

UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO ACADÊMICO DO AGRESTE NÚCLEO DE TECNOLOGIA CURSO DE GRADUAÇÃO EM ENGENHARIA CIVIL

KATTARINNE MARIA GOMES DE BARROS

PROJETOS DE INSTALAÇÕES PREDIAIS DE UMA RESIDÊNCIA UNIFAMILIAR DE ALTO PADRÃO NA CIDADE DE CARUARU-PE

Orientador: Prof. Dr. José Moura Soares

Caruaru

KATTARINNE MARIA GOMES DE BARROS

PROJETOS DE INSTALAÇÕES PREDIAIS DE UMA RESIDÊNCIA UNIFAMILIAR DE ALTO PADRÃO NA CIDADE DE CARUARU-PE

Trabalho de Conclusão de Curso apresentado à Coordenação do Curso de Engenharia Civil do Campus Agreste da Universidade Federal de Pernambuco – UFPE, na modalidade de artigo científico, como requisito parcial para obtenção do grau de Bacharel em Engenharia Civil. Defesa realizada por videoconferência.

Área de concentração: Construção Civil.

Orientador(a): Prof. Dr. José Moura Soares

AGRADECIMENTOS

À Deus, que em vários momentos da minha vida se fez presente me dando sabedoria, paciência, saúde e força.

À minha mãe, Maria das Graças, que me apoiou nos estudos desde sempre, procurando melhores colégios dentro da nossa condição financeira. Aconselhou e cuidou, mesmo distante, da forma que lhe fosse possível.

Ao meu pai, Claudio Gomes, que me auxiliou financeiramente e se fez presente em momentos críticos com seus conselhos.

À minha irmã, Dayane Barros, que mesmo de longe e com pouco contato sempre me apoiou e forneceu ajuda quando necessário.

À Síllas Dias, pessoa que se fez presente na maioria das noites mal dormidas, avaliações e trabalhos. Ensinou a ser uma pessoa mais madura, crítica e exigente. Dividiu comigo momentos de felicidade em boa parte da trajetória da universidade.

À Suzane Valerio, Drayton Henrique e Nataly Valério, pessoas que me auxiliaram e me apoiaram desde o início do meu curso, principalmente em momentos que me via sem conhecimento para tomar decisões sábias.

À José Moura Soares, professor e orientador, pessoa prestativa, inteligente e companheira. Se faz presente para contar algumas das suas experiências, aconselhar e apoiar aos seus alunos em momentos diversos.

À Josiane, Joane, Sidnei e Severino Dias, família que se fez presente, me acolheu em vários momentos durante o curso e torce pelas minhas conquistas.

À amiga, Cássia Gisele, que compartilhou muitos projetos, trabalhos e preocupações de curso. Além de se fazer presente como amiga, dando conselhos e dividindo preocupações da carreira de trabalho.

À Erik Farias, Daniel Barbosa e Samuel Lima, pessoas que auxiliaram diretamente com suas experiências para a criação desse trabalho, tirando dúvidas, dando conselhos e realizando algumas correções.

À Elizabeth Rodrigues, Rhuan Felipe, Paulo Ulisses, Iane Mota, Nathalia Barros, Fernanda Gomes, Viviane Freitas, Daiane Marli. Amigos que de perto ou de longe se fizeram presente nessa minha trajetória.

Aos professores Saulo de Tarso, Marília Marinho, Flávio Diniz, Débora Assis e Jocilene Costa. Professores que aconselham e acolhem os estudantes universitários do CAA.

Aos professores François Magalhães, Nilton Santos, Luciana Galindo, Viviane Catolé, Eliane Catolé, Riziane Passos, Socorro Galindo e Érica Chalegre, professores do ensino médio que mesmo com recursos limitados, auxiliam muitos alunos em suas metas.

Projetos de instalações prediais de uma residência unifamiliar de alto padrão na cidade

de Caruaru- PE

Projects of building installations of a high standard single-family residence in the city of

Caruaru-PE

Kattarinne Maria Gomes de Barros¹

RESUMO

Apesar do surgimento e da popularização de diversas ferramentas para a criação de projetos

complementares, torna-se indispensável o conhecimento dos cálculos, normas e boas práticas

para sua elaboração. Um projeto elaborado seguindo os parâmetros preconizados por norma

garante satisfação, segurança e economia para o cliente. Considerando tal importância, esse

trabalho busca apresentar os principais projetos de instalações prediais para uma residência

unifamiliar localizada na cidade de Caruaru, seguindo um projeto arquitetônico preexistente,

as principais normas brasileiras de instalações prediais e recomendações para boas práticas.

Diante do cenário atual da crescente utilização da tecnologia BIM (Building Information

Modeling), a disponibilidade de versão gratuita para estudantes, manuais, suportes e

bibliotecas gratuitas de peças do mercado brasileiro, todos os projetos foram modelados em

Revit 2021, software da Autodesk, com o cuidado de garantir a compatibilidade, satisfação na

utilização dos sistemas e conforto do proprietário. A escolha dos materiais dos sistemas

hidráulico, sanitário e elétrico ocorreu conforme a análise dos resultados apresentados do

software de forma a garantir a melhor opção de escolha. De modo geral, as ferramentas aqui

utilizadas se mostraram eficientes para a realização de projetos desse porte. Para apresentar o

trabalho proposto, serão anexadas as pranchas detalhadas das instalações e listas de materiais

sugeridos de ambos os sistemas, de forma a reduzir a probabilidade de erros no caso de

execução.

Palavras-chave: instalações prediais; residência; Revit.

ABSTRACT

Despite the emergence and popularization of various tools for creating complementary

4

projects, knowledge of calculations, standards and good practices for their preparation is

essential. A project elaborated following the parameters recommended by the norm

guarantees satisfaction, safety and economy for the customer. Considering this importance,

this work seeks to present the main projects of building installations for a single-family

residence located in the city of Caruaru, following a pre-existing architectural project, the

main Brazilian standards of building installations and recommendations for good practices. In

view of the current scenario of the increasing use of BIM (Building Information Modeling)

technology, the availability of a free version for students, manuals, supports and free libraries

of parts in the Brazilian market, all projects were modeled in Revit 2021, Autodesk software,

with care to ensure compatibility, satisfaction in using the systems and comfort of the owner.

The choice of materials for the hydraulic, sanitary and electrical systems was based on the

analysis of the results presented by the software in order to guarantee the best choice. In

general, the tools used here proved to be efficient for carrying out projects of this size. To

present the proposed work, detailed plans of the facilities and lists of suggested materials for

both systems will be attached, in order to reduce the probability of errors in the case of

execution.

Keywords: building facilities; residence; Revit.

DATA DE APROVAÇÃO: 10 de maio de 2023.

1 INTRODUÇÃO

Dentre os projetos que são elaborados para a construção de uma edificação, são necessários

os seguintes projetos: arquitetônico, estrutural e projetos complementares (instalações). Muita

importância é dada ao projeto de arquitetura, e isto ocorre devido ao mesmo servir de base

para os demais. Isto pode ser observado em questão de custo, sendo o arquitetônico o mais

caro de todos. O presente trabalho vem evidenciar que os projetos de instalações não são

menos importantes do que o projeto que serve de base. Sendo evidenciado que a falta de

projetos de qualidade, aumenta as chances de surgimento de patologias na construção civil

relacionados a instalações elétricas, sanitárias e hidráulicas.

Em obras sem os devidos projetos de instalações elétricas, é possível observar problemas

como falta de capacidade de corrente nos circuitos, riscos de incêndios, má distribuição dos

condutores, alocação insuficiente de tomadas e alturas erradas. No caso de instalações hidráulicas, é possível notar infiltrações, pressão insuficiente nos aparelhos, entre outros. Nas instalações sanitárias é notório o mal cheiro, refluxos, vazamentos e ruídos.

Os projetos de instalações devem seguir os padrões de norma de acordo com a necessidade da obra como, por exemplo, ABNT NBR 5626/2020 de instalação predial de água fria, ABNT NBR 8160/1999 de sistemas prediais de esgoto sanitário e a NBR 5410/2004 para instalação elétrica de baixa tensão.

Para facilitar os trabalhos dos profissionais de engenharia civil, foram desenvolvidos vários *softwares* como, por exemplo, o AltoQI e CypeCAD (ferramentas computacionais, que possibilitam o cálculo, dimensionamento e esquemas tridimensionais rápidos de acordo com as normas técnicas brasileiras) e o Revit MEP, ferramenta internacional que possibilita a rápida modelagem do projeto, obtenção de quantitativos, flexibilidade de modelagem no 3D e apresenta grande quantidade de famílias disponíveis no mercado.

Para que o profissional consiga realizar projetos de qualidade e de forma segura é indispensável a prática dos processos de cálculo, o conhecimento de *softwares*, normas e estudo da necessidade do cliente. As necessidades do cliente tendem a ser temperaturas agradáveis e bom funcionamento dos aparelhos, de forma que o mesmo consiga aproveitar o máximo seu ambiente. Estas informações podem ser passadas pelo arquiteto e na ausência do mesmo, torna-se viável a conversa com o cliente. Ao considerar, por exemplo, uma casa de alto padrão em Caruaru, é importante atentar ao clima quente que faz o cliente não ter necessidade de aquecedores ou de distribuição de água quente.

Um bom projeto de instalações permite inúmeros benefícios no funcionamento da edificação, como por exemplo, qualidade, segurança e suprimento de necessidades dos proprietários de forma duradoura. Para que isto ocorra, é necessário um profissional que assegure que os devidos dutos e cabos sejam utilizados de forma adequada (no caso de instalações elétricas). Dimensionamento correto de tubulações, de caixas de inspeções, de passagem e rede de ventilação (no caso de instalações sanitárias). E o bom comportamento de sistemas de água fria, quente e pluvial (no caso de instalações hidráulicas) de acordo com as normas.

1.1 Objetivos

1.1.1 Objetivo Geral

O objetivo geral deste trabalho é praticar e desenvolver as habilidades necessárias para a execução de projetos de instalações prediais de uma residência de alto padrão em Caruaru realizando os cálculos necessários (elaboração de planilhas), seguindo as normas da ABNT e utilizando o Revit MEP para modelagem.

1.1.2 Objetivos Específicos

Os objetivos específicos para o presente trabalho são:

- Identificar as necessidades do cliente quanto as instalações e posicioná-las seguindo as normas da ABNT;
- Calcular as demandas dos projetos escolhidos como necessários para o cliente;
- Dimensionar as instalações seguindo a norma, compatibilizando de forma econômica e executável;
- Gerar as pranchas detalhando todos os projetos e elementos dos mesmos;
- Detalhar e quantificar em forma de tabelas o material necessário para a execução das instalações.

2 METODOLOGIA

Os projetos arquitetônicos possuem peculiaridades que devem ser observadas no início do estudo para a criação dos projetos complementares. Então, de acordo com as necessidades observadas do proprietário do projeto, avalia-se os demais projetos que deverão ser elaborados. Após a escolha destes, identifica-se os pontos dos componentes de forma a respeitar a norma, garantir a compatibilização e suprir as necessidades do proprietário. Os projetos hidráulico, sanitário e de instalações elétricas serão realizados com o auxílio da extensão (plugins) "MEP hidráulica para Revit", "MEP elétrica para Revit" da empresa Ofcdesk e utilização de planilhas do Excel da Microsoft Office.

2.1 Descrição e localização

O trabalho será elaborado baseado no projeto arquitetônico de uma residência unifamiliar de alto padrão realizado pelo Arquiteto Jefferson Augusto, em Caruaru. O terreno mede 12 m de largura por 30 m de comprimento, com área total de 360 m². Possui o térreo como área

social com espaço gourmet e duas vagas de garagem cobertas em sua frente. Em seu interior observa-se a integração de áreas de estar, jantar, TV e cozinha. Além disso, possui um escritório que pode ser reversível. No primeiro pavimento, observa-se uma sala de estar íntima e 4 suítes. Apresenta-se, abaixo, a modelagem 3D da edificação.

Figura 1 – Modelagem 3D da Residência Unifamiliar

Fonte: Autoria Própria (2023)

2.2 Análise do projeto arquitetônico

A análise do projeto arquitetônico permite avaliar as necessidades que o futuro usuário pode ter. Neste procedimento, é importante considerar a distribuição dos cômodos, áreas úteis, atividades a serem realizadas e possíveis acontecimentos. Pois, a partir desta análise será possível dar início às próximas etapas.

2.3 Escolha de projetos

Os projetos de instalações prediais envolvem conjuntos de projetos variados de uma construção. Para elaborá-los, é necessário planejamento feito por meio de profissionais qualificados, pois todos estes possuem especificidades que precisam ser analisadas. Além disso, como já mencionado, a escolha dos projetos deve ser compatível com a realidade e necessidade do usuário.

Os projetos elétrico, hidráulico e sanitário são os "projetos base" de instalações prediais, pois garantem o mínimo para o funcionamento de um edifício, no que diz respeito à própria execução, visto que não se deve iniciar uma obra sem conhecimento prévio das instalações

enterradas. A partir da escolha dos projetos, verifica-se as necessidades apresentadas para cada sistema.

Para a criação do projeto de instalações elétricas, por exemplo, deve-se atentar aos aparelhos que poderão vir a ser utilizados, disponibilidade de energia e a segurança do usuário, pois um projeto eficiente permite bem-estar, conforto, bom funcionamento das instalações, continuidade de serviço e proteções seguindo normas e recomendações.

Nas instalações hidráulicas, que atualmente mais apresenta patologias, atenta-se aos componentes, suas alturas, melhores localizações de passagens das instalações e pontos de maior e menor pressão de forma a garantir o bom funcionamento da mesma.

Para evitar desconfortos como por exemplo: ruídos, mau cheiro, entupimento das tubulações e retornos de esgoto, é necessário que seja realizado o projeto de instalações sanitárias de forma adequada.

Dependendo da dimensão, especificação e necessidades da obra, também é viável ter projetos de SPDA (Sistema de Proteção contra Descargas Atmosféricas), projeto de águas pluviais, prevenção e combate a incêndio e projeto de água quente.

Avaliando-se as áreas da edificação e a quantidade de áreas abertas (varandas), optou-se por realizar-se também o projeto de águas pluviais, seguindo a ABNT NBR 10844/1989 de instalações prediais de águas pluviais.

2.4 Características e cálculo dos componentes

2.4.1 Características e cálculo dos componentes hidráulicos

Durante a criação do projeto arquitetônico, é necessário a localização dos reservatórios de forma a garantir a harmonização visual com o técnico. Além disso, é necessário prever a execução ou instalação do reservatório, pois seus acessos podem ser limitadores. Por exemplo, o acesso para limpeza e inspeção do reservatório, deve ser garantido por meio de uma abertura mínima de 60 cm.

O reservatório superior pode ser alimentado diretamente pelo alimentador predial ou pelo sistema de recalque. Quando o reservatório elevado é abastecido diretamente pela rede pública, normalmente localiza-se na cobertura, de modo a diminuir a perda de carga e gerar economia.

Segundo a ABNT NBR 5626/2020, a capacidade dos reservatórios deve ser estabelecida levando-se em consideração o padrão de consumo de água no edificio e, onde for possível

obter informações, a frequência e duração de interrupções do abastecimento. Ela ainda acrescenta que o volume de água para uso doméstico deve ser, no mínimo, o necessário para 24 horas de consumo normal no edifício, sem considerar o volume de água para combate a incêndio.

Para uma residência de pequeno porte, sugere-se uma reserva mínima de 500 litros. No caso de um volume além do necessário, recomenda-se avaliar a garantia de potabilidade da água para que o volume não exceda muito o consumo da mesma.

A utilização da água varia de acordo com os costumes, da disponibilidade do abastecimento, entre outros. Em média, uma pessoa gasta de 50 a 200 litros de água por dia. Considerando-se então um consumo de 200 litros, pode-se avaliar o volume de água necessário de forma satisfatória. Além disso, o consumo diário de água pode ser estimado de acordo com a taxa de ocupação e tipos de utilização de acordo com a equação abaixo.

$$C_d = P \cdot q$$
 (1)

Sendo:

C_d – consumo diário (l.dia⁻¹);

P – população;

q – consumo "per capita" (l.dia⁻¹).

Para prever a população e o consumo a ser utilizado, existem tabelas com média dos valores de acordo com a natureza do local, como pode ser observado abaixo, tabelas fornecidas por Carvalho Júnior (2013).

Tabela 1 - Taxa de ocupação de acordo com a natureza do local

NATUREZA DO LOCAL	TAXA DE OCUPAÇÃO
Residência e apartamentos	Duas pessoas por dormitório
Bancos	Uma pessoa por 5,00 m² de área
Escritórios	Uma pessoa por 6,00 m² de área
Lojas (pavimento térreo)	Uma pessoa por 2,50 m² de área
Lojas (pavimento superior)	Uma pessoa por 5,00 m² de área
Shopping centers	Uma pessoa por 5,00 m² de área
Museus e bibliotecas	Uma pessoa por 5,50 m² de área
Salões de hotéis	Uma pessoa por 5,50 m² de área
Restaurantes	Uma pessoa por 1,40 m² de área
Teatro, cinemas e auditórios	Uma cadeira por 0,70 m² de área

Fonte: Roberto de Carvalho Júnior (2013)

Tabela 2 - Consumo predial diário (valores indicativos)

Tabela 2 - Consumo predial diário (valores indicativos)			
PRÉDIO	CONSUMO (LITROS/DIA)		
Alojamento provisório	80 per capita		
Ambulatórios	25 per capita		
Apartamentos	200 per capita		
Casas populares ou rurais	150 per capita		
Cavalariças	100 por cavalo		
Cinemas e teatros	2 por lugar		
Creches	50 per capita		
Edifícios públicos ou comerciais	50 per capita		
Escolas (externatos)	50 per capita		
Escolas (internatos)	150 per capita		
Escolas (semi-internatos)	100 per capita		
Escritórios	50 per capita		
	50 por automóvel/200por		
Garagens e posto de serviço	caminhão		
Hotéis (sem cozinha e sem			
lavanderia)	120 por hóspede		
Hotéis (com cozinha e com			
lavanderia)	250 por hóspede		
Indústrias – uso pessoal	80 por operário		
Indústrias – com restaurante	100 por operário		
Jardins (rega)	1,5 por m ²		
Lavanderias	30 por kg de roupa seca		
Matadouro – animais de grande			
porte	300 por animal abatido		
Matadouro – animais de pequeno			
porte	150 por animal abatido		
Mercados	5 por m² de área		
Oficinas de costura	50 per capita		
Orfanatos, asilos, berçários	150 per capita		
Piscinas – lâmina de água	2,5 cm por dia		
Postos de serviços para			
automóveis	150 por veículo		
Quartéis	150 per capita		
Residência popular	150 per capita		
Residência de padrão médio	200 per capita		
Residência de padrão luxo	250 per capita		
Restaurante e outros similares	25 por refeição		
Templos	2 por lugar		
	(22.42)		

Fonte: Roberto de Carvalho Júnior (2013)

Obtido o consumo diário de água, calcula-se a vazão mínima do alimentador predial pela Equação 2:

$$Q_{ap} = C_d / (24.60.60)$$
 (2)

Sendo:

 Q_{ap} – vazão mínima do alimentador predial (m³.dia⁻¹);;

 C_d – consumo diário (l.dia⁻¹).

Com a vazão mínima do alimentador predial, é possível calcular seu diâmetro mediante uso da Equação 3:

$$D_{ap} = ((4 \cdot Q_{ap})/(\pi \cdot V_{ap}))^{0.5}$$
(3)

Sendo:

D_{ap} – diâmetro do alimentador predial (m);

 Q_{ap} – vazão mínima do alimentador predial (m³.dia⁻¹);

 V_{ap} – velocidade do alimentador predial (m.s⁻¹).

Durante o cálculo é preciso propor uma reserva de água para o sistema de prevenção e combate ao incêndio e para a possível falta de distribuição de água da rede pública. A reserva para incêndio é equivalente a pelo menos 15% do consumo diário e para reserva de água, dobra-se o volume do consumo diário ou avalia-se a necessidade da região.

Para reservatórios residenciais, recomenda-se que 60% de seu volume seja destinado ao reservatório inferior e 40% ao reservatório superior, entretanto, a reserva de incêndio deve ser colocada neste último. Tal distribuição é feita de modo a aliviar a carga nos pilares que suportam o peso do reservatório superior.

Para a elevação da água do reservatório inferior para o superior, dimensiona-se uma bomba para sucção e recalque da água. Estima-se o número de horas que a bomba deve funcionar, calcula-se a vazão através da Equação 4:

$$Q_r = n_f \cdot (d_{res} \cdot C_d) / (3600)$$
 (4)

Sendo:

 Q_r – vazão de recalque (m^3 .dia $^{-1}$);

n_f – horas de trabalho da bomba;

d_{res} – dias de reserva;

C_d– consumo diário (m³.dia⁻¹).

O diâmetro de recalque pode ser obtido pela Equação 5:

$$D_{r} = 1.3 \cdot (Q_{r})^{2} \cdot (n_{f}/24)^{1/4}$$
(5)

Sendo:

D_r – diâmetro de recalque (m);

Q_r – vazão de recalque (m³.dia-¹);

 $n_{\rm f}\,$ – horas de trabalho da bomba.

O diâmetro de sucção deve ser o próximo diâmetro superior, na sequência de escolha de diâmetros comerciais utilizados para este fim.

Para o dimensionamento da bomba, calcula-se as alturas necessárias e a partir dos dados do sistema, cria-se a curva do sistema, variando os valores de vazão e obtendo-se as alturas manométricas equivalentes do sistema, utilizando as Equações 6 e 7, respectivamente.

$$H_{m} = H_{g} \cdot \Delta h_{s} \cdot \Delta h_{r} \tag{6}$$

Sendo:

 H_m - altura manométrica;

H_g – altura geométrica;

Δh_s– altura de sucção;

 Δh_r altura de recalque.

$$\Delta h = 0.0008659 \cdot (Q^{1.75} \cdot D^{-4.75}) \cdot (L_r + L_{eq})$$
(7)

Sendo:

 Δh – altura (m);

 $Q - vazão (m^3.dia^{-1});$

D – diâmetro (m);

 L_r – comprimento real (m);

 L_{eq} – comprimento equivalente (m).

O modelo da bomba é obtido a partir da geração da curva da bomba através de catálogos e a interseção com a curva do sistema. A partir desta é possível obter o ponto de operação do sistema e o tempo para recalcar, que deve ser menor que o tempo sugerido anteriormente.

Após a análise dos reservatórios e da bomba, traça-se a rede de distribuição através do Revit MEP. Em princípio, cria-se divisões dos pontos de consumo. Esta primeira distribuição ocorre por meio do barrilete, que desce na posição vertical e alimenta os ramais de cada andar e estes alimentam os sub-ramais das peças de utilização. As peças de utilização seguem, em sua maioria conforme pode ser visto na Tabela 3, o seguinte padrão de altura:

Tabela 3 - Altura de alguns componentes hidráulicos

NOME	SIGLA	ALTURA
Bacia sanitária c/ válvula	BS	33 cm
Bacia sanitária c/ caixa acoplada	BCA	20 cm
Ducha higiênica	DC	50 cm
Bidê	BI	20 cm
Banheira de hidromassagem	BH	30 cm
Chuveiro ou ducha	СН	220 cm
Lavatório	LV	60 cm
Mictório	MIC	105 cm
Máquina de lavar roupa	MLR	90 cm
Máquina de lavar louça	MLL	60 cm
Pia	PIA	110 cm
Tanque	TQ	115 cm
Torneira de limpeza	TL	60 cm
Torneira de jardim	TJ	60 cm
Registro de pressão	RP	110 cm
Registro de gaveta	RG	180 cm
Válvula de descarga	VD	110 cm

Fonte: Roberto de Carvalho Júnior (2013)

Para o cálculo do barrilete avalia-se, em princípio, os pesos totais do sistema, a partir da Tabela A.1 da ABNT NBR 5626/2020. Avaliando esses pesos, é possível encontrar também a vazão de cada aparelho hidráulico a partir da Tabela 1 desta mesma norma. A partir destes valores obtém-se o diâmetro nominal mínimo a partir da Equação 8:

$$DN_{mim} = 4 \cdot (Q \cdot 1000) / (3 \cdot 3.14)^{0.5}$$
(8)

Sendo:

DN_{mim}- diâmetro nominal mínimo (mm);

 $Q - vazão (l.s^{-1}).$

E, a velocidade máxima mediante uso da Equação 9:

$$V_{\text{max}} = 4 \cdot (Q \cdot 1000) / (3.14 \cdot (DI)^2)$$
(9)

Sendo:

V_{max} – velocidade máxima (m.s⁻¹);

 $Q - vazão (l.s^{-1});$

DI – diâmetro interno (mm).

Com a rede de distribuição traçada é possível verificar a lista dos materiais utilizados e os comprimentos dos aparelhos. A partir destas informações, calcula-se o comprimento equivalente dos mesmos de acordo com as conexões utilizando a Tabela A.2 da referida norma e a perda de carga pela Equação 10:

$$P_{carga} = 8,69 \cdot 10^{6} \cdot Q^{1,75} \cdot 21,6^{-4,75} \cdot (L_{eq}/100)$$
(10)

Sendo:

Pcarga – perda de carga (kPa);

 $Q - vazão (l.s^{-1});$

 L_{eq} – comprimento equivalente (m).

A partir das informações disponibilizadas, avalia-se as pressões em seus pontos de máximo e mínimo. A pressão da água em condições estáticas não deve ser superior a 400 kPa. A pressão mínima para garantir o bom funcionamento das peças varia entre 5 kPa a 10 kPa. De acordo com a ABNT NBR 5626/2020, as tubulações devem ser dimensionadas de modo que a velocidade da água, em qualquer trecho de tubulação, não atinja valores superiores a 3 m.s⁻¹ para que limite a magnitude dos picos de sobrepressão.

2.4.2 Características e cálculos dos componentes elétricos

Os componentes das instalações elétricas são: tomadas de uso geral (TUG's), tomadas de uso específico (TUE's), interruptores, disjuntores, eletrodutos, condutores e elementos de proteção. O dimensionamento deste sistema segue a ABNT NBR 5410/2004 e começa com o levantamento da carga de iluminação.

Para a previsão da carga, em princípio, considera-se a quantidade mínima dos pontos de luz. Esta deve ser ao menos um ponto de luz no teto, controlado por um interruptor. Deve-se também atentar às arandelas no banheiro, pois precisam estar distantes, no mínimo, 60 cm do limite do boxe. Analisado a quantidade mínima de pontos de luz, verifica-se a potência mínima de iluminação, para que os cômodos fiquem satisfatoriamente iluminados. A carga da iluminação é calculada de acordo com a área de cada cômodo da residência. A norma sugere que para áreas pequenas (menores ou iguais a 6 m²), utilize-se no mínimo 100 VA; no caso de áreas grandes (superiores a 6 m²), considerar o valor mínimo, acrescido de 60 VA para cada acréscimo de 4 m² inteiros. As áreas externas não são mencionadas, ficando assim, como decisão do profissional e desejo do cliente.

A condição para estabelecer a quantidade mínima de tomadas de uso geral depende da área, perímetro e o tipo de cômodo. Utiliza-se no mínimo uma tomada para cômodos com área igual ou inferior a 6 m², subsolos, varandas, garagens ou sótãos. Para cômodos com mais de 6 m², coloca-se uma tomada para cada 5 m de perímetro ou fração, espaçadas de forma a suprir as necessidades do ambiente. A cozinha (ou copa), especificamente, deve apresentar uma tomada a cada 3,5 m de perímetro ou fração, visto que este é um dos cômodos da casa que mais deve possuir aparelhos. Por fim, o banheiro deve possuir no mínimo, uma tomada próxima ao lavatório, com distância mínima de 60 cm do boxe do mesmo.

Para estabelecer a quantidade mínima de tomadas de uso específico, deve-se atentar aos cômodos e às necessidades que os moradores podem vir a ter, de forma a prever a capacidade de carga adequada para que os aparelhos tenham bom funcionamento.

A partir do projeto arquitetônico, avalia-se pontualmente de acordo com os cômodos, a necessidade de tomadas para uso específico. Compreende-se como tomadas de uso específico: geladeira, micro-ondas, fogão elétrico, chuveiro elétrico, ar-condicionado, lavadora de pratos, lavadora de roupas, secadora de roupas, entre outros aparelhos. Todos estes possuindo valores específicos de cargas que podem ser obtidos em manuais de instruções ou especificações técnicas.

Após obter os quantitativos e cargas individuais de cada tomada e sistema de iluminação, divide-se o circuito de acordo com a norma. Os circuitos de tomadas de uso geral devem ser separados do sistema de iluminação. No caso de equipamentos com correntes superiores a 10 A, deve-se criar um circuito diferente. Além disso, para que suas ligações não resultem em circuitos com seção nominal grande, recomenda-se limitar a corrente a 10 A. Após esta divisão, distribui-se os condutores por meio do Revit MEP.

Distribuído os condutores, avalia-se suas seções nominais de acordo com a ABNT NBR 5410/2004 que estabelece os diâmetros mínimos, a capacidade de condução de corrente e critério da queda de tensão. A seção mínima apresentada para circuito de iluminação é de 1,5 mm², e para tomadas, 2,5 mm². O critério da capacidade de condução é a correção do valor da corrente e a análise da Tabela 36 da norma para a obtenção da seção. Tal correção ocorre a partir da divisão da corrente pelos fatores de Correção de Agrupamento de Circuitos (Tabela 42 – ABNT NBR 5410/2004) e de Correção para Temperatura Ambiente ou no solo (Tabela 40 - ABNT NBR 5410/2004). A dimensão de acordo com a avaliação da queda de tensão é realizada a partir da Equação 11:

$$S = \frac{\rho \cdot L \cdot I \cdot 2}{V\% \cdot V} \cdot 100 \tag{11}$$

Sendo:

s - seção do condutor (mm²);

 ρ – resistividade do cobre (Ω);

L- Comprimento do circuito (m);

V%- queda máxima de tensão (%);

V – tensão do circuito (V).

Obtido a seção dos condutores de acordo com cada critério, avalia-se a melhor ocorrência, ou seja, dentre os critérios, o que fornece maior diâmetro.

Com os valores das seções estabelecidas, é possível partir para o dimensionamento dos disjuntores. Para cada circuito, é importante o dimensionamento de um disjuntor de forma a tornar o sistema mais seguro e de fácil manutenção. A corrente nominal do disjuntor tem que ser menor que a capacidade de corrente do condutor e maior, pelo menos 0,45% da corrente do sistema, segundo Hilton Moreno (2003).

De acordo com Neoenergia (2023), calcula-se a demanda de acordo com o tópico 6.27 de Fornecimento de Energia Elétrica em Tensão Secundária de Distribuição a Edificações Individuais que apresenta a Equação 12:

$$D = a + b + c + d + e + f + g + h + i$$
 (12)

Sendo:

- D- demanda individual da unidade consumidora (kVA);
- a-demanda referente à iluminação e tomadas, seguindo a recomendação da fornecedora (W);
- b- demanda referentes a chuveiros, torneiras, aquecedores de água de passagem e ferros elétricos (W);
- c- demanda referente a aquecedor central ou de acumulação (W);
- d- demanda de secadora de roupa, forno elétrico, máquina de lavar louça e forno de microondas (W).
- **e** demanda referente a fogões elétricos (W);
- **f** demanda referente a condicionador de ar tipo janela (W);
- g- demanda referente a motores e máquinas de solda a motor (W);
- h-demanda referente a equipamentos especiais (W).
- i-demanda de bombas e hidromassagem (W).

De acordo com a demanda encontra-se o tipo de fornecimento, dimensiona-se os condutores de fornecimento, os elementos de proteção e os interruptores gerais. Para dimensionar os condutores, Vieira Júnior (2011), em seu livro "Fundamentos de Instalações Elétricas: Curso Técnico em Manutenção e Suporte em Informática" sugere a análise da sobrecarga e viabilidade do circuito, e que o projetista fique atento a seção mínima normalizada, capacidade de corrente, queda de tensão, coordenação a proteção e a verificação em caso de curto-circuito. No caso dos elementos de proteção, é importante que seja dimensionado de forma a garantir proteção contra sobrecargas, curto-circuitos ou correntes de fuga.

2.4.3 Características e cálculo dos componentes sanitários

As instalações sanitárias são as mais simples, segundo Pereira (2016), em sua tese "Introdução ao Bim e a Utilização do Software Revit nos Projetos de Instalações Prediais de

uma Edificação". Seu sistema é composto por aparelhos sanitários, sifão, ramal de descarga, ramal de esgoto, ramal de ventilação, coluna de ventilação, e tubos de queda. Seguindo as recomendações de utilização de seus componentes, posiciona-os de acordo com o projeto arquitetônico, analisa-se as Unidades Hunter de Contribuição (UHC) a partir da Tabela 3 da ABNT NBR 8160/1999, escolhe-se os diâmetros de acordo com a posição das tubulações e a Tabela 4, Tabela 5 e Tabela 6 da mesma. Declividades mínimas são disponíveis da Tabela 7. A Tabela 8 e Tabela 2 da norma, fornecem dados para os ramais de ventilação. Possibilitando dimensionar-se todo o sistema de esgoto.

O dimensionamento das instalações sanitárias deve ser realizado seguindo a ordem do aparelho sanitário até o coletor predial e somando as Unidades Hunter de Contribuição que passarão por cada parte constituinte do sistema predial de esgoto.

Para reduzir a gordura nas tubulações, utiliza-se caixa de gordura na saída da cozinha e área de serviço. Para manutenção e inspeção do sistema, posiciona-se caixa de inspeção a cada mudança de direção (quando possível).

