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There was a time when darkness covered the entire earth, where threat permeated all that
was alive. During this time, a great light appeared, driving the demons far beyond familiar
places. However, they still linger there, waiting for this mere flame to extinguish and return to
their place of origin: our minds. I dedicate this thesis to all those who, in some way, fight for
the preservation of this light.
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ABSTRACT

The recent surge of interest in the interplay between disorder and superconductivity has
witnessed significant advancements in theory and experiment. While prior research mainly fo-
cused on disorder strength’s impact, recent studies show disorder can remarkably enhance
superconductivity. Structural disorder has led to notable improvements in superconducting
characteristics, exemplified by MoSe chains with Na atoms (PETROVIC et al., 2016) and TaS2

monolayers (PENG et al., 2018). However, current disorder models lack consideration for spatial
correlations, which are prevalent in real systems. Long-range correlations, as demonstrated
in zero-temperature superconducting studies (NEVEROV et al., 2022), alter statistical proper-
ties of the order parameter, reinforcing superconducting correlations against disorder. This
dissertation explores correlated disorder’s effect on nanowire superconductivity, revealing in-
tricate connections between electron density, disorder, correlations, and sample dimensions.
Specifically, electron density modulates order parameter dependence on transverse dimen-
sions, showing weakened quantum-size effects near the mid-band. Disorder’s influence varies
with electron density; mid-band exhibits milder disorder impact than band edges. In high elec-
tron density, weak correlation-dependent OP increase is noted with size reduction, contrasting
the low-density regime where a strong, non-monotonic correlation-dependent increase emerges.
This research emphasizes correlation’s vital role in robust superconductivity, offering tailored
material design opportunities.

Keywords: correlated disorder; superconductivity; quasi-1D samples; disorder strength; spatial
correlations.



RESUMO

O recente aumento significativo do interesse na interação entre desordem e supercon-
dutividade tem testemunhado avanços significativos na teoria e experimentação. Enquanto
pesquisas anteriores focaram principalmente no impacto da intensidade da desordem, estu-
dos recentes mostram que a desordem pode notavelmente aprimorar a supercondutividade. A
desordem estrutural tem levado a melhorias notáveis nas características supercondutoras, ex-
emplificadas pelas cadeias de MoSe com átomos de Na (PETROVIC et al., 2016) e monocamadas
de TaS2 (PENG et al., 2018). No entanto, os modelos atuais de desordem não consideram as cor-
relações espaciais, que são prevalentes em sistemas reais. Correlações de longo alcance, como
demonstrado em estudos de supercondutividade a zero temperatura (NEVEROV et al., 2022),
alteram as propriedades estatísticas do parâmetro de ordem, fortalecendo as correlações super-
condutoras contra a desordem. Esta dissertação explora o efeito da desordem correlacionada na
supercondutividade de nanofios, revelando conexões intrincadas entre densidade de elétrons,
desordem, correlações e dimensões da amostra. Especificamente, a densidade de elétrons influ-
encia a dependência do parâmetro de ordem nas dimensões transversais, mostrando efeitos de
tamanho quântico enfraquecidos perto da banda média. A influência da desordem varia com a
densidade de elétrons; a banda média exibe impacto de desordem mais suave do que as bordas
da banda. Na alta densidade de elétrons, um fraco aumento dependente da correlação no
parâmetro de ordem é observado com a redução do tamanho, contrastando com o regime de
baixa densidade, onde um forte aumento dependente da correlação e não monótono emerge.
Esta pesquisa enfatiza o papel vital das correlações na supercondutividade robusta, oferecendo
oportunidades de design de materiais sob medida.

Palavras-chave: desordem correlacionada; supercondutividade; amostras quase 1D; intensi-
dade da desordem; correlações espaciais.
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1 INTRODUCTION TO SUPERCONDUCTIVITY

1.1 THE DISCOVERY OF SUPERCONDUCTIVITY

Superconductivity is a centenary research field. It was begun in Laiden – Netherlands,
8th of April, 1911. Heike Kamerling Onnes, at his laboratory, observed for the first time the
phenomena of superconductivity, that is, the abrupt disappearance of electric resistance in
metals bellow a certain critical temperature (𝑇𝑐). There were two main theories about what
would happen to resistance when the temperature approached zero: 1 - It was believed that
resistance would approach zero as the temperature goes to zero as well, never being zero
before that. 2 – It was also believed that resistance would be infinity, based on the freezing
of electrons on the material. The critical temperature is, at that time, very low. The highest
critical temperature was about 23 K until 1983. Such kind of experiment and detection was
only possible because few years before, Onnes had managed to turn Helium into a liquid (also
for the first time). Mercury was one of the metals used for experiments since it is easy to
find it in a high purity degree. All others materials used in the experiment has some residual
resistance, which Onnes believed to be due to the presence of impurities (COSTA; PAVãO, 2012).
The abrupt fall of electrical resistance at 4,2 K intrigued Onnes. Due to his investigations on
material at very low temperatures, which lead to the production of liquid helium, Onnes was
awarded the Nobel Prize in 1913 (IEEE, 2022).

Figure 1 – Graphic of resistence versus temperature obtained experimentally by
Ommes for mercury.

Source: Vernède (2011)

Later, in 1933, Walther Meissner and Robert Ochsenfeld verified that superconducting
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materials are able to expell totally the magnetic field from inside its interior (perfect dia-
magnetism). This effect is known nowadays as Meissner Effect. Actually, the magnetic field
can penetrate the material in a characteristic length called London penetration length, which
varies from material to material. There is one (or more) critical field in a superconductor, for
strong enough magnetic field the superconductivity (superconducting state) is destroyed and
the material becomes normal again (normal state). No explanation was given at that time, but
it was clear that no theory for conductors could be assigned to explain such effect. It was only
in 1935 when London Brothers came up with an explanation. Then, the superconducting is
interpreted as a new state of matter, the superconducting state. The critical temperature that
divide the superconducting and normal state is characterized by a phase transition, where it is
present discontinuities on thermodynamics parameters such as specific heat. Although several
very successful theories were developed to explain superconductivity, the explanation of high
temperature superconductors (that is, the critical temperature is comparable with environment
temperatures) remains side by side with Fractionary Quantum Hall Effect as one of the most
mysterious phenomena in condensed matter physics. The High Temperature Superconductors
are being discovered as time passes. In 2021, the superconductor with the highest critical tem-
perature at ambient pressure is the cuprate of mercury, barium and calcium at around 133K.
There are other superconductors with higher transition temperatures, but these only occur
at very high pressures (SCHILLING et al., 1993) (DROZDOV et al., 2019). It is not completely
known for exotic superconductors how the mechanism behind superconducting electrons ac-
tually works. Besides, theories as Ginzburg Landau (GL), Barder Cooper and Schrieffer (BCS)
gave us a lot of knowledge about how conventional superconductivity happens. So far, 11
physicists were awarded with Nobel prizes for who their efforts to superconductivity, among
them, legendary names as Lev Landau, Alexei Abrikosov, Leon Cooper and Heike Onnes himself
are valid to mention. The applications for superconductors are straightforward. No resistance
means non dissipative current, the possibility of transport electric current through several kilo-
meters without losing energy may become possible in a few decades. Moreover, applications
of quantum computer devices and magnetic levitation are promising as well.

1.2 THERMODYNAMIC QUANTITIES

As said in the previous section, the superconductivity, a new condensate state, is char-
acterized by a phase transition, which can be measured via thermodynamics quantities like
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Helmholtz energy and specific heat. The Helmholtz energy can be derived from the specific
heat data and it is shown in the figure 2.

Figure 2 – Left: Specific Heat versus temperature. Right: Helmholtz Energy versus temperature.

Source: Gennes (1999)

We see in Figure 2 (a) the behavior of the specific heat. At the critical temperature,
here labelled 𝑇0, there is a discontinuity, which characterizes the phase transition between
normal and superconducting state. The behavior close to temperature zero resembles (and
actually is) an exponential. The reader who remembers statistical mechanics can be confidant
to affirm that this characterizes the existence of a gap between the ground state and the
excitation levels. In Figure 1.2 (b), the Helmholtz Energy is shown for a normal metal and
superconducting state, 𝐹𝑛 (dashed line) and 𝐹𝑠 (continuous line), respectively. From the critical
temperature and bellow, these lines split, the actual state is the superconducting state since
it is less energetic. As the temperature approaches zero, the difference between energies,
(𝐹𝑠 −𝐹𝑛)|𝑇 =0 is called condensation energy. The symbols 𝐸𝐹 and 𝑘𝐵 mean respectively Fermi
Energy and Boltzmann constant.

1.3 PERFECT DIAMAGNETISM: THE LONDON EQUATION

If we now want to have a description about how magnetic field interact with supercon-
ductors, we can rely on an energetic analysis. Here, let us consider that 𝑗𝑠(r) indicates super-
currents, that is, the electric current whose charge caries in movement are superconducting
electrons, and the associated magnetic field h(r) in the sample. Let us also consider the limit
where all currents and fields are weak and the spatial variations are slow.

As usual, we know that in a metal we can approximate the bottom of a electronic band
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using a parabolic relation. Considering electrons with effective mass m, the free energy has
the following form:

ℱ =
∫︁
𝐹𝑆𝑑r + 𝐸𝑘𝑖𝑛 + 𝐸𝑚𝑎𝑔, (1.1)

𝐸𝑘𝑖𝑛 is the kinetic energy associated with the superconducting currents, 𝐸𝑚𝑎𝑔 is the magnetic
energy, and 𝐹𝑆 is the energy of the electrons in the condensate state at rest.

Consider that the drift velocity of electrons at a point r is v(r). The relation with the
superconducting current is

𝑛𝑆𝑒v(r) = 𝑗𝑆(r) (1.2)

, where e is the electron charge, and 𝑛𝑠 is the density of superconducting electrons. We have
then

𝐸𝑘𝑖𝑛 =
∫︁
𝑑r1

2𝑚𝑣
2𝑛𝑆 (1.3)

with the integral covering all superconducting material. The expression above is nothing but
the integral of all kinetic energy in the material. Since we are in the limit of very slow spatial
variations, the expression inside the integral is approximately constant.

At last, the magnetic energy 𝐸𝑚𝑎𝑔 is given by:

𝐸𝑚𝑎𝑔 =
∫︁ ℎ2

8𝜋𝑑r. (1.4)

The field is related to 𝑗𝑆 using the Ampere’s Law:

∇ × h = 4𝜋
𝑐
𝑗𝑆. (1.5)

Mixing all equations above by writing everything in terms of magnetic fields, we obtain the
following expression for the free energy:

ℱ =
∫︁
𝐹𝑆𝑑r + 1

8𝜋

∫︁
[h2 + 𝜆2

𝐿|∇ × h|2]𝑑r, (1.6)

where 𝜆𝐿 is

𝜆𝐿 =
[︃
𝑚𝑐2

4𝜋𝑛𝑆𝑒2

]︃1/2

. (1.7)

Since 𝑛𝑆 is the density of superconducting electrons, as we approach T=0, 𝑛𝑆 approachs n,
the total density of electrons.

As any usual problem of obtaining an equation of motion from an functional energy, we
shall employ the use of variational calculus to find the equation that rules h. Let us change
h(r) by 𝛿h(r), making ℱ changes by 𝛿ℱ in the same way:

𝛿ℱ = 1
4𝜋

∫︁
[h · 𝛿h + 𝜆2

𝐿(∇ × h) × ∇𝛿h]𝑑h, (1.8)
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by using integral by parts in the last term on the right hand side, assuming that changes in
the border of the superconducting material vanishes, we have

𝛿ℱ = 1
4𝜋

∫︁
[h + 𝜆2

𝐿∇ × (∇ × h)] · 𝛿h𝑑r. (1.9)

The field which minimizes the energy is obtained by 𝛿ℱ to zero, being valid for any shape,
the integrand must be zero:

h + 𝜆2
𝐿∇ × (∇ × h) = 0. (1.10)

The equation above is the celebrated London Equation. It is able to explain, as we shall
see, the Meissner Effect. Combined with Ampere’s law it is possible to obtain the suppression
of superconducting currents in presence of external magnetic fields as well.

1.4 MEISSNER EFFECT

The London Equation gives us some details about what happens when a magnetic field
penetrates the superconductor. Let us try to solve it for a simple superconductor with easy-
to-work symmetry. Let us assume that the interface of the superconductor lies in the xy plane.
For z < 0 the space is empty. The field and current only depends on z. In addition to equation
(1.10), we can use also Ampere’s and Gauss’ law for magnetism:

∇ × h = 4𝜋𝑗𝑠

𝑐
(1.11)

∇ · h = 0. (1.12)

The possibility of h being parallel to z is ruled out since from gauss law, 𝜕ℎ/𝜕𝑧 = 0, h is
constant in space. Then, ∇ × h = 0, implying that h and 𝑗𝑠 are zero.

The second possibility is h is parallel to the interface, let us say, x axis. Gauss’ law for
magnetism is automatically satisfied since their derivatives only affects the same component.
The Ampere’s law have non zero result:

𝑑ℎ

𝑑𝑧
= 4𝜋𝑗𝑠

𝑐
. (1.13)

Using the London Equation and the Ampere’s law we obtain:

𝑑𝑗𝑠

𝑑𝑧
= 4𝜋𝜆2

𝐿

𝑐
ℎ, (1.14)
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Figure 3 – Vacuum-Superconductor interface in presence of magnetic field.

Source: The author (2023).

𝑑2ℎ

𝑑𝑧2 = ℎ

𝜆2
𝐿

. (1.15)

The solutions decreases exponentially as the field gets deeper inside the superconductor,

ℎ(𝑧) = ℎ(0) exp(−𝑧/𝜆𝐿). (1.16)

It is possible to see here that the magnetic field can indeed penetrate some depth inside the
superconductor. This depth is measured in terms of the penetration length 𝜆𝐿. In fact, it is
possible to generalize to any sample, a weak enough magnetic field is practically expelled from
the sample apart from a surface. The superconductor finds an equilibrium state where the
sum of kinetic and magnetic energies is minimum, and this state, for macroscopic samples,
corresponds to the expulsion of magnetic flux.

For strong enough magnetic fields it is possible to destroy partially or totally the super-
conducting state, producing magnetic vortices or turn the sample into a normal metal again.
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Figure 4 – Representation of Meissner Effect.

Source: Wikimedia Commons (2005)

1.5 ABSENCE OF LOW ENERGY EXCITATIONS

The ground state of an non interacting electron gas can be described by putting every
electron on the lowest state possible. Once one electron occupies the actual lower state of the
system, the next electron will occupy the next lowest state, one energy level above from the
previous electron (if the system is not degenerated and not considering spin). After filling all
lower energy states with all electrons in the system, it is formed a sphere in the momentum
space with radius 𝑝𝐹 , the momentum of the most energetic electron in the system, such
sphere is called Fermi Sphere. The most energetic electron has the energy 𝐸𝐹 , the Fermi
energy. Above such energy, all levels are empty. If we want to build an excitation in such
system, we only have to provide energy to extract one electron with momentum 𝑝 < 𝑝𝐹 to
a level with momentum (and energy) greater than 𝑝𝐹 . Allowing one energy level empty in
such sphere leads us to the concept of holes: the lack of electrons in a filled electron sphere in
momentum space behaves like an electron with positive charge. Thus, excitation of the system
from the ground state by adding some energy leads to the formation of an electron-hole pair,
which is called electron-hole excitation. For such an excitation, which satisfies the previous
assumptions, the following energy costs are required:

𝐸𝑝𝑝′ = 𝑝′2 − 𝑝2

2𝑚 ≥ 0. (1.17)

If the number of electrons is large, this excitation can be arbitrarily small, since both momenta
𝑝′ and p are close to the Fermi momentum. In a metal, the discussion is quite similar, the
Fermi sphere can be modified, leading to non-spherical shapes, but the excitations are still
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very small. From solid state physics, we know that:

• The specific heat is relatively large and proportional to T. (see (KITTEL, 2004))

• Strong dissipate effects take place when electrons are submitted to low frequency external
peturbations, such as electromagnetic waves. (see (BRUUS; FLENSBERG, 2004))

Figure 5 – the representation of a Fermi sphere with an electron-Hole pair excitation on a non interacting
gas.

The Author (2023).

In most superconductors, the energy 𝐸𝑝′𝑝 necessary to create a electron-hole pair is

𝐸𝑝′𝑝 ≥ 2Δ. (1.18)

Roughly speaking, Δ is the "gap", also called "paring energy" and it is related to the critical
temperature, 2Δ ≈ 3.5𝑘𝐵𝑇𝑐 (GENNES, 1999). Notice that 2Δ is the energy to create a pair
excitation. The energy per excitation is Δ.

There are several methods for detecting the gap:

• The low temperature specific heat is now proportional to exp (−Δ/𝑘𝐵𝑇 ). It is quite
analogous to the deviation from Einstein’s solid specific heat and an actual solid specific
heat. The existence of a gap between the ground state and the first excited state gives
this exponential behavior.
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• Absortion of electromagnetic energy. For photons with ℎ̄𝜔 ≥ 2Δ it is possible to create
a electron-hole pair. The typical wave length are in the 1mm range.

