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ABSTRACT

Self-localization consists of estimating a robot’s position and orientation (pose) regarding
its operating environment and is a fundamental skill in autonomous mobile robot navigation.
Monte Carlo Localization (MCL) is a particle filter-based algorithm that addresses the local-
ization problem by maintaining a set of particles that represent multiple hypothesis of the
current robot’s state. At each step, the particles’ are moved according to the robot’s motion
and their likelihoods, also called importance weights, are estimated based on the similarities
between measurements acquired by the robot and their expected values, given the particle
state. Then, a resampling algorithm is applied to the distribution, generating a new set based
on the current weights.

MCL finds successful utilization in RoboCup robot soccer leagues for solving the self-
localization problem in humanoid and standard platform competitions. At 2022, this problem
was also introduced in the RoboCup Small Size League (SSL) within the Vision Blackout
Technical Challenge, which restricts teams to use onboard sensing and processing only for
executing basic soccer tasks, instead of the typical SSL approach that uses an external camera
for sensing the environment, but no solutions were proposed for self-localization so far. There-
fore, this work presents an integrated pipeline for solving the SSL self-localization problem
while also detecting the environment’s dynamic objects, using onboard monocular vision and
inertial odometry data.

We enhance the MCL using insights from implementations of other RoboCup leagues, im-
proving the algorithm’s robustness regarding imprecise measurements and motion estimations.
Also, we increase the algorithm’s processing speed by adapting the number of particles in the
set according to the confidence of the current distribution, also called Adaptive MCL (AMCL).
For that, we propose a novel approach for measuring the quality of the current distribution,
based on applying the observation model to the resulting particle of the algorithm. The ap-
proach was able to drastically increase the system’s computation speed, while also maintaining
the capability to track the robot’s pose, and the confidence measure may be useful for making
decisions and performing movements based on the current localization confidence.

Keywords: autonomous mobile robots; self-localization; Monte Carlo Localization; RoboCup.



RESUMO

Auto-localização é uma habilidade fundamental no campo de robôs móveis autônomos e
consiste em estimar a posição e orientação de um robô em relação ao seu ambiente de oper-
ação. Localização de Monte Carlo (em inglês Monte Carlo Localization - MCL) é um algoritmo
baseado em filtros de partículas, abordando o problema de localização através de um conjunto
de partículas que representam múltiplas hipóteses do estado atual do robô. Em cada iteração,
as partículas são movimentadas de acordo com os deslocamentos realizados pelo robô e suas
verossimilhanças são estimadas com base nas similaridades entre medidas adquiridas pelo robô
e seus valores esperados, dados os estados das partículas. Em seguida, um novo conjunto de
partículas é gerado com base nos pesos atuais através de algoritmos de reamostragem e o
processo é reiniciado. MCL é utilizado com sucesso em diversas ligas de futebol de robôs da
RoboCup para resolver o problema de localização, especialmente em competições de robôs hu-
manóides e de plataformas padronizadas. Em 2022, este problema foi introduzido na categoria
Small Size League (SSL) através do desafio técnico chamado Vision Blackout, que restringe
os times a utilizarem apenas técnicas de sensoriamento e processamento embarcados para ex-
ecutar tarefas do futebol de robôs. Assim, este trabalho apresenta uma solução integrada para
resolver o problema de auto-localização no contexto de SSL enquanto, conjuntamente, detecta
objetos dinâmicos do ambiente, utilizando informações adquiridas por uma câmera monocu-
lar e odometria inercial embarcados. Nós aprimoramos o algoritmo de MCL utilizando idéias
de implementações propostas por outras pesquisas realizadas em outras ligas da RoboCup,
garantindo mais robustez à imprecisões em medidas e estimativas de odometria. Ademais, nós
aceleramos a velocidade de processamento do algoritmo adaptando o número de partículas
utilizadas de acordo com a confiança atual da distribuição, método também chamado de MCL
adaptativo. Para isto, propomos uma nova abordagem para medir a qualidade da distribuição
atual, baseada em aplicar o modelo de observação ao estado resultante do algoritmo de lo-
calização. A abordagem foi capaz de aumentar drasticamente a velocidade de processamento
do sistema, sem perder sua capacidade de rastrear a localização do robô, e a nova métrica
de confiança também pode ser aproveitada para tomar decisões e realizar movimentos que
favoreçam a convergência do algoritmo de localização.

Palavras-chaves: robôs móveis autônomos; auto-localização; Monte Carlo Localization; RoboCup.
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1 INTRODUCTION

Robotics systems can be described as physical devices that perceive and manipulate the
environment through computer-controlled mechanisms (THRUN; BURGARD; FOX, 2005), de-
signed to assist or supplant humans on predetermined tasks for increasing productivity, im-
proving safety, or enhancing efficiency (ALBUQUERQUE et al., 2017). The increasing integration
of robots in daily life is progressively transforming the way humans interact with the world,
finding successful utilization in several domains, including products manufacturing in industrial
assembly lines (KUKA, 2016), inspecting hazardous environments in the oil and gas industry (YU

et al., 2019), assisting surgeons with Robotically Assisted Surgical Sytems (RASS) (KLODMANN

et al., 2021), automating household tasks with home service robots (ZACHIOTIS et al., 2018),
transporting charges with autonomous aerial and ground vehicles (SRINIVAS; RAMACHANDIRAN;

RAJENDRAN, 2022), and many others.
Among these systems, Autonomous Mobile Robots (AMR) perform highly relevant roles

in society and industry (KOLAR; BENAVIDEZ; JAMSHIDI, 2020), and must be able to navigate
through dynamic, unpredictable environments autonomously. Despite their employment in a
wide variety of applications, each following different requirements and constraints, AMRs
are built on top of common capabilities: perception, localization, mapping, cognition, path
planning, and motion control (SIEGWART; NOURBAKHSH; SCARAMUZZA, 2011).

To push the state-of-the-art in robotics and artificial intelligence (AI), the Robot World Cup
Initiative (RoboCup) was created in 1997 (KITANO et al., 1997). It proposes the use of soccer
games as a research platform, establishing the goal of developing a team of fully autonomous
humanoid robots capable of winning an official soccer match against the human World Cup
champion team until 2050. This challenge requires integrated studies in multiple areas, such
as real-time sensor fusion, reactive behavior, strategy acquisition, learning, real-time planning,
multi-agent cooperation, and coordination, context recognition, computer vision, decision-
making, motor and robot control, and many others. Currently, to address these problems,
RoboCup presents several different robot soccer leagues, each of them focusing on different
aspects of this goal.

1.1 MOTIVATION

Among the RoboCup soccer leagues, the Small Size League (SSL) focuses on the problem
of intelligent multi-agent cooperation and control in a highly dynamic adversarial environment.
In this League, games take place between two teams of 6 (division B) or 11 (division A) omnidi-
rectional mobile robots (OMR), which must respect the height and diameter constraints of 150
and 180 mm, respectively, playing with an orange golf ball on a green carpeted field. These
objects are tracked by a standardized vision system, the SSL-Vision (ZICKLER et al., 2010),
which detects soccer elements and estimates their positions regarding the field coordinates.

The typical approach adopted by SSL teams is to use off-field computers for executing
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most of the computation, receiving objects’ positions, field geometry information, and referee
commands, leaving the off-board computation to process vision filtering, decision-making,
path planning and position control, sending velocity commands to the robots through radio
frequency wireless communication using minimal bandwidth. Even though this architecture
has been successfully employed throughout the years of SSL, it presents limitations regarding
data reliability and latency:

• One common issue during matches is ball occlusion, which occurs when a robot’s pro-
jection on the camera image overlaps the ball, causing the camera not to see it.

• SSL-Vision detection is based on color segmentation, which is prone to false positives,
occasionally causing wrong position estimations.

• Perception updates are limited to the cameras’ capture frame rates, and commands only
reach the robots after being computed and communicated, limiting the latency between
commands.

As the League improves towards more complex and dynamic strategies, with an increasing
number of robots, larger soccer fields, and faster velocities, these limitations become more
relevant, demanding faster and more reliable solutions for sensing, perceiving and tracking
elements of the environment.

Researches in the SSL have shown that faster robot position updates can be achieved
by merging SSL-Vision information with onboard tracking using odometry methods based
on embedded inertial sensors, reducing the overall system’s latency (ABBENSETH; OMMER,
2015). Sensors fusion is also employed on state-of-the-art autonomous navigation systems,
not only reducing latency, but also enhancing the perception’s reliability and accuracy (KOLAR;

BENAVIDEZ; JAMSHIDI, 2020).
Following these approaches and for encouraging teams to propose solutions to overcome the

SSL architectural limitations, the League has a technical challenge for developing autonomous
capabilities for robots. The Vision Blackout challenge incentives teams to explore local sensing
and processing rather than using the typical SSL approach of an off-board computer and a
global set of cameras sensing the environment (SMALL SIZE LEAGUE TECHNICAL COMMITTEE,
2022a). This challenge focuses on demonstrating standard SSL soccer skills (e.g. locomotion,
ball manipulation and collaboration between robots), without the SSL-Vision software running,
and is split into multiple stages designed to have different levels of difficulty and evaluate each
of these desired capabilities. In the 2022 edition, stages and their objectives consisted of:

• Stage I - Grabbing a stationary ball somewhere on the field: designed to demon-
strate basic sensing and locomotion capabilities.

• Stage II - Score with the ball on an empty goal: designed to demonstrate similar
skills to stage 1, plus the ability to localize and aim at a known target on the field.
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• Stage III - Move the robot to specific coordinates: demonstrates strong localization
abilities without the use of the global vision system.

• Stage IV - Score an indirect goal (two robots needed): designed to demonstrate
coordination skill of multiple robots without external vision. The robots must collaborate
to pass and score the goal.

For this challenge robots have no height restrictions, enabling teams to add comput-
ing modules and onboard cameras to the robots. Still, the SSL environment demands high
throughput and the size limitations coupled with using a battery as a power source require
solutions to have low power consumption. Also, precise kicks and passes on high distances are
executed during matches, requiring accurate position estimations. In summary, these condi-
tions require proposed solutions for the Vision Blackout challenge to take into account hard
trade-offs between power consumption, size, processing speed and accuracy.

