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ABSTRACT

The beta distribution is routinely used to model variables that assume values in the
standard unit interval. Several alternative laws have, nonetheless, been proposed in the
literature, such as the Kumaraswamy and simplex distributions. A natural and empirically
motivated question is: does the beta law provide an adequate representation for a given
dataset? We test the null hypothesis that the beta model is correctly specified against
the alternative hypothesis that it does not provide an adequate data fit. Our tests are
based on the information matrix equality, which only holds when the model is correctly
specified. They are thus sensitive to model misspecification. Simulation evidence shows
that the tests perform well, especially when coupled with bootstrap resampling. We model
state and county Covid-19 mortality rates in the United States. The misspecification tests
indicate that the beta law successfully represents Covid-19 death rates when they are
computed using either data from prior to the start of the vaccination campaign or data
collected when such a campaign was under way. In the latter case, the beta law is only
accepted when the negative impact of vaccination reach on death rates is moderate. The
beta model is rejected under data heterogeneity, i.e., when mortality rates are computed
using information gathered during both time periods.

The beta regression model is tailored for responses that assume values in the standard unit
interval. In its more general formulation, it comprises two submodels, one for the mean
response and another for the precision parameter. We develop tests of correct specification
for such a model. The tests are based on the information matrix equality, which fails
to hold when the model is incorrectly specified. We establish the validity of the tests in
the class of varying precision beta regressions, provide closed-form expressions for the
quantities used in the test statistics, and present simulation evidence on the tests’ null
and non-null behavior. We show it is possible to achieve very good control of the type I
error probability when data resampling is employed and that the tests are able to reliably
detect incorrect model specification, especially when the sample size is not small. Two
empirical applications are presented and discussed.

Diagnostic analyses in regression modeling are usually based on residuals or local influence
measures. They are used for detecting atypical observations. We develop a new approach for
detecting such observations when the parameters of the model are estimated by maximum

likelihood. It is based on the information matrix equality, which holds when the model is



correctly specified. We consider different measures of the distance between two symmetric
matrices and use them with the sample counterparts of the matrices in the information
matrix equality in such a way that zero distance corresponds to correct model specification.
The distance measures we use thus quantify the degree of model adequacy. We use such
measures to identify observations that are atypical because they disproportionately alter
the degree of model adequacy. We also introduce a modified generalized Cook distance and
a new criterion that uses the two generalized Cook’s distances (modified and unmodified).

Empirical applications involving Gaussian and beta models are presented and discussed.

Keywords: Beta distribution; beta regression; bootstrap; information matrix test; model

misspecification; Monte Carlo simulation.



RESUMO

A distribuicdo beta é usada rotineiramente para modelar variaveis que assumem valores no
intervalo unitario padrao. Varias leis alternativas foram, contudo, propostas na literatura,
tais como as distribui¢des Kumaraswamy e simplex. Uma questdao natural e empiricamente
motivada é: a lei beta fornece uma representacao adequada para os dados sob analise?
Nos testamos a hipétese nula de que o modelo beta esta corretamente especificado contra
a hipotese alternativa de que ele nao fornece um ajuste adequado aos dados. Nossos
testes sao baseados na igualdade da matriz de informagao, que somente é valida quando
o modelo se encontra corretamente especificado. Os testes sdo, portanto, sensiveis a
qualquer forma de especificacao incorreta do modelo. Resultados de simulagao mostram
que os testes tém bom desempenho, especialmente quando utilizados com reamostragem
bootstrap. Nés modelamos as taxas de mortalidade estaduais e municipais de Covid-19
nos Estados Unidos. Nossos testes de ma especificagdo indicam que a lei beta representa
adequadamente as taxas de mortalidade do Covid-19 quando estas sao computadas com
base em dados anteriores ao inicio da campanha de vacinacao de Covid-19 ou com base
em dados coletados quando tal campanha ja se encontrava em andamento. No tltimo
caso, a lei beta s6 é aceita quando o impacto da vacinacao sobre as taxas de mortalidade
¢ moderado. O modelo beta é rejeitado sob heterogeneidade de dados, ou seja, quando
as taxas de mortalidade sao computadas usando informagoes coletadas durante ambos os
periodos de tempo. Os testes de ma especificacao sao estendidos para cobrir o modelo
beta de regressao de precisao variavel.

O modelo de regressao beta é usado com varidveis dependentes que assumem valores no
intervalo unitario padrao, (0,1). Em sua formulacdo mais geral, contém dois submodelos,
um para a média e outro para o parametro de precisao. Apresentamos expressoes em
forma fechada para estatisticas de teste da matriz de informacao nessa classe de modelos.
Reamostragem bootstrap é usada para alcancar melhor controle sobre a frequéncia de erro
tipo I. Sao apresentados resultados de simulagdo de Monte Carlo sobre o comportamento
dos testes, tanto sob a hipétese nula como sob a hipdtese alternativa. Os resultados indicam
que os testes sao tipicamente capazes de detectar especificacao incorreta do modelo, em
especial quando o tamanho da amostra nao é pequeno.

A anélise de diagnodstico na modelagem de regressao é geralmente realizada com base

na analise de residuos ou influéncia local. Desenvolvemos uma nova abordagem para



detectar pontos de dados atipicos em modelos para os quais a estimativa de parametros é
realizada por maxima verossimilhanca. A nova abordagem utiliza a igualdade da matriz de
informacgao que ¢é valida quando o modelo esta corretamente especificado. Consideramos
diferentes medidas da distancia entre duas matrizes simétricas e as utilizamos com as
contrapartidas amostrais das matrizes na igualdade da matriz de informacao de tal forma
que a distancia zero corresponde a especificacdo correta do modelo. As medidas de
distancia que usamos quantificam, assim, o grau de adequacao do modelo. Mostramos que
elas podem ser usadas para identificar observagoes que contribuem desproporcionalmente
para alterar o grau de adequacao do modelo. Também introduzimos uma distancia
Cook generalizada modificada e um novo critério que utiliza as duas distancias Cook
generalizadas (modificadas e ndo modificadas). Aplicagoes empiricas envolvendo modelos

de regressao gaussiano e beta sao apresentadas e discutidas.

Palavras-chave: Bootstrap; distribuicao beta; especificacao incorreta; regressao beta;

simulacao de Monte Carlo; teste da matriz de informacao.
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1 BETA DISTRIBUTION MISSPECIFICATION TESTS WITH APPLI-
CATION TO COVID-19 MORTALITY RATES IN THE UNITED STA-
TES

1.1 INTRODUCTION

Several variables of interest assume values in the standard unit interval, (0,1).
This is the case, e.g., of rates, proportions and concentration indices. The beta distribution
is commonly used to model such variables. For instance, Wiley, Herschkorn and Padian
(1989) use the beta law to model the probability of HIV transmission in male-to-female
sexual encounters and Bury (1999) lists applications of the beta law to engineering.
Other applications of the beta distribution can be seen in Oguamanam, Martin and
Huissoon (1995) (gear damage analysis), Sulaiman et al. (1999) (relative sunshine duration
in Malaysia) and Elmer, Jones and Nagin (2018) (group-based trajectory modeling of
neurological activity of comatose cardiac arrest patients). Additionally, Johnson, Kotz and
Balakrishnan (1995) note that “[tJhe beta distributions are among the most frequently
employed to model theoretical distributions”. It is also noted that the beta law arises
naturally in ‘normal theory’ since Z;/(Z1 + Z2) is beta distributed if Z; and Zs are
independent chi-squared random variables. The beta distribution can also be obtained as
the limiting distribution of eigenvalues ratio in a sequence of random matrices.

Alternative distributions with support in the standard unit interval have been
proposed in the literature and have been increasingly used in empirical analyses, such as,
e.g., the Kumaraswamy (JONES, 2009) and simplex distributions (JORGENSEN, 1997)
and more recently, the unit-Weibull (MAZUCHELI; MENEZES; GHITANY, 2018) and
reflected unit Burr XII (RIBEIRO et al., 2021) distributions. It would then be useful to
provide practitioners with a test that can be used to determine whether the beta law —
which is still the most used model with fractional data — yields an adequate data fit.
If not, an alternative model should be considered. This is our chief goal in this chapter.
In particular, we present tests of the null hypothesis that the beta model is correctly
specified against the alternative hypothesis that it is misspecified. Alternative models
should be considered for the application at hand whenever the null hypothesis of correct
beta model specification is rejected. In particular, we consider a general test of correct
model specification that was introduced by White (1982), known as ‘the information matrix

test’, and also some variants of it. The name of the test stems from the fact that the
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information matrix equality is known to only hold when the model is correctly specified.
Information matrix test statistics are based on the sample counterparts of the model
matrices that comprise such an equality. They were derived for several statistical models
and distributions, e.g., the Gaussian linear regression model (HALL, 1987), binary data
models (ORME, 1988), linear regressions with autoregressive and moving average errors
(FURNO, 1996), logistic regressions (ZHANG, 2001), beta-binomial models (CAPANU;
PRESNELL, 2008), and the negative binomial law (CHUA; ONG, 2013).

We obtain three information matrix test statistics for testing the null hypothesis
that the beta model is correctly specified. They differ in the estimator used for the
covariance matrix of a given random vector. The first two test statistics employ different
estimators of the random vector’s asymptotic covariance matrix whereas the third and
final test statistic employs a resampling-based estimator of its exact covariance matrix.
Since our numerical results show that the first two tests are considerably size-distorted
in small to moderately large sample sizes, we also perform them using bootstrap critical
values. It is noteworthy that the tests we develop are based on the information equality,
which only holds when the model specification is not in error. As a consequence, they
have power against any form of model misspecification, not only of distributional nature.

The Monte Carlo simulation evidence we report shows that the tests perform
well, especially when coupled with bootstrap resampling. As noted above, three variants of
the information matrix test are considered. For two of them, bootstrap resampling is used
to obtain critical values that do not rely on asymptotic approximations whereas, in the
remaining test, bootstrap resampling is used to estimate a covariance matrix that is used
in the test statistic. Overall, the use of bootstrap resampling yields good control of the
type I error frequency. Simulations in which the data were generated under the alternative
hypothesis show that the tests are typically able to detect incorrect model specification,
especially when the sample size is not small. Consider, e.g., the Kumaraswamy distribution,
which is commonly used as an alternative law for fractional data. The numerical results we
report show that when such a law is the true data-generating mechanism, the information
matrix tests reject the beta model with probabilities around 0.9 for samples that contain
250 data points at the 10% significance level. Our Monte Carlo evidence also shows that
the tests can successfully reject the univariate beta model when the sample size is not very

small and the underlying law is beta but with non-constant means.
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We model state and county Covid-19 mortality rates in the United States (US)
using the univariate beta model. Three sample periods are considered: the first only
includes observations from prior to the start of the nationwide vaccination campaign,
the second encompasses data obtained before and after such a date, and the third and
final period only includes data collected when the vaccination drive was under way. The
testing inferences suggest that the beta law yields an adequate data representation for
Covid-19 death rates in the first and third time periods. By contrast, the beta law is
rejected when the data are heterogeneous, i.e., when the mortality rates are computed using
information gathered prior to and during the nationwide vaccination drive. Interestingly,
the univariate beta model is found to adequately describe the data in the third time period,
in which mortality rates are negatively impacted by the reach of the vaccination drive.
This happens because (i) in the initial part of the sample period vaccination was incipient
and had little impact on the overall mortality figures and (ii) the negative relationship
between the two variables is weakened by a few states, namely: Alaska, Arizona, Florida,
Massachusetts, North Dakota, and Rhode Island. When all counties in such states are
removed from the data, the inverse relationship between vaccination reach and death rates
become considerably more intense, and the information matrix tests reject the adequacy
of the univariate beta model, thus indicating that a more elaborate model should be used.
The information matrix tests’ inferences thus indicate that as long as the negative impact
of vaccination reach on death rates is moderate, the beta law can be used to represent
Covid-19 mortality rates. When such a negative impact becomes more pronounced, the
univariate beta model should no longer be used.

The remainder of the chapter is organized as follows. The beta distribution
and the corresponding maximum likelihood parameter estimation are briefly presented in
Section 1.2. In Section 1.3, information matrix misspecification tests for the beta model
are obtained. In particular, we introduce five tests, three of which based on bootstrap
resampling. Monte Carlo simulation results are presented in Section 1.4. We evaluate
the tests’ null (size) and non-null (power) behaviors. An empirical analysis of Covid-19
mortality rates in the US is presented and discussed in Section 1.5. Finally, concluding

remarks are offered in Section 1.6 together with directions for future research.
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1.2 THE BETA DISTRIBUTION

Let Y be a beta-distributed random variable. Its density function, following

the parametrization introduced by Ferrari and Cribari-Neto (2004), can be expressed as

. _ F(¢) ¢o—1 . (1_ )¢_1
f(y,u,¢)—F(Mb)F((l_m(b)y“ (1—y)V M7 0<y<1,0<pu<l,p>0, (1.1)

where E(Y') = p and ¢ is a precision parameter since, for fixed p, Var(Y) = pu(1—u)/(1+¢)
decreases as ¢ increases. We write Y ~ B(u,¢). Unlike the standard beta parametrization,
the parameters in (1.1) can be directly interpreted in terms of the distribution mean and
precision. As we will see in the fifth section, it is useful to compare estimated precisions
obtained from different model fits. The beta density in (1.1) is symmetric if g = 0.5 and
asymmetric otherwise, and it reduces to the uniform density if = 0.5 and ¢ = 2. The beta
density can be asymmetric to the left or to the right, and it can also be J-shaped, inverted
J-shaped, and U-shaped. It is thus clear, as noted by Johnson, Kotz and Balakrishnan
(1995), that “[b]eta distributions are very versatile and a variety of uncertainties can be
usefully modelled by them.” It is also noted that “[t|his flexibility encourages its empirical
use in a wide range of applications.”

Let Y7,...,Y, be independent and identically distributed (i.i.d.) beta-distributed
random variables and let y1,...,y, be their observed, realized values. In what follows, Y
and y denote the n-vectors of such random variables and realizations, respectively. Also,
6 = (11,¢)" is the vector of beta parameters. Whenever required, we refer to x4 and ¢ as 6y

and 0, respectively. The log-likelihood function for Y evaluated at y is

n

U diy) = L(0;y) =D (B y),

t=1
where £(8;y;) = log(f(ys; 1, ¢)) is the tth individual log-likelihood, which is given by

0(6;y¢) = log(I(¢)) —log(I(1¢)) — log(D((1 — ) $)) + (e — 1)y + (¢ —2)y;

with g = log(y:/(1 —yr)) and yf =log(1 —y,). Let Y;* =log(V;/(1—Yy)), p* = B(Y;"),

Y;T = log(1—Y;) and uf = E(YJ) It follows that pu* = (up) —((1—p)¢) and uf =
(1 —p)o) — (@), where ¢ is the digamma function, i.e., the first derivative of the
logarithm of the gamma function.
The score vector is VE(8,y) = 00(8:y) /00 = (00(8;y)/0p,00(0;y)/0¢) ", where
o iy ;aﬁ and ae(ao;y) = S [l — )+ — ).

t=1
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Fisher’s information matrix for a single observation, B(#), is defined as
the expected value of the individual log-likelihood derivative outer product: B(f) =
E00(6; Y1) /08 x 9((8;Y;) /98" |. For the beta model,

By Bue

Y

B(0) =
Byu  Bog
where B, = ¢*w, By = By = c and Byg = (uc) /o+ (1= p)¢' (1 - p)¢) —¢'(¢), ¥’ being
the trigamma function. The expressions for the quantities w and ¢ can be found in
Appendix A. The total information matrix, i.e., the information matrix for the complete
sample, is nB(0).

The maximum likelihood estimator of 8, say 9, cannot be expressed in closed-
form. Parameter estimates are typically obtained by numerically maximizing the log-
likelihood function using a Newton or quasi-Newton nonlinear optimization algorithm.
In what follows, we will use Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm with
analytical first derivatives for maximum likelihood estimation; for details, see Nocedal and

Wright (2006).
1.3 BETA MISSPECIFICATION TESTS

Our goal in what follows is to obtain tests of correct model specification for the
beta distribution. Our focus is on the information matrix test introduced in full generality
by White (1982). Let 89 = (10,¢0)" be the true parameter value. The beta model is taken
to be correctly specified if Y; follows the beta law with parameter vector 6y Vt.

Let A(0)=E [82€(0;Y})/(8000T)} be the expected Hessian of ¢(8;Y;). When
the model is correctly specified and under the assumptions listed in Sections 2 and 3
of White (1982), the information matrix equality holds: B(6y) = —A(p); alternatively,
A(60g) + B(0o) = Ok, where Opyxj denotes a k-dimensional square matrix of zeros,
with & = 2. Evidence that such an equality fails to hold is thus taken as evidence
of incorrect model specification. Our interest lies in testing the null hypothesis Hj :
A(0p) + B(600) = O (correct beta model specification) against the alternative hypothesis
Hi:A(fp)+ B(0g) # O (beta model misspecification).

In what follows, we will present three information matrix test statistics that

can be used to test the correct beta model specification. At the outset, we derive several
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quantities that are used in such test statistics. We obtain, for the beta model,

1 L [0%(0;Y; 1 A, An
An 0;Y - - i e ’
6:¥)= nzlaoaaT ng A, A
Nug Noe
where A”HM - _¢2w7 An(w = Anﬂ¢ (Y;f —H )_C and An¢¢ = —(MC)/QS— (1 _M)¢/<(1 -

w)é) +1'(¢). Expressions for ¢ and w can be found, as noted earlier, in Appendix A.
Additionally,

0L(6:Yy)  0U8: Y1)
06 00"

where By, = 62(Yj' 1" 2. Buy, = Buyy =6 (V7 — %) [u(Vy — ) + (¥ — )] and B, =
2 .

{,M(Yt* —p*)+ (YtT - ,LLT)] . Notice that A,(0;Y) and B,(0;Y) evaluated at 8 = 8 are con-

sistent estimators of A(fy) and B(6y), respectively.

We also need to obtain

D,(6) = D(8:Y) = L S d(0:v1).

t=1

where

d(8:Y;) = vech (W(";Yt) 0UO:Y:) aew;m)

0000" 00 00"

is a 3 x 1 vector with {th component given by

OPUOYY)  DUEYY) | U
00;00; 00; 20;
where 1 =j=1forl=1;1=1and j=2for [ =2; 1 =3 =2 for [ =3. For the beta

di(0;Y;) =

distribution, we obtain

d1(6:Y:) = ¢*[(Yy" —*)* —wl,
da(8;Y7) = (Y = %) — e+ ¢(¥;" — ) [u(Vy" = ) + (v = ph)]
d3(0;Y;) =

= (L= (1= 19)9) +0/(8) + [07 = )+ (] )]

Note that D,,(0;Y) = vech (A4,(8;Y)+ B,(68;Y)) is a vector that contains three elements.
The information matrix test statistics we consider are functions of such a restrictions
vector evaluated at 6 = 0.

Let
v(8) = B{ [d(6:Y1) - VD(8)A(6) "' VL(8:Y7)

<[d(6:¥) - vDB)AB) VO] .
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where D(8) = E[d(6:Y;)] and VD(8) = 0D(6)/98". White (1982) showed that, under
correct model specification, \/ﬁDn(é;Y) is asymptotically normally distributed with zero

mean and covariance matrix V' (6p) and noticed that a natural consistent estimator for

V(8y) is

3 { [40:) VD, 0:)4,(0:7) 7 V1(0:3)

1
n =1

x [d(o, Y;) = VD, (0:Y)A, (9;Y)—1W(0;Yt)f}

evaluated at @ = 8, where VD, (8:Y) = 0D,,(6;Y)/98" . Closed-form expressions for the
elements of VD, (0;Y) in the beta model are given in Appendix A.

The first information matrix test statistic is
1= nDn(@)T[an(é)]_an(é),

where ¢ is the number of components of D,,(8;Y") considered (¢ < 3). Under Hy, (; is
asymptotically distributed as Xg- The test is then carried out using critical values from
such a distribution, i.e., Hy is rejected at significance level a € (0,1) if (; > X§,1—aa where
ngl_a is the 1 — « Xg quantile.

Alternative information matrix test statistics can be obtained by considering
different consistent estimators for V' (6p). Chesher (1983) and Lancaster (1984) showed
that it is possible to use a covariance matrix estimator that does not require third order
log-likelihood derivatives. They use the fact that, under Ho, VD(6y) = —E[d(0p;Y:) ¥
V{(6:Y;) "] (LANCASTER, 1984). Let

znj[ d(6; Y1) x VL(6; Y1) "],
t=1

3\'—‘

The Chesher-Lancaster estimator of V() is
1 n
Vir®) = 3 { [d(6:0) + La(6:Y) B (6:Y) 7 01(6:77)|

t=1
-
< [d(6:Y5) + La(6:Y) B (6:Y) V0] |
evaluated at @ = 6. The corresponding information matrix test statistic is

G = nDn(a)T[VM(é)]_an(é)-

Under Hyg, (2 is asymptotically distributed as XZ and, as before, the test is carried out

using asymptotic critical values.
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It is noteworthy that an(é) and Vng(é) are consistent estimators of V(0g), the
latter being the asymptotic covariance matrix of \/ﬁDn(é;Y). A consistent estimator
of the exact covariance matrix of such a vector, say Vs, (6p), can be obtained by using
parametric bootstrap resampling, as shown by Dhaene and Hoorelbeke (2004). The
bootstrap estimator of Vg, (6p) based on B bootstrap samples, say VB?‘, can be computed
as follows:

1. Using the original sample Y = (Y1,...,Y;) ", compute 6.

2. Obtain a random sample of size n, say Y; = (Y{*,...,Y.) T from the beta law with
0 replaced with 9, i.e., perform the pseudo-data generation from f(:; 9)

3. Using Y}, compute 92 and Dn(@Z;YZ).

4. Execute steps (2) and (3) B times, where B is a large positive integer.

5. Using the bootstrap replicates Dn(éj;YT), . ,Dn(@*B;YE), compute the bootstrap
estimator of Vg, (6o) as

B . -
0b7Yb D)(Dn(ob;YZ)—D)T,

where D=B"'Y8 | Dn(éz; Y;).
For fixed n and as B — oo, it follows that V 3.8 2 Vs (8) (DHAENE; HOO-
RELBEKE, 2004). We thus arrive at a third information matrix test statistic for testing

the correct beta model specification. It is given by
Gs=nDn(8)" (Vs 5) "' Dau(8).

Under Hyp, for fixed B and n — oo, (3 is asymptotically distributed as B 1, ie.,
as Hotelling’s T-squared distribution with ¢ and B —1 degrees of freedom (DHAENE;
HOORELBEKE, 2004). As before, the test is performed using asymptotic critical values.

The information matrix test statistics (1, (2 and (3 measure the sample evidence
against the correct beta model specification. When they assume large values and Hg is
rejected at the usual significance levels, an alternative model should be used. A word of
caution, however, is in order. The test based on (3 is expected to perform well in small to
moderately large samples since the test statistic uses a bootstrap estimator of the exact
covariance matrix of \/ﬁDn(é;Y). The tests based on (i and (o, by contrast, may be
considerably size-distorted when n is not large since the test statistics use estimators of the

asymptotic covariance matrix of \/ﬁDn(é; Y) and such an asymptotic covariance matrix
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may be a poor approximation for its exact counterpart when n is not large. To remedy
that, we recommend that (; and (5 testing inferences be based on critical values obtained
from bootstrap resampling instead of on X§,1_a (asymptotic critical values). To that end,
fori=1,2:

1. Using the original sample Y = (Y1,...,Y,) ", compute 6 and G-

2. Obtain a random sample of size n, say Y; = (Y{*,...,Y;") T, from the beta law with

0 replaced with 6.

3. Using Y}, compute 9; and (.

4. Execute steps (2) and (3) B times.

5. Reject Hy at significance level v if ; exceeds the 1 —a quantile of ¢fy,...,(/p.
The use of bootstrap resampling when performing testing inferences based on the infor-
mation matrix test statistics (; and (2 may considerably reduce size distortions since the
critical values used in such tests are now obtained from estimates of the test statistics’
exact null distributions.

As noted earlier, it is possible to test ¢ < 3 restrictions. In what follows, we
will test two restrictions since numerical evaluations not shown here for brevity revealed
that the third element of Dn(é; Y) always assumes very small values and has very small
variance, especially when dispersion is low, which renders near singular estimates of V' (6p).
As noted by White (1982), when an indicator is identically null it should be ignored; see
the example on page 10 of his article. Unlike what happens in his example, the maximum
likelihood estimators in our case cannot be expressed in closed form, and that is why we had
to resort to numerical evaluations to determine whether there is a non-relevant restriction.
We thus test ¢ = 2 restrictions by using d(6:Y;) = (d1(8;Y;),d2(8;Y;))) . Correspondingly,
we drop the last row of VD,,(8;Y). The asymptotic null distribution of ¢; and (s is x3,
and that of (3 is T227 p_1, Wwhere B is the number of bootstrap replications used in the
estimation of Vg, (6p).

According to White (1982), it is expected that the tests will be consistent (i.e.,
have unit power asymptotically) against any alternative which renders the usual maximum
likelihood inference techniques invalid. In our case, maximum likelihood inference involves
the estimation of the beta distribution mean and precision parameters. When Y follows
other laws or when the values of the beta parameters are not the same for all observations,

the test statistics are expected to diverge in probability so that unit power is achieved
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asymptotically. We performed Monte Carlo simulations using a number of alternative
models as the true data generating mechanism, which include alternative laws, data
inflation (i.e., data that contain zero and /or one values), and neglected regression structure.
The results from these simulations are presented in the next section. They show evidence

of asymptotic unit power under all sources of model misspecification we considered.

