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ABSTRACT

The beta distribution is routinely used to model variables that assume values in the

standard unit interval. Several alternative laws have, nonetheless, been proposed in the

literature, such as the Kumaraswamy and simplex distributions. A natural and empirically

motivated question is: does the beta law provide an adequate representation for a given

dataset? We test the null hypothesis that the beta model is correctly specified against

the alternative hypothesis that it does not provide an adequate data fit. Our tests are

based on the information matrix equality, which only holds when the model is correctly

specified. They are thus sensitive to model misspecification. Simulation evidence shows

that the tests perform well, especially when coupled with bootstrap resampling. We model

state and county Covid-19 mortality rates in the United States. The misspecification tests

indicate that the beta law successfully represents Covid-19 death rates when they are

computed using either data from prior to the start of the vaccination campaign or data

collected when such a campaign was under way. In the latter case, the beta law is only

accepted when the negative impact of vaccination reach on death rates is moderate. The

beta model is rejected under data heterogeneity, i.e., when mortality rates are computed

using information gathered during both time periods.

The beta regression model is tailored for responses that assume values in the standard unit

interval. In its more general formulation, it comprises two submodels, one for the mean

response and another for the precision parameter. We develop tests of correct specification

for such a model. The tests are based on the information matrix equality, which fails

to hold when the model is incorrectly specified. We establish the validity of the tests in

the class of varying precision beta regressions, provide closed-form expressions for the

quantities used in the test statistics, and present simulation evidence on the tests’ null

and non-null behavior. We show it is possible to achieve very good control of the type I

error probability when data resampling is employed and that the tests are able to reliably

detect incorrect model specification, especially when the sample size is not small. Two

empirical applications are presented and discussed.

Diagnostic analyses in regression modeling are usually based on residuals or local influence

measures. They are used for detecting atypical observations. We develop a new approach for

detecting such observations when the parameters of the model are estimated by maximum

likelihood. It is based on the information matrix equality, which holds when the model is



correctly specified. We consider different measures of the distance between two symmetric

matrices and use them with the sample counterparts of the matrices in the information

matrix equality in such a way that zero distance corresponds to correct model specification.

The distance measures we use thus quantify the degree of model adequacy. We use such

measures to identify observations that are atypical because they disproportionately alter

the degree of model adequacy. We also introduce a modified generalized Cook distance and

a new criterion that uses the two generalized Cook’s distances (modified and unmodified).

Empirical applications involving Gaussian and beta models are presented and discussed.

Keywords: Beta distribution; beta regression; bootstrap; information matrix test; model

misspecification; Monte Carlo simulation.



RESUMO

A distribuição beta é usada rotineiramente para modelar variáveis que assumem valores no

intervalo unitário padrão. Várias leis alternativas foram, contudo, propostas na literatura,

tais como as distribuições Kumaraswamy e simplex. Uma questão natural e empiricamente

motivada é: a lei beta fornece uma representação adequada para os dados sob análise?

Nós testamos a hipótese nula de que o modelo beta está corretamente especificado contra

a hipótese alternativa de que ele não fornece um ajuste adequado aos dados. Nossos

testes são baseados na igualdade da matriz de informação, que somente é válida quando

o modelo se encontra corretamente especificado. Os testes são, portanto, sensíveis a

qualquer forma de especificação incorreta do modelo. Resultados de simulação mostram

que os testes têm bom desempenho, especialmente quando utilizados com reamostragem

bootstrap. Nós modelamos as taxas de mortalidade estaduais e municipais de Covid-19

nos Estados Unidos. Nossos testes de má especificação indicam que a lei beta representa

adequadamente as taxas de mortalidade do Covid-19 quando estas são computadas com

base em dados anteriores ao início da campanha de vacinação de Covid-19 ou com base

em dados coletados quando tal campanha já se encontrava em andamento. No último

caso, a lei beta só é aceita quando o impacto da vacinação sobre as taxas de mortalidade

é moderado. O modelo beta é rejeitado sob heterogeneidade de dados, ou seja, quando

as taxas de mortalidade são computadas usando informações coletadas durante ambos os

períodos de tempo. Os testes de má especificação são estendidos para cobrir o modelo

beta de regressão de precisão variável.

O modelo de regressão beta é usado com variáveis dependentes que assumem valores no

intervalo unitário padrão, (0,1). Em sua formulação mais geral, contém dois submodelos,

um para a média e outro para o parâmetro de precisão. Apresentamos expressões em

forma fechada para estatísticas de teste da matriz de informação nessa classe de modelos.

Reamostragem bootstrap é usada para alcançar melhor controle sobre a frequência de erro

tipo I. São apresentados resultados de simulação de Monte Carlo sobre o comportamento

dos testes, tanto sob a hipótese nula como sob a hipótese alternativa. Os resultados indicam

que os testes são tipicamente capazes de detectar especificação incorreta do modelo, em

especial quando o tamanho da amostra não é pequeno.

A análise de diagnóstico na modelagem de regressão é geralmente realizada com base

na análise de resíduos ou influência local. Desenvolvemos uma nova abordagem para



detectar pontos de dados atípicos em modelos para os quais a estimativa de parâmetros é

realizada por máxima verossimilhança. A nova abordagem utiliza a igualdade da matriz de

informação que é válida quando o modelo está corretamente especificado. Consideramos

diferentes medidas da distância entre duas matrizes simétricas e as utilizamos com as

contrapartidas amostrais das matrizes na igualdade da matriz de informação de tal forma

que a distância zero corresponde à especificação correta do modelo. As medidas de

distância que usamos quantificam, assim, o grau de adequação do modelo. Mostramos que

elas podem ser usadas para identificar observações que contribuem desproporcionalmente

para alterar o grau de adequação do modelo. Também introduzimos uma distância

Cook generalizada modificada e um novo critério que utiliza as duas distâncias Cook

generalizadas (modificadas e não modificadas). Aplicações empíricas envolvendo modelos

de regressão gaussiano e beta são apresentadas e discutidas.

Palavras-chave: Bootstrap; distribuição beta; especificação incorreta; regressão beta;

simulação de Monte Carlo; teste da matriz de informação.
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1 BETA DISTRIBUTION MISSPECIFICATION TESTS WITH APPLI-

CATION TO COVID-19 MORTALITY RATES IN THE UNITED STA-

TES

1.1 INTRODUCTION

Several variables of interest assume values in the standard unit interval, (0,1).

This is the case, e.g., of rates, proportions and concentration indices. The beta distribution

is commonly used to model such variables. For instance, Wiley, Herschkorn and Padian

(1989) use the beta law to model the probability of HIV transmission in male-to-female

sexual encounters and Bury (1999) lists applications of the beta law to engineering.

Other applications of the beta distribution can be seen in Oguamanam, Martin and

Huissoon (1995) (gear damage analysis), Sulaiman et al. (1999) (relative sunshine duration

in Malaysia) and Elmer, Jones and Nagin (2018) (group-based trajectory modeling of

neurological activity of comatose cardiac arrest patients). Additionally, Johnson, Kotz and

Balakrishnan (1995) note that “[t]he beta distributions are among the most frequently

employed to model theoretical distributions”. It is also noted that the beta law arises

naturally in ‘normal theory’ since Z1/(Z1 +Z2) is beta distributed if Z1 and Z2 are

independent chi-squared random variables. The beta distribution can also be obtained as

the limiting distribution of eigenvalues ratio in a sequence of random matrices.

Alternative distributions with support in the standard unit interval have been

proposed in the literature and have been increasingly used in empirical analyses, such as,

e.g., the Kumaraswamy (JONES, 2009) and simplex distributions (JØRGENSEN, 1997)

and more recently, the unit-Weibull (MAZUCHELI; MENEZES; GHITANY, 2018) and

reflected unit Burr XII (RIBEIRO et al., 2021) distributions. It would then be useful to

provide practitioners with a test that can be used to determine whether the beta law —

which is still the most used model with fractional data — yields an adequate data fit.

If not, an alternative model should be considered. This is our chief goal in this chapter.

In particular, we present tests of the null hypothesis that the beta model is correctly

specified against the alternative hypothesis that it is misspecified. Alternative models

should be considered for the application at hand whenever the null hypothesis of correct

beta model specification is rejected. In particular, we consider a general test of correct

model specification that was introduced by White (1982), known as ‘the information matrix

test’, and also some variants of it. The name of the test stems from the fact that the
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information matrix equality is known to only hold when the model is correctly specified.

Information matrix test statistics are based on the sample counterparts of the model

matrices that comprise such an equality. They were derived for several statistical models

and distributions, e.g., the Gaussian linear regression model (HALL, 1987), binary data

models (ORME, 1988), linear regressions with autoregressive and moving average errors

(FURNO, 1996), logistic regressions (ZHANG, 2001), beta-binomial models (CAPANU;

PRESNELL, 2008), and the negative binomial law (CHUA; ONG, 2013).

We obtain three information matrix test statistics for testing the null hypothesis

that the beta model is correctly specified. They differ in the estimator used for the

covariance matrix of a given random vector. The first two test statistics employ different

estimators of the random vector’s asymptotic covariance matrix whereas the third and

final test statistic employs a resampling-based estimator of its exact covariance matrix.

Since our numerical results show that the first two tests are considerably size-distorted

in small to moderately large sample sizes, we also perform them using bootstrap critical

values. It is noteworthy that the tests we develop are based on the information equality,

which only holds when the model specification is not in error. As a consequence, they

have power against any form of model misspecification, not only of distributional nature.

The Monte Carlo simulation evidence we report shows that the tests perform

well, especially when coupled with bootstrap resampling. As noted above, three variants of

the information matrix test are considered. For two of them, bootstrap resampling is used

to obtain critical values that do not rely on asymptotic approximations whereas, in the

remaining test, bootstrap resampling is used to estimate a covariance matrix that is used

in the test statistic. Overall, the use of bootstrap resampling yields good control of the

type I error frequency. Simulations in which the data were generated under the alternative

hypothesis show that the tests are typically able to detect incorrect model specification,

especially when the sample size is not small. Consider, e.g., the Kumaraswamy distribution,

which is commonly used as an alternative law for fractional data. The numerical results we

report show that when such a law is the true data-generating mechanism, the information

matrix tests reject the beta model with probabilities around 0.9 for samples that contain

250 data points at the 10% significance level. Our Monte Carlo evidence also shows that

the tests can successfully reject the univariate beta model when the sample size is not very

small and the underlying law is beta but with non-constant means.
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We model state and county Covid-19 mortality rates in the United States (US)

using the univariate beta model. Three sample periods are considered: the first only

includes observations from prior to the start of the nationwide vaccination campaign,

the second encompasses data obtained before and after such a date, and the third and

final period only includes data collected when the vaccination drive was under way. The

testing inferences suggest that the beta law yields an adequate data representation for

Covid-19 death rates in the first and third time periods. By contrast, the beta law is

rejected when the data are heterogeneous, i.e., when the mortality rates are computed using

information gathered prior to and during the nationwide vaccination drive. Interestingly,

the univariate beta model is found to adequately describe the data in the third time period,

in which mortality rates are negatively impacted by the reach of the vaccination drive.

This happens because (i) in the initial part of the sample period vaccination was incipient

and had little impact on the overall mortality figures and (ii) the negative relationship

between the two variables is weakened by a few states, namely: Alaska, Arizona, Florida,

Massachusetts, North Dakota, and Rhode Island. When all counties in such states are

removed from the data, the inverse relationship between vaccination reach and death rates

become considerably more intense, and the information matrix tests reject the adequacy

of the univariate beta model, thus indicating that a more elaborate model should be used.

The information matrix tests’ inferences thus indicate that as long as the negative impact

of vaccination reach on death rates is moderate, the beta law can be used to represent

Covid-19 mortality rates. When such a negative impact becomes more pronounced, the

univariate beta model should no longer be used.

The remainder of the chapter is organized as follows. The beta distribution

and the corresponding maximum likelihood parameter estimation are briefly presented in

Section 1.2. In Section 1.3, information matrix misspecification tests for the beta model

are obtained. In particular, we introduce five tests, three of which based on bootstrap

resampling. Monte Carlo simulation results are presented in Section 1.4. We evaluate

the tests’ null (size) and non-null (power) behaviors. An empirical analysis of Covid-19

mortality rates in the US is presented and discussed in Section 1.5. Finally, concluding

remarks are offered in Section 1.6 together with directions for future research.



16

1.2 THE BETA DISTRIBUTION

Let Y be a beta-distributed random variable. Its density function, following

the parametrization introduced by Ferrari and Cribari-Neto (2004), can be expressed as

f(y;µ,ϕ) = Γ(ϕ)
Γ(µϕ)Γ((1−µ)ϕ)y

µϕ−1(1−y)(1−µ)ϕ−1, 0< y < 1,0< µ < 1,ϕ > 0, (1.1)

where E(Y ) = µ and ϕ is a precision parameter since, for fixed µ, Var(Y ) = µ(1−µ)/(1+ϕ)

decreases as ϕ increases. We write Y ∼ B(µ,ϕ). Unlike the standard beta parametrization,

the parameters in (1.1) can be directly interpreted in terms of the distribution mean and

precision. As we will see in the fifth section, it is useful to compare estimated precisions

obtained from different model fits. The beta density in (1.1) is symmetric if µ= 0.5 and

asymmetric otherwise, and it reduces to the uniform density if µ= 0.5 and ϕ= 2. The beta

density can be asymmetric to the left or to the right, and it can also be J-shaped, inverted

J-shaped, and U-shaped. It is thus clear, as noted by Johnson, Kotz and Balakrishnan

(1995), that “[b]eta distributions are very versatile and a variety of uncertainties can be

usefully modelled by them.” It is also noted that “[t]his flexibility encourages its empirical

use in a wide range of applications.”

Let Y1, . . . ,Yn be independent and identically distributed (i.i.d.) beta-distributed

random variables and let y1, . . . ,yn be their observed, realized values. In what follows, YYY

and yyy denote the n-vectors of such random variables and realizations, respectively. Also,

θθθ = (µ,ϕ)⊤ is the vector of beta parameters. Whenever required, we refer to µ and ϕ as θ1

and θ2, respectively. The log-likelihood function for YYY evaluated at yyy is

ℓ(µ,ϕ;yyy) ≡ ℓ(θθθ;yyy) =
n∑

t=1
ℓ(θθθ;yt),

where ℓ(θθθ;yt) = log(f(yt;µ,ϕ)) is the tth individual log-likelihood, which is given by

ℓ(θθθ;yt) = log(Γ(ϕ))− log(Γ(µϕ))− log(Γ((1−µ)ϕ))+(µϕ−1)y∗
t +(ϕ−2)y†

t ,

with y∗
t = log(yt/(1 − yt)) and y†

t = log(1 − yt). Let Y ∗
t = log(Yt/(1 −Yt)), µ∗ = E(Y ∗

t ),

Y †
t = log(1 − Yt) and µ† = E(Y †

t ). It follows that µ∗ = ψ(µϕ) −ψ((1 −µ)ϕ) and µ† =

ψ((1 −µ)ϕ) −ψ(ϕ), where ψ is the digamma function, i.e., the first derivative of the

logarithm of the gamma function.

The score vector is ∇ℓ(θθθ,yyy) = ∂ℓ(θθθ;yyy)/∂θθθ = (∂ℓ(θθθ;yyy)/∂µ,∂ℓ(θθθ;yyy)/∂ϕ)⊤, where

∂ℓ(θθθ;yyy)
∂µ

=
n∑

t=1
ϕ(y∗

t −µ∗) and ∂ℓ(θθθ;yyy)
∂ϕ

=
n∑

t=1
[µ(y∗

t −µ∗)+(y†
t −µ†)].
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Fisher’s information matrix for a single observation, B(θθθ), is defined as

the expected value of the individual log-likelihood derivative outer product: B(θθθ) =

E
[
∂ℓ(θθθ;Yt)/∂θθθ×∂ℓ(θθθ;Yt)/∂θθθ⊤]. For the beta model,

B(θθθ) =

Bµµ Bµϕ

Bϕµ Bϕϕ

 ,
where Bµµ = ϕ2w, Bµϕ =Bµϕ = c and Bϕϕ = (µc)/ϕ+(1−µ)ψ′((1−µ)ϕ)−ψ′(ϕ), ψ′ being

the trigamma function. The expressions for the quantities w and c can be found in

Appendix A. The total information matrix, i.e., the information matrix for the complete

sample, is nB(θθθ).

The maximum likelihood estimator of θθθ, say θ̂θθ, cannot be expressed in closed-

form. Parameter estimates are typically obtained by numerically maximizing the log-

likelihood function using a Newton or quasi-Newton nonlinear optimization algorithm.

In what follows, we will use Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm with

analytical first derivatives for maximum likelihood estimation; for details, see Nocedal and

Wright (2006).

1.3 BETA MISSPECIFICATION TESTS

Our goal in what follows is to obtain tests of correct model specification for the

beta distribution. Our focus is on the information matrix test introduced in full generality

by White (1982). Let θθθ0 = (µ0,ϕ0)⊤ be the true parameter value. The beta model is taken

to be correctly specified if Yt follows the beta law with parameter vector θθθ0 ∀t.

Let A(θθθ) = E
[
∂2ℓ(θθθ;Yt)/(∂θθθ∂θθθ⊤)

]
be the expected Hessian of ℓ(θθθ;Yt). When

the model is correctly specified and under the assumptions listed in Sections 2 and 3

of White (1982), the information matrix equality holds: B(θθθ0) = −A(θθθ0); alternatively,

A(θθθ000) +B(θθθ0) = Ok×k, where Ok×k denotes a k-dimensional square matrix of zeros,

with k = 2. Evidence that such an equality fails to hold is thus taken as evidence

of incorrect model specification. Our interest lies in testing the null hypothesis H0 :

A(θθθ000)+B(θθθ0) =Ok×k (correct beta model specification) against the alternative hypothesis

H1 : A(θθθ000)+B(θθθ0) ̸=Ok×k (beta model misspecification).

In what follows, we will present three information matrix test statistics that

can be used to test the correct beta model specification. At the outset, we derive several
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quantities that are used in such test statistics. We obtain, for the beta model,

An(θθθ;YYY ) = 1
n

n∑
t=1

[
∂2ℓ(θθθ;Yt)
∂θθθ∂θθθ⊤

]
= 1
n

n∑
t=1

Anµµ Anϕµ

Anµϕ
Anϕϕ

 ,
where Anµµ = −ϕ2w, Anϕµ

= Anµϕ
= (Y ∗

t −µ∗) − c and Anϕϕ
= −(µc)/ϕ− (1 −µ)ψ′((1 −

µ)ϕ) +ψ′(ϕ). Expressions for c and w can be found, as noted earlier, in Appendix A.

Additionally,

Bn(θθθ;YYY ) = 1
n

n∑
t=1

[
∂ℓ(θθθ;Yt)
∂θθθ

× ∂ℓ(θθθ;Yt)
∂θθθ⊤

]
= 1
n

n∑
t=1

Bnµµ Bnϕµ

Bnµϕ
Bnϕϕ

 ,
whereBnµµ =ϕ2(Y ∗

t −µ∗)2, Bnϕµ
=Bnµϕ

=ϕ(Y ∗
t −µ∗)

[
µ(Y ∗

t −µ∗)+(Y †
t −µ†)

]
andBnϕϕ

=[
µ(Y ∗

t −µ∗)+(Y †
t −µ†)

]2
. Notice that An(θθθ;YYY ) and Bn(θθθ;YYY ) evaluated at θθθ = θ̂θθ are con-

sistent estimators of A(θθθ0) and B(θθθ0), respectively.

We also need to obtain

DDDn(θθθ) ≡DDDn(θθθ;YYY ) = 1
n

n∑
t=1

ddd(θθθ;Yt),

where

ddd(θθθ;Yt) = vech
(
∂2ℓ(θθθ;Yt)
∂θθθ∂θθθ⊤ + ∂ℓ(θθθ;Yt)

∂θθθ
× ∂ℓ(θθθ;Yt)

∂θθθ⊤

)

is a 3×1 vector with lth component given by

dl(θθθ;Yt) = ∂2ℓ(θθθ;Yt)
∂θi∂θj

+ ∂ℓ(θθθ;Yt)
∂θi

× ∂ℓ(θθθ;Yt)
∂θj

,

where i = j = 1 for l = 1; i = 1 and j = 2 for l = 2; i = j = 2 for l = 3. For the beta

distribution, we obtain

d1(θθθ;Yt) = ϕ2[(Y ∗
t −µ∗)2 −w],

d2(θθθ;Yt) = (Y ∗
t −µ∗)− c+ϕ(Y ∗

t −µ∗)
[
µ(Y ∗

t −µ∗)+(Y †
t −µ†)

]
,

d3(θθθ;Yt) = −µ c
ϕ

− (1−µ)ψ′((1−µ)ϕ)+ψ′(ϕ)+
[
µ(Y ∗

t −µ∗)+(Y †
t −µ†)

]2
.

Note that DDDn(θθθ;YYY ) = vech(An(θθθ;YYY )+Bn(θθθ;YYY )) is a vector that contains three elements.

The information matrix test statistics we consider are functions of such a restrictions

vector evaluated at θθθ = θ̂θθ.

Let

V (θθθ) = E
{[
ddd(θθθ;Yt)−∇DDD(θθθ)A(θθθ)−1∇ℓ(θθθ;Yt)

]
×
[
ddd(θθθ;Yt)−∇DDD(θθθ)A(θθθ)−1∇ℓ(θθθ;Yt)

]⊤}
,
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where DDD(θθθ) = E[ddd(θθθ;Yt)] and ∇DDD(θθθ) = ∂DDD(θθθ)/∂θθθ⊤. White (1982) showed that, under

correct model specification,
√
nDDDn(θ̂θθ;YYY ) is asymptotically normally distributed with zero

mean and covariance matrix V (θθθ0) and noticed that a natural consistent estimator for

V (θθθ0) is

Vn1(θθθ) = 1
n

n∑
t=1

{[
ddd(θθθ;Yt)−∇DDDn(θθθ;YYY )An(θθθ;YYY )−1∇ℓ(θθθ;Yt)

]
×
[
ddd(θθθ;Yt)−∇DDDn(θθθ;YYY )An(θθθ;YYY )−1∇ℓ(θθθ;Yt)

]⊤}
evaluated at θθθ = θ̂θθ, where ∇DDDn(θθθ;YYY ) = ∂DDDn(θθθ;YYY )/∂θθθ⊤. Closed-form expressions for the

elements of ∇DDDn(θθθ;YYY ) in the beta model are given in Appendix A.

The first information matrix test statistic is

ζ1 = nDDDn(θ̂θθ)⊤[Vn1(θ̂θθ)]−1DDDn(θ̂θθ),

where q is the number of components of DDDn(θθθ;YYY ) considered (q ≤ 3). Under H0, ζ1 is

asymptotically distributed as χ2
q. The test is then carried out using critical values from

such a distribution, i.e., H0 is rejected at significance level α ∈ (0,1) if ζ1 > χ2
q,1−α, where

χ2
q,1−α is the 1−α χ2

q quantile.

Alternative information matrix test statistics can be obtained by considering

different consistent estimators for V (θθθ0). Chesher (1983) and Lancaster (1984) showed

that it is possible to use a covariance matrix estimator that does not require third order

log-likelihood derivatives. They use the fact that, under H0, ∇DDD(θθθ0) = −E[ddd(θθθ0;Yt) ×

∇ℓ(θθθ0;Yt)⊤] (LANCASTER, 1984). Let

Ln(θθθ;YYY ) = − 1
n

n∑
t=1

[
ddd(θθθ;Yt)×∇ℓ(θθθ;Yt)⊤

]
.

The Chesher-Lancaster estimator of V (θθθ0) is

Vn2(θθθ) = 1
n

n∑
t=1

{[
ddd(θθθ;Yt)+Ln(θθθ;YYY )Bn(θθθ;YYY )−1∇ℓ(θθθ;Yt)

]
×
[
ddd(θθθ;Yt)+Ln(θθθ;YYY )Bn(θθθ;YYY )−1∇ℓ(θθθ;Yt)

]⊤}
evaluated at θθθ = θ̂θθ. The corresponding information matrix test statistic is

ζ2 = nDDDn(θ̂θθ)⊤[Vn2(θ̂θθ)]−1DDDn(θ̂θθ).

Under H0, ζ2 is asymptotically distributed as χ2
q and, as before, the test is carried out

using asymptotic critical values.
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It is noteworthy that Vn1(θ̂θθ) and Vn2(θ̂θθ) are consistent estimators of V (θθθ0), the

latter being the asymptotic covariance matrix of
√
nDDDn(θ̂θθ;YYY ). A consistent estimator

of the exact covariance matrix of such a vector, say VSn(θθθ0), can be obtained by using

parametric bootstrap resampling, as shown by Dhaene and Hoorelbeke (2004). The

bootstrap estimator of VSn(θθθ0) based on B bootstrap samples, say V̂ ∗
B, can be computed

as follows:

1. Using the original sample YYY = (Y1, . . . ,Yn)⊤, compute θ̂θθ.

2. Obtain a random sample of size n, say YYY ∗
b = (Y ∗

1 , . . . ,Y
∗

n )⊤, from the beta law with

θθθ replaced with θ̂θθ, i.e., perform the pseudo-data generation from f(·; θ̂θθ).

3. Using YYY ∗
b , compute θ̂θθ

∗
b and DDDn(θ̂θθ

∗
b ;YYY ∗

b).

4. Execute steps (2) and (3) B times, where B is a large positive integer.

5. Using the bootstrap replicates DDDn(θ̂θθ
∗
1;YYY ∗

1), . . . ,DDDn(θ̂θθ
∗
B;YYY ∗

B), compute the bootstrap

estimator of VSn(θθθ0) as

V̂ ∗
n3,B = n

B−1

B∑
b=1

(DDDn(θ̂θθ
∗
b ;YYY ∗

b)− D̄DD)(DDDn(θ̂θθ
∗
b ;YYY ∗

b)− D̄DD)⊤,

where D̄DD =B−1∑B
b=1DDDn(θ̂θθ

∗
b ;YYY ∗

b).

For fixed n and as B → ∞, it follows that V̂ ∗
n3,B

p→ VSn(θ̂θθ) (DHAENE; HOO-

RELBEKE, 2004). We thus arrive at a third information matrix test statistic for testing

the correct beta model specification. It is given by

ζ3 = nDDDn(θ̂θθ)⊤(V ∗
n3,B)−1DDDn(θ̂θθ).

Under H0, for fixed B and n → ∞, ζ3 is asymptotically distributed as T 2
q,B−1, i.e.,

as Hotelling’s T -squared distribution with q and B− 1 degrees of freedom (DHAENE;

HOORELBEKE, 2004). As before, the test is performed using asymptotic critical values.

The information matrix test statistics ζ1, ζ2 and ζ3 measure the sample evidence

against the correct beta model specification. When they assume large values and H0 is

rejected at the usual significance levels, an alternative model should be used. A word of

caution, however, is in order. The test based on ζ3 is expected to perform well in small to

moderately large samples since the test statistic uses a bootstrap estimator of the exact

covariance matrix of
√
nDDDn(θ̂θθ;YYY ). The tests based on ζ1 and ζ2, by contrast, may be

considerably size-distorted when n is not large since the test statistics use estimators of the

asymptotic covariance matrix of
√
nDDDn(θ̂θθ;YYY ) and such an asymptotic covariance matrix
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may be a poor approximation for its exact counterpart when n is not large. To remedy

that, we recommend that ζ1 and ζ2 testing inferences be based on critical values obtained

from bootstrap resampling instead of on χ2
q,1−α (asymptotic critical values). To that end,

for i= 1,2:

1. Using the original sample YYY = (Y1, . . . ,Yn)⊤, compute θ̂θθ and ζi.

2. Obtain a random sample of size n, say YYY ∗
b = (Y ∗

1 , . . . ,Y
∗

n )⊤, from the beta law with

θθθ replaced with θ̂θθ.

3. Using YYY ∗
b , compute θ̂θθ

∗
b and ζ∗

i,b.

4. Execute steps (2) and (3) B times.

5. Reject H0 at significance level α if ζi exceeds the 1−α quantile of ζ∗
i,1, . . . , ζ

∗
i,B.

The use of bootstrap resampling when performing testing inferences based on the infor-

mation matrix test statistics ζ1 and ζ2 may considerably reduce size distortions since the

critical values used in such tests are now obtained from estimates of the test statistics’

exact null distributions.

As noted earlier, it is possible to test q ≤ 3 restrictions. In what follows, we

will test two restrictions since numerical evaluations not shown here for brevity revealed

that the third element of DDDn(θ̂θθ;YYY ) always assumes very small values and has very small

variance, especially when dispersion is low, which renders near singular estimates of V (θθθ0).

As noted by White (1982), when an indicator is identically null it should be ignored; see

the example on page 10 of his article. Unlike what happens in his example, the maximum

likelihood estimators in our case cannot be expressed in closed form, and that is why we had

to resort to numerical evaluations to determine whether there is a non-relevant restriction.

We thus test q = 2 restrictions by using ddd(θθθ;Yt) = (d1(θθθ;Yt),d2(θθθ;Yt)))⊤. Correspondingly,

we drop the last row of ∇DDDn(θθθ;YYY ). The asymptotic null distribution of ζ1 and ζ2 is χ2
2,

and that of ζ3 is T 2
2,B−1, where B is the number of bootstrap replications used in the

estimation of VSn(θθθ0).

According to White (1982), it is expected that the tests will be consistent (i.e.,

have unit power asymptotically) against any alternative which renders the usual maximum

likelihood inference techniques invalid. In our case, maximum likelihood inference involves

the estimation of the beta distribution mean and precision parameters. When Y follows

other laws or when the values of the beta parameters are not the same for all observations,

the test statistics are expected to diverge in probability so that unit power is achieved
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asymptotically. We performed Monte Carlo simulations using a number of alternative

models as the true data generating mechanism, which include alternative laws, data

inflation (i.e., data that contain zero and/or one values), and neglected regression structure.

