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ABSTRACT

In this work, we present some fundamental tools in the modelling of quantum networks. We
intend to develop theoretical tools such as the usage of the mixed variables density matrix
formalism to model from first principles atomic experiments where external degrees of free-
dom play an important role, and entanglement quantification in atom-photon systems where
entanglement is present in the continuous variables of the system. Namely, we first perform
a detailed theoretical and experimental investigation of an atomic memory based on recoil-
induced resonance in cold cesium atoms. We consider the interaction of a nearly degenerated
pump and probe beams with an ensemble of two-level atoms. A full theoretical density ma-
trix calculation in the extended Hilbert space of the internal and external atomic degrees of
freedom allows us to obtain, from first principles, the transient and stationary responses de-
termining the probe transmission and the forward four-wave mixing spectra. These two signals
are generated together at the same order of perturbation with respect to the intensities of
pump and probe beams. Moreover, we have investigated the storage of optical information on
the spatial modes of light beams in the atomic external degrees of freedom, which provided
a simple interpretation for the previously-reported non-volatile character of this memory. The
retrieved signals after storage reveal the equivalent role of probe transmission and four-wave
mixing, as the two signals have similar amplitudes. Probe transmission and forward four-wave-
mixing spectra were then experimentally measured for both continuous excitation and after
storage. The experimental observations are in good agreement with the developed theory and
open a new pathway for the reversible exchange of optical information with atomic systems.
Next, we review the Weisskopf-Wigner formalism for spontaneous emission considering the
spatial modes of light as well as external atomic degrees of freedom which we introduce in
the theory by modelling the atom as a wavepacket in momentum space with a given initial
uncertainty, and perform a purity calculation in order to quantify the entanglement encoded
in the momentum variables of the atom-photon system. Our purity calculations reveal two
high entanglement regimes depending on the initial atomic momentum uncertainty: the Recoil
entanglement regime (which arises in the small momentum uncertainty region), where recoil
effects dominate the mechanisms that originate entanglement and the Doppler entanglement
regime (in the large momentum uncertainty region) where homogeneous Doppler shifts in the

emitted photon's frequency play the fundamental part in the build up of quantum correlations



in the system. Simplified expressions for the system's wavefunction are found for each of the
entanglement regimes and physical considerations are made to explain their nature. Finally, we
briefly investigate the role of entanglement in the distinguishability of two physically different
quantum states that arise naturally from the theory, where we note that entanglement in the

system leads to a better resolution of the two quantum states.

Keywords: quantum optics; quantum information; atomic physics; first-principles modelling;

quantum imaging.



RESUMO

Neste trabalho, apresentamos algumas ferramentas fundamentais na modelagem de redes
quanticas. Pretendemos desenvolver ferramentas teéricas como o uso do formalismo da matriz
de densidade de varidveis mistas para modelar a partir de primeiros principios experimentos
atomicos onde os graus de liberdade externos desempenham um papel importante, e a quan-
tificacdo do emaranhamento em sistemas atomo-féton onde o emaranhamento estad presente
nas variaveis continuas do sistema. Dessa forma, primeiro realizamos uma investigacao tedrica
e experimental detalhada de uma meméria atomica baseada na ressonancia induzida por recuo
em atomos de césio frios. Consideramos a interacao de um feixe de bombeio e um feixe de
prova quase degenerados com um conjunto de dtomos de dois niveis. Um célculo tedrico da
matriz de densidade completa no espaco de Hilbert estendido dos graus de liberdade atomicos
internos e externos nos permite obter, a partir de primeiros principios, as respostas transientes
e estacionarias que determinam a transmissdao do prova e os espectros de mistura de quatro
ondas para frente. Esses dois sinais sdo gerados juntos na mesma ordem de perturbacdo em
relacdo as intensidades dos feixes de bombeio e de prova. Além disso, investigamos o arma-
zenamento de informacdes épticas sobre os modos espaciais dos feixes de luz nos graus de
liberdade externos atdémicos, o que forneceu uma interpretacdo simples para o carater nao
volatil relatado anteriormente dessa meméria. Os sinais recuperados apds o armazenamento
revelam o papel equivalente da transmissao do prova e da mistura de quatro ondas, pois os
dois sinais tém amplitudes semelhantes. A transmissdo do prova e os espectros de mistura de
quatro ondas para frente foram entdo medidos experimentalmente para excitacdo continua e
ap6s armazenamento. As observacdes experimentais estdo de acordo com a teoria desenvol-
vida e abrem um novo caminho para a troca reversivel de informacdes épticas com sistemas
atomicos. Em seguida, revisamos o formalismo de Weisskopf-Wigner para emissdo espontanea
considerando os modos espaciais da luz, bem como os graus de liberdade atémicos exter-
nos, que introduzimos na teoria modelando o 4tomo como um pacote de onda no espaco de
momento com uma dada incerteza inicial, e realizamos um calculo de pureza para quantifi-
car o emaranhamento codificado nas varidveis de momento do sistema atomo-féton. Nossos
calculos de pureza revelam dois regimes de alto emaranhamento dependendo da incerteza
inicial do momento atémico: o regime de emaranhamento de Recuo (que surge na regido de

pequena incerteza em momento), onde os efeitos de recuo dominam os mecanismos que origi-



nam o emaranhamento e o regime de emaranhamento Doppler (na regido de grande incerteza
em momento) onde os deslocamentos Doppler homogéneos na frequéncia do féton emitido
desempenham o papel fundamental na construcdo de correlacdoes quanticas no sistema. Ex-
pressoes simplificadas para a funcdo de onda do sistema sdo encontradas para cada um dos
regimes de emaranhamento e consideracdes fisicas sao feitas para explicar sua natureza. Fi-
nalmente, investigamos brevemente o papel do emaranhamento na distinguibilidade de dois
estados quanticos fisicamente diferentes que surgem naturalmente da teoria, onde notamos

que o emaranhamento no sistema leva a uma melhor resolucdo dos dois estados quanticos.

Palavras-chave: 6ptica quantica; informacdo quantica; fisica atdomica; modelagem de primei-

ros principios; imageamento quantico.
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1 INTRODUCTION

Recent developments in quantum information science (STORZ et al|, 2023 |SHEN et al.,
2023 IMA et al 2022} |ZAPATERO et al,, |2023; [LAGO-RIVERA et al} [2023} IMOREAU et al., |2019;
HE et al., 2023; ESGUERRA et al., |2023; [BJERRUM et al., 2023)) have deepened the understanding
that quantum computation or quantum communication presents clear potential superiority
when compared to its classical counterparts. Namely, we can appreciate the vast impact of
quantum information in a variety of applications ranging from quantum computation to quan-
tum cryptography and from quantum teleportation (a quantum phenomenon with no classical
counterpart) to quantum metrology (CARIOLARO), 2015)).

One of the first signs that quantum computation could be superior to classical computation
came with the proposal of Shor's algorithm in 1994 (SHOR, 1994), where the factorization of
numbers into its prime factors could be performed by a quantum algorithm orders of magnitude
faster than any known classical algorithm. Due to the fact that modern (classical) cryptography
relies almost entirely on the fact that classical computers cannot perform such factorizations
fast enough, it appears as though Shor's algorithm created a problem rather than a solution by
(in principle) completely breaking any cryptographic key (based on the factorization problem)
fast enough such that any eavesdropper could gain access to the transmitted information
without being detected. However, if instead of using classical channels of communication we
use quantum channels to transmit quantum information, Shor's algorithm does not pose a
problem due to Quantum Key Distribution (QKD) protocols such as the BB84 (BENNETT;
BRASSARD, |1984)) and the Ekert91 protocol (EKERT, 1991). These protocols provide a way
of transmitting cryptographic keys, and thus maintaining secure communication, via quantum
channels where security is assured from a quantum principles standpoint, that is, quantum
communication is as secure as quantum principles are valid physical principles.

The security shown by QKD protocols and the computational advantages presented by
quantum computers lead to the envision of a quantum network: quantum processing nodes
for the processing and storage of quantum information connected by quantum channels reliant
on QKD protocols to obtain secure transmission of quantum information. Moreover, one can
actually envisage the interconnection between local quantum networks, leading to a quantum
internet (KIMBLE, [2008).

Secure transmission of quantum information does not come without any caveats. In fact,
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due to the no-cloning theorem (PARK|, (1970; WOOTTERS; ZUREK| 1982; DIEKS) [1982; |GHIRARDI,
2013), quantum information cannot be amplified (in contrast with classical information) in
order to transmit information across long distances over lossy channels, relying on quantum
repeaters to perform such task (TAKEOKA; GUHA; WILDE, 2014; PIRANDOLA et al., 2017)). In the
context of quantum repeaters, atom-photon systems appear as a feasible alternative (DUAN
et al), 2001} |CHEN et al,, 2007; [SANTRA et al, [2019; WANG et al,, 2021b; DHARA et al., 2022).
A particularly inspiring proposal is the so-called DLCZ protocol (DUAN et al,, |2001)), which
provides a quantum repeater protocol based on an experimentally achievable infrastructure.

Quantum repeaters and quantum processing nodes are often accompanied by quantum
memories, that store information (usually in the form of qubits) for later stages of entangle-
ment purification processes, for example, in the case of repeaters, and other computing tasks.
Note that long periods of storage are necessary such that a quantum repeater finishes its
entanglement purification processes or a quantum processor finishes the current processing of
information before losing the information stored in the memory.

Atom-photon quantum networks are actually one of the leading approaches for scalable
quantum computing (MONROE; KIM, 2013; MONROE et al., |2014; BROWN; KIM; MONROE, 2016,
DEBNATH et al., 2016)), combining qubit memories that can be identically replicated and remo-
tely entangled via photonic channels (CIRAC et al., 1997; OLMSCHENK et al., 2009; MAUNZ et
al., [2009; IBOCK et al., [2018; [IKRUTYANSKIY et al., |2019} [LEENT et al., [2020; STEPHENSON et al.,
2020; LEENT et al, 2022), and mainly constrained by the long-lived atomic coherence times
(WANG et al, [2021a)). Entanglement between atoms and photons is therefore a crucial piece
for quantum communication and thus have been the object of several theoretical (RZAZEWSKI;
ZAKOWICZ, 1992} ICHAN; LAW; EBERLY], [2002; |ICHAN; LAW; EBERLY), 2003} [FEDOROQV et al., |2005;
SHI; CONG; ECKLE, [2022) and experimental investigations (PFAU et al., |1994; KURTSIEFER et al.,
1997; |BLINOV et al.l {2004} VOLZ et al., [2006; ROSENFELD et al., 2008; ICROCKER et al., 2019).

As one may already have noticed, quantum networks need a plethora of (mostly quan-
tum) ingredients in order to work: quantum channels of communication, long-lived quantum
memories, quantum processing nodes, quantum repeaters, authenticated classical channels
of communication in order to perform QKD protocols, and so on. Moreover, such ingredients
come in all flavors: fiber-based photonic channels of communication, free-space photonic quan-
tum channels, quantum memories based on neutral atoms using internal or external atomic
degrees of freedom, superconducting quantum computing, trapped ions quantum computing,

etc.
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Due to its complexity, then, research in quantum networks is often broken into smaller
pieces, branching out in different directions where each branch furthers the development of one
of the main ingredients of a quantum network. Our research group embarked on the pursuit of
improvements in quantum memories, quantum repeaters and distribution of entanglement over
a network. In relation to the present work, a step in the direction of better quantum memories
was provided by the use of the so-called Recoil-Induced Resonance (RIR) phenomenon to
obtain an atomic memory based on atomic external degrees of freedom (CAPELLA et al., 2022).

Similarly as light energy and momentum can be transferred to atoms altering their state of
motion, the inverse process where the atomic kinetic energy and momentum are transferred to
the light field can modify the light field state as well. This last process leads to the observation
of various phenomena associated with laser cooled atoms as for instance the aforementioned
RIR phenomenon, where the exchange of energy and momentum between two light beams is
mediated by the atomic external degrees of freedom. This phenomenon was firstly predicted
theoretically by Guo et al (GUO et al, [1992; |GUO; BERMAN, (1993)) and soon after observed
experimentally (COURTOIS et al., 1994)). Since then, the RIR phenomenon received considerable
attention, and a number of applications associated with it has been demonstrated (TOMASZ
et al., [2006)). For instance, RIR was used for temperature diagnostic of cold atomic ensembles
in free atoms both at stationary (MEACHER et al., |1994; [FISCHER et al., 2001 and transient
(GUIBAL et al., |1996) domains, and in atoms confined in optical lattices (BRZOZOWSKA et al.,
2006)). More recent applications of RIR for atomic thermometry can be found in Refs. (YAN-
TING et al) 2015; WANG; DENG; WANG, 2015). The phenomenon was also used for optical
switching (GORDON et al., 2010)) and to probe the transient dynamic of atoms in 1D optical
lattices (KOZUMA et al, [1995)).

The RIR phenomenon was also employed to observe very high optical gain in an anisotropic
medium (VENGALATTORE; PRENTISS, 2005) and as basis of a new type of laser, the collective
atomic recoil laser (CARL), which was firstly proposed theoretically in (BONIFACIO; DESALVO,
1994) and experimentally demonstrated in (KRUSE et al.,, 2003)). More recently, using a four-
wave mixing (FWM) configuration in a degenerate two-level system of cold cesium atoms,
where Zeeman coherence as well as coherence between momentum states via RIR can be
excited, Lopez et. al. has observed a giant optical gain and self-oscillation (LOPEZ et al., 2019)
through coupled cascading parametric backward- and forward-FWM (FFWM).

In the desired context of quantum memories improvements, it has been recently demons-

trated the storage of information on the spatial modes of light based on the external atomic
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degrees of freedom, both using the non-localized degrees of freedom associated with the RIR
phenomenon (ALMEIDA et al., 2016)), as well as the quantized energy levels of atoms localized
in a 1D optical lattice (LOPEZ et al, 2017)). This new type of memory using the atomic external
degrees of freedom is particularly attractive since it is less sensitive to external magnetic and
electric fields. Indeed, differently from the memories based on ground state coherences associ-
ated with the Zeeman sub levels, Almeida et. al. demonstrated its non volatility and robustness
to the reading process, which does not destroy the stored information, so its storage time is
mainly determined by the atomic motion only (ALMEIDA et al., 2016). Moreover, using the gain
mechanism described in (LOPEZ et al.,, 2019), Lopez et. al. also demonstrated the operation
of an atomic memory that can amplify the stored signal during the reading process (LOPEZ;
MELO; TABOSA, 2020). Finally, Capella et. al. proposed a non-volatile atomic memory based
on the RIR phenomenon exploiting the atomic external degrees of freedom in order to obtain
information storage that can be retrieved through multiple modes of scattered light (CAPELLA
et al, 2022)), expanding the results found by (ALMEIDA et al., [2016)).

On a different but completely related branch, we can also further develop the distribu-
tion of entanglement over a quantum network. Moreover, entanglement can be thought of
as a resource for the protocols we mentioned and, therefore, quantum systems for which we
can quantify, harvest, and control entanglement are desirable for implementations of quantum
networks. One of the simplest systems that naturally presents entanglement in an experimen-
tally achievable manner is an atom (previously excited) and its spontaneously emitted photon.

The problem of spontaneous emission and its associated natural linewidth was first inves-
tigated by A. Einstein in 1917 (EINSTEIN, 1917) making extensive use of rate equations. In
1927, P. A. M. Dirac presented a theory using Quantum Electrodynamics (QED) where an
expression for the so-called Einstein A coefficient (related to the spontaneous emission rate)
was proposed, but the calculations turned out to be very difficult (DIRAC, [1927)). In 1930,
however, V. Weisskopf and E. Wigner proposed a simplified version of Dirac's theory and
found a work around that diminished the complexity of Dirac's expression for the calculation
of natural linewidths (WEISSKOPF; WIGNER, 1930). The Weisskopf-Wigner theory for sponta-
neous emission then eliminated the need to introduce phenomenologically any parameters and
elucidated a profound trait of the phenomenon: spontaneous emission is not spontaneous in
the sense that no mechanism causes it, it is actually induced by the electromagnetic field's
vacuum, being called spontaneous only due to the fact that the scientific community at the

time it was named did not know of the existence of such vacuum-induced processes.
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Important steps towards the control of the spontaneous emission phenomenon in various
setups have already been given, ranging from the inhibition of spontaneous emission (KLEPP-
NER, |1981; |GABRIELSE; DEHMELT, (1985)) to phase and amplitude control of spontaneously
emitted photons (PASPALAKIS; KNIGHT, 1998; GHAFOOR; ZHU; ZUBAIRY, [2000). Theoretical
investigations also provided further understanding of spontaneous emission in different physi-
cal realizations (RZAZEWSKI; ZAKOWICZ, |1992; BONIFACIO; PREPARATA, (1970; AGARWAL, 11971;
STOOP; 2EWSKI, 1995; HORAK; GHERI, |1996; |GUO|, |2008), leading finally to the theoretical en-
tanglement considerations (CHAN; LAW; EBERLY, |2002; [CHAN; LAW; EBERLY], |2003} FEDOROV
et al., 2005) we aim to extend in this thesis.

