
2
· round(2 · 9

8
·F31),

T∗11 =
1
2
· round(2 · 9

8
·F11),

and

T∗3 =
1
2
· round(2 · 9

8
·F3).

From (4.3), we obtain

S∗31 =

 1 √
31
38 · I30

 ,

S∗11 =

 1 √
11
13 · I10

 ,
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and

S∗3 =

 1 √
6
7 · I2

 .
Therefore, the 31-, 11- and 3-point DFT approximations are given by

F̂∗31 = S∗31 ·T∗31,

F̂∗11 = S∗11 ·T∗11,

F̂∗3 = S∗3 ·T∗3,

respectively.

4.3.4 Approximate Scale Factors

Despite the dramatic reduction in arithmetic complexity, including the absence of

twiddle factors, the computation shown in (4.18) requires 2(N−1) real multiplications

due to the elements of the diagonal S. The diagonal values of S, si, i = 0,1, . . . ,1022, are

given by

si=



1, if i=0,√
6
7 , if i mod 31=0 ∧ i mod 11=0 ∧ i mod 3 ̸=0,√
11
13 , if i mod 31=0 ∧ i mod 11 ̸=0 ∧ i mod 3=0,√
66
91 , if i mod 31=0 ∧ i mod 11 ̸=0 ∧ i mod 3 ̸=0,√
31
38 , if i mod 31 ̸=0 ∧ i mod 11=0 ∧ i mod 3=0,√
93
133 , if i mod 31 ̸=0 ∧ i mod 11=0 ∧ i mod 3 ̸=0,√
341
494 , if i mod 31 ̸=0 ∧ i mod 11 ̸=0 ∧ i mod 3=0,√
1023
1729 , otherwise.

Further complexity reductions can be obtained by approximating the elements

of S according the canonical signed digit (CSD) number system [180], which satisfy the

minimum adder representation criterion. The CSD representation is better detailed in
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Chapter 5. The constants are irrational numbers, then we adopted the following procedure

to represent in CSD. We approximated each element in S in a such way that its CSD

representation admits at most two additions [181].

Table 2 provides a representation of the elements from S, their occurrences, and

their representation in CSD (1̄ represents −1). Since the elements from S31, S11, and

S3 are present in S, multiplierless approximation for the 31- and 33-point DFT are also

possible using Table 2. The approximations whose the diagonal matrices of which also

approximated, follow the notation F̂′N .

Table 2 – Approximations for the constants from S

Constant Approximation Occurrences CSD√
6
7 ≈ 0.92582 59

64 = 0.921875 2 1.0001̄01̄√
11
13 ≈ 0.91987 59

64 = 0.921875 10 1.0001̄01̄√
66
91 ≈ 0.85163 27

32 = 0.84375 20 1.001̄01̄0√
31
38 ≈ 0.90321 29

32 = 0.90625 30 1.001̄01̄0√
93

133 ≈ 0.83621 27
32 = 0.84375 60 1.001̄01̄0√

341
494 ≈ 0.83083 27

32 = 0.84375 300 1.001̄01̄0√
1023
1729 ≈ 0.76920 49

64 = 0.78125 600 1.01̄0001

Source: Author (2023).

4.4 FAST ALGORITHMS AND ARITHMETIC COMPLEXITY

In this section, we introduce fast algorithms based on sparse matrix factoriza-

tions [21] of the proposed 31-, 11-, and 3-point approximations to reduce the number of

remaining operations. The presented low-complexity matrices do not require multiplica-

tions, only additions and bit-shifting operations are needed [47, p. 221]. The arithmetic

complexity of the proposed approximations is also assessed and compared with competing

methods.
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4.4.1 31-point Approximation

The low-complexity matrix T∗31 can be represented as:

T∗31 = A⊤1 ·M1 ·A1, (4.22)

where

A1 =

 1

B30

 .
The matrix M1 is a block matrix given by

M1 =

 E4

j ·E5

 ,
where

E4=



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1
2

1
2 −1

2 −1
2 −1

2 −1 −1 −1 −1

1 1 1 1
2 −1

2 −1 −1 −1 −1 −1
2 −1

2
1
2 1 1

1 1 1
2 −1

2 −1 −1 −1 −1
2 1 1 1 1

2 −1
2 −1

1 1 −1 −1 −1
2 1 1 1

2 −1
2 −1 −1 −1

2
1
2 1

1 1
2 −1

2 −1 −1
2

1
2 1 1 −1

2 −1 −1 1 1 −1

1 1
2 −1 −1 1 1

2 −1
2 −1 1 1 −1

2 −1 −1
2 1

1 −1 −1
2 1 1 −1

2 −1 1
2 1 −1 −1

2 1 1
2 −1

1 −1 1 −1
2 −1 1

2 1 −1
2 −1 1

2 1 −1
2 −1 1

1 −1
2 −1 1 1

2 −1 1 −1
2 −1 1 1

2 −1 1 −1
2

1 −1
2 −1

2 1 −1
2 −1 1 −1 1 −1 1 1

2 −1 1
2

1 −1
2 −1

2 1 −1 1 −1 1
2

1
2 −1 1 −1 1 −1

2

1 −1 1
2 −1 1 −1

2 −1
2 1 −1 1 −1

2 1 −1 1
2

1 −1 1
2 −1

2 1 −1 1 −1
2

1
2 −1 1 −1 1 −1

2

1 −1 1 −1
2

1
2 −1

2
1
2 −1 1 −1 1 −1 1 −1

2

1 −1 1 −1 1 −1 1 −1 1 −1
2

1
2 −1

2
1
2 −1

2



,
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E5=



−1 1 −1 1 −1 1 −1 1 −1
2

1
2 −1

2
1
2 −1

2

1 −1 1 −1
2 −1

2
1
2 −1 1 −1 1 −1 1

2 −1
2

−1 1 −1
2

1
2 −1 1 −1 1

2 −1
2 1 −1 1 −1

2

1 −1
2 1 −1 1 −1

2 1 −1 1
2

1
2 −1 1 −1

2

−1 1
2 −1 1

2
1
2 −1 1 −1 1 −1

2 −1
2 1 −1

1 −1 1 1
2 −1 1

2
1
2 −1 1

2
1
2 −1 1 −1

−1 −1
2 1 −1 1

2
1
2 −1 1 −1

2 −1 1 1
2 −1

1 1
2 −1 −1

2 1 1
2 −1 −1

2 1 1
2 −1 1 −1

−1
2 −1 1

2 1 −1 1 1
2 −1 −1 1

2 1 −1
2 −1

1
2 1 −1 −1 1

2 1 1
2 −1 −1 1 1

2 −1
2 −1

−1
2 −1 −1

2
1
2 1 1

2 −1
2 −1 −1 1 1 −1 −1

1
2 1 1 1

2 −1
2 −1 −1 1

2 1 1 −1
2 −1 −1

−1
2 −1 −1 −1 −1

2 1 1 1 1
2 −1

2 −1 −1 −1
2

1
2 1 1 1 1 1

2 −1
2 −1

2 −1 −1 −1 −1 −1
2

−1
2 −1

2 −1
2 −1 −1 −1 −1 −1 −1 −1 −1 −1

2 −1
2



.

The matrix A1 requires only 60 real additions while M1 needs 780 real additions

and 300 bit-shifting operations. Computing T∗31 directly requires 3180 additions and 1200

bit-shifting operations. However, after the factorization detailed in (4.22), the arithmetic

complexity is reduced to 900 real additions and 300 bit-shifting operations. To scale the

approximation maintaining the exact S∗31, 60 real multiplications are added to the previous

arithmetic cost. This approximation is denoted by F̂∗31. Otherwise, if the diagonal matrix

is approximated then 120 additions and 120 bit-shifting operations are needed instead of

the multiplications. This approximation is called F̂′31.

4.4.2 11-point Approximation

For the 11-point approximation, the low-complexity matrix T∗11 is given by

T∗11 = A⊤2 ·M2 ·A2, (4.23)
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where

A2=

 1

B10

 ,
and the block matrix M2 is

M2 =



1 1 1 1 1 1

1 1 1
2 −1

2 −1

1 1
2 −1

2 −1 1

1 −1 1
2 1 −1

2

1 −1
2 1 −1 1

2

1 −1 1 −1
2

1
2

− j j − j j
2 − j

2

j − j
2 − j

2 j − j

− j − j
2 j j

2 − j
j
2 j j

2 − j − j

− j
2 − j − j − j − j

2



.

The matrix A2 requires 20 real additions and M2 needs 90 real additions and

40 bit-shifting operations. While the direct implementation of the T∗31 requires 380

additions and 160 bit-shifting operations, the factorization presented in (4.23) needs

130 real additions and 40 bit-shifting operations. The scaling of F∗11 requires 20 extra

multiplications. On the other hand, F′11 needs 40 additions and 40 bit-shifting operations

instead of 20 multiplications of the F∗11.

4.4.3 3-point Approximation

For the 3-point approximation, the low-complexity matrix T∗3 is given by

T∗3 = A⊤3 ·M3 ·A3, (4.24)

where

A3 =

 1

B2

 ,
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and the matrix M3 is

M3=


1 1

1 −1
2

− j

 .
The matrix A3 requires only 4 real additions and M3 needs 4 real additions and 2 bit-

shifting operations. The direct implementation of the T∗3 requires 20 additions and 8

bit-shifting operations. After applying the factorization in (4.24), the number of arithmetic

operations is reduced to 12 real additions and 2 bit-shifting operations using the fast

algorithm. The scaling to F∗3 requires 4 multiplications and the scaling to F′3 needs 8

additions and 8 bit-shifting operations.

4.4.4 31-, 11-, and 3-point DFT by definition

The direct computation of the DFT of a sequence of blocklength N requires com-

plex multiplications in the order of O(N2) [3, p. 750]. Considering the algorithm detailed

in Section 2.4, the direct computation of the 31-, 11-, and 3-point DFT requires respectively

2700, 300, and 12 real multiplications (considering only non-trivial multiplications); and

4560, 520 and 24 real additions. However, such arithmetic complexity can be reduced by

applying sparse matrix factorization in the exact DFTs.