1.4 NUMERICAL EVIDENCE

We will now numerically evaluate the performance of the information matrix
tests when used to determine whether the beta distribution yields a satisfactory data
fit, i.e., when used to determine whether the beta model is correctly specified. Data
generation is carried out under the null and alternative hypotheses (correct and incorrect
model specification, respectively). Beta random number generation is performed using
the acceptance-rejection method based on uniform random draws obtained using the
Mersenne Twister method. Parameter estimates are obtained by numerically maximizing
the beta log-likelihood function using the BFGS quasi-Newton algorithm with analytical
first derivatives. The starting values used in the estimation of x4 and ¢ are, respectively,
g and (1 —5)/Var(¥) — 1, where § =n~' Sy and Var(¥) = (n— 1)~ S5 (3 — 5)°.
The number of Monte Carlo and bootstrap replications are, respectively, 5000 and 500.
The null hypothesis is Hp : “the beta model is correctly specified” and the alternative
hypothesis is Hj : “the beta model is misspecified”.

The following tests are performed: (1, (15, (2, (oB, and (3. The (1 and (3B
tests employ bootstrap critical values, and the (3 test statistic uses a bootstrap covariance
matrix estimate. The simulations were performed using the R statistical computing
environment; see R Core Team (2023).

At the outset, data generation is carried out under Hy, i.e., the observations
are obtained as random draws from the beta distribution with mean g and precision
¢. The significance levels and sample sizes are, respectively, o = 10%,5% and 1% and
n = 50,100, 250,500, 1000, 5000. In the tables below, we omit rows corresponding to powers
of 100% after the first row with such powers.

In what follows, we will report the tests’ null and non-null rejection rates
obtained from size (data generated under Hp) and power (data generated under H;)

simulations, respectively. Additionally, we will present p-value plots and size-power



23

plots for the (q, (2 and (3 tests, i.e., for the tests that do not employ bootstrap critical
values. Based on the size simulations (the data-generating process is beta), we plot the
tests’ empirical sizes (vertical axis) against nominal sizes, i.e., against values of « € (0,1)
(horizontal axis). The 45° line indicates perfect agreement between actual and nominal
sizes. Curves that lie above (below) such a diagonal line for a given range of values of
« are indicative of liberal (conservative) behavior at those significance levels. It should
be noted that, in this graphical analysis, « is not fixed at three values (0.10, 0.05 and
0.01) but varies from close to zero up to close to one. We thus obtain a comprehensive
view of the tests’ null behaviors. We also present plots that relate the tests’ empirical
powers (vertical axis) to the corresponding sizes (horizontal axis), computed for values of
« ranging from close to zero up to close to one. The non-null rejection rates are computed
using a data-generating process that differs from the beta law. It should be noted that
since the non-null rejection rates are plotted using the empirical critical value for each
nominal size (and not using asymptotic critical values) it is possible to compare the tests’
non-null behaviors by properly accounting for any existing size distortions. The higher
the curve, the more powerful the test. For more details on these plots, see Davidson and
MacKinnon (1998).

In the first size simulation, the data are generated from the beta law with
1=0.2 and ¢ = 20,40,80,120. The null rejection rates of the (1, (1p, (2, (2p and (3 tests
are shown in Table 1. All entries are percentages. The reported results lead to interesting
conclusions. First, the (; and (s tests, which use asymptotic critical values, are quite liberal
when the sample size is not very large; even with n = 1000, considerable size distortions
take place. Second, such tests have effective sizes that are close to the nominal sizes when
bootstrap (rather than asymptotic) critical values are used. For example, when ¢ = 40
and n = 100, the sizes of (; and (o, at a = 10%, are 17.6% and 37.4%; when bootstrap
critical values are used, these rates drop to 10.7% and 9.8%, respectively. The use of
bootstrap resampling thus considerably reduces size distortions. Third, the size distortions
of (1 decrease when the value of ¢ increases. For example, the test’s null rejection rates
for n =100 and o = 10% are 20.1% and 12.3% when ¢ = 20 and ¢ = 120, respectively.
It is worth noticing that the variance of Y decreases when the value of ¢ increases, and
that translates into more accurate testing inferences. Fourth, the (3 test tends to be

conservative when n < 1000, and displays null rejection rates close to the nominal levels
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with n = 5000.

In the second set of size simulations, data generation was performed from the
beta distribution with g = 0.5 and the same precision values as before. The tests’ null
rejection rates are presented in Table 2. All entries are percentages. In general, the new
results are similar to those in the previous scenario. The (; and (3 tests remain liberal,
with (7 exhibiting considerably higher null rejection rates relative to previous results. For
example, when ¢ =40, o = 10% and n = 100, the null rejection rate of (7 is 28.4% whereas
in the previous scenario it was 17.6%. The testing inferences are less accurate here because
there exists more uncertainty since the variance of the beta distribution is maximal when
p = 0.5; recall that such a variance is (1 —p)/(1+¢). The figures in Table 2 further show
that the (15 and (o tests display the smallest size distortions, being accurate even when
n is small. For example, when ¢ = 20 and n = 50, the sizes of (;g and (35, at a = 10%, are
10.0% and 9.6%, respectively. It is thus clear that bootstrap resampling works remarkably
well. Additionally, the (3 test remains conservative when p = 0.5, but only for a = 10%
and 5%. The test exhibits small size distortions when n > 250. For instance, when ¢ = 20
and n = 250, the test’s null rejection rate, at o = 10%, is 9.3%.

The third and final set size simulations was performed using = 0.75 with the
same precision values as before. We used p = 0.75 (and not = 0.8) to avoid symmetry
relative to the first scenario. The null rejection rates, expressed as percentages, are
presented in Table 3. Overall, the results in this scenario are similar to those in Table 1
(£ =0.2). The (1 and (s tests are liberal when n < 1000 and only become accurate with
n = 5000. The (1p and (s tests have the smallest size distortions. Such tests deliver
accurate inferences even when n is small. For example, when n =50, ¢ = 40 and o = 10%,
their null rejection rates are 10.1% and 9.7%, respectively. It should also be noted that the
(3 test exhibits conservative behavior when n < 500. For example, with n =500, ¢ = 20
and o = 10%, its null rejection rate is 8.7%.

The results presented above show that, in general, the (; test exhibits less
liberal behavior when the mean of the distribution is not in the middle of the standard unit
interval. For instance, when ¢ = 120, n = 250 and a = 10%, the test’s null rejection rates
for 1 =0.2,0.5,0.75 are 12.7%, 22.1% and 14.5%, respectively. Recall that the beta density
is symmetric if ;4 =0.5 and asymmetric otherwise. It seems that the (; test incorrectly finds

increasing evidence against the beta model as the distribution becomes more symmetric.
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The results also show that the (o test is quite liberal in all scenarios, especially when the
sample size is small. Finally, the (3 test becomes more conservative as the distribution
mean moves away from 0.5. For example, when ¢ = 80, n = 500 and o = 10%, the test’s
null rejection rates for = 0.2,0.5,0.75 are 7.0%, 9.5% and 7.2%, respectively.

Figure 1 contains p-value plots for the (;, (o and (3 tests corresponding to
different values of p. The sample sizes are n = 100,250 and ¢ = 120. The three curves
move closer to the diagonal line when the sample increases from n = 100 to n = 250, thus
indicating that the tests’ size distortions for all nominal sizes decrease as n increases. It is
also clear that (; and (3 are liberal and (3 is conservative regardless of the value of a, (§
being less size-distorted than (s, especially when the underlying beta law is asymmetric
(1t #0.5). Interestingly, for all values of a, under distributional asymmetry (symmetry), (3

(¢3) is the most accurate test.

Figure 1 — P-value plots; panel (a): 5(0.2,120) and n =100, panel (b) 5B(0.5,120) and n = 100,
panel (c) B(0.75,120) and n = 100, panel (d) 5(0.2,120) and n = 250, panel (e)
B(0.5,120) and n = 250, panel (f) B(0.75,120) and n = 250.
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Source: Author

We will now shift the focus to the tests’ powers, i.e., to their ability of correctly
identifying that the null hypothesis is false. In these simulations, the true data-generating

process is not the standard beta law, i.e., it is not the beta distribution with constant



Table 1 — Null rejection rates (%), u=0.2.

n G1 GB (2 G G |G G (¢ G (3
6 =20 6= 40

a=10%
50 175 9.9 486 9.5 5.5 | 154 10.0 50.1 10.0 4.2
100 20.1 11.0 39.1 10.7 6.1 ] 176 10.7 374 9.8 5.2
250 190 11.0 279 108 7.1 |17.0 9.9 27.1 10.2 6.6
500 171 10.6 21.3 10.8 82| 15.8 104 209 105 74
1000 | 14.8 10.1 17.3 99 9.1 14.0 10.2 17.1 104 8.6
5000 | 11.9 10.2 123 103 99| 116 104 12.2 10.2 9.7

a=5%
50 10.1 5.3 41.8 4.8 3.3 1 9.2 5.3 43.7 5.2 2.5
100 124 5.7 319 55 3.5 1 10.6 5.3 30.7 54 3.0
250 12.6 5.3 21.3 54 4.0 1 104 4.9 20.7 5.3 3.7
500 11.1 5.6 15.7 5.5 45199 5.5 15.2 5.6 4.1
1000 | 9.1 5.3 11.7 5.4 4.8 | 8.5 5.3 11.3 5.4 4.7
5000 | 6.8 5.5 7.2 5.6 49 | 6.5 5.3 7.1 5.4 4.9

a=1%
50 3.8 1.1 30.2 1.2 1.2 | 3.5 1.0 31.6 1.3 0.9
100 4.7 14 224 14 14| 3.9 1.1 208 1.2 0.9
250 4.6 1.0 129 1.3 1.5 39 1.2 11.9 14 1.3
500 4.8 1.1 8.2 14 1.5 1] 3.9 1.1 8.0 1.2 1.3
1000 | 3.7 1.6 5.2 1.6 1.5 | 34 1.3 5.2 1.5 1.6
5000 | 2.3 1.5 2.5 1.4 1.2 1.8 1.2 2.2 1.2 0.8

6 =80 6 =120

a=10%
50 13.8 9.9 485 104 4.3 | 128 10.6 49.0 10.3 4.1
100 14.0 9.8 37.8 10.1 4.5 ] 12.3 10.2 37.7 10.2 4.7
250 14.5 10.1 26.5 9.5 5.8 | 12.7 10.3 25.7 10.7 5.2
500 14.0 10.2 209 9.7 70| 124 99 21.0 10.2 6.2
1000 | 134 106 176 106 79| 126 10.8 17.0 10.7 7.6
5000 | 11.1 9.9 12.0 9.9 9.5 | 11.0 10.1 12.2 99 9.4

a=5%
50 7.8 4.8 415 4.8 2.5 | 7.7 5.4 421 5.3 2.2
100 8.1 5.0 30.7 5.0 241 7.3 4.9 30.9 5.3 2.6
250 8.6 5.2 20.7 4.9 3.2 | 80 6.0 19.7 5.8 2.9
500 8.3 5.1 14.6 4.9 39| 7.1 5.0 14.6 5.3 3.0
1000 | 7.8 5.3 11.6 4.9 411 7.1 5.5 11.5 5.7 3.8
5000 | 6.3 5.3 7.1 5.2 46 | 5.5 4.9 6.4 5.0 4.4

a=1%
50 2.6 1.2 293 1.5 0.9 1] 3.0 1.2 30.1 1.3 0.6
100 3.0 1.2 20.1 1.2 0.8 | 2.5 1.1 21.1 1.2 0.9
250 2.9 1.3 11.3 1.1 09 3.1 1.6 12.1 1.7 1.1
500 2.7 1.0 7.4 1.0 1.3 2.3 14 7.6 14 0.8
1000 | 2.6 1.2 4.7 1.1 1.2 | 2.6 1.5 5.5 1.3 0.9
5000 | 1.8 1.1 2.2 1.1 1.1 1.3 1.0 1.7 0.9 0.9

Source: Author
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Table 2 — Null rejection rates (%), p=0.5.

n 1 G G G @3 1 B ( G @3
6= 20 6= 40

a=10%
50 30.5 10.0 49.1 9.6 6.9 31.2 9.6 49.8 103 7.1
100 28.2 10.5 382 10.8 8.0 28.4 109 38.7 10.7 8.3
250 23.2 11.2 273 10.8 9.3 21.8 9.6 26.2 9.5 8.5
500 176 94 19.8 9.3 8.3 19.3 109 21.5 10.8 8.9
1000 | 15.7 10.2 16.8 10.1 9.5 16.1 109 17.1 10.8 9.7
5000 | 12.1 10.2 124 10.2 10.3 | 12.1 10.5 123 104 9.7

a=5%
50 22.1 4.9 42.2 4.7 4.8 22.1 5.0 421 5.1 4.5
100 20.0 54 319 54 5.0 20.3 5.5 32.2 5.0 5.1
250 164 6.0 21.1 6.1 5.3 14.9 4.8 194 4.6 4.9
500 12.0 4.8 14.4 4.8 4.8 12.7 5.6 15.2 5.8 5.1
1000 | 10.2 5.3 11.0 5.4 4.8 10.8 5.6 11.8 5.6 5.1
5000 | 6.6 5.4 6.9 5.4 5.4 6.4 4.9 6.6 4.9 5.1

a=1%
50 9.7 1.4 30.3 1.1 2.5 94 1.3 296 1.3 2.2
100 9.6 1.3 214 1.3 2.5 10.1 1.2 21.2 1.3 2.3
250 8.5 1.2 126 1.3 2.0 6.7 1.1 11.1 0.9 1.6
500 5.0 1.3 7.0 1.3 1.7 5.9 1.3 8.2 14 1.6
1000 | 4.3 1.4 5.1 14 1.6 4.1 1.1 5.2 1.2 1.5
5000 | 2.1 1.4 2.3 14 1.3 1.6 1.1 1.8 1.1 1.0

6 — 80 é =120

a=10%
50 31.6 109 489 104 8.0 31.7 9.6 50.1 9.2 7.7
100 277 10.3 389 103 7.9 28.1 104 381 103 7.5
250 22.8 10.8 27.3 10.8 &.3 22.1 105 26.1 10.7 8.9
500 18.7 10.1 20.8 10.0 9.5 185 10.2 20.6 10.3 94
1000 | 14.8 10.5 158 104 94 15,5 10.0 16.7 9.9 9.9
5000 | 11.3 9.7 11.7 9.7 9.9 12.6 10.8 12.8 10.8 10.3

a=5%
50 22.3 5.3 41.6 5.6 5.4 22.1 4.9 421 4.5 5.2
100 20.5 5.2 31.5 5.1 4.8 20.3 5.3 31.0 54 4.8
250 16.0 5.3 20.7 5.1 4.8 15.2 5.3 20.0 5.2 5.1
500 124 5.1 14.8 4.9 4.8 12.1 5.0 14.4 5.1 5.2
1000 | 10.0 5.2 10.9 5.2 5.4 9.6 5.3 10.7 5.4 5.6
5000 | 6.2 5.0 6.5 5.0 5.2 7.1 5.5 74 5.6 54

a=1%
50 10.7 1.1 304 1.1 2.9 9.6 0.9 29.7 1.0 2.7
100 9.7 1.2 20.8 0.9 2.2 10.0 1.2 21.0 1.2 2.1
250 7.7 0.9 12.1 1.0 1.8 7.7 1.1 12.0 1.1 1.9
500 5.3 1.1 7.0 1.2 1.6 5.4 1.2 7.5 1.2 1.9
1000 | 3.9 1.2 4.8 1.2 1.6 4.1 14 5.1 1.3 14
5000 | 2.1 1.4 2.2 1.3 1.2 2.1 1.2 2.3 1.2 1.1

Source: Author
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Table 3 — Null rejection rates (%), u=0.75.

n G1 B (G G @3 1 B (2 G @3
6= 20 6= 40

a=10%
50 21.6 10.8 52.3 10.3 5.6 18.0 10.1 49.3 9.7 5.7
100 20.7 9.6 37.1 9.8 5.9 20.0 104 37.7 10.1 6.0
250 18.8 10.1 26.0 9.9 7.2 183 10.5 27.1 105 7.2
500 16.5 9.4 20.3 94 8.7 16.1 99 20.6 9.5 7.9
1000 | 15.1 10.1 16,9 10.1 9.2 14.0 10.3 16.5 9.8 8.5
5000 | 11.2 9.7 11.5 9.7 10.0 | 12.2 10.8 12.7 11.0 9.3

a=5%
50 129 54 445 54 3.5 10.5 5.5 42.3 4.9 3.4
100 13.2 4.9 304 4.7 3.6 12.1 5.2 30.8 5.4 3.3
250 12.9 5.0 20.0 5.0 4.4 12.3 5.0 20.8 5.4 4.1
500 10.5 4.7 14.2 4.9 4.6 104 49 14.6 4.5 4.1
1000 | 9.1 5.1 11.2 5.0 4.5 8.8 4.8 10.8 4.7 5.0
5000 | 6.3 4.8 6.6 4.9 4.8 6.5 5.3 7.1 5.2 5.1

a=1%
50 4.8 1.3 31.8 14 1.8 4.4 1.3 293 1.1 1.4
100 4.5 0.9 20.0 0.8 1.4 4.2 1.3 20.2 1.1 1.2
250 5.5 1.2 11.8 1.2 1.6 4.5 0.9 12.2 1.3 1.4
500 4.2 1.0 7.1 1.0 1.7 3.9 1.1 7.1 1.2 1.5
1000 | 3.3 1.1 4.9 1.0 1.3 3.0 1.3 4.7 1.1 1.4
5000 | 1.8 1.0 2.0 0.9 1.2 1.8 1.1 2.1 1.2 1.2

é = 80 6 =120

a=10%
50 15.5 104 489 105 4.0 14.4 10.8 49.7 105 4.6
100 164 10.3 38.0 9.9 5.2 14.5 10.3 379 10.2 5.3
250 15.3 9.8 26.7 10.0 5.6 14.5 104 274 109 5.6
500 14.6 10.1 20.0 104 7.2 13.3 10.5 19.8 10.5 6.7
1000 | 14.5 114 18.1 115 8.1 139 114 17v.5 11.1 8.0
5000 | 12.0 10.7 129 10.7 10.3 | 11.3 10.2 123 10.3 9.5

a=5%
50 9.5 5.4 42.6 5.3 2.5 8.7 5.5 429 5.3 2.8
100 9.4 5.3 31.5 54 3.0 8.3 5.3 30.4 5.1 2.9
250 9.2 5.0 19.9 5.3 3.3 8.7 5.6 20.6 H.4 3.1
500 9.1 5.3 14.8 5.5 4.0 8.3 5.4 14.7 5.9 3.4
1000 | 8.8 5.6 12.5 54 4.1 8.3 5.8 11.9 5.7 3.9
5000 | 6.8 5.6 7.4 5.5 5.0 5.9 5.2 6.7 5.1 4.7

a=1%
50 3.9 1.3 29.7 1.2 0.9 3.2 1.1 31.2 1.0 0.9
100 3.3 1.0 206 14 1.2 2.8 1.1 20.0 0.9 1.0
250 3.6 14 114 1.3 1.3 3.0 1.3 12.5 1.3 0.9
500 3.3 1.2 7.5 1.1 1.2 3.1 1.3 8.0 1.2 0.8
1000 | 3.1 1.3 5.2 14 1.1 2.7 1.2 5.1 1.2 0.9
5000 | 1.7 1.1 2.0 1.2 1.3 1.6 1.2 2.1 1.2 1.1

Source: Author
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parameters. Since the (; and (o tests are oftentimes considerably size-distorted, they are
carried out using exact (not asymptotic) critical values obtained from the size simulations.
The significance levels are o = 10%, 5%.

At the outset, we use the Kumaraswamy law (JONES, 2009), KW (w, ¢), as the
true data-generating mechanism. Here, w is the distribution median and ¢ is a precision
parameter. The parameter values are (i) w =0.2 and ¢ =5,7.5, (ii) w = 0.5 and ¢ = 10,15,
and (iii) w = 0.75 and ¢ = 15,25. The tests’ non-null rejection rates are presented in
Table 4. All entries are percentages. The figures in this table show that the tests’ powers
are similar for n > 100, being close to 100% when n > 250. When n = 50, the (3 test is
generally the most powerful test. The reported results also show that the tests’ powers
increase with ¢. That is, higher precision translates into more powerful tests. Also, when
w = 0.2, the (3 test exhibits slightly higher powers than the (; and (;p tests, and these
in turn exhibit noticeably higher powers than (2 and (5. For illustration, with w = 0.2,
¢="17.5,n=100 and o = 5%, the non-null rejection rates of the (1, (1, (2, (op and (3 tests
are 61.3%, 65.2%, 56.7%, 56.8% and 69.7%, respectively. Here, (3 is the best performer. It
is also noteworthy that (3 is the most powerful test when w = 0.5 for all values of ¢ and a.
Additionally, it is seen that the (3 and (op tests are more powerful than the (; and (15
tests. Finally, when w = 0.75, for all values of o and ¢, the (7, (1p and (3 tests display
similar powers, which are considerably higher than those of (5 and (o5.

Figure 2 contains size-power plots for (7, (2 and (3. The sample size is n = 100
and the empirical powers were computed using KWW (w, ¢) data-generating processes. The
tests’ powers are very similar for empirical sizes in excess of 0.4. For empirical sizes up to
0.4, (3 is the clear winner, especially in the left and middle panels; in the right panel, the
curves relative to (; and (3 nearly coincide, both clearly lying above that of (2. Also, (; is
the worst performer when the distribution median lies at the center of the standard unit
interval, i.e., w = 0.5; see panel (b).

In the second scenario of power simulations, all samples are randomly generated
from the unit Weibull law (MAZUCHELI; MENEZES; GHITANY, 2018), UW(w, ¢), where
w is the distribution median and ¢ is a precision parameter. For brevity, we only report
results obtained using w = 0.2,0.5,0.75 and ¢ = 5. The tests’ non-null rejection rates are
given in Table 5. All entries are percentages. It is worth noticing that all empirical powers

are nearly equal to 100% when n = 250. When w = 0.2, (7 is the best performer. The (3
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Table 4 — Non-null rejection rates (%), data generated from KW(w, ).

n G (1B G (2B Cs G (1B G C2B €
w=0.2and ¢p=5 w=02and p=7.5
a=10%
50 376 36.6 298 30.2 376 | 489 52.7 41.5 423  49.0
100 59.4  57.7 564 563 653 | 76.6 80.2 72.0 72.6 79.0
250 93.1 927 962 959 980 | 984 989 99.3 99.2 994
500 99.5 994 100.0 100.0 100.0 | 99.9 99.9 100.0 100.0 100.0
1000 | 100.0 100.0 100.0 100.0 100.0 | 100.0 100.0 100.0 100.0 100.0
a=5%
50 23.9 21.4 17.6 17.3 29.6 35.1 36.9 28.0 28.1 40.8
100 40.3 390 388 39.0 546 | 61.3 652 56.7 56.8  69.7
250 82.8 81.8 91.6 90.5 956 | 946 965 979 97.5  98.8
500 97.8 977 99.8 99.8 100.0 | 99.4 99.7 100.0 100.0 100.0
1000 | 100.0 100.0 100.0 100.0 100.0 | 99.9 100.0 100.0 100.0 100.0
5000 | 100.0 100.0 100.0 100.0 100.0 | 100.0 100.0 100.0 100.0 100.0
w=0.5and ¢ =10 w=0.5and ¢ =15
a=10%
50 20.5 22.2 32.8 33.7 409 29.1 27.8 46.2 44.0 51.9
100 43.3 452 592 60.1 69.1 | 54.2 553 73.8 740 80.9
250 92.8 93.7 96.2 96.3 981 | 96.9 971 993 99.3  99.7
500 | 100.0 100.0 100.0 100.0 100.0 | 100.0 100.0 100.0 100.0 100.0
a=5%
50 8.9 10.2 200 21.3 326 | 125 124 314 303 429
100 24.0 25.6 43.8 444 59.0 | 33.7 346 585 59.7 719
250 83.0 834 915 914 957 | 91.3 91.2 976 97.6  98.9
500 99.8 998 999 999 999 | 999 999 100.0 100.0 100.0
1000 | 100.0 100.0 100.0 100.0 100.0 | 100.0 100.0 100.0 100.0 100.0
w=0.75 and ¢ =15 w=0.75 and ¢ =25
a=10%
50 327 307 231 240 257 | 49.1 519 376 382 419
100 55.8 524 397 393 477 | 779 786 64.1 64.0 69.2
250 889 878 79.7 79.0 865 | 99.2 992 973 977  98.3
500 99.2 99.1 986 986 99.1 | 100.0 100.0 100.0 100.0 100.0
1000 | 100.0 100.0 100.0 100.0 100.0 | 100.0 100.0 100.0 100.0 100.0
a=5%
50 182 169 139 145 193 | 323 344 253 255 323
100 39.1 36.4 254 27.1 38.6 64.3 65.3 49.1 49.1 60.3
250 81.6 782 643 657 793 | 97.7 982 934 93.5  96.5
500 98.0 977 956 95.6 98.1 | 100.0 100.0 99.9 99.9 100.0
1000 | 100.0 100.0 100.0 100.0 100.0 | 100.0 100.0 100.0 100.0 100.0

Source: Author
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Figure 2 — Size-power plots, KW (w,¢), n = 100; panel (a): KW(0.2,7.5), panel (b): KXW(0.5,15),

panel (c): KW(0.75,25).
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Figure 3 — Size-power plots, UW(w,¢), n = 100; panel (a): UW(0.2,5), panel (b): UW(0.5,5),
panel (c): UW(0.75,5).
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test is slightly more powerful than the other tests when w = 0.5 and 0.75.

