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ABSTRACT

Item Response Theory (IRT) is used to measure latent abilities of human respondents
based on their responses to items with different difficulty levels. Recently, IRT has been applied
to algorithm evaluation in Artificial Inteligence (Al), by treating the algorithms as respondents
and the Al tasks as items. The most common models in IRT only deal with dichotomous
responses (i.e., a response has to be either correct or incorrect). Hence they are not adequate in
application contexts where responses are recorded in a continuous scale. In this dissertation we
propose the I'-IRT model, particularly designed for dealing with positive unbounded responses,
which we model using a Gamma distribution, parameterised according to respondent ability and
item difficulty and discrimination parameters. The proposed parameterisation results in item
characteristic curves with more flexible shapes compared to the traditional logistic curves adopted
in IRT. We apply the proposed model to assess regression model abilities, where responses are the
absolute errors in test instances. This novel application represents an alternative for evaluating
regression performance and for identifying regions in a regression dataset that present different

levels of difficulty and discrimination.

Keywords: item response theory; regression tasks; machine learning; evaluation.



RESUMO

Teoria da Resposta ao Item (IRT) € usada para medir habilidades latentes de respondentes
humanos com base em suas respostas a itens com diferentes niveis de dificuldade. Recentemente,
IRT tem sido aplicada a avaliagdo de algoritmos de Inteligéncia Artificial (IA), tratando os
algoritmos como respondentes e as tarefas de IA como itens. Os modelos mais comuns em IRT
lidam apenas com respostas dicotdmicas (ou seja, uma resposta deve ser correta ou incorreta).
Portanto, ndo sdo adequados em contextos de aplicacdo onde as respostas sdo registradas em
escala continua. Nesta dissertacdo propomos o modelo I'-IRT, especialmente concebido para lidar
com respostas positivas ilimitadas, que modelamos usando uma distribui¢do Gama, parametrizada
de acordo com a habilidade do respondente e parametros de dificuldade e discriminacdo do item.
A parametrizagdo proposta resulta em curvas caracteristicas de itens com formatos mais flexiveis
em relacdo as curvas logisticas tradicionais adotadas em IRT. Aplicamos o modelo proposto
para avaliar as habilidades do modelo de regressao, onde as respostas sao os erros absolutos nas
instancias de teste. Esta nova aplicacdo representa uma alternativa para avaliar o desempenho
da regressdo e para identificar regides em um conjunto de dados de regressdo que apresentam

diferentes niveis de dificuldade e discriminagao.

Palavras-chave: teoria da resposta ao item; tarefas de regressdo; aprendizagem de maquina;

avaliacdo.
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1 INTRODUCTION 14

This introduction chapter shows the context in which the work is inserted. Furthermore,

this chapter shows the main contributions obtained with the elaboration of the work.

1.1 PROBLEM AND MOTIVATION

Psychometrics is a research field focused on the objective measurement of cognitive traits,
including personality, attitude and intelligence. Item Response Theory (IRT) comprises a set of
Psychometric models aiming to estimate the latent ability of humans based on their responses
to test items with different levels of difficulty (EMBRETSON & REISE, 2013). The concept
of item depends on the application, and can represent for instance test questions, judgements
or choices in exams. IRT has been commonly applied to assess the performance of students in
exams and in health applications.

In practice, an IRT model produces for each item an Item Characteristic Curve (ICC),
which is a function returning the probability of a correct response for the item based on respondent
ability. The ICC is usually a logistic curve determined by two item parameters: difficulty, which
is the location parameter of the logistic function; and discrimination, which affects the slope
of the ICC. Both latent parameters of items and the latent abilities of respondents are jointly
estimated based on observed responses in a test. Respondents who correctly answer the most
difficult items will be assigned high ability values if they also correctly answer easier items,
otherwise the model will implicitly assume that said respondents were guessing.

More recently, IRT has been applied for evaluation in Al, where items are tasks and
respondents are Al models. For instance, IRT was adopted in Machine Learning (ML) classifi-
cation (MARTfNEZ—PLUMED et al., 2016, 2019), in which items correspond to instances in
a dataset, respondents are classifiers and the dichotomous responses, also referred to as binary
responses, are right or wrong classification outcomes collected in a cross-validation experiment.
In another application of IRT for ML classification, CHEN ez al. (2019) proposed the B3-IRT to
model continuous responses in the [0, 1] range, which was then applied to fit class probabilities
returned by ML models. IRT has also been used to evaluate Al techniques in other contexts, such
as Al games (MARTINEZ-PLUMED & HERNANDEZ-ORALLO, 2018) and Natural Language
Processing (NLP) (LALOR et al., 2016).

Despite useful insights, previous works are limited to the application of IRT for binary
(right or wrong predictions) and bounded responses (class probabilities). The IRT models
adopted in previous work are not directly applicable for instance to evaluate regression models,
in which outcomes are continuous unbounded errors. This is also true in many other contexts, in
which success is measured in a continuous unbounded scale. In order to overcome this limitation,
we propose the I'-IRT model, which models positive continuous responses by adopting the

Gamma distribution. The model offers a wide range of ICCs by defining the Gamma parameters
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as a proper combination of item difficulty and discrimination and respondent ability.

1.2 DISSERTATION PROPOSAL

We propose a new IRT model which focuses on positive unbounded responses, which
have not been adequately treated in the IRT literature. Although initially designed for regression
evaluation, the proposed approach can be easily extended to other Al contexts in which models
produce continuous responses. Thus our work increases the scope of application of IRT to Al
evaluation, which is still in its early stage of investigation.

We apply the proposed model in two case studies. First, we use I'-IRT to fit absolute
errors produced in regression tasks. Second, noise was gradually injected into the regression
datasets, thus inducing changes in the item parameters and model abilities. We demonstrate the
use of I'-IRT to identify regions of high difficulty inside the dataset and we propose ability as a
complementary measure to evaluate regression models.

Our contributions can be summarised as follows:

1. We propose I'-IRT, a new IRT model which focuses on positive unbounded responses,

which have not been adequately treated in the IRT literature;

2. We use I'-IRT to evaluate regression algorithms, which is a novel application in

literature;

3. We use I'-IRT to identify difficult and discriminative data instances on regression

tasks;

1.3 STRUCTURE
The dissertation is organised in six chapters, as follows.

» Chapter 1 - Introduction;

Chapter 2 - Literature Review: a brief history and related work on IRT;

Chapter 3 - The I'-IRT Model: description of the I'-IRT model;

Chapter 4 - Experiments with Regression Models: application of I'-IRT to analyse

regression models and datasets;

Chapter 5 - Experiments with Noise: analysis on the influence of data noise to the
I'-IRT model;

Chapter 6 - Conclusion: final remarks and discussion about future works.
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In psychometrics, IRT consists of a family of mathematical and statistical models used in
the design, construction and evaluation of educational and psychological tests (EMBRETSON &
REISE, 2013). Psychometrists have advanced this new measurement system to address several
shortcomings in common measurement practices at the time.

IRT has emerged as an alternative way of evaluating agents, or respondents, who respond
to certain items within a specific context. For example, respondents can be students who answer
exam questions, or algorithms which respond to computational tasks. Traditional methods
of evaluation generally capture the average or total correct items in a test. Therefore, the
respondent’s skill is not fully separable from the test characteristics. A major limitation of
traditional methods is that they do not take into account the response of different respondents
to items with different levels of difficulty. For example, a student gets difficult questions right,
but misses easy questions. Is this a good student? In the context of machine learning, should
a satisfactory classification algorithm classify more easy or difficult instances? IRT takes into
account the difficulties of these tasks. Therefore, respondents are assessed based on a latent
ability, which is inferred from responses to more or less difficult items.