The factorization of the F31 is obtained by:

F31 = A⊤1 ·M4 ·A1. (4.25)

The block matrix M4 is given by

M4 =

 E6

E7

 ,
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where

E6=



δ0 δ0 δ0 δ0 δ0 δ0 δ0 δ0 δ0 δ0 δ0 δ0 δ0 δ0 δ0 δ0

δ0 δ1 δ2 δ3 δ4 δ5 δ6 δ7 δ8 δ9 δ10 δ11 δ12 δ13 δ14 δ15

δ0 δ2 δ4 δ6 δ8 δ10 δ12 δ14 δ15 δ13 δ11 δ9 δ7 δ5 δ3 δ1

δ0 δ3 δ6 δ9 δ12 δ15 δ13 δ10 δ7 δ4 δ1 δ2 δ5 δ8 δ11 δ14

δ0 δ4 δ8 δ12 δ15 δ11 δ7 δ3 δ1 δ5 δ9 δ13 δ14 δ10 δ6 δ2

δ0 δ5 δ10 δ15 δ11 δ6 δ1 δ4 δ9 δ14 δ12 δ7 δ2 δ3 δ8 δ13

δ0 δ6 δ12 δ13 δ7 δ1 δ5 δ11 δ14 δ8 δ2 δ4 δ10 δ15 δ9 δ3

δ0 δ7 δ14 δ10 δ3 δ4 δ11 δ13 δ6 δ1 δ8 δ15 δ9 δ2 δ5 δ12

δ0 δ8 δ15 δ7 δ1 δ9 δ14 δ6 δ2 δ10 δ13 δ5 δ3 δ11 δ12 δ4

δ0 δ9 δ13 δ4 δ5 δ14 δ8 δ1 δ10 δ12 δ3 δ6 δ15 δ7 δ2 δ11

δ0 δ10 δ11 δ1 δ9 δ12 δ2 δ8 δ13 δ3 δ7 δ14 δ4 δ6 δ15 δ5

δ0 δ11 δ9 δ2 δ13 δ7 δ4 δ15 δ5 δ6 δ14 δ3 δ8 δ12 δ1 δ10

δ0 δ12 δ7 δ5 δ14 δ2 δ10 δ9 δ3 δ15 δ4 δ8 δ11 δ1 δ13 δ6

δ0 δ13 δ5 δ8 δ10 δ3 δ15 δ2 δ11 δ7 δ6 δ12 δ1 δ14 δ4 δ9

δ0 δ14 δ3 δ11 δ6 δ8 δ9 δ5 δ12 δ2 δ15 δ1 δ13 δ4 δ10 δ7

δ0 δ15 δ1 δ14 δ2 δ13 δ3 δ12 δ4 δ11 δ5 δ10 δ6 δ9 δ7 δ8



,
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and

E7=



λ8 λ24 λ9 λ25 λ10 λ26 λ11 λ27 λ12 λ28 λ13 λ29 λ14 λ30 λ15

λ24 λ10 λ27 λ13 λ30 λ16 λ2 λ19 λ5 λ22 λ8 λ25 λ11 λ28 λ14

λ9 λ27 λ14 λ1 λ19 λ6 λ24 λ11 λ29 λ16 λ3 λ21 λ8 λ26 λ13

λ25 λ13 λ1 λ20 λ8 λ27 λ15 λ3 λ22 λ10 λ29 λ17 λ5 λ24 λ12

λ10 λ30 λ19 λ8 λ28 λ17 λ6 λ26 λ15 λ4 λ24 λ13 λ2 λ22 λ11

λ26 λ16 λ6 λ27 λ17 λ7 λ28 λ18 λ8 λ29 λ19 λ9 λ30 λ20 λ10

λ11 λ2 λ24 λ15 λ6 λ28 λ19 λ10 λ1 λ23 λ14 λ5 λ27 λ18 λ9

λ27 λ19 λ11 λ3 λ26 λ18 λ10 λ2 λ25 λ17 λ9 λ1 λ24 λ16 λ8

λ12 λ5 λ29 λ22 λ15 λ8 λ1 λ25 λ18 λ11 λ4 λ28 λ21 λ14 λ7

λ28 λ22 λ16 λ10 λ4 λ29 λ23 λ17 λ11 λ5 λ30 λ24 λ18 λ12 λ6

λ13 λ8 λ3 λ29 λ24 λ19 λ14 λ9 λ4 λ30 λ25 λ20 λ15 λ10 λ5

λ29 λ25 λ21 λ17 λ13 λ9 λ5 λ1 λ28 λ24 λ20 λ16 λ12 λ8 λ4

λ14 λ11 λ8 λ5 λ2 λ30 λ27 λ24 λ21 λ18 λ15 λ12 λ9 λ6 λ3

λ30 λ28 λ26 λ24 λ22 λ20 λ18 λ16 λ14 λ12 λ10 λ8 λ6 λ4 λ2

λ15 λ14 λ13 λ12 λ11 λ10 λ9 λ8 λ7 λ6 λ5 λ4 λ3 λ2 λ1



,

in which δk = cos(2·π·k
31 ) and λk = − j · sin(2·π·k

31 ). The factorization detailed in (4.25)

reduces the arithmetic complexity of F31 down to 900 real multiplications and 60+60+

900 = 1020 real additions.

Applying the factorization in F11, we have

F11 = A⊤2 ·M5 ·A2, (4.26)
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where

M5 =



δ0 δ0 δ0 δ0 δ0 δ0

δ0 δ1 δ2 δ3 δ4 δ5

δ0 δ2 δ4 δ5 δ3 δ1

δ0 δ3 δ5 δ2 δ1 δ4

δ0 δ4 δ3 δ1 δ5 δ2

δ0 δ5 δ1 δ4 δ2 δ3

λ3 λ9 λ4 λ10 λ5

λ9 λ5 λ1 λ8 λ4

λ4 λ1 λ9 λ6 λ3

λ10 λ8 λ6 λ4 λ2

λ5 λ4 λ3 λ2 λ1



.

The arithmetic cost of computing F11 by (4.26) is 100 real multiplications and 140 real

additions.

Lastly, the factorization of F3 into sparse matrices is given by

F3 = A⊤3 ·M6 ·A3, (4.27)

where

M6 =


δ0 δ0

δ0 δ2

λ1

 .
The factorization presented in (4.27) reduces the arithmetic complexity of F3 down to 2

real multiplications, 4+4+4 = 12 real additions, and 2 bit-shifting operations.

4.4.5 1023-point DFT Approximation

The PFA to compute the 1023-point DFT, as defined in Section 2.3, requires

(33×2700)+(93×300)+(341×12) = 121092 real multiplications and (33×4560)+

(93× 520)+ (341× 24) = 207024 real additions using the 31-, 11-, and 3-point DFT

directly from their definitions. However, if the exact DFTs are computed by the sparse
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matrix factorizations detailed in Sections 4.4.1, 4.4.2, and 4.4.3, then (33×900)+(93×

100)+(341×2) = 39682 real multiplications, (33×1020)+(93×140)+(341×12) =

50772 real additions, and (341×2) = 682 bit-shifting operations are needed.

The unscaled algorithm to compute the 1023-point DFT approximation, referred

to as T̂∗1023, has null complexity of multiplications. To calculate T̂∗1023, the matrix T∗31 is

called 33 times contributing with 900×33 = 29700 real additions and 300×33 = 9900

bit-shifting operations. On the other hand, T∗11 is called 93 times contributing with

130× 93 = 12090 real additions and 40× 93 = 3720 bit-shifting operations and T∗3 is

called 341 times which corresponds to 12×341 = 4092 real additions and 2×341 = 682

bit-shifting operations. Then, the resulting arithmetic costs of T̂∗1023 are 45882 real

additions and 14302 bit-shifting operations. To compute the scaled 1023-point DFT

approximation with the exact S, called F̂∗1023, more 2044 multiplications are necessary.

However, if S is approximated following Table 2, instead of multiplications, 4088 additions

and 4088 bit-shifting operations are needed to achieve F̂′1023.

4.4.6 Hybrid 1023-point DFT Approximation

Applying the hybrid approach detailed in Section 4.2.3 to the 1023-point DFT

approximation defined in (4.18) and (4.19), we obtained 12 different approximations. The

1023-point DFT approximations consist of four elements: a diagonal matrix S, a 31-,

an 11-, and a 3-point transformation. In the hybrid approximations, these four elements

are alternated between exact and approximate form. Table 3 helps to understand the

approximations by providing the combinations of the four elements. All DFTs computed

by the definition (exact form) use the factorization mentioned in Section 4.4.4.

The approximations F̂∗1023-I and F̂′1023-I need (33× 900)+ (93× 100) = 39000

real multiplications, (33×1020)+(93×140)+(341×12) = 50772 real additions, and

341×2 = 682 bit-shifting operations plus 1364 real multiplications if S is kept exact, or

2728 real additions and 2728 bit-shifting operations if S is approximated.

The arithmetic complexities of F̂∗1023-II and F̂′1023-II are (33×900)+(341×2) =

30382 real multiplications, (33×1020)+(93×130)+(341×12) = 49842 real additions,
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Table 3 – Hybrid approximations for the 1023-point DFT

Employed transformation

Approximation S 31-point 11-point 3-point
F̂∗1023-I Exact F31 F11 T∗3
F̂′1023-I CSD approx. F31 F11 T∗3
F̂∗1023-II Exact F31 T∗11 F3
F̂′1023-II CSD approx. F31 T∗11 F3
F̂∗1023-III Exact T∗31 F11 F3
F̂′1023-III CSD approx. T∗31 F11 F3
F̂∗1023-IV Exact F31 T∗11 T∗3
F̂′1023-IV CSD approx. F31 T∗11 T∗3
F̂∗1023-V Exact T∗31 F11 T∗3
F̂′1023-V CSD approx. T∗31 F11 T∗3
F̂∗1023-VI Exact T∗31 T∗11 F3
F̂′1023-VI CSD approx. T∗31 T∗11 F3

Source: Author (2023).

and (93×40)+(341×2) = 4402 bit-shifting operations plus 1860 real multiplications

keeping S exact or 3720 real additions and 3720 bit-shifting operations if the approximate

S is used.