Therefore, we understand that the process of spontaneous emission is of fundamental
importance in the development of the ingredients necessary to a quantum network in the
sense that it provides a controllable, deeply understood source of entanglement. Although the
entanglement itself does not have a clear full picture, we intend to provide some insights about
the matter. Note that entanglement is a fundamental piece in any quantum processing, and
therefore, the developments we intend to provide in this thesis are not only useful, but crucial
to the understanding and modelling of different types of quantum networks.

In connection to the above problem, we intend to explore in this thesis theoretical tools
needed for the modelling of quantum memories based on continuous variables, which provides
another way of storing information in a continuous variable quantum network (NUNN et al.
2008]; [HOSSEINI et all, [2009; [LVOVSKY; SANDERS; TITTEL|, [2009; HAMMERER; SORENSEN; POL-
ZIK, [2010; |JENSEN et al., 2011). Several results on quantum teleportation (FURUSAWA et al.,
1998} |SHERSON et al., 2006), Quantum Key Distribution (GROSSHANS et al., 2003), and hybrid
continuous/discrete variables quantum operations (OURJOUMTSEV et al., 2007; [DONG et al.,
2008; TAKAHASHI et al} |2010)) support the idea of a quantum network based on continuous
variables as a viable option.

More precisely, we aim to provide a full first-principles theoretical model to the RIR ba-
sed atomic memory described in (ALMEIDA et al|, 2016; |CAPELLA et al., [2022)) as well as the
experimental data corroborating it, and explore/quantify the entanglement encoded in the
continuous variables of an atom-photon system after spontaneous decay, following the theo-
retical formalism developed in (WEISSKOPF; WIGNER, |1930; RZAZEWSKI; ZAKOWICZ, (1992). In
order to achieve this goal, the thesis is organized as follows: on Chapter 2] we review the tools
we will need in order to obtain the theoretical models we use/develop. Specifically, we review

the quantum mechanics of continuous variables systems as well as the quantification of entan-
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glement in discrete/continuous variables of pure bipartite systems. On Chapter , we develop
a first-principles model for an atomic memory based on the RIR phenomenon and compare
it with experimental data, where we obtain good agreement between theory and experiment.
The results of this chapter were already published in (CAPELLA et al/, 2022). On Chapter[4] we
investigate and quantify the entanglement encoded in the momentum variables of an atom-
photon system after spontaneous decay, where we reveal high entanglement regimes when
we vary the atom'’s initial uncertainty in momentum. We also provide physically motivated
discussions about the nature of such high entanglement regimes, as well as some implications
of the entanglement in the distinguishability of quantum states that arise naturally from the
theory. Finally, on Chapter[5, we provide the reader with a summary of the main results found

as well as perspectives for future works motivated by this thesis.
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2 FUNDAMENTAL CONCEPTS

In this chapter we intend to provide the reader with some fundamental concepts necessary
for the understanding of this thesis. We begin with a review of quantum mechanics in the
position and momentum representations. We focus on the construction of the Hilbert space
associated with a continuous spectrum, the duality of the position and momentum represen-
tations, the interpretation of momentum as a generator of translation, and, finally, we discuss
the corresponding wave packets. Next, we delve into the density matrix formalism for dis-
crete, continuous and mixed systems, and focus on the time evolution of the density operator.
We also define bipartite entanglement and discuss entanglement quantifiers for pure bipartite

systems described by discrete and continuous Hilbert spaces.

2.1 QUANTUM MECHANICS IN THE POSITION AND MOMENTUM REPRESENTATI-
ONS

Quantum mechanics is often associated with systems with discrete observables. As an
example, we usually say that the internal energy levels on an atom are quantized. However,
quantum mechanics is not at all limited by a discrete characteristic and, in fact, is enriched
by the introduction of continuous-valued observables. Paradigmatic examples of continuous-
valued observables are the x position of a particle on an axis or its corresponding linear mo-
mentum. While the 1D aspects of these examples are enough to provide an infinite dimensional
Hilbert space, characteristic of a continuous-variable system, often we will consider position
and momentum in its full 3D picture. Note that observables with continuous spectra are still
represented by Hermitian operators, but the rigorous mathematics behind them is fundamen-
tally more complicated than for the discrete case. Here we do not aim to provide rigorous

proofs and definitions, but rather intuitive notions.

2.1.1 Continuous spectra operators and the position representation

We begin our review providing a generalization of discrete-variable quantum mechanics.
Briefly, we use Latin letters to identify results for discrete-variable quantum mechanics and

Greek letters for continuous-variable results. We start generalizing the eigenvalue equation for
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the continuous spectrum case:

Elh =¢1¢), (21)
where é is an operator and £’ is a number. When the operator nature of the observable and
numerical nature of the eigenvalue are obvious, we may sometimes drop the hat for operators.

All considered operators will be Hermitian unless explicitly stated or when the non-Hermitian

aspect is clear. Note that for the discrete case, the eigenvalue equation looks exactly the same:
Ala) = ala). (2.2)

Just as in the discrete case, for continuous spectrum Hermitian operators, eigenvectors
associated with different eigenvalues are orthogonal (now with respect to a Dirac-delta distri-

bution), and form a complete orthonormal basis. This implies in the generalizations:

(d|a") = dwar — (£|€") =0(&" —¢")
Sl =1 » [agig)e] =1, (2:3)
In order to connect Hermitian operators of continuous spectra with observables, we consider

the problem of detecting a particle in a position Z in 3D space. We postulate the completeness

of the set of eigenvectors of the position operator X, satisfying:
X|%) = Z|7), (2.4)

where 7 stands for x, y, and z. Therefore, |Z) is a simultaneous eigenvector of the observables

X, ¥, and z. Explicitly,

7)) = lzy,2),

A

Ty =xl|z), §l) = ylr), Z2[7)=z[7). (2.3)

Note that the existence of such simultaneous eigenvectors implies in the following com-

mutation relations:

2i,8,]=0, =123, 2.6
(24, 24

where I, T2, and I3 stand for &, 7, and 2, respectively. Orthogonality and completeness of

this basis can be expressed using ([2.3) by:

<;Z‘”|:f”> _ 53(5/_5//)’

/ &z |7) (7 = 1. (2.7)
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Provided with the position eigenbasis, we may now expand an arbitrary quantum state
(which we may assume describes a particle), |¢), in this basis in an analogous manner to the

discrete case:

- /d39: #) (@), (2.8)

where ¢ (Z) is the commonly used wave function in the position representation (or x-representation).
Note that only external degrees of freedom can be taken into account in this basis, internal
degrees of freedom, such as spin, need to be described in an additional Hilbert space. The

probability of finding such particle in a given volume d3z around the point 7 is then:

(@) d’e = [(&]¢)]*d’z. (2.9)

2.1.2 Translations in Hilbert space

We introduce now the concept of translation in a Hilbert space, but we start with the
simpler problem of "translating a function". We get, for a small translation of 2’ a shifted

wave function:

V() = Y@+ &) = @) + 7 V@) +... = (1+ %f P...)u(), (2.10)
U(@)
where we introduce the translation operator U(Z) and its generator, P = —ifiV, the momen-

tum operator. We can extend ([2.10]) to higher powers as follows:

. . 2 . 3
W (F) = U@ )0(T) = (1 + %f P+ 21, [;f : IS] + ;[;f : ra] . >¢(f), (2.11)

which leads to the conclusion that U(Z) can be identified with the exponential operator
exp( x- P), elucidating why we call P the generator of the translation operator. Turning

back to the state |¢)), we now have the translated ket:
W)y = [dev@E
— /d3w (@ +7)|7)
= [ &av@)|F-7)
= U@) ), (2.12)

where now U(Z") acts on the basis vectors |Z). Note also that:

L7 B) — U (@) = UN(@), (2.13)

U(—7) = exp( — .
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where in the last equality we used the fact the exponential of an Hermitian operator is an
unitary operator. To prove that U~!(Z) = exp( — %f |3) we can use the Baker-Campbell-

Hausdorff formula (ROSSMANN, [2006)):

1 1 1
eXe¥ = o2, Z:X+Y+§[X,Y] +E[X, (X, Y]] — E[Y’ (X, Y]] +..., (2.14)

and the fact that the momentum operator components commute with each other, which can
be more clearly seen in its configuration space representation P = —ihV, due to Clairaut’s
theorem on the commutativity of second derivatives. More explicitly, we have the following
commutation relations:
[P, P =0, i,j=1,23. (2.15)
Therefore we can now write UT(7’) |Z) = |Z + #'). Finally, we can interpret translations in
a Hilbert space as active transformations, where we transform the coordinates of the state,
(X)) = (Z+2"), or as a passive transformation, where we transform the basis of the Hilbert
space |¥) — |7 — &).
The expression: U (%) = exp(%f- IS) needs more attention. So far, the operator nature of
P has been made explicit, and the & present in the formula is no more than a parameter, in
the position representation we have so far worked on. In the momentum representation which
we discuss next, the roles are interchanged: p becomes a parameter, while X is the explicitly

denoted operator.

2.1.3 The momentum representation

So far, we have worked on the position eigenbasis, but the commutation relations ([2.15])
have a clear parallel with (2.6)). This implies in an analogous construction for the Hilbert space

of a particle now in terms of eigenvectors of P. More explicitly,

Plp) = plp),
Py =p. D). Byl). = pylp), P.|p)=p.1P). (2.16)

We may then postulate that these eigenvectors form a complete basis (this is equivalent
to assuming that the position eigenvectors form a complete basis) and write a general state

|b) in this basis as follows:

v) = [ @ ) (@71Y), (2.17)

~——
¥p(P)
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where now we have the usual wave function ¢ in the momentum representation (or p-
representation), which we denote by 1, (p). We express the orthogonality and completeness of

the momentum basis as:
@I = EE - )
[apim @ = 1 (2.18)

Using the completeness relation for the & basis ([2.7]) on the orthogonality relation of (2.18)),

we get:

|< [ a1 @ )| - [@ @@ = 8 - . (219)

Comparing now with the plane-wave decomposition of the Dirac delta distribution:

PO -5 = 5 h ;[ e
™

1 = 1 1 =
_ 3 —ip’-Z/h ip""-Z/h
= [ (2rh)p° (@rhyr”

(®'|Z) (Z|p")

— [@ @), (2.20)

That is, we have found the coordinates of any element of the & basis in the p' basis (or the

opposite), which allows us to exchange between both basis. We write then:

(7|p) = o h)3/2 e, (2.21)

Take now a state ket described in the momentum basis, and use the completeness relation

for the Z basis:

p) = /d3p 1) <m/d3x y:r;> (Z[))
- / “p 1p) ( / &’z 3/2 e "'E/hw(f’)) (2.22)

YD)

That is,

Usl#) = 5 3/2 / By e~ PE/) (7). (2.23)

or in other words, the wave function in the momentum representation is the Fourier transform
of the wave function in the position representation. Therefore, we have put the position and

momentum representations on equal footing.
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Finally, we use the duality between position and momentum representations to write
without proof the action of the operator e~7*/" (note the operator nature of X) on a momen-
tum eigenket:

6—1‘]3/&/)‘1 |ﬁ> — |ﬁ‘|‘ﬁ/> ’ (224)

that is, just as the momentum operator is the generator of spatial translations, the position

operator is the generator of momentum translations.

2.1.4 Wave packets in momentum and position representations

We now consider the problem of an unconfined free particle, that is, a particle whose
potential energy is zero (or a constant) and is not confined to any region of space. Schrédinger's

equation in the position basis for this system reads:

L0 h? 9 o
whose solutions are of the form:
(7, t) = AePE-ED/R (2.26)

where A is a constant and p and E satisfy the well-known classical mechanical relation for the
free particle:
=2

p=2
2m

(2.27)

Note that [1(Z,t)|> = |A|?, which represents an uniform distribution of probability of
finding the particle throughout all space. This is a symptom of the nonphysical aspect of the
plane wave as a full description of a free particle. However, the superposition principle allows
us to construct solutions of (2.25]) as linear combinations of plane waves which can be written

as:

1

V(1) = W/"@(@ei(mm/hdgp (2.28)

These solutions are called three-dimensional wave packets, and can be used to construct
square-integrable wave functions, leading to a more realistic solution to the free particle pro-
blem. Usually, we may be interested in studying the shape of the wave packet at a fixed time,

which we may take as the origin:

VE0) = 6(0) = i [ O . (229)
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Therefore, the wave function () is given by the inverse Fourier transform of () or,

equivalently, the coordinates of the wave packet in the momentum representation:

0) = [@ou@| = [ CpdE) 5. (2.30)

We may investigate then the shape of the wave packet in momentum or position space.
For simplicity and in order to gain some intuition, we briefly work with a 1D wave packet.

Consider a wave packet in momentum space given by:

B(p) = et (2.31)

We can evaluate the shape of the wave packet in position space via the Fourier transform:

w(ﬂf) = 2 h 1/2/ dp¢ i(p—po)z/hgipox/h
- (27r715)1/2 %por/f/ dp’ e !e” 4 , P=p—mo
— (%;)1/2 gipoz/h / dp) ¢~/ 4h) ool —(iz/20h)]?
B (%Tfli)meipw/ﬁe_(ﬁ/ﬁ‘ah?) [ _dq e q=p —(ix/20h). (232)
=

\/g

Therefore, we can write:

1 T (22 /42
viz) = (2ﬂﬁ)1/2[ o/l e, (2.33)

and note how e0%/" represents only a global phase, since |e0*/"|2 = 1. Hence, we obtain for

the position and momentum representations:

1 s 2 2

2 _ N —(x?/2ah?)

PP = Grrat ,
[G(p))P = e, (2.34)

Note how in position and momentum space our wave packet has a Gaussian shape and
therefore is characterized by a peak centered at x = 0 for the position representation and
p = po in the momentum representation. In the position space, the Gaussian wave packet
has a standard deviation o, of hy/a and in momentum space, a standard deviation o, of
1/24/a. This leads to a reciprocity condition: a strongly localized particle in x is broad in p,

and vice-versa, in such a way that the product of both standard deviations is given by:

h
0z0p = \/_ \/— 57

which we note to be the lower limit of Heisenberg's uncertainty principle. It is then said that

(2.35)

Gaussian wave packets "minimize the uncertainty relations for x and p".
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2.2 DENSITY MATRICES AND ENTANGLEMENT

Any description of a quantum state arises from the result of some measurement. We
can completely determine the state using simultaneous measurements of a complete set of
commuting observables (LANDAU; LIFSHITZ, [1989) and the culmination of this procedure is
the ability to write the state as |¢)), where [¢)) is a simultaneous eigenvector of the considered
set of observables.

While the description of a system using a state vector (or equivalently, a wave function)
is the most complete description for systems as the ones indicated above, there exists a class
of states that do not allow such a description: subsystems of a larger, closed system. Note
that due to interaction between subsystems, the state ket for the whole system |41, 1o, ..., 1y,)
relative to its n subsystems, should not be expected to be the product [¢1) @ [¢2) @+ - - @ |1)y),
and therefore, we cannot in general associate a state vector |1);) to each of its subsystems.

There is however, a way of treating these subsystems in such a manner that when the
larger closed system is composed of only one subsystem, our treatment becomes the same as
the wave function one: the density matrix (or density operator) formalism. Systems that can
be described by a single wave function are said to be in a pure state while systems that cannot

are called mixed states or mixture states.

2.2.1 The density matrix formalism

Consider for example a set of spin-1/2 particles. Let us consider the following two possibi-
lities: all of the spins are in a given orientation (spin-up, for example), or the set is a statistical
mixture of spins, for example, 50% are in a spin-up |+) configuration while 50% are in a
spin-down |—) orientation. This leads us to introduce the fractional populations or probability
weights:

wy =05 w_=0.5, (2.36)

for a completely random distribution of spin orientations, or an unpolarized ensemble of spins.
For the first case, the system is in a pure state and can be described using only one state vector:
|+). In the second case, the system is in a mixed state, and therefore cannot be described by
a single state vector. Nevertheless, we can ask ourselves about the average orientation of the

ensemble, which is expected to be zero. We can formalize this idea as follows: suppose our
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system is in a statistical mixture of eigenvectors |«;) with fractional populations w; of a given

observable A. The ensemble average of the observable A is then:
= 3 w0 |Afa). (2.37)

We can expand the eigenvectors |«;) in a complete orthonormal basis |¢,,) and rewrite the
ensemble average of an observable A as:
|Oz,~> = Zazn |¢n> Z wz ¢m| A |¢n> > (2'38)
and if we define:

Z W a’man |¢n ¢m| - men |¢n ¢m| = sz |O~/z Oéz s (239)

zmn

where: pp, = 3, wial al, we can write:

m-n?

m,n

1

therefore,

(A) = tr(pA). (2.40)

The operator defined in (2.39)) is called the density matrix of the system and it describes
pure and mixed systems. Note the notational simplification of the ensemble average of an
observable. The following property gives further insight about the nature of the density operator
and the fractional populations. We now prove that the trace of the density operator is equal

to unity so long as the fractional populations add up to unity as well. Explicitly, note:
tr(p) = Z (Pr| P D)

= ZZZw al,aty (S| dn) (G| dk)

k mmni=1

N
= ZZwi!ai;\z
k i=1
N

i=1

since 3, |at|* = 1. Therefore, we can see that the fractional populations adding up to one is a
direct consequence of the trace of the density operator being equal to one and vice-versa. This

characterizes density matrices as convex combinations of {|c;) (c;|}. From now on, we assume
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this property as one of the defining properties of a density matrix. Before we generalize our
results for continuous density matrices, we derive the temporal evolution of a density operator.