The beginning of IRT is often addressed to Frederick M. Lord and Melvin R. Novick,
which was a milestone in psychometrics. The book was well connected to leading and emerging
scholars in psychometric methods at the time (LORD & NOVICK, 1968). Another line of
research of IRT can be attributed to Georg Rasch, who developed a family of IRT models that
were applied to perform reading measurements and test development. He was interested in
discovering the properties of measurement models and observed that all parameters, from both
item and respondent, were completely separable in his models, a property he developed as
specific objectivity (RASCH, 1960). Erling B. Andersen, who was Rasch’s student, consequently
developed effective methods of estimation for the respondent and item parameters in Rasch’s
models (ANDERSEN, 1973). IRT was one of the dominant subjects among measurement
scholars in the 1980’s.

This chapter is organized as follows. Section 2.1 presents the traditional IRT models used
in psychometrics. Section 2.2 presents IRT models within the context of Al, which is the focus
of this dissertation. Al areas such as machine learning, speech recognition and deep learning are

shown in the second section.

2.1 TRADITIONAL IRT

Item Response Theory is based on two postulates: the performance of a respondent to an
item can be measured and predicted by a latent ability or set of traits; and the relationship between
arespondent’s performance to an item and the latent characteristics behind the item’s performance

can be represented by a monotonically increasing function called the Item Characteristic Curve
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(HAMBLETON et al., 1991). This curve specifies the growth in the probability of a correct
response to an item along the respondent’s latent ability. There are several IRT models that differ
in mathematical formulation, either in the shape of the curve or in the number of item parameters.

The main models are described in the next subsections.

2.1.1 Dichotomous models

The most popular one-dimensional IRT models are the one, two and three item parameters
logistic models. These models fit into dichotomous response modeling problems, which means
responses can either be correct or incorrect (binary responses). For this subsection, it is assumed
that the respondents are examinees who respond to an exam, and the questions that make up the

exam are the items..

2.1.1.1 One-parameter logistic model (1PL)

The 1PL model, or Rasch model, assumes that there is only one feature of the item,
referred to as difficulty, which influences the respondent’s performance. The ICCs produced by

the model are given by Equation 2.1.

6(9,'—5]')

- 2.1
1+ e(6i=8;) .

where p;; is the probability that the respondent i, with ability 6;, will get a correct answer in item

Elpij|6:,6;] =

j, with difficulty 0;. An equation produces an S-shaped curve with values between 0 and 1 along
the 0 scale.

The only item parameter in this model (J;) represents the ability value in which the
probability of obtaining a correct answer is 0.5. The difficulty is also known as the location
parameter and indicates the displacement of the curve along the ability scale. The higher the
difficulty of an item, the higher the ability required to obtain a correct answer.

Figure 1 illustrates three examples of ICCs with different difficulty values. As difficulty
increase, the curves shift to the right, therefore, higher ability values are needed to obtain the

same probability of correct response.

2.1.1.2 Two-parameter logistic model (2PL)

BIRNBAUM (1968) developed the ICC for the 2PL. model, which is described next
(Equation 2.2).

¢%i(0i—9))

Elpij|6:,9j,0)] = 5

where p;; and §; are defined as in Equation 2.1. The two-parameter model is practically the

same as the one-parameter model, except for the presence of the new parameter a;, commonly
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Figure 1 — Examples of one-parameter ICCs.
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referred to as item discrimination parameter. The discrimination parameter represents the slope
of the ICC, that is, it measures the rate of change of the response along the ability. For ICCs with
higher discrimination, the probability of a correct answer is more sensitive to the respondent’s
ability and grows at a higher rate when compared to a low discrimination ICC.

Figure 2 illustrates three examples of ICCs with different discrimination values and fixed
difficulty value of 1. The difference between the curves lies in the slope of the curve. The less
discriminating curve grows at a lower rate of change in ability. Similarly, the curve with higher

discrimination grows at a higher rate as the ability increases.

Figure 2 — Examples of two-parameter ICCs (fixing the difficulty parameter).
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2.1.1.3 Three-parameter logistic model (3PL)

BIRNBAUM (1968) also proposed a model with a third parameter, in addition to the two

mentioned in the previous subsections. The new parameter, referred to as the guessing parameter,
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take into account non-zero responses for low ability respondents in tasks with multiple-choice

items. The ICC is given by the following Equation:

1
E[Pij|9i75jaajacj]:Cj"f‘(l_cj)m

where c; is the guessing parameter of item j. Figure 3 illustrates three ICCs with different
guessing parameters. Difficulty and discrimination parameters are the same for the three ICCs,
with values of 1 and 0.5, respectively. The curves differ from each other in the lower asymptote
value. When ¢ = 0 it is assumed that models with low abilities (close to zero) can have responses

close to zero.

Figure 3 — Examples of three-parameter ICCs (fixing the difficulty and discrimination parameters).
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2.1.2 Toy example

To better understand IRT in practice, an example of a 2PL. model is explained next. In
a hypothetical test, there are six questions that a group of ten students need to answer. In the
context of IRT, each question represents an item and students are the respondents. The Itm
package in R was used in the example to calculate the items’ parameters and the abilities of the
respondents (RIZOPOULQS, 2006).

The responses of the ten students to the six questions in the test are shown below in
Table 1. It is important to note that the response value of 1 indicates correctness and, similarly,
response 0 indicates that the item was answered incorrectly. At first glance, it is possible to
guess which respondents performed better and worse on both tests. For example, Student 1 got
all questions right, hence it is expected that this student’s ability stands out better than the other
students. On the other hand, Student 10 got all questions wrong, so it is expected to have a low
ability. Analogously, respondent 2 almost got all items correct, missing only Question 6, which

only three students responded correctly. Despite the incorrect response, it is expected that such a
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respondent will obtain a high ability value. For other respondents, it is more difficult to compare
performance with each other.

If the students were evaluated using the classic approach, just by counting the number
of correct answers, we would have the ranking shown in the last column of Table 1. Students
who have the same number of correct answers, in theory, would have the same grade on the test.
However, it is observed that the six test questions do not have equivalent "weights" for these
students. In Question 1 (Q1), for example, nine out of ten students got it right. In Question 5
(Q5), three out of ten students got it right, the same students who are among the best evaluated.
This raises the need for question difficulty to be taken into account in student assessment. A
possible solution would be for the evaluator to give different weights to the questions. However,
the evaluation would be biased by the evaluator’s opinion of what an easy or difficult question is.
The students’ reality and performance may not reflect the evaluator’s expectations. IRT manages

to overcome this limitation in the classic approach.

Table 1 — Students’ responses to a test composed by 6 questions.

Student QI Q2 Q3 Q4 Q5 Q6 Count
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Source: (RIZOPOULOS, 2006)

Table 2 shows the difficulty and discrimination parameters of the 2PL IRT model of the
six test questions. As expected, Q1 has the least difficult question. Q5 and Q6, on the other hand,
have the highest difficulty values. Although Q3 has relatively low difficulty, its discrimination is
the greatest, as it can best separate a good student from a bad or regular student. Similarly, Q6
has the second lowest discrimination, despite the high difficulty, due to the fact that a regular
student got it right. However, this may suggest that the student correctly guessed the question.
This will be better explained when we analyse the students’ abilities.