The results from these simulations are presented in the next section. They show evidence

of asymptotic unit power under all sources of model misspecification we considered.

1.4 NUMERICAL EVIDENCE

We will now numerically evaluate the performance of the information matrix

tests when used to determine whether the beta distribution yields a satisfactory data

fit, i.e., when used to determine whether the beta model is correctly specified. Data

generation is carried out under the null and alternative hypotheses (correct and incorrect

model specification, respectively). Beta random number generation is performed using

the acceptance-rejection method based on uniform random draws obtained using the

Mersenne Twister method. Parameter estimates are obtained by numerically maximizing

the beta log-likelihood function using the BFGS quasi-Newton algorithm with analytical

first derivatives. The starting values used in the estimation of µ and ϕ are, respectively,

ȳ and ȳ(1 − ȳ)/V̂ar(Y ) − 1, where ȳ = n−1∑n
t=1 yt and V̂ar(Y ) = (n− 1)−1∑n

t=1(yt − ȳ)2.

The number of Monte Carlo and bootstrap replications are, respectively, 5000 and 500.

The null hypothesis is H0 : “the beta model is correctly specified” and the alternative

hypothesis is H1 : “the beta model is misspecified”.

The following tests are performed: ζ1, ζ1B, ζ2, ζ2B, and ζ3. The ζ1B and ζ2B

tests employ bootstrap critical values, and the ζ3 test statistic uses a bootstrap covariance

matrix estimate. The simulations were performed using the R statistical computing

environment; see R Core Team (2023).

At the outset, data generation is carried out under H0, i.e., the observations

are obtained as random draws from the beta distribution with mean µ and precision

ϕ. The significance levels and sample sizes are, respectively, α = 10%,5% and 1% and

n= 50,100,250,500,1000,5000. In the tables below, we omit rows corresponding to powers

of 100% after the first row with such powers.

In what follows, we will report the tests’ null and non-null rejection rates

obtained from size (data generated under H0) and power (data generated under H1)

simulations, respectively. Additionally, we will present p-value plots and size-power
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plots for the ζ1, ζ2 and ζ3 tests, i.e., for the tests that do not employ bootstrap critical

values. Based on the size simulations (the data-generating process is beta), we plot the

tests’ empirical sizes (vertical axis) against nominal sizes, i.e., against values of α ∈ (0,1)

(horizontal axis). The 45◦ line indicates perfect agreement between actual and nominal

sizes. Curves that lie above (below) such a diagonal line for a given range of values of

α are indicative of liberal (conservative) behavior at those significance levels. It should

be noted that, in this graphical analysis, α is not fixed at three values (0.10, 0.05 and

0.01) but varies from close to zero up to close to one. We thus obtain a comprehensive

view of the tests’ null behaviors. We also present plots that relate the tests’ empirical

powers (vertical axis) to the corresponding sizes (horizontal axis), computed for values of

α ranging from close to zero up to close to one. The non-null rejection rates are computed

using a data-generating process that differs from the beta law. It should be noted that

since the non-null rejection rates are plotted using the empirical critical value for each

nominal size (and not using asymptotic critical values) it is possible to compare the tests’

non-null behaviors by properly accounting for any existing size distortions. The higher

the curve, the more powerful the test. For more details on these plots, see Davidson and

MacKinnon (1998).

In the first size simulation, the data are generated from the beta law with

µ= 0.2 and ϕ= 20,40,80,120. The null rejection rates of the ζ1, ζ1B, ζ2, ζ2B and ζ3 tests

are shown in Table 1. All entries are percentages. The reported results lead to interesting

conclusions. First, the ζ1 and ζ2 tests, which use asymptotic critical values, are quite liberal

when the sample size is not very large; even with n= 1000, considerable size distortions

take place. Second, such tests have effective sizes that are close to the nominal sizes when

bootstrap (rather than asymptotic) critical values are used. For example, when ϕ= 40

and n = 100, the sizes of ζ1 and ζ2, at α = 10%, are 17.6% and 37.4%; when bootstrap

critical values are used, these rates drop to 10.7% and 9.8%, respectively. The use of

bootstrap resampling thus considerably reduces size distortions. Third, the size distortions

of ζ1 decrease when the value of ϕ increases. For example, the test’s null rejection rates

for n = 100 and α = 10% are 20.1% and 12.3% when ϕ = 20 and ϕ = 120, respectively.

It is worth noticing that the variance of Y decreases when the value of ϕ increases, and

that translates into more accurate testing inferences. Fourth, the ζ3 test tends to be

conservative when n≤ 1000, and displays null rejection rates close to the nominal levels
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with n= 5000.

In the second set of size simulations, data generation was performed from the

beta distribution with µ = 0.5 and the same precision values as before. The tests’ null

rejection rates are presented in Table 2. All entries are percentages. In general, the new

results are similar to those in the previous scenario. The ζ1 and ζ2 tests remain liberal,

with ζ1 exhibiting considerably higher null rejection rates relative to previous results. For

example, when ϕ= 40, α= 10% and n= 100, the null rejection rate of ζ1 is 28.4% whereas

in the previous scenario it was 17.6%. The testing inferences are less accurate here because

there exists more uncertainty since the variance of the beta distribution is maximal when

µ= 0.5; recall that such a variance is µ(1−µ)/(1+ϕ). The figures in Table 2 further show

that the ζ1B and ζ2B tests display the smallest size distortions, being accurate even when

n is small. For example, when ϕ= 20 and n= 50, the sizes of ζ1B and ζ2B, at α= 10%, are

10.0% and 9.6%, respectively. It is thus clear that bootstrap resampling works remarkably

well. Additionally, the ζ3 test remains conservative when µ= 0.5, but only for α= 10%

and 5%. The test exhibits small size distortions when n≥ 250. For instance, when ϕ= 20

and n= 250, the test’s null rejection rate, at α = 10%, is 9.3%.

The third and final set size simulations was performed using µ= 0.75 with the

same precision values as before. We used µ= 0.75 (and not µ= 0.8) to avoid symmetry

relative to the first scenario. The null rejection rates, expressed as percentages, are

presented in Table 3. Overall, the results in this scenario are similar to those in Table 1

(µ= 0.2). The ζ1 and ζ2 tests are liberal when n≤ 1000 and only become accurate with

n = 5000. The ζ1B and ζ2B tests have the smallest size distortions. Such tests deliver

accurate inferences even when n is small. For example, when n= 50, ϕ= 40 and α = 10%,

their null rejection rates are 10.1% and 9.7%, respectively. It should also be noted that the

ζ3 test exhibits conservative behavior when n≤ 500. For example, with n= 500, ϕ= 20

and α = 10%, its null rejection rate is 8.7%.

The results presented above show that, in general, the ζ1 test exhibits less

liberal behavior when the mean of the distribution is not in the middle of the standard unit

interval. For instance, when ϕ= 120, n= 250 and α = 10%, the test’s null rejection rates

for µ= 0.2,0.5,0.75 are 12.7%, 22.1% and 14.5%, respectively. Recall that the beta density

is symmetric if µ= 0.5 and asymmetric otherwise. It seems that the ζ1 test incorrectly finds

increasing evidence against the beta model as the distribution becomes more symmetric.
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The results also show that the ζ2 test is quite liberal in all scenarios, especially when the

sample size is small. Finally, the ζ3 test becomes more conservative as the distribution

mean moves away from 0.5. For example, when ϕ= 80, n= 500 and α= 10%, the test’s

null rejection rates for µ= 0.2,0.5,0.75 are 7.0%, 9.5% and 7.2%, respectively.

Figure 1 contains p-value plots for the ζ1, ζ2 and ζ3 tests corresponding to

different values of µ. The sample sizes are n = 100,250 and ϕ = 120. The three curves

move closer to the diagonal line when the sample increases from n= 100 to n= 250, thus

indicating that the tests’ size distortions for all nominal sizes decrease as n increases. It is

also clear that ζ1 and ζ2 are liberal and ζ3 is conservative regardless of the value of α, ζ1

being less size-distorted than ζ2, especially when the underlying beta law is asymmetric

(µ ̸= 0.5). Interestingly, for all values of α, under distributional asymmetry (symmetry), ζ1

(ζ3) is the most accurate test.

Figure 1 – P -value plots; panel (a): B(0.2,120) and n = 100, panel (b) B(0.5,120) and n = 100,
panel (c) B(0.75,120) and n = 100, panel (d) B(0.2,120) and n = 250, panel (e)

B(0.5,120) and n = 250, panel (f) B(0.75,120) and n = 250.
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We will now shift the focus to the tests’ powers, i.e., to their ability of correctly

identifying that the null hypothesis is false. In these simulations, the true data-generating

process is not the standard beta law, i.e., it is not the beta distribution with constant
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Table 1 – Null rejection rates (%), µ = 0.2.
n ζ1 ζ1B ζ2 ζ2B ζ3 ζ1 ζ1B ζ2 ζ2B ζ3

ϕ = 20 ϕ = 40
α = 10%

50 17.5 9.9 48.6 9.5 5.5 15.4 10.0 50.1 10.0 4.2
100 20.1 11.0 39.1 10.7 6.1 17.6 10.7 37.4 9.8 5.2
250 19.0 11.0 27.9 10.8 7.1 17.0 9.9 27.1 10.2 6.6
500 17.1 10.6 21.3 10.8 8.2 15.8 10.4 20.9 10.5 7.4
1000 14.8 10.1 17.3 9.9 9.1 14.0 10.2 17.1 10.4 8.6
5000 11.9 10.2 12.3 10.3 9.9 11.6 10.4 12.2 10.2 9.7

α = 5%
50 10.1 5.3 41.8 4.8 3.3 9.2 5.3 43.7 5.2 2.5
100 12.4 5.7 31.9 5.5 3.5 10.6 5.3 30.7 5.4 3.0
250 12.6 5.3 21.3 5.4 4.0 10.4 4.9 20.7 5.3 3.7
500 11.1 5.6 15.7 5.5 4.5 9.9 5.5 15.2 5.6 4.1
1000 9.1 5.3 11.7 5.4 4.8 8.5 5.3 11.3 5.4 4.7
5000 6.8 5.5 7.2 5.6 4.9 6.5 5.3 7.1 5.4 4.9

α = 1%
50 3.8 1.1 30.2 1.2 1.2 3.5 1.0 31.6 1.3 0.9
100 4.7 1.4 22.4 1.4 1.4 3.9 1.1 20.8 1.2 0.9
250 4.6 1.0 12.9 1.3 1.5 3.9 1.2 11.9 1.4 1.3
500 4.8 1.1 8.2 1.4 1.5 3.9 1.1 8.0 1.2 1.3
1000 3.7 1.6 5.2 1.6 1.5 3.4 1.3 5.2 1.5 1.6
5000 2.3 1.5 2.5 1.4 1.2 1.8 1.2 2.2 1.2 0.8

ϕ = 80 ϕ = 120
α = 10%

50 13.8 9.9 48.5 10.4 4.3 12.8 10.6 49.0 10.3 4.1
100 14.0 9.8 37.8 10.1 4.5 12.3 10.2 37.7 10.2 4.7
250 14.5 10.1 26.5 9.5 5.8 12.7 10.3 25.7 10.7 5.2
500 14.0 10.2 20.9 9.7 7.0 12.4 9.9 21.0 10.2 6.2
1000 13.4 10.6 17.6 10.6 7.9 12.6 10.8 17.0 10.7 7.6
5000 11.1 9.9 12.0 9.9 9.5 11.0 10.1 12.2 9.9 9.4

α = 5%
50 7.8 4.8 41.5 4.8 2.5 7.7 5.4 42.1 5.3 2.2
100 8.1 5.0 30.7 5.0 2.4 7.3 4.9 30.9 5.3 2.6
250 8.6 5.2 20.7 4.9 3.2 8.0 6.0 19.7 5.8 2.9
500 8.3 5.1 14.6 4.9 3.9 7.1 5.0 14.6 5.3 3.0
1000 7.8 5.3 11.6 4.9 4.1 7.1 5.5 11.5 5.7 3.8
5000 6.3 5.3 7.1 5.2 4.6 5.5 4.9 6.4 5.0 4.4

α = 1%
50 2.6 1.2 29.3 1.5 0.9 3.0 1.2 30.1 1.3 0.6
100 3.0 1.2 20.1 1.2 0.8 2.5 1.1 21.1 1.2 0.9
250 2.9 1.3 11.3 1.1 0.9 3.1 1.6 12.1 1.7 1.1
500 2.7 1.0 7.4 1.0 1.3 2.3 1.4 7.6 1.4 0.8
1000 2.6 1.2 4.7 1.1 1.2 2.6 1.5 5.5 1.3 0.9
5000 1.8 1.1 2.2 1.1 1.1 1.3 1.0 1.7 0.9 0.9

Source: Author
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Table 2 – Null rejection rates (%), µ = 0.5.
n ζ1 ζ1B ζ2 ζ2B ζ3 ζ1 ζ1B ζ2 ζ2B ζ3

ϕ = 20 ϕ = 40
α = 10%

50 30.5 10.0 49.1 9.6 6.9 31.2 9.6 49.8 10.3 7.1
100 28.2 10.5 38.2 10.8 8.0 28.4 10.9 38.7 10.7 8.3
250 23.2 11.2 27.3 10.8 9.3 21.8 9.6 26.2 9.5 8.5
500 17.6 9.4 19.8 9.3 8.3 19.3 10.9 21.5 10.8 8.9
1000 15.7 10.2 16.8 10.1 9.5 16.1 10.9 17.1 10.8 9.7
5000 12.1 10.2 12.4 10.2 10.3 12.1 10.5 12.3 10.4 9.7

α = 5%
50 22.1 4.9 42.2 4.7 4.8 22.1 5.0 42.1 5.1 4.5
100 20.0 5.4 31.9 5.4 5.0 20.3 5.5 32.2 5.0 5.1
250 16.4 6.0 21.1 6.1 5.3 14.9 4.8 19.4 4.6 4.9
500 12.0 4.8 14.4 4.8 4.8 12.7 5.6 15.2 5.8 5.1
1000 10.2 5.3 11.0 5.4 4.8 10.8 5.6 11.8 5.6 5.1
5000 6.6 5.4 6.9 5.4 5.4 6.4 4.9 6.6 4.9 5.1

α = 1%
50 9.7 1.4 30.3 1.1 2.5 9.4 1.3 29.6 1.3 2.2
100 9.6 1.3 21.4 1.3 2.5 10.1 1.2 21.2 1.3 2.3
250 8.5 1.2 12.6 1.3 2.0 6.7 1.1 11.1 0.9 1.6
500 5.0 1.3 7.0 1.3 1.7 5.9 1.3 8.2 1.4 1.6
1000 4.3 1.4 5.1 1.4 1.6 4.1 1.1 5.2 1.2 1.5
5000 2.1 1.4 2.3 1.4 1.3 1.6 1.1 1.8 1.1 1.0

ϕ = 80 ϕ = 120
α = 10%

50 31.6 10.9 48.9 10.4 8.0 31.7 9.6 50.1 9.2 7.7
100 27.7 10.3 38.9 10.3 7.9 28.1 10.4 38.1 10.3 7.5
250 22.8 10.8 27.3 10.8 8.3 22.1 10.5 26.1 10.7 8.9
500 18.7 10.1 20.8 10.0 9.5 18.5 10.2 20.6 10.3 9.4
1000 14.8 10.5 15.8 10.4 9.4 15.5 10.0 16.7 9.9 9.9
5000 11.3 9.7 11.7 9.7 9.9 12.6 10.8 12.8 10.8 10.3

α = 5%
50 22.3 5.3 41.6 5.6 5.4 22.1 4.9 42.1 4.5 5.2
100 20.5 5.2 31.5 5.1 4.8 20.3 5.3 31.0 5.4 4.8
250 16.0 5.3 20.7 5.1 4.8 15.2 5.3 20.0 5.2 5.1
500 12.4 5.1 14.8 4.9 4.8 12.1 5.0 14.4 5.1 5.2
1000 10.0 5.2 10.9 5.2 5.4 9.6 5.3 10.7 5.4 5.6
5000 6.2 5.0 6.5 5.0 5.2 7.1 5.5 7.4 5.6 5.4

α = 1%
50 10.7 1.1 30.4 1.1 2.9 9.6 0.9 29.7 1.0 2.7
100 9.7 1.2 20.8 0.9 2.2 10.0 1.2 21.0 1.2 2.1
250 7.7 0.9 12.1 1.0 1.8 7.7 1.1 12.0 1.1 1.9
500 5.3 1.1 7.0 1.2 1.6 5.4 1.2 7.5 1.2 1.9
1000 3.9 1.2 4.8 1.2 1.6 4.1 1.4 5.1 1.3 1.4
5000 2.1 1.4 2.2 1.3 1.2 2.1 1.2 2.3 1.2 1.1

Source: Author
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Table 3 – Null rejection rates (%), µ = 0.75.
n ζ1 ζ1B ζ2 ζ2B ζ3 ζ1 ζ1B ζ2 ζ2B ζ3

ϕ = 20 ϕ = 40
α = 10%

50 21.6 10.8 52.3 10.3 5.6 18.0 10.1 49.3 9.7 5.7
100 20.7 9.6 37.1 9.8 5.9 20.0 10.4 37.7 10.1 6.0
250 18.8 10.1 26.0 9.9 7.2 18.3 10.5 27.1 10.5 7.2
500 16.5 9.4 20.3 9.4 8.7 16.1 9.9 20.6 9.5 7.9
1000 15.1 10.1 16.9 10.1 9.2 14.0 10.3 16.5 9.8 8.5
5000 11.2 9.7 11.5 9.7 10.0 12.2 10.8 12.7 11.0 9.3

α = 5%
50 12.9 5.4 44.5 5.4 3.5 10.5 5.5 42.3 4.9 3.4
100 13.2 4.9 30.4 4.7 3.6 12.1 5.2 30.8 5.4 3.3
250 12.9 5.0 20.0 5.0 4.4 12.3 5.0 20.8 5.4 4.1
500 10.5 4.7 14.2 4.9 4.6 10.4 4.9 14.6 4.5 4.1
1000 9.1 5.1 11.2 5.0 4.5 8.8 4.8 10.8 4.7 5.0
5000 6.3 4.8 6.6 4.9 4.8 6.5 5.3 7.1 5.2 5.1

α = 1%
50 4.8 1.3 31.8 1.4 1.8 4.4 1.3 29.3 1.1 1.4
100 4.5 0.9 20.0 0.8 1.4 4.2 1.3 20.2 1.1 1.2
250 5.5 1.2 11.8 1.2 1.6 4.5 0.9 12.2 1.3 1.4
500 4.2 1.0 7.1 1.0 1.7 3.9 1.1 7.1 1.2 1.5
1000 3.3 1.1 4.9 1.0 1.3 3.0 1.3 4.7 1.1 1.4
5000 1.8 1.0 2.0 0.9 1.2 1.8 1.1 2.1 1.2 1.2

ϕ = 80 ϕ = 120
α = 10%

50 15.5 10.4 48.9 10.5 4.0 14.4 10.8 49.7 10.5 4.6
100 16.4 10.3 38.0 9.9 5.2 14.5 10.3 37.9 10.2 5.3
250 15.3 9.8 26.7 10.0 5.6 14.5 10.4 27.4 10.9 5.6
500 14.6 10.1 20.0 10.4 7.2 13.3 10.5 19.8 10.5 6.7
1000 14.5 11.4 18.1 11.5 8.1 13.9 11.4 17.5 11.1 8.0
5000 12.0 10.7 12.9 10.7 10.3 11.3 10.2 12.3 10.3 9.5

α = 5%
50 9.5 5.4 42.6 5.3 2.5 8.7 5.5 42.9 5.3 2.8
100 9.4 5.3 31.5 5.4 3.0 8.3 5.3 30.4 5.1 2.9
250 9.2 5.0 19.9 5.3 3.3 8.7 5.6 20.6 5.4 3.1
500 9.1 5.3 14.8 5.5 4.0 8.3 5.4 14.7 5.9 3.4
1000 8.8 5.6 12.5 5.4 4.1 8.3 5.8 11.9 5.7 3.9
5000 6.8 5.6 7.4 5.5 5.0 5.9 5.2 6.7 5.1 4.7

α = 1%
50 3.9 1.3 29.7 1.2 0.9 3.2 1.1 31.2 1.0 0.9
100 3.3 1.0 20.6 1.4 1.2 2.8 1.1 20.0 0.9 1.0
250 3.6 1.4 11.4 1.3 1.3 3.0 1.3 12.5 1.3 0.9
500 3.3 1.2 7.5 1.1 1.2 3.1 1.3 8.0 1.2 0.8
1000 3.1 1.3 5.2 1.4 1.1 2.7 1.2 5.1 1.2 0.9
5000 1.7 1.1 2.0 1.2 1.3 1.6 1.2 2.1 1.2 1.1

Source: Author
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parameters. Since the ζ1 and ζ2 tests are oftentimes considerably size-distorted, they are

carried out using exact (not asymptotic) critical values obtained from the size simulations.

The significance levels are α = 10%,5%.

At the outset, we use the Kumaraswamy law (JONES, 2009), KW(ω,ϕ), as the

true data-generating mechanism. Here, ω is the distribution median and ϕ is a precision

parameter. The parameter values are (i) ω = 0.2 and ϕ= 5,7.5, (ii) ω = 0.5 and ϕ= 10,15,

and (iii) ω = 0.75 and ϕ = 15,25. The tests’ non-null rejection rates are presented in

Table 4. All entries are percentages. The figures in this table show that the tests’ powers

are similar for n≥ 100, being close to 100% when n≥ 250. When n= 50, the ζ3 test is

generally the most powerful test. The reported results also show that the tests’ powers

increase with ϕ. That is, higher precision translates into more powerful tests. Also, when

ω = 0.2, the ζ3 test exhibits slightly higher powers than the ζ1 and ζ1B tests, and these

in turn exhibit noticeably higher powers than ζ2 and ζ2B. For illustration, with ω = 0.2,

ϕ= 7.5, n= 100 and α= 5%, the non-null rejection rates of the ζ1, ζ1B, ζ2, ζ2B and ζ3 tests

are 61.3%, 65.2%, 56.7%, 56.8% and 69.7%, respectively. Here, ζ3 is the best performer. It

is also noteworthy that ζ3 is the most powerful test when ω = 0.5 for all values of ϕ and α.

Additionally, it is seen that the ζ2 and ζ2B tests are more powerful than the ζ1 and ζ1B

tests. Finally, when ω = 0.75, for all values of α and ϕ, the ζ1, ζ1B and ζ3 tests display

similar powers, which are considerably higher than those of ζ2 and ζ2B.

Figure 2 contains size-power plots for ζ1, ζ2 and ζ3. The sample size is n= 100

and the empirical powers were computed using KW(ω,ϕ) data-generating processes. The

tests’ powers are very similar for empirical sizes in excess of 0.4. For empirical sizes up to

0.4, ζ3 is the clear winner, especially in the left and middle panels; in the right panel, the

curves relative to ζ1 and ζ3 nearly coincide, both clearly lying above that of ζ2. Also, ζ1 is

the worst performer when the distribution median lies at the center of the standard unit

interval, i.e., ω = 0.5; see panel (b).

In the second scenario of power simulations, all samples are randomly generated

from the unit Weibull law (MAZUCHELI; MENEZES; GHITANY, 2018), UW(ω,ϕ), where

ω is the distribution median and ϕ is a precision parameter. For brevity, we only report

results obtained using ω = 0.2,0.5,0.75 and ϕ= 5. The tests’ non-null rejection rates are

given in Table 5. All entries are percentages. It is worth noticing that all empirical powers

are nearly equal to 100% when n= 250. When ω = 0.2, ζ1 is the best performer. The ζ3



30

Table 4 – Non-null rejection rates (%), data generated from KW(ω,ϕ).
n ζ1 ζ1B ζ2 ζ2B ζ3 ζ1 ζ1B ζ2 ζ2B ζ3

ω = 0.2 and ϕ = 5 ω = 0.2 and ϕ = 7.5
α = 10%

50 37.6 36.6 29.8 30.2 37.6 48.9 52.7 41.5 42.3 49.0
100 59.4 57.7 56.4 56.3 65.3 76.6 80.2 72.0 72.6 79.0
250 93.1 92.7 96.2 95.9 98.0 98.4 98.9 99.3 99.2 99.4
500 99.5 99.4 100.0 100.0 100.0 99.9 99.9 100.0 100.0 100.0
1000 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

α = 5%
50 23.9 21.4 17.6 17.3 29.6 35.1 36.9 28.0 28.1 40.8
100 40.3 39.0 38.8 39.0 54.6 61.3 65.2 56.7 56.8 69.7
250 82.8 81.8 91.6 90.5 95.6 94.6 96.5 97.9 97.5 98.8
500 97.8 97.7 99.8 99.8 100.0 99.4 99.7 100.0 100.0 100.0
1000 100.0 100.0 100.0 100.0 100.0 99.9 100.0 100.0 100.0 100.0
5000 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

ω = 0.5 and ϕ = 10 ω = 0.5 and ϕ = 15
α = 10%

50 20.5 22.2 32.8 33.7 40.9 29.1 27.8 46.2 44.0 51.9
100 43.3 45.2 59.2 60.1 69.1 54.2 55.3 73.8 74.0 80.9
250 92.8 93.7 96.2 96.3 98.1 96.9 97.1 99.3 99.3 99.7
500 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

α = 5%
50 8.9 10.2 20.0 21.3 32.6 12.5 12.4 31.4 30.3 42.9
100 24.0 25.6 43.8 44.4 59.0 33.7 34.6 58.5 59.7 71.9
250 83.0 83.4 91.5 91.4 95.7 91.3 91.2 97.6 97.6 98.9
500 99.8 99.8 99.9 99.9 99.9 99.9 99.9 100.0 100.0 100.0
1000 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

ω = 0.75 and ϕ = 15 ω = 0.75 and ϕ = 25
α = 10%

50 32.7 30.7 23.1 24.0 25.7 49.1 51.9 37.6 38.2 41.9
100 55.8 52.4 39.7 39.3 47.7 77.9 78.6 64.1 64.0 69.2
250 88.9 87.8 79.7 79.0 86.5 99.2 99.2 97.3 97.7 98.3
500 99.2 99.1 98.6 98.6 99.1 100.0 100.0 100.0 100.0 100.0
1000 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

α = 5%
50 18.2 16.9 13.9 14.5 19.3 32.3 34.4 25.3 25.5 32.3
100 39.1 36.4 25.4 27.1 38.6 64.3 65.3 49.1 49.1 60.3
250 81.6 78.2 64.3 65.7 79.3 97.7 98.2 93.4 93.5 96.5
500 98.0 97.7 95.6 95.6 98.1 100.0 100.0 99.9 99.9 100.0
1000 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Source: Author
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Figure 2 – Size-power plots, KW(ω,ϕ), n = 100; panel (a): KW(0.2,7.5), panel (b): KW(0.5,15),
panel (c): KW(0.75,25).
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Figure 3 – Size-power plots, UW(ω,ϕ), n = 100; panel (a): UW(0.2,5), panel (b): UW(0.5,5),
panel (c): UW(0.75,5).
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test is slightly more powerful than the other tests when ω = 0.5 and 0.75.

Size-power plots are presented in Figure 3. The sample size is n= 100 and the

tests’ empirical powers were computed using unit Weibull data-generating mechanisms.

In Figure 3 panel (a), the size-power curves of the ζ1 and ζ3 tests are clearly above that

of the ζ2 test for empirical sizes up to approximately 40%. In panel (b) of Figure 3, for

empirical sizes up to about 50%, the curve of the ζ3 test is above the curve of the ζ2 test,

which in turn is above that of the ζ1 test. Finally, panel (c) of Figure 3 clearly favors ζ3

for empirical sizes up to approximately 50%.

The next set of power simulation results was obtained using simplex (JØRGEN-

SEN, 1997) data-generating mechanisms: all samples are randomly generated from S(µ,σ),

where µ is the distribution mean and σ is the dispersion parameter. For brevity, we only

present results for µ= 0.75 and σ = 2. The tests’ non-null rejection rates, expressed as

percentages, can be found in Table 6. It is noteworthy that the powers of the ζ1, ζ1B, ζ2

and ζ2B tests are quite high for n≥ 250. Also, the ζ3 test is clearly less powerful than the
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Figure 4 – Size-power plot, S(µ,σ), n = 100.
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competing tests. For example, when n= 100 and α= 10%, the powers of the ζ1, ζ1B, ζ2

and ζ2B tests exceed 60% whereas that of the ζ3 test is approximately equal to 22%.

Table 6 – Non-null rejection rates (%), data generated from S(µ,σ).
n ζ1 ζ1B ζ2 ζ2B ζ3

µ= 0.75 and σ = 2
α = 10%

50 39.5 27.8 42.0 40.4 9.8
100 80.6 62.9 68.0 66.2 22.2
250 99.3 98.1 97.5 97.6 79.0
500 100.0 100.0 100.0 100.0 99.6
1000 100.0 100.0 100.0 100.0 100.0

α = 5%
50 20.4 13.7 28.9 26.5 5.9
100 61.6 37.0 53.7 51.3 12.6
250 97.6 94.7 94.8 94.0 58.0
500 100.0 100.0 100.0 100.0 98.8
1000 100.0 100.0 100.0 100.0 100.0

Source: Author

We present size-power plots constructed using the tests’ empirical powers under

simplex laws in Figure 4. The sample size is n = 100. It can be seen that the curves

relative to the ζ1 and ζ2 tests are similar. They both lie considerably above that of the ζ3

test for effective sizes up to 40%.