To compute F̂∗1023-III and F̂′1023-III, we need (93×100)+ (341×2) = 9982 real

multiplications, (33×900)+(93×140)+(341×12) = 46812 real additions, and (33×

300)+(341×2) = 10582 bit-shifting operations plus 1980 real multiplications to scale

the DFT with the exact S or 3960 real additions and 3960 bit-shifting operations with the

approximate S.

Disregarding the scaling matrix S, the approximations F̂∗1023-IV and F̂′1023-IV

require 33×900 = 29700 real multiplications, (33×1020)+(93×130)+(341×12) =

49842 real additions, and (93× 40)+ (341× 2) = 4402 bit-shifting operations. If the

exact matrix S is used, 1984 real multiplications are added to the computation. Otherwise,

if S is approximated by the CSD, 3968 real additions and 3968 bit-shifting operations are

required.

The approximations F̂∗1023-V and F̂′1023-V require 93×100 = 9300 real multipli-

cations, (33×900)+ (93×140)+ (341×12) = 46812 real additions, and (33×300)+

(341×2) = 10582 bit-shifting operations. In addition, 2024 real multiplications or 4048
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real additions and 4048 bit-shifting operations are needed if the matrix S is kept exact or

approximated, respectively.

These hybrid approximations F̂∗1023-VI and F̂′1023-VI demands 341×2 = 682 real

multiplications, (33×900)+(93×130)+(341×12) = 45882 real additions, and (33×

300)+(93×40)+(341×2) = 14302 bit-shifting operations. The scaling needs 2040 real

multiplications if S is kept exact, or 4080 real additions and 4080 bit-shifting operations,

if S is approximated.

4.4.7 Arithmetic Complexity Comparison

First, in Table 4, the arithmetic complexity of the proposed ground transformation

matrices is compared with their respective definitions and the ground transformation used

in [74] which is calculated by the fully optimized Cooley-Tukey Radix-2 [21] and it is

denoted by F̂32.

Second, in Table 5, we compare the arithmetic complexity of the proposed

algorithms with the fully optimized Cooley-Tukey Radix-2 (F1024) and the three algorithms

proposed in [74] (FI
1024, FII

1024, and FIII
1024). In the first algorithm FI

1024 proposed in [74],

both row- and column-wise 32-point DFTs are replaced by the multiplierless F32. In

the second (FII
1024) and third algorithm (FIII

1024), only one is replaced by the F32. Despite

the Cooley-Tukey Radix-2 and the method proposed in [74] are used to calculate the

1024-point DFT, it is the closest comparison found in the literature.

According to Table 4, power-of-two transformation matrices benefit more from

factorization than prime-length transformations as example T̂∗31 requires 552 additions

more than F̂32. However, when power-of-two transformation matrices are used as a

building block in the Cooley-Tukey algorithm, multiplications are required due to the

mapping as we can see in Table 5. Even in F̂I
1024, where F32 is replaced twice for F̂32,

there is still a source of multiplication, the twiddle factors. In contrast, the mapping used in

the proposed approximations does not require multiplications. The approximations T̂∗1023

and F̂′1023 are free of multiplications in all computations.
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Table 4 – Arithmetic complexity of the ground transformations

Transform Real Mult. Real Add. Bit-shifting

F3(by definition [3, p. 750]) 12 24 0
F3(Rader prime [182] using 2-point DFT) 2 16 8
F3(Cyclotomic basis [183]) 2 14 4
F11(by definition [3, p. 750]) 300 520 0
F11(Rader prime [182] using 10-point DFT) 264 494 0
F31(by definition [3, p. 750]) 2700 4560 0
F31(Rader prime [182] using 30-point DFT) 1148 2420 0
F32(Cooley-Tukey radix-2 [21, p. 76]) 88 408 0
F32(Rader-Brener radix-2 [21, p. 76]) 68 512 0
F̂32 (proposed in [74]) 0 348 0
F3(by the proposed FFT) 2 12 2
T̂∗3 0 12 2
F̂∗3 4 12 2
F̂′3 0 20 10
F11(by the proposed FFT) 100 140 0
T̂∗11 0 130 40
F̂∗11 20 130 40
F̂′11 0 170 80
F31(by the proposed FFT) 900 1020 0
T̂∗31 0 900 300
F̂∗31 60 900 300
F̂′31 0 1020 420

Source: Author (2023).

4.5 ERROR ANALYSIS

The values of the proximity measures defined for the proposed approximations

are compared with the approximations proposed in [74] in Table 6 and 7. Although the

proposed approximations are not strictly orthogonal, their deviations from orthogonality

are extremely low (all below 10−2). MAPE measurements are also smaller for the proposed

approximations. For example, F̂′1023 which is the fully approximate transform shows a

reduction of ≈23% when compared with F̂II
1024 and F̂III

1024 that are hybrid transform (more

than half of the algorithm is computed by the definition).

The total error energy indicates that the proposed approximations are more refined

than the approximations in [74]. For the ground approximations, it can be verified by
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Table 5 – Arithmetic complexity of fast algorithms for blocklengths 1023 and 1024

Transform Real Mult. Real Add. Bit-shifting

F1024(Cooley-Tukey Radix-2 [21]) 10248 30728 0
F̂I

1024(proposed in [74]) 2883 25155 0
F̂II

1024(proposed in [74]) 5699 27075 0
F̂III

1024(proposed in [74]) 5699 27075 0
F1023(by definition [3, p. 750]) 121092 207024 0
F1023(by the proposed FFT) 39682 50772 682
F̂∗1023-I 40364 50772 682
F̂′1023-I 39000 53500 3410
F̂∗1023-II 32242 49842 4402
F̂′1023-II 30382 53562 8122
F̂∗1023-III 11962 46812 10582
F̂′1023-III 9982 50772 14542
F̂∗1023-IV 31684 49842 4402
F̂′1023-IV 29700 53810 8370
F̂∗1023-V 11324 46812 10582
F̂′1023-V 9300 50860 14630
F̂∗1023-VI 2722 45882 14302
F̂′1023-VI 682 49962 18382
T̂∗1023 0 45882 14302
F̂∗1023 2044 45882 14302
F̂′1023 0 49970 18390

Source: Author (2023).

Table 6 – Error measurements of the ground transformations

Transform ε M φ(×10−3)

F̂32 3.32×102 0.84 36.07
F̂∗3 9.68×10−2 1.59 6.73
F̂′3 9.80×10−2 1.60 6.77
F̂∗11 8.88 1.19 14.12
F̂′11 8.91 1.20 14.11
F̂∗31 7.66×101 0.45 19.83
F̂′31 7.69×101 0.45 19.84

Source: Author (2023).
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Table 7 – Error measurements of fast algorithms

Transform ε(×104) M(×10−3) φ(×10−3)

F̂I
1024 93.00 44 69.42

F̂II
1024 34.02 25.31 36.07

F̂III
1024 34.02 25.31 36.07

F̂∗1023-I 1.13 4.67 6.73
F̂′1023-I 1.13 4.69 6.77
F̂∗1023-II 7.68 12.83 14.12
F̂′1023-II 7.70 12.86 14.11
F̂∗1023-III 8.35 13.68 19.83
F̂′1023-III 8.38 13.70 19.84
F̂∗1023-IV 8.80 14.12 20.76
F̂′1023-IV 8.88 14.18 20.79
F̂∗1023-V 9.46 14.77 26.43
F̂′1023-V 9.55 14.82 26.49
F̂∗1023-VI 15.93 18.67 33.68
F̂′1023-VI 16.66 19.86 33.78

F̂∗1023 17.03 19.41 40.18
F̂′1023 17.10 19.45 40.06

Source: Author (2023).

comparing F̂32 with F̂∗31 (reduction of≈77%) or F̂′31 (reduction of≈76%) in Table 6 which

are the fairest comparisons.

The good performance of the proposed ground approximations is transferred

to the 1023-point DFT approximations. According to Table 7, the fully approximate

transform F̂′1023 shows reduction of approximately 50% when compared with F̂II
1024 and

F̂III
1024 and it increases to 82% when compared with F̂I

1024 in terms of total error energy.

In addition to the error measures presented, we provide in the next section an in-depth

analysis of the frequency domain.

4.5.1 Frequency Response

The DFT is a time-invariant linear transformation, so it is categorized as a linear

time-invariant (LTI) system [6, p. 9]. An LTI system can be completely characterized in

the frequency domain by its frequency response [3, p. 288]. In this analysis, each row of
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the transform matrix is considered as a finite impulse response (FIR) filter bank [3, p. 204].

The frequency response of the exact DFT matrix is given by:

Hm(ν ,FN) =
N−1

∑
n=0

f [m,n] · exp(− jnν), ν ∈ [−π,π] , (4.28)

where Hm(·, ·) is the frequency response of the m-th row and ν is the frequency. The

frequency response of exact DFT rows have lobes with specific shapes and locations

that are compared with their respective approximate versions. The rows submitted to the

frequency response are the ones that presented the highest values of error energy, in a

worst-case scenario analysis.

We focus the analysis on F̂′3, F̂′11, F̂′31, and F̂′1023 because they are fully approxi-

mated, scaled and, free of multiplications. The total error energy of F̂′3, F̂′11, and F̂′31 is

detailed by row in Table 8. The worst measurements are in boldface. Due to the length

of the 1023-point DFT approximation, the row detailing has been omitted. However, the

three least performing rows are 854, 699, and 86 with 306.08, 287.1, and 286.29 of error

energy, respectively, being 167.15 the mean of the error energy.

The filter bank frequency response is applied to the least three performing rows

and their respective rows of the exact DFT to compare them and evaluate the worst-case

scenarios. If the approximations are able to maintain the DFT characteristics on the rows

with higher error energy then it is expected that the other rows also maintain. The filter

banks implied by F̂′3, F̂′11, and F̂′31 are presented in Figure 6, 7, 8, respectively. The

frequency response is normalized and presented in terms of magnitude. Fig 6 shows that

all rows of the approximation performed close to the exact DFT which is due to the fact

that most of the 3-point DFT constants are already of low complexity. In Fig 7, we can see

that the approximation for N = 11 caused a slightly displacement of the lobes. The filter

bank frequency response of the rows 5 and 6 are close to their respective exact DFT row,

only the secondary lobes of the row 11 have relevant performance losses. The filter bank

frequency response of F̂′31 plotted in Fig 8 shows us a performance close to the exact DFT

even for the rows with the highest error energy.