Table 3 shows the abilities of the ten students. Ability takes into account the difficulty
and discrimination of each question. As expected, Student 1 has the highest ability and Student
10 has the lowest ability. When we compare Students 3 and 4, something interesting happens.
Student 3 got 5 questions right and Student 4 got 4 questions, but the ability of Student 3 is
lower than Student 4. This happens because it is less coherent to correctly answer the most
difficult question in the test (Q6) and to miss a question with almost half its difficulty (QS5). This
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Table 2 — Items’ parameters (difficulty and discrimination).

Question Difficulty Discrimination

Ql -1.357 2.6941
Q2 -0.658 1.9928
Q3 0.027 3.3679
Q4 0.663 0.1079
Q5 0.672 2.0196
Q6 1.270 0.5920

Source: (RIZOPOULOS, 2006)

response pattern may suggest that Student 3 correctly guessed Q6. This is more evident with the
ability of Students 5 and 6. The two students have exactly the same number of correct answers,
however, what differentiates them are the different questions. Student 5 answered only the three
easiest questions in the test (Q1, Q2 and Q3), while Student 6 answered the two easiest and the
most difficult question in the test (Q1, Q2 and Q6). The ability of Student 6 strongly suggests
that the response to Q6 was a guess. The application of IRT in this context not only solves the
limitations of the classical approach to evaluation, but also provides insight into the performance

of respondents.

Table 3 — Respondents’ abilities.

Student Ability

0.993
0.836
0.507
0.789
0.139
-0.098
-0.369
-0.782
-0.838
0 -1.468

— O 0 O\ L AW

Source: (RIZOPOULOS, 2006)

Figure 4 shows the ICC of the six test questions. The curves are fitted to the students’
responses to each question. It is noted that as the difficulty increases, the curves shift to the right,
requiring higher ability values to increase the probability of success (e.g. Q1 and Q6). As for
discrimination, as its value increases the slope of the curve also increases. This translates into
the question’s ability to separate Students with different abilities. The probability of success

increases considerably along the ability (e.g. Q3 and QS5).
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Figure 4 — ICC of questions from hypothetical test.
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2.1.3 Polytomous models

The models presented in the previous subsection fit only tasks in which the response
is binary-valued. However, many other tasks require different response modeling rather than
dichotomous models, where the response format does not fit the traditional approach of "true
versus false" or "correct versus incorrect”". Many measurement instruments used in psychology
extract categorical and ordinal measurements, with more than two categories. Polytomous IRT
models were developed in the need to model item-response data with multiple categories and to
represent the non-linear relationship between the respondent’s ability and the probability of an
item belonging to a certain category.

SAMEIJIMA (1969) developed the Graded-Response Model, which is a generalization of
the 2PL model, fits ordered categorical responses (e.g. Likert rating scales). MASTERS (1982)
proposed the Partial Credit model (PCM) to model items that have discrete levels of correctness
and that are assigned partial credits as the respondents improves their response. Therefore, this
model is appropriate to fit item responses where partially correct answers can be achieved (e.g.

exam questions).

2.1.4 Continuous response models

Although binary and polytomous models are widely used, loss of information in responses
may occur when summarizing the result of a task in well-defined categories. Several other
application contexts require that the response is measured on a continuous scale.

In Psychometrics, nonnegative continuous responses have been previously analysed in
the context of student reading speed RASCH (1960); MARIS (1993); LINDEN (2006), where

responses correspond to the total time #;; a respondent i takes to finish reading an item j, which
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is a text consisting of m words. The first of these works (RASCH, 1960) modelled ¢;; with a

gamma density given by:

E[1516;, 6] T(m) U

where, similarly to standard IRT, 6; is the ability of the i-th student, J; is the difficulty of the j-th
item and I'(m) = (m —1)! is the gamma function. In this gamma density, the intensity parameter
is A;j = 6;/0;, thus the expected number of words to be read in a given time unit is assumed to
be a function of the student’s speed and the item’s difficulty.

Although these models are designed for nonnegative responses, we focus on a different
context, therefore their assumptions do not apply here. Previous works that tackled the problem
of IRT models for continuous responses mainly focused on responses with bounded support.
CHEN et al. (2019) introduced the B3-IRT model, which can generate a rich family of ICCs for
responses in the [0, 1] range. Equation (2.5) below gives the model definition, where M is the
number of respondents, N is the number of items and p;; is the observed response of respondent

i to item j, which is drawn from a Beta distribution.

pij ~ B0, Bij),

0,\"
0jj=Fa(0;,6;,a;) = (8—l> ;
J

a
1-6;\"’

ﬁijZ%(ei,aj’aj):(th) ’
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The Beta parameters @;, B;; are computed from 0; (the ability of participant i), § ; (the
difficulty of item j), and a; (the discrimination of item j). Both 8; and & ; are drawn from Beta
distributions, i.e. they are measured on a [0, 1] scale, which means that their values are arguably
easier to interpret than in other IRT models, in which abilities and difficulties are unbounded.
The new parameterisation is able to model non-logistic ICCs defined by the expectation of

%(aj, Bij) and assuming the form given by Equation (2.6).

O 1

i+ B 1+( )af( 0; )""f

1-6;

Elpij|0;,6;,a;] =

2
1—5j
As in standard IRT, the difficulty §; is a location parameter. The response is 0.5
when @; = §; and the curve has slope a;/(48;(1 — &;)) at that point. The ICCs can have
different shapes depending on a;, such as sigmoid shapes similar to standard IRT, anti-sigmoidal
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behaviours and parabolic curves.

2.2 IRT IN ARTIFICIAL INTELLIGENCE

A recent application area of IRT is Artificial Intelligence. According to FLACH (2019), a
highly promising opportunity in evaluating machine learning algorithms involve the use of latent-
variable models. Instead of human respondents, algorithms are evaluated based on responses to
different items or tasks. More specifically, machine learning fits well into the IRT approach: the
classification models are the respondents with ability values and each instance of the dataset is
an item with a particular difficulty. This way, a joint assessment of the model ability and instance

hardness is performed.

2.2.1 Supervised machine learning

A contribution in (PRUDENCIO er al., 2015) work was to analyse instance hardness
in machine learning tasks using IRT. The experiments consisted of training different Random
Forests (RF), varying the number of trees. In the context of IRT, each RF classifier represented a
respondent and each instance of the dataset the item. The binary response indicated the right or
wrong classification of a RF for a given instance. For the case study presented in the paper, the
Heart-Statlog dataset was used and IRT models were generated for each instance and the ability
measured for each RF classifier. Results suggested different levels of discrimination among
data instances and possible presence of noise in the dataset. Another main point was to use the
ability as an alternative way to decide which classifier is better than the other. Item characteristic
curves were generated for the classifiers to model the probability of a correct responses given
the instance hardness levels. Such curves can be used to select and reuse models for different
distributions and levels of instance hardness in a problem.

MARTINEZ-PLUMED et al. (2016) carried out a series of experiments with different
datasets and classification models. To obtain a large population of classifiers, 128 classifiers were
generated by varying the parameters of 15 different families: Decision Trees (DT), rule-based
methods, Linear Discriminant Analysis (LDA), Bayesian, Artificial Neural Networks (ANN),
Support Vector Machines (SVM), boosting, bagging, stacking, Random Forests, K-Nearest
Neighbors (KNN), Partial Least Squares (PLS), Principal Component Regression (PCR) and
logistic and multinomial regression. The data used in the experiments were the Cassini toy
dataset and 8 real datasets extracted from the UCI repository. Each instance of the data sets
is represented by 3PL models, whose difficulty, guessing and discrimination parameters are
obtained from the responses of all different models, which have different ability values. It was
found that difficulty can increase in case of borderline instances, higher number of a different
neighbors and outlier presence. On the other hand, discrimination can be very useful to identify

noise in the datasets, and also to analyse model overfitting. Ability is an interesting measure
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that portrays a different information than accuracy. IRT evaluates classifiers in terms of the
other classifiers that are included in the pool of classifiers. This relativeness is a good property,
especially if a range of diverse classifiers are in the pool.

