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ABSTRACT

Autonomous navigation is crucial for mobile robots to move and interact with their
surroundings. This requires the integration of intelligence, perception, and control in the robots.
The first step in modelling the movement of robots is to create a kinematic model that explains
how actuators influence their movement. The wheel velocity and the kinematic model are used
to calculate the robot’s velocity and then the path traveled by integrating velocity over time,
known as odometry. Odometry is the foundation of robotics navigation, but due to systematic
errors in the kinematic model, it may have translation and rotation errors that accumulate over
time. This study introduces a method to improve odometry accuracy using Particle Swarm
Optimization (PSO). The method employs wheel velocity data and an inertial sensor to optimize
the robot’s kinematic model. The technique involves experiments with the robot to record its
velocity and position and to simulate the traveled path using the kinematic model. The simulation
is evaluated using root-mean-square error compared to the ground-truth positions. The PSO
method optimizes the kinematic parameters by minimizing the error between the simulation and
the ground-truth positions. The proposed optimization technic improved odometry by 75%, from
a mean squared error of 0.37 to 0.09. The result showed that the final position of a 6-meter path
had an error of less than 5 cm, while previous methods achieved a minimum error of 10 cm. The
optimization allows robots to navigate with greater autonomy without external information or
additional sensors and is also efficient for low-power embedded computers.

Keywords: odometry; autonomous navigation; kinematics; mobile robots; PSO.



RESUMO

A navegação autônoma de robôs móveis é importante para a sua movimentação e
interação com o ambiente. Isso exige inteligência, percepção e controle nos robôs. O primeiro
passo para modelar o movimento dos robôs é criar um modelo cinemático que descreve como
os atuadores afetam seu deslocamento. Usando a velocidade das rodas e o modelo cinemático,
é possível calcular a velocidade do robô e determinar o caminho percorrido. Esse processo é
chamado de odometria e é a base para a navegação autônoma de robôs. Mesmo se baseado na
construção do robô, o modelo cinemático possui erros sistemáticos, que se acumulam no processo
de integração no tempo. Sendo assim, a odometria também apresentará erros de translação e
rotação. Este trabalho apresenta um método para melhorar a precisão da odometria baseado em
Particle Swarm Optimization (PSO), o qual utiliza dados da velocidade das rodas e de um sensor
inercial para otimizar o modelo cinemático do robô. A técnica proposta inclui experimentos com
o robô, registrando sua velocidade e posição, e compara a simulação do caminho percorrido
com as posições reais. O método de PSO é usado para otimizar os parâmetros cinemáticos
para minimizar o erro entre a simulação e as posições reais. Com o processo de otimização, a
odometria foi melhorada em 75%, de um erro médio quadrático de 0.37 para 0.09. O resultado
mostrou que a posição final de um caminho de 6 metros tinha um erro menor que 5 cm, enquanto
outros métodos alcançaram erro mínimo de 10 cm. A otimização permite que os robôs naveguem
com maior autonomia sem precisar de informações externas ou sensores adicionais e também é
eficiente para computadores embarcados de baixa potência.

Palavras-chave: odometria; navegação autônoma; cinemática; robôs móveis; PSO.
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1 INTRODUCTION

In the past, computers and electronics revolutionized the industry. Since then, automated
process usage has increased, with improved accuracy and manufacturing speed. However, such
progress has remained the same manufacturing process in industries; changes only started
with technological advancement and the creation of Industry 4.0 (HERMANN et al., 2016).
Industry 4.0 proposes a new concept to end conventional production line machines and introduce
intelligent systems, seeking autonomy and customization to product manufacturing and leaving
static and highly controlled manufacturing aside (WANG et al., 2017).

As Industry 4.0 relies on intelligent systems, various pillars such as Cyber-Physical
System (CPS) are necessary. According to authors, CPS are embedded intelligent systems that
require network connectivity, sensing, acting and interacting with the environment. Combining
these characteristics in intelligent systems requires artifacts to make decisions based on objectives
and information.

According to Jay Lee (2015), there are significant challenges in creating systems that
combine connectivity with real-time responses and decision-making. One of the areas that
extensively explores the previously presented characteristics is robotics, which is one of the main
applications of CPS. It is possible to see industries starting to apply mobile robots in factories
through Kuka robots (KUKA, 2016) and other companies.

Despite major companies like Kuka betting on the power of robotics to reach our lives
through our work environments, the challenges for easy and robust integration between robots
and dynamic environments are significantly high. Recent research, such as Honig & Oron-Gilad
(2022), evaluated the impacts and challenges of having autonomous vacuum cleaner robots
inside people’s houses. The vacuum cleaner robot is one of the first mobile applications to break
barriers and live in houses. It has a single purpose to navigate and vacuum the entire place.
However, it is an intelligent system that must deal with navigation in a dynamic environment.
Therefore, it needs precision and quick response to accomplish its task safely.

Developing accurate navigation in dynamic environments requires two opposite charac-
teristics — a broad perception of the environment, considering its details, and a fast response to
decisions and movements. Moreover, to develop autonomous robotics in dynamic environments,
events were created to research and overcome challenges. One example is RoboCup which
created the opportunity and motivated autonomous robots research and development since 1997
(KITANO et al., 1997). The event challenges are based on robotics soccer because its complexity
and dynamics expand mobile autonomous robot development barriers.

Within RoboCup, various categories were created, each attacking a subset of challenges
in different areas of robotics. One of the most dynamic is the Small Size League (SSL), which
provides an external localization system, the ssl-vision (ZICKLER et al., 2010), that uses
computer vision to track robots and ball. With the location system, each team must build its
system composed of an off-field computer with artificial intelligent teams and 6 or 11 robots to



202020

play against another team. Therefore, the teams must develop intelligent systems that cooperate
between multiple robots and adapt themselves depending on the adversary without human
interference.

Soccer is a platform that requires fast decision-making in a dynamic cooperative and
adversarial environment. According to Siegwart et al. (2011), there are four pillars for a robotic
system, perception, localization, cognition, and mobility. Therefore, in the SSL robots use
the perception and localization provided by the competition, as shown in Figure 1, leaving for
the teams the challenge to build valid cognition and mobility. The movement of the robots
happens through radio frequency wireless commands that comes from the processing performed
on off-field computer. Artificial intelligence chooses the robot’s actions, and communication
system deliver the controls to the robot, which move accordingly.

Figure 1 – SSL architecture overview, with robots being recognized from an external
system, and controlled by an offboard computer.

Source: Yoon et al. (2016)

Although the teams build an autonomous system in the SSL using external vision and
computer, the coordination and dynamic of the soccer skills are similar to the Industry 4.0
robots. Moreover, in recent years, the soccer robots are reaching more than three meters per
second in their navigation; and makes crucial to have fast and precise navigation system into the
robots. Therefore, the robotics embedded system requires its sensing and processing to become
autonomous and interact with the environment.

Embedding movement in the robots requires developing their navigation, where localiza-
tion is essential. The state-of-the-art embedded localization and navigation uses multiples sensor
(KOLAR et al., 2020), as information overlap enhances the perception quality. The sensors often
used are cameras, lasers, or wireless signal triangulation. Although sensor’s has improved in
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past years, localization and navigation using the fusion of multiple sensors, such as cameras, are
expensive and numerous times slow.

Tracking a robot’s movement requires its kinematic model, which describes how its
actuators contribute to its movement. The model, combined with the actuators’ data, builds the
odometry, which estimates the robot’s movement and tracks its path over time. The critical part of
monitoring a robot’s movement is its model, as any modelling inconsistency creates a difference
between the robot’s actual movement and internal belief. Although crucial, the kinematic model
often has multiple physical issues because the robot’s construction does not entirely match the
designed model. Moreover, even minor differences between model and mechanics accumulate
path inaccuracies over time, as odometry is continuously summing a robot’s movement to create
a robot’s path.

Whether the navigation system uses multiple sensors or only robot wheels’ data, odome-
try is a base skill for navigation and localization. Therefore, it is essential even with the typical
physical issues in the kinematic model. Because of its necessity and impact on navigation,
researchers started proposing methods to calibrate and fix kinematic model mechanical inac-
curacies, to deliver inexpensive and effective navigation based on odometry. The odometry
improvement through the robot’s kinematic model started many years ago. Borenstein & Feng
(1996b) work proposed a closed-form equation to calibrate the parameters from a differential
robot; to do so, it used a fixed path with a few manual measurements between the robot’s
calibrated and original odometry-based position. Recent work proposed by Lin et al. (2019)
optimized the kinematic model parameters instead of the robot design. It also presented a
technique with multiple distance measurements between optimized odometry and the robot’s
ground truth positions to evaluate the optimization quality. However, Lin et al. (2019) used an
analytic optimization equation targeting a tricycle robot.

With the robotics evolution and the increase in the environment dynamism, many robots
started to have more complex models as their requirements for fast and precise navigation
increased. For example, omnidirectional robots move in any direction, increasing the complexity
of the kinematic model. Moreover, applying these robots to soccer games or people’s house
requires precise navigation with fast reactions. More than ever, the navigation methods on top
of odometry require a kinematic model that matches more complex and different robot designs.
Therefore, Sousa et al. (2022) proposed work to optimize odometry through the kinematic
model from the differential, tricycle and two types of omnidirectional robots. However, the
optimization still requires analytical work to match the robot’s design. Although Sousa et al.

(2022) odometry-based path evaluation method also used multiple distance differences, the
sampling is between every 0.5 meters and may cover odometry mistakes.

This work, unlike the previous, proposes a generic solution to optimize odometry through
the kinematic model parameters. The methodology presented here uses optimization algorithms
instead of closed-form equations to avoid analytic re-work to adapt the technique for different
robots. Improving the odometry through the kinematic model without closed-form equations
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requires experiments with robot navigating to collect data. The data, and the robot’s kinematic
model, enable the odometry-base path simulation, reproducing the kinematics model’s mechan-
ical inaccuracies. The data is also used to evaluate the odometry navigation quality from the
kinematic model utilized. Consequently, simulation and evaluation compose the optimization
that aims to improve navigation based on the robot’s odometry through the kinematics model
optimization. Moreover, this work seeks to answer the following challenges:

■ How to simulate the robot’s odometry containing systematic kinematic errors?

■ How to evaluate the quality of a path between a robot’s odometry path and its
ground-truth position, generic for different robots’ structures.

■ How to optimize navigation from robot’s odometry through the kinematic model,
using the generic simulation and evaluation to fit different robot structures.

This work presents three main contributions to answer to solve these challenges:

■ A method to simulate and evaluate robots’ paths, which enable off-board parameter
optimization. Therefore, it preserves the hardware and speed the calibration process.

■ An odometry optimization method which optimize kinematic model parameters
independent of the robot and improves path tracking.

■ An optimized odometry parameters for an omnidirectional robot. The parameters
improves the robot path tracking, despite the complex robot’s drive.

The following chapters detail the background, existent solution, the method proposed
to overcome the challenges above and its evaluation and comparison with previous works. The
Chapter 2 presents the theoretical background, right after Chapter 3 presents the solutions in the
literature. The proposed method is shown in Chapter 4, and Chapter 5 details implementation and
use case experimentation. Finally, the Chapter 6 presents the odometry accuracy achieved and
compares it for different experiment cases. The last chapter, Chapter 7, discusses the performance
and innovation of this work, compare it to the literature, and proposes future works.
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2 THEORETICAL BACKGROUND

Robots can have various applications, such as transportation, handling materials, search-
ing objects, and watching spaces. Mobile navigation in static and dynamic environments is a
common task required for performing these tasks. According to researchers (GUL et al., 2019),
mobile navigation is essential, and several technics aim to navigate robots freely in a static or
dynamic environment. A robot that navigates is commonly called a mobile robot, as one of its
skills aims to move between positions in the environment. Moreover, an autonomous robot is a
robot that performs its tasks.

This chapter presents the background for this work, explaining the types and challenges
of navigating robots. Then it describes how to properly model robots to control and take
accountability for robot movements. Finally, it presents an inertial measurement sensor, which
can contribute to the robot’s perception of the environment. The last section of this chapter
presents how to optimize functions using evolutionary algorithms, such as Particle Swarm
Optimization, which is essential for fixing inconsistencies in models and the real world.

2.1 MOBILE ROBOT’S NAVIGATION

Robotic navigation refers to the ability of a robot to move around and navigate to
different locations within that environment. Therefore, robots require perceiving and act in
the environment to navigate. Studies show different sensors and algorithms to understand the
robot’s surroundings and determine the best path to a desired location (GUL et al., 2019). It
also categorizes robotics navigation into two types, global and local navigation.

Global navigation uses external references such as GPS (Global Positioning System)
or other external landmarks to determine the robot’s position and orientation within a larger
environment. It may also involve using higher-level map representations to determine a longer-
term path to a desired destination. Global navigation often appears in exploration tasks, mapping,
or long-distance transportation; a typical example is car navigation assistance.

On the other hand, local navigation often involves using sensors such as lasers, sonar, or
vision systems to perceive the robot’s immediate surroundings and avoid obstacles. Processing
sensory information can be a complex task, especially in a dynamic environment where the
structure changes, as the robot, must be able to perceive its surroundings and make decisions
based on that information. Although complex, it enables robots to perform tasks and interact
with their environment efficiently, like domestic vacuum cleaning robots.

Robotics navigation has years of study and research, and since 1991 its importance
was already presented by Borenstein & Koren (1991). In Borenstein & Koren (1991) work,
researchers reviewed different techniques and approaches capable of performing robotics nav-
igation, including using sensors, map-based approaches, and reactive control methods. The
Borenstein & Koren (1991) work focused on local navigation due to its challenges, and years
later Nguyen & Christensen (2008) did a review of mobile robot navigation technics and stated
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new challenges. The complex and dynamic environments in which people live bring new require-
ments and challenges for autonomous navigation, such as quick adaptability, responsiveness, and
performance of the algorithms.

While in streets, it is possible to use its map and external sensors like GPS, in indoor
environments, it is necessary to use local sensors and create a minimum understanding of the
surroundings to navigate. Building surrounding knowledge is essential to localize robots, as
navigation moves them from point A to point B. Research also shows that understanding a robot’s
position is challenging (FANG et al., 2018) because many applications need mapping or rely
on any reference that robots find. In these cases, localization uses a statistical belief based on
perceptions available from sensors to determine object position.

One of the fundamentals of statistical position tracking is movement tracking Shanavas
et al. (2018) because the robot’s external perception needs to be combined with the robot’s
movement to keep increasing the position belief Siegwart et al. (2011). Tracking a robot’s
movement is tracking its displacement around the environment, so it requires internal sensors
that track the robot’s actuation. The internal sensor also needs to be combined with the robot’s
structure to determine the robot’s movement. With a proper combination of actuators and the
robot’s structures, the displacement will reflect the actual position change and reduce the robot’s
localization error. Then, a mobile autonomous robot requires a well-designed combination of
perception and robot structure.