The temporal evolution of a state ket |a;(t)) is given by Schrédinger's equation:

L d -
ih— |ai(t)) = H [ai(t)) , (2.42)

and the time evolution of a bra is given by the Hermitian conjugate of the Schrédinger equation

for kets:

L d .
—Zh% (ai(t)] = (u(t)| H, (2.43)

where we have explicitly used the fact that the Hamiltonian is a Hermitian operator. Therefore,

using Leibniz's rule for differentiation, we obtain:

m%( () {u()]) = (D)) (mjt (at)] ) + (z’hjt (1)) ) {eu(t)]
= fai(t)) (— (i) H) + H Jai(t)) {eui(1)]
= H () (as(t)] — eu(t)) () A (2.44)

Multiplying both sides by w; and summing over ¢, we obtain the Liouville equation:
d ) A
—p(t) = —=|p(t),H|, 2.45
= p(t) = 1 [p(e), ] (2.45)
We are now in position to generalize our description to encompass eigenvectors associated
with Hermitian operators with continuous spectra. We perform the following generalization

without proof:
p= 3 prnlbn) om| — p= [ aca'p(&€)16) (€] (2.46)

where {|€)} is a complete orthonormal basis, such as the eigenvectors of the momentum

operator, which leads to a continuous density operator of the form:

p) = [ @ o7 15) (7] (247)

As we have already discussed, such a density matrix cannot describe completely a system
with internal degrees of freedom, only momenta degrees of freedom. This does not stops us,
however, to define an even further generalization of the formalism. We can take into account
discrete and continuous degrees of freedom defining a mixed (in the sense of mixed continuous
and discrete variables) density operator of the form:

b= [ pd (55 1) i) 1) ) G (2.48)

1,J
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where i and j label discrete variables such as internal electronic states of an atom.

Let's discuss the physical interpretation of the terms p;;(p,p’,t) for a two-level atom
accounting for momentum degrees of freedom. In this case, i and j assume the values 1 and
2, corresponding to the fundamental |1) and excited |2) levels, respectively. Terms such as
p11(D, Py t) or paa(P, P, t), that is, terms with ¢ = j and p'= p’, are referred to as populations,
since they describe the populational occupancy of particles in the internal state |1) or |2) with
momentum state |p). Other terms such as p12(p, P, t) or p11(p, p’,t), that is, terms with ¢ # j

and/or p' # p’ are called coherences between internal and external states, respectively, and

describe amplitudes of probabilities of transition between the states.

2.2.2 Entanglement quantification

In this thesis, we do not aim by any means to give a complete understanding of the problem
of quantification of entanglement. However, in this subsection we aim to provide the reader
with the tools and the physical intuition needed to understand a specific class of systems and
the entanglement quantifiers suitable to it.

From the classical and quantum point of view, a pure state is as completely described
as the theory allows (such as a point in phase space, in the classical case). In the quantum
case, however, pure states can consist of parts which are not themselves pure states, that is,
completely characterized by the theory. Such states are called entangled. A mixed state can
also be entangled if it cannot be represented as a mixture of unentangled pure states (WERNER,
1989; WOOTERS, [2001)). We can write the density matrix of a pure system consisting of two

parts A and B, that is, a pure bipartite system as:

vty [F) Zm (vf| (]
v [P ) (wP| (vit| (2.49)

p=12) (2] = D ¢y
i

= CijCh
i,gi ksl
where { ’@/JZA> } and { ‘¢f> } form an orthonormal basis for the Hilbert space describing the
subsystems A and B respectively.

In order to try to isolate a single component of a system (as best as we can), we define
the reduced density matrix, pa (ﬁB), describing the subsystem A(B). Note how the choice

of what consists as subsystem A or B is completely arbitrary, and therefore any physically

relevant conclusions or definitions must be invariant by the change of labels A <+ B. The



32

reduced density matrix p4 is defined using the partial trace operation: ps = trgp, while
P = trap, that is, we trace out the subsystem B or A to obtain a density matrix associated

with subsystem A or B, alone. Explicitly, we define p4 and jp as:

pu = trmp= 502 (5 oot o) (o8| (v ) o2)
m ,7,k,l
- z(zcmczm) v (v
ik \_m ’
Pik
= Yol (|
i,k

pp = trap= Z<¢$’ ( > ech
m ik
= Z (Zcmjcjnl> ‘%B>< ZB‘
—_——

o) o) (o] ] ) )

Jil
B
il

= S of [P (vP|. (2.50)
75l

Eq. (2.50) explicits the fact that, in general, the two parts of a bipartite system "mix"

p

together and affect each other, as we can see from the coefficients p# and pﬁ carrying
information from both parts of the system. Initially, in order to obtain generalizable results, we
work with quantum systems described by discrete variables. Later, we generalize our results
for mixtures of discrete and continuous variables.

The density matrix of any pure system can be written as p = |®) (®| and, as a bipartite
system, we can write the state vector |®) as (SCHMIDT, (1906):

@) =3¢

i=1

¢f) @

o) - (2.51)
¢;4>} and

qbZB>} are the Schmidt modes of the system, and the constants ¢;, the Schmidt coeffici-

This is called the Schmidt decomposition of the system. The orthonormal basis {

{

ents, satisfy the condition Y7, |¢;

|2 = 1, which shows that each squared coefficient can be
interpreted as a weight (probability) (GROBE; RZAZEWSKI; EBERLY, [1994). The question of
whether this system is entangled or not now becomes a matter of counting the number of
active Schmidt modes: if eq. presents more than one Schmidt mode, the state |®) is

entangled, otherwise, |®) is unentangled. On the other hand, we define a discrete maximally

entangled state as having n non-zero Schmidt modes equally weighted, that is, ¢; =

B

This discussion leads to the definition of the Schmidt rank K: the number of active

Schmidt modes, or equivalently, the number of nonzero Schmidt coefficients. Therefore, for
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pure bipartite states, ' = 1 implies in an unentangled state, while K > 1 indicates an
entangled state, in fact, K = n for a discrete maximally entangled state. The Schmidt rank
then provides some information about the degree of entanglement present in a pure bipartite
system.

The Schmidt decomposition also provides a simple form for the reduced density matrices

defined in eq. , which will be useful in a later discussion. Explicitly, we can write:
pa = trop=">(oF| (Z o) ¢f>®<¢?\<¢ﬂ> 08) =" lewl? |04 (@it
k i.j &

by = trap= ;@g\ (zcc o) |08) @ (97| <¢f1) 6it) = §|ck\z\¢£><¢i?| .
(2.52)

)

Our next task is to define the most widely used (and actually the only one for pure states)
(PLENIO; VIRMANI, 2007; POPESCU; ROHRLICH, |1997)) entanglement quantifier: the entropy of
entanglement, and connect it to the Schmidt Rank. We now follow closely the description of
Nielsen and Chuang (NIELSEN; CHUANG, 2000). A complementary view of what we discuss can
be found for example in (WOOTERS, 2001)).

Consider an unentangled system: |®) = ‘¢A> ® ‘¢B>. In this case, there is no uncertainty
in the outcome of measurements performed on the system. When we consider an entangled
state on the other hand, the multiple possible Schmidt modes introduce uncertainty in the
outcome of measurements performed on the system. Therefore, a measure of the degree of
uncertainty in the system should yield a measure of the degree of entanglement. This is where
the concept of entropy becomes useful in the quantification of entanglement. More specifically,
we now introduce the Shannon entropy.

Given a random variable X, a quantification of the amount of uncertainty before we obtain
a certain value of X is equivalent to a quantification of the amount of information we gain
after we learn the value of X. Therefore, we now turn to the problem of quantifying the
amount of information gained through the process of learning a value of a random variable
X. We can quantify the amount of information provided by an event E with probability p by
introducing an "information function", I(E), which depends solely on the event. Suppose we
assume:

1) I(E) is a function only of the probability of the event E, that is: I(p), where 0 < p < 1.

2) I(p) is a smooth function of p.
3) I(pq) = 1(p) + 1(q) for p.q > 0.
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Note that assumption (3) is equivalent to say that the information gained from two in-
dependent events with probabilities p and ¢ is the sum of the information gained from each

event. From (3), we obtain:
Ip-1)=1(p)=1(p)+1(1) — I(1)=0, (2.53)

which means that if we have an event with certainty of happening, this already tell us everything
we need to know from the distribution of probability, and therefore, an event with probability
1 yields no more information than we already had. Taking the derivative in relation to ¢ in

assumption (3), and setting ¢ = 1, we get:
pI'(p) = I'(1), (2.54)

whose solution is: I(p) = I'(1) - Inp + cte. Imposing: (1) = 0, performing the change of
logarithmic basis In p — log,(p), and changing the resulting multiplicative constant to k, we

finally obtain the general solution to I(p) satisfying our assumptions:

I(p) = k - log,(p). (2.55)

Since 0 < p < 1 and log,(p) < 0, we can choose the multiplicative constant to be &k = —1,
in order to obtain a positive information function. Given a random variable: X consisting of
events of probabilities {p1,...,pk,-..,pn}, then, on average, the information obtained from

the happening of one event is given by:

H(X) = H(py,...,pn) = — Y pr10gs(pr), (2.56)

where H(X) is the Shannon entropy associated with the random variable X. So far, we have
not discussed the limit of: pp — 0, but since lim, oz - log,(z) = 0, we understand that
impossible events do not contribute to the entropy, as is intuitively expected. Note how more
uncertainty in a random variable X leads to more information to be gained from the occurrence
of an event.

Now, we can use the Shannon entropy to develop an entanglement quantifier. First, we

define the von Neumann entropy S(p) of a given state p:

S(p) = —tr(pInp), (2.57)

where we use the operator logarithm defined by:

Inp=— i (—n1)n (h—1)". (2.58)
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If we take a general density matrix written in its eigenbasis, p = >, n; |®;) (P;], we can

simplify the calculation of S(p), since
S(p) =— Zm In7; . (2.59)

Therefore, we notice that S(p) = 0 for any pure state, since for pure states the eigen-
decomposition only has one term, |®) (®|, and hence n; = 1 is the only nonzero eigenvalue.
This means that the von Neumann entropy for the density matrix of the whole system does
not discern between pure separable states and pure entangled states. In the beginning of this
subsection, we identified entangled bipartite pure states as pure states consisting of two parts
which are not themselves pure states. Therefore, if we can calculate the von Neumann entropy
for only one of the components of our system, we can identify whether the subsystem is pure
or not, that is, if the von Neumann entropy calculated over one of the subsystems is zero or
not.

Now we can finally define the entropy of entanglement E(p) as the von Neumann entropy

of the reduced density matrices p4 or pp:
E(p) = S(pa) = —tra(palnpa) = S(pp) = —trz(psps) = — 3 s In|e 2, (2.60)
k

where we used the Schmidt decomposition of the reduced density matrices above. A few notes
are in order: first, the entropy of entanglement calculated from p4 gives the same result as
pp and, therefore, if subsystem A is pure, so is subsystem B, and the system is unentangled;
second, E(p) = 0 means that the system is not entangled, as opposed to S(p) = 0 which
means that the system is pure; finally, note that E(p) > 0 shows that the system is entangled
and indicates a contribution of more than one active Schmidt mode (if there was only one
active Schmidt mode, we would have ¢; = 1 as the only nonzero Schmidt coefficient, which
would lead to a null entropy of entanglement, that is, a separable state).

Note that, operationally, if the Schmidt decomposition is unknown, the calculation of the
entropy of entanglement can be very complicated due to the term In p 4. However, if we assume
that p4 does not diverge from the identity too much, we can approximate the logarithm in eq.
to first order, thatis, In p4 & p4—1. Precisely, we can introduce the so-called Frobenius
inner product of two matrices A and B as: (A|B), = Tr(ATB) (HOFFMAN; KUNZE, 1971)).
Therefore, we can now calculate the distance d(l,ﬁA) from the identity 1 to the reduced

matrix pa as:

d(L,p4) = Jﬂ((m—l)*(m—l)). (2.61)
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Now, if d(l, ﬁA) is small enough (which is dictated by the level of accuracy desired for the
approximation In p4 =~ p4 — 1), we can simplify the entropy of entanglement to obtain the

linear entropy E(p):

Er(p) = —tra(pa(pa—1))
= tra(pa) —tra(p%)
— 1- Py, (2.62)

where we used the fact that the trace of a density matrix is 1 and we defined the purity of the
reduced state Py = tra(p?) (in this thesis, we may sometimes refer to it as purity when is
clear that we are calculating the purity of some reduced state). We usually drop the subscript
A in tru since we are already working with the reduced density matrix p4. Note that, once
again, everything we use can be defined with pg and yields the same results and conclusions.
Linear entropy therefore also provides a quantification of the degree of entanglement present
in a system, though it should be noted that it appears that for problems involving quantum
phase transitions it is not as sensitive as the von Neumann entropy (PAULETTI et al., 2023).
Since this is not our case, we can continue to use the linear entropy, or equivalently the purity,
as an indicator of entanglement. In the Schmidt basis, once again, the calculation of purity is
simplified, obtaining:

Pa=Y el (2.63)
k

Note that we can identify the right hand side of eq. as the average probability
|cx|?. Therefore, its inverse should provide the number of nonzero probabilities, or equivalently
Schmidt modes, that is, the Schmidt rank (GROBE; RZAZEWSKI; EBERLY, (1994; EBERLY; CHAN;
LAW, 2003). In fact, eq. yields P4 = 1 and P4, = 1/N for unentangled and maximally

entangled states respectively. More explicitly, we write:

1 1

Ke e
Py Y la]?

(2.64)

Therefore, we understand now that calculating the Schmidt rank is completely equivalent
to calculating the purity of the reduced state, which in turn is equivalent to the linear entropy,
which, finally, gives the first order approximation to the entropy of entanglement, the para-
digmatic entanglement quantifier for bipartite pure systems. In this thesis we then use these

concepts interchangeably to quantify the degree of entanglement, which will be the subject of

chapter [4]
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Finally, we provide a brief generalization of our discussion to pure bipartite continuous-
variable states, namely, written in terms of momentum eigenstates. A pure bipartite system of

the form:
)45 = [ dpd*aCE D7) 4125 (2.65)

leads to a density matrix of the form:

pap = |P) 45 (Pl
= [dpdqd’ a' CEDCF D) Dl 7T (266)

and a reduced density matrix pu:

pa = tTB(ﬁAB)

= [ @ (@ pan i)

= [apdiqdty ad [ @G- 5T — ) CE.DC T P (P
6%(q—q")

— [ dqdy CEDCF D) | (7 (2.67)

A further discussion on the purity calculation of reduced density matrices of this form and the
Schmidt decomposition of continuous variable systems are given in the corresponding sections

where they are needed.
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3 ATOMIC MEMORY BASED ON RECOIL-INDUCED RESONANCES

In this chapter, we aim to provide a detailed theoretical investigation of the RIR pheno-
menon and its role in the storage of light through the modelling and observation of both the
probe transmission and FFWM spectra, in the writing and reading phases, considering the
simplest case of an ensemble of two-level atoms. This theoretical analysis is supported by a
series of experiments performed in our group. Although the RIR effect is sometimes inter-
preted as Rayleigh scattering into a density grating (COURTOIS et al., |1994)), we followed a
different approach that we consider more amenable to model the experimental data obtained
in the Cold Atoms Laboratory at DF-UFPE. Our first-principles approach models it, in the
lowest order of perturbation, as Raman scattering between differently populated momentum
states (GUO et al., [1992)). This process creates a coherence grating between momentum states
of the ground-state manifold, which later scatters the incident optical fields. Most importantly,
this process does not require any dislocation of atoms in space to form density gratings, being
robust with respect to the power of the excitation fields.