• Ultrasonic attenuation. A phonon of low frequency cannot decay into a electron-hole pair
excitation, but it can be absorbed by collisions by others preexisting excitations. This
process is proportional to the number of preexisting excitations, thus exp (−Δ/𝑘𝐵𝑇 ).

One important information is that the existence of a gap is not a necessary condition for
the existence of superconductivity. It is possible using other mechanisms to obtain gapless
excitations. One example is the excitations on surface superconductivity. This topic is beyond
the scope of this dissertation, but a good reference is given at de Gennes (GENNES, 1999).

1.6 TWO KINDS OF SUPERCONDUCTIVITY

We have assumed previously on derivation of London equation that 𝑣(r) varies slowly. In
the condensate state, the velocity of two electrons are correlated if the distance between them
are smaller than a certain range. For pure superconductors, the correlation length is called 𝜉0.
The derivation of London equation applies when 𝑣(r) has negligible variations over distances
𝜉0. To estimate 𝜉0 we notice that the important domain in momentum space is defined by

𝐸𝐹 − Δ <
𝑝2

2𝑚 < 𝐸𝐹 + Δ. (1.19)

The thickness of the shell in p space defined by the equation above if 𝛿𝑝 ≈ 2Δ/𝑣𝐹 , where 𝑣𝐹

is the Fermi velocity, defined by 𝑣𝐹 ≡ 𝑝𝐹/𝑚. We have assumed above that Δ ≪ 𝐸𝐹 . A wave
packet formed of plane waves whose momentum has an uncertainty 𝛿𝑝 has a minimum spatial
extent 𝛿𝑥 ∼ ℎ̄/𝛿𝑝. This leads we to

𝜉0 = ℎ̄𝑣𝐹

𝜋Δ , (1.20)

the factor 𝜋 on denominator appears for convenience. The length 𝜉0 is called coherence length
of the superconductor.

Now we have two different lengths on a superconductor, 𝜉0 and 𝜆𝐿. By defining the quantity
𝜅 = 𝜆𝐿/𝜉0, we can separate two kinds of superconductors:

• 𝜅 < 1/
√

2, type I superconductors. Presents only one critical magnetic field which
completely destroys superconductivity. In non-transition metals, 𝜆𝐿 is small (∼ 300Å).
The Fermi velocity is large (𝑣𝐹 ∼ 108𝑐𝑚/𝑠) and 𝜉0 is large (∼ 104Å for aluminum). Our
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assumption on London Equation derivation relied on 𝜆𝐿 ≫ 𝜉0 (show spatial variation).
Thus London equation does not apply to such situation.

• 𝜅 > 1/
√

2, type II superconductors. Presents two critical magnetic fields. The lower
critical field destroys the superconductivity at certain well defined regions, generating
around such regions current vortices. These vortices are called Abrikosov Vortices. The
upper critical field completely destroys superconductivity. For transition and intermetalic
compounds, the effective mass is very large, 𝜆𝐿 is large (∼ 2000Å) and Fermi velocity is
small (∼ 106𝑐𝑚/𝑠). It is found that in such compounds the critical temperature is high
(18𝑜K in 𝑁𝑏3𝑆𝑛). We will see later that Δ is proportional to the critical temperature
𝑇𝑐. For all these reasons, 𝜉0 is very small (∼ 50Å). The London equation works well for
this class of material.

Figure 6 – Vortices in a 200-nm-thick YBCO film

Source: Wikimedia Commons (2015)



22

2 BCS THEORY

The theory of superconductivity from microscopic principles was showed for the first time
for J. Bardeen, L. N. cooper, and J. R Schrieffer, the so-called BCS Theory (BARDEEN; COOPER;

SCHRIEFFER, 1957). Few years before, L. Landau and V. Ginzburg proposed a phenomenologi-
cal theory to describe superconductivity close to the critical temperature. That did not received
much attention. Years later, L. Gor’kov showed that the phenomenological theory could be
derived from BCS Theory. It is impressive that L. Landau and V. Ginzburg managed to derive
from much of intuition. This dissertation is not going to focus on phenomenological theory. In-
stead, the BCS Theory here is introduced to give space to the Bogoliubov-de Gennes equation,
which will be derived next section.

2.1 COOPER PAIR

A bound state between two electrons seems to be a very weird idea at first glance. In
fact, the origin of the attractive interaction will be discussed later, but it is important here to
how to existence of such state regardless how small the attractive interaction is. Such effect
is possible because the Fermi sea (all electrons in the lowest energy level possible) unstable
against the formation of at least one bound pair. Such effect is consequence of two effects:
the Fermi statistics and the existence of a Fermi-sea in the background. Bound states usually
does not occur in two-body problem in three dimensions until the strength of the potential
exceeds a finite threshold value.

Let us say that two electrons are added to the Fermi sea at temperature equal zero (T =
0). The electrons can interact with each other via an attractive interaction only - they cannot
interact with the electrons in the Fermi sea unless via exclusion principle (that is, they cannot
occupy levels bellow the Fermi energy). The hamiltonian of this problem can be written as[︃

−
ℎ̄2∇2

r1

2𝑚 −
ℎ̄2∇2

r2

2𝑚 + 𝑉 (r1 − r2)
]︃

Ψ(r1, r2) = 𝐸Ψ(r1, r2), (2.1)

where Ψ(r1, r2) is the wave-function for two electrons and E is the energy. Since it is a two
body problem, it is possible to change for center of mass coordinates r = 1

2(r1 + r2) and the
relative coordinates r = 1

2(r1 − r2). It is straightforward to show that[︃
− ℎ̄2∇2

r
2𝑚* − ℎ̄2∇2

r
2𝜇 + 𝑉 (r)

]︃
Ψ(r, r) = 𝐸Ψ(r, r). (2.2)



23

Here, 𝑚* = 2𝑚 and 𝜇 = 𝑚/2, the reduced mass. The seek for a two-particle wavefunction.
By general arguments of Bloch, we expect that the wavefunction can be separated into a part
that depends on r and other that depends on r.

Ψ(r, r) = 𝜓(r) exp (𝑖k · R). (2.3)

The vector k give us the wave vector due to the movement of the center of mass. This will
give us a new Schrodinger equation with a rescaled energy[︃

− ℎ̄2∇2

2𝜇 + 𝑉 (r)
]︃
𝜓(r) = 𝐸̃𝜓(r), (2.4)

where 𝐸̃ = 𝐸 − ℎ̄2𝐾2

2𝑚′ . For a given E, the lowest 𝐸̃ is the one for which k = 0, that is, when
the momentum of center of mass vanishes. Making k = 0 makes the particle having opposite
momentum, let us work with this assumption from now on. Depending on the symmetry of
the spatial part we can have a singlet or triplet state for the spin. Anticipating an attractive
interaction, we choose an symmetric spatial part since the lowest energy happens when elec-
trons are close to each other. This implies on a singlet spin state, which leads us to build the
following wave function:

𝜓(r) =
⎡⎣ ∑︁

k>k𝐹

𝑔k cos (k · r)
⎤⎦ (𝛼1𝛽2 − 𝛽1𝛼2), (2.5)

where 𝛼𝑖 and 𝛽𝑖 are spin variables for particle 1 and 2, the interacting electrons. They are build
in such way to produce a antissymetric state for the spin so that the total wavefunction is
antissymetric, leading us to a fermionic behavior, as it should be. Let us insert our wavefunction
into the Schrodinger equation, working on the derivatives and reminding that 𝐸̃ = 𝐸 produces
(suppressing spin variables)

∑︁
k>k𝐹

[2𝜖k + 𝑉 (r)]𝑔k cos (k · r) = 𝐸
∑︁

k>k𝐹

𝑔k cos (k · r), (2.6)

where 𝜖k is the non-perturbed plane-wave energies, ℎ̄2𝑘2

2𝑚
. Using the fact that 𝑉 (r) is an even

function and performing Fourier transformation in all equation we obtain

(𝐸 − 2𝜖k)𝑔k =
∑︁

k′>k𝐹

𝑉kk′𝑔k′ . (2.7)

where
𝑉kk′ = Ω−1

∫︁
𝑉 (r)𝑒𝑖(k′−k)·r𝑑r, (2.8)



24

Ω being the normalization volume. 𝑉kk′ connects scattering between electrons with momentum
(k′,−k′) to (k,−k). If we can find a set of 𝑔k that satisfies the equation above, with 𝐸 < 2𝐸𝐹 ,
then a bound-pair state exist.

It is quite hard to analyse the equation for 𝑔k with such general potential. Cooper introduced
an approximation

𝑉kk′ =

⎧⎪⎪⎨⎪⎪⎩
−𝑉 if 𝜖k, 𝜖k′ < 𝜔𝑐ℎ̄,

0 otherwise.
(2.9)

It is constant inside a certain cutoff energy, and zero outside. The right-hand of equation 2.6
becomes then

𝑔k = 𝑉

∑︀
𝑔k′

2𝜖k − 𝐸
. (2.10)

Summing both sides and canceling ∑︀ 𝑔k, we obtain

1
𝑉

=
∑︁

k>k𝐹

(2𝜖k − 𝐸)−1. (2.11)

In the continuum limit, we can change the summation for an integral on energy levels by
adding the density of states. The density of states can be set at the Fermi level since the
cutoff is much smaller than the Fermi level:

1
𝑉

= 𝑁(0)
∫︁ 𝐸𝐹 +ℎ̄𝜔𝑐

𝐸𝐹

𝑑𝜖

2𝜖− 𝐸
= 1

2𝑁(0) ln
(︃

2𝐸𝐹 − 𝐸 + 2ℎ̄𝜔𝑐

2𝐸𝐹 − 𝐸

)︃
, (2.12)

N(0) indicating the density of states at the Fermi level. In case of the weak-coupling case,
there 𝑁(0)𝑉 ≪ 1, few approximations produce

𝐸 ≈ 2𝐸𝐹 − 2ℎ̄𝜔𝑐𝑒
−2/𝑁(0)𝑉 (2.13)

Since the energy is smaller than twice the Fermi level, we see that it is possible to have a bound
state with negative energy with respect to the Fermi surface made up entirely of electrons
with k > k𝐹 , that is, with kinetic energy in excess of 𝐸𝐹 . The contribution to the energy of
the attractive potential outweighs this excess of kinetic energy, leading to a binding regardless
of how small V is. It is important to notice that the binding energy depends on the inverse of
V, that is, not analytic at V = 0 - it cannot be expanded in powers of V, thus it cannot be
derived using perturbation theory. This fact delayed the genesis of the theory.

After all calculations so far, the wavefuntion 𝜓(r) is proportional to

∑︁
k>k𝐹

cos(k · r)
2𝜉k + 𝐸 ′ , (2.14)
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where here we have changed energies from the Fermi energy

𝜉k = 𝜖k − 𝐸𝐹 and 𝐸 ′ = 2𝐸𝐹 − 𝐸 > 0. (2.15)

Now we see that due to the change of sing, 𝐸 ′ is the binding energy with respect to 2𝐸𝐹 . Since
𝑔k depends only on 𝜉k, the solution has spherical symmetry, we call it s-wave superconductor.
It is quite important in this dissertation because all superconducting effects developed on final
results here will be on s-wave superconductors. Also, the weighting factor (2𝜉k +𝐸 ′)−1 has its
maximum at value 1/𝐸 ′ when 𝜉k = 0. Electron states within a range of energy 𝐸 ′ above 𝐸𝐹

are those most strongly involved in forming the bound state. Since 𝐸 ′ ≪ ℎ̄𝜔𝑐 for 𝑁(0)𝑉 ≪ 1,
this shows that the detailed behavior of 𝑉kk′ our around ℎ̄𝜔𝑐 will not have any great effect on
the result. That is why I have performed such rough approximation before.

Returning to the total energy, we can write then the binding plus kinetic energy as

𝐸 = 𝐸̃ + ℎ̄2𝐾2

4𝑚 = 2𝜖k − 𝐸 ′ + ℎ̄2𝐾2

4𝑚 . (2.16)

In the limit that 𝐸 → 2𝜖k, we can still obtain a bound state with finite center of mass
momentum:

𝐾 = 2
ℎ̄

√
𝑚𝐸 ′. (2.17)

This gives rise to a finite current density

𝐽 = 𝑛𝑠𝑒
ℎ̄𝐾

𝑚
= 2𝑛𝑠𝑒

√︃
𝐸 ′

𝑚
. (2.18)

2.2 ORIGIN OF THE ATTRACTIVE INTERACTION

As discussed previously, a simple electron gas cannot form bound states. To achieve at-
tractive behavior in the potential 𝑉kk′ , it is necessary to couple the system to other particles
or excitations. In solids, various elementary excitations exist, such as phonons, electrons from
other bands, spin waves, and polarons. In our present scenario, the electron-phonon interaction
plays a significant role. Although there are other types of interactions that can lead to bound
states, they are beyond the scope of this dissertation.

The matrix element 𝑉kk′ of electron-electron interaction connects states with different
momentum, obeying conservation laws. Generally, 𝑉kk′ can be expressed in two terms:
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• The direct Coulomb repulsion 𝑈𝑐 connects two electrons (from state I to II):

⟨𝐼|𝐻𝑐|𝐼𝐼⟩ =
∫︁
𝑑r1𝑑r2𝑒

−𝑖k·(r1−r2)𝑈𝑐(r1 − r2)𝑒𝑖k′(r1−r2) (2.19)

=
∫︁
𝑈𝑐(𝜌)𝑑𝜌𝑒𝑖q·𝜌 = 𝑈q. q = k′ − k. (2.20)

• One electron may emit a phonon, which can be later absorbed by another electron. The
initial state has energy

𝐸𝐼 = 2𝜉k, (2.21)

as defined in Equation 2.15, and the final state has energy

𝐸𝐼𝐼 = 2𝜉k′ , (2.22)

Momentum conservation allows for two intermediate states:

– Electron 1 in state k′ = k + q, and electron 2 in −k, where a phonon is created
with wave vector −q and energy ℎ̄𝜔𝑞

𝐸𝑖2 = 𝜉k′ + 𝜉k + ℎ̄𝜔𝑞 = 𝐸𝑖1. (2.23)

Here, 𝜉k and 𝜔k are even functions.

– Electron 1 in state k, and electron 2 in −k′ = −(q+q), where a phonon is created
with wave vector q and energy ℎ̄𝜔𝑞

𝐸𝑖2 = 𝜉k′ + 𝜉k + ℎ̄𝜔𝑞 = 𝐸𝑖1. (2.24)

The second-order matrix element that couples states (I) and (II) due to electron-phonon (ep)
interaction can be expressed as follows:

⟨𝐼|𝐻𝑒𝑝|𝐼𝐼⟩ =
∑︁

𝑖

⟨𝐼|𝐻𝑒𝑝|𝑖⟩1
2

(︂ 1
𝐸𝐼𝐼 − 𝐸𝑖

+ 1
𝐸𝐼 − 𝐸𝑖

)︂
⟨𝑖|𝐻𝑒𝑝|𝐼𝐼⟩. (2.25)

The summation includes all allowed intermediate states. However, since we only have two
allowed intermediate states, we can define 𝑊𝑞 as follows:

⟨𝐼|𝐻𝑒𝑝|𝐼𝐼⟩ = |𝑊𝑞|2

ℎ̄

(︃
1

𝜔 − 𝜔𝑞

− 1
𝜔 + 𝜔𝑞

)︃
. (2.26)

Here, ℎ̄𝜔 = 𝜉k′ − 𝜉k. The total matrix for the interaction is then given by:

⟨𝐼|𝐻|𝐼𝐼⟩ = 𝑈q + 2|𝑊𝑞|2

ℎ̄

𝜔𝑞

𝜔2 − 𝜔2
𝑞

. (2.27)
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When 𝜔 < 𝜔𝑞, the indirect term can dominate the first term by introducing a negative
component, resulting in an attractive potential, assuming 𝑈𝑞 is not excessively large.

There are additional phenomena that need to be analyzed, such as the dielectric effect in
solids. Interested readers are encouraged to refer to relevant literature (Kittel and de Gennes,
to be cited later). However, the attractive interaction can be elucidated through the afore-
mentioned electron-phonon interaction.

2.3 BCS GROUND STATE

We have seen that the Fermi sea is unstable against the formation of bound Cooper pairs
when the total interaction among electrons is attractive. We expect that pairs will condense
until an equilibrium is reached, characterized by a state of the system significantly different
from the Fermi sea due to the large number of bound pairs. The binding energy for an additional
pair becomes zero in this equilibrium state. To describe such a system with a large number of
electrons, it is necessary to use second quantization (TINKHAM, 2004).