Describing the robot structure is accomplished by the Kinematics. Kinematics is the
study of how an object moves, and it is typically concerned with position, velocity, acceleration,
and the relationships between these quantities. Inside a robot, the kinematic describes how an
element contributes to the robot’s movement.

2.2 KINEMATICS MODEL

Kinematics is the study of how mechanical systems work. All these systems have me-
chanical systems, whether a robot manipulator, a mobile robot or a car. According to robotics
researchers (SIEGWART et al., 2011), manipulators and mobile robots share kinematics chal-
lenges because the active engagement of motors defines mobile robots and arm’s controllability.
Moreover, the workspace is where arms and mobile robots can reach, moving from pose to
pose. The main difference reported is pose estimation. For arm position, the kinematic calculus
of actuators’ positions happens at any time from the actuator position readings. However, a
mobile robot can freely move in its environment, and there is no instant way to measure position
with actuator data. Instead, it is necessary to integrate the robot’s movement over time to track
its position. Motion estimation includes slippages, making the robot’s position measurement
extremely challenging, according to Siegwart et al. (2011).

Tracking a position over time requires a Kinematic model, which converts actuators’
movement into robot movement. It starts by describing the contribution of each actuator in
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the robot body. In mobile robots, the description starts with the body’s maneuverability and
controllability. Maneuverability describes the robot’s direction freedom, and controllability is
the difficulty of controlling these movements. This description starts with the wheels and their
types; a car wheel only goes forward and backward, creating a restriction in the lateral movement.
Conversely, a castor wheel or omnidirectional wheel allows side movements.

One of the most complex types of a mobile robot is the omnidirectional (OLIVEIRA

et al., 2008), as it can move in any direction. Omnidirectional is a powerful drive that can reach
every position in its workspace. This type of robot has high maneuverability and is hard to
control. Moving in any direction makes the control complex; however, it can reach any place.
The construction of an omnidirectional mobile robot may use castor wheels or omnidirectional
wheels. A Castor wheel appears in shopping cars, and omnidirectional wheels have small angled
pulleys in the wheel circumference to allow angled movement.

The omnidirectional wheels, also called the Swedish wheel, allow side movements. As
shown in Figure 2, the omnidirectional wheel has rollers that allow side movements. It can be
perpendicular to the wheel plane or have an angular difference, and it only needs to be accounted
for in the robot’s kinematics model.

Figure 2 – A holonomic wheel and its parameters.

Source: Siegwart et al. (2011)

The complexity of the omnidirectional robot comes from the lack of wheel restrictions,
which gives movement flexibility but requires precise control and kinematic modelling due to
the dependency between the wheels and the robot’s movement. An excellent example is cars;
while front-wheel drive can push the car and change its direction, the rear wheels do not have
side movements. However, in omnidirectional robots, all wheels can have side movement, which
the model needs to account for the lack of side restriction.
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2.2.1 Modeling

There are the kinematic and inverse kinematic. At the same time, the kinematics model
is composed of some equations that convert the wheel’s movement into the robot’s movements;
the inverse kinematics converts the robot’s movement into the wheels’ movement. It is necessary
to describe the robot structure to create its model. The structure description contains the wheels’
distances from the robot’s center and its angle from the x-axis of the robot; for example, the
Figure 3 shows a 4-wheel circular omnidirectional robot.

Figure 3 – A model of one omnidirectional robot with four Sweden wheels, which allows
perpendicular movements to the wheel plane. Each wheel has l distance from the robot’s
center, and the wheel’s forward rotation, φ1, φ2, φ3, φ4 respectively, rotates the robot in

counterclockwise. The last parameter is wheel’s angle, wheels have α1, α2, α3, α4 angle
from the robot’s X axis respectively.

Source: The author

The wheels’ movement is represented as φ and the robot’s movement by ξI . The
modelling describes how each wheel contributes to the robot’s x,y and ω movement. The wheel
spin contribution for the robot’s movement is described by Equation

�
 �	2.1 (SIEGWART et al.,
2011). The Equation

�
 �	2.1 only considers one wheel. However, it is possible to describe it for
all wheels contributions using matrix equations. All wheels equation, for the 4-wheel robot
presented in Figure 3, is presented at Equation

�
 �	2.2 . The Equation
�
 �	2.2 describes the inverse

kinematics, calculating the robot’s movement (φ ) from the wheel’s movement (ξI).
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(
sin(α +β + γ) −cos(α +β + γ) (−l)cos(β + γ)

)
R(θ)ξ̇I − rφ̇cos(γ) = 0

�
 �	2.1

φ̇ = J−1
2 J1 f R(θ)ξ̇I

�
 �	2.2

The wheel’s Equation
�
 �	2.1 , with the geometry parameters applied, builds the matrix

J1 f , shown in Equation
�
 �	2.3 . In Equation

�
 �	2.3 , each line represents the wheel 1, 2, 3 and 4
equation, respectively. Each column represents the wheel contribution to x,y and ω movement,
respectively, where x and y are the translation at the floor plane, and ω is the robot’s rotation
in its center. The radius in the wheel equation is aggregated in the Equation

�
 �	2.4 ; however,
for Equation

�
 �	2.2 , it is necessary its inverse, the J−1
2 matrix, as it is a diagonal matrix the

inverse is the inverse of each value, as presented in Equation
�
 �	2.5 . The last necessary matrix

is the rotational matrix, R(θ), which converts the robot’s local coordinates to global ones in
Equation

�
 �	2.6 . With J1 f , J−1
2 , R(θ) and desired robot speed, stated as ξ̇I the wheels speed,

represented by φ̇ is achieved using Equation
�
 �	2.2 .

J1 f =


−sin(α◦

1 ) cos(α◦
1 ) l

−sin(α◦
2 ) −cos(α◦

2 ) l

sin(α◦
3 ) −cos(α◦

3 ) l

sin(α◦
4 ) cos(α◦

4 ) l


�
 �	2.3

J2 =


r 0 0 0
0 r 0 0
0 0 r 0
0 0 0 r


�
 �	2.4

J−1
2 =


1/r 0 0 0
0 1/r 0 0
0 0 1/r 0
0 0 0 1/r


�
 �	2.5

R(θ) =

 cos(θ) sin(θ) 0
−sin(θ) cos(θ) 0

0 0 1

 �
 �	2.6

The Equation
�
 �	2.2 uses the robot’s speed (ξ̇I) to calculate the wheel speed (φ̇ ), normally

called as inverse kinematics. However, it is possible to isolate the robot’s speed (ξ̇I) in the inverse
kinematics equation. This calculus results in the kinematics equation, described at Equation

�
 �	2.7 ,
and it describes the robot’s speed (ξ̇I) in the function of model matrixes and wheels’ speed (φ̇ ).
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The kinematics equation requires the inverse of J1 f the matrix, and as it is not a square matrix,
it has no inverse. To find J−1

1 f , the generalization of the pseudo-inverse matrix method uses the
method recommended by Adi Ben-Israel (2003).

Although kinematics and inverse kinematics convert from robots to wheel speed and
vice versa, they can also convert movements, which consist of speed integration in time. In the
literature, different authors may call inverse-kinematics kinematics and kinematics as inverse-
kinematics (SIEGWART et al., 2011), (ROJAS & GLOYE, 2005).

ξ̇I = R(θ)−1J−1
1 f J2φ̇

�
 �	2.7

2.2.2 Odometry

Different navigation algorithms require robot movement tracking, as it is an important
data source for statistical localization algorithms (SHANAVAS et al., 2018) (ARVANITAKIS et al.,
2017). This tracking process is called odometry, and it is achieved by integrating the robot’s
speed in time, which results in robot movement. The direct kinematics model uses Equation

�
 �	2.7
to calculate the odometry.

Movement tracking starts integrating each movement step that the robot does. A kine-
matic step can represent each movement step. Shown in Figure 4, a kinematic step converts the
wheels’ speeds, φ1, φ2, φ3, φ4, at any time instant, to the robot’s speed, x,y,ω at the same time
instant. Both wheels’ and robot’s speeds can be integrated in time to discover the wheels’ or
robot’s movement, respectively.

Figure 4 – Diagram show how to calculate one step of the Kinematics. In diagram δφ1,
δφ2, δφ3, δφ4 are the wheels speed and using kinematics model it is converted to
robot’s speed (x,y,ω). This step can be applied any time, and integrating by time, it

converts speeds to movement.

Source: The author

Integrating the robot’s speed will produce the robot’s movement, which is the odometry.
The Figure 5 illustrates a situation in which the robot’s position can be calculated using odometry.
At Figure 5, the robot moves from position xs,ys,ωs to position xd,yd,ωd divided by three-time
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steps, 1, 2 and 3. At each step, the robot does a movement, represented by δξ , and the vector sum
of source position xs,ys,ωs, with movement δξ from all time steps, will achieve the destination
position xd,yd,ωd .

Figure 5 – Diagram of robot moving from xs,ys,ωs position to xd ,yd ,ωd position split by
time instant 1, 2 and 3. In each timestamp, the robot does a ∆ξt movement, and the total
movement is the integration of these intermediary movements. Then, xd ,yd ,ωd position is

xs,ys,ωs position plus the integration of ∆ξt steps.

Source: The author

Another critical part is the source of the odometry, the wheel’s speed. It comes from
encoder sensors. Encoders monitor the wheel speeds by pulses that begin with angular movement
from the wheel. Each pulse happens at a fixed angular difference from the wheel. In Figure 6,
there is an internal diagram of an optical encoder, which creates pulses by the motor spinning
encoder disk which alternates the light incidence in the optical sensor. There are other encoder
techniques to generate pulses, like a magnetic sensor, while a disk has magnetic. Every encoder
needs to generate two signals, with an angular difference, to create alternated pulses in time;
the pulse difference determines the motor rotation direction on top of its speed. The direction
of movement is critical because a kinematics model made from the J1 f matrix considers each
motor’s direction. It is necessary to correctly aggregate each wheel’s contribution to the robot’s
movement.

To track a robot’s position in the environment is crucial to record its movements. The
tracking process brings the importance of odometry, made from kinematics models (GAN-
GANATH & LEUNG, 2012A). However, the robot’s wheels can slip on the floor, creating
uncertainty in the movement tracking because the wheels can rotate without the robot changing
its position. Slipping is a known problem typically solved with statistics algorithms and sensor
fusion to create an information overlap.

2.3 INERTIAL MEASUREMENT UNIT

An Inertial Measurement Unit (IMU) has a combination of sensors that measure and
track an object’s motion. It typically includes accelerometers, gyroscopes, and sometimes a
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Figure 6 – An internal diagram of an optical encoder sensor.

Source: Siegwart et al. (2011)

magnetometer (YOU, 2018).
Accelerometers measure linear acceleration, such as the force exerted on an object, and

change its speed. Gyroscopes, however, measure angular velocity, also known as the rate at
which an object rotates around its center. A magnetometer measures the strength and direction
of the magnetic field surrounding an object; it usually points to the earth’s magnetic field.

Many applications such as navigation, motion tracking, and control systems widely use
IMU. It is common in mobile devices such as smartphones and tablets to track the device’s
orientation. IMU is also vital in robotics and drones for navigation and stabilization.

Researchers highlight that constructing an IMU brings important features for robotics.
First, it measures an object’s intrinsic movement, such as angular speed and acceleration. Unlike
wheel encoders that measure wheel rotation, IMU does not need environmental interaction with
the environment, such as the floor (BAGHDADI et al., 2018).

Intrinsic measures are essential to movement tracking because no matter the surrounding
environment, one type of movement will result in a similar sensor reading. On the other hand,
a wheel may slip, and then the same measure could occur from different movements. Another
essential characteristic of IMU is the reading sample rate. As the sensors are electronic, they
depend on external interactions and can reach over one thousand samples per second. According
to research, different sensors measuring different object movement is crucial to improve tracking
accuracy, and IMU’s characteristics make it recurrently used for motion tracking (BORENSTEIN

& FENG, 1996A).
Even though IMU brings a high sample rate and intrinsic measures characteristics, it still

has inherent limitations such as drift and bias, which can lead to measurement errors over time.
Authors (QURESHI & GOLNARAGHI, 2017) suggest different calibration algorithms overcome
these limitations, such as sensor fusion algorithms to combine data from multiple IMU sensors
and other sensors, such as GPS, to produce more accurate and reliable results.
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2.4 PARAMETER OPTIMIZATION

Parameters are an essential aspect of many problems; they define the characteristics of the
problem and can be adjusted to find a better solution or optimize the performance. Solutions often
involve parameters, whether a machine learning model or a physics problem; the correctness of
parameters is relevant to the problem solution. For example, gravitational acceleration differences
can change construction requirements. When it is impossible to calculate or obtain an accurate
parameter, models will have physical inconsistencies.

One of the methods used to overcome parameter inaccuracy is parameter tuning; as long
as it is possible to quantify the error, it is possible to search for better parameters. However,
researchers say searching can be expensive because experimenting with all possible parameters
in a real problem can be an infinite process (BERGSTRA et al., 2011). Moreover, as the solution
increases the number of parameters, the dimension of the search increases because one parameter
may interfere with the other. Ultimately, the time to find a better combination of parameters
grows exponentially.

Searching for parameters is typically done through grid search, random search, genetic
algorithms, evolutionary algorithms or gradient-based optimization methods. Although there
are many techniques, the systematic review reports better algorithms or combinations between
problems and optimizer (YU & ZHU, 2020). There is no correct technique; it varies according
to the problem.

There are parameter optimizations based on natural evolution; they are genetic algorithms.
It means they encode the optimization problem as an individual being and operate according to
the nature (VIE et al., 2021). For example, a genetic algorithm may encode the problem as a
chromosome and realize combination and mutation. Unlike a grid search, where all possible
solutions are tests, a genetic algorithm smartly searches for the best parameters to optimize
the problem (NEUMANN et al., 2022). There are two critical concepts in genetic algorithms;
first, the particle, or an individual solution, means a set of parameters, also called a solution;
another concept is the fitness, a quantity that measures how well an individual or solution is to
the solution.

Besides genetic algorithms inspired by nature, there ate the swarm algorithms, but now
multiple particles are involved. The main difference is the information exchange between
particles. An ant colony is a swarm example, as shown in Figure 7. In this case, pheromones
attract ants, and ants also release them in paths where ants find food. Therefore, whenever
there is food, the path to it gets more pheromone concentrated, and more ants start going in that
direction. On the opposite, when there is no food or food end, ants stop sending pheromones,
and the path loses its attraction.