The model and calculation developed here allows us to obtain the transient and stationary
responses of the system, and provides a simple interpretation of the non-volatility mentioned
in the introduction for the RIR memory. J. P. Lopez, A. M. G. de Melo and J. W. R. Tabosa
performed a thorough experimental investigation measuring simultaneously the probe trans-
mission and FFWM excitation spectra, as well as the corresponding spectra for the retrieved
signals after a specific storage time. These measurements are in good agreement with our
theoretical description. This pair of signals constitute an overall quasi-phase matching process
that could be explored in the future for its classical and quantum correlations.

The present chapter will be divided in 4 sections providing, in order: a brief overview
of the RIR phenomenon, a theoretical model for the atomic memory developed using RIR,
experimental results, and discussions comparing our theoretical model to the experimental

data.

3.1 THE RIR PHENOMENON

In this section we aim to provide a brief overview of the RIR phenomenon. In order to

understand the effect of the atomic/photonic recoil in the measured spectra, we may take a



39

pump-probe configuration as depicted in Fig. [I] It consists of two nearly degenerate coplanar
fields, an excitation field with frequency w,. and wavevector k. and a probe field with frequency
w, and wavevector Ep acting on an ensemble of cold two-level atoms, with a detector on the
direction of the transmitted probe field.

We assume both fields to be very far from atomic resonance: w, —wo > I and w,—wp > T’
where wy is the transition frequency between the atomic internal states and I' is the natural
line-width of the transition. This condition leads to the restriction of any dynamics to the
internal ground state of the atoms, |1). In fact, the dynamics generated by the light beams
occur on the only atomic degrees of freedom left: external (momentum) degrees of freedom.
The illumination of the atomic ensemble by the fields, therefore, induces transitions between
atomic momentum states, |p), which we understand as Raman scattering between momentum
atomic levels.

We then perform the spectroscopy by scanning the probe frequency w, around the ex-
citation frequency w,., and measuring the transmitted probe light intensity. Note that this
measurement is not background-free: we measure the resulting intensity of the sum of the

incident probe field and a generated (via non-linear processes) field by the atoms.

Figure 1 — Pump-probe setup consisting of two coplanar nearly degenerate light fields, the excitation (Ee,wc)
and probe (k,,w,) fields illuminating an ensemble of cold two level atoms. The intensity of the
transmitted probe light is monitored placing a detector along the direction of the probe field.

|

—

ke, w,
0
Ky ®P

Source: The author.

In this configuration, as illustrated by Fig. , two main scattering processes arise: (1) the

absorption of a photon from the probe field and a stimulated emission in the direction of the
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excitation field (leading to attenuation of the transmitted probe field); and (2) the absorption
of a photon from the excitation field and a stimulated emission in the probe direction (leading
to gain in the transmitted probe field). These are Raman processes, and as such, the rate for
the direct process is the same as the rate for the inverse process. Note however, that these
processes connect states with different populations and therefore, processes which happen
from a more populated state to a less populated state are enhanced in detriment of their
inverse processes.

Since all the dynamics is restricted to momentum states, we need to model our ensemble’s
distribution of momenta. We assume an atomic ensemble initially at thermal equilibrium with
a temperature T', which leads to :;1 Maxwell-Boltzmann distribution of momenta of the form
(up to normalization factors) 6_21)’?, with a variance of p? = mkgT, where m is the atom’s
mass and kp is the Boltzmann's constant, dependent on the ensemble’'s temperature. The
two aforementioned scattering processes are represented in Fig. [2, where we depict also the
ground-state manifold represented by the parabola, and the thermal distribution of momenta
in green, pictorially.

Now we are in position to understand the appearance of a resonant structure in the probe
transmission spectrum. Take, for example, process (1) regarding the absorption of a photon
from the probe field and emission in the excitation field. This process, depicted explicitly in Fig.
on the left side of the energy parabola (where w, > w.) can also happen by the inverse Raman
transition depicted on the right side of the parabola (where w,, < w,). Due to the Maxwellian
momentum distribution over the ground state, more atoms participate in the process where
wp > we, While for w, < w,, fewer atoms participate in the process. Therefore, on average,
process (1) which leads to an attenuation of the transmitted probe field is greatly enhanced
for w, > w.. If the probe frequency is now much greater than the excitation frequency, the
fields would need to access higher atomic energy states, which are less populated due to
the Maxwell-Boltzmann distribution. Therefore, we should observe a crescent attenuation for
the probe transmitted field as we increase the probe frequency from the excitation frequency
(w, > we), a trough for a certain resonant frequency of attenuation w,, where a balance is
achieved, and the spectrum should become flat as we keep increasing w,, where no gain or
attenuation are observed. Note that the resonant frequency, w,;;, where we can send atoms
between states with a large enough gradient of population while not trying to access higher
energy levels, is governed directly by the width of the Maxwell-Boltzmann distribution, and

therefore, the ensemble’s temperature.
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Figure 2 — Raman processes in the ground state manifold |1,p) = |1) ® |p). Depicted here are also a pictorial
shape for the disposition of population in momentum states over the ground state manifold and
the energy parabola representing the energies of the ground-state manifold.

o 11,P)

=Y

Source: The author.

On the other hand, take process (2) where the atomic ensemble absorbs a photon from the
excitation field and emits another in the probe direction (leading to a gain in the transmitted
probe field). Following the same steps as above, this process is greatly enhanced for w, < w,
and a balance is also achieved at a certain resonant frequency of gain, wy.,, generating a peak
at Wy, = Wgain- This resonant frequency, by the same reasoning as before, is directly related to
the ensemble’s temperature.

In summary, scanning the probe frequency around the excitation frequency should lead
to spectrum that presents a resonant structure at the middle with two resonant frequencies:
one for the gain region (w, < w.) and one for the attenuation region (w, > w.). This
dispersive curve has a natural width (defined as dg;r = Wart — Wyain) completely dictated by
the ensemble’s temperature. In fact, this property lead to the use of the RIR phenomenon as
an experimental tool of non-destructive temperature probing for laser cooled atoms (MEACHER

et al., (1994).
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3.2 THEORETICAL MODEL

In this section we present a theoretical approach to describe the non-volatile robust memory
associated with the RIR phenomenon. Explicitly, we consider an initially free cold atomic cloud
subjected to three subsequent processes (see Fig. : an interaction with excitation and probe
beams (the writing phase), then a dark evolution where no fields act on the atomic cloud
(dark/storage phase), and, finally, an interaction with only the excitation beam (the reading
phase). We are interested in the signals generated along the probe beam and the FFWM
directions. Further details of the theoretical model for each phase will be given in the respective

subsections.

3.2.1 The writing phase.

For the writing phase we consider an ensemble of cold two-level atoms interacting with two
fields that can be approximated by plane waves, an (strong) excitation field with wavevector

Ee and frequency w, and a (weak) probe field with wavevector l;p and frequency w:
E(t) = [56 cos(l::e F— wet) + &, cos(Ep F— wpt)} é, (3.1)

where &, and &, are the excitation and probe amplitudes, respectively, and € is the polarization
vector common to both fields. The wavevector k. points in the longitudinal z direction, and the
y axis will be referred to as the transverse direction. These two define the zy plane containing
both excitation and probe fields. We assume a small angle 6 between the directions of the
two fields, and excitation and probe frequencies with detunings from the atomic transition
frequency wy, A, = wp — we and A, = wy — w, much larger than the excited state natural
linewidth I, i.e., A., A, >> I'. The atomic internal ground state |1) has energy F;, and the
internal excited state |2) energy F5. The atom also has a linear momentum 7, associated with
a state |p) for its external degrees of freedom.
Considering the ground state energy E; = 0, the Hamiltonian for a single atom in the
ensemble can be written as:
. 2
ﬁzp—+hw0\2>(2|—ef)-E(t), (3.2)
2m
in the dipole interaction approximation, with D the atomic electric dipole operator and m the

atomic mass. Using the basis of the internal states, the Hamiltonian becomes then:
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Figure 3 — (a) Visualization of the three phases of the theoretical model: I) interaction with the excitation
(ke,we) and probe (k,,w,) coplanar fields; I1) dark evolution of the system; Ill) reading phase
using only the excitation field. The time duration of the dark phase is upscaled. (b) Excitation time
sequence.
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Source: (CAPELLA et al., 2022)).
If:\)Q
H = I + huwo|2) (2] — (u12\1>(2] + u21\2>(1]> : {éfe cos(k:e F— wet) + 5’pcos(kp F— wpt)} :
(3.3)

with 415 the dipole moment of the |1) — |2) transition. Following the steps from chapter 2
considering both internal and external degrees of freedom, using eq. (2.48]), the mixed variables

density matrix for the system is defined as:

p=3 [ didp’ piy(5 5P E 1, (34)

ij=1
with p;;(p, p”) providing the general populations and coherences in all degrees of freedom. The

density matrix components can be grouped now in five different family of terms:
1. p11(P, p) = ground-state populations;
2. p22(p, p) = excited-state populations;

3. p12(p,p’) = optical coherences;
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4. p11(p,p’) = ground-state coherences (p'# p’);
5. paa(p,p’) = excited-state coherences (p'# p’).

We anticipate that our initial state is restricted to the ground state populations (family 1)
obeying a Maxwell-Boltzmann distribution in momentum. The core of the temporal dynamics,
however, will unfold in the ground-state coherences (family 4) resulting in the observed traces
in the light emitted by the ensemble (from the optical coherences of family 3).

The time-evolution of the density matrix components will be dictated by the Liouville

equation, as seen in chapter [2}

WP _ L1, ). (35)

Defining a rotating frame where p15(p, p’) = €™“*o15(p, p’) and using the rotating wave

approximation, we obtain:

dpn @ﬁ/at . = o 5D
Sdt) AP, P pu (0, P, ) —

— Z [960'12(17, ﬁ/ + hEe, t) + nglg(ﬁ ﬁ/ -+ h];p, t)eiiét — hC} y

dUlQ (ﬁ ﬁlv t)

S =i A+ A on( i D)~
— i {0 [p11 (B, — Whie,t) = poa(F + ke, 1)) +

+ e |pua (957 — hkiy,t) = oo+ Wk 7)) (36)

where A(p,p’) = % gives the difference in kinetic energy of the two states in frequency

2
units, . = p128,/2h and Q, = p126,/2h are the Rabi frequencies associated with the
excitation and probe fields, 6 = w, — w, is the two-photon detuning, and h.c. stands for the
hermitian conjugate. To obtain eq. , we used the fact that e?*/" acts as a translation
operator in momentum eigenstates. We can now express the assumption that the probe field
is much weaker than the excitation field as 2, << (2.. Considering a large detuning from

the excited state (A, >> T, 6,p?/2hm), we can adiabatically eliminate the excited state,

approximating

0, (3.7)

Q

PQQ(ﬁﬁ/» t)

dgl?(ﬁ) ﬁl7 t)
dt

Q

0. (3.8)
These two conditions result in

(B Pt = A7 [Qepia (B — Bk, t) + Qupur (5,57 — By, )€ (3.9)
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In this way, we now only need to focus on calculating p11 (7, 0", t), whose Eq. ([3.6)) becomes:

dpll(p: ﬁ/v t)

= A (p.p’ 7o 1) —
dt 7 (p7p )pll(p)p ) )

— Q[ pu (B, 7+ BAE, )€ + puy (5, — hAK, t)e ™ —h.c.],(3.10)

with Ak = k, — Ep, and Q@ = Q.Q,/A, the two-photon Rabi frequency. Equation ((3.10]
generates the whole dynamics between different atomic momentum states. It is important to
note that we have completely eliminated the dynamics of the internal degrees of freedom of the
atom, making it explicit that the RIR phenomenon arises primarily from the dynamics of the
external degrees of freedom. For perturbative calculations, a more suitable form of Eq.

is
t 5 o
pu (PP’ t) = pua(p,p’, 0) + i {/o dt'Go(t,t") [011(]7,]7/ + hAk, )t +

+ pu(p,p — Ak t)e ™ —hel}, (3.11)

where Gy(t,t") = APP)e=iAEP) is 3 Green's function for the operator {% — 1A (p, ﬁ’)}
and €2 becomes the perturbation parameter.

We are interested in a first-order solution for p11(p, p’, t), which means we should substitute
the 0*P-order solution p{,(p,p",t) = p11(P,p’,0) in the integrand. At t = 0, however, we have
no coherences established between different momenta states of the atom, only populations.

This condition can be expressed as:

pua(p.0",0) = p1, (D)3(P — ), (3.12)

where p?, (p) is given by the standard Maxwell-Boltzmann distribution for the momenta of the
atomic ensemble:

0 (= _ m —p?/2p},
P11 (D) \/Wpue , (3.13)

with p, = v/mkgT and T the ensemble’'s temperature. We obtain then:

L o 1 e e
pu (B0, t) = P (P)O(F — P') — Q{M(ﬁﬁ’)é(p —p' — hAk) [(6 o _ AP )t) X
— 7 1 — —/ % —1 iA(pp!
X (P%(ﬁ) — (P~ ﬁAk))} + W&F — P+ hAk) [(6 " AP )t)
< (o - a4 18R] (314)

which fully determines p11(p,p’,t) in first-order approximation. Note that pq1(p,p’,t) repre-
p

sents a ground-state population for the internal degrees of freedom of the atoms, but describes
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both populations and coherences of the momentum states describing the atomic external de-
grees of freedom. These terms act as "sources" for the optical coherences as in Eq. (3.9). In
this order of perturbation, they take into account effects that depend on one single "kick" of
momentum, AAE, generating signals in different directions. If we were interested in a second-
order solution for py1(p,p’,t), we would proceed in an analogous manner, substituting the
first order solution we found onto the integrand of . This would lead to second-order
terms taking into account now two kicks of momentum (and a correction for the “zero-kicks”
solution) that would result, in the conditions considered here, in the creation of much weaker
signals in other directions.

After substitution of into (3.9), we now obtain the usual local optical coherence,
given by (GUO et al., (1992):

!

, 1 I VN 2
012(7“;?5) = W/dpdp/e 5 p12(p,p’,t)e . (3_15)

Since 2, << €, we disregard terms of order (2, yielding:

it /d
pra( 1) = (27h) AJ(27h)% pap

" {Qpe“ﬂtp?l (D)5 — '+ hkp) + Qe o0 (D)5 — F' + hk.) —

— QQ, et 5(F— ' — hAK + ki) x

hk,)

| =

5+A(

. 1
« ( ez&t —hke)t

P =
hAE S— X
( (D) — P (P~ )) 5+ AP — hi)

N—

X O = P+ hAK + k) (7% — 07 R (4, (5) = g, (5 + hAK) )

(3.16)

All observed signals originate from this equation, which deserves a closer look. The Dirac
deltas express the momentum conservation required for any process. The first two terms on the
right hand side give the linear response of the atomic medium, while the last two terms originate
from the 3'9-order non-linearity of the medium in momentum space. We turn our attention to
the latter noting that the first term inside the brackets describes the gain-attenuation of the
probe field, since —hA/g—i— hl;e = hEp. The second term inside the brackets, on the other hand,
describes a FFWM generation process. We can see that the efficiency of these processes are
proportional to the difference in population of the external levels |p) and |p'+ AAK), therefore,

since hA|l;| is small, the resonant structure is expected to be roughly as wide as the Doppler
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width. Moreover, note that these two processes arise at the same order of perturbation which
goes to show that a more complete understanding of the RIR phenomenon should consider

both processes as equivalent.

3.2.1.1 Transmission signal.

To obtain the transmission signal, we need to look at the plane waves seeded in the /;p

direction. Those arise from the terms containing 8(7 — "’ — hAk + hk,) = 0(5 — p’ + hlgp) in

(3.16)). Explicitly, we have:

. QQee—(iEp-F—wpt) . 1
Pha(7t) = 3 /dp - X
A (27h)3 —8 + A(p, 7 — hAK)
x (1 — e AEFRAD=0) (50 (5) — ¥, (7 — hAK)). (3.17)

Note that, using the small angle approximation, the momentum exchange only happens

on the transverse y direction which implies that:

(IF—hAKP —p?)  p Ak &
~ — — Ak 3.18
2mh m + 2m ( )

A, — hAK) =

Now, if such momentum exchange is small when compared to the average momentum of
atoms, we may also approximate:
9p: (py)
P (py) = Ai(py — hAK) = (—hAk) - == =2, (3.19)
Py
where we use the 1D version of ([3.13)). The probe transmission signal is proportional to the

imaginary part of the slowly-varying coherence, of,(7,t) = etr T iwnt b (7 1) Using (3.18))

and ([3.19)), we obtain then:

2
Im [0, (7, t)] = —W X /dpy sinc[( —0— pyAmk + ;ZnAk’Q)t] e_ﬁpy. (3.20)

This expression for the transmission signal has already been found in the literature (GUIBAL
et al, 11996) where the term of second order in Ak was discarded. Figure |4 shows the transient
and stationary transmission spectra predicted by the theory using Ak = 1.2 x 10°m™!, a
temperature of T = 500 uK, and m as the cesium mass. Ak was calculated considering
an angle # = 1° between excitation and probe fields. We will use this set of parameters
throughout all theoretical considerations. Note that the other parameters only amount to a

global scaling factor, which is irrelevant to the discussion here presented. To obtain a rough

estimate of the time 7 it takes for the system to achieve a stationary state, we take the inverse
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Figure 4 — Theoretical prediction for the transmission spectrum at ¢ ~ 100 us (dashed line) and at ¢ > 7
(solid line).
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of the corresponding Doppler width, to find 7 = 325 us. This Doppler width is then directly
responsible for the width of the stationary spectrum. Note that the RIR spectrum in Fig. 4] is
broader for t < 7, since it is then limited by the interaction time window itself.