2.4.4 Características e cálculo dos componentes de águas pluviais

Para escolher os tipos de componentes do sistema de captação de águas pluviais é necessário observar em princípio, a área da coberta, a área de contribuição (área que limita o percurso da chuva em direção ao telhado), calha e a intensidade pluviométrica do local (que pode ser obtido através da ABNT NBR 10844/1989).

A partir do projeto arquitetônico, avalia-se as áreas e escolhe-se o tipo de calha e sua inclinação. O dimensionamento deve ser realizado seguindo a norma, de acordo com o material escolhido e o formato. A partir da mesma, é possível escolher os condutores verticais de seção circular de acordo com a área e a vazão de projeto, como observada na Tabela 4.

Tabela 4 – Área máxima de cobertura para condutores verticais de seção circular

DIÂMETRO (mm)	VAZÃO (I/s)	ÁREA MÁXIMA DE COBERTURA (m²)
50	0,57	14
75	1,76	42
100	3,78	90
125	7,00	167
150	11,53	275
200	25,18	600

Fonte: ABNT NBR 8160 (1999).

Os condutores horizontais, segundo norma, devem possuir declividade uniforme, com valor mínimo de 0,5% e caixas de inspeções em mudança de direção. Seu diâmetro depende dos condutores verticais e vazões.

2.5 Softwares utilizados

O Revit MEP permite uma solução rápida e prática para os principais projetos de instalações e soluções para telefonia, ar condicionado, dentre outros. Além disso, possibilita a criação de projetos de instalações com grande detalhamento, pois permite ao usuário trabalhar em uma realidade integrada com vários outros projetos, gerando projetos compatibilizados, com menos erros de execução e imprevistos. Assim como no projeto arquitetônico, é possível ter visualização espacial a qualquer momento da modelagem, com todo modelo apresentando as informações atribuídas e os quantitativos que são automáticos, com alta precisão. Além disso, o projeto pode ser criado ou importado de outras plataformas, como: DWG, IFC, DXF e CIS.

Por possuir modelos de rotas automáticas de distribuição de tubulações e eletrodutos, este *software* possui modelagem fácil para a inserção de tubos, tubulações, registros, entre outros. É possível também converter desenhos em linhas para modificar projetos atuais em projetos mais detalhados e geométricos sem necessitar criar novo arquivo ou bloco. O Revit MEP também apresenta avisos de compatibilização, que informa o encontro entre sistemas, e evitam possíveis erros de projeto e execução.

O MEP (Mechanical, Electrical, Plumbing) hidráulica permite a criação dos projetos de água fria/quente, de esgoto e águas pluviais. O programa, porém, não dimensiona nenhum dos elementos das instalações, cabendo ao engenheiro desenvolver planilhas de cálculo para efetuar todos os dimensionamentos, inclusive aqueles referentes aos reservatórios. O mesmo fornece sugestão do traçado de tubulações, e possibilita a determinação dos comprimentos necessários para cálculos. É possível, após o traçado, verificar se os diâmetros dos coletores, tubos de queda e ramais de esgoto estão de acordo com a ABNT NBR 8160/1999, pois o mesmo sugere diâmetros independente do dimensionamento, cabendo ao profissional responsável dimensionar corretamente o diâmetro. No Brasil, para o MEP hidráulica, empresas como Tigre, Amanco, Docol, Celite, Deca, Incepa, dentre outras, disponibilizam maioria do catálogo de produtos.

O MEP elétrica auxilia na separação dos circuitos elétricos, montagem do quadro de distribuição, inserção da representação da instalação em planta, diagrama dos circuitos, etc.

A realização de cálculos pode ser a partir de tabelas pré-estabelecidas em templates do Revit MEP, porém o ideal é que o engenheiro crie seu próprio template, gerando uma dificuldade inerente ao *software*, pois exige programação em linguagem própria denominada *Dynamo*. Neste trabalho, optou-se pela utilização do Excel da Microsoft Office para este fim.

3 RESULTADOS E DISCUSSÃO

Nesta seção, serão apresentadas todas as informações decorrentes do cálculo, dimensionamento e detalhamento dos projetos complementares da edificação em estudo. No desenvolvimento dos projetos observou-se a distribuição dos cômodos, suas áreas separadas em pavimentos térreo (Apêndice A), pavimento 1 (Apêndice B) e possíveis necessidades de manutenção, ou de uma maior demanda, seja ela do projeto hidrossanitário ou no projeto elétrico.

3.1 Instalações Hidráulicas

Observando a dimensão do projeto e sua localização (desfavorável para o fornecimento contínuo de água), considerou-se para fins de cálculo, duas pessoas por quarto, o consumo de 0,2 m³.(hab.dia)⁻¹, velocidade do alimentador predial igual a 0,8 m.s⁻¹e 4 dias de reserva de água. Visando uma possível manutenção, optou-se por colocar 2 reservatórios superiores de forma que o sistema continuasse funcionando apenas com um. A partir destes dados, foi possível dimensionar os reservatórios e encontrar os diâmetros de recalque e sucção, ver Tabela 5.

Tabela 5 – Área máxima de cobertura para condutores verticais de seção circular

INFORMAÇÕES ADICIONAIS	VALOR	UNIDADE
Consumo diário	1,6	m³/dia
Qap (vazão mínima alimentador predial)	1,852E-05	m³/s
Vap (velocidade alimentador predial)	0,8	m/s
Dap (diâmetro alimentador predial)	0,0054	m
Tempo	4	Dias de reserva
Reserva	6,4	m ³
V (reservatório inferior) - 60%	3,84	m³
V (reservatório superior) - 40%	2,88	m³
V (reserva de incêndio)	0,32	m ³
Altura do barrilete	0,95	m
Profundidade do reservatório inferior	0,96	m

Volume do reservatório superior I	1,44	m³
Volume do reservatório superior II	1,44	m³
Volume do reservatório inferior I	3,84	m³
Nf (nº horas de trabalho da bomba)	6	h
Qr (Cd/Nf)	0,0003	m³/s
Diâmetro de recalque	0,016	m
Diâmetro de recalque (adotado)	25	mm
Diâmetro de sucção (adotado)	32	mm
Material do tubo	PVC	
Consumo diário	1,6	m³/dia
Qap (vazão mínima alimentador predial)	1,85185E-05	m³/s
Vap (velocidade alimentador predial)	0,8	m/s

Fonte: Autoria Própria (2023)

No dimensionamento do reservatório inferior, considerou-se uma folga de 20 cm para a entrada de tubulação da rede pública de distribuição. Pois, embora a ABNT NBR 12218/2017 apresente que a distribuidora deve fornecer pressão suficiente para abastecer até dois pavimentos (10 mca), na prática isso raramente acontece e o abastecimento é suficiente apenas para o reservatório inferior.

A localização do reservatório inferior ocorreu de forma a não interferir no projeto arquitetônico e possibilitar a localização da bomba de forma estratégica, ver Figura 2. Nesta figura é destacada em vermelho o reservatório superior e em amarelo o inferior.

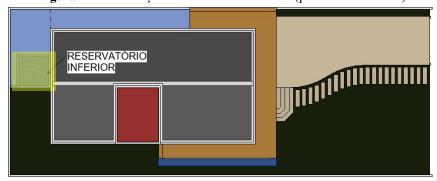


Figura 2- Localização do reservatório inferior (planta de cobertura)

Fonte: Autoria Própria (2023)

Para dimensionar a bomba, através da modelagem em Revit MEP, obteve-se as dimensões das tubulações de forma a calcular as alturas de recalque e sucção, ver a Tabela 6.

Tabela 6 – Altura manométrica total

ALTURA DE SUCÇÃO - HS	m	m.c.a.
Altura Geométrica de Sucção - Hgs		0,43
Comprimento real do trecho	1,68	

Comprimento equivalentes		
1 Válvula de pé com crivo (32mm)	13,3	
1 Curva 90° (32mm)	0,6	
Comprimento Total (real + equivalente)	15,58	
Perda de carga na sucção	0,0073	0,11
Altura manométrica de sucção		0,54
ALTURA DE RECALQUE - HR	m	m.c.a.
Altura Geométrica de Recalque - Hgr		9,17
Comprimento real do trecho	20,45	
COMPRIMENTO EQUIVALENTES		
1 Válvula de Retenção Leve (25mm)	2,7	
4 Curvas 90° (25mm)	2	
1 Tê soldável (25mm)	2,4	
2 Saída (25mm)	1,8	
Comprimento Total (real + equivalente)	29,35	
Perda de carga no recalque	0,024	0,69
Altura manométrica de sucção		9,86
ALTURA DA MANOMÉTRICA TOTAL		10,41

Fonte: Autoria Própria (2023).

Com as informações obtidas acima, gerou-se o gráfico do sistema variando a vazão entre 0,001 m³/s a 0,002 m³/s (Apêndice C). E, com o catálogo geral da Dancor (2023), foram avaliadas as bombas e gerados gráficos até encontrar a interseção entre os sistemas. O encontro dos gráficos foi obtido através da bomba CAM W-10 Centrífuga de Aplicação Múltipla- POT 3/4- rotor 125 mm, com pontos de operação de altura manométrica igual a 26,2 mca e vazão de 0,0017 m³/s, observe a Figura 3. O tempo necessário para recalcar 2,88 m³ é 2,13 h, menor que o tempo sugerido.

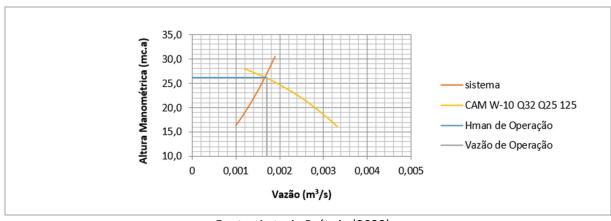


Figura 3 – Curva da bomba vs curva do sistema

Após o dimensionamento dos reservatórios e da bomba, traça-se no Revit MEP a rede de distribuição da residência. Em princípio, criou-se divisões dos pontos de consumo, ou seja, consumos para o térreo e pavimento superior. Logo após a divisão, subdivide-se os pontos de consumo do térreo entre o banheiro e os pontos de consumo da cozinha e da área de serviço. Na saída de cada reservatório, posicionou-se um registro gaveta de forma a possibilitar a manutenção de um dos reservatórios sem interferir no sistema. Entre o reservatório e a primeira distribuição do barrilete, colocou-se um registro gaveta, de forma a possibilitar a manutenção geral do sistema. Na primeira divisão de pontos de consumo, foram colocados registros de gaveta para prevenir possível manutenção em cada pavimento. Além destas, posicionou-se registros na distribuição de cada ambiente, de forma a possibilitar a manutenção em apenas um local sem interferir nas outras distribuições.

Antes de dimensionar o barrilete, avaliou-se os aparelhos de acordo com os cômodos, seus pesos, o diâmetro dos sub-ramais e dos ramais, como pode ser visto no Apêndice D. Embora os valores dos diâmetros dos sub-ramais serem pequenos, e possibilitando a utilização de tubulação de 20 mm, na prática, adota-se o mínimo de 25 mm. Mesmo com a soma dos pesos dos aparelhos, a distribuição dos mesmos permite a utilização de tubos de 25 mm de diâmetro.

A partir da modelagem em Revit, verificou-se as conexões utilizadas dos reservatórios até cada aparelho, utilizando um esquema de fluxograma (Apêndice E) de forma a facilitar a observação dos pontos e obter a soma dos comprimentos, como pode ser observado no Apêndice F.

Após a obtenção dos comprimentos equivalentes, a velocidade, perda de carga e a pressão disponível são calculadas e mostradas no Apêndice G. Os valores máximos e mínimos para a velocidade são, respectivamente 1,94 m/s e 0,45 m/s. Os valores de pressão disponível máximo e mínimo são, respectivamente 7,52 mca e 2,67 mca. Ambos obedecendo à norma.

3.2 Instalações Elétricas

Para iniciar-se o dimensionamento da rede de instalações elétricas, dividiu-se o modelo arquitetônico em áreas (Apêndice A- térreo e Apêndice B- pavimento 1) e extraiu-se os valores das áreas e perímetros através do Revit, mostrados no Apêndice H.

A partir destes valores, obteve-se a potência mínima de utilização para a carga de iluminação, e a potência mínima de carga de tomadas de uso geral (considerando tomadas de 100 W e até 3 tomadas de 600 W na cozinha e no banheiro). Observando a necessidade de tomadas de uso específico, listou-se os itens necessários, segundo norma, com a potência

aproximada segundo Cavalin e Cervelin (2006), mostrado no Apêndice I.

Considerando o caso mais crítico, não se listou o fogão elétrico, pois além da possibilidade de utilizar-se a tomada da lava louças, existem mais duas tomadas com demanda suficiente que permite escolha de localização como desejada.

Para a escolha do ar-condicionado, utilizou-se a Calculadora de BTU's online, do site Web Ar condicionado, calculando o valor BTU (British Thermal Unit) do presente projeto via Equação 13.

$$BTU's = (A.600) + (p-1).600 + (El.600)$$
 (13)

Sendo:

A – área do cômodo (m^2);

p – quantidade de pessoas por cômodo;

El – quantidade de eletrodomésticos.

A escolha do ar-condicionado foi considerando uma população de 4 pessoas por cômodo, e 3 aparelhos eletrodomésticos conforme mostrado no Apêndice J.

Obtendo-se os valores mínimos para potência de iluminação e das tomadas, avaliou-se a circulação de pessoas e utilização dos cômodos de forma a escolher a potência de iluminação e quantidade suficientemente necessária de tomadas (como pode ser observado no Apêndice K) e sua distribuição.

Em ambientes como a sala, garagem, cozinha, escritório, optou-se por aumentar a carga de iluminação de forma a dar liberdade de possível utilização futura de outros modelos de iluminação, além de proporcionar mais flexibilidade no seu uso. Na varanda 1, optou-se por diminuir a carga, uma vez que a mesma recebe iluminação oriunda da garagem. Embora a norma não especifique a carga de iluminação para ambientes externos, aproximou-se o valor do obtido seguindo o conceito dos outros cômodos.

Procurando suprir a necessidade do cliente, distribuiu-se as tomadas em pontos estratégicos de localização. Mesmo que, como observado, alguns ambientes ficaram sem tomadas por questões de logística, há próximo, pontos de tomadas alternativos ou de acréscimo em outros ambientes próximos. Além disso, procurou-se distribuir o mínimo de circuitos pelas paredes, de forma a dar liberdade ao cliente de fixar o que se deseja sem comprometer a segurança.

Para a separação dos circuitos, dividiu-se inicialmente entre iluminação social e de serviço, tomadas de uso geral social e serviço, tomadas de uso específico, como pode ser observado no

Apêndice L. Entretanto, observou-se valores de corrente nos circuitos acima de 10 A, então realizou-se subdivisões de forma a reduzir este valor e tornar os circuitos mais viáveis, como mostrado no Apêndice M.

Dividido os circuitos, fixou-se o diâmetro do eletroduto em 25 mm, distribuiu-se os condutores de maior diâmetro provável de forma isolada e os demais de forma a não ultrapassar 9 condutores por distribuição, uma vez que a soma dos condutores não deve ultrapassar 40% do eletroduto, segundo Hilton Moreno (2003).

Distribuído os condutores, avaliou-se as seções nominais de acordo com a ABNT NBR 5410/2004, considerando a isolação em PVC, instalação embutida em alvenaria, temperatura ambiente de 30°C, tensão do circuito de 220 V, queda de tensão máxima de 4%, resistividade do cobre de 0,0172 Ohm. Fator de Correção de Agrupamento de Circuitos de 0,7 para 3 circuitos agrupados e 1 para circuitos isolados, Fator de Correção para Temperatura Ambiente ou no solo igual a 1. Observe os resultados obtidos no Apêndice N.

Para o dimensionamento dos disjuntores, multiplicou-se a corrente de projeto por 1,45; avaliou a capacidade de corrente do condutor e escolheu um disjuntor, de forma que obedecesse a corrente corrigida, mas fosse menor que a capacidade do condutor. Obtendo-se o resultado do Apêndice O. Para melhorar a proteção dos circuitos, optou-se por colocar IDR em cada circuito, seguindo a Tabela 7, obtida a partir das sugestões de Hilton Moreno (2003).

Tabela 7 – Escolha do IDR

CORRENTE NOMINAL DO	CORRENTE NOMINAL MÍNIMA
DISJUNTOR (A)	DO IDR (A)
10, 15, 20, 25	25
30, 40	40
50, 60	63
70	80
90, 100	100

Fonte: Hilton Moreno (2023)

A partir da soma das potências instaladas e da divisão dos circuitos, é possível calcular a demanda, considerando o fator de demanda de iluminação e tomada igual a 0,24; fator do chuveiro igual a 0,70; fator da soma das potências da secadora de roupa, forno elétrico, máquina de lavar louça e forno de microondas igual a 0,6 e ar-condicionado igual a 1. A partir deste valor da demanda, e considerando o Tabela de Dimensionamento Técnico – Padrão de Entrada da Neoenergia Pernambuco (2023), classifica-se a instalação em Trifásica (T6). Observe o resultado da demanda no Apêndice P.

No fornecimento trifásico, é necessário o balanceamento de fases dos circuitos de forma a distribuir aproximadamente igual a corrente entre elas, escolher os dispositivos gerais de proteção e a seção do ramal de distribuição. O balanceamento foi realizado de forma a distribuir em fase A com 97,18 A, fase B com 91,82 A e fase C com 100,45 A (observe a distribuição no Apêndice P). A Tabela de Dimensionamento Técnico da Neoenergia Pernambuco (2023), sugere disjuntor de 63 A e seção de 16 mm² para o ramal de distribuição, ambos de acordo com a demanda calculada.

Para a escolha do IDR (Interruptor Diferencial Residual), utilizou-se novamente a Tabela 7 apresentada anteriormente. A seleção do DPS (Dispositivo de Proteção contra Surtos), considera a tensão do sistema e a localização da residência. Observando sua localização na cidade separada de grandes edifícios e com Tensão de 220 V, escolheu-se o DPS de 275 V, 40 kA, Classe II.

Para este trabalho, foi utilizado a ABNT NBR 5410/2004 para estimar a potência de iluminação dos ambientes da obra em estudo e é correntemente utilizada nas disciplinas de instalações prediais nas universidades brasileiras. sendo esta norma genérica (independentemente do tipo de uso da edificação). Em casos específicos, pode-se utilizar a norma ABNT NBR 8995-1/2013, para a estimativa de potência de iluminação, e baseia-se nos métodos luminotécnicos. Estes métodos tem sido bastante utilizados, pois apresenta estimativa mais próxima da realidade, ou seja, a potência de iluminação é corrigida em função da luminária escolhida e das características geométricas do ambiente. Ou seja, no método luminotécnico não é considerada apenas a área dos cômodos, mas também as cores dos ambientes, posicionamentos dos pontos de luz (altura do ponto de luz com relação ao piso), e também o nível de iluminação do ambiente de acordo com a necessidade do mesmo.

3.3 Instalações Sanitárias

As instalações sanitárias foram posicionadas seguindo o modelo arquitetônico, de forma a possibilitar manutenções com o mínimo de restrições nos ambientes e evitar o mal cheiro.

O dimensionamento foi realizado seguindo a ordem do aparelho sanitário até o coletor predial e somando as Unidade Hunter de Contribuição (UHC) que passaram por cada parte constituinte do sistema predial de esgoto. Além disso, respeitou-se a inclinação mínima de 1% para tubulações com diâmetro maior ou igual a 100 mm e 2% para tubulações com diâmetro menor ou igual a 75 mm.

Para o cálculo dos ramais de descarga, foram considerados como aparelhos de descarga as

bacias sanitárias, chuveiro, lavatório, pia de cozinha, tanque de lavar roupas, máquina de lavar louças e máquina de lavar roupas. Utilizando os dados extraídos da norma e mostrado anteriormente, obteve-se os diâmetros que constam na Tabela 8.

Tabela 8 - Diâmetro dos ramais de descarga

APARELHO SANITÁRIO	NÚMEROS DE UNIDADES DE HUNTER DE CONTRIBUIÇÃO	DIÂMETRO NOMINAL MÍNIMO DO RAMAL DE DESCARGA DN
Bacia Sanitária	6,00	100
Chuveiro de residência	2,00	40
Lavatório de residência	1,00	40
Pia de cozinha residencial	3,00	50
Tanque de lavar roupas	3,00	40
Máquina de lavar louças	2,00	50
Máquina de lavar roupas	3,00	50

Fonte: Autoria Própria (2023)

Obtendo-se os diâmetros dos ramais de descarga, dimensionou-se os ramais de esgoto, somando-se todas as contribuições que passarão por ela, e utilizando a tabela de dimensionamento, como mostrado na Tabela 9.

Tabela 9 - Diâmetro dos ramais de esgoto

LOCALIZAÇÃO	APARELHOS DE DESCARGA	UHC	UHCT	DN
Banheiros	Bacia sanitária	6,00	6	100
	Ralo Sifonado	3,00	6,00	50
	Chuveiro de residência	2,00		
	Lavatório de residência	1,00		
Área de serviço	Tanque de lavar roupas	3,00	9,00	75
	Máquina de lavar roupas	3,00		
	Ralo Sifonado	3,00		
Cozinha	Pia de cozinha residencial	3,00	8,00	75
	Pia de cozinha residencial	3,00		
	Máquina de lavar louças	2,00		

Fonte: Autoria Própria (2023)

Dimensionados os ramais de esgoto, avaliou-se os tubos de queda. No caso analisado, a soma das Unidade Hunter de Contribuição (UHC) dos banheiros direciona a um diâmetro menor que o máximo do utilizado no ramal de esgoto (Tabela 10). Então, obtém-se tubo de queda de acordo com a parte constituinte anterior, ou seja, o diâmetro mínimo é de 100 mm,

pois o diâmetro mínimo do tubo de queda, deve ser igual ao maior diâmetro do ramal de esgoto.

Tabela 10 - Diâmetro dos tubos de queda

LOCALIZAÇÃO	APARELHOS DE DESCARGA	UHC	UHCT	DN
Banheiros	Bacia sanitária	6,00	12,00	75
	Ralo Sifonado	3,00		
	Chuveiro de residência	2,00		
	Lavatório de residência	1,00		

Fonte: Autoria Própria (2023)

Para o dimensionamento do subcoletor e do coletor predial, determinou-se a Unidade Hunter de Contribuição (UHC) que chega até as partes constituintes, e utilizou-se a tabela de dimensionamento de subcoletores e coletor predial, em função da declividade adotada. Observe no Apêndice R.

Para o posicionamento do ramal de ventilação, respeitou-se aclive mínimo de 1%, 15 cm acima do transbordamento do aparelho sanitário mais alto sem acesso à caixa sifonada, a distância mínima de duas vezes o diâmetro do ramal de descarga e de forma que a distância ao tubo de esgoto e mudança de trecho fosse a menor. O dimensionamento (observado na Tabela 12) foi realizado somando-se as Unidades Hunter de Contribuição (UHC) e utilizando-se a tabela de dimensionamento do ramal de ventilação.

Tabela 12 - Diâmetro dos ramais de ventilação

Localização	Aparelhos de descarga	UHC	UHCT	DN
Banheiros	Bacia sanitária	6,00	12,00	50
	Ralo Sifonado	3,00		
	Chuveiro de residência	2,00		
	Lavatório de residência	1,00		

Fonte: Autoria Própria (2023)

Durante a escolha de posicionamento do sistema sanitário, as colunas de ventilação foram posicionadas até 30 cm acima do nível do telhado. Para seu dimensionamento, considerou-se a Unidade Hunter de Contribuição (UHC) do tubo de queda, o diâmetro adotado e utilizou-se a tabela de dimensionamento de coluna de ventilação da ABNT NBR 8160/1999, obtendo-se o diâmetro de 50 mm.

3.4 Instalações Águas Pluviais

Para o dimensionamento de águas pluviais, considerou-se a intensidade pluviométrica de 163 mm/h de João Pessoa (cidade mais próxima), fornecida em norma, para o período de retorno de 25 anos. Área do telhado com 96 m², área de contribuição de 118 m² (área do telhado acrescida duas áreas do reservatório). Calha quadrada; inclinação de 5%; dimensões de 30 cm x 15 cm; altura útil de 12 cm; 14,2 m de comprimento e um condutor vertical por calha. A partir destes dados, obtém-se as seguintes informações constando na Tabela 13, via norma.

Tabela 13 - Dados adicionais

DADOS CALCULADOS	VALOR	UNIDADE
Vazão de projeto	320,57	L/mim
Desnível da calha	0,071	m
Área da seção molhada da calha	4,26	m ²
Perímetro molhado da calha	29,6	m
Coeficiente de rugosidade da calha	0,11	
Raio hidráulico	0,144	m
Vazão da calha	2282,9	L/mim

Fonte: Autoria Própria (2023)

A partir destes valores, observa-se os ábacos da Figura 3 da ABNT NBR 10844/1989 e obtém-se um condutor vertical com 125 mm de diâmetro. Considerando as áreas da casa que recebem contribuições da chuva e não possuem forma alternativa de liberação (varandas do primeiro andar), foram avaliadas suas áreas de contribuição e foram calculadas suas vazões de contribuição da rede, gerando assim, sub-ramais de contribuição com os seguintes diâmetros, conforme Tabela 14.

Tabela 14 – Drenagem de varandas superiores

LOCAL	AREA(m²)	INCLINAÇÃO (%)	DIÂMETRO (mm)	DN
Varanda 2	5,46	1,00	29,25343	40
Varanda 3	7,65	1,00	29,25343	40
Varanda 4	14,3	1,00	29,25343	40
TRECHO		DN		
Varanda 1 e Varanda 2	29,25343	40		

Varanda 2 e Varanda 3	37,93700887	50	
varanda 2 e varanda 3	37,73700007	30	

Fonte: Autoria Própria (2023)

Considerando a contribuição das varandas (que, de acordo com a localização nas extremidades opostas) será muito pequena, e seguindo o mesmo ábaco utilizado anteriormente, o condutor vertical permanece o mesmo.

O dimensionamento do condutor horizontal foi realizado com inclinação de 1% (maior que o mínimo de 5%); a vazão de projeto total de 338,57 l/mim (vazão do telhado acrescida com a vazão da maior varanda) e utilizando a Tabela 4 da norma, que apresenta o diâmetro mínimo de 125 mm.

4 CONCLUSÕES

O Revit MEP permite modelagem rápida por sugerir rotas e conexões. Quaisquer alterações podem ser realizadas de forma prática e possibilita detalhamentos com informações adicionais e quantitativos. Na modelagem de vários projetos, é possível compatibilizar de acordo com as necessidades e evitar possíveis erros de execução. Entretanto, embora seja o melhor em questões de acessibilidade para estudantes, apresenta ainda limitações de fornecimentos de blocos que permitem a integração com o MEP. O mesmo não calcula informações complementares das instalações e os ajustes precisam ser realizados manualmente. Há, no entanto, opção de criação ou compra de templates que auxiliam nos cálculos pelo Revit MEP, mas que podem facilmente serem substituídos por planilhas do Excel com preenchimento de quantitativos à mão, como realizado no presente trabalho.

Durante o dimensionamento, percebeu-se a necessidade de conhecimentos práticos que muitas vezes são obtidos apenas com a experiência ou conhecimento do local, como por exemplo, o abastecimento público de água direcionado para o reservatório inferior. Além disso, se fez necessário o entendimento de possíveis manutenções e boas práticas de posicionar os sistemas (por exemplo, evitar a passagem de conduítes por paredes que podem vir a ter algum tipo de fixação por pregos ou parafusos).

A utilização das normas permite projetos de instalações prediais de forma mais econômica e segura. Entretanto, fica a escolha do projetista suas prioridades de acordo com o cliente. Em uma casa de alto padrão por exemplo, prefere-se um aumento de tomadas para maior conforto, que economia de material.

A praticidade, a quantidade de informações e detalhamento fornecidos pelo BIM, surge

como uma alternativa aos processos tradicionais de projeto, gerenciamento e construção. A maior disseminação de seu uso tanto pelas empresas quanto pelas universidades, possibilitará ampliações de disponibilidade de blocos, informações adicionais, e possivelmente o cálculo de projetos ainda no mesmo, sem a necessidade de ferramentas adicionais como templates ou Excel.

REFERÊNCIAS

JUNIOR, Nilton Vieira. Fundamentos de Instalações Elétricas: curso técnico em manutenção e suporte em informática. Minas Gerais: e-Tec Brasil, 2011.

JÚNIOR, Roberto de Carvalho. **Instalações Hidráulicas e o Projeto de Arquitetura**. 7ª ed. revista. São Paulo: Edgard Blücher Ltda, 2013.

PEREIRA, Álvaro Barbosa Macêdo. Introdução ao Bim e a Utilização do Software Revit nos Projetos de Instalações Prediais de uma Edificação. 95 f. Tese (Bacharelado em Engenharia Civil) - Universidade de Brasília Faculdade de Tecnologia Departamento de Engenharia Civil e Ambiental, Brasília, dezembro de 2016.

Cavalin, Geraldo; Cervelin, Severino. **Instalações Elétricas Prediais**. São Paulo: Érica LTDA, 2006.

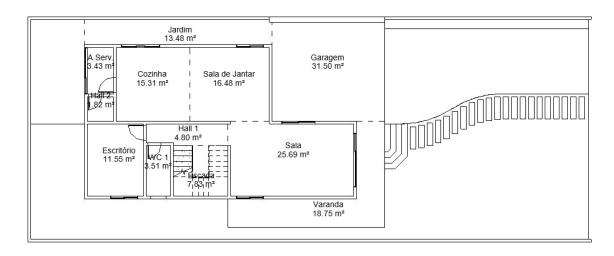
Moreno, Hilton. Instalações Elétricas Residenciais. São Paulo: Elektro/Prieri, 2003.

ABNT. NBR 5410: Instalações Elétricas de Baixa Tensão. Rio de Janeiro: ABNT, 2004.

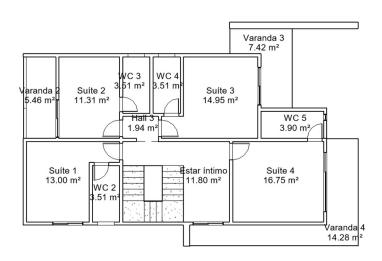
ABNT. **NBR 8160**: Sistemas Prediais de Esgoto Sanitário - Projeto e Execução. Rio de Janeiro: ABNT, 1999.

ABNT. **NBR 5626**: Sistemas Prediais de Água Fria e Água Quente - Projeto, Execução, Operação e Manutenção: ABNT, 2020.

ABNT. **NBR 12218**: Projeto de rede de distribuição de água para abastecimento público. Rio de Janeiro: ABNT, 2017.


ABNT. NBR 10844: Instalações prediais de águas pluviais: ABNT, 1989.

AECWEB. **Catálogo: bombas Dancor. AECWEB, 2023**. Disponível em: https://www.aecweb.com.br/empresa/bombas-dancor/9498/downloads/1. Acesso em 20 de março de 2023.


WEBARCONDICIONADO. Calculadora de BTU's. WEBARCONDICIONADO, 2023. Disponível em: https://www.webarcondicionado.com.br/calculo-de-btu. Acesso em 22 de março de 2023.

NEOENERGIAPERNAMBUCO. **Normas e padrões.** Neoenergia Pernambuco, 2023. Disponível em: https://servicos.neoenergiapernambuco.com.br/residencialrural/Pages/Informa%C3%A7%C3%B5es/normas-e-padroes.aspx. Acesso em 30 de março de 2023.