Size-power plots are presented in Figure 3. The sample size is n = 100 and the
tests’ empirical powers were computed using unit Weibull data-generating mechanisms.
In Figure 3 panel (a), the size-power curves of the (; and (3 tests are clearly above that
of the (s test for empirical sizes up to approximately 40%. In panel (b) of Figure 3, for
empirical sizes up to about 50%, the curve of the (3 test is above the curve of the (s test,
which in turn is above that of the i test. Finally, panel (c) of Figure 3 clearly favors (3
for empirical sizes up to approximately 50%.

The next set of power simulation results was obtained using simplex (JORGEN-
SEN, 1997) data-generating mechanisms: all samples are randomly generated from S(u, o),
where p is the distribution mean and o is the dispersion parameter. For brevity, we only
present results for = 0.75 and o = 2. The tests’ non-null rejection rates, expressed as
percentages, can be found in Table 6. It is noteworthy that the powers of the (1, (1p, (2
and (o tests are quite high for n > 250. Also, the (3 test is clearly less powerful than the
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Figure 4 — Size-power plot, S(u,0), n = 100.
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competing tests. For example, when n = 100 and a = 10%, the powers of the (1, (1B, (o

and (op tests exceed 60% whereas that of the (3 test is approximately equal to 22%.

Table 6 — Non-null rejection rates (%), data generated from S(u,0).

n

G1 (1B ¢2 (2B (3

pw=0.75and o =2

a=10%

20
100
250
500
1000

39.5 278 420 404 938

80.6 629 68.0 66.2 22.2
99.3 981 975 976 79.0
100.0 100.0 100.0 100.0 99.6
100.0 100.0 100.0 100.0 100.0

a=5%

20
100
250
500
1000

204 137 289 265 59

61.6 37.0 53.7 51.3 126
97.6 947 94.8 94.0 58.0
100.0 100.0 100.0 100.0 98.8
100.0 100.0 100.0 100.0 100.0

Source: Author

We present size-power plots constructed using the tests’ empirical powers under

simplex laws in Figure 4. The sample size is n = 100. It can be seen that the curves

relative to the (1 and (3 tests are similar. They both lie considerably above that of the (3

test for effective sizes up to 40%.

Next, we consider the case in which the data are generated from the beta law
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but with a regression structure for the mean. That is, we use the beta regression model
introduced by Ferrari and Cribari-Neto (2004) as the true model. Here, log(pus/(1—pt)) =
b1+ Boxe. The true parameter values are 51 = —0.25, 83 = 0.5 and ¢ = 120. The covariate
values were generated from LN (0,0.5), i.e., as realizations from the log-normal distribution
with parameters 0 and 0.5. Table 7 contains the tests’ non-null rejection rates, all expressed
as percentages. In general, all tests have high powers when the sample size is not very
small. In particular, for n = 250 and « = 10%, the tests have powers close to or equal to

100%. When n = 50, (3 is clearly less powerful than (o and (3.

Table 7 — Non-null rejection rates (%), data generated from the beta distribution with a
mean regression structure.

n § ¢1B (2 (2B €
a=10%

50 373 421  56.1 533 478
100 89.3 909 91.0 90.7 91.8
250 9r.7 97.7 100.0 100.0 100.0
500 | 100.0 100.0 100.0 100.0 100.0

a=5%

20 16.3 199 406 382 30.2
100 72.1 750 81.8 823 79.6
250 873 87.7 99.6 99.5 100.0
500 99.9 99.9 100.0 100.0 100.0
1000 | 100.0 100.0 100.0 100.0 100.0

Source: Author

In Figure 5, we present the size-power plot of (1, (3 and (3 for n =150. In
general, the tests have similar powers when the effective size is smaller than 20% or larger
than 60%. In the middle region of the graph, (3 is the most powerful test.

We also performed simulations using the inflated beta distribution introduced
by Ospina and Ferrari (2010) as the true model. It combines continuous and discrete
components, and is used when Y; assumes values in [0,1), (0,1] or [0,1] (inflation at zero,
inflation at one, and double inflation, respectively). A common practice is to fit the
standard beta distribution after replacing the inflated data points by [Y;(n—1)+0.5]/n
(SMITHSON; VERKUILEN, 2006). We consider inflation at zero with Pr(Y; =0) = A.
After the data were generated, all inflated values (zeros) were replaced by 0.5/n, and then
the standard beta law was fitted. The null hypothesis is false since the beta model is

not the true data generating process. We wish to evaluate the information matrix tests’
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Figure 5 — Size-power plot, B(u¢,¢), n = 50.
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ability to detect that the beta model is misspecified. Data generation was carried out
using = 0.5, ¢ =20 and A =0.025. We will not present the simulation results for brevity,
but we note that the information matrix tests proved to be very powerful in this setting
with non-null rejection rates close to 100% at o = 5% for n = 100.

Overall, the results presented above favor the (i5, (op and (3 tests. The (; and
(2 tests typically display very large size distortions and their use should be avoided except
when n is large. Regarding the (15, (o and (3 tests, we note that the latter may be
considerably conservative for some beta law parameter values. As a result, we recommend
the use of the (15 and (op tests in empirical analyses. Such tests showed good control of
the type I error frequency and also good power in situations in which the data-generating
process is not beta, in particular when n > 250.

It is also possible to test the null hypothesis that the variable of interest is
beta-distributed using two alternative tests, namely: Anderson-Darling (AD) and Cramér-
von Mises (CVM). They are usually carried with the modification proposed by Braun
(1980), which accounts for unknown parameters in the distribution under test (in our case,
beta). We performed Monte Carlo simulations to assess the finite sample behaviors of
such tests using the configurations previously described. We do not present such results
for brevity. We note, however, that both tests are conservative, i.e., their null rejection
rates are smaller than the significance levels. For instance, when n =100 (n = 500) the
AD and CVM null rejection rates at the 10% significance level are, respectively, 7.6% and
6.3% (9.2% and 8.5%). Also, such non-parametric tests are substantially less powerful
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than the information matrix tests introduced in this chapter. For instance, when the
true data-generating process is UW(0.5,7.5) (KW(0.5,15)), the AD and CVM non-null
rejection rates at a = 10% are, respectively, 29.1% and 42.0% (28.9% and 39.3%) when
n = 5000.

1.5 COVID-19 MORTALITY RATES IN THE US

We will now present and discuss an analysis of Covid-19 mortality rates in the
US. We use the three information matrix tests to determine whether the standard beta
model provides an adequate representation of the data. We will also briefly comment on
inferences drawn from the AD and CVM tests. Maximization of the beta log-likelihood
function was performed using the BFGS method with analytical first derivatives. We used
B =1000 bootstrap replications for performing the (;p5, (a5 and (3 information matrix
tests. In what follows, we model state and county level data for three time periods. In
each case, we will report the information matrix tests’ p-values, the point estimates of the
beta parameters and their standard errors. We report clustered standard errors computed
using information on each state’s region and on to each county’s state.

The Covid-19 epidemic began in late 2019. It is estimated that approximately
247 million people had been infected with the new coronavirus by October 2021. The
United States was the first country in the Americas to face a serious public health crisis
brought on by the new coronavirus. In December 2020, on the 14th to be exact, the US
government began a campaign to vaccinate healthcare workers and followed by vaccinating
the general population. Covid-19 death rates started to decrease as vaccination progressed.

Our variable of interest are Covid-19 mortality rates per one hundred people.
At the outset, we will work with statewide data, i.e., we use data on the 50 US states
(n=>50). The death rates were computed using the cumulative number of deaths between
January 22 and December 14 of 2020. We refer to this period as ‘period 1’. The source of
the data on Covid-19 deaths is the Centers for Disease Control and Prevention (<https:
//data.cdc.gov/>). Data on state populations in 2020 were obtained from Ribeiro et al.
(2021). Since the sample size is small, we only consider bootstrap-based information matrix
testing inferences. We wish to determine whether the univariate beta model provides an
adequate representation of the data. The model has a simple structure and is based on

the assumption that the observations are i.i.d. Can it provide an acceptable and useful


https://data.cdc.gov/
https://data.cdc.gov/
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representation of the US Covid-19 mortality rates?

The minimum, mean, median, and maximum mortality rates, and the standard
deviation are 0.0164, 0.0903, 0.0894, 0.2001 and 0.0423, respectively. The maximal value
corresponds to New Jersey. The maximum likelihood estimates of the beta parameters
(clustered standard errors in parentheses) are 2 = 0.0900 (0.0099) and ¢ = 39.8208 (15.5240).
The p-values of the (1, (op and (3 tests of correct beta specification are 0.2870, 0.6070
and 0.4472, respectively. The model is not rejected at the usual significance levels. We
thus conclude that it adequately represents the US state mortality rates. In Figure 6 we
present the histogram of the mortality rates together with the beta density evaluated
at the maximum likelihood estimates. The estimated density clearly provides a good

approximation to the data histogram.

Figure 6 — Histogram and fitted beta density, period 1, state data.
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The previous analysis was performed using mortality rates computed up to
December 14, 2020. Next, we will conduct a similar analysis, but based on more recent
data. We consider state mortality rates calculated using data from January 22, 2020 to
October 31, 2021. We refer to this more extended time period as ‘period 2. The minimum,
mean, median, maximum and standard deviation values are 0.0550, 0.2120, 0.2227, 0.3370
and 0.0709, respectively. The maximum likelihood point estimates are i =0.2112 (0.0199)
and ngS: 27.8235 (8.9936). The estimated precision is now approximately 30% smaller than
in the previous scenario. The p-values of the (15, (op and (3 tests are 0.0600, 0.0570 and
0.0269, respectively. All tests reject the correct specification of the univariate beta model
at the 10% significance level; (3 rejects Hg at 5%. Figure 7 presents the data histogram
and the estimated beta density. The estimated beta density does not adequately represent
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the data asymmetry.

Figure 7 — Histogram and fitted beta density, period 2, state data.
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Unlike the previous results, all tests now reject the beta distribution at o = 10%.
The data now cover two very different periods, namely: before and after the start of the
nationwide vaccination campaign. There is thus clear data heterogeneity. The much smaller
estimated precision (approx. 28 vs approx. 40) is probably due to such heterogeneity.

The mortality rates in the two periods show high positive correlation (0.8252),
as expected, given the cumulative nature of the observations. The univariate beta model is
not rejected by the information matrix tests when the shorter time period is used. It thus
provides a good description of the statewide Covid-19 mortality rates. The second time
period, however, covers the Covid-19 vaccination campaign. Since the reach and impact
of such a campaign was uneven across the 50 states, for reasons that include partisan
political connotations and other factors, Covid-19 mortality rates greatly differ before and
after the beginning of the immunization campaign. There is thus clear heterogeneity in
the two periods.

The two analyses presented so far are based on cumulative time periods, namely:
(i) January 22 to December 14, 2020 (without vaccination) and (ii) January 22, 2020 to
October 31, 2021 (without and with vaccination). In the following, we will only consider the
most recent period (December 15, 2020 to October 31, 2021), ‘period 3. The minimal and
maximal values are 0.0385 and 0.1985 whereas the mean and median values are 0.1218 and
0.1174, respectively; the standard deviation is 0.0432. The maximum likelihood estimates
of ;1 and ¢ are 0.1216 (0.0153) and 52.8670 (11.1468), respectively. The estimated precision

is even larger than that obtained by only considering the pre-vaccination time period
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(approx. 53 vs approx. 40). Recall that much lower precision was obtained when the longest
time period was considered (approx. 28). The (15, (op and (3 p-values are, respectively,
0.5900, 0.2860 and 0.5087. These large p-values indicate that there is very little evidence
against the beta law. We thus conclude that despite the impact of vaccination on Covid-19
mortality, the univariate beta model still provides a good representation of the data. The
data histogram and the fitted beta density are presented in Figure 8. Visual inspection of
such a figure suggests that the beta law yields a reasonably good data fit. Interestingly,

there is less skewness than in the previous two cases.

Figure 8 — Histogram and fitted beta density, period 3.
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The three fitted beta densities are presented in Figure 9. Notice that the
estimated densities for periods 1 and 3 are similarly shaped and with somewhat similar
precisions. By contrast, the fitted beta density obtained using data that cover both the
period in which there was no vaccination and that of the vaccination drive is much more
disperse. As noted earlier, heterogeneity in the data leads to poor data fit. The information
matrix tests indicated that the beta model yields an adequate data representation in
periods 1 and 3, but in for period 2. It seems that the tests correctly detected that the
heterogeneous nature of the data renders the beta law unable to adequately represent
Covid-19 mortality rates.

We presented above an analysis of statewide Covid-19 mortality data in the
US. The inferences obtained from the information matrix tests were quite informative.
Such tests indicated that the beta law is able to adequately represent the data in two
disjoint periods — before and after the start of the nationwide vaccination campaign —,

but not when the two periods are combined.
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Figure 9 — Fitted beta densities, state data.
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In what follows we will use death rates per 100 persons computed for US
counties for periods 1, 2 and 3. The data on the cumulative total of deaths was obtained
from the New York Times repository (<https://github.com/nytimes/covid-19-data>). In
order to avoid inaccurate records, we only considered, in each time period, counties with
at least one Covid-19 death and at least 15000 inhabitants. The sample sizes for periods
1, 2 and 3 are n = 2073, n = 2080 and n = 2080 respectively. Since the sample sizes are
large, we will use all tests, i.e., (1, (1B, (2, (o and (3, and o = 5%. Mortality rates were
calculated using the estimated populations in 2020 obtained from the Economic Research
Service of the US Department of Agriculture (<https://www.ers.usda.gov>).

Initially, we will consider period 1. The minimum, mean, median, maximum
and standard deviation values of the mortality rates are 0.0013, 0.0883, 0.0764, 0.4554
and 0.0596, respectively. The maximum likelihood estimates are fi = 0.0884 (0.0055) and
g%: 22.1618 (1.9529). The (1, (1B, (2, (o and (3 tests’ p-values are 0.0978, 0.1370, 0.0927,
0.1540 and 0.1022, respectively. No test rejects the beta law at o = 5%. The tests that
use bootstrap resampling also do not reject such a hypothesis at o = 10%. The p-values of
the tests that use asymptotic critical values are slightly smaller than 0.10. Overall, we
conclude that Covid-19 mortality rates can be adequately represented by the beta law in
period 1.

We will now consider the second period. The minimum, mean, median, ma-
ximum and standard deviation values are, respectively, 0.0122, 0.2513, 0.2418, 0.7376
and 0.1133. Also, /i = 0.2512 (0.0118) and ¢ = 13.3931 (1.1877). The estimate of ¢ is

approximately 40% smaller than in the previous scenario. There is thus considerably more
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Figure 10 — Fitted beta densities, county data.
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uncertainty. The p-values of the (1, (1p, (2, (a5 and (3 tests are 0.0157, 0.0570, 0.0155,
0.0650 and 0.0087, respectively. The beta law is rejected at a = 1% (o =5%) by (1, (2
and (3 ((1p and (o). We conclude that the beta law does not provide an adequate data
representation in period 2.

Next, we will perform inferences with data from period 3. The minimum,
mean, median, maximum and standard deviation of the mortality rates are 0.0085, 0.1632,
0.1528, 0.4734 and 0.0786 respectively. The point estimates are i = 0.1631 (0.0083) and
(ﬁz 20.4761 (1.5648). The p-values of the (1, (1p, (2, (25, and (3 tests are 0.0529, 0.0830,
0.0360, 0.0750, and 0.0903, respectively. Except for (2, no test rejects the beta law at
a =5%. We thus conclude that it can be used to adequately represent county-level
Covid-19 mortality rates in the third and final period. We will return to these results later.

Figure 10 contains the estimated densities for the three time periods obtained
using county data. They are similar to those obtained using statewide data; see Figure 9.
Notice that there is considerably more uncertainty when data from period 2 are used.

Interestingly, similar testing inferences were obtained with state and county
data, namely: (i) the univariate beta model provides an adequate description of Covid-19
mortality rates with data either from prior to the nationwide vaccination drive or from
when such a drive was under way; (ii) there is evidence against the correct specification of
the beta model when Covid-19 mortality rates are computed using data that cover both
periods (no vaccination and nationwide vaccination). The tests thus indicate that the beta
distribution is not an adequate model for Covid-19 mortality rates under substantial data

heterogeneity.
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As noted earlier, we also performed the AD and CVM tests using both state
and county data. The corresponding p-values for state data are: 0.4691 and 0.8734, period
1; 0.2277 and 0.4339, period 2; 0.9413 and 0.3360, period 3. With county data, we obtained
the following p-values: 0.7414 and 0.5299, period 1; 0.3250 and 0.4856, period 2; 0.8765
and 0.8010, period 3. All p-values are quite large, and hence the beta model is not rejected
in all scenarios, i.e., for the three time periods and when state or county data are used.
In particular, unlike the information matrix tests, the two non-parametric tests are not
able to reject the beta model when there is marked data heterogeneity (period 2). By
contrast, our tests indicate that the univariate beta model is only appropriate when there
is reasonable homogeneity in the data (periods 1 and 3).

We will now further examine (i) the data heterogeneity that caused the rejection
of beta law in period 2 and (ii) the acceptance of the beta law in period 3 when the
vaccination drive was under way. As noted earlier, the Covid-19 mortality rates computed
for period 2 cover two quite distinct periods: January 22, 2020 through December 14,
2020 (period 1) and December 15, 2020 through October 21, 2021 (period 3). (Recall
that period 2 consists of the merging of periods 1 and 3.) The correlation coefficient
between statewide death rates in periods 1 and 3 is weak: 0.3735. This small correlation
strength is indicative that the mortality rates in such periods obey different dynamics.
This was expected because, unlike what took place in period 3, there was no nationwide
vaccination drive in period 1. Additionally, the states with the lowest mortality rates in
period 1 (period 3) are Vermont, Hawaii, Maine, Oregon, and Utah (Vermont, Hawaii,
New York, Alaska, and Maine) whereas those with the highest death rates in period 1
(period 3) are New Jersey, Massachusetts, Mississippi, Rhode Island, and North Dakota
(Arizona, Alabama, West Virginia, Florida, and Georgia). Consider, e.g., New Jersey and
Massachusetts. They are the states with the highest Covid-19 mortality rates in period
1, and yet their corresponding ranks in period 3 are 28 and 32. Arizona and Alabama
display the highest death rates in period 3, and yet their ranks in period 1 are 14 and 9,
respectively. Again, it is clear that the death rates in periods 1 and 3 (which are combined
in period 2) are considerably heterogeneous.

Next, we will examine again Covid-19 mortality rates in period 3; in particular,
we will examine the finding that the univariate beta model yields an adequate representation

for such rates. There was a nationwide vaccination drive under way in period 3, and
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its reach negatively impacted death rates. We obtained data on the total number of
fully vaccinated people by October 31, 2021. The source of the data is the Our World in
Data repository (<https://ourworldindata.org/us-states-vaccinations>). The correlation
between death and vaccination rates in period 3 is —0.5858 (state data). A natural question
is: Given that mortality rates are negatively impacted by vaccination rates, why was the
univariate beta model found to be correctly specified? Why use a fixed mean model if
the distribution mean appears to be impacted by an explanatory variable (vaccination
rate)? At the outset, we note that some states considerably weaken the inverse relationship
between the two variables in period 3, namely: Alaska, Arizona, Florida, Massachusetts,
North Dakota, and Rhode Island. In particular, the Arizona, Florida, Massachusetts, and
Rhode Island (Alaska and North Dakota) Covid-19 mortality rates are higher (lower) than
expected based on the corresponding vaccination levels. The inverse correlation between
death and vaccination rates becomes considerably stronger when computed without such
states: —0.7592 (state data). We removed from the data all counties of the six states that
weaken the impact of vaccination reach on death rates, and performed the tests again.
The (1, ¢1B, (2, (2B, and (3 p-values become 0.0289, 0.0600, 0.0162, 0.0530, and 0.0460,
respectively. The (7, (o and (3 tests now reject the univariate beta model at a = 5%
whereas the (1p and (3B p-values are only marginally larger than 0.05. Hence, there is
now evidence against the model. Overall, the information matrix tests’ inferences suggest
that, as long as the negative impact of vaccination reach on death rates is moderate
(complete data), the beta law can be adequately used to represent Covid-19 mortality
rates. When such a negative impact becomes more pronounced (incomplete data, counties
of six states removed from the data), the univariate beta model no longer should be used.
In that case, practitioners should search for a more elaborate model. By contrast, the
two non-parametric tests continue to accept the univariate beta model even when the
Alaska, Arizona, Florida, Massachusetts, North Dakota, and Rhode Island counties are
not considered; the AD and CVM p-values are 0.3025 and 0.5788, respectively.

Finally, using the three county data samples, we compare the data fits yielded by
the beta distribution to those obtained with the following alternative laws: Kumaraswamy,
simplex, and unit Weibull. To that end, we computed, for each sample period and for
each distribution, the values of the following information criteria: Akaike Information

Criterion (AIC), Corrected Akaike Information Criterion (AICc), Bayesian Information
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Criterion (BIC), Hannan-Quinn Information Criterion (HQIC), Weighted-Average Infor-
mation Criterion (WIC) and Empirical Information Criterion (EIC). The latter employs
bootstrap resampling and proved to be very effective in dynamic beta modeling; see
Cribari-Neto, Scher and Bayer (2022). We used 1000 bootstrap replications, i.e., 1000
pseudo-samples were generated for computing the EIC values. We also computed the
AD and CVM statistics. For all measures, smaller values indicate better data fits. The
results are presented in Table 8. They show that, according to all information criteria
(AIC, AICc, BIC, HQIC, WIC, and EIC), the best data fits in the three sample periods
are yielded by the beta law. Considering the two non-parametric test statistics, in period
1 (period 2) [period 3], the beta model was the winner according to both of them (the
runner-up according to both statistics, slightly behind the Kumaraswamy law) [the winner
according to CVM and the runner-up according to AD, behind the Kumaraswamy model|.
Considering the eight measures and the three sample periods, the beta law was the winner
in 21 out of the 24 cases. Figure 11 contains the data histogram and the estimated beta
density for period 3, as in Figure 8, together with the fitted Kumaraswamy (KW), simplex
and unit Weibull (UW) densities. Visual inspection of the figure shows that the beta
law best fits the data histogram. In order to further examine the two best data fits, we
produced quantile-quantile (QQ) plots for the beta and Kumaraswamy laws, again using
data from period 3. In both panels of Figure 12, empirical quantiles are plotted against
theoretical quantiles, the 45° degree line indicating perfect agreement between both sets of
quantiles. The Kumaraswamy and beta laws fit the data quite well up to approximately
0.35 and 0.45, respectively. It is then clear that the latter outperforms the former in the

sense that it yields better agreement between empirical and theoretical quantiles.

1.6 CONCLUDING REMARKS

The beta distribution is commonly used to model variables that assume values
in the standard unit interval. We developed information matrix tests that can be used to
test whether the univariate beta model yields an adequate representation of the data. The
null hypothesis of correct model specification is tested against the alternative hypothesis
that the model specification is in error. The tests seek to verify whether the information
matrix equality holds. As is well known, this equality only holds when the model is correctly

specified. The tests’ small sample behavior can be improved by using data resampling



Table 8 — Goodness-of-fit measures.

Period | Criterion beta KW simplex UWwW
AIC —6466.687 | —6441.745 | —5993.029 | —6144.892
AlCc —6466.681 | —6441.739 | —5993.023 | —6144.887
BIC —6455.413 | —6430.471 | —5981.755 | —6133.619
1 HQIC —6462.555 | —6437.613 | —5988.897 | —6140.760
WIC —6457.755 | —6432.813 | —5984.096 | —6135.960
EIC —6477.157 | —6452.015 | —6013.894 | —6160.247
AD 2.958 3.170 5.544 3.788
CVM 0.652 0.657 1.387 0.911
AIC —3287.865 | —3266.338 | —3076.004 | —3033.648
AlCc —3287.859 | —3266.332 | —3075.994 | —3033.643
BIC —3276.584 | —3255.058 | —3064.720 | —3022.368
9 HQIC —3283.731 | —3262.204 | —3071.866 | —3029.515
WIC —3278.926 | —3257.399 | —3067.061 | —3024.710
EIC —3300.680 | —3279.034 | —3093.013 | —3049.644
AD 4.031 3.114 5.707 4.181
CVM 0.674 0.471 0.966 2.120
AIC —4873.815 | —4862.928 | —4666.304 | —4558.565
AlCc —4873.809 | —4862.922 | —4666.298 | —4558.559
BIC —4862.534 | —4851.647 | —4655.024 | —4547.284
3 HQIC —4869.681 | —4858.794 | —4662.170 | —4554.431
WIC —4864.876 | —4853.989 | —4657.365 | —4549.626
EIC —4885.201 | —4875.239 | —4680.756 | —4571.892
AD 2.595 2.335 4.443 4.093
CVM 0.522 0.606 1.020 0.881

Source: Author
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(bootstrap). We presented the results of extensive Monte Carlo simulations that showed

that the tests have good power against different forms of model misspecification, including

the case in which the univariate beta model is fitted using data that have an underlying

regression structure.

We presented an empirical analysis of Covid-19 mortality rates in the US.

We considered three sample periods: (i) before, (ii) before and after, and (iii) after the

beginning of the nationwide vaccination drive. The testing inferences indicated that the

beta law yields a good representation of the data in the pre-vaccination period. There is

also evidence in favor of such a model when mortality rates are computed using data that

only cover the vaccination drive period as long as the negative impact of vaccination reach

on death rates is moderate; when such an impact is strong, the univariate beta model is

rejected. The beta law is also rejected by the information matrix tests when mortality

rates are computed using data that cover both periods (before and after the start of the

vaccination campaign). The rejection of the beta distribution in this case is due to data
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Figure 11 — Histogram and fitted densities, period 3.
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Figure 12 — Quantile-quantile plots, period 3.
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heterogeneity. We recommend fitting alternative laws to the data and also mixtures of
beta distributions.