CHEN et al. (2019) also applied 33-IRT in the machine learning context. Again, respon-
dents were represented by classifiers and items by instances of datasets. Since B>-IRT models
continuous responses, the response was represented by the probability of correctly classifying
an instance to a particular class. Two synthetic binary classification datasets, MOONS and
CLUSTERS, available in scikit-learn, were used in the experiments. Two classes from the
MNIST dataset (3 vs 5) were also chosen since they are similar and contain difficult instances.
Noise was injected in the test set by flipping the label for 20% of randomly chosen data instances.
Also, twelve classifiers were built in the experiments: Naive Bayes (NB), Multilayer Perceptron
(MLP), AdaBoost, Logistic Regression, K-Nearest Neighbors, Linear Discriminant Analysis,
Quadratic Discriminant Analysis (QDA), Decision Tree, Random Forest and three synthetic
classifiers. Results showed that item parameters provided useful insights for difficult or noisy
instances. Also, latent ability was useful to evaluate classifiers on an instance-wise basis in terms
of probability estimation.

To solve the problem of insufficient and over-fitting data, extra training data can be
generated artificially through human learning. Knowing that the process of labeling data manually
is prone to human errors, LI ef al. (2016) generated two machine learning algorithms to identify
erroneous data instances in linear regression. IRT was used to model the distribution of human
errors in labeling, so it was possible to reconstruct a training set with more sparse errors.
Simulations showed that the two algorithms are effective in resolving the insufficient training
and human labeling error problems.

MARTINEZ-PLUMED & HERNANDEZ-ORALLO (2017) analysed the behaviour of
around 40 learning techniques for one of the most popular general purpose Al benchmarks in
the recent years: the Arcade Learning Environment (ALE), based on the Atari 2600 games.
Martinez-Plumed used item response theory, and logistic models in particular, to create item
characteristic curves to determine which games in the benchmark are more difficult but also
more discriminating.

CHEN & AHN (2020) proposed a novel probabilistic framework to improve the accuracy
of a weighted majority voting algorithm. In order to assign higher weights to the classifiers which
can correctly classify hard-to-classify instances, they built the IRT framework to evaluate the
samples’ difficulty and classifiers’ ability simultaneously. To explain the models, they illustrated
how the IRT ensemble model constructs the classifying boundary. They also compared their
performance with other widely used methods and show that the model performed well on 19
datasets.

KANDANAARACHCHI, S. & SMITH-MILES (2020) built an IRT based framework
for evaluating a portfolio of algorithms and extract characteristics that describe different aspects

of algorithm performance. They evaluated 10 classification algorithms: Naive Bayes, Linear
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Discriminant Analysis, Quadratic Discriminant Analysis, Classification and Regression Trees,
J48 decision tree, k-Nearest Neighbors, Support Vector Machines with linear, polynomial
and radial basis kernels and Random Forests. They also used 235 datasets from UCI and
OpenML repositories. Using polytomous IRT models, Kandanaarachchi introduced measures for
quantifying the stability, effectiveness and the anomalous nature of algorithms. The framework
was used on 5 diverse algorithm portfolios, demonstrating the applicability of this method as an

algorithm evaluation tool.

2.2.2 Speech recognition

OLIVEIRA et al. (2020) proposed the evaluation of speech synthesizers using IRT
models, in which an item is a sentence to be synthesized and a respondent is a speaker. Four
speech synthesizers were used in the experiments: Amazon Polly, Google Text to Speech API,
IBM Watson Text to Speech and the Microsoft Azure Text to Speech. Each service generated
speeches by adopting different speakers, each one associated to a different voice type, language,
accents and genre. Each response is the transcription accuracy observed when a given sentence
and speaker are adopted for testing the Automatic Speech Recognition (ASR). A total number of
62 speakers were evaluated (respondents) along 12 different sentences (items). Hence, the ability
of the synthesis services was estimated for each speaker to produce audio test files that can be
well recognized by the ASR system. They found that IRT can identify sentences with different
levels of difficulty and discrimination power between good and poor synthetic speakers.

2.2.3 Natural Language Processing (NLP)

Recently, IRT has also been applied to problems with Deep Learning models. LALOR
et al. (2016) introduced the idea of applying IRT evaluation to NLP tasks. They built a set of
scales using IRT and evaluated a single LSTM neural network to demonstrate the effectiveness

of the evaluation.

2.3  FINAL CONSIDERATIONS

In this section, we reviewed the literature on IRT and its various applications. In addition
to the IRT models in the context of psychometrics and the assessment of human respondents,
the recent IRT application in Al evaluation was also reviewed. Al applications includes the
use of IRT in speech recognition and NLP, but greater emphasis is given to machine learning,
which is within the scope of this work. Since most IRT models are for dichotomous or limited
responses, there were no models adaptable to regression tasks, which is also a field of supervised
learning. Given this motivation, we present in the next chapter the I'-IRT model, which focuses
on positive unbounded responses. Hence, an appropriate model for evaluating regression tasks

can be analysed in depth.
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We now propose I'-IRT to model unbounded nonnegative responses, such as students’
answers to open-ended questions or the absolute values of errors coming out of a regression
model. To the best of our knowledge, the task of fitting IRT models to nonnegative continuous

responses, such as errors associated to regression models, is still an open problem.

3.1 FORMULATION

The central idea of I'-IRT is to model continuous errors using a Gamma distribution,
parameterised according to item difficulty and discrimination and respondent ability. Let ¢;; €

(0,00) be the observed error of respondent i to item j, drawn from a Gamma distribution:

eij ~ (i, Bij),

aj
0ij = Fa(0i,8),a),cj) =c; (;) )
l

T - 8] '
Bij = 75(6:,6;,a;) = :
1—-6;
0, ~B(1,1),8; ~B(1,1),a; ~ N (1,063).
In the model above, & ; € (0; 1) is the difficulty parameter of item j, a; is the discrimina-
tion parameter and ¢; > 0 is the guessing parameter. For respondents, 8; € (0; 1) is the ability of

respondent i. In this model, the ICC is the expectation of I'(¢;;, B;;) along ability, which assumes
the following form:

a:
Ol 6 . J 0 , —a;
[]l Jr < ]] ﬁij J 1_8] 1—9,~ .
The following properties can be pointed out from the ICCs for special cases of ability:

n If 6; — 0, then E[e;;] — oo, i.e., very large errors are expected for respondents with

very low ability;

n If 8; — 1, then Ee;;] — 0, i.e., in turn respondents with very high ability tend to

produce very low errors;

n IfO; = 6]', then E[eij] =cC;j.
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Figure 5 — Examples of IRTs for different values of difficulty. In all cases, ¢; = 2.4 and a; = 1.
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Source: Author.

3.1.1 Guessing Parameter

c;j can be set as the expected error obtained by a random regression model, i.e. ¢; =
Eler;] = |y; —E[y]|. In the ICC, a respondent has random performance when it faces an item
for which difficulty equals her ability (if 8; = &, then E[e;;] = ¢;). In particular, a model with
ability 8; = 0.5 will perform randomly when facing an item with difficulty § ; = 0.5.