APÊNDICE A – ÁREAS DO PAVIMENTO TÉRREO

APÊNDICE B - ÁREAS DO PAVIMENTO 1

APÊNDICE C - VALORES DO GRÁFICO DA CURVA DO SISTEMA E DA CURVA DA BOMBA

Dados do sistema						
DADOS VALOR						
Hg (mca)	9,6					
Ds (mm)	0,032					
Dr (mm)	0,025					
Lrs (m)	1,68					
Leqs (m)	13,9					
Lrr (m)	20,45					
Leqr (m)	8,9					
5 (2000)						

Gráfico do sistema

Q (M ³ /S)	HMAN(MCA)
0,001	16,4
0,0011	17,6
0,0012	18,9
0,0013	20,3
0,0014	21,8
0,0015	23,4
0,0016	25,0
0,0017	26,7
0,0018	28,6
0,0019	30,4
0,002	32,4

Fonte: Autoria Própria (2023)

Gráfico da bomba

Q (M ³ /S)	HMAN(MCA)
0,0033	0,0033
0,0031	0,0031
0,0028	0,0028
0,0025	0,0025
0,0021	0,0021
0,0017	0,0017
0,0012	0,0012

APÊNDICE D – DIMENSIONAMENTO DOS SUB-RAMAIS, RAMAIS E BARRILETE

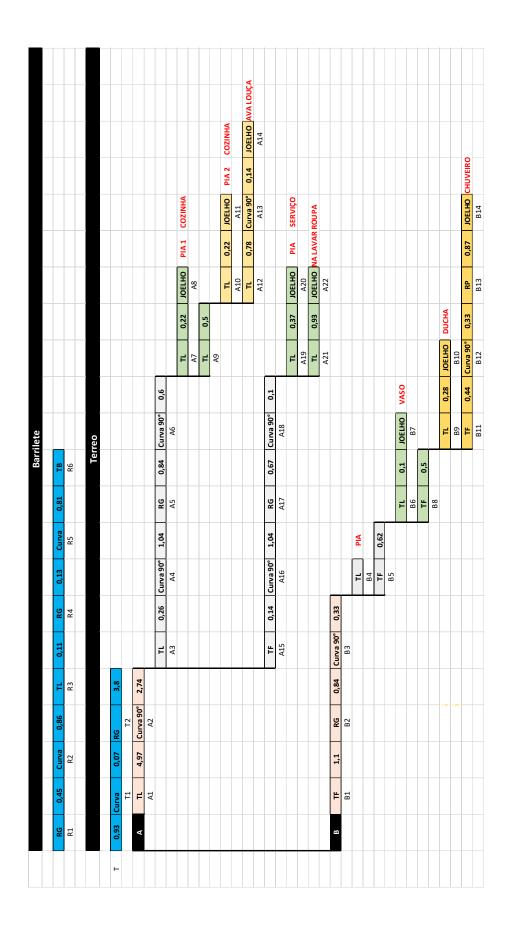
D' '	1 1		•	^ 1
Dimensionamento	dos su	h-ramais	ramais	nor comodo

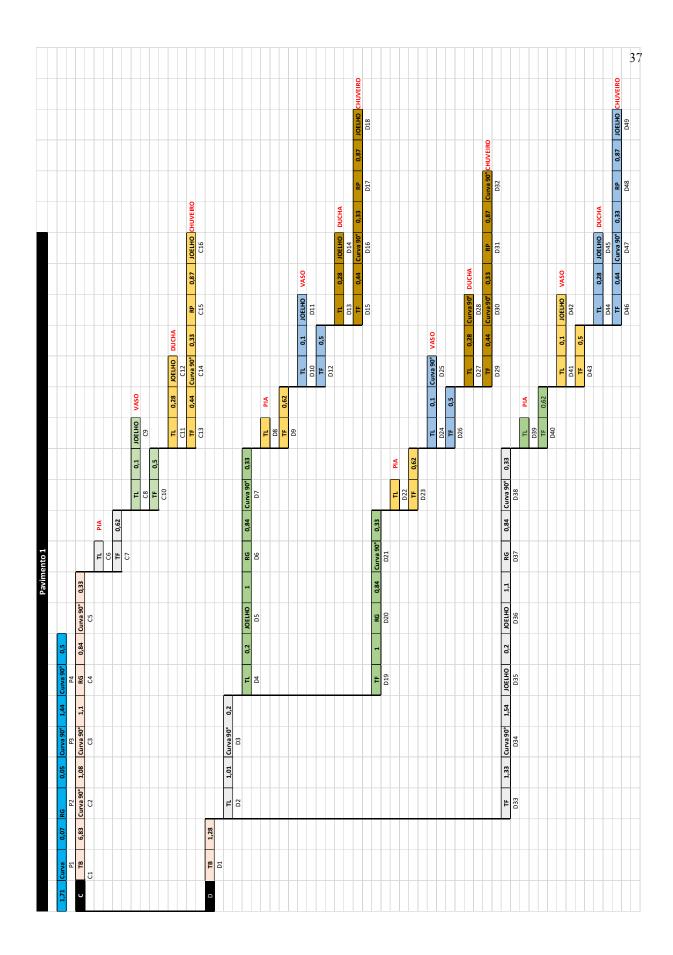
		ВА	NHEIRO			
APARELHO	PESOS	VAZÃO	DNMIN (mm)	DI (mm)	DN	VMAX (m/s)
		(I/s)			(mm)	
Lavatório	0,3	0,15	7,98	21,6	25	0,41
Bacia sanitária	0,3	0,15	7,98	21,6	25	0,41
Ducha	0,4	0,20	9,22	21,6	25	0,55
Chuveiro	0,4	0,20	9,22	21,6	25	0,55
Ramal	1,4	0,35	12,28	21,6	25	0,97
		C	OZINHA			
APARELHO	PESOS	VAZÃO	DNMIN (mm)	DI (mm)	DN	VMAX (m/s)
		(I/s)			(mm)	
Pia	0,7	0,25	10,30	21,6	25	0,68
Pia	0,7	0,25	10,30	21,6	25	0,68
Lavadora de Louças	1	0,3	11,29	21,6	25	0,82
Ramal	0,7	0,25	10,32	21,6	25	0,69
		ÁREA I	DE SERVIÇO			
APARELHO	PESOS	VAZÃO	DNMIN (mm)	DI (mm)	DN	VMAX (m/s)
		(I/s)			(mm)	
Lavadora	1,0	0,30	11,29	21,6	25	0,82
Tanque	0,7	0,25	10,30	21,6	25	0,68
Ramal	1,7	0,39	12,89	21,6	25	1,07

Fonte: Autoria Própria (2023)

5,6

3,8


Peso Total no Pav.1


Peso Total no Térreo

Dimensionamento das colunas de distribuição e dos barriletes

		001111140 01	- DIGEDIDING Â	,				
COLUNAS DE DISTRIBUIÇÃO								
PAVIMENTO	DN	VELOCIDADE						
	PESOS	(I/s)	(mm)	, ,	(mm)	(m/s)		
1	5,60	0,71	17,36	21,60	25,00	1,45		
Térreo	3,80	0,58	15,76	21,60	25,00	1,19		
		BAR	RILETE					
PAVIMENTO SOMA DE VAZÃO DNMIN DI (mm) DN VELOCIDADE								
	PESOS	(I/s)	(mm)		(mm)	(m/s)		
Global	9,40	0,92	19,76	21,60	25	1,87		

APÊNDICE E – SISTEMA DE DISTRIBUIÇÃO DE ÁGUA

APÊNDICE F – COMPRIMENTOS REAIS E EQUIVALENTES

Comprimentos reais do Pavimento 1

	Comprimentos reais d	Comprimento (cm)
R-6	P-1	171
P-1	P-2	7
P-2	P-3	5
P-3	P-4	44
P-4	C1/D1	50
C1/D1	C-2	683
C-2	C-3	108
C-3	C-4	110
C-4	C-5	84
C-5	C-6/7	33
C-6/7	C-8/10	62
C-8/10	C-9	10
C-8/10	C11/13	50
C11/13	C12	28
C11/13	C14	44
C14	C-15	33
C-15	C-16	87
C1/D1	D2/D33	128
D2/D33	D-3	101
D-3	D4/D19	20
D4/D19	D-5	20
D-5	D-6	100
D-6	D-7	84
D-7	D8/D9	33
D8/D9	D10/D12	62
D10/D12	D-11	10
D10/D12	D13/D15	50
D13/D15	D-14	28
D13/D15	D-16	44
D-16	D-17	33
D-17	D-18	87
D4/D19	D-20	100
D-20	D-21	84
D-21	D22/D23	33
D22/D23	D24/D26	62
D24/D26	D-25	10
D24/D26	D27/D29	50
D27/D29	D-28	28
D27/D29	D-30	44
D-30	D-31	33
D-31	D-32	87
D2/D33	D-34	133
D-34	D-35	154

D-35	D-36	20
D-36	D-37	110
D-37	D-38	84
D-38	D39/D40	33
D39/D40	D41/D43	62
D41/D43	D-42	10
D41/D43	D44/D46	50
D44/D46	D-45	28
D44/D46	D-47	44
D-47	D-48	33
D-48	D-49	87
	Total	3561

Comprimentos reais do Terreo

	Trecho	Comprimento (cm)
R-6	T-1	93
T-1	T-2	7
T-2	A1/B1	380
A1/B1	A-2	497
A-2	A3/A15	274
A3/A15	A-4	26
A-4	A-5	104
A-5	A-6	84
A-6	A7/A9	60
A7/A9	A-8	22
A7/A9	A10/A12	50
A10/A12	A-11	22
A10/A12	A-13	78
A-13	A-14	14
A3/A15	A-16	14
A-16	A-17	104
A-17	A-18	67
A-18	A19/21	20
A19/21	A-20	37
A19/21	A-22	93
A1/B1	B-2	107
B-2	B-3	84
B-3	B4/B5	33
B4/B5	B6/B8	62
B6/B8	B-7	10
B6/B8	B9/B11	50
B9/B11	B-10	28
B9/B11	B-12	44
B-12	B-13	33
B-13	B-14	87
	Total	2484

Comprimentos reais do Barrilete

	Trecho	Comprimento (cm)
R-1	R-2	45
R-2	R-3	86
R-3	R-4	11
R-4	R5	13
R-5	R-6	81
	Total	236

Fonte: Autoria Própria (2023)

Comprimento de distribuição

	anomie de distribuiçõe
TRECHO	COMPRIMENTO
Térreo	24,84
Pavimento 1	35,61
Barrilete	2,36
Total	60,45

Fonte: Autoria Própria (2023)

Comprimento equivalente por conexão - Barrilete

APARELHOS	QUANTIDADE DE CONEXÕES	COMPRIMENTO EQUIVALENTE POR CONEXÃO (cm)
Tê passagem direta DN25	0	80
Tê saída lateral DN25	1	240
Tê saída bilateral DN25	1	240
Joelho 90° DN25	0	120
Curva 90° DN25	2	50
Registro gaveta DN25	2	20
Registro de pressão DN25	0	610
Comprimento equivalente	620	
por aparelho (cm)		

Comprimento equivalente por conexão por cômodos - Térreo

	BANH	EIRO 1		
	QUANTIDADE	DE CONEXÕES		
CONEXÕES	Lavatório	Bacia Sanitária	Ducha	Chuveiro
Tê passagem direta DN25	1	2	3	4
Tê saída lateral DN25	1	1	1	0
Tê saída bilateral DN25	0	0	0	0
Joelho 90° DN25	0	1	1	1
Curva 90° DN25	2	2	2	3
Registro gaveta DN25	2	2	2	2
Registro de pressão DN25	0	0	0	1

Comprimento equivalente	460	420	500	1240
por aparelho (cm)				
	COZ	ZINHA		
	QUANTIDADE	DE CONEXÕES		
CONEXÕES	Lava Louças	Pia 1	Pia 2	
Tê passagem direta DN25	2	0	1	
Tê saída lateral DN25	2	3	3	
Tê saída bilateral DN25	0	0	0	
Joelho 90° DN25	1	1	1	
Curva 90° DN25	5	4	4	
Registro gaveta DN25	2	2	2	
Registro de pressão DN25	0	0	0	
Comprimento equivalente	570	360	440	
por aparelho (cm)				
	ÁREA DE	SERVIÇO		
	QUANTIDADE	DE CONEXÕES		
CONEXÕES	Lava Roupa	Pia		
Tê passagem direta DN25	2	1		
Tê saída lateral DN25	1	2		
Tê saída bilateral DN25	0	0		
Joelho 90° DN25	2	2		
Curva 90° DN25	3	3		
Registro gaveta DN25	2	2		
Registro de pressão DN25	0	0		
Comprimento equivalente	590	510		
por aparelho (cm)				

Comprimento equivalente por conexão por cômodos – Pavimento 1

	BANH	EIRO 2		
	QUANTIDADE	DE CONEXÕES		
CONEXÕES	Lavatório	Bacia Sanitária	Ducha	Chuveiro
Tê passagem direta DN25	0	1	2	3
Tê saída lateral DN25	1	1	1	0
Tê saída bilateral DN25	1	1	1	1
Joelho 90° DN25	0	1	1	1
Curva 90° DN25	6	6	6	7
Registro gaveta DN25	2	2	2	2
Registro de pressão DN25	0	0	0	1
Comprimento equivalente	820	1020	1100	1600
por aparelho (cm)				
	BANH	EIRO 3		
	QUANTIDADE	DE CONEXÕES		
CONEXÕES	Lavatório	Bacia Sanitária	Ducha	Chuveiro
Tê passagem direta DN25	0	1	2	3
Tê saída lateral DN25	3	3	3	2
Tê saída bilateral DN25	1	1	1	1

				_
Joelho 90° DN25	1	2	2	2
Curva 90° DN25	5	5	5	6
Registro gaveta DN25	2	2	2	2
Registro de pressão DN25	0	0	0	1
Comprimento equivalente	1370	1570	1650	2150
por aparelho (cm)				
	BANHEI	RO 4		
	QUANTIDADE DI	CONEXÕES		
CONEXÕES	Lavatório	Bacia Sanitária	Ducha	Chuveiro
Tê passagem direta DN25	1	2	3	4
Tê saída lateral DN25	2	2	2	1
Tê saída bilateral DN25	1	1	1	1
Joelho 90° DN25	0	1	1	1
Curva 90° DN25	5	5	5	6
Registro gaveta DN25	2	2	2	2
Registro de pressão DN25	0	0	0	1
Comprimento equivalente	1090	1290	1370	1870
por aparelho (cm)				
	BANHEI	RO 5		
	QUANTIDADE DI	CONEXÕES		
CONEXÕES	Lavatório	Bacia Sanitária	Ducha	Chuveiro
Tê passagem direta DN25	1	2	3	4
Tê saída lateral DN25	1	1	1	0
Tê saída bilateral DN25	1	1	1	1
Joelho 90° DN25	2	3	3	3
Curva 90° DN25	5	5	5	6
Registro gaveta DN25	2	2	2	2
Registro de pressão DN25	0	0	0	1
Comprimento equivalente	1090	1290	1370	1870
/				1

por aparelho (cm)

APÊNDICE G – VELOCIDADE E PRESSÃO

Cálculo da velocidade e pressão disponível – Térreo

						TERREO	EO					
		Vazão		Diâmetro (mm)	m)	openioolov.	Perda de	Pressão	Comprimento	Comprimento da tubulação	Perda de Carga	2000
Ponto de Utilização	Soma dos pesos	Soma dos estimada pesos	Interno	Interno Comercial	Nominal Comercial	Velocidade	carga unitária	Estática	Real	Equivalente	Total	Pressao disponivei
		r/s	(mm)	(mm)	(mm)	s/m	m.c.a./m	m.c.a.	Ε	٤	m.c.a.	mca
RESERVATÓRIO	3,8	0,58	15,8	21,6	25	1,60	00'0	0'0	00'0	00'0	00'0	00'0
Lavatório	6'0	0,16	8,4	21,6	25	0,45	0,02	8,0	10,09	29,53	89'0	7,32
Bacia sanitária	6,0	0,16	8,4	21,6	25	0,45	0,02	8,2	69'6	29,85	89'0	7,52
Ducha	6,0	0,19	0'6	21,6	25	0,52	0,02	8,3	10,49	31,33	0,93	7,37
Chuveiro	0,4	0,19	0'6	21,6	25	0,52	0,02	6,7	17,89	40,09	1,29	5,41
Pia1	2'0	0,25	10,3	21,6	25	69'0	0,04	8,0	11,19	39,06	1,82	6,18
Pia2	2'0	0,25	10,3	21,6	25	69'0	0,04	8,0	60'6	37,46	1,68	6,32
Lava Louças	1,0	0,30	11,3	21,6	25	0,82	50'0	7,8	68'6	38,96	2,41	5,39
Tanque	2'0	0,25	10,3	21,6	25	69'0	0,04	7,4	11,39	38,72	1,81	5,59
Lava Roupas	1,0	0,30	11,3	21,6	25	0,82	0,05	7,8	10,59	38,48	2,43	5,37

Cálculo da velocidade e pressão disponível – Pavimento 1

Velocidade
Nominal Comercial
(mm) m/s m.c.a./m
25 1,94 0,22
0,45 0,02
25 0,52 0,02
0,45
25 0,52 0,02
0,45
25 0,52 0,02

APÊNDICE H – ÁREAS E PERÍMETROS DA RESIDÊNCIA

AMBIENTE	ÁREA (m²)	PERÍMETRO (m)
Sala	26,11	21,34
Sala de jantar	16,48	16,25
Escritório	11,55	13,70
WC1	3,51	8,00
Cozinha	15,31	15,65
Área de Serviço	3,43	7,70
Garagem	31,50	22,50
Varanda 1	18,75	28,00
Jardim	13,48	22,70
Hall 1	4,80	11,00
Hall 2	1,82	5,40
Hall 3	1,94	5,80
Escada	7,83	11,20
Estar intimo	11,80	17,90
Suíte 1	13,00	16,60
WC 2	3,51	8,00
Suíte 2	11,31	13,60
WC 3	3,51	8,00
Varanda 2	5,46	10,60
Suíte 3	14,95	17,00
WC 4	3,51	8,00
Varanda 3	7,42	13,56
Suíte 4	16,75	16,40
WC 5	3,90	8,60
Varanda 4	14,28	26,40

Fonte: Autoria Própria (2023)

APÊNDICE I – VALORES DE POTÊNCIA PARA TOMADAS DE USO ESPECÍFICO

APARELHO	POTÊNCIA (W)
Chuveiro	5400
Secadora de roupa	5000
Lavadora de roupas	1000
Lavadora de louças	2000
Microondas	1500
Geladeira	400
Ar-condicionado	1700

APÊNDICE J – CÁLCULO DO AR CONDICIONADO

AMBIENTE	ÁREA	PESSOAS	ELETRODOMÉSTICOS	BTU'S	BTU'S
				CALCULADOS	UTILIZADOS
Escritório	11,55	4	3	10530	12500
Suíte 1	13,00	4	3	11400	12500
Suíte 2	11,31	4	3	10386	12500
Suíte 3	15,83	4	3	13098	12500
Suíte 4	16,75	4	3	13650	12500

Fonte: Autoria Própria (2023)

APÊNDICE K- PREVENDO CARGAS DE ILUMINAÇÃO E TOMADAS

) CARGA DE NAÇÃO	PR	PREVENDO A CARGA DE TOMADAS					
AMBIENTE	POT. MÍN. DE ILUMINAÇÃO (W)	POT. UTILIZADA (W)	QUANT. MÍN. DE TUG	QUANT. DE TUG	w	QUANT. DE TUE	W	POT. TOT. POR AMBIENTE	
Sala	400	480	5	5	500	-		980	
Sala de jantar	220	220	4	4	400	-		620	
Escritório	160	200	3	3	300	1	1700	2200	
WC1	100	100	1	2	1200	1	5400	6700	
Cozinha	220	240	4	5	2000	3	3900	6140	
Área de Serviço	100	100	1	2	1200	2	6000	7300	
Garagem	500	700	5	3	300	-		1000	
Varanda 1	280	200	6	1	100	-		300	
Jardim	100	100	5	0	0	-		100	
Hall 1	100	100	1	3	300	_		400	
Hall 2	100	100	1	1	100	-		200	
Hall 3	100	100	1	1	0	_		100	
Escada	100	100	3	1	0	_		100	
Estar intimo	160	200	4	4	400	-		600	
Suíte 1	160	200	4	4	400	1	1700	2300	
WC 2	100	100	1	2	1200	1	5400	6700	
Suíte 2	160	200	3	3	300	1	1700	2200	
WC 3	100	100	1	2	1200	1	5400	6700	
Varanda 2	100	100	1	1	100	-		200	
Suíte 3	220	220	4	4	400	1	1700	2320	
WC 4	100	100	1	2	1200	1	5400	6700	
Varanda 3	100	100	3	2	200	-		300	
Suíte 4	220	220	4	4	400	1	1700	2320	

WC 5	100	100	1	2	1200	1	5400	6700
Varanda 4	220	300	6	2	200	-		500
	Total	4680	-	5	13600	-	45400	63680

APÊNDICE L – PRIMEIRA SEPARAÇÃO DE CIRCUITOS

	CIRCUITO	TENSÃO	LOCAL	POTÊNCIA	A (W)	CORRENTE
NÚMERO	TIPO	(V)		INDIVIDUAL	TOTAL	(A)
1	Iluminação social	220	Sala	480	2740	12,45
			Sala de jantar	220		
			Escritório	200		
			WC1	100		
			Hall1	100		
			Hall2	100		
			Suíte 1	200		
			WC 2	100		
			Suíte 2	200		
			WC 3	100		
			Suíte 3	220		
			WC 4	100		
			Suíte 4	220		
			WC 5	100		
			Estar íntimo	200		
			Hall 3	100		
2	Iluminação serviço	220	Cozinha	240	1940	8,82
			Garagem	700		
			Área de serviço	100		
			Escada	100		
			Varanda 2	100		
			Varanda 3	100		
			Varanda 4	300		
			Varanda 1	200		
			Jardim	100		
3	TUG's Soc.	220	Sala	500	2800	12,73
	Terreo		Sala de jantar	400		
			Escritório	300		
			WC 1	1200		
			Hall1	300		
			Hall 2	100		
	TUG's Soc.		Suíte 1	400	6700	30,45
	Pav.1		WC 2	1200		
			Hall 3	0		
			Suíte 2	300		
			WC 3	1200		
			Suíte 3	400		

	I	I			1 1	ı
			WC 4	1200		
			Suíte 4	400		
			WC 5	1200		
			Estar íntimo	400		
4	TUG's Serv.1	220	Cozinha	2000	2000	9,09
5	TUG's Serv.2	220	Garagem	300	300	1,36
6	TUG's Serv.3	220	Área de serviço	1200	1200	5,45
7	TUG's Serv.4	220	Varanda 2	100	600	2,73
			Varanda 3	200		
			Varanda 4	200		
			Varanda 1	100		
8	TUE's	220	Ar Cond.1	1700	1700	7,73
9	TUE's	220	Ar Cond.2	1700	1700	7,73
10	TUE's	220	Ar Cond.3	1700	1700	7,73
11	TUE's	220	Ar Cond.4	1700	1700	7,73
12	TUE's	220	Ar Cond.5	1700	1700	7,73
13	TUE's	220	Chuveiro 1	5400	5400	24,55
14	TUE's	220	Chuveiro 2	5400	5400	24,55
15	TUE's	220	Chuveiro 3	5400	5400	24,55
16	TUE's	220	Chuveiro 4	5400	5400	24,55
17	TUE's	220	Chuveiro 5	5400	5400	24,55
18	TUE's	220	Microondas	1500	1500	6,82
19	TUE's	220	Geladeira	400	400	1,82
20	TUE's	220	Lav.Louças	2000	2000	9,09
21	TUE's	220	Lav.Roupas	1000	1000	4,55
22	TUE's	220	Sec.Roupas	5000	5000	22,73

APÊNDICE M – DISTRIBUIÇÃO DE CIRCUITOS

CIRCU	ІТО	TENSÃO	LOCAL	POTÊNCIA	CORRENTE	
NÚMERO	TIPO	(V)		INDIVIDUAL	TOTAL	(A)
1	Iluminação	220	Sala	480	1200	5,45
(Salas, Escritório,	social		Sala de jantar	220		
WC, Hall -			Escritório	200		
Térreo)			WC 1	100		
			Hall1	100		
			Hall2	100		
2	Iluminação	220	Suíte 1	200	1540	7,00
(Suítes e WC –	social		WC 2	100		
Pav.1)			Suíte 2	200		
			WC 3	100		
			Suíte 3	220		
			WC 4	100		
			Suíte 4	220		

			WC 5	100		
			Estar íntimo	200		
			Hall 3	100		
3	Iluminação	220	Cozinha	240	1140	5,18
(Cozinha,	serviço		Garagem	700		
Garagem, Jardim,			Área de serviço	100		
Área de serv.)			Jardim	100		
4	Iluminação	220	Varanda 2	100	800	3,64
(Varandas e	serviço		Varanda 3	100		
Escada)			Varanda 4	300		
			Varanda 1	200		
			Escada	100		
5	TUG's Soc.	220	Sala	500	1200	5,45
(Salas e Escri-			Sala de jantar	400		
tório – Térreo)			Escritório	300		
6	TUG's Soc.	220	WC 1	1200	1600	7,27
(WC e Hall -			Hall 1	300		
Térreo)			Hall 2	100		
7	TUG's Soc.	220	Suíte 1	400	1600	7,27
(Suíte 1, WC2 e			WC 2	1200		
Hall 3)			Hall 3	0		
8	TUG's Soc.	220	Suíte 2	300	1500	6,82
(Suíte 2 e WC 3)			WC 3	1200		
9	TUG's Soc.	220	Suíte 3	400	1600	7,27
(Suíte 3 e WC 4)			WC 4	1200		
10	TUG's Soc.	220	Suíte 4	400	2000	2000 9,09
(Suíte 4, WC 5 e			WC 5	1200		
Estar íntimo)			Estar íntimo	400		
11 (Cozinha)	TUG's Serv.1	220	Cozinha	2000	2000	9,09
12	TUG's Serv.1	220	Garagem	300	1500	6,82
(Garagem e Área de serviço)			Área de serviço	1200		
13	TUG's Serv.1	220	Varanda 2	100	600	2,73
(Varandas)			Varanda 3	200		
			Varanda 4	200		
			Varanda 1	100		
14 (Ar Cond.1)	TUE's	220	Ar Cond.1	1700	1700	7,73
15 (Ar Cond.2)	TUE's	220	Ar Cond.2	1700	1700	7,73
16 (Ar Cond.3)	TUE's	220	Ar Cond.3	1700	1700	7,73
17 (Ar Cond.4)	TUE's	220	Ar Cond.4	1700	1700	7,73
18 (Ar Cond.5)	TUE's	220	Ar Cond.5	1700	1700	7,73

19	TUE's	220	Chuveiro 1	5400	5400	24,55
(Chuveiro 1)						
20	TUE's	220	Chuveiro 2	5400	5400	24,55
(Chuveiro 2)						
21	TUE's	220	Chuveiro 3	5400	5400	24,55
(Chuveiro 3)						
22	TUE's	220	Chuveiro 4	5400	5400	24,55
(Chuveiro 4)						
23	TUE's	220	Chuveiro 5	5400	5400	24,55
(Chuveiro 5)						
24	TUE's	220	Microondas	1500	1500	6,82
(Microondas)						
25	TUE's	220	Geladeira	400	400	1,82
(Geladeira)						
26	TUE's	220	Lav.Louças	2000	2000	9,09
(Lav.Louças)						
27	TUE's	220	Lav.Roupas	1000	1000	4,55
(Lav.Roupas)						
28	TUE's	220	Sec.Roupas	5000	5000	22,73
(Sec.Roupas)						

APÊNDICE N – ESCOLHA DE CONDUTORES

	CORRENTE (A)	COMPRIMENTO (m)	CAPACIDADE DE CONDUÇÃO DE CORRENTE		QUEDA DI	E TENSÃO	SEÇÃO UTILIZADA
N			CORRENTE CORRIGIDA (A)	SEÇÃO DO CONDUTOR (mm²)	SEÇÃO MÍNIMA DO CONDUTOR (mm²)	SEÇÃO DO CONDUTOR (mm²)	(mm²)
1	5,5	15	7,79	0,5	0,32	0,50	1,50
2	7,0	18	10,00	0,75	0,49	0,50	1,50
_ 3	5,2	23	7,40	0,5	0,47	0,50	1,50
4	3,6	22	5,19	0,5	0,31	0,50	1,50
5	5,5	20	7,79	0,5	0,43	0,50	2,50
6	7,3	11	10,39	0,75	0,31	0,50	2,5
7	7,3	15	10,39	0,75	0,43	0,50	2,5
8	6,8	17	9,74	0,75	0,45	0,50	2,5
9	7,3	15	10,39	0,75	0,43	0,50	2,5
_10	9,1	20	12,99	1,0	0,71	0,75	2,5
11	9,1	12	12,99	1,0	0,43	0,50	2,5
_12	6,8	22	9,74	0,75	0,59	0,75	2,5
_13	2,7	23	3,90	0,5	0,25	0,50	2,5
_14	7,7	13	7,73	0,5	0,39	0,50	2,5
15	7,7	17	7,73	0,5	0,51	0,75	2,5
16	7,7	15	7,73	0,5	0,45	0,50	2,5
17	7,7	15	7,73	0,5	0,45	0,50	2,5

18	7,7	17	7,73	0,5	0,51	0,75	2,5
19	24,5	10	24,55	4	0,96	1,50	4
20	24,5	12	24,55	4	1,15	1,50	4
21	24,5	13	24,55	4	1,25	1,50	4
22	24,5	13	24,55	4	1,25	1,50	4
23	24,5	16	24,55	4	1,54	2,00	4
24	6,8	13	6,82	0,5	0,35	0,50	2,5
25	1,8	10	1,82	0,5	0,07	0,50	2,5
26	9,1	10	9,09	0,75	0,36	0,50	2,5
27	4,5	12	4,55	0,5	0,21	0,50	2,5
28	22,7	13	22,73	4	1,15	1,50	4

APÊNDICE O – ESCOLHA DOS DISJUNTORES

N	CORRENTE (A)	SEÇÃO DO CONDUTOR (mm²)	CAPACIDADE DE CORRENTE	CORRENTE CORRIGIDA (A)	CORRENTE NOMINAL DO
			DO		DISJUNTOR
			CONDUTOR		(A)
	- 15	1.5	(A)	7 .01	10
1	5,45	1,5	15,5	7,91	10
2	7,00	1,5	15,5	10,15	15
3	5,18	1,5	15,5	7,51	15
4	3,64	1,5	15,5	5,27	6
_ 5	5,45	2,5	21	7,91	10
6	7,27	2,5	21	10,55	16
7	7,27	2,5	21	10,55	16
8	6,82	2,5	21	9,89	10
9	7,27	2,5	21	10,55	16
10	9,09	2,5	21	13,18	16
11	9,09	2,5	21	13,18	16
12	6,82	2,5	21	9,89	10
13	2,73	2,5	21	3,95	6
14	7,73	2,5	21	11,20	16
15	7,73	2,5	21	11,20	16
16	7,73	2,5	21	11,20	16
17	7,73	2,5	21	11,20	16
18	7,73	2,5	21	11,20	16
19	24,55	4	28	35,60	30
20	24,55	4	28	35,60	30
21	24,55	4	28	35,60	30
22	24,55	4	28	35,60	30
23	24,55	4	28	35,60	30
24	6,82	2,5	21	9,89	10
25	1,82	2,5	21	2,64	6

26	9,09	2,5	21	13,18	16
27	4,55	2,5	21	6,59	10
28	22,73	4	28	32,96	30

APÊNDICE P – CÁLCULO DA DEMANDA

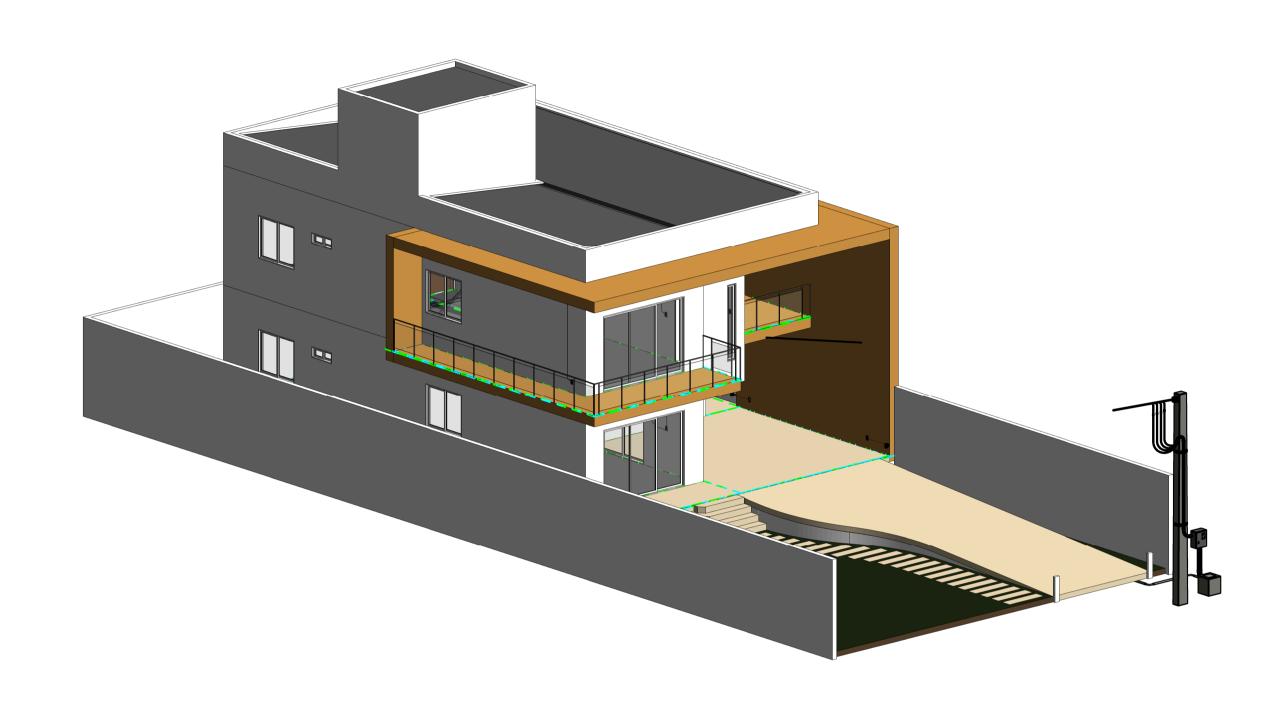
Cál	اسا	٦	do	damanda	

	POTÊNCIA DEMANDADA (W)																
D=	18280	X	0,24	+	27000	X	0,7	+	9900	X	0,6	+	8500	X	1	=	37727

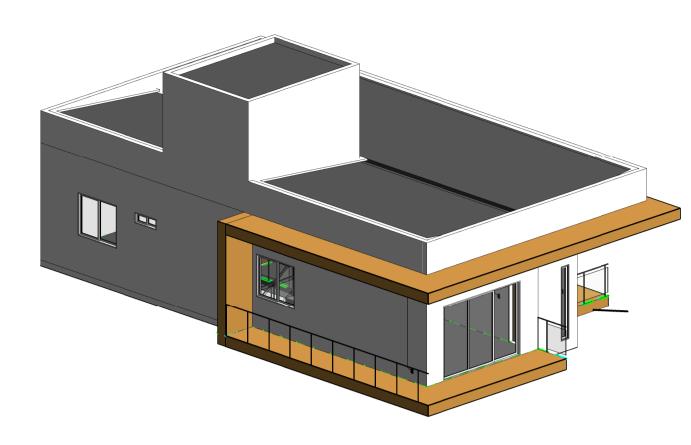
Fonte: Autoria Própria (2023)