Recent work have shown that grabbing the ball, scoring a goal, and making passes can
be performed autonomously by detecting SSL objects (balls, goals, and robots), estimating
their relative positions, and using this information for making decisions and acting (MELO et al.,
2022). These skills compound the basis for solving stages I, II, and IV of the SSL challenge and,
even though they could be solved without global localization knowledge, the authors report
that this information (global localization) might be the key to surpassing the major limitations
of their proposed system, pointed as: planning more efficient paths, discarding out-of-field
information, avoiding penalties, and making more efficient field explorations.

Besides improving performances on stages I, II and IV, global position information is a must
for solving the challenge’s stage III (move the robot to specific coordinates) and, despite other
RoboCup leagues presenting methods for it (RÖFER; JÜNGEL, 2004; RÖFER; LAUE; THOMAS,
2006; RÖFER et al., 2019; SEEKIRCHER; LAUE; RÖFER, 2011; MUZIO et al., 2016; BURCHARDT;

LAUE; RÖFER, 2011), computing self-localization is still an open-problem in the SSL.

1.2 RESEARCH PROBLEM

Self-localization consists of estimating a robot’s position and orientation (pose) regarding
its operating environment and is a fundamental skill in autonomous mobile robot navigation
(GUTMANN et al., 1998; GUTMANN; FOX, 2002). Studies in this research field are commonly
split in two problems: local localization, or position tracking, and global localization. The first
focuses on tracking the robot’s moves for estimating its trajectory and can be used for com-
puting a global position if the initial pose is known as prior. In contrast, the global localization
problem aims at finding the robot’s pose by making observations in a previously mapped en-
vironment, under the condition of unreliable or no initial pose information. Solutions for these
problems rely on uncertain measurements and predictions, based on the environment and the
robot’s actions. Therefore, several approaches were developed for considering uncertainties in
robot localization, using mainly probabilistic functions for representing measurements, move-
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ments and poses (THRUN; BURGARD; FOX, 2005), and GUTMANN; FOX (2002) categorizes them
into three classes: Kalman filters, grid-based Markov localization, and Monte Carlo methods.

Kalman Filters (KF) rely on the premise that the robot’s pose, motion and measurements
can be represented as Gaussian distributions, integrating uncertainty into their computations.
KF-based algorithms also assume this information to follow linear behaviours, which does not
apply for many robotics systems. Therefore, Extended Kalman Filters (EKF) and Unscented
Kalman Filters (UKF) are proposed as solutions for representing non-linear systems (PANI-

GRAHI; BISOY, 2021). Even though these methods are widely employed for solving position
tracking problems, their inherent characteristic of estimating a single hypothesis of the robot’s
pose makes them unable to solve the global localization problem or to recover from total
localization failures (GUTMANN; FOX, 2002).

An approach for addressing the global localization problem is to use Grid-based Markov
Localization (ML), which maintains a probability density over a discrete space of all possible
locations of a robot in its environment (FOX; BURGARD; THRUN, 1999). It splits the mapped
environment into grid cells and estimates their beliefs based on subsequent observations.
Smaller cells result in more accurate position estimates, however, since measurement updates
must be executed for each cell, computational cost increases. Main advantages of this method
are its global search space, enabling it to solve global localization problems, also dealing robot
kidnappings, and flexibility for different motion and sensor models. However, depending on
the dimension, resolution and size of the grid, the method might not be feasible for real-time
applications (GUTMANN; FOX, 2002).

Other alternatives for overcoming KF-based limitations regarding global positioning involve
using Multi-Hypothesis Localization (MHL), which represents uncertainty as a mixture of
Gaussian’s, enabling the estimation of any distribution probability, but resulting in a high
computational effort (KOSE; AKIN, 2007). Another approach is to fuse advantages from KF-
based and ML methods (ML-EKF) (GUTMANN, 2002), using ML for providing robustness and
localization recovery to the algorithm and EKF for improving accuracy (GUTMANN; FOX, 2002).

The third class of localization algorithms, namely Monte Carlo Localization (MCL), are
based on particle filters (DELLAERT et al., 1999). The particles represent multiple hypothesis of
the current robot’s state, their beliefs are estimated based on subsequent observations of the
environment and their states are updated according to the robot’s motion. MCL progressively
draws samples from this particles’ set, according to their beliefs, converging to a distribution
that represents the robot’s real state. Since the number of particles is finite, the representation
is approximate, but its non-parametric property enables the algorithm to deal with a much
broader space of distributions than KF-based solutions, while also requiring less computational
effort than ML-based methods due to the reduced state space representation.

Particle filter-based algorithms were proven to suit a wide variety of applications (ELFRING;

TORTA; MOLENGRAFT, 2021), with MCL outperforming other probabilistic methods in the
global localization problem, achieving a better trade-off between accuracy, robustness, com-
putation time, and memory consumption (DELLAERT et al., 1999; GUTMANN; FOX, 2002).

The MCL general algorithm describes how information from measurements of the environ-
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ment can be fused with estimations of the robot’s movements for regressing the robot’s pose
over time. Therefore, for each application, observation and motion models need to be specified
and adjusted, since their accuracy directly impacts the designing process of the MCL. Also,
the algorithm’s speed and reliability are highly influenced by the number of particles utilized
for representing the distribution. For highlighting the impacts of these intrinsic characteristics
of the algorithm, ELFRING; TORTA; MOLENGRAFT (2021) states five main challenges that must
be taken in consideration when developing a particle filter:

• Particles Degeneracy: along the iterations, some of the particles’ weights might decrease
to negligible values, wasting computational efforts on samples that do not represent the
robot’s state. This issue is commonly addressed by using resampling schemes (when to
perform resampling), and algorithms (how to resample).

• Sample Impoverishment: resampling usually leads to multiple instances of the same
particle. If the system’s motion noise is low, the distribution tends to collapse into a
single point in the state space, reducing the algorithm’s robustness to measurement
deviations and most likely causing it to diverge.

• Particles Divergence: particle filters are prone to diverging, i. e., converging to a distri-
bution that does not represent the actual state of the system. Inaccurate measurements,
incorrect modeling assumptions or even hardware failures are some of the reasons that
cause this effect. Therefore, monitoring particles divergence is a necessary step in any
particle filter, specially for real-time systems.

• Selecting the Importance Density: in mobile robots localization, the importance density
is defined by a motion model, i. e., a function that reproduces the robots movements
in the particles, typically added to Gaussian noise. Odometry methods are commonly
applied at this step (HE et al., 2023).

• Real-time Execution: the number of particles must be sufficient to represent the desired
distribution. However, increasing the size of the samples set directly affects computation
costs of the algorithm, which is a hard constraint in many real-time applications.

Existent self-localization solutions from RoboCup soccer leagues propose adaptations on
the original MCL algorithm for dealing the particles degeneracy, impoverishment, divergence
and importance density issues (RÖFER; JÜNGEL, 2004; MUZIO et al., 2016; RÖFER et al., 2019),
using low number of particles for guaranteeing real-time execution. However, compared to
other leagues, SSL has the most dynamic matches with the most constrained onboard hard-
ware, requiring solutions to reduce the computational efforts of MCL. This can be achieved
by adapting the number of particles on-the-fly (ELFRING; TORTA; MOLENGRAFT, 2021), also
called Adaptive Monte Carlo Localization (AMCL), and several approaches are proposed in the
literature for varying the number of particles by mainly measuring the quality of the current
distribution (STRAKA; ŜIMANDL, 2009).
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In recent work, HE et al. (2023) presented a new Localization Confidence Estimation (LCE)
method, which evaluates the current credibility of the AMCL by the matching degree between
multiple laser scan points in the frame of estimated robot pose and the map. The authors
also propose a model for controlling the number and quality of particles in the filter, based
on the LCE result. However, the LCE algorithm is based on multiple laser measurements,
which provide accurate and reliable distances. Also, the confidence value is estimated based
on observations from a single iteration, which is prone to cause divergences on applications
that use more unreliable measurements.

1.3 OBJECTIVES

This work proposes a novel approach for estimating the confidence of the Monte Carlo
Localization over multiple iterations using reduced observations. We use this information for
adapting the number of particles in a linear form, also adapting the variance of the distribution
according to the algorithm’s confidence, allowing the system to recover from total localization
failures.

For implementing these methods, an MCL algorithm for the self-localization problem from
the SSL Vision Blackout challenge was developed. The solutions were designed for integrating
the architecture presented in (MELO et al., 2022), aiming at mitigating its major drawbacks.
Also, for allowing offline tests and evaluations, and contributing to the SSL community, a
dataset from an SSL robot navigating on the field, containing onboard-recorded and ground
truth information, was generated.

In summary, with the ultimate goal of building a fully autonomous SSL robot, the present
work aims at:

• Introducing a solution for estimating an SSL robot’s self-localization using onboard
sensing and processing only.

• Proposing a confidence metric for evaluating the localization quality during execution.

• Proposing an approach for increasing the processing speed of MCL-based self-localization
algorithms.

From these specific objectives, this work’s contributions can be summarized in:

• An integrated pipeline for solving the SSL self-localization problem while also detecting
the environment’s dynamic objects, using onboard monocular vision and inertial odom-
etry data.

• Novel methods for estimating an AMCL distribution quality and adapting the number
of particles.

• Public onboard-recorded datasets, containing multiple scenarios and ground truth data
for accuracy evaluation.
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• Performance evaluations of different methodologies running on an embedded system.