Our results should be viewed as an initial exploration on the usefulness of
information matrix tests for fractional data analysis. The tests we presented proved to
be quite useful when applied to the univariate beta model. In future research, we will
extend the results presented in this chapter to cover other univariate laws that are used
to model fractional data (e.g., Kumaraswamy and simplex). We will also seek to extend
our results to regression settings, in particular to the beta regression model introduced by

Ferrari and Cribari-Neto (2004), and to dynamic beta models, such as the SARMA model
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introduced by Rocha and Cribari-Neto (2009), Rocha and Cribari-Neto (2017); see also
Cribari-Neto, Scher and Bayer (2022) and Scher et al. (2020). The beta parameterization
used in this chapter, which is indexed by mean and precision parameters, will be helpful

for the aforementioned extensions of our results.
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2 BETA REGRESSION MISSPECIFICATION TESTS

2.1 INTRODUCTION

The beta regression model introduced by Ferrari and Cribari-Neto (2004) is
tailored for double bounded response variables, i.e., variables that assume values in (a,b),
where a and b are known real constants (—oo < a < b < co). The most common situation
is that in which the variable of interest assumes values in (0,1), e.g., rates and proportions.
The dependent variable is assumed to follow the beta distribution indexed by its mean
and a precision parameter. Both parameters of the beta distribution are impacted by
explanatory variables, being connected to linear predictors that involve regressors and
unknown parameters through link functions. The model thus comprises two separate
submodels, one for the mean response and another for the precision.

Model selection strategies for beta regressions were developed by Bayer and
Cribari-Neto (2015), Bayer and Cribari-Neto (2017), bias correction point estimation
were developed by Griin, Kosmidis and Zeileis (2012) and Ospina, Cribari-Neto and
Vasconcellos (2006), residuals were proposed by Espinheira, Ferrari and Cribari-Neto
(2007) and Espinheira, Santos and Cribari-Neto (2017), local influence measures were
derived by Ferrari, Espinheira and Cribari-Neto (2011), non-nested hypothesis testing
inferences were developed by Cribari-Neto and Lucena (2015), bootstrap testing inferences
were outlined by Lima and Cribari-Neto (2020), bootstrap prediction intervals were
considered by Espinheira, Ferrari and Cribari-Neto (2014), and hypothesis tests that
incorporate small sample corrections were developed by Bayer and Cribari-Neto (2013),
Ferrari and Pinheiro (2011) and Guedes, Cribari-Neto and Espinheira (2021). Bayer,
Tondolo and Miiller (2018) introduced control charts based on beta regressions. The use of
parametric link functions in beta regressions was studied by Canterle and Bayer (2019) and
Rauber, Cribari-Neto and Bayer (2020). For details on the class of beta regression models,
we refer readers to Cribari-Neto and Zeileis (2010) and Douma and Weedon (2019).

The beta regression model has been extensively used in many different areas
to model the behavior of random variables with support in the standard unit interval.
Using data on 124 countries in a beta regression analysis, Cribari-Neto and Souza (2013)
measured the impact of average intelligence on the prevalence of atheists. Similar results

for the United States based on state level data were obtained by Souza and Cribari-Neto
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(2018). Souza and Cribari-Neto (2015) studied the impact of religiosity and average
intelligence on homosexuality non-acceptance. Cordeiro et al. (2021) used beta regressions
to model mortality rates in Europe during the COVID-19 first wave. A beta regression
analysis of county-level excessive alcohol use, rurality, and COVID-19 case fatality rates
in the United States was performed by Pro et al. (2021). Cribari-Neto (2023) performed
a beta regression analysis of statewide COVID-19 mortality in Brazil. Swearingen et al.
(2011) used the model to gain knowledge on ischemic stroke volume in NINDS rt-PA
clinical trials.

In an empirical analysis, it is important to assess whether a fitted varying
precision beta regression is correctly specified before drawing inferences and conclusions
from it. The model can be misspecified in many different ways. For instance, the mean
link function may be incorrectly specified, the precision link function may not be adequate,
the practitioner may have failed to include an important regressor in the mean and/or
precision linear predictor, there may be neglected nonlinearity, there may be neglected
varying precision, and so on. The assessment of the adequacy of a fitted beta regression
model is typically done using diagnostic tools, for example, by means of residual analyses
based on residual half normal plots with simulated envelopes. Such analyses are useful,
but involve a degree of subjectivity.

As a complement to diagnostic analyses based on residuals, our goal here
is to propose hypothesis tests that can be used to assess whether the beta regression
model in use is correctly specified. The null hypothesis of correct model specification is
tested against the alternative hypothesis of model misspecification. The tests are based
on the information matrix equality, which is known to only hold when the model is
correctly specified, and are known as ‘information matrix tests’ We establish the validity
of information matrix tests of correct model specification for beta regressions and present
closed-form expressions for information matrix test statistics in this class of models. We
also present simulation evidence on the tests’ finite sample performance. The numerical
results obtained indicate that excellent control of the type I error frequency is achieved by
using bootstrap resampling. They also show that the tests are able to detect incorrect
model specification with high probability, especially when the sample size is not small. For
instance, according to the numerical evidence we report, one of the tests we introduce was

able to reject, at the 10% significance level, the hypothesis of correct model specification
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of a beta regression in which an important regressor was missing from the mean submodel
with probability 0.95 based on a sample of 250 observations. The inferential tools we
present allow practitioners to decide whether their fitted beta regressions are correctly
specified within the framework of a hypothesis test in which it is possible to control
the frequency of incorrectly concluding that the model specification is in error. Also, in
the proposed tests, the probability of erroneously concluding in favor of correct model
specification decays to zero as the sample size increases. Our results extend and generalize
those of Silva, Cribari-Neto and Vasconcellos (2022), who presented similar tests for the
beta distribution.

Since information matrix tests tend to be considerably size-distorted in finite
samples, analytical corrections to the test’s critical values and test statistic were obtained,
respectively, by Chesher and Spady (1991) and Cribari-Neto (1997). An information
matrix misspecification test statistic for the normal linear regression model was obtained
by Hall (1987). It is worth noticing that misspecification is more likely to take place in
beta regressions than in normal linear regressions, since the former have a more elaborate
structure that includes two submodels, two link functions and two linear predictors.

We present two empirical applications of the proposed misspecification tests
in beta regression analyses. They involve physiological biometrics and environmental
biometrics. The former deals with modeling arms and android body fat using data collected
at a public hospital in Brazil. In this first application, the tests clearly indicate for which
models there is substantial evidence of incorrect model specification. Using the model
with the largest tests’ p-values, we construct curves that represent the impacts of age
and the body mass index on the mean proportion of arms body fat. Such plots uncover
important information on the different impact patterns for men and women and also for
individuals with different levels of physical activity. In the second application, which relates
to behavioral biometrics, the interest lies in modeling the impact of average intelligence on
the mean proportion of religious disbelievers in different countries. The information matrix
tests indicate that the model used in Cribari-Neto and Souza (2013) is correctly specified.
We also perform the misspecification tests by only considering restrictions on mean and
precision covariates directly related to average intelligence. They show that the only model
for which the specification of such effects seems correct is the loglog model. This showcases

an advantage of information matrix tests: one can focus on a chosen subset of restrictions,
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e.g., those related to the covariates that are of most relevance to the analysis.

The tests we introduce can be viewed as an alternative to that in Pereira and
Cribari-Neto (2014). The authors present an adaptation of RESET test introduced by
Ramsey (1969) to inflated beta regressions, which encompass the class of beta regressions.
The test consists of adding powers of the fitted mean linear predictor to the mean submodel,
and testing their exclusion using, e.g., the likelihood ratio test. Our tests have several
advantages relative to the RESET test. First, they are obtained from an identity that is
directly related to the correct specification of the model. Second, they allow practitioners to
focus on a subset of restrictions related to a selected subset of covariates, as exemplified in
one of our empirical applications. Third, as revealed by our simulation results, the RESET
test lacks power in important settings. Finally, the null hypothesis under evaluation is
well defined in the tests we develop since we test whether the information matrix equality
holds. It is not clear, however, what is the null hypothesis of the RESET test in beta
regressions. In the classical linear regression model, one tests whether the mean of error
term conditional on the regressors is null. It is not clear how that translates to beta
regression settings.

We also note that there are formulations of the beta regression model that are
more general than that used in this chapter. For instance, Rauber, Cribari-Neto and Bayer
(2020) consider the use a parametric link function in the mean submodel. We chose to
work with the standard varying precision beta regression because it is most commonly
used formulation of the model in empirical studies.

Finally, it is worth noting that information matrix tests have been derived
for several statistical and econometric models, e.g., the Gaussian linear regression model
(HALL, 1987), binary data models (ORME, 1988), linear regressions with autoregressive
and moving average errors (FURNO, 1996), logistic regressions (ZHANG, 2001), beta-
binomial models (CAPANU; PRESNELL, 2008), the negative binomial law (CHUA,;
ONG, 2013), and copulas (PROKHOROV; SCHEPSMEIER; ZHU, 2019). We add to the
literature by extending such tests to the class of varying precision beta regressions.

The chapter unfolds as follows. The beta regression model is briefly presented
in Section 2.2. In Section 2.3, information matrix misspecification tests for beta regressions
are obtained. Monte Carlo simulation evidence is presented in Section 2.4. We present

numerical results on the tests’ null (size) and non-null (power) behavior. Empirical
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applications are presented and discussed in Section 2.5. Finally, concluding remarks are

offered in Section 2.6.

2.2 THE BETA REGRESSION MODEL

Let Y be a random variable that follows the beta distribution with density

function given by Ferrari and Cribari-Neto (2004)

Fyi ) = F(ucb)lF((ﬁ)— 5 g 1=y o<y <1,

0<p<l1, ¢>0, where E(Y)=p and ¢ is a precision parameter since. Here, Var(Y') =
p(1—p) /(14 ¢) which, for fixed u, decreases as ¢ increases. We write Y ~ B(u, ¢).
Let Y1,...,Y,, be independent beta-distributed random variables such that

Yi ~ B(ui, ¢i), i =1,...,n. The varying precision beta regression model is given by
P q
g1(pi) =>_ Bijzij=mni and  ga(ds) =D 05215 = 12,
j=1 J=1

where 8= (B1,...,8,) € RP and § = (01,...,d,) " € R? are unknown parameter vectors
(p+qg=k<n), n =(n1,....,mn)" and 9y = (n21,...,m2,) " are linear predictor vectors,
and z;1 = z;1 = 1Vi. Also, x9,...,7; and z2,..., 24 are the covariates used in the mean
and precision submodels, respectively. Here, g1 : (0,1) — R and g2 : (0,00) — R are strictly
monotonic and three times differentiable link functions. Common choices for the mean
(precision) link function are logit, probit, loglog, cloglog and cauchit (log). When all
observations share the same precision, i.e., when ¢; = --- = ¢, = ¢, the above model
reduces to its fixed precision formulation. In this case, Y; ~ B(u;,¢), i =1,...,n.

In what follows, Y and y denote n-vectors of beta-distributed random variables
and their realizations, respectively. Letf = (,BT, 6T)T € © C R” be the vector containing all
regression coefficients, where © denotes the parameter space. The log-likelihood function

for Yi,...,Y, with observed values yi,...,y, is

n

(=10(6;y) = ((B,6;y) = _ i, disyi),

i=1
where £(p1i,¢5;yi) = logT(¢) — log T'(pichi) — log T((1 — 1)) + (micdi — 1)y + (s — 2)u,
with v =log(yi/(1 —y;)) and yj =log(1 —w;). It can be easily verified that E(Y;") =

Y(pidi) — (1= 1)), BY;") = (1 — pi)di) —(¢s), where ¢ is the digamma function.
We will denote E(Y;*) and E(YZT) by wu; and ul, respectively.
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Let U=U(8) = (Up(8)T.Us(8))T = (0¢(0:y)/08" ,00(0:)/08 )T = Ve(6:y)
denote the score function. The log-likelihood derivatives with respect to the rth and Rth
components of 8 and é are, respectively,
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r=1,....,pand R=1,...,q. Here, g{(u;) and g5(¢;) denote the derivatives of g; and gy
with respect to u; and ¢;, respectively.

The maximum likelihood estimator 8,, = (ﬁT, 3T)T = argmaxgepp+q £(6;y) can-
not be expressed in closed-form. Parameter estimates are usually obtained by numerically
maximizing the beta regression model log-likelihood function with the aid of a nonlinear op-
timization algorithm. In what follows, we will use the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) algorithm with analytical gradient; for details, see Nocedal and Wright (2006).

Fisher’s information matrix for a single observation, say B;(@), is the k X k

matrix given by the expected value of the individual log-likelihood derivative outer product:

Bi(8) = B(90(8:Y;) /98 x 00(0:Y;) /98" ). We write B;(6) as
B8 P
Bi(6) = , (2.1)
BB pos

(2
where Biﬂﬁ, Bé% = (Bfﬂ)’ and Bf‘s are matrices with dimensions p X p, p X ¢ and ¢ X q,
, 5(r,R ~(R,S
Z.(T S), BZ-(T ), BZ.( ) denote the
(r,s), (r,R) and (R, S) elements of the matrices Biﬁﬂ, Biﬁ‘s and Bf‘s, respectively. They can

be expressed as B(T’S) = —gb%wi (d,ui/dmi)Qxirxis, B(T’R) = —c;i (dui/dni;) (doi/dnei) xirzig

7 7

respectively. For r,s=1,...,p and R,S =1,...,q, let B

and BZ-(R’S) = —p; (doi/ dngi)Q zirzis- The expressions for the quantities w;, ¢; and p; can

be found in Appendix B.
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2.3 BETA REGRESSION MISSPECIFICATION TESTS

Our interest lies in testing the null hypothesis that the beta regression model
is correctly specified against the alternative hypothesis that the model specification is in
error. We consider the information matrix test introduced in full generality by White
(1982). Let 89 = (By .8, )" be the true parameter value. We say that the beta regression

model is correctly specified if Y; follows the beta law with parameter vector g Vi.
2.3.1 Misspecification tests for beta regressions

Assume that the limits A(#) and B(#) given by A(8) = lim,, sooen 3%, A;(6)
and B(0) = lim,, ,oon ' X7, B;(0) exist, where A;(8) = E(020(6:Y;)/0000"). The in-
formation matrix equality B(6y) = —A(0p) holds when the model is correctly speci-
fied. Tt is valid for V8, € ©. We then wish to test Hg : A(6y) + B(0p) = O} against
Hi: A(0o) + B(0o) # Opxi, where Oy denotes a k-dimensional square matrix of zeros.
Rejection of the null hypothesis is evidence of model misspecification.

In what follows, we will present information matrix test statistics that can be
used to test the correct beta regression model specification. Let A;(8) = 9¢2(6;Y;)/0008
and A,(8;Y)=n"13", A;(). We write A4,(8;Y) as

6
LA A

=1
A% 4t

:M—‘

where A'B ﬂ Aﬁ J (A‘S'B ) and Af‘s are matrices with dimensions p X p, p X ¢ and ¢ X ¢,
respectively. For r,s=1,....,pand R,S=1,...,q, let A(.T’s) AET’R) nd AER’S) denote the

(r,s), (r,R) and (R,S) elements of the matrices Aﬂ s Aﬁ % and A% respectively. Such

elements are expressed by

) Z LYY [_ 2w S gy — ) d‘“] (d’“)m i
i Zdnlz i i rrts

i 95,05 Yy dyg |\ dng
0%((6:Y;) do; dp;
A(T7R) = ! = |—¢ r— : : Lirzi
) aﬁra(sR [ ¢+ (yz g )] d7727, d i ZiR,
00(0;Y;) dep;
A(_R:S) _ v ) ; _rt i(ys — ot [
; 55 i + (1i(ys — ) + () — )]

(L),
dg; dng; ) dm [~ i
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Expressions for the above derivatives are given in Appendix B
Also, let B;(8) = 80(8:Y;)/00 x 00(6;Y;)/00 ") and B, (0;Y) =n~1 37, Bi(8).
We write B, (0;Y) as

BP# pBP?

> :

1
Bn(07Y> = n -

=1

where Biﬁﬂ, Biﬂ& = (Bfﬁ)’ and BZ‘S‘S are matrices with dimensions p X p, p X ¢ and ¢ X q,
respectively. For r,s=1,...,pand R,S=1,...,q, let BZ(T’S), B;T’R) and BZ(R’S) denote the
(r,s), (r,R) and (R,S) elements of the matrices Biﬁﬂ, BZ'-B‘s and B% | respectively. They

are given by

2
BZ.(T’S) = Mg;ryi) X 84205;32) :l i(y; — j)jﬁﬂ TirTis,
B — 865305;:@) x Mé%?) =1 (yf — i} [ayf — u)
+ (?JZT - MT )} 57?; i’;ﬁ TirZiR,
2
B = aﬁéfsf) x aﬁé%;j) — [yt = 1)+ = i)’ (jg;l) %iR%S-

Expressions for the derivatives in the above formulas can be found in Ap-
pendix B. As shown in subsection 2.3.2, 4,(6;Y) and B,(8;Y) evaluated at 6 = 8,, are
consistent estimators of A(6p) and B(fy), respectively.

Let Ci(0) = Ai(8)+ B;(0) and let d;(8) = vech (C;(8)) be a vector of dimension
K x 1, where K = k(k+1)/2. Here, vech is the operator that, when applied to a square
matrix, returns the vector formed by its lower triangular portion (including the diagonal).

Also, let

Dy(0)=Dn(6;Y)=—> di(6).

Forr,s=1,...,p; R,S=1,...,q, let C'i(r’s), C’Z-(T’R) and C’l-(R’S) denote the (r,s), (r,R) and
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(R,S) elements of the matrix C;(#). These elements are expressed by

d 3 d i % " d d d 7
={¢z’ a l-(ﬁiwz‘d:l (g — ) —— g (= ) u”

dnii dyp; dny; dny;
X XTirLis,
(r,R) _ dﬂl d¢l A ok % Tt
G = s Ao i (yi — 17) [Mz(%’ pi )+ (y; Hz‘)]

+ (Y — i) — Ci}xz’rZiR,

do: 2 d do; \ do;
C;R,s>_{_pi< ¢) [ty = )+ = )] ( ¢> :

dns; do; dnoi | dn;

(yF — f d¢l> o
+ [pily; — ) + () MZ)] <d7721 }zR is-

Appendix B contains expressions for the above derivatives.

The vector Dp(8;Y) = vech(A,(8;Y)+ By (8:Y)) evaluated at 6 = 8,, is known
as ‘the vector of restrictions’ It contains the lower triangular elements of A, (0;Y)+
B(6;Y) evaluated at 6 = 0,,. Suppose the limits Suppose the limits

S T
VD(6) = lim n~' Z;]E (0di(8)/067)

and

V(0) = lim Z]E( )~ VD(0)A(6) 'V ((6;Y5))

n—oon,

x (di(6) - VD(0>A(0)*1W(0;1@>)T

exist. When the model is correctly specified, the asymptotic distribution of the random
vector \/ﬁDn(én,Y) is, under some regularity conditions, multivariate normal with zero
mean and covariance matrix V'(6p); see Theorem 1 in the next subsection. Therefore, if

V,(6,) is consistent for V(8p), then, under correct model specification,

nDy(0,;Y) "V, (0,) ' D, (8,:Y)

is asymptotically chi-squared distributed with K degrees of freedom (x%).

A natural estimator for V() is

> (di(6) ~ VD, (6:Y)A4,(0:Y) " VL(6: )

1=1
< (di(0) —vnnw;Y)An(o;Y)—lw(o;Yi))T,

1
n
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evaluated at 6 = 0,,, where VD, (8;Y) = 0D,(8;Y)/08" . Expressions for the elements of
the matrix VD, (8;Y) for the beta regression model are presented in Appendix B.

We will now obtain a closed-form expression for VD, (8;Y) in beta regressions
that only involve simple matrix operations. The only caveat is that the ordering of the
elements in d;(0) must obey a well-defined rule which differs from the one previously
stated. We will return to that later.

The number of rows of the matrix VD, (0;Y) equals the number of elements

of the vector d;(0), i.e., K = k(k+1)/2, where k = p+¢. Note that

+q)(p+q+1 +1 +1
oo q)(z; q ):p(p2 )+q(q2 ) e

Let P, Q, and R denote, respectively, the three terms in the sum above.

Let X be the n x p matrix of the mean regressors, whose p columns are x1,...,Z),
where each z; is an n x 1 vector, j =1,...,p. Let x;, for each fixed j and k=1,...,p, be
the n x 1 vector that equals the direct (Hadamard) product of x; by xj, (i.e., ith component
of the product is the product of the ith components). We now define the matrix X * X, of

dimension n x P, with columns given as
XxX = [331’1 o Tp1 X22...Tp2 T33...-Tpp—1 wp,p]'

Let Z be the n x ¢ matrix of precision regressors, whose ¢ columns are z1,...,2q,
where each z; is an n x 1 vector, j =1,...,q. Let 2, for each fixed j and k=1,...,¢q, be
the n x 1 vector given by the direct (Hadamard) product between z; and z,. We now

define the matrix Z* Z, of dimension n x Q, with columns given as

ZxZ =[211...2p1 222...2p2 233 ... Zpp—1 Zpyp)-

Consider the R vectors Vi, j=1,...,pand k=1,...,q, where each v, is the
n X 1 vector representing the direct product of z; by xj. Define the matrix Z* X, of

dimension n x R, as
ZxX =[v11 V21 ...Up1 V12...Vp2... V1 q...Vpgl.

Now define the matrix W, of dimension 3n x K, as

XxX Onx@ Oan
AN OnXR ’
OnxP Onx@ ZxX
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where O, x. denotes an r x ¢ matrix of zeros. For each r,s =1,...,p, the derivative of
B.B.B

Ci(r’s) with respect to f3; is an expression of the type o Tir Tis Tit, where the coefficient

af B8 does not involve r,s,t. Similarly, the derivative of C’Z-(T’S) with respect to dg is an
B.B.6 B.B.6

i i Tis 2ir, Where the coefficient o does not involve r;s, R.

expression of the form «
The derivatives of Ci(r’R) and C’Z-(R’S) can be expressed in a similar fashion.

Let Agﬁ, A‘Sﬂ,ﬁ, A?,J? Ag,& Ag,& and A‘sﬁﬁ be n x n diagonal matrices such that
the diagonal entries of Ag p are the coefficients of the derivatives of C’Z.(r’s) with respect to

B, and so on. We now assemble the matrix U, of dimension 3n x k and defined using six

blocks, as

B 5 o

U=|AS.x A,z

B )
_Aﬂ,dX A 75Z_

It is now possible to express VD, (0;Y) as the K x k matrix given by
VD, (6;Y)=n"tW'U. (2.2)

This matrix involves unknown parameters. In Vj,q (9n), we use VDn(@n;Y) =n W',
where U is obtained by replacing all entries of the aforementioned diagonal matrices by
their maximum likelihood estimates.

An important caveat relates to the way the columns of W are defined since it
provides a well-defined ordering to be used for the components of the vector d;(6). The
manner in which we sequentially use X x X, then Z 7, then Z* X indicates the vector

d;(0) should no longer be defined simply as vech(Cj), but as the vector

vech(CZ-ﬁ B )

vech(C’f"s) ;

Vec(CZﬂ’é)

where C’ZfB B = Aiﬁ B + Bf B , etc., vec being the operator that yields a column vector when
applied to a matrix by stacking its columns one underneath the other. Note that the
orders of the columns within each of the products we defined were strategically chosen so
that the order of the elements of the vector d;(#) has this relatively simple form.

We will show in the next subsection that V},1(6,) is a consistent estimator of

V' (6o) under correct model specification. The following test statistic can then be used to
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test the correct beta regression model specification:
1= nDn<0n)TVn1(0n)71Dn(0n>

Under Hy, (1 is asymptotically distributed as X%{- The test is performed using asymptotic
critical values. We reject the null hypothesis at significance level a € (0,1) if ¢; > X%(;l— o
where X%{;l— o 1s the 1 — o quantile of the X%{ distribution.

Lancaster (1984) proposed a consistent estimator of the matrix V() that does
not involve third-order log-likelihood derivatives. They used the fact that, under Ho,
E(0d;(0)/00" +d;(0)V((0;Y;)T) = Ok xp, i =1,...,n (LANCASTER, 1984). Therefore,
under Ho,

n

~VD(fo) = lim n~! ;mdxeo)wwo;nf).

Let L,(0;Y) = —n"'2" ,d;(0)VL(8;Y;)". Their estimator of V() is
S (di(6) + Ln(8:Y) B,(8;Y) ' VL(8: V7))

=1
y (diw) +an;Y)an;Y)—lww;m)T

1
n

evaluated at 0 = 9n.
We will show in the next subsection that this is a consistent estimator of V()
under correct model specification in beta regressions. The corresponding information

matrix test statistic is

Co=nDy(0,)  Vi2(8,) 1D, (8,,).

Under Hy, (2 is distributed as X%( asymptotically, and we reject the null hypothesis of
correct model specification if (o > X%m_ o We note that the computation of Vng(@n) does
not require V.D,(6,,;Y).

The beta regression misspecification tests we presented may be size-distorted
in finite samples. Such distortions vanish as the sample size increases, but they may be
sizeable when the number of observations is not large. Better control of the type I error
frequency can be achieved by using critical values obtained from a parametric bootstrap
resampling scheme instead of asymptotic critical values since the test statistics’ exact null
distributions may be poorly approximated by their asymptotic counterpart when n is not

large. Bootstrap-based testing inferences can be performed as follows. For ¢ =1,2:
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1. Using the original sample Y = (Y1,...,Y;,) ", compute ¢;.