The 1023-point DFT filter bank frequency response has only one lobe as shown

in Figure 9. For a better visualization, we zoom in the filter response around the lobe in
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Table 8 – Error energy by rows of the ground approximations of the proposed method with the
least performing rows highlighted

Approximations

Row F̂′3 F̂′11 F̂′31

1 0 0 0
2 0.085 0.440 2.078
3 0.013 1.009 2.907
4 0.928 1.564
5 1.089 3.663
6 1.326 1.966
7 0.456 3.686
8 0.692 3.264
9 0.854 0.823

10 0.773 3.357
11 1.342 1.558
12 3.403
13 2.557
14 1.607
15 2.745
16 1.916
17 3.213
18 2.384
19 3.522
20 2.572
21 1.726
22 3.571
23 1.773
24 4.306
25 1.864
26 1.442
27 3.163
28 1.466
29 3.565
30 2.222
31 3.051

Total 0.098 8.909 76.934
Source: Author (2023).
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Figure 6 – Comparison between the magnitude of the filter-bank responses of the approximation
F̂′3 and the exact DFT

Source: Author (2023).

Figure 10. The three least performing rows have filter-bank response close to their exact

DFT row in the lobes.

In order to understand the full performance of the approximations, we provide the

error between the approximation and the exact DFT, in terms of the filter-bank response

for all rows. Figures 11, 12, 13, and 14 show the error energy of all rows for F̂′3, F̂′11,F̂′31,

and F̂′1023, respectively. Although in most of the figures it is not possible to distinguish the

individual error of the row, our intention is to show that the error of all approximations are

below −17 dB.

4.6 CHAPTER CONCLUSIONS

In this chapter, we proposed a method to obtain matrices with null complexity

of multiplications to present an approximate version of the prime factor algorithm, the

APFA. We demonstrated that if the transform length can be decomposed into relatively

prime factors, then the entire computation of the algorithm can be performed without

multiplications because no twiddle factors are required. Twiddle factors may emphasize

the inaccuracies of approximate ground transforms used in the considered mapping. In

addition, their absence contributes to group up and extract the scaling factors reducing
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Figure 9 – Comparison between the magnitude of the filter-bank responses of the approximation
F̂′1023 and the exact DFT for the least performing rows

Source: Author (2023).
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Figure 11 – Magnitude of the filter-bank responses of the error between the approximation F̂′3 and
the exact DFT for all 3 rows

Source: Author (2023).

the error of approximate transforms. We applied the proposed method in the 1023-point

DFT approximation presenting a collection of approximations with different levels of

trade-off between accuracy and computational cost. The APFA performed better than the

methods present in the literature according to the investigated figures of merit in addition

to preserve the main characteristics of the DFT.
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5 MULTIPLIERLESS CSD-BASED DFT APPROXIMATIONS

Approximate transform matrices are composed of elements of low arithmetic

complexity. When the blocklength and the low-complexity subspace (see Section 4.1.1)

are small, all candidate matrices can be evaluated using brute force [155, p. 123]. However,

as the blocklength increases, the number of candidate matrices grows rapidly even in

a small low-complexity subspace. To address this issue, techniques such as integer

functions [65], or make the approximation process an optimization problem by means

of objective functions and error measures can be employed to reduce the search space.

Regardless of the technique used, it is important to consider reducing computational cost

according to the intended application because the approximation may affect the signal

representation.

Managing the effects of approximation can become a difficult task when using

FFT algorithms. Mapping a transformation matrix into the multiplication of smaller

transformation matrices can cause the approximation error to accumulate at each level of

the algorithm. Furthermore, when twiddle factors are required to adjust the mapping, the

error propagation is aggravated. A set of techniques can be used together or individually

to overcome these drawbacks, such as: (i) hybrid algorithms in which only part of the

computation is approximated [74]; (ii) algorithms that do not require twiddle factors in the

mapping as suggested in Chapter 4; (iii) correction factors (e.g., the expansion factor used

in Section 4.1.1). However, even using all these techniques, finding good approximations

for the blocks of FFT algorithms is the key component to keep the error under control.

The canonical signed digit (CSD) [184] is a ternary class of the signed digit (SD)

[181]. It has representational uniqueness because two nonzero digits are not adjacent [185],

and a minimal Hamming weight [186] due to the minimal number of nonzero digits,

which leads to a reduction in the number of additions in arithmetic operations [187, 188].

Although a ternary representation can be a problem in DSP as examples the demand for

three distinct voltage levels on an electronic board or the need for a constellation with more

than two symbols for RF transmission [189], in the context of this work, the CSD values

are fixed coefficients, inherent to the algorithm and in practice are directly represented by
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arithmetic operations. In this sense, we propose a multiplication-free algorithm based on

the traditional Cooley-Tukey algorithm in which the ground transforms and the twiddle

factor matrices are approximated by cropping their CSD representations. In particular, we

applied this method to the 32-point DFT and the 32×32 twiddle factor matrix in order to

obtain a multiplierless approximation for the 1024-point DFT.

5.1 CSD-BASED TRANSFORM APPROXIMATION

In this section, a brief review of the CSD representation and the methodology to

obtain approximations from it are presented.

5.1.1 CSD representation

The CSD representation of a number can be obtained from its binary representa-

tion [3, p. 433]. In a binary representation, while the rightmost bit is the least significant

bit (LSB), the leftmost bit is the most significant bit (MSB). The conversion of a positive

decimal number to binary follows [190, p. 37]. Considering for the sake of notation that

1̄ represent -1, the conversion from binary representation to CSD representation requires

that: (i) find a non-zero sequence of bits from LSB to MSB; (ii) replace the leading zero

by 1; (iii) replace the last value of the sequence by -1; (iv) replace the intermediate bits

by zero (e.g. 011→ 101̄ or 01111→ 10001̄); and (v) repeat this process until no two

consecutive digits are both nonzero. If the number to be converted is infinite, then its

decimal representation must be truncated or rounded to prevent the algorithm from entering

an infinite loop.

As an example, we detail below how to obtain the CSD representation for

0.8515625.

1. Convert the decimal number to binary:

bin(0.8515625) = 0.1101101,

where bin(·) is a function that converts a decimal number to binary;
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2. Find a non-zero sequence of bits from LSB to MSB:

0.1101101;

3. Replace the leading zero by 1, the last value of the sequence by -1, and the interme-

diate bits by zero:

0.11101̄01;

4. Repeat Step 2:

0.11101̄01;

5. Repeat Step 3:

1.001̄01̄01;

6. As it is not possible to repeat Step 2 because there are no more adjacent non-zero

digits, the CSD representation of 0.8515625 is given by:

csd(bin(0.8515625)) = 1.001̄01̄01,

where csd(·) is a function that converts a binary number to CSD. Algorithm 2 details

the csd(·) function.

5.1.2 Matrix approximation

Let CN represent an N×N complex matrix. The CSD representation of CN is

obtained by simply computing the CSD representation of each entry of CN . Therefore, the

CSD representation of CN is given by:

csd(bin(ℜ(CN)))+ j · csd(bin(ℑ(CN))), (5.1)

where ℜ(·) and ℑ(·) are functions that returns a matrix with the real and imaginary part of

the matrix argument, respectively. The csd(·) function returns the CSD representation of

a binary number if the argument is a single binary representation or a matrix with CSD
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Algorithm 2: Pseudo-algorithm for the csd(·) function
Input: CN ; ▷ Enter an N-bit binary number
Output: DM; ▷ The algorithm returns a M-trit CSD number where

M ≥ N

1 DM←CN ;
2 counter← 1;
3 i← (N−1);
4 while i ̸= 0 and counter > 1 do
5 if i < 0 then
6 D0:(i+counter)← 0;
7 Di+counter← 1̄;
8 DM← [1|DM]; ▷ Concatenate a extra digit when the CSD

representation is larger than the binary
9 counter← 0;

10 else
11 if Ci ̸= 0 then
12 counter← counter+1;
13 i← i−1;
14 else
15 if counter > 1 then
16 Di:(i+counter)← 0;
17 Di+counter← 1̄;
18 Di← 1;
19 counter← 0;
20 i← N−1;
21 else
22 counter← 0;
23 i← i−1;
24 end
25 end
26 end
27 end
28 return DM;
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representations applied element-wise according to (5.1), if the argument is a matrix with

binary representations.

The approximation of CN is obtained by cropping the CSD representation. The

crop is performed according to the number of additions that are allowed in the representa-

tion of each number. The restriction of additions refers to the number of non-zero digits in

the CSD representation. Therefore, the CSD-based approximation of CN is obtained by

Ĉ(i)
N = crop(csd(bin(ℜ(CN))), i)+ j · crop(csd(bin(ℑ(CN))), i), (5.2)

where crop(·, i) is a function that trims the CSD representation according to (i+1)-nonzero

digits which implies an adder-representation [154, p. 221] of i-additions. For example,

consider cos
(7π

16

)
. As this number is irrational, its binary representation is infinite, so we

have:

bin
(

cos
(

7π

16

))
= 0.00110001111100010111000001111000 . . . (5.3)

csd
(

bin
(

cos
(

7π

16

)))
= 0.0101̄00100001̄00101̄001̄000010001̄001 . . . . (5.4)

In Table 9, we present some approximations for cos(7π

16 ) considering different crops in the

CSD representation, their absolute error and the number of additions in each case.

5.2 LOW-COMPLEXITY DFT APPROXIMATIONS

In this section, we present approximations for the 32-point DFT and the 32×32

twiddle factor matrix that are used to obtain approximations for the 1024-point DFT by

means of the Cooley-Tukey radix-32. In addition, we provide fast algorithms to reduce the

arithmetic cost of the proposed approximations.

Table 9 – Approximations for cos
(7π

16

)
≈ 0.19509 considering different CSD representations

Crop CSD Approximation ≈ |Error| Adds

crop
(
csd
(
bin
(
cos
(7π

16

)))
,0
)

0.01 0.25 0.05491 0
crop

(
csd
(
bin
(
cos
(7π

16

)))
,1
)

0.0101̄ 0.1875 0.00759 1
crop

(
csd
(
bin
(
cos
(7π

16

)))
,2
)

0.0101̄001 0.1953125 0.00022 2
crop

(
csd
(
bin
(
cos
(7π

16

)))
,3
)

0.0101̄00100001̄ 0.195068359375 0.00002 3
Source: Author (2023).