The following chapters detail the theoretical background, related work, our proposed meth-
ods for performing self-localization, the implemented solution and experimental setup, results
from experiments, and the conclusions taken from this work. Chapter 2 presents the theoret-
ical background. Chapter 3 depicts other researches that were used as basis for developing
our methods. Chapter 4 explains our proposed self-localization infrastructure and algorithms.
Chapter 5 details how we implemented a complete system for evaluating our methods. Chapter
6 presents quantitative and qualitative analysis of the solutions proposed in this work. Finally,
Chapter 7 discusses the results, contributions, limitations, and future work from this research.
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2 THEORETICAL BACKGROUND

This chapter presents the background knowledge that supports the proposed methods
in this thesis. Firstly, we explain how the kinematics model of a four-wheeled omnidirectional
robot can be derived and employed for computing its odometry based on the wheels’ rotations.
Then, we discuss the utilization of camera intrinsic and extrinsic parameters for converting
image pixels to relative positions. Finally, the general Monte Carlo Localization (MCL) algo-
rithm is presented, detailing how the previous subjects can be employed in its implementation
and highlighting some of the algorithm’s limitations.

2.1 INERTIAL ODOMETRY

Probabilistic robot localization algorithms typically rely on techniques for tracking the
robot’s movements along iterations (DELLAERT et al., 1999). This process is called odome-
try, and can be achieved by integrating the robot’s velocities over time, resulting in local
movements. In the case of a wheeled mobile robot, local velocities can be determined from
the wheels’ speeds by using the robot’s kinematics model, which describes how each actua-
tor contributes to the robot’s movement (SIEGWART; NOURBAKHSH; SCARAMUZZA, 2011). For
example, the odometry of a four-wheeled omnidirectional robot can be estimated in four steps:

1. Measure the wheels’ velocities (using optical encoders, for example).

2. Convert wheels velocities (𝜑̇1, 𝜑̇2, 𝜑̇3, 𝜑̇4) to the robot’s velocities (𝑥̇𝑟, 𝑦̇𝑟, 𝜃𝑟) using the
kinematics model.

3. Integrate velocities over time, using the sampling period 𝑡𝑠𝑎𝑚𝑝𝑙𝑒, resulting in local dis-
placements (Δ𝑥,Δ𝑦,Δ𝜃).

4. Update the robot’s pose based on the estimated movement 𝑝𝑜𝑠𝑒𝑛𝑒𝑤 = 𝑝𝑜𝑠𝑒𝑜𝑙𝑑 +
(Δ𝑥,Δ𝑦,Δ𝜃), on which the + operation also involves rotating the movement to the
robot’s coordinates.

The following subsections explain in detail how each of these steps can be computed on a
four-wheeled omnidirectional robot, which is the platform utilized for evaluating the proposed
methods in this thesis. Note that even though the presented examples focus on a single mobile
robot model, these concepts can be reproduced on other types of robots by adapting the
equations (SIEGWART; NOURBAKHSH; SCARAMUZZA, 2011).

2.1.1 Measuring Velocities

Encoders are typically used to control the position or speed of wheels and other motor-
driven joints in mobile robots (SIEGWART; NOURBAKHSH; SCARAMUZZA, 2011). They can be
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classified into two types: absolute and incremental. The first disposes information regarding the
absolute position of the encoder within one revolution. The second reports changes in position,
not being able to keep track of absolute positions. These sensors can be implemented within
different technologies: mechanical, optical, or magnetic. In this Subsection, we present an in-
depth explanation of how measurements from an optical incremental encoder can be utilized
for computing a wheel’s speed.

A rotary encoder has two phase-shifted output signals, A and B, which are generated based
on the motor shaft’s rotation. For that, a rotating disk with a fine optical grid is coupled to
the motor shaft, and a light source is positioned pointing towards an optical receiver, as shown
in 1. The output signals are squared waveforms created from the light and dark states of the
light receiver. One typical approach in mobile robotics uses quadrature encoders, on which A
and B channels are shifted in 90𝑜.

Figure 1 – Optical quadrature encoder.

Source: (SIEGWART; NOURBAKHSH; SCARAMUZZA, 2011)

Given the encoder’s resolution, which is measured by cycles per revolution (CPR), the
wheel’s angular velocity 𝜑̇ can be computed by counting the number of pulses at a fixed sam-
pling period 𝑡𝑠𝑎𝑚𝑝𝑙𝑒. Due to encoders being proprioceptive sensors, i.e. they measure values in
reference to their own system, they can lead to systematic errors. When applied to the prob-
lem of robot localization, for example, these errors accumulate over time, requiring significant
corrections.

Another approach for making velocity measurements in mobile robots is to use Inertial
Measurement Units (IMU). For example, gyroscopes, which are heading sensors that preserve
their orientation in relation to a fixed reference frame, can be used for measuring the robot’s
angular speed 𝜃 and, consequently, its angular movement Δ𝜃, by integrating speeds over time.

2.1.2 Kinematics Modeling

Forward kinematic models of motion describe how the robot as a whole moves as a function
of its geometry and individual wheel behavior (SIEGWART; NOURBAKHSH; SCARAMUZZA, 2011).
These analytical models can be derived by expressing the kinematic constraints of individual
wheels and combining them to express the whole robot’s kinematic constraints.
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The robot employed throughout this thesis is built on top of four omnidirectional wheels,
also called Swedish wheels, which consist of a fixed standard wheel with rollers attached to the
wheel perimeter, allowing it to perform movements in any direction. The motion constraint is
derived identically to the rolling constraint for a fixed standard wheel, except that the formula
is modified by adding 𝛾 such that the effective direction along which the rolling constraint holds
is along this zero component rather than along the wheel plane (SIEGWART; NOURBAKHSH;

SCARAMUZZA, 2011):

(︂
𝑠𝑖𝑛(𝛼 + 𝛽 + 𝛾) −𝑐𝑜𝑠(𝛼 + 𝛽 + 𝛾) −𝑙𝑐𝑜𝑠(𝛽 + 𝛾)

)︂
𝑅(𝜃)𝜉𝐼 − 𝑟𝜑̇𝑐𝑜𝑠(𝛾) = 0 (2.1)

where 𝛼, 𝛽 and 𝛾 correspond to the angles illustrated in Figure 2, 𝑟 and 𝜑̇ are the radius
and angular speed of the wheel, 𝑅(𝜃) is a rotation matrix around the robot’s orientation and
𝜉𝐼 express the robot’s velocities regarding the global reference frame (𝑥̇, 𝑦̇, 𝜃).

Figure 2 – Parameters of a fixed standard wheel (a) and a Swedish (omnidirectional) wheel (b).

(a) A fixed standard wheel and its parameters. (b) A Swedish wheel and its parameters.

Source: (SIEGWART; NOURBAKHSH; SCARAMUZZA, 2011)

Since omnidirectional wheels impose no kinematic restrictions on the robot chassis, the
kinematics constraints of a four-wheeled omnidirectional robot chassis can be computed by
combining its wheels rolling constraints into a single equation:

𝐽1𝑅(𝜃)𝜉𝐼 − 𝐽2𝜑̇ = 0 (2.2)

on which 𝐽1 denotes a matrix with projections for all wheels to their motions along their
individual wheel planes, and 𝐽2 is a diagonal matrix whose entries are the radius of each wheel.
Figure 3 illustrates the geometry of the omnidirectional robot employed throughout this work,
from which Equation 2.3 can be derived.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1/𝑟 0 0 0
0 1/𝑟 0 0
0 0 1/𝑟 0
0 0 0 1/𝑟

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
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(2.3)
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Figure 3 – Geometry representation of a four-wheeled omnidirectional robot used for deriving kinematics
model.

Source: Author

Equation 2.3 enables to compute the necessary wheels’ angular speeds that result in (𝑥̇, 𝑦̇, 𝜃)
robot velocities regarding the global reference frame, which is called inverse kinematics. How-
ever, the opposite can also be estimated, i.e., measurements from wheels’ rotations can be
used for estimating the current robot velocities. This relation is called forward kinematics and
can be derived by Equation 2.4.

𝜉𝐼 = 𝑅(𝜃)−1𝐽−1
1 𝐽2𝜑̇ (2.4)

Note that, for a four-wheeled omnidirectional robot, 𝐽1 is a non-invertible matrix. There-
fore, pseudo-inverse techniques can be used for estimating an approximation of 𝐽−1

𝑓 (BEN-

ISRAEL, 2003).

2.1.3 Integrating Velocities and Updating Poses

The forward kinematics model estimates the robot’s velocities by measuring its wheel
velocities. If the sampling period 𝑡𝑠𝑎𝑚𝑝𝑙𝑒 utilized during measurements is known, the robot’s
movement (Δ𝑥,Δ𝑦,Δ𝜃) can also be computed by integrating these values.
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Figure 4 – A robot moving.

θt

xt

yt

θt+1

xt+1

yt+1
y

x
Source: Author

Let us assume a four-wheeled robot knows its localization and is located at (𝑥𝑡, 𝑦𝑡, 𝜃𝑡) in a
coordinates system at time 𝑡𝑖 with measured wheels’ angular speeds (𝜑̇1

𝑡 , 𝜑̇
2
𝑡 , 𝜑̇

3
𝑡 , 𝜑̇

4
𝑡 ), which we

shall denote as 𝜑̇𝑡, as illustrated in Figure 4. From Equation 2.4, the robot’s current velocities
(𝑥̇, 𝑦̇, 𝜃) can be derived, denoted by 𝜉𝐼 .