APÊNDICE Q – CÁLCULO DO FORNECIMENTO

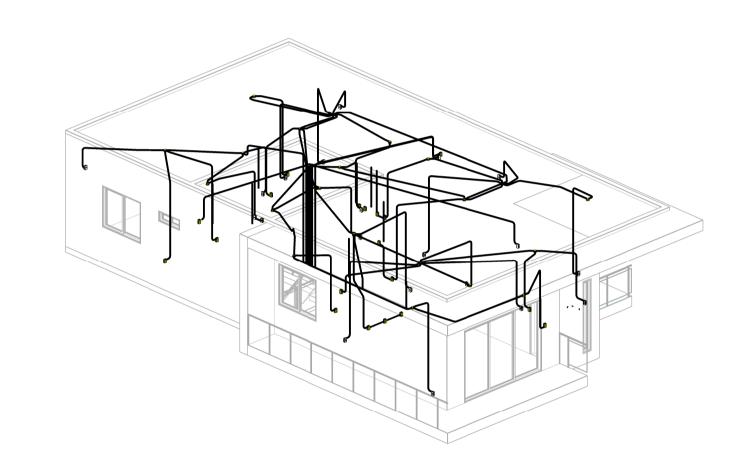
Balanceamento da corrente por fase

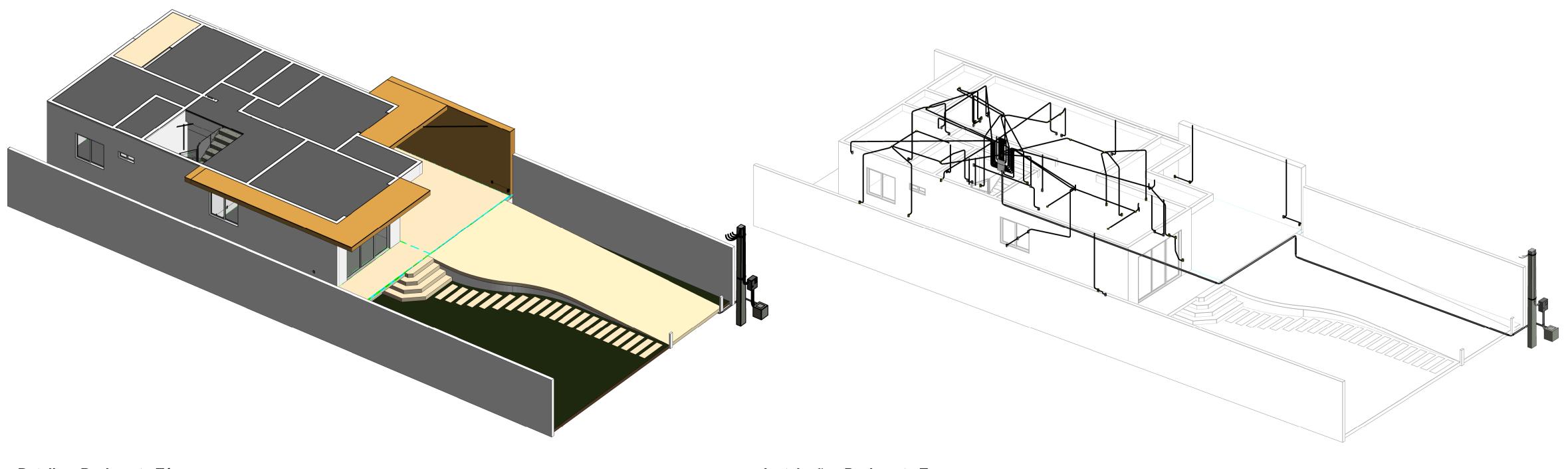

CIRCUITO	POTÊNCIA	CORRENTE	COMPRIMENTO	FASE
		(A)	(m)	
NÚMERO	TOTAL (W)			
1	1200	5,45	15	A
2	1540	7,00	18	A
3	1140	5,18	23	A
4	800	3,64	22	A
5	1200	5,45	20	A
6	1600	7,27	11	A
7	1600	7,27	15	A
8	1500	6,82	17	A
9	1600	7,27	15	В
10	2000	9,09	20	В
11	2000	9,09	12	В
12	1500	6,82	22	В
13	600	2,73	23	В
14	1700	7,73	13	В
15	1700	7,73	17	С
16	1700	7,73	15	С
17	1700	7,73	15	С
18	1700	7,73	17	C
19	5400	24,55	10	A
20	5400	24,55	12	A
21	5400	24,55	13	В
22	5400	24,55	13	В
23	5400	24,55	16	С
24	1500	6,82	13	С
25	400	1,82	10	С
26	2000	9,09	10	С
27	1000	4,55	12	С

28	5000	22,73	13	С
Corrente total (A)	Fase A	97,18		
	Fase B	91,89		
	Fase C	100,45		


APÊNDICE R – DIÂMETRO DOS SUBCOLETORES E COLETOR PREDIAL

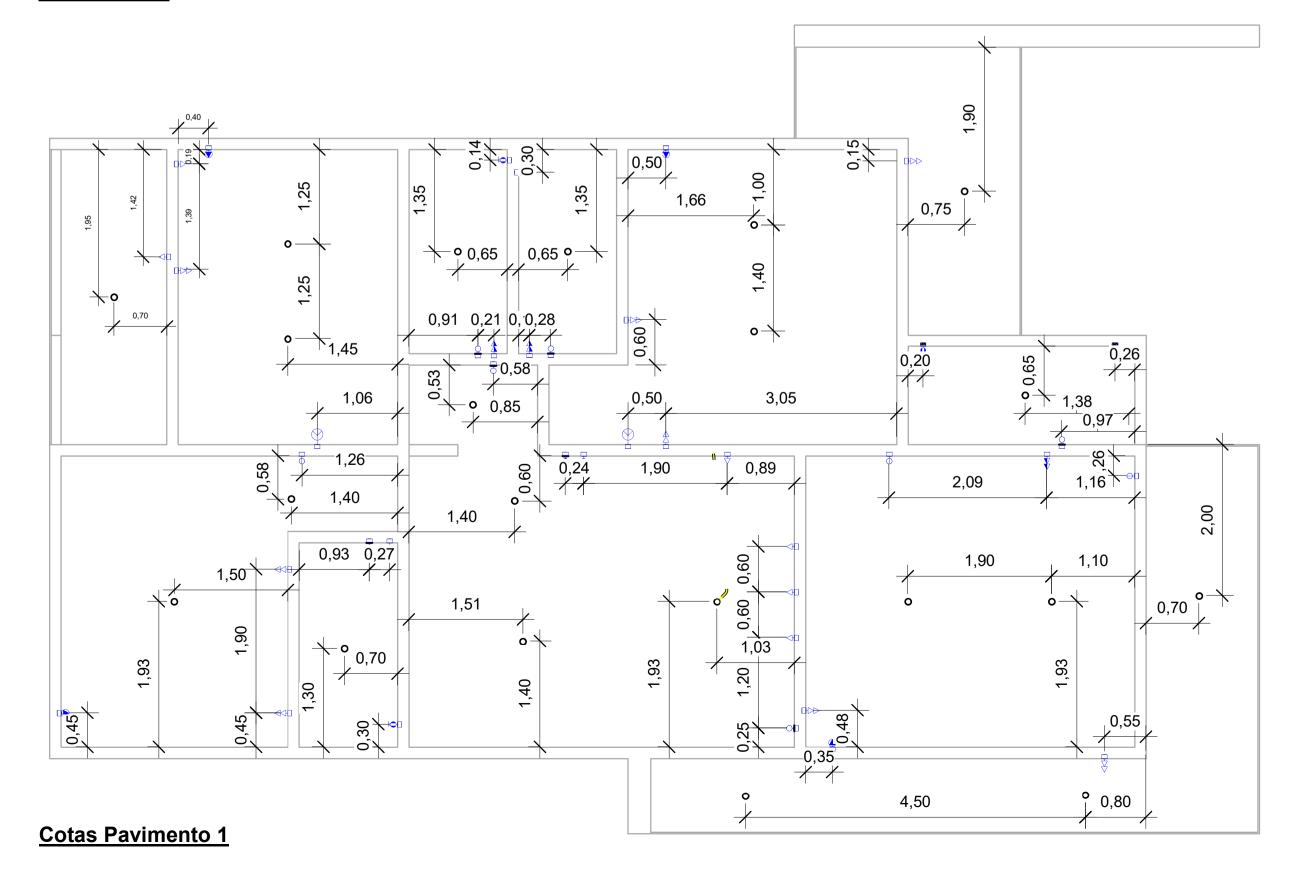
LOCALIZAÇÃO	APARELHOS DE	UHC	UHCT	HCTT	DN
	DESCARGA				
Banheiro 1-Banheiro 2	Bacia sanitária	6,00	24	24	100
	Ralo Sifonado	3,00			
	Chuveiro de residência	2,00			
	Lavatório de residência	1,00			
ServBanheiro 3	Bacia sanitária	6,00	12	29	100
	Ralo Sifonado	3,00			
	Chuveiro de residência	2,00			
	Lavatório de residência	1,00			
Área de serviço/Cozinha	Tanque de lavar roupas	3,00	17		100
	Máquina de lavar roupas	3,00			
	Ralo Sifonado	3,00			
	Pia de cozinha	3,00			
	residencial				
	Pia de cozinha	3,00			
	residencial				
	Máquina de lavar louças	2,00			
Banheiro 3-Banheiro 4	Bacia sanitária	6,00	24	53	100
	Ralo Sifonado	3,00			
	Chuveiro de residência	2,00			
	Lavatório de residência	1,00			
Banheiro 4 - Banheiro 5	Bacia sanitária	6,00	24	77	100
	Ralo Sifonado	3,00			
	Chuveiro de residência	2,00			
	Lavatório de residência	1,00			
Banheiro 4 - Cxf	Bacia sanitária	6,00	12	89	100
	Ralo Sifonado	3,00			
	Chuveiro de residência	2,00			
	Lavatório de residência	1,00			
Coletor Predial				113	100


PROJETO INSTALAÇÕES ELÉTRICAS RESIDÊNCIA UNIFAMILIAR


Modelo 3D Arquitetônico

Detalhes Pavimento 1

Instalações Pavimento 1


	OBRA:	
	CLIENTE:	
	ENDEREÇO:	
	-	
	DATA:	N° DA PRANCHA
	04/04/2023	
	DESENHISTA:	FOLHA
	Kattarinne G.	•
ARQUITETO:		01 / 008
		_
CAU:		ESCALA:
		1:100

Detalhes Pavimento Térreo

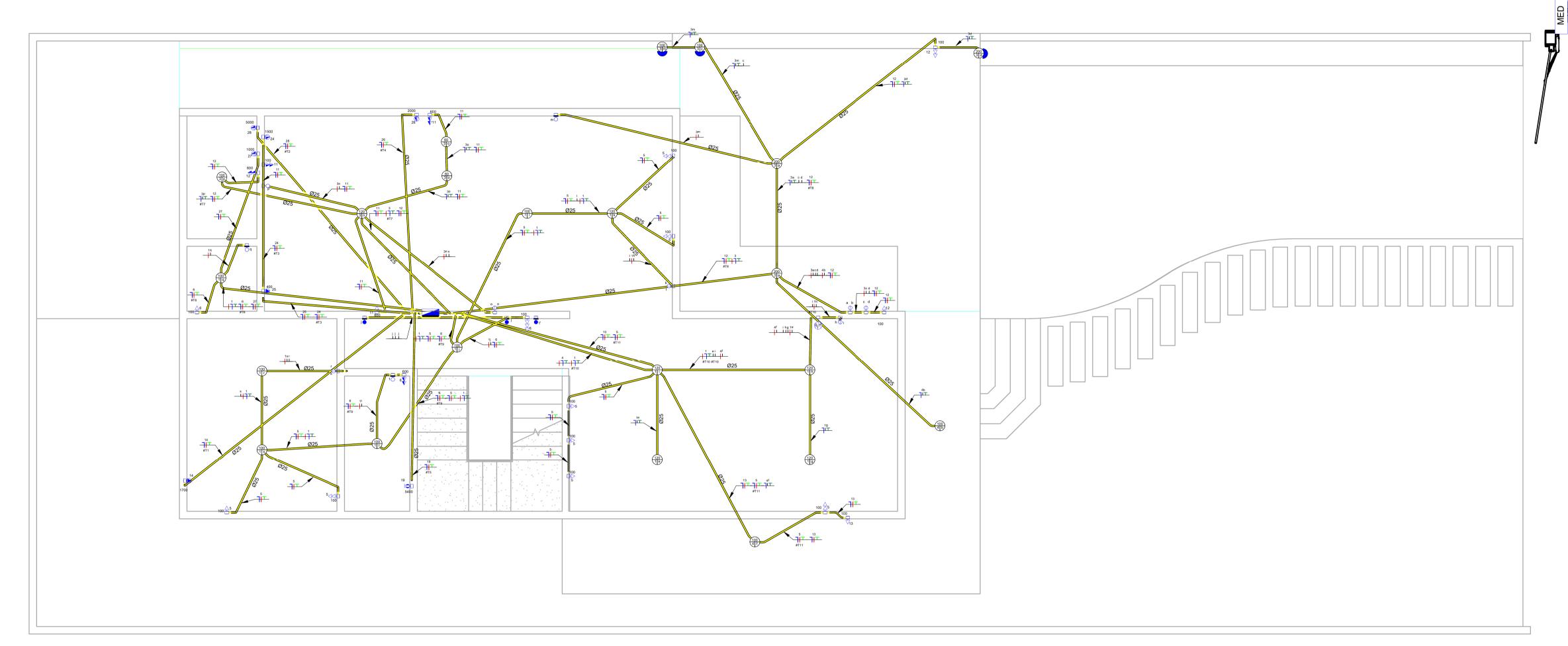
Instalações Pavimento Terreo

LOCALIZAÇÃO DOS PONTOS 10,92 0,32),36,27 0,96 0,22 1,50 3,05 0,72 0,70 1,45 3,85

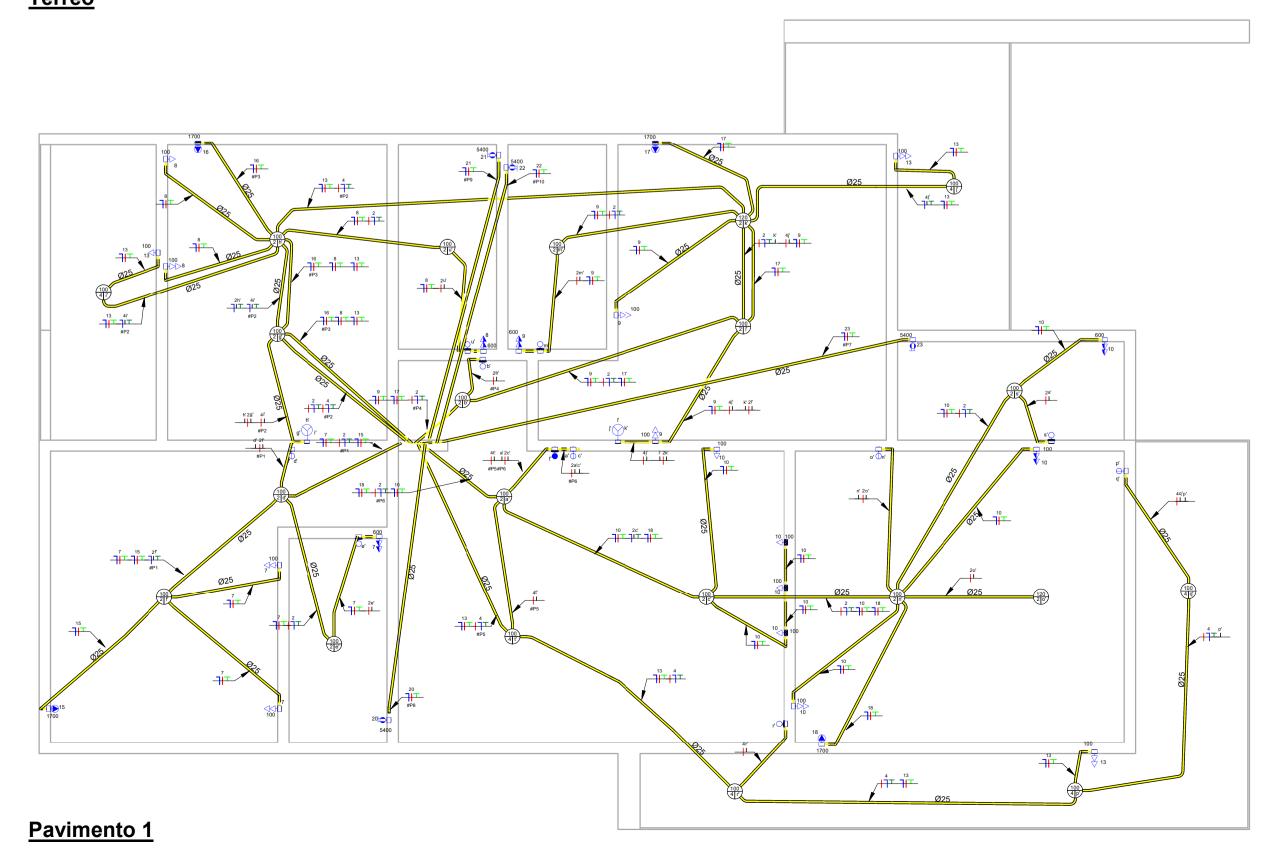
Cotas Terreo

Notas Gerais

- 1- Eletrodutos embutidos no solo serão do tipo PEAD. 2- Eletrodutos embutidos na laje deverão ser do tipo corrugado
- 3- Os condutores não cotados serão de #2,5mm², os condutores de retorno serão de #1,5mm².
 - 4- Os eletrodutos não cotados serão de Ø25mm.
 - 5- Em todo eletroduto subterrâneo, os condutores deverão ser de cobre, classe 0,6/1kV, isolação em EPR, temperatura 90°C. 6- Os condutores elétricos de distribuição deverão ser de cobre, classe 450/750V, isolação em PVC, temperatura 70°C.
 - 7- A seção do condutor neutro é igual ao da fase do circuito, salvo indicação contrária.
- 8-O condutor neutro não poderá ser ligado ao condutor proteção terra após passar pelo quadro geral da instalação. 9- O condutor de proteção nunca deverá ser ligado ao IDR.
- 10- Utilizar um condutor neutro para cada circuito. 11- Os circuitos foram numerados pela quantidade de fases, ou
- seja, circuitos bifásicos contém dois números.
- 12- Utilizar chuveiros com resistência blindada para evitar o
- desligamento incorreto do IDR.


 13- As instalações elétricas deverão ser executadas respeitando os padrões de qualidade e segurança estabelecidos na norma
- 14- Todos os pontos metálicos deverão ser aterrados.
 15-A indicação de potência no pontos de luz são os valores calculados para dimensionamento dos circuitos conforme
- precrições da NBR 5410, não necessariamente correspondem
- ao valor exato das lampadas a serem instaladas.
- 16-Para As tomadas sem indicação de potência foi considera
- 17-Todos os eletrodutos de eletricidade deverão estar afastados 0,50m das tubulações de gás.

Legenda Planta Baixa


₽	Tomada Baixa 2P+T, 10A, a 30cm do piso
□	Tomada Média 2P+T, 10A, a 120cm do piso
<u>-</u>	Tomada Alta 2P+T, 10A, a 210cm do piso
•	Tomada Baixa 2P+T, 20A, a 30cm do piso
<u> </u>	Tomada Média 2P+T, 20A, a 120cm do piso
	Tomada Alta 2P+T, 20A, a 210cm do piso
	Tomada de Piso 2P+T,
	Tomada de Piso 2P+T,
□ - O‡	Ponto de Força com placa saída de fio, a 230cm do piso
h="x"	Ponto de Força com placa saída de fio, a "x" cm do piso
□— □—	Interruptor simples de uma seção
□— b	Conjunto de 2 Interruptores
a □ b c	Conjunto de 3 Interruptores
□— <mark>a</mark>	Interruptor paralelo (three-way)
∎•• a	Ponto para acionamento da campainha
ь.	Ponto para campainha
	Ponto de Telefone, RJ11, a 30cm do piso
7171	Condutores Neutro, Fase, Terra e Retorno,
100	Ponto de luz embutido no teto
100 1 a	Ponto de luz na parede a 210cm do piso
	Eletroduto corrugado flexível embutido no teto ou na
	Eletroduto de PEAD embutido no
	Quadro geral de luz e força embutido a 1,50 do piso
ME	Caixa para medidor
	Caixa de passagem no piso
	Eletroduto que sobe
	Eletroduto que desce
	Eletroduto que passa
	Eletroduto que passa

	OBRA:	
	CLIENTE:	
	ENDEREÇO:	
	DATA: 04/042023	N° DA PRANCHA
	DESENHISTA: Kattarinne G.	FOLHA 02 / 008
ARQUITETO:	·	02 / 008
CAU:		ESCALA: 1:50

DISTRIBUIÇÃO DE CIRCUITOS

<u>Terreo</u>

Notas Gerais

- 1- Eletrodutos embutidos no solo serão do tipo PEAD. 2- Eletrodutos embutidos na laje deverão ser do tipo corrugado
- reforçado.

 3- Os condutores não cotados serão de #2,5mm², os condutores de retorno serão de #1,5mm².
- 4- Os eletrodutos não cotados serão de Ø25mm.
- 5- Em todo eletroduto subterrâneo, os condutores deverão ser de cobre, classe 0,6/1kV, isolação em EPR, temperatura 90°C.
- 6- Os condutores elétricos de distribuição deverão ser de cobre, classe 450/750V, isolação em PVC, temperatura 70°C.
- classe 450/750V, isolação em PVC, temperatura 70°C.
 7- A seção do condutor neutro é igual ao da fase do circuito, salvo indicação contrária.
 8-O condutor neutro não poderá ser ligado ao condutor proteção terra após passar pelo quadro geral da instalação.
 9- O condutor de proteção nunca deverá ser ligado ao IDR.
 10- Utilizar um condutor neutro para cada circuito.
 11- Os circuitos foram numerados pela quantidade de fases, ou soia circuitos bifásicos contém dois púmeros.

- seja, circuitos bifásicos contém dois números.
- 12- Utilizar chuveiros com resistência blindada para evitar o desligamento incorreto do IDR.
- 13- As instalações elétricas deverão ser executadas respeitando os padrões de qualidade e segurança estabelecidos na norma
- NBR5410:2004. 14- Todos os pontos metálicos deverão ser aterrados.
- 15-A indicação de potência no pontos de luz são os valores calculados para dimensionamento dos circuitos conforme
- precrições da NBR 5410, não necessariamente correspondem ao valor exato das lampadas a serem instaladas.

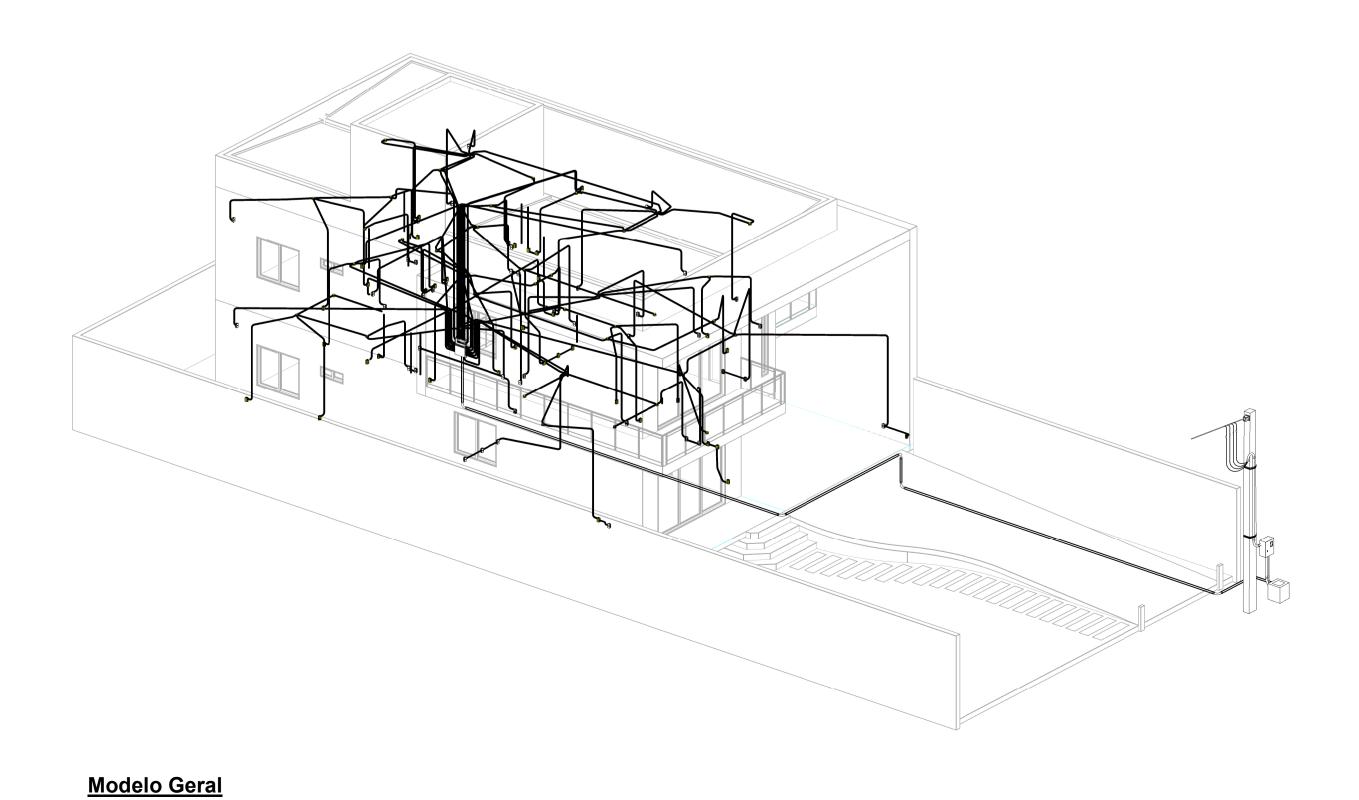
 16-Para As tomadas sem indicação de potência foi considera

- 17-Todos os eletrodutos de eletricidade deverão estar afastados 0,50m das tubulações de gás.

Legenda Planta Baixa

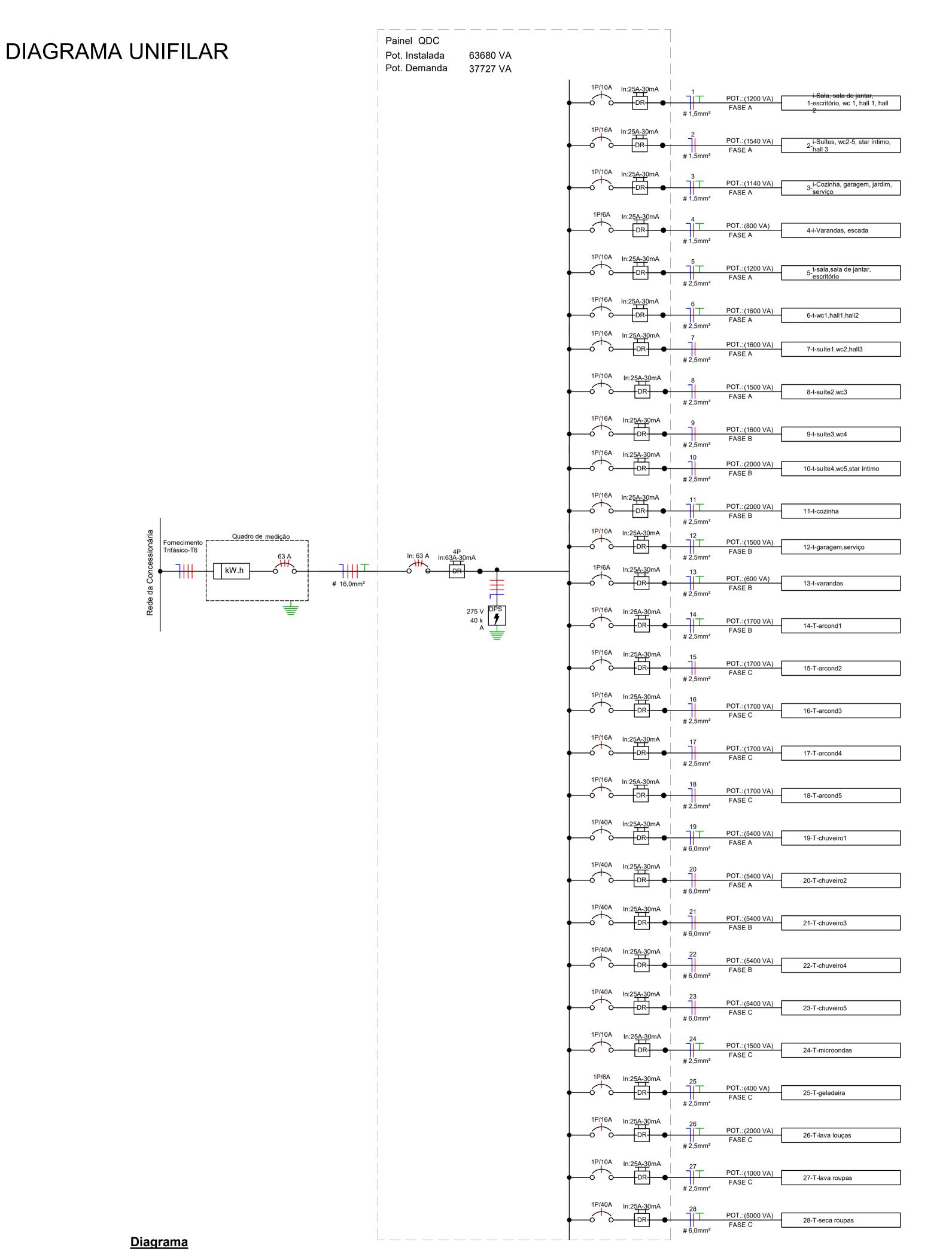
□ >	Tomada Baixa 2P+T, 10A, a 30cm do piso
□	Tomada Média 2P+T, 10A, a 120cm do piso
<u>-</u>	Tomada Alta 2P+T, 10A, a 210cm do piso
□	Tomada Baixa 2P+T, 20A, a 30cm do piso
□	Tomada Média 2P+T, 20A, a 120cm do piso
	Tomada Alta 2P+T, 20A, a 210cm do piso
	Tomada de Piso 2P+T,
	Tomada de Piso 2P+T,
□- ◯‡	Ponto de Força com placa saída de fio, a 230cm do piso
□-⊜⊧ h="x"	Ponto de Força com placa saída de fio, a "x" cm do piso
⊩	Interruptor simples de uma seção
□ ⊖ a b	Conjunto de 2 Interruptores
a □∰c	Conjunto de 3 Interruptores
□ <mark>—</mark> a	Interruptor paralelo (three-way)
□ - •	Ponto para acionamento da campainha
н	Ponto para campainha
	Ponto de Telefone, RJ11, a 30cm do piso
+++	Condutores Neutro, Fase, Terra e Retorno,
100	Ponto de luz embutido no teto
100 1 a	Ponto de luz na parede a 210cm do piso
	Eletroduto corrugado flexível embutido no teto ou na
	Eletroduto de PEAD embutido no
	Quadro geral de luz e força embutido a 1,50 do piso
ME	Caixa para medidor
	Caixa de passagem no piso
	Eletroduto que sobe
	Eletroduto que desce
	Eletroduto que passa
	Eletroduto que passa

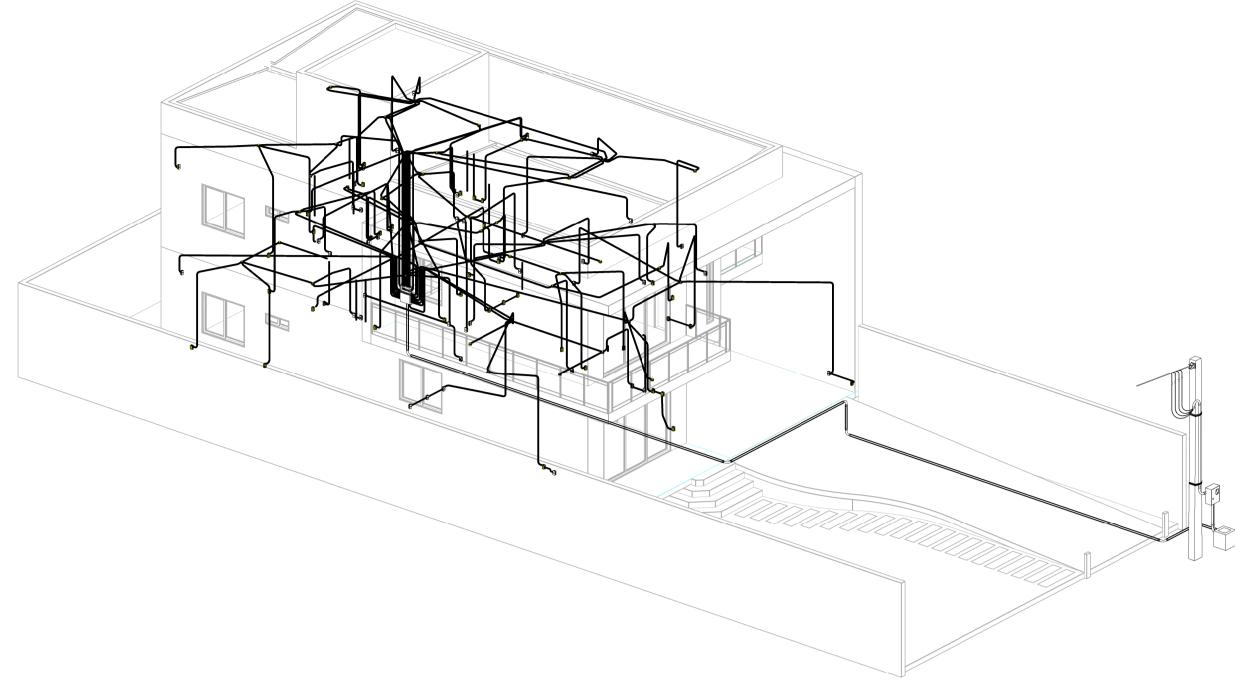
	OBRA:	
	CLIENTE:	
	ENDEREÇO:	
	DATA: 04/04/2023	N° DA PRANCHA
	DESENHISTA: Kattarinne G.	FOLHA
ARQUITETO:	,	03 / 008
CAU:		ESCALA: 1:50