2. Obtain a sample of size n, say Y} = (Y{*,...,Y;) T, by independently sampling from
the beta law with p; and ¢; replaced, respectively, with fi; = gfl(él +Bgmi2 4+ 4
Bpiﬂip) and QASZ = 92_1(51 +892i9 +---+quiq), i=1,...,n.

3. Using Yy, compute (.

4. Execute steps (2) and (3) B times.

5. Reject the null hypothesis of correct model specification at significance level « if (;
exceeds the 1 —a quantile of ¢fy,...,( g

The use of bootstrap resampling as outlined above may considerably reduce size distortions
of the (; and (s tests since they are now based on critical values obtained from estimates
of the test statistics’ exact null distributions.

The standard formulation of the information matrix tests presented above
involves testing K restrictions. (Recall that K = k(k+1)/2 restrictions are tested because
the matrices A(6y) and B(fy) are symmetric.) It is possible, nonetheless, to focus on
a given subset of parameters by computing the test statistics for Ky < K restrictions.
When K, = K, all restrictions are considered; when Ky < K, focus is placed on a subset
of restrictions. For instance, the practitioner may choose to only consider restrictions
related to the mean or to the precision submodel, the corresponding number of restrictions
being P =p(p+1)/2 and Q = q(q+1)/2, respectively. Here, we stress the usefulness of the
matrix expression we developed for VD, (8;Y). For example, if one wishes to only test
restrictions related to the mean submodel, it suffices to consider C’iﬂ B and its derivatives
with respect to 8. In that case, d;(8) = Vech(Cf’ﬂ), and it follows that VD, (0;Y) =
(X xX )TA/’; ﬂX . Similarly, when the restrictions only relate to the precision submodel,
it suffices to use C’f ® and its derivatives with respect to 8. Here, di(0) = Vech(C’f ’5) and
VDL (0;Y)=(Zx2Z)TA§ 7.

Under fixed precision, ¢1 = -+ = ¢, = ¢, go is the identity link function, and
n2i = 01 Vi. The model is thus a particular case of the varying precision model. When

computing the quantities used in (; and (2, one must set d¢;/dne; = 1. As a consequence,

d(dei/dn2;)/de; =0, ete.
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2.3.2 On the validity of beta regression misspecification tests

We will now discuss the validity of the tests of correct beta regression model
specification presented in the previous subsection. In particular, we will show that
vnD,(8,) BN x(0,V(8p)) and we will prove the consistency of the former estimators of
the asymptotic covariance matrix of \/ﬁDn(én) The proofs of all results are presented in
Appendix C. The following assumptions are made:

(A1) 8, — 0y =Op(n=1/2).

(A2) All regressors are uniformly bounded, that is, there exists M > 0 such that |z;| < M
and |zg| <M foralli=1,....n,r=1,....pand R=1,...,q.

(A3) The regression functions are uniformly bounded above and below. This means that
there exists an interval [, uy] C (0,1) such that u; € [ur, py) foralli=1,...,n. Also,
there exists an interval (¢, ¢y C (0,00) such that ¢; € (¢, dy] for all i =1,... n.

(A4) The sequence (A;(fp)) is Cesaro convergent to a nonsingular matrix A(fp), in the
sense that there exists a nonsingular matrix A(6p) such that the sequence of matrices
n~13" , A;i(8y) converges to A(fp) as n — oo.

(A5) The sequence (E(9d;(0)/00)) is Cesaro convergent to a matrix V.D(6) for 8 = 6.

(A6) The sequence of covariance matrices of d;(8g) — VD (00)A(6y)~'V£(y,Y;) is Cesaro
convergent to a positive definite matrix V' (6p) under correct model specification.

(A7) The sequence of covariance matrices of d;(fp) is Cesaro convergent to a matrix ®(6)
under correct model specification.

We note that Assumption (A1) holds whenever \/ﬁ(én —0p) is asymptotically normally

distributed.

At the outset, we establish two results: Lemmas 1 and 2.

Lemma 1. (s, ¢i;y;) and all its partial derivatives of any order with respect to components

of @ have finite moments of all orders and all of them are uniformly bounded in i.

Lemma 2. Let (W, ;) be a double sequence of independent random vectors of same
dimension k with E(W ;) = w,,; and Var(W ;) = 5 ;, where ¥y, ; is a positive definite
matriz ¥n and ¥i. Assume that there exist § >0 and A >0 such that B(|W,;|?>*°) < A
Vi. Let W,,=n"1 S Wi, by, = ntyr Wy i and Y, =n"t S Xne If Y, converges

to a positive definite matriz V', as n — oo, then,

VAW — i) B N0, V).
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We can now state our first main result: a central limit theorem for the vector

D,,(8,,). The proof of this result uses arguments that are similar to those in White (1982).

Theorem 1. Under Assumptions (A1)-(A6) and correct model specification,
VD, (0,) B Nk (0,V(60)).

We will now move to our second main result which relates to the consistency

of an (9n)
Theorem 2. Under Assumptions (A1)—(A7) and correct model specification,
) P
Vi1 (an) — V(00).

The expression obtained for V(0p) may seem unusual, but we observe that
A(fp) is a negative definite matrix.

A

The consistency of Vj,2(8,,) can now be easily established.

Theorem 3. Under Assumptions (A1)-(A7) and correct model specification,

Voo (8,) 5 V(8o).
2.4 NUMERICAL EVIDENCE

We will now report Monte Carlo simulation results on the tests’ finite sample
performance. Data generation is performed under the null and alternative hypotheses in
order to evaluate the tests’ null and non-null behavior, respectively. Parameter estimates
were obtained by numerically maximizing the beta regression log-likelihood function using
the BFGS quasi-Newton algorithm with analytical first derivatives. Starting values used in
the iterative optimization scheme are computed as described on pages 349 and 350 of Ferrari,
Espinheira and Cribari-Neto (2011). The null hypothesis is that the beta regression model
is correctly specified and the alternative hypothesis is that it is misspecified. Inference
is based on the following tests: (1, (1, (2, (o and RESET ((g). The (1p and (25 tests
employ bootstrap critical values. We use the implementation of the RESET denoted by
(PEREIRA; CRIBARI-NETO, 2014) as Ry, since it is the overall best performer in their
numerical evaluations. RESET test inferences are carried out using the likelihood ratio

test. The number of Monte Carlo and bootstrap replications are 5000 and 500, respectively.
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The sample sizes and significance levels are, respectively, n € {100,250,500,1000} and
a € {0.01,0.05,0.1} for the size simulations and « € {0.05,0.1} for the power simulations.
The simulations were performed using the R statistical computing environment; see R
Core Team (2023).

At the outset, we consider the following varying precision beta regression model:
log(pi /(1 — p;)) = 51+ Paxio and log(¢;) = 1 + da2zi2, i = 1,...,n. The true parameter
values are $1 = 1.5, B2 = 1.2, 61 = 1.5 and d9 = 2. The values of x;2 and z;5 were obtained
as random draws from U(—0.5,0.5) and U(1,1.5) distributions, respectively. In our first
set of simulations, the fitted and true models coincide. Table 9 contains the null rejection
rates of the (1p, (op and (r tests. All entries are percentages. We do not report results
on the (1 and (o tests since they are very oversized; their null rejection rates at the 5%
significance level and n = 500 exceed 37% and 44%, respectively. Recall that these tests
employ asymptotic critical values, that they do not employ data resampling, and that their
test statistics contain estimators of the asymptotic covariance matrix of \/ﬁDn(én; Y). By
contrast, the (1 and (op tests, which employ parametric bootstrap critical values, display
very good control of the type I error frequency. As in Horowitz (1994), the use of critical
values obtained through bootstrap resampling yields empirical sizes that are very close to
the corresponding significance levels, whereas the empirical and nominal sizes may differ
greatly when asymptotic critical values are employed. The (p test displays good control
of the type I error frequency.

We will now move to simulations in which the true data generating process
differs from the fitted model, i.e., the latter is incorrectly specified. We thus report the
estimated powers of the tests. We will consider eight scenarios in which the specification
of the fitted model is in error. We will refer to them as S1, S2, S3, S4, S5, S6, S7 and S8.
The non-null rejection rates are presented in Table 10. All entries are percentages.

In the first scenario with model misspecification (S1), a mean regressor present
in the true model is not included in the fitted model. The data generating mechamism
is log(ui /(1 — pi)) = B1+ Paio + PB3wiz and log(¢;) = 1 + 02242, with B1 = 1.5, fo = —1.2,
b3 = —0.75, 61 = 1.2, o = 2. The values of z;9, ;3 and z;2 are obtained, respectively, as
random draws from the U(—1.5,1.5), LN(0,0.5) and U(1,1.5) distributions. The fitted
model does not contain x3 as a mean regressor; it is thus incorrectly specified. The

simulation results show that the powers of the two information matrix tests increase
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n | B G Cr
a=10%
100 | 10.0 104 11.2
250 9.8 10.0 9.6
500 | 10.1 9.9 109
1000 | 10.4 10.3 10.2
a=5%

100 | 5.1 5.5 5.7
250 | 49 5.1 48
500 | 54 53 54
1000 | 5.3 53 5.1

a=1%

100 | 1.3 1.2 1.2
250 | 1.2 1.3 09
500 | 1.2 1.3 1.0
1000 | 1.1 1.2 1.0

Source: Author

with the sample size. That is, their type II error frequencies diminish as the sample
size increases. The results also show that these tests can reliably detect that the model
specification is in error, especially when the sample size is not small. When n = 250, the
powers of the two information matrix tests at o = 10% exceed 95%. By contrast, the
RESET test ((r) is not consistent in this setting. Notably, the RESET test displays unit
asymptotic power under missing mean covariate in Pereira and Cribari-Neto (2014). The
main difference between their simulations and ours is that they generate the values of
all regressors using a small sample size and replicate these values for larger sample sizes,
which implies that the values of the means (p;) and precisions (¢;) are also replicated.
This is, however, unrealistic, since in practical applications there is no replication of the
values of regressors across different sample sizes. If we proceed in that manner, the RESET
test becomes consistent. We generated 125 values for each covariate and replicated them
once, three times and seven times for n € {125,250,500,1000}. The RESET test’s powers
at o =10% (o = 5%) become 47.4%, 81.6%, 99.1% and 100.0% (30.0%, 67.3%, 96.9%
and 100.0%) for these sample sizes. Finally, we note that the RESET test may also be
inconsistent in the classical regression model when an important regressor is not in the

fitted model; see Leung and Yu (2000).
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The second scenario (S2) is of neglected nonlinearity in the mean submodel. The
true data generating process is log(u;/(1 — pi)) = 1+ exp(faziz) and log(¢;) = o1 + da2zi2,
with 81 = —1, B9 = —2.3, 1 = 1.5, do = 2. The values of ;o and z;o were selected as in
the size simulations. The estimated model uses (a2 instead of exp(f2x;2), and is thus
incorrectly specified. The simulation results show that all estimated powers increase with
n. Here, (o outperforms (1 for n > 100. For instance, the (15 and (35 non-null rejection
rates for n = 250 and o = 10% are 65.0% and 82.0%, respectively. It is noteworthy that
the RESET test is considerably more powerful than the information matrix tests in this
setting. This is not surprising, since the neglected nonlinearity in the mean submodel
greatly impacts powers of such a predictor.

In Scenario S3, we generate samples according to the Kumaraswamy regression
model (MITNIK; BAEK, 2013) and fit the beta model. A noteworthy difference is that in
Kumaraswamy model p; is the median (not the mean) of the ith response. The regression
structure in both models is log(u; /(1 — 1)) = 1+ Paxiz and log(¢;) = 61 + 02242, with
p1=1, P2 =3, 51 = 3.5, 62 = 2.5. The values of ;3 were obtained as random U(0,1)
draws and 25 = 2%. We note that the tests become progressively more powerful as the
sample size increases. Furthermore, (;p is slightly more powerful than (s5. For instance,
for « = 10% and n = 500, the estimated powers of (;g and (35 are 93.4% and 92.0%,
respectively. The RESET test is not consistent. It displays non-null rejection rates that
are close to the corresponding significance levels for all sample sizes. For example, the
test’s power for n =500 and « = 10% is 8.7%. In order to verify whether the RESET test
lacks consistency under other laws, we performed simulations in which the beta regression
model is fitted to data generated using the unit Weibull model of Mazucheli, Menezes and
Ghitany (2018); again, the only difference between the true and fitted models lies in the
response distribution. The results are not presented for brevity. Again, the RESET test
was not consistent. It thus seems that, unlike the information matrix tests, the RESET test
is not capable of identifying model misspecification that is solely related to the response
distribution.

In the fourth misspecification scenario (S4), the mean link function is incorrectly
specified. The true data generating process is log(—log(1 — u;)) = 1 + Saziz + P3xi3 and
log(¢i) = 01 + 02252, with 1 = —1, o = —1, 3 =1.5, 6; = 3.7 and d2 = 1.7. The fitted

model, however, uses the logit mean link function. The values of x;2 and z;5 are obtained
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as random U(—0.5,0.5) draws and those of x;3 come from standard uniform draws. Here,
(1p outperforms (op. For example, the estimated powers of (15 and (o5 for n =250 and
a = 5% are, respectively, 58.6% and 39.7%. The overall best performer in this setting
is the RESET test. It is considerably more powerful than the information matrix tests,
especially for n < 250.

Similarly to the previous scenario, here (Scenario S5) the mean link function is
misspecified. The link function in the true model is probit whereas the fitted model used
the logit link. Unlike the previous scenario, here both link functions are symmetric. The
true model is &~ (p1;) = 1 + Poxiz and log(d;) = 01 + 02242, with f1 = 1.5, fo = 1.2, 61 = 1.2
and do = 2.0, ® denoting the standard normal distribution function. The only difference
between the fitted and true models is that the former uses the logit link. The values of x;o
and z;y are obtained as random U(—1.5,1.5) and U(1.0,1.5) draws, respectively. Unlike
in the previous scenario, here the information matrix tests are more powerful than the
RESET test. For example, the non-null rejection rates of (5, (a5 and (g when n = 250
and o = 10% are, respectively, 53.5%, 52.9% and 35.8%.

The precision submodel specification is in error in Scenario S6. The data
generating process is log(u; /(1 — ;) = 1+ Paxiz and log(¢;)) = 01+ daxi2. The precision
submodel is, however, incorrectly specified. The model fitted to the data uses log(¢;) =
01+ 02z;9. The values of x;9 and z;2 are obtained as realizations from the standard normal
and standard uniform distributions, respectively, 51 = 0.25, f2 = —0.5, 61 = 2 and d2 = 0.5.
The results show that the (;p5 is the best performer. For example, the estimated powers of
(1 and (op when n =250 and o = 10% are, respectively, 87.8% and 83.6%. Additionally,
the information matrix tests are substantially more powerful than the RESET test. For
instance, when n = 250 and o = 5% the estimated powers of the (i3, (o5 and (g tests are
75.8%, 67.6% and 36.3%, respectively.

The seventh situation in which there is model misspecification (Scenario S7)
involves fitting a beta regression model to data subject to inflation. The data are generated
using an inflated beta regression with inflation at zero. Data inflation occurs with
probability 0.05. The model is log(u;/(1—p;)) = B1+ Paxio and log(¢;) = 01 + d2zi2. The
values of the two covariates were obtained as random U(0,1) draws and the parameter
values are 51 = —1, 3 =2, 61 = 1, d2 = 1.5. The inflated values are replaced by 0.5/n

prior to fitting the beta model. The only source of model misspecification is that the
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discrete nature of the data inflation mechanism is neglected. The results show that the
information matrix tests are able to reliably detect the model misspecification, especially
for n > 250. They are considerably more powerful than the RESET test. As in the first
scenario, the RESET test is not consistent, i.e., it does not display unit asymptotic power.
To exemplify, consider n = 250 and o = 5%. The powers of the (1, (o5 and (g tests are
97.7%, 97.3% and 8.0%, respectively.

In Scenario S8, a beta regression model is fitted, but the true underlying
data generating mechanism is a mixture of beta laws. The true density function of y;
is A f1i + (1 = Am) f2i, Am € (0,1), where fi; and fo; are beta densities with means ju1;
and pg;, respectively, and common precision ¢;. Here, log(uji/(1— pji)) = B, + B2,jxi
and log(¢;) = 01+ 022, j =1,2. Also, Ay, =0.9, B11 =1, fo1 =1, B12=0.25, f22=—0.5,
91 = 2.0 and 3 = 3.0. The fitted mean submodel is log(u; /(1 — p;)) = 1+ P2x; and the
precision submodel is as in the true model. The values of z; and z; were obtained as
random draws from the standard uniform distribution. The reported results show that the
(1B and (op tests display high powers as early as when n = 100. For example, with n =100
and o = 10% the estimated powers of (15 and (op are 77.2% and 75.8%, respectively.
Once again, the RESET test is not consistent.

An attractive feature of information matrix tests is that they can be performed
using a subset of the restrictions implied by the information matrix equality. It is typically
possible to achieve higher power by doing so. To illustrate that, consider Scenario S2
(neglected nonlinearity), & = 10% and n € {100,250,500}. The powers of (1 ((o) when
we only consider restrictions related to the mean submodel are 25.5%, 82.2% and 97.9%
(27.2%, 83.2% and 98.1%); in Scenario S4 (true link function: cloglog), we obtain 35.5%,
73.5% and 95.1% (32.3%, 74.4% and 95.6%); finally, in Scenario S5 (true link function:
probit) the non-null rejection rates become 45.7%, 72.1% and 90.1% (44.7%, 73.7% and
90.8%). In all cases, the tests’ powers are increased.

The simulation results presented above show that the information matrix tests
are capable to detecting several sources of model misspecification in beta regressions,
especially when the sample size is not small. They also show that the RESET test lacks
consistency under some forms of incorrect model specification. It is, however, very powerful
for detecting neglected nonlinearity. Since the information matrix tests and the RESET

test have distinct strengths when it comes to detecting model misspecification, they should



Table 10 — Non-null rejection rates (%): Scenarios S1 through S8.

n (1B (2B Cr (1B (2B Cr
S1 S2
a=10%
100 19.0 15.8 12.6 20.1 19.8 100.0
250 96.0 95.2 0.4 65.0 82.0 100.0
500 94.1 95.5 39.9 90.4 93.4 100.0
1000 | 100.0 100.0 6.7 100.0 100.0 100.0
a=5%
100 10.4 7.9 5.5 12.3 11.8 100.0
250 91.7 90.0 0.1 49.3 70.1 100.0
500 88.1 89.9 21.5 78.7 84.8 100.0
1000 | 99.9 99.9 2.7 100.0 100.0 100.0
S3 S4
a=10%
100 25.2 21.2 8.2 19.8 17.9 84.9
250 64.2 60.1 7.7 73.4 55.5 98.5
500 93.4 92.0 8.7 96.5 90.5 100.0
1000 | 100.0 100.0 9.0 100.0 100.0 100.0
a=5%
100 15.1 114 4.0 10.4 9.9 76.8
250 50.1 45.1 3.5 58.6 39.7 96.5
500 87.0 84.4 4.1 93.0 81.8 99.9
1000 99.9 99.8 4.4 100.0 100.0 100.0
S5 S6
a=10%
100 21.6 20.0 14.7 36.8 26.4 21.5
250 53.5 52.9 35.8 87.8 83.6 46.1
500 86.7 86.7 62.0 100.0 99.9 53.3
1000 | 99.64 99.86 81.50 | 100.0 100.0 99.4
a=5%
100 12.3 11.2 7.8 22.1 14.2 14.0
250 37.1 35.6 23.3 75.8 67.6 36.4
500 73.7 72.4 46.9 99.9 99.6 53.3
1000 | 98.62 99.26 70.48 | 100.0 100.0 99.0
S7 S8
a=10%
100 56.6 55.1 11.9 77.2 75.8 8.4
250 99.0 98.6 14.3 99.8 99.8 7.5
500 100.0 100.0 15.4 100.0 100.0 7.4
1000 | 100.0 100.0 17.0 100.0 100.0 7.6
a=5%
100 43.0 37.9 6.3 65.0 62.6 4.0
250 97.7 97.3 8.0 99.4 99.4 3.0
500 100.0 100.0 8.8 100.0 100.0 3.5
1000 | 100.0 100.0 10.8 100.0 100.0 3.7

Source: Author
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be used in complementary fashion in practical applications.

2.5 EMPIRICAL APPLICATIONS

We will now present and discuss two empirical applications of the proposed

misspecification tests. They will showcase the usefulness of such tests.
2.5.1 Proportion of body fat

In the first empirical application, the interest lies in modeling the proportion of
body fat in the arms (variable: ARMS) and abdomen (variable: ANDROID). Measurements
were made on 298 people in a public hospital located in the capital of the state of Parana,
Brazil, in 2018. The values of the following explanatory variables were also recorded: age
(in years) and body mass index — BMI (in kg/m?). Each individual was classified according
to gender (female, male) and the level of physical activity (sedentary, insufficiently active,
active); in what follows, we will use a dummy variable for the former and two dummy
variables for the latter. BMI is a parameter adopted by the World Health Organization
to classify weight-related health patterns, such as malnutrition and obesity. In general,
BMI correlates positively with the proportion of body fat in obese individuals. The
stratification according to physical activity levels was based on the International Physical
Activity Questionnaire (IPAQ), which allows estimation of the weekly time spent in
physical activities of different intensities; for details on the questionnaire, see Benedetti
et al. (2007) and Matsudo et al. (2001). The source of the data is Petterle et al. (2021).
Mazucheli et al. (2021) and Mazucheli et al. (2022) modeled the ARMS variable using
unit Birnbaum-Saunders and Vasicek regression models, respectively. We will use, in our
beta regression analysis, the same covariates as them.

We note that Deurenberg, Weststrate and Seidell (1991) developed predictive
formulas for fat proportion measurements. The authors observed a positive correlation
between age and fat proportion in a sample of 1229 individuals, 521 males and 708 females
of different age groups. This correlation was higher in women.

We will perform beta regression analyses for ARMS and ANDROID. The mean
and median (minimum and maximum) values of ARMS are, respectively, 0.2661 and 0.2610

(0.0420 and 0.5470), the standard deviation being 0.1113. The corresponding figures for
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ANDROID are 0.3787 and 0.3970 (0.0720 and 0.5800), and 0.1102. There are 150 female
and 148 male individuals. The minimum, maximum and mean ages are 18, 87 and 46,
respectively, and the standard deviation of the ages is 19.8792. The mean BMI is 24.7200
and the standard deviation is 3.1507. The number of sedentary, insufficiently active and
active individuals are, respectively, 60, 76 and 162.

At the outset, we consider the dependent variable ARMS. The following fixed
precision beta regression model was fitted to the data, after preliminary investigation that

showed no evidence of variable precision:

91() = B1+ Baxio + B3xiz + Bazia + Bsis + Beie,

where x;2 is age, x;3 is BMI, z;4 equals 1 for men and 0 for women, z;5 equals 1 for
insufficiently active individuals and 0 otherwise, and ;6 equals 1 for active individuals
and 0 otherwise. Five link functions were used, namely logit, probit, loglog, cloglog, and
cauchit.

As noted by White (1982), it is appropriate to ignore restrictions that are
identically equal to zero or linear combinations of other restrictions. There are seven
parameters in the above beta regression model: six regression coefficients and ¢. Hence,
k= 7. The maximum number of restrictions that can be tested is thus k(k+1)/2 = 28.
However, four restrictions related to the intercepts and the dummy variables must be

disregarded, since three are not unique (C’i(T:4’SII) — or=ts=h) or=bs=1) _ o(r=5:=5)

and CZ-(TZ&SZI) = C-(T:6’S:6)) and one is identically null (C’-(r:6’5:5) =0). We thus test 24

(2 (3

i » Uy i ;
restrictions.

Table 11 contains the information matrix tests’ p-values (expressed as percen-
tages) along with the AIC and BIC values and the value of the pseudo-R? of Nagelkerke
(1991) (R?). The misspecification tests were performed using 500 bootstrap replications.
The best results are in boldface. The model with the largest p-values is the loglog model.
Interestingly, it also has the highest pseudo-R? values and the lowest AIC and BIC values.
It is also noteworthy that the only model rejected at the usual significance levels is the
cauchit model.