After a time Δ𝑡 = 𝑡𝑠𝑎𝑚𝑝𝑙𝑒, the robot has moved to (𝑥𝑡+1, 𝑦𝑡+1, 𝜃𝑡+1), and its movement
can be estimated by integrating 𝜉𝐼 over the elapsed time. This can be calculated by assuming
that 𝑡𝑠𝑎𝑚𝑝𝑙𝑒 is small enough so that 𝜑̇ is constant during the given period. However, this also
results that 𝜃, and consequently 𝑅(𝜃)−1, changes with time. The rotation matrix is composed
of sines and cosines regarding 𝜃. It can be proved for both these functions that, for a small
Δ𝑡, the following approximation is valid:

∫︁ Δ𝑡

0
𝑓(𝜃𝑡 + 𝑤𝑡)𝑑𝑡 ≈ 𝑓(𝜃𝑡 + 𝑤Δ𝑡/2)

∫︁ Δ𝑡

0
𝑑𝑡 = 𝑓(𝜃𝑡 + 𝑤Δ𝑡/2) ·Δ𝑡 (2.5)

where 𝑤 denotes the robot’s rotation speed 𝜃 and Δ𝑡 = 𝑡𝑠𝑎𝑚𝑝𝑙𝑒. Thus, the resulting
function from Equation 2.5 can also be expressed as 𝑓

(︂
𝜃𝑡 + 𝜃𝑡𝑡𝑠𝑎𝑚𝑝𝑙𝑒

2

)︂
= 𝑓

(︁
𝜃𝑡+𝜃𝑡+1

2

)︁
. Finally,

the robot’s movement regarding the global reference can be derived from:
⎛⎜⎜⎜⎜⎝

Δ𝑥
Δ𝑦
Δ𝜃

⎞⎟⎟⎟⎟⎠ = 𝑅

(︃
𝜃𝑡 + 𝜃𝑡𝑡𝑠𝑎𝑚𝑝𝑙𝑒

2

)︃−1

𝐽−1
1 𝐽2𝜑̇ · 𝑡𝑠𝑎𝑚𝑝𝑙𝑒 (2.6)

The relation from Equation 2.4 computes global velocities. However, it can be modified
for expressing velocities regarding the robot’s local coordinates, an shown in Equation 2.7,
which can be applied to Equation 2.6 for expressing the robot’s global movement, resulting in
Equation 2.8.

˙𝜉𝑅 = 𝑅(𝜃)𝜉𝐼 = 𝐽−1
1 𝐽2𝜑̇ (2.7)
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⎛⎜⎜⎜⎜⎝
Δ𝑥
Δ𝑦
Δ𝜃

⎞⎟⎟⎟⎟⎠ = 𝑅

(︃
𝜃𝑡 + 𝜃𝑡𝑡𝑠𝑎𝑚𝑝𝑙𝑒

2

)︃−1

⎛⎜⎜⎜⎜⎝
Δ𝑥𝑅

Δ𝑦𝑅

Δ𝜃𝑅

⎞⎟⎟⎟⎟⎠ = 𝑅

(︃
𝜃𝑡 + 𝜃𝑡𝑡𝑠𝑎𝑚𝑝𝑙𝑒

2

)︃−1
˙𝜉𝑅 · 𝑡𝑠𝑎𝑚𝑝𝑙𝑒 (2.8)

This interpretation is useful for tracking the robot’s movements without knowing its initial
pose. In this case, we assume its initial pose to be at the origin, i.e., (𝑥𝑡, 𝑦𝑡, 𝜃𝑡) = (0, 0, 0) for
𝑡 = 0, and update the following poses regarding this reference.

Finally, the robot’s poses are updated in two steps: first, Equation 2.7 computes the robot
local velocities and, secondly, the current pose is added to the local movement rotated to the
global axis:

⎛⎜⎜⎜⎜⎝
𝑥𝑡+1

𝑦𝑡+1

𝜃𝑡+1

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
𝑥𝑡

𝑦𝑡

𝜃𝑡

⎞⎟⎟⎟⎟⎠+𝑅

(︃
𝜃𝑡 + 𝜃𝑡𝑡𝑠𝑎𝑚𝑝𝑙𝑒

2

)︃−1
˙𝜉𝑅 · 𝑡𝑠𝑎𝑚𝑝𝑙𝑒 (2.9)

2.2 CAMERA TRANSFORMATIONS

Vision-based sensors are widely employed in mobile robotics for perceiving the environ-
ment due to their capability of providing an enormous amount of information (SIEGWART;

NOURBAKHSH; SCARAMUZZA, 2011), being commonly used for computing measurements and
modeling observations in self-localization problems (THRUN; BURGARD; FOX, 2005). However,
a fundamental problem with visual images is that the image formation process projects 3D
world points into a 2D image plane, thereby losing depth information (SZELISKI, 2010).

Retrieving relative positions from the camera image is an important step in vision-based
autonomous navigation since it allows building maps, acquiring localization information, and
planning actions regarding relative points and objects. 3D world coordinates can be retrieved
from 2D images if additional information is provided, by using range sensors, multiple images,
or previous knowledge from the environment characteristics, for example. This process is also
referred to as Inverse Perspective Transformation (IPT), and can achieved by inverting the
projection relations employed during image formation.

Besides the additional information, IPT requires one knowing the camera’s intrinsic and
extrinsic parameters and the equations that model the image projections. This Section de-
scribes these parameters and how they affect the image formation process, and explains the
pinhole camera model, a commonly employed equation for projecting 3D points to the image
plane. Additionally, we present a method for computing the relative positions of ground points
using previously calibrated camera parameters. The algebraic formulations from the following
subsections are derived mainly from (HARTLEY; ZISSERMAN, 2003).
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Figure 5 – Pinhole camera geometry.

Source: (HARTLEY; ZISSERMAN, 2003)

2.2.1 Image Formation

A camera is a mapping between the 3D world (object space) and a 2D image, which can
be expressed using the tools of projective geometry (HARTLEY; ZISSERMAN, 2003). In this
manner, the pinhole camera model is the most specialized and simplest model for computing
image projections. Figure 5 illustrates how a point in the space is projected to the image plane
following this model.

Let 𝑋 = (𝑋, 𝑌, 𝑍)T be a point in space, 𝐶 the camera center and 𝑝 the principal point.
In the pinhole camera model, the image point 𝑥 = (𝑥, 𝑦)T is mapped by the projection of the
𝑋𝐶 line on the image plane, or focal plane, defined by 𝑍 = 𝑓 , where 𝑓 is the camera’s focal
length. Note that the image plane is placed in front of the camera centre.

For now, we assume that the origin of coordinates in the image plane is at the principal
point. Thus, from the similar triangles in Figure 5, the point (𝑋, 𝑌, 𝑍)T gets mapped to
(𝑋/𝑓, 𝑌/𝑓, 𝑓)T. Since all points on the image are mapped to 𝑍 = 𝑓 , this information can be
ignored and the transformation

(𝑋, 𝑌, 𝑍)T → (𝑓𝑋/𝑍, 𝑓𝑌/𝑍)T (2.10)

describes the central projection mapping from world to image coordinates. This is a map-
ping from Euclidean R3 to R2. Thus, we must find a linear transformation that performs this
operation.

Assuming the world and image points are represented by homogeneous vectors, the central
projection can be expressed as a linear mapping between their coordinates. Therefore, Equation
2.10 can be written in terms of matrix multiplication as

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑋

𝑌

𝑍

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
→

⎛⎜⎜⎜⎜⎝
𝑓𝑋

𝑓𝑌

𝑍

⎞⎟⎟⎟⎟⎠ =

⎡⎢⎢⎢⎢⎣
𝑓 0

𝑓 0
1 0

⎤⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑋

𝑌

𝑍

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2.11)
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This expression was derived by assuming that the principal point and the origin of coordi-
nates in the image plane are coincident, which may not be true. Thus, Equation 2.11 can be
rewritten as

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑋

𝑌

𝑍

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
→

⎛⎜⎜⎜⎜⎝
𝑓𝑋 + 𝑍𝑝𝑥

𝑓𝑌 + 𝑍𝑝𝑦

𝑍

⎞⎟⎟⎟⎟⎠ =

⎡⎢⎢⎢⎢⎣
𝑓 𝑝𝑥 0

𝑓 𝑝𝑦 0
1 0

⎤⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑋

𝑌

𝑍

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2.12)

The pinhole camera model assumes that the image coordinates are Euclidean coordinates
having equal scales in both axial directions. Other models consider the possibility of having
non-square pixels, adding a skew parameter 𝑠 that represents a skewing of the pixel elements
so that the x- and y-axes are not perpendicular, and different proportions for the x- and y-
axes, expressed by 𝛼𝑥 = 𝑓𝑚𝑥 and 𝛼𝑦 = 𝑓𝑚𝑦. Similarly, the principal point can be expressed
as 𝑥̄0 = (𝑥0, 𝑦0), with coordinates 𝑥0 = 𝑚𝑥𝑝𝑥 and 𝑦0 = 𝑚𝑦𝑝𝑦. These considerations lead to
a new equation:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑋

𝑌

𝑍

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
→

⎛⎜⎜⎜⎜⎝
𝛼𝑥𝑋 + 𝑠𝑌 + 𝑍𝑥0

𝛼𝑦𝑌 + 𝑍𝑦0

𝑍

⎞⎟⎟⎟⎟⎠ =

⎡⎢⎢⎢⎢⎣
𝛼𝑥 𝑠 𝑥0 0

𝛼𝑦 𝑦0 0
1 0

⎤⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑋

𝑌

𝑍

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2.13)

These internal characteristics compound the so-called intrinsic parameters of a camera,
which are used for expressing how points in the camera’s coordinate frame are projected
onto the image. As seen in Equation 2.13, this operation is performed mainly by a matrix
multiplication, which is called the camera calibration matrix, expressed 𝐾 as

𝐾 =

⎡⎢⎢⎢⎢⎣
𝛼𝑥 𝑠 𝑥0

0 𝛼𝑦 𝑦0

0 0 1

⎤⎥⎥⎥⎥⎦ (2.14)

then 2.13 has the concise form:

𝑥 = 𝐾 [𝐼|0] 𝑋𝑐𝑎𝑚 (2.15)

where 𝑥 contains the pixel coordinates, [𝐼|0] represents a matrix divided up into a 3 × 3
block (the identity matrix) plus a column zero vector, and 𝑋𝑐𝑎𝑚 is the world point coordinates
regarding the camera axis. In general, points in space will be expressed in terms of a different
Euclidean coordinate frame, known as the world coordinate frame. Therefore, the relative
rotation and translation between the world and camera coordinate frames can be added to
Equation 2.15.
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Assume 𝑋̃ is a 3-dimensional vector representing the coordinates of a point in the world
coordinate frame, and 𝑋̃𝑐𝑎𝑚 represents the same point in the camera coordinate frame. We
may write 𝑋̃𝑐𝑎𝑚 = 𝑅(𝑋̃−𝐶̃), where 𝐶̃ represents the coordinates of the camera regarding the
world and 𝑅 is a 3 × 3 rotation matrix representing the orientation of the camera coordinate
frame. This equation may be written in homogeneous coordinates as