3.1.2 Difficulty Parameter

Item difficulty can be analysed regarding a middle point of ability 8; = 0.5:

n If 6j < 0.5, then E[e,-j] <cj for 8; =0.5.

s If 8j > 0.5, then ]E[e,'j] >Cj for 8; =0.5.

In the first case (easy items), even respondents with low ability will have errors lower
than the guessing error. In the second case (difficult items) in turn, only respondents with high
ability will outperform the guessing error.

See Figure 5 for examples of IRT curves for different difficulties. When 8 ; = 0.2, some
respondents with low ability (e.g., 0.2 < 0; < 0.5) are better than random. Only respondents
with 8; < 0.2 are worse. On the other hand, when 8 ; = 0.7, there is a range of good respondents
(0.5 < 8; < 0.7) that do worse than random.

3.1.3 Discrimination Parameter

aj characterises the slope of the curve at the difficulty level. Figure 6 presents examples
of IRT curves, fixing difficulties and guessing parameters and varying discrimination. In all

curves, the same expected error is obtained at the difficulty level 8; = 6 ; = 0.5. For a; = 0.5,
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Figure 6 — Examples of IRTs for different values of discrimination. In all cases, ¢; = 2.4 and 8, = 0.5.
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the expected errors are close to 2.4 (the guessing error) in a wide range of abilities, but when
a;j = 2 we observe very high errors just before 8; = 0.5 and very low errors just after this ability

point. Thus, this item is more discriminative.

3.2 NORMALISED ERRORS

The guessing parameter can be avoided by taking the normalised errors and then deriving
the corresponding ICC:

e
2ij=—L ~T(04,Bijc;)
Cj

5\ 1-8;\"
Qij =¢j 0; , Bijej = 1=,

Note that if X ~ I'(a, ) then 1X ~ I'(ct,kf). The normalised errors are drawn from a

Gamma distribution, which is simply rescaled according to c;. The expected normalised error is
then:

oy 5. aj 0. —aj
18 8 a1 i _ J ! .4
E[eu|elaaj7ajucj] ﬁljcj <1_8]) <1_el> ?

As a special case, for 8; = 8 then E[e;;] = 1, which then serves as a reference for

normalised responses better than random.
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Figure 7 — Examples of B3-IRT for regression. All curves were produced by setting § = 0.4.
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3.3 RELATION TO B3-IRT

The following transformation of normalised errors produces a 83-IRT curve:

1
1+ Elé;;]

Figure 7 presents examples of B3-IRT curves for regression. In the extremes, a trans-
formed response close to 1 means an expected error close to 0. When &;; — oo, the transformed
response tends to 0. When ability equals difficulty, the expected error is ¢; and consequently the
transformed normalised error is 0.5. This level can be used to visually distinguish a success from
a failure. Models with ability @; > 0.4 in this case will be better than the random regression
model.

NOTE: For estimation we can transform the normalised errors using Tle‘,] and produce a
B3-IRT curve. Then, we can transform this ICC back into a I-IRT curve using the inverse of this

transformation.

3.4 DISCRETE ERROR COUNTS

The model described above is directly applied to continuous nonnegative responses, but
its formulation can also be applied to discrete nonnegative responses, such as the number of
errors made by students while answering open-ended questions. Let d;; be the error count of
the i-th student’s answer to the j-th question on a test. These error counts follow a Poisson
distribution d;; ~ Poisson(A;j). Since the conjugate prior of the rate parameter of a Poisson

distribution is the Gamma distribution, we have:
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)Lij ~ F(Oﬂij,ﬁijcj) 2
a; —a; .

Therefore the I'-IRT formulation can be used to estimate the rate parameter A;;, which

also happens to be the expected value of the d;; response, i.e. A;j = E[d;;]. Therefore, we can

model discrete nonnegative error counts using the I'-IRT model.
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In this section, we apply the I'-IRT model to machine learning regression problems. Each
respondent is a different regression model and items are test instances in a dataset. The idea
is to provide insights from the absolute regression errors of a pool of models in a dataset, by
simultaneously analysing data instance difficulty and discrimination as well as regression model

ability.

4.1 METHODOLOGY

We selected 12 datasets with different characteristics and a pool of 13 diverse regression
models to evaluate. For each dataset, a hold-out experiment was adopted to collect the absolute
error, also refered to as “error’, of each regression model in each test instance (i.e., error e;; of
respondent i to item j). The absolute errors observed for a dataset are modelled by our proposed
I'-IRT model, as described in Equation (3.1). Given the matrix of absolute errors in a dataset, the
I'-IRT model is applied to derive the ICC for each test instance as well as the abilities 6; for all
regression models. The I'-IRT model is built 40 times for each response matrix, therefore we
take the average of both items’ parameters and abilities.

The next sections provide more details about the datasets and regression models adopted

in the experiments.

4.2 DATASETS

In the performed experiments, 12 regression datasets with different characteristics were
chosen, presented in Table 4. The first 3 datasets - Poly 5100, Poly 1011 and Sin 1100 -
are univariate regression problems, artificially generated by uniformly sampling the predictor
attribute in a specific interval and applying a chosen function (either polynomial and sinusoidal
functions) in order to generate the target attribute. All functions are described next, in Equation
(4.1.) The other 9 datasets are real benchmark regression problems collected from either UCI or

OpenML repositories.

Yroiysi00 — 0.740.7x+ 1.1x3,x € [0,1]
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Figure 8 illustrates the datasets used in the experiments. For multiple regression problems,

Figure 8 presents the first principal component (PC) and the target attribute. The diversity of
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Table 4 — Description of all regression datasets used in the experiments.

ID Dataset Size Attributes Type Source repository
1 Poly 5100 500 1 Artificial -

2 Poly 1011 300 1 Artificial -

3 Sin 1100 500 1 Artificial -

4  Auto 93 83 20 Real OpenML
5  Bike Sharing Day 731 14 Real ucCI

6  Bodyfat 252 14 Real OpenML
7  Boston Corrected 506 17 Real OpenML
8§ CPU 209 6 Real OpenML
9  Disclosure Z 662 3 Real OpenML
10 Human Devel 130 2 Real OpenML
11 Mileage per Gallon 398 5 Real ucCl

12 Real Estate 414 7 Real UCI

Source: Author.

regression problems is important to verify how the difficulty and discrimination parameters of
the I'-IRT model behave according to different dataset features. We adopted datasets with little or
no noise (e.g. Poly 5100), as well as highly noisy datasets (e.g. Disclosure Z), with no apparent
relation between predictor and target attributes.

Just to be clear, Principal Component Analysis was used for analysis purposes only.
Regression models were trained with all valid attributes from the datasets. To simplify data
visualization, since some datasets have more than 10 attributes, the first principal component

was obtained in order to locate the instances succinctly.

4.3 REGRESSION MODELS

The response e;; is the absolute error obtained by the regression model i for instance j in
the test set. Hence we produced an item-response matrix with 13 models, explained next, and
all test items for each dataset. From now on, the absolute error will be referred to as ’error’ for
simplification purposes, since we are not interested in the error’s sign.

For each regression dataset, we trained and tested 10 regression models (both linear and
nonlinear): (i) Linear Regression; (i1) Bayesian Ridge; (ii1) Support Vector Regression - linear
kernel; (iv) Support Vector Regression - radial basis function (RBF) kernel and penalty parameter
C = 5.0; (v) k-Nearest Neighbours Regression - K = 5; (vi) Decision Tree Regression; (vii)
Random Forest Regression; (viii) AdaBoost Regression; (ix) Multilayer Perceptron - one hidden
layer with 100 neurons; (x) Multilayer Perceptron - two hidden layers with 50 neurons each
and logistic activation function. All regression models were implemented using the Scikit-learn
library. Unless the algorithm’s parameters are explicitly specified above, Scikit-learn’s default
configurations were adopted. In these experiments, a hold-out procedure was used for evaluation,

in which 80% of the data instances were randomly chosen for model training and the remaining
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Figure 8 — Train and test partitions of all regression datasets. PCA is applied when the dataset has more
than 1 attribute (for visualization purposes).
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instances adopted for testing.