Next, we consider the case in which the data are generated from the beta law
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but with a regression structure for the mean. That is, we use the beta regression model

introduced by Ferrari and Cribari-Neto (2004) as the true model. Here, log(µt/(1−µt)) =

β1 +β2xt2. The true parameter values are β1 = −0.25, β2 = 0.5 and ϕ= 120. The covariate

values were generated from LN(0,0.5), i.e., as realizations from the log-normal distribution

with parameters 0 and 0.5. Table 7 contains the tests’ non-null rejection rates, all expressed

as percentages. In general, all tests have high powers when the sample size is not very

small. In particular, for n= 250 and α= 10%, the tests have powers close to or equal to

100%. When n= 50, ζ1 is clearly less powerful than ζ2 and ζ3.

Table 7 – Non-null rejection rates (%), data generated from the beta distribution with a
mean regression structure.

n ζ1 ζ1B ζ2 ζ2B ζ3

α = 10%
50 37.3 42.1 56.1 53.3 47.8
100 89.3 90.9 91.0 90.7 91.8
250 97.7 97.7 100.0 100.0 100.0
500 100.0 100.0 100.0 100.0 100.0

α = 5%
50 16.3 19.9 40.6 38.2 30.2
100 72.1 75.0 81.8 82.3 79.6
250 87.3 87.7 99.6 99.5 100.0
500 99.9 99.9 100.0 100.0 100.0
1000 100.0 100.0 100.0 100.0 100.0

Source: Author

In Figure 5, we present the size-power plot of ζ1, ζ2 and ζ3 for n = 50. In

general, the tests have similar powers when the effective size is smaller than 20% or larger

than 60%. In the middle region of the graph, ζ3 is the most powerful test.

We also performed simulations using the inflated beta distribution introduced

by Ospina and Ferrari (2010) as the true model. It combines continuous and discrete

components, and is used when Yt assumes values in [0,1), (0,1] or [0,1] (inflation at zero,

inflation at one, and double inflation, respectively). A common practice is to fit the

standard beta distribution after replacing the inflated data points by [Yt(n−1)+0.5]/n

(SMITHSON; VERKUILEN, 2006). We consider inflation at zero with Pr(Yt = 0) = λ.

After the data were generated, all inflated values (zeros) were replaced by 0.5/n, and then

the standard beta law was fitted. The null hypothesis is false since the beta model is

not the true data generating process. We wish to evaluate the information matrix tests’
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Figure 5 – Size-power plot, B(µt,ϕ), n = 50.
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ability to detect that the beta model is misspecified. Data generation was carried out

using µ= 0.5, ϕ= 20 and λ= 0.025. We will not present the simulation results for brevity,

but we note that the information matrix tests proved to be very powerful in this setting

with non-null rejection rates close to 100% at α = 5% for n= 100.

Overall, the results presented above favor the ζ1B, ζ2B and ζ3 tests. The ζ1 and

ζ2 tests typically display very large size distortions and their use should be avoided except

when n is large. Regarding the ζ1B, ζ2B and ζ3 tests, we note that the latter may be

considerably conservative for some beta law parameter values. As a result, we recommend

the use of the ζ1B and ζ2B tests in empirical analyses. Such tests showed good control of

the type I error frequency and also good power in situations in which the data-generating

process is not beta, in particular when n≥ 250.

It is also possible to test the null hypothesis that the variable of interest is

beta-distributed using two alternative tests, namely: Anderson-Darling (AD) and Cramér-

von Mises (CVM). They are usually carried with the modification proposed by Braun

(1980), which accounts for unknown parameters in the distribution under test (in our case,

beta). We performed Monte Carlo simulations to assess the finite sample behaviors of

such tests using the configurations previously described. We do not present such results

for brevity. We note, however, that both tests are conservative, i.e., their null rejection

rates are smaller than the significance levels. For instance, when n= 100 (n= 500) the

AD and CVM null rejection rates at the 10% significance level are, respectively, 7.6% and

6.3% (9.2% and 8.5%). Also, such non-parametric tests are substantially less powerful
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than the information matrix tests introduced in this chapter. For instance, when the

true data-generating process is UW(0.5,7.5) (KW(0.5,15)), the AD and CVM non-null

rejection rates at α= 10% are, respectively, 29.1% and 42.0% (28.9% and 39.3%) when

n= 5000.

1.5 COVID-19 MORTALITY RATES IN THE US

We will now present and discuss an analysis of Covid-19 mortality rates in the

US. We use the three information matrix tests to determine whether the standard beta

model provides an adequate representation of the data. We will also briefly comment on

inferences drawn from the AD and CVM tests. Maximization of the beta log-likelihood

function was performed using the BFGS method with analytical first derivatives. We used

B = 1000 bootstrap replications for performing the ζ1B, ζ2B and ζ3 information matrix

tests. In what follows, we model state and county level data for three time periods. In

each case, we will report the information matrix tests’ p-values, the point estimates of the

beta parameters and their standard errors. We report clustered standard errors computed

using information on each state’s region and on to each county’s state.

The Covid-19 epidemic began in late 2019. It is estimated that approximately

247 million people had been infected with the new coronavirus by October 2021. The

United States was the first country in the Americas to face a serious public health crisis

brought on by the new coronavirus. In December 2020, on the 14th to be exact, the US

government began a campaign to vaccinate healthcare workers and followed by vaccinating

the general population. Covid-19 death rates started to decrease as vaccination progressed.

Our variable of interest are Covid-19 mortality rates per one hundred people.

At the outset, we will work with statewide data, i.e., we use data on the 50 US states

(n= 50). The death rates were computed using the cumulative number of deaths between

January 22 and December 14 of 2020. We refer to this period as ‘period 1’. The source of

the data on Covid-19 deaths is the Centers for Disease Control and Prevention (<https:

//data.cdc.gov/>). Data on state populations in 2020 were obtained from Ribeiro et al.

(2021). Since the sample size is small, we only consider bootstrap-based information matrix

testing inferences. We wish to determine whether the univariate beta model provides an

adequate representation of the data. The model has a simple structure and is based on

the assumption that the observations are i.i.d. Can it provide an acceptable and useful

https://data.cdc.gov/
https://data.cdc.gov/
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representation of the US Covid-19 mortality rates?

The minimum, mean, median, and maximum mortality rates, and the standard

deviation are 0.0164, 0.0903, 0.0894, 0.2001 and 0.0423, respectively. The maximal value

corresponds to New Jersey. The maximum likelihood estimates of the beta parameters

(clustered standard errors in parentheses) are µ̂= 0.0900 (0.0099) and ϕ̂= 39.8208 (15.5240).

The p-values of the ζ1B, ζ2B and ζ3 tests of correct beta specification are 0.2870, 0.6070

and 0.4472, respectively. The model is not rejected at the usual significance levels. We

thus conclude that it adequately represents the US state mortality rates. In Figure 6 we

present the histogram of the mortality rates together with the beta density evaluated

at the maximum likelihood estimates. The estimated density clearly provides a good

approximation to the data histogram.

Figure 6 – Histogram and fitted beta density, period 1, state data.
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The previous analysis was performed using mortality rates computed up to

December 14, 2020. Next, we will conduct a similar analysis, but based on more recent

data. We consider state mortality rates calculated using data from January 22, 2020 to

October 31, 2021. We refer to this more extended time period as ‘period 2’. The minimum,

mean, median, maximum and standard deviation values are 0.0550, 0.2120, 0.2227, 0.3370

and 0.0709, respectively. The maximum likelihood point estimates are µ̂= 0.2112 (0.0199)

and ϕ̂= 27.8235 (8.9936). The estimated precision is now approximately 30% smaller than

in the previous scenario. The p-values of the ζ1B, ζ2B and ζ3 tests are 0.0600, 0.0570 and

0.0269, respectively. All tests reject the correct specification of the univariate beta model

at the 10% significance level; ζ3 rejects H0 at 5%. Figure 7 presents the data histogram

and the estimated beta density. The estimated beta density does not adequately represent
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the data asymmetry.

Figure 7 – Histogram and fitted beta density, period 2, state data.

0.05 0.10 0.15 0.20 0.25 0.30 0.35

0
1

2
3

4
5

6
7

mortality rate

Source: Author

Unlike the previous results, all tests now reject the beta distribution at α= 10%.

The data now cover two very different periods, namely: before and after the start of the

nationwide vaccination campaign. There is thus clear data heterogeneity. The much smaller

estimated precision (approx. 28 vs approx. 40) is probably due to such heterogeneity.

The mortality rates in the two periods show high positive correlation (0.8252),

as expected, given the cumulative nature of the observations. The univariate beta model is

not rejected by the information matrix tests when the shorter time period is used. It thus

provides a good description of the statewide Covid-19 mortality rates. The second time

period, however, covers the Covid-19 vaccination campaign. Since the reach and impact

of such a campaign was uneven across the 50 states, for reasons that include partisan

political connotations and other factors, Covid-19 mortality rates greatly differ before and

after the beginning of the immunization campaign. There is thus clear heterogeneity in

the two periods.

The two analyses presented so far are based on cumulative time periods, namely:

(i) January 22 to December 14, 2020 (without vaccination) and (ii) January 22, 2020 to

October 31, 2021 (without and with vaccination). In the following, we will only consider the

most recent period (December 15, 2020 to October 31, 2021), ‘period 3’. The minimal and

maximal values are 0.0385 and 0.1985 whereas the mean and median values are 0.1218 and

0.1174, respectively; the standard deviation is 0.0432. The maximum likelihood estimates

of µ and ϕ are 0.1216 (0.0153) and 52.8670 (11.1468), respectively. The estimated precision

is even larger than that obtained by only considering the pre-vaccination time period
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(approx. 53 vs approx. 40). Recall that much lower precision was obtained when the longest

time period was considered (approx. 28). The ζ1B, ζ2B and ζ3 p-values are, respectively,

0.5900, 0.2860 and 0.5087. These large p-values indicate that there is very little evidence

against the beta law. We thus conclude that despite the impact of vaccination on Covid-19

mortality, the univariate beta model still provides a good representation of the data. The

data histogram and the fitted beta density are presented in Figure 8. Visual inspection of

such a figure suggests that the beta law yields a reasonably good data fit. Interestingly,

there is less skewness than in the previous two cases.

Figure 8 – Histogram and fitted beta density, period 3.
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The three fitted beta densities are presented in Figure 9. Notice that the

estimated densities for periods 1 and 3 are similarly shaped and with somewhat similar

precisions. By contrast, the fitted beta density obtained using data that cover both the

period in which there was no vaccination and that of the vaccination drive is much more

disperse. As noted earlier, heterogeneity in the data leads to poor data fit. The information

matrix tests indicated that the beta model yields an adequate data representation in

periods 1 and 3, but in for period 2. It seems that the tests correctly detected that the

heterogeneous nature of the data renders the beta law unable to adequately represent

Covid-19 mortality rates.

We presented above an analysis of statewide Covid-19 mortality data in the

US. The inferences obtained from the information matrix tests were quite informative.

Such tests indicated that the beta law is able to adequately represent the data in two

disjoint periods — before and after the start of the nationwide vaccination campaign —,

but not when the two periods are combined.
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Figure 9 – Fitted beta densities, state data.
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In what follows we will use death rates per 100 persons computed for US

counties for periods 1, 2 and 3. The data on the cumulative total of deaths was obtained

from the New York Times repository (<https://github.com/nytimes/covid-19-data>). In

order to avoid inaccurate records, we only considered, in each time period, counties with

at least one Covid-19 death and at least 15000 inhabitants. The sample sizes for periods

1, 2 and 3 are n= 2073, n= 2080 and n= 2080 respectively. Since the sample sizes are

large, we will use all tests, i.e., ζ1, ζ1B, ζ2, ζ2B and ζ3, and α = 5%. Mortality rates were

calculated using the estimated populations in 2020 obtained from the Economic Research

Service of the US Department of Agriculture (<https://www.ers.usda.gov>).

Initially, we will consider period 1. The minimum, mean, median, maximum

and standard deviation values of the mortality rates are 0.0013, 0.0883, 0.0764, 0.4554

and 0.0596, respectively. The maximum likelihood estimates are µ̂= 0.0884 (0.0055) and

ϕ̂= 22.1618 (1.9529). The ζ1, ζ1B, ζ2, ζ2B and ζ3 tests’ p-values are 0.0978, 0.1370, 0.0927,

0.1540 and 0.1022, respectively. No test rejects the beta law at α = 5%. The tests that

use bootstrap resampling also do not reject such a hypothesis at α= 10%. The p-values of

the tests that use asymptotic critical values are slightly smaller than 0.10. Overall, we

conclude that Covid-19 mortality rates can be adequately represented by the beta law in

period 1.

We will now consider the second period. The minimum, mean, median, ma-

ximum and standard deviation values are, respectively, 0.0122, 0.2513, 0.2418, 0.7376

and 0.1133. Also, µ̂ = 0.2512 (0.0118) and ϕ̂ = 13.3931 (1.1877). The estimate of ϕ is

approximately 40% smaller than in the previous scenario. There is thus considerably more

https://github.com/nytimes/covid-19-data
https://www.ers.usda.gov
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Figure 10 – Fitted beta densities, county data.
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uncertainty. The p-values of the ζ1, ζ1B, ζ2, ζ2B and ζ3 tests are 0.0157, 0.0570, 0.0155,

0.0650 and 0.0087, respectively. The beta law is rejected at α = 1% (α = 5%) by ζ1, ζ2

and ζ3 (ζ1B and ζ2B). We conclude that the beta law does not provide an adequate data

representation in period 2.

Next, we will perform inferences with data from period 3. The minimum,

mean, median, maximum and standard deviation of the mortality rates are 0.0085, 0.1632,

0.1528, 0.4734 and 0.0786 respectively. The point estimates are µ̂= 0.1631 (0.0083) and

ϕ̂= 20.4761 (1.5648). The p-values of the ζ1, ζ1B, ζ2, ζ2B, and ζ3 tests are 0.0529, 0.0830,

0.0360, 0.0750, and 0.0903, respectively. Except for ζ2, no test rejects the beta law at

α = 5%. We thus conclude that it can be used to adequately represent county-level

Covid-19 mortality rates in the third and final period. We will return to these results later.

Figure 10 contains the estimated densities for the three time periods obtained

using county data. They are similar to those obtained using statewide data; see Figure 9.

Notice that there is considerably more uncertainty when data from period 2 are used.

Interestingly, similar testing inferences were obtained with state and county

data, namely: (i) the univariate beta model provides an adequate description of Covid-19

mortality rates with data either from prior to the nationwide vaccination drive or from

when such a drive was under way; (ii) there is evidence against the correct specification of

the beta model when Covid-19 mortality rates are computed using data that cover both

periods (no vaccination and nationwide vaccination). The tests thus indicate that the beta

distribution is not an adequate model for Covid-19 mortality rates under substantial data

heterogeneity.
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As noted earlier, we also performed the AD and CVM tests using both state

and county data. The corresponding p-values for state data are: 0.4691 and 0.8734, period

1; 0.2277 and 0.4339, period 2; 0.9413 and 0.3360, period 3. With county data, we obtained

the following p-values: 0.7414 and 0.5299, period 1; 0.3250 and 0.4856, period 2; 0.8765

and 0.8010, period 3. All p-values are quite large, and hence the beta model is not rejected

in all scenarios, i.e., for the three time periods and when state or county data are used.

In particular, unlike the information matrix tests, the two non-parametric tests are not

able to reject the beta model when there is marked data heterogeneity (period 2). By

contrast, our tests indicate that the univariate beta model is only appropriate when there

is reasonable homogeneity in the data (periods 1 and 3).

We will now further examine (i) the data heterogeneity that caused the rejection

of beta law in period 2 and (ii) the acceptance of the beta law in period 3 when the

vaccination drive was under way. As noted earlier, the Covid-19 mortality rates computed

for period 2 cover two quite distinct periods: January 22, 2020 through December 14,

2020 (period 1) and December 15, 2020 through October 21, 2021 (period 3). (Recall

that period 2 consists of the merging of periods 1 and 3.) The correlation coefficient

between statewide death rates in periods 1 and 3 is weak: 0.3735. This small correlation

strength is indicative that the mortality rates in such periods obey different dynamics.

This was expected because, unlike what took place in period 3, there was no nationwide

vaccination drive in period 1. Additionally, the states with the lowest mortality rates in

period 1 (period 3) are Vermont, Hawaii, Maine, Oregon, and Utah (Vermont, Hawaii,

New York, Alaska, and Maine) whereas those with the highest death rates in period 1

(period 3) are New Jersey, Massachusetts, Mississippi, Rhode Island, and North Dakota

(Arizona, Alabama, West Virginia, Florida, and Georgia). Consider, e.g., New Jersey and

Massachusetts. They are the states with the highest Covid-19 mortality rates in period

1, and yet their corresponding ranks in period 3 are 28 and 32. Arizona and Alabama

display the highest death rates in period 3, and yet their ranks in period 1 are 14 and 9,

respectively. Again, it is clear that the death rates in periods 1 and 3 (which are combined

in period 2) are considerably heterogeneous.

Next, we will examine again Covid-19 mortality rates in period 3; in particular,

we will examine the finding that the univariate beta model yields an adequate representation

for such rates. There was a nationwide vaccination drive under way in period 3, and
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its reach negatively impacted death rates. We obtained data on the total number of

fully vaccinated people by October 31, 2021. The source of the data is the Our World in

Data repository (<https://ourworldindata.org/us-states-vaccinations>). The correlation

between death and vaccination rates in period 3 is −0.5858 (state data). A natural question

is: Given that mortality rates are negatively impacted by vaccination rates, why was the

univariate beta model found to be correctly specified? Why use a fixed mean model if

the distribution mean appears to be impacted by an explanatory variable (vaccination

rate)? At the outset, we note that some states considerably weaken the inverse relationship

between the two variables in period 3, namely: Alaska, Arizona, Florida, Massachusetts,

North Dakota, and Rhode Island. In particular, the Arizona, Florida, Massachusetts, and

Rhode Island (Alaska and North Dakota) Covid-19 mortality rates are higher (lower) than

expected based on the corresponding vaccination levels. The inverse correlation between

death and vaccination rates becomes considerably stronger when computed without such

states: −0.7592 (state data). We removed from the data all counties of the six states that

weaken the impact of vaccination reach on death rates, and performed the tests again.

The ζ1, ζ1B, ζ2, ζ2B, and ζ3 p-values become 0.0289, 0.0600, 0.0162, 0.0530, and 0.0460,

respectively. The ζ1, ζ2 and ζ3 tests now reject the univariate beta model at α = 5%

whereas the ζ1B and ζ2B p-values are only marginally larger than 0.05. Hence, there is

now evidence against the model. Overall, the information matrix tests’ inferences suggest

that, as long as the negative impact of vaccination reach on death rates is moderate

(complete data), the beta law can be adequately used to represent Covid-19 mortality

rates. When such a negative impact becomes more pronounced (incomplete data, counties

of six states removed from the data), the univariate beta model no longer should be used.

In that case, practitioners should search for a more elaborate model. By contrast, the

two non-parametric tests continue to accept the univariate beta model even when the

Alaska, Arizona, Florida, Massachusetts, North Dakota, and Rhode Island counties are

not considered; the AD and CVM p-values are 0.3025 and 0.5788, respectively.

Finally, using the three county data samples, we compare the data fits yielded by

the beta distribution to those obtained with the following alternative laws: Kumaraswamy,

simplex, and unit Weibull. To that end, we computed, for each sample period and for

each distribution, the values of the following information criteria: Akaike Information

Criterion (AIC), Corrected Akaike Information Criterion (AICc), Bayesian Information

https://ourworldindata.org/us-states-vaccinations
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Criterion (BIC), Hannan-Quinn Information Criterion (HQIC), Weighted-Average Infor-

mation Criterion (WIC) and Empirical Information Criterion (EIC). The latter employs

bootstrap resampling and proved to be very effective in dynamic beta modeling; see

Cribari-Neto, Scher and Bayer (2022). We used 1000 bootstrap replications, i.e., 1000

pseudo-samples were generated for computing the EIC values. We also computed the

AD and CVM statistics. For all measures, smaller values indicate better data fits. The

results are presented in Table 8. They show that, according to all information criteria

(AIC, AICc, BIC, HQIC, WIC, and EIC), the best data fits in the three sample periods

are yielded by the beta law. Considering the two non-parametric test statistics, in period

1 (period 2) [period 3], the beta model was the winner according to both of them (the

runner-up according to both statistics, slightly behind the Kumaraswamy law) [the winner

according to CVM and the runner-up according to AD, behind the Kumaraswamy model].

Considering the eight measures and the three sample periods, the beta law was the winner

in 21 out of the 24 cases. Figure 11 contains the data histogram and the estimated beta

density for period 3, as in Figure 8, together with the fitted Kumaraswamy (KW), simplex

and unit Weibull (UW) densities. Visual inspection of the figure shows that the beta

law best fits the data histogram. In order to further examine the two best data fits, we

produced quantile-quantile (QQ) plots for the beta and Kumaraswamy laws, again using

data from period 3. In both panels of Figure 12, empirical quantiles are plotted against

theoretical quantiles, the 45◦ degree line indicating perfect agreement between both sets of

quantiles. The Kumaraswamy and beta laws fit the data quite well up to approximately

0.35 and 0.45, respectively. It is then clear that the latter outperforms the former in the

sense that it yields better agreement between empirical and theoretical quantiles.

1.6 CONCLUDING REMARKS

The beta distribution is commonly used to model variables that assume values

in the standard unit interval. We developed information matrix tests that can be used to

test whether the univariate beta model yields an adequate representation of the data. The

null hypothesis of correct model specification is tested against the alternative hypothesis

that the model specification is in error. The tests seek to verify whether the information

matrix equality holds. As is well known, this equality only holds when the model is correctly

specified. The tests’ small sample behavior can be improved by using data resampling
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Table 8 – Goodness-of-fit measures.
Period Criterion beta KW simplex UW

1

AIC −6466.687 −6441.745 −5993.029 −6144.892
AICc −6466.681 −6441.739 −5993.023 −6144.887
BIC −6455.413 −6430.471 −5981.755 −6133.619
HQIC −6462.555 −6437.613 −5988.897 −6140.760
WIC −6457.755 −6432.813 −5984.096 −6135.960
EIC −6477.157 −6452.015 −6013.894 −6160.247
AD 2.958 3.170 5.544 3.788
CVM 0.652 0.657 1.387 0.911

2

AIC −3287.865 −3266.338 −3076.004 −3033.648
AICc −3287.859 −3266.332 −3075.994 −3033.643
BIC −3276.584 −3255.058 −3064.720 −3022.368
HQIC −3283.731 −3262.204 −3071.866 −3029.515
WIC −3278.926 −3257.399 −3067.061 −3024.710
EIC −3300.680 −3279.034 −3093.013 −3049.644
AD 4.031 3.114 5.707 4.181
CVM 0.674 0.471 0.966 2.120

3

AIC −4873.815 −4862.928 −4666.304 −4558.565
AICc −4873.809 −4862.922 −4666.298 −4558.559
BIC −4862.534 −4851.647 −4655.024 −4547.284
HQIC −4869.681 −4858.794 −4662.170 −4554.431
WIC −4864.876 −4853.989 −4657.365 −4549.626
EIC −4885.201 −4875.239 −4680.756 −4571.892
AD 2.595 2.335 4.443 4.093
CVM 0.522 0.606 1.020 0.881

Source: Author

(bootstrap). We presented the results of extensive Monte Carlo simulations that showed

that the tests have good power against different forms of model misspecification, including

the case in which the univariate beta model is fitted using data that have an underlying

regression structure.

We presented an empirical analysis of Covid-19 mortality rates in the US.

We considered three sample periods: (i) before, (ii) before and after, and (iii) after the

beginning of the nationwide vaccination drive. The testing inferences indicated that the

beta law yields a good representation of the data in the pre-vaccination period. There is

also evidence in favor of such a model when mortality rates are computed using data that

only cover the vaccination drive period as long as the negative impact of vaccination reach

on death rates is moderate; when such an impact is strong, the univariate beta model is

rejected. The beta law is also rejected by the information matrix tests when mortality

rates are computed using data that cover both periods (before and after the start of the

vaccination campaign). The rejection of the beta distribution in this case is due to data
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Figure 11 – Histogram and fitted densities, period 3.
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Figure 12 – Quantile-quantile plots, period 3.
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heterogeneity. We recommend fitting alternative laws to the data and also mixtures of

beta distributions.

Our results should be viewed as an initial exploration on the usefulness of

information matrix tests for fractional data analysis. The tests we presented proved to

be quite useful when applied to the univariate beta model. In future research, we will

extend the results presented in this chapter to cover other univariate laws that are used

to model fractional data (e.g., Kumaraswamy and simplex). We will also seek to extend

our results to regression settings, in particular to the beta regression model introduced by

Ferrari and Cribari-Neto (2004), and to dynamic beta models, such as the βARMA model
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introduced by Rocha and Cribari-Neto (2009), Rocha and Cribari-Neto (2017); see also

Cribari-Neto, Scher and Bayer (2022) and Scher et al. (2020). The beta parameterization

used in this chapter, which is indexed by mean and precision parameters, will be helpful

for the aforementioned extensions of our results.
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2 BETA REGRESSION MISSPECIFICATION TESTS

2.1 INTRODUCTION

The beta regression model introduced by Ferrari and Cribari-Neto (2004) is

tailored for double bounded response variables, i.e., variables that assume values in (a,b),

where a and b are known real constants (−∞< a < b <∞). The most common situation

is that in which the variable of interest assumes values in (0,1), e.g., rates and proportions.

The dependent variable is assumed to follow the beta distribution indexed by its mean

and a precision parameter. Both parameters of the beta distribution are impacted by

explanatory variables, being connected to linear predictors that involve regressors and

unknown parameters through link functions. The model thus comprises two separate

submodels, one for the mean response and another for the precision.

Model selection strategies for beta regressions were developed by Bayer and

Cribari-Neto (2015), Bayer and Cribari-Neto (2017), bias correction point estimation

were developed by Grün, Kosmidis and Zeileis (2012) and Ospina, Cribari-Neto and

Vasconcellos (2006), residuals were proposed by Espinheira, Ferrari and Cribari-Neto

(2007) and Espinheira, Santos and Cribari-Neto (2017), local influence measures were

derived by Ferrari, Espinheira and Cribari-Neto (2011), non-nested hypothesis testing

inferences were developed by Cribari-Neto and Lucena (2015), bootstrap testing inferences

were outlined by Lima and Cribari-Neto (2020), bootstrap prediction intervals were

considered by Espinheira, Ferrari and Cribari-Neto (2014), and hypothesis tests that

incorporate small sample corrections were developed by Bayer and Cribari-Neto (2013),

Ferrari and Pinheiro (2011) and Guedes, Cribari-Neto and Espinheira (2021). Bayer,

Tondolo and Müller (2018) introduced control charts based on beta regressions. The use of

parametric link functions in beta regressions was studied by Canterle and Bayer (2019) and

Rauber, Cribari-Neto and Bayer (2020). For details on the class of beta regression models,

we refer readers to Cribari-Neto and Zeileis (2010) and Douma and Weedon (2019).

The beta regression model has been extensively used in many different areas

to model the behavior of random variables with support in the standard unit interval.

Using data on 124 countries in a beta regression analysis, Cribari-Neto and Souza (2013)

measured the impact of average intelligence on the prevalence of atheists. Similar results

for the United States based on state level data were obtained by Souza and Cribari-Neto
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(2018). Souza and Cribari-Neto (2015) studied the impact of religiosity and average

intelligence on homosexuality non-acceptance. Cordeiro et al. (2021) used beta regressions

to model mortality rates in Europe during the COVID-19 first wave. A beta regression

analysis of county-level excessive alcohol use, rurality, and COVID-19 case fatality rates

in the United States was performed by Pro et al. (2021). Cribari-Neto (2023) performed

a beta regression analysis of statewide COVID-19 mortality in Brazil. Swearingen et al.

(2011) used the model to gain knowledge on ischemic stroke volume in NINDS rt-PA

clinical trials.

In an empirical analysis, it is important to assess whether a fitted varying

precision beta regression is correctly specified before drawing inferences and conclusions

from it. The model can be misspecified in many different ways. For instance, the mean

link function may be incorrectly specified, the precision link function may not be adequate,

the practitioner may have failed to include an important regressor in the mean and/or

precision linear predictor, there may be neglected nonlinearity, there may be neglected

varying precision, and so on. The assessment of the adequacy of a fitted beta regression

model is typically done using diagnostic tools, for example, by means of residual analyses

based on residual half normal plots with simulated envelopes. Such analyses are useful,

but involve a degree of subjectivity.

As a complement to diagnostic analyses based on residuals, our goal here

is to propose hypothesis tests that can be used to assess whether the beta regression

model in use is correctly specified. The null hypothesis of correct model specification is

tested against the alternative hypothesis of model misspecification. The tests are based

on the information matrix equality, which is known to only hold when the model is

correctly specified, and are known as ‘information matrix tests’. We establish the validity

of information matrix tests of correct model specification for beta regressions and present

closed-form expressions for information matrix test statistics in this class of models. We

also present simulation evidence on the tests’ finite sample performance. The numerical

results obtained indicate that excellent control of the type I error frequency is achieved by

using bootstrap resampling. They also show that the tests are able to detect incorrect

model specification with high probability, especially when the sample size is not small. For

instance, according to the numerical evidence we report, one of the tests we introduce was

able to reject, at the 10% significance level, the hypothesis of correct model specification
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of a beta regression in which an important regressor was missing from the mean submodel

with probability 0.95 based on a sample of 250 observations. The inferential tools we

present allow practitioners to decide whether their fitted beta regressions are correctly

specified within the framework of a hypothesis test in which it is possible to control

the frequency of incorrectly concluding that the model specification is in error. Also, in

the proposed tests, the probability of erroneously concluding in favor of correct model

specification decays to zero as the sample size increases. Our results extend and generalize

those of Silva, Cribari-Neto and Vasconcellos (2022), who presented similar tests for the

beta distribution.