We do not include any phenomenological homogeneous decay in our model, meaning that
the stationary state is reached purely due to the inhomogeneous dephasing of the various
atomic velocity groups. In order to highlight this property, we plot in Fig. [ the time evolution
of the transmission signal of a single velocity group (with p, = p,) versus the evolution of
the ensemble of velocity groups, for a single detuning . The signal for a single velocity group
should describe then a simple oscillation, while the signal for the ensemble reaches the usually

observed stationary state.

3.2.1.2 Forward four-wave mixing.

Now, we can turn to the problem of obtaining the FFWM signal. To do so, we need to
look at the contributions in the 2k, — l?;p direction. Those arise from the terms containing

S(p—p' + AAL + hEe) = 5(ﬁ— P+ h(?Ee — Ep)>. Explicitly, we have:
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Figure 5 — Transmission signal (black) and singled-out momentum component (upscaled) p, = p,,, in orange.
We use a detuning of § = 200 kHz.
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p{;WM(—», t) _ QQe(ﬁmJAk‘) eiWete—i(QEe—Ep)'Fe—i& % /dpy (1 _ ei(é-&-py%—&-h%i‘f)t) x
Ac(2mh)2p2
o
e QP«Qpr

§ + p, 2k 4 poR

(3.21)

The FFWM signal is then proportional to the modulus squared of plVM (7, t), yielding

the spectrum presented in Fig. [6] As we can see, the theory generates a symmetric spectrum
with a peak at § ~ 0, which evolves in time. As with the structure in Fig. [4 the central
peak becomes narrower as it approaches the stationary state. Fig. [f] also presents, in its
inset, theoretical predictions for the FFWM signal evolution in time. These explicitly show the
constructive interference resulting in the maximum of the central peak, and the oscillation
coming from partial interference defining the values on the side of the peak.

The spectra shown here give the global behavior of the FFWM and transmission signals
when continuously generated by the excitation and probe fields. A further study of how these
spectra evolve in time will be given in Sec.[3.4] In practice, even though it is simpler to calculate
and interpret the stationary states of the signals described above, it is quite common to be
restricted to transient spectra in cold atoms. As the ensemble becomes colder, the times to

reach the stationary state becomes longer and may become of the order of or even surpass
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Figure 6 — Theoretical prediction for the FFWM spectrum at ¢ ~ 100 us (dashed line) and at ¢ > 7 (solid
line). Inset: FFWM temporal evolution for § = 0 (black) and 6 = £8kHz (orange).
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typical times for spurious optical pumping to any dark state in the system. This will be the

case for the experiments described below.

3.2.2 The dark phase.

We now turn to the modeling of the dark phase, where no fields act on the atomic medium.
From now on, we shall use p%j(ﬁ, p’,t) for coherences and populations in the first (writing)

phase of the theoretical model, pj;(p, ", t) for the second (dark) phase and pi}'(p,p’,t) for

ij
the third (reading) phase. Turning back to (3.10)) and (3.9), and noting that turning off both

fields means €2, = €2, = 2 = 0, these equations simplify to:

— =

doty(p, 0" t) L |
WnPoFY) _ x5 57) ol 5,57, 1),

dt P11\P;
o (P, 7', 1) = 0, (3.22)
whose solution is:
P (B, 17, t) = phy (B, 7, 1) €2FF 00 (3.23)

where we take t = t; as the instant in which the fields are turned off, and assume continuity

of the solution throughout the process. We also get directly,

PP’ 1) =0, (324)
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which immediately tell us that we should expect no signals at all to be observed, as there is
no optical polarisation. Although we may not be able to promptly measure it, equation ([3.23))
shows that in fact the information that was written in the first phase of the experiment is stored
in the atomic medium, when we turn off the writing fields, in the form of coherences between
different momentum states. All that is left to do now is the retrieval of this information.
Note that the model predicts that the reading results depend on the storage time because, in
the dark period, the off-diagonal elements of the density matrix in the ground-state manifold
all evolve with different frequencies, given by the various A(p,p”) when p' # p’. Thus the
evolution in the dark phase can be understood exactly as a free-induction decay, with A(g, p”)
providing the free-evolution phases of the different energy states of the inhomogeneous system

at finite temperature.

3.2.3 The reading phase.

In the reading phase, only the excitation field is turned on while the probe field stays off.

This implies . # 0 and €, = = 0. Equations (3.10) and (3.9)) now lead to:

— =

APt (D7) _ x5 57) G 0)

dt p)pni\p,pP,
Q. .. -
o1 (07", ) = 1° P (B, — hke, t). (3.25)

We already note that the time evolution for p!ll(p, p”, ) does not change from the dark phase,

that is, our coherences/populations seem to be unaffected by the reading process. The ground
state coherences are only affected by the two-photon process, depending on (). This is the first
sign of the robustness of the RIR based memory modeled here. We can solve for pii!(7, 5", t)
directly, obtaining:
PE.B 1) = pii (B0, o) B FPIIE), (3.26)
But, note that:

P (BB ta) = phy (5,7 )@ APP ) (et (3.27)

which then implies that:
PRB P 8) = P57 ) AP
IAFF)(t—t1) LIAED)(t—t2)

= /)111(]5;]7/7 tl)e
= (P, 1) AT, (3.28)
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And consequently,

Q ==l BT
o @5 1) = 5 A — Ry, ty) A PF IR =) (3.29)

for t > t,. This is the main result of this section: our theoretical model shows in a very
direct manner that the reading process does not destroy any information stored in the atomic
medium and the retrieved signal is completely indifferent to the moment ¢ = t, at which the
reading process begins and depends only on the time frame of the writing phase, ¢;. In this
way, we provide a theoretical picture that explains the core experimental observations reported
n (ALMEIDA et al., 2016). We now proceed to take a closer look at each mode generated from

the atomic memory.

3.2.3.1 Retrieved transmission signal.

Using eq. (3.14), we may write:

Qe = =/ " —
A eI L (6(5 — ' + hke)

— Q[P 5~ hReyt1) 67— 5" — hAK + hE,)—

o1y (00", 1) =

— o "B P = Bk th) (5 — B+ BAK + k)| (3.30)
where we defined:
AP EF ) = =i = (7 =) (o (5) — (7~ hAR)
it (B ) = 5+A1(“') x (7o — AP (o0 (5) — o3, (5 + BAR)) . (3.31)

These will generate, respectively, the retrieved signal in the direction of the probe field and
in the FFWM direction. The component in the probe direction of the local optical coherence
is then given by:

QQ@ zw —1 S iA(PP—RAK) (t— > = .
P (7 ) = — peierte BT s [ e ETIAR g0 5 AR 1), (3.32)
A.(27h)2

with the measured signal being proportional to the modulus squared of p; I(p)( t). The solid
curves in Fig. 7| presents the theoretical spectra (panel a) and temporal evolutions (panel b) of
the retrieved probe signal. Note that the spectra of the retrieved probe beam is now a peak,
similarly to the continuously-generated FFWM spectra, as they are generated from similarly

excited coherences between external momentum states of the atoms. Moreover, the temporal
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evolution reveals a decay much shorter than the time to reach the stationary state in the
writing process for these same conditions (Fig. [4)). The time of tens of microseconds for the
decay is related to the diffusion time of atoms between fringes of the coherence grating printed

in the ensemble, as already pointed out in (ALMEIDA et al., 2016)).

3.2.3.2 Retrieved FFWM signal.

Now, it is straightforward to obtain the retrieved FFWM signal. In fact, we may write the

FFWM-component of the local optical coherence as:

Q0 o o AR . .
p11121(FWM) (F, t) _ . ezwete—z(Zke—k:p)-r % /dﬁezA(p,IH-hAk)(t—h)pll(lFWM) (ﬁp + hAk,tl)
A (27h)?
(3.33)
The measured signal is then also given by the modulus squared of pr;(FWM) (7,t), which

generates the spectrum shown by the dashed line in Fig. [/l Note the peak at 6 ~ 0 and it's
symmetric structure, just as the spectrum in the probe direction. We may also investigate the
time profile of this signal and we note again the similarities between the signals in the FFWM
and probe directions. As we pointed out above, this is no coincidence: our theory shows that
these signals originate from the same process and have the same behavior. The only differences
we saw in the writing phase were due to the manner in which we observed each signal. In the
reading phase, the measurements are performed the same way in both directions, and the

differences we once observed vanish. Figure [7| explicits this behavior.
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Figure 7 — (a) Theoretical spectra for the signals in the probe and FFWM direction, taken at ¢ = 133 us
considering t; = 102 us and ¢ = 107 us, which corresponds to a reading time of about 26 us. (b)
Theoretical time profiles for the signals in the probe and FFWM direction for (from top to bottom):
6 ~ 0 and 6 ~ £8kHz. Note that the last two are superimposed due to the symmetric nature of

the spectrum.
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3.3 EXPERIMENT AND RESULTS

In order to test the validity of the previously developed theory, A. M. G. de Melo, J. P. Lopez
and J. W. R. Tabosa have also investigated experimentally the probe transmission and FFWM
spectra, both during the writing and reading phases, and in the transient and close to the

steady state regimes. They used a cloud of cold cesium atoms with a temperature of hundreds
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of uK and an on-resonance optical density of about 3, obtained from a magneto-optical trap
(MOT). The experiment is performed in the absence of the trapping and repumping beams
as well as the MOT quadrupole magnetic field, with the trapping beams and the quadrupole
magnetic field being switched off 1 ms before the repumping beam in order to pump the atoms
into the hyperfine 65, /2(F = 4) ground state. The residual magnetic field is compensated by
three pairs of independent Helmholtz coils, whose current is adjusted by using a microwave
spectroscopic technique (ALMEIDA et al., [2016)), which allows the residual field to be reduced
to less than 10 mG. The simplified experimental scheme is shown in Fig. a). All the beams
are provided by an external-cavity diode laser locked, using a saturated absorption signal, to
the cesium closed transition 65} /2(F = 4) — 6P5/,(F" = 5). The excitation beam (E) and
the probe beam (P) have the same circular polarization and their directions form a small angle
of # = 1. The amplitude and frequency of beams E and P are controlled by independent
acousto-optic modulators (AOMs). The frequency of the excitation beam is red-detuned by
6" ~ 30 MHz from the transition (F' = 4) — (F' = 5), while the frequency of the probe
beam is scanned around the frequency of the excitation beam. The probe transmission and
the generated FFWM intensities are detected by fast photodetectors. The time sequence of
the experiment is shown in Fig. b). The excitation and probe beams are kept on for a period
of 100 us during the writing phase and then they are both turned off for a controlled period of
time, 7¢ = to —1t;. After this storage phase, the excitation beam E is turned back on to retrieve
both the probe and the FFWM beams, which are detected by the same pair of photodetectors.
In the experiment, for a given excitation-probe frequency detuning §, we record the signals
propagating along the directions of the incident probe beam and the generated FFWM beam,
both in the writing and reading phases. In Fig. [9] we show these signals as a function of time
for excitation-probe detunings of 6 &~ —8kHz, § ~ 0kHz, and § ~ +8kHz, respectively. In
panels (a) and (c), we plot the curves for the writing period of 100 us. In panels (b) and (d),
the time evolutions are plotted for a reading period of 75 us after a storage period of 75 = 5 us.
The power of the excitation and probe beams are equal to 50 uW and 1 W, respectively.
First, we should note that the probe transmission signal indeed corresponds to the me-
asurement of the imaginary part of the nonlinear susceptibility, while the FFWM signal is a
measure of its squared modulus. Explicitly, consider the probe field given by the electric field

E,. For an optically thin sample, the resulting field £,,; can be written as:

. B
By — E, +i—"—P, 3.34
t p+22060 ( )
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where (3 is a real constant dependent on the atomic density and the length of the sample and
P is the component of the complex polarization in the probe direction (CRUZ et al., 2007).
The resulting intensity in the probe direction as measured by the photodetector, is then:

2

. B 2 : . B B
E Pl = |E PP - E,P* E:P
p+22ceo Byl + 4c2e 2’ | 20 T 2c€
— |E,| zCE<EP (E,P)")
2¢Im{E,P*}
B
= |E,)*+ ~Im{E,P*
| Ep|” + ceo nl{ P }
B . .
= |E)?+ =Im{(Re{E,} +ilm{E,}) (Re{P} — ilm{P
[l - tm{ (Re{B,} + ilm{E,}) (Re(P} — ilm{ P} ) }
= |E,* - ﬂRe{Ep}Im{P} + ﬁlm{Ep}Re{P}
C€o Ce€p
— 1B, - L Bm{p), (3.35)
C€g

where we used the fact that 452263 |P|?> < |E,|* and, in the last line, that the probe field is real.
Therefore, the detector placed along the probe direction measures a plateau due to the term
|E,|* and any deviations from this plateau is due to the imaginary part of the polarization
multiplied by the incident probe field amplitude. For the detector on the FFWM direction,
however, there is no incident field other than the generated FFWM signal itself, which is
due entirely to the induced polarization, and thus, the signal is proportional to the modulus
squared of the component of polarization along the FFWM direction. Therefore, in the frame
(a) of Fig. [9] we have normalized the measured probe transmission signal by the incident probe
intensity. The retrieval of the probe and FFWM signals in the reading phase demonstrates the
information on these beams have been stored in the atomic ensemble. As can be observed in
panels (a) and (c), both the probe transmission and the generated FFWM signals present a
transient regime strongly dependent of the excitation-probe detuning. This effect have already
been observed on previous RIR experiments for the transmitted probe (GUIBAL et al., [1996)).
Our results show the same transient regime is also present in the generated FFWM signal.
Nevertheless, all the signals reach a stationary regime even in the absence of any homogeneous
decay rate as predicted by the developed theoretical model. It is also worth noting that both
the retrieved signals, at the beginning of the reading phase, are always maximum for zero
detuning, with their decays coming from the atomic motion, as we have already reported in
(ALMEIDA et al., 2016). The amplitudes measured for the retrieved signals along the probe

and FFWM directions have the same order of magnitude, but the signal in the direction of
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the probe beam is still larger by a factor of four. Our theoretical analysis predicts the same
amplitudes for the retrieved signals, and presently we do not fully understand this discrepancy.
One possible cause could be a larger sensitivity of the FFWM signal to the phase matching

conditions in the system, with beams of finite transversal dimensions.

Figure 8 — (a): Simplified experimental beams configuration to observe the RIR and the FFWM signals. (b):
Time sequence specifying the writing, storage and reading phases. AOM: acousto-optic modulator;
PMF: polarization maintaining fiber; PBS: polarizing beam splitter; A\/2: half waveplate; \/4:
quarter waveplate; PD: photodetector.
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Figure [0 shows the measured signal intensity spectra. The intensities are measured at the
end of the writing phase and at the beginning of the reading phase. We clearly see that the
retrieved spectra for the signal propagating along the directions of the probe and the FFWM
beams have essentially the same spectral width as the corresponding signals in the writing
phase, which evidentiates they are determined by the same physical mechanism. We may also
note the similar structure of the spectra predicted by the theoretical model introduced in

section Il.
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Figure 9 — Time evolution of the probe transmission and the generated FFWM beams during the writing, (a)
and (c), and the reading, (b) and (d), phases for 6 ~ —8kHz (orange), § ~ 0kHz (black) and
0 ~ +8kHz (red). In (a) we have normalized the associated signal by the intensity of the incident
probe, as explained in the text.
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Figure 10 — Measured spectra for the probe transmission in (a) the end of the writing phase and (b) the

beginning of the reading phase, and corresponding spectra for the FFWM in the (c) writing and
(d) reading phases.
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3.4 DISCUSSIONS

In this section, we aim to provide at first a global comparison between the theoretical
model predictions and the experimental results. Secondly, we study the time profiles of these
signals and delve into the limits of our theoretical model. During the writing phase of the
experiment, we expect a progressive establishment of coherence between different momentum
states which translates into a transient dynamics of the measured spectra that converges to a
stationary shape. During the reading phase, the loss of coherence due to atomic motion implies
that the shape of the measured spectra is only slightly time-dependent. In order to achieve
the first goal of this section, we obtain the time evolution of the linewidths of each signal
(for the writing and reading phases). The signal’s linewidths (for the probe transmission signal
the linewidth is defined as the frequency separation between the gain and attenuation peaks
ORIR = Watt — Wgains) iN the writing phase are strongly dependent on the time we perform
the measurement. For very short times, the widths are large and Fourier limited, evolving to
stationary values for long times. This behavior was verified experimentally as shown in Fig
a) and is in reasonable agreement with the predictions of the developed theory as shown
in Fig. b). We note that the build up of coherence makes the measured spectra sharper in
time. As it was demonstrated previously in (MEACHER et al., [1994)) the stationary value of the
probe transmission signal linewidth is determined by the temperature of the atomic ensemble.
Therefore, our results suggest a new way to measure the temperature of the atoms through the
measurement of the linewidth of the FFWM signal, which is background free. Figures [11{c)
and d) show the experimental and theoretical time evolutions for the retrieved linewidths,
which theoretically get larger in time. One should note that an experimental observation of this
dynamics becomes very limited by noise for longer times. Despite the good global agreement,
the theoretical model does not show any difference between the probe and FFWM linewidths
in the reading phase, even though the experiment shows a slight difference of about 1kHz.