85

Table 10 – Approximation for the DFT elements using only trivial multiplications and bit-shifting
operations (F̂(0)

32 )

Constant Approximation |Error| CSD

cos(0) = 1 1 0 1
cos( π

16)≈ 0.98079 1 0.01921 1.00
cos(π

8 )≈ 0.92388 1 0.07612 1.00
cos(3π

16 )≈ 0.83147 1 0.16853 1.00
cos(π

4 )≈ 0.70711 0.5 0.20711 0.10
cos(5π

16 )≈ 0.55557 0.5 0.05557 0.10
cos(3π

8 )≈ 0.38268 0.5 0.11732 0.10
cos(7π

16 )≈ 0.19509 0.25 0.05491 0.01
cos(π

2 ) = 0 0 0 0.00
Source: Author (2023).

5.2.1 Proposed approximations

Based on the method detailed in Section 5.1, we propose two approximations for

the 32-point DFT given by:

F̂(0)
32 = crop(csd(bin(ℜ(F32))),0)+ j · crop(csd(bin(ℑ(F32))),0) (5.5)

and

F̂(1)
32 = crop(csd(bin(ℜ(F32))),1)+ j · crop(csd(bin(ℑ(F32))),1), (5.6)

where F32 is the exact 32-point DFT matrix. While F̂(0)
32 requires trivial multiplications and

bit-shifting operations, in F̂(1)
32 , the approximation of the constants also allows a maximum

of two additions (one for the real part and one for the imaginary).

In absolute terms, the 32-point DFT consists of nine different constants. The

approximations F̂(0)
32 and F̂(1)

32 can be obtained by substituting the DFT matrix values by

their approximations according to Tables 10 and 11, respectively. Figure 15 displays a

grayscale intensity diagram where each square corresponds to the values of the exact

32-point DFT and its approximations divided into real and imaginary parts. According to

Figure 15, the two approximations preserved the DFT symmetries which can be useful for

factoring into sparse matrices.
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Figure 15 – Grayscale intensity diagram of the exact 32-point DFT and its approximations

Source: Author (2023).
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Table 11 – Approximation for the DFT elements using only trivial multiplications, bit-shifting
operations, and one addition (F̂(1)

32 )

Constant Approximation |Error| CSD

cos(0) = 1 1 0 1
cos( π

16)≈ 0.98079 0.984375 0.003585 1.000001̄
cos(π

8 )≈ 0.92388 0.9375 0.01362 1.0001̄00
cos(3π

16 )≈ 0.83147 0.875 0.04353 1.001̄00
cos(π

4 )≈ 0.70711 0.75 0.04289 1.01̄00
cos(5π

16 )≈ 0.55557 0.5625 0.00693 0.100100
cos(3π

8 )≈ 0.38268 0.375 0.00768 0.101̄00
cos(7π

16 )≈ 0.19509 0.1875 0.00759 0.0101̄00
cos(π

2 ) = 0 0 0 0
Source: Author (2023).

In addition, we present an approximation for the 32×32 twiddle matrix which

can be obtained by:

Ω̂ΩΩ
(0)
32 = crop(csd(bin(ℜ(ΩΩΩ32))),0)+ j · crop(csd(bin(ℑ(ΩΩΩ32))),0). (5.7)

The twiddle factor matrix does not show any considerable factoring pattern which can be

visually inspected in Figure 16. Therefore, we only propose the approximation Ω̂ΩΩ
(0)
32 in

which trivial multiplication and bit-shifting operations are allowed. The Ω̂ΩΩ
(0)
32 is given by

Ω̂ΩΩ
(0)
32 = W1 + j ·W2, (5.8)

where
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Figure 16 – Grayscale intensity diagram of the 32×32 twiddle factor matrix and its
approximations

Source: Author (2023).

Based on the Cooley-Tukey Radix-32 algorithm (2.11), we propose two approxi-

mations for the 1024-point DFT as follows:

X̂1 = vec
([

Ω̂ΩΩ
(0)
32 ◦

(
F̂(0)

32 · (invvec(x))⊤
)]
·
(

F̂(0)
32

)⊤)
, (5.9)

and

X̂2 = vec
([

Ω̂ΩΩ
(0)
32 ◦

(
F̂(1)

32 · (invvec(x))⊤
)]
·
(

F̂(1)
32

)⊤)
. (5.10)

The approximations obtained by (5.9) and (5.10) are referred to as F̂(0)
1024 and F̂(1)

1024. Next,

we present factorizations for the ground approximations to reduce the additions and

bit-shifting operations.
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5.2.2 Fast algorithm

The approximations were factored into sparse matrices looking for symmetries

between the columns. The approximations F̂(0)
32 and F̂(1)

32 can be represented as:

F̂(0)
32 = A10 ·A11 ·A12 ·M7 ·A9 ·A8 ·A7 ·A6 ·A5 ·A4,

and

F̂(1)
32 = A10 ·A11 ·A12 ·M8 ·A9 ·A8 ·A7 ·A6 ·A5 ·A4,

where

A4=

 1

B31

, A5 =

 B17

B15

 , A6 =


B9

I8 j · I8

I8 j · I8

B7

 ,

A7 =



B5

I4 j · I4

I16

−I4 j · I4

B3


, A8 =



B3

I2 j · I2

I24

−I2 j · I2

1


,

A9 =


B2

1 j

I28

−1 j

 ,
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1

I7 I7

1

I7 I7



, A11 =


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I3 −I3

1

I3 −I3

1

I3 I3

1

I3 I3

I16



,

A12 =



1

1 −1

1

1 −1

1

1 1

1

1 1

I24



,
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5.3 ARITHMETIC COMPLEXITY AND ERROR ANALYSIS

Considering complex inputs, the matrices A4, A5, and A6 require 60 real additions

each, while A9 and A12 need 8 real additions. The matrices A7, A8, A10, and A11 require 28,

12, 56, and 24 real additions each, respectively. The matrix M7 requires 64 real additions

and 60 bit-shifting operations. The matrix M8 requires 172 real additions and 156 bit-

shifting operations. Thus, the resulting arithmetic cost of F̂(0)
32 is 380 real additions and

60 bit-shifting operations and of F̂(1)
32 is 488 real additions and 156 bit-shifting operations.

To the best of our knowledge, only the work proposed in [74] is a direct competitor for

this block length already published. Thus, in Table 12, we provide a comparison of the

arithmetic costs of two proposed ground approximations with the one proposed in [69],

F̂32, before and after the factorization for the 32-point DFT.

The twiddle factor matrix approximation (Ω̂ΩΩ32) requires 4130 real additions

and 2076 bit-shifting operations. Therefore, the arithmetic complexity to compute the

1024-point DFT approximation according to (5.9) is: 64× 380 + 4130 = 24320 real

additions and 64× 60+ 2076 = 5916 bit-shifting operations. Similarly, the 1024-point

DFT approximation according to (5.10) is: 64×488+4130 = 35362 real additions and

64×156+2076 = 12060 bit-shifting operations. In Table 13, the comparison between

the proposed approximations and the ones proposed in [74], for the 1024-point DFT, are

presented. Notice that the advantage of the proposed algorithms is mainly due to the

twiddle factor matrix approximation, since the ground approximations have close amounts

of arithmetic operations.

The approximations are also evaluated according to the measures presented in

Table 12 – Comparison of the arithmetic complexity between the proposed approximations with
the proposed in [74], before and after the matrix factorization for the 32-point DFT

Before factorization After factorization Reduction (%)
Approximation Mult Adds Bit-shifting Adds Bit-shifting Adds Bit-shifting

F̂32 0 2624 0 348 0 86.74 0
F̂(0)

32 0 1792 3392 380 60 78.79 98.23
F̂(1)

32 0 6208 3840 488 156 92.14 95.94

Source: Author (2023).
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Table 13 – Comparison of the arithmetic complexity between the proposed approximations with
the proposed in [74] for the 1024-point DFT

Arithmetic complexity
Approximation Mult Adds Bit-shifting

F̂I
1024(proposed in [74]) 2883 25155 0

F̂II
1024(proposed in [74]) 5699 27075 0

F̂III
1024(proposed in [74]) 5699 27075 0

F̂(0)
1024 0 24320 5916

F̂(1)
1024 0 35362 12060

Source: Author (2023).

Table 14 – Comparison of the error measurements between the proposed approximations with the
proposed in [74] for the 32-point DFT

Approximation ε M φ

F̂32 3.32×102 8.10×10−1 3.61×10−2

F̂(0)
32 8.15×101 3.73×10−1 2.79×10−2

F̂(1)
32 3.23×100 6.83×10−2 8.68×10−4

Source: Author (2023).

Section 4.1.2. In Table 14, the ground approximations for the 32-point DFT are compared.

The proposed approximation F̂(0)
32 requires only 32 additions and 60 bit-shifting operations

more than F̂32. However, it shows reductions of approximately 75%, 54%, and 23% for

the total error energy, MAPE and deviation from orthogonality, respectively. On the other

hand, F̂(1)
32 requires 108 additions and 156 bit-shifting operations more than F̂32, showing

reductions of approximately 99%, 92%, and 98% for the total error energy, MAPE and

deviation from orthogonality, respectively.

In Table 15, the approximations for the 1024-point DFT are compared. The

proposed methods do not need multiplications and F̂(0)
1024 requires even fewer additions

than the three proposed methods in [74]. The approximation F̂(0)
1024 shows reductions of

approximately 30% of the total error energy when compared with F̂II
1024 and F̂III

1024, and

increases to 74% when compared with F̂I
1024.