In swarm optimizations, the solution is not encoded in chromosomes, so, particles are
not combined. To evolve the population smartly the swarms’ algorithms exchange information
such as the direction where the good solution was found. The information exchange in the ant
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Figure 7 – Ant colony organization, in which pheromones attract ants. The pheromones
are released also by the ants, whenever a favorable path to food is found. This guide more
and more ants to food, on the other hand, when food is ending pheromone lose its strength

and disperse the ants.

Source: Czaczkes (2012)

colony optimization algorithm (ACO) is based on the pheromones that guide particles to explore
parameters with good solutions (DORIGO et al., 2006). This concept clones the ant colonies’
behaviour, where solutions are the ant’s position and good fitness relates to food which releases
pheromones and attracts other particles to explore the solution space in that direction. With more
particles reaching high-quality solutions, pheromones increase around that set of parameters.

2.4.1 Particle Swarm Optimization

Another evolutionary algorithm using a swarming concept to find the best parameters
is Particle Swarm Optimization (PSO). Research shows that PSO can produce better and faster
solutions than genetic algorithms (KECSKÉS et al., 2013). It is an optimization technique
inspired by the behaviour of flocks of birds or schools of fish. Moreover, the movement of one
particle influences the direction and strength of the movement from other particles, like flocks.
Similar to flocks, PSO particle simulates the has its speed and moves according to flocks. As
shown in Figure 8, the swarm comes from particle memories; one memory comes from the
particle’s best direction, and another is the global best solution direction. These two memories
will be added to the current particle speed to produce the next particle speed, guiding particle
movement across the solution space (ZHANG et al., 2018).

The implementation of the particle parameters in the solution space follows the Equa-
tion

�
 �	2.8 , where each particle is represented by i. The velocity changes according to the
Equation

�
 �	2.9 , where i is the particle and j is the iteration. The particle velocity equation
considers its current velocity as vi j(t), the particle best solution as r1 j(t)× [yi j(t)− xi j(t)], and
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Figure 8 – An iteration of Particle Swarm Optimization, updating particle speed according
to the memory of the personal best solution and the global best solution.

Source: Zhang et al. (2018)

the population best solution as r2 j(t)× [y j(t)− xi j(t)], together with three hyperparameters C1,
C2 and W .

xi(t +1) = xi(t)+ vi(t +1)
�
 �	2.8

vi j(t +1) = w× vi j(t)+ c1 × r1 j(t)× [yi j(t)− xi j(t)]+ c2 × r2 j(t)× [y j(t)− xi j(t)]
�
 �	2.9

Systematic reviews show that PSO is a relatively simple and computationally efficient
optimization method that applies to many optimization problems (KENNEDY & EBERHART,
1995). It is especially effective for problems with multiple parameters or when the optimization
problem is multimodal, meaning that there are multiple possible solutions with similar optimal
performance (GAD, 2022). PSO has been successfully used to optimize various neural network
architectures. It showed competitive results with traditional optimization techniques such as
gradient-based methods and other evolutionary algorithms (GUDISE & VENAYAGAMOORTHY,
2003).

However, it is essential to note that the performance of PSO depends on the specific
problem and the quality of the implementation. Choosing an optimization method should be
based on the problem’s characteristics, the available data, and the computational resources
available.
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2.5 WIRELESS DATA COLLECTION

Mobile robots often require a power supply as it moves around. Mobile power brings
challenges to monitoring and collecting data from its sensors, actuators and embedded systems.
Some robots, such as marine and outer space inspection robots, exist to collect data (DAS

et al., 2015). However, domestic vacuum cleaning robots also require data collection to report
their status or request maintenance. Collecting mobile robot data by wireless communication is
applied; however, different applications will require different communication system technologies
and topologies (HUANG et al., 2019).

In general, researchers from Huang et al. (2019) point that wireless data collection is
important for robotics for several reasons, such as:

■ Flexibility: Wireless communication allows robots to move freely and collect data
from various locations without being tethered to a device. It increases the robot’s
flexibility and versatility, allowing it to perform tasks in various environments.

■ Real-time data: Wireless data collection allows robots to transmit data in real-time.
Wireless communication enables the robot to receive commands and feedback from
the computer in real time, which improves the robot’s ability to perform tasks quickly
and accurately.

■ Remote control: Wireless communication allows a human operator to remotely
control a robot, which is particularly useful in dangerous or inaccessible environments
where a human cannot be present.

■ Collaboration: Wireless data collection enables multiple robots to communicate and
collaborate. Collaboration is vital in applications such as search and rescue, where
multiple robots work together to locate and aid victims.

■ Safety: Wireless data collection can be used to monitor the robot’s status and detect
if it has issues. The data allows actions to prevent accidents or failures that could
harm the robot or its surroundings.

■ Optimization: The data collection for mobile robots enables optimization, such as
parameter optimization and reinforcement learning, that is later applied to the robot
and improves performance.

Some studies compare wireless technologies such as Wi-Fi, WLAN, Bluetooth, and
Mobile Data network (HASSAN, 2012). Moreover, it points to technology’s advantages and
disadvantages depending on the application. For robots that require access to the internet, Wi-Fi
is the most recommended; however, in an outdoor environment, a Mobile Data network, such as
3G, may be applied. Wi-Fi may suffer from protocol decisions for real-time communication to
avoid data transmission interference; therefore, Bluetooth is an alternative; For applications with
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a wide range, Bluetooth suffers from data loss and may replace it Wireless Local Area Network
(WLAN).

For indoor autonomous mobile robots, third-party protocols may be applicable. Research
shows that Nordic nRF24 radios are efficient, appropriate for communication and feedback
networks with rates over 60 packets per second, and are low-power (CAVALCANTI et al., 2022).
Therefore, appropriate mobile indoor robots rely on batteries.

2.6 SIMULATION

The advent of computers has dramatically enhanced simulation potential as a powerful
visualization, planning, and strategy tool in various research and development (ŽLAJPAH, 2008).
Researchers surface that simulation is crucial in robotics because it overcomes many challenges.
For example, analyzing the kinematics and dynamics of robotic manipulators, programming
offline, designing control algorithms, creating mechanical structures for robots, and designing
robotic cells and production lines.

Simulation plays a vital role for mobile robots because it allows testing and evaluating
the robot’s performance and control algorithms in a virtual environment before deploying it in
the real world. As deploying robots to the real world is costly, simulation model accuracy is
crucial to simulations, and authors propose different evaluation (JU et al., 2014) (QUEIROZ &
FERREIRA, 2022). Methodologies to build a simulation to custom robots and its applications
(MAYER et al., 2004).

One application in which simulation is crucial is surgery, and nowadays, many robots are
performing surgery (WU et al., 2020). Researchers also affirm that robot simulation needs to be
developed, validated, and improved before any real-world test.

Learning and optimizing robotics performance depend on simulations; authors create
simulators to enhance environment correctness and produce learning frameworks (MARTINS

et al., 2022). Not only for learning frameworks, such as reinforcement learning, that simulation
has been used for; authors also rely on it to optimize robot models for driving and overall
movements in real-world environments (OSIŃSKI et al., 2020).
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3 RELATED WORK

This chapter presents related research which aims to optimize odometry through a kine-
matics model to aid autonomous navigation in mobile robots. Navigation requires determining
the robot’s position within the environment where it is operating (MELO et al., 2022). As
discussed in Chapter2, there are two types of navigation, global or local, and its classification
relies on the robot’s knowledge of the environment. Both types are applied depending on the
localization system, absolute and relative, which combines sensor fusion. Absolute localization
typically relies on map matching and identification of active or passive landmarks or beacons,
thus used in the global navigation. On the other hand, relative localization generally depends on
the wheel, visual, or laser odometry and is usually used in local navigation (GANGANATH &
LEUNG, 2012B) (LIU et al., 2019).

Moving a mobile robot, no matter the type of navigation, requires the robot’s kinematic
model. Odometry construction needs the kinematic model and wheels’ speed, and it is responsible
for tracking the robot’s movement, thus enabling position tracking for any autonomous navigation.
It is essential to highlight that a kinematic model is based on the robot’s structure, including the
wheels’ format and restrictions, while interacting with the environment. Furthermore, although
parameters can be measured, research points to uncertainty in kinematics modelling because of
mechanical issues in robot parameters (IVANJKO et al., 2023).

Because of the kinematics parameters uncertainty, systematic error is a well-known
disadvantage in using odometry. The accumulation happens because, with physical parameter
issues, the wheel odometry will propagate this error. And with the motion tracking over time,
the errors will accumulate.

In the literature, there are suggestions to overcome odometry limitations. Some authors,
like Qin et al. (2019), suggest adding more sensors to create an overlap of information and
combine it to reduce the path tracking error. Exploring this method Liu et al. (2019) suggested
using cameras to build more robust local odometry. In contrast, (NEMEC et al., 2019) adds
inertial sensors alongside the camera.

Although cameras bring information and aid the robot’s localization, it requires much
processing. On the other hand, odometry path tracking from the wheels is inexpensive, easy to
apply, and runs at a high sampling rate. Therefore, authors like Tomasi & Todt (2017), Sousa
et al. (2022), and others proposed to fix odometry through the kinematics model to maintain path
tracking high sampling rate and increase navigation accuracy.

To reduce path-tracking errors in odometry, researchers proposed two approaches. Both
methods require robot experimentation, but the first target is to find accurate robot parameters
to reduce modelling issues using analytic methods. Differently, the second method focuses on
the kinematic model values to minimize odometry path tracking error and uses optimization
algorithms. In both approaches, there are crucial characteristics to understand the solution and
its scope; these characteristics are the type of robots, if it calibrates the robot’s parameters or
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optimizes the kinematic model, which data was used, how it was evaluated, which algorithm
was used, and the result. Therefore, the following sections analyzed calibration and optimization
methods characteristics present in the literature, later table 1 summarizes the contribution and
differences from each work.

3.1 ODOMETRY CALIBRATION

The calibration of the robot’s measurements started long ago; researchers from 1996
have already begun to present calibration methods (BORENSTEIN & FENG, 1996B). Most of
the calibration methods are based on the analytic solution of the path robot performed, compared
to the path it was programmed. Consequently, analytical methods work to specific routes and
robots, as shown in Figure 9. The analytics methods evaluate the robot’s path error in particular
points to fill the proposed calibration equations. One of the most recent works in the calibration
method was presented by Tomasi & Todt (2017) and explored a circular experiments path to
calibrate differential robot physical measurements. The Tomasi & Todt (2017) result achieved a
path tracking error of around 0.2 m; it optimized wheels size and distance from the robot’s center
using five experiments and was manually measured.

Figure 9 – A calibration square path, where robot’s performance error evaluation happens
in each corner to fill analytics calibration method.

Source: Tomasi & Todt (2017)

Cecco (2002) proposed an analytic calibration included in the robot; therefore, the robot
self-calibrated its parameters along the path. To understand its error, the robot used an inertial
measurement sensor. Moreover, the method was deeply tied to the robot’s analytic equation,
and the same results in odometry quality were achieved by combining odometry with an inertial
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sensor without optimization methods.
Using closed-form equations to estimate robot parameters narrow the scope of robots to

which calibration methods are applied. Because of the complexity of forming analytic equations
for different robots and paths, most calibration methods focus on differential and tricycle robots
because their structure and movement restriction is simple and easily described as shown in
Figure 10. The analytic methods also require specific experimental path format and length, as
the path is also considered in the analytical equations. The initial works proposed a square
to simplify translation and rotational movement analysis. In contrast, Tomasi & Todt (2017)
suggested a rotational path and Maddahi et al. (2012) presents lines with rotation. The table 1
summarizes the calibration methods analyzed and their contribution.

Figure 10 – Model of a tricycle robot and its constructions parameters (a) and model of a
differential robot and its structure parameters (b).

(a) Tricycle robot structure description,
with wheels positions according to robot.

(b) Differential robot structure
description, with wheels positions

according to robot.
Source: Sousa et al. (2022)

The odometry calibration for omnidirectional robots is not explored in the literature
because, with more wheels and less movement restriction, it is complex to build an analytic
method to calibrate the robot’s parameters. For example, in differential and tricycle robots, the
length and angle of the path executed compared to the programmed length expose the wheels’
size difference and issues. Additionally, the error in programmed rotations represents the wheels’
positioning issue. For omnidirectional robots, there are more wheels, and it is possible to have
side movements. Therefore, the error can come from a different source of the model issue; for
example, it is impossible to directly convert rotation errors to wheels’ model issues because they
can come from the robot’s side movements. Therefore, a different method to fix the kinematics
modelling issue is required.
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3.2 ODOMETRY OPTIMIZATION

To fix issues from more complex models, researchers proposed optimization methods.
Unlike analytic calibration, the optimization methods present algorithms that reduce path-
tracking errors by adjusting kinematic model parameter values. Different authors propose
different algorithms and methodologies to perform experiments and optimize, and in this section,
these works will be analyzed, compared and discussed.

3.2.1 Least-squares Optimization

Recent works proposed an odometry optimization using the least-squares algorithm to
reduce an omnidirectional robot’s final position and orientation through the kinematic parameters
change (LIN et al., 2019). The least-squares algorithm aims to minimize the sum of the
squares of errors, and it is typically applied to regression analysis to approximate solutions. An
omnidirectional robot has a multivariate linear equation between the wheels and the robot’s
movement because it has multiple wheels contributing to actions in X , Y , and θ . Therefore, Lin
et al. (2019) proposed multiple linear regression using least-squares to optimize the odometry
accuracy of a three-wheel omnidirectional robot.

The Lin et al. (2019) work required ten experiments to use least-square error effectively,
and the optimization was evaluated at a maximum speed of 0.8 m/s, which reduces the chance of
slip errors due to low velocity. As shown in Figure 11, the experiments were conducted in paths
with a maximum length of 2 m, and besides the low speed and short path, the calibration error
was around 0.1 m.

The Lin et al. (2019) experiments used a camera in the robot to track visual landmarks
in the environment and estimate the robot’s ground truth position. At the same time, previous
calibration methods used manual measurements between the expected and the robot’s position.

There is a work proposed by Goronzy & Hellbrueck (2017) to use a non-linear weighted
least-squares algorithm. The primary objective of Goronzy & Hellbrueck (2017) method is
to calibrate quasi-online odometry. It requires the wheel’s encoder samples and the robot’s
localization in the environment map. The work aims to optimize odometry for the differential
robot, and the optimization reduces path tracking error to 0.2 m. The non-linear least-squares
weights come from the quality of the robot’s localization, which makes the work complex
because it requires the robot to have a localization system.

A parameter estimation method was proposed by Kallasi et al. (2017). Formulated for
industrial tricycle robots, the technique used a laser scanner to find the robot’s position and,
together with least-square linear regression, optimized the robot’s odometry. The Tomasi &
Todt (2017) work requires constant wheel speed; however, it does not need a fixed path, as
movements come from external commands. The reported results from Kallasi et al. (2017) work
were parameters precision and time to calibrate because the work’s main goal was to estimate
odometry parameters for industrial robots.
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Figure 11 – Experimentation path and size proposed by Lin et al. (2019).