We performed the RESET test for the models with the five link functions.
All models are rejected at the 10% significance level; the loglog model is the only model
not rejected at 5%. This inference contrasts with that obtained from the information

matrix tests, where only the cauchit model is rejected. Given the discrepancy between the
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Table 11 — Information matrix tests’ p-values (%), information criteria values, pseudo-R?
values; dependent variable: ARMS.

link function  (ip (oB AIC BIC R?

logit 13.40 19.00 —907.49 —8S1.61 0.78
probit 16.20 25.60 —914.13 —888.25 (.78
loglog  27.20 41.60 —923.41 —897.53 0.79
cloglog ~ 12.60 16.00 —897.86 —871.98 0.77
cauchit 0.60 120 —85459 —828.71 0.74

Source: Author

two sets of inferences, we turn to the analysis of the residuals of the estimated models.
First, we constructed residual quantile-quantile plots with simulated envelopes. The
number of simulations is 100 and the envelopes correspond to the 0.025 and 0.975 residual
quantiles. We use the Pearson residual (r;) since it is based on a comparison between
y; and fi; = gf1(31 +3296i2 +--~+Bﬁxi6), and our interest lies in using the latter as a
representation of the former. The total number of residuals outside the envelopes for the
logit, probit, cloglog, loglog and cauchit models are, respectively, 4, 0, 8, 0 and 21. (These
plots and all other residual plots are not presented for brevity.) Second, for each fitted
model, we plotted r; against 7;;. As noted by Ferrari and Cribari-Neto (2004), a detectable
trend in this plot is suggestive of mean link function misspecification. The only plot with
a detectable trend is that of the cauchit model: there is a noticeable rise followed by a
decline. That is, there is a visible quadratic trend in the cauhit residual plot. To be sure,
we estimated, for each link function, linear regressions of 7; on (i) fy; and (ii) #%;. The
only model for which such trends are statistically significant at the usual significance levels
according to z-tests is the cauchit model. Third, we produced worm plots for the fitted
models using quantiles residuals. For details on worm plots and quantile residuals, see
Buuren and Fredriks (2001) and Dunn and Smyth (1996), respectively. Such plots convey
no clear evidence against the correct specification of any model since, for the five models,
nearly all points fall within the two semicircles of reference. Additionally, for all models,
the coefficients of the cubic fits are not indicative of misfit. In all cases, the absolute values
of such coefficients are smaller than 0.10 (intercept), 0.10 (linear term), 0.05 (quadratic
term) and 0.03 (cubic term); see Buuren and Fredriks (2001) for details. The coefficient of
the quadratic term for the cauchit model is —0.0441, only slightly smaller than 0.05 in
absolute value, i.e., it falls below the misfit threshold by a very slim margin. In summary,

the conclusion drawn from the residual analyses is more in line with the inference reached



72

via information matrix tests than with that from the RESET test.

Using the loglog link function, we obtain the following estimates for fi,..., 8¢
(standard errors in parentheses): —1.2595 (0.0748), 0.0024 (0.0006), 0.0482 (0.0034),
—0.4926 (0.0185), —0.0706 (0.0272), and —0.1353 (0.0260). Also, ¢ = 68.4009. All
regression coefficients are different from zero at the 1% significance level according to
individual z tests. Notice that 32 and 33 are positive, thus implying that, all else
equal, mean arms fat proportion increases with age and BMI. Additionally, the estimated
coefficients of all three dummy variables are negative. It thus follows that mean arms
fat proportion tends to be lower for men; it is also lower for non-sedentary individuals.
Regarding the level of physical activity, we note that BAg (related to active individuals) is
nearly twice as small as 35 (insufficiently active individuals); that is, the negative impact
of physical activity on mean arms fat proportion is quite strong.

We computed the impacts of x5 (age) and x3 (BMI) on the mean proportion
of arms fat for male and female individuals. When estimating the impact of z2, we set
the value of z3 at its median value, and vice-versa. Separate impacts were obtained for
sedentary, insufficiently active, and active individuals. More specifically, we computed
O /0xio = Dgy *(n1;)/Oxi2 (the impact of age on the mean response) and dp; /03 =
dg1 Y(m14) /03 (the impact of BMI on the mean response), where g; is the loglog link, and
then replaced all regression coefficients in these derivatives by their maximum likelihood
estimates. The estimated impacts of the two covariates (age and BMI) on the mean
response are presented in the six panels of Figure 13. Several important conclusions can
be drawn from the estimated impacts presented in this figure. First, all estimated impacts
are positive. Second, in all cases, the impacts are more intense for women than for men
(except for the impact of BMI when such a covariate assumes very large values). Third,
the impact of age becomes progressively stronger as men become older; by contrast, it
is nearly constant for women. The convergence of the two curves (male and female) as
age increases is slow. Fourth, for all ages, increased physical activity is more beneficial
for men than for women; the impact curve for male individuals shift down as the level
of physical activities increases (from S to IA, and then to A; bottom to top). Fifth, the
impact of BMI is strictly increasing for men, but not for women; for the latter, it slowly
increases, peaks, and then slowly decreases. Sixth, the BMI impacts are nearly the same

for men and women when BMI is large (around 29 and higher). Seventh, when BMI is
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small, its impact is much stronger for women than for men. Eighth, the impact of BMI

increases fairly quickly for men as the value of BMI increases.

Figure 13 — Estimated impacts of age (left panels) and BMI (right panels) on the mean
proportion of arms fat; the bottom, middle and top panels are for sedentary
(S), insufficiently active (IA), and active (A) individuals.
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We fitted the same model for the dependent variable ANDROID. The p-values
of (1p (¢ap) for the logit, probit, loglog, cloglog, and cauchit models are 0.20% (2.00%),
0.60% (1.80%), 1.20% (3.00%), < 0.01% (0.40%), and < 0.01% (0.20%), respectively. All
five models are rejected by the two tests at the 5% significance level, the rejection occurring
at 1% for the cloglog and cauchit models. Furthermore, ;g rejects the probit and logit
models at 1%. The maximal pseudo-R? is 0.67. The five models are rejected by the
RESET test at 1%.

In conclusion, the information matrix tests indicate that there is not evidence
against the correct specification of four out of the five fitted models when ARMS is the
dependent variable; the cauchit model is rejected by the misspecification tests. A better
distinction between the logit, probit, loglog and cloglog models through the information
matrix tests would require a larger sample size. By contrast, according to the tests, there

is strong evidence against all fitted models using ANDROID as the response variable.
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2.5.2 Proportion of religious disbelievers

We will now consider a second empirical application: the beta regression
modeling of the proportion of religious disbelievers in different nations performed by
Cribari-Neto and Souza (2013). The authors used data on 124 countries and the following

model:

loglog(ui) = B1 + B21Q; + 531Q? + B4MUSL; + B5INCOME; + SsOPENESS;
log(¢;) = 01 + 921Q;.

The response variable is the proportion of atheists in the general population and the
covariates are: (i) IQ: average intelligence quotient of the population, (ii) MUSL: dummy
variable that equals 1 if the majority of the population is Muslim and 0 otherwise,
(iii) INCOME: per capita Gross National Income adjusted for purchasing power parity
and (iv) OPENESS: logarithm of the ratio between the volume of foreign trade (sum of
total imports and exports) and the Gross Domestic Product. Their analysis focuses on
the impact of average intelligence on the mean proportion of the population who do not
hold religious beliefs. After fitting the model, the authors plotted such an impact against
IQ similarly to what we did in the previous empirical application; see Figure 3 in their
paper. The use of intelligence quotient squared as a mean regressor caused the impact
curve to be bell-shaped: the impact of average intelligence becomes progressively stronger,
peaks at around 1Q = 107, and then gradually weakens. For all values of 1Q, the impact
is positive which implies that the mean proportion of religious disbelievers increase with
average intelligence. We will now investigate whether their model is correctly specified
using information matrix testing inference.

As noted above, the model used by Cribari-Neto and Souza (2013) uses the
loglog mean link function. We will also consider three alternative links: logit, probit,
and cloglog. We do not consider the cauchit model since it yields a considerably smaller
pseudo-R? and two mean regressors, MUSL and INCOME, lose statistical significance
at 5%. The information matrix tests are performed using 500 bootstrap replications.
Since there are eight parameters (k = 8), it is possible to test up to 36 restrictions.

There are four superfluous restrictions that relate to the intercepts, IQ and IQ?; they

are not unique (C(r:1,5:4) _ C(T:4,s:4) C(T:I,R:2) _ C(er,Rzl) C(r:1,5:3) _ C_(r:2,s:2)

and C’Z~(T23’R:1) = C’-(T:2’R:2)). We then test 32 restrictions. Table 12 contains the tests

1
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p-values (expressed as percentages) along with AIC, BIC and pseudo-R? values. The best
results are in boldface. They all favor the loglog model (largest p-values, smallest AIC
and BIC values, largest pseudo-R?). These results are taken as supporting evidence for
the model used by Cribari-Neto and Souza (2013). We also note that the loglog model is
the only model that is not rejected by the RESET test at the usual significance levels.

Table 12 — Information matrix tests’ p-value (%), information criteria values, pseudo- R?
values; dependent variable: proportion of atheists.

link function (g (B AIC BIC R?

logit 10.60 880 —500.66 —487.10 0.74
probit 13.80  6.00 —514.37 —491.81 0.75
loglog  14.60 14.60 —518.98 —496.42 0.76
cloglog 120 020 —50256 —479.99 0.73

Source: Author

A key advantage of information matrix tests is that they allow one to focus on
just a few restrictions, that is, one may only consider a few selected indicators. As noted
carlier, the main focus of the empirical analysis in Cribari-Neto and Souza (2013) is on
the impact of IQ on the mean response. We then performed the misspecification tests
by only considering restrictions on the covariates related to average intelligence: (i) 1Q
and IQ? in the mean submodel and (ii) IQ in the precision submodel. By doing so we

test six restrictions (C(TZQ’SZQ) C(r=35=2) o(r=8s=3) A(r=2,8=2) ~(r=3,R=2) C’(RZQ’SZQ)).

1 )

7 Y

1 Y

1 Y

7

We present in Table 13 the (15 and (op tests’ p-values (expressed as percentages). The
only model that is not rejected by the information matrix tests at the 5% significance level
is the loglog model. This is further evidence in favor of the model used by Cribari-Neto
and Souza (2013). It also showcases the usefulness of the information matrix tests since
they allow practitioners to test the correct specification of key aspects of their models.
Notably, it is not possible to use the RESET test here since it cannot be used with focus

on a subset of the covariates.

Table 13 — Information matrix tests’ p-value (%) for six restrictions related to IQ and IQ?.

link function (ig (B

logit 2.00 1.20
probit 3.80  3.40
loglog 7.80  8.60
cloglog 0.60 <0.01

Source: Author
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A distinctive feature of the model used by Cribari-Neto and Souza (2013) is the
use of average intelligence squared (IQQ) as a mean regressor which leads to the bell-shaped
impact curve shown in Figure 3 of their paper. We will use the information matrix tests
to verify whether the model remains correctly specified when such a regressor is absent.
The total number of parameters becomes k =7, and it is then possible to test up to 28
restrictions. There are non-unique restrictions related to the intercept and the dummy
variable (C7~="°=2 C7=*"=3) and to IQ and the intercept (C{ZI’SZQ,C’ZZQ’Szl). We then
test 26 restrictions. Both tests reject the correct specification of the model at 5%. The
model is rejected by the RESET test at 1%. It is then clear that the correct specification
of the model used by Cribari-Neto and Souza (2013) requires the inclusion of average
intelligence squared in the mean submodel. This is further evidence in favor of their
results.

Next, we will investigate whether the loglog model remains correctly specified
when a couple of atypical cases are removed from the data, namely: Vietnam and the
United States. Vietnam is a rather atypical country, as it has the largest response value
and a value of IQ between the median and the 3rd quartile. Its proportion of atheists
is 0.81, which is considerably larger than that of the nation with the second-highest
proportion of religious disbelievers, Japan (0.65). As for the United States, its proportion
of religious disbelievers is smaller than other high-income countries with high average
intelligence. The country even contains largely religious regions known as the Bible Belt
and the Mormon Corridor. The results obtained after these two cases were removed from
the data are presented in Table 14 (again, p-values are expressed as percentages). We
test 32 restrictions and the best results are in boldface. Now the only model that is not
rejected at the 10% significance level is the loglog model. The same conclusion is reached
using the RESET test. This is further evidence in favor of such a model.

Table 14 — Information matrix tests’ p-value (%), information criteria values, pseudo- R?

values; dependent variable: proportion of atheists; Vietnam and US removed
from the data.

link function (i (oB AIC BIC R?
logit 0.40 1.00 —532.14 —509.71 0.78
probit 7.40 7.80 —537.83 —515.40 0.79

loglog 24.80 30.40 —543.07 -520.63 0.80
cloglog <0.01 0.60 —524.55 —502.11 0.76

Source: Author
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We also performed the information tests based on only six restrictions (those
related to IQ and IQQ) using the incomplete dataset. The loglog model is the only model
that is not rejected by the information matrix tests at 10%. (The (15 and (35 p-values
are 12.20% and 13.00%, respectively.) All other models are rejected at 5%. These results
reinforce the correct specification of the loglog model. Again, it is not possible to use the
RESET test to draw conclusions on the correct specification of a subset of regressors.

Finally, we note that the data used in this empirical were modeled by Rauber,
Cribari-Neto and Bayer (2020) through a beta regression with a parametric mean link
function. The authors argue that it is possible to achieve a better fit using such a model.
It is not our intention here to search for the best fitting model. Instead, our goal was
to determine whether the model used in the initial modeling of such data is correctly
specified. The information matrix tests indicate that the model used that analysis is not

misspecified.

2.6 CONCLUDING REMARKS

The beta regression model is used with dependent variables that assume values
in the standard unit interval, (0,1), such as rates, proportions and concentration indices.
It has been widely used by practitioners in a wide range of fields. The model comprises
two submodels, one for the response mean and another for the precision, each involving
a link function and a linear predictor with covariates and regression coefficients. Model
misspecification can stem from the use of an incorrect mean link function, from using a
precision link function that is not adequate, from leaving out an important independent
variable from one of the linear predictors, from neglecting existing nonlinearities and so
on.

It is of paramount importance to determine whether a fitted beta regression
model is correctly specified prior to drawing inferences and conclusions from it. This is
typically done through residual analysis, which involves some level of subjectivity. In this
paper, we introduced two information matrix misspecification tests that can be used to
that end. The null hypothesis is that the fitted beta regression model is not misspecified
and the alternative hypothesis is that the model specification is in error. The test statistics
we present are based on the information matrix equality, which fails to hold when the

model specification is not correct. It is possible to test the overall adequacy of the model
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by considering all restrictions or to focus on a set of selected restrictions that are associated
with key aspects of the model. We proved the validity of the tests when used with beta
regressions. We also presented simulation evidence that showed that the tests perform
reliably when coupled with bootstrap resampling. In particular, it is possible to achieve
good control of the type I error frequency by using data resampling. Our numerical
evidence also showed that the tests are able to reliably detect model misspecification,
especially when the sample size is not small.

Two empirical applications were presented and discussed. They showcased
the usefulness of the proposed misspecification tests in beta regression analyses. The
applications relate to physiological biometrics (proportion of body fat) and environmental
biometrics (proportion of religious disbelievers).

There are several directions for future research. First, it would be interesting
to extend our results to cover some variants of the beta regression model, such as the
model that uses a parametric mean link function. Second, alternative formulations of
the information matrix test can be considered. Third, it would be of value to extend our

results for dynamic beta models, i.e., for models used in time series analysis.
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3 NEW STRATEGIES FOR DETECTING ATYPICAL OBSERVATIONS
BASED ON THE INFORMATION MATRIX EQUALITY

3.1 INTRODUCTION

It is often of interest in empirical analyses to identify atypical observations.
They may disproportionately influence the model fit and should be individually examined.
In regression modeling, this detection is typically accomplished using residuals, Cook’s
distances or measures of local influence.

Our chief goal in this chapter is to introduce new strategies for atypical data
points detection to be used whenever parameter estimation is performed via maximum
likelihood. They are based on the information matrix equality, which is known to hold
under correct model specification. It is possible to test if the model is correctly specified
by using what is known as ‘the information matrix test’; see, e.g., White (1982). We use
the information matrix equality in a different fashion. Based on its sample counterpart,
we create different measures of the degree of adequate model specification; the closer they
are to zero, the better the model specification. The proposed criteria are then used to
quantify the degree of unusualness of each observation in the sample. To accomplish
that, we compare the values of the measures of adequate model specification without each
observation in the sample to those obtained using the complete data.

The strategies we propose for detecting atypical data points have several
novel features, e.g.: (i) they are based on a concept not yet explored in the literature,
namely: the degree of adequate model specification, (ii) they embrace a new definition
of atypical observations, which are the cases that disproportionately alter the degree of
model adequacy, (iii) they can be used not only in regression analyses, but also when
fitting probability distributions, (iv) they only require knowledge of first- and second-order
log-likelihood derivatives.

Additionally, based on the information matrix equality, we introduce a modified
version of Cook’s generalized distance and a new criterion for atypical cases detection that
employs the two Cook’s distances (standard and modified).

A word of caution is in order. No atypical cases detection strategy is uniformly
superior to all others, and it is not our desire or ambition to propose strategies that achieve

this goal. Different measures of unusualness of observations carry different information
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and are often used in a complementary way. Our goal is to propose some atypical cases
detection mechanisms that employ criteria that differ from those used so far, that can be
easily implemented, and that are tailored to models in which inference is performed by
maximum likelihood.

The chapter is organized in the following manner. The new approaches for
detecting atypical observations are presented in Section 3.2. In Section 3.3, some empirical
applications using Gaussian and beta regressions are presented and discussed. They use

Gaussian and beta regressions. Finally, Section 3.4 contains some concluding remarks.

3.2 NEW ATYPICAL DATA POINTS DETECTION STRATEGIES

Let Y = (Y1,... ,Yn)T be a vector of independent random variables such that
Y; ~ f(0;), where f is a probability density function with respect to the Lebesgue measure
on an interval or the counting measure on some discrete set which is indexed by a ki-vector
of parameters, 0;, for i =1,...,n. It is common to reduce the number of parameters
by specifying models for the components of ; which are then taken to be functions
of a k-vector of parameters, say 6. By doing so, the number of parameters is reduced
from k1 xn to k (k <n), and inferences are made on 8. When the random variables are
identically distributed, ky = k and 6; = 0 Vi.

In our setup, the parameter vector 6 is estimated by maximum likelihood. The
(total) log-likelihood function for Y with observed values y = (y1,...,yn) " is £ = {(8) =
00;y) =X 10i(0;y;), where ¢;(0;y;) is the ith individual log-likelihood function, i.e.,
the log-density for the ith observation seen as a function of 8. The maximum likelihood
estimator (MLE) of 6 is = argmaxgpk £(0). Oftentimes, it cannot be expressed in
closed-form, and point estimates are obtained by numerically maximizing ¢(6) using, say,
a Newton or quasi-Newton nonlinear optimization algorithm.

In regression analysis, it is commonly assumed that the probability distribution
of each Y; involves two parameters, say p; and ¢;. It is also usual to define link functions, say
g1 and ga, such that g1(p:) = m1i = fraea +- -+ Bpip and ga(¢;) = n2i = 0121 + - -+ + 64%iq
(k=p+q<mn). Oftentimes, x;; = z;; Vi. Here, n1; and ny; are linear predictors that
contain covariates (z;1,...,2;p and z;,...,%y, respectively) and regression coefficients
(B1,...,Bp and 01, ...,d,, respectively). The regressors in each submodel must be linearly

independent. Generally, p; is the mean or median (or, possibly, a given quantile) of Y;
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and ¢; is a precision or dispersion parameter; under constant precision, z;1 = 1 Vi and
dg =+ =04=0, i.e., ¢g=1. The two link functions and their inverses are often required
to be strictly monotonic and twice continuously differentiable. For instance, in beta
regressions, Y; is assumed to be beta-distributed with mean p; and precision ¢; so that
Var(Y;) = pi(1—p3) /(1 +¢5), g1: (0,1) = R, and g2 : Ry — R. Here, 8; = (j1;,¢;) " and
0= (,BT,JT)T, where 8= (81,...,8,) " € RP and § = (61,...,d,) " € RY; for details on such
a model, see Cribari-Neto and Zeileis (2010) and Douma and Weedon (2019).

Let U = U(0) be the score function, ie., U = 00/00 = 7" 1 00;(0;y;)/08.
Fisher’s expected information matrix for a single observation is B;(8) = E(94(8;Y;)/08 x
90(8;Y;) /06T ). Tt is commonly assumed that A(8) = lim,_eon 13, A;(0) and B(8) =
limyeon 137, Bi() exist, where A;(8) = E(0%0(8;Y;)/0008"). When the model is
correctly specified, B(6g) = —A(0p), where 0 is the true parameter value. This equation
is known as ‘the information matrix equality’. Hence, when the model specification is
correct, A(fy)+ B(6o) = Ogxp, where Opy denotes the k x k matrix of zeros. White
(1982) developed a model misspecification test known as ‘the information matrix test’ in
which the null hypothesis of correct model specification is tested against the alternative
hypothesis that the model specification is in error, i.e., Ho : A(6p) + B(0p) = Ok« and
H1: A(0p)+ B(0p) # Ogxk. Instead of considering a dichotomous classification between
well-specified and poorly specified models, we will use the information matrix equality
to define measures of the degree of model adequacy in such a way that the closer those
measures are to zero, the better the model adequacy.

Let A;(0:Y;) = 020(8,Y;)/0000" and A, (0:Y)=n"13", A,(8:Y;). Also, let
Bi(6:Y;) = 00(6:Y;) /06 x 0(6:Y;) /08" and B,(0:Y) =n"1Y7 | Bi(6:Y;). Notice that
A, (6;Y) and B,(0;Y) are the sample counterparts of A(@) and B(#), respectively.

At the outset, we propose measuring the distances between (i) —A,(8;Y) and
Bn(8;Y), and (ii) —A;1(8;Y) and B, 1(8;Y). We note that the latter two matrices are
estimators of the asymptotic covariance of , Cov(@). These distances can be viewed
as measures of the degree of model adequacy, in the sense that they involve the sample
counterparts of matrices that are expected to coincide in the population when the postulated
model is correctly specified.

The distance between —A,(8;Y) and B, (8;Y) and that between —A~1(6:Y)

and B, 1(9; Y') have interesting interpretations in the canonical full rank exponential family.
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Suppose Y1,...,Y,, are independent and identically distributed (i.i.d.) random variables
with common probability density function f with respect to the Lebesgue measure on an

interval or the counting measure on a discrete set in the form
N
fly:6) =hy)exp | >_&T;(y)—v(8) |,
j=1

where T1,...,Tx are linearly independent functions, € = (&1,...,& N)T is an unknown
vector parameter and v is a strictly convex function with continuous first and second
derivatives. The score vector based on Y71,...,Y, is >0 (T(Y;) — V(€)), where V is the
gradient operator and T = (T1,...,Tx)". The MLE € of £ solves V'y(g) =n" Y0 T(Y).
The Hessian matrix of the log-density with respect to & is simply —H~(&), where H
represents the Hessian operator. Using the information equality, we conclude that the
covariance matrix of T' is Var(T) = H~(£). Notice that —A,(&;Y) = Hy(€) is the MLE
of Var(T) based on the common distribution that was assumed for the random variables,
while B, (£;Y) =n 130 (T(Y;) = V~(€))(T(Y;) — V~(€))T is the nonparametric moment
estimator of the same covariance matrix. The distance between —Ay,(€;Y) and B, (€;Y) is
a measure of the proximity between these two covariance matrix estimators. If it is small,
we may conclude that the postulated distribution is an adequate model. Equivalently,
the distance between —A~>1(£€:Y) and B;(£;Y) measures the proximity between the
MLE and a nonparametric moment estimator of the precision matrix (the inverse of the
covariance matrix).

Our proposal is to measure the distance between the sample counterparts of
the matrices that define the information matrix equality or their inverses. This is done for
a given observed sample y in order to identify data points that are atypical. Cases that
disproportionately impact the distance between the two matrices are taken to be atypical.
That is, data points that substantially alter the degree of model adequacy are classified as
atypical cases.

We will measure the distances between (i) C’al’n(é;Y) = A, (8;Y) + B,(8;Y)
and Opxy and (ii) Ca%n(é;Y) — A;10;Y)+ B;1(6;Y) and Oyyj. These distances are
viewed as measures of the degree of model adequacy with smaller values indicating
better model adequacy. As noted earlier, it is possible to test the null hypothesis that
A(0p) + B(0y) = Ogxy (correct model specification) using the information matrix test

(WHITE, 1982). Our goal, however, is different. For an observed sample y, we seek to
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measure the distance between —A-1(8;y) and B;1(8;y), and then evaluate how such a
distance is impacted by each observation in the sample, i.e., by each component of y.

We need a metric for the distance between two symmetric matrices. Consider
the vector space R"™* of r x s matrices. Different norms can be defined in such a space. A
well-known norm is that of the maximum on the unit sphere induced by the norms in R"
and R®. Suppose we use the norms || ||, and || || in R" and R, respectively. The norm of
a matrix M € R"™* can be defined as || M||, = maxy,—1[[Mw||s, where w is a column
vector of dimension s. It is easy to see that || M|, = maxy+o, | Mw|/||w]s, where 05 an
s-vector of zeros. When || ||, and || || are the Euclidean norms in the corresponding spaces,
the norm || M|, will be the largest singular value of M. That is, in the case of Euclidean
norms, || M]|, corresponds to the largest square root of the eigenvalues of M T M (which are
guaranteed to be non-negative real numbers). If M is a symmetric s-dimensional matrix,
this largest singular value is the maximum of the absolute values of the eigenvalues of M
(which are assuredly real numbers). That is, if M is an s-dimensional symmetric matrix, we
can define | M|, = maxi<j<s|Aj|, where A1,..., A are the eigenvalues of M. In this case,
in the vector subspace of s X s symmetric matrices, we can define the distance between two
matrices as the norm of the difference, i.e., the distance between two symmetric matrices
M; and M; can be defined as ||A||,, where A = M; — M. For details on norms of matrices,
see Horn and Johnson (2012).

We note that ||Al|, € [0,00). If desired, a distance defined in the interval
[0,1) can be obtained using the following result. Let d: M x M — R be a distance on a
non-empty set M and let h:[0,00) — [0,00) be an increasing concave function such that
h(0) = 0. Then, it follows that ¢ : M x M — R defined by ¢(z,y) = h(d(z,y)) is also a
distance. E.g., [|AlL/(|A]. +1).

Recall that we wish to measure the distance between C’al,n(é;Y) and Opxk
and between Caz,n(é;Y) and Opxp for an observed sample y. This can be accomplished
by using

my = ||Ca1,n(9§?/)”z and  my = ||Ca2,n(g§y)||m

respectively. The closer these measures are to zero, the better the degree of model adequacy.