The Fermionic creation operator ̂︀𝑐†
k𝜎 creates an electron with momentum k and spin 𝜎 =↑, ↓

(spin-up or spin-down). Similarly, the operator 𝑐k𝜎 destroys an electron. Using this notation,
the singlet wavefunction can be written as

|𝜓0⟩ =
∑︁

𝑘>𝑘𝐹

𝑔k𝑐
†
k↑𝑐

†
−k↓|𝐹 ⟩, (2.28)

where |𝐹 ⟩ represents the Fermi sea with all states filled up to 𝑘𝐹 .
The BCS wavefunction can be approached by considering a general N-electron wavefunc-

tion expressed in terms of momentum eigenfunctions and incorporating Cooper pairing:

|𝜓𝑁⟩ =
∑︁

𝑔(k𝑖, ..., k𝑙)𝑐†
k𝑖↑𝑐

†
−k𝑖↓...𝑐

†
k𝑙↑𝑐

†
−k𝑙↓|0⟩, (2.29)

where |0⟩ represents the vacuum state (total absence of electrons), k𝑖 and k𝑙 designate the
first and last of the M k-values in the band that are occupied in a given term in the sum, and
𝑔 specifies the weight with which the product of this set of N/2 pairs of creation operators
appears. Since there are

𝑀 !
[𝑀 − (𝑁/2)]!(𝑁/2)! ≈ 101020 (2.30)

ways of choosing N/2 states for pair occupancy, there will be a huge number of terms in the
summation, making it impossible to determine. What BCS did is argue that due to the large
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number of electrons in the system, it is sufficient to assume that electrons feel an average
field created by all other electrons, known as the "mean field" of all occupied states. This is
referred to as the Hartree self-consistent field. In its simplest form, this relaxes the constraint
on the total number of particles being N, as occupancies are treated statistically. However, due
to the large number of particles, in the thermodynamic limit, fluctuations in the number of
particles are suppressed, and the average N, 𝑁 , is fixed when working with the grand canonical
ensemble.

BCS considered the following wavefunction as their ground state:

|𝜓𝐺⟩ =
∏︁

k=k1,...,k𝑀

(𝑢k + 𝑣k𝑐
†
k↑𝑐

†
−k↓)|0⟩, (2.31)

where |𝑢k|2 + |𝑣k|2 = 1. Here, the probability of finding a pair with (k ↑,−k ↓) is |𝑣k|2, while
the probability that it is unoccupied is |𝑢k|2. As mentioned before, the probabilities of finding
N electrons in the system have a sharp peak at 𝑁 . This quantity can be calculated using

⟨𝜓𝐺|𝑁 |𝜓𝐺⟩ = 𝑁, (2.32)

where 𝑁 = ∑︀
k,𝜎 𝑐

†
k𝜎𝑐k𝜎. The calculation can be performed as follows:

𝑁 =
⟨∑︁

k,𝜎

𝑐k𝜎𝑐
†
k𝜎

⟩
= ⟨𝜓𝐺|

∑︁
k

(𝑐†
k↑𝑐k↓ + 𝑐†

k↓𝑐k↓)|𝜓𝐺⟩

= 2
∑︁

k
⟨𝜓𝐺|𝑐†

k↑𝑐k↑|𝜓𝐺⟩

= 2
∑︁

k
⟨0|(𝑢*

k + 𝑣*
k𝑐−k↓𝑐k↑)𝑐†

k↑𝑐k↑(𝑢k + 𝑣k𝑐
†
k↑𝑐

†
−k↓)

×
∏︁
l̸=k

(𝑢*
l + 𝑣*

l 𝑐−l↓𝑐l↑)(𝑢l + 𝑣l𝑐
†
l↑𝑐

†
−l↓)|0⟩.

(2.33)

In the last equality, we have isolated operators from a single state to facilitate calculations.
By separating the states, we can analyze the cases where l ̸= k and l = k. Since fermionic
systems can have at most one electron per state, connecting states that preserve the same
number of particles, we obtain

𝑁 =
∑︁

k
2|𝑣k|2. (2.34)

Similarly, we can calculate the variation ⟨𝑁2⟩ −𝑁
2 as similar to equation 2.33 and obtain

⟨𝑁2⟩ −𝑁
2 = 4

∑︁
k
𝑢2

k𝑣
2
k. (2.35)

Note that this is nonzero unless the occupancy cuts off discontinuously with 𝑣k going from 1
to 0 and 𝑢k from 0 to 1. Also, note that both 𝑁 and ⟨(𝑁 −𝑁)2⟩ scale with the volume if we
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compare systems of various sizes but the same particle density. Accordingly,

𝛿𝑁rms = ⟨(𝑁 −𝑁)2⟩1/2 ≈ 𝑁
1/2 ≈ 1010, (2.36)

while the fractional uncertainty is

𝛿𝑁rms

𝑁
≈ 1
𝑁

1/2 ≈ 10−10. (2.37)

Thus, as is typical of many-particle statistical situations, as 𝑁 → ∞, the absolute fluctuations
become large, but the fractional fluctuations approach zero.

2.4 VARIATIONAL METHOD

For a more broad understatement about the coefficients u and v, it is necessary to find
explicit values for them. For that, let us define the pairing hamiltonian:

ℋ =
∑︁
k𝜎

𝜖k𝑛k𝜎 +
∑︁
kl
𝑐†

k↑𝑐
†
−k↓𝑐−l↓𝑐l↑, (2.38)

where 𝑛k𝜎 = 𝑐†
k𝜎𝑐k𝜎 counts the number of particles in the state with wavevector k and spin

𝜎. The Hamiltonian in Equation 2.38 has all decisive terms for superconductivity, although it
omits many other terms which involve electrons not paired. They may be important in other
applications, but the idea is make it simple. To regulate the number of particles 𝑁 , we include
a term −𝜇𝑁 (N here is the operator total average number of electrons 𝑁 = ∑︀

k𝜎 𝑛k𝜎), where
𝜇 is the chemical potential (or Fermi Energy for zero temperature). It is equivalent to taking
the zero of the free electron energy to be 𝜇. We ought to minimize the expectation value of
the sum by setting

𝛿⟨𝜓𝐺|ℋ − 𝜇𝑁 |𝜓𝐺⟩ = 0. (2.39)

We know already from calculations very similar before that the free particle part can be
calculated easily to produce

⟨
∑︁
k𝜎

𝜖k𝑛k𝜎 − 𝜇𝑁⟩ = 2
∑︁

𝜉k|𝑣k|2 (2.40)

where 𝜉k = 𝜖k − 𝜇.
Similarly, the interaction term gives

⟨𝑉 ⟩ =
∑︁
kl
𝑉kl𝑢k𝑣

*
k𝑢

*
l 𝑣l. (2.41)
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Then all information above provides the following result:

⟨𝜓𝐺|ℋ − 𝜇𝑁 |𝜓𝐺⟩ = 2
∑︁

𝜉k|𝑣k|2 +
∑︁
kl
𝑉kl𝑢k𝑣

*
k𝑢

*
l 𝑣l, (2.42)

which have to be minimized with the constraint 𝑢2
k + 𝑣2

k = 1. Since it reminds a very useful
trigonometric relation, the constraint can be imposed by letting

𝑢k = sin 𝜃k and 𝑣k = cos 𝜃k. (2.43)

By substituting in the 2.42, and using few trigonometric properties as sin 2𝜃 = 2 sin 𝜃 cos 𝜃

and sin2 𝜃 + cos2 𝜃 = 1, we obtain

⟨𝜓𝐺|ℋ − 𝜇𝑁 |𝜓𝐺⟩ =
∑︁

k
𝜉k(1 + cos 2𝜃k) + 1

4
∑︁
kl
𝑉kl sin 2𝜃k sin 2𝜃l, (2.44)

we can perform minimization using 𝜃 as the parameter, then

𝜕

𝜕𝜃k
⟨𝜓𝐺|ℋ − 𝜇𝑁 |𝜓𝐺⟩ = 0 = −2𝜉k sin 2𝜃k +

∑︁
l
𝑉kl cos 𝜃k sin 𝜃l. (2.45)

By organizing terms we get
tan 2𝜃k =

∑︀
l 𝑉kl sin 2𝜃l

2𝜉k
. (2.46)

Let us define the quantities

Δk = −
∑︁

l
𝑉kl𝑢l𝑣k = −1

2
∑︁

l
𝑉kl sin 2𝜃l (2.47)

and
𝐸k = (Δ2

k + 𝜉2
k)1/2. (2.48)

For now, it might seem some random definition, but later it will acquire a physical significance
as the energy-gap parameter and quasi-particle excitation energy, respectively). Then 2.46
becomes

tan 2𝜃𝑘 = −Δk

𝜉k
(2.49)

and noticing that by

𝐸k =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
|Δk|

(︂
1 + 𝜉2

k
Δ2

k

)︂1/2
= Δk

sin 2𝜃k

|𝜉k|
(︂

1 + Δ2
k

𝜉2
k

)︂1/2
= − 𝜉k

cos 2𝜃𝑘
,

(2.50)

we can conclude that
2𝑢k𝑣k = sin 2𝜃k = Δk

𝐸k
(2.51)

and
𝑣2

k − 𝑢2
k = cos 2𝜃k = − 𝜉k

𝐸k
. (2.52)
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where in the equations above we have fixed the sign for the sine and cosine in a way that
𝑣2

k → 0 as 𝜉k → ∞, as it should be for a reasonable solution. Substituting the equations above
into 2.46, we obtain the self-consistent equation

Δk = −1
2
∑︁

l

Δl

𝐸l
𝑉kl = −1

2
∑︁

l

Δl

(Δ2
l + 𝜉2

l )1/2𝑉kl. (2.53)

Of course Δk = 0 is a possible solution, a trivial one. We expect that the system have a non
trivial solution with lower energy if 𝑉kl is negative. We retain the model of 𝑉kl used by cooper
and by BCS in 2.9.

𝑉kl =

⎧⎪⎪⎨⎪⎪⎩
−𝑉 if |𝜉k| and |𝜉l| ≤ ℎ̄𝜔𝑐

0 otherwise,
(2.54)

with V being a positive constant. It is important to notice that in equation 2.9, it actually
suggests that the relevant energy is |𝜉k −𝜉l|, the energy change of the electron in the scattering
process, but to get a simple solution it is necessary to make a stronger restriction just like
above. Inserting this in 𝑉kl in 2.47, we find that it is satisfied by

Δk =

⎧⎪⎪⎨⎪⎪⎩
Δ for |𝜉k| < ℎ̄𝜔𝑐

0 for |𝜉k| > ℎ̄𝜔𝑐.

(2.55)

In this model, Δk = Δ, independent of k. we can cancel it from both sides of 2.47, and our
condition for self-consistency then reads

1 = 𝑉

2
∑︁

k

1
𝐸k
. (2.56)

In the continuum limit, we can replace the summation for an integration from −ℎ̄𝜔𝑐 to ℎ̄𝜔𝑐,
and using the symmetry of ±𝜉 values, we get

1
𝑁(0)𝑉 =

∫︁ ℎ̄𝜔𝑐

0

𝑑𝜉

(Δ2 + 𝜉2)1/2 = sinh−1 ℎ̄𝜔𝑐

Δ , (2.57)

quite similar to what is done in section 2.1. Rearranging terms produces

Δ = ℎ̄𝜔𝑐

sinh [1/𝑁(0)𝑉 ] ≈ 2ℎ̄𝜔𝑐𝑒
−1/𝑁(0)𝑉 . (2.58)

Assuming in the last step that we are in the weak coupling limit 𝑁(0)𝑉 ≪ 1.
It is quite straightforward to obtain the amplitudes with equations 2.49 to 2.52 and the

normalization condition 𝑢2
k + 𝑣2

k = 1:

𝑣2
k = 1

2

(︃
1 − 𝜉k

𝐸k

)︃
= 1

2

[︃
1 − 𝜉k

(Δ2 + 𝜉2
k)1/2

]︃
(2.59)

while
𝑢2

k = 1
2

(︃
1 + 𝜉k

𝐸k

)︃
= 1 − 𝑣2

k. (2.60)
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2.5 APPROACH VIA CANONICAL TRANSFORMATIONQ

In order to approach excited states, it is necessary to use a different method to get a
reasonable solution. An alternate method is use the self-consistent method but without using
any variational calculation.

We know already that the characteristic BCS pair-interaction hamiltonian 2.42 will lead
to a ground state which some phase-coherent superposition of many-body state with pairs of
states (k ↑, −k ↓) occupied or unoccupied as units. Because of the coherence, operators such
as 𝑐−k↓𝑐k↑ can have nonzero expectation values, since it connects many particle states with
different number of particles. This effect is different from a normal metal where averaging
such kind of operator gives us zero. Because of the large number of particles involved, the
fluctuations about these expectation values are small. We can express such product of operators
as

𝑐−k↓𝑐k↑ = ⟨𝑐−k↓𝑐k↑⟩ + (𝑐−k↓𝑐k↑ − ⟨𝑐−k↓𝑐k↑⟩), (2.61)

that is, we say that our operator is its average value plus fluctuation. We must neglect quan-
tities which are bilinear in the small fluctuation in the parenthesis. It is easy then to obtain
the mean field Hamiltonian

ℋ𝑀 =
∑︁
k𝜔

𝜉k𝑐
†
k𝜎𝑐k𝜎 −

∑︁
kl
𝑉kl(𝑐†

k↑𝑐
†
−k↓⟨𝑐−l↓𝑐l↑⟩+ ⟨𝑐−k↓𝑐k↑⟩*𝑐−l↓𝑐l↑ −⟨𝑐−k↓𝑐k↑⟩*⟨𝑐−l↓𝑐l↑⟩). (2.62)

The hamiltonian above is simpler due to the suppression of product of 4 operators. It has only
states that connects one-particle states. However, it is important to notice the self-consistent
nature that emerged from mean-field. Also, it does not conserve the number of particles. We
can handle this situation by introducting a chemical potential 𝜇 to fix 𝑁 at any desired value.

Let us now define
Δk = −

∑︁
l
𝑉kl⟨𝑐−l↓𝑐l↑⟩, (2.63)

which is very similar to the definition of 2.47, and it turn out to give the gap in the energy
spectrum. Writing the Mean-field Hamiltonian in terms of the definition above we obtain

ℋ𝑀 =
∑︁
k𝜔

𝜉k𝑐
†
k𝜎𝑐k𝜎 −

∑︁
k

(Δk𝑐
†
k↑𝑐

†
−k↓ + Δ*

k𝑐−k↓𝑐k↑ − Δk⟨𝑐−k↓𝑐k↑⟩*). (2.64)

The Hamiltonian above can be diagonalized by a appropriate linear transformation:

𝑐k↑ = 𝑢*
k𝛾k 0 + 𝑣k𝛾

†
k 1,

𝑐†
−k↓ = −𝑣*

k𝛾k0 + 𝑢k𝛾
†
k1.

(2.65)
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The coefficients are the same amplitudes from previous section and they satisfy |𝑢k|2+|𝑣k|2 = 1

and 𝛾k are new Fermi operators. We can interpret the new operators as follow: 𝛾k0 destroys
an electron with k ↑ or creating an electron with −k ↓; in both cases, the resultant effect is
decrease the system momentum by k and reduce 𝑆𝑧 by ℎ̄. This can be seen by inverting the
linear transformation above. Similar properties appear for the other three operators.

By substituting the old for the new Fermi operators, and using the fermionic properties like
keeping creation operators to the left and destruction operators to the right using commutation
relations, after a lengthy calculation, we obtain the following Hamiltonian

ℋ𝑀 =
∑︁

k
𝜉k[(|𝑢k|2 − |𝑣k|2)(𝛾†

k0𝛾k0 + 𝛾†
k1𝛾k1) + 2|𝑣k|2 + 2𝑢*

k𝑣
*
k𝛾k1𝛾k0

+ 2𝑢k𝑣k𝛾
†
k0𝛾

†
k1] +

∑︁
k

[(Δk𝑢k𝑣
*
k + Δ*

k𝑢
*
k𝑣k)(𝛾†

k0𝛾k0 + 𝛾†
k1𝛾k1 − 1)

(Δk𝑣
*2
k − Δ*

k𝑢
*2
k )𝛾k1𝛾k0 + (Δ*

k𝑣
2
k − Δk𝑢

2
k)𝛾

†
k0𝛾

†
k1 + Δk⟨𝑐−k↓𝑐k↑⟩*]

(2.66)

we have o choose 𝑢k and 𝑣k in order to make coefficients 𝛾k1𝛾k0 and 𝛾†
k0𝛾

†
k1 vanish, so that

the hamiltonian will be diagonalized. Gathering all terms that are together with the operators
above, we obtain the following relation :

2𝜉k𝑢k𝑣k + Δ*
k𝑣

2
k − Δk𝑢

2
k = 0, (2.67)

solving for the ratio 𝑣k/𝑢k yields

𝑣k

𝑢k
=

√︁
𝜉2

k + |Δ2
k| − 𝜉k

Δ*
k

, (2.68)

where we choose only the positive root to ensure that the energy of the BCS state is a minimum
and not a maximum. Notice that since the numerator is a real number, the phase of Δk must
be the same as the relative phase between 𝑣k and 𝑢k. We can set the phase of 𝑢k to be zero
without loss of generality, it follows that the phases of 𝑣k and Δk are the same. Given the
normalization requirement that |𝑢k|2 + |𝑣k|2 = 1 and solving for the coefficients we find

|𝑣k|2 = 1 − |𝑢k|2 = 1
2

(︃
1 − 𝜉k

𝐸k

)︃
, (2.69)

where we have assigned 𝐸k = (𝜉2
k + |Δk|2)1/2. This is the same result as obtained from

variational method.
By having chosen the the amplitudes 𝑢k and 𝑣k to be diagonalize the hamiltonian, the

remaining terms reduce the hamiltonian to

ℋ𝑀 =
∑︁

k
(𝜉k − 𝐸k + Δk⟨𝑐−k↓𝑐k↑⟩*) +

∑︁
k
𝐸k(𝛾†

k0𝛾k0 + 𝛾†
k1𝛾k1). (2.70)
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The first term in the hamiltonian is constant and differs from the corresponding sum for the
normal state at T = 0 by exactly the condensation energy as seen before. The second sum
gives us increase in energy aboce the gound state in terms of the new number operator 𝛾†

𝑏𝑓𝑘𝛾k.
Since now our new hamiltonian resembles a ideal gas hamiltonian once it is diagonalized, we
can say that 𝛾k describe an elementary quasi-particle excitation of the system, which are often
called Bogolons. The excitation is 𝐸k as seen in the hamiltonian, and as said before, Δk is
the energy gap or minimum excitation energy, that is, even at Fermi surface where 𝜉k = 0,
𝐸k = |Δk| > 0.