Source: Lin et al. (2019)

At the same time that least-square methods improved odometry’s accuracy, it requires
multiple linear regressions. Each linear regression outputs the best value for each coordinate
and optimizes the parameters related to that coordinate. Therefore, it does not consider the
correlation between parameters for different spatial coordinates. Although (LIN et al., 2019)
work targets an omnidirectional robot, it uses a three-wheel omnidirectional robot, which has
an invertible kinematics model equation, and therefore facilitates splitting the matrices between
different linear regressions.

3.2.2 OptiOdm Framework

The works analyzed previously in this section optimize or calibrate the odometry for one
type of robot, and the methodology focused on the physical issue with the robot’s structure. The
OptiOdom is a framework proposed by Sousa et al. (2022) to do optimization algorithms for three
different types of robots, the differential, and tricycle, as presented in Figure 10, a three-wheel
omnidirectional robot, shown in Figure 12 (a), and a four Mecanum-wheel omnidirectional robot,
presented in Figure 12 (b). Therefore, one of the contributions of the Sousa et al. (2022) work is
a generic framework that optimizes different robots.
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Figure 12 – Two different omnidirectional robots’ odometry, with three-wheel and four
Mecanum-wheel.

Source: Sousa et al. (2022)

To optimize the robot’s odometry, the OptiOdm framework uses the robot’s odometry-
predicted position and an external vision monitoring system, OptiTrack, to record the robot’s
ground truth position. With both sources of positions captured, Sousa et al. (2022), the method-
ology uses a Resilient Propagation algorithm (RProp) to optimize odometry. The Rprop is a
back propagation iterative algorithm that uses the partial derivative of each kinematics model
parameter to calculate its error direction. With the error direction calculated, the RProp adds a
fixed value in the opposite direction to find better parameters. The RProp algorithm is known to
train neural networks; however, it uses a known activation function in the neural network, while
OptiOdm depends on the robot’s kinematic model partial derivative.

The OptiOdm odometry optimization was evaluated across different paths, including
square, circular and an arbitrary paths. The proposed procedure consists of the subsequent steps:

1. Measure the absolute position of the robot and initialize the odometry system with
that position.

2. Run the robot through one of the paths. Measuring the robot’s position every 0.5 m
of displacement.

3. Repeat the first two steps to collect more data to reduce noise.

4. For omnidirectional robots, repeat the first steps with velocity in a different direction.

5. Perform optimization on top of odometry and visually recorded positions.

6. Replace the robot’s parameters with the optimization result.

In the end, the OptiOdm reported a kinematic model improvement that achieved an
odometry path accuracy of 0.1 m for differential and 0.2 m for omnidirectional robots. Although
the accuracy is similar to previous works, the framework optimizes mechanical imperfections
for four different robots’ structures, while others focus on one type of robot. The optimization
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method proposed by Sousa et al. (2022), the RProp, is also different from previous works, which
used the least-square method. Although Sousa et al. (2022) framework already targets the robot’s
structure shown in Figure 10 and Figure 12, different robot’s design requires to re-build the
partial optimization derivatives from the different kinematic model.

3.2.3 Related Work Considerations

After studying the literature on Odometry calibration and optimization, the researchers
propose fixing specific kinematic models, which apply to only a few robots. Therefore, any
other robot’s structure requires a new analytics equation based on previous works to achieve
better odometry path-tracking. Besides the analytics equations, the previous research does not
report the robot’s velocity used, an essential variable for different applications. For example, SSL
robots require navigation above 2 meters per second, which implies that odometry navigation
still tracks movements with reduced inaccuracies.

The literature also differs in evaluating the odometry quality, and some researchers
propose to use the difference between the path target and the odometry final position. Measuring
only the last position ignores all the movement made between the initial and final position; it
also creates a dependence on the path movements, as cyclic paths, such as squares, may help
compensate for errors with mirrored paths.

The table 1 compares the Sousa et al. (2022) work with others presented in this chapter
by the characteristics and results of relevant for odometry calibration and optimization through
the kinematic model. The comparison contains the type of robot it covers, the experiment, the
path tracking evaluation, the target of the optimization method, the optimization method, and the
accuracy result reported.

Moreover, this work searches for a generic optimization method which is not dependent
on the robot’s structure and works with different robot speeds to support various odometry
applications. This work also proposes a new evaluation method of the odometry path-tracking
quality that accounts for every position reported and results in a precise quantification of the
odometry quality.
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4 THE ODOMETRY OPTIMIZATION METHODOLOGY

This chapter presents the proposed odometry optimization method, which aims to im-
prove autonomous mobile robots’ navigation, optimizing the odometry through the kinematics
model. It proposes combining encoder wheels’ velocity at a kinematic model with angular
tracking from an inertial sensor to accomplish the best results. The proposed method is also
computationally cheap because it maintains odometry tracking with a high sampling rate to serve
as localization for autonomous navigation in short distances.

Unlike previous works, this work uses no close-formed analytic equation or partial
derivatives from the specific kinematic models. Therefore, adapting it for other robots does not
require re-work because this work proposes an odometry optimization based on the simulation
of the robot’s kinematic model and collected experimentation data to accomplish an effective
generic odometry optimization. In other words, this work does not use closed-formed equations
in the experimentation and optimization process. Previous studies have simulated only the
robot’s behaviour to perform optimization; however, this proposes a simulation that uses the
robot’s data to include the mechanical inaccuracies and movement issues in the generated path.
Therefore, simulating different kinematic model parameters for the same robot without additional
experiments is possible.

This work compares odometry against the ground truth positions, and different from
previous work, it proposes to compare every odometry position generated against the robot’s
ground truth position. Additionally, while the previous works reported the maximum distance
from odometry and ground truth position, this work presents a path-tracking metric that considers
all position differences to better capture the odometry quality along the path. Because of the
proposed evaluation metric and the optimization process through the original kinematic model,
this work is not path specific, unlike most previous works.

The proposed methodology to optimize odometry for mobile robot navigation consists of
four high-level steps. The steps diagram is presented in Figure 13, and consists of experimentation
to collect the robot’s data, including encoders, inertial sensor samples, and ground-truth positions.
Then comes the proposed simulation that used the experiment data to simulate the odometry
path from a given robot kinematic model. The simulation from the real robot’s data is crucial
because its input is the kinematic model parameters and experimentation data, and the output
is the robot’s odometry path. The third step is the evaluation metric, which calculates the
quality between ground truth positions and the tracked position by odometry, simulated or not.
Together, simulation and evaluation compose the odometry fitness for the optimization method
that improves the kinematic model parameters based on the solution fitness.
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Figure 13 – Diagram with overview steps of the method proposed. The initial step is
collecting data from robots, the next step is simulating the odometry from data collected,
then it is necessary to evaluate the quality of kinematics from simulate path. In the end
the data collects, simulation and evaluation builds parts of the last step, the kinematics

optimization.

Source: The author

Following the activities enumerated below is important to apply the proposed odometry
optimization approach. Each activity is mapped to one of the high-level steps shown in Figure 13.
The details of optimizing mobile robots’ odometry are discussed later in this chapter.

1. Move the robot in any path, collecting wheels’ speed, inertial sensor angles and
ground-truth positions.

2. Build the simulation to receive the robot’s kinematics and experiment data and output
the robot’s odometry path, including mechanical issues.

3. Build an odometry evaluator that compares odometry generated, from a robot or
simulation, against the ground truth positions.

4. Execute optimization to improve kinematic model parameters, using the simulation
from experiments data combined with evaluation method as solution fitness. The
kinematics model parameters are the optimization target.

Sections below detail each step of the proposed optimization strategy. It is essential to
highlight that this chapter will present the methodology, while Chapter 5 presents implementation
details used to evaluate the method quality and the Chapter 6 will deliver the results to compare
effectiveness with the previous works.

4.1 EXPERIMENTATION DATA COLLECTION

Data collection is the first and crucial step because kinematics errors will be present
in the data, enabling optimization of the robot’s kinematic model parameters according to its
mechanical issues. This work proposes to use wheels and a IMU to evaluate robot movement and
construct the robot’s odometry path. Moreover, it is necessary to collect the wheels’ speed and
IMU readings used in the robot’s odometry to correct, simulate and evaluate its path, including
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model physical inaccuracies. As the data required from the IMU is the angular movement and the
gyroscope is the relevant sensor used, this work references gyroscope and IMU interchangeably.

The proposed work targets autonomous mobile robots, which move freely around the
environment. However, the experiments to collect data do not require long distances; they
require ground truth position tracking to compare robot odometry positions. Therefore, indoor
environments accommodate more options for position tracking, such as external vision. Besides
position tracking, indoor scenarios also facilitate data collection. For high-rate sampling, as used
in odometry, the Cavalcanti et al. (2022) work shows that WLAN is recommended to collect
data wirelessly from the robot.

The Figure 14 presents the diagram to collect data in robot experiments. There are three
main components: robot’s movement, ground truth position capture, and an external computer
with a radio receiver. While the robot moves in the environment, it transmits the wheels’ speed
(φ ) and gyroscope angle movement (θ ) to an external computer, where data will be recorded
together with the robot’s ground-truth (δ ) position in the correct order and timestamp (t). At the
end of the experiment, the computer produces the experiment dataset.

Moreover, data collection needs gyroscope-filtered samples from the robot. The gyro-
scope sensor readings output its body’s rotation velocity; however, as described in Chapter 2,
the sensor has a residual reading value, usually small, but similar to kinematic model issues, its
accumulation leads to tracking errors. Therefore, the gyroscope-filtered readings are required
for the proposed experiments in this work. The robot stationary can measure the noise to filter
residual values subtracting it from every reading. A suggested implementation is presented at
Chapter 5.

The robot’s position ground truth can come from the robot’s internal sensor (GAN-
GANATH & LEUNG, 2012A), such as onboard cameras and laser scanners. However, most of
the robots does not have these sensors and aim to optimize odometry to improve navigation
quality without additional sensors. An external ground-truth position tracking method is recom-
mended for these cases, such as computer vision pattern localization proposed by Zickler et al.

(2010). An external position tracking system requires synchronizing the time the robot’s data
and ground-truth position are collected.
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Figure 14 – Diagram with overview components to collect robot’s data. First, it is
necessary to run an experiment with robot moving, during the movement send robot’s
data at each odometry iteration with wheels’ speed (φ ) and angular movement from

inertial sensor(θ ). An external computer, with a data receiver, collects robot’s data and
aggregate with ground truth positions (δ ), for each iteration (t).

Source: The author

Studies to optimize motor control using Nordic Radio Frequency modules proposed
rates over 30 samples per second (ARAÚJO et al., 2022). Moreover, the same communication
technology is recommended to achieve a higher sampling rate, increasing the samples collected.
The sampling rate also impacts the quality of the simulation and evaluation proposed, in result it
improves the odometry optimization process.

Each wheel’s encoder calculates the wheel speed in radians per second, and gyroscopes
produces the robot’s relative angle integrating angular velocity over time. Besides the wheels’
speed and angular movement, the ground truth captured will quantify kinematic model quality
and issues. Moreover, independently of the robot which the optimization is required, the data to
collect are the wheels’ speed, gyroscope angle, and ground truth positions.

4.2 SIMULATING ODOMETRY PATH

After collecting the wheels’ speed and robot’s angular movement, it is possible to
simulate the odometry-based path using the kinematic model to include its inaccuracies. This
simulation is essential to evaluate different kinematic models, the original one with mechanical
issues and others, such as optimized models.

The Figure 15 illustrates the process to simulate the robot’s odometry path from the
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collected data. First, the collected data is inputted, and then, for each experiment sample
collected, the simulation will calculate the odometry position and orientation (δ ′). The pose
calculus involves applying a kinematic model to the wheels’ speed (φ ) and converting it to
movement using elapsed time. The angular movement (θ ) from the IMU gyroscope comes in
the pose calculus to aid with robot’s orientation tracking. The robot position and orientation
movement from each data entry, is added to the previous position and results in the the odometry
path.

Figure 15 – Diagram with overview steps of simulation process. The data collected is the
input to create the simulated odometry path. To do so, each data entry has robot’s data,
which is converted to robot’s movement. The movement is then added to the previous
pose. All poses build the expected odometry path. In the figure, φ represents wheels’

speed, θ represents IMU angular movement, δ ′ the robot’s expected position and
orientation, and t the timestamp.

Source: The author

The simulation’s core is the kinematic model’s calculus from the robot’s experiment data,
which converts wheels’ velocity into robot’s velocity, as shown in Figure 16. After the robot’s
speed is calculated, it is possible to estimate its position, converting speed in displacement and
adding the movement to its previous location.

The kinematics equation used in the simulation core is presented in Equation
�
 �	4.1 . For

a four-wheeled omnidirectional robot the kinematics equation includes the matrices R(θ), as
shown in Equation

�
 �	4.2 , the J−1
1 f , which is the inverse of J1 f , presented at Equation

�
 �	4.3 , the J2,
at Equation

�
 �	4.4 and wheel’s speed matrix, φ̇ , shown in Equation
�
 �	4.5 .

The kinematic model matrices are designed for the robot to navigate, and same matrices
are used in this method to optimize odometry though kinematic model parameters. As shown
by the designed matrices, the model receives the wheel’s speed and outputs the robot’s speed;
therefore, after the matrices multiplication, robot’s speed is integrated over time to build odometry
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Figure 16 – Diagram with simulation core, which from experiment collected data,
calculates the robot’s movement using wheels’ velocity, kinematic model and elapsed

time.

Source: The author

paths. This calculation is expected in robot’s odometry modules and applied in the simulation
process to mirror the issues which optimization aims to fix.

ξ̇I = R(θ)−1J−1
1 f J2φ̇

�
 �	4.1

R(θ) =

 cos(θ) sin(θ) 0
−sin(θ) cos(θ) 0

0 0 1

 �
 �	4.2

J1 f =


−sin(α◦

1 ) cos(α◦
1 ) l

−sin(α◦
2 ) −cos(α◦

2 ) l

sin(α◦
3 ) −cos(α◦

3 ) l

sin(α◦
4 ) cos(α◦

4 ) l


�
 �	4.3

J2 =


r 0 0 0
0 r 0 0
0 0 r 0
0 0 0 r


�
 �	4.4

φ̇ =


φ1

φ2

φ3

φ4


�
 �	4.5

The Algorithm 1 presents detailed steps to build the simulation. First, the simulation
algorithm loads the experiment data, records the robot’s initial position, and then iterates over the
data entries. At each iteration, the kinematic model is multiplied by the velocity of the wheels
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from the experiment entry to generate the robot’s speed. After finding the robot’s velocity, it
is converted into its movement using the elapsed time from current and subsequent data entry.
The difference between the current and the following inertial sensor sample defines the robot’s
rotation movement. The final step at the iteration is adding the calculated move to the current
position and recording it at the path vector. At the end of the data entries iteration, the path vector
has the odometry path from the robot according to the kinematic model used in the simulation.