A closer look at the theoretical time profiles of the signals provided in Fig. [12| shows some
limitations of our model. In fact, comparing Figs. [0[(a) and [9(c) to Figs.[12(a) and [12{c), for
example, we note that the experimental signals are noticeably more asymmetric than the the-
oretical ones. More importantly, Figures @(b) and @(d) show experimental decay times lower
than the ones predicted by our theory, and the shape of the experimental signal follows a
more exponential-like decay than a Gaussian-like one, as given by our theoretical model. In

Ref. (ALMEIDA et al., 2016), however, the authors had previously reported a curve correspon-
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Figure 11 — (a): Experimental temporal evolution of the spectral width of the probe transmission spectrum
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(frequency separation between the gain peak and the attenuation trough drir = watt — Wyain)
and the full width at half maximum of the generated FFWM spectrum measured in the writing
phase. (b): Theoretical curves corresponding to (a). (c): Experimental temporal evolution of the
spectral full width at half maximum of the retrieved FFWM and transmission spectrum measured
in the reading phase. (d): Theoretical curves corresponding to (c).
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ding to Fig. @(b) that followed more a Gaussian-like shape. In our view, this discrepancy may

result from different structures of the residual magnetic field in the experimental apparatus.

For example, if the residual field contains a larger component perpendicular to the propagation

direction, it may remove more frequently atoms from the cycling transition. We could then

introduce this mechanism as a simple exponentially decaying depletion of atoms that partici-
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pate in the process. In this chapter, however, we opted not to introduce any phenomenological
modification of the theory, in order to highlight the limits of our first-principles approach.
Additional effects such as induced heating of the atomic ensemble by the interacting fields
are also not included in our theoretical model but could play a role in the time dynamics, as
already pointed out in (ALMEIDA et al., 2016)).

Figure 12 — Theoretical time evolution of the probe transmission signal in the (a) writing and (b) reading

phases. Generated FFWM signals during the (c) writing and (d) reading phases for: 6 ~ —8kHz
(orange), 0 &~ 0kHz (black) and ¢ ~ 8 kHz (red).
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4 ENTANGLEMENT IN WEISSKOPF-WIGNER THEORY OF SPONTANEOUS
DECAY

In the present chapter, we aim to use the Weisskopf-Wigner theory for spontaneous emission
to understand how entanglement arises and how it can be minimized by a suitable choice of
atomic momentum uncertainty. Moreover, we investigate the physical mechanisms behind the
creation of entanglement and briefly discuss its physical implications in the distinguishability

of two paradigmatic quantum states that arise from the theory.

4.1 WEISSKOPF-WIGNER THEORY FOR SPONTANEUS EMISSION

In this section we summarize the Weisskopf-Wigner model for spontaneous decay (WEISS-
KOPF; WIGNER, 1930) following the theoretical picture proposed by (RZAZEWSKI; ZAKOWICZ,
1992)) which takes into account the atomic external degrees of freedom. More precisely, we
model the atom as a wave-packet in momentum space.

Consider a two-level atom initially excited, interacting with the vacuum of the electromag-

netic field. The Hamiltonian of the system may be written as
H=H,+Hpr+V;, (4.1)

where fIA, ]:IF and XA/I refer to the free Hamiltonian of the atom, the free Hamiltonian of the
electromagnetic field, and the interaction potential, respectively. Explicitly, we have for the

free Hamiltonians:

.9 .2
5 p 2 P o
Hy = — E;|iXj| = 7— + —02,
A 5 +jzl il = 5~ + =76
. 1
1

where P is the linear momentum operator of the atom, E; = +%0 are the energies associated
with the atomic internal degrees of freedom, {|1),]2)}, | = (s, k) accounts simultaneously
for the polarization and wave vector variables, d; denotes the annihilation operator of a (s, E)
mode of the electromagnetic field with angular frequency w;, and 6 is the raising operator

in the internal atomic degrees of freedom. The interaction potential reads:

V= thl‘lbeiE'? a6, + h.c., (4.3)
I
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where g is the coupling constant given by:

ab _ O] e & ok 44
g p Ovﬂab : (4.4)

with /i, = (aler|b) the dipole moment of the interaction. In order to simplify the time evolution

of our system, we can use the interaction Hamiltonian in the interaction picture:
7 = eithot/hy, o=iflot/n, (4.5)

where ﬁo corresponds to the free Hamiltonian contributions of the atom and the field f[o =
IA{A + IA{FZ )
N P hwq 5

Hy = 5 + — 5 .+ Zhw alay, (4.6)

where we neglected the zero-point energy of the electromagnet|c field. After extensive use of

the Baker-Campbell-Hausdorff formula (2.14)), the interaction Hamiltonian reads:
52
hzgabeumht@@k' omrtie R e 05, 4+ hc. (4.7)

For the sake of simplicity, from now on we omit the prime symbol. Nevertheless, unless
explicitly mentioned, we are still treating our problem in the interaction picture. It is reasonable

to assume the following form for the state of the system throughout time evolution:

= [ Q@O 1491000+ 3 [ a0 ), Pep  (48)

where |j) , indicates the atomic internal j-th eigen-state, |p) . the linear momentum state as-
sociated with the atom and |m;) ., the Fock state related to the k mode of the electromagnetic
field (note that we momentarily disregard the polarization of the photon, but it will return in a
later discussion). Now we turn our attention to calculate the coefficients cq(p, t) and ¢(p,t),
which represent respectively the amplitude of probability of the atom not emitting a photon
and the atom emitting a photon with state [ = (k, s). First of all, let’s find a reduced form

for the exponentials involving position and momentum operators in eq.(4.7)). We can write:

2 2 i ( S a7(2 a2
P2 e p2 L e p+hk |P] )t . >\,
612mﬁt67’k r6 it /dp 62 3 | | ‘p_{_ hk.><p

(4.9)

P/h

where we used the fact that: ¥/ |p,) = |7, + p5). The interaction Hamiltonian then reduces

to:
by f g esersore 7T

X |+ hec. (4.10)
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In this expression we can see the effect of the interaction: as the atom decays to the ground
state, a quanta is created in the mode k of the electromagnetic field (energy conservation) and
the atom suffers a recoil in the opposite direction of the emitted photon (linear momentum
conservation). We are now in a good position to begin considering the time evolution of our
system. Schrodinger's equation in the interaction picture (that is, the time evolution of a ket

in the interaction picture [1(¢));), is given by:

0 .
tha, 1) = Vi) , (4.11)

where we will drop the subscript "I" for the state ket and assume that (4.8)) is written in the
interaction picture. We now look at each side of eq.(4.11]) separately and note that we can

write the right hand side (RHS) of eq.(4.11)) as:
= . a (W wyp m +hk |_1 — — 7
Uile) = B [dpgtete e wn (P20 0y 1) [+ 18 [0y +

o abe iy g (|RE ) e L
+ hZ/dp girem ! ’“)te%m(’p [ ) co(r',1)10) 4 ‘p_hk>E|1l>F'
l

(4.12)

On the other hand, the left hand side (LHS) reads:

0= [ap 2P0y i, o), +3 [

@Cl )

0alP) e (413)

Therefore, the time evolution of the state of the system is given by:

86,

0co (P,
/dp0<)m ) 10) ZZ/d 0412 1) p =
hk .
=2 [ ap gitetter gz (117 )t a(f 1) [1) 4|7+ hE) [0)+
+Z A gb*eilwo—wp)t W('p |15 ) 7 ) 10Y, 17— RE) 1 4.14
P 9 CO(pa)’>A‘p >E’1>F' (4.14)

Projecting eq.(4.14) onto (1|, (7' |z (0], we get:

Oco(p, t 4 i (|12 =|p—nk|” -
R (1) 5 i) (4.15)
1
Now we proceed to project eq.(4.14) onto (0| , <ﬁ— hk ‘E (1;| >, obtaining:

dc)(p — hik, t A i (|=E| =5
i Cl(p 5 ) ) :glab*e—z(wo—w,;)t62mh(|p hk| 1Pl )t Co(ﬁ, t). (4.16)
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Thus by solving Egs. and |4.16, we get a complete description about the state of the
system, [1(t)). Let us define the function Fj(p,t) as

5— i)’
E(p,t) = igite'owr)te Zour ('ﬂ “lp |)t, (4.17)

we can rewrite Egs. [4.15] and [4.16] as:

Jco(pit -
WD S R ali- ) (4.18)
1
de(p — hk, t L .
l(at) = E (pat) CO(pvt)7 (419)
subject to the following initial state:
= [ a5 o) 114165 10),- (4.20)

which is equivalent to the initial conditions:

where (p) corresponds to the linear momentum distribution of the atom before the decay

process. Integrating eq.(4.19) in time we get:
i~ k1) = [ aEz (5 6) eolfi ). (4.21)
Substituting ¢;(7 — hk, t) in eq.:
Oco( p, ,
Z/ dt'Fu(p, ) Fy (5, 1) co (P, 1), (4.22)

In order to facilitate the calculations, let us decompose the sum over [ into an integration
in k and a sum in the polarization variable s. For this we must take into account the density
of states in the space of wave-vectors k, pr = V/(2m)?, where V is the volume involved in

the quantization process. Such a correspondence among integration and sum in k reads:
2
-V
= / Ak (4.23)
; ; (2m)3

then, we can write:

3co(ﬁt) o %4 2 / _’/t / — * (= 4/ )
T (QWP; dk | At F (0O F (0,1 )eo (7). (4.24)
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On the other hand,

: 151 |ﬁm€2> :
9 | wo—wptgw— o (t—t")
6( ET2mE  2mh ’ (4.25)

and therefore:

N ) 52 ‘ﬁ—h,E|2 / 2
dooFt) [af [ et (- 522 Y

bl - dk/ dt/ ,t/

o1 om ) W ), el t)e >

ab, 2
gs,k

(4.26)

s=1

Let us express the vector kin spherical coordinates k= (k, Ok, 1), thus dk = k2 dk d,, dey.
In addition it is more convenient to deal with the frequency associated with the mode with
wave-vector amplitude k, w; = wy, = ke, thus dk = w?/c® dwy, dy dpy. On the other hand,

recalling the definition of the coupling constant g;"" (eq.(4.4))), we have

ab2 1 h&)k 5 A2
= — 2 (&) 4.27
12 26,V (fab - €1) ( )
and we can rewrite eq.(4.26)), as:
aC()(ﬁ t) 1 1 0 3 [T ) 2m t
— = ————— [ d /d9 «9/d /dt’ g, t') x
ot (2m)3¢3 2h60/0 B b R w(pt)
i| wo—wp+ lzerzL_p—_'rZEL'Q)(t_tl) 2
% e < 0~YET omh 2mh Z(ﬁab . él)2, (428)
s=1

Let's calculate the term: Y2, (i, - él)2. Given that the wave propagates in the direction
of the wave-vector, k = IZ/’E’ we can define two unitary vectors 2 and j mutually orthogonal

to k, such that:
fap = (fiap 1) 0 + (Fap - 3) ] + (fla - k) b (4.29)

Then, if 7 and } are aligned with the polarization directions é; and é,, it is easy to see that

i (flap - 1) (ﬁab ' %)2 + (ﬁab ' 5)2 = ||’ — (ﬁab ' /%>2 : (4.30)

s=1

Without loss of generality, we can assume the vector ji,;, parallel to the z-axis, in this way
2 2 2
Z ap - el = |fLap] (1 — cos? 0k> = |fiq|” sin® . (4.31)
s=1
Substituting the last result in eq.(4.28) we have

dco(p,t 1 o
08(];) = — 2 |5hl;|0/ dwkwk/ d#, sin® Qk/ dt'co(p, t/

1512 _ [Pk

i| wo—wptgar— 5 (t—t")
xe( "'””) . (4.32)
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Let us analyse the frequency in the argument of the exponential term:

— 12 -
I e FE R
Wo T Wi 2 h  2mh = Wo Wit m _%’k‘
B +k: i hk?
W0 m 2m
D k 1 hwy
— oy —wp |12 .
wo wk( —t5 | (4.33)

where k corresponds to the module of the wave-vector k. At this point we need to take into

account several approximations in order to facilitate the calculations:
» The atom possesses a low initial linear momentum,

1p] < me. (4.34)

» The energy of the emitted photon is negligible in comparison with the energy of the
atom at rest

hwp < mc?. (4.35)

» Under the last two approximations, the frequency in the exponential argument reduces
to wy — wy, in this case the integration in ¢’ is not zero only in a region around wj ~ wy,
thus it is reasonable to take the term wl:-;’. out of the integration as w3. In general terms,
we can approximate

Wi AWy, (4.36)

with o > 1.

After taking into account all the considerations above, eq.(4.32) reduces to:

dco (P, t) 2| fiap| /°° t
) _ a d / dt/ — t/ l(UJQ e )(t t)
ot 3(27r)2c3h60 “k o (P t)e ’

|Nab| / t—t/
- dt / duye! (o) =)
62 c3heo ¢op e

= |Mab| / dt'co(p, t') /OO dwk.ei(“’0*“’15)(lt*’y)7

67T263h€0

|Nab| /
— dt'c Nomo (t —t

|Nab| wO —
= —— ,t .
3rcihey (P )
1 4,Jab 2W3 -
. | ’3 OCO( ,t).
dmeq  3hc

r .
= _§CO<pa t)? (437)
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— 2 3
where we obtain the spontaneous decay rate I' = — Uil @ The solution to eq.(4.37)) can

4meg  3hc3

be easily found and is equal to:

co(f,t) = p(p) e 5", (4.38)

which explicits the exponential decay nature of the spontaneous emission process. This is
the extension of the main result of the original paper (WEISSKOPF; WIGNER, 1930) to wave
packets: an initially excited two-level atom modelled by a wave packet in momentum space
when interacting with the electromagnetic vacuum spontaneously decay with a characteristic
rate I' (RZAZEWSKI; ZAKOWICZ, [1992).

Back to Equation (4.19), we can now easily find the coefficients ¢;(p — hIZ, t):

dey(p — hik, t)

S = F () el

= F(p,t) co(pi 1)

512 _ |7—nk|>

—i OJO—W*-F mh mh t
:glab*go(m efgte ( k' 2mh 2mh ) . (439)

Integrating in time and using the corresponding initial condition, we obtain:

L2

; 712 _ |[P—rk|
1 7£t _Z<w0_wlg+2'mh_ 2mh t
— € 27€e

LR
2mh 2mh

a(F— ik, t) = g2 o(p) (4.40)

T
Wg — wo + +i5

Finally, we obtain the solution of eq.(4.11)):

WE) = [ a5 eolFt) 10155 10),+ Y [ a ali—hk.2) |0, |5 = hE) 11,
(4.41)

where the coefficients co (7, t) and ¢;(7— ik, t) are given by Eqgs. (#.38)) and (4.40)) respectively.