Of course, we are not over yet because our self-consistent problem is not fully determined
in terms of the amplitudes and energies found above. In fact, the gap remains unknown

Δk = −
∑︁

l
𝑉kl𝑢

*
l 𝑣l⟨𝑐−l↓𝑐l↑⟩ = −

∑︁
l
𝑉kl𝑢

*
l 𝑣l⟨1 − 𝛾*

l0𝛾l0 − 𝛾*
l1𝛾l1⟩. (2.71)

At T = 0, the system has no excitations and we return 2.47. In fact, as we increase temperature
an more excitations are added to the system, there must be a better way to calculate the new
gap as a function of temperature, as we shall see in the following section

Before we go further, let us calculate the ground state wavefunction using the current
method. We know that the ground state has to satisfy the condition

𝛾k𝜎|𝜓𝐺⟩ = 0, (2.72)

using the inverse linear transformation 2.65, we can write the last equation as

𝑢k𝑐k↑|𝜓𝐺⟩ = 𝑣k𝑐
†
−k↓|𝜓𝐺⟩, (2.73)

since we know already that the state is coherent, it is reasonable to propose an ansatz as a
power of cooper pairs

|𝜓𝐺⟩ = 𝒩
∏︁
q
𝑒𝛼q𝑐†

q↑𝑐†
−q↓|0⟩, (2.74)

𝒩 is a normalization constant that will be determined later. To simplify the notation let us call
the exponent in the exponential operator as 𝜃k = 𝛼q𝑐

†
q↑𝑐

†
−q↓. To understand how 𝑐k↑ and 𝑐†

−k↓

acts on the exponential operator, we must understand how it commutes with the exponent.
Since the operators can easily be swapped places when q ̸= k, let us only consider when q = k,
we have

𝑐k↑𝑒
𝜃k =

∞∑︁
𝑛=1

𝑐k↑𝜃
𝑛
k

𝑛! |0⟩. (2.75)

Using commutation relations

[𝑐k↑, 𝜃k] = 𝛼k
{︁
𝑐k↑, 𝑐

†
k↑

}︁
𝑐†

−k↓ = 𝛼k𝑐
†
−k↓. (2.76)
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Actually, it is possible to how that, in general, any function of operators 𝑓(𝑐†
k↑) commuting

with its operator parameter 𝑐k↑ can be expressed as a derivative

[︁
𝑐k↑, 𝑓(𝑐†

k↑)
]︁

= 𝑓 ′(𝑐†
k↑). (2.77)

In our case, we want to know how to commute 𝑐k↑ with 𝜃𝑛
k , which is also a function of 𝑐k↑, so

the chain rule is valid and we easily obtain

[𝑐k↑, 𝜃
𝑛
k ] = 𝑑𝜃𝑛

k
𝑑𝑐k↑

= 𝑛𝜃𝑛−1
k [𝑐k↑, 𝜃k] = 𝑛𝜃𝑛−1

k 𝛼k𝑐
†
−k↓. (2.78)

Applying |0⟩ both sides in equation above and assuming that 𝑐k↑|0⟩ = 0 we obtain

𝑐k↑𝜃
𝑛
k = 𝑛𝜃𝑛−1

k 𝛼k𝑐
†
−k↓. (2.79)

Therefore, we have
𝑐k↑𝑒

𝛼k𝑐†
k↑𝑐†

−k↓|0⟩ = 𝛼k

∞∑︁
𝑛=1

𝜃𝑛−1
k

(𝑛− 1)!𝑐
†
−k↓|0⟩. (2.80)

Besides, for the creation operator 𝑐†
−k↓

[︁
𝜃k, 𝑐

†
−k↓

]︁
= 𝛼

[︁
𝑐†

k↑𝑐
†
−k↓, 𝑐

†
−k↓

]︁
= 0, (2.81)

then 2.80 can be written as

𝑐k↑𝑒
𝛼k𝑐†

k↑𝑐†
−k↓|0⟩ = 𝛼k𝑐

†
−k↓

∞∑︁
𝑛=1

𝜃𝑛−1
k

(𝑛− 1)! |0⟩ = 𝛼k𝑐
†
−k↓𝑒

𝛼k𝑐†
k↑𝑐†

−k↓|0⟩. (2.82)

Then substituting in 2.73 we see that

𝑢k𝑐k↑|𝜓𝐺⟩ = 𝑢k𝛼k𝑐
†
−k|𝜓𝐺⟩ = 𝑣k𝑐

†
−k↓|𝜓𝐺⟩, (2.83)

we can see that 𝛼k has the value
𝛼k = 𝑣k

𝑢k
. (2.84)

Hence, the BCS ground state wavefunction is

|𝜓𝐺⟩ =𝒩
∏︁
k
𝑒

𝑣k
𝑢k

𝑐†
k↑𝑐†

−k↓ |0⟩

=𝒩
∏︁
k

(︂
1 + 𝑣k

𝑢k
𝑐†

k↑𝑐
†
−k↓

)︂
|0⟩.

(2.85)

From the first to second equality we used the fact that operating 𝑐† twice or more results in
zero from Pauli’s exclusion principle.
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Normalizing the wavefunction is a easy task compared to before, just swapping creation
operators to the left and destruction to the right:

⟨0|(𝑢*
k + 𝑣*

k𝑐k↑𝑐−k↓)(𝑢k + 𝑣k𝑐
†
k↑𝑐

†
−k↓)|0⟩ = ⟨0||𝑢k|2 + |𝑣k|2𝑐k↑𝑐

†
k↑𝑐−k↓𝑐

†
−k↓|0⟩

= ⟨0|(|𝑢k|2 + |𝑣k|2)|0⟩,
(2.86)

which is equal to 1, then, we can easily conclude that 𝒩 = 1, so the normalized BCS
wavefunction is given by

|𝜓𝐺⟩ =
∏︁
k

(𝑢k + 𝑣k𝑐
†
k↑𝑐

†
−k↓)|0⟩. (2.87)

2.6 FINITE TEMPERATURE

We have identified 𝐸k as the excitation energy for a fermionic quasi-particle. We known
from statistical mechanics that the excitation in thermal equilibrium is given by the Fermi-Dirac
distribution

𝑓(𝐸k) = (𝑒𝛽𝐸k + 1)−1, (2.88)

then the new operators 𝛾k and 𝛾†
k satisfies fermionic statistical averages in such a way that we

have
⟨1 − 𝛾†

k0𝛾k0 − 𝛾†
k1𝛾k1⟩ = 1 − 2𝑓(𝐸k), (2.89)

since the product 𝛾†𝛾 plays a hole of number operator for Bogolons. In general, 2.71 becomes

Δk = −
∑︁

l
𝑉k l𝑢

*
l 𝑣l[1 − 2𝑓(𝐸k)]

= −
∑︁

l
𝑉k l

Δl

2𝐸l
tanh 𝛽𝐸l

2 ,
(2.90)

where the second equality was used 2.69 By making the BCS approximation that 𝑉k l = −𝑉 ,
we have Δk = Δl = Δ, and the self-consistentent condition becomes

1
𝑉

= 1
2
∑︁

k

tanh(𝛽𝐸k/2)
𝐸k

, (2.91)

where 𝐸k = (𝜉2
k + Δ2)1/2. With this procedure we are able to determine how the gap evolves

as we increase the temperature.
To determine the critical temperature, which is the temperature at which the order pa-

rameter vanishes, we make the assumption that 𝐸k → |𝜉k|, where the excitation spectrum
becomes the same as in the normal state. By converting the summation in equation 2.91 into
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an integral, we obtain:

1
𝑁(0)𝑉 =

∫︁ ℎ̄𝜔𝐷

0

𝑑𝜖

𝜖
tanh

(︂
𝜖

2𝑘𝐵𝑇𝑐

)︂
=
∫︁ ℎ̄𝜔𝐷

2𝑘𝐵𝑇𝑐

0
𝑑𝑥

tanh 𝑥
𝑥

, (2.92)

the integral is not trivial to solve, we perform it by parts using the fact that ℎ̄𝜔𝐷 ≫ 𝑘𝐵𝑇𝑐:∫︁ ℎ̄𝜔𝐷
2𝑘𝐵𝑇𝑐

0
𝑑𝑥

tanh 𝑥
𝑥

≈ (tanh 𝑥 ln 𝑥)
ℎ̄𝜔𝐷

2𝑘𝐵𝑇𝑐

0 −
∫︁ ∞

0
𝑑𝑥

ln 𝑥
cosh2 𝑥

(2.93)

the last integral can be connected with Euler-Mascheroni constant (𝛾𝐸)

(tanh 𝑥 ln 𝑥)
ℎ̄𝜔𝐷

2𝑘𝐵𝑇𝑐

0 −
∫︁ ∞

0
𝑑𝑥

ln 𝑥
cosh2 𝑥

≈ ln
(︃
ℎ̄𝜔𝐷

2𝑘𝐵𝑇𝑐

)︃
− ln

(︂
𝜋

4𝑒𝛾𝐸

)︂

≈ ln
(︃

2𝑒𝛾𝐸 ℎ̄𝜔𝐷

𝜋𝑘𝐵𝑇𝑐

)︃
.

(2.94)

Then we conclude that the critical temperature is

𝑇𝑐 = 2𝑒𝛾𝐸

𝜋

ℎ̄𝜔𝐷

𝑘𝐵

𝑒− 1
𝑉 𝑁(0) . (2.95)

Using 2.58 we have one of the most impressive predictions of BCS theory

Δ(𝑇 = 0) = 1.76𝑘𝐵𝑇𝑐. (2.96)

This relation holds approximately for most known superconductors. The BCS theory also
addresses the Isotope Effect, which demonstrates the linear dependence of 𝑇𝑐 on 𝜔𝐷. This
dependence varies inversely with the square root of the ionic mass 𝑀 , such that 𝑇𝑐 ∝ 𝜔𝐷 ∝

𝑀−1/2. Experimental observations support this relation, establishing a connection between
superconductivity and electron-phonon interactions as the primary cause (TINKHAM, 2004)
(BRUUS; FLENSBERG, 2004).

To calculate the temperature dependence of the superconducting energy gap in BCS the-
ory, we solve the self-consistent equation 2.91 iteratively until convergence is achieved. This
numerical approach yields a plot, as shown in the following image:

In weak-coupling superconductors, characterized by ℎ̄𝜔𝑐/𝑘𝐵𝑇𝑐 ≫ 1, the ratio Δ(𝑇 )/Δ(0)

becomes a universal function of 𝑇/𝑇𝑐. This function monotonically decreases from 1 at
𝑇 = 0 to 0 at 𝑇𝑐. Near absolute zero, the temperature variation is exponentially slow, with
𝑒−Δ/𝑘𝐵𝑇 ≈ 0. Consequently, the hyperbolic tangent function is nearly equal to 1 and insensi-
tive to temperature. As the temperature approaches 𝑇𝑐, Δ(𝑇 ) exhibits a rapid drop to zero,
with a tangent that becomes vertical. Approximately, we have:

Δ(𝑇 )
Δ(0) ≈ 1.74

(︂
1 − 𝑇

𝑇𝑐

)︂1/2
𝑇 ≈ 𝑇𝑐. (2.97)
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This kind of variation of the order parameter with square root of (𝑇𝑐 − 𝑇 ) is characteristic of
all mean-field theories such as molecular-field theory of ferromagnetism.
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3 THE BOGOLIUBOV DE GENNES EQUATION

3.1 INTRODUCTION

The Bogoliubov-de Gennes (BdG) theory is a mathematical framework used to describe
superconductivity in condensed matter systems, particularly in the context of tight-binding
models. It was developed by Bogoliubov. Gorkov developed method based on Green functions.

The tight-binding model is a powerful framework used in condensed matter physics to
describe the electronic structure of solids. It assumes that the behavior of electrons in a crystal
lattice can be approximated by considering their interactions only with their nearest neighboring
atoms. In this model, the electronic wavefunction is constructed as a linear combination of
atomic wavefunctions centered around each lattice site. The hopping parameters between
neighboring sites dictate the probability of electron movement, capturing the effects of band
formation and electronic transport properties. By incorporating the appropriate energy levels
and interactions, the tight-binding model enables the analysis of various phenomena such as
band structures, electronic conductivity, and electronic states in crystalline materials. (KITTEL,
2004).

The BdG theory extends the concept of a single-particle wavefunction to include both
particle-like and hole-like excitations. It introduces a set of quasiparticle operators, called Bo-
goliubov operators, which are linear combinations of creation and annihilation operators for
electrons and holes, just like we have developed in the previous chapter. These operators diag-
onalize the Hamiltonian of the system and provide a convenient representation for describing
superconductivity.

The BdG theory differs from the BCS (Bardeen-Cooper-Schrieffer) theory, which was de-
veloped earlier and is another important framework for understanding superconductivity. While
both theories describe superconductivity, they approach the problem from different perspec-
tives.

The BCS theory focuses on the macroscopic wave function of the superconducting state,
describing it as a coherent condensate of Cooper pairs. It introduces the concept of the BCS
wave function, which is a linear combination of electron pairs in a superposition of different
momentum states. The BCS theory explains the pairing mechanism by the exchange of virtual
phonons, leading to the formation of bound states with net attractive interactions.

On the other hand, the BdG theory provides description of superconductivity by explicitly
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including both electrons and holes as quasiparticles in real space, thus making possible consider
inhomogeneities of spacial structure like impurities, finite size effects and so on. In such cases
BCS theory is less applicable.

3.2 HUBBARD MODEL

The Hubbard model is a mathematical model used to describe interacting electrons in a
lattice. It was introduced by John Hubbard in the 1960s and has since become a cornerstone
of condensed matter physics, particularly in the study of strongly correlated systems. The
Hubbard model captures the interplay between electron-electron interactions and the lattice
structure, making it a powerful tool for investigating a wide range of phenomena, including
superconductivity (OREG, Y., 2018).

In the context of the Bogoliubov-de Gennes (BdG) equation, the Hubbard model is often
used as a starting point to describe the electronic properties of materials, especially in the
presence of strong electron-electron interactions. The BdG equation, which incorporates both
single-particle and pairing effects, provides a means to study the emergence of superconduc-
tivity in such systems.

To apply the Hubbard model to the BdG equation, we consider a lattice with sites labeled
by index 𝑖. The Hubbard Hamiltonian can be written as:

𝐻Hubbard = −
∑︁
𝑖𝑗𝜎

𝑡𝑖𝑗𝑐
†
𝑖𝜎𝑐𝑗𝜎 + 𝑈

∑︁
𝑖

𝑛𝑖↑𝑛𝑖↓, (3.1)

where 𝑡𝑖𝑗 represents the hopping integral between sites 𝑖 and 𝑗, 𝑐†
𝑖𝜎 and 𝑐𝑖𝜎 are the creation and

annihilation operators for an electron with spin 𝜎 at site 𝑖, 𝑈 represents the on-site Coulomb
interaction, and 𝑛𝑖𝜎 = 𝑐†

𝑖𝜎𝑐𝑖𝜎 is the number operator.
To incorporate superconductivity within the Hubbard model, one can introduce an addi-

tional term that represents the attractive electron-electron interactions responsible for pairing.
This pairing term can take different forms, such as an on-site attractive potential or an effective
attractive interaction mediated by phonons or other mechanisms.

The Hubbard model with superconducting pairing interactions can be analyzed using the
BdG formalism. The BdG equations, which are derived by introducing a Bogoliubov transfor-
mation to diagonalize the Hamiltonian, provide a means to determine the energy spectrum,
wavefunctions, and other properties of the quasiparticle excitations in the system.
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By solving the BdG equations within the framework of the Hubbard model, researchers
can explore various aspects of superconductivity, including the formation of Cooper pairs, the
energy gap, the critical temperature, and the effects of interactions on the superconducting
properties. The Hubbard model offers a valuable tool for understanding the interplay between
electron-electron interactions, lattice structure, and superconductivity, especially in systems
with strong correlations.

In summary, the Hubbard model serves as a foundation for investigating the electronic
properties of materials with strong electron-electron interactions. When combined with the
BdG equations, it enables the study of superconductivity, providing insights into the emergence
and behavior of quasiparticle excitations and other properties related to superconducting states
in correlated systems.