We also suggest measuring the aforementioned distances using Euclidian norms.
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We propose to use
m3 = [[vech(Coy n(6;9))ll2 and  ma = ||vech(Cuy (8;9))]2,

where || ||2 denotes the Euclidian norm and vech is the operator that, when applied to
a square matrix, returns the vector formed by its lower triangular portion (including
the diagonal). Like the previous metric, smaller values are indicative of superior model
adequacy.

The distance measures my,...,my4 are not invariant to regressor rescaling. If
such an invariance is important, an alternative is to use a multiplicative specification.
If —A(fy) = B(6), it follows that —A~1(0y)B(6y) = I, where I is the k-dimensional
identity matrix. We could consider measuring the distance between —A~1(8;y) B, (6;y)
and [I;. The former matrix, however, is not guaranteed to be symmetric, although it
obtained as the product of two symmetric matrices. As a consequence, its eigenvalues are

not guaranteed to be real numbers. We will then work with

where Pn(é;y) is obtained from the Choleski decomposition of —An(é;y), i.e., the former
is a lower triangular matrix such that P,(8;y)(P.(8:y))" = —A,(8;y). The Choleski
decomposition is used because the triangular structure that is obtained makes matrix

inversion easier. We propose measuring the distance between Cy, ,, (9,y) and [ using
ms = ||Conn(0:y) = Till- and  mg = [[vech(Crn(85y) — It) 2.

Let m;; be the value of m; when observation ¢ is not in the sample, i =1,...,n
and j =1,...,6. We define the following measures of the sensitivity of the degree of model
adequacy to observation i:

The quantities m1 ; through mg; measure the impact that observation ¢ exerts
on the degree of model adequacy. They can be therefore used to identify atypical cases,
i.e., to single out data points that disproportionately impact the degree of model adequacy.

Since the distributions of my ;,...,me,; obtained from the random vector Y are,

in general, difficult to obtain, we will adopt, for each observed sample y, an ad hoc rule
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for atypical cases detection. Let ¢, ; be the Tth quantile of s;; and

Ir,j = [vj —Zrj (90.500,j - QO.125,j)> Vj + 2rj (QO.875,j - QO.SOJ)]»

r=1,2and j=1,...,6. Notice that there are two intervals for each sensitivity measure
defined so far: 7Z;; and Zy ;. Observation i is to be taken as atypical if s; ; ¢ 7, or,
alternatively, if s; ; ¢ Zo ;. We recommend,based on experimentation with several data
sets, using v; = 1.0 for j =1,...,6. We also recommend using 211 = --- = 214 = 3.75,
215 =216 =25, 291 == 294 =7.50, and 295 = 206 = 5.0. It should be noted that,
for each j, 75 ; is wider than Z; ;. The two detection intervals account for any existing
skewness in the sample distribution of s; ;. One may use Z ; when more conservative
atypical case detection is desired, or when the number of cases identified using 7 ; is
deemed to be excessive. The proposed detection intervals may, of course, be tailored by
users to suit their specific needs.

The measures my 4, ..., mg,; introduced above are somewhat related to Cook’s

generalized distance:
D; = (n=1)B) —0) " (~An(B(5):9)) By ),

where 9(2-) and Aff),l are, respectively, the maximum likelihood estimate of @ and the
quantity A, computed when case 7 is not in the sample; see, e.g., Diaz-Garcia and Gonzélez-
Farfas (2004) and Flora, LaBrish and Chalmers (2012). For an empirical analysis based on
this measure, see Cordeiro et al. (2021). Like myq ,...,m4;, Cook’s generalized distance
is also based on individual case deletion and uses an estimate of —A,(0;Y). A common
rule-of-thumb is that observation 7 is taken to be atypical if D; exceeds one.

Exploring the fact that under correct model specification A(fy) = B(6y), we

introduce the following modified Cook’s generalized distance:

m n—1 A e, i) (B 0 i
D} === (05— 0)" (~A1L1 (0 9) + By (Biys9)) (6, — 0),

where Bfﬁl corresponds to the quantity B, calculated without the ¢th observation. We
note that D]" is useful for determining whether a given observation is influential for the
model fit, but it may not be able to capture its full impact. This is because the withdrawal
of observation ¢ may make B,(Ql(é(i);y) — Aszl(é(i);y) smaller, which, of course, does not

necessarily mean an improvement in the model fit.
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As an example, assume that Y7,...,Y,, is an i.i.d. sample, and we want to test

whether each Y; is normally distributed with unit variance. It is not difficult to see that

n—1 - :
m _ () _v\2 ~(7)
Dy =" L0 (1),

where Y and () denote, respectively, the sample mean and the variance moment
estimator, both computed after withdrawing observation i from the sample. Notice that
values of ©(*) that are progressively smaller than one (the assumed value of the variance)
increasingly worsen the model fit, and yet they progressively reduce the value of D;". We
would expect, however, the value of D" to increase (not decrease) when case i worsens
the model fit.

This motivates us to work with the differences D" — D;. Notice that D]"* ~ D;
whenever —An(é(i);y) R Bn(é(i);y), i.e., whenever observation i does not considerably
alter the degree of adequate model specification. The distance between D]* and D; is
expected to grow as case i becomes more impactful to the degree of model adequacy. Like

ms; and me;, the two Cook’s distances are invariant to regressor rescaling.

For the above example of unit variance normal fit, we obtain

n—1

VY-,

D" — D; =

which seems to be a reasonable measure for the unusualness of case . The three terms in
the above expression can be easily interpreted. The fraction (n —1)/2n2, which decays to
zero as n increases, indicates that, when the number of observations is large, the impact of
each individual observation will tend to be small. The term (V) —Y;)? relates to how far
apart are the ith case and the overall mean of all other cases; larger values of (V) —Y;)2
will lead to larger values of D" — D;. The term 1 — 5@ is the one that best describes the
impact of observation i on the degree of model adequacy. If 6 becomes very different
from 1, the absolute value of D;" — D; will tend to be large. This is coherent with the fact
that a value of ) that is very different from one yields evidence against using a unit
variance distribution to represent the data.

Using the aforementioned difference, we introduce a new measure of cases

atypicalness which is invariant to regressor rescaling:
m
S7i = Di —D;.

Observation 7 is considered atypical if s7; ¢ 7y 7 or, alternatively, if s7; ¢ Zo 7. These two

intervals are as before with v7 = 0.0, 217 =4.0 and 297 = 8.0.
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3.3 EMPIRICAL APPLICATIONS

In what follows, we will present applications of the proposed mechanisms of
atypical data points detection. Atypical cases detection based on s;; is performed using
1y, for j =1,...,7. Log-likelihood maximization is performed using the BFGS quasi-
Newton algorithm with analytic first derivatives. All computations were performed using
the OX matrix programming language; see Doornik (2021). We performed the information
matrix tests (1 and (o developed in previous chapter for the empirical applications that
use beta regressions. For the application in Subsection 3.3.3, we considered all restrictions
when performing the tests. For those in Subsections 3.3.4 and 3.3.5, since the sample
sizes are small, we first performed the tests by only considering restrictions related to
mean submodel, and then carried out the tests by only considering restrictions related to
the precision submodel. In all three applications, the correct model specification is not

rejected at the usual significance levels.
3.3.1 Per capita spending on public schools

The interest here lies in modeling the relationship between statewide per capita
spending on public schools (Y') and per capita income (x32) in the US in 1979; the latter is
scaled by 10™%. Wisconsin is not considered due to missing data, and Washington, DC is
included in the dataset. Hence, n = 50. These data were analyzed by Cribari-Neto (2004)
and Cribari-Neto and Pereira (2019). Unlike what was done in their empirical analyses,
we will consider an additional covariate, namely: x;3 = x;2 X d;, where d; equals one for
Southern states and zero otherwise. We will use the Gaussian linear regression model with
multiplicative heteroskedasticity proposed by Harvey (1976). In particular, we assume
that Y7,...,Y,, are independent random variables such that Y; ~ N (u;,¢;). We use the

following model:

i = B+ Pazio + B3xi3,

log(gbi) =01+ doxjo0.

Parameter estimation was done by numerically maximizing the model’s log-
likelihood function and, except for the intercepts, all regression coefficients are different
from zero at the 5% significance level according to individual z-tests; 1 is non-null at 10%.

In particular, the p-values of the tests of Hg: f3 =0 and Hg : 02 = 0 against two-sided
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alternative hypotheses are, respectively, 0.0175 and 0.0003. It is noteworthy that 33 <0
which implies that per capita spending on public schools increases with per capita income
at a slower rate in the South.

In Appendix D we give simple expressions for A,(0;y) and B,(0;y) in the
Gaussian linear regression model with multiplicative heteroskedasticity. Using these
expressions, we proceed to detect atypical data points in the empirical application at hand.
Table 15 presents the atypical cases detected using the different detection strategies. Notice
that si; and s3; only single out case 2 (Alaska). According to sg; and s4;, observations
2, 7, and 50 (Alaska, Connecticut, and Wyoming) are atypical. s5; detects cases 1, 4, 19,
23, 24, 26, 31, 44 and 45 (Alabama, Arkansas, Maine, Minnesota, Mississippi, Montana,
New Mexico, Utah, and Vermont), s¢; singles out cases 2, 19, 24, 31, 44 and 45 (Alaska,
Maine, Mississippi, New Mexico, Utah, and Vermont) whereas s7; detects cases 2, 26, 31,
and 44 (Alaska, Montana, New Mexico, and Utah). Finally, based on D; we conclude that
observation 2 (Alaska) is atypical and D;" singles out cases 2 and 44 (Alaska and Utah)

as atypical.

Table 15 — Atypical cases detection, per capita spending on public schools in the US.

Criterion Atypical cases singled out

S1, 2

S9.i 2,7, 50

53,1 2

54 2,7, 50

55 1, 4, 19, 23, 24, 26, 31, 44, 45
56.i 2,19, 24, 31, 44, 45

s7. 2, 26, 31, 44

D; 2

Dm 2, 44

(3

Source: Author

Alaska (case 2) is influential for the test inference that d2 is non-null, i.e.,
for concluding that there is heteroskedasticity. When this observation is not in the
data, the z test p-value becomes 0.1622, and the null hypothesis of constant dispersion
(homoskedasticity) is not rejected at the 10% significance level. Except for ss ;, all measures
detect this case as atypical.

New Mexico (case 31) and Utah (case 44) are influential for the conclusion

that the regression slope differs for Southern states. Without these cases in the data, the
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p-values of Hy : f3 = 0 become, respectively, 0.0658 and 0.0579. As consequence, the null
hypothesis is no longer rejected at 5%. When both cases are removed from the data, the
p-value of the test becomes 0.2100, and H( is not rejected at 10%. Recall that the p-value
of that same test is 0.0175 when all observations are used. Case 31 was detected by s5 ;,

s¢,; and s7; whereas case 44 was detected by these measures and also by D}".
3.3.2 Statewide per pupil spending

The amount of money allocated to public schools varies significantly across
different states and is influenced by various factors. The funding that schools receive is
directly related to their per student spending, which is impacted by factors such as teacher
salaries and benefits. Additionally, there are several other factors that contribute to per
pupil spending. In most states, instructional employee salaries and benefits make up at
least 50% of the total per pupil spending. Administrative expenses and support staff costs
are also included in the overall expenditure.

The interest here lies in modeling per pupil spending (V') as a function of per
capita income (x2) in the 50 states and the District of Columbia (DC). Hence, n = 51.
The source for the data on spending per pupil in 2023 is Education Data Initiative. The
source for per capita income data in 2021 is the United States Census Bureau. As in
the previous analysis, we use the Gaussian linear regression model with multiplicative

heteroskedasticity. Here,

i = B1+ Baxio,

log(gbi) =01+ doxj2.

Maximum likelihood parameter estimation was carried out numerically maxi-
mizing the model’s log-likelihood function. Except for the mean submodel intercept, all
parameters are non-null at the 1% significance level according to individual z tests. In
Table 16 we present the cases identified as atypical by the different detection strategies.
According to si,; and s3; [s2,; and s44], only case 32 (New York) [case 36 (Oklahoma)] is
atypical. Notice that s5; singles out cases 20, 21, 32, and 48 (Maryland, Massachusetts,
New York, and DC) whereas sg; singles out observations 7, 21, 24, 32, 36, and 48 (Con-
necticut, Massachusetts, Mississippi, New York, Oklahoma, and DC). Observations 18,
32, 44, and 49 (Louisiana, New York, Utah, and West Virginia) are taken to be unusual
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when detection is based on s7;. Finally, D; and D]" only single out case 32 (New York)
as atypical.

There are two observations in the sample that, when individually removed,
cause the estimate of d9 to change considerably. The relative change in b9 due to the
removal of New York (DC) from the sample is —31.37% (25.28%). These two observations
are thus influential. The only measures that simultaneously indentified the two cases as
atypical were s5; and s¢;. We also note s, s34, s7,i, D;, and D;" singled out New York

as atypical.

Table 16 — Atypical cases detection, per pupil spending in the US.

Criterion Atypical cases singled out

S1, 32

52,1 36

53,1 32

54 36

55,7 20, 21, 32, 48

56,0 7,21, 24, 32, 36, 48
7.4 18, 32, 44, 49

D; 32

DM 32

2

Source: Author

3.3.3 Proportion of religious disbelievers worldwide

We consider the beta regression analysis presented in Cribari-Neto and Souza
(2013). The interest lies in modeling the proportion of atheists (Y') in a cross-section of
countries. The regressors are: (i) x2: dummy variable that equals 1 if the majority of the
population is Muslim and 0 otherwise, (ii) x3: per capita Gross National Income adjusted
for purchasing power parity, (iii) x4: logarithm of the ratio between the volume of foreign
trade (sum of total imports and exports) and the Gross Domestic Product and (iv) zs:
average intelligence quotient of the population. Using data on 124 countries (n = 124),

the authors fitted the following varying precision beta regression model:

loglog(pi) = B1 + Bawia + B33 + Batia + Bsxis + Pers,

log(¢;) = 61+ dows;.
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Their focus was on estimating the impact of changes in average intelligence on the mean
proportion of religious disbelievers. These data were also analyzed by Cribari-Neto, Silva
and Vasconcellos (2023), Guedes, Cribari-Neto and Espinheira (2020) and Rauber, Cribari-
Neto and Bayer (2020). A subset of the data was modeled in Guedes, Cribari-Neto and
Espinheira (2021). For details on the relationship between intelligence and religiosity, see
Zuckerman, Silberman and Hall (2013). At the outset, we note that this is a challenging
application for atypical cases detection due to the very high sample correlation between
z5 and 72.

The model parameters were estimated by maximum likelihood. All regression
coefficients are non-null according to individual z tests at the 5% significance level.

In Appendix E we provide expressions for the matrices A,(6;y) and B, (0;y)
which can be used in varying precision beta regressions. We will use these expressions in
the computations that follows.

Our interest lies in detecting atypical observations in the aforementioned data.

The cases identified as atypical based on the different approaches are listed in Table 17.

Table 17 — Atypical cases detection, data on the prevalence of religious disbelievers
worldwide.

Criterion Atypical cases singled out

S1.i 27, 66, 77, 78, 122
§9.4 14, 20, 22, 27, 33, 38, 66, 77, 78, 97, 122

53,4 27, 66, 77, 78, 122

Sai 14, 20, 22, 27, 33, 38, 52, 57, 66, 77, 78, 97, 98, 122
S5.i 16, 22, 27, 31, 33, 57, 77, 78, 122

S6.i 16, 22, 27, 31, 57, 77, 78, 122

7.4 16, 27, 31, 57, 66, 71, 77, 78

D; 77, 122

pm 77,78, 122

K3

Source: Author

All nine criteria single out case 77 and eight out of the nine criteria single out
observation 122 as atypical. They correspond to Mozambique and Vietnam, respectively.
The latter has the highest response value which is considerably larger than those of the
next two countries with the highest shares of religious disbelievers (Sweden and the Czech
Republic, respectively). Its average intelligence and relative volume of foreign trade are, as

expected, high. However, Vietnam has a low per capita income, and that goes against the
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positive correlation between the response and this covariate. It is thus atypical because it
has the largest fraction of religious disbelievers even though it is a low-income country.

There are four (three) observations in the sample for which the sum (maximum)
of the absolute percent discrepancies of the estimated slopes exceed 40% (20%): Botswana,
Liberia, Mozambique and Vietnam (Botswana, Liberia and Vietnam). Botswana and
Liberia are cases 14 and 66, respectively. These two cases were only simultaneously singled
out by s9; and s4;. We note that Botswana noticeably impacts the estimate of (3, which
increases by over 25% when this case is not in the sample.

Liberia (case 66) is a very influential data point: it noticeably impacts the
estimate of (4, which increases by nearly 40% when the reduced sample is used. More
importantly, per capita income loses statistical significance at 5%. It thus seems that
the statistical significance of per capita income when used in conjunction with average
intelligence and the relative volume of foreign trade is greatly impacted by a single
observation, namely: Liberia. We note that the values of the response and also of average
intelligence and per capita income are small for Liberia, but its relative volume of foreign
trade is quite large (it is in the upper quartile). Since the former three variables positively
correlate with the latter, Liberia displays an atypical pattern. Also, it exerts considerable
impact on the resulting inferences. It is noteworthy that Liberia was identified as an
atypical data point by six out of the nine criteria. It was singled out by Cook’s generalized
distance.

In summary, cases 14, 66, 77 and 122 (Botswana, Liberia, Mozambique and
Vietnam) are influential for the model fit and corresponding inferences. The only detection
strategies that were able to identify all of them as atypical data points are so; and sy ;.
Additionally, we note that case 78 (Namibia) is singled out as atypical by all measures
except for Cook’s generalized distance (D;). It has a noticeable impact on the statistical
significance of x3: this covariate loses statistical significance at 5% when case 78 is not in
the data since the p-value of the corresponding z-test becomes 0.0788.

An advantage of atypical cases detection based on s;;, j =1,...,7, is that it
allows one to focus on specific aspects of the model, such as a subset of regressors. To
exemplify, we will focus on the regressors x5 and 22 of the mean submodel and x5 of the
precision submodel. In this way, the matrices Cal’n(é;Y), Ca27n(9;Y) and C’myn(é; Y') have

dimension 3 x 3. There are two countries that, when they are individually removed from
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the sample, lead to aggregate absolute percentage changes in the relevant point estimates
in excess of 20%, namely: Mozambique and Vietnam. We note that all seven detection
measures singled out Mozambique (case 77) and six of those seven measures singled out

Vietnam (case 122).
3.3.4 Proportion of religious disbelievers in the United States

We will now consider the beta regression analysis in Souza and Cribari-Neto
(2018). The authors modeled the statewide proportions of atheists in the United States
(US). This is their response variable (Y). There are 50 observations. The covariates are
average intelligence quotient (z2), a dummy variable that equals one if the state belongs
to the Extended Bible Belt (defined as the Bible Belt plus Utah) and zero otherwise (z3),
percentage of Hispanic or Latino population (z4), an income index based on personal
earnings (r5), percentage of the total population living in urban areas (zg). The beta

regression model they fitted is

cloglog (i) = b1+ Pawia + Baxis + Baxia + Bsxis + Bexic + Sr(xis X Tie),

log(¢;) = 01+ dazs0.

Maximum likelihood estimation of the regression coefficients was carried out
numerically. All coefficients are different from zero at the 5% significance level according

to individual z-tests. Table 18 contains the atypical cases identified by each criterion.

Table 18 — Atypical cases detection, data on the prevalence of religious disbelievers in the
US.

Criterion Atypical cases singled out

81,4 -

52,4 48

83 —

54 48

S5 1, 18, 24, 42
S6.0 1, 18, 24, 42, 45
y 1, 19, 42, 45

D; 1, 45

D 1, 19, 45, 48

2

Source: Author

We note that s1; and s3; do not identify any observations as atypical and that
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according to sa; and s4; the only atypical observation is case 48 (West Virginia). s5;
singles out observations 1, 18, 24 and 42 (Alabama, Louisiana, Mississippi, and Tennessee);
s, additionally identifies case 45 (Vermont). Data points 1, 19, 42 and 45 (Alabama,
Maine, Tennessee, and Vermont) are atypical when detection is based on s7;. Dj" singles
out cases 1, 19, 45 and 48 (Alabama, Maine, Vermont, and West Virginia) whereas Dj
only singles out cases 1 and 45 (Alabama and Vermont).

Alabama (case 1) is quite influential for the inferences drawn from the fitted
model. The point estimates are considered altered when this case is not in the sample; e.g.,
the estimates of 31, B2 and (4 (01 and d3) decrease by nearly 16%, 45% and 23% (increase
by over 62% and nearly 77%), respectively. Additionally, zo loses statistical significance at
10%.

Case 45 (Vermont) has a sizeable impact on the the estimates of §; and d9
which decrease by over 17% and over 22% when this data point is not in the sample. We
no longer conclude that the regression coefficients 34, 85 and (87 are non-null at 5%.

West Virginia (case 48) has a large impact on the testing inferences. The covari-
ates x5, xg and their interaction (5 X xg) lose statistical significance at 10%. Additionally,
x9 loses significance at 5%. Some point estimates are also considerably impacted; e.g.,
the estimates of 5, B¢ and (7 decrease, respectively, by approximately 18%, 29% and
21% when the data do not include observation 48. It is clear that West Virginia is quite
influential. It was detected as atypical by s2;, s4; and Dj".

Based on the above diagnostic analysis, we consider the reduced beta regression
model cloglog(u;) = 1+ Baxio + f3wiz + Baxig and log(¢;) = 1 + dax2. The likelihood ratio
test favors this model, since its p-value for testing Hg : 85 = g = S7 = 0 in the larger model
is 0.4320. The reduced model is also favored by the Akaike and Bayesian information
criteria (AIC and BIC). Interestingly, the estimate of S is over 25% larger when the
reduced model is used (0.0459 vs 0.0362). That is, the impact of average intelligence on
the prevalence of religious disbelievers is strengthened when a more parsimonious model is
used. We arrived at such a reduced model through a diagnostic analysis that identified

atypical and influential data points.
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3.3.5 Reading accuracy

We will now use a dataset analyzed by Smithson and Verkuilen (2006). There
are 44 observations on reading accuracy of dyslexic and non-dyslexic Australian children.
The response (Y') are reading accuracy indices and the independent variables are: a dummy
variable that equals 1 for dyslexics and —1 for non-dyslexics (z3), nonverbal 1Q) converted
to z-scores (r3), and an interaction variable (x4 = x2 X x3). These data were also analyzed
by Bayer and Cribari-Neto (2017), Cribari-Neto and Queiroz (2014), Espinheira, Ferrari
and Cribari-Neto (2008), Guedes, Cribari-Neto and Espinheira (2020) and Griin, Kosmidis
and Zeileis (2012). In particular, Cribari-Neto and Queiroz (2014) proposed modeling

these data using the following beta regression model:

logit(p;) = b1+ Pazio + B3i3 + Bazia,

log(¢i) = 01 + 022 + d37i3 + 54%23.

We estimated the above model and computed the measures of atypical cases detection.

Table 19 presents the atypical data points detected using the different approaches.

Table 19 — Atypical cases detection, data on reading accuracy.

Criterion Atypical cases singled out

Sl,i 32, 33

S9. 26, 32, 35

534 32, 33

54 26, 32, 35

55,0 31, 32, 33, 39
56,i 32, 33

87 14, 19, 24, 32, 23
D; 32, 33, 38, 39
D 13, , 38, 39

2

Source: Author

There are only two observations for which the sum of the absolute percent
discrepancies of the estimated slopes exceeds 40%: 24 and 32. The latter was identified by
all measures. The former was only identified by s7 ;.

A remark on case 32 is in order. It is influential since the estimates for 9
and 03 change by 15.67% and 11.87%, respectively, when it is not in the sample. This
case corresponds to a dyslexic child with high 1Q z-score (0.7090, larger than the third
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quartile) but with very low reading accuracy index (0.5405, smaller than the first quartile).
This case thus goes against the positive correlation between y; and x;3 which equals,
respectively, 0.5679 and 0.6056 with and without case 32 in the data. All nine detection
strategies were able to identify this observation as atypical.

Case 24 is also noteworthy. It corresponds to a non-dyslexic child with below
average reading accuracy and 1Q z-score close to the third quartile. The estimates 31
and S, increase, respectively, by nearly 11% and nearly 17% when case 24 is not in the
data. The value predicted by the model for this case is quite distant from the observed
value (observed, y24: 0.6466; predicted, fiz4: 0.9349). The atypical nature of observation
24 translates into an inaccurate model prediction because it impacts parameter estimates
of the mean submodel. This atypical case was detected by Dj" and s7;. Interestingly,
unlike Cook’s generalized distance, both measures based on it that we introduced (D]

and s7,;) were able to single out case 24.

3.4 CONCLUDING REMARKS

We introduced a new approach for identifying atypical observations in empirical
analyses that are based on maximum likelihood inference. We defined measures of adequate
model specification in a way that smaller values are indicative of better model specification.
Such measures follow from the information matrix equality, which holds when the model
is correctly specified. This equality is the basis for information matrix misspecification
tests which are commonly used to determine whether the specification of a given model
is in error. Our approach considers that there are different degrees of adequate model
specification which are coupled to the distance between the sample counterparts of the
matrices that define the information matrix equality. We introduced several measures of
model specification adequacy and showed that they can be used to identify atypical data
points. Such points are those that disproportionately alter the degree of model adequacy
when removed from the data.