The error reduction is even greater in F̂(1)
1024. While it presents reduction of

approximately 73% when compared with F̂II
1024 and F̂III

1024, it increases to 90% when

compared with F̂I
1024 in terms of total error energy.
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Table 15 – Comparison of the error measurements between the proposed approximations with the
proposed in [74] for the 1024-point DFT

Approximation ε(×104) M(×10−3) φ(×10−3)

F̂I
1024(proposed in [74]) 93.00 44.00 69.42

F̂II
1024(proposed in [74]) 34.02 25.31 36.07

F̂III
1024(proposed in [74]) 34.02 25.31 36.07

F̂(0)
1024 23.98 23.76 67.46

F̂(1)
1024 9.05 13.61 17.71

Source: Author (2023).

5.3.1 Frequency response

Since the proposed approximations and those proposed in [74] are for the same

blocklengths, it is possible to make a direct comparison in terms of the frequency response.

The analysis follows the steps described in Section 4.5.1. Firstly, to compare the approxi-

mations for the ground transforms of N =32, the error energy of each approximation is

detailed by row in Table 16, with the least performing rows highlighted. Secondly, the

rows with the highest error energy are subjected to frequency response analysis. Among

the rows that had the same error energy values, the choice was made based on the location

of the main lobe. The chosen rows were 20, 7, and 24 due to their performances in the

approximations F̂32, F̂(0)
32 , and F̂(1)

32 , respectively.

Figure 17 shows that between π

2 and π , F̂32 presents curves far from F32 with

some lobes showing magnitude close to the secondary lobes. In F̂(0)
32 , the effects of the

approximation are attenuated, the remaining lobes present visibly smaller curves than

the secondary lobes. In F̂(1)
32 , all lobes are close to the frequency response of the DFT

computed by the definition.

In Figure 18, all approximations have primary and secondary lobes close to the F32

frequency response. However, between 0 and π

2 , F̂32 presents a lobe with magnitude greater

than the secondary lobes. Such behavior is not observed in the proposed approximations.

The frequency response of the least performing row of F̂(1)
32 is shown in Figure 19.

It is possible to verify that even on the row with the highest error energy, F̂(1)
32 performs

better than the other approximations.
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Table 16 – Error energy by rows of the ground approximations of the proposed method with the
least performing rows highlighted

Approximations

Row F̂32 F̂(0)
32 F̂(1)

32

1 0.000 0.000 0.000
2 9.813 4.499 0.012
3 5.429 3.583 0.039
4 2.981 1.943 0.025
5 8.624 4.312 0.185
6 16.812 3.121 0.107
7 21.188 5.970 0.111
8 6.631 2.091 0.013
9 0.000 0.000 0.000

10 6.631 2.091 0.013
11 21.188 5.970 0.111
12 16.812 3.121 0.107
13 8.624 4.312 0.185
14 2.981 1.943 0.025
15 5.429 3.583 0.039
16 9.813 4.499 0.012
17 0.000 0.000 0.000
18 15.439 0.393 0.193
19 18.500 2.695 0.171
20 22.271 2.949 0.181
21 8.624 4.312 0.185
22 8.440 1.771 0.099
23 2.741 0.309 0.099
24 18.621 2.801 0.193
25 0.000 0.000 0.000
26 18.621 2.801 0.193
27 2.741 0.309 0.099
28 8.440 1.771 0.099
29 8.624 4.312 0.185
30 22.271 2.949 0.181
31 18.500 2.695 0.171
32 15.439 0.393 0.193

Total 332.228 81.498 3.226
Source: Author (2023).
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Table 17 – Details of the error energy measurement for each approximation

Approximations Total Mean Standard deviation Maximum

F̂I
1024 930006 908.21 682.89 2175.69

F̂II
1024 340205 332.23 362.06 801.66

F̂III
1024 340205 332.23 232.88 708.02

F̂(0)
1024 239755 234.13 111.75 551.05

F̂(1)
1024 90549 88.43 56.89 232.74

Source: Author (2023).

Figure 20 shows the error between the frequency response of the approximations

and the DFT computed by the definition. Each color corresponds to one of the 32 rows.

Although it is not possible to distinguish the rows, notice that the error is below −10 dB in

F̂32. In the proposed approximations, the error is below −16 dB in F̂(0)
32 and −30 dB in

F̂(1)
32 .

Due to the number of rows in the approximations for the 1024-point DFT, the

error energy detailing by row is omitted. In Table 17, descriptive measures about the

error energy are provided. The two proposed approximations present outperform the

approximations proposed in [74] in all selected figures of merit.

The rows with the highest error energy of F̂(0)
1024 and F̂(1)

1024 are 645 and 806,

respectively. To perform a worst-case study, the frequency response of the proposed

approximation on the row with the highest error energy is computed and compared with

the frequency response of the DFT by the definition (referred to as F1024) and the proposals

from [74].

In Figure 21 and 22, the worst case of F̂(0)
1024 is presented. In all approximations,

the main lobe is maintained. Even on the row with the highest error energy, the proposed

approximation performed competitively with the methods in the literature with lower

computational cost. In Figure 23 and 24, the same experiment is performed for F̂(1)
1024

and it has superior performance even on the hybrid approximations (F̂II
1024 and F̂III

1024) in

which part of the computation is performed following the DFT definition. The superior

performance of the proposed methods is evidenced in Figures 25 and 26 in which the

frequency response error between the approximations and the DFT computed by the

definition are presented. The approximations proposed in [74] keep the frequency response
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Figure 20 – Magnitude of the filter-bank responses of the error between the approximations and
the exact DFT for all 32 rows

Source: Author (2023).
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error of the rows below -6.8 dB, -11.52 dB, and -10.61 dB for F̂I
1024, F̂II

1024, and F̂III
1024,

respectively. In the proposed methods, the error is reduced to at most -12.15 dB for F̂(0)
1024

and -18.76 dB for F̂(1)
1024.



105

Figure 21 – Comparison between the magnitude of the filter-bank responses of the proposed
approximation F̂(0)

1024 and the three approximations proposed in [74] for the least
performing row of the proposed method (row 645)

Source: Author (2023).
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Figure 23 – Comparison between the magnitude of the filter-bank responses of the proposed
approximation F̂(1)

1024 and the three approximations proposed in [74] for the least
performing row of the proposed method (row 806)

Source: Author (2023).
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Figure 25 – Magnitude of the filter-bank responses of the error between the approximations
proposed in [74] and the exact DFT for all 1024 rows

Source: Author (2023).
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Figure 26 – Magnitude of the filter-bank responses of the error between the propsed
approximations proposed and the exact DFT for all 1024 rows

Source: Author (2023).
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5.4 CHAPTER CONCLUSIONS

In this chapter, we presented a methodology to obtain multiplierless approxima-

tion based on the crop of the CSD representation. The crop is performed according to the

number of additions that each constant representation can contain. This method can be

applied to both the DFT transform and the twiddle factor matrices. We applied the method

to the 32-point DFT and the 32×32 twiddle factor matrix. The obtained approximations

were employed to approximately compute the 1024-point DFT by means of Cooley-Tukey

radix-32. Besides not requiring multiplications, the proposed algorithms present a smaller

error than the approximations in the literature.
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6 A LOW-COMPLEXITY AUTOCORRELATION ESTIMATOR

The autocorrelation plays a major role in the statistical signal processing. The

information from an autocorrelation estimator is useful in contexts of matched filter-

ing (communications) [191–194], signal modeling [195, 196], template matching (pat-

tern recognition) [197], and noise reduction [198, 199]. The possibility of extracting

desirable features of a given signal made the autocorrelation estimator popular in appli-

cations of radars [200–205], speech analysis [195, 206–208], biomedical signal process-

ing [197, 209–214], among others.

Although there are numerous ways to estimate the autocorrelation, three are the

most popular: (i) by convolution; (ii) by sample autocorrelation function (ACF); (iii) or by

DFTs. In the first two methods, the arithmetic complexity may be prohibitively high [19].

On the other hand, according to the Wiener-Kintchine theorem [2], the autocorrelation

admits a Fourier representation which can be computed by the DFT and IDFT from an

observed signal. Computing the autocorrelation by the DFT and the IDFT enables the

use of FFTs which represents a significant reduction of arithmetic operations. If small

inaccuracies are tolerated in the application, then the remaining arithmetic complexity can

be reduced using approximate computing [215–218].

Motivated by the approximate DFT methodology and based on the

Wiener-Kintchine theorem, we propose a low-complexity estimator for the autocorrelatio.

The performance of estimators is evaluated in autoregressive processes (AR) [219, p. 54].

.

6.1 DEFINITIONS

Let x = {x[0], . . . ,x[N−1]} represent a N-point discrete-time random process. If

x is wide sense stationary (WSS), the autocorrelation between x[n] and x[(n+ l)] separated

by l intervals of time referred to time-lag is given by [220, p. 576] [9, p. 415]:

θ [l] = E [x[n] · x[(n+ l)]] , (6.1)
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where E [·] is the expected value operator [221, p. 76].

The autocorrelation of lag l can be estimated by [9, p. 45]:

θ̂ [l] =
N−1

∑
n=−(N−1)

x[(n+ l)] · x[n]. (6.2)

Now, consider the following manipulation:

θ̂ [l] =
N−1

∑
n=−(N−1)

x[(n+ l)] · x[n] (6.3)

=
N−1

∑
n=−(N−1)

x[(−(−n)+ l)] · x[n] (6.4)

=
N−1

∑
n=−(N−1)

x[−((−n)− l)] · x[n]. (6.5)

Notice that (6.5) is the definition of the linear convolution [3, p. 689]. Therefore, the

complete autocorrelation θθθ = [θ [−N +1], . . . ,θ [0], . . . ,θ [N−1]]⊤ can also be estimated

by linearly convoluting the signal with its own flipped version as follows:

θ̂θθ =←−x ∗x, (6.6)

where θ̂θθ =
[
θ̂ [−N +1], . . . , θ̂ [0], . . . , θ̂ [N−1]

]⊤
, ∗ represents the linear convolution, and

←− provides a reversed version of the vector.

By applying the DFT to the autocorrelation estimator, the periodogram [189,

p. 971] is obtained, which is given by:

P = F (θ̂̂θ̂θ), (6.7)

where F (·) denotes the operation of taking the DFT of the argument. Such relationship is

derived from the Wiener-Khintchine theorem [135, p. 358] which states that the Fourier

transform of the autocorrelation is the power spectrum density (PSD) and, although biased,

the periodogram is a consistent estimator for the PSD [2, p. 65].