3.3 DERIVATION OF BDG EQUATIONS

The Hubbard Model poses significant challenges in manipulating due to the exponential
number of possible configurations, with 2𝑁 configurations for N electrons considered within
a 2-particle Fock space. However, these complexities can be alleviated by employing mean-
field theory within the Hubbard Hamiltonian, leading to the generation of a self-consistent 2N
Hamiltonian. Similarly to the previous section, after applying mean-field theory, the appropriate
transformation in the Hamiltonian operators must be sought to map the problem onto a free
particle Hamiltonian known as the Bogolons Hamiltonian. Determining the coefficients of this
transformation lies at the heart of the Bogoliubov-de Gennes theory. In essence, the main focus
is on finding eigenvalues and energies of a less intricate Hamiltonian, simplifying the analysis
of the Hubbard Model and facilitating the exploration of its electronic properties (ZHU, 2016).

Let us start with the Hubbard Hamiltonian adding the chemical potential and a possible
non-magnetic impurity:

𝐻 = 𝐻0 − |𝑈 |
∑︁

𝑖

𝑛𝑖↑𝑛𝑖↓, (3.2)

where
𝐻0 = −𝑡

∑︁
⟨𝑖𝑗⟩,𝜎

(𝑐†
𝑖𝜎𝑐𝑗𝜎 +𝐻.𝑐.) +

∑︁
𝑖,𝜎

(𝑉𝑖 − 𝜇)𝑛𝑖,𝜎. (3.3)

𝐻0 is the single electron Hamiltonian, it contains all dynamics for a single electron and it
would reproduce all known results for tight binding if U = 0. 𝑉𝑖 is a disordered potential that
will be explained better further but it is important to notice that it affects only one particle
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states. The second term in Eq. 3.2 is an atractive potential for example due to the electron-
phonon interaction which will reproduce the superconductivity - it is a 2-electron term. Such
Hamiltonian, as said before, is extremely hard to handle. Let us apply a mean field theory on
the interacting part:

𝑛𝑖↑𝑛𝑖↓ = 𝑐†
𝑖↑𝑐𝑖↑𝑐

†
𝑖↓𝑐𝑖↓ = ⟨𝑐†

𝑖↑𝑐
†
𝑖↓⟩𝑐𝑖↓𝑐𝑖↑ + 𝑐†

𝑖↑𝑐
†
𝑖↓⟨𝑐𝑖↓𝑐𝑖↑⟩ − ⟨𝑐†

𝑖↑𝑐
†
𝑖↓⟩⟨𝑐𝑖↓𝑐𝑖↑⟩

+ ⟨𝑐†
𝑖↑𝑐𝑖↑⟩𝑐†

𝑖↓𝑐𝑖↓ + 𝑐†
𝑖↑𝑐𝑖↑⟨𝑐†

𝑖↓𝑐𝑖↓⟩ − ⟨𝑐†
𝑖↑𝑐𝑖↑⟩⟨𝑐†

𝑖↓𝑐𝑖↓⟩,
(3.4)

by defining the order parameter as Δ𝑖 = −|𝑈 |⟨𝑐𝑖↓𝑐𝑖↑⟩ and remembering that ⟨𝑛𝑖𝜎⟩ = ⟨𝑐†
𝑖𝜎𝑐𝑖𝜎⟩

the previous equation can be written as:

|𝑈 |𝑛𝑖↑𝑛𝑖↓ = |𝑈 |𝑐†
𝑖↑𝑐𝑖↑𝑐

†
𝑖↓𝑐𝑖↓ = −Δ*

𝑖 𝑐𝑖↓𝑐𝑖↑ − Δ𝑖𝑐
†
𝑖↑𝑐

†
𝑖↓ − |Δ𝑖|2

|𝑈 |

+ |𝑈 |⟨𝑛𝑖↑⟩𝑛𝑖↓ + |𝑈 |⟨𝑛𝑖↓⟩𝑛𝑖↑ − |𝑈 |⟨𝑛𝑖↑⟩⟨𝑛𝑖↓⟩,
(3.5)

The constant terms (with no operators) can be discarded since it is not going to be relevant
to the development of the theory. Our mean field Hamiltonian then becomes

𝐻𝑀𝐹 =
∑︁
𝑖𝑗𝜎

𝑐†
𝑖𝜎ℎ𝑖𝑗,𝜎𝑐𝑗𝜎 +

∑︁
𝑖

[Δ𝑖𝑐
†
𝑖↑𝑐

†
𝑖↓ + Δ*

𝑖 𝑐𝑖↑𝑐𝑖↓], (3.6)

where ℎ𝑖𝑗,𝜎 is redefined as the part where it contains all single particle terms, hoppings, chemical
potential and so on.

The following commutation relations can be derived easily with basic commutation rules:

[𝑐𝑖↑, 𝐻𝑀𝐹 ] =
∑︁

𝑗

ℎ𝑖𝑗,↑𝑐𝑗↑ + Δ𝑖𝑐
†
𝑖↓, (3.7a)

[𝑐𝑖↓, 𝐻𝑀𝐹 ] =
∑︁

𝑗

ℎ𝑖𝑗,↓𝑐𝑗↓ − Δ𝑖𝑐
†
𝑖↑. (3.7b)

It is only necessary to keep in mind that since creation and annihilation operators are fermionic,
it is necessary to connect commutators with anticommutators via

[𝐴,𝐵𝐶] = {𝐴,𝐵}𝐶 −𝐵{𝐴,𝐶}. (3.8)

Now, in order to diagonalize the Hamiltonian, it is necessary to introduce the Bogolon operators
through the canonical Bogoliubov transformation

𝑐𝑖↑ =
′∑︁
𝑛

(𝑢𝑛
𝑖 𝛾𝑛↑ − 𝑣𝑛*

𝑖 𝛾†
𝑛↓), 𝑐𝑖↓ =

′∑︁
𝑛

(𝑢𝑛
𝑖 𝛾𝑛↓ + 𝑣𝑛*

𝑖 𝛾†
𝑛↑), (3.9)

quite similar to what was done in previous chapter, with ∑︀𝑛 |𝑢𝑛
𝑖 |2 +|𝑣𝑛

𝑖 |2 = 1. The prime above
summation indicates the summation is performed only over positive energies. The operators
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above and their hermitian conjugates satisfies the fermion commutation relation

{𝛾†
𝑛𝛼, 𝛾𝑚𝛽} = 𝛿𝑚𝑛𝛿𝛼𝛽,

{𝛾𝑛𝛼, 𝛾𝑚𝛽} = 0.
(3.10)

The transformation 3.9 diagonalizes 𝐻𝑀𝐹 , giving rise to

𝐻𝑀𝐹 = 𝐸𝑔 +
∑︁
𝑛,𝛼

𝐸𝑛𝛾
†
𝑛𝛼𝛾𝑛𝛼, (3.11)

where 𝐸𝑔 is the ground state of 𝐻𝑀𝐹 and 𝐸𝑛 is the energy of excitation n. As any usual non
interaction Hamiltonian we can write the diagonalization condition of 𝐻𝑀𝐹 with

[𝐻𝑀𝐹 , 𝛾𝑛𝛼] = −𝐸𝑛𝛾𝑛𝛼,

[𝐻𝑀𝐹 , 𝛾
†
𝑛𝛼] = 𝐸𝑛𝛾

†
𝑛𝛼.

(3.12)

To derive equations for 𝑢𝑛 and 𝑣𝑛 we must calculate the commutators 3.7a using the 𝐻𝑀𝐹

with the Bogolon operators. After applying that, we need only to compare coeficients of 𝛾𝑛

and 𝛾†
𝑛 on the two sides of the equation, we obtain the celebrated Bogoliubov-de Gennes

Equations:

𝐸𝑛𝑢
𝑛
𝑖 =

∑︁
𝑗

ℎ𝑖𝑗,↑𝑢
𝑛
𝑗 + Δ𝑖𝑣

𝑛
𝑖 ,

𝐸𝑛𝑣
𝑛
𝑖 = −

∑︁
𝑗

ℎ*
𝑖𝑗,↓𝑣

𝑛
𝑗 + Δ*

𝑖𝑢
𝑛
𝑖 .

(3.13)

It is easy to show that if (u v) are solutions for BdG Equation with energy E, then (−𝑣*,
𝑢*) is solution for energy -E. The idea is just multiply both equations above to -1 and use the
complex conjugate.

The mean field theory approach makes necessary to calculate the self-consistent parameter
Δ𝑖 and ⟨𝑛𝑖𝜎⟩. By using the Bogolon operators 3.9 we can write both quantities in terms of
the amplitudes u and v. It is important to notice here that the averages performed here are in
equilibrium with a thermal reservoir at temperature T

Δ𝑖 = −|𝑈 |⟨𝑐𝑖↓𝑐𝑖↑⟩ = −|𝑈 |
′∑︁

𝑚,𝑛

(⟨𝛾†
𝑛↑𝛾𝑚↑⟩𝑢𝑛

𝑖 𝑣
𝑚*
𝑖 − ⟨𝛾𝑚↓𝛾

†
𝑛↓⟩𝑢𝑚

𝑖 𝑣
𝑛*
𝑖 )

= −|𝑈 |
′∑︁
𝑛

(𝑢𝑛
𝑖 𝑣

𝑛*
𝑖 𝑓(𝐸𝑛) − 𝑢𝑛

𝑖 𝑣
𝑛*
𝑖 (1 − 𝑓(𝐸𝐸))

= −|𝑈 |
′∑︁
𝑛

𝑢𝑛
𝑖 𝑣

𝑛*
𝑖 tanh

(︂
𝐸𝑛

2𝑘𝐵𝑇

)︂
,

(3.14)

where we used the fact that

⟨𝛾†
𝑛𝜎𝛾𝑚𝜎′⟩ = 𝑓(𝐸𝑛)𝛿𝑚𝑛𝛿𝜎𝜎′ . (3.15)
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𝑓(𝐸𝑛) is the Fermi-Dirac distribution for the excitation energies. Very similar, the average
number of particles is calculated

⟨𝑛𝑖↑⟩ =
′∑︁
𝑛

(|𝑢𝑛
𝑖 |2⟨𝛾†

𝑛↑𝛾𝑛↑⟩ + |𝑣𝑛
𝑖 |2⟨𝛾𝑛↓𝛾

†
𝑛↓⟩)

=
′∑︁
𝑛

[|𝑢𝑛
𝑖 |2𝑓(𝐸𝑛) + |𝑣𝑛

𝑖 |2(1 − 𝑓(𝐸𝑛))],
(3.16)

⟨𝑛𝑖↓⟩ =
′∑︁
𝑛

(|𝑢𝑛
𝑖 |2⟨𝛾†

𝑛↓𝛾𝑛↓⟩ + |𝑣𝑛
𝑖 |2⟨𝛾𝑛↑𝛾

†
𝑛↑⟩)

=
′∑︁
𝑛

[|𝑢𝑛
𝑖 |2𝑓(𝐸𝑛) + |𝑣𝑛

𝑖 |2(1 − 𝑓(𝐸𝑛))].
(3.17)

We see that it is possible to write both electron densities as

⟨𝑛𝑖𝜎⟩ = ⟨𝑛𝑖↑⟩ + ⟨𝑛𝑖↓⟩
2 = ⟨𝑛𝑖⟩

2 , (3.18)

where, of course, ⟨𝑛𝑖⟩ is the summation of both electron densities with spin up and down.
Using the previous statement about the symmetry of solutions (u, v) and (−𝑣*, 𝑢*), we can
write ⟨𝑛𝑖⟩ as

⟨𝑛𝑖⟩ = 2⟨𝑛𝑖↑⟩ = 2
′∑︁
𝑛

[|𝑢𝑛
𝑖 |2𝑓(𝐸𝑛) + |𝑣𝑛

𝑖 |2(1 − 𝑓(𝐸𝑛))]

= 2
′∑︁
𝑛

|𝑣𝑛
𝑖 |2𝑓(−𝐸𝑛).

(3.19)

The last three terms in equation 3.5 makes a new term appears in the new Hamiltonian. By
inserting them together with operator number and using equation 3.18 we obtain (dropping
constant terms, that is, with no operators along):

∑︁
𝑖,𝜎

(𝑉𝑖 − 𝜇)𝑛𝑖,𝜎 +
∑︁

𝑖

(|𝑈 |⟨𝑛𝑖↑⟩𝑛𝑖↓ + |𝑈 |⟨𝑛𝑖↓⟩𝑛𝑖↑)

=
∑︁
𝑖,𝜎

(𝑉𝑖 − 𝜇)𝑛𝑖,𝜎 −
∑︁

𝑖

(︃
|𝑈 |⟨𝑛𝑖⟩

2 𝑛𝑖↓ + |𝑈 |⟨𝑛𝑖⟩
2 𝑛𝑖↑

)︃

=
∑︁

𝑖

(𝑉𝑖 − 𝜇)𝑛𝑖,𝜎 − |𝑈 |
2
∑︁
𝑖,𝜎

⟨𝑛𝑖⟩ (𝑛𝑖↓ + 𝑛𝑖↑)

=
∑︁

𝑖

[︃
(𝑉𝑖 − 𝜇)𝑛𝑖,𝜎 − |𝑈 |

2 ⟨𝑛𝑖⟩𝑛𝑖,𝜎

]︃
(3.20)

Thus, ℎ𝑖𝑗,𝜎 can be written by collecting the operators which connects single particle states:

∑︁
𝑖𝑗𝜎

𝑐†
𝑖𝜎ℎ𝑖𝑗,𝜎𝑐𝑖𝜎 = −𝑡

∑︁
⟨𝑖𝑗⟩,𝜎

(𝑐†
𝑖𝜎𝑐𝑗𝜎 +𝐻.𝑐.) +

∑︁
𝑖

(𝑉𝑖 − 𝜇̃𝑖)𝑛𝑖𝜎 (3.21)
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here, 𝜇̃𝑖 is the new chemical potential that incorporates the site-dependent Hartree shift and
it can be written in terms of the remaining terms:

𝜇̃𝑖 = 𝜇+ |𝑈 |⟨𝑛𝑖⟩/2. (3.22)

The mean field Hamiltonian can be written as

𝐻𝑀𝐹 = −𝑡
∑︁

⟨𝑖𝑗⟩,𝜎
(𝑐†

𝑖𝜎𝑐𝑗𝜎 +𝐻.𝑐.) +
∑︁

𝑖

(𝑉𝑖 − 𝜇̃𝑖)𝑛𝑖𝜎 +
∑︁

𝑖

[Δ𝑖𝑐
†
𝑖↑𝑐

†
𝑖↓ + Δ*

𝑖 𝑐𝑖↑𝑐𝑖↓], (3.23)

generates the equations to be solved:

𝐸𝑛𝑢
𝑛
𝑖 =

∑︁
𝑗

ℎ𝑖𝑗,↑𝑢
𝑛
𝑗 + Δ𝑖𝑣

𝑛
𝑖 ,

𝐸𝑛𝑣
𝑛
𝑖 = −

∑︁
𝑗

ℎ*
𝑖𝑗,↓𝑣

𝑛
𝑗 + Δ*

𝑖𝑢
𝑛
𝑖 ,

(3.24)

with the self-consistent conditions

Δ𝑖 = 𝑔
′∑︁
𝑛

𝑢𝑛
𝑖 𝑣

𝑛*
𝑖 tanh

(︂
𝐸𝑛

2𝑘𝐵𝑇

)︂
, (3.25)

⟨𝑛𝑖⟩ =
′∑︁
𝑛

|𝑣𝑛
𝑖 |2𝑓(−𝐸𝑛). (3.26)

Yet, we have:

ℎ𝑖𝑗,𝜎 = −𝑡(𝛿𝑖,𝑗+̂︀𝑥 + 𝛿𝑖,𝑗−̂︀𝑥 + 𝛿𝑖,𝑗+̂︀𝑦 + 𝛿𝑖,𝑗−̂︀𝑦) + (𝑉𝑖 − 𝜇𝑖)𝛿𝑖,𝑗 (3.27)

Mathematically, the Hartree shift arises from the presence of a mean-field potential term in
the BdG equations, which couples the quasiparticles to the average density of the condensate.
This potential term effectively accounts for the repulsion between quasiparticles caused by
their interaction with the condensate. The Hartree shift modifies the energy spectrum of the
quasiparticles, shifting it by an amount proportional to the average density of the condensate.

The Hartree shift is important because it affects the properties and excitations of the
system. It can lead to a renormalization of the quasiparticle energies and affect transport
properties, thermodynamic properties, and other observables. In some cases, it may also lead
to the formation of collective modes, such as plasmons or Bogoliubov-Anderson modes, which
are associated with the oscillations of the condensate density.

The order parameter Δ𝑖 is a sum of terms of form 𝑢𝑛𝑣
*
𝑛. Such terms are only nonzero on

the neighborhood of the Fermi surface, then it is a strong function of the temperature. In case
of bulk clean materials, Δ𝑖 is constant. When Δ𝑖 varies spatially due to disorder, for instance,
it is more difficult to ensure the convergence of the self-consistent equations. (GENNES, 1999)
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3.4 CHEBYSHEV BDG METHOD

The Chebyshev-BdG method is a numerical technique used to solve the Bogoliubov-de
Gennes (BdG) equations, which describe the behavior of quasiparticles in superconducting.
It combines the BdG equations with the Chebyshev polynomial expansion to efficiently and
accurately compute the quasiparticle spectrum and wavefunctions.