𝑋𝑐𝑎𝑚 =

⎡⎢⎣𝑅 −𝑅𝐶̃

0 1

⎤⎥⎦
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑋

𝑌

𝑍

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎡⎢⎣𝑅 −𝑅𝐶̃

0 1

⎤⎥⎦𝑋. (2.16)

Putting this together with Equation 2.15 leads to

𝑥 = 𝐾𝑅[𝐼| − 𝐶̃]𝑋 (2.17)

where 𝑋 now is expressed in terms of the world coordinate frame. The parameters of 𝑅 and
𝐶̃, which relate the camera orientation and position to a world coordinate system, are called
the external or extrinsic parameters. It is often convenient not to make the camera center
explicit, and instead to represent the world to image transformation as 𝑋̃𝑐𝑎𝑚 = 𝑅𝑋̃ + 𝑡.
In this case we can express the complete transformation for projecting world points into the
camera image as

𝑥 = 𝐾[𝑅|𝑡]𝑋. (2.18)

where 𝑡 = −𝑅𝐶̃.
Lastly, as suggested by Equation 2.10, the pixel’s (𝑢, 𝑣) coordinates on the image are

mapped by 𝑝 = (𝑢, 𝑣, 1)𝑇 = 𝑥/𝑍. Also, the skew parameter will be zero for most normal
cameras. Therefore, the 𝑍 coordinate is commonly expressed as a scale factor 𝑠, resulting in
our final camera model equation employed throughout this thesis:

𝑠𝑝 = 𝐾[𝑅|𝑡]𝑋. (2.19)

2.2.2 Inverse Perspective Transformation

The image formation process projects 3D world points on a 2D plane. In contrast, Inverse
Perspective Transformation (IPT) uses the camera model and parameters for estimating a
pixel’s position in the world coordinates frame. Isolating 𝑋 from Equation 2.19 we derive the
following:

⎛⎜⎜⎜⎜⎝
𝑋

𝑌

𝑍

⎞⎟⎟⎟⎟⎠ = 𝑠𝑅−1𝐾−1

⎛⎜⎜⎜⎜⎝
𝑢

𝑣

1

⎞⎟⎟⎟⎟⎠−𝑅−1𝑡. (2.20)
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Note that, even if 𝐾, 𝑅, and 𝑡 are known, the (𝑋, 𝑌, 𝑍)𝑇 position of a pixel (𝑢, 𝑣)𝑇 can
not be retrieved, because the 𝑠 factor will still be unknown. Therefore, additional information
is needed. One common approach is to use range sensors for measuring the distance to the
given point on space, enabling to solve the equation.

Another approach for solving Equation 2.20 is to use previous knowledge of the environment
characteristics (MELO; BARROS, 2023). Figure 6 illustrates a camera with a fixed translation 𝑡
and rotation 𝑅 regarding the coordinates system given by (𝑋, 𝑌, 𝑍). The referred environment
has a ground marker positioned on the floor, i.e. 𝑍 = 0.

Figure 6 – Camera with fixed rotation and translation regarding a coordinates system.
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Source: Author.

If the camera intrinsic and extrinsic parameters are know, the marker’s center position
𝑚 can be retrieved from the camera image by solving Equation 2.20 for 𝑍 = 0 and the
(𝑢𝑚𝑎𝑟𝑘𝑒𝑟, 𝑣𝑚𝑎𝑟𝑘𝑒𝑟) that corresponds to the marker’s center. This approach will be employed
throughout this thesis for estimating relative positions of ground points on a robot soccer field
regarding the robot’s coordinates system.

2.3 MONTE CARLO LOCALIZATION

Monte Carlo Localization (MCL) was the chosen method for solving the self-localization
problem in this research due to its ability to represent generalized distributions with a reduced
state space (THRUN, 2002). It overcomes limitations from Kalman Filter-based techniques
regarding global localization by using samples for representing posteriors, which maintain mul-
tiple hypotheses of the robot’s state, making no assumptions of linearity or Gaussianity in the
model (DOUCET; GODSILL; ANDRIEU, 2000). The algorithm also outperforms grid-based local-
ization methods regarding memory consumption and computation speed due to its samples
converging to most probable states, reducing the search space (THRUN; BURGARD; FOX, 2005).

MCL estimates probability density functions (PDF) over the robot pose using particle filters:
approximate techniques for calculating posteriors in partially observable controllable Markov
chains with discrete time (THRUN, 2002). The basic idea is to represent the belief 𝑏𝑒𝑙(𝑥𝑡)
by a set of 𝑀 samples 𝜒𝑡 = {𝑥1

𝑡 , 𝑥
2
𝑡 , ..., 𝑥

𝑀
𝑡 }, called particles, and recursively approximate

their posteriors based on updates from subsequent measurements 𝑧1:𝑡 = {𝑧1, 𝑧2, ..., 𝑧𝑡} and
predictions from control inputs 𝑢1:𝑡 = {𝑢1, 𝑢2, ..., 𝑢𝑡} (THRUN; BURGARD; FOX, 2005). This
process is solved by a Bayes filter, which works in two essential steps:
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1. Calculates a belief 𝑏𝑒𝑙(𝑥𝑡) over the state 𝑥𝑡−1 and control input 𝑢𝑡.

2. Estimate the probability that measurement 𝑧𝑡 has been observed at state 𝑥𝑡.

The following subsections present more in-depth explanations of particle filters, including
the basis of their mathematical derivation and how they are employed in the robot localization
problem, the so-called MCL. Also, the main limitations and enhancements of the MCL algo-
rithm are presented. The theoretical formulations from this section are derived mainly from
(THRUN; BURGARD; FOX, 2005) and (DELLAERT et al., 1999).

2.3.1 The Particle Filter Algorithm

The particle filter algorithm is a nonparametric implementation of the Bayes filter, on
which the key idea is to represent the posterior 𝑏𝑒𝑙(𝑥𝑡) by a finite set of state samples drawn
from a distribution that approximates the PDF of the system’s state. The samples, also called
particles, are denoted as

𝜒𝑡 = {𝑥1
𝑡 , 𝑥

2
𝑡 , ..., 𝑥

𝑀
𝑡 } (2.21)

where 𝑀 denotes the number of particles and each particle 𝑥𝑀𝑡 (with 1 ≤ 𝑚 ≤ 𝑀)
represents a hypothesis of the system’s state at time 𝑡. The algorithm follows the idea that
regions of the state space that are more populated by samples are more probable to represent
the real state. Therefore, the likelihood for a hypothesis to be drawn shall be proportional to
its posterior given by the Bayes filter:

𝑥𝑚𝑡 ∼ 𝑝(𝑥𝑡|𝑧1:𝑡, 𝑢1:𝑡). (2.22)

The algorithm constructs the belief 𝑏𝑒𝑙(𝑥𝑡) recursively from its past values, which also
means that the particle set 𝜒𝑡 is built from its last iteration 𝜒𝑡−1. The general particle filter
workflow is shown in Algorithm 1, consisting of three main steps, which we shall denote as
Prediction, Observation, and Resampling:

1. Prediction: for each particle, a hypothetical state 𝑥𝑚𝑡 is generated from 𝑥𝑚𝑡−1 based on 𝑢𝑡,
the control input from time 𝑡, which involves sampling from a distribution that predicts
state changes from control inputs 𝑝(𝑥𝑡|𝑥𝑡−1, 𝑢𝑡). Thus, the algorithm requires a function
that estimates how states are affected by the inputs.

2. Observation: then, the probability that the current measurement 𝑧𝑡 was taken from the
given state 𝑥𝑚𝑡 is computed by 𝑤𝑚𝑡 = 𝑝(𝑧𝑡|𝑥𝑚𝑡 ), called importance factor. The 𝑤𝑚𝑡 is
usually interpreted as the weight of the m-th particle in the set. Note that, for this step,
an observation model that relates measurements to states is required.

3. Resampling: finally, 𝑀 particles from the temporary set 𝜒̄𝑡 are drawn with replacement,
each with probabilities proportional to their importance weights 𝑤𝑚𝑡 , i.e., particles with
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higher probabilities (given by the importance factor) are drawn more frequently than
less probable ones. This process is also called importance resampling, and the resulting
distribution 𝜒𝑡 represents an approximation of the posterior 𝑏𝑒𝑙(𝑥𝑡).

Algorithm 1 Particle Filter Algorithm
Require: 𝜒𝑡−1, 𝑢𝑡, 𝑧𝑡
𝜒̄𝑡 = 𝜒𝑡 = ∅
for 𝑚 = 1 to 𝑀 do

sample 𝑥𝑚𝑡 ∼ 𝑝(𝑥𝑡|𝑢𝑡, 𝑥𝑚𝑡−1)
𝑤𝑚𝑡 = 𝑝(𝑧𝑡|𝑥𝑚𝑡 )
𝜒̄𝑡 = 𝜒̄𝑡 + ⟨𝑥𝑚𝑡 , 𝑤𝑚𝑡 ⟩

end for
for 𝑚 = 1 to 𝑀 do

draw 𝑖 with probability ∝ 𝑤𝑖𝑡
add 𝑥𝑖𝑡 to 𝑋𝑡

end for
return 𝜒𝑡

2.3.2 Mathematical Formulation

The Algorithm 1 is derived by addressing a state estimation problem with a Bayesian filter,
which is based on the Bayes theorem of conditional probabilities, stated by

𝑝(𝑥|𝑦) = 𝑝(𝑦|𝑥)𝑝(𝑥)
𝑝(𝑦) (2.23)

from which also follows the theorem of total probability:

𝑝(𝑥) =
∫︁
𝑝(𝑥|𝑦)𝑝(𝑦)𝑑𝑦 (2.24)

We shall think that each particle represents a sequence of states 𝑥𝑚0:𝑡 = 𝑥𝑚0 , 𝑥
𝑚
1 , ..., 𝑥

𝑚
𝑡

and the particle filter must calculate the posterior over the whole sequence 𝑏𝑒𝑙(𝑥0:𝑡) =
𝑝(𝑥0:𝑡|𝑢1:𝑡, 𝑧1:𝑡) based on the inputs and measurements of the system along the iterations.
We start by applying the Bayes rule to the target posterior:

𝑝(𝑥𝑡|𝑧1:𝑡, 𝑢1:𝑡) = 𝑝(𝑧𝑡|𝑥𝑡, 𝑧1:𝑡−1, 𝑢1:𝑡)𝑝(𝑥𝑡|𝑧1:𝑡−1, 𝑢1:𝑡)
𝑝(𝑧𝑡|𝑧1:𝑡−1, 𝑢1:𝑡)

(2.25)

on which the denominator only depends on measurements, being the same for all states,
thus we denote it as 𝑝(𝑧𝑡|𝑧1:𝑡−1, 𝑢1:𝑡) = 1/𝜂. In addition, the Bayes filter algorithm assumes
that the state holds all the necessary information for predicting measurements, i.e., the current
measurement does not depend on past measurements or inputs, only on the current state. This
assumption results in:

𝑝(𝑧𝑡|𝑥𝑡, 𝑧1:𝑡−1, 𝑢1:𝑡) = 𝑝(𝑧𝑡|𝑥𝑡) (2.26)
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which combined with Equation 2.25, follows to:

𝑝(𝑥𝑡|𝑧1:𝑡, 𝑢1:𝑡) = 𝜂𝑝(𝑧𝑡|𝑥𝑡)𝑝(𝑥𝑡|𝑧1:𝑡−1, 𝑢1:𝑡). (2.27)

Note that, in this equation, 𝑝(𝑥𝑡|𝑧1:𝑡, 𝑢1:𝑡) represents our target distribution, and 𝑝(𝑥𝑡|𝑧1:𝑡−1, 𝑢1:𝑡)
a proposal distribution, which can be expanded by 2.24, resulting in:

𝑝(𝑥𝑡|𝑧1:𝑡−1, 𝑢1:𝑡) =
∫︁
𝑝(𝑥𝑡|𝑥𝑡−1, 𝑧1:𝑡−1, 𝑢1:𝑡)𝑝(𝑥𝑡−1|𝑧1:𝑡−1, 𝑢1:𝑡)𝑑𝑥𝑡−1. (2.28)

Following the assumption that the current state is only affected by the previous one, and
does not depend on past measurements and inputs, which yields 𝑝(𝑥𝑡|𝑥𝑡−1, 𝑧1:𝑡−1, 𝑢1:𝑡) =
𝑝(𝑥𝑡|𝑥𝑡−1, 𝑢𝑡), and that future control inputs do not affect past states, allowing us to omit 𝑢𝑡
from 𝑝(𝑥𝑡−1|𝑧1:𝑡−1, 𝑢1:𝑡), we get:

𝑝(𝑥𝑡|𝑧1:𝑡−1, 𝑢1:𝑡) =
∫︁
𝑝(𝑥𝑡|𝑥𝑡−1, 𝑢𝑡)𝑝(𝑥𝑡−1|𝑧1:𝑡−1, 𝑢1:𝑡−1)𝑑𝑥𝑡−1. (2.29)

Note that 𝑝(𝑥𝑡−1|𝑧1:𝑡−1, 𝑢1:𝑡−1) represents the belief at the previous step 𝑏𝑒𝑙(𝑥0:𝑡−1) and
that the prediction phase in the particle filter executes the exact same operation from 2.29.
Then, in the observation step, the algorithm computes 2.27 based on the resulting proposal
distribution 𝑝(𝑥𝑡|𝑧1:𝑡−1, 𝑢1:𝑡) and the observation model 𝑝(𝑧𝑡|𝑥𝑡), resulting in a new represen-
tation of the target distribution 𝑝(𝑥𝑡|𝑧1:𝑡, 𝑢1:𝑡).

2.3.3 Monte Carlo Localization

Monte Carlo Localization (MCL) employs the particle filter algorithm for approximating
a robot’s state, defined by its pose (position and orientation), regarding a map of the envi-
ronment. The belief 𝑏𝑒𝑙(𝑥𝑡) is represented by a set of 𝑀 particles 𝜒𝑡 = {𝑥1

𝑡 , 𝑥
2
𝑡 , ..., 𝑥

𝑚
𝑡 }. The

general MCL algorithm is presented in 2, which is obtained by substituting the appropriate
probabilistic motion and perceptual models into the particle filter. The prediction step uses
particles from the current distribution as starting points and a model of the robot’s motion
for sampling. Then, the observation model is applied to the predicted states, estimating their
importance weights’. Particles are initialized with an uniform importance factor 1/𝑀 .

The motion model assumes the function of the predictive step from the particle filter
algorithm, which describes how particle’s state evolve based on current control inputs 𝑢𝑘. In
MCL, the state is defined by the robot’s pose, thus, a prediction correspond to the robot’s
movement. THRUN; BURGARD; FOX (2005) describes two types of motion models for mobile
robots operating in the plane. The first predicts the robot’s movements based on received
velocity commands, while the second assumes that odometry measurements can be retrieved
while the robot is moving, usually obtained by integrating wheel encoders information. Both
models suffer form drift and slippage, but odometry ones are suggested as more accurate
options, since they are calculated based on measured velocity values.
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Algorithm 2 Monte Carlo Localization
Require: 𝜒𝑡−1, 𝑢𝑡, 𝑧𝑡
𝜒̄𝑡 = 𝜒𝑡 = ∅
for 𝑚 = 1 to 𝑀 do

𝑥𝑚𝑡 = sample_from_motion_model(𝑢𝑡, 𝑥𝑚𝑡−1)
𝑤𝑚𝑡 = measurement_model(𝑧𝑡|𝑥𝑚𝑡 )
𝜒̄𝑡 = 𝜒̄𝑡 + ⟨𝑥𝑚𝑡 , 𝑤𝑚𝑡 ⟩

end for
for 𝑚 = 1 to 𝑀 do

draw 𝑖 with probability ∝ 𝑤𝑖𝑡
add 𝑥𝑖𝑡 to 𝑋𝑡

end for
return 𝜒𝑡

For sampling from the odometry motion model, rotation and translation are assumed as
independent movements and random noises are added to the measured values before predicting
the particle’s new state. Algorithm 3 illustrates how this procedure can be performed, on which
𝑢𝑡 = (Δ̄𝑥, Δ̄𝑦, Δ̄𝜃) represents the estimated movements from the odometry, and 𝑥𝑡−1 =
(𝑥, 𝑦, 𝜃) accounts for the previous particle state. 𝛿𝑟𝑜𝑡1 and 𝛿𝑡𝑟𝑎𝑛𝑠 are derived from the robot’s
translation, and 𝛿𝑟𝑜𝑡2 from rotation. The sample(𝑏) function generates a random value from
a zero-centered distribution (e.g. Gaussian, or triangular) with variance 𝑏, therefore these
movements are added to random noises with variances proportional to the distance traveled
and rotation performed, according to the 𝛼𝑛 factors, which are adjusted from the robot’s
behaviour. The particle state is updated by adding the estimated movements to the current
state with orientation correction.

Algorithm 3 Sample From Motion Model
Require: 𝑥𝑡−1, 𝑢𝑡
𝛿𝑟𝑜𝑡1 = 𝑎𝑡𝑎𝑛2(Δ̄𝑦, Δ̄𝑥)− Δ̄𝜃
𝛿𝑡𝑟𝑎𝑛𝑠 =

√︁
Δ̄𝑥2 + Δ̄𝑦2

𝛿𝑟𝑜𝑡2 = Δ̄𝜃 − 𝛿𝑟𝑜𝑡1

𝛿𝑟𝑜𝑡1 = 𝛿𝑟𝑜𝑡1 − sample(𝛼1𝛿𝑟𝑜𝑡1) + 𝛼2𝛿𝑡𝑟𝑎𝑛𝑠
𝛿𝑡𝑟𝑎𝑛𝑠 = 𝛿𝑡𝑟𝑎𝑛𝑠 − sample(𝛼3𝛿𝑡𝑟𝑎𝑛𝑠 + 𝛼4(𝛿𝑟𝑜𝑡1 + 𝛿𝑟𝑜𝑡2))
𝛿𝑟𝑜𝑡2 = 𝛿𝑟𝑜𝑡2 − sample(𝛼1𝛿𝑟𝑜𝑡2 + 𝛼2𝛿𝑡𝑟𝑎𝑛𝑠)

𝑥′ = 𝑥+ 𝛿𝑡𝑟𝑎𝑛𝑠𝑐𝑜𝑠(𝜃 + 𝛿𝑟𝑜𝑡1)
𝑦′ = 𝑦 + 𝛿𝑡𝑟𝑎𝑛𝑠𝑠𝑖𝑛(𝜃 + 𝛿𝑟𝑜𝑡1)
𝜃′ = 𝜃 + 𝛿𝑟𝑜𝑡1 + 𝛿𝑟𝑜𝑡2

return 𝑥𝑡 = (𝑥′, 𝑦′, 𝜃′)

Next in the MCL algorithm, the measurement model is employed for updating the particle’s
importance weight. For visual sensors, this process is typically modeled by using projective
geometry to estimate relative range 𝑟 and bearing 𝜑 of mapped landmarks from the robot’s
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local coordinate frame. The particle’s likelihood 𝑤𝑚𝑡 = 𝑝(𝑧𝑡|𝑥𝑚𝑡 ) is computed as a similarity
between the measured and expected values, typically assuming that their errors follow Gaussian
distributions, i.e., the more similar the values are, the more likely that state represents the true
robot’s state.

With the updated state 𝑥𝑚𝑡 and likelihood 𝑤𝑚𝑡 , the weighed sample is added to the proposal
distribution 𝜒̄𝑡. After repeating this process for the 𝑀 particles, importance resampling is
performed, which consists of drawing 𝑀 samples from 𝜒̄𝑡, each with probability proportional
to the given weight, and adding them to the target distribution 𝜒𝑡, which shall converge to
the robot’s true posterior over time.