Since information matrix tests tend to be considerably size-distorted in finite

samples, analytical corrections to the test’s critical values and test statistic were obtained,

respectively, by Chesher and Spady (1991) and Cribari-Neto (1997). An information

matrix misspecification test statistic for the normal linear regression model was obtained

by Hall (1987). It is worth noticing that misspecification is more likely to take place in

beta regressions than in normal linear regressions, since the former have a more elaborate

structure that includes two submodels, two link functions and two linear predictors.

We present two empirical applications of the proposed misspecification tests

in beta regression analyses. They involve physiological biometrics and environmental

biometrics. The former deals with modeling arms and android body fat using data collected

at a public hospital in Brazil. In this first application, the tests clearly indicate for which

models there is substantial evidence of incorrect model specification. Using the model

with the largest tests’ p-values, we construct curves that represent the impacts of age

and the body mass index on the mean proportion of arms body fat. Such plots uncover

important information on the different impact patterns for men and women and also for

individuals with different levels of physical activity. In the second application, which relates

to behavioral biometrics, the interest lies in modeling the impact of average intelligence on

the mean proportion of religious disbelievers in different countries. The information matrix

tests indicate that the model used in Cribari-Neto and Souza (2013) is correctly specified.

We also perform the misspecification tests by only considering restrictions on mean and

precision covariates directly related to average intelligence. They show that the only model

for which the specification of such effects seems correct is the loglog model. This showcases

an advantage of information matrix tests: one can focus on a chosen subset of restrictions,
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e.g., those related to the covariates that are of most relevance to the analysis.

The tests we introduce can be viewed as an alternative to that in Pereira and

Cribari-Neto (2014). The authors present an adaptation of RESET test introduced by

Ramsey (1969) to inflated beta regressions, which encompass the class of beta regressions.

The test consists of adding powers of the fitted mean linear predictor to the mean submodel,

and testing their exclusion using, e.g., the likelihood ratio test. Our tests have several

advantages relative to the RESET test. First, they are obtained from an identity that is

directly related to the correct specification of the model. Second, they allow practitioners to

focus on a subset of restrictions related to a selected subset of covariates, as exemplified in

one of our empirical applications. Third, as revealed by our simulation results, the RESET

test lacks power in important settings. Finally, the null hypothesis under evaluation is

well defined in the tests we develop since we test whether the information matrix equality

holds. It is not clear, however, what is the null hypothesis of the RESET test in beta

regressions. In the classical linear regression model, one tests whether the mean of error

term conditional on the regressors is null. It is not clear how that translates to beta

regression settings.

We also note that there are formulations of the beta regression model that are

more general than that used in this chapter. For instance, Rauber, Cribari-Neto and Bayer

(2020) consider the use a parametric link function in the mean submodel. We chose to

work with the standard varying precision beta regression because it is most commonly

used formulation of the model in empirical studies.

Finally, it is worth noting that information matrix tests have been derived

for several statistical and econometric models, e.g., the Gaussian linear regression model

(HALL, 1987), binary data models (ORME, 1988), linear regressions with autoregressive

and moving average errors (FURNO, 1996), logistic regressions (ZHANG, 2001), beta-

binomial models (CAPANU; PRESNELL, 2008), the negative binomial law (CHUA;

ONG, 2013), and copulas (PROKHOROV; SCHEPSMEIER; ZHU, 2019). We add to the

literature by extending such tests to the class of varying precision beta regressions.

The chapter unfolds as follows. The beta regression model is briefly presented

in Section 2.2. In Section 2.3, information matrix misspecification tests for beta regressions

are obtained. Monte Carlo simulation evidence is presented in Section 2.4. We present

numerical results on the tests’ null (size) and non-null (power) behavior. Empirical
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applications are presented and discussed in Section 2.5. Finally, concluding remarks are

offered in Section 2.6.

2.2 THE BETA REGRESSION MODEL

Let Y be a random variable that follows the beta distribution with density

function given by Ferrari and Cribari-Neto (2004)

f(y;µ,ϕ) = Γ(ϕ)
Γ(µϕ)Γ((1−µ)ϕ)y

µϕ−1(1−y)(1−µ)ϕ−1, 0< y < 1,

0< µ < 1, ϕ > 0, where E(Y ) = µ and ϕ is a precision parameter since. Here, Var(Y ) =

µ(1−µ)/(1+ϕ) which, for fixed µ, decreases as ϕ increases. We write Y ∼ B(µ,ϕ).

Let Y1, . . . ,Yn be independent beta-distributed random variables such that

Yi ∼ B(µi,ϕi), i= 1, . . . ,n. The varying precision beta regression model is given by

g1(µi) =
p∑

j=1
βjxij = η1i and g2(ϕi) =

q∑
j=1

δjzij = η2i,

where βββ = (β1, . . . ,βp)⊤ ∈Rp and δδδ = (δ1, . . . , δq)⊤ ∈Rq are unknown parameter vectors

(p+ q = k < n), ηηη1 = (η11, . . . ,η1n)⊤ and ηηη2 = (η21, . . . ,η2n)⊤ are linear predictor vectors,

and xi1 = zi1 = 1∀i. Also, xi2, . . . ,xip and zi2, . . . , ziq are the covariates used in the mean

and precision submodels, respectively. Here, g1 : (0,1) →R and g2 : (0,∞) →R are strictly

monotonic and three times differentiable link functions. Common choices for the mean

(precision) link function are logit, probit, loglog, cloglog and cauchit (log). When all

observations share the same precision, i.e., when ϕ1 = · · · = ϕn = ϕ, the above model

reduces to its fixed precision formulation. In this case, Yi ∼ B(µi,ϕ), i= 1, . . . ,n.

In what follows, YYY and yyy denote n-vectors of beta-distributed random variables

and their realizations, respectively. Letθθθ= (βββ⊤, δδδ⊤)⊤ ∈ Θ ⊆Rk be the vector containing all

regression coefficients, where Θ denotes the parameter space. The log-likelihood function

for Y1, . . . ,Yn with observed values y1, . . . ,yn is

ℓ≡ ℓ(θθθ;yyy) ≡ ℓ(βββ,,,δδδ;yyy) =
n∑

i=1
ℓ(µi,ϕi;yi),

where ℓ(µi,ϕi;yi) = logΓ(ϕi) − logΓ(µiϕi) − logΓ((1 −µi)ϕi) + (µiϕi − 1)y∗
i + (ϕi − 2)y†

i ,

with y∗
i = log(yi/(1 − yi)) and y†

i = log(1 − yi). It can be easily verified that E(Y ∗
i ) =

ψ(µiϕi)−ψ((1−µi)ϕi), E(Y †
i ) = ψ((1−µi)ϕi)−ψ(ϕi), where ψ is the digamma function.

We will denote E(Y ∗
i ) and E(Y †

i ) by µ∗
i and µ†

i , respectively.



53

Let UUU ≡UUU(θθθ) = (UUUβββ(θθθ)⊤,UUU δδδ(θθθ)⊤)⊤ = (∂ℓ(θθθ;yyy)/∂βββ⊤,∂ℓ(θθθ;yyy)/∂δδδ⊤)⊤ = ∇ℓ(θθθ;yyy)

denote the score function. The log-likelihood derivatives with respect to the rth and Rth

components of βββ and δδδ are, respectively,

Uβr(θθθ) = ∂ℓ(θθθ;yyy)
∂βr

=
n∑

i=1

∂ℓi(µi,ϕi;yi)
∂µi

dµi

dη1i

∂η1i

∂βr
,

UδR
(θθθ) = ∂ℓ(θθθ;yyy)

∂δR
=

n∑
i=1

∂ℓi(µi,ϕi;yi)
∂ϕi

dϕi

dη2i

∂η2i

∂δR
,

where

∂ℓ(θθθ;yyy)
∂βr

=
n∑

i=1
ϕi(y∗

i −µ∗
i ) 1
g′

1(µi)
xir,

∂ℓ(θθθ;yyy)
∂δR

=
n∑

i=1
[µi(y∗

i −µ∗
i )+(y†

i −µ†
i )]

1
g′

2(ϕi)
ziR,

r = 1, . . . ,p and R = 1, . . . , q. Here, g′
1(µi) and g′

2(ϕi) denote the derivatives of g1 and g2

with respect to µi and ϕi, respectively.

The maximum likelihood estimator θ̂θθn = (β̂ββ
⊤
, δ̂δδ

⊤
)⊤ = argmaxθθθ∈Rp+q ℓ(θθθ;yyy) can-

not be expressed in closed-form. Parameter estimates are usually obtained by numerically

maximizing the beta regression model log-likelihood function with the aid of a nonlinear op-

timization algorithm. In what follows, we will use the Broyden-Fletcher-Goldfarb-Shanno

(BFGS) algorithm with analytical gradient; for details, see Nocedal and Wright (2006).

Fisher’s information matrix for a single observation, say Ḃi(θθθ), is the k× k

matrix given by the expected value of the individual log-likelihood derivative outer product:

Ḃi(θθθ) = E(∂ℓ(θθθ;Yi)/∂θθθ×∂ℓ(θθθ;Yi)/∂θθθ⊤). We write Ḃi(θθθ) as

Ḃi(θθθ) =


Ḃββββββ

i Ḃβββδδδ
i

Ḃδδδβββ
i Ḃδδδδδδ

i

 , (2.1)

where Ḃββββββ
i , Ḃβββδδδ

i = (Ḃδδδβββ
i )′ and Ḃδδδδδδ

i are matrices with dimensions p× p, p× q and q× q,

respectively. For r,s = 1, . . . ,p and R,S = 1, . . . , q, let Ḃ(r,s)
i , Ḃ(r,R)

i , Ḃ(R,S)
i denote the

(r,s), (r,R) and (R,S) elements of the matrices Ḃββββββ
i , Ḃβββδδδ

i and Ḃδδδδδδ
i , respectively. They can

be expressed as Ḃ(r,s)
i = −ϕ2

iwi (dµi/dη1i)2xirxis, Ḃ(r,R)
i = −ci (dµi/dη1i)(dϕi/dη2i)xirziR

and Ḃ
(R,S)
i = −pi (dϕi/dη2i)2 ziRziS . The expressions for the quantities wi, ci and pi can

be found in Appendix B.
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2.3 BETA REGRESSION MISSPECIFICATION TESTS

Our interest lies in testing the null hypothesis that the beta regression model

is correctly specified against the alternative hypothesis that the model specification is in

error. We consider the information matrix test introduced in full generality by White

(1982). Let θθθ0 = (βββ⊤
0 , δδδ

⊤
0 )⊤ be the true parameter value. We say that the beta regression

model is correctly specified if Yi follows the beta law with parameter vector θθθ0 ∀i.

2.3.1 Misspecification tests for beta regressions

Assume that the limits A(θθθ) and B(θθθ) given by A(θθθ) = limn→∞n−1∑n
i=1 Ȧi(θθθ)

and B(θθθ) = limn→∞n−1∑n
i=1 Ḃi(θθθ) exist, where Ȧi(θθθ) = E(∂2ℓ(θθθ;Yi)/∂θθθ∂θθθ⊤). The in-

formation matrix equality B(θθθ0) = −A(θθθ0) holds when the model is correctly speci-

fied. It is valid for ∀θθθ0 ∈ Θ. We then wish to test H0 : A(θθθ0) +B(θθθ0) = Ok×k against

H1 : A(θθθ0)+B(θθθ0) ̸=Ok×k, where Ok×k denotes a k-dimensional square matrix of zeros.

Rejection of the null hypothesis is evidence of model misspecification.

In what follows, we will present information matrix test statistics that can be

used to test the correct beta regression model specification. Let Ai(θθθ) = ∂ℓ2(θθθ;Yi)/∂θθθ∂θθθ⊤

and An(θθθ;YYY ) = n−1∑n
i=1Ai(θθθ). We write An(θθθ;YYY ) as

An(θθθ;YYY ) = 1
n

n∑
i=1


Aββββββ

i Aβββδδδ
i

Aδδδβββ
i Aδδδδδδ

i

 ,

where Aββββββ
i , Aβββδδδ

i = (Aδδδβββ
i )′ and Aδδδδδδ

i are matrices with dimensions p× p, p× q and q× q,

respectively. For r,s= 1, . . . ,p and R,S = 1, . . . , q, let A(r,s)
i , A(r,R)

i and A
(R,S)
i denote the

(r,s), (r,R) and (R,S) elements of the matrices Aββββββ
i , Aβββδδδ

i and Aδδδδδδ
i , respectively. Such

elements are expressed by

A
(r,s)
i = ∂2ℓ(θθθ;Yi)

∂βr∂βs
=
[
−ϕ2

iwi
dµi

dη1i
−ϕi(y∗

i −µ∗
i ) d

dµi

dµi

dη1i

](
dµi

dη1i

)
xirxis,

A
(r,R)
i = ∂2ℓ(θθθ;Yi)

∂βr∂δR
=[−ci +(y∗

i −µ∗
i )] dϕi

dη2i

dµi

dη1i
xirziR,

A
(R,S)
i = ∂2ℓ(θθθ;Yi)

∂δR∂δS
=
{

−pi

(
dϕi

dη2i

)2
+
[
µi(y∗

i −µ∗
i )+(y†

i −µ†
i )
]

×
(
d

dϕi

dϕi

dη2i

)
dϕi

dη2i

}
ziRziS .
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Expressions for the above derivatives are given in Appendix B

Also, let Bi(θθθ) = ∂ℓ(θθθ;Yi)/∂θθθ×∂ℓ(θθθ;Yi)/∂θθθ⊤) and Bn(θθθ;YYY ) = n−1∑n
i=1Bi(θθθ).

We write Bn(θθθ;YYY ) as

Bn(θθθ;YYY ) = 1
n

n∑
i=1


Bββββββ

i Bβββδδδ
i

Bδδδβββ
i Bδδδδδδ

i

 ,

where Bββββββ
i , Bβββδδδ

i = (Bδδδβββ
i )′ and Bδδδδδδ

i are matrices with dimensions p× p, p× q and q× q,

respectively. For r,s= 1, . . . ,p and R,S = 1, . . . , q, let B(r,s)
i , B(r,R)

i and B(R,S)
i denote the

(r,s), (r,R) and (R,S) elements of the matrices Bββββββ
i , Bβββδδδ

i and Bδδδδδδ
i , respectively. They

are given by

B
(r,s)
i = ∂ℓ(θθθ;Yi)

∂βr
× ∂ℓ(θθθ;Yi)

∂βs
=
[
ϕi(y∗

i −µ∗
i ) dµi

dη1i

]2
xirxis,

B
(r,R)
i = ∂ℓ(θθθ;Yi)

∂βr
× ∂ℓ(θθθ;Yi)

∂δR
=ϕi (y∗

i −µ∗
i )
[
µi(y∗

i −µ∗
i )

+(y†
i −µ†

i )
] dϕi

dη2i

dµi

dη1i
xirziR,

B
(R,S)
i = ∂ℓ(θθθ;Yi)

∂δR
× ∂ℓ(θθθ;Yi)

∂δS
=
[
µi(y∗

i −µ∗
i )+(y†

i −µ†
i )
]2( dϕi

dη2i

)2
ziRziS .

Expressions for the derivatives in the above formulas can be found in Ap-

pendix B. As shown in subsection 2.3.2, An(θθθ;YYY ) and Bn(θθθ;YYY ) evaluated at θθθ = θ̂θθn are

consistent estimators of A(θθθ0) and B(θθθ0), respectively.

Let Ci(θθθ) =Ai(θθθ)+Bi(θθθ) and let dddi(θθθ) = vech(Ci(θθθ)) be a vector of dimension

K×1, where K = k(k+1)/2. Here, vech is the operator that, when applied to a square

matrix, returns the vector formed by its lower triangular portion (including the diagonal).

Also, let

DDDnnn(θθθ) ≡DDDnnn(θθθ;;;YYY ) = 1
n

n∑
i=1

dddi(θθθ).

For r,s= 1, . . . ,p; R,S = 1, . . . , q, let C(r,s)
i , C(r,R)

i and C
(R,S)
i denote the (r,s), (r,R) and
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(R,S) elements of the matrix Ci(θθθ). These elements are expressed by

C
(r,s)
i =

{
ϕi
dµi

dη1i

[
−ϕiwi

dµi

dη1i
+(y∗

i −µ∗
i ) d

dµi

dµi

dη1i
+ϕi (y∗

i −µ∗
i )2 dµi

dη1i

]}

×xirxis,

C
(r,R)
i = dµi

dη1i

dϕi

dη2i

{
ϕi (y∗

i −µ∗
i )
[
µi(y∗

i −µ∗
i )+(y†

i −µ†
i )
]

+(y∗
i −µ∗

i )− ci

}
xirziR,

C
(R,S)
i =

−pi

(
dϕi

dη2i

)2
+
[
µi(y∗

i −µ∗
i )+(y†

i −µ†
i )
]( d

dϕi

dϕi

dη2i

)
dϕi

dη2i

+
[
µi(y∗

i −µ∗
i )+(y†

i −µ†
i )
]2( dϕi

dη2i

)2ziRziS .

Appendix B contains expressions for the above derivatives.

The vector DDDnnn(θθθ;YYY ) = vech(An(θθθ;YYY )+Bn(θθθ;YYY )) evaluated at θθθ = θ̂θθn is known

as ‘the vector of restrictions’. It contains the lower triangular elements of An(θθθ;YYY ) +

Bn(θθθ;YYY ) evaluated at θθθ = θ̂θθn. Suppose the limits Suppose the limits

∇DDD(θθθ) = lim
n→∞n−1

n∑
i=1
E
(
∂dddi(θθθ)/∂θθθ⊤⊤⊤)

and

V (θθθ) = lim
n→∞

1
n

n∑
i=1
E
(
dddi(θθθ)−∇DDD(θθθ)A(θθθ)−1∇ℓ(θθθ;Yi)

)
×
(
dddi(θθθ)−∇DDD(θθθ)A(θθθ)−1∇ℓ(θθθ;Yi)

)⊤

exist. When the model is correctly specified, the asymptotic distribution of the random

vector
√
nDDDnnn(θ̂θθn,YYY ) is, under some regularity conditions, multivariate normal with zero

mean and covariance matrix V (θθθ0); see Theorem 1 in the next subsection. Therefore, if

Vn(θ̂θθn) is consistent for V (θθθ0), then, under correct model specification,

nDDDn(θ̂θθn;YYY )⊤Vn(θ̂θθn)−1DDDn(θ̂θθn;YYY )

is asymptotically chi-squared distributed with K degrees of freedom (χ2
K).

A natural estimator for V (θθθ0) is

Vn1(θθθ) = 1
n

n∑
i=1

(
dddi(θθθ)−∇DDDn(θθθ;YYY )An(θθθ;YYY )−1∇ℓ(θθθ;Yi)

)
×
(
dddi(θθθ)−∇DDDn(θθθ;YYY )An(θθθ;YYY )−1∇ℓ(θθθ;Yi)

)⊤
,
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evaluated at θθθ = θ̂θθn, where ∇DDDn(θθθ;YYY ) = ∂DDDn(θθθ;YYY )/∂θθθ⊤. Expressions for the elements of

the matrix ∇DDDn(θθθ;YYY ) for the beta regression model are presented in Appendix B.

We will now obtain a closed-form expression for ∇DDDn(θθθ;YYY ) in beta regressions

that only involve simple matrix operations. The only caveat is that the ordering of the

elements in dddi(θθθ) must obey a well-defined rule which differs from the one previously

stated. We will return to that later.

The number of rows of the matrix ∇DDDn(θθθ;YYY ) equals the number of elements

of the vector dddi(θθθ), i.e., K = k(k+1)/2, where k = p+ q. Note that

K = (p+ q)(p+ q+1)
2 = p(p+1)

2 + q(q+1)
2 +pq.

Let P̄ , Q̄, and R̄ denote, respectively, the three terms in the sum above.

Let X be the n×p matrix of the mean regressors, whose p columns are xxx1, . . . ,xxxp,

where each xxxj is an n×1 vector, j = 1, . . . ,p. Let xxxj,k, for each fixed j and k = 1, . . . ,p, be

the n×1 vector that equals the direct (Hadamard) product of xxxj by xxxk (i.e., ith component

of the product is the product of the ith components). We now define the matrix X ∗X, of

dimension n× P̄ , with columns given as

X ∗X = [xxx1,1 . . .xxxp,1 xxx2,2 . . .xxxp,2 xxx3,3 . . .xxxp,p−1 xxxp,p].

Let Z be the n×q matrix of precision regressors, whose q columns are zzz1, . . . , zzzq,

where each zzzj is an n×1 vector, j = 1, . . . , q. Let zzzj,k, for each fixed j and k = 1, . . . , q, be

the n× 1 vector given by the direct (Hadamard) product between zzzj and zzzk. We now

define the matrix Z ∗Z, of dimension n× Q̄, with columns given as

Z ∗Z = [zzz1,1 . . . zzzp,1 zzz2,2 . . . zzzp,2 zzz3,3 . . . zzzp,p−1 zzzp,p].

Consider the R̄ vectors vvvj,k, j = 1, . . . ,p and k = 1, . . . , q, where each vvvj,k is the

n× 1 vector representing the direct product of zzzj by xxxk. Define the matrix Z ∗X, of

dimension n× R̄, as

Z ∗X = [vvv1,1 vvv2,1 . . .vvvp,1 vvv1,2 . . .vvvp,2 . . .vvv1,q . . .vvvp,q] .

Now define the matrix W , of dimension 3n×K, as

W =


X ∗X On×Q̄ On×R̄

On×P̄ Z ∗Z On×R̄

On×P̄ On×Q̄ Z ∗X

 ,
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where Or×c denotes an r× c matrix of zeros. For each r,s = 1, . . . ,p, the derivative of

C
(r,s)
i with respect to βt is an expression of the type αβββ,βββ,βββ

i xir xisxit, where the coefficient

αβββ,βββ,βββ
i does not involve r,s, t. Similarly, the derivative of C(r,s)

i with respect to δR is an

expression of the form αβββ,βββ,δδδ
i xir xis ziR, where the coefficient αβββ,βββ,δδδ

i does not involve r,s,R.

The derivatives of C(r,R)
i and C

(R,S)
i can be expressed in a similar fashion.

Let Λβββ
βββ,βββ , Λδδδ

βββ,βββ , Λβββ
δδδ,δδδ, Λδδδ

δδδ,δδδ, Λβββ
βββ,δδδ, and Λδδδ

βββ,δδδ be n×n diagonal matrices such that

the diagonal entries of Λβββ
βββ,βββ are the coefficients of the derivatives of C(r,s)

i with respect to

βββ, and so on. We now assemble the matrix U , of dimension 3n×k and defined using six

blocks, as

U =


Λβββ

βββ,βββX Λδδδ
βββ,βββZ

Λβββ
δδδ,δδδX Λδδδ

δδδ,δδδZ

Λβββ
βββ,δδδX Λδδδ

βββ,δδδZ

 .

It is now possible to express ∇DDDn(θθθ;YYY ) as the K×k matrix given by

∇DDDn(θθθ;YYY ) = n−1W⊤U. (2.2)

This matrix involves unknown parameters. In Vn1(θ̂θθn), we use ∇DDDn(θ̂θθn;YYY ) = n−1W⊤Û ,

where Û is obtained by replacing all entries of the aforementioned diagonal matrices by

their maximum likelihood estimates.

An important caveat relates to the way the columns of W are defined since it

provides a well-defined ordering to be used for the components of the vector dddi(θθθ). The

manner in which we sequentially use X ∗X, then Z ∗Z, then Z ∗X indicates the vector

dddi(θθθ) should no longer be defined simply as vech(Ci), but as the vector
vech(Cβββ,βββ

i )

vech(Cδδδ,δδδ
i )

vec(Cβββ,δδδ
i )

 ,

where Cβββ,βββ
i = Aβββ,βββ

i +Bβββ,βββ
i , etc., vec being the operator that yields a column vector when

applied to a matrix by stacking its columns one underneath the other. Note that the

orders of the columns within each of the products we defined were strategically chosen so

that the order of the elements of the vector dddi(θθθ) has this relatively simple form.

We will show in the next subsection that Vn1(θ̂θθn) is a consistent estimator of

V (θθθ0) under correct model specification. The following test statistic can then be used to
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test the correct beta regression model specification:

ζ1 = nDDDn(θ̂θθn)⊤Vn1(θ̂θθn)−1DDDn(θ̂θθn).

Under H0, ζ1 is asymptotically distributed as χ2
K . The test is performed using asymptotic

critical values. We reject the null hypothesis at significance level α ∈ (0,1) if ζ1 > χ2
K;1−α,

where χ2
K;1−α is the 1−α quantile of the χ2

K distribution.

Lancaster (1984) proposed a consistent estimator of the matrix V (θθθ) that does

not involve third-order log-likelihood derivatives. They used the fact that, under H0,

E(∂dddi(θθθ)/∂θθθ⊤ +dddi(θθθ)∇ℓ(θθθ;Yi))⊤) =OK×k, i= 1, . . . ,n (LANCASTER, 1984). Therefore,

under H0,

−∇DDD(θθθ0) = lim
n→∞n−1

n∑
i=1
E(dddi(θθθ0)∇ℓ(θθθ0;Yi)⊤).

Let Ln(θθθ;YYY ) = −n−1∑n
i=1 dddi(θθθ)∇ℓ(θθθ;Yi)⊤. Their estimator of V (θθθ0) is

Vn2(θθθ) = 1
n

n∑
i=1

(
dddi(θθθ)+Ln(θθθ;YYY )Bn(θθθ;YYY )−1∇ℓ(θθθ;Yi)

)
×
(
dddi(θθθ)+Ln(θθθ;YYY )Bn(θθθ;YYY )−1∇ℓ(θθθ;Yi)

)⊤

evaluated at θθθ = θ̂θθn.

We will show in the next subsection that this is a consistent estimator of V (θθθ0)

under correct model specification in beta regressions. The corresponding information

matrix test statistic is

ζ2 = nDDDn(θ̂θθn)⊤Vn2(θ̂θθn)−1DDDn(θ̂θθn).

Under H0, ζ2 is distributed as χ2
K asymptotically, and we reject the null hypothesis of

correct model specification if ζ2 > χ2
K;1−α. We note that the computation of Vn2(θ̂θθn) does

not require ∇DDDn(θ̂θθn;YYY ).

The beta regression misspecification tests we presented may be size-distorted

in finite samples. Such distortions vanish as the sample size increases, but they may be

sizeable when the number of observations is not large. Better control of the type I error

frequency can be achieved by using critical values obtained from a parametric bootstrap

resampling scheme instead of asymptotic critical values since the test statistics’ exact null

distributions may be poorly approximated by their asymptotic counterpart when n is not

large. Bootstrap-based testing inferences can be performed as follows. For i= 1,2:
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1. Using the original sample YYY = (Y1, . . . ,Yn)⊤, compute ζi.

2. Obtain a sample of size n, say YYY ∗
b = (Y ∗

1 , . . . ,Y
∗

n )⊤, by independently sampling from

the beta law with µi and ϕi replaced, respectively, with µ̂i = g−1
1 (β̂1 + β̂2xi2 + · · ·+

β̂pxip) and ϕ̂i = g−1
2 (δ̂1 + δ̂2zi2 + · · ·+ δ̂qziq), i= 1, . . . ,n.

3. Using YYY ∗
b , compute ζ∗

i,b.

4. Execute steps (2) and (3) B times.

5. Reject the null hypothesis of correct model specification at significance level α if ζi

exceeds the 1−α quantile of ζ∗
i,1, . . . , ζ

∗
i,B.

The use of bootstrap resampling as outlined above may considerably reduce size distortions

of the ζ1 and ζ2 tests since they are now based on critical values obtained from estimates

of the test statistics’ exact null distributions.

The standard formulation of the information matrix tests presented above

involves testing K restrictions. (Recall that K = k(k+1)/2 restrictions are tested because

the matrices A(θθθ0) and B(θθθ0) are symmetric.) It is possible, nonetheless, to focus on

a given subset of parameters by computing the test statistics for Ks ≤ K restrictions.

When Ks =K, all restrictions are considered; when Ks <K, focus is placed on a subset

of restrictions. For instance, the practitioner may choose to only consider restrictions

related to the mean or to the precision submodel, the corresponding number of restrictions

being P = p(p+1)/2 and Q= q(q+1)/2, respectively. Here, we stress the usefulness of the

matrix expression we developed for ∇DDDn(θθθ;YYY ). For example, if one wishes to only test

restrictions related to the mean submodel, it suffices to consider Cβββ,βββ
i and its derivatives

with respect to βββ. In that case, dddi(θθθ) = vech(Cβββ,βββ
i ), and it follows that ∇DDDn(θθθ;YYY ) =

(X ∗X)⊤Λβββ
βββ,βββX. Similarly, when the restrictions only relate to the precision submodel,

it suffices to use Cδδδ,δδδ
i and its derivatives with respect to δδδ. Here, dddi(θθθ) = vech(Cδδδ,δδδ

i ) and

∇DDDn(θθθ;YYY ) = (Z ∗Z)⊤Λδδδ
δδδ,δδδZ.

Under fixed precision, ϕ1 = · · · = ϕn = ϕ, g2 is the identity link function, and

η2i = δ1 ∀i. The model is thus a particular case of the varying precision model. When

computing the quantities used in ζ1 and ζ2, one must set dϕi/dη2i = 1. As a consequence,

d(dϕi/dη2i)/dϕi = 0, etc.
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2.3.2 On the validity of beta regression misspecification tests

We will now discuss the validity of the tests of correct beta regression model

specification presented in the previous subsection. In particular, we will show that
√
nDDDn(θ̂θθn) D→ NK(000,V (θθθ0)) and we will prove the consistency of the former estimators of

the asymptotic covariance matrix of
√
nDDDn(θ̂θθn). The proofs of all results are presented in

Appendix C. The following assumptions are made:

(A1) θ̂θθn − θθθ0 =OP (n−1/2).

(A2) All regressors are uniformly bounded, that is, there exists M > 0 such that |xir|<M

and |ziR|<M for all i= 1, . . . ,n, r = 1, . . . ,p and R = 1, . . . , q.