From (6.6) and (6.7), the periodogram can be rewritten as:

P = F
(←−x ∗x

)
. (6.8)
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The convolution theorem [222] of the DFT states that

x⃝∗ y ⇐⇒ X ·Y, (6.9)

where X and Y are the output of the DFT of x and y, respectively; and⃝∗ represents the

circular convolution [223, p. 515]. However, it is possible to obtain the linear convolution

from the circular convolution using zero-padding [3, p. 695]. Zero-padding is a technique

used in DSP to extend a signal adding zeros usually to the end of the signal. Therefore,

considering an augment input x of length M (restrict to M ≥ 2 ·N − 1) and the DFT

symmetry when the input is real
(

X [−k] = X [k]
)

the peridogram can be rewritten as:

P = F
(←−x ∗x

)
(6.10)

= X ·X. (6.11)

In this way, from the previous discussion, we can estimate the autocorrelation by

applying the IDFT to the periodogram as follows:

θ̂̂θ̂θ = F−1(P) (6.12)

= F−1(X ·X), (6.13)

where F−1(·) denotes the operation of taking the IDFT of the argument. For (6.12) to be

accurate, it is necessary to shift the spectrum to start from the zero-component. Otherwise,

the DFT symmetry is lost and this may generate an imaginary part in the transform.

Rewritten (6.13) in matrix format, the autocorrelation estimator is given by

θ̂θθ =
1
M
·FM

[
(FM ·x)◦ (FM ·x)

]
, (6.14)

where FM is the matrix representation of the M-point DFT and ◦ represents the Hadamard

product [94, p. 251].

Usually, in statistics, the autocorrelation estimation is standardized to provide

values between -1 and 1. This method is known as the sampled autocorrelation func-

tion (ACF) [219, p. 30] and it is given by:

ρ̂[l] =
1

N−1 ∑
N−1
n=0 (x[(n+ l)]− x̄) · (x[n]− x̄)

1
N−1 ∑

N−1
n=0 (x[n]− x̄)2

, (6.15)

=
∑

N−1
n=0 (x[(n+ l)]− x̄) · (x[n]− x̄)

∑
N−1
n=0 (x[n]− x̄)2

, (6.16)
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where x̄ is the sample mean of x. Such standardization can also be obtained when the

autocorrelation is computed by convolution or the DFT. However, this procedure can lead

to problems in the construction of fast algorithms for (6.14) because the computation of θ̂θθ

becomes data-dependent. The mentioned problem can be easily overcome by a previous

standardization of the raw data as follows:

z[n] =
x[n]− x̄√

∑
N−1
n=0 (x[n]− x̄)2

. (6.17)

Thus, we have the standardized signal vector z = [z[0], . . . ,z[N−1]]⊤. The standardization

in (6.17) is a variation of the z-score transformation [224, p. 83]. Employing (6.17) in

(6.16), we have:

ρ̂[l] =
N−1

∑
n=0

z[(n+ l)] · z[n] (6.18)

ρ̂[l] = θ̂ [l]. (6.19)

Therefore, for the standardized signal, we have

ρ̂ρρ = θ̂θθ , (6.20)

where ρ̂ρρ = [ρ̂[−N +1], . . . , ρ̂[0], . . . , ρ̂[N−1]]⊤. The advantage of standardizing the data

is that, in addition to computing the autocorrelation, we can also directly estimate the

parameters of autoregressive processes [225, p. 25]. If z is derived from a p-autoregressive

process (AR(p)) [226, p. 58] then it satisfies

z[n] = φ [1] · z[n−1]+φ [2] · z[n−2]+ · · ·+φ [p] · z[n− p]+ ε[n], (6.21)

where ε[n] is white noise [226, p. 47]. For the autoregressive process to be stationary, the

roots of the following polynomial must lie outside the unit circle:

1−φ [1] · z[n−1]−φ [2] · z[n−2]−·· ·−φ [p] · z[n− p]− ε[n] = 0. (6.22)

By means of the Yule-Walker equations [226, p. 59], we obtain the true autocor-

relation of each lag l, given by:

ρ[l] = φ [1] ·ρ[l−1]+φ [2] ·ρ[l−2]+ · · ·+φ [p] ·ρ[l− p]. (6.23)

Thefore, knowing the values of φ , we can obtain the values of ρ by (6.21) and vice versa.
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6.2 PROPOSED METHOD

Based on (6.14), we propose to approximately compute the autocorrelation esti-

mator as follows:

ρ̂ρρ
⋆
M =

1
M
· F̂M

[
(F̂M · zaug)◦ (F̂M · zaug)

]
, (6.24)

where zaug is the standardized augmented signal with M−N zeros added to the end of the

vector, F̂M and F̂M are low-complexity approximations of FM and FM, respectively.

The kernel of the ρ̂ρρ
⋆
M computation relies on the matrices FM and F̂M. Therefore,

the performance and complexity of the estimator are dependent on the choice of an

approximate DFT matrix. Once (F̂M · zaug) is computed, its result can be used to obtain

(F̂M · zaug) by simply changing the sign of the imaginary part. If M is power of two or

can be decomposed into relatively prime factors, then FFT algorithms as Cooley-Tukey or

Good Thomas can be used, respectively.

6.2.1 Approximate autocorrelation estimator for N = 512

In this section, we apply the presented methodology in real inputs of length equal

to N = 512 from AR processes. First, the input is standardize according to (6.17). Second,

the input is augmented by zero-padding it to M = 1024. In this way, the low-complexity

autocorrelation estimator is given by:

ρ̂ρρ
⋆
1024 =

1
1024

· F̂1024

[
(F̂1024 · zaug)◦ (F̂1024 · zaug)

]
. (6.25)

In (6.25), M is power of two, then we applied the Cooley-Tukey algorithm using the

approximations proposed in Chapter 5. Applying (5.9) and (5.10) in (6.25), we have the

following two low-complexity autocorrelation estimators:

ρ̂ρρ
⋆
1024,I =

1
1024

·vec
([

Ω̂ΩΩ32 ◦
(

F̂(0)
32 · P̂1

)]
·
(

F̂(0)
32

)⊤)
, (6.26)

and

ρ̂ρρ
⋆
1024,II =

1
1024

·vec
([

Ω̂ΩΩ32 ◦
(

F̂(1)
32 · P̂2

)]
·
(

F̂(1)
32

)⊤)
, (6.27)
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where

P̂1 =
([

Ω̂ΩΩ32 ◦
(

F̂(0)
32 · (invvec(zaug))

⊤
)]
·
(

F̂(0)
32

)⊤)
◦
([

Ω̂ΩΩ32 ◦
(

F̂(0)
32 · (invvec(zaug))

⊤
)]
·
(

F̂(0)
32

)⊤)
,

(6.28)

and

P̂2 =
([

Ω̂ΩΩ32 ◦
(

F̂(1)
32 · (invvec(zaug))

⊤
)]
·
(

F̂(1)
32

)⊤)
◦
([

Ω̂ΩΩ32 ◦
(

F̂(1)
32 · (invvec(zaug))

⊤
)]
·
(

F̂(1)
32

)⊤)
.

(6.29)

The autocorrelation estimated by ρ̂ρρ
⋆
1024,I and ρ̂ρρ

⋆
1024,II are referred to as Method I

and Method II, respectively. The approximate autocorrelation estimators may not inherit

the DFT properties, and therefore may contain an imaginary part. In this case, only the

real part of the approximate estimator should be considered.

6.3 ARITHMETIC COMPLEXITY

The computation of the usual autocorrelation by convolution and sampled ACF

are in the order of O(N2) and O((N−1)2), respectively, in terms of real multiplications

and real additions [21, p. 146]. The proposed methods use the factorizations presented in

Chapter 5. Although the computation of the approximate DFT and IDFT in the proposed

methods does not require multiplications, the estimators are not free of multiplication be-

cause of the Hadamard product. The proposed methods require M complex multiplications

which translates into 3 ·M real multiplications.

Based on Table 13, for N = 512, the arithmetic costs of the proposed Method

I are: 24320 (approximate DFT) + 24320 (approximate IDFT) + 3072 (approximate

P) =51712 real additions; and 5916 (approximate DFT) + 6940 (approximate IDFT)

=12856 bit-shifting operations. For the proposed Method II, we have a total of: 35362

(approximate DFT) + 35362 (approximate IDFT) + 3072 (approximate P) =73796 real

additions; and 12060 (approximate DFT) + 13084 (approximate IDFT) =25144 bit-shifting

operations. In Table 18, the arithmetic complexities of the estimators are summarized.

Compared to convolution-based and sampled ACF estimators, the Methods I and II require
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approximately 99% less real multiplications. In terms of real additions, the reduction is

80% and 72% for Method I and II, respectively.

Table 18 – Arithmetic complexity of the autocorrelation estimators for N = 512

Method Multiplications Additions Bit-shifting

Convolution and ACF 262144 261121 0
Proposed method I 3072 51712 12856
Proposed method II 3072 73796 25144

Source: Author (2023).

6.4 ERROR ANALYSIS

The estimators were evaluated by mean of Monte Carlo simulation. We considered

R = 1000 replicates of the AR process according to five scenarios as shown in Table 19.

The white noise εn ∼N (0,0.61) so 90% of its values are between -1 and 1 [227].

The parameters of Scenarios I, II, and III were purposely chosen to investigate

the behavior of estimators in weak, strong negatively and strong positively correlated data,

respectively. With regard to Scenarios IV and V, the choices were made based on the

number of parameters and the position of the polynomial roots in which it is expected that

the closer they are to the unit circle, the worse should be the estimator performance since

the process is close to non-stationarity.

Once the sampled ACF, convolution and direct Fourier transforms provide the

same autocorrelation estimates, we grouped them together and call them traditional meth-

ods. Since we have access to the parameters of the AR processes, we calculate the true

autocorrelation (by Yule-Walker equations) and compare with average estimates for the

1000 replicates of each method to determine the bias of the estimators. For each scenario,

we provide the average of the estimators for the first 15 lags and their biases. Furthermore,

all 511 lags are presented to detail the behavior of the estimators.