It is essential to highlight that the odometry path outputted from the simulation considers
the kinematic model issues and wheel slips from the robot, as the data collected reflects all the
information from the robot’s interaction with the surrounding environment.

Algorithm 1: Odometry simulation from data collected at experimentation.
1 Load logs from data collection;
2 path[0] = first position of ground truth;
3 for i = 1; i < len(logs)-1; i++ do
4 //Convert wheels speed to robot speed;
5 wheelsspeed = (logs[i].wheels+logs[i+1].wheels)/2;
6 robotspeed = Kinematics.convert(wheelsspeed);
7 //Covert speed to movement, using logs elapsed time;
8 movement[x, y] = robotspeed * (logs[i+1].time - logs[i].time);
9 movement[ω] = (logs[i+1].imu.angle - logs[i].imu.angle);

10 //Add new point to the odometry path;
11 path[i+1] = path[i] + movement;

It is possible to see in the Algorithm 1 that movement calculus uses wheels velocity
average from current and next data entries. This velocity average helps to capture the velocity be-
tween samples interval, and it is recommended to build an accurate odometry path Siegwart et al.

(2011). This technique also serves to overcome data entry loss because wireless communication
may lose samples, and using velocity average and time interval absolves loss. However, sample
loss may harm generated path quality, and the high data collection rate minimizes impact.

4.3 EVALUATING ODOMETRY PATH

After the data collection and simulation, it is necessary to define how to evaluate the
odometry-based path. As shown in Figure 17, it is possible to analyze ground-truth and odometry
paths visually; however, it is impossible to quantify how good an odometry-based path is,
compared to the path the robot executes. It is also impossible to compare different experiments,
as shown in Figure 18a and Figure 18b, because it is not visually apparent which path is the best.
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Figure 17 – Two examples of robot’s path tracking with two tracking sources each.
Although both examples perform the same path, it is not possible to visually qualify

which example has better tracking..

(a) Robot’s path tracking from two
different sources, in red tracking from

an external camera and in green tracking
from robot’s odometry.

(b) Robot’s path tracking from two
different sources, in red tracking from

an external camera and in green tracking
from robot’s odometry.

Source: The author

The first solution to measure the path quality was introduced by Borenstein & Feng
(1996b). It is the difference between the robot’s path end pose, which combines position and
orientation, from the expected end pose. With a similar end position in the robot path and at
the odometry path, the better the path tracking and its kinematic parameters were. Sousa et al.

(2022), on the other hand, relied on the maximum difference between odometry and the robot’s
ground truth position; again, the quality was measured by one position difference.

Figure 18 – Experiment of robot’s path tracking from two different sources, in red
tracking from an external camera and in green tracking from robot’s odometry.

Source: The author

It is possible to see a difference in the quality of the odometry path compared with
the ground truth path, comparing Figure 17 with Figure 18. However, the final and maximum
distance from these experimenters, as proposed by Borenstein & Feng (1996b) and Sousa et al.
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(2022), does not capture all their differences.
This work proposes a measure that quantifies the path over all captured data points,

which uncovers errors in the middle or throughout the odometry path. Therefore, this work
suggests capturing the euclidean distance from the robot’s odometry path and ground truth path
and applying it to RMSE. As described in Equation

�
 �	4.6 , the RMSE takes accountability for
all entries from the experiment and simulation. It also weights all location equality; therefore,
every odometry error is considered, not only initial or maximum errors. In the Equation

�
 �	4.6 n

is the total number of samples, δi is the robot’s ground truth position for the ith sample, δ̂i is the
robot’s odometry predicted position for the ith sample.

RMSE =

√
1
n

n

∑
i=1

(δi − δ̂i)2
�
 �	4.6

Applying the RMSE to the robot’s path examples presented previously, it is possible
to compare their quality, as shown in Table 2. The robot’s ground truth position as δi and the
robot’s odometry position as δ̂i, revealed a RMSE for path example in Figure 18a of 1.24, and
for Figure 18b example is resulted in 1.23 of RMSE. These results make it possible to compare
both paths and conclude that the second experiment has better odometry than the first. Applying
RMSE for the example in Figure 18 outputs 0.09, confirming the visual quality of the latest
robot’s path example and usability of the Root Mean Square Error (RMSE) metric.

Table 2 – RMSE comparison between examples robot’s path.

Robot’s Path Example Root Mean Square Error
Figure 18a 1.24
Figure 18b 1.23
Figure 18 0.09

Source: The author

4.4 OPTIMIZING ODOMETRY KINEMATIC MODEL

The odometry calculates the robot’s movement, integrating the wheels’ speed over time,
applied to the kinematic model and the gyroscope angular movement. The data come from
samples collected at the experiment, where the robot moves around the environment. Although
robots have their own embedded odometry, the wheel’s speed and gyroscope samples are
necessary to simulate the odometry with different parameters without using the robot. Therefore,
the simulation allows the usage of different kinematic models without running experiments with
the robot. The simulation mimics the robot’s embedded odometry; however, it may use other
kinematics parameters which achieve different odometry paths from the same data. As discussed
before, the robot’s kinematic model parameters have mechanical inaccuracies. Therefore, the
optimization evaluates and optimizes the kinematic model parameters by comparing the simulated
odometry path with the ground-truth path, as both came from the same robot’s movement.
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Optimization happens by changing the model parameters and producing a different simulated
path compared to the ground-truth course.

This work proposes the optimization algorithm of the Particle Swarm Optimization (PSO)
because it produces better and faster solutions according to previous research (KECSKÉS et al.,
2013). The work from Cao et al. (2022) also applied PSO for robotics parameter optimization
and reported a successful optimization process, which gives more insights and background of
the using PSO to optimize kinematic parameters.

As shown in Figure 19, the optimization process relies on iterations of kinematic param-
eter enhancement, odometry simulation, and its evaluation. The optimization aims to change
the kinematics parameters to achieve a better evaluation. In the case of the PSO algorithm
proposed in this work, there is a population of solutions, where each key is called an individual
and represents the kinematics parameters. The algorithm changes each solution parameter in the
direction of its best set of parameters found and the best solution at the population, as presented
in Chapter 2. Evaluation occurs again after the whole population changes, and if a solution is
satisfactory, the optimized set of parameters that build the kinematics is found. The evaluation
result is called fitness, and if fitness is not good, the algorithms iterate over the new population if
no solution is satisfactory.

Therefore, it is necessary to define the set of parameters, to build the optimization and the
evaluation that quantifies solution quality. In this work, the evaluation requires the experiment
data, the simulation and the RMSE method. Building the PSO algorithm is possible with all
these inputs.

The simulation presented in Algorithm 1 uses Equation
�
 �	2.7 . At the equation, ξ̇I is the

robot’s speed, R(θ)−1 is responsible for covert the robot’s local coordinates to global, J−1
1 f and J2

considers robot’s structure description, and φ̇ is the wheel speed. From all these matrices, only
J−1

1 f and J2 depends on robot’s structure. Then, by changing these two matrices, the odometry
path built by the robot or simulation will also change. Ultimately, these parameters are the
optimization target as they come from the model and change the odometry result.

The J−1
1 f matrix comes from the pseudo inverse J1 f matrix. This happens because the

kinematic matrix actuates in three axis, X , Y , and θ ; however, some mobile autonomous robots
have more than three actuators, which creates a non-square kinematic matrix like J1 f presented
in Equation

�
 �	4.3 (SIEGWART et al., 2011). It brings two challenges, first eliminates most of the
previous works that proposed analytic solutions; second, it requires finding the inverse matrix
using the pseudo-inverse method as described by Adi Ben-Israel (2003). The J−1

1 f maintains the
number of values from J1 f , which keeps the same number of parameters in the optimization
process. The J2 is presented at Equation

�
 �	2.4 and depends on the wheel’s radius. Therefore, for
the robot presented at Figure 3, both matrix’s values will result in the parameters to optimize.
And it has 12 parameters from J−1

1 f and one from the four-wheel omnidirectional robot. In the
end, the four-wheel omnidirectional robot presented in Figure 3 has 13 kinematic parameters to
be optimized.
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Figure 19 – Diagram with overview steps of the optimization proposed. The initial step is
input experiment data in the simulation, where the kinematic model is used to predict

odometry path. Then the RMSE of predict path and ground-truth is extracted. If predict
path is not into an acceptable margin of error to the ground-truth, the kinematics is

optimized and the process repeats. The margin of error is defined based on the robot’s and
application requirements.

Source: The author

This work proposes the PSO algorithm to optimize multiple real values because of its
efficiency and low cost, presented at Chapter 2. The set of 13 parameters for the given robot
represents an individual solution. A good solution means a group of 13 parameters that the
simulated odometry and the robot’s odometry path approximates the ground-truth way.

The proposed evaluator, presented in Algorithm 2, receives the 13 kinematics parameters,
12 from J−1

1 f and the wheel radius used at J2, and one experiment file with the wheels’ velocity
and IMU data. The evaluator will use the 13 parameters to simulate the odometry path on top of
the experiment data, as defined in Algorithm 2. The path is then used to calculate the RMSE
error against the ground truth from the experiment file. The RMSE outputs the solution error and
returns to the optimization as the quality of the set of parameters.

The evaluator is the core of the optimization and change from application to application
because it determines whether a solution is good enough or needs to evolve. The quality of
the solution also reveals the best solution in the population, which influences on parameter’s
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Algorithm 2: Path evaluator used in the optimization to quantify a better solution.

path_error(experiment , params):
# Simualting odometry path
iJ1 = [[params[0] , params[1] , params[2] , params[3]] ,

[params[4] , params[5] , params[6] , params[7]] ,
[params[8] , params[9] , params[10], params[11]]]

wheelRadius = params[12]
simulated_path = Odometry(experiment , iJ1 , wheelRadius) . simulate_path()
# Returing error of the solution path
return Error(experiment .ground_truth_path() , simulated_path ) .rmse()

direction of update, and the best individual to return as an optimization result. The quality of each
individual in the population changes based on its position and the velocity that points to personal
and best solutions, as shown in Equation

�
 �	4.7 , where xi(t +1) is the next particle position based
on its current position and velocity change.

The velocity is defined according to the Equation
�
 �	4.8 , where i refers to the particle and j

to the algorithm interaction. The particle velocity considers current velocity as vi j(t), the module
(r1 j(t)) and direction ([yi j(t)− xi j(t)]) to the best particle solution, and the module (r2 j(t)) and
direction ([y j(t)−xi j(t)]) to the best solution in the population. The Equation

�
 �	4.8 requires three
hyperparameters to scale each component of the velocity equation, and these hyperparameters
are C1, C2 and W . Moreover, these three hyperparameters, together with the population size,
iterations limit and 13 dimensions, build the PSO optimization.

xi(t +1) = xi(t)+ vi(t +1)
�
 �	4.7

vi j(t +1) = w× vi j(t)+ c1 × r1 j(t)× [yi j(t)− xi j(t)]+ c2 × r2 j(t)× [y j(t)− xi j(t)]
�
 �	4.8

The C1 controls how much a particle will weigh its best solution direction, the C2 weights
the best global solution direction, and W controls the particles’ inertia; then, it weights the
tendency to maintain the same vector orientation. A grid-search experiment was made to define
the hyperparameters. It used robot experiment data and kinematic parameters and compared the
set of hyperparameters that better optimized the kinematic for the given experiment. As shown
in Figure 20, searching for these three parameters is not straightforward because no combination
of hyperparameters surpasses others in the interval from 0.2 to 0.9. The population size for the
grid search was 20 to optimize experiment time.

There is the size of the population to define and the number of iterations. The tests
presented at Figure 21 converged to the best solution around 5,000 iterations, so iterating more
was unnecessary. The size of the population helps to define how much the optimization will
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Figure 20 – Grid-search of C1, C2 and W hyperparameters for PSO, using robot’s
experiment to optimize odometry evaluated by RMSE.

Source: The author

explore different solutions; however, for odometry optimization, there is already a candidate for
the kinematic parameters, the original one. As shown in Figure 21, a new grid search experiment,
with the initial population as the robot’s actual kinematic parameters, varying with a limit of 0.2,
improved significantly. Without the initial parameters’ setup, the first grid search had a mean of
3.82. In contrast, with the initial parameters, the second experiment achieved a mean of 0.41,
proving that the initialization is crucial for the overall solution, no matter the parameters.

This work proposes to use C1, C2, and W as 0.5, 0.3, and 0.9, respectively, as this
combination was one of the best set of parameters for both experiments, presented in Figure 20
and Figure 21. The maximum number of iterations used was 5,000 (five thousand) to guarantee
exploitation and reduce experiment time. For population size, this work suggests 20 because
Piotrowski et al. (2020) work suggests it is the minimum population size for unimodal problems;
therefore, it is sufficient to explore the solutions space and reduce optimization time. For
each parameter’s upper and lower limit, the recommended value is 0.2, as experiments show
satisfactory results; additionally, parameters represent measuring in meters, like a wheel’s radius.
Therefore, 0.2 meter represents a broad modelling error. Suggested parameters are shown in
Table 3; with these parameters, data, simulation, and evaluation, it is possible to run the PSO to
optimize the robot’s odometry.

Different experiments showed that hyperparameter variations might apply to other robots,
such as reducing the initialization limit for small robots or increasing the number of dimensions
if the kinematic model produces more than 13 parameters, in case the robot has more actuators
and produces a bigger J−1

1 f and J2 matrices. It is also possible to reduce the number of iterations
with less complex robot’s kinematic models, such as differential robots.
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Figure 21 – Grid-search of C1, C2 and W hyperparameters for PSO, using robot’s
experiment to optimize odometry evaluated by RMSE, and initial population around the

original kinematic parameters.

Source: The author

Table 3 – Proposed PSO parameters.

Parameter Value
Problem dimension 13

Population size 20
Initial parameters kinematic ±rand(0,0.2)

Iterations 5000
C1 0.5
C2 0.3
W 0.9

Source: The author

The complete block diagram of the optimization process is shown at Figure 22. It
considers four different experiments to evaluate each solution. The population has 20 particles,
each going into an odometry path simulation. The evaluator consumes the experiment wheels’
speed to simulate a path using parameters from a particle. The evaluator also calculates the
RMSE between the generated path and ground truth. With each particle evaluation, the PSO
updates the population by changing each solution parameter in the vector sum direction between
the current solution velocity, the particle’s best solution, and the whole population’s best solution.
The new population goes again for evaluation and keeps iterating until it reaches 5,000 iterations.
After all iterations, the best solution found represents the best kinematic model parameters for
the robot’s odometry path tracking.