We presented empirical applications involving beta and Gaussian regression mo-
dels. Overall, the proposed detection strategies were able to identify influential observations,

i.e., cases that substantially impact the resulting inferences.
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4 CONCLUSION

This PhD dissertation focused on the information matrix equality, which is
known to hold when the model is correctly specified. In this context, our focus was on
modeling double bounded random variables. At first, we presented three information
matrix test statistics for univariate beta models. We showed results from a set of Monte
Carlo simulations, carried out to evaluate the tests’ finite sample performance. We also
presented an application of the proposed tests to state and county COVID-19 mortality
data in the United States.

In the following, we developed information matrix tests for the varying precision
beta regression model. The null hypothesis is that of correct specification of the fitted
beta regression model. It is tested against the alternative hypothesis that the model
specification is in error. We obtained two information matrix test statistics. They use
different estimators of the covariance matrix of a given random vector. We proved the
consistency of both covariance matrix estimators in the class of beta regressions. We
also presented the results of extensive Monte Carlo simulations. They showed that the
tests display good control of the type I error frequency when bootstrap resampling is
used. Different sources of model misspecification were considered when the data were
generated under the alternative hypothesis. The numerical evidence we presented showed
that the two information matrix tests can reliably detect that the fitted model is incorrectly
specified, especially when the sample size is not small. Two empirical applications were
presented and discussed.

Using the sample counterparts of the matrices that define the information
matrix equality, we introduced a new concept, namely the degree of adequate model
specification. We argued that it equals the distance between two suitably defined symmetric
matrices. More specifically, we proposed three definitions of the degree of adequate model
specification and used two matrix norms to quantify each of them. We then defined
measures of sensitivity of the degree of adequate model specification to each observation in
the sample. Such measures can be used to detect atypical data points. We also introduced
a modified version of Cook’s generalized distance. The proposed criteria were used in
empirical applications that employ Gaussian and beta regressions. The results showed

that they are capable of reliably detecting atypical cases in the data.
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APPENDIX A - INFORMATION MATRIX TEST QUANTITIES FOR
THE BETA DISTRIBUTION

We present below the quantities required to compute the information matrix

test statistics for the beta model. It is possible to show that

w =" (ue) + ' (1= p)¢), c=@lpw—"(1—p)o)],

m = (1) — " (1= w)d), 2 = g/ (u) + 6! (1 — ) ) = o,

o
8 *
5 =m0/ 10) = (1= v/ (L= w)9) = 2,
82M* 2,01 2.,
Bgz = 1V o) = (L= (1= m)9),
out ) opt / !
al; = o' (1 p)o), 8/; = (1= (1= p)o) —v'(¢),
5
@Z’ = 00" (1) — 00" (1= p)g) = om,
9 0 0
81; = " () + (1 = )" (1 = p)), a; =9 <w+¢81;> )
dc _opr | 0w
96~ 06 Yo

Additionally, we obtain, after some algebra,

[0d1(0:Y:)  9di1(8;Y1)
o 0o

iYt)  Odp(6:Y3)

VD, (8;Y) = 6 (05)],

3|

[]=
S
&
£
S

0d3(0;Y:)  0d3(6;Y3)
o 0

where

_ _Ye * ok T_T
o o o cbau [M(Yi 1)+ (Y u)}
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i f
_¢<au ) (V=) + (v = )] = o (v = 7 )[ a,; a’;]

T
w2 )+ 0 =] |0 =) -5 - %‘;]

8,u 8MT]
"0 " 00

Recall that we only use the first two rows of V.D,,(8;Y) (evaluated at ) in the information

matrix test statistics.
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APPENDIX B - INFORMATION MATRIX TEST QUANTITIES FOR
THE BETA REGRESSION MODEL

We present below the quantities required to compute the information matrix

test statistics for the varying precision beta regression model. We have

dpi 1 dodp  —gi(p)  d (alm>2: —2g7 (i)

i g'(p)" dpadnmi (g5 (u))” A \dma ) (g ()

& dpi _ —gi"(pi)gh () + 2091 (ui))®  di _ 1 d dbi _ —g5(¢1)
dﬂ dni (91 ()3 Codmei o gh(¢s)  doidna (91(¢))?
<d¢i) —293(¢0)  d* doi _ —g5'(0i)gh(di) +2(g5(0))”

do; \ dno; (gh(3))3"  dg? dn (95(¢))3 '

Let w; =" (pii) + ' (1 — pi) i), ¢ = dilpsw; — ' (1 — p3) ;)] and also

1 N2 (1 A 2000 N ol ._id/ii dﬂiQ
pi= (L= )P0 (1= )00 + 120 () =/ (0), 0= ( dnu)’

dui [( & dwi\ dpi [ d dwi\? y y
b — el - A 1 — 1)
" dn [(duf dnii ) dmi * dpidmi) |’ mi =y (i) =97 (L= pi)a),

t:(dd@><®ﬁ2
© \didngi ) \dnai )
L {( L) g +<dm>2_2p.<d¢i>2]
Y dn [\ doFdn ) dngi  \ doi dip; “Ndni) |’

where 1)/ and 1" are the trigamma and tetragamma functions, respectively. The following

derivatives are needed for obtaining d;(6) and its Jacobian matrix:

T

oy Opi e Opy b

8/% = Qjw;, 0 Qsi’ 5/% ¢z¢ (( Nz)¢z);

o

aﬁ; = (L= ) (1 = i) i) =/ (9).

82/1;‘6 2 1 2 1 ow;

3<Z52 = pi )" (i) — (L — ) “" (1 — i) i), o = pim;,

a " " 0 1 " "

a@ i (pipi) + (1 — pa) " (1 — ps) i), 87;@- = ¢t (pii) + dit)™ (1 — i) di),
om 1" N N4 de; _
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06~ 06 TV a2 om 2oe T agr
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Also, let
our e ot oul ot our
e; = — , hi=pi =+ =, =i+ =L,
om om0 o T Mg T 09
The partial derivatives of the matrix C;(6) are
80‘(T7S) * * d/L ’ * *
oo =R 207 — e o8 () o+ 200 -]

+ @iy — 17 )b }l‘irl‘z‘sxit,

oc"™dgy dp l( d dp
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The above derivatives are used to construct the matrix VD, () =n=1 3", Vd;(0).
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APPENDIX C - PROOFS OF THE VALIDITY OF TWO BETA
REGRESSION INFORMATION MATRIX TESTS

Proof of Lemma 1

Proof. Let Y be a beta distributed random variable and W7 =log(Y'). It is easy to see,
from the moment generating function of Wy, that E(||W7]|") < oo for all integers r > 0.
Since 1 —Y is also beta distributed, the same holds for Ws =log(1—Y). It follows that
Y;* and Yj have finite moments of all orders.

Let G be a given partial derivative of ¢(u;,¢;;Y;) of any order with respect to
a component of 8. Then, it follows from the expression for ¢(p;,¢;;Y;) that G is a linear
combination of ¥;* and YJ. Thus, G has finite moments of all orders.

Also, the expression for E(G"), for a given integer r > 0, involves products of

regressors and a continuous function of (p;,¢;). Thus, from Assumptions (A2) and (A3),

there exists a positive constant K¢ , such that |E(G")| < Kg,, for all 4. O

Proof of Lemma 2

Proof. Let v be a k-dimensional vector with ||v|| = 1. Consider the sequence of univariate
random variables Z,, ; = vTWnyi. Then, v,; = E(Z,,;) = vT,um and Var(Z, ;) = ‘71%,1' =
UTZM-'U, with 05, ; > 0 Vn and Vi, since ¥, ; is positive definite Vn and Vi. From the Cauchy-
Schwartz inequality, || Zy, ;|| < ||Wn.l|, therefore, B(|| Z.i[>T0) < E(||W,.,]|>T) < A Vi.

Define Z, =n" 'Y Z,i=v Wy, 3 =E(Z,) =n"' S i =v' i, and
g5 = Var(y/nZ,) =n"'¥1 05 ;. Notice that

n
g2=n""t > v' Y, v=v' T,
i=1

Since ¥,, converges to a positive definite matrix V as n — oo, then, 6% —v' S v—v Vo>

0. That means we can take 6’ > 0 such that 2 > ¢ for sufficiently large n.

From Theorem 5.11 in White (2001),

\/ﬁ@ B N0, 1).

On

Therefore,

Zn_’?n Zn_i/n 'vTinv D
= 0,1).
\/ﬁ UTV»U \/ﬁ o ’UTV’U %N( , )
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Hence, v/1(Z p, —n) BN (0,9 V), for all unit vectors v. In summary, for all unit vectors
v,

Vi (W, — i) = Vi Zy — ) BN (0,0 V),

the limiting distribution being the distribution of ' N}(0,V) From the Cramér-Wold

theorem, we conclude that

as we wanted. O
Proof of Theorem 3

Proof. For the beta regression log-likelihood function ¢, we have
Vi(B.) = VE(00) + 1A, (00:Y ) (B — B0) + 57

where r, the remainder of the multivariate Taylor expansion, is a vector whose ith
component is (8, — OO)TJM(GZH;Y)(% —60), Jin being the Jacobian matrix of the ith
row of A,(80,Y) and 67, for each i, is a vector such that |65, — 8| < 16, — 6g|. Since

i,no

0, — 0y = Op(n~1/2), whereas J; ,(6;Y) = Op(1), it follows that r = Op(n~1). That is,
V{(6,) = V(80) +nAn(80;Y ) (8, —80) + Op(1).
The left hand side of the above equation is, of course, equal to zero. Thus,
0 = V(60) +1An(80;Y)(8n — 00) + Op(1).
That is, V£(80) +nA,(80:Y)(8,, — 69) = Op(1). Therefore,
n~Y2V0(00) +n'/? A, (00;Y) (8, — 0) = Op(n~?) = 0p(1),

ie., n Y2V0(00) +n'2A,(00:Y) (8, —6p) £ 0. This can be rewritten as

n~Y2v0(00) +n'/? (An(eo;Y) —n! ZAZ-(OO)) (6,,—60)
=1

+n_1/2 Z Az(ao)(én —0y) £> 0.
=1

From Lemma 1, A,(0¢;Y) is an average of independent random variables with

uniformly bounded variances. Then, it follows from Kolmogorov’s first strong law of large
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numbers that A,(00;Y)—n"13", Ai(Go) converges almost surely to zero. The second
term is, therefore, op(1). Hence,
n V2V 0(80) + 12> Ax(60) (B, — 80) 5 0
i=1
That is,
02V 0(80) + 1/2< 13" Ay(80) — )) (6, —60)

=1
+n'/2A4(80)(8, —60) 5 0.

Assumptions (A1) and (A4) imply that the second term in the above expression is op(1).
We arrive at n=/2V¢(6y) +n'/2A(0,) (0, — 00) £ 0. From this result, we immediately
obtain

n Y2V D(60)A(80) " V(80) +n'/>V D(8,)(8,, — 6y) 5 0. (C.1)

We now consider the vector D,,. A first order Taylor series expansion yields
Dy(8,) = D,,(8) + VD, (6,)(6,,— 8o), (C.2)

where |8, — 89| < |6, — 8o||. Notice that 8, — 8y = op(1), since 8, — By = op(1).
Consider now the matrix VD, (6,). Let (M ). denote the jth column of a

general matrix M. We consider a Taylor expansion of (VDn(én)),j in the form
(VDn(B1)).j = (VDu(00)5 + Kjn (85,5 ) (8 — o).

where K, is the Jacobian matrix of (VD,,) ; and ||9§’n — 00| < |0, — 89| Since Kjn=
Op(1) and 8,, — 8y = op(1), we conclude that (VD,(8,)),; — (VD,(80)); = op(1), for
each j. That is, VD, (8,) — VD, (8y) = op(1). Now,

Dn(én) = VDn(én) - VDn(ao) + VDn(ao) - E(VDn(ao)) +E(VDn(00))

We have seen that VD, (0,) — VD, (8y) = op(1). Also, from Lemma 1, all
entries of VD, (0p) are averages of independent random variables with uniformly bounded
variances. We then conclude, from Kolgororov’s first law of large numbers, that V.D,,(6g) —
E(VD,,(0p)) converges to a zero matrix almost surely. Finally, Assumption (A5) states that
E(VD,(0y)) converges to VD(8y). We arrive at V.D,,(6,,) A VD(8y). Since 8,, — 8, =

Op(n=1/2), we easily obtain

Vi(VD,(8,) — VD(6))(8, —80) 5> 0.
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We combine the result above with (C.1) to obtain
n~ Y2V D(00)A(80) ' V((80) +n'/2V D, (8,,)(8,, — 6)) 5 0. (C.3)

We will now turn to the quantities d;(8g) — V.D(00)A(0)~1V{(0;Y;). Under
the null hypothesis, they have zero mean vector. Also, from Lemma 1, they have finite
and uniformly bounded moments of all orders. From this fact and Assumption (A6), we

conclude that all conditions of Lemma 2 are satisfied. We obtain
Dy (80) —n~ >V D(60) A(By) "' V(8y) B Nic(0,V (6y)).
By combining this result with (C.3), we arrive at
VD, (80) +/nV D (8,) (8, — B0) 2 N (0,V(6y)).
We can now return to Equation (C.2). We have
VnDy(0,) = v/nD,y(80) +v/nV Dy (6,,) (8, — 60).

Thus, we proved that, under the null hypothesis,

VD, (8,) B Nk (0,V ().

Proof of Theorem 4

Proof. We begin by considering a first order Taylor expansion of the jth column of V},; in

the form

(an (9n))3 = (an (90)).]' + ij(9§,n; Y)(én - 90)»

where W, is the Jacobian matrix of (Vy1); and [|65,, —6ol| < 16, — 8o]|. Since Win =
Op(1) and 8,, — 6y = op(1), then, Win (6% :Y)(8,, — 09) = op(1). Given that this holds

7,

for all j, we conclude that an(én) — Va1(6p) £ OKkxK.
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If suffices, then, to show that V},1(6y) T V' (6p). We will show that this conver-

gence is, in fact, almost sure, under our assumptions. We begin by noticing that

1 n
Vi1(6) :EZ(di(oo)d (00)" ——Zd (00)V0(00:Y;) " A, (00:Y) 7!
=1 1 1
x VD, (00:Y)" ——ZVD (00;Y)An(60;Y) 'V (60;Yi)di(60)
z 1
(VD00 ¥) (005 ) (00

V{(00;Y) " An(00:Y) VD, (00:Y) ).

We will consider below each one of the four terms in the above expression
separately.

1 We write

= LS (d:(80)di(60) T — E(d:(60)di(00)T))

zn: d;(60)").

From Lemma 1, the first term in the right hand side of the above expression is an

3\*—‘

—Zd (80)d
1
TL

average of independent random matrices with entries having uniformly bounded
variances and zero mean. Then, it follows from Kolmogorov’s first strong law of
large numbers that it converges almost surely to a zero matrix. Assumption (A7)
guarantees that the second term in the right hand side of the expression converges
to ®(0p). We thus conclude that left-hand side of the above expression converges
almost surely to ®(6y).
2 As for the second term in the expression of V,1(60p), we have
n
(07 20 di(00)V00:Y) T ) 4 (60:Y) VD, (60:Y ) =
i=1
(w7 z (80)VE(80:) ~ E(di(80)VL(00:Y) 1))
n
X An(80:Y) " VDL (60:Y) "+ (07! SO E(di(80)V(00:Y) )
i=1

An(80;Y) VD, (80:Y)".

From Lemma 1 and Kolmogorov’s first strong law of large numbers, the first term in

the above sum converges almost surely to a zero matrix. Also, A, (6o;Y’) converges
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almost surely to A(0y) and VD, (0y;Y) converges almost surely to VD(8). From
Lancaster (1984) and Assumption (A5), the average in the second term converges
to —VD(6y). It then follows that the second term in the expression of Vj,1(6))
converges almost surely to VD(6y)A(fg) "'V D(8)".

3 It is immediate, then, that the third term in the expression of V;,1(0g) converges almost
surely to V.D(80)A(6y) "'V D(6y)".

4 The fourth term in the expression of V,1(0p) is

—ZVD (60;Y)An(60;Y) " V(B0 Yi)VL(B0;Y;)

iz
An(80;Y) 'V D, (00;Y)" = VD, (60;Y ) An(80;Y) ™!
x <n1iwwo;mw(ao;n)T)An(oO;Y)1VDn(00;Y)T
i=1
= VD (60;Y) An(00:Y) "' Bu(80:Y) An(60;Y) ' VD (60;Y) .
Under the null hypothesis, E(A;(0y) + B;i(0p)) = OkxVi. We then conclude, from
Kolmogorov’s first strong law of large numbers and Assumption (A4) that B, (0o;Y)

converges almost surely to —A(fy). The fourth term in the expression of V,1(60)

thus converges almost surely to
—VD(HO)A(OO)_1VD(00)T.

We conclude that V;,1(6p) converges to ®(6) +V.D(8)A(0o) 'V D(8y)" almost surely.
We thus proved that Vy1(8,) 5 ®(60) + VD(80)A(80)"1VD(6)T.
We will now turn to the expression of V(6y). Under the null hypothesis, it is

the limit when n — oo of

712”:[ ( VD(oO)A(oo)*W(Oo;E))
X (di(o()) - VD(00>A(90)_1W(00%))T]

=n 1 an E(d;(60)d;(80) ") — VD (80)A(6o) !

< (0 Y B(VHO V) di(00)T)) — —1ZE (60)V£(80:)) )

1=1

% A(80)"'VD(8)T + YV D(8y)A(6) " <n—1 i E(V(80; Y;)VE(By: n)T))
1=1

X A(QQ)—IVD(O())T.
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From what we have seen before, the limit of the above expression is

®(89) +VD(00)A(60) 'V D(6y)"
and, hence, this is the expression for V' (6y). We thus arrive then at the desired result. [
Proof of Theorem 5

Proof. Similarly to the proof of the former theorem, we conclude from a first order Taylor
expansion that Vs (én) — Vn2(00> £> Ok xKk-

We will complete the proof by showing that V;,2(0) A V(68p). We have

Voo (60) = zd (60)d +n7 1S (di(80)VE(B0; Vi) T
1=1

Bn(00:Y) " L(60:Y) )+ S (Ln(80;Y) By (80; Y ) ™!

=1
x VE(80;Yi)di(00) )+ (Ln(00;Y) Bn(80;Y) ' VE(80;Y7)
=1
x V0(00;Y;) Bu(00:Y) 'L, (80;Y Zd (8o)d

+ (n—1 zn:di(GO)VE(GO;}/i)T>Bn(00;Y)‘an(eg;Y)T

i=1

L0 ¥) Bu(80:Y) (S VHB V) di(00)T)

i=1

+Ln(GO;Y)Bn(Go;Y)_1<n_1Zn:VE(QO;}Q)VK(OO;}Q)T)
By(60;Y) " Ly (80;Y Zd (60)d — (Ln(60;Y)

X Bn(00;Y) 1L, (00:Y)") — L,(00;Y) B (00;Y) 'L, (00;Y) "
+ L (00;Y)Bn(00;Y) " B(00;Y ) Bn(00;Y) " L, (00:Y) T

n
=1~ 3" di(00)di(80) " — Lu(60:Y) Bu(60;Y) ' Lu(60:Y) "
i=1
It is now clear from the proof of the previous theorem that, under the null hypothesis, the
first term in the last sum above converges almost surely to ®(6g), L, (0o;Y) converges

almost surely to —V.D(0p) and B, (0p;Y") converges almost surely to —A(0p). The last

expression above thus converges almost surely to
®(80) +V.D(60) A(80) ' VD(60) "

which is the expression for V(6p). That completes the proof. ]
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APPENDIX D - SAMPLE MATRICES FOR ATYPICAL CASES
DETECTION IN GAUSSIAN LINEAR REGRESSIONS

In what follows we will obtain expressions for A, (0;y) and B, (0;y) in the
Gaussian linear regression model with multiplicative heteroskedasticity. Let pu; = a:ZT,B and
e exp(ziTé), where z; = (x;1,. .. ,:cip)T and z; = (21, ... ,zz-q)T. Also, let X = [z -~ z,] "
and Z =[z1 -~ zn]T be the matrices of mean and dispersion regressors, respectively. The

1-th log-likelihood function for Y7,...,Y,, with observed values y1,...,yn

1 1 1
li(0;y:) = —510g<27f) - iziTé— §€XP(—Z¢T5)(%‘ —z )%

The derivatives of ¢;(8;y;) with respect to 8 and 4 is

(%Zéeﬂ’y’) =exp(—z; 8)(y; — 2] B)z;,
00 o [exo(—=] )i — a7 B 1],

The blocks of B;(8;y;) = 04;(8;y;)/00 x 90;(6;1;)/08 " can be written as
Oli(0;y:) 9Li(0;y;)
B oB"
T ) (2T (s — ] B) [exp(~2] 8) (i~ o] B

— 1}:@2;,
Oli(0; i) 0Li(605y:) 1

_ Tevin T2 11%,.,T
55 ag il -l B 1] sz

Similarly, the blocks of A;(8;y;) = 0%(;(0;y;)/00060" can be expressed as

=exp(—2z] 8)(yi — ] B)’wiz] ,

20.(0-
9%0;(0;y;
aﬂ(aa‘yf) = —oxp(—2 6)(yi — 2] B)ziz]
9%0;(0;y; 1
aa(aﬂy) =~ exp(—z] 8)(yi—a] B)*zi2]

We will now obtain expressions for A,(8;y) and B,(6;y) using the first- and
second-order derivatives of the total log-likelihood function. Let w; = exp(—z, 4), ¢; =
yi —x; B, W = diag(wy,...,w,) and E = diag(eq,...,e,). Additionally, let u=(1,...,1)7
be the n-dimensional vector of ones. We can now write the total log-likelihood first-order

derivatives as

o0(e) ole) 1 B
Tﬁ——XJWKy—Xﬂ)zmdA7%f_§ZWWU# In)u.
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It is possible to write B, (0;y) =n"' 3" | B;(0;y;) as

XTW2E?X SIXTWEWE?-1,)Z
1
Bn(oay) -
n
SZTWEWE?-1)X 1ZT(WE?-1,)*Z

It follows that B, (8;y) =n"'MT M, where M is the matrix of order n x (p+q) given by
M= \WEX J(WE*-1,)Z|.
Finally, A,(8;y) =n~' X", A;(8;y;) can be expressed as

XWX X'WEZ
1
An(a;y):_g
Z'WEX Z'WE?*Z
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APPENDIX E - SAMPLE MATRICES FOR ATYPICAL CASES
DETECTION IN BETA REGRESSIONS

We will now provide simple expressions for A, (0;y) and B, (0;y) in varying
precision beta regressions. Let g1 (p;) = .’BZT B =m; and ga(¢;) = ziT 0 = 19;, where z;, z;,
X and Z are as in the previous appendix. The i-th log-likelihood function for Y7,... Y,

with observed values y1,...,y, is

0:(0;y:) =logT(¢) —log T(pi;) —log T'((1 — p3) ) + (michi — 1)y + (5 — 2)y1,

where y =log(y;/(1 —vy;)) and y;r = log(1l —y;). Let Y;* =log(Y;/(1—-Y;)) and Y;T =
log(1—Y;). It can be easily verified that E(Y;*) = ¢ (uipi) — (1 — pi) i), IE(Y;T) =
Y((1— pi)di) — (i), where ¢ is the digamma function. We will denote E(Y;*) and E(YZT)

by ! and uj, respectively. The derivatives of ¢;(0;y;) with respect to 8 and é are
Oli(05yi)  0li(85yi) dpi O s a1
= = Qi\Y; — M) 77— T4,
op i dm; OB il —p )9/1(#1')
Oli(0;yi)  0li(85yi) doi Onp; . b4y L
= = Wilys —pi) T — 1y 2.
o Don di 06 [iyi — i)+ (Y —m )]gé(@)

Let t; =1/¢} (1) and h; = 1/¢b(#;). The blocks of B;(8;y;) are

0l;(0;y;) 0;(0;y;)
op o’

=¢i(y; — i ) i (y; — ) + (y; — ) |tihiziz;
0B 56T (b(y 2 )[:U' (y K ) (y M)]

00 (0;y;) 04;(0; ;)
9o 08"

= — ¢ y; — )tz

— [yl — ) + (yf — pD)Ph2zi2]

Similarly, the blocks of A;(0;y;) are

1 0%(0; )

9%4;(0; ;) .
= —0iq;X;x; ,
bi 08087

78,38,BT = —fitihiziz, |
where the quantities ¢;, fZ and 7; are the corresponding undotted quantities in Appendix B
of Ferrari, Espinheira and Cribari-Neto (2011) .

We will now express A,(6;y) and B,(6;y) using the first- and second-order
derivatives of the total log-likelihood function. Let é; =y — puf, w; = wi(y; — puf) +
(y;r —,u;r), w= (wi,...,w,) ", E =diag(éi,...,é,) and W = diag(iy,...,1wy). Also, let
T = diag(ty,...,t,), H=diag(hy,...,h,), Q = diag(g1,...,¢n), F =diag(f1,...,fn), V=

diag(1,...,0,), ® = diag(¢1,...,¢n), and p* = (pi,...,115)". We can now write the total
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log-likelihood first-order derivatives as
00(0)

op
It is possible to write B, (0;y) =n"' 3", B;(0;y;) as

00(6)

2 — 77 .
96 v

= XT0T(y—p*) and

XTO?T?E2X XTOTEWHZ
1
Bn(evy) = ;
ZT®TEWHX  Z'H*W?Z
As in Appendix D, we can write the matrix B, (0;y) as B,(8;y) =n"'MT M, where
M = {XT(IDTE ZTHW}, a matrix of order n x (p+¢). Finally, the matrix A, (0;y) =
n~tS" , A;(8;y;) can be expressed as
XToQX X'FTHZ
1
(i) =
Z'FTHX  Z'VZ
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