The Chebyshev-BdG method leverages the properties of Chebyshev polynomials, which are
a set of orthogonal polynomials defined on a finite interval. These polynomials have advan-
tageous properties for numerical calculations, such as the ability to efficiently approximate
functions and the availability of fast algorithms for polynomial evaluation.

The Chebyshev-BdG method has several advantages. It is particularly well-suited for sys-
tems with a large number of quasiparticle states, as it provides an efficient way to compute
the entire spectrum. The method can also handle spatial inhomogeneity and disorder, allowing
for the study of realistic systems. Additionally, it can be extended to include finite temperature
effects, making it applicable to a wide range of physical situations (NAGAI; OTA; MACHIDA,
2012).

3.4.1 The Hamiltonian

In this section, we begin by discussing the Hamiltonian associated with the BdG Equations,
where Covaci (COVACI; PEETERS; BERCIU, 2010) proposed an alternative approach that avoids
full diagonalization.

Consider a Hamiltonian for a fermionic system given by 𝐻 = 1
2Ψ†ℋΨ. Here, the column

vector Ψ is constructed from N fermionic annihilation and creation operators, denoted as 𝑐𝑖

and 𝑐†
𝑖 respectively, where 𝑖 = 1, 2, ..., 𝑁 . Thus, we can express Ψ as (𝑐𝑖, 𝑐

†
𝑖 )𝑇 . The fermionic

canonical anti-commutation relation is given by [𝑐𝑖, 𝑐
†
𝑗]+ = 𝛿𝑖𝑗.

The "Hamiltonian" matrix ℋ is a Hermitian matrix of size 2Nx2N, defined as:

ℋ =

⎛⎜⎜⎝ ̂︀𝐴 ̂︀𝐵
̂︀𝐵† − ̂︀𝐴†

⎞⎟⎟⎠ . (3.28)

Here, ̂︀𝐴 and ̂︀𝐵 are complex N x N matrices that satisfy the relations:

̂︀𝐴† = ̂︀𝐴, ̂︀𝐵𝑇 = − ̂︀𝐵. (3.29)
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When considering a superconductor, the matrix ℋ corresponds to the mean-field BCS
Hamiltonian, while ̂︀𝐵 represents the superconducting gap.

3.4.2 BdG Equation

The following eigen-problem is known as the BdG Equations expressed in terms of ℋ

ℋf𝛾 = 𝜖𝛾f𝛾, (3.30)

where

f𝛾 =

⎛⎜⎜⎝u𝛾

v𝛾

⎞⎟⎟⎠ . (3.31)

the column vectors u𝛾 and v𝛾 are N-component complex vectors. The solution to the BdG
Equation is equivalent to diagonalization of ℋ with a unitary matrix ̂︀𝑈 ,

̂︀𝑈 †ℋ ̂︀𝑈 = ̂︁𝐷, ̂︁𝐷 = 𝑑𝑖𝑎𝑔(𝜖1, 𝜖2, ..., 𝜖2𝑁). (3.32)

Of course, the matrix elements of ̂︀𝑈 are

𝑈𝑖𝛾 = 𝑢𝛾,𝑖, 𝑈𝑖+𝑁,𝛾 = 𝑣𝛾,𝑖. (3.33)

3.4.3 Spectral Density

The spectral density ̂︀𝑑(𝜔) is a 2N x 2N matrix that encompasses essential physical observ-
ables expressed as bilinear forms with respect to ̂︀𝑑(𝜔).

Let’s define the Green’s function as ̂︀𝐺(𝑧) = (𝑧 − ̂︁𝐻)−1. Using the unitary matrix ̂︀𝑈 , each
component of ̂︀𝐺(𝑧) can be expressed as:

𝐺𝛼𝛽 =
2𝑁∑︁
𝛾=1

𝑈𝛼𝛾𝑈
*
𝛽𝛾

1
𝑧 − 𝜖𝛾

, (3.34)

where (1 ≤ 𝛼, 𝛽 ≤ 2𝑁). By setting 𝑧 = 𝑖𝜔𝑛 with the Matsubara frequency 𝜔𝑛 = (2𝑛+ 1)/𝛽,
the equation above becomes the temperature Green’s function. The retarded and advanced
Green’s functions are defined as:

̂︀𝐺𝑅(𝜔) = lim
𝜂→0+

̂︀𝐺(𝜔 + 𝑖𝜂), (3.35a)
̂︀𝐺𝐴(𝜔) = lim

𝜂→0+
̂︀𝐺(𝜔 − 𝑖𝜂), (3.35b)
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The spectral density is given by the difference between the advanced and retarded Green’s
functions, ̂︀𝑑(𝜔) ≡ ̂︀𝐺𝑅(𝜔) − ̂︀𝐺𝐴(𝜔), and its matrix elements are expressed as:

𝑑𝛼𝛽(𝜔) = −2𝜋𝑖
2𝑁∑︁
𝛾=1

𝑈𝛼𝛾𝑈
*
𝛽𝛾𝛿(𝜔 − 𝜖𝛾). (3.36)

To obtain physical observables from ̂︀𝑑(𝜔), we introduce the following useful 2N-component
unit vectors e(𝑖) and h(𝑖) (1 ≤ 𝑖 ≤ 𝑁), defined as:

[e(𝑖)]𝛾 = 𝛿𝑖,𝛾, [h(𝑖)]𝛾 = 𝛿𝑖+𝑁,𝛾. (3.37)

Using the notation above, we can express the column vectors u𝛾 and v𝛾 as:

u𝛾,𝑖 = [e(𝑖)𝑇 ̂︀𝑈 ]𝛾, (3.38a)

v*
𝛾,𝑖 = [ ̂︀𝑈 †h(𝑖)]𝛾. (3.38b)

A typical self-consistent BdG calculation for a superconductor requires two types of mean-
fields, ⟨𝑐†

𝑖𝑐𝑗⟩ and ⟨𝑐𝑖𝑐𝑗⟩. These mean-fields can be expressed as:

⟨𝑐†
𝑖𝑐𝑗⟩ = − 1

2𝜋𝑖

∫︁ ∞

−∞
𝑑𝜔𝑓(𝜔)e(𝑗)𝑇 ̂︀𝑑(𝜔)e(𝑖), (3.39a)

⟨𝑐𝑖𝑐𝑗⟩ = − 1
2𝜋𝑖

∫︁ ∞

−∞
𝑑𝜔𝑓(𝜔)e(𝑗)𝑇 ̂︀𝑑(𝜔)h(𝑖), (3.39b)

where 𝑓(𝑥) = 1/(𝑒𝛽𝑥 + 1) and 𝛽 is the inverse temperature. The Chebyshev method aims to
expand the spectral density ̂︀𝑑(𝜔) in terms of Chebyshev polynomials for improved numerical
efficiency.

3.4.4 Orthogonal Polynomials

In a typical mathematical physics course, we learn about the expansion of functions in terms
of orthogonal polynomials within a specific interval. In the context of solving BdG equations,
various orthogonal polynomials are employed. These polynomials satisfy the relation:

𝛿(𝑥− 𝑥′) =
∞∑︁

𝑛=0

𝑊 (𝑥)
𝑤𝑛

𝜑𝑛(𝑥)𝜑𝑛(𝑥′), (3.40)

where the weight function 𝑊 (𝑥) and the coefficients 𝑤𝑛 are given by:

𝑤𝑛𝛿𝑛,𝑚 =
∫︁ 1

−1
𝜑𝑛(𝑥)𝜑𝑚(𝑥)𝑊 (𝑥)𝑑𝑥. (3.41)
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The recurrence formula for these orthogonal polynomials is commonly expressed as (HASSANI,
2013):

𝜑𝑛+1 = (𝑎𝑛 + 𝑏𝑛𝑥)𝜑𝑛(𝑥) − 𝑐𝑛𝜑𝑛−1(𝑥). (3.42)

To ensure that the eigenvalues lie within the convergence interval, the energy of ℋ is rescaled
as follows:

𝒦 = ℋ − 𝑏𝐼

𝑎
, 𝜉𝛾 = 𝜖𝛾 − 𝑏

𝑎
, (3.43)

where 𝑎 = (𝐸max − 𝐸min)/2 and 𝑏 = (𝐸max + 𝐸min)/2, with 𝐸min ≤ 𝜖𝛾 ≤ 𝐸max. The values
of 𝑎 and 𝑏 can be approximately estimated to satisfy the rescaling condition, as significant
changes in the rescale do not significantly affect the results - as shown in reference (TANAKA;

KUNISHIMA; ITOH, 2000). By defining a matrix using the polynomial function, we have:

[𝜑𝑛(𝒦)]𝛼𝛽 =
2𝑁∑︁
𝛾=1

𝑈𝛼𝛾𝑈
*
𝛽𝛾𝜑𝑛(𝜉𝛾), (3.44)

where 𝜑𝑛(𝜉𝛾) is well-defined within the interval 𝜉𝛾 ∈ [−1, 1]. The integrals over 𝜔 in Eq. 3.39
are also bounded within a finite energy range. Substituting the right-hand side of Eq. 3.40
into the definition of ̂︀𝑑(𝜔), we obtain:

p𝑇 ̂︀𝑑(𝜔)q = −2𝜋𝑖
𝑎

∞∑︁
𝑛=0

𝑊 (𝜔)
𝑤𝑛

𝜑𝑛(𝜔)p𝑇 q, (3.45)

for arbitrary 2N-component real vectors p and q. A sequence of vectors q𝑛 = 𝜑𝑛(𝒦q) is
recursively generated by:

q𝑛+1 = (𝑎𝑛 + 𝑏𝑛𝒦)q𝑛 − 𝑐𝑛q𝑛−1, (3.46a)

q1 = 𝜑1(𝒦)q, (3.46b)

q0 = 𝜑0(𝒦)q. (3.46c)

The coefficients in Eq. 3.46a are the same as in Eq. 3.42. The mean fields can then be
written as:

⟨𝑐†
𝑖𝑐𝑗⟩ =

∞∑︁
𝑛=0

e(𝑗)𝑇 e𝑛(𝑖) 𝒯𝑛

𝑤𝑛

, (3.47a)

⟨𝑐𝑖𝑐𝑗⟩ =
∞∑︁

𝑛=0
e(𝑗)𝑇 h𝑛(𝑖) 𝒯𝑛

𝑤𝑛

, (3.47b)

where
𝒯𝑛 =

∫︁ 1

−1
𝑑𝑥𝑓(𝑎𝑥+ 𝑏)𝑊 (𝑥)𝜑𝑛(𝑥) (3.48)
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and
e𝑛(𝑖) = 𝜑𝑛(𝒦)e(𝑖), h(𝑖) = 𝜑𝑛(𝒦)h(𝑖) (3.49)

In the following sections, we utilize Chebyshev polynomials given by:

𝜑𝑛(𝑥) = cos (𝑛 arccos (𝑥)), (3.50)

𝑊 (𝑥) = 1√
1 − 𝑥2

, 𝑤𝑛 = 𝜋

2 (1 + 𝛿𝑛0), 𝑥 = [−1, 1]. (3.51)

The coefficients in the recursive formula are 𝑎𝑛 = 0, 𝑏𝑛 = 2, and 𝑐𝑛 = 1. The vector form of
the formula associated with equation 3.46a is given by:

q𝑛+1 = 2ℋq𝑛 − q𝑛−1, (𝑛 ≥ 2) (3.52)

with q0 = q and q1 = 𝒦q. Throughout this thesis, all the cases studied in the main work
are at zero temperature. Therefore, a few integrals can be solved analytically, leading to the
following results:

𝒯0 = 𝜋 − arccos (−𝑏/𝑎), (3.53a)

𝒯𝑛̸=0 = −sin [𝑛 arccos (−𝑏/𝑎)]
𝑛

. (3.53b)

Furthermore, the utilization of Chebyshev polynomials in the Chebyshev-BdG method is
motivated by their rapid convergence properties. This allows for convergence with a relatively
small number of terms, thereby facilitating the truncation of the summation process. For
instance, it has been observed that truncating the summation at approximately 2000 terms
in equation 3.47 is generally sufficient to achieve good convergence. It is important to note,
however, that more exotic cases may require separate analysis and consideration since more
ou less terms in Chebyshev expantion may be required in order to obtain good convergence.
Someone who is willing to test is suggested to start with a small number of terms (500, for
instance) and perform several trials increasing the number of terms until results do not differ
from the previous trial.
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4 DISORDER IN SUPERCONDUCTORS

Disorder plays a significant role in the behavior of superconducting systems. In the con-
text of superconductivity, disorder refers to imperfections, impurities, or random variations in
the crystal lattice or other aspects of the material. These disorder-induced effects can have
profound consequences on the superconducting properties, including the critical temperature,
coherence length, and quasiparticle dynamics.

Figure 7 – Two crystalline lattices are represented. They are an example of what disorder means in our
context: Displacements of atoms from their equilibrium position. Left: Representation of a ordered

crystalline lattice. Right: Representation of a disordered crystalline lattice.

Source: The Author (2023).

One of the key effects of disorder in superconductivity is the suppression of the critical
temperature (𝑇𝑐) when the disorder is strong enough. For weak disorder we have to talk about
Anderson Theorem which will be done later, in the next section. In clean or pristine supercon-
ductors, 𝑇𝑐 represents the temperature below which the material undergoes a transition to the
superconducting state. However, the presence of disorder scatters the electrons and disrupts
the formation of Cooper pairs, leading to a reduction in 𝑇𝑐. This effect is commonly known as
Anderson localization, named after physicist P. W. Anderson, who first described it.

Disorder can also induce inhomogeneities or spatial variations in the superconducting
order parameter. This can lead to the formation of localized regions of superconductivity,
known as superconducting islands or puddles, embedded within a background of normal or
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non-superconducting regions. Such spatial variations are particularly relevant in thin films or
nanoscale superconducting structures, where disorder can play a dominant role.

Understanding and characterizing the effects of disorder in superconductivity is crucial for
various applications. Disorder can limit the performance of superconducting devices, such as
Josephson junctions or superconducting qubits used in quantum computing. On the other hand,
disorder can be intentionally introduced to engineer novel phenomena, such as the emergence
of topological superconductivity or the formation of Majorana bound states.

4.1 ANDERSON THEOREM FOR DISORDERED SUPERCONDUCTORS

In conventional s-wave superconductors, disorder has very little effect on the superconduct-
ing transition temperature and other physical quantities. This phenomena was first noticed by
Anderson. He gave an explanation of this phonemona based on the self-consistent mean-field
theory (ANDERSON, 1959), it is oftenly refered as Anderson Theorem. It is valid only for weak
disorder, when the time reversal is preserved and when the order parameter is homogeneous
(XIANG; WU, 2022).

Two approximations are taken into account in the proof of the Anderson Theorem. First,
the variation of the order parameter Δ(r) is said to be small so that it can be replaced by
its average value, Δ(r) = Δ. This approximation implies that the self-consistent mean-field
equation of the gap energy is just a result of the spatial averaging. Second, the scattering
potential does not change the density of states around the Fermi surface of normal electrons.
These two approximations are generally valid if the disorder scattering potential is not very
strong. But the first approximation holds only when the correlation length is much larger than
the scattering mean free path. Under these approximations, the BdG equation in its continuum
version is given by:

𝐸𝑛𝑢
𝑛(r) =

∫︁
𝑑r′ℎ(r, r′)𝑢𝑛(r′) + Δ𝑣𝑛(r),

𝐸𝑛𝑣
𝑛(r) = −

∫︁
𝑑r′ℎ*(r, r′)𝑣𝑛(r′) + Δ𝑢𝑛(r),

(4.1)

where we use the free electron gas Hamiltonian

ℎ(r, r′) = 𝛿(r − r′)
(︃

− ℎ̄2

2𝑚∇2 + 𝑈(r) − 𝜇

)︃
, (4.2)

where 𝑈(r) is the impurity scattering potential.
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The order parameter Δ does not depends on r. If 𝑤𝑛(r) is the eigenstate of normal electrons
∫︁
𝑑r′ℎ(r, r′)𝑤𝑛(r′) = 𝜉𝑛𝑤𝑛(r), (4.3)

we can propose the following ansatz for u and v

𝑢𝑛(r) = 𝑢𝑛𝑤𝑛(r), 𝑣𝑛(r) = 𝑣𝑛𝑤𝑛(r). (4.4)

Substituting in the BdG Equation in continuum we obtain a simplified equation

𝜉𝑛𝑢𝑛 + Δ𝑣𝑛 = 𝐸𝑛𝑢𝑛,

Δ𝑢𝑛 − 𝜉𝑛𝑣𝑛 = 𝐸𝑛𝑣𝑛,
(4.5)

with this we generate an eigenproblem which can be easily solved as a 2x2 matrix determinant.
It has exactly the same form as the standard BCS mean-field equation for a translation invariant
system. The difference is that now the momentum is not a good quantum number since it is
not conserved. Instead, the basis states are characterized by the quantum number n of ℎ(r, r′).
The diagonalization of the previous equation provides us the quasiparticle eigenenergy

𝐸𝑛 =
√︁
𝜉2

𝑛 + Δ2 (4.6)

and the corresponding eigenfunction

𝑢𝑛 =

⎯⎸⎸⎷1
2

(︃
1 + 𝜉𝑛

𝐸𝑛

)︃
, 𝑣𝑛 = −

⎯⎸⎸⎷1
2

(︃
1 − 𝜉𝑛

𝐸𝑛

)︃
. (4.7)

The order parameter can be determined by the usual equation

Δ = −𝑔
∑︁

𝑛

𝑢𝑛(r)𝑣𝑛(r) tanh 𝛽𝐸𝑛

2 . (4.8)

Substituting the solutions for u and v in the equation for the order parameter, we obtain

Δ = 𝑔
∑︁

𝑛

⟨𝑤2
𝑛(r)⟩ Δ

2
√︁
𝜉2

𝑛 + Δ2
tanh

𝛽
√︁
𝜉2

𝑛 + Δ2

2

= 𝑔
∫︁
𝑑𝜉𝑁(𝜔) Δ

2
√
𝜉2 + Δ2 tanh 𝛽

√
𝜉2 + Δ2

2 ,

(4.9)

where here 𝑁(𝜔) is the normal-state single-particle density of states for disordered systems

𝑁(𝜉) =
∑︁

𝑛

𝛿(𝜉 − 𝜉𝑛)⟨𝑤2
𝑛(r)⟩ (4.10)

and ⟨𝑤2
𝑛(r)⟩ is the spacial average of 𝑤2

𝑛.
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Since the impurity scattering does not change the density of states of normal electrons
around the Fermi surface according to the previous assumption, the order parameter equation
seen in 4.9 has exactly the same form as the gap equation for the impurity-free system with
𝑈(r) = 0. Thus the impurity scattering does not change the transition temperature 𝑇𝑐 of
the s-wave superconductor. This is the proof first given by Anderson. It is consistent with
experimental observations for conventional superconductors.