2.3.4 MCL Properties and Augmentation

The main advantage of MCL compared to other localization methods is its suitability for
almost any kind of distribution, mostly due to its non-parametric nature (THRUN; BURGARD;

FOX, 2005). The algorithm’s accuracy and processing speed are directly affected by number of
particles, therefore, these characteristics can be traded off during execution by adapting the
number of samples.

The native MCL algorithm also suffers from divergence problems, i.e., if it converges to the
wrong state, the filter is unable to recover. This problem arises specially when a small number
of particles (e.g. 𝑀 = 50) is employed, which is a common condition in hardware constrained
applications. Thus, THRUN; BURGARD; FOX (2005) suggests an approach to estimate the lo-
calization accuracy, measured by the mean of importance weights:

𝑤𝑎𝑣𝑔 = 1
𝑀

𝑀∑︁
𝑚=1

𝑤𝑚𝑡 (2.30)

This measure shall be employed for representing the confidence, or quality, of the distribu-
tion. However, a reliable approach is to smooth 𝑤𝑎𝑣𝑔 over multiple steps, which leads to the
idea of maintaining short-term 𝑤𝑓𝑎𝑠𝑡 and long-term 𝑤𝑠𝑙𝑜𝑤 averages of this value, which can be
interpreted as quality measurements for the distribution over time. Those are given by:

𝑤𝑠𝑙𝑜𝑤 = 𝑤𝑠𝑙𝑜𝑤 + 𝛼𝑠𝑙𝑜𝑤(𝑤𝑎𝑣𝑔 − 𝑤𝑠𝑙𝑜𝑤) (2.31)

𝑤𝑓𝑎𝑠𝑡 = 𝑤𝑓𝑎𝑠𝑡 + 𝛼𝑓𝑎𝑠𝑡(𝑤𝑎𝑣𝑔 − 𝑤𝑓𝑎𝑠𝑡) (2.32)

where 𝛼𝑠𝑙𝑜𝑤 and 𝛼𝑓𝑎𝑠𝑡 are decay factors with 0 ≤ 𝛼𝑠𝑙𝑜𝑤 ≪ 𝛼𝑓𝑎𝑠𝑡 < 1. The divergence
between these factor can be utilized for adding random samples in the distribution during
resampling, allowing the MCL to recover total localization failures. This approach, also called
Augmented MCL, is presented in Algorithm 4, on which a random sample is added with
probability 𝑚𝑎𝑥(0, 1− 𝑤𝑓𝑎𝑠𝑡

𝑤𝑠𝑙𝑜𝑤
), otherwise a sample is drawn from the proposal distribution.
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Algorithm 4 Augmented Monte Carlo Localization
Require: 𝜒𝑡−1, 𝑢𝑡, 𝑧𝑡
𝜒̄𝑡 = 𝜒𝑡 = ∅
for 𝑚 = 1 to 𝑀 do

𝑥𝑚𝑡 = sample_from_motion_model(𝑢𝑡, 𝑥𝑚𝑡−1)
𝑤𝑚𝑡 = measurement_model(𝑧𝑡|𝑥𝑚𝑡 )
𝜒̄𝑡 = 𝜒̄𝑡 + ⟨𝑥𝑚𝑡 , 𝑤𝑚𝑡 ⟩
𝑤𝑎𝑣𝑔 = 𝑤𝑎𝑣𝑔 + 1

𝑀
𝑤𝑚𝑡

end for
𝑤𝑠𝑙𝑜𝑤 = 𝑤𝑠𝑙𝑜𝑤 + 𝛼𝑠𝑙𝑜𝑤(𝑤𝑎𝑣𝑔 − 𝑤𝑠𝑙𝑜𝑤)
𝑤𝑓𝑎𝑠𝑡 = 𝑤𝑓𝑎𝑠𝑡 + 𝛼𝑓𝑎𝑠𝑡(𝑤𝑎𝑣𝑔 − 𝑤𝑓𝑎𝑠𝑡)
for 𝑚 = 1 to 𝑀 do

if with probability 𝑚𝑎𝑥(0, 1− 𝑤𝑓𝑎𝑠𝑡

𝑤𝑠𝑙𝑜𝑤
) then

add random pose to 𝜒𝑡
else

draw 𝑖 with probability ∝ 𝑤𝑖𝑡
add 𝑥𝑖𝑡 to 𝑋𝑡

end if
end for
return 𝜒𝑡
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3 RELATED WORK

This work aims at solving the robot self-localization problem in the SSL environment using
only onboard sensing and processing. Therefore, this chapter discusses existent solutions for
this problem applied at other RoboCup soccer leagues, presenting insights on how to implement
and enhance the fundamental steps of the MCL algorithm. Ideas from some of these approaches
were fused for modeling observations, motion, and particles resampling in this thesis.

Approaches for the self-localization problem from RoboCup researches do not present solu-
tions for adapting the MCL set sizes. The number of particles directly affects the distribution
quality and processing speed of the particle filter. Thus, methods for adapting the sample set
size are discussed, highlighting the main challenges for developing an adaptive particle filter.
Ideas from these work were used for implementing the proposed methods in this thesis.

3.1 SELF-LOCALIZATION IN ROBOCUP SOCCER LEAGUES

As pointed by ELFRING; TORTA; MOLENGRAFT (2021), when designing a particle filter-based
solution for a specific problem, the environment and robot’s constraints and requirements must
be considered. Therefore, to implement an MCL algorithm for estimating a robot’s pose on
a soccer field, specific motion and observation models have to be defined according to the
behaviours of the utilized sensors, actuators and methods utilized for making measurements
and estimating the robot’s movements.

Robot soccer fields are composed mainly of a green floor, white lines, and goals. However,
RoboCup leagues employ varied field, goals and lines sizes, according to their robots capabil-
ities and the objectives of the League. Also, some leagues include additional references that
can be used for helping robot’s localization, such as beacons, colored goal posts, or boundary
walls. The following subsections describe how these static objects and landmarks are typically
used for modeling observations in self-localization solutions. Besides, since each League em-
ploys a different robot, with distinct movement capabilities, their specific motion models and
techniques for enhancing resampling schemes are presented as well.

3.1.1 Sony Four-Legged Robot League

The Sony Four-Legged Robot League (SFRL) was the first RoboCup competition to employ
standardized fully autonomous robots (VELOSO et al., 1998), being extinguished in 2009 and
lately referred to as Standard Platform League (SPL). Games were played by teams of up to
five AIBO robots (abbreviated from Artificial Intelligence RoBOt), with highly constrained
sensing and processing capabilities (KITANO et al., 1998). Therefore, solutions for onboard
perception, localization, decision-making and acting must be robust and efficient.

Throughout the years, the League’s field size increased from approximately 3.5 x 2 to 7.5
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x 5 meters and, besides the colored goals and white landmarks, the field also had walls on
the borders and colored beacons. RÖFER; JÜNGEL (2004) proposes an approach for acquiring
localization information by detecting points of these elements inside grid lines. The grids are
composed of vertical and horizontal lines of the image, where each line is scanned pixel by
pixel performing color segmentation. After pixels are classified, a finite state machine decides
whether objects or landmarks exist in that line, also determining which they correspond to
and their edge points. The detected edge points are converted to relative angles in the robot’s
coordinates system, using the onboard camera’s extrinsic parameters.

The field points’ relative positions are fused with odometry information in an MCL algo-
rithm for estimating the robot’s self-localization. For that, motion and observation models are
defined. The first, expresses the effects of actions on the robot’s pose. The second describes
the probability for taking certain measurements at certain locations. RÖFER; JÜNGEL (2004)
summarizes the complete algorithm pipeline in a four steps loop:

1. Particles are moved according to the motion model of the previous action of the robot.

2. Probabilities 𝑞𝑖 are determined for all particles on the basis of the observation model for
the current sensor readings.

3. Resampling is performed, moving more particles to the locations of samples with a high
probability.

4. The average of the probability distribution is determined, representing the best estima-
tion of the current robot pose.

Motion Model. For motion modeling, as their odometry computes rough estimations of
the robot’s movements, the authors suggest adding a random error Δ𝑒𝑟𝑟𝑜𝑟 that depends on the
distance traveled and the rotation performed since the last self-localization. The new particles’
poses are computed by: 𝑝𝑜𝑠𝑒𝑛𝑒𝑤 = 𝑝𝑜𝑠𝑒𝑜𝑙𝑑 + Δ𝑜𝑑𝑜𝑚𝑒𝑡𝑟𝑦 + Δ𝑒𝑟𝑟𝑜𝑟, where + operations involve
coordinates rotation to the robot’s axis.

Observation Model. The authors lately propose an improved observation model, on which
separate probabilities for beacons and goals, horizontal field lines, vertical field lines, field walls,
and goal edges are represented (RÖFER; LAUE; THOMAS, 2006). Only the probabilities for edge
points that were actually detected are taken into account for computing the overall similarities.

For beacons and goals, a normalized difference between the measured 𝜔𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 and ex-
pected 𝜔𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 angles is computed by 𝑑 = |𝜔𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑−𝜔𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑|

𝜋
, and applied to a sigmoid

function to determine the similarity 𝑠:

𝑠(𝜔𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑, 𝜔𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑) =

⎧⎪⎨⎪⎩𝑒
−50𝑑2 if 𝑑 < 1
𝑒−50(2−𝑑)2 otherwise

(3.1)

The probability 𝑞𝑙𝑎𝑛𝑑𝑚𝑎𝑟𝑘𝑠 is computed by the product of these similarities:

𝑞𝑙𝑎𝑛𝑑𝑚𝑎𝑟𝑘𝑠 =
∏︁

𝜔𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

𝑠(𝜔𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑, 𝜔𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑) (3.2)
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For field lines, borders and goals, similarities are determined from the measured angle
𝜔𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 and the expected angle 𝜔𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 for a certain pose by applying a sigmoid function
to the difference of both angles weighted by a constant 𝜎:

𝑠(𝜔𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑, 𝜔𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑, 𝜎) = 𝑒−𝜎(𝜔𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑−𝜔𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑)2 (3.3)

If 𝛼 and 𝛽 refer to vertical and horizontal angles, respectively, and |𝑣| the robot’s speed
absolute value, the overall similarity for lines, borders and goals edge points are calculated
from:

𝑞𝑒𝑑𝑔𝑒𝑇𝑦𝑝𝑒 = 𝑠(𝛼𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑, 𝛼𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑, 10− 9 |𝑣|200) · 𝑠(𝛽𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑, 𝛽𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑, 100) (3.4)

The proposed method reduces the weight of observations the faster the robot walks. Also,
for reducing the computing costs, only three points of each edge type, if detected, are randomly
selected for estimating the samples’ similarities. Another enhancement proposed by the authors
is to limit the change of the probability of each sample for each edge type, guaranteeing a
more stable distribution. Therefore, edge similarities are updated as follows:

𝑞𝑛𝑒𝑤 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑞𝑜𝑙𝑑 + Δ𝑢𝑝 if 𝑞 > 𝑞𝑜𝑙𝑑 + Δ𝑢𝑝

𝑞𝑜𝑙𝑑 −Δ𝑑𝑜𝑤𝑛 if 𝑞 < 𝑞𝑜𝑙𝑑 −Δ𝑑𝑜𝑤𝑛

𝑞 otherwise.