In addition to the mentioned regression models, we adopted three baseline models: (1)
Optimal - for each instance, it takes the lowest error among all regression models; (ii) Average
- it always returns the average of all errors; (iii) Worst - it takes the worst error amongst all

regression models. These models are adopted as baselines for comparison.
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After collecting all errors, we applied the I'-IRT model to estimate the difficulty and
discrimination values of all instances for each dataset, as well as the ability values for the

regression models.

4.4 RESULTS: ITEM PARAMETERS

In this section, we analyse the outputs of the I'-IRT related to the items. In Figure 9,
difficulty and discrimination values of the test instances are represented by the color intensity and
marker size, respectively. In the group of artificial datasets, which have similar characteristics,
such as the absence of noise and a single attribute variable, we observed the presence of clusters
of instances with similar difficulties and discrimination values. On the other hand, for the real
datasets, the pattern of difficulty may be quite different depending on the problem. Regions
of similar difficulty and discrimination are not regular and well defined since real datasets are
often noisier. Nevertheless, it is still possible to observe some regularities in the difficulty values

within the datasets as follows:

» Artificial datasets (Poly 5100, Poly 1011 and Sin 1100): in the Poly5100 dataset, there
are two relatively low difficulty regions (instances either around —1 or around 1). In
such regions, all fitted models (both linear and nonlinear) obtained low regression
errors. In turn, since this dataset presents a nonlinear pattern, the regions of higher
difficulty are determined by the poor fit of the linear models. In general, this dataset
has low regression errors, which makes it difficult to distinguish between good
and bad regression models. It is also noted that regions of high discrimination
coincide with regions of low difficulty and vice versa. For the other two artificial
datasets (Poly 1011 and Sinl100), we also observe clusters of similar difficulty and
discrimination values along the test set. In Sin/700, although discrimination appears
to be evenly distributed along the x-axis, the regions of high discrimination coincide
with the extreme regions in relation to the y-axis (“hill" and “valley" of the sinusoidal
function). It turns out that in these regions the linear models have higher errors,

clearly distinguishing high and low ability models.

» Auto 93 and CPU: both datasets have similar curve shapes, although apparently Auto
93 has a higher variance in the target attribute. Both datasets are less noisy in the
initial portion (for lower values of the PC), which reflects in a clear division between
the regions of low and high difficulty. When the variance is lower, i.e. when PC < 0.1
for Auto 93 and when PC < 1 for CPU, difficulty is relatively low. As data becomes
more dispersed, due to the possible presence of noise, difficulty values increase. The
opposite is true for discrimination, which is relatively low for regions with higher

variance.
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» Bike Sharing Day, Bodyfat and Human Devel: the three datasets have approximate
linear patterns, although Bike Sharing Day and Human Devel are descending curves
and Bodyfat is a roughly linear ascending curve with noise. They differ in the number
of instances and noise (apparently noise is much lower in Human Devel). In Human
Devel, most difficult instances are observed when PC < —0.5, where there is an
apparent nonlinear pattern compared to the rest of the data. Bike Sharing Day looks
different as almost all instances have similar difficulty and discrimination values,
despite being a larger dataset and having noisy data. Instances closer to the centre of
the curve have lower difficulty. The region of highest difficulty, where PC is around
0, matches the region with higher noise. We highlight the presence of an outlier in the
Bodyfat dataset. Higher errors are expected for this particular instance, which reflects
in its high difficulty value and low discrimination. In general, the three datasets have
low error values, as will be shown in this section, due to their less complex data

patterns.

» Boston Corrected and Disclosure Z: In Disclosure Z, the target attribute appears to
be randomly distributed along the PC. Instances with target attribute around 0, along
the PC, tend to have lower difficulty values. This is reasonable by considering a
high level of randomness in the target attribute. Difficulty gradually increases as
the points move away from 0 to more extreme regions. The same does not seem to
apply to Boston Corrected, as this dataset has a slight increasing pattern. However,
it is possible to notice that the instances located in the centre of the apparent curve
have lower difficulty in comparison to the more extreme instances. The dataset also
has a gap between regions where PC is approximately equal to 0. The first region
(PC < 0) presents less dispersed data and lower difficulties when compared to the
second region (PC > 0).

s MPG and Real Estate: both datasets have very similar shapes (nonlinear descending
curves). In the MPG dataset, instances closer to the centre of the curve usually have
lower difficulty values. The farther from the centre, the higher the difficulty values
(the target attribute is noisy for these instances). In the Real Estate dataset, the region
of greatest difficulty coincides with the region of higher noise in the data (where
PC € [—0.8,—0.2]). Similarly, less noisy data that more clearly follow a curved
pattern have less difficulty.

Figure 10 illustrates the relation between difficulty and discrimination for each instance
across all regression models. In most of the studied datasets, difficulty and discrimination are neg-
atively correlated as illustrated in the figure, i.e., the greater the difficulty, the less discriminative

the instance. The analysis suggests that instances that do not differentiate well regression models
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Figure 9 — Mapping of Difficulty and Discrimination in the test set (Darker colour indicates higher
discrimination and bigger markers indicate higher difficulty).
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with different abilities tend to be more difficult, while presenting low discrimination. Similarly,
instances that can differentiate models well and have higher errors as the ability increases tend to
have high discrimination and low difficulty. This will be exemplified later with some instances
extracted from a real dataset.

Figure 11 shows the relationship between difficulty and the average error across all
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regression models. Items with higher difficulty values usually result from higher errors, as

expected. However, the relation between difficulty and average errors is not strictly linear. In
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some cases, even instances with low errors may have high difficulty. This can happen when

regression models with high ability respond worse than low ability models.
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different data instances. The red marks indicate the errors and abilities of all regression models

for the particular instance. Each instance belongs to a specific region within the test partition of

the Auto93 dataset and is explained next.

» Instance (a) has the lowest difficulty of the test set. The low overall error explains
the low difficulty itself. When we look more deeply at the models that predict better
in each instance, we take useful insights on errors and discrimination parameter.
Discrimination is higher in instance (a) because regression models respond better to
ability. It should be noted that discrimination is the parameter that determines the

slope of the expected error curve along the ability.

= Instance (b) has the highest difficulty value as a result of higher overall errors. In
instance (b) the relationship between error and discrimination is not so clear, since
high-ability models for this set, for example DT and KNR, respond worse than lower-
ability models such as MLP100 and MLP50-50. This instance does not discriminate
well between good and bad models.

The two instances have well-defined characteristics. Table 5 shows the regression errors

given by all regression models for both instances presented above. Looking at Figure 11, for the

corresponding dataset, the two instances mentioned above are at the extremes, both in relation to

Difficulty and to Average Error per instance.

Figure 12 — Representative Item Characteristic Curves from Aufo 93 dataset.
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Table 5 — Example of error values for two data instances (items) and all regression models (respondents).