4.2 STRONG DISORDER EFFECTS

Disorder in low dimensional superconductors have hot a boost from experiments in super-
conducting films, which have shown that transition temperature changes as disorder increases
and leads to a new phenomena not predicted by Anderson Theorem. The physics of high
disordered films is outside the domain of Anderson Theorem. The effect of strong disorder in
superconductors is a challenge in theoretical condensed matter physics. Using the BdG ap-
proach, not only is necessary to assume the spatial variation on the order parameter Δ𝑖, that
is, its spatial inhomogeneties. In special, as we increase disorder by solving BdG Equations it is
possible to see how the order parameter changes by plotting a histogram of all possible values
for Δ𝑖 given a certain disorder. The disorder used commonly is given by an impurity potential
defined by an independent random variable 𝑉𝑖 uniformly distributed over [−𝑉, 𝑉 ], at each site
in the sample. V is this case controls the strength of the disorder.

Ghosal showed on his work (GHOSAL; RANDERIA; TRIVEDI, 2001) that as we increase dis-
order the statistics of the order parameter and the average local density of electrons change.
Solving the BdG equations for samples with periodic boundary condition with size 24 x 24
and performing 15 random samples it is possible to generate the Figure 8, which shows the
Histograms of the local order parameter for several disordered samples with size 24 x 24, ⟨𝑛⟩

= 0.875 and U = -1.5t.
When V = 0, the BdG solution returns the uniform order parameter Δ0 = 0.153𝑡. For V

= 0.1t, the distribution has a sharp peak about Δ0, which resembles a lot that is expected
from Anderson theorem. Increasing more the disorder, from 𝑉 ≈ 1𝑡 on, 𝑃 (Δ) becomes broad
and the assumption of a uniform Δ breaks down. For values larger than V = 2t the disorder
has most values close to Δ𝑖 = 0. Contrasting the previous results with the distribution of the
local density P(n), still have a peak for weak disorder around the value ⟨𝑛⟩ = 0.875, but as
we increase disorder it evolves to an almost bimodal distribution for large V, with sites being
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Figure 8 – Histogram of order parameter for several disorder values

Source: Ghosal, Randeria and Travedi (2001)

empty or filled.
The local distribution of the order parameter is illustrated in Figure 9. It demonstrates

that as the disorder is increased, superconducting islands begin to emerge within the material.
These islands represent localized regions where superconductivity is present, separated by
regions with very small Δ𝑖 values. By analyzing the correlation between the island locations
and the underlying random potential across multiple realizations, it is observed that large
Δ𝑖 values tend to occur in regions where |𝑉𝑖 − 𝜇̃𝑖| is small, facilitating significant particle-
hole mixing. Conversely, deep valleys and high mountains in the potential energy landscape
correspond to sites with a fixed number of particles: two on a valley site or zero on a mountain
site. Consequently, the local pairing amplitude vanishes in such regions. The grey regions in
the figure represent the superconducting islands, where superconductivity is still present. It is
evident that as disorder increases, it becomes reasonable for P(Δ) to approach zero. Despite
the low average order parameter of the system, localized pockets of superconductivity persist
throughout the material.
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Figure 9 – Histogram of local electron density for several disorder values.

Source: Ghosal, Randeria and Trivedi (2001).

Figure 10 – Appearance of superconducting islands with increasing disorder. The figure shows four different
samples with the disorder strength (V) varying from t to 3t. The darker areas are the regions
where the order parameter is non-zero, while white areas are where order parameters are zero.

Source: Ghosal, Randeria and Travedi (2001)
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4.3 CORRELATED DISORDER

Correlated disorder, also known as correlated randomness or correlated disorder phenomena,
refers to a type of disorder where the elements or components of a system exhibit some
form of non-random behavior despite being disordered as a whole. In such systems, although
the individual elements may not be arranged in an ordered or predictable manner, there are
correlations or dependencies between them that give rise to emergent patterns or collective
behaviors (FEDER, 1988).

Correlated disorder can be observed in various natural and artificial systems across different
scientific domains, including physics, biology, and social sciences. It often arises from complex
interactions between individual components, leading to interesting and sometimes unexpected
macroscopic phenomena. Here are a few examples (MANDELBROT, 1982):

• Spin Glasses: In condensed matter physics, spin glasses are materials composed of mag-
netic atoms with randomly oriented spins. Although the spins individually behave ran-
domly, their interactions lead to complex collective behavior characterized by the exis-
tence of "frustrated" states and slow relaxation dynamics.

• Biological Systems: Correlated disorder can also be found in biological systems. For
instance, in neural networks, the firing patterns of individual neurons may be stochastic,
yet their collective behavior gives rise to coordinated activity and information processing.
Genetic regulatory networks, protein folding, and ecological systems are other examples
where correlated disorder plays a role.

• Financial Markets: In economics and finance, correlated disorder is observed in the be-
havior of financial markets. While the movements of individual stocks may appear ran-
dom, there are often correlations or dependencies between their price fluctuations. These
correlations can arise from various factors, such as market sentiment, news events, or
underlying economic fundamentals.

• Social Networks: In the realm of social sciences, social networks exhibit correlated dis-
order. While individual interactions within a network may be random or unpredictable,
there are often patterns of clustering, community formation, and information propaga-
tion that emerge from the collective behavior of networked individuals.
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Understanding and characterizing correlated disorder is a challenging task, as it involves
deciphering the intricate relationships and interactions between the elements of a system.
Statistical physics, network theory, and computational modeling are among the tools used to
study and analyze such systems. By unraveling the underlying mechanisms that give rise to
correlated disorder, scientists aim to gain insights into the complex dynamics and emergent
properties of various natural and artificial systems.

Several stochastic processes in nature are known to generate long-range correlated random
sequences which have no characteristic scale. These sequences usually have an approximate
powerlaw spectral density of the form

𝑆(𝑞) ∝ 1/𝑞𝛼 (4.11)

where 𝑆(𝑞) is the Fourier transform of the two-point correlation function ⟨𝑉𝑖𝑉𝑗⟩. The power
exponent 𝛼 determines the correlation degree. When 𝛼 = 0 the random potential 𝑉𝑖 at different
lattice sites is fully uncorrelated. The widespread occurrence in nature of sequences with 1/𝑞𝛼

noise, as, for example, the nucleotide sequency in DNA molecules, seems to be related to the
general tendency of large driven dynamical systems to evolve for a self-organized critical state.

Inspired on works of Fidelis (MOURA; LYRA, 1998) and Neverov (NEVEROV et al., 2022)
who studied correlated disorder on solids, in this dissertation we generate correlated random
numbers where the correlations can occur in x and y directions to mimic the disordered
potential on solid. The correlated disorder used here is given by the formula

𝑉𝑖 = 1
𝑁2

𝑁𝑥/2,𝑁𝑦/2∑︁
𝑗𝑥,𝑗𝑦

𝑞
−𝛼/2
𝑗 cos (q𝑗r𝑖 + 𝜑𝑗), (4.12)

where r𝑖 is the lattice position and q𝑗 = (2𝜋𝑗𝑥/𝑁𝑥, 2𝜋𝑗𝑦/𝑁𝑦) is the discrete inverse space
vector, 𝑗𝑥,𝑦 = 1, 2, ..., 𝑁𝑥 or 𝑁𝑦. The phases 𝜑𝑖 are random numbers distributed within [0, 2𝜋).
In order to tame the strength and average value, it is interesting to shift the potential as

𝑉𝑖 → 𝑉𝑖 − 𝑉𝑖, 𝑉𝑖 =
∑︁

𝑖

⟨𝑉𝑖⟩. (4.13)

The disorder amplitude, or strenth, is defined by the quantity

𝑉 =
√︁
𝑉 2

𝑖 , (4.14)

that is, the standard deviation (NEVEROV et al., 2022).
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4.4 EFFECTS OF CORRELATED DISORDER ON SUPERCONDUCTIVITY

Most theoretical investigations of disordered superconductors are based on the models
with the spatially uncorrelated disorder, which are analyzed using the perturbation expansion
methods. In real systems, however, the disorder is almost never completely random. The inho-
mogeneities are often arranged in a certain structure, characterized by the long-range spatial
correlations. Very little is known about inherently random distribution of material inhomo-
geneities acquires a certain degree of spatial correlations.

On Neverov’s work (NEVEROV et al., 2022), it is shown how correlation affects the statistics
of order parameter by solving the BdG Equation with periodic boundary condition and size
40 x 40. The correlation degree is usually changed from 0 to 3 for several different disorder
strength. The number of statistical samplings are 40. The following images show the plots of
superconducting islands with increasing 𝛼 and 𝑉 and its statistics.

In figure 4.4, we see how superconducting islands changes as we increase correlations in the
random potential. Superconducting islands tend to get bigger as we increase disorder strength.
The blue color indicates domains of the superconductive phase of order parameter different
of zero and the white color marks domains of the normal phase with order parameter close to
zero.

The distribution of the order parameter resembles Ghosal’s results for 𝛼 = 0, but it
changes dramatically in case of 𝑉 = 2.0𝑡. In fact, even for small disorder we see the effect of
correlations: the change in the average value away from zero. As expected, it gets more likely to
have Δ𝑖 ≈ 0 as we increase disorder, but they tends to be tamed as we increase correlations.
It is visible that the distribution changes dramatically in 𝑉 = 2.0𝑡 from 𝛼 = 2 on. These
changes can be seen also by analysing the standard deviation 𝜎 and the maximum Δ𝑚𝑎𝑥/Δ.
This analysis of the order parameter distribution and its defining characteristics quantify visual
changes seen in the order parameter profile in Figure 4.4.
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Figure 11 – Appearance of superconduting islands in superconducing sample with increasing disorder and
correlation in the random potential. Row (a) shows the evolution of the disorder potential as the

correlation increases. Rows (b) - (e) shows the local order parameter evolves with increasing
disorder and correlation degree. The white areas is where the order parameter is zero whereas

blue areas indicate non-zero order parameter. In this figure since t = 1, the disorder strength V
has only numerical values, but of course we can multiply the number for t and the disorder

strength would be the same.

Source: Neverov et Al. (2022)
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Figure 12 – Figures (a) - (c) Histogram of order Parameter for different potentials and correlations. The
histogram is normalized in relation to the average order parameter Δ.

Source: Neverov et Al. (2022)
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5 RESULTS AND DISCUSSION

5.1 QUANTUM OSCILATIONS IN THE ORDER PARAMETER

In recent years, significant experimental progress has sparked a strong interest in studying
superconducting properties in nanostructures. These structures exhibit a unique characteristic
called quantum confinement, which is discussed further. An essential aspect of this research is
the ability to manipulate the size and shape of confinement, as it enhances superconductivity
and leads to oscillations in the superconducting properties. Consequently, the investigation
of superconductivity in nanostructures, particularly nanowires, holds fundamental importance
due to the capacity to control superconducting characteristics by adjusting their cross-sectional
dimensions.

Several decades ago, Blatt and Thompson conducted calculations on the energy-gap param-
eter of superconducting nanofilms in a clean environment, unveiling a remarkable sequence of
peaks dependent on the thickness of the films (BLATT; THOMPSON, 1963). They termed these
peaks as size resonances. However, at that time, producing highly crystalline superconduc-
tors with nanoscale dimensions was not feasible. Only recently have experimental observations
of thickness-dependent oscillations in Tc been made in lead (Pb) nanofilms. Prior to these
advancements, the interplay between quantum confinement and fermion pairing could only
be experimentally studied in atomic nuclei, affirming the expectations of Blatt and Thomp-
son through a series of size resonances in the energy gap of paired nuclei. The progress in
fabricating nanosized structures holds the potential to revolutionize our understanding of the
size-dependent properties of nanoscale superconductors. Notably, a study demonstrated the
ability to reduce the width of nanowires to as small as 10nm using ion-beam sputtering. Ad-
ditionally, recent experimental observations on clean aluminum (Al) and tin (Sn) nanowires
indicate a width-dependent increase in the superconducting transition temperature, provid-
ing initial evidence of size-dependent resonances in quasi-one-dimensional superconductors
(CROITORU; SHANENKO; PEETERS, 2007).

The superconducting order parameter is affected by the number of single-electron states
within a specific energy range around the Fermi level, which is known as the Debye window.
This parameter, represented as 𝑁𝐷, relies on the average energy density of these states per
unit volume.

It’s important to highlight that 𝑁𝐷 provides the mean density since the density of single-
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electron states can vary, especially in quasi-one-dimensional systems. In high-quality nano-films
and nano-wires, where transverse quantization effects are significant and impurity scattering
is minimal, the conduction band splits into multiple single-electron subbands as the thickness
of the material changes. These subbands shift in energy, with the lower boundary of each
subband scaling as 1/𝑑2, where 𝑑 refers to the thickness of the nano-film/nano-wire.

When the bottom of a parabolic subband crosses the Fermi surface, the number of con-
tributing single-electron states suddenly increases, resulting in quantum-size oscillations in
superconducting properties. This phenomenon leads to significant improvements in supercon-
ductivity, referred to as size-dependent superconducting resonances. The occurrence of these
resonances follows a sequential pattern: as the thickness increases, a particular subband labeled
as 𝑛 enters the Debye window, causing a sharp rise in 𝑁𝐷 and the onset of a superconducting
resonance. The subsequent resonance emerges when subband 𝑛 + 1 enters the Debye win-
dow. Consequently, the mean density 𝑁𝐷 displays a series of peaks as a function of thickness
𝑑, resulting in quantum-size oscillations of various superconducting quantities with notable
resonant enhancements.

These superconducting resonances are particularly significant in nanoscale samples but
become less pronounced as the thickness 𝑑 increases, gradually approaching the bulk limit
represented by 𝑁(0):

𝑁 (0) = 𝑚𝑘𝐹

2𝜋2ℎ̄2 . (5.1)

Here, 𝑘𝐹 corresponds to the three-dimensional Fermi wavevector.
The oscillations occur whenever the sample size is equal to a multiple of 𝜆𝐹/2, assuming

that the influence of the sample size on the Fermi energy (𝐸𝐹 ) is negligible and the electron
density remains constant in the system. The oscillations occur every time the size of the
sample is equal to (if we neglect the influence of the sample size on the 𝐸𝐹 , in case we
preserve constant the electron density in the system)

𝑑 = 𝜆𝐹

2 𝑚

where 𝑚 is an integer.
In the Hubbard model, where the band is no longer parabolic, we have atoms whose

distance from each other is given by 𝑎 = 𝑥𝑗=1 −𝑥𝑗, where 𝑥 represents the relative position of
the 𝑗-th atom. Our assumptions for the parabolic band still works very well in Hubbard model
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but here we have a discrete variation in the confinement length since we can only increase our
sample increasing the amount of atoms in one direction.

When the chemical potential or Fermi energy in the system resides in the proximity of the
bottom or the top of the band

𝜆𝐹

2 ≫ 𝑎, (5.2)

therefore one oscillation (due to the quantum-size-effects) occur only when we change the size
of the sample by several 𝑎. Therefore oscillations are visible.