42 QUANTUM STATE AFTER THE EMISSION PROCESS

We are interested in the entanglement that arises between photon and atom after the
decay process. Therefore, we need to guarantee that the spontaneous emission happened, and
we then use the asymptotic behavior of eq.(4.41)) in the limit I't > 1. Since for long times,
co(p,t) — 0, after dropping the subscript £ for the atomic external degrees of freedom, we

obtain:

) ~ Z/dﬁ (7 R [0) 4 [7— R |17, (4.42)

k,s
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where the ¢; (7 — hk) are given by eq.(@.40). Notice that, since we are restrained to the

1-photon subspace of the Fock space associated with the electromagnetic field, we can write

1E,s> as

a more treatable way, we use the relations between sum and integration of the variable k in

the ket associated with the state of the photon IZ, s>. In order to write the state in
two cases:
a) sum involving a ket:

S k) = (;)3/2/013/{; () ]k), (4.43)

k

b) sum not involving a ket:
S () o <L>3/d3k () (4.44)
. 2 ’
where the coefficient (%) corresponds to the density of states in the reciprocal space. In this
limit, we are in the subspace corresponding to the atomic internal ground state, and therefore

we can ignore the atomic internal degrees of freedom, and write the atom-photon state as:

V1/2 . ~ ~ _— .
9= Gy > [k [ dp e (5 - nk) |5 k),

where the subscripts at and ph refer to the atomic and photonic subsystems respectively and

k, s>ph : (4.45)

V = L3. Now we turn our attention to the coefficient C(j, k, s) = %CE,S@_ hk). Note

that we can write it as:

—

Cl T s) = VY2 5k iy - b, e T00(p)
T (2m)3 R
W= wWot 5n T 2mm T3
2. —‘a . é_‘ ef’ik-FO
B (zw)g/zr \ 2;?2 - k;]ﬁf—%?(*m ' (4.46)
’ QWEI:MO + ’ mhl’ - + i

Without loss of generality we can fix the vector [i,, = |/ia|7i3 and the set of orthogonal

vectors {k, &z, €5, ) as

k= ksin6y cos ¢piy + ksin 0y sin ¢gng + k cos Oxnis,
é;;,l = €oSs 0} cos PNy + cos Oy sin ¢y — sin Oyns,
€ro = —singpny + cos gy, (4.47)

where {71,7,73} is a rotated orthonormal basis which aligns jiq, to 73. Thus, fig - €5, =

— || Sin O and figp - ery = 0. Therefore, the coefficient C(p, /Z, s) reduces to:

. —2 [ [fiap| sin 0}, ¢~ T000(p)
s 232\ 2hey 7 Lwomwo  R2|E] -2k
(2m) O gEEen ‘Jnﬁr =i
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which implies in C(p, k, 2) =0, and:

. —2i Wk |flap| sin O e FT0p(p)

Cp k,1) = .
” 232\ 2hey nwp—wo 2[R —2mkp
(2m) 02 S Hmhl" S+

(4.49)

This illustrates the fact that the photon can only be emitted in a single polarization. For
the sake of simplicity, from now on we refer to the coefficient C'(7, k, 1) as C(7, k). After some

steps, the above expression is reduced to:

. 1/2 . — k-7
- i ([ 3wic? sin 0, e ""0p(p)
Cpk)=—— 4.50
(P k) or ( rwd ) we—wo | W2|R|"—2hk-p ( )
2 T mhI’
In summary, we can write the state of the atom-photon system asymptotically as:
) ~ /dk/dp C(F,R) |7 k) k) . (4.51)

where C(p, E) is given by eq.(4.50). We note directly that the amplitude C/(p, E) mixes atomic
and photonic momentum variables in a non-separable manner; this is where most of the
literature stops and argues that this implies in the existence of entanglement in the system
and no further discussion arises. We departure from this point of view and look more closely

at the atom-photon state.

4.3 QUANTIFICATION OF ENTANGLEMENT ENCODED IN THE MOMENTUM VARIA-
BLES

As already discussed in Chapter [2] in section [2.2.2] one of the ways we can assess the
presence of entanglement in a pure bipartite quantum state is by evaluating the purity of the
reduced state of one of the components. From eq.(4.51)) it is straightforward to show that the

reduced state associated with the atomic subsystem can be written as:

Pa = trpn (X))
— / dk 4 dpf C(7, K)C" (¢ k) [ — i Yp' — k| (4.52)

Therefore, the purity of the reduced state of the atom reads:

P, =tr (pi)

- /dE Ak d7 dg C(F+ Bk, BYC* (T + bk FVC(d + b, YO (¢ + Tk, E),  (4.53)
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with C(q + hik, k) given by eq.(@.50). Note that in the expressions above we have employed
the variable associated with the final momentum of the atom, ¢, instead of the initial one, p.

In order to proceed with the purity calculation we need to provide an explicit form for
©(p), that is, a given shape for the initial distribution of atomic momenta. Experimentally, we
can trap an excited atom in a minimum of a given potential, which can be approximated as
a harmonic potential (HENSON et al., 2022)) leading to an atomic state corresponding to the
ground state of a quantum harmonic oscillator for its external degrees of freedom, that is, a
Gaussian wave-packet in momentum. Therefore, we use this experimental picture to assume

a Gaussian wave-packet as our initial distribution of atomic momenta. Explicitly, we assume:

1 3/4 2
o(p) = (WAp2> v (4.54)

Now, we can calculate the purity of the reduced atomic state for a few physical realizations
of the spontaneous emission process as we have modelled it, considering different spectral lines
for various atoms. Note that for theses systems, every parameter such as I', wy and m are fixed
by the considered spectral line of the given atom. Nonetheless, there is still a free parameter
embedded in our model: Ap, the initial atomic momentum uncertainty. Therefore, we shall
study the dependence of the purity on Ap.

Since Ap > 0, we can reparametrize our problem to a more suitable quantity which will

make the comparison to atomic scales easier, by defining the effective energy, €., as:

Ap?
e =— =kgT,, 4.55
¢ 2m B ( )

where we also define the effective temperature 7., and we may use energy or temperature
interchangeably. This allows us to map variations in momentum uncertainty to variations in
an energy scale, which in turn, allows us to compare the effective energies or temperatures to
Doppler and Recoil energies or temperatures, ¢p (orTp) and eg (or Tx), respectively, which

are defined by:

A’
Ep — kBTD = 7
h2 2
ER = k‘BTR = (;;0 (456)

As is to be expected, the 12-D integral in eq.(4.53) cannot be put into an analytical
form. Therefore, we perform a numerical integration (using the quasi-Monte Carlo method of

integration embedded into the Mathematica® version 11.2 software) to obtain the scattered
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points in Fig. for the different spectral lines considered in Table [I} This particular choice
of spectral lines gives a sizeable range of Doppler and recoil temperatures and in fact, a good
range for the quantity Tp/Tx, which as we can see from Fig. [L3|yields different behaviors to
each of the lines.

One characteristic that is common to all the considered spectral lines is the presence of
two high entanglement regimes for small €. and large €., illustrated by the decrease in purity
shown in Fig. [L3| on the edges of each line. Some spectral lines, such as the Cs — D5 line and
the K — D5 line separate these high entanglement regimes quite well with a region of purity
near 1 in the middle, while others, such as the Sr - Narrow line, do not, presenting a lot of

entanglement in all effective energies considered.

Table 1 — Recoil and Doppler temperatures for the different spectral lines considered.

Cs — Dy K—-Dy Li— D, K - Narrow | Li - Narrow | Sr - Narrow
Line Line Line Line Line Line
Tr(uK) 0.20 0.82 6.36 2.95 27.48 0.46
Tp(pK) 124.84 144.26 140.37 28.44 18.02 0.18

Source: (STECK), 2003).

The next subsections are dedicated to understanding these two regimes in an analytical
manner expliciting the non-separability of the state from a simplification of the amplitude

C(p+ hlz, IZ) and a physically driven interpretation of the observed increase in entanglement.

4.3.1 Simplification of the amplitude C(q+ hk, /2) near resonance.

The state's amplitude C'(¢+ Rk, E) is roughly comprised of two competing distributions: a
Gaussian distribution (originating from the Maxwellian distribution of atomic momentum) and
a distribution that resembles a Lorentzian distribution (originating from the natural spectral
distribution of the emitted photon while altered by the atomic recoil). Both of these distri-
butions are characterized by a prominent peak, therefore, most of the dynamics we observe
should be concentrated near this resonance.

The aim of the present subsection is then to use this fact to our advantage, simplifying the
expression for the amplitude to use it later to obtain even simpler expressions valid for each

entanglement regime. We begin by writing (4.50)) as:



73

Figure 13 — Purity as a function of ¢./cg for the different atomic spectral lines considered in table The
scattered points represent the full computation of the purity using the amplitude given by (4.50),
while the solid curves gives the product of the purities, P,, calculated using the small Ap and

large Ap approximations given respectively by (4.66]) and (4.67).
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sin an go((f+ IZ(H))
—ir (K" + (8 = whmacos ) BT+ = 2

C(7+ K, KMy = A , (4.57)

1 (33 \Y2 I : - 7 .
where A = —o- (—) , k'Y = hk and ~; is the angle between ¢ and k. Note that this angle

2
wsl
does not change when we perform this change of variables. Note also that the denominator

in (4.57)) is a second degree polynomial in k™. We wish to approximate it by a first degree

polynomial, but in order to do so we must first turn its coefficients dimensionless. We can

then write (4.57)) as:

sin @i gO(Ap (T(I) + hkg E(HI))

huwd 2 2 A 2 ~
_ 0 111 IIT | 2wo __ g Apcosm -]
mIc? (k ) +k { r (1 mc )] T e

C(gM + K, Oy — 4 . (4.58)

- 7 > R0 gian : : :
where ¢V = L and k") = E— = <= are our new (dimensionless) variables. We can now
p hko hwo
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discard the quadratic term if:

2 A hw?
20 (| a'Apcosm)| Twp
r me mIc?

or, equivalently:

A fuw
| L 2P 0 ~ 1071, (4.59)
mc 2mc?
a condition that may break when:
A
4 2P COSTh (4.60)
mce
or:
17 m
gcosyr ~mec~10""kg - —, (4.61)
S

which would be within relativistic regimes, which is not our case. Note that we used the fact
that ¢! Ap = ¢. In the non-relativistic regime we approximate ([4.58)) as:

sin O (Ap @0 + hkg kD)

C(q—»(l) X E(III)’ E(III)) ~id
AN {2% (1 _qd'Ap COS’YI):| _ 2% 4

A I sin B o(Ap 3D + Fiko KID)
—! L Ap cos 1 T
Duyy (1 — LAYy (1 = e} 3 Ty ;
T me Wo T T e
1110 V

sin @ gO(Ap (j)(l) + hkg E(IH)>
LI kHIO + i

= iA"Y sin ka gO(Ap (j’(I) + hko E(IH)) %

=1Ay

AL kIIIO ' o~
X (km _ kmo)z +72 B Z(kIH _ kIHO)Q + 72

= (A sin O;,m (p(Ap (7(1) + hko ];;(IH))(]{;HI _ k,HIO) v Y

7T(km _ kHIO)2 T 7Tfy2+

~
ﬂ-(kHI _ kIIIO)2 + 7r72

L(kMO T

+ Aymsin O o(Ap ) + kg K1)

= Arsin O o(Apg® + hlko M) L(EM 4 KM [y (R — BT
(4.62)

where L(K™’ ~, k™) stands for a Lorentzian (Cauchy) distribution with location parameter

—1
(peak at) KM = (1 — m) and scale parameter (width) v = %kmo in the variable

mc

k"L Note that so far we have not considered the specific shape of (¢ + k), but by equation
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(4.54) we note that the amplitude we have been calculating is only non-negligible for ¢ €
(0,n Ap) where n is a number of order 1. This, in turn, means that ¢* € (0,n) and therefore
to consider a small Ap is completely equivalent to consider small g. We can now rewrite our

amplitude in terms of our original variables:
C(q+ hk, k) = Arsin O o(G+ hE)L(K, 5, k) |y +i(k — k)] | (4.63)

where up to first order in ¢ we get:

(4.64)

(0= 0 (14 L
C mc

r
) and 7_2(1_'_QCOS'YI>.
C

mc

This yields v ~ 1072m~! for the Cs — D, line. If we now write (g + hl;) in terms of
only wavenumber variables, that is, ¢(hq” + hE) this generates a Gaussian distribution in the
variable ¢’ with a standard deviation Aq’ = % ~ 10—10" m~! for the Ap range we consider.
This means that our Lorentzian distribution is much narrower than our Gaussian distribution
when we look at them in comparable units. With that in mind, it is straightforward to assume
that ¢(q + hE) does not vary a lot when we consider k near the peak of our Lorentzian
distribution. In fact, we should be able to assume ¢(7+ hk) ~ ¢(7+ k"), where k° is a
vector on the sphere centered at the origin with radius k° = £, that is, a vector of length %Y.

This simplifies the considered amplitude to:

C(q+ hk, k) = Amsin O o(q+ hEO)L(K®, v, k) [y +i(k — k)] . (4.65)

4.3.2 Small Ap approximation.

In this subsection we aim to obtain a simplified expression suitable to describe the high
entanglement regime associated with small atomic momentum uncertainties. Note that for

very small Ap, £k = #0 and therefore, it should be a good approximation for the left part of

the graph. If £° = £, then v = QLC This in turn means that the Lorentzian distribution is now
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a function of only k. Therefore, the amplitude now reads:

C(q+ hk, k) = Arsin O L(K®, v, k) [y +i(k — k)] @(7+ hk0)

f1(k)
g (e ()]
—ﬁ(k)(mg) eI aT
L1 \T e () (e
10 (k) 2
TAp
91(q)
. _qh(w—co)cos'yl
=fik) (e > (4.66)
qh(w—co)cosvl
Therefore, the non-separability of the state comes from the term e~ 40 | encoded

directly into the angular variables of the system through the cos~; term. Note that as Ap
increases, the exponential term goes to 1, bringing the state to a separable (non-entangled)
state. We illustrate this behavior and show the validity of by calculating the Schmidt
rank for the cesium D line (see Fig. [14). We use eq.(4.65]), which gives the corresponding
solution for the considered range of effective energies (scattered points) and eq.(4.66]) (solid
green line), which agrees with in the small Ap limit. We refer to the small Ap limit as
the Recoil entanglement regime for reasons that will become clearer when we discuss physically

the entanglement regimes.

4.3.3 Large Ap approximation.

When we consider the large Ap regime, we can no longer approximate £° and v as mere
parameters that do not depend on any of the momentum variables. In fact, we need to use
(4.64]) in its full effect. This means that now our Lorentzian distribution carries the entangle-

ment of the system. To show that no non-separability survives in the Gaussian distribution,
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we can turn to (4.65]) once again to write:

C(q+ hk, k) = Amsin O L(k°, 7, k) [y +i(k — k)] o(g+ hk)
= Amsin oLk, 7, k) [y +i(k — k)] o(g+ hk)
= Amsin0pL(K, v, k) [y +i(k — k)] x
q2 ( )COS’yl q h(wc )cos Y1 ﬁ2(wc )2 (T) q cos2ﬂ/1 hz(wTO)2qcoswl
X 672Ap p chp 2Ap2 2(m(‘)2Ap - chp2

q2
~ Amsin O LK, 5, k) [y +i(k — k)] e 22

= [a(R)gs (D)L, 7, k) [y +i(k = K)] (4.67)

where we defined fo(k) = A7 sinfy, and go(p) = 6_% (see Appendix |A| for further details
in the simplification of the exponential term). Therefore, what now controls the separability
of the state is the Lorentzian distribution, which as we have already seen, becomes a function
of only k when Ap decreases. We should then observe a separable state for small Ap and
an entangled state for increasing values of Ap. Figure [14]illustrates this behavior through the
solid red line, following the scattered points for large values of Ap and presenting a separable
state for small values of Ap. From now on, we call it the Doppler regime of entanglement, for
reasons that will become clearer when we present a physical discussion of both regimes. Note
that these discussions are all valid for spectral lines that split the entanglement regimes quite
well, such as the Cs — D5 line, and therefore we focus on them for further discussions.

Now, since for both amplitudes (small and large Ap approximations) the calculated purity
asymptotically goes to 1 in the complementary regime, we can define the product purity as:
P, = P, x P,, where P; is the purity calculated using the small Ap approximation [eq.(4.66])]
and P, is the purity calculated using the large Ap approximation [eq.]. As we can see from
Fig. [13] the product purity gives a general behavior close to the actual purity, and therefore,
we can use the simplified expressions we obtained to calculate P, and P, and then compute

the product for a simplified way to obtain the full purity.
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Figure 14 — Schmidt rank as a function of €. /e g for the Cs — D5 Line. The solid green line represents the purity
calculated from the small Ap approximation [eq.(4.66])], while the solid red line represents the

purity calculated from the large Ap approximation [eq.