Figure 22 – Diagram of the proposed optimizator using PSO, the evaluator and the
simulator proposed.

Source: The author
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5 ODOMETRY OPTIMIZATION IMPLEMENTATION

The proposed method requires experimentation in the robot’s environment; therefore, it
was necessary to collect data, perform the optimization process and then evaluate the results in
the real robot. This chapter details the robots in which odometry was optimized, the infrastructure
required, experiments made, and the implementation details necessary.

The robotics environment chosen to optimize was mobile soccer robots, which require
precision to navigate in a dynamic game where multiple robots and a ball are moving. The
soccer robots used in this work’s evaluation are from RoboCup soccer competitions Kitano et al.

(1997), where there are different soccer categories, and the robot’s navigation performance and
skills matter to the result of the game. One of RoboCup’s most dynamic soccer competitions is
the SSL. Small Size League Technical Committee (2022) presents the category’s rules, which
the match happens with teams of 11 versus 11 robots or 6 versus 6. Each soccer robotics team
is custom designed and made by each university, which requires students to build the whole
robotics system.

Figure 23 – An overview of Small Size League (SSL) robotics competition, where robot’s
plays in a filed, acting from external commands. Each team has its off-field computer, that
uses cameras to localize robot’s, compute the strategic movement for the team’s robots

and send commands to them.

Source: The author

As shown in the Figure 23, the SSL competition has an infrastructure to process the
robot’s position and requires wireless communication with robots to send commands. The
dynamic movements, together with this infrastructure, turn SSL into an exciting environment to
run the experiment, collect data and evaluate the kinematics optimization in the robot’s gameplay.
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Figure 24 – RobôCIn’s Small Size League (SSL) robot

Source: The author

5.1 ROBOT

The robot used in the experiments, shown at Figure 24, is an omnidirectional robot with
four wheels. On the left is the robot fully assembled, and on the right side is the robot without
external protection and wheels.

The RobôCIn SSL robot is a cylinder with 180 cm of diameter and 15 cm of height.
It has a front cut to facilitate the robot handling the ball, an orange golf ball with a 4.27 cm
diameter. The ball is orange to facilitate its localization.

In the SSL soccer game, cameras are on top of the field to capture images and deliver
them to a computer, in which the ssl-vision software tracks robots and the ball’s position and
position and orientation at the field (ZICKLER et al., 2010). In Figure 26a it is possible to see
that robot has a colour pattern on the top of the robot. Each pattern identifies one robot, and the
colour in the center identifies if it is the blue or yellow team.

With object poses in the field, the next step is strategically controlling the robots to
score the adversary’s goal and defend its own goal. This task requires algorithms to plan each
robot’s task, build the path for each robot to its goal, and navigate it until the objective. To
command the robots, teams send wireless commands. The RobôCIn robot uses a Nordic Radio
Frequency module, which proved to have low power consumption and a high rate of data
exchange (CAVALCANTI et al., 2022).

The SSL robots are fast and can achieve over 3m/s. Usually, teams send the robot’s
desired speed to control them; however, with the robot’s speed increasing year over year, it
started to require more precise and fast reaction navigation. Moreover, to achieve it, teams
propose sending the robot’s desired position and letting it navigate by its internal odometry. The
internal odometry has a higher update rate, and lower delay, as it does not depend on image
capture and processing to build each movement step. On the other hand, it requires odometry
with a proper kinematics model.
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5.1.1 Kinematics Parameters

The kinematics aims to convert the wheels’ speed into the robot’s speed, as shown in
Equation

�
 �	5.1 . This equation requires some matrix, the R(θ)−1, which is the inverse of the
Equation

�
 �	2.6 , presented at Equation
�
 �	5.2 . The J−1

1 f matrix comes from the inverse of the wheel’s
equation, the J1 f . As RobôCIn robot structure has four omnidirectional wheels at a cylinder
robot, the robot’s J1 f matrix has the same format as Equation

�
 �	2.3 , depending on the wheels’
angle to the robot X axis and the distance from the wheel to the robot’s center. The last matrix is
the J2, presented at Equation

�
 �	2.4 , it depends on the wheel’s radius.

ξ̇I = R(θ)−1J−1
1 f J2φ̇

�
 �	5.1

R(θ)−1 =

cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 �
 �	5.2

From RobôCIn robot 3D model, it is possible to acquire all required parameters to build
matrix J1 f and J2. As shown in Figure 33, the robot has omnidirectional wheels with rollers
orthogonal to the wheels’ rotation plane. The wheel RobôCIn, shown in Figure 33, has 18 rollers
and 2.48cm of radius. Applying the wheel construction to the wheel equation, presented at
Equation

�
 �	2.1 , it becomes Equation
�
 �	5.3 , because γ = 0◦ and β = 0◦. The signal of sin(α),

cos(α), and l, may change according to the wheel contribution for the robot’s movement. For
example, if a wheel in forward rotation makes a robot walks backwards, the sin(α) is the opposite.
If the same movement makes a robot walk positively in its Y axis, the cos(α) is positive. l

depends on the robot’s rotation; if the robot turns counterclockwise, the l is positive.

(
sin(α) −cos(α) (−l)

)
R(θ)ξ̇I − rφ̇ = 0

�
 �	5.3
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Figure 25 – The first figure is the RobôCIn SSL robot with its lateral wheel in focus. The
second is the exploded views of the omnidirectional wheel.

(a) Angular view of RobôCIn SSL
omnidirectional robot.

(b) Exploded view of robot
omnidirectional wheel assembly.

Source: The author

The kinematics structure definition involves the wheel’s placement, movement direction,
and wheel’s type. As shown in Figure 26, the RobôCIn robot has two front wheels with 60◦
opening from the robot’s X axis and 45◦ for the back wheels. The distance from the wheel to the
center, the l, has 8.32cm. Inserting these parameters into the J1 f matrix, the Equation

�
 �	5.4 is
found.

J1 f =


−sin(60◦) cos(60◦) l

−sin(45◦) −cos(45◦) l

sin(45◦) −cos(45◦) l

sin(60◦) cos(60◦) l


�
 �	5.4

Calculating the inverse of Equation
�
 �	5.4 , using the pseudo-inverse method Adi Ben-Israel

(2003), the results are Equation
�
 �	5.5 . Moreover, applying the wheel radius to Equation

�
 �	2.4 , the
Equation

�
 �	5.6 is defined.

J−1
1 f =

−0,346410 −0,282843 0,282843 0,346410
0,414214 −0,414216 −0,414214 0,414214
3,615966 2,556874 2,556874 3,615966

 �
 �	5.5

J2 =


0.0248 0 0 0

0 0.0248 0 0
0 0 0.0248 0
0 0 0 0.0248


�
 �	5.6

With the kinematics matrices defined for the RobôCIn robot, it is possible to calculate
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Figure 26 – The description of RobôCIn omnidirectional kinematics structure. The robot
has four Sweden wheels, and each wheel has l distance from the robot’s center. The

wheel’s forward rotation, φ1, φ2, φ3, φ4 respectively, rotates the robot in counterclockwise.
The last parameter is wheel’s angle, wheels have α3 degrees from X axis to front wheels’

plane, and α4 degrees at back wheels.

Source: The author

the odometry from Equation
�
 �	5.1 . Although kinematics considers all the robot’s construction

parameters, the odometry produces a path that differs from the actual course. Shown in Figure 27,
the robot’s odometry path in green tracks it in different positions and orientations from the
ground truth, the red.

5.1.2 Wheels’ Speed

A magnetic encoder measures the wheel speed with 1024 pulses for every motor rotation.
The robot uses a Quadrature Encoder Interface (QEI) present the F767ZI ARM embedded board
(ST, 2019). The QEI does four readings for every pulse of the encoder because there are
channels A and B for every 1024 pulses, and the interface counts each rise and fall of the two
channels. The embedded system keeps this count in a register, and every two milliseconds,
there is a routine to calculate the motor rotation frequency. The routines also convert the motor
frequency to wheel velocity using 5.7, in which MOTORGEAR has 18 teeth and WHEELGEAR

has 60.

WHEELSPEED = 2.0∗π ∗ (MOTORGEAR/WHEELGEAR)∗MOTORFREQUENCY
�
 �	5.7
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Figure 27 – Robot’s path tracking from two different sources, in red tracking from an
external camera and in green tracking from robot’s odometry.

Source: The author

5.1.3 Inertial Measurement Unit

The Inertial Measurement Unit (IMU) reduces the orientation error as shown in Figure 27.
IMU reports angular velocity, but it is possible to achieve the robot’s relative orientation by
integrating velocity over time. The relative orientation can be easily integrated at the odometry,
replacing the kinematic equation angular rotation from wheels to the IMU.

As a result of tracking the robot’s orientation movement using the IMU, the odometry
went from Figure 27, with RMSE of 1.24, to the odometry path at Figure 18, with RMSE of
0.09.

IMU gyroscope used in RobôCIn robot is the MPU6050, and it has 1kHz of refresh rate,
giving a high angular velocity precision (INVENSENSE, 2013). The RobôCIn robot integrates it
every 2ms, which results in the robot’s relative angular movement. The only IMU complication
is the systematic offset error in the readings, which increases angular orientation continuously
even when the robot is steady. The solution is to apply a self-calibration method when the robot
is not moving. Therefore, the work proposes Algorithm 3 to build the offset calibration of the
IMU readings. The Algorithm 3 is based on an integrative control. The offset is the sum of the
previous sensor samples multiplied by a factor of 0.05 to integrate noise samples until it reaches
the correct offset partially. Moreover, the algorithm will reach the correct offset when all sensor
readings minus the offset are less than the acceptable error proposed in this work, as 0.05 degrees
per second.

It is important to note that the robot must be stationary so the algorithm correctly reaches
the offset value. Therefore, this work recommends running at initialization of the robot’s
embedded software.
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Algorithm 3: IMU offset calibration using an Integration control over the read-
ings.

1 ε = Minimum IMU accepted error;
2 //Value to proportionally increase offset with reads;
3 k = 0.05;
4 offsetX = 0;
5 offsetY = 0;
6 offsetZ = 0;
7 while true do
8 //Read IMU angular velocity for each axis;
9 x = imu.read.x();

10 y = imu.read.y();
11 z = imu.read.z();
12 //Removes IMU offset calibration;
13 x -= offsetX;
14 y -= offsetY;
15 z -= offsetZ;
16 //Calculate error, and update it if necessary;
17 imuError = x + y + z;
18 if imuError < ε then
19 break;

20 else
21 offsetX += x * k;
22 offsetY += y * k;
23 offsetZ += z * k;
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5.1.4 Robot’s Odometry

The main goal of this work is to optimize the robot’s odometry, and then it is essential
to evaluate the robot’s path tracking before and after the optimization process. The simulation
aims to recreate the same odometry path as the robot’s odometry; however, different from the
simulation, the robot’s odometry comes from robot-embedded kinematics. Moreover, another
experiment is required to evaluate kinematics with other parameters.

The robot has a timed routine to build the odometry, similar to IMU and the encoder
sensor. The routine is triggered every five milliseconds, and whenever triggered, it gets the
wheels’ speed and converts it to the robot’s movement. It uses kinematic equations to convert
from wheels to the robot’s speed and the time to convert speed into motion. The routine also gets
the IMU relative angle, then the displacement from the last five milliseconds is calculated.

The displacement, added to the last known position, transforms displacement into posi-
tions and forms a path. This process is shown in the robot’s high-level diagram in Figure 28, and
it starts with a timed routine of 5 milliseconds for the odometry calculus. The wheels’ speed
is acquired by four routines of 2 milliseconds each. Then, a second routine of 5 milliseconds
runs to report via radio all robot information, including the current position estimated by the
odometry. Together with the robot’s odometry, the wheel’s speed is reported to the off-field
computer to source the simulation and validate it between the robot’s internal path tracking and
ground-truth positions.

Figure 28 – RobôCIn robot embedded software diagram which has 4 encoder routines
running every 2 milliseconds, one navigation routine and another odometry routine, both

running every 5 milliseconds. Besides of the routines, the robot receives external
commands that together with its velocity information go through the acceleration and

controller module. When the odometry routine runs, it gets encoders’ readings, calculates
the kinematic equation, and converts it to the robot’s current position together with IMU

angular movement.

Source: The author
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In the routines and their connections, shown in Figure 28, it is possible to see that the
kinematic model is used in the odometry routine. The odometry routines get the encoder’s
readings, stored from their individual two milliseconds routing, to find the robot’s velocity and
then convert it in movement and position, together with the angular change from IMU. Besides
the odometry module, the navigation routine runs when a command is received and updates the
movement controller, which updates the wheels’ velocity every five milliseconds.

5.2 DATA COLLECTION

After setting the kinematics model to the robot, it is necessary to record data to optimize
the modelling. It is essential to capture data with the robot that requires optimization and where
it will work because data should include wheels’ velocity from the robot, which model has
mechanical inaccuracies. Therefore, simulation can reproduce inaccuracies in the simulation
path, and later, optimization can fix them.

5.2.1 Experiment

The proposed method uses a quadrilateral path in the environment. As shown in Figure 29,
the square has a 2.5 m side and is used to capture the robot’s motion in different axes. In the
experiment, the robot walks forward, has side movements, and rotates around the square. These
variations evaluate the kinematics at all the pose components (x, y, ω) possible.

Figure 29 – A 2.5 m square experiment path, performed by the robot.

Source: Melo et al. (2022)

Although Sousa et al. (2022) proposes different paths and directions, such as doing
the square in different directions, this work proposes optimizing odometry with a simple and
flexible setup. The proposed optimization works because of the evaluation method that takes
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accountability for all samples and not a few ones like Sousa et al. (2022) and Borenstein & Feng
(1996b).

One experiment may run the robot multiple times in the square or only once. In the
end, the number of samples and movement variation matters. The only detail is to update the
odometry’s first position to match the ground truth. This first point update is necessary because
the odometry tracks relative and ground-truth absolute positions. Only giving the same starting
point will equal referential for both tracking systems.

5.2.2 Wireless Communication

RobôCIn robot already used wireless communication by Nordic Radio (NORDIC, 2008).
It has a base station, shown at Figure 30, in which there are two Nordic radios, one to send
commands from a computer and another to receive the robot’s data at the computer. These two
radio system enables a high-rate duplex communication developed in a prior work Cavalcanti
et al., 2022.

Figure 30 – RobôCIn’s base-station, responsible to transmits data from computer to robot,
and to receive data from robot to computer.

Source: The author

Each radio only supports up to 32 bytes by packet, and to achieve a high-rate transmission
of the sample, all required information should use the minimum number of bytes necessary.
Although encoded samples may have a few bits, the optimization depends on the data’s precision.
The precision decrease happens because the number of bits determines the precision of the
sample, and fewer bits may reduce simulation accuracy. On the other hand, increasing the
number of bits or messages will reduce the rate of messages.