According to Figure 27, the proposed estimators have behavior close to traditional

methods. The proposed Method I presents greater variability than Method II. In Figure 28,

we can see that while the bias of Method I is smaller than 0.03, Method II has a bias
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Table 19 – AR scenarios

AR parameters
Scenarios φ1 φ2 φ3

I 0.1 - -
III -0.9 - -
II 0.9 - -
IV 0.4 0.5 -
V -1.7 -1.7 -0.9

Source: Author (2023).

Figure 27 – Comparison between proposed and traditional methods considering the first 15 lags for
Scenario I

Source: Author (2023).

smaller than 0.015. The complete autocorrelation vector detailed in the Figure 29 shows

that the proposed estimators fluctuate around the true autocorrelation values for all 511

lags with a few spikes every 128 lags.

In Scenario II, the negative autocorrelation causes its values to alternate between

positive and negative. As we can see in Figure 30, such behavior is maintained in the

approximate estimators. According to Figure 31, the proposed estimators have biases

lower than 0.12 with the exception of lag 3. In Figure 32, it is possible to observe that the

estimates from Method II remain close to the parameter values in all 511 lags.

In Figures 33, 34, and 35, we have a strong positive correlation close to non-

stationarity. Although the proposed estimators present considerable biases in the first lags,

even the traditional methods have difficulty in estimating the autocorrelation, presenting
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Figure 28 – Comparison between proposed and traditional methods considering the first 15 lags for
Scenario I in terms of bias

Source: Author (2023).

larger biases than the approximate estimators, as we can see in some lags from 7 onwards.

In Scenario IV, an extra parameter is added to the process, thus making it a

second-order autoregressive process. In the Figure 33, it is possible to notice that Method

II is a refinement of Method I. The proposed estimators tend to have a positive bias, while

the traditional methods have a negative, bias as suggests Figures 34 and 35.

Scenario V is considered a worst case study. The insertion of the extra parameters

causes an increase in the bias even in the traditional methods as shown in Figure 40. The

proposed estimators perform close to traditional methods even in adverse scenarios, as

indicated by the Figures 40 and 41.
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Figure 30 – Comparison between proposed and traditional methods considering the first 15 lags for
Scenario II

Source: Author (2023).

Figure 31 – Comparison between proposed and traditional methods considering the first 15 lags for
Scenario II in terms of bias

Source: Author (2023).
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Figure 33 – Comparison between proposed and traditional methods considering the first 15 lags for
Scenario III

Source: Author (2023).

Figure 34 – Comparison between proposed and traditional methods considering the first 15 lags for
Scenario III in terms of bias

Source: Author (2023).
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Figure 36 – Comparison between proposed and traditional methods considering the first 15 lags for
Scenario IV

Source: Author (2023).

Figure 37 – Comparison between proposed and traditional methods considering the first 15 lags for
Scenario IV in terms of bias

Source: Author (2023).
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Figure 39 – Comparison between proposed and traditional methods considering the first 15 lags for
Scenario V

Source: Author (2023).

Figure 40 – Comparison between proposed and traditional methods considering the first 15 lags for
Scenario V in terms of bias

Source: Author (2023).
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6.4.1 Real data application

In this section, the proposed methods are compared with traditional methods on

real data. For this analysis, data from the boot package [228,229] of the R software is used.

The database labeled Manaus consists of a time series referring to the monthly average of

the daily stages (heights) of the Rio Negro at Manaus in relation to sea level. We extract

the first 512 observations referring to the period from January 1903 to August 1945. The

data is shown in Figure 42.

In Figures 43 and 44, the proposed methods are compared with the traditional

methods for all 511 lags. Both proposed methods perform close to traditional ones, but

with a reduced amount of arithmetic operations. Based on Figures 43 and 44, there is

evidence that this database has a stronger autocorrelation in the first lags, thus in Figures 45

and 46, the first 15 lags are highlighted.

Figure 42 – Monthly average of the daily stages of the Rio Negro at Manaus between the years
1903 and 1945

Source: Author (2023).
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Figure 43 – Comparison between the proposed method I and traditional methods considering all
511 lags for the Manaus dataset

Source: Author (2023).

Figure 44 – Comparison between the proposed method II and traditional methods considering all
511 lags for the Manaus dataset

Source: Author (2023).
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Figure 45 – Comparison between the proposed method I and traditional methods considering the
first 15 lags for the Manaus dataset

Source: Author (2023).

Figure 46 – Comparison between the proposed method II and traditional methods considering the
first 15 lags for the Manaus dataset

Source: Author (2023).
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6.5 CHAPTER CONCLUSIONS

In this chapter, we proposed low-complexity autocorrelation estimators computed

by means of approximate Fourier transforms. Combining fast algorithms and approximate

transforms, we reduced approximately 99% of the multiplications and at least 72% of

the additions that traditional methods require to estimate the autocorrelation. Specifically,

we applied the methodology in scenarios derived from autoregressive processes with

length of N =512 and compared the proposed estimators with the usual methods by Monte

Carlo simulations. The proposed low-complexity estimators performed close to traditional

estimators even in adverse scenarios.
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7 DOCUMENT CONCLUSIONS

In this chapter, some concluding remarks, contributions, and future works are

presented.

7.1 CONCLUDING REMARKS

In Chapter 3, we explored large-sized FFTs by means of a proposed recursive

scaling method that employed approximate ground transformation matrices. We analyzed

the 324-point DFT derived after n = 2 iterations of the proposed methodology and ground

transform of size N = 32, providing three different approximations. The performance of

each approximation was assessed in terms of arithmetic complexity and error analysis,

emphasizing the trade-off between accuracy and low-cost computation. The proposed

approximations offer competing performance and can be employed as a starting point for

complexity reduction in DFT-based systems. Fine tuned approximations can be obtained

by changing the ground transform and the number of iterations, depending on the specifics

of the given application.

In Chapter 4, we proposed a method to obtain matrices with null complexity of

multiplications to present an approximate version of the prime factor algorithm, the APFA.

We demonstrated that if the transform length can be decomposed into relatively prime

factors than the entire computation of the algorithm can be performed without multiplica-

tions. This fact is due to the absence of twiddle factors, which prevent the propagation

of the error that is common in algorithms that use them in the mapping. In particular, we

applied the proposed method in the 1023-point DFT approximation presenting a collection

of approximations with different levels of trade-off between accuracy and computation

cost. The APFA performed better than the methods presented in the literature according to

the investigated figures of merit in addition to preserve the main characteristics of the DFT.

In Chapter 5, we presented a method to achieve multiplierless approximations

for the DFT obtained from the cropping of the CSD representation. The method can be

applied to both ground transformations and twiddle factor matrices. Thus, we used the
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Cooley-Tukey algorithm and still kept the entire approximate DFT computation free of

multiplications. We introduced two new approximations for the 1024-point DFT based

on the multiplierless approximations for the 32-point DFT and the 32×32 twiddle factor

matrix. The proposed approximations performed better than the literature approximations

with lower arithmetic cost.

Finally, in Chapter 6, low-complexity estimators for computing the autocorrela-

tion function were presented. The proposed autocorrelation estimators are based on the

properties of the DFT which allows FFTs to be used. We combined such fast algorithms

with the approximation methodology. The approximations presented in Chapter 5 were

used to estimate the autocorrelation in AR processes with length N = 512, evaluated in

Monte Carlo simulations. The proposed estimators showed a performance close to the

traditional method with substantial reduction in the number of arithmetic operations.

7.2 MAIN CONTRIBUTIONS

The main contributions of this work are summarized as follows:

• Chapter 3

– A non-linear recursive scaling method to obtain DFT approximations;

– Multiplicative complexity analysis of the proposed scaling method including

hybrid cases;

– Three new approximations for the 324-point DFT.

• Chapter 4

– A method for obtaining approximations for DFTs of any blocksize;

– A recursive algorithm to obtain multiplierless DFT approximation for block-

lengths that can be decomposed into relatively prime factors;

– Three new approximations for the 3-point DFT;

– Three new approximations for the 11-point DFT;

– Three new approximations for the 31-point DFT;

– Fifteen new approximations for the 1023-point DFT (including hybrid approx-

imations);
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– A multiplierless approximation for the 1023-point DFT;

– All new DFT approximations have sparse matrix factorizations.

• Chapter 5

– A new algorithm to obtain multiplierless DFT approximations based on the

Cooley-Tukey algorithm;

– Two new approximations for the 32-point DFT;

– A new approximation for the 32×32 twiddle factor matrix;

– Two new approximations for the 1024-point DFT.

• Chapter 6

– A new low-complexity method to estimate the autocorrelation for AR pro-

cesses.

7.3 PUBLISHED WORKS

From Chapter 3, a paper entitled "Radix-N Algorithm for Computing N2n
-Point

DFT Approximations" [75] was published in the international journal IEEE Signal Pro-

cessing Letters <https://doi.org/10.1109/LSP.2022.3200573>.

A second paper entitled "Extensions on low-complexity DCT approximations for

larger blocklengths based on minimal angle similarity" [230] was published in the inter-

national Journal of Signal Processing Systems for Signal, Image, and Video Technology

<https://doi.org/10.1007/s11265-023-01848-w>. Although approximation methods for

discrete transforms are also discussed in this paper, approximations for DCT were not

included in this thesis.

Three manuscripts are in progress relating to Chapters 4, 5, and 6.

7.4 FUTURE WORKS

For future works, we suggest the following lines of research:

• The approximations for odd-order matrices had few terms in the factorization in

sparse matrices. In this way, we intend to look for different ways of factoring

https://doi.org/10.1109/LSP.2022.3200573
https://doi.org/10.1007/s11265-023-01848-w
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the approximations for odd lengths with the intention of reducing the number of

additions remaining in the APFA algorithm;

• As approximations to the DFT occur in a case-by-case fashion, we intend to extend

the approximation methods of Chapters 4 and 5 to different blocklengths;

• The approximate methods presented substantial gain in terms of arithmetic com-

plexity. Thus, we intend to apply the methods in other discrete transforms such as

the DCT, the discrete sine transform, discrete Hartley transform, and the discrete

wavelet transform;

• The autocorrelation estimator is not restricted to AR processes. We intend to

evaluate its performance in moving average (MA) and autoregressive moving aver-

age (ARMA) processes;

• Study the possible hardware implementation of the proposed works.
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