(A3) The regression functions are uniformly bounded above and below. This means that

there exists an interval [µL,µU ] ⊂ (0,1) such that µi ∈ [µL,µU ] for all i= 1, . . . ,n. Also,

there exists an interval [ϕL,ϕU ] ⊂ (0,∞) such that ϕi ∈ [ϕL,ϕU ] for all i= 1, . . . ,n.

(A4) The sequence (Ȧi(θθθ0)) is Cesàro convergent to a nonsingular matrix A(θθθ0), in the

sense that there exists a nonsingular matrix A(θθθ0) such that the sequence of matrices

n−1∑n
i=1 Ȧi(θθθ0) converges to A(θθθ0) as n→ ∞.

(A5) The sequence (E(∂dddi(θθθ)/∂θθθ)) is Cesàro convergent to a matrix ∇DDD(θθθ0) for θθθ = θθθ0.

(A6) The sequence of covariance matrices of dddi(θθθ0) −∇DDD(θθθ0)A(θθθ0)−1∇ℓ(θθθ0,Yi) is Cesàro

convergent to a positive definite matrix V (θθθ0) under correct model specification.

(A7) The sequence of covariance matrices of dddi(θθθ0) is Cesàro convergent to a matrix Φ(θθθ0)

under correct model specification.

We note that Assumption (A1) holds whenever
√
n(θ̂θθn − θθθ0) is asymptotically normally

distributed.

At the outset, we establish two results: Lemmas 1 and 2.

Lemma 1. ℓ(µi,ϕi;yi) and all its partial derivatives of any order with respect to components

of θθθ have finite moments of all orders and all of them are uniformly bounded in i.

Lemma 2. Let (WWWn,i) be a double sequence of independent random vectors of same

dimension k with E(WWWn,i) = µµµn,i and Var(WWWn,i) = Σn,i, where Σn,i is a positive definite

matrix ∀n and ∀i. Assume that there exist δ > 0 and ∆> 0 such that E(∥WWWn,i∥2+δ)<∆

∀i. Let WWW n = n−1∑n
i=1WWWn,i, µ̄µµn = n−1∑n

i=1µµµn,i and Σ̄n = n−1∑n
i=1 Σn,i. If Σ̄n converges

to a positive definite matrix V , as n→ ∞, then,
√
n(WWW n − µ̄µµn) D→ Nk(000,V ).
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We can now state our first main result: a central limit theorem for the vector

DDDn(θ̂θθn). The proof of this result uses arguments that are similar to those in White (1982).

Theorem 1. Under Assumptions (A1)–(A6) and correct model specification,

√
nDDDn(θ̂θθn) D→ NK(000,V (θθθ0)).

We will now move to our second main result which relates to the consistency

of Vn1(θ̂θθn).

Theorem 2. Under Assumptions (A1)–(A7) and correct model specification,

Vn1(θ̂θθn) P→ V (θθθ0).

The expression obtained for V (θθθ0) may seem unusual, but we observe that

A(θθθ0) is a negative definite matrix.

The consistency of Vn2(θ̂θθn) can now be easily established.

Theorem 3. Under Assumptions (A1)–(A7) and correct model specification,

Vn2(θ̂θθn) P→ V (θθθ0).

2.4 NUMERICAL EVIDENCE

We will now report Monte Carlo simulation results on the tests’ finite sample

performance. Data generation is performed under the null and alternative hypotheses in

order to evaluate the tests’ null and non-null behavior, respectively. Parameter estimates

were obtained by numerically maximizing the beta regression log-likelihood function using

the BFGS quasi-Newton algorithm with analytical first derivatives. Starting values used in

the iterative optimization scheme are computed as described on pages 349 and 350 of Ferrari,

Espinheira and Cribari-Neto (2011). The null hypothesis is that the beta regression model

is correctly specified and the alternative hypothesis is that it is misspecified. Inference

is based on the following tests: ζ1, ζ1B, ζ2, ζ2B and RESET (ζR). The ζ1B and ζ2B tests

employ bootstrap critical values. We use the implementation of the RESET denoted by

(PEREIRA; CRIBARI-NETO, 2014) as Rµ, since it is the overall best performer in their

numerical evaluations. RESET test inferences are carried out using the likelihood ratio

test. The number of Monte Carlo and bootstrap replications are 5000 and 500, respectively.
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The sample sizes and significance levels are, respectively, n ∈ {100,250,500,1000} and

α ∈ {0.01,0.05,0.1} for the size simulations and α ∈ {0.05,0.1} for the power simulations.

The simulations were performed using the R statistical computing environment; see R

Core Team (2023).

At the outset, we consider the following varying precision beta regression model:

log(µi/(1 −µi)) = β1 +β2xi2 and log(ϕi) = δ1 + δ2zi2, i = 1, . . . ,n. The true parameter

values are β1 = 1.5, β2 = 1.2, δ1 = 1.5 and δ2 = 2. The values of xi2 and zi2 were obtained

as random draws from U(−0.5,0.5) and U(1,1.5) distributions, respectively. In our first

set of simulations, the fitted and true models coincide. Table 9 contains the null rejection

rates of the ζ1B, ζ2B and ζR tests. All entries are percentages. We do not report results

on the ζ1 and ζ2 tests since they are very oversized; their null rejection rates at the 5%

significance level and n= 500 exceed 37% and 44%, respectively. Recall that these tests

employ asymptotic critical values, that they do not employ data resampling, and that their

test statistics contain estimators of the asymptotic covariance matrix of
√
nDDDn(θ̂θθn;YYY ). By

contrast, the ζ1B and ζ2B tests, which employ parametric bootstrap critical values, display

very good control of the type I error frequency. As in Horowitz (1994), the use of critical

values obtained through bootstrap resampling yields empirical sizes that are very close to

the corresponding significance levels, whereas the empirical and nominal sizes may differ

greatly when asymptotic critical values are employed. The ζR test displays good control

of the type I error frequency.

We will now move to simulations in which the true data generating process

differs from the fitted model, i.e., the latter is incorrectly specified. We thus report the

estimated powers of the tests. We will consider eight scenarios in which the specification

of the fitted model is in error. We will refer to them as S1, S2, S3, S4, S5, S6, S7 and S8.

The non-null rejection rates are presented in Table 10. All entries are percentages.

In the first scenario with model misspecification (S1), a mean regressor present

in the true model is not included in the fitted model. The data generating mechamism

is log(µi/(1−µi)) = β1 +β2xi2 +β3xi3 and log(ϕi) = δ1 + δ2zi2, with β1 = 1.5, β2 = −1.2,

β3 = −0.75, δ1 = 1.2, δ2 = 2. The values of xi2, xi3 and zi2 are obtained, respectively, as

random draws from the U(−1.5,1.5), LN (0,0.5) and U(1,1.5) distributions. The fitted

model does not contain x3 as a mean regressor; it is thus incorrectly specified. The

simulation results show that the powers of the two information matrix tests increase
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Table 9 – Null rejection rates (%).
n ζ1B ζ2B ζR

α = 10%
100 10.0 10.4 11.2
250 9.8 10.0 9.6
500 10.1 9.9 10.9
1000 10.4 10.3 10.2

α = 5%
100 5.1 5.5 5.7
250 4.9 5.1 4.8
500 5.4 5.3 5.4
1000 5.3 5.3 5.1

α = 1%
100 1.3 1.2 1.2
250 1.2 1.3 0.9
500 1.2 1.3 1.0
1000 1.1 1.2 1.0

Source: Author

with the sample size. That is, their type II error frequencies diminish as the sample

size increases. The results also show that these tests can reliably detect that the model

specification is in error, especially when the sample size is not small. When n= 250, the

powers of the two information matrix tests at α = 10% exceed 95%. By contrast, the

RESET test (ζR) is not consistent in this setting. Notably, the RESET test displays unit

asymptotic power under missing mean covariate in Pereira and Cribari-Neto (2014). The

main difference between their simulations and ours is that they generate the values of

all regressors using a small sample size and replicate these values for larger sample sizes,

which implies that the values of the means (µi) and precisions (ϕi) are also replicated.

This is, however, unrealistic, since in practical applications there is no replication of the

values of regressors across different sample sizes. If we proceed in that manner, the RESET

test becomes consistent. We generated 125 values for each covariate and replicated them

once, three times and seven times for n ∈ {125,250,500,1000}. The RESET test’s powers

at α = 10% (α = 5%) become 47.4%, 81.6%, 99.1% and 100.0% (30.0%, 67.3%, 96.9%

and 100.0%) for these sample sizes. Finally, we note that the RESET test may also be

inconsistent in the classical regression model when an important regressor is not in the

fitted model; see Leung and Yu (2000).
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The second scenario (S2) is of neglected nonlinearity in the mean submodel. The

true data generating process is log(µi/(1 −µi)) = β1 + exp(β2xi2) and log(ϕi) = δ1 + δ2zi2,

with β1 = −1, β2 = −2.3, δ1 = 1.5, δ2 = 2. The values of xi2 and zi2 were selected as in

the size simulations. The estimated model uses β2xi2 instead of exp(β2xi2), and is thus

incorrectly specified. The simulation results show that all estimated powers increase with

n. Here, ζ2B outperforms ζ1B for n > 100. For instance, the ζ1B and ζ2B non-null rejection

rates for n= 250 and α= 10% are 65.0% and 82.0%, respectively. It is noteworthy that

the RESET test is considerably more powerful than the information matrix tests in this

setting. This is not surprising, since the neglected nonlinearity in the mean submodel

greatly impacts powers of such a predictor.

In Scenario S3, we generate samples according to the Kumaraswamy regression

model (MITNIK; BAEK, 2013) and fit the beta model. A noteworthy difference is that in

Kumaraswamy model µi is the median (not the mean) of the ith response. The regression

structure in both models is log(µi/(1 −µi)) = β1 +β2xi2 and log(ϕi) = δ1 + δ2zi2, with

β1 = 1, β2 = 3, δ1 = 3.5, δ2 = 2.5. The values of xi2 were obtained as random U(0,1)

draws and zi2 = x2
i2. We note that the tests become progressively more powerful as the

sample size increases. Furthermore, ζ1B is slightly more powerful than ζ2B. For instance,

for α = 10% and n = 500, the estimated powers of ζ1B and ζ2B are 93.4% and 92.0%,

respectively. The RESET test is not consistent. It displays non-null rejection rates that

are close to the corresponding significance levels for all sample sizes. For example, the

test’s power for n= 500 and α = 10% is 8.7%. In order to verify whether the RESET test

lacks consistency under other laws, we performed simulations in which the beta regression

model is fitted to data generated using the unit Weibull model of Mazucheli, Menezes and

Ghitany (2018); again, the only difference between the true and fitted models lies in the

response distribution. The results are not presented for brevity. Again, the RESET test

was not consistent. It thus seems that, unlike the information matrix tests, the RESET test

is not capable of identifying model misspecification that is solely related to the response

distribution.

In the fourth misspecification scenario (S4), the mean link function is incorrectly

specified. The true data generating process is log(− log(1−µi)) = β1 +β2xi2 +β3xi3 and

log(ϕi) = δ1 + δ2zi2, with β1 = −1, β2 = −1, β3 = 1.5, δ1 = 3.7 and δ2 = 1.7. The fitted

model, however, uses the logit mean link function. The values of xi2 and zi2 are obtained



66

as random U(−0.5,0.5) draws and those of xi3 come from standard uniform draws. Here,

ζ1B outperforms ζ2B. For example, the estimated powers of ζ1B and ζ2B for n= 250 and

α = 5% are, respectively, 58.6% and 39.7%. The overall best performer in this setting

is the RESET test. It is considerably more powerful than the information matrix tests,

especially for n≤ 250.

Similarly to the previous scenario, here (Scenario S5) the mean link function is

misspecified. The link function in the true model is probit whereas the fitted model used

the logit link. Unlike the previous scenario, here both link functions are symmetric. The

true model is Φ−1(µi) = β1 +β2xi2 and log(ϕi) = δ1 +δ2zi2, with β1 = 1.5, β2 = 1.2, δ1 = 1.2

and δ2 = 2.0, Φ denoting the standard normal distribution function. The only difference

between the fitted and true models is that the former uses the logit link. The values of xi2

and zi2 are obtained as random U(−1.5,1.5) and U(1.0,1.5) draws, respectively. Unlike

in the previous scenario, here the information matrix tests are more powerful than the

RESET test. For example, the non-null rejection rates of ζ1B, ζ2B and ζR when n= 250

and α = 10% are, respectively, 53.5%, 52.9% and 35.8%.

The precision submodel specification is in error in Scenario S6. The data

generating process is log(µi/(1−µi)) = β1 +β2xi2 and log(ϕi)) = δ1 + δ2xi2. The precision

submodel is, however, incorrectly specified. The model fitted to the data uses log(ϕi) =

δ1 + δ2zi2. The values of xi2 and zi2 are obtained as realizations from the standard normal

and standard uniform distributions, respectively, β1 = 0.25, β2 = −0.5, δ1 = 2 and δ2 = 0.5.

The results show that the ζ1B is the best performer. For example, the estimated powers of

ζ1B and ζ2B when n= 250 and α = 10% are, respectively, 87.8% and 83.6%. Additionally,

the information matrix tests are substantially more powerful than the RESET test. For

instance, when n= 250 and α = 5% the estimated powers of the ζ1B, ζ2B and ζR tests are

75.8%, 67.6% and 36.3%, respectively.

The seventh situation in which there is model misspecification (Scenario S7)

involves fitting a beta regression model to data subject to inflation. The data are generated

using an inflated beta regression with inflation at zero. Data inflation occurs with

probability 0.05. The model is log(µi/(1−µi)) = β1 +β2xi2 and log(ϕi) = δ1 + δ2zi2. The

values of the two covariates were obtained as random U(0,1) draws and the parameter

values are β1 = −1, β2 = 2, δ1 = 1, δ2 = 1.5. The inflated values are replaced by 0.5/n

prior to fitting the beta model. The only source of model misspecification is that the
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discrete nature of the data inflation mechanism is neglected. The results show that the

information matrix tests are able to reliably detect the model misspecification, especially

for n≥ 250. They are considerably more powerful than the RESET test. As in the first

scenario, the RESET test is not consistent, i.e., it does not display unit asymptotic power.

To exemplify, consider n= 250 and α = 5%. The powers of the ζ1B, ζ2B and ζR tests are

97.7%, 97.3% and 8.0%, respectively.

In Scenario S8, a beta regression model is fitted, but the true underlying

data generating mechanism is a mixture of beta laws. The true density function of yi

is λmf1i + (1 −λm)f2i, λm ∈ (0,1), where f1i and f2i are beta densities with means µ1i

and µ2i, respectively, and common precision ϕi. Here, log(µji/(1 −µji)) = β1,j +β2,jxi

and log(ϕi) = δ1 + δ2zi, j = 1,2. Also, λm = 0.9, β1,1 = 1, β2,1 = 1, β1,2 = 0.25, β2,2 = −0.5,

δ1 = 2.0 and δ2 = 3.0. The fitted mean submodel is log(µi/(1−µi)) = β1 +β2xi and the

precision submodel is as in the true model. The values of xi and zi were obtained as

random draws from the standard uniform distribution. The reported results show that the

ζ1B and ζ2B tests display high powers as early as when n= 100. For example, with n= 100

and α = 10% the estimated powers of ζ1B and ζ2B are 77.2% and 75.8%, respectively.

Once again, the RESET test is not consistent.

An attractive feature of information matrix tests is that they can be performed

using a subset of the restrictions implied by the information matrix equality. It is typically

possible to achieve higher power by doing so. To illustrate that, consider Scenario S2

(neglected nonlinearity), α= 10% and n ∈ {100,250,500}. The powers of ζ1b (ζ2b) when

we only consider restrictions related to the mean submodel are 25.5%, 82.2% and 97.9%

(27.2%, 83.2% and 98.1%); in Scenario S4 (true link function: cloglog), we obtain 35.5%,

73.5% and 95.1% (32.3%, 74.4% and 95.6%); finally, in Scenario S5 (true link function:

probit) the non-null rejection rates become 45.7%, 72.1% and 90.1% (44.7%, 73.7% and

90.8%). In all cases, the tests’ powers are increased.

The simulation results presented above show that the information matrix tests

are capable to detecting several sources of model misspecification in beta regressions,

especially when the sample size is not small. They also show that the RESET test lacks

consistency under some forms of incorrect model specification. It is, however, very powerful

for detecting neglected nonlinearity. Since the information matrix tests and the RESET

test have distinct strengths when it comes to detecting model misspecification, they should
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Table 10 – Non-null rejection rates (%): Scenarios S1 through S8.
n ζ1B ζ2B ζR ζ1B ζ2B ζR

S1 S2
α = 10%

100 19.0 15.8 12.6 20.1 19.8 100.0
250 96.0 95.2 0.4 65.0 82.0 100.0
500 94.1 95.5 39.9 90.4 93.4 100.0
1000 100.0 100.0 6.7 100.0 100.0 100.0

α = 5%
100 10.4 7.9 5.5 12.3 11.8 100.0
250 91.7 90.0 0.1 49.3 70.1 100.0
500 88.1 89.9 21.5 78.7 84.8 100.0
1000 99.9 99.9 2.7 100.0 100.0 100.0

S3 S4
α = 10%

100 25.2 21.2 8.2 19.8 17.9 84.9
250 64.2 60.1 7.7 73.4 55.5 98.5
500 93.4 92.0 8.7 96.5 90.5 100.0
1000 100.0 100.0 9.0 100.0 100.0 100.0

α = 5%
100 15.1 11.4 4.0 10.4 9.9 76.8
250 50.1 45.1 3.5 58.6 39.7 96.5
500 87.0 84.4 4.1 93.0 81.8 99.9
1000 99.9 99.8 4.4 100.0 100.0 100.0

S5 S6
α = 10%

100 21.6 20.0 14.7 36.8 26.4 21.5
250 53.5 52.9 35.8 87.8 83.6 46.1
500 86.7 86.7 62.0 100.0 99.9 53.3
1000 99.64 99.86 81.50 100.0 100.0 99.4

α = 5%
100 12.3 11.2 7.8 22.1 14.2 14.0
250 37.1 35.6 23.3 75.8 67.6 36.4
500 73.7 72.4 46.9 99.9 99.6 53.3
1000 98.62 99.26 70.48 100.0 100.0 99.0

S7 S8
α = 10%

100 56.6 55.1 11.9 77.2 75.8 8.4
250 99.0 98.6 14.3 99.8 99.8 7.5
500 100.0 100.0 15.4 100.0 100.0 7.4
1000 100.0 100.0 17.0 100.0 100.0 7.6

α = 5%
100 43.0 37.9 6.3 65.0 62.6 4.0
250 97.7 97.3 8.0 99.4 99.4 3.0
500 100.0 100.0 8.8 100.0 100.0 3.5
1000 100.0 100.0 10.8 100.0 100.0 3.7

Source: Author
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be used in complementary fashion in practical applications.

2.5 EMPIRICAL APPLICATIONS

We will now present and discuss two empirical applications of the proposed

misspecification tests. They will showcase the usefulness of such tests.

2.5.1 Proportion of body fat

In the first empirical application, the interest lies in modeling the proportion of

body fat in the arms (variable: ARMS) and abdomen (variable: ANDROID). Measurements

were made on 298 people in a public hospital located in the capital of the state of Paraná,

Brazil, in 2018. The values of the following explanatory variables were also recorded: age

(in years) and body mass index – BMI (in kg/m2). Each individual was classified according

to gender (female, male) and the level of physical activity (sedentary, insufficiently active,

active); in what follows, we will use a dummy variable for the former and two dummy

variables for the latter. BMI is a parameter adopted by the World Health Organization

to classify weight-related health patterns, such as malnutrition and obesity. In general,

BMI correlates positively with the proportion of body fat in obese individuals. The

stratification according to physical activity levels was based on the International Physical

Activity Questionnaire (IPAQ), which allows estimation of the weekly time spent in

physical activities of different intensities; for details on the questionnaire, see Benedetti

et al. (2007) and Matsudo et al. (2001). The source of the data is Petterle et al. (2021).

Mazucheli et al. (2021) and Mazucheli et al. (2022) modeled the ARMS variable using

unit Birnbaum-Saunders and Vasicek regression models, respectively. We will use, in our

beta regression analysis, the same covariates as them.

We note that Deurenberg, Weststrate and Seidell (1991) developed predictive

formulas for fat proportion measurements. The authors observed a positive correlation

between age and fat proportion in a sample of 1229 individuals, 521 males and 708 females

of different age groups. This correlation was higher in women.

We will perform beta regression analyses for ARMS and ANDROID. The mean

and median (minimum and maximum) values of ARMS are, respectively, 0.2661 and 0.2610

(0.0420 and 0.5470), the standard deviation being 0.1113. The corresponding figures for
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ANDROID are 0.3787 and 0.3970 (0.0720 and 0.5800), and 0.1102. There are 150 female

and 148 male individuals. The minimum, maximum and mean ages are 18, 87 and 46,

respectively, and the standard deviation of the ages is 19.8792. The mean BMI is 24.7200

and the standard deviation is 3.1507. The number of sedentary, insufficiently active and

active individuals are, respectively, 60, 76 and 162.

At the outset, we consider the dependent variable ARMS. The following fixed

precision beta regression model was fitted to the data, after preliminary investigation that

showed no evidence of variable precision:

g1(µi) = β1 +β2xi2 +β3xi3 +β4xi4 +β5xi5 +β6xi6,

where xi2 is age, xi3 is BMI, xi4 equals 1 for men and 0 for women, xi5 equals 1 for

insufficiently active individuals and 0 otherwise, and xi6 equals 1 for active individuals

and 0 otherwise. Five link functions were used, namely logit, probit, loglog, cloglog, and

cauchit.

As noted by White (1982), it is appropriate to ignore restrictions that are

identically equal to zero or linear combinations of other restrictions. There are seven

parameters in the above beta regression model: six regression coefficients and ϕ. Hence,

k = 7. The maximum number of restrictions that can be tested is thus k(k+1)/2 = 28.

However, four restrictions related to the intercepts and the dummy variables must be

disregarded, since three are not unique (C(r=4,s=1)
i = C

(r=4,s=4)
i , C(r=5,s=1)

i = C
(r=5,s=5)
i ,

and C
(r=6,s=1)
i = C

(r=6,s=6)
i ) and one is identically null (C(r=6,s=5)

i = 0). We thus test 24

restrictions.

Table 11 contains the information matrix tests’ p-values (expressed as percen-

tages) along with the AIC and BIC values and the value of the pseudo-R2 of Nagelkerke

(1991) (R2). The misspecification tests were performed using 500 bootstrap replications.

The best results are in boldface. The model with the largest p-values is the loglog model.

Interestingly, it also has the highest pseudo-R2 values and the lowest AIC and BIC values.

It is also noteworthy that the only model rejected at the usual significance levels is the

cauchit model.

We performed the RESET test for the models with the five link functions.

All models are rejected at the 10% significance level; the loglog model is the only model

not rejected at 5%. This inference contrasts with that obtained from the information

matrix tests, where only the cauchit model is rejected. Given the discrepancy between the
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Table 11 – Information matrix tests’ p-values (%), information criteria values, pseudo-R2

values; dependent variable: ARMS.
link function ζ1B ζ2B AIC BIC R2

logit 13.40 19.00 −907.49 −881.61 0.78
probit 16.20 25.60 −914.13 −888.25 0.78
loglog 222777...222000 444111...666000 −−−999222333...444111 −−−888999777...555333 000...777999
cloglog 12.60 16.00 −897.86 −871.98 0.77
cauchit 0.60 1.20 −854.59 −828.71 0.74

Source: Author

two sets of inferences, we turn to the analysis of the residuals of the estimated models.

First, we constructed residual quantile-quantile plots with simulated envelopes. The

number of simulations is 100 and the envelopes correspond to the 0.025 and 0.975 residual

quantiles. We use the Pearson residual (ri) since it is based on a comparison between

yi and µ̂i = g−1
1 (β̂1 + β̂2xi2 + · · · + β̂6xi6), and our interest lies in using the latter as a

representation of the former. The total number of residuals outside the envelopes for the

logit, probit, cloglog, loglog and cauchit models are, respectively, 4, 0, 8, 0 and 21. (These

plots and all other residual plots are not presented for brevity.) Second, for each fitted

model, we plotted ri against η̂1i. As noted by Ferrari and Cribari-Neto (2004), a detectable

trend in this plot is suggestive of mean link function misspecification. The only plot with

a detectable trend is that of the cauchit model: there is a noticeable rise followed by a

decline. That is, there is a visible quadratic trend in the cauhit residual plot. To be sure,

we estimated, for each link function, linear regressions of ri on (i) η̂1i and (ii) η̂2
1i. The

only model for which such trends are statistically significant at the usual significance levels

according to z-tests is the cauchit model. Third, we produced worm plots for the fitted

models using quantiles residuals. For details on worm plots and quantile residuals, see

Buuren and Fredriks (2001) and Dunn and Smyth (1996), respectively. Such plots convey

no clear evidence against the correct specification of any model since, for the five models,

nearly all points fall within the two semicircles of reference. Additionally, for all models,

the coefficients of the cubic fits are not indicative of misfit. In all cases, the absolute values

of such coefficients are smaller than 0.10 (intercept), 0.10 (linear term), 0.05 (quadratic

term) and 0.03 (cubic term); see Buuren and Fredriks (2001) for details. The coefficient of

the quadratic term for the cauchit model is −0.0441, only slightly smaller than 0.05 in

absolute value, i.e., it falls below the misfit threshold by a very slim margin. In summary,

the conclusion drawn from the residual analyses is more in line with the inference reached



72

via information matrix tests than with that from the RESET test.

Using the loglog link function, we obtain the following estimates for β1, . . . ,β6

(standard errors in parentheses): −1.2595 (0.0748), 0.0024 (0.0006), 0.0482 (0.0034),

−0.4926 (0.0185), −0.0706 (0.0272), and −0.1353 (0.0260). Also, ϕ̂ = 68.4009. All

regression coefficients are different from zero at the 1% significance level according to

individual z tests. Notice that β̂2 and β̂3 are positive, thus implying that, all else

equal, mean arms fat proportion increases with age and BMI. Additionally, the estimated

coefficients of all three dummy variables are negative. It thus follows that mean arms

fat proportion tends to be lower for men; it is also lower for non-sedentary individuals.

Regarding the level of physical activity, we note that β̂6 (related to active individuals) is

nearly twice as small as β̂5 (insufficiently active individuals); that is, the negative impact

of physical activity on mean arms fat proportion is quite strong.

We computed the impacts of x2 (age) and x3 (BMI) on the mean proportion

of arms fat for male and female individuals. When estimating the impact of x2, we set

the value of x3 at its median value, and vice-versa. Separate impacts were obtained for

sedentary, insufficiently active, and active individuals. More specifically, we computed

∂µi/∂xi2 = ∂g−1
1 (η1i)/∂xi2 (the impact of age on the mean response) and ∂µi/∂xi3 =

∂g−1
1 (η1i)/∂xi3 (the impact of BMI on the mean response), where g1 is the loglog link, and

then replaced all regression coefficients in these derivatives by their maximum likelihood

estimates. The estimated impacts of the two covariates (age and BMI) on the mean

response are presented in the six panels of Figure 13. Several important conclusions can

be drawn from the estimated impacts presented in this figure. First, all estimated impacts

are positive. Second, in all cases, the impacts are more intense for women than for men

(except for the impact of BMI when such a covariate assumes very large values). Third,

the impact of age becomes progressively stronger as men become older; by contrast, it

is nearly constant for women. The convergence of the two curves (male and female) as

age increases is slow. Fourth, for all ages, increased physical activity is more beneficial

for men than for women; the impact curve for male individuals shift down as the level

of physical activities increases (from S to IA, and then to A; bottom to top). Fifth, the

impact of BMI is strictly increasing for men, but not for women; for the latter, it slowly

increases, peaks, and then slowly decreases. Sixth, the BMI impacts are nearly the same

for men and women when BMI is large (around 29 and higher). Seventh, when BMI is
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small, its impact is much stronger for women than for men. Eighth, the impact of BMI

increases fairly quickly for men as the value of BMI increases.

Figure 13 – Estimated impacts of age (left panels) and BMI (right panels) on the mean
proportion of arms fat; the bottom, middle and top panels are for sedentary

(S), insufficiently active (IA), and active (A) individuals.
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We fitted the same model for the dependent variable ANDROID. The p-values

of ζ1B (ζ2B) for the logit, probit, loglog, cloglog, and cauchit models are 0.20% (2.00%),

0.60% (1.80%), 1.20% (3.00%), < 0.01% (0.40%), and < 0.01% (0.20%), respectively. All

five models are rejected by the two tests at the 5% significance level, the rejection occurring

at 1% for the cloglog and cauchit models. Furthermore, ζ1B rejects the probit and logit

models at 1%. The maximal pseudo-R2 is 0.67. The five models are rejected by the

RESET test at 1%.

In conclusion, the information matrix tests indicate that there is not evidence

against the correct specification of four out of the five fitted models when ARMS is the

dependent variable; the cauchit model is rejected by the misspecification tests. A better

distinction between the logit, probit, loglog and cloglog models through the information

matrix tests would require a larger sample size. By contrast, according to the tests, there

is strong evidence against all fitted models using ANDROID as the response variable.
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2.5.2 Proportion of religious disbelievers

We will now consider a second empirical application: the beta regression

modeling of the proportion of religious disbelievers in different nations performed by

Cribari-Neto and Souza (2013). The authors used data on 124 countries and the following

model:

loglog(µi) = β1 +β2IQi +β3IQ2
i +β4MUSLi +β5INCOMEi +β6OPENESSi

log(ϕi) = δ1 + δ2IQi.