In case the chemical potential or Fermi energy in the system resides in the middle of the
band

𝜆𝐹

2 ≃ 𝑎. (5.3)

However we can change the sample size only by integer number of 𝑎. That means any time
we change the sample size we are always in the same situation: the bottom of the band in the
proximity of the chemical potential (Fermi energy) and one observes only a smooth change of
the superconducting characteristics with sample size without oscillations in the properties.

Nanoscale materials like quantum wires are interesting because they have potential practical
applications. In such systems, the energy level discretization due to the quantum size effects is
one of the most important keys. For nanoscale superconductors the effects can be even more
interesting as we will see bellow.

The BdG formalism is powerful in dealing with quantum size effects. For nanoscale su-
perconductors, the confinement effect is described by the potential 𝑉𝑐(r). For a quasi 1d-
superconducting nanowire, the confinement is one dimensional. In hard wall approximation,
we have

𝑉𝑐(r) =

⎧⎪⎪⎨⎪⎪⎩
0 for 0 ≤ x ≤ 𝑁𝑥,

∞ otherwise.
(5.4)

Of course, the x direction was arbitrarily chosen, but instead calling it x, let us call it
confinement direction and confinement length the nanowire width.

Our quasi-1D nanowire can be visualized as a ribbon with periodic boundary conditions
along the y-direction and confinement in the x-direction. To solve the BdG equation in the
nanowire, we employ the Chebyshev method. We perform multiple iterations of the Chebyshev
BdG equation solver for a clean superconductor (i.e., without disorder), while varying the
confinement length for two different average electron densities: ⟨𝑛⟩ = 0.875 and ⟨𝑛⟩ = 0.125.
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In all calculations, we use the following parameters: 𝑔 = −2.0𝑡, 𝑁𝑦 = 64, and 5 ≤ 𝑁𝑥 ≤ 32.
We utilize a Chebyshev expansion with 2000 terms, which provides accurate results for our
purposes. The Chebyshev BdG algorithm is implemented in C CUDA, a programming language
well-suited for parallelization, enabling faster computations. The algorithm was executed on
the superLab machines in our laboratory as well as on CETENE’s cluster located at the Federal
University of Pernambuco (CETENE, 2020).

Figure 13 – Average order parameter Δ versus width (or confinement length) without disorder.

(a) Low density of Electrons ⟨𝑛⟩ = 0.125. (b) Mid Density of Electrons ⟨𝑛⟩ = 0.875

Source: The Author (2023).

We observe two distinct effects on the average order parameter in Figures 13a and 13b,
depending on the chosen value of ⟨𝑛⟩. Hereafter, we refer to a mid ⟨𝑛⟩ as ⟨𝑛⟩ = 0.875 and a
low ⟨𝑛⟩ as ⟨𝑛⟩ = 0.125. For low ⟨𝑛⟩, we observe oscillations in the average order parameter as
we increase the confinement length. The oscillations tend to dampen as the width increases,
and the order parameter tends towards the bulk value, Δ0 = 0.03𝑡. Conversely, for mid ⟨𝑛⟩,
the oscillations no longer exist. Instead, the average order parameter becomes insensitive to
variations in the confinement length and remains close to its bulk value, Δ0 = 0.35𝑡. These
oscillations can be explained by the Fermi wavelength, which differs from both mid and low
⟨𝑛⟩.

By introducing disorder, we can observe how the same scenario changes by altering the
correlation degree 𝛼 and the disorder strength 𝑉 . In this dissertation, we assign the values
𝛼 = 0, 1, 2, 3 and 𝑉 = 0.1𝑡, 0.3𝑡, 0.5𝑡, 0.75𝑡, and 1.0𝑡. Incorporating disorder requires per-
forming several calculations with different random potentials to obtain a reliable average order
parameter. To achieve reasonable computational times, we adopt a strategy of reducing the
number of samples as the width increases. This approach is motivated by the fact that the
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amount of order parameter data increases with the sample size. Consequently, larger samples
contain more data than smaller ones, allowing us to achieve comparable results with fewer
samples using different random potentials. The number of statistical samples is determined
using the following rule: int maxIt = (int) ceil(10000.0/(64*Nx)). Here, maxIt represents the
number of samples performed with different potentials. Depending on the confinement length
(in this case, Nx), we may have more or fewer samples. The ceil function rounds its argument
up to the nearest integer. For instance, ceil(2.5) = 3 and ceil(1.2) = 2. The idea is to choose
maxIt as the number of iterations where we have more than 10,000 order parameters to ana-
lyze for a given confinement length. This strategy yields reliable statistics and averages, as we
will demonstrate further.

5.2 CASE WITH NON-CORRELATED DISORDER

By examining the plotted graphs with mid ⟨𝑛⟩, 14b, interesting insights can be gleaned
regarding the influence of disorder strength on the order parameter. Initially, at low disorder
magnitudes, the order parameter shows limited sensitivity to the presence of disorder. However,
as the disorder strength increases, the order parameter progressively decreases, indicating a
suppression of superconductivity at intermediate order parameter values. It should be noted
that investigations into high disorder strengths have not yet been conducted, but it is expected
that further increases in disorder would cause the order parameter to rise again, similar to what
is observed in unconstrained samples.

Nevertheless, it is crucial to not only consider the behavior of the order parameter but also
examine the probability of encountering a zero order parameter. This is because an increase
in disorder does not lead to the enhancement of a homogeneous order parameter.

Hence, it can be inferred that the order parameter diminishes with increasing disorder
strength, but further disorder escalation prompts its resurgence. These observations align
with the findings obtained from bulk samples, as documented by Gastiosoro (GASTIASORO;

ANDERSEN, 2018) and Neverov (NEVEROV et al., 2022).
Now let us consider the situation of low ⟨𝑛⟩, shown in Figure 14a. In this specific case,

even though there is no upper limit on the Debye window, the effects of quantum size in
superconductivity become clearly evident. This can be attributed to the confinement of the
Debye window to the lower boundary of the conduction band. The impact of disorder on these
observations is particularly noteworthy and becomes immediately apparent. As we increase the
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Figure 14 – Average order parameter Δ versus width for 𝛼 = 0.

(a) Low ⟨𝑛⟩ (b) Mid ⟨𝑛⟩

Source: The Author (2023).

strength of disorder, we observe a suppression of quantum-size oscillations. Moreover, when the
disorder strength reaches a value of 1, these oscillations are completely halted for samples with
an average confinement. It is worth highlighting that in cases of strong confinement, especially
for smaller transverse wire sizes, increasing disorder gradually replaces the enhancement of
superconductivity due to quantum-well effects with its suppression.

5.3 CASE WITH CORRELATED DISORDER

Figure 15 – Average order parameter Δ versus width for V = 0.1t.

(a) ⟨𝑛⟩ = 0.125 (b) ⟨𝑛⟩ = 0.875

Source: The Author (2023).

In Figures 15, 16, 17, 18 and 19 we can observe distinct behaviors of the average order
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Figure 16 – Average order parameter Δ versus width for V = 0.3t.

(a) ⟨𝑛⟩ = 0.125 (b) ⟨𝑛⟩ = 0.875

Source: The Author (2023).

Figure 17 – Average order parameter Δ versus width for V = 0.5t.

(a) ⟨𝑛⟩ = 0.125 (b) ⟨𝑛⟩ = 0.875

Source: The Author (2023).

parameter as we vary the parameters 𝑉 , 𝛼, and the width of the nanowire. Specifically, for
mid ⟨𝑛⟩, the system appears to be insensitive to changes in the nanowire width, while for low
⟨𝑛⟩, the oscillations continue to evolve with increasing width.

The effects of 𝑉 and 𝛼 are also noteworthy. Increasing 𝑉 leads to the smoothing of
oscillations for widths exceeding 10 length units. On the other hand, increasing 𝛼 causes the
order parameter value for larger widths to approach different values. Similar trends are observed
in the case of mid ⟨𝑛⟩ when 𝑉 and 𝛼 are increased. Although no oscillations are present, the
approach to the limiting value for larger widths still exhibits sensitivity to changes in 𝛼.

One significant difference between the results lies in the behavior of the order parameter
with respect to 𝑉 . For mid ⟨𝑛⟩, the order parameter tends to decrease as 𝑉 increases. However,
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Figure 18 – Average order parameter Δ versus width for V = 0.75t.

(a) ⟨𝑛⟩ = 0.125 (b) ⟨𝑛⟩ = 0.875

Source: The Author (2023).

Figure 19 – Average order parameter Δ versus width for V = 1.0t.

(a) ⟨𝑛⟩ = 0.125 (b) ⟨𝑛⟩ = 0.875

Source: The Author (2023).

for low ⟨𝑛⟩, we observe an increase in the average value for 𝑉 = 0.75𝑡 until it approaches the
bulk value again at 𝑉 = 1.0𝑡. At 𝑉 = 1.0𝑡, the oscillations are significantly suppressed, and
the plots for different 𝛼 values tend to overlap, indicating a convergence towards a common
limiting value. Nevertheless, the evolution of the system with increasing width exhibits a
peculiar mixing behavior.

The histograms for the order parameter also exhibit variations. Specifically, it can be
observed that for low ⟨𝑛⟩, the strength of the oscillations is more pronounced for smaller
values of the confinement length, resulting in different histogram shapes. To illustrate this, we
present the histograms corresponding to confinement lengths ranging from 5 to 9 for low ⟨𝑛⟩.
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Figure 20 – Histogram of Order Parameter for sample with size: 5x64.

(a) V = 0.1t ⟨𝑛⟩ = 0.125 (b) V = 0.5t ⟨𝑛⟩ = 0.125 (c) V = 1.0t ⟨𝑛⟩ = 0.125

Source: The Author (2023).

Figure 21 – Histogram of Order Parameter for sample with size: 6x64.

(a) V = 0.1t ⟨𝑛⟩ = 0.125 (b) V = 0.5t ⟨𝑛⟩ = 0.125 (c) V = 1.0t ⟨𝑛⟩ = 0.125

Source: The Author (2023).

Figure 22 – Histogram of Order Parameter for sample with size: 7x64.

(a) V = 0.1t ⟨𝑛⟩ = 0.125 (b) V = 0.5t ⟨𝑛⟩ = 0.125 (c) V = 1.0t ⟨𝑛⟩ = 0.125

Source: The Author (2023).

The histograms, which capture the stronger oscillations, are depicted in Figures 20, 21, 22,
23 and 24.

The shape of the distribution undergoes significant changes for small confinement lengths,
but as the confinement length increases, all plots tend to exhibit similar distributions, which
primarily depend on the disorder strength. Increasing the confinement length leads to a spread
and closer approach to the value Δ𝑖 = 0, influenced by the disorder strength. This implies
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Figure 23 – Histogram of Order Parameter for sample with size: 8x64.

(a) V = 0.1t ⟨𝑛⟩ = 0.125 (b) V = 0.5t ⟨𝑛⟩ = 0.125 (c) V = 1.0t ⟨𝑛⟩ = 0.125

Source: The Author (2023).

Figure 24 – Histogram of Order Parameter for sample with size: 9x64.

(a) V = 0.1t ⟨𝑛⟩ = 0.125 (b) V = 0.5t ⟨𝑛⟩ = 0.125 (c) V = 1.0t ⟨𝑛⟩ = 0.125

Source: The Author (2023).

Figure 25 – Histogram of Order Parameter for sample with size: 5x64.

(a) V = 0.1t ⟨𝑛⟩ = 0.875 (b) V = 0.5t ⟨𝑛⟩ = 0.875 (c) V = 1.0t ⟨𝑛⟩ = 0.875

The Author (2023).

that several values of the order parameter tend to approach zero, although the tail of the
distribution decreases slowly enough to prevent the average Δ𝑖 from being close to zero, as
depicted in Figure 5.2.

In the case of mid ⟨𝑛⟩, a distinct behavior is observed. The histograms for the order
parameter appear to be insensitive to changes in the confinement length, as evidenced in
Figures 25, 26, 27, 28 and 29.
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Figure 26 – Histogram of Order Parameter for sample with size: 6x64.

(a) V = 0.1t ⟨𝑛⟩ = 0.875 (b) V = 0.5t ⟨𝑛⟩ = 0.875 (c) V = 1.0t ⟨𝑛⟩ = 0.875

Source: The Author (2023).

Figure 27 – Histogram of Order Parameter for sample with size: 7x64.

(a) V = 0.1t ⟨𝑛⟩ = 0.875 (b) V = 0.5t ⟨𝑛⟩ = 0.875 (c) V = 1.0t ⟨𝑛⟩ = 0.875

Source: The Author (2023).

Figure 28 – Histogram of Order Parameter for sample with size: 8x64.

(a) V = 0.1t ⟨𝑛⟩ = 0.875 (b) V = 0.5t ⟨𝑛⟩ = 0.875 (c) V = 1.0t ⟨𝑛⟩ = 0.875

Source: The Author (2023).
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Figure 29 – Histogram of Order Parameter for sample with size: 9x64.

(a) V = 0.1t ⟨𝑛⟩ = 0.875 (b) V = 0.5t ⟨𝑛⟩ = 0.875 (c) V = 1.0t ⟨𝑛⟩ = 0.875

Source: The Author (2023).

The introduction of disorder with varying strength and correlation degree leads to a de-
crease in the average order parameter and a splitting of the approaching value into multiple
distinct values, consistent with the qualitative findings in Chapter 4.4. Furthermore, the shape
of the distributions exhibits remarkable similarity for disorder strengths of V = 0.1t, 0.5t, and
1.0t. Interestingly, the presence of a confinement length does not appear to have any notice-
able impact on the statistical properties of the order parameter when comparing mid ⟨𝑛⟩ under
quasi-1D samples and periodic boundary conditions.

As we approach large confinement values, the system reaches a stationary distribution that
remains unchanged as the confinement length increases. Figures 30, 31, 32, 33 and 34 presents
the distributions for the largest calculated confinement, 64x32, for both mid and low ⟨𝑛⟩. For
slightly smaller confinement values, no further evolution in the histogram shape was observed
beyond what is depicted in the figure. Notably, low ⟨𝑛⟩ samples exhibit greater sensitivity to
disorder compared to mid ⟨𝑛⟩ samples. This is evident from the figure, as the same amount of
disorder moves the histogram closer to zero Δ𝑖 in low ⟨𝑛⟩ samples, while in mid ⟨𝑛⟩ samples,
although there is a slight shift towards the left, the most probable value remains far from zero.
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Figure 30 – Histogram of Order Parameter for sample with size 32x64 for V = 0.1t.

(a) ⟨𝑛⟩ = 0.125 (b) ⟨𝑛⟩ = 0.875

Source: The Author (2023).

Figure 31 – Histogram of Order Parameter for sample with size 32x64 for V = 0.3t.

(a) ⟨𝑛⟩ = 0.125 (b) ⟨𝑛⟩ = 0.875

Source: The Author (2023).



75

Figure 32 – Histogram of Order Parameter for sample with size 32x64 for V = 0.5t.

(a) ⟨𝑛⟩ = 0.125 (b) ⟨𝑛⟩ = 0.875

Source: The Author (2023).

Figure 33 – Histogram of Order Parameter for sample with size 32x64 for V = 0.75t.

(a) ⟨𝑛⟩ = 0.125 (b) ⟨𝑛⟩ = 0.875

Source: The Author (2023).
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Figure 34 – Histogram of Order Parameter for sample with size 32x64 for V = 1.0t.

(a) ⟨𝑛⟩ = 0.125 (b) ⟨𝑛⟩ = 0.875

Source: The Author (2023).
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6 CONCLUSION

The findings of this work are as follows:

• The dependence of the order parameter (OP) on the transverse dimensions of the sample
is significantly influenced by the electron density. The quantum-size effect is suppressed
as the Fermi level approaches the middle of the conduction band (mid-band).

• The effect of disorder on the superconducting properties strongly depends on the electron
density of the material. For electron density corresponding to the mid-band, the effect
is much weaker compared to when the Fermi level is located in the vicinity of the band
edges.

• In the case of large electron density, decreasing the size of a pure sample leads to a weak
monotonic correlation-dependent increase in the average OP. The situation is reversed
in the case of a dirty sample.

• For low electron density, as expected, reducing the size of a pure sample leads to a strong
non-monotonic correlation-dependent increase in the average OP. Increasing disorder in
a dirty sample results in a significant suppression of superconductivity with decreasing
transverse dimensions.

• For low electron density we have seen an increase in order parameter for increases of
disorder in a certain range.

All of these observations manifest as changes in the spatial profile, statistical distribution,
and spatial correlations of the order parameter, and are dependent on the sample size.

This work highlights the significant impact of correlations on superconductivity in quasi-low
dimensional materials and structures, rendering it more robust and less sensitive to disorder
potential. Consequently, the superconducting properties in such materials and structures can
be controlled not only by the total density of impurities and defects but also by their spatial
correlations.

Our study is relevant because very few currently is known about correlated disorder in
superconductors, and we are able to show in this dissertation few caracteristics of the effect
of correlation disorder in quasi-1D samples by increasing the confinement length.
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For future perspectives we intend to continue calculations for bigger disorder and correla-
tion parameter. We also intend to calculate superfluid stiffness, a more accurate criteria for
superconductivity than the order parameter.
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