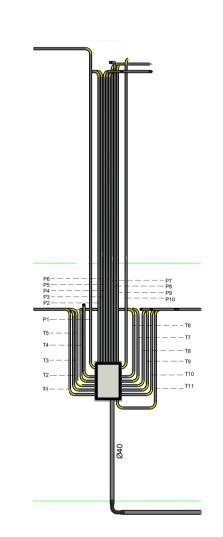

	Ca	rga de Iluminação	da Planta	Residencial		Carga de Tomadas				
	Cômodo	Perímetro	Área	Potência utilizada	Quantidade de Tomadas de Uso Geral	W	Quantidade de Tomadas de Uso Específico	W	Potência Total	
	Sala	21,34	26,11	480	5	500	-		980	
	Sala de jantar	16,25	16,48	220	4	400	-		620	
	Escritório	13,70	11,55	200	3	300	1	1700	2200	
	WC1	8,00	3,51	100	2	1200	1	5400	6700	
	Cozinha	15,65	15,31	240	5	2000	3	3900	6140	
Térreo	Área de Serviço	7,70	3,43	100	2	1200	2	6000	7300	
	Garagem	22,50	31,50	700	3	300	-		1000	
	Varanda 1	28,00	18,75	200	1	100	-		300	
	Jardim	22,70	13,48	100	0	0	-		100	
	Hall 1	11,00	4,80	100	3	300	-		400	
	Hall 2	5,40	1,82	100	1	100	-		200	
	Hall 3	5,80	1,94	100	0	0	-		100	
	Escada	11,20	7,83	100	0	0	-		100	
	Star intimo	17,90	11,80	200	4	400	-		600	
	Suíte 1	16,60	13,00	200	4	400	1	1700	2300	
	WC 2	8,00	3,51	100	2	1200	1	5400	6700	
	Suíte 2	13,60	11,31	200	3	300	1	1700	2200	
Davinsanta 1	WC 3	8,00	3,51	100	2	1200	1	5400	6700	
Pavimento 1	Varanda 2	10,60	5,46	100	1	100	-		200	
	Suíte 3	17,00	14,95	220	4	400	1	1700	2320	
	WC 4	8,00	3,51	100	2	1200	1	5400	6700	
	Varanda 3	13,56	7,42	100	2	200	-		300	
	Suíte 4	16,40	16,75	220	4	400	1	1700	2320	
	WC 5	8,60	3,90	100	2	1200	1	5400	6700	
	Varanda 4	26,40	14,28	300	2	200	-		500	
			Toal	4680	Total	13600	Total	45400	Total	

	Tomadas de uso específico													
				Ar condicionado BTUs										
Cômodo	Área	Pessoas	Eletrodomésticos	BTUs Calculado		BTUs utilizado	W							
Escritório	11,55	4	3	10530		12500	1700							
Suíte 1	13,00	4	3	11400		12500	1700							
Suíte 2	11,31	4	3	10386		12500	1700							
Suíte 3	15,83	4	3	13098		12500	1700							
Suíte 4	16,75	4	3	13650		12500	1700							

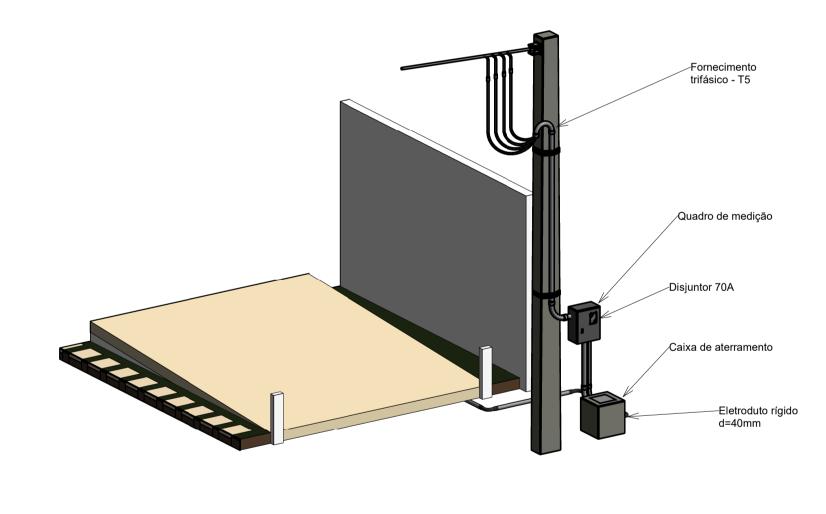
Eletrodoméstico	W
Chuveiro	5400
Secadora de roupa	5000
Lavadora de roupas	1000
Lavadora de louças	2000
Microondas	1500
Geladeira	400

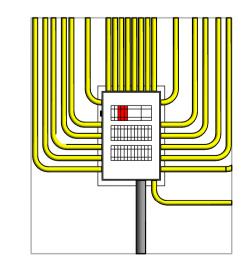

POTÊNCIA INSTALADA 63680


DEMANDA (W) 37727 Fornecimento trifásico


Tabela Resumo dos Circuitos												
Circuito		Tensão(v)	Local		cia(W)	Corrente	Disjuntor	Seção do condutor	Fase			
Número	Tipo	Tensao(v)		Individual	Total	Corrente	Disjuntor	ocção do conductor	Tuse			
1	cial		Sala Sala de jantar Escritório WC 1 Hall1 Hall2	480 220 200 100 100 100	1200	5,45	10,00	1,50	А			
2	lluminação social	220	Suíte 1 WC 2 Suíte 2 WC 3 Suíte 3 WC 4 Suíte 4 WC 5 Star íntimo Hall 3	200 100 200 100 220 100 220 100 200 100	1540	7,00	15,00	1,50	А			
3			Cozinha Garagem Área de serviço Jardim	240 700 100 100	1140	5,18	15,00	1,50	А			
4	lluminação serviço	220	Varanda 2 Varanda 3 Varanda 4 Varanda 1 Escada	100 100 300 200 100	800	3,64	6,00	1,50	А			
5			Sala Sala de jantar Escritório	500 400 300	1200	5,45	10,00	2,50	А			
6			WC 1 Hall 1 Hall 2	1200 300 100	1600	7,27	16,00	2,50	А			
7	TUG's Soc.	220	Suíte 1 WC 2 Hall 3	400 1200 0	1600	7,27	16,00	2,50	А			
8			Suíte 2 WC 3	300 1200	1500	6,82	10,00	2,50	А			
9			Suíte 3 WC 4	400 1200	1600	7,27	16,00	2,50	В			
10			Suíte 4 WC 5 Star íntimo	400 1200 400	2000	9,09	16,00	2,50	В			
11			Cozinha	2000	2000	9,09	16,00	2,50	В			
12			Garagem Área de serviço	300 1200	1500	6,82	10,00	2,50	В			
13	TUG's Serv.1	220	Varanda 2 Varanda 3 Varanda 4 Varanda 1	100 200 200 100	600	2,73	6,00	2,50	В			
14	TUE's	220	Ar Cond.1	1700	1700	7,73	16,00	2,50	В			
15	TUE's	220	Ar Cond.2	1700	1700	7,73	16,00	2,50	С			
16 17	TUE's TUE's	220	Ar Cond.3 Ar Cond.4	1700 1700	1700 1700	7,73 7,73	16,00 16,00	2,50 2,50	C			
18	TUE's	220	Ar Cond.5	1700	1700	7,73	16,00	2,50	С			
19	TUE's	220	Chuveiro 1	5400	5400	24,55	30,00	4,00	А			
20	TUE's	220	Chuveiro 2	5400	5400	24,55	30,00	4,00	А			
21	TUE's	220	Chuveiro 3	5400	5400	24,55	30,00	4,00	В			
22	TUE's TUE's	220	Chuveiro 4 Chuveiro 5	5400 5400	5400 5400	24,55	30,00	4,00	В			
23	TUE's	220	Microondas	1500	1500	24,55 6,82	30,00 10,00	4,00 2,50	C			
25	TUE's	220	Geladeira	400	400	1,82	6,00	2,50	С			
26	TUE's	220	Lav.Louças	2000	2000	9,09	16,00	2,50	С			
27	TUE's	220	Lav.Roupas	1000	1000	4,55	10,00	2,50	С			
	TUE's	220	Sec.Roupas	5000	5000	22,73	30,00	4,00	С			

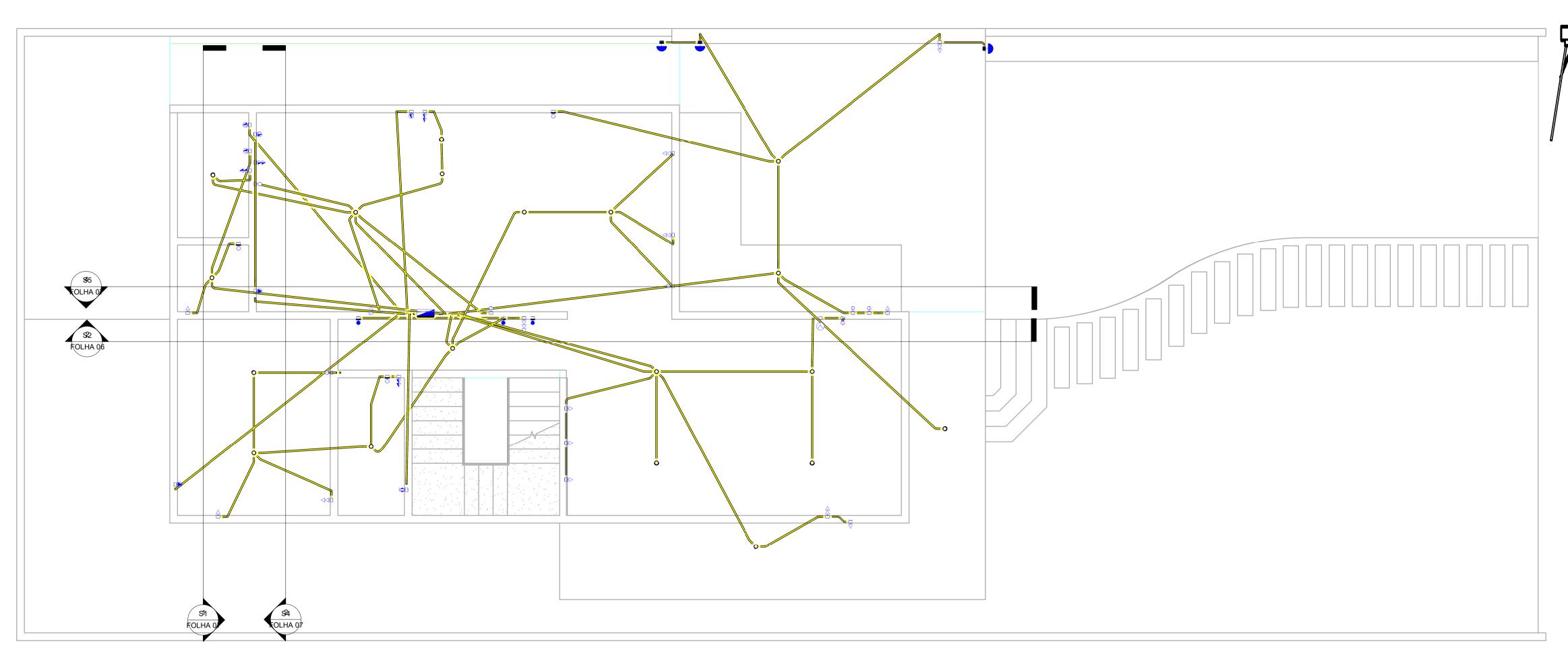
	OBRA:	
	CLIENTE:	
	ENDEREÇO:	
	DATA:	N° DA PRANCHA
	04/04/2023	
	DESENHISTA:	FOLHA
	Kattarinne G.	
ARQUITETO:		04 / 008
CAU:		ESCALA:




3D Projeto Elétrico

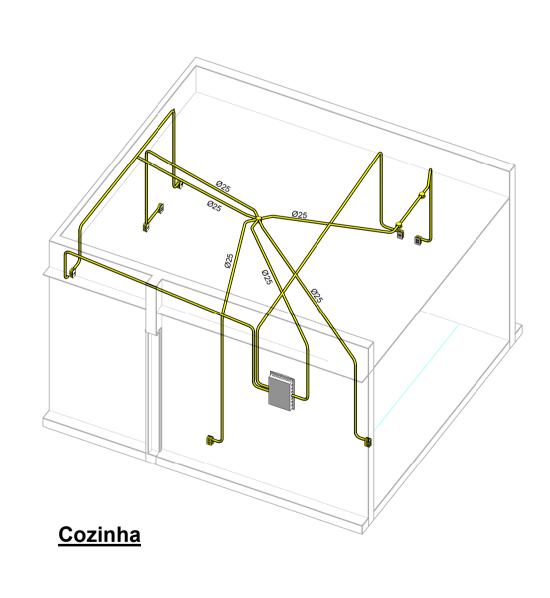
Detalhe distribuição

<u>Medidor</u>

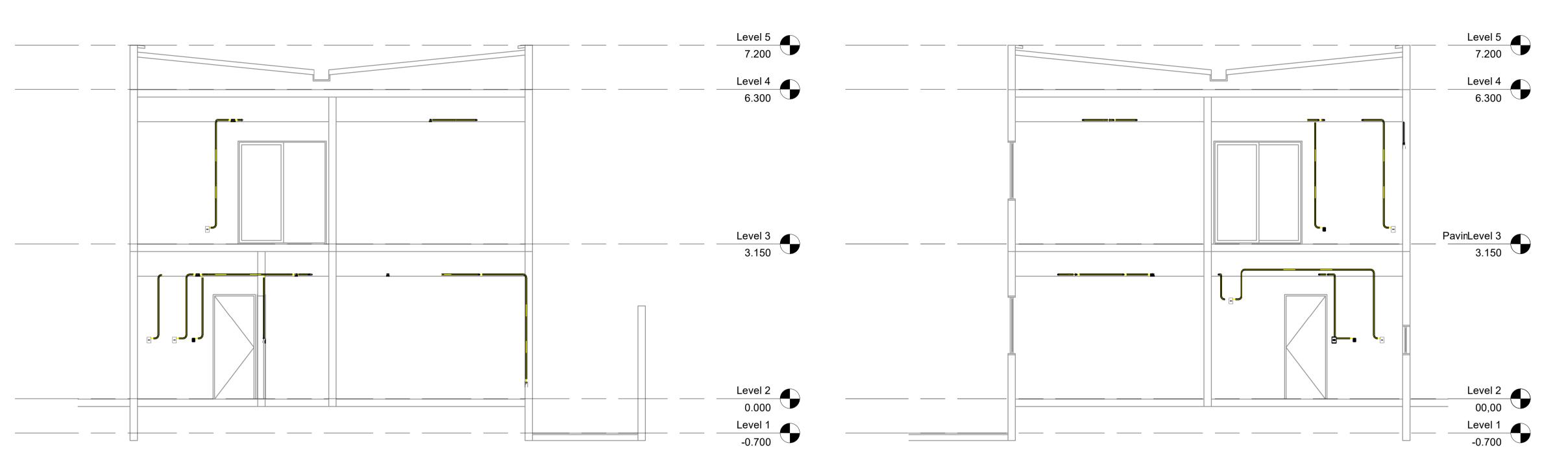


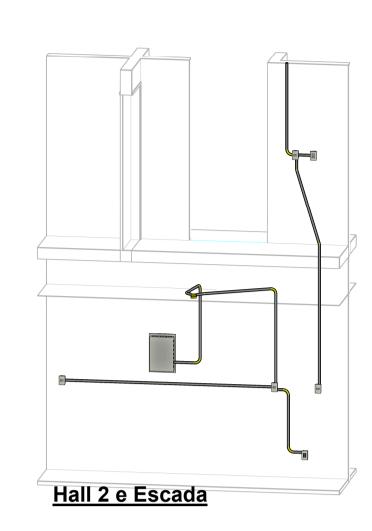
Detalhes do quadro de distribuição

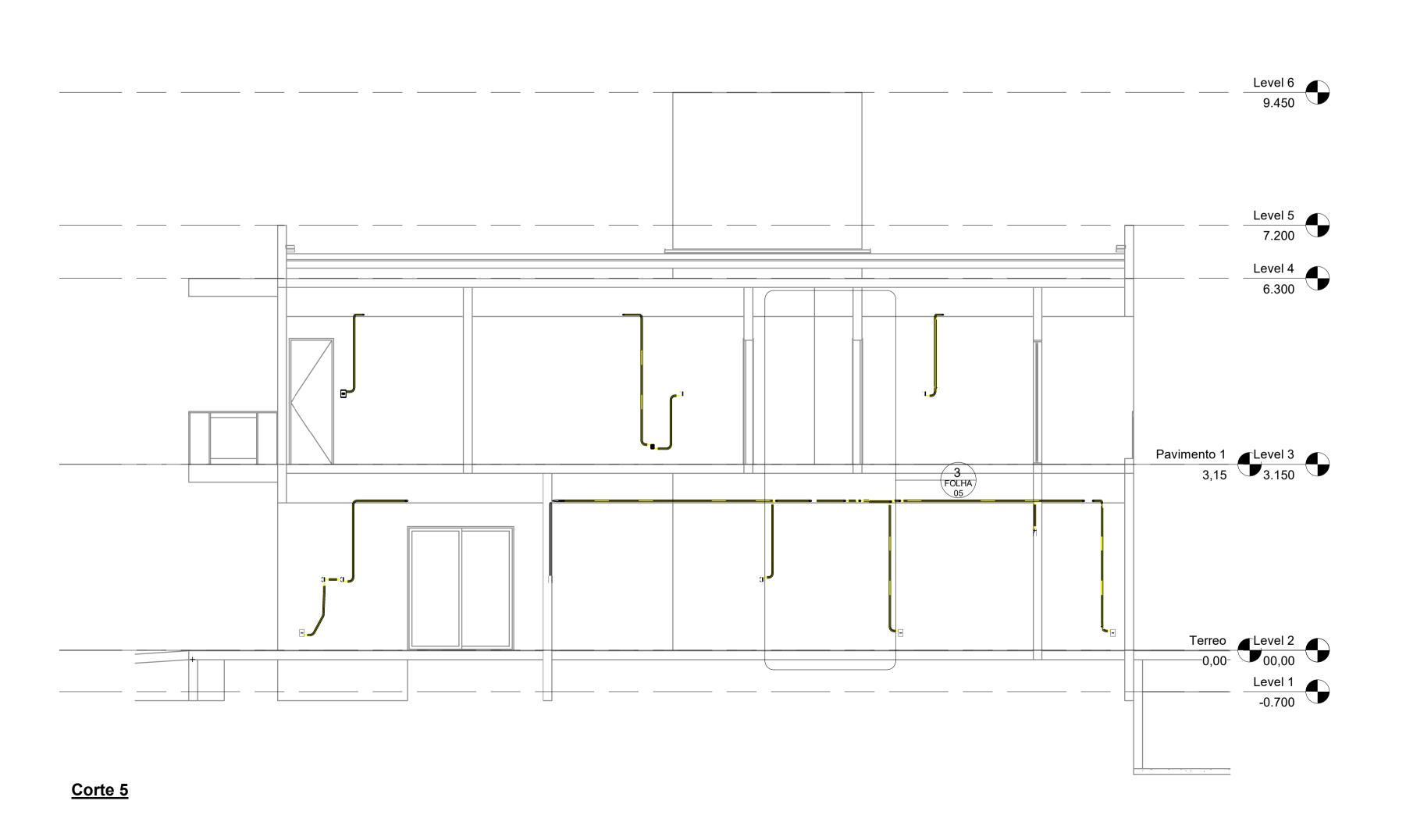
Fornecimento												
Fase	Fase Soma de corrente		IDR	Corrente nominal do DPS (A)								
Α	97,18	63	80	275-40KA								
В	91,82	63	80	275-40KA								
С	100,45	63	80	275-40KA								


OBRA:	
CLIENTE:	
ENDEREÇO:	
DATA:	N° DA PRANCHA
04/04/2023	
DESENHISTA:	FOLHA
Kattarinne G.	<u>_</u>
	05 / 008
	ESCALA:
	Como indicado
	CLIENTE: ENDEREÇO: DATA: 04/04/2023

DETALHES ADICIONAIS

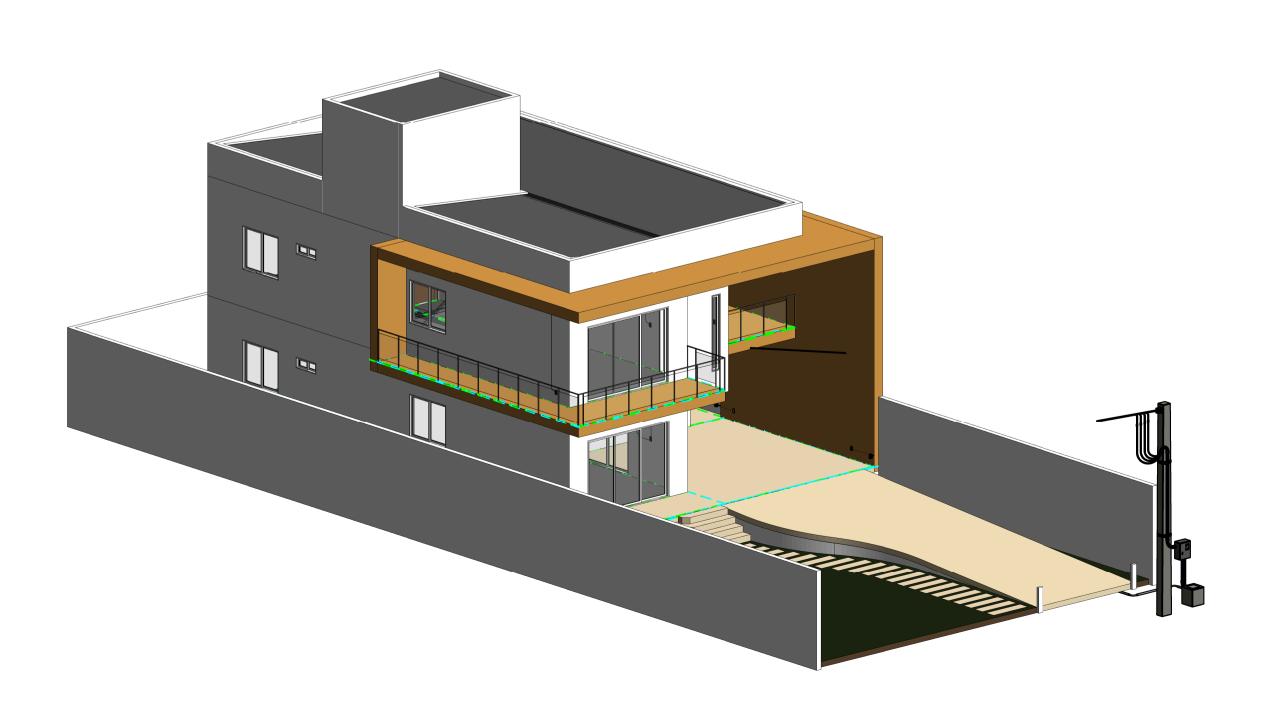



Cortes para detalhamento



	OBRA:	
	CLIENTE:	
	ENDEREÇO:	
	DATA: 04/04/2023	N° DA PRANCHA
	DESENHISTA: Kattarinne G.	FOLHA
ARQUITETO:	•	06 / 008
CAU:		ESCALA: 1:50

Corte 3 Corte 4


Modelo 3D

	OBRA:	
	CLIENTE:	
	ENDEREÇO:	
	DATA: 04/04/2023	N° DA PRANCHA
	DESENHISTA: Kattarinne G.	FOLHA 07 / 008
ARQUITETO:		07 / 008
CAU:		ESCALA: 1:50

Lista de Materiais - Componentes		
Descrição do material	Dimensões	Quantidade
Caixas de embutir		
Caixa de luz4''x2'', de embutir, em PVC nacor amarelo para eletroduto corrugado	4"x2"	82
Caixa octogonal 4"x2" com fundo móvel, empvc na cor amarela para eletroduto corrugado	4"x2"	40
Derivações para eletrodutos de PCV rígido		
Curva 90° para eletroduto rígido de PVC , DN40 mm, rosca Φ1.1/2'' BSP conforme ABNT NBR 15465	Ф1.1/2''	7
Luva para eletroduto de PVC rígido, DN40mm, rosca Φ1.1/2'' BSP conforme ABNT NBR 15465	Ф1.1/2''	14
Disjuntores e proteção		
DPS-Disjuntor de Proteção contra Surtos, monopolar,tensão nominalde operação 127/220V, máxima tensão de operação contínua 275V	VCL 275V 40KA Slim	1
DR-Interruptor Diferencial Residual 80 A	80 A	29
Disjuntor Monopolar 6A Curva C, conforme a ABNT NBR NM60898, encaixe perfil DN16	C 6 A	3
Disjuntor Monopolar 10A Curva C, conforme a ABNT NBR NM60898, encaixe perfil DN16	C 10 A	6
Disjuntor Monopolar 15A Curva C, conforme a ABNT NBR NM60898, encaixe perfil DN16	C 15 A	2
Disjuntor Monopolar 30A Curva C, conforme a ABNT NBR NM60898, encaixe perfil DN16	C 16 A	11
Disjuntor Monopolar 16A Curva C, conforme a ABNT NBR NM60898, encaixe perfil DN16	C 30 A	6
Disjuntor Tripolar 30A Curva C, conforme a ABNT NBR NM60898, encaixe perfil DN16	C 63 A	29
Interruptores		
Conjunto montado com 1 Interruptor paralelo, 10A 250V, 4"x2"	1P, 4"x2"	4
Conjunto montado com 1 Interruptor simples, 10A 250V, 4''x2''	1S, 4"x2"	10
Conjunto montado de Interruptor com 2 teclas simples, 4"x2"	2xS, 4"x2"	10
Conjunto montado de Interruptor com 3 teclas simples, 4"x2"	3xS, 4"x2"	3
Padrão de entrada		
Ramal de Entrada Individual com Saida Subterrânea		1
Placa de saída de fio		
Conjunto montado de 1 Placa para Saída de Fio Ø11mm, 4''x2''	Saída sem fio	5
Quadros		
Quadro de Distribuição 36/43 Disjuntores, de embutir, fabricado em PVC antichamas, com barramento de terra e neutro	36/43 disjuntores	1
Tomadas Tomadas		
Conjunto montado de 1 Tomada 2P+T, 10A, posto horizontal, 4''x2''	10 A, 4"x2"	14
Conjunto montado de 1 Tomada 2P+T, 20A, posto horizontal, vermelha, 4''x2''	20 A, 4"x2"	10
Conjunto montado de 2 Tomadas 2P+T, 10A, postos horizontais, 4''x2''	2x10 A, 4"x2"	22
Conjunto montado de 3 Tomadas 2P+T, 10A, postos horizontais, 4"x2"	10 A, 4"x2"	1

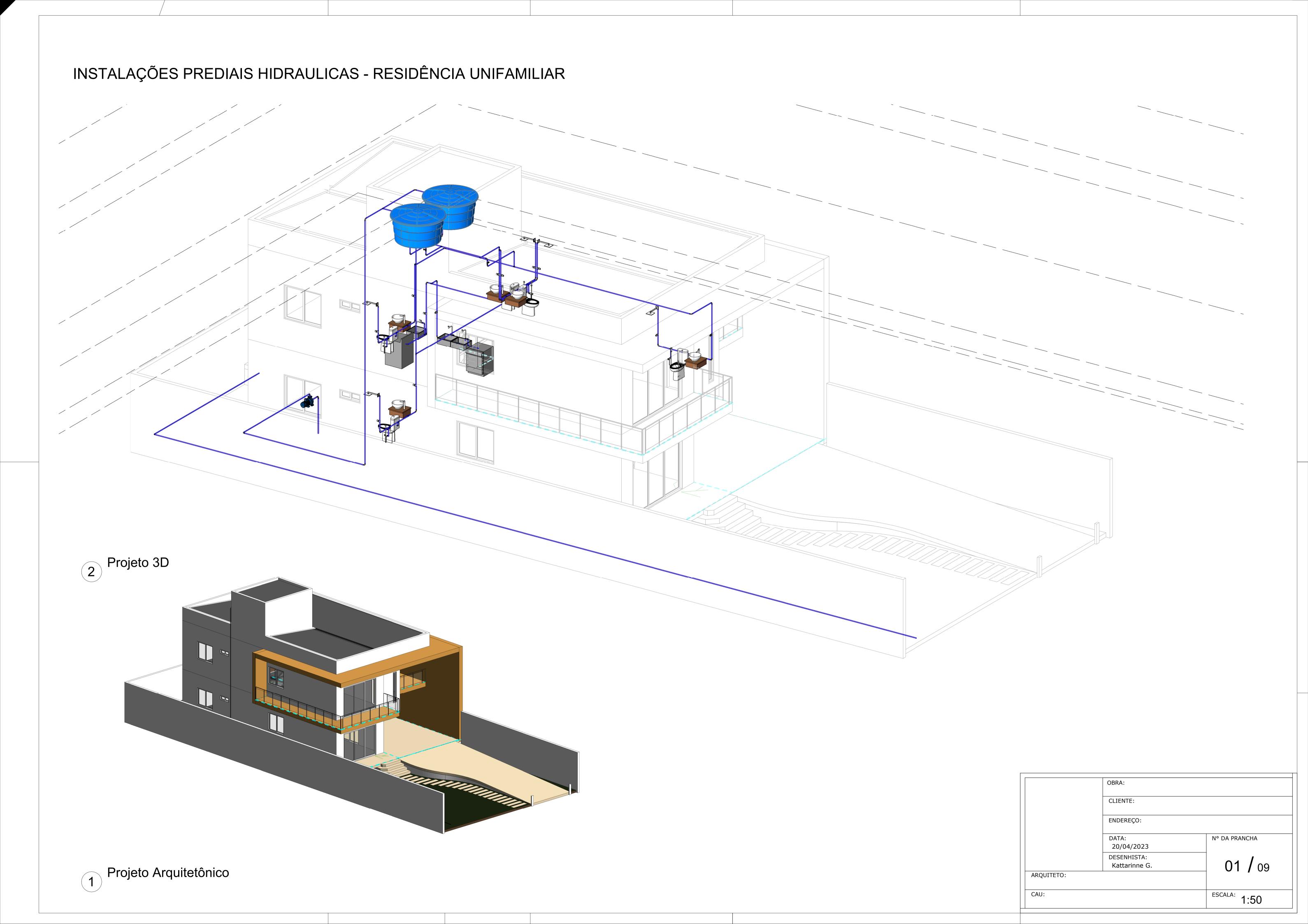
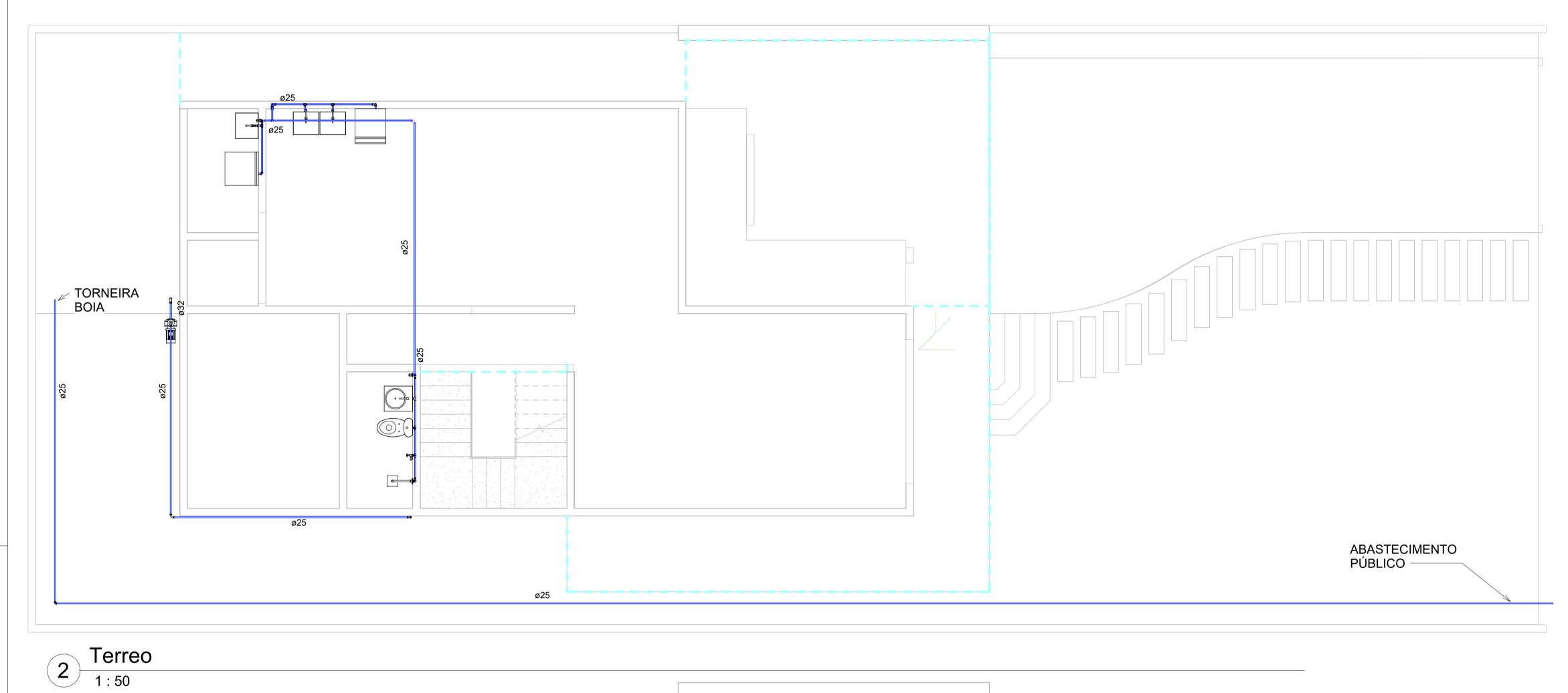