The response variable is the proportion of atheists in the general population and the

covariates are: (i) IQ: average intelligence quotient of the population, (ii) MUSL: dummy

variable that equals 1 if the majority of the population is Muslim and 0 otherwise,

(iii) INCOME: per capita Gross National Income adjusted for purchasing power parity

and (iv) OPENESS: logarithm of the ratio between the volume of foreign trade (sum of

total imports and exports) and the Gross Domestic Product. Their analysis focuses on

the impact of average intelligence on the mean proportion of the population who do not

hold religious beliefs. After fitting the model, the authors plotted such an impact against

IQ similarly to what we did in the previous empirical application; see Figure 3 in their

paper. The use of intelligence quotient squared as a mean regressor caused the impact

curve to be bell-shaped: the impact of average intelligence becomes progressively stronger,

peaks at around IQ = 107, and then gradually weakens. For all values of IQ, the impact

is positive which implies that the mean proportion of religious disbelievers increase with

average intelligence. We will now investigate whether their model is correctly specified

using information matrix testing inference.

As noted above, the model used by Cribari-Neto and Souza (2013) uses the

loglog mean link function. We will also consider three alternative links: logit, probit,

and cloglog. We do not consider the cauchit model since it yields a considerably smaller

pseudo-R2 and two mean regressors, MUSL and INCOME, lose statistical significance

at 5%. The information matrix tests are performed using 500 bootstrap replications.

Since there are eight parameters (k = 8), it is possible to test up to 36 restrictions.

There are four superfluous restrictions that relate to the intercepts, IQ and IQ2; they

are not unique (C(r=1,s=4)
i = C

(r=4,s=4)
i , C(r=1,R=2)

i = C
(r=2,R=1)
i , C(r=1,s=3)

i = C
(r=2,s=2)
i

and C
(r=3,R=1)
i = C

(r=2,R=2)
i ). We then test 32 restrictions. Table 12 contains the tests
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p-values (expressed as percentages) along with AIC, BIC and pseudo-R2 values. The best

results are in boldface. They all favor the loglog model (largest p-values, smallest AIC

and BIC values, largest pseudo-R2). These results are taken as supporting evidence for

the model used by Cribari-Neto and Souza (2013). We also note that the loglog model is

the only model that is not rejected by the RESET test at the usual significance levels.

Table 12 – Information matrix tests’ p-value (%), information criteria values, pseudo-R2

values; dependent variable: proportion of atheists.
link function ζ1B ζ2B AIC BIC R2

logit 10.60 8.80 −509.66 −487.10 0.74
probit 13.80 6.00 −514.37 −491.81 0.75
loglog 111444...666000 111444...666000 −−−555111888...999888 −−−444999666...444222 000...777666
cloglog 1.20 0.20 −502.56 −479.99 0.73

Source: Author

A key advantage of information matrix tests is that they allow one to focus on

just a few restrictions, that is, one may only consider a few selected indicators. As noted

earlier, the main focus of the empirical analysis in Cribari-Neto and Souza (2013) is on

the impact of IQ on the mean response. We then performed the misspecification tests

by only considering restrictions on the covariates related to average intelligence: (i) IQ

and IQ2 in the mean submodel and (ii) IQ in the precision submodel. By doing so we

test six restrictions (C(r=2,s=2)
i ,C

(r=3,s=2)
i ,C

(r=3,s=3)
i ,C

(r=2,R=2)
i ,C

(r=3,R=2)
i , C

(R=2,S=2)
i ).

We present in Table 13 the ζ1B and ζ2B tests’ p-values (expressed as percentages). The

only model that is not rejected by the information matrix tests at the 5% significance level

is the loglog model. This is further evidence in favor of the model used by Cribari-Neto

and Souza (2013). It also showcases the usefulness of the information matrix tests since

they allow practitioners to test the correct specification of key aspects of their models.

Notably, it is not possible to use the RESET test here since it cannot be used with focus

on a subset of the covariates.

Table 13 – Information matrix tests’ p-value (%) for six restrictions related to IQ and IQ2.
link function ζ1B ζ2B

logit 2.00 1.20
probit 3.80 3.40
loglog 7.80 8.60
cloglog 0.60 < 0.01

Source: Author
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A distinctive feature of the model used by Cribari-Neto and Souza (2013) is the

use of average intelligence squared (IQ2) as a mean regressor which leads to the bell-shaped

impact curve shown in Figure 3 of their paper. We will use the information matrix tests

to verify whether the model remains correctly specified when such a regressor is absent.

The total number of parameters becomes k = 7, and it is then possible to test up to 28

restrictions. There are non-unique restrictions related to the intercept and the dummy

variable (Cr=1,s=3
i ,Cr=3,s=3

i ) and to IQ and the intercept (Cr=1,S=2
i ,Cr=2,S=1

i ). We then

test 26 restrictions. Both tests reject the correct specification of the model at 5%. The

model is rejected by the RESET test at 1%. It is then clear that the correct specification

of the model used by Cribari-Neto and Souza (2013) requires the inclusion of average

intelligence squared in the mean submodel. This is further evidence in favor of their

results.

Next, we will investigate whether the loglog model remains correctly specified

when a couple of atypical cases are removed from the data, namely: Vietnam and the

United States. Vietnam is a rather atypical country, as it has the largest response value

and a value of IQ between the median and the 3rd quartile. Its proportion of atheists

is 0.81, which is considerably larger than that of the nation with the second-highest

proportion of religious disbelievers, Japan (0.65). As for the United States, its proportion

of religious disbelievers is smaller than other high-income countries with high average

intelligence. The country even contains largely religious regions known as the Bible Belt

and the Mormon Corridor. The results obtained after these two cases were removed from

the data are presented in Table 14 (again, p-values are expressed as percentages). We

test 32 restrictions and the best results are in boldface. Now the only model that is not

rejected at the 10% significance level is the loglog model. The same conclusion is reached

using the RESET test. This is further evidence in favor of such a model.

Table 14 – Information matrix tests’ p-value (%), information criteria values, pseudo-R2

values; dependent variable: proportion of atheists; Vietnam and US removed
from the data.

link function ζ1B ζ2B AIC BIC R2

logit 0.40 1.00 −532.14 −509.71 0.78
probit 7.40 7.80 −537.83 −515.40 0.79
loglog 222444...888000 333000...444000 −−−555444333...000777 −−−555222000...666333 000...888000
cloglog < 0.01 0.60 −524.55 −502.11 0.76

Source: Author
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We also performed the information tests based on only six restrictions (those

related to IQ and IQ2) using the incomplete dataset. The loglog model is the only model

that is not rejected by the information matrix tests at 10%. (The ζ1B and ζ2B p-values

are 12.20% and 13.00%, respectively.) All other models are rejected at 5%. These results

reinforce the correct specification of the loglog model. Again, it is not possible to use the

RESET test to draw conclusions on the correct specification of a subset of regressors.

Finally, we note that the data used in this empirical were modeled by Rauber,

Cribari-Neto and Bayer (2020) through a beta regression with a parametric mean link

function. The authors argue that it is possible to achieve a better fit using such a model.

It is not our intention here to search for the best fitting model. Instead, our goal was

to determine whether the model used in the initial modeling of such data is correctly

specified. The information matrix tests indicate that the model used that analysis is not

misspecified.

2.6 CONCLUDING REMARKS

The beta regression model is used with dependent variables that assume values

in the standard unit interval, (0,1), such as rates, proportions and concentration indices.

It has been widely used by practitioners in a wide range of fields. The model comprises

two submodels, one for the response mean and another for the precision, each involving

a link function and a linear predictor with covariates and regression coefficients. Model

misspecification can stem from the use of an incorrect mean link function, from using a

precision link function that is not adequate, from leaving out an important independent

variable from one of the linear predictors, from neglecting existing nonlinearities and so

on.

It is of paramount importance to determine whether a fitted beta regression

model is correctly specified prior to drawing inferences and conclusions from it. This is

typically done through residual analysis, which involves some level of subjectivity. In this

paper, we introduced two information matrix misspecification tests that can be used to

that end. The null hypothesis is that the fitted beta regression model is not misspecified

and the alternative hypothesis is that the model specification is in error. The test statistics

we present are based on the information matrix equality, which fails to hold when the

model specification is not correct. It is possible to test the overall adequacy of the model
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by considering all restrictions or to focus on a set of selected restrictions that are associated

with key aspects of the model. We proved the validity of the tests when used with beta

regressions. We also presented simulation evidence that showed that the tests perform

reliably when coupled with bootstrap resampling. In particular, it is possible to achieve

good control of the type I error frequency by using data resampling. Our numerical

evidence also showed that the tests are able to reliably detect model misspecification,

especially when the sample size is not small.

Two empirical applications were presented and discussed. They showcased

the usefulness of the proposed misspecification tests in beta regression analyses. The

applications relate to physiological biometrics (proportion of body fat) and environmental

biometrics (proportion of religious disbelievers).

There are several directions for future research. First, it would be interesting

to extend our results to cover some variants of the beta regression model, such as the

model that uses a parametric mean link function. Second, alternative formulations of

the information matrix test can be considered. Third, it would be of value to extend our

results for dynamic beta models, i.e., for models used in time series analysis.
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3 NEW STRATEGIES FOR DETECTING ATYPICAL OBSERVATIONS

BASED ON THE INFORMATION MATRIX EQUALITY

3.1 INTRODUCTION

It is often of interest in empirical analyses to identify atypical observations.

They may disproportionately influence the model fit and should be individually examined.

In regression modeling, this detection is typically accomplished using residuals, Cook’s

distances or measures of local influence.

Our chief goal in this chapter is to introduce new strategies for atypical data

points detection to be used whenever parameter estimation is performed via maximum

likelihood. They are based on the information matrix equality, which is known to hold

under correct model specification. It is possible to test if the model is correctly specified

by using what is known as ‘the information matrix test’; see, e.g., White (1982). We use

the information matrix equality in a different fashion. Based on its sample counterpart,

we create different measures of the degree of adequate model specification; the closer they

are to zero, the better the model specification. The proposed criteria are then used to

quantify the degree of unusualness of each observation in the sample. To accomplish

that, we compare the values of the measures of adequate model specification without each

observation in the sample to those obtained using the complete data.

The strategies we propose for detecting atypical data points have several

novel features, e.g.: (i) they are based on a concept not yet explored in the literature,

namely: the degree of adequate model specification, (ii) they embrace a new definition

of atypical observations, which are the cases that disproportionately alter the degree of

model adequacy, (iii) they can be used not only in regression analyses, but also when

fitting probability distributions, (iv) they only require knowledge of first- and second-order

log-likelihood derivatives.

Additionally, based on the information matrix equality, we introduce a modified

version of Cook’s generalized distance and a new criterion for atypical cases detection that

employs the two Cook’s distances (standard and modified).

A word of caution is in order. No atypical cases detection strategy is uniformly

superior to all others, and it is not our desire or ambition to propose strategies that achieve

this goal. Different measures of unusualness of observations carry different information
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and are often used in a complementary way. Our goal is to propose some atypical cases

detection mechanisms that employ criteria that differ from those used so far, that can be

easily implemented, and that are tailored to models in which inference is performed by

maximum likelihood.

The chapter is organized in the following manner. The new approaches for

detecting atypical observations are presented in Section 3.2. In Section 3.3, some empirical

applications using Gaussian and beta regressions are presented and discussed. They use

Gaussian and beta regressions. Finally, Section 3.4 contains some concluding remarks.

3.2 NEW ATYPICAL DATA POINTS DETECTION STRATEGIES

Let YYY = (Y1, . . . ,Yn)⊤ be a vector of independent random variables such that

Yi ∼ f(θθθi), where f is a probability density function with respect to the Lebesgue measure

on an interval or the counting measure on some discrete set which is indexed by a k1-vector

of parameters, θθθi, for i = 1, . . . ,n. It is common to reduce the number of parameters

by specifying models for the components of θθθi which are then taken to be functions

of a k-vector of parameters, say θθθ. By doing so, the number of parameters is reduced

from k1 ×n to k (k < n), and inferences are made on θθθ. When the random variables are

identically distributed, k1 = k and θθθi = θθθ ∀i.

In our setup, the parameter vector θθθ is estimated by maximum likelihood. The

(total) log-likelihood function for YYY with observed values yyy = (y1, . . . ,yn)⊤ is ℓ≡ ℓ(θθθ) ≡

ℓ(θθθ;yyy) = ∑n
i=1 ℓi(θθθ;yi), where ℓi(θθθ;yi) is the ith individual log-likelihood function, i.e.,

the log-density for the ith observation seen as a function of θθθ. The maximum likelihood

estimator (MLE) of θθθ is θ̂θθ = argmaxθθθ∈Rk ℓ(θθθ). Oftentimes, it cannot be expressed in

closed-form, and point estimates are obtained by numerically maximizing ℓ(θθθ) using, say,

a Newton or quasi-Newton nonlinear optimization algorithm.

In regression analysis, it is commonly assumed that the probability distribution

of each Yi involves two parameters, say µi and ϕi. It is also usual to define link functions, say

g1 and g2, such that g1(µi) = η1i = β1xi1 + · · · +βpxip and g2(ϕi) = η2i = δ1zi1 + · · · + δqziq

(k = p+ q < n). Oftentimes, xi1 = zi1 ∀i. Here, η1i and η2i are linear predictors that

contain covariates (xi1, . . . ,xip and zi1, . . . , ziq, respectively) and regression coefficients

(β1, . . . ,βp and δ1, . . . , δq, respectively). The regressors in each submodel must be linearly

independent. Generally, µi is the mean or median (or, possibly, a given quantile) of Yi
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and ϕi is a precision or dispersion parameter; under constant precision, zi1 = 1 ∀i and

δ2 = · · · = δq = 0, i.e., q = 1. The two link functions and their inverses are often required

to be strictly monotonic and twice continuously differentiable. For instance, in beta

regressions, Yi is assumed to be beta-distributed with mean µi and precision ϕi so that

Var(Yi) = µi(1 −µi)/(1 +ϕi), g1 : (0,1) → R, and g2 : R+ → R. Here, θθθi = (µi,ϕi)⊤ and

θθθ = (βββ⊤, δδδ⊤)⊤, where βββ = (β1, . . . ,βp)⊤ ∈Rp and δδδ = (δ1, . . . , δq)⊤ ∈Rq; for details on such

a model, see Cribari-Neto and Zeileis (2010) and Douma and Weedon (2019).

Let UUU ≡ UUU(θθθ) be the score function, i.e., UUU = ∂ℓ/∂θθθ = ∑n
i=1∂ℓi(θθθ;yi)/∂θθθ.

Fisher’s expected information matrix for a single observation is Ḃi(θθθ) = E(∂ℓ(θθθ;Yi)/∂θθθ×

∂ℓ(θθθ;Yi)/∂θθθ⊤). It is commonly assumed that A(θθθ) = limn→∞n−1∑n
i=1 Ȧi(θθθ) and B(θθθ) =

limn→∞n−1∑n
i=1 Ḃi(θθθ) exist, where Ȧi(θθθ) = E(∂2ℓ(θθθ;Yi)/∂θθθ∂θθθ⊤). When the model is

correctly specified, B(θθθ0) = −A(θθθ0), where θθθ0 is the true parameter value. This equation

is known as ‘the information matrix equality’. Hence, when the model specification is

correct, A(θθθ0) +B(θθθ0) = Ok×k, where Ok×k denotes the k× k matrix of zeros. White

(1982) developed a model misspecification test known as ‘the information matrix test’ in

which the null hypothesis of correct model specification is tested against the alternative

hypothesis that the model specification is in error, i.e., H0 : A(θθθ0) +B(θθθ0) = Ok×k and

H1 : A(θθθ0)+B(θθθ0) ̸=Ok×k. Instead of considering a dichotomous classification between

well-specified and poorly specified models, we will use the information matrix equality

to define measures of the degree of model adequacy in such a way that the closer those

measures are to zero, the better the model adequacy.

Let Ai(θθθ;Yi) = ∂2ℓ(θθθ;Yi)/∂θθθ∂θθθ⊤ and An(θθθ;YYY ) = n−1∑n
i=1Ai(θθθ;Yi). Also, let

Bi(θθθ;Yi) = ∂ℓ(θθθ;Yi)/∂θθθ× ∂ℓ(θθθ;Yi)/∂θθθ⊤ and Bn(θθθ;YYY ) = n−1∑n
i=1Bi(θθθ;Yi). Notice that

An(θθθ;YYY ) and Bn(θθθ;YYY ) are the sample counterparts of A(θθθ) and B(θθθ), respectively.

At the outset, we propose measuring the distances between (i) −An(θ̂θθ;YYY ) and

Bn(θ̂θθ;YYY ), and (ii) −A−1
n (θ̂θθ;YYY ) and B−1

n (θ̂θθ;YYY ). We note that the latter two matrices are

estimators of the asymptotic covariance of θ̂θθ, Cov(θ̂θθ). These distances can be viewed

as measures of the degree of model adequacy, in the sense that they involve the sample

counterparts of matrices that are expected to coincide in the population when the postulated

model is correctly specified.

The distance between −An(θ̂θθ;YYY ) and Bn(θ̂θθ;YYY ) and that between −A−1
n (θ̂θθ;YYY )

and B−1
n (θ̂θθ;YYY ) have interesting interpretations in the canonical full rank exponential family.
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Suppose Y1, . . . ,Yn are independent and identically distributed (i.i.d.) random variables

with common probability density function f with respect to the Lebesgue measure on an

interval or the counting measure on a discrete set in the form

f(y;ξξξ) = h(y)exp
 N∑

j=1
ξjTj(y)−γ(ξξξ)

 ,
where T1, . . . ,TN are linearly independent functions, ξξξ = (ξ1, . . . , ξN )⊤ is an unknown

vector parameter and γ is a strictly convex function with continuous first and second

derivatives. The score vector based on Y1, . . . ,Yn is ∑n
i=1(TTT (Yi)−∇γ(ξξξ)), where ∇ is the

gradient operator and TTT = (T1, . . . ,TN )⊤. The MLE ξ̂ξξ of ξξξ solves ∇γ(ξ̂ξξ) = n−1∑n
i=1TTT (Yi).

The Hessian matrix of the log-density with respect to ξξξ is simply −Hγ(ξξξ), where H

represents the Hessian operator. Using the information equality, we conclude that the

covariance matrix of TTT is Var(TTT ) =Hγ(ξξξ). Notice that −An(ξ̂ξξ;YYY ) =Hγ(ξ̂ξξ) is the MLE

of Var(TTT ) based on the common distribution that was assumed for the random variables,

while Bn(ξ̂ξξ;YYY ) = n−1∑n
i=1(TTT (Yi)−∇γ(ξ̂ξξ))(TTT (Yi)−∇γ(ξ̂ξξ))⊤ is the nonparametric moment

estimator of the same covariance matrix. The distance between −An(ξ̂ξξ;YYY ) and Bn(ξ̂ξξ;YYY ) is

a measure of the proximity between these two covariance matrix estimators. If it is small,

we may conclude that the postulated distribution is an adequate model. Equivalently,

the distance between −A−1
n (ξ̂ξξ;YYY ) and B−1

n (ξ̂ξξ;YYY ) measures the proximity between the

MLE and a nonparametric moment estimator of the precision matrix (the inverse of the

covariance matrix).

Our proposal is to measure the distance between the sample counterparts of

the matrices that define the information matrix equality or their inverses. This is done for

a given observed sample yyy in order to identify data points that are atypical. Cases that

disproportionately impact the distance between the two matrices are taken to be atypical.

That is, data points that substantially alter the degree of model adequacy are classified as

atypical cases.

We will measure the distances between (i) Ca1,n(θ̂θθ;YYY ) = An(θ̂θθ;YYY )+Bn(θ̂θθ;YYY )

and Ok×k and (ii) Ca2,n(θ̂θθ;YYY ) = A−1
n (θ̂θθ;YYY ) +B−1

n (θ̂θθ;YYY ) and Ok×k. These distances are

viewed as measures of the degree of model adequacy with smaller values indicating

better model adequacy. As noted earlier, it is possible to test the null hypothesis that

A(θθθ0) +B(θθθ0) = Ok×k (correct model specification) using the information matrix test

(WHITE, 1982). Our goal, however, is different. For an observed sample yyy, we seek to
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measure the distance between −A−1
n (θ̂θθ;yyy) and B−1

n (θ̂θθ;yyy), and then evaluate how such a

distance is impacted by each observation in the sample, i.e., by each component of yyy.

We need a metric for the distance between two symmetric matrices. Consider

the vector space Rr×s of r×s matrices. Different norms can be defined in such a space. A

well-known norm is that of the maximum on the unit sphere induced by the norms in Rr

and Rs. Suppose we use the norms ∥ ∥a and ∥ ∥b in Rr and Rs, respectively. The norm of

a matrix M ∈Rr×s can be defined as ∥M∥z = max∥www∥b=1∥Mwww∥a, where www is a column

vector of dimension s. It is easy to see that ∥M∥z = maxwww ̸=000s∥Mwww∥a/∥www∥b, where 000s an

s-vector of zeros. When ∥ ∥a and ∥ ∥b are the Euclidean norms in the corresponding spaces,

the norm ∥M∥z will be the largest singular value of M . That is, in the case of Euclidean

norms, ∥M∥z corresponds to the largest square root of the eigenvalues of M⊤M (which are

guaranteed to be non-negative real numbers). If M is a symmetric s-dimensional matrix,

this largest singular value is the maximum of the absolute values of the eigenvalues of M

(which are assuredly real numbers). That is, if M is an s-dimensional symmetric matrix, we

can define ∥M∥z = max1≤j≤s |λj |, where λ1, . . . ,λs are the eigenvalues of M . In this case,

in the vector subspace of s×s symmetric matrices, we can define the distance between two

matrices as the norm of the difference, i.e., the distance between two symmetric matrices

M1 and M2 can be defined as ∥∆∥z, where ∆ =M1 −M2. For details on norms of matrices,

see Horn and Johnson (2012).

We note that ∥∆∥z ∈ [0,∞). If desired, a distance defined in the interval

[0,1) can be obtained using the following result. Let d :M ×M →R be a distance on a

non-empty set M and let h : [0,∞) → [0,∞) be an increasing concave function such that

h(0) = 0. Then, it follows that φ : M ×M → R defined by φ(x,y) = h(d(x,y)) is also a

distance. E.g., ∥∆∥z/(∥∆∥z +1).

Recall that we wish to measure the distance between Ca1,n(θ̂θθ;YYY ) and Ok×k

and between Ca2,n(θ̂θθ;YYY ) and Ok×k for an observed sample yyy. This can be accomplished

by using

m1 = ∥Ca1,n(θ̂θθ;yyy)∥z and m2 = ∥Ca2,n(θ̂θθ;yyy)∥z,

respectively. The closer these measures are to zero, the better the degree of model adequacy.

We also suggest measuring the aforementioned distances using Euclidian norms.
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We propose to use

m3 = ∥vech(Ca1,n(θ̂θθ;yyy))∥2 and m4 = ∥vech(Ca2,n(θ̂θθ;yyy))∥2,

where ∥ ∥2 denotes the Euclidian norm and vech is the operator that, when applied to

a square matrix, returns the vector formed by its lower triangular portion (including

the diagonal). Like the previous metric, smaller values are indicative of superior model

adequacy.

The distance measures m1, . . . ,m4 are not invariant to regressor rescaling. If

such an invariance is important, an alternative is to use a multiplicative specification.

If −A(θ0) = B(θ0), it follows that −A−1(θ0)B(θ0) = Ik, where Ik is the k-dimensional

identity matrix. We could consider measuring the distance between −A−1
n (θ̂θθ;yyy)Bn(θ̂θθ;yyy)

and Ik. The former matrix, however, is not guaranteed to be symmetric, although it

obtained as the product of two symmetric matrices. As a consequence, its eigenvalues are

not guaranteed to be real numbers. We will then work with

Cm,n(θ̂θθ;yyy) = P−1
n (θ̂θθ;yyy)Bn(θ̂θθ;yyy)(P−1

n (θ̂θθ;yyy))⊤,

where Pn(θ̂θθ;yyy) is obtained from the Choleski decomposition of −An(θ̂θθ;yyy), i.e., the former

is a lower triangular matrix such that Pn(θ̂θθ;yyy)(Pn(θ̂θθ;yyy))⊤ = −An(θ̂θθ;yyy). The Choleski

decomposition is used because the triangular structure that is obtained makes matrix

inversion easier. We propose measuring the distance between Cm,n(θ̂θθ;yyy) and Ik using

m5 = ∥Cm,n(θ̂θθ;yyy)− Ik∥z and m6 = ∥vech(Cm,n(θ̂θθ;yyy)− Ik)∥2.

Let mj,i be the value of mj when observation i is not in the sample, i= 1, . . . ,n

and j = 1, . . . ,6. We define the following measures of the sensitivity of the degree of model

adequacy to observation i:

sj,i = mj,i

mj
.

The quantities m1,i through m6,i measure the impact that observation i exerts

on the degree of model adequacy. They can be therefore used to identify atypical cases,

i.e., to single out data points that disproportionately impact the degree of model adequacy.

Since the distributions of m1,i, . . . ,m6,i obtained from the random vector YYY are,

in general, difficult to obtain, we will adopt, for each observed sample yyy, an ad hoc rule
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for atypical cases detection. Let qτ,j be the τth quantile of sj,i and

Ir,j = [vj − zr,j(q0.500,j − q0.125,j),vj + zr,j(q0.875,j − q0.50,j)],

r = 1,2 and j = 1, . . . ,6. Notice that there are two intervals for each sensitivity measure

defined so far: I1,j and I2,j . Observation i is to be taken as atypical if si,j /∈ I1,j or,

alternatively, if si,j /∈ I2,j . We recommend,based on experimentation with several data

sets, using vj = 1.0 for j = 1, . . . ,6. We also recommend using z1,1 = · · · = z1,4 = 3.75,

z1,5 = z1,6 = 2.5, z2,1 = · · · = z2,4 = 7.50, and z2,5 = z2,6 = 5.0. It should be noted that,

for each j, I2,j is wider than I1,j . The two detection intervals account for any existing

skewness in the sample distribution of si,j . One may use I2,j when more conservative

atypical case detection is desired, or when the number of cases identified using I1,j is

deemed to be excessive. The proposed detection intervals may, of course, be tailored by

users to suit their specific needs.

The measures m1,i, . . . ,m6,i introduced above are somewhat related to Cook’s

generalized distance:

Di = (n−1)(θ̂θθ(i) − θ̂θθ)⊤(−An(θ̂θθ(i);yyy))(θ̂θθ(i) − θ̂θθ),

where θ̂θθ(i) and A
(i)
n−1 are, respectively, the maximum likelihood estimate of θθθ and the

quantity An computed when case i is not in the sample; see, e.g., Díaz-García and González-

Farías (2004) and Flora, LaBrish and Chalmers (2012). For an empirical analysis based on

this measure, see Cordeiro et al. (2021). Like m1,i, . . . ,m4,i, Cook’s generalized distance

is also based on individual case deletion and uses an estimate of −An(θθθ;YYY ). A common

rule-of-thumb is that observation i is taken to be atypical if Di exceeds one.

Exploring the fact that under correct model specification A(θθθ0) = B(θθθ0), we

introduce the following modified Cook’s generalized distance:

Dm
i = n−1

2 (θ̂θθ(i) − θ̂θθ)⊤(−A(i)
n−1(θ̂θθ(i);yyy)+B

(i)
n−1(θ̂θθ(i);yyy))(θ̂θθ(i) − θ̂θθ),

where B(i)
n−1 corresponds to the quantity Bn calculated without the ith observation. We

note that Dm
i is useful for determining whether a given observation is influential for the

model fit, but it may not be able to capture its full impact. This is because the withdrawal

of observation i may make B(i)
n−1(θ̂θθ(i);yyy)−A

(i)
n−1(θ̂θθ(i);yyy) smaller, which, of course, does not

necessarily mean an improvement in the model fit.
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As an example, assume that Y1, . . . ,Yn is an i.i.d. sample, and we want to test

whether each Yi is normally distributed with unit variance. It is not difficult to see that

Dm
i = n−1

2n2 (Ȳ (i) −Yi)2(1+ v̂(i)),

where Ȳ (i) and v̂(i) denote, respectively, the sample mean and the variance moment

estimator, both computed after withdrawing observation i from the sample. Notice that

values of v̂(i) that are progressively smaller than one (the assumed value of the variance)

increasingly worsen the model fit, and yet they progressively reduce the value of Dm
i . We

would expect, however, the value of Dm
i to increase (not decrease) when case i worsens

the model fit.

This motivates us to work with the differences Dm
i −Di. Notice that Dm

i ≈Di

whenever −An(θ̂θθ(i);yyy) ≈ Bn(θ̂θθ(i);yyy), i.e., whenever observation i does not considerably

alter the degree of adequate model specification. The distance between Dm
i and Di is

expected to grow as case i becomes more impactful to the degree of model adequacy. Like

m5,i and m6,i, the two Cook’s distances are invariant to regressor rescaling.

For the above example of unit variance normal fit, we obtain

Dm
i −Di = n−1

2n2 (Ȳ (i) −Yi)2(1− v̂(i)),

which seems to be a reasonable measure for the unusualness of case i. The three terms in

the above expression can be easily interpreted. The fraction (n−1)/2n2, which decays to

zero as n increases, indicates that, when the number of observations is large, the impact of

each individual observation will tend to be small. The term (Ȳ (i) −Yi)2 relates to how far

apart are the ith case and the overall mean of all other cases; larger values of (Ȳ (i) −Yi)2

will lead to larger values of Dm
i −Di. The term 1− v̂(i) is the one that best describes the

impact of observation i on the degree of model adequacy. If v̂(i) becomes very different

from 1, the absolute value of Dm
i −Di will tend to be large. This is coherent with the fact

that a value of v̂(i) that is very different from one yields evidence against using a unit

variance distribution to represent the data.

Using the aforementioned difference, we introduce a new measure of cases

atypicalness which is invariant to regressor rescaling:

s7,i =Dm
i −Di.