(a) (b)
LR 0.22322  1.04041
Bayes 0.026483 1.01294

SVR Linear 0.09114  1.17762
SVR Rbf 0.19750  0.68596

KNR 0.16784  1.20252
DT 1.0e —04 1.26373
RF 0.10761  1.35852
AdaB 0.28137  1.22883

MLP100 0.28712  0.46188
MLP50-50  0.060775 0.305412

Avg 0.13605  0.90195
Opt 1.0e —04 0.305412
Wrs 0.28712  1.35852

Source: Author.

4.5 RESULTS: RESPONDENTS

In this Section, we analyse the performance of all regression models by comparing the
ability, obtained after applying the I'-IRT model, and the Mean Absolute Error (MAE). Figure
13 shows the relation between these two evaluation metrics. In almost all cases, except for
Auto 93 and MPG datasets, ability and MAE have ‘strong’ negative correlation, which is also
presented in the figures. This is an expected result since models with the lowest errors most
likely have the highest ability values. However, this is not a rule, as the results suggest that
ability considers whether models produce higher errors for easy or difficult instances. When we
evaluate regression models with conventional metrics, such as MAE, we have only an average
result across an entire test set. A major advantage of the ability as an evaluation metric is to take
into account the distinct difficulty regions throughout the dataset.

In the Poly 5100 dataset, we analyse two models to demonstrate the benefit of using
ability as a measurement metric. KNR and MLP100 have very similar errors throughout the test
set, but their abilities differ as shown in Figure 13. MLP100 has the highest ability as it performs
better on average on the 20 most difficult instances. Not only does it perform better in the most
difficult instances, it also outperforms KNR on the easiest instances on average.

The Auto 93 dataset presents a peculiar behaviour in which the regression model with
the highest MAE value is also the one with the highest ability (DT model). Similarly, the RF
model has the lowest MAE value, yet has the worst ability value among the other models. By
directly comparing the two models mentioned, the RF model outperforms the DT model in most
easy instances, but when looking at the difficult instances the DT model is slightly better than
RF. Something that can influence this result is the low number of items, since this test set has

only 17 instances. This can lead to inaccurate ability estimates as well as item estimates.
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Figure 13 — Mean Absolute Error (MAE) vs Ability (Spearman’s correlation coefficient between both

variables is showed in the figure).
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As mentioned above, there are a few exceptions to the relation between ability and MAE.
In the Real Estate dataset, SVR Linear has higher MAE than SVR Rbf, KNR and RF, however
its ability is higher than the three models. This is likely due to SVR Linear performing better in

more difficult instances than DT and Bayes. We also note that the closer the performance of the

models, the smaller the ability range.
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Another advantage of using ability as a performance metric is that the range is always
limited between 0 and 1, unlike MAE which can range from O to a large number, depending on
the scale of the target variable in the dataset.
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In this Section, we analyse the effects of noise on difficulty and discrimination parameters,
as well as on model ability. As mentioned in Ferri et al. FERRI e al. (2014) it is very common
that the training data is under “idealistic” conditions, with features that are carefully measured
and preprocessed. So in these experiments, we trained the regression models with simulated
training data without noise (the ideal condition) but tested them with test data with different noise
levels. Then we analyse if the presence of noise changes the values of instance difficulty and
discrimination. Additionally we evaluated the robustness of the ability measure under different

noise levels.

5.1 METHODOLOGY

In this experiment, we gradually injected Gaussian noise (&,) in the target attribute of
the 3 artificial datasets presented in the previous section (Poly 5100, Poly 1011 and Sin 1100).

Target noise is formally described as follows (Equation 5.1):

y<y+g
g ~ A (0,0y) :

The standard deviation of the target noise oy varied from 0 to 0.5, with increments of
0.025, with o, = 0 referred to as original data set.

In this experiment, we adopted the same regression models and training procedure
described in Section 4.3: datasets are randomly split into two subsets, with 80/20% for training
and testing. However, noise is injected in the test set and for each noise-level configuration, 40
different noisy sets are generated. We obtain the absolute errors, also refered to as ’error’ in this
section, from the regression models to all the instances of the test set and then apply the I'-IRT

model to derive the item parameters and regression model abilities.

5.2 RESULTS: ITEM PARAMETERS

Before going into detail with the I'-IRT models, it is important to mention how regression
models respond to items in general as noise is inserted. Higher noise in the target attribute
increases regression errors, so the error values of all regression models over instances gradually
increase as well. Figure 14 shows the shift in error distribution across three specific steps of
noise injection.

Figure 15 illustrates the boxplot of difficulty and discrimination along all steps of noise
injection. It shows how difficulty and discrimination distributions, respectively, change as noise

is injected into the target attribute. In the 3 datasets, difficulty gradually increases as noise
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Figure 14 — Effects of noise injection in the error distributions.
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is injected. As already shown in the previous section, difficulty and discrimination correlate
negatively. Thus, as difficulty increases, discrimination decreases with noise injection. The

behaviour of each dataset through noise injection is explained next:

» Original Poly 5100 has only two relatively low difficulty regions due to the poor fit
of linear models (Figure 15a). In the intermediate noise injection step (o, = 0.25),
the low difficulty regions quickly equalise to the rest of the set. This is because all
regression models start to produce higher errors in these regions. Discrimination
drops significantly due to the gradual loss of the difference among all regression
models. Both linear and nonlinear models have high regression errors with high noise

levels affecting not only difficulty but also discrimination.

» In the original Poly 1011 test set, high-difficulty items are concentrated inside the
intervals x € [—1.4,—1.0], x € [0.25,0.75] and x > 1.3, while low and average dif-
ficulty regions correspond to the complementary intervals. The target variable in
the central region is approximately constant, therefore, it is expected that injecting
noise results in larger regression errors inside this interval. Significant changes in
difficulty are not observed in the high-difficulty regions of the curve since they do not
suffer relevant distortions when noise is injected. Notice that the difficulty boxplots
gradually shift upwards, reflecting higher difficulties in the presence of noise (Figure
15b). The picture is not as clear as in difficulty, but easier instances tend to show
higher discrimination. As already observed, discrimination histograms gradually
shift to the left, thus when noise is applied in the test set, instances tend to lose
their power to discriminate between good and bad regression models. If the injected
noise is large enough, data tends to become random. Thus the variance of difficulty
tends to decrease. This can be seen in Figure 15, which illustrates difficulty and

discrimination values along the x-axis.

» In the Sin 1100 original dataset, according to Figure 9c, there are three regions of
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relatively low difficulty: where x is around the values —1.5, —0.6 and 0.9. Similar to
the datasets described above, these low difficulty regions exist due to the poor fit of
linear models (note that the regions can be linked together by a straight line). In the
same regions discrimination is relatively high because the error of the worst models,
1.e. linear models, is quite high when compared to models that learn the curve pattern
well, i.e. MLP100. Thus there is a clear distinction among models in these regions.
Between the original and the middle noise injection stage there is a general increase
in difficulty, but the emphasis is on the sharp drop in discrimination across all regions,
as shown in Figure 15c¢. In the final noise injection step, the parameter values keep

changing, but at a lower rate.

The figures make it clear that noise makes instances more difficult to predict by regression
models. Discrimination decreases, also indicating that noise makes data difficult to differentiate
regression models. Looking at the datasets in the last noise step, it can be seen that the data have
almost completely lost the nonlinear pattern of the curves. It is more evident from the Poly 5100
and Poly 1101 datasets that curves have given rise to noisy data following a more linear pattern,
which influences the behaviour of abilities as we will see in the next section. It also suggests for
all datasets that the difference between maximum and minimum values of difficulty decreases as

noise is inserted.