Tabela Quantitativo de Eletrodutos											
Descrição do material	Diâmetro nominal(mm)	Comprimento(m)	Referência ou fabricante								
Eletroduto de PVC Rígido Roscável, anti chama, na cor preta, conforme NBR 15465	40	39,43	Tigre ou equivalente								
Eletroduto flexível corrugado, em PVC na cor amarelo antichamas, conforme NBR15465	25	537	Tigre ou equivalente								

Tabela Quantitativo de Cabos em Metros																	
FA-1,5mm²	FA-2,5mm ²	FA-4,0mm ²	FA-35mm ²	FB-2,5mm ²	FB-4,0mm ²	FB-35mm ²	FC-2,5mm ²	FC-4,0mm ²	FC-35mm ²	N-1,5mm ²	N-2,5mm ²	N-4,0mm ²	N-35mm ²	T-1,5mm ²	T-2,5mm ²	T-4,0mm ²	R-1,5mm ²
204	94	15	39	154	20	39	83	21	39	191	319	55	39	194	330	55	190,3



<u>Arquitetônico</u>

	OBRA:	
	CLIENTE:	
	ENDEREÇO:	
	DATA: 04/04/2023	N° DA PRANCHA
	DESENHISTA: Kattarinne G.	FOLHA 08 / 008
ARQUITETO:		08 / 008
CAU:		ESCALA:

PLANTAS BAIXAS

2) 1:50

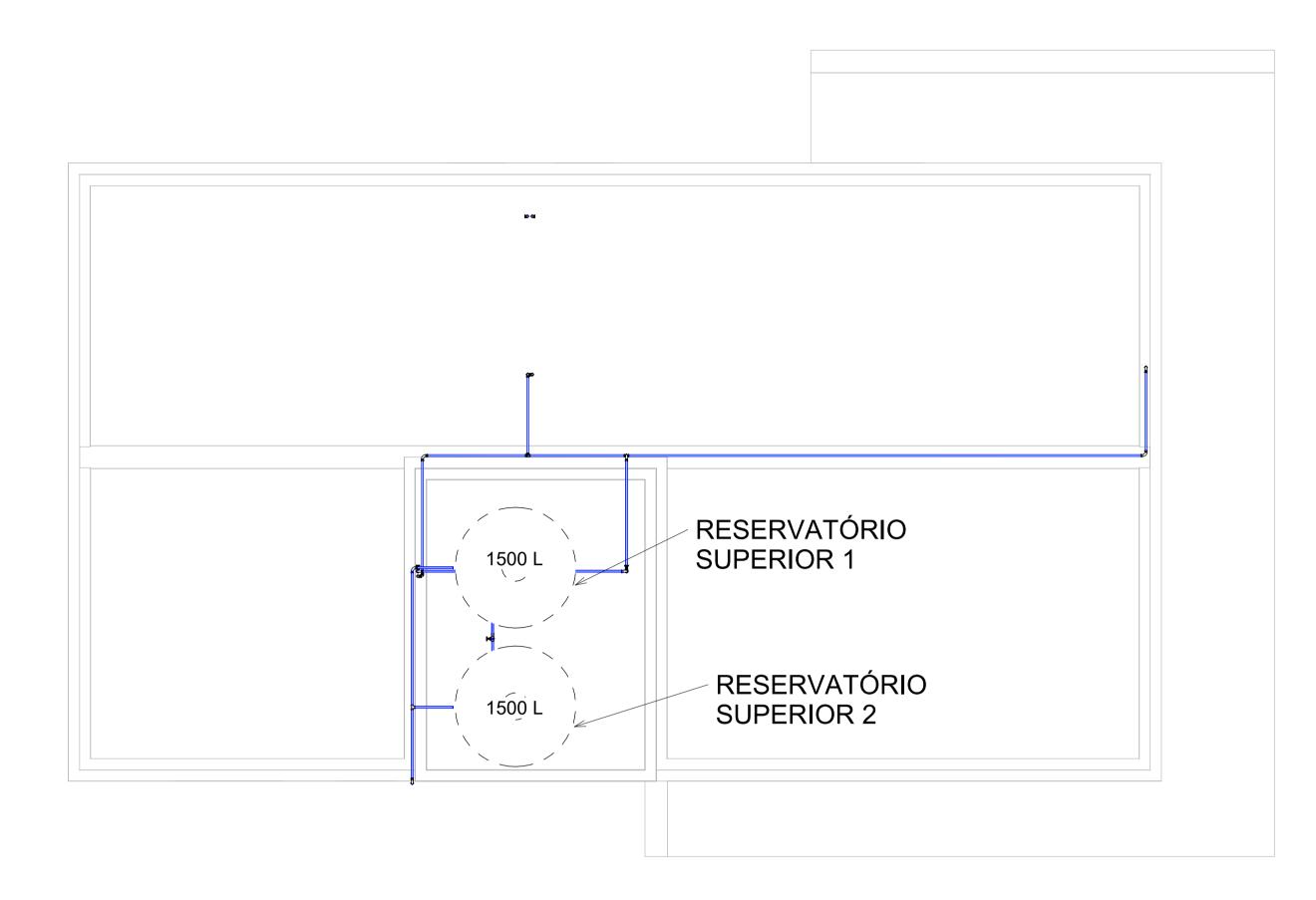
Pavimento 1

1:50

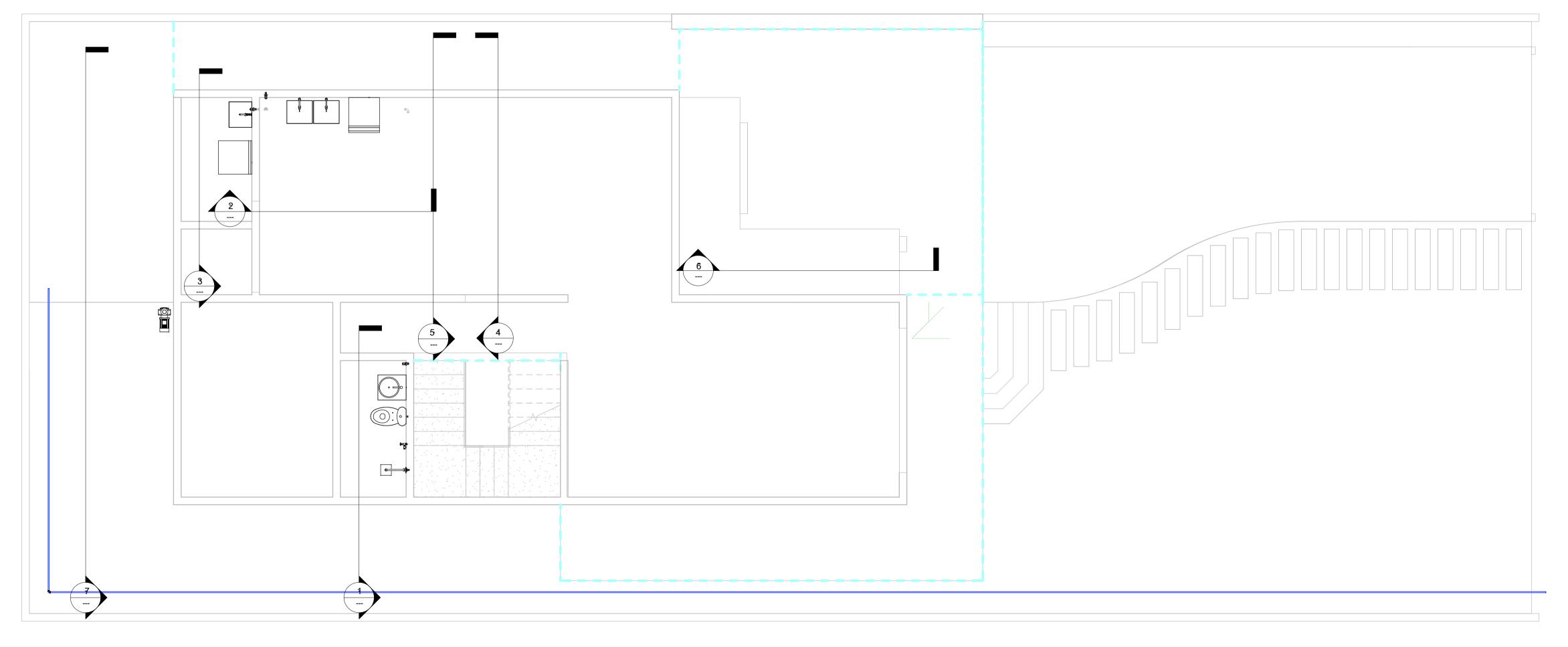
OBRA:

CLIENTE:

ENDEREÇO:


DATA:
04/28/23

DESENHISTA:
Autor


ARQUITETO:

CAU:

ESCALA:
1:50

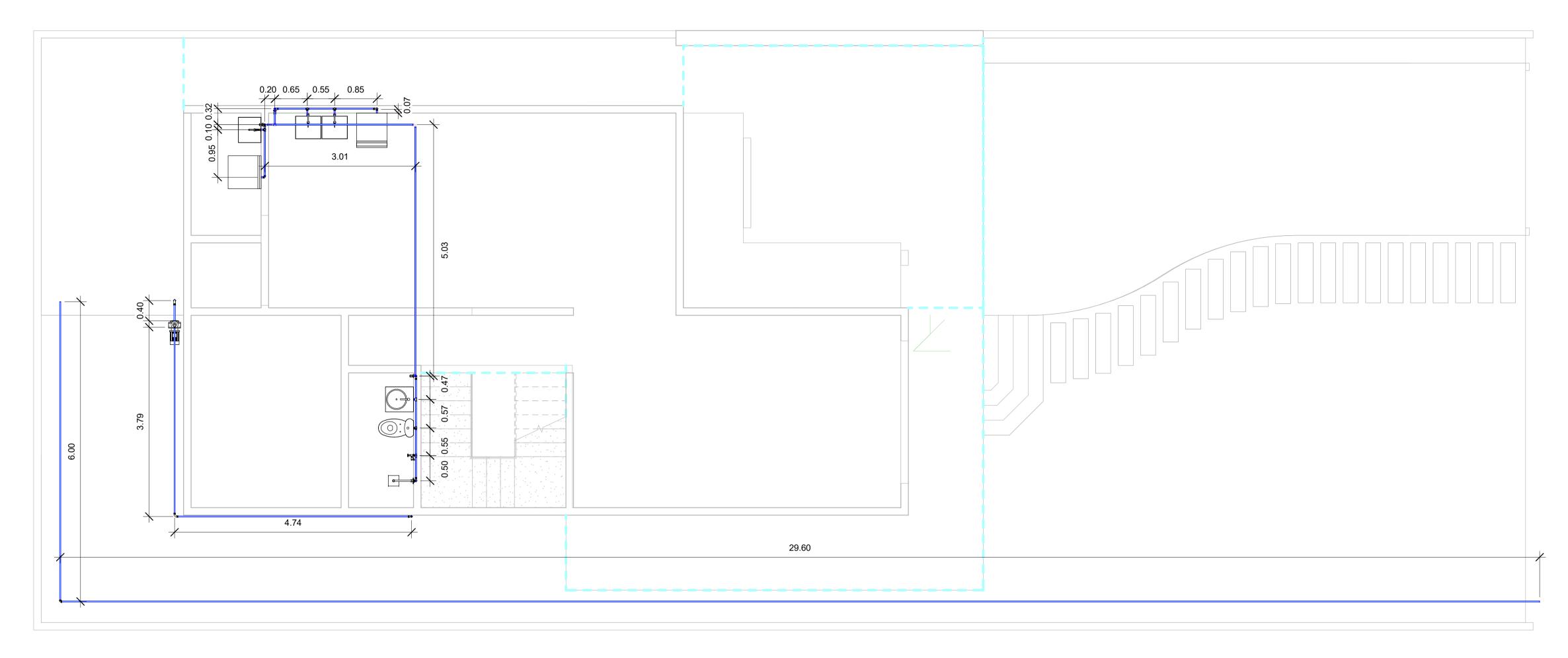
Coberta 1:50

OBRA:

CLIENTE:

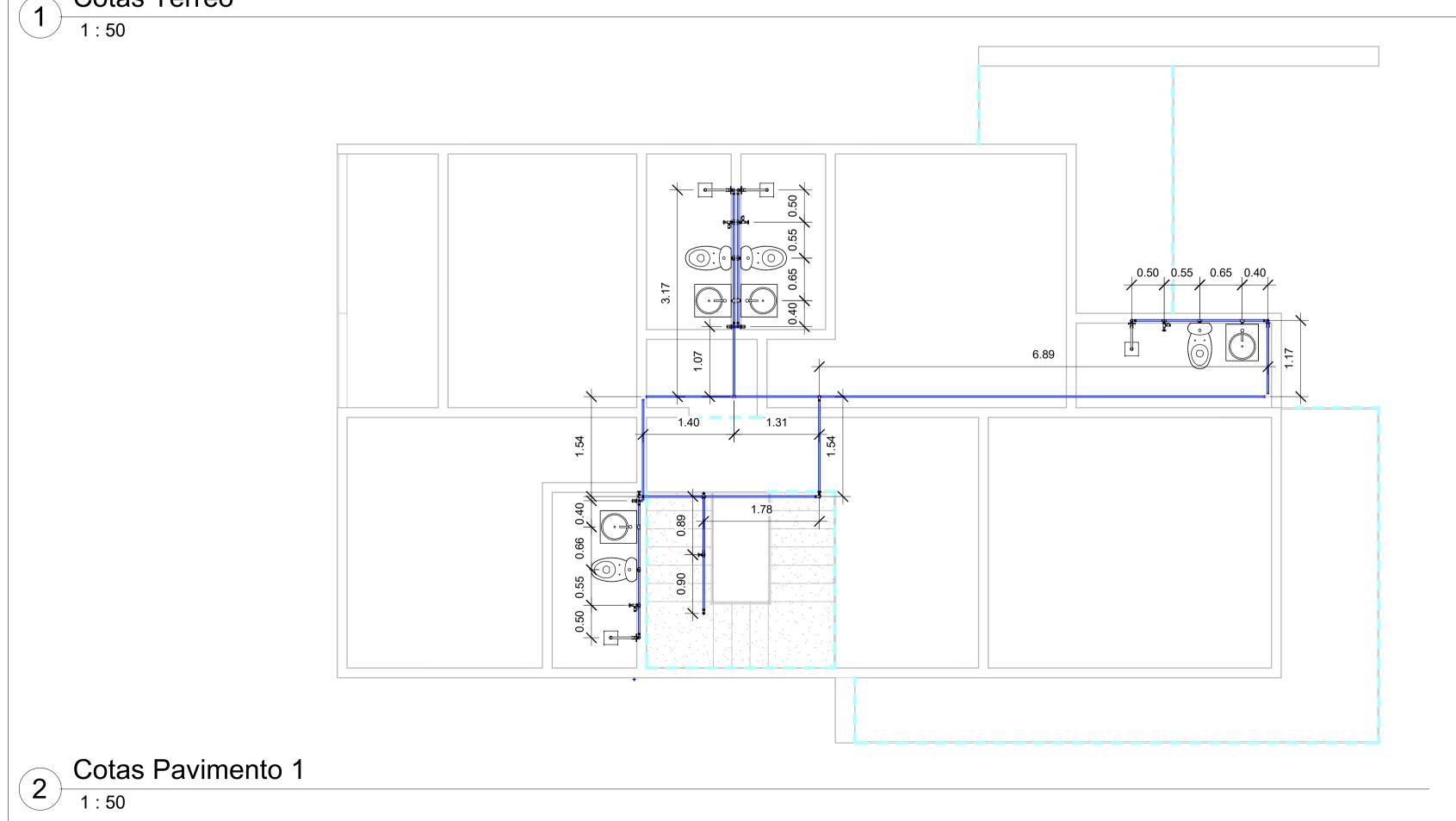
ENDEREÇO:

DATA:
20/04/2023

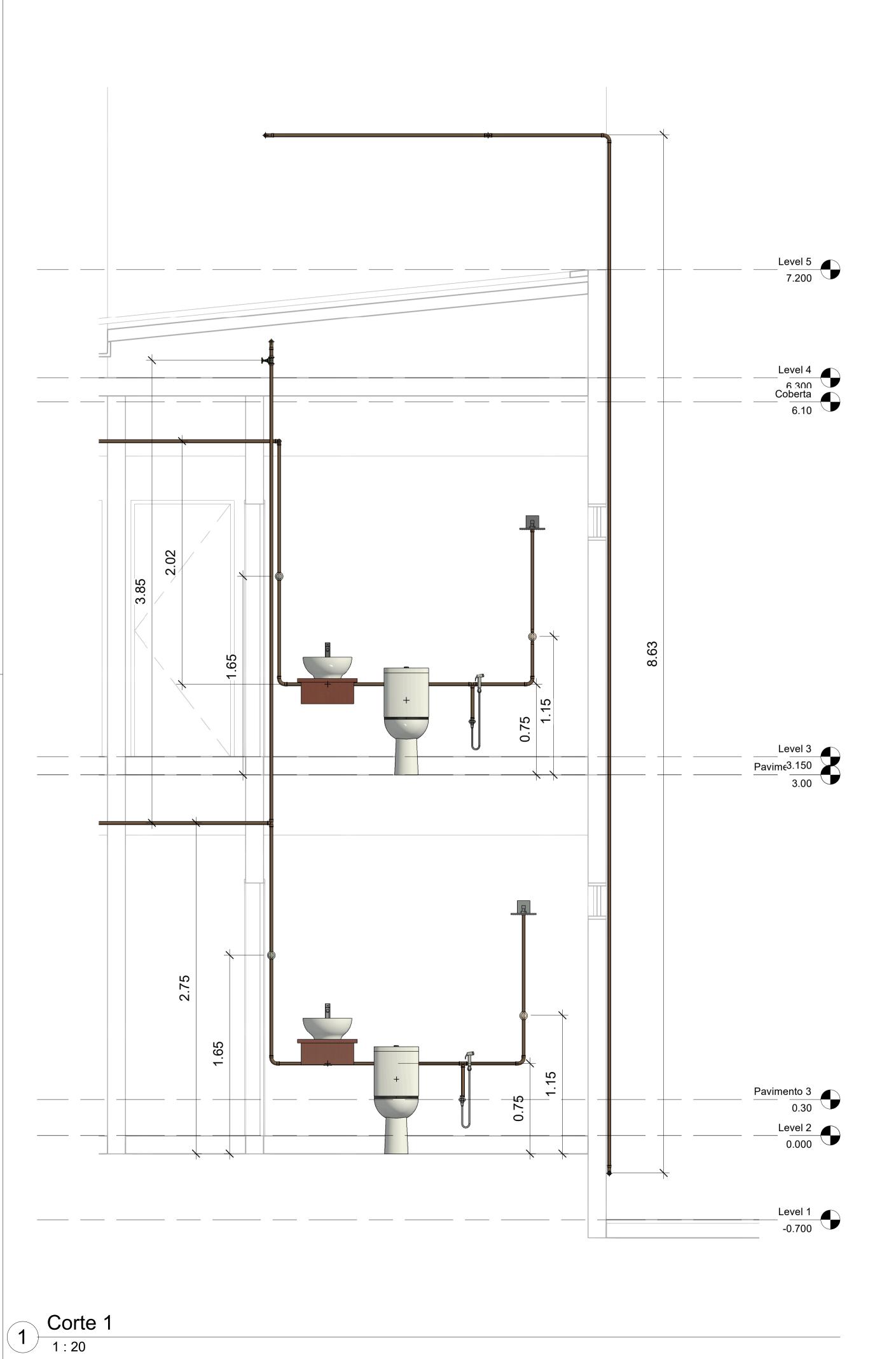

DESENHISTA:
Kattarinne G.

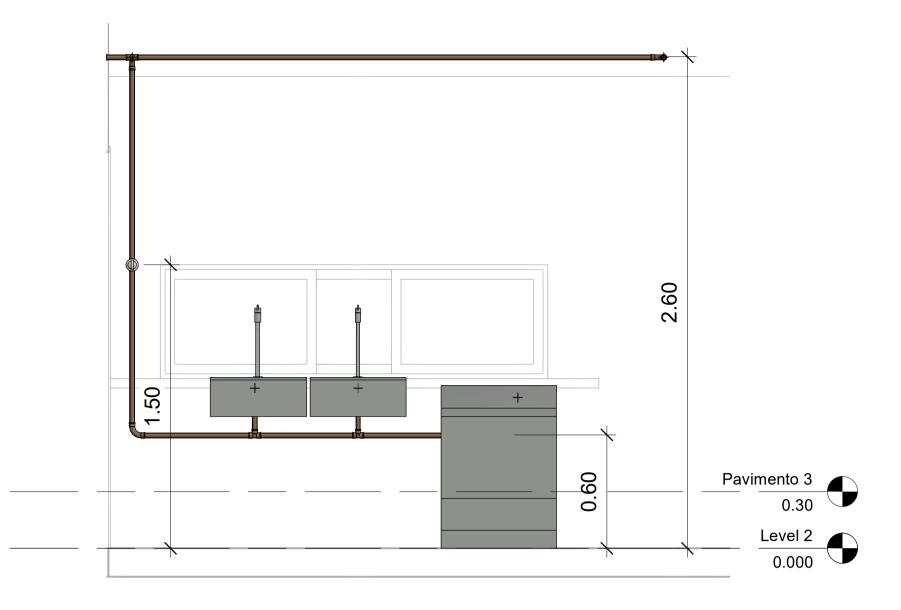
ARQUITETO:

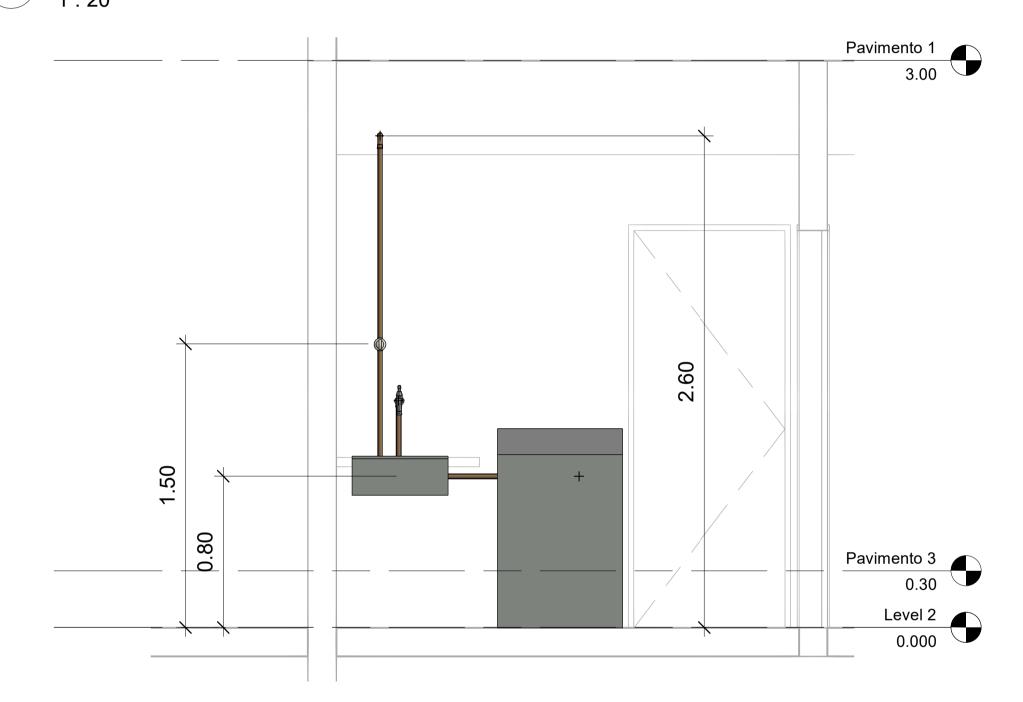
CAU:


ESCALA:
1:50

2 1:50

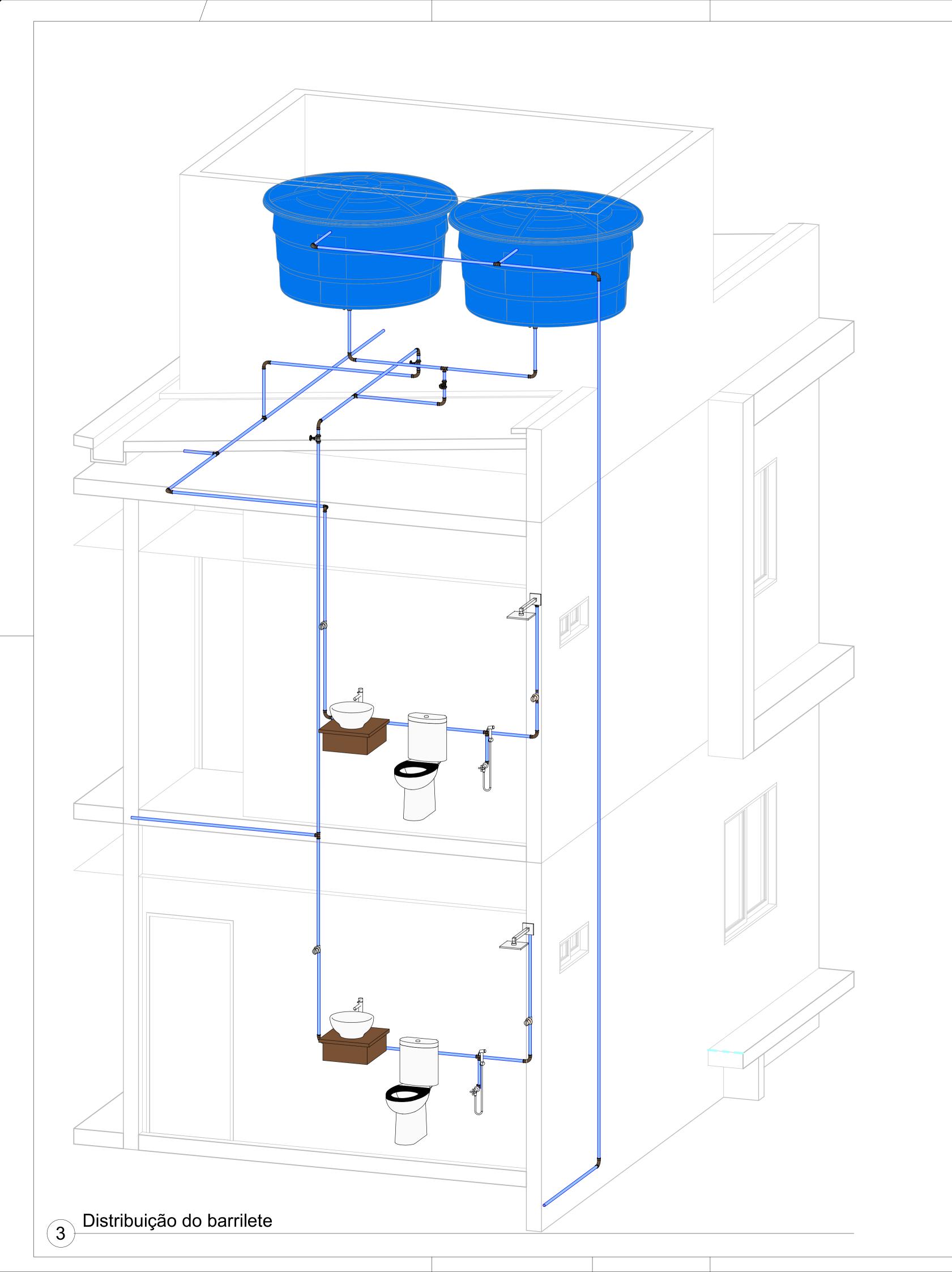

Cotas Terreo

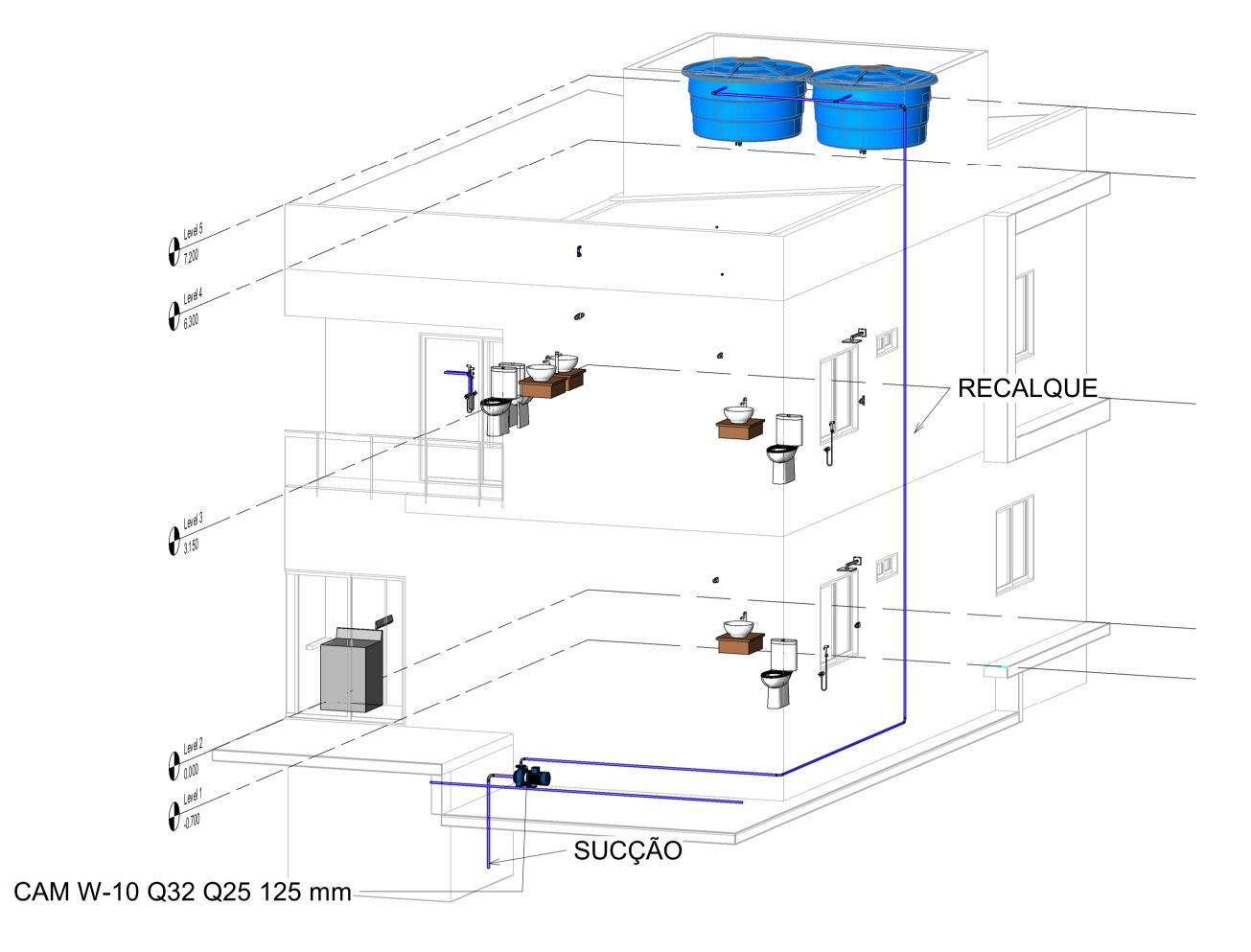

1:50


CLIENTE: ENDEREÇO: N° DA PRANCHA DATA: 04/28/23 DESENHISTA: Autor 04 / 09 ARQUITETO: ESCALA: 1:50 CAU:

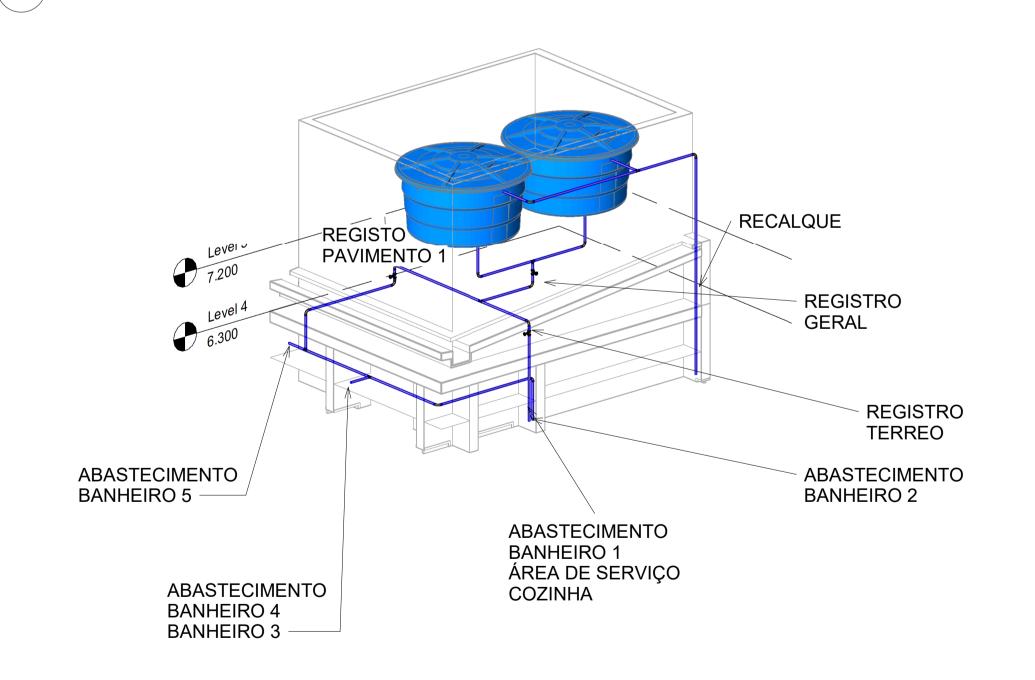
OBRA:

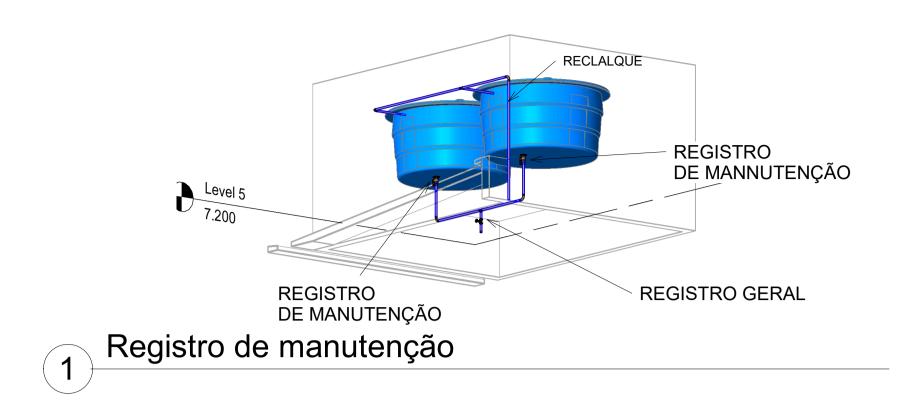


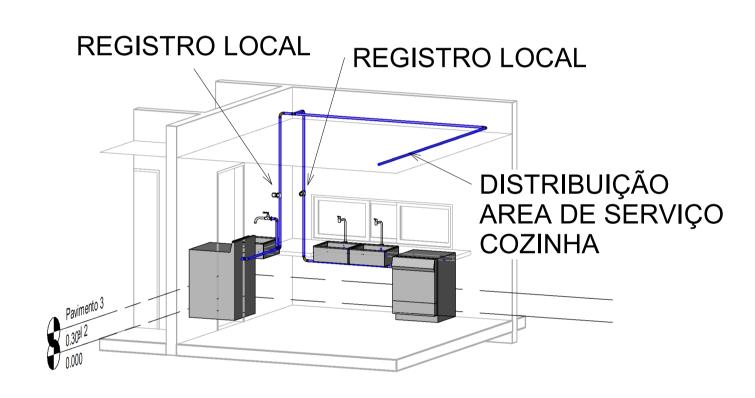

2 Corte 2 1:20

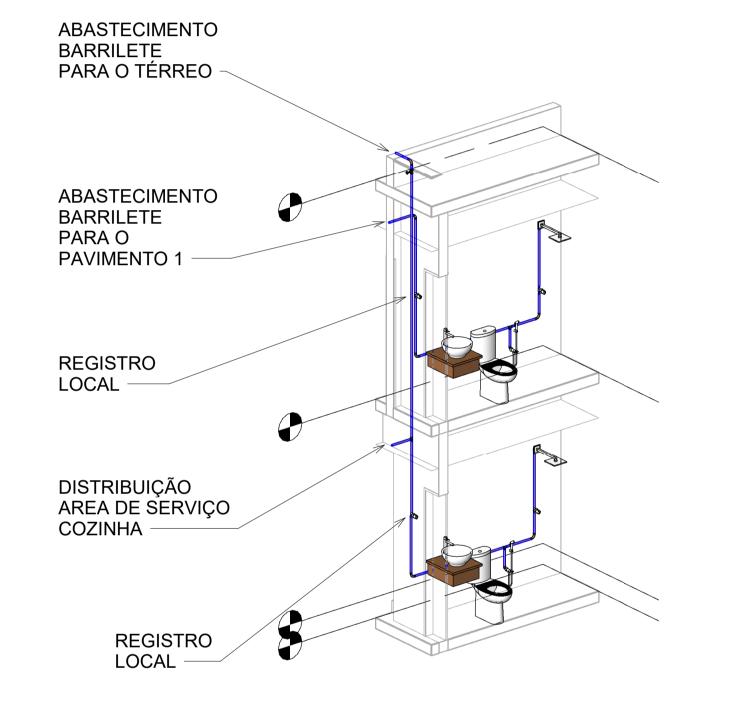


3 Corte 3 1:20

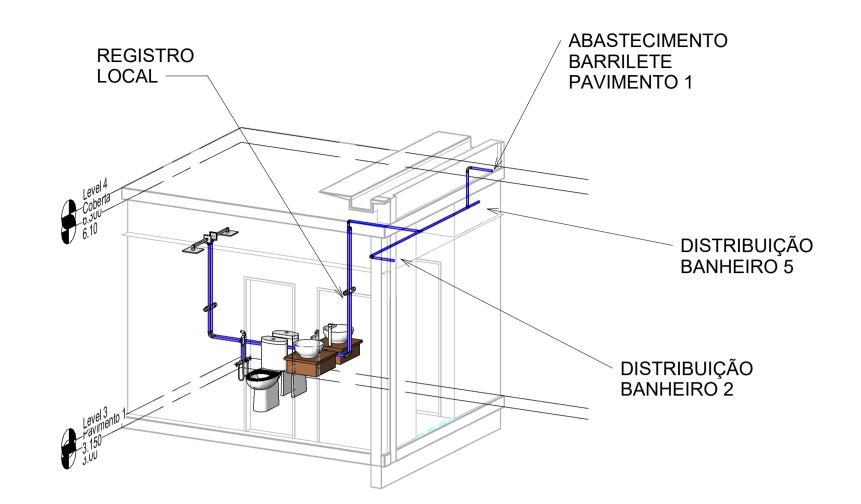

	OBRA:	
	CLIENTE:	
	ENDEREÇO:	
	DATA: 20/04/2023	N° DA PRANCHA
	DESENHISTA: Kattarinne G.	05 / 09
ARQUITETO:		
CAU:		ESCALA: 1:20

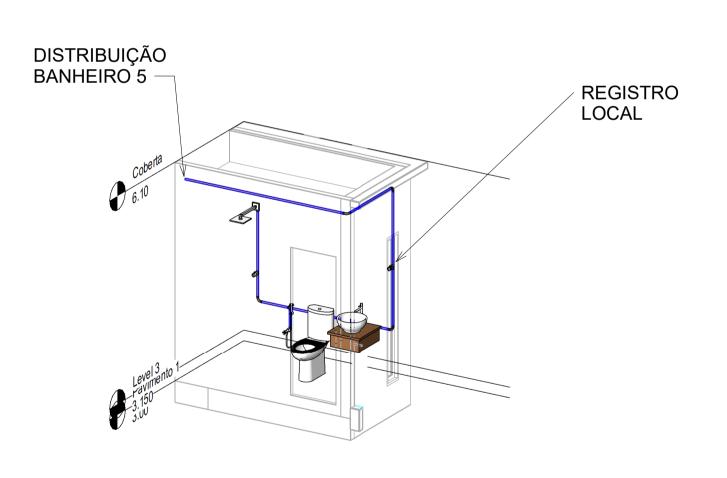


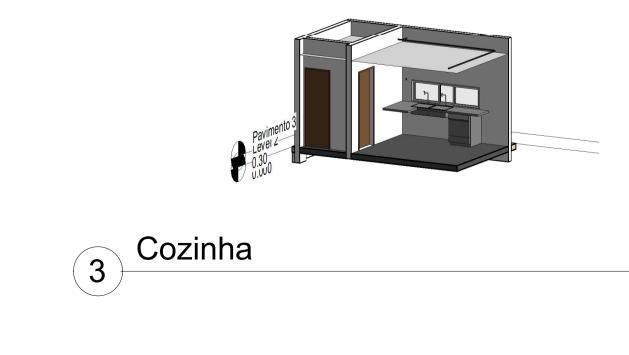

Sucção e recalque

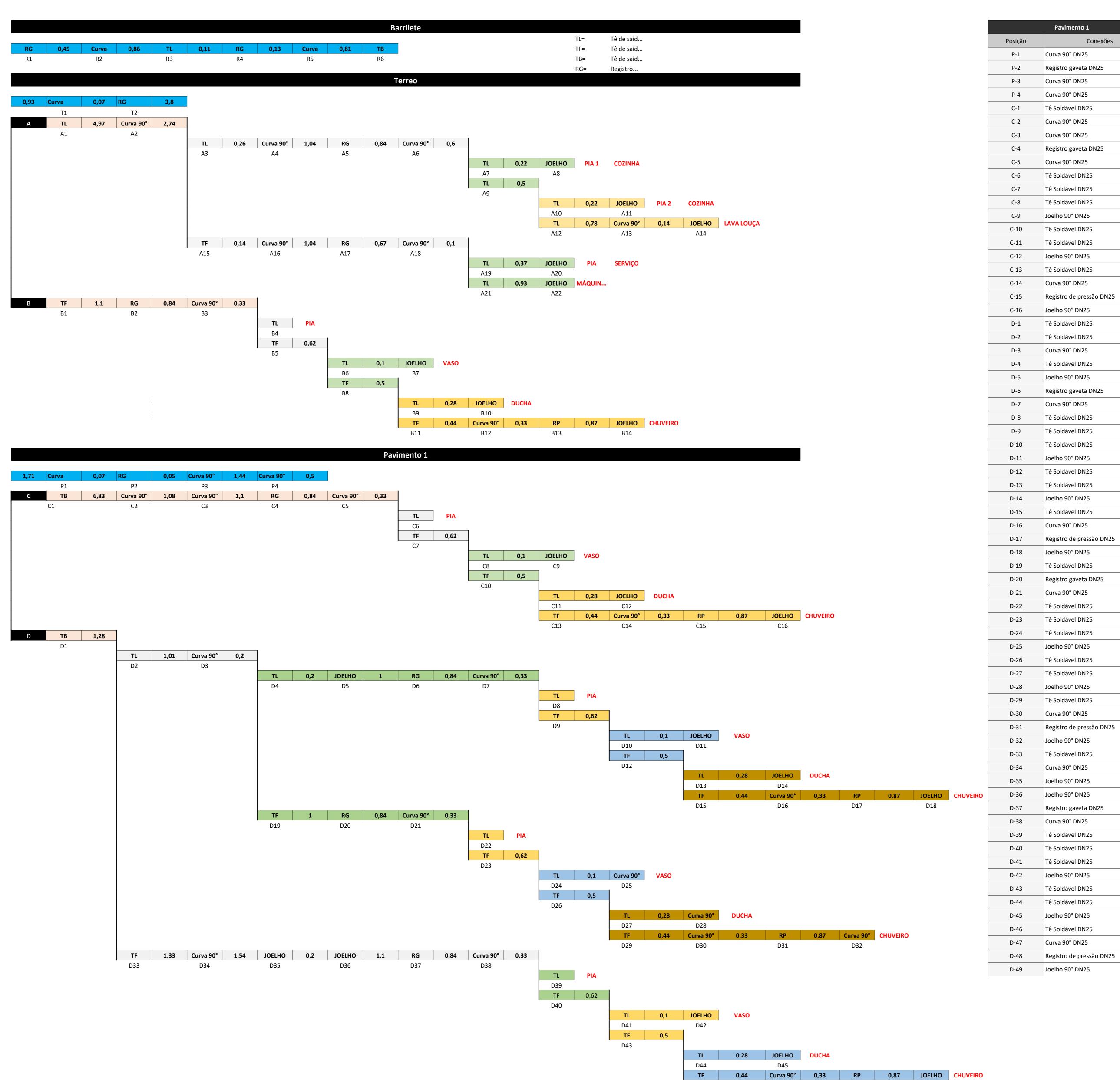

Detalhes do barrilete

	OBRA:	
	CLIENTE:	
	ENDEREÇO:	
	DATA:	N° DA PRANCHA
	20/04/2023	
	DESENHISTA:	
	Kattarinne G.	07 / 09
ARQUITETO:		01 7 09
CAU:		ESCALA:




Cozinha e área de serviço


Banheiro 1 e banheiro 2


Banheiro 3 e banheiro 4

6 Banheiro 5

Material para sucção e recalque

Material para abastecimento público

Unidade

unid

unid

unid

unid

Material para sucção e recalque Válvula de pé com crivo (32mm)

Válvula de Retenção Leve (25mm)

Bomba CAM W-10 Q32 Q25 125 mm

Curva 90º (32mm)

Curvas 90º (25mm) Tê soldável (25mm)

Curva 90º (32mm)

Torneiras boias

Tubo PVC soldável (25mm)

Tubo PVC soldável(32mm)

Saída (25mm) Torneiras boias

Posição	Pavimento 1 Conexões
P-1	Curva 90° DN25
P-2	Registro gaveta DN25
P-3	Curva 90° DN25
P-4	Curva 90° DN25
C-1	Tê Soldável DN25
C-2	Curva 90° DN25
C-3	Curva 90° DN25
C-4	Registro gaveta DN25
C-5	Curva 90° DN25
C-6	Tê Soldável DN25
C-7	Tê Soldável DN25
C-8	Tê Soldável DN25
C-9	Joelho 90° DN25
C-10	Tê Soldável DN25
C-11	Tê Soldável DN25
C-12	Joelho 90° DN25
C-13	Tê Soldável DN25
C-14	Curva 90° DN25
C-15	Registro de pressão DN25
C-16	Joelho 90° DN25
D-1	Tê Soldável DN25
D-2	Tê Soldável DN25
D-3	Curva 90° DN25
D-4	Tê Soldável DN25
D-5	Joelho 90° DN25
D-6	Registro gaveta DN25
D-7	Curva 90° DN25
D-8	Tê Soldável DN25
D-9	Tê Soldável DN25
D-10	Tê Soldável DN25
D-11	Joelho 90° DN25
D-12	Tê Soldável DN25
D-13	Tê Soldável DN25
D-14	Joelho 90° DN25
D-15	Tê Soldável DN25
D-16	Curva 90° DN25
D-17	Registro de pressão DN25
D-18	Joelho 90° DN25
D-19	Tê Soldável DN25
D-20	Registro gaveta DN25
D-21	Curva 90° DN25
D-22	Tê Soldável DN25
D-23	Tê Soldável DN25
D-24	Tê Soldável DN25
D-25	Joelho 90° DN25
D-26	Tê Soldável DN25
D-27	Tê Soldável DN25
D-28	Joelho 90° DN25
D-29	Tê Soldável DN25
D-30	Curva 90° DN25
D-31	Registro de pressão DN25
D-32	Joelho 90° DN25
D-33	Tê Soldável DN25
D-34	Curva 90° DN25
D-35	Joelho 90° DN25
D-36	Joelho 90° DN25
D-37	Registro gaveta DN25
D-38	Curva 90° DN25
D-39	Tê Soldável DN25
D-40	Tê Soldável DN25
D-41	Tê Soldável DN25
D-42	Joelho 90° DN25
D-43	Tê Soldável DN25
D-44	Tê Soldável DN25
D-45	Joelho 90° DN25

	TÉRREO
Posição	Conexões
T-1	Curva 90° DN25
T-2	Curva 90° DN25
A-1	Tê Soldável DN25
A-2	Curva 90° DN25
A-3	Tê Soldável DN25
A-4	Curva 90° DN25
A-5	Registro gaveta DN25
A-6	Curva 90° DN25
A-7	Tê Soldável DN25
A-8	Joelho 90° DN25
A-9	Tê Soldável DN25
A-10	Tê Soldável DN25
A-11	Joelho 90° DN25
A-12	Tê Soldável DN25
A-13	Curva 90° DN25
A-14	Joelho 90° DN25
A-15	Tê Soldável DN25
A-16	Curva 90° DN25
A-17	Registro gaveta DN25
A-18	Joelho 90° DN25
A-19	Tê Soldável DN25
A-20	Joelho 90° DN25
A-21	Tê Soldável DN25
A-22	Joelho 90° DN25
B-1	Tê Soldável DN25
B-2	Registro gaveta DN25
B-3	Curva 90° DN25
B-4	Tê Soldável DN25
B-5	Tê Soldável DN25
B-6	Tê Soldável DN25
B-7	Joelho 90° DN25
B-8	Tê Soldável DN25
B-9	Tê Soldável DN25
B-10	Joelho 90° DN25
B-11	Tê Soldável DN25

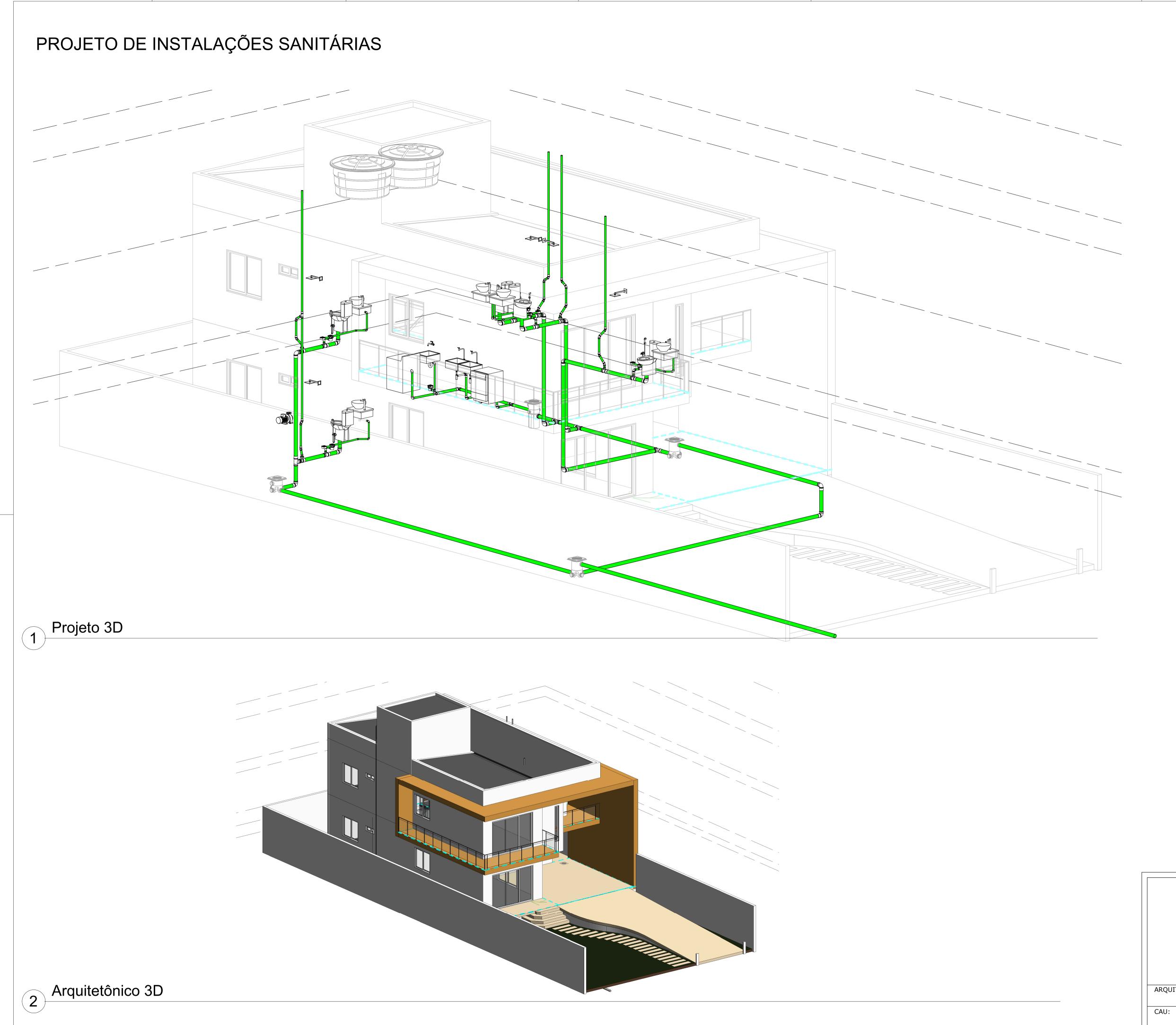
Posição	BARRILETE Conexões
R-1	Registro gaveta DN25
R-2	Curva 90° DN25
R-3	Tê Soldável DN25
R-4	Registro gaveta DN25
R-5	Curva 90° DN25
R-6	Tê Soldável DN25

TUBO PVC DN25		
Trecho	Comprimento (m)	
Térreo	24,84	
Pavimento 1	35,61	
Barrilete	2,36	
Total	60.45	

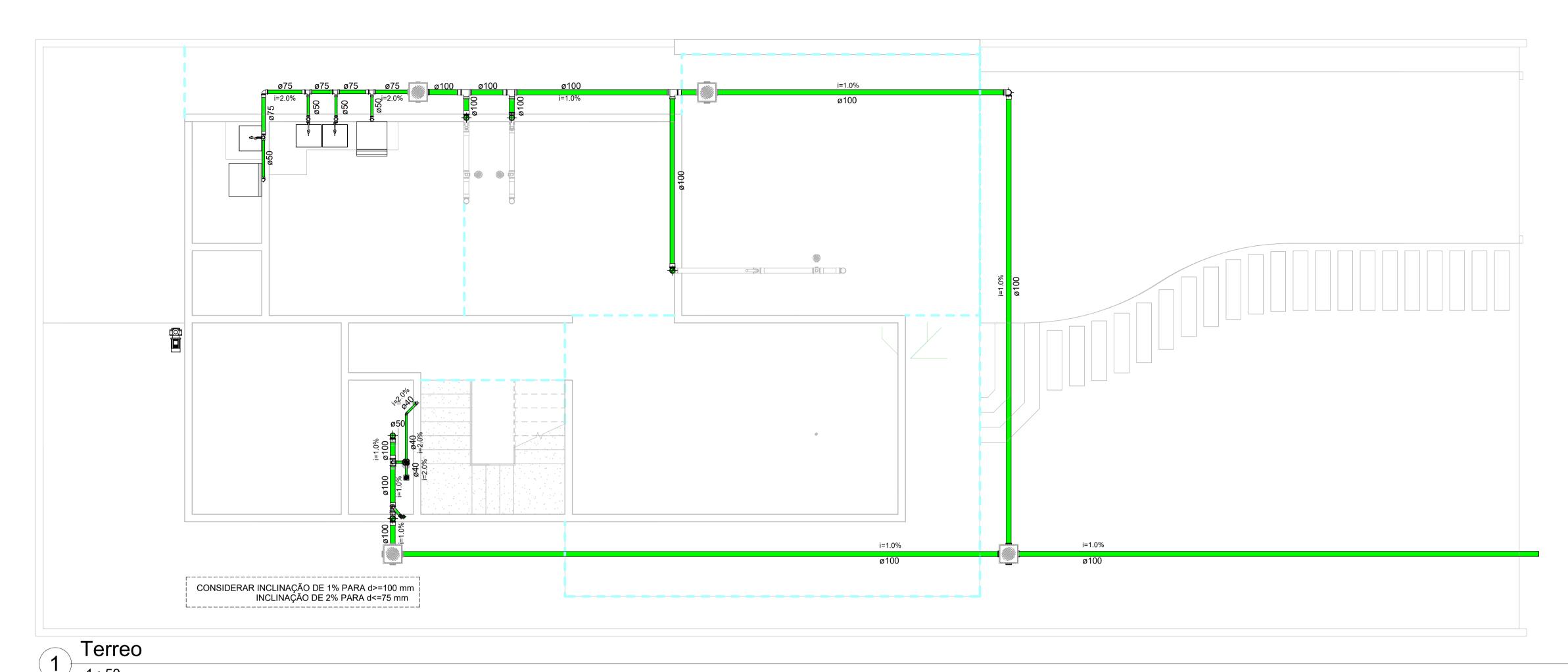
B-12 Curva 90° DN25

B-14 Joelho 90° DN25

B-13 Registro de pressão DN25


	BARRILETE
Quantidade	Conexões
2	Tê Soldável DN25
2	Curva 90° DN25
0	Joelho 90° DN25
2	Registro gaveta DN25
0	Registro de pressão DN25
	•

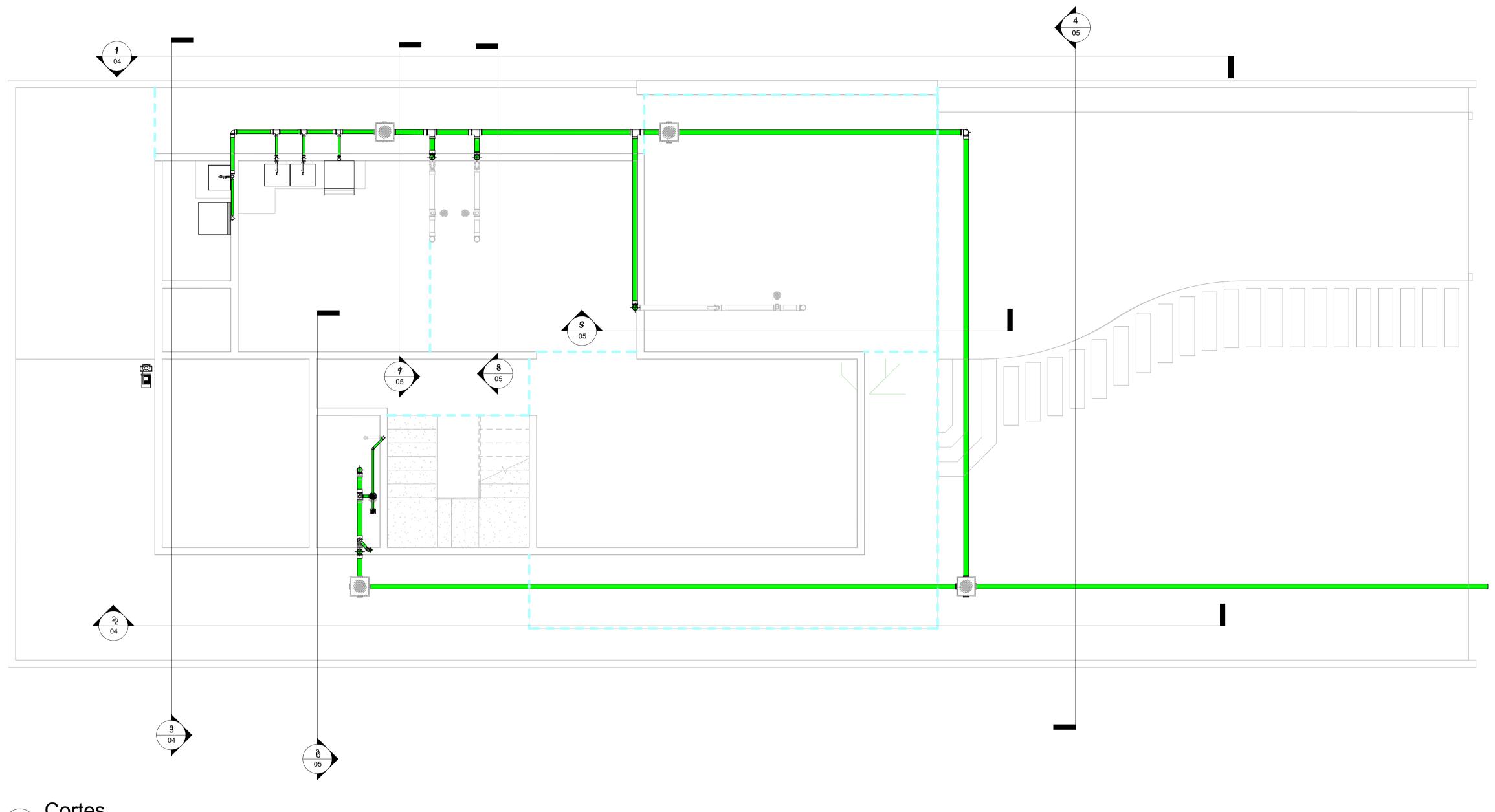
	TÉRREO
Quantidade	Conexões
16	Tê Soldável DN25
9	Curva 90° DN25
9	Joelho 90° DN25
3	Registro gaveta DN25
1	Registro de pressão DN25


PAVIMENTO 1	
Conexões	Quantidade
Tê Soldável DN25	30
Curva 90° DN25	14
Joelho 90° DN25	15
Registro gaveta DN25	4
Registro de pressão DN25	4

TOTAL	
Conexões	Quantidade
Tê Soldável DN25	48
Curva 90° DN25	25
Joelho 90° DN25	24
Registro gaveta DN25	9
Registro de pressão DN25	5

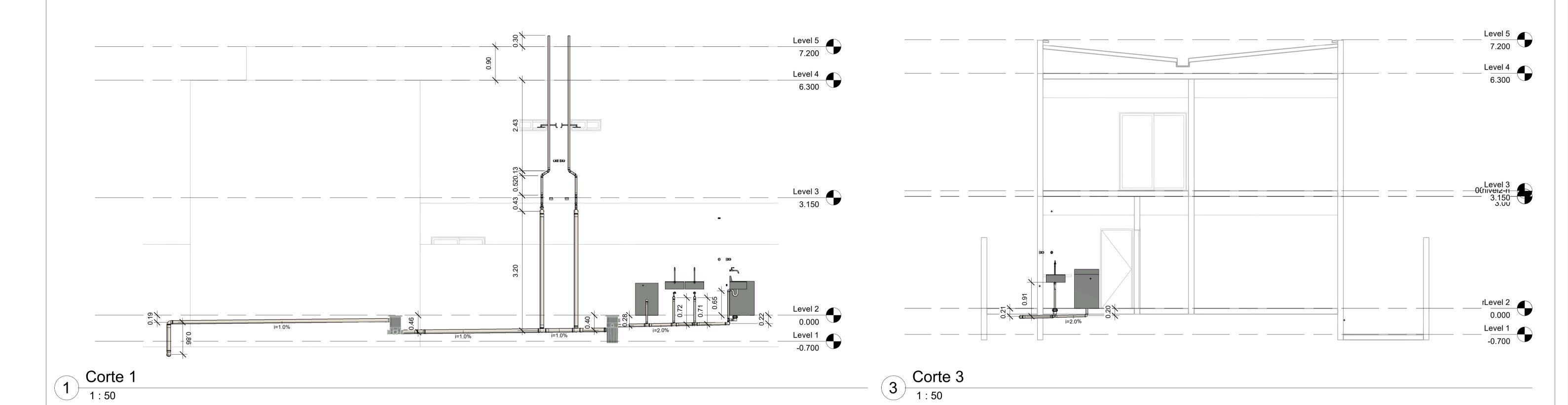
	OBRA:	
	CLIENTE:	
	ENDEREÇO:	
	DATA: 20/04/2023	N° DA PRANCHA
	DESENHISTA: Kattarinne G.	09 / 09
ARQUITETO:		
CAU:		ESCALA: 1:1

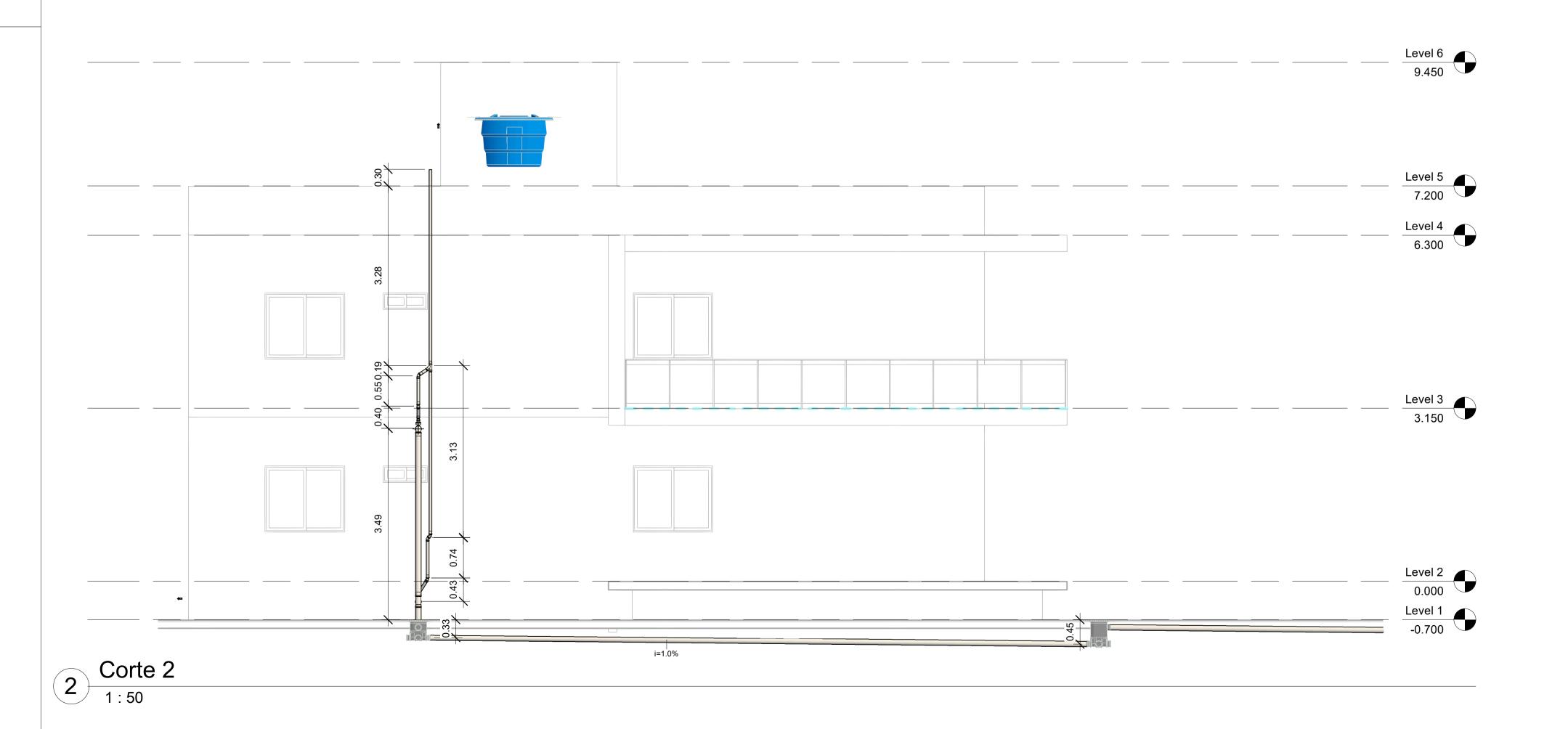
	OBRA:	
	CBIVI.	
	CLIENTE:	
	ENDEREÇO:	
	DATA: 20/04/2023	N° DA PRANCHA
	DESENHISTA: Kattarinne G.	01 / 06
ARQUITETO:		01700
CAU:		ESCALA:

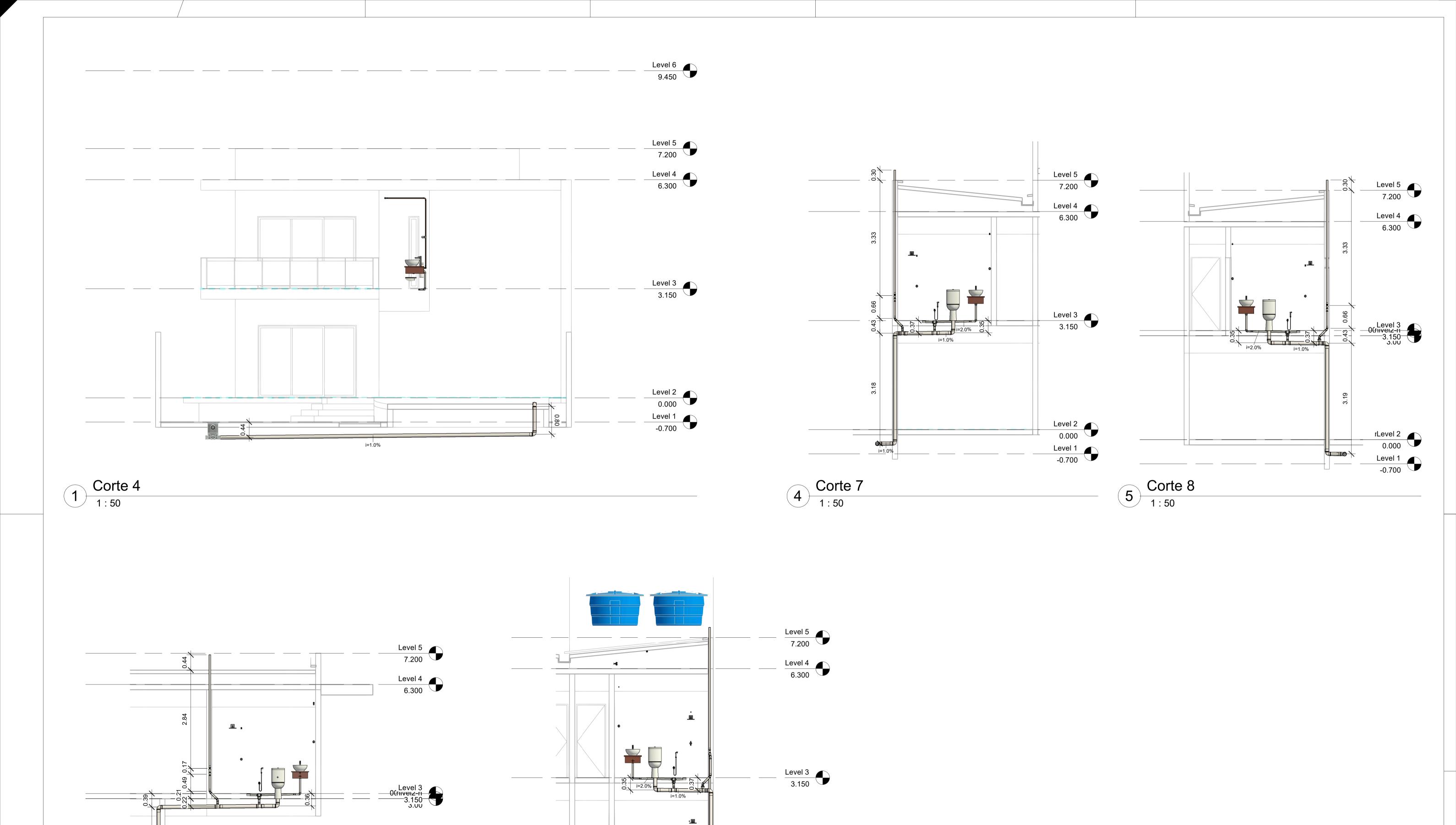


CONTRIBUTION NO.L.N.X.O 12 IN ANAL ACTION IN INCLUDING 10 PANA ACTION IN INCLUDING 10

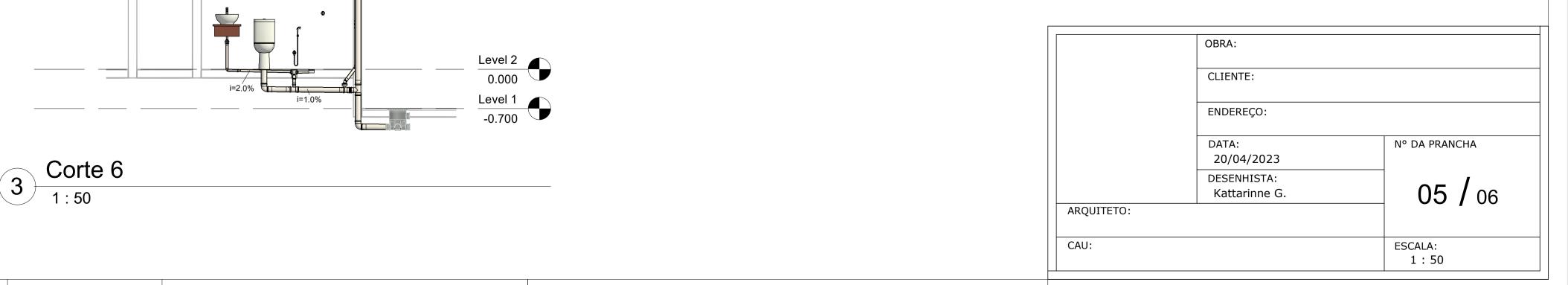
	OBRA:	
	CLIENTE:	
	ENDEREÇO:	
	DATA:	N° DA PRANCHA
	20/04/2023	
	DESENHISTA:	
	Kattarinne G.	02 / 06
ARQUITETO:		02 / 00
-		
CAU:		ESCALA:
		1:50

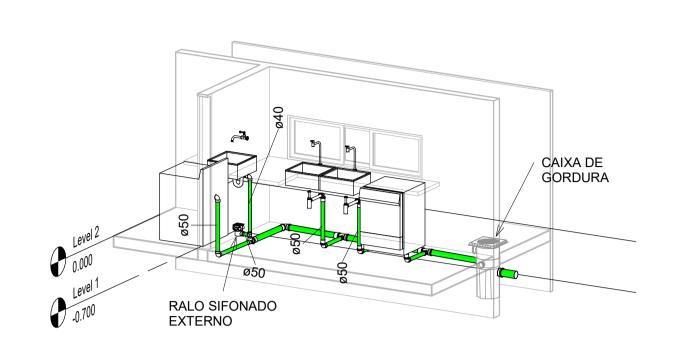

Pavimento 1


1:50

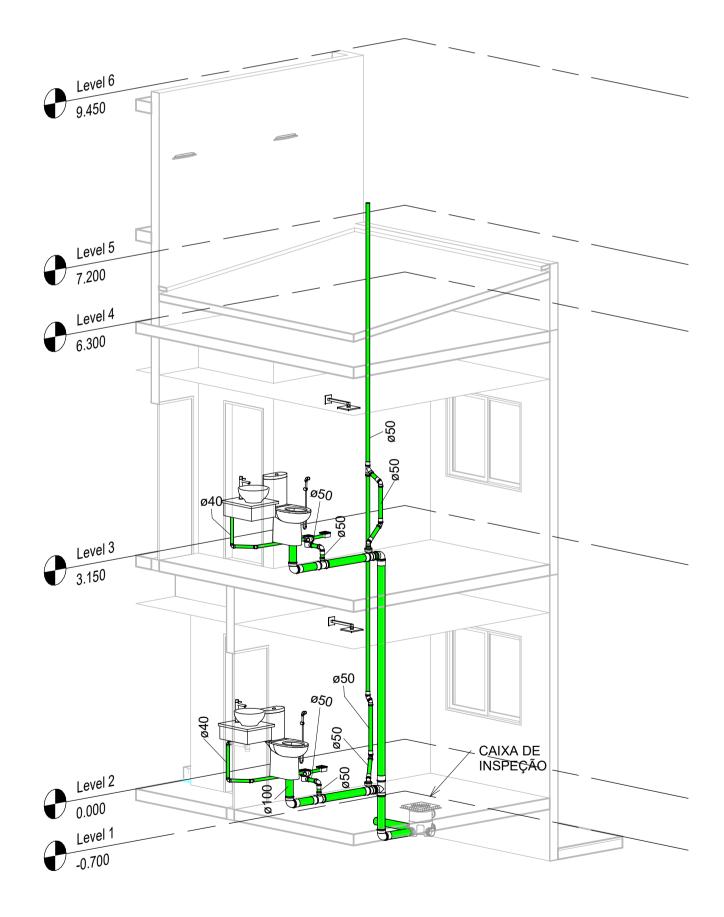

1 Cortes
1:50

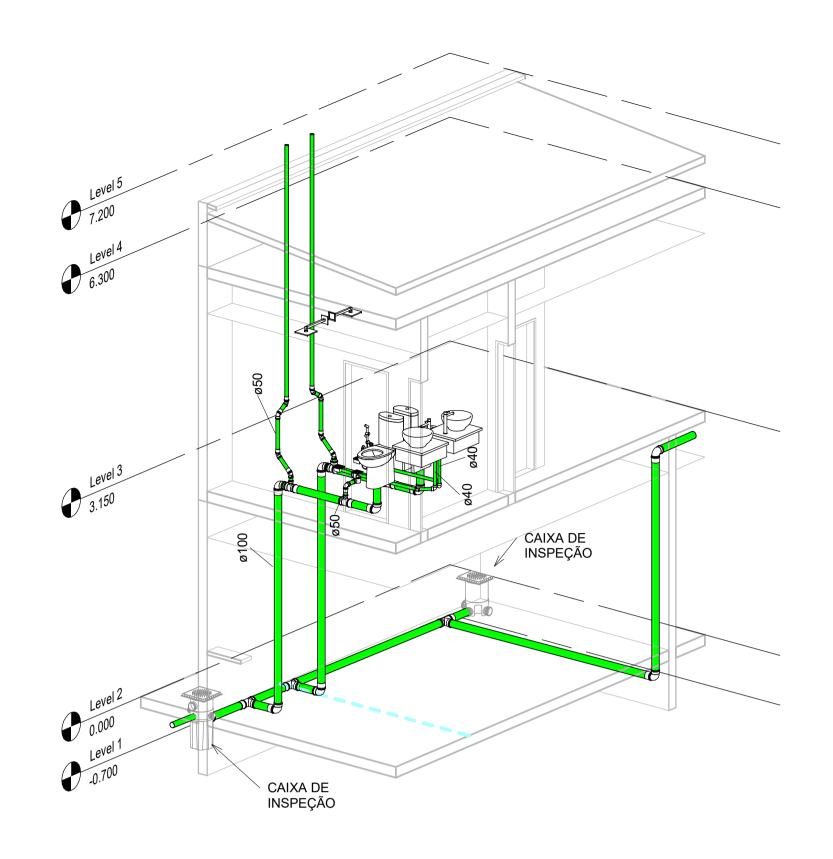
	OBRA:	
	CLIENTE:	
	ENDEREÇO:	
	DATA: 20/04/2023	N° DA PRANCHA
	DESENHISTA: Kattarinne G.	03 / 06
ARQUITETO:		
CAU:		ESCALA: 1:50

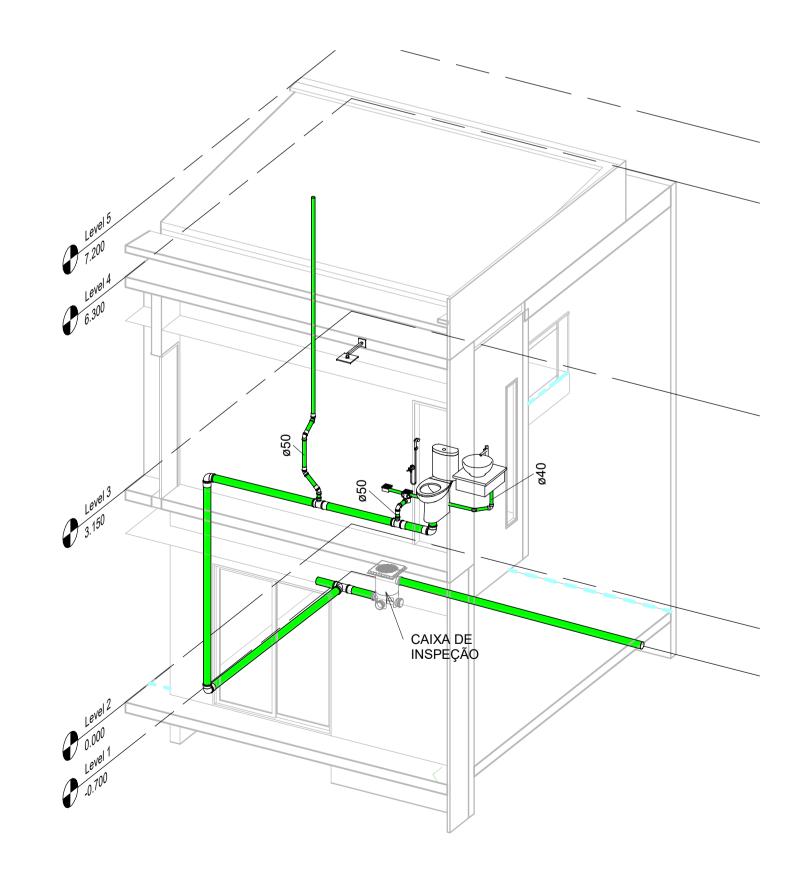



rLevel 2 0.000

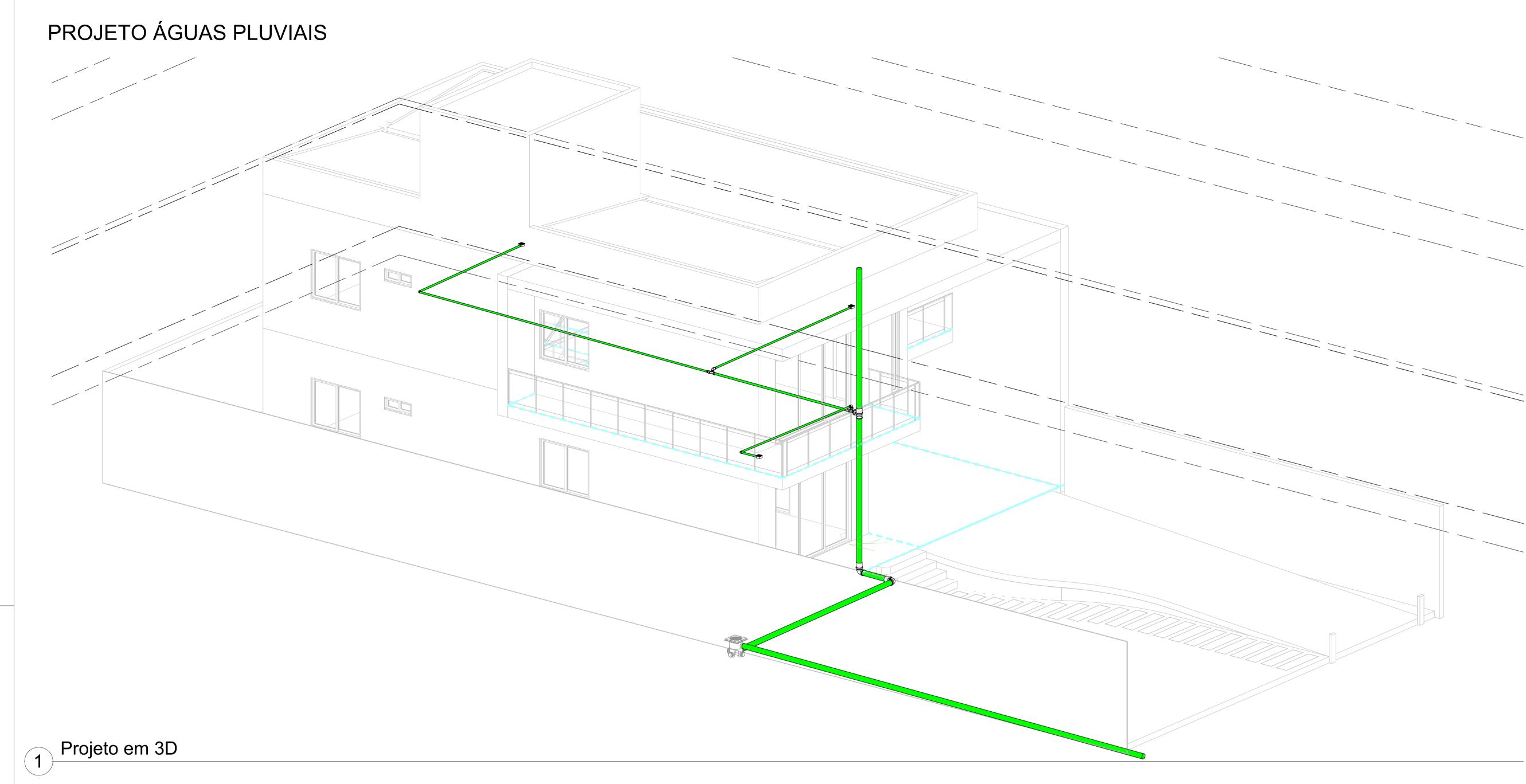
-0.700 Level 1


2 Corte 5 1:50

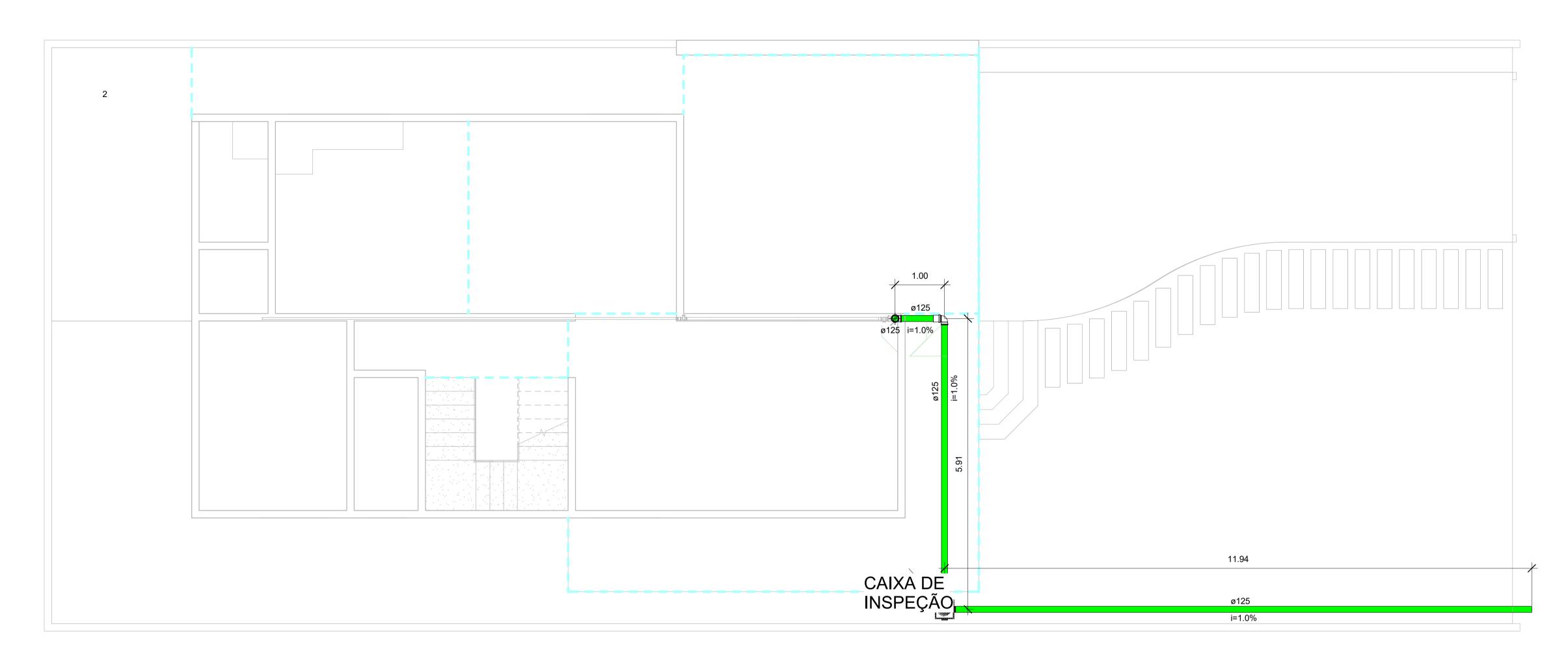

DETALHES ADICIONAIS


Cozinha e área de serviço

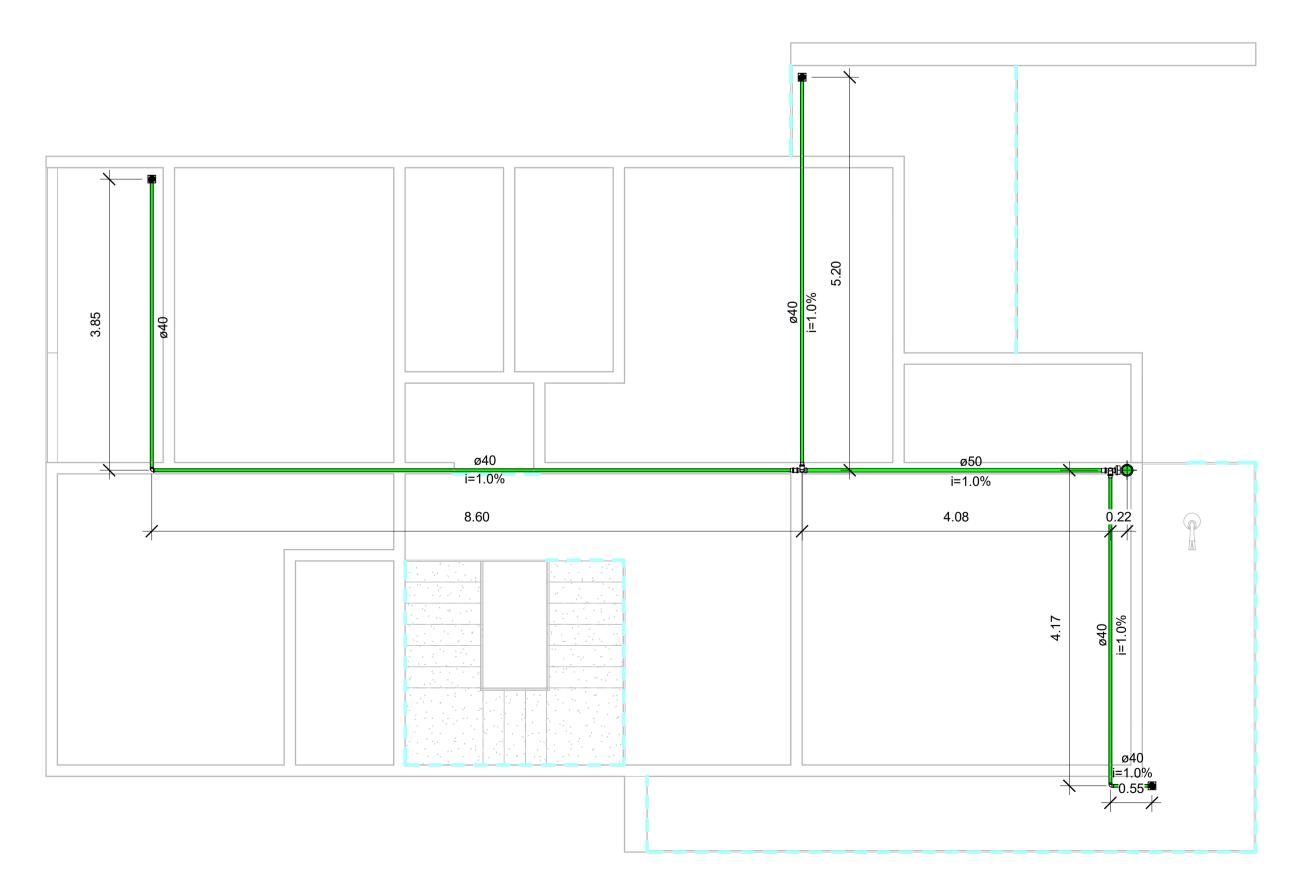
Banheiro 1 e banheiro 2


Banheiro 3 e Banheiro 4

Banheiro 5


Lista de material		
Material	Quantidade	Unidade
Caixa de gordura 100x75x50	1	Unid
Caixa de inspeção/interligação - DN100	4	Unid
Antiespuma 10mm	6	Unid
Caixa sifonada 5 entradas montada com grelhae porta grelha quadrados brancos 100x140x50mm	6	Unid
Porta grelha quadrada branca 100mm	5	Unid
Prolongador para caixasifonada100x100mm	5	Unid
Ralo quadrado montado branco c/grelha branca 100x53x40mm	5	Unid
Joelho 45° 40mm	6	Unid
Joelho 45° 50mm	15	Unid
Joelho 90° 40mm	4	Unid
Joelho 90° 50mm	11	Unid
Joelho 90° 75mm	1	Unid
Joelho 90° 100mm	15	Unid
Junção simples 50x50mm	1	Unid
Luva simples 50mm	31	Unid
Luva simples 75mm	5	Unid
Luva simples 100mm	29	Unid
Tê 75x50	3	Unid
Tê 100x50	7	Unid
Tê 100x100	4	Unid
Tubo série normal de esgoto 40mm	10,06	m
Tubo série normal de esgoto 50mm	28,92	m
Tubo série normal de esgoto 75mm	3,47	m
Tubo série normal de esgoto 100mm	69,99	m

	OBRA:	
	CLIENTE:	
	ENDEREÇO:	
	DATA: 20/04/2023	N° DA PRANCHA
	DESENHISTA: Kattarinne G.	06 / 06
ARQUITETO:		
CAU:		ESCALA:



	OBRA:	
	CLIENTE:	
	ENDEREÇO:	
	DATA: 20/04/2023	N° DA PRANCHA
	DESENHISTA: Kattarinne G.	01 / 03
ARQUITETO:		
CAU:		ESCALA:

1 Terreo 1:50

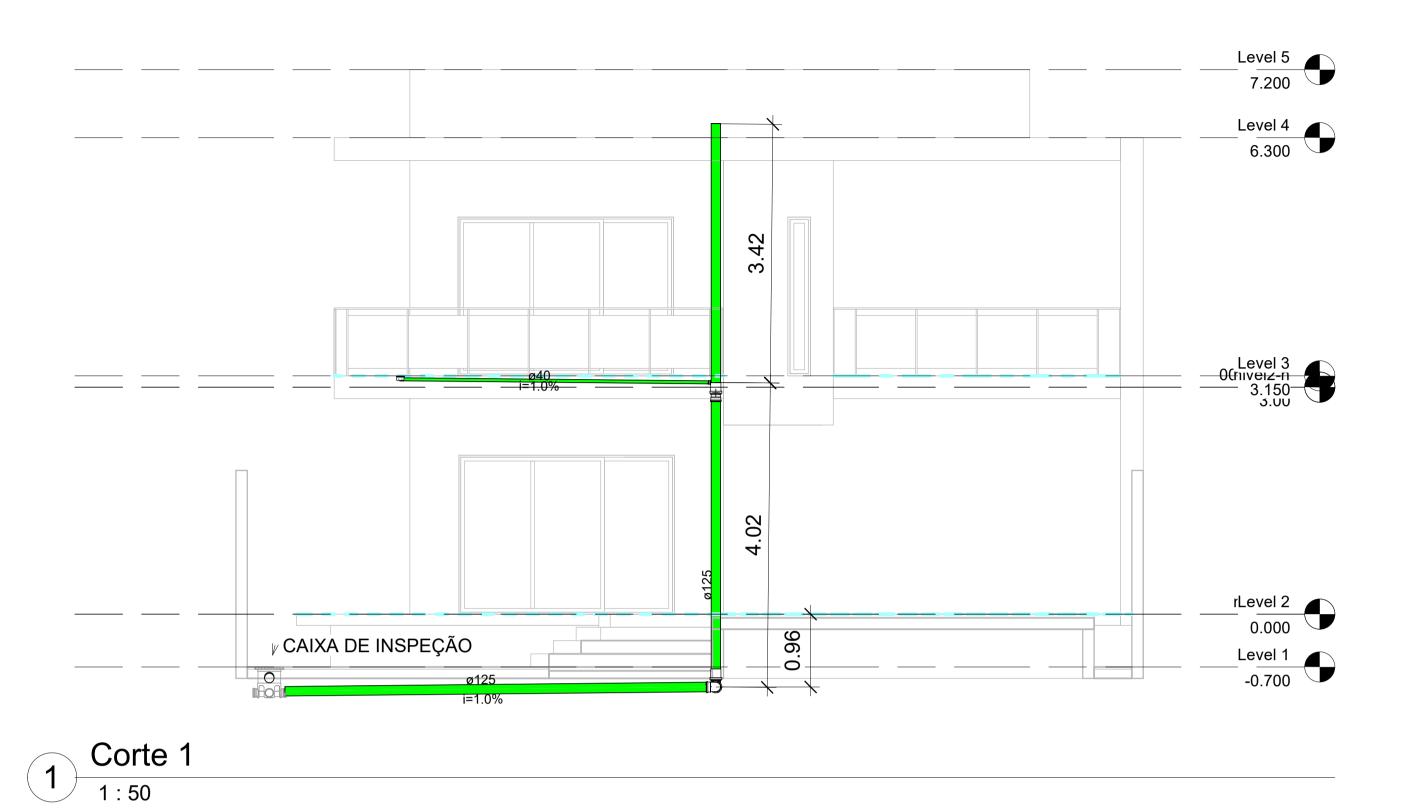
OBRA:

CLIENTE:

ENDEREÇO:

DATA:
20/04/2023

DESENHISTA:
Kattarinne G.


ARQUITETO:

CAU:

ESCALA:
1:50

Pavimento 1

1:50

Lista de material		
Material	Quantidade	Unidade
Caixa de gordura 100x75x50	1	Unid
Caixa de inspeção/interligação - DN100	4	Unid
Antiespuma 10mm	6	Unid
Caixa sifonada 5 entradas montada com grelhae porta grelha quadrados brancos 100x140x50mm	6	Unid
Porta grelha quadrada branca 100mm	5	Unid
Prolongador para caixasifonada100x100mm	5	Unid
Ralo quadrado montado branco c/grelha branca 100x53x40mm	5	Unid
Joelho 45° 40mm	6	Unid
Joelho 45° 50mm	15	Unid
Joelho 90° 40mm	4	Unid
Joelho 90° 50mm	11	Unid
Joelho 90° 75mm	1	Unid
Joelho 90° 100mm	15	Unid
Junção simples 50x50mm	1	Unid
Luva simples 50mm	31	Unid
Luva simples 75mm	5	Unid
Luva simples 100mm	29	Unid
Tê 75x50	3	Unid
Tê 100x50	7	Unid
Tê 100x100	4	Unid
Tubo série normal de esgoto 40mm	10,06	m
Tubo série normal de esgoto 50mm	28,92	m
Tubo série normal de esgoto 75mm	3,47	m
Tubo série normal de esgoto 100mm	69,99	m

KATTARINNE MARIA GOMES DE BARROS

PROJETOS DE INSTALAÇÕES PREDIAIS DE UMA RESIDÊNCIA UNIFAMILIAR DE ALTO PADRÃO NA CIDADE DE CARUARU-PE

Trabalho de Conclusão de Curso apresentado à Coordenação do Curso de Engenharia Civil do Campus Agreste da Universidade Federal de Pernambuco – UFPE, na modalidade de artigo científico, como requisito parcial para obtenção do grau de Bacharel em Engenharia Civil. Defesa realizada por videoconferência.

Área de concentração: Construção Civil.

Aprovado em 10 de maio de 2023.

BANCA EXAMINADORA

Prof. Dr. José Moura Soares (Orientador)
Universidade Federal de Pernambuco

Prof. Dr. Elder Alpes de Vasconcelos (Avaliador)
Universidade Federal de Pernambuco

Prof. Dr. Salomão Martinez Bezerra Salvador (Avaliador)
Universidade Federal de Pernambuco