Observation i is considered atypical if s7,i /∈ I1,7 or, alternatively, if s7,i /∈ I2,7. These two

intervals are as before with v7 = 0.0, z1,7 = 4.0 and z2,7 = 8.0.
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3.3 EMPIRICAL APPLICATIONS

In what follows, we will present applications of the proposed mechanisms of

atypical data points detection. Atypical cases detection based on sj,i is performed using

I1,j , for j = 1, . . . ,7. Log-likelihood maximization is performed using the BFGS quasi-

Newton algorithm with analytic first derivatives. All computations were performed using

the Ox matrix programming language; see Doornik (2021). We performed the information

matrix tests ζ1B and ζ2B developed in previous chapter for the empirical applications that

use beta regressions. For the application in Subsection 3.3.3, we considered all restrictions

when performing the tests. For those in Subsections 3.3.4 and 3.3.5, since the sample

sizes are small, we first performed the tests by only considering restrictions related to

mean submodel, and then carried out the tests by only considering restrictions related to

the precision submodel. In all three applications, the correct model specification is not

rejected at the usual significance levels.

3.3.1 Per capita spending on public schools

The interest here lies in modeling the relationship between statewide per capita

spending on public schools (Y ) and per capita income (x2) in the US in 1979; the latter is

scaled by 10−4. Wisconsin is not considered due to missing data, and Washington, DC is

included in the dataset. Hence, n= 50. These data were analyzed by Cribari-Neto (2004)

and Cribari-Neto and Pereira (2019). Unlike what was done in their empirical analyses,

we will consider an additional covariate, namely: xi3 = xi2 ×di, where di equals one for

Southern states and zero otherwise. We will use the Gaussian linear regression model with

multiplicative heteroskedasticity proposed by Harvey (1976). In particular, we assume

that Y1, . . . ,Yn are independent random variables such that Yi ∼ N (µi,ϕi). We use the

following model:

µi = β1 +β2xi2 +β3xi3,

log(ϕi) = δ1 + δ2xi2.

Parameter estimation was done by numerically maximizing the model’s log-

likelihood function and, except for the intercepts, all regression coefficients are different

from zero at the 5% significance level according to individual z-tests; δ1 is non-null at 10%.

In particular, the p-values of the tests of H0 : β3 = 0 and H0 : δ2 = 0 against two-sided



88

alternative hypotheses are, respectively, 0.0175 and 0.0003. It is noteworthy that β̂3 < 0

which implies that per capita spending on public schools increases with per capita income

at a slower rate in the South.

In Appendix D we give simple expressions for An(θθθ;yyy) and Bn(θθθ;yyy) in the

Gaussian linear regression model with multiplicative heteroskedasticity. Using these

expressions, we proceed to detect atypical data points in the empirical application at hand.

Table 15 presents the atypical cases detected using the different detection strategies. Notice

that s1,i and s3,i only single out case 2 (Alaska). According to s2,i and s4,i, observations

2, 7, and 50 (Alaska, Connecticut, and Wyoming) are atypical. s5,i detects cases 1, 4, 19,

23, 24, 26, 31, 44 and 45 (Alabama, Arkansas, Maine, Minnesota, Mississippi, Montana,

New Mexico, Utah, and Vermont), s6,i singles out cases 2, 19, 24, 31, 44 and 45 (Alaska,

Maine, Mississippi, New Mexico, Utah, and Vermont) whereas s7,i detects cases 2, 26, 31,

and 44 (Alaska, Montana, New Mexico, and Utah). Finally, based on Di we conclude that

observation 2 (Alaska) is atypical and Dm
i singles out cases 2 and 44 (Alaska and Utah)

as atypical.

Table 15 – Atypical cases detection, per capita spending on public schools in the US.

Criterion Atypical cases singled out
s1,i 2
s2,i 2, 7, 50
s3,i 2
s4,i 2, 7, 50
s5,i 1, 4, 19, 23, 24, 26, 31, 44, 45
s6,i 2, 19, 24, 31, 44, 45
s7,i 2, 26, 31, 44
Di 2
Dm

i 2, 44
Source: Author

Alaska (case 2) is influential for the test inference that δ2 is non-null, i.e.,

for concluding that there is heteroskedasticity. When this observation is not in the

data, the z test p-value becomes 0.1622, and the null hypothesis of constant dispersion

(homoskedasticity) is not rejected at the 10% significance level. Except for s5,i, all measures

detect this case as atypical.

New Mexico (case 31) and Utah (case 44) are influential for the conclusion

that the regression slope differs for Southern states. Without these cases in the data, the
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p-values of H0 : β3 = 0 become, respectively, 0.0658 and 0.0579. As consequence, the null

hypothesis is no longer rejected at 5%. When both cases are removed from the data, the

p-value of the test becomes 0.2100, and H0 is not rejected at 10%. Recall that the p-value

of that same test is 0.0175 when all observations are used. Case 31 was detected by s5,i,

s6,i and s7,i whereas case 44 was detected by these measures and also by Dm
i .

3.3.2 Statewide per pupil spending

The amount of money allocated to public schools varies significantly across

different states and is influenced by various factors. The funding that schools receive is

directly related to their per student spending, which is impacted by factors such as teacher

salaries and benefits. Additionally, there are several other factors that contribute to per

pupil spending. In most states, instructional employee salaries and benefits make up at

least 50% of the total per pupil spending. Administrative expenses and support staff costs

are also included in the overall expenditure.

The interest here lies in modeling per pupil spending (Y ) as a function of per

capita income (x2) in the 50 states and the District of Columbia (DC). Hence, n = 51.

The source for the data on spending per pupil in 2023 is Education Data Initiative. The

source for per capita income data in 2021 is the United States Census Bureau. As in

the previous analysis, we use the Gaussian linear regression model with multiplicative

heteroskedasticity. Here,

µi = β1 +β2xi2,

log(ϕi) = δ1 + δ2xi2.

Maximum likelihood parameter estimation was carried out numerically maxi-

mizing the model’s log-likelihood function. Except for the mean submodel intercept, all

parameters are non-null at the 1% significance level according to individual z tests. In

Table 16 we present the cases identified as atypical by the different detection strategies.

According to s1,i and s3,i [s2,i and s4,i], only case 32 (New York) [case 36 (Oklahoma)] is

atypical. Notice that s5,i singles out cases 20, 21, 32, and 48 (Maryland, Massachusetts,

New York, and DC) whereas s6,i singles out observations 7, 21, 24, 32, 36, and 48 (Con-

necticut, Massachusetts, Mississippi, New York, Oklahoma, and DC). Observations 18,

32, 44, and 49 (Louisiana, New York, Utah, and West Virginia) are taken to be unusual
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when detection is based on s7,i. Finally, Di and Dm
i only single out case 32 (New York)

as atypical.

There are two observations in the sample that, when individually removed,

cause the estimate of δ2 to change considerably. The relative change in δ̂2 due to the

removal of New York (DC) from the sample is −31.37% (25.28%). These two observations

are thus influential. The only measures that simultaneously indentified the two cases as

atypical were s5,i and s6,i. We also note s1,i, s3,i, s7,i, Di, and Dm
i singled out New York

as atypical.

Table 16 – Atypical cases detection, per pupil spending in the US.

Criterion Atypical cases singled out
s1,i 32
s2,i 36
s3,i 32
s4,i 36
s5,i 20, 21, 32, 48
s6,i 7, 21, 24, 32, 36, 48
s7,i 18, 32, 44, 49
Di 32
Dm

i 32
Source: Author

3.3.3 Proportion of religious disbelievers worldwide

We consider the beta regression analysis presented in Cribari-Neto and Souza

(2013). The interest lies in modeling the proportion of atheists (Y ) in a cross-section of

countries. The regressors are: (i) x2: dummy variable that equals 1 if the majority of the

population is Muslim and 0 otherwise, (ii) x3: per capita Gross National Income adjusted

for purchasing power parity, (iii) x4: logarithm of the ratio between the volume of foreign

trade (sum of total imports and exports) and the Gross Domestic Product and (iv) x5:

average intelligence quotient of the population. Using data on 124 countries (n = 124),

the authors fitted the following varying precision beta regression model:

loglog(µi) = β1 +β2xi2 +β3xi3 +β4xi4 +β5xi5 +β6x
2
i5,

log(ϕi) = δ1 + δ2x5i.
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Their focus was on estimating the impact of changes in average intelligence on the mean

proportion of religious disbelievers. These data were also analyzed by Cribari-Neto, Silva

and Vasconcellos (2023), Guedes, Cribari-Neto and Espinheira (2020) and Rauber, Cribari-

Neto and Bayer (2020). A subset of the data was modeled in Guedes, Cribari-Neto and

Espinheira (2021). For details on the relationship between intelligence and religiosity, see

Zuckerman, Silberman and Hall (2013). At the outset, we note that this is a challenging

application for atypical cases detection due to the very high sample correlation between

x5 and x2
5.

The model parameters were estimated by maximum likelihood. All regression

coefficients are non-null according to individual z tests at the 5% significance level.

In Appendix E we provide expressions for the matrices An(θθθ;yyy) and Bn(θθθ;yyy)

which can be used in varying precision beta regressions. We will use these expressions in

the computations that follows.

Our interest lies in detecting atypical observations in the aforementioned data.

The cases identified as atypical based on the different approaches are listed in Table 17.

Table 17 – Atypical cases detection, data on the prevalence of religious disbelievers
worldwide.

Criterion Atypical cases singled out
s1,i 27, 66, 77, 78, 122
s2,i 14, 20, 22, 27, 33, 38, 66, 77, 78, 97, 122
s3,i 27, 66, 77, 78, 122
s4,i 14, 20, 22, 27, 33, 38, 52, 57, 66, 77, 78, 97, 98, 122
s5,i 16, 22, 27, 31, 33, 57, 77, 78, 122
s6,i 16, 22, 27, 31, 57, 77, 78, 122
s7,i 16, 27, 31, 57, 66, 71, 77, 78
Di 77, 122
Dm

i 77, 78, 122
Source: Author

All nine criteria single out case 77 and eight out of the nine criteria single out

observation 122 as atypical. They correspond to Mozambique and Vietnam, respectively.

The latter has the highest response value which is considerably larger than those of the

next two countries with the highest shares of religious disbelievers (Sweden and the Czech

Republic, respectively). Its average intelligence and relative volume of foreign trade are, as

expected, high. However, Vietnam has a low per capita income, and that goes against the
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positive correlation between the response and this covariate. It is thus atypical because it

has the largest fraction of religious disbelievers even though it is a low-income country.

There are four (three) observations in the sample for which the sum (maximum)

of the absolute percent discrepancies of the estimated slopes exceed 40% (20%): Botswana,

Liberia, Mozambique and Vietnam (Botswana, Liberia and Vietnam). Botswana and

Liberia are cases 14 and 66, respectively. These two cases were only simultaneously singled

out by s2,i and s4,i. We note that Botswana noticeably impacts the estimate of β3, which

increases by over 25% when this case is not in the sample.

Liberia (case 66) is a very influential data point: it noticeably impacts the

estimate of β4, which increases by nearly 40% when the reduced sample is used. More

importantly, per capita income loses statistical significance at 5%. It thus seems that

the statistical significance of per capita income when used in conjunction with average

intelligence and the relative volume of foreign trade is greatly impacted by a single

observation, namely: Liberia. We note that the values of the response and also of average

intelligence and per capita income are small for Liberia, but its relative volume of foreign

trade is quite large (it is in the upper quartile). Since the former three variables positively

correlate with the latter, Liberia displays an atypical pattern. Also, it exerts considerable

impact on the resulting inferences. It is noteworthy that Liberia was identified as an

atypical data point by six out of the nine criteria. It was singled out by Cook’s generalized

distance.

In summary, cases 14, 66, 77 and 122 (Botswana, Liberia, Mozambique and

Vietnam) are influential for the model fit and corresponding inferences. The only detection

strategies that were able to identify all of them as atypical data points are s2,i and s4,i.

Additionally, we note that case 78 (Namibia) is singled out as atypical by all measures

except for Cook’s generalized distance (Di). It has a noticeable impact on the statistical

significance of x3: this covariate loses statistical significance at 5% when case 78 is not in

the data since the p-value of the corresponding z-test becomes 0.0788.

An advantage of atypical cases detection based on sj,i, j = 1, . . . ,7, is that it

allows one to focus on specific aspects of the model, such as a subset of regressors. To

exemplify, we will focus on the regressors x5 and x2
5 of the mean submodel and x5 of the

precision submodel. In this way, the matrices Ca1,n(θ̂θθ;YYY ), Ca2,n(θ̂θθ;YYY ) and Cm,n(θ̂θθ;YYY ) have

dimension 3×3. There are two countries that, when they are individually removed from
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the sample, lead to aggregate absolute percentage changes in the relevant point estimates

in excess of 20%, namely: Mozambique and Vietnam. We note that all seven detection

measures singled out Mozambique (case 77) and six of those seven measures singled out

Vietnam (case 122).

3.3.4 Proportion of religious disbelievers in the United States

We will now consider the beta regression analysis in Souza and Cribari-Neto

(2018). The authors modeled the statewide proportions of atheists in the United States

(US). This is their response variable (Y ). There are 50 observations. The covariates are

average intelligence quotient (x2), a dummy variable that equals one if the state belongs

to the Extended Bible Belt (defined as the Bible Belt plus Utah) and zero otherwise (x3),

percentage of Hispanic or Latino population (x4), an income index based on personal

earnings (x5), percentage of the total population living in urban areas (x6). The beta

regression model they fitted is

cloglog(µi) = β1 +β2xi2 +β3xi3 +β4xi4 +β5xi5 +β6xi6 +β7(xi5 ×xi6),

log(ϕi) = δ1 + δ2xi2.

Maximum likelihood estimation of the regression coefficients was carried out

numerically. All coefficients are different from zero at the 5% significance level according

to individual z-tests. Table 18 contains the atypical cases identified by each criterion.

Table 18 – Atypical cases detection, data on the prevalence of religious disbelievers in the
US.

Criterion Atypical cases singled out
s1,i —
s2,i 48
s3,i —
s4,i 48
s5,i 1, 18, 24, 42
s6,i 1, 18, 24, 42, 45
s7,i 1, 19, 42, 45
Di 1, 45
Dm

i 1, 19, 45, 48
Source: Author

We note that s1,i and s3,i do not identify any observations as atypical and that
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according to s2,i and s4,i the only atypical observation is case 48 (West Virginia). s5,i

singles out observations 1, 18, 24 and 42 (Alabama, Louisiana, Mississippi, and Tennessee);

s6,i additionally identifies case 45 (Vermont). Data points 1, 19, 42 and 45 (Alabama,

Maine, Tennessee, and Vermont) are atypical when detection is based on s7,i. Dm
i singles

out cases 1, 19, 45 and 48 (Alabama, Maine, Vermont, and West Virginia) whereas Di

only singles out cases 1 and 45 (Alabama and Vermont).

Alabama (case 1) is quite influential for the inferences drawn from the fitted

model. The point estimates are considered altered when this case is not in the sample; e.g.,

the estimates of β1, β2 and β4 (δ1 and δ2) decrease by nearly 16%, 45% and 23% (increase

by over 62% and nearly 77%), respectively. Additionally, x2 loses statistical significance at

10%.

Case 45 (Vermont) has a sizeable impact on the the estimates of δ1 and δ2

which decrease by over 17% and over 22% when this data point is not in the sample. We

no longer conclude that the regression coefficients β4, β5 and β7 are non-null at 5%.

West Virginia (case 48) has a large impact on the testing inferences. The covari-

ates x5, x6 and their interaction (x5 ×x6) lose statistical significance at 10%. Additionally,

x2 loses significance at 5%. Some point estimates are also considerably impacted; e.g.,

the estimates of β5, β6 and β7 decrease, respectively, by approximately 18%, 29% and

21% when the data do not include observation 48. It is clear that West Virginia is quite

influential. It was detected as atypical by s2,i, s4,i and Dm
i .

Based on the above diagnostic analysis, we consider the reduced beta regression

model cloglog(µi) = β1 +β2xi2 +β3xi3 +β4xi4 and log(ϕi) = δ1 +δ2xi2. The likelihood ratio

test favors this model, since its p-value for testing H0 : β5 = β6 = β7 = 0 in the larger model

is 0.4320. The reduced model is also favored by the Akaike and Bayesian information

criteria (AIC and BIC). Interestingly, the estimate of β2 is over 25% larger when the

reduced model is used (0.0459 vs 0.0362). That is, the impact of average intelligence on

the prevalence of religious disbelievers is strengthened when a more parsimonious model is

used. We arrived at such a reduced model through a diagnostic analysis that identified

atypical and influential data points.
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3.3.5 Reading accuracy

We will now use a dataset analyzed by Smithson and Verkuilen (2006). There

are 44 observations on reading accuracy of dyslexic and non-dyslexic Australian children.

The response (Y ) are reading accuracy indices and the independent variables are: a dummy

variable that equals 1 for dyslexics and −1 for non-dyslexics (x2), nonverbal IQ converted

to z-scores (x3), and an interaction variable (x4 = x2 ×x3). These data were also analyzed

by Bayer and Cribari-Neto (2017), Cribari-Neto and Queiroz (2014), Espinheira, Ferrari

and Cribari-Neto (2008), Guedes, Cribari-Neto and Espinheira (2020) and Grün, Kosmidis

and Zeileis (2012). In particular, Cribari-Neto and Queiroz (2014) proposed modeling

these data using the following beta regression model:

logit(µi) = β1 +β2xi2 +β3xi3 +β4xi4,

log(ϕi) = δ1 + δ2xi2 + δ3xi3 + δ4x
2
i3.

We estimated the above model and computed the measures of atypical cases detection.

Table 19 presents the atypical data points detected using the different approaches.

Table 19 – Atypical cases detection, data on reading accuracy.

Criterion Atypical cases singled out
s1,i 32, 33
s2,i 26, 32, 35
s3,i 32, 33
s4,i 26, 32, 35
s5,i 31, 32, 33, 39
s6,i 32, 33
s7,i 14, 19, 24, 32, 23
Di 32, 33, 38, 39
Dm

i 13, , 38, 39
Source: Author

There are only two observations for which the sum of the absolute percent

discrepancies of the estimated slopes exceeds 40%: 24 and 32. The latter was identified by

all measures. The former was only identified by s7,i.

A remark on case 32 is in order. It is influential since the estimates for δ2

and δ3 change by 15.67% and 11.87%, respectively, when it is not in the sample. This

case corresponds to a dyslexic child with high IQ z-score (0.7090, larger than the third
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quartile) but with very low reading accuracy index (0.5405, smaller than the first quartile).

This case thus goes against the positive correlation between yi and xi3 which equals,

respectively, 0.5679 and 0.6056 with and without case 32 in the data. All nine detection

strategies were able to identify this observation as atypical.

Case 24 is also noteworthy. It corresponds to a non-dyslexic child with below

average reading accuracy and IQ z-score close to the third quartile. The estimates β̂1

and β̂2 increase, respectively, by nearly 11% and nearly 17% when case 24 is not in the

data. The value predicted by the model for this case is quite distant from the observed

value (observed, y24: 0.6466; predicted, µ̂24: 0.9349). The atypical nature of observation

24 translates into an inaccurate model prediction because it impacts parameter estimates

of the mean submodel. This atypical case was detected by Dm
i and s7,i. Interestingly,

unlike Cook’s generalized distance, both measures based on it that we introduced (Dm
i

and s7,i) were able to single out case 24.

3.4 CONCLUDING REMARKS

We introduced a new approach for identifying atypical observations in empirical

analyses that are based on maximum likelihood inference. We defined measures of adequate

model specification in a way that smaller values are indicative of better model specification.

Such measures follow from the information matrix equality, which holds when the model

is correctly specified. This equality is the basis for information matrix misspecification

tests which are commonly used to determine whether the specification of a given model

is in error. Our approach considers that there are different degrees of adequate model

specification which are coupled to the distance between the sample counterparts of the

matrices that define the information matrix equality. We introduced several measures of

model specification adequacy and showed that they can be used to identify atypical data

points. Such points are those that disproportionately alter the degree of model adequacy

when removed from the data.

We presented empirical applications involving beta and Gaussian regression mo-

dels. Overall, the proposed detection strategies were able to identify influential observations,

i.e., cases that substantially impact the resulting inferences.
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4 CONCLUSION

This PhD dissertation focused on the information matrix equality, which is

known to hold when the model is correctly specified. In this context, our focus was on

modeling double bounded random variables. At first, we presented three information

matrix test statistics for univariate beta models. We showed results from a set of Monte

Carlo simulations, carried out to evaluate the tests’ finite sample performance. We also

presented an application of the proposed tests to state and county COVID-19 mortality

data in the United States.

In the following, we developed information matrix tests for the varying precision

beta regression model. The null hypothesis is that of correct specification of the fitted

beta regression model. It is tested against the alternative hypothesis that the model

specification is in error. We obtained two information matrix test statistics. They use

different estimators of the covariance matrix of a given random vector. We proved the

consistency of both covariance matrix estimators in the class of beta regressions. We

also presented the results of extensive Monte Carlo simulations. They showed that the

tests display good control of the type I error frequency when bootstrap resampling is

used. Different sources of model misspecification were considered when the data were

generated under the alternative hypothesis. The numerical evidence we presented showed

that the two information matrix tests can reliably detect that the fitted model is incorrectly

specified, especially when the sample size is not small. Two empirical applications were

presented and discussed.

Using the sample counterparts of the matrices that define the information

matrix equality, we introduced a new concept, namely the degree of adequate model

specification. We argued that it equals the distance between two suitably defined symmetric

matrices. More specifically, we proposed three definitions of the degree of adequate model

specification and used two matrix norms to quantify each of them. We then defined

measures of sensitivity of the degree of adequate model specification to each observation in

the sample. Such measures can be used to detect atypical data points. We also introduced

a modified version of Cook’s generalized distance. The proposed criteria were used in

empirical applications that employ Gaussian and beta regressions. The results showed

that they are capable of reliably detecting atypical cases in the data.
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APPENDIX A – INFORMATION MATRIX TEST QUANTITIES FOR

THE BETA DISTRIBUTION

We present below the quantities required to compute the information matrix

test statistics for the beta model. It is possible to show that

w = ψ′(µϕ)+ψ′((1−µ)ϕ), c= ϕ[µw−ψ′((1−µ)ϕ)],

m= ψ′′(µϕ)−ψ′′((1−µ)ϕ), ∂µ∗

∂µ
= ϕψ′(µϕ)+ϕψ′((1−µ)ϕ) = ϕw,

∂µ∗

∂ϕ
= µψ′(µϕ)− (1−µ)ψ′((1−µ)ϕ) = c

ϕ
,

∂2µ∗

∂ϕ2 = µ2ψ′′(µϕ)− (1−µ)2ψ′′((1−µ)ϕ),

∂µ†

∂µ
= −ϕψ′((1−µ)ϕ), ∂µ†

∂ϕ
= (1−µ)ψ′((1−µ)ϕ)−ψ′(ϕ),

∂w

∂µ
= ϕψ′′(µϕ)−ϕψ′′((1−µ)ϕ) = ϕm,

∂w

∂ϕ
= µψ′′(µϕ)+(1−µ)ψ′′((1−µ)ϕ), ∂c

∂µ
= ϕ

(
w+ϕ

∂w

∂ϕ

)
,

∂c

∂ϕ
= ∂µ∗

∂ϕ
+ϕ

∂2µ∗

∂ϕ2 .

Additionally, we obtain, after some algebra,

∇DDDn(θθθ;YYY ) = 1
n

n∑
t=1


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,

where
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[
−∂w

∂µ
−2(Y ∗

t −µ∗)
(
∂µ∗

∂µ

)]
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∂ϕ
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(Y ∗

t −µ∗)2 −w
]
+ϕ2
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−2(Y ∗
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)
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∂µ
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−ϕ
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t −µ†)

]
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(Y ∗

t −µ∗)−µ
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∂µ
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,
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−ϕ

(
∂µ∗

∂ϕ

)[
µ(Y ∗

t −µ∗)+(Y †
t −µ†)

]
−ϕ(Y ∗

t −µ∗)
[
µ
∂µ∗

∂ϕ
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∂ϕ

]
,
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= − c
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ϕ

∂c
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+2
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∂ϕ
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,
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= µc

ϕ2 − µ

ϕ
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.

Recall that we only use the first two rows of ∇DDDn(θθθ;YYY ) (evaluated at θ̂θθ) in the information

matrix test statistics.
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APPENDIX B – INFORMATION MATRIX TEST QUANTITIES FOR

THE BETA REGRESSION MODEL

We present below the quantities required to compute the information matrix

test statistics for the varying precision beta regression model. We have

dµi

dη1i
= 1
g′(µi)

,
d

dµi

dµi

dη1i
= −g′′

1(µi)
(g′

1(µi))2 ,
d
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(
dµi
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)2
= −2g′′

1(µi)
(g′

1(µi))3 ,

d2

dµ2
i

dµi
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= −g′′′

1 (µi)g′
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(g′
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dϕi
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= 1
g′
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d

dϕi

dϕi

dη2i
= −g′′

2(ϕi)
(g′

1(ϕi))2 ,

d
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(
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i
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2 (ϕi)g′
2(ϕi)+2(g′′

2(ϕ))2

(g′
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Let wi = ψ′(µiϕi)+ψ′((1−µi)ϕi), ci = ϕi[µiwi −ψ′((1−µi)ϕi)] and also

pi = (1−µi)2ψ′((1−µi)ϕi)+µ2ψ′(µiϕi)−ψ′(ϕi), ai = d

dµi

dµi

dη1i

(
dµi

dη1i

)2
,

bi = dµi

dη1i

( d2

dµ2
i
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)
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(
d
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ti =
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d
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)(
dϕi

dη2i

)2
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i
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)2 ,
where ψ′ and ψ′′ are the trigamma and tetragamma functions, respectively. The following

derivatives are needed for obtaining dddi(θθθ) and its Jacobian matrix:

∂µ∗
i

∂µi
= ϕiwi,
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i
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= ci
ϕi
,
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i
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∗
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i

,

∂pi
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iψ
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Also, let

ei = ∂µ∗
i

∂µi
− ∂ci

∂µi
, hi = µi

∂µ∗
i

∂µi
+ ∂µ†

i

∂µi
, ri = µi
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i
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.

The partial derivatives of the matrix Ci(θθθ) are

∂C
(r,s)
i

∂βt
=

ϕ2
i [−3wi +2(y∗

i −µ∗
i )]ai −ϕ3

i

(
dµi

dη1i

)3
[mi +2(y∗

i −µ∗
i )wi]

+ϕi(y∗
i −µ∗

i )bi

xirxisxit,

∂C
(r,R)
i

∂βs
= dϕi

dη2i

dµi

dη1i

[(
d

dµi

dµi

dη1i

){
ϕi(y∗

i −µ∗
i )
[
µi(y∗

i −µ∗
i )+(y†

i −µ†
i )
]

+y∗
i −µ∗

i − ci

}
+ dµi

dη1i

(
ϕi

{
− ∂µ∗

i

∂µi

[
µi(y∗

i −µ∗
i )+(y†

i −µ†
i )
]

+(y∗
i −µ∗

i )(y∗
i −µ∗

i − ci)
}

− ei

)]
xirziRxis,

∂C
(R,S)
i

∂βr
= dµi

dη1i

−∂pi

∂µi

(
dϕi

dη2i

)2
+ d

dϕi

dϕi

dη2i

(
dϕi

dη2i

)
(y∗

i −µ∗
i −hi)

+2
[
µi(y∗

i −µ∗
i )+(y†

i −µ†
i )
]
(y∗

i −µ∗
i −hi)

(
dϕi

dη2i

)2ziRziSxir,

∂C
(r,s)
i

∂δR
= dϕi

dη2i


(
dµi

dη1i

)2 [
−2ϕiwi −ϕ2

i
∂wi

∂ϕi
+2ϕi(y∗

i −µ∗
i )2 −2ϕici(y∗

i −µ∗
i )
]

+ dµi

dη1i

(
d

dµi

dµi

dη1i

)
(y∗

i −µ∗
i − ci)

}
xirxisziR,

∂C
(r,R)
i

∂δS
= dµi

dη1i

dϕi

dη2i

((
d

dϕi

dϕi

dη2i

){
ϕi(y∗

i −µ∗
i )
[
µi(y∗

i −µ∗
i )+(y†

i −µ†
i )
]

+(y∗
i −µ∗

i )− ci

}
+ dϕi

dη2i

{
(y∗

i −µ∗
i )
[
µi(y∗

i −µ∗
i )+(y†

i −µ†
i )
]

− ci
[
µi(y∗

i −µ∗
i )+(y†

i −µ†
i )
]
−ϕi(y∗

i −µi)ri − ci
ϕi

− ∂ci

∂ϕi

})
xirziRziS ,

∂C
(R,S)
i

∂δT
=
(

− ∂pi

∂ϕi

(
dϕi

dη2i

)3
+ ti

{
−3pi +2

[
µi(y∗

i −µ∗
i )+(y†

i −µ†
i )
]2}

+
[
µi(y∗

i −µ∗
i )+(y†

i −µ†
i )
]
vi

)
ziRziSziT .

The above derivatives are used to construct the matrix ∇DDDn(θθθ) = n−1∑n
i=1 ∇dddi(θθθ).
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APPENDIX C – PROOFS OF THE VALIDITY OF TWO BETA

REGRESSION INFORMATION MATRIX TESTS

Proof of Lemma 1

Proof. Let Y be a beta distributed random variable and W1 = log(Y ). It is easy to see,

from the moment generating function of W1, that E(∥W1∥r) < ∞ for all integers r > 0.

Since 1−Y is also beta distributed, the same holds for W2 = log(1−Y ). It follows that

Y ∗
i and Y †

i have finite moments of all orders.

Let G be a given partial derivative of ℓ(µi,ϕi;Yi) of any order with respect to

a component of θθθ. Then, it follows from the expression for ℓ(µi,ϕi;Yi) that G is a linear

combination of Y ∗
i and Y †

i . Thus, G has finite moments of all orders.