5.3 RESULTS: RESPONDENT ABILITIES

Figures 16 and 17 show the performance of all regression models as target noise is
injected in the test sets. There are 3 main groups of models that present similar behaviour among
themselves: linear, nonlinear and baseline models.

The group of linear models (formed by Linear Regression, Bayes and SVR Linear) does
not present significant changes in its ability. Initially, they have the highest MAE values, although
they increase slower than nonlinear models as data gets noisier. As already explained in the
previous section, as larger noises are injected the datasets gradually lose their curved patterns
and give way to a noisy linear pattern. This is reflected in the slight increase of ability throughout
the process in linear models only.

The models with the best performance belong to the group of nonlinear models. Looking
at their abilities, RF and SVR Rbf stand out as the best regression models among all. The ability
of nonlinear models, however, declines significantly as noise is inserted into the target attribute.
This may also be due to the loss of patterns in datasets. Nonlinear models that fit well-defined
curves now produce high errors not only because of noise, but because of the lower generalisation
of data.

Since models are fitted using non-noisy data, distortions in the test set caused by noise
injection result in greater errors, which can cause as a higher uncertainty about the relative

performance of different models. Thus we checked whether ability could be a more robust
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Figure 16 — Evolution in the ability of all regression models along noise injection.
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Figure 17 — Evolution in the Mean Absolute Error (MAE) of all regression models along noise injection.
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performance measure, as it estimates a latent model behaviour. For this, we calculated the
percentage variation in ability and in MAE of each regression model that occurred in a given
noise injection step relative to the original test set. We expect that a better performance measure
would be less sensitive to the presence of noise. The percentage variations of ability and MAE,

in noise injection step k = 1, ...,20, are calculated as follows:

M % 100%
60
2
IMAEy, — MAE|
x 100%
MAE;

Where 6;y and MAEjy are the ability and the MAE of the regression model i for the

original dataset under analysis. We evaluated which of the two measures varies less for each
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noise injection step k. For example, if in a given step k the ability varies less than the MAE, the
subtraction between these two values must be negative. This difference is measured for each
regression model in all noise injection steps.

Figure 18 illustrates the heat map of the difference between the percentage variation in
ability and in MAE of each regression model that occurred in each noise level. Negative values
(darker green cells) indicate that the variation of ability values is smaller than the MAE variation,
which favours ability. In general, ability is more robust than MAE, especially when more noise
is inserted in the test sets. Results show that ability varies significantly less than MAE as noise
increases, for the three artificial test sets. We tested whether the sample of percentage variation
in ability came from a distribution with a mean lower than the percentage variation in MAE,
which would suggest a lower sensitivity to noise as explained previously. According to a paired
t-test, the p-values for Poly 5100, Poly 1011 and Sin 1100 are equal to 0.000008, 0.00004 and
0.00001, respectively.

The first three linear models (Linear Regression, Bayesian Ridge and SVR Linear) have
relatively lower absolute values in the heatmap than the rest of the models in almost all noise
injection steps. This is because linear models already produce high error values for the original
test set. It is also possible to observe that the slope of the error curve of the linear models
presented in Figure 17 is smaller than all other models. Thus the variation in MAE is not as
significant as in the other models.

The group of baseline models (formed by Average, Optimal and Worst) present a different
behaviour when compared to the others. The Optimal model tracks the performance of the best
model as expected and since the errors of the best models on average tend to increase, its ability

declines. Notice that the Average model tracks the average performance of all regression models.

Figure 18 — Heat map of differences between the percentage variation in ability and MAE along noise
injection.
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Since most regression models produce higher errors as noise is injected and their abilities
decrease, the ability of the Average model decreases as well. Opposite to the Optimal model, the

Worst model tracks the performance of the worst model, which can often be a linear model.



6 CONCLUSION >

In this section the final considerations of the work are raised, as well as the possibilities

of future works. Finally, the main academic contribution of this dissertation is shown.

6.1 FINAL CONSIDERATIONS

In this paper we proposed a new IRT model, called I'-IRT, developed to fit positive
unbounded responses. We applied I'-IRT in a regression scenario to analyse the performance of
regression models and also the levels of difficulty and discrimination of data instances located
in specific regions in the dataset. Experiments were carried out with 3 artificial datasets and
9 real case datasets extracted from the UCI and OpenML repositories. For each dataset, 10
regression models were built from the open-source library Scikit-learn, and 3 baseline models
were generated by inserting synthetic values directly into the response matrix. The models were
trained with 80% of the data and test results were obtained with the remaining 20%. Experiments
were also carried out to analyse the effects of noise injection on the I'-IRT model. Noise,
extracted from a Gaussian distribution, was injected into the target attribute in several stages,
gradually increasing the standard deviation of the noise sample to higher values.

The results of the experiments provided interesting insights for regression tasks. The
results suggest that there are regions of high and low difficulties, caused either by more complex
data patterns to be learned or by the presence of noise. Noisy data seem to present higher
difficulty and lower discrimination when compared to noise free data. For example, in noise free
artificial data sets, linear models often have lower abilities because they cannot learn the curves
present in the data patterns. In the real datasets, more susceptible to noise and with more feature
attributes, the ability values are less discriminated by the type of regression model (linear or
nonlinear). In the experiments carried out with noise injection, linear models proved to be more
robust than nonlinear models. This is due to the fact that nonlinear models are more sensitive to
the presence of noise and can "suffer" more from overfitting. This is suggested when the ability
of linear models increases and nonlinear models decrease, as noise is injected into the data.
Furthermore, ability vary less than MAE throughout the noise injection, hence, model ability
may be used as a robust performance metric as it tracks the error values and is less affected by
noise.

The application of IRT to regression evaluation is new in literature. Although initially
designed for regression evaluation, the proposed approach can be easily extended to other Al
contexts in which models produce continuous responses. Thus our work increases the scope of

IRT application to Al evaluation, which is still in its early stage of investigation.
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6.2 FUTURE WORK

From the experiments, it was possible to analyse the behavior of I'-IRT for different
datasets and regression models. However, there are plenty of factors that have not been explored

in depth due to the introductory nature of this work. Therefore, future work may include:

= Feature noise injection

In cases where the collection or treatment of feature data is subject to errors, resulting
in the addition of noise, it will be important to analyse the effects over the items’
parameters. For example: assuming that sensors collect data in a given operation
are degrading, the reliability of the collected data decreases. What insights could
be obtained with the use of I'-IRT model in this process of degradation of features?
Furthermore, through the ability of regression models, would it be possible to identify

models that are less sensitive to the degradation of feature attributes?

» Feature selection

It can be challenging to choose an appropriate feature selection method and interpret
the results for a specific dataset, despite the number of existing approaches. Another
possible application of I'-IRT is feature selection based on difficulty and discrimina-
tion of each attribute over the ML models. For a set of different regression models, it
would be interesting to analyse whether any features, or sets of features, are more
discriminative than others. Likewise, to check if the ability of the same regression

model can vary when including or excluding specific features.

» Time series forecasting

Since the responses of time series models are positive and unbounded, it would be
interesting to analyse the behavior of I'-IRT parameters throughout the series. Would
it be possible to predict a concept drift in the time series using the item parameters?
What insights could the ability provide for the different tested models?

6.3 ACADEMIC CONTRIBUTION

Finally, in terms of contributions, the results achieved within this dissertation culminated
in an international conference paper presentation with a good rating in the CAPES qualification.

The paper is shown below:

» [tem Response Theory for Evaluating Regression Algorithms, MORAES ez al. (2020)
- Presented in July 2020 at the International Joint Conference on Neural Networks
(IJCNN) - Qualis A2. Its content is directly related to this dissertation.
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