4.67)]. The middle vertical line represents

a minimum of entanglement where e, = ep. The shaded areas describe the range of . where
we obtain each entanglement regime, that is, e, < eg for the Recoil entanglement regime and

e > 4¢%, /e for the Doppler entanglement regime.
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4.4 PHYSICAL CONSIDERATIONS REGARDING THE

ENTANGLEMENT REGIMES

In this section we aim to provide physical intuition about the high entanglement regimes we

found. Moreover, we intend to obtain a roughly accurate threshold for the high entanglement

regimes (we use K > 2 as an indicator of high entanglement, due to the fact that for the

discrete case, this is the lowest Schmidt rank for entangled

states). The physical reasoning that

will permeate this section is that as the effect of one subsystem upon the other becomes more

and more measurable, more correlations are created in the system, leading to entanglement.
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4.4.1 Recoil entanglement

For the small Ap regime, the Recoil entanglement regime, we are dealing with an atom
with a well defined initial momentum, p; &~ 0. This means that the spontaneous decay process
behaves as a classical disintegration process, where one part of the system goes in a given
direction while the other part goes in the opposite direction. While the momentum modulus
of the atom or photon is well known (explicitly, p; &~ hwg/c with an uncertainty of il'/c), the
direction in which this process occurs is completely undetermined due to the isotropic nature

of spontaneous emission. Using eq.(|4.51)), this yields a state of the form:

) ~ /d3k C(0,F) |-hk)

E>ph : (4.68)

at

which is a continuous non-separable state analogous to a (maximally entangled) Bell state.
Note that: k € (ko — I'/2¢, ko + I'/2¢), which means that & does not vary a lot, while the
angular variables range in the usual intervals. This means that the entanglement is in fact
mostly encoded in the angular variables of the system.

Finally, this discussion elucidates the fact that the Recoil entanglement arises in the regime
where recoil effects are more relevant, that is, when the recoil due to the photon emission is
big enough to change measurably the atomic initial momentum. Therefore, a natural threshold
for the Recoil entanglement is:

ge < eg, (4.69)

which as we can see from the light gray shaded area in Fig. [14] gives a reasonable threshold
for the Recoil entanglement regime, as K > 2. For effective energies greater than the recoil
energy of the considered spectral line, we should not observe any entanglement due to this
mechanism, where Fig. corroborates this statement.

We can understand the increase in the Schmidt rank as we decrease ¢, as follows: consider
first a sphere of radius h=e, and therefore, surface area of 47 - hQ‘Z—;. Consider now a small
circle living on the surface of the previous sphere with radius Ap, and spanning an area of
7Ap?. We argue that the Schmidt rank can be understood as counting the number of small

circles that can live in the surface of the big sphere, that is:

2
N47Th2%_2€£

K (4.70)

mAp? Ee
Note that the counting we performed gives roughly the number of independent atomic

scattering modes that fit in a sphere of noise with a radius comparable to the momentum
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recoil suffered by the atom. We can compare the estimate (4.70) to the actual calculated
Schmidt rank using Fig. [15and noting that the green solid line, representing the ratio of areas
we defined, follows closely the scattered points for K > 2. Note that we define K = 1 when:

2€R/€€ S 1.

Figure 15 — Comparison of the Schmidt rank calculated from estimates (4.70]) (solid green line) and (4.75)
(solid red line) with the actual Schmidt rank. Both estimates work better in the Recoil and Doppler
entanglement regimes respectively.
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4.4.2 Doppler entanglement

In the Doppler entanglement regime, we turn back to equation (4.64]), to note that the
effect of the recoil of the atom over the photon’s central frequency is a blueshift or redshift

depending on the emission direction in relation to the atom's final momentum direction:

mc

W’ —w = <w0> KK (4.71)
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where w” = k%/c is the new entangled-induced emitted photon’s central frequency and ¢ =
q cos~y; is the component of the atom’s final momentum in the direction of the emitted
photon. Therefore, the central frequency of the emitted photon can be blueshifted if ¢ > 0,
or redshifted if ¢ < 0, that is, if the final momentum of the atom is aligned parallel to the
direction of the emitted photon or anti-parallel to it.

We should then expect an increase in entanglement as the shift in frequency becomes
greater than the natural linewidth I'. Considering that the components that participate the
most in the effect are of the order of Ap, that is, ¢ =~ Ap, we can write the condition for

entanglement as:

(“m) Ap>T, (4.72)
mc

or equivalently, solving for Ap and writing the solution in terms of €., €, and £p, we obtain

the Doppler threshold:

Ee Z 4<€D>€D = kBTDEa (473)
€R

which defines the Doppler entanglement temperature. As we can see from Fig. [14] the shaded
dark gray area in the right part of the graph [which illustrates the threshold (4.73))] represents
well the region where K > 2. An analog view of this effect is the following: we can understand
the threshold as the minimum effective energy such that the (homogeneous) Doppler

broadening induced by it is greater than the natural linewidth of the spectral line. Explicitly:

e

I, = wy > T, (4.74)

mc?

where we define the effective natural linewidth, I'., and now, eq. can be rewritten as
eq.. Note that we use the term homogeneous to emphasize the fact that we are working
with a single atom and making parallels with an atomic ensemble at an effective temperature
T..

We can then understand the increase in the Schmidt rank as a quantification of how many
['s fit in a given I'.. More accurately, since the Gaussian and Lorentzian distribution are
of different natures, we compare the Full-Width at Half Maximum (FWHM) of the Doppler
induced spectrum /S8log 2T, to I, and argue that:

r
K= 1 2 == ~ e . 4.
8log T e VEe e (4.75)
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In fact, as we can see from Fig. [15] the red solid line, representing the ratio of widths we
just defined, follows along the calculated Schmidt rank specially as K increases from 2, that
is, in the Doppler regime. Note that we define K = 1 when: /8log2T, < T.

Finally, we can summarize the thresholds we obtained in Fig. [L6] and look at the results
shown in Fig. [13|in a analogous manner: note that each spectral line we considered presents
a different value of £p/cg, which we represent as the vertical lines in Fig. . We showed
that the interplay between Doppler and Recoil energies plays a crucial role in the observed
entanglement behavior, and following along a given spectral line shown in Fig. we can
observe the transitions from Recoil entanglement to a low entanglement plateau to Doppler
entanglement as is the case for the Cs — Dy line, or as in the Strontium narrow line case,
we can see that the system does not leave any region of high entanglement, staying highly
entangled at all considered values of ¢.. In fact, we can note for the Strontium narrow line
that, for certain values of ¢., the effects of the Recoil and Doppler regimes of entanglement
overlap, creating a type of mixed entanglement regime where no source of entanglement can

be separated from the other.
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Figure 16 — Phase diagram elucidating all observed high entanglement regimes and low entanglement regions.
The vertical lines represent different spectral lines (color coded with Fig. from left to right: Sr
- narrow line, Li - narrow line, K - narrow line, Li - Dy line, K - Dy line and Cs - D5 line) labelled
by different values of ep/eg.
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4.5 PHYSICAL IMPLICATIONS OF THE HIGH ENTANGLEMENT REGIMES

In this section, we briefly discuss one of the implications of the presence of regions of high
and low entanglement. Namely, we aim to discuss about the discrimination of two paradigmatic
states that arise in our discussion: states with final atomic and photonic momenta parallel to
each other (g > 0) and states where the final atomic momentum and photonic momentum
are anti-parallel to each other (¢ < 0).

Physically, these two states seem very different from each other and naively we may assume
that a measurement on the atom and photon at the same time should yield precisely with which
quantum state we are dealing. Quantum mechanics fails to be that simple and atomic/photonic
momentum uncertainties cause the outcomes of measurements to not carry enough information

to discriminate these two states.
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Though we do not implement or discuss any particular quantum discrimination protocol,
we shall understand the indistinguishability between these two states as the overlap between
their wave-functions C'(, IZ) In fact, what we observe in Fig. [L7|is that the two considered
quantum states present less overlap in their wave-functions for values of ¢, corresponding to
regions of high entanglement, while for regions of low entanglement, these two quantum states
become less distinguishable.

Namely, in Fig. |17| we investigate measurements performed upon the photonic or atomic
subsystems: in panels a and b we observe the probability of measuring some frequency for the
photon given that the atom is in a certain momentum state (we assume here ¢ = Ap), while
in panels ¢ and d we compute the probability of finding the atom in some momentum state
given that we measure a given frequency for the photon (which we assume to be wy).

For the Cs — Dy, line (panels a and ¢ of Fig. we can see that before the Doppler regime
of entanglement, measuring the photon’s frequency (panel a), the blueshifted (¢ > 0) and
redshifted (¢, < 0) wave-functions overlap completely, whereas when we get to the Doppler
regime of entanglement these two wave-functions split from each other and we can see that,
for example, a measurement of a blueshift in the central frequency of the emitted photon yields
that we are dealing with a ¢, > 0 state. From panel ¢, we observe that a measurement on the
atomic subsystem does not provide any distinguishability of the given quantum states (note the
complete overlap) until we arrive at the Recoil entanglement regime, where the wave-functions
split from each other. In the intermediate region, that is, in the low entanglement region, no
matter which subsystem you look at, no distinction between the states is observed.

The situation is even more appalling when we consider the Strontium narrow line (panels
b and d of Fig. [I7)): in the considered region of . we can always perform a measurement
upon one of the subsystems to obtain information about in which quantum state the other
subsystem is. This is a symptom of what we already observed: the atom and photon involved
in the Strontium narrow line decay are highly entangled in the whole considered region of ¢..

Finally, we conclude that the presence of entanglement in the system enhances our chances
at discriminating physically distinct quantum states that arise in the process of spontaneous
emission. Note that we are not breaking any fundamental rules of quantum mechanics: the
complete distinction between two quantum states is only achieved for orthogonal states (null
overlapping of wave-functions). Entanglement then is only a consequence of the generation
of more and more orthogonal states, which is directly related to the increase in the Schmidt

rank.
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Figure 17 — Heat map of the probability density function, |C(q, l;:)|2 as a function of . /e g for different atomic
spectral lines: Cs — Dy line in panels a) and c¢) and Strontium narrow line in panels b) and d).
a) Heat map of |C(q, k)|* with a fixed value of ¢ = Ap for g cosy1 = q¢ > 0 (in blue) and
q cosy1 = —q < 0 (in red) for the Cs — Dy line, b) heat map of |C(, k)|? with a fixed value of
g = Ap for g cosy; = ¢ > 0 (in blue) and ¢ cosy; = —¢ < 0 (in red) for the Strontium narrow
line, c) heat map of |C(g, k)|? with a fixed value of wy = wp for ¢ cosy; = ¢ > 0 (in blue) and
q cosy; = —q < 0 (in red) for the Cs — Dy line, d) heat map of |C(q, k)|? with a fixed value of
wk = wo for g cosy; = ¢ > 0 (in blue) and g cosy; = —¢ < 0 (in red) for the Strontium narrow
line
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5 CONCLUSION AND PERSPECTIVES

In this thesis, we developed some of the main theoretical tools required for the modelling
of quantum memories based on continuous degrees of freedom. Namely, we used the density
matrix (in continuous and mixed variables) formalism to model atom-photon systems in the
semi-classical and fully quantum pictures, as well as we investigated the storage of information
in the external degrees of freedom of an atomic ensemble and quantified the entanglement
encoded in the momentum variables of an atom-photon system after the process of sponta-
neous decay, which presented regimes of high and low entanglement dependent on the initial
atomic momentum dispersion. These techniques are fundamental in the modelling of conti-
nuous variables quantum memories and further understanding of distribution of entanglement
over a quantum network.

Specifically, in chapter [3] we presented a theoretical model from first principles for a RIR
based atomic memory and provided experimental results to corroborate it. Our theory puts the
probe transmitted signal in equal footing to the FFWM signal. This is first directly illustrated
via the calculations for the temporal evolutions and lineshapes during the reading process,
which showed the same structure and amplitude for both signals. Furthermore, the theory
predicted that both probe transmission and FFWM are connected to non-volatile memories,
as previously observed only for the transmitted signal. This means that the stored in infor-
mation can be retrieved without its simultaneous destruction. These signals were then in fact
experimentally observed with good agreement with the core theoretical predictions. For the
writing and reading phase, both (probe and FFWM) experimental spectra showed the same
structures predicted by the model. The global comparison between theory and experiment was
then carried out in more detail through the time evolution of the linewidths experimentally
observed and theoretically predicted for the structures in the writing and reading phases. This
comparison showed a good qualitative agreement between experimental data and theoretical
predictions, even though some differences could still be noticed. The fact that the theory
shows the FFWM and transmission signals as originating from the same phenomenon, at the
same order of perturbation, suggests the use of this pair of signals as a source of quantum
correlations.

Recently, Moreira et. al. reported the observation of the analogous to the non-volatile

memory for the spontaneous scattering of light from an ensemble of two-level atoms at the
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single photon level (MOREIRA et al., 2021). Araujo et. al. also reported the observation of
non-classical correlations in the continuous generation of photon pairs in the backward four-
wave-mixing excitation of an ensemble of two-level atoms (ARAUJO; MARINHO; FELINTO), 2022),
an effect theoretically proposed in 2007 (DU et al., 2007)). Thus, the present work point out
to the possibility of extending these previous results to explore the correlations in the probe
transmission and FFWM at the single photon level with memory.

In chapter [4, we reviewed the problem of spontaneous emission using the formalism develo-
ped by (WEISSKOPF; WIGNER, |1930) and (RZAZEWSKI; ZAKOWICZ, |1992)), considering external
atomic degrees of freedom, and quantified the entanglement encoded in the continuous vari-
ables of the system through a calculation of the purity of the reduced atomic state.

By doing so, we observed regimes of high entanglement usually separated by a low en-
tanglement region, though depending on the considered spectral line this region may express
itself as a plateau, a peak of purity higher than P, = 0.5 (yielding a Schmidt rank lower than
K = 2) or a peak that does not cross the P, = 0.5 threshold (not characterizing a true low
entanglement region).

Due to their nature, we defined the Recoil and Doppler regimes of entanglement and obtai-
ned thresholds in €. which need to be crossed in order to achieve these entanglement regimes.
We also defined a third regime of mixed entanglement where both regimes are active and yields
atom-photon systems that are always highly entangled. We observed that, physically, recoil
effects play crucial role in the Recoil entanglement regime, while homogeneous Doppler shifts
play a crucial role in the Doppler regime of entanglement, that is, these effects are responsible
for the creation of quantum correlations in the atom-photon system. We also presented physi-
cal considerations that could describe the increase of the Schmidt rank supported by estimates
that agree qualitatively with the calculated Schmidt ranks.

Finally, we investigated the role of entanglement in the discrimination of two physically
distinct quantum states and observed that the presence of entanglement in the system allows
us to better distinguish between different quantum states that arise naturally in the process
of spontaneous decay. This result can be useful for quantum discrimination protocols as well
as for quantum imaging.

Further generalizations of our model and method of quantification of entanglement are in
order. Namely, extending the investigation to an atomic ensemble in thermal equilibrium with
a reservoir at temperature 7" spontaneously emitting a single photon (and therefore creating

a Dicke state) should provide a theoretical model that is easier to implement experimentally.
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Note that this extension allows a further generalization regarding the spontaneous emission
of n photons, generating in principle multipartite entanglement, which would lead to the
necessity of a more robust entanglement quantification. Though more complex, the problem
of m atoms spontaneously emitting n photons is also of importance in the construction of

quantum protocols.
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APPENDIX A - TREATMENT OF THE EXPONENTIAL TERM IN EQ.

In this appendix, we aim to make the approximation in clearer. Throughout this

section we will use the fact that ¢ ~ Ap, that is, ¢ is a number of the order of Ap, or more

explicitly, qu ~ 1. We need to elucidate each term of:

2 qh (%) cosy1  ¢*h (“—c‘)) cos’y;  h? (“—60)2 h? (W—;)Q q?cos?~y,  h? (%)2 qcosy
C2Ap? Ap? B mcAp? 2Ap2 2(me)2Ap? B mcAp?
(A1)

The first term. This is the easiest term: in fact, —% is a term of order 1 and it is what

survives in the whole sum, therefore it is whom we compare to.

qh(w—co)cosm -~ _h(wo)

The second term. We approximate: — A2 ~ A

cos~1, and in the large Ap
limit this term is negligible when compared to 1. Note that cos~; is a limited function between

—1 and 1.

q2h(w70)005271 -~ h(WTO)
mcAp? ~ me

The third term. We approximate: cos?7; and since h(%) ~
107 kg - 2 < me~10"""kg - 2, for the Cs — Dy line (which we use as a guide), this term
is again negligible when compared to 1.

2(wo )2
The fourth term. The term: —hQ(A;ﬁ) is negligible in the large Ap limit when compared

to 1.
wo

. . ,2( )2q2 cos? Y1 1 h(w—(J) 2 .
The fifth term. We approximate: — QEmC)QAPQ ~ [ < } cos? v, and since i (“’—CO) ~

107%kg - 2 < mc ~ 107'"kg - 2, for the Cs — D, line, this term is again negligible when

compared to 1.

2 2
. 2 (£9) g cos 1 h(<Q . .
The sixth term. We note: _IP(E2) geos 5 = — ()] goosm < 1 since we are in the
mcAp Ap mce

large Ap limit, and ¢ cosy; < mec, which is the non-relativistic approximation we have been

taking in consideration this whole time.
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