Although one integer may take 32 bytes, the robot has limits of velocity and sensor
precision, and these limits serve as a tradeoff between accuracy and message rate. Then, the
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sample encoding relies on readings limits to set the required number of bits.

Table 4 – Packet data sent from robot to computer in
order to simulate and evaluate odometry path.

Bits Offset Bits Size Information
0-3 4 Message Type
4-7 4 Robot Id

8 - 23 16 x - Odometry position in X
24 - 39 16 y - Odometry position in Y
40 - 55 16 ω - Odometry orientation
56 - 70 15 Dribbler’s Motor Speed
71 - 78 8 Kick’s Capacitor Load

79 1 Ball on the Robot
80 - 87 8 Robot’s Battery
88 - 103 16 φ1 - Motor 1 Speed

103 - 119 16 φ2 - Motor 2 Speed
120 - 135 16 φ3 - Motor 3 Speed
136 - 151 16 φ4 - Motor 4 Speed

Source: The author

As the robot has four wheels, there are four routines to calculate the speed of all revo-
lutions. Each wheel’s speed encode uses 16 bits; in the end, all four wheels’ speed requires 8
bytes.

5.2.3 Ground Truth

The ground truth is that the robot’s poses navigated during the experiment. It is essential
to synchronize the robot information log with the ground truth position to compare and evaluate
using RMSE later.

The Small Size League (SSL) uses a shared vision for all teams called ssl-vision proposed
by Zickler et al. (2010). The ssl-vision sends the absolute position of the robot in a local Ethernet
network, and then each team can consume it and process it. The ssl-vision collects the robot’s
ground-truth position in the field and becomes evaluation data for odometry optimization.

The off-field computer, which received the robot’s information from the base station, also
received the ssl-vision absolute position of the robot. Whenever a message arrives from the robot,
the computer fetches a ground-truth position and logs that information in a comma-separated
value format.

The comma-separated value file from an experiment has multiple lines; each line has
the wheel’s speed, the robot’s odometry, and the ground truth position. This information makes
optimizing odometry and evaluating the robot’s odometry possible. For example, Figure 31
presents an example of the log file lines, with the robot’s odometry at ROBOTX , ROBOTY , and
ROBOTW columns, the wheel’s speeds are at ROBOTM1, ROBOTM2, ROBOTM3, and ROBOTM4

columns, and ground-truth as V ISIONX , V ISIONY , and V ISIONW columns.
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Figure 31 – A comma-separated value file, with the robot’s pose from odometry, then
there are the wheels’ speed in radians per second. And later, there is the ground-truth

pose, named as vision.

Source: The author

5.3 SIMULATION

The data collected from the robot, shown at Figure 31, facilitate the robot’s path simula-
tion, applying Algorithm 1 to the wheels’ speed at 5.1, and IMU angle sent as robot odometry
angle, and present in columns ROBOTW .

Every log line at the comma-separated file will result in a simulation pose; the set of
poses builds the simulated path, which evaluation goes against the ground-truth course.

A Python script, built to consume the log file, then simulate the odometry path using
Equation

�
 �	5.5 and Equation
�
 �	5.6 at the Algorithm 1. The same script evaluates paths and plots

the robot’s odometry, the simulation and the ground-truth path, as shown in Figure 32.

Figure 32 – A graph with positions from robot’s odometry in green, simulation, built from
wheels’ speed in blue, and ground-truth in red.

Source: The author
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5.4 ODOMETRY OPTIMIZATION

The PSO algorithm was implemented in Python script using the parameters proposed in
Chapter 4. The stop condition of five thousand took approximately 5 hours for four experiments,
with parallelized evaluation for each of the 20 particles used.

The computer used to run the optimization had an Intel Xeon W-2235 CPU with eight
threads at 3.8GHz. The high number of threads in the computer allowed the optimization to
finish in a few hours. Without parallelization, the optimization took more than 16 hours.

The enormous optimization time happens because each optimization iteration will op-
timize 20 solutions across four experiments of approximately 600 samples, which sums 48
thousand runs of the kinematics equation. Over the 5 thousand iterations, this process will add
up to 240 million calculations of the kinematics model; as the kinematics model has some matrix
operations, the number of operations surpasses 1 billion. On top of that, each path goes over the
evaluation against the ground truth.

This number of operations reinforces the need to optimize and evaluate the odometry
outside the robot because the robot’s battery lifetime cannot support the number of experiments
multiplied by the population size and optimization iterations. The number of experiments
may also degrade the robot’s parts, generating expenses and failure to optimize if the robot
malfunctions. Parallelization is also not possible to realize in real robots.
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6 RESULTS

The optimization results for an omnidirectional robot using the wheel’s speed data to
simulate, evaluate and optimize kinematics are presented in this chapter. The main objective
of this research was to propose a method to improve the accuracy of the robot’s odometry to
give the robot navigation autonomy. A series of experiments were necessary to accomplish
optimization using a RobôCIn SSL robot designed for RoboCup soccer robotics competition.

The data collected from the experiments consisted of the robot’s motion in the envi-
ronment in which it plays soccer. The experiment movement path was squared, as shown in
Figure 29, and it includes motion in field x, y and θ coordinates. The data collection used the
robot’s wireless communication and an external camera sensor to capture ground-truth positions.

The results of the experiments showed that the optimized kinematic model significantly
improved the accuracy of the odometry estimates compared to the previous methods presented in
Chapter 3 kinematic model. It was possible to reduce the odometry RMSE in simulation by 82%,
and the real robot path tracking reduced error by 75%. These results demonstrate the proposed
method’s effectiveness in improving odometry accuracy.

Experiments used two robots, called robot 0 and robot 5, because of the id used in the
vision system to identify them. Robot 0 and robot 5 have the same structure and kinematic model
but are slightly different. Robot 0 is taller and heavier because it has an additional sensor and
embedded system, shown in Figure 34a. On the other hand, robot 5 does not have it, to make the
robot smaller and lighter as shown in Figure 34b.
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Figure 33 – The first figure is the RobôCIn SSL robot with additional sensors, used for
autonomous tasks. The second is the original RobôCIn SSL robot, used at the soccer

games.

(a) RobôCIn SSL omnidirectional robot
with aditional module, for autonomous

tasks.

(b) Original RobôCIn SSL
omnidirectional robot.

Source: The author

Experiments happened using both robots to validate the proposed optimization. The
experiments conducted are listed below, which presents results from each experiment are in the
sections below.

1. Optimization of robot 0 odometry.

2. Second optimization of robot 0, to enhance the first optimization.

3. Evaluation of robot 0 optimized kinematic parameters in robot 5.

4. Optimizing robot 5 odometry, with its data.

6.1 ROBOT 0 OPTIMIZATION

The first 4 square path movement experiments used robot 0. The data collected has
the robot wheels’ speed, ground-truth pose, and robot’s odometry from original kinematic
parameters, shown at Table 5. The robot’s odometry and ground-truth position from vision have
RMSE of 0.3749, as shown in Figure 34.
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Table 5 – Original 13 kinematics parameters for RobôCIn SSL robot. Each ϑ is one
parameter, the first 12 compose the J−1

1 matrix, and the last one is the wheel radius.

Parameter Value
ϑ1 0.34641
ϑ2 0.282843
ϑ3 -0.282843
ϑ4 -0.34641
ϑ5 0.414214
ϑ6 -0.414216
ϑ7 -0.414214
ϑ8 0.414214
ϑ9 3.616966
ϑ10 2.556874
ϑ11 2.556874
ϑ12 3.616966
ϑ13 0.02475

Source: The author

Figure 34 – Robot 0 experiment with ground-truth and robot’s odometry position plot.

Source: The author

Applying the simulation in the data collected, as detailed in Algorithm 1, the RMSE was
0.3741. The simulation and robot’s odometry match at the experiment path, shown in Figure 35,
has the evaluation difference of 0.008.

After validating the simulation, the PSO algorithm was executed with the simulation
embedded in the evaluator, as detailed at Algorithm 2. As presented in Figure 36, the optimization
achieved a set of kinematic parameters, presented in Table 6, which simulated path evaluation
was 0.0907. Both the original parameters’ and optimized simulation used the same dataset of
wheels’ speed. However, the original kinematic parameters’ error was 0.3741, and the optimized
parameters decreased to 0.0907 RMSE.
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Figure 35 – Plot of Robot 0 experiment simulated positions, from wheel’s speed, together
with ground-truth and robot’s odometry position.

Source: The author

Figure 36 – Plot of Robot 0 optimization result with optimized odometry positions, from
wheel’s speed, together original odometry simulation, ground-truth position and robot’s

odometry positions.

Source: The author

The final validation of the optimization was applying the optimized kinematic parameters
in the real robot. The experiment was to move the robot in the same square path again to compare
the robot’s embedded odometry with the ground truth. The experiments results are shown at
Figure 37, and it is possible to see that experiments resulted in an RMSE of 0.1765 and 0.1605.
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Table 6 – Robot 0 optimized 13 kinematics parameters for RobôCIn SSL robot. Each ϑ is
one parameter, the first 12 compose the J−1

1 matrix, and the last one is the wheel radius.

Parameter Value
ϑ1 0.383146590857885
ϑ2 0.2601908088939393
ϑ3 -0.29432191782356004
ϑ4 -0.2947331116512286
ϑ5 0.2942690569083855
ϑ6 -0.5298154893258492
ϑ7 -0.4135609185578648
ϑ8 0.3062489555481053
ϑ9 3.590359801850708
ϑ10 2.5770948138832246
ϑ11 2.572861189728561
ϑ12 3.6344615627386694
ϑ13 0.023262252867368625

Source: The author

Figure 37 – The first figure is the RobôCIn SSL robot optimized odometry validation with
1 meter per second, while the second is the validation with 2 meters per second.

(a) Plot of Robot 0 odometry validation
using optimized kinematics parameters
compared with ground-truth positions.

(b) Plot of Robot 0 odometry validation
using optimized kinematics parameters,

navigating at 2 meters per seconds,
compared with ground-truth positions.

Source: The author

In Figure 38a, there is the experiment with the robot navigating at 1 meter per second,
while in Figure 38b the navigation move robot with 2 meters per second. The real odometry
optimization went from 0.3741, with original parameters, to 0.1765, with optimized parameters,
reducing the path error by 53%.

6.2 ROBOT 0 OPTIMIZATION OVER OPTIMIZATION

Although the error decreased by half, it is possible to see in both validation paths, at
Figure 37, the robot’s odometry is shifting the tracked path to the right side, the positive side of
environment X axis. The experiment to validate the optimization also records the wheel’s speed,
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and then it is possible to optimize.
It was possible to simulate the robot’s odometry path using the validation experiment

data and the optimized parameters, shown at Table 6. The simulation was again used in the
evolution process of the PSO to find even better kinematic parameters. As shown in Figure 38,
the robot’s odometry and simulation had a difference of only 0.0148 RMSE for the optimized
parameters.

Figure 38 – Plot of Robot 0 second optimization result with optimized odometry
positions, from wheel’s speed, together original odometry simulation, ground-truth

position and robot’s odometry positions.

Source: The author

In Figure 38, the optimization process reduced the simulated odometry error from 0.2056
to 0.0790 with the optimization algorithm. This optimization found a new set of parameters,
shown in Table 7

Again, this new set of parameters, found at the optimization over the first optimization
process, was inserted in the robot to validate the kinematic in the robot’s embedded odometry
in the real environment. Shown in Figure 39, the robot produced an odometry tracking path
with RMSE of 0.0908 for 1 m/s navigation and 0.1211 for 2 m/s navigation. The first kinematic
optimization reached 0.1765 for 1 m/s navigation, and the second, with 0.0908, improved the
odometry by 48%.
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Table 7 – Robot 0 second optimized 13 kinematics parameters for RobôCIn SSL robot.
The ϑ parameters compose J−1

1 matrix and wheel radius.

Parameter Value
ϑ1 0.42447140713655457
ϑ2 0.35482242703016686
ϑ3 -0.1823307411279881
ϑ4 -0.274779656546075
ϑ5 0.25745996970744844
ϑ6 -0.4438060201135028
ϑ7 -0.35102689244950486
ϑ8 0.23426282528626358
ϑ9 3.611082557939859
ϑ10 2.6806232596725357
ϑ11 2.5552490512551853
ϑ12 3.5933353127553165
ϑ13 0.022848272302565545

Source: The author

Figure 39 – The first figure is the RobôCIn SSL robot second kinematics optimization,
validated with navigation at 1 meter per second, while the second is the validation with 2

meters per second.

(a) Plot of Robot 0 second optmized
odometry validation using optimized

kinematics parameters, navigating at 1
meter per second, compared with

ground-truth positions.

(b) Plot of Robot 0 second optimized
odometry validation using optimized

kinematics parameters, navigating at 2
meters per seconds, compared with

ground-truth positions.
Source: The author

To summarize, the original kinematic model in the robot’s odometry had an RMSE of
0.3749; after optimizing the error was reduced to 0.1765, and the set of parameters found are in
Table 6. The validation experiment had the robot’s odometry and wheels’ speed; then, it enabled
a second round of optimization using optimized parameters. The second optimization process
reached 0.0908 of RMSE and found the set of parameters in Table 7. In the end, the error went
from 0.3749 to 0.0908, reducing by 75%.
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6.3 ROBOT 0 PARAMETERS IN ROBOT 5

With an improvement of 75% in path tracking using the robot’s odometry optimization,
testing another robot to validate parameters was possible. The experiment verifies if optimized
kinematic parameters for one robot still optimize the odometry path for a different robot with
the same model. The robot already optimized is called robot 0, shown at Figure 34a, and its
optimized parameters, inputted in robot 5, shown at Figure 34b

Applying in robot 5 the original kinematic model, presented in Table 5, the robot’s
odometry path RMSE was 0.2623 as shown in Figure 40. As the RMSE error was higher than
robot 0 optimization, applying robot 0 optimization can improve the path tracking.

Figure 40 – Robot 5 experiment with ground-truth and robot’s odometry position plot.

Source: The author

With robot 0 best-found parameters presented in Table 7, the robot 5 odometry tracking
experiment, and the ground truth path is presented in Figure 41. The optimized parameters for
robot 0, produced a path in robot 5 with RMSE of 0.1538. The robot 0 kinematic parameters
improved robot 5 odometry tracking by 41%, as path error went from 0.2623 to 0.1538. Although
improvement was significant, it did not reach an error close to the 0.0908 found when kinematic
was evaluated in robot 0.

This result shows that using robot 0 kinematic parameters in robot 5, solved some
systematic errors in the modelling. However, it was impossible to fix systematic errors due to the
robot’s construction and environmental interaction.