Also, the expression for E(Gr), for a given integer r > 0, involves products of

regressors and a continuous function of (µi,ϕi). Thus, from Assumptions (A2) and (A3),

there exists a positive constant KG,r such that |E(Gr)|<KG,r for all i.

Proof of Lemma 2

Proof. Let vvv be a k-dimensional vector with ∥vvv∥ = 1. Consider the sequence of univariate

random variables Zn,i = vvv⊤WWWn,i. Then, γn,i = E(Zn,i) = vvv⊤µµµn,i and Var(Zn,i) = σ2
n,i =

vvv⊤Σn,ivvv, with σn,i > 0 ∀n and ∀i, since Σn,i is positive definite ∀n and ∀i. From the Cauchy-

Schwartz inequality, ∥Zn,i∥ ≤ ∥WWWn,i∥, therefore, E(∥Zn,i∥2+δ) ≤ E(∥WWWn,i∥2+δ)<∆ ∀i.

Define Zn = n−1∑n
i=1Zn,i = vvv⊤WWW n, γ̄n = E(Zn) = n−1∑n

i=1 γn,i = vvv⊤µ̄µµn and

σ̄2
n = Var(

√
nZn) = n−1∑n

i=1σ
2
n,i. Notice that

σ̄2
n = n−1

n∑
i=1

vvv⊤Σn,ivvv = vvv⊤Σ̄nvvv.

Since Σ̄n converges to a positive definite matrix V as n→ ∞, then, σ̄2
n = vvv⊤Σ̄nvvv→ vvv⊤V vvv >

0. That means we can take δ′ > 0 such that σ̄2
n > δ′ for sufficiently large n.

From Theorem 5.11 in White (2001),

√
n
Zn − γ̄n

σ̄n

D→ N (0,1).

Therefore,
√
n
Zn − γ̄n√
vvv⊤V vvv

=
√
n
Zn − γ̄n

σ̄n

√
vvv⊤Σ̄nvvv

vvv⊤V vvv
D→ N (0,1).
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Hence,
√
n(Zn − γ̄n) D→ N (0,vvv⊤V vvv), for all unit vectors vvv. In summary, for all unit vectors

vvv,
√
nvvv⊤(WWW n − µ̄µµn) =

√
n(Zn − γ̄n) D→ N (0,vvv⊤V vvv),

the limiting distribution being the distribution of vvv⊤Nk(000,V ) From the Cramér-Wold

theorem, we conclude that

√
n(WWW n − µ̄µµn) D→ Nk(000,V ),

as we wanted.

Proof of Theorem 3

Proof. For the beta regression log-likelihood function ℓ, we have

∇ℓ(θ̂θθn) = ∇ℓ(θθθ0)+nAn(θθθ0;YYY )(θ̂θθn − θθθ0)+ n

2 r
rr,

where rrr, the remainder of the multivariate Taylor expansion, is a vector whose ith

component is (θ̂θθn − θθθ0)⊤Ji,n(θθθ⋄
i.n;YYY )(θ̂θθn − θθθ0), Ji,n being the Jacobian matrix of the ith

row of An(θθθ0,YYY ) and θθθ⋄
i,n, for each i, is a vector such that ∥θθθ⋄

i,n − θθθ0∥ ≤ ∥θ̂θθn − θθθ0∥. Since

θ̂θθn − θθθ0 =OP (n−1/2), whereas Ji,n(θθθ⋄
i ;YYY ) =OP (1), it follows that rrr =OP (n−1). That is,

∇ℓ(θ̂θθn) = ∇ℓ(θθθ0)+nAn(θθθ0;YYY )(θ̂θθn − θθθ0)+OP (1).

The left hand side of the above equation is, of course, equal to zero. Thus,

000 = ∇ℓ(θθθ0)+nAn(θθθ0;YYY )(θ̂θθn − θθθ0)+OP (1).

That is, ∇ℓ(θθθ0)+nAn(θθθ0;YYY )(θ̂θθn − θθθ0) =OP (1). Therefore,

n−1/2∇ℓ(θθθ0)+n1/2An(θθθ0;YYY )(θ̂θθn − θθθ0) =OP (n−1/2) = oP (1),

i.e., n−1/2∇ℓ(θθθ0)+n1/2An(θθθ0;YYY )(θ̂θθn − θθθ0) P→ 000. This can be rewritten as

n−1/2∇ℓ(θθθ0)+n1/2
(
An(θθθ0;YYY )−n−1

n∑
i=1

Ȧi(θθθ0)
)

(θ̂θθn − θθθ0)

+n−1/2
n∑

i=1
Ȧi(θθθ0)(θ̂θθn − θθθ0) P→ 000.

From Lemma 1, An(θθθ0;YYY ) is an average of independent random variables with

uniformly bounded variances. Then, it follows from Kolmogorov’s first strong law of large
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numbers that An(θθθ0;YYY ) −n−1∑n
i=1 Ȧi(θθθ0) converges almost surely to zero. The second

term is, therefore, oP (1). Hence,

n−1/2∇ℓ(θθθ0)+n−1/2
n∑

i=1
Ȧi(θθθ0)(θ̂θθn − θθθ0) P→ 000.

That is,

n−1/2∇ℓ(θθθ0)+n1/2
(
n−1

n∑
i=1

Ȧi(θθθ0)−A(θθθ0)
)

(θ̂θθn − θθθ0)

+n1/2A(θθθ0)(θ̂θθn − θθθ0) P→ 000.

Assumptions (A1) and (A4) imply that the second term in the above expression is oP (1).

We arrive at n−1/2∇ℓ(θθθ0) +n1/2A(θθθ0)(θ̂θθn − θθθ0) P→ 000. From this result, we immediately

obtain

n−1/2∇DDD(θθθ0)A(θθθ0)−1∇ℓ(θθθ0)+n1/2∇DDD(θθθ0)(θ̂θθn − θθθ0) P→ 000. (C.1)

We now consider the vector DDDn. A first order Taylor series expansion yields

DDDn(θ̂θθn) =DDDn(θθθ0)+∇DDDn(θ̃θθn)(θ̂θθn − θθθ0), (C.2)

where ∥θ̃θθn − θθθ0∥ ≤ ∥θ̂θθn − θθθ0∥. Notice that θ̃θθn − θθθ0 = oP (1), since θ̂θθn − θθθ0 = oP (1).

Consider now the matrix ∇DDDn(θ̃θθn). Let (M).j denote the jth column of a

general matrix M . We consider a Taylor expansion of (∇DDDn(θ̃θθn)).j in the form

(∇DDDn(θ̃θθn)).j = (∇DDDn(θθθ0)).j +Kj,n(θθθ⋄
j,n;YYY )(θ̃θθn − θθθ0),

where Kj,n is the Jacobian matrix of (∇DDDn).j and ∥θθθ⋄
j,n − θθθ0∥ ≤ ∥θ̃θθn − θθθ0∥. Since Kj,n =

OP (1) and θ̃θθn − θθθ0 = oP (1), we conclude that (∇DDDn(θ̃θθn)).j − (∇DDDn(θθθ0)).j = oP (1), for

each j. That is, ∇DDDn(θ̃θθn)−∇DDDn(θθθ0) = oP (1). Now,

∇DDDn(θ̃θθn) = ∇DDDn(θ̃θθn)−∇DDDn(θθθ0)+∇DDDn(θθθ0)−E(∇DDDn(θθθ0))+E(∇DDDn(θθθ0)).

We have seen that ∇DDDn(θ̃θθn) − ∇DDDn(θθθ0) = oP (1). Also, from Lemma 1, all

entries of ∇DDDn(θθθ0) are averages of independent random variables with uniformly bounded

variances. We then conclude, from Kolgororov’s first law of large numbers, that ∇DDDn(θθθ0)−

E(∇DDDn(θθθ0)) converges to a zero matrix almost surely. Finally, Assumption (A5) states that

E(∇DDDn(θθθ0)) converges to ∇DDD(θθθ0). We arrive at ∇DDDn(θ̃θθn) P→ ∇DDD(θθθ0). Since θ̂θθn − θθθ0 =

OP (n−1/2), we easily obtain

√
n(∇DDDn(θ̃θθn)−∇DDD(θθθ0))(θ̂θθn − θθθ0) P→ 000.
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We combine the result above with (C.1) to obtain

n−1/2∇DDD(θθθ0)A(θθθ0)−1∇ℓ(θθθ0)+n1/2∇DDDn(θ̃θθn)(θ̂θθn − θθθ0) P→ 000. (C.3)

We will now turn to the quantities dddi(θθθ0)−∇DDD(θθθ0)A(θθθ0)−1∇ℓ(θθθ0;Yi). Under

the null hypothesis, they have zero mean vector. Also, from Lemma 1, they have finite

and uniformly bounded moments of all orders. From this fact and Assumption (A6), we

conclude that all conditions of Lemma 2 are satisfied. We obtain

√
nDDDn(θθθ0)−n−1/2∇DDD(θθθ0)A(θθθ0)−1∇ℓ(θθθ0) D→ NK(000,V (θθθ0)).

By combining this result with (C.3), we arrive at

√
nDDDn(θθθ0)+

√
n∇DDDn(θ̃θθn)(θ̂θθn − θθθ0) D→ NK(000,V (θθθ0)).

We can now return to Equation (C.2). We have

√
nDDDn(θ̂θθn) =

√
nDDDn(θθθ0)+

√
n∇DDDn(θ̃θθn)(θ̂θθn − θθθ0).

Thus, we proved that, under the null hypothesis,

√
nDDDn(θ̂θθn) D→ NK(000,V (θθθ0)).

Proof of Theorem 4

Proof. We begin by considering a first order Taylor expansion of the jth column of Vn1 in

the form

(Vn1(θ̂θθn)).j = (Vn1(θθθ0)).j +Wj,n(θθθ⋄
j,n;YYY )(θ̂θθn − θθθ0),

where Wj,n is the Jacobian matrix of (Vn1).j and ∥θθθ⋄
j,n − θθθ0∥ ≤ ∥θ̂θθn − θθθ0∥. Since Wj,n =

OP (1) and θ̂θθn − θθθ0 = oP (1), then, Wj,n(θθθ⋄
j,n;YYY )(θ̂θθn − θθθ0) = oP (1). Given that this holds

for all j, we conclude that Vn1(θ̂θθn)−Vn1(θθθ0) P→OK×K .
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If suffices, then, to show that Vn1(θθθ0) P→ V (θθθ0). We will show that this conver-

gence is, in fact, almost sure, under our assumptions. We begin by noticing that

Vn1(θθθ0) = 1
n

n∑
i=1

(dddi(θθθ0)dddi(θθθ0)⊤ − 1
n

n∑
i=1

dddi(θθθ0)∇ℓ(θθθ0;Yi)⊤An(θθθ0;YYY )−1

×∇DDDn(θθθ0;YYY )⊤)− 1
n

n∑
i=1

∇DDDn(θθθ0;YYY )An(θθθ0;YYY )−1∇ℓ(θθθ0;Yi)dddi(θθθ0)⊤

+ 1
n

n∑
i=1

(∇DDDn(θθθ0;YYY )An(θθθ0;YYY )−1∇ℓ(θθθ0;Yi)

×∇ℓ(θθθ0;Yi)⊤An(θθθ0;YYY )−1∇DDDn(θθθ0;YYY )⊤).

We will consider below each one of the four terms in the above expression

separately.

1 We write

1
n

n∑
i=1

dddi(θθθ0)dddi(θθθ0)⊤ = 1
n

n∑
i=1

(dddi(θθθ0)dddi(θθθ0)⊤ −E(dddi(θθθ0)dddi(θθθ0)⊤))

+ 1
n

n∑
i=1
E(dddi(θθθ0)dddi(θθθ0)⊤).

From Lemma 1, the first term in the right hand side of the above expression is an

average of independent random matrices with entries having uniformly bounded

variances and zero mean. Then, it follows from Kolmogorov’s first strong law of

large numbers that it converges almost surely to a zero matrix. Assumption (A7)

guarantees that the second term in the right hand side of the expression converges

to Φ(θθθ0). We thus conclude that left-hand side of the above expression converges

almost surely to Φ(θθθ0).

2 As for the second term in the expression of Vn1(θθθ0), we have(
n−1

n∑
i=1

dddi(θθθ0)∇ℓ(θθθ0;Yi)⊤
)
An(θθθ0;YYY )−1∇DDDn(θθθ0;YYY )⊤ =

(
n−1

n∑
i=1

(dddi(θθθ0)∇ℓ(θθθ0;Yi)⊤ −E(dddi(θθθ0)∇ℓ(θθθ0;Yi)⊤))
)

×An(θθθ0;YYY )−1∇DDDn(θθθ0;YYY )⊤ +
(
n−1

n∑
i=1
E(dddi(θθθ0)∇ℓ(θθθ0;Yi)⊤)

)

×An(θθθ0;YYY )−1∇DDDn(θθθ0;YYY )⊤.

From Lemma 1 and Kolmogorov’s first strong law of large numbers, the first term in

the above sum converges almost surely to a zero matrix. Also, An(θθθ0;YYY ) converges
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almost surely to A(θθθ0) and ∇DDDn(θθθ0;YYY ) converges almost surely to ∇DDD(θθθ0). From

Lancaster (1984) and Assumption (A5), the average in the second term converges

to −∇DDD(θθθ0). It then follows that the second term in the expression of Vn1(θθθ0)

converges almost surely to ∇DDD(θθθ0)A(θθθ0)−1∇DDD(θθθ0)⊤.

3 It is immediate, then, that the third term in the expression of Vn1(θθθ0) converges almost

surely to ∇DDD(θθθ0)A(θθθ0)−1∇DDD(θθθ0)⊤.

4 The fourth term in the expression of Vn1(θθθ0) is

1
n

n∑
i=1

∇DDDn(θθθ0;YYY )An(θθθ0;YYY )−1∇ℓ(θθθ0;Yi)∇ℓ(θθθ0;Yi)⊤

An(θθθ0;YYY )−1∇DDDn(θθθ0;YYY )⊤ = ∇DDDn(θθθ0;YYY )An(θθθ0;YYY )−1

×
(
n−1

n∑
i=1

∇ℓ(θθθ0;Yi)∇ℓ(θθθ0;Yi)⊤
)
An(θθθ0;YYY )−1∇DDDn(θθθ0;YYY )⊤

= ∇DDDn(θθθ0;YYY )An(θθθ0;YYY )−1Bn(θθθ0;YYY )An(θθθ0;YYY )−1∇DDDn(θθθ0;YYY )⊤.

Under the null hypothesis, E(Ai(θθθ0)+Bi(θθθ0)) =Ok×k∀i. We then conclude, from

Kolmogorov’s first strong law of large numbers and Assumption (A4) that Bn(θθθ0;YYY )

converges almost surely to −A(θθθ0). The fourth term in the expression of Vn1(θθθ0)

thus converges almost surely to

−∇DDD(θθθ0)A(θθθ0)−1∇DDD(θθθ0)⊤.

We conclude that Vn1(θθθ0) converges to Φ(θθθ0) + ∇DDD(θθθ0)A(θθθ0)−1∇DDD(θθθ0)⊤ almost surely.

We thus proved that Vn1(θ̂θθn) P→ Φ(θθθ0)+∇DDD(θθθ0)A(θθθ0)−1∇DDD(θθθ0)⊤.

We will now turn to the expression of V (θθθ0). Under the null hypothesis, it is

the limit when n→ ∞ of

n−1
n∑

i=1

[
E
(
dddi(θθθ0)−∇DDD(θθθ0)A(θθθ0)−1∇ℓ(θθθ0;Yi)

)
×
(
dddi(θθθ0)−∇DDD(θθθ0)A(θθθ0)−1∇ℓ(θθθ0;Yi)

)⊤]
= n−1

n∑
i=1
E(dddi(θθθ0)dddi(θθθ0)⊤)−∇DDD(θθθ0)A(θθθ0)−1

×
(
n−1

n∑
i=1
E(∇ℓ(θθθ0;Yi)dddi(θθθ0)⊤)

)
−
(
n−1

n∑
i=1
E(dddi(θθθ0)∇ℓ(θθθ0;Yi)⊤)

)

×A(θθθ0)−1∇DDD(θθθ0)⊤ +∇DDD(θθθ0)A(θθθ0)−1
(
n−1

n∑
i=1
E(∇ℓ(θθθ0;Yi)∇ℓ(θθθ0;Yi)⊤)

)

×A(θθθ0)−1∇DDD(θθθ0)⊤.
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From what we have seen before, the limit of the above expression is

Φ(θθθ0)+∇DDD(θθθ0)A(θθθ0)−1∇DDD(θθθ0)⊤

and, hence, this is the expression for V (θθθ0). We thus arrive then at the desired result.

Proof of Theorem 5

Proof. Similarly to the proof of the former theorem, we conclude from a first order Taylor

expansion that Vn2(θ̂θθn)−Vn2(θθθ0) P→OK×K .

We will complete the proof by showing that Vn2(θθθ0) P→ V (θθθ0). We have

Vn2(θθθ0) = n−1
n∑

i=1
dddi(θθθ0)dddi(θθθ0)⊤ +n−1

n∑
i=1

(dddi(θθθ0)∇ℓ(θθθ0;Yi)⊤

×Bn(θθθ0;YYY )−1Ln(θθθ0;YYY )⊤)+n−1
n∑

i=1
(Ln(θθθ0;YYY )Bn(θθθ0;YYY )−1

×∇ℓ(θθθ0;Yi)dddi(θθθ0)⊤)+n−1
n∑

i=1
(Ln(θθθ0;YYY )Bn(θθθ0;YYY )−1∇ℓ(θθθ0;Yi)

×∇ℓ(θθθ0;Yi)⊤Bn(θθθ0;YYY )−1Ln(θθθ0;YYY )⊤) = n−1
n∑

i=1
dddi(θθθ0)dddi(θθθ0)⊤

+
(
n−1

n∑
i=1

dddi(θθθ0)∇ℓ(θθθ0;Yi)⊤
)
Bn(θθθ0;YYY )−1Ln(θθθ0;YYY )⊤

+Ln(θθθ0;YYY )⊤Bn(θθθ0;YYY )−1
(
n−1

n∑
i=1

∇ℓ(θθθ0;Yi)dddi(θθθ0)⊤
)

+Ln(θθθ0;YYY )Bn(θθθ0;YYY )−1
(
n−1

n∑
i=1

∇ℓ(θθθ0;Yi)∇ℓ(θθθ0;Yi)⊤
)

×Bn(θθθ0;YYY )−1Ln(θθθ0;YYY )⊤ = n−1
n∑

i=1
dddi(θθθ0)dddi(θθθ0)⊤ − (Ln(θθθ0;YYY )

×Bn(θθθ0;YYY )−1Ln(θθθ0;YYY )⊤)−Ln(θθθ0;YYY )Bn(θθθ0;YYY )−1Ln(θθθ0;YYY )⊤

+Ln(θθθ0;YYY )Bn(θθθ0;YYY )−1Bn(θθθ0;YYY )Bn(θθθ0;YYY )−1Ln(θθθ0;YYY )⊤

= n−1
n∑

i=1
dddi(θθθ0)dddi(θθθ0)⊤ −Ln(θθθ0;YYY )Bn(θθθ0;YYY )−1Ln(θθθ0;YYY )⊤.

It is now clear from the proof of the previous theorem that, under the null hypothesis, the

first term in the last sum above converges almost surely to Φ(θθθ0), Ln(θθθ0;YYY ) converges

almost surely to −∇DDD(θθθ0) and Bn(θθθ0;YYY ) converges almost surely to −A(θθθ0). The last

expression above thus converges almost surely to

Φ(θθθ0)+∇DDD(θθθ0)A(θθθ0)−1∇DDD(θθθ0)⊤

which is the expression for V (θθθ0). That completes the proof.
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APPENDIX D – SAMPLE MATRICES FOR ATYPICAL CASES

DETECTION IN GAUSSIAN LINEAR REGRESSIONS

In what follows we will obtain expressions for An(θθθ;yyy) and Bn(θθθ;yyy) in the

Gaussian linear regression model with multiplicative heteroskedasticity. Let µi = xxx⊤
i βββ and

ϕi = exp(zzz⊤
i δδδ), where xxxi = (xi1, . . . ,xip)⊤ and zzzi = (zi1, . . . , ziq)⊤. Also, let X = [xxx1 · · · xxxn]⊤

and Z = [zzz1 · · · zzzn]⊤ be the matrices of mean and dispersion regressors, respectively. The

i-th log-likelihood function for Y1, . . . ,Yn with observed values y1, . . . ,yn

ℓi(θθθ;yi) = −1
2 log(2π)− 1

2z
zz⊤

i δδδ− 1
2 exp(−zzz⊤

i δδδ)(yi −xxx⊤
i δδδ)2.

The derivatives of ℓi(θθθ;yi) with respect to βββ and δδδ is
∂ℓi(θθθ;yi)
∂βββ

=exp(−zzz⊤
i δδδ)(yi −xxx⊤

i βββ)xxxi,

∂ℓi(θθθ;yi)
∂δδδ

=1
2z
zzi

[
exp(−zzz⊤

i δδδ)(yi −xxx⊤
i βββ)2 −1

]
.

The blocks of Bi(θθθ;yi) = ∂ℓi(θθθ;yi)/∂θθθ×∂ℓi(θθθ;yi)/∂θθθ⊤ can be written as
∂ℓi(θθθ;yi)
∂βββ

∂ℓi(θθθ;yi)
∂βββ⊤ =exp(−2zzz⊤

i δδδ)(yi −xxx⊤
i βββ)2xxxixxx

⊤
i ,

∂ℓi(θθθ;yi)
∂βββ

∂ℓi(θθθ;yi)
∂δδδ⊤ =1

2 exp(−zzz⊤
i δδδ)(yi −xxx⊤

i βββ)
[
exp(−zzz⊤

i δδδ)(yi −xxx⊤
i βββ)2

−1
]
xxxizzz

⊤
i ,

∂ℓi(θθθ;yi)
∂δδδ

∂ℓi(θθθ;yi)
∂δδδ⊤ =1

4
[
exp(−zzz⊤

i δδδ)(yi −xxx⊤
i βββ)2 −1

]2
zzzizzz

⊤
i .

Similarly, the blocks of Ai(θθθ;yi) = ∂2ℓi(θθθ;yi)/∂θθθ∂θθθ⊤ can be expressed as
∂2ℓi(θθθ;yi)
∂βββ∂βββ⊤ = −exp(−zzz⊤

i δδδ)xxxixxx
⊤
i ,

∂2ℓi(θθθ;yi)
∂βββ∂δδδ⊤ = −exp(−zzz⊤

i δδδ)(yi −xxx⊤
i βββ)xxxizzz

⊤
i ,

∂2ℓi(θθθ;yi)
∂δδδ∂δδδ⊤ = −1

2 exp(−zzz⊤
i δδδ)(yi −xxx⊤

i βββ)2zzzizzz
⊤
i .

We will now obtain expressions for An(θθθ;yyy) and Bn(θθθ;yyy) using the first- and

second-order derivatives of the total log-likelihood function. Let wi = exp(−zzz⊤
i δδδ), ei =

yi −xxx⊤
i βββ, W = diag(w1, . . . ,wn) and E = diag(e1, . . . , en). Additionally, let uuu= (1, . . . ,1)⊤

be the n-dimensional vector of ones. We can now write the total log-likelihood first-order

derivatives as
∂ℓ(θθθ)
∂βββ

=X⊤W (yyy−Xβββ) and ∂ℓ(θθθ)
∂δδδ

= 1
2Z

⊤(WE2 − In)uuu.
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It is possible to write Bn(θθθ;yyy) = n−1∑n
i=1Bi(θθθ;yi) as

Bn(θθθ;yyy) = 1
n


X⊤W 2E2X 1

2X
⊤WE(WE2 − In)Z

1
2Z

⊤WE(WE2 − In)X 1
4Z

⊤(WE2 − In)2Z

 .

It follows that Bn(θθθ;yyy) = n−1M⊤M , where M is the matrix of order n× (p+ q) given by

M =
[
WEX 1

2(WE2 − In)Z
]
.

Finally, An(θθθ;yyy) = n−1∑n
i=1Ai(θθθ;yi) can be expressed as

An(θθθ;yyy) = − 1
n


X⊤WX X⊤WEZ

Z⊤WEX 1
2Z

⊤WE2Z

 .
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APPENDIX E – SAMPLE MATRICES FOR ATYPICAL CASES

DETECTION IN BETA REGRESSIONS

We will now provide simple expressions for An(θθθ;yyy) and Bn(θθθ;yyy) in varying

precision beta regressions. Let g1(µi) = xxx⊤
i βββ = η1i and g2(ϕi) = zzz⊤

i δδδ = η2i, where xxxi, zzzi,

X and Z are as in the previous appendix. The i-th log-likelihood function for Y1, . . . ,Yn

with observed values y1, . . . ,yn is

ℓi(θθθ;yi) =logΓ(ϕi)− logΓ(µiϕi)− logΓ((1−µi)ϕi)+(µiϕi −1)y∗
i +(ϕi −2)y†

i ,

where y∗
i = log(yi/(1 − yi)) and y†

i = log(1 − yi). Let Y ∗
i = log(Yi/(1 − Yi)) and Y †

i =

log(1 − Yi). It can be easily verified that E(Y ∗
i ) = ψ(µiϕi) −ψ((1 − µi)ϕi), E(Y †

i ) =

ψ((1−µi)ϕi)−ψ(ϕi), where ψ is the digamma function. We will denote E(Y ∗
i ) and E(Y †

i )

by µ∗
i and µ†

i , respectively. The derivatives of ℓi(θθθ;yi) with respect to βββ and δδδ are

∂ℓi(θθθ;yi)
∂βββ

= ∂ℓi(θθθ;yi)
∂µi

dµi

dη1i

∂η1i

∂βββ
= ϕi(y∗

i −µ∗
i ) 1
g′

1(µi)
xxxi,

∂ℓi(θθθ;yi)
∂δδδ

= ∂ℓi(θθθ;yi)
∂ϕi

dϕi

dη2i

∂η2i

∂δδδ
= [µi(y∗

i −µ∗
i )+(y†

i −µ†
i )]

1
g′

2(ϕi)
zzzi.

Let ṫi = 1/g′
1(µi) and ḣi = 1/g′

2(ϕi). The blocks of Bi(θθθ;yi) are

∂ℓi(θθθ;yi)
∂βββ

∂ℓi(θθθ;yi)
∂βββ⊤ =−ϕ2

i (y∗
i −µi)2ṫ2ixxxixxx

⊤⊤⊤
i ,

∂ℓi(θθθ;yi)
∂βββ

∂ℓi(θθθ;yi)
∂δδδ⊤ =ϕi(y∗

i −µ∗
i )[µi(y∗

i −µ∗
i )+(y†

i −µ†
i )]ṫiḣixxxizzz

⊤
i ,

∂ℓi(θθθ;yi)
∂δδδ

∂ℓi(θθθ;yi)
∂δδδ⊤ =[µi(y∗

i −µ∗
i )+(y†

i −µ†
i )]2ḣ2

i zzzizzz
⊤
i .

Similarly, the blocks of Ai(θθθ;yi) are

∂2ℓi(θθθ;yi)
∂βββ∂βββ⊤ = −ϕiq̇ixxxixxx

⊤⊤⊤
i ,

∂2ℓi(θθθ;yi)
∂βββ∂δδδ⊤ = −ḟiṫiḣixxxizzz

⊤
i ,

∂2ℓi(θθθ;yi)
∂δδδ∂δδδ⊤ = −ν̇izzzizzz

⊤
i ,

where the quantities q̇i, ḟi and ν̇i are the corresponding undotted quantities in Appendix B

of Ferrari, Espinheira and Cribari-Neto (2011) .

We will now express An(θθθ;yyy) and Bn(θθθ;yyy) using the first- and second-order

derivatives of the total log-likelihood function. Let ėi = y∗
i − µ∗

i , ẇi = µi(y∗
i − µ∗

i ) +

(y†
i − µ†

i ), ẇww = (w1, . . . ,wn)⊤, Ė = diag(ė1, . . . , ėn) and Ẇ = diag(ẇ1, . . . , ẇn). Also, let

Ṫ = diag(ṫ1, . . . , ṫn), Ḣ = diag(ḣ1, . . . , ḣn), Q̇ = diag(q̇1, . . . , q̇n), Ḟ = diag(ḟ1, . . . , ḟn), V̇ =

diag(ν̇1, . . . , ν̇n), Φ = diag(ϕ1, . . . ,ϕn), and µµµ∗ = (µ∗
1, . . . ,µ

∗
n)⊤. We can now write the total
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log-likelihood first-order derivatives as

∂ℓ(θθθ)
∂βββ

=X⊤ΦṪ (yyy−µµµ∗) and ∂ℓ(θθθ)
∂δδδ

= Z⊤Ḣẇww.

It is possible to write Bn(θθθ;yyy) = n−1∑n
i=1Bi(θθθ;yi) as

Bn(θθθ;yyy) = 1
n


X⊤Φ2Ṫ 2Ė2X X⊤ΦṪ ĖẆ ḢZ

Z⊤ΦṪ ĖẆ ḢX Z⊤Ḣ2Ẇ 2Z

 .

As in Appendix D, we can write the matrix Bn(θθθ;yyy) as Bn(θθθ;yyy) = n−1Ṁ⊤Ṁ , where

Ṁ =
[
X⊤ΦṪ Ė Z⊤ḢẆ

]
, a matrix of order n× (p+ q). Finally, the matrix An(θθθ;yyy) =

n−1∑n
i=1Ai(θθθ;yi) can be expressed as

An(θθθ;yyy) = − 1
n


X⊤ΦQ̇X X⊤Ḟ Ṫ ḢZ

Z⊤Ḟ Ṫ ḢX Z⊤V̇Z

 .
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