6.4 ROBOT 5 OPTIMIZATION

As the robot 0 optimized kinematic parameters applied to robot 5 did not reach a
satisfactory error, compared to the robot 0 optimization, the robot 5 optimization was performed.
In Figure 42, it is possible to see that the robot’s odometry path RMSE was 0.2623, and the
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Figure 41 – Plot of Robot 5 odometry validation using optimized kinematics parameters
from 0 optimization, compared with ground-truth positions.

Source: The author

simulation using the collected wheels’ speed was 0.2978, both compared to the ground-truth
positions.

Figure 42 – Plot of Robot 5 experiment simulated positions, from wheel’s speed, together
with ground-truth and robot’s odometry position.

Source: The author

After playing the PSO algorithm to optimize the original odometry parameters to the
best set of parameters for the robot, it was found an optimization with the error of 0.1280. The
best parameters found by the optimization are shown in Table 8.
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Table 8 – Robot 5 first optimized 13 kinematics parameters for RobôCIn SSL robot. The
ϑ parameters compose J−1

1 matrix and wheel radius.

Parameter Value
ϑ1 0.3107303336519129
ϑ2 0.16293553130406085
ϑ3 -0.38569987170572684
ϑ4 -0.4218453648289997
ϑ5 0.38324707121540846
ϑ6 -0.45977057928309134
ϑ7 -0.43382527524942377
ϑ8 0.35013037288291204
ϑ9 3.5516509471783704
ϑ10 2.563520283893822
ϑ11 2.5794991635632774
ϑ12 3.600614201817168
ϑ13 0.022261783590247084

Source: The author

Figure 43 – Plot of Robot 5 optimization result with optimized odometry positions, from
wheel’s speed, together original odometry simulation, ground-truth position and robot’s

odometry positions.

Source: The author

Updating robot 5 with the new set of parameters found and realizing a new experiment,
the odometry tracking returned the paths shown in Figure 44. In the Figure 45a, the robot
navigated with 1 meter per second, and its odometry path error was 0.1050. The Figure 45b
presents the path for robot 5 navigating with 2 meters per second, and in that experiment, the
robot’s odometry RMSE was 0.1115.
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Figure 44 – The first figure is the RobôCIn SSL robot 5 optimized odometry validation
with 1 meter per second, while the second is the validation with 2 meters per second.

(a) Plot of Robot 5 odometry validation
using its optimized kinematics

parameters compared with ground-truth
positions.

(b) Plot of Robot 5 odometry validation
using its optimized kinematics

parameters, navigating at 2 meters per
seconds, compared with ground-truth

positions.
Source: The author

From the original odometry error at robot 5, with 0.2623 of error, to the optimized
kinematic, there is a 60% decrease of the RMSE. Comparing with robot 5 using the robot 0
optimized parameters, shown at Table 7, and the robot 5 optimized one, shown in Table 8, the
robot 5 error decreased from 0.1538 to 0.1050. This 31% error reduction proved that optimizing
for the target robot potential the systematic error fixes, as data considers all construction errors.‘

6.5 CONSOLIDATE RESULTS

This section consolidates the results from robot experiments and optimization. The
experiment results are presented in the Table 9, and besides the Root Mean Square Error (RMSE),
there is the robot and its speed used during the experiment. For each configuration, four
experiments were conducted, and the RMSE presented is the average between the experiments.

For the eight experiment cases evaluated and presented in Table 9, the first two cases
are the robot 0 odometry path using its original kinematic parameters with speeds of 1 m/s and
2m/s speeds. Then, there is robot 5 with its original kinematics parameters for both speeds. The
fifth and sixth results were from robot 0 optimized odometry, navigating at 1 m/s and 2 m/s,
respectively. Right after, there is the robot 0 with its second optimization results. The later 4
rows are from the robot’s 5 experiments, first using the robot’s 0 kinematic optimizations at
both speeds, and the last two rows are the results from robot 5 with its optimized kinematic
parameters, navigating at 1 m/s and 2 m/s.

From Table 9, it is possible to see that the robot 0 odometry error went from 0.37486 to
0.17649 and, in a second optimization iteration, reached 0.09076. The overall improvement was
75% and was the best result for robot 0 path tracking. However, robot 5 has the same structure as
robot 0, the best kinematic parameters for robot 0, were not the best for robot 5 odometry. The
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Table 9 – Consolidate results for all experiments by kinematics and robot used to validate
it. The table reports results from simulation and robots’ embedded odometry RMSE,

using each kinematics parameter, original and optimized.

Kinematics Parameters Robot Speed Odometry RMSE
Original Kinematic robot0 1m/s 0.37486
Original Kinematic robot0 2m/s 0.43823
Original Kinematic robot5 1m/s 0.26232
Original Kinematic robot5 2m/s 0.29521

Robot0 1st Optimized robot0 1m/s 0.17649
Robot0 1st Optimized robot0 2m/s 0.16051
Robot0 2nd Optimized robot0 1m/s 0.09076
Robot0 2nd Optimized robot0 2m/s 0.12111
Robot0 2nd Optimized robot5 1m/s 0.15380
Robot0 2nd Optimized robot5 2m/s 0.16205
Robot5 1st Optimized robot5 1m/s 0.10501
Robot5 1st Optimized robot5 2m/s 0.11152

Source: The author

odometry kinematic parameters for robot 0, applied to robot 5 had an error of 0.15380, while the
optimization for robot 5 had an error of 0.10501. Therefore, the robot 5 path tracking RMSE
improved by 60%, from original to robot 5 optimized parameters.

As expected, the path tracking error is higher for faster navigation velocity. However,
Table 9 shows that 2 m/s navigation at robot 0 had 72% of RMSE improvement, going from
0.43823 to 0.1211. Moreover, robot 5 improved from 0.29521 to 0.11152, representing a 62% of
error improvement.

One of the most recent works in odometry optimization is from Sousa et al. (2022). It
proposes to evaluate odometry quality by the maximum distance error from the robot’s path
tracking to the ground truth positions for each sample, taken every 0.5 meters of robot motion.
The Sousa et al. (2022) best result reported to a 4-wheel mecanum robot was 0.20 m and
20° of error. The distance error result from this work’s proposed optimization is presented in
Table 10, where, similar to OptiOdm metrics, there is the maximum distance and orientation
error from each experiment performed. It is possible to see that all optimizations for the 4-wheel
omnidirectional robot reached less than 0.1 m and 1° of error. Compared to Sousa et al. (2022),
the result from this work doubled path precision for omnidirectional robots, and the best result,
of 0.028 m of error, is more than seven times better than previous work. This result shows the
great potential of this work’s proposed optimization; however, this comparison uses two different
robots with different wheels, which impacts the result. Although both robots have 4 wheels and
move in any direction, their kinematics model is different, and the wheels model highly impacts
the relationship between the actuator and the robot’s movement. For a better comparison same
robot should be used.

Also using a different robot model, the work proposed by Lin et al. (2019) and their
method achieved 0.1 m of maximum distance error between the optimized and original path. An
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Table 10 – The table presents the maximum error distance (εmax,d) and absolute angle
difference (εmax,|θ |) between odometry and ground-truth positions for all experiments.

Kinematics Parameters Robot Speed εmax,d εmax,|θ |
Original Kinematic robot0 1 m/s 0.39459 0.36506
Original Kinematic robot0 2 m/s 0.52734 0.39237
Original Kinematic robot5 1 m/s 0.14103 0.44390
Original Kinematic robot5 2 m/s 0.22434 0.47111

Robot0 1st Optimized robot0 1 m/s 0.07858 0.32835
Robot0 1st Optimized robot0 2 m/s 0.10135 0.33875
Robot0 2nd Optimized robot0 1 m/s 0.02822 0.43840
Robot0 2nd Optimized robot0 2 m/s 0.09866 0.39686
Robot0 2nd Optimized robot5 1 m/s 0.06099 0.33901
Robot0 2nd Optimized robot5 2 m/s 0.10308 0.31638
Robot5 1st Optimized robot5 1 m/s 0.03070 0.31431
Robot5 1st Optimized robot5 2 m/s 0.08777 0.33296

Source: The author

Table 11 – Average and standard deviation of 10 validation at each robot, using its best
optimization odometry.

Kinematics Parameters Robot Speed Average Odometry RMSE
Robot0 2nd Optimized robot0 1m/s 0.12±0.05
Robot5 1st Optimized robot5 1m/s 0.15±0.08

Source: The author

error of 0.1 m in the distance is similar to the overall experiment results presented in Table 10.
However, the average and median distance error from the proposed optimized experiments is
0.07298 and 0.08318, respectively, which improves (LIN et al., 2019) results. Besides the
distance error improvement, the Lin et al. (2019) work was proposed and evaluated only in
tricycle robots, as optimization used analytic equations. On the other hand, this work proposes an
optimization without restriction in the robot’s design, which evaluation is from an omnidirectional
robot.

The result highlights that the kinematic model has systematic errors, and their reduction
is possible with the proposed optimization method. It also shows that robots with the same
structure may have similar mechanical issues in the kinematic model, as optimization from
one robot increases the odometry of another with the same design. However, it is possible to
reduce path tracking error using similar robot odometry optimization, and for better results, the
proposed methodology should be applied to the kinematic model for each robot individually.
After evaluating the optimization 10x for each robot, the accuracy reported was consistent and the
aggregated RMSE is presented at Table 11. The RobôCIn’s embedded software computational
time was measured before and after the odometry algorithm, and the computation average and
standard deviation time at one thousand loops went from 126.01±0.44 microseconds without
odometry, to 156.24±0.47 microseconds with odometry. The increase in 25.03 microseconds
does not impact the robot’s computational time, as external commands are produced with 15
milliseconds of internal time.
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7 CONCLUSION AND FUTURE WORK

7.1 CONCLUSION

In conclusion, this work presents a method to improve mobile robot navigation by improv-
ing odometry accuracy through its kinematic model. The methodology used robot-collected data
to simulate an odometry-based path containing the model’s mechanical inaccuracies to improve
the kinematic model parameters for a four-wheel omnidirectional robot. The robot’s simulation
and collected data went to an evaluator that quantified the kinematic parameters quality based on
the robot’s odometry and navigated path. The evaluation method became crucial the population
fitness calculus of the Particle Swarm Optimization (PSO). The accuracy improvement in this
work reduced path Root Mean Square Error (RMSE) in one order of magnitude, aiding the
mobile robot navigation through odometry to achieve a precision of fewer than 10 centimetres.
At the same time, the improvement maintained odometry’s operation and only changed the
kinematic model parameters.

While previous authors target specific robot designs, the optimization proposed in this
work is not coupled to any robot’s model. A generic optimization was successfully made using
the robot’s data, independent of its design, an external simulation based on the existent kinematic
model, and an evaluator built with RMSE equation. These three components evaluated and guided
the parameters population at the PSO. One set of parameters represented a kinematic model,
and the whole population evolved as a swarm, where each individual changed at each algorithm
iteration. The optimization result returned the improved kinematic parameters, representing an
optimized kinematic model for the robot odometry path tracking. The enhancement process
has limitations; it requires dedicated experiments and multiple hours to optimize the robot’s
kinematic parameters in an off-board computer through simulation, evaluation and iterative
optimization. On the other hand, the odometry does not change its computational cost between
the non-optimized and optimized kinematic model; therefore, after optimization, navigation will
gain precision without any additional computational cost.

Although the optimization process is computationally costly, the results of the experi-
ments showed that path tracking errors improved its accuracy by 75%. The strategy to optimize
odometry resulted in a final position error of less than 5 cm for a 10-meter path. The best result
was reported at a second round of optimization for robot 0, and achieved less than 3 cm error
for the 10-meter path. This enhanced accuracy allows better autonomous navigation, changing
kinematics model parameters without external information or additional sensors fusion, such
as cameras and lasers. Differently from the odometry process, additional sensors bring high
computational costs to navigation strategies and interfere with the reaction time.

Although previous work uses different robots, resulting in different odometry accuracy,
the proposed method does not require changing the optimization and evaluation for different
robots. It requires experimentation and original kinematic model parameters available for any
robot’s design. Therefore, this work achieved a promising solution for enhancing the navigation
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of different mobile robots. In a 10-meter path, the parameters found reduced the tracking error
to less than 0.1 m error, with an average of 0.07 m for the eight experiments with odometry
optimized. Previous work reported optimized odometry with a distance error of 0.1 for the
differential robot and 0.2 m for omnidirectional robots, and they only support a few robot’s
kinematics models. Moreover, this work achieved half the odometry error from previous works
and supports a broader range of robot models.

This work’s accuracy improvement in path tracking gives robots more autonomy and
time to navigate, facilitating processing tasks and aggregating more sensors without losing
path tracking quality. Besides using a different robot, method of evaluation and optimization,
this work also implemented the ground-truth position recording through the ssl-vision software
(ZICKLER et al., 2010). And the accuracy of the position recording contributes to the quality
of the optimized odometry, as it better captures the robot’s actual movements. On the other
hand, the robot’s odometry navigation was reported with 1 and 2 meters per second of navigation
speed, demonstrating accuracy, even with different navigation speeds.

7.2 FUTURE WORK

The main focus of the work was odometry optimization for mobile robots; however,
every robot with an actuator needs a kinematic to interact with the environment. Therefore, the
optimization method proposed in this work may be applied to different robot structures, such as
manipulators, which consist of multiple joint movements modelled by the kinematic. Unlike
mobile robots, manipulators do not suffer from wheel slip, and joints are hardly attached to
motors. On the other hand, similar to mobile robots, manipulators require model precision to
reach the correct position without danger. One good example is arm robots to assemble cars;
although they are in a controlled environment, they require precision to perform assembly in a
specific position, synchronized with factory tasks. The result reported opens several avenues for
future research that could be pursued, some of them are:

1. Extend the study to evaluate the proposed method on different types of robots with
different kinematic models. To evaluate the method’s robustness in generic robots.

2. Integrate the proposed optimized odometry with different navigation techniques to
evaluate the combination results in more accurate navigation.

3. Evaluate the performance of the proposed method in different real-world environ-
ments, such as uneven terrain. To evaluate more sources of errors in the odometry
track.

4. Automatize the optimization to optimize the robot’s odometry in different environ-
ments quickly.
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The items proposed above are the future steps and can uncover different applications and
robot designs to apply the methodology proposed. However, the results enhanced autonomous
robotics navigation, such as vision-based and laser-based navigation, because odometry is a
fundamental task that reduces localization uncertainty. Therefore, more precise odometry reduces
path tracking variance, and besides the additional navigation precision, navigation may reduce
dependency on additional sensors. Moreover, the proposed work already built an accurate
odometry path tracking based on the kinematic parameters’ optimization, which presented
results that overcame previous works. Therefore, it should contribute to applications based on
odometry.
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