(3.5)

For landmarks, (Δ𝑢𝑝,Δ𝑑𝑜𝑤𝑛) is (0.1, 0.05), for edge points, it is (0.01, 0.005).
Finally, the overall probability for a sample is computed by:

𝑞 = 𝑞𝑙𝑎𝑛𝑑𝑚𝑎𝑟𝑘𝑠 · 𝑞𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙𝐿𝑖𝑛𝑒𝑠 · 𝑞𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑎𝑙𝐿𝑖𝑛𝑒𝑠 · 𝑞𝑓𝑖𝑒𝑙𝑑𝑊𝑎𝑙𝑙𝑠 · 𝑞𝑔𝑜𝑎𝑙𝑠 (3.6)

Resampling. In this step, samples are copied from the old distribution to the new one,
according to their probabilities 𝑞𝑖, thus, more probable samples are copied more often and
improbable samples are removed. After choosing the samples, the authors suggest locally
moving them, where the less probable a sample is, the more it gets moved (RÖFER; JÜNGEL,
2004), according to the following equation:

𝑝𝑜𝑠𝑒𝑛𝑒𝑤 = 𝑝𝑜𝑠𝑒𝑜𝑙𝑑 +

⎛⎜⎜⎜⎜⎝
Δ𝑡𝑟𝑎𝑛𝑠(1− 𝑞)× 𝑟𝑛𝑑
Δ𝑡𝑟𝑎𝑛𝑠(1− 𝑞)× 𝑟𝑛𝑑
Δ𝑟𝑜𝑡(1− 𝑞)× 𝑟𝑛𝑑

⎞⎟⎟⎟⎟⎠ (3.7)

where 𝑟𝑛𝑑 is a number between −1 and 1 generated by a uniform distribution, and values
for Δ𝑡𝑟𝑎𝑛𝑠 and Δ𝑟𝑜𝑡 are typically 20 cm and 30º.

Estimating the Robot’s Pose. The authors propose discretizing the (𝑥, 𝑦, 𝜃) state space
into 10 × 10 × 10 cells, and searching for the 2 × 2 × 2 region that contains the maximum
number of samples. Among the selected cluster, the (𝑥𝑟𝑜𝑏𝑜𝑡, 𝑦𝑟𝑜𝑏𝑜𝑡) coordinates of the robot
are determined by the samples’ average, while the angle 𝜃𝑟𝑜𝑏𝑜𝑡 is calculated as the orientation
of the sum of all direction vectors:
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𝜃𝑟𝑜𝑏𝑜𝑡 = 𝑎𝑡𝑎𝑛2
(︃∑︁

𝑖

sin(𝜃𝑖),
∑︁
𝑖

cos(𝜃𝑖)
)︃

(3.8)

Reported quantitative results show that the approach was able to localize the robot with
approximately 10 cm errors (less than 5% of the field’s length) using 100 samples for the par-
ticle filter. Besides, the proposed method’s reliability was demonstrated throughout RoboCup
editions, also showing that beacons are unnecessary for playing soccer.

Several concepts introduced in this League were migrated for solving self-localization prob-
lems at other RoboCup soccer competitions (LAUE; RÖFER, 2006). Also, the highly constrained
hardware and field similarities to SSL (with walls on the borders, similar goals and dimensions)
suggest that solutions from the SFRL should fit the SSL environment. However, the fast-paced
SSL matches demand high processing speeds, which can be improved by reducing the number
of particles of the distribution.

3.1.2 Standard Platform League

Four-legged robots were adopted as a standard due to their walking control being easier
than for biped robots (VELOSO et al., 1998), leaving teams to focus on addressing other research
problems. This approach was succeeded by the introduction of Two-Legged Competition,
mainly referred to as Standard Platform League (SPL), with the Nao robot as a standard
platform (GOUAILLIER et al., 2008; ROBOTICS, 2018).

The SPL currently operates in two divisions: Champions Cup (CC) and Challenge Shield
(CS), which compete in 7 vs. 7 and 5 vs 5 matches, respectively. The field consists of 8 mm
artificial turf mounted on a flat wooden base with a total area of length 10.4 m and width 7.4
m and specifications shown in Figure 7. The goals are 1500 mm long, composed of goalposts
and a crossbar made from 3 white cylinders with a diameter of 100 mm. In comparison to the
SFRL, there are no colored references for recognizing field sides, and there are no walls on
the borders, which difficulties detecting them. In contrast, the field lines and goal posts are
thicker, making them easier to detect.

Robust and precise self-localization are important requirements in the SPL and straightfor-
ward textbook implementations from the particle filter algorithm are utilized for addressing this
challenge (THRUN; BURGARD; FOX, 2005). Even though the solutions achieve robust, precise,
and efficient self-localization, the results are directly affected by the quality and quantity of
the incoming perceptions (RÖFER et al., 2019).

Recent work in the League propose methods for detecting balls, robots and field borders
using Deep Learning-based solutions (RÖFER et al., 2022). In contrast, the field line detection
relies on a grid of horizontal and vertical scan lines, which pixel colors are segmented in
green, white and a generic color for the rest, similarly to the approaches employed in the
SFRL, except that solutions for lighting-independent detection are also proposed (RÖFER et

al., 2022). Previously to the proposed Deep Learning-based techniques, all visual knowledge
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Figure 7 – Schematic diagram of the soccer field (not to scale) and corresponding dimensions in mm from the
Standard Platform League (SPL).

Source: (ROBOCUP, 2023)

relevant for position estimation were based on the field line detection (RÖFER et al., 2019).
The image processing system recognizes points on field lines and points on edges between

the field and the goals. For estimating particles’ similarities in the MCL algorithm, each point
is projected to the field, given the current pose of the sample and the current pose of the
camera relative to the robot (LAUE; RÖFER, 2007), enabling to compute the (𝑥𝑒𝑟𝑟𝑜𝑟, 𝑦𝑒𝑟𝑟𝑜𝑟)
between estimated and expected relative coordinates, where the first roughly corresponds to
the distance error, and the second corresponds to the bearing error. Both error distances are
transferred back into pixel distance errors by dividing them by the forward distance to the
measured point 𝑥𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 plus the height of the camera above the ground ℎ. The weight 𝑤𝑚𝑡 is
determined by modeling the errors of the (𝑥, 𝑦) coordinates as Gaussian normal distributions
based on the computed error values and a standard deviation 𝜎:

𝑤𝑚𝑡 = 𝑤𝑚𝑡 · 𝒩
(︂⃒⃒⃒⃒

𝑥𝑒𝑟𝑟𝑜𝑟
ℎ+ 𝑥𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒

⃒⃒⃒⃒
, 𝜎
)︂
· 𝒩

(︂⃒⃒⃒⃒
𝑦𝑒𝑟𝑟𝑜𝑟

ℎ+ 𝑥𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒

⃒⃒⃒⃒
, 𝜎
)︂

(3.9)

Such as in (RÖFER; LAUE; THOMAS, 2006), a method for avoiding strong oscillations in
similarities is utilized, by filtering the particle’s probability over 𝑛 frames (typically 60) (RÖFER

et al., 2019):

𝑤𝑛𝑒𝑤𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 =
𝑤𝑜𝑙𝑑𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 × (𝑛− 1) + 𝑤𝑐𝑢𝑟𝑟𝑒𝑛𝑡

𝑛
(3.10)
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LAUE; RÖFER (2007) also proposes a motion model based on the robot’s odometry that
adds noises to the movements, computed as follows:

⎛⎜⎝𝑥𝑚𝑡
𝑦𝑚𝑡

⎞⎟⎠ =

⎛⎜⎝𝑥𝑚𝑡−1

𝑦𝑚𝑡−1

⎞⎟⎠+𝑅𝑚
𝑡−1

⎛⎜⎝Δ𝑥𝑡 + 𝑠𝑎𝑚𝑝𝑙𝑒(𝑚𝑎𝑥(𝜆+Δ𝑥𝑡, 𝜆−Δ𝑦𝑡, 𝜆𝑛𝑤̄𝑚𝑡−1))
Δ𝑦𝑡 + 𝑠𝑎𝑚𝑝𝑙𝑒(𝑚𝑎𝑥(𝜆+Δ𝑦𝑡, 𝜆−Δ𝑥𝑡, 𝜆𝑛𝑤̄𝑚𝑡−1))

⎞⎟⎠ (3.11)

𝜃𝑚𝑡 = 𝜃𝑚𝑡−1 + Δ𝜃𝑡 + 𝑠𝑎𝑚𝑝𝑙𝑒(𝑚𝑎𝑥(𝜆𝜃Δ𝜃𝑡, 𝜆𝑑|(Δ𝑥𝑡,Δ𝑦𝑡)|, 𝜆𝑟𝑤̄𝑚𝑡−1)) (3.12)

where 𝑅𝑚
𝑡−1 is the rotation matrix corresponding to 𝜃𝑚𝑡−1, 𝑠𝑎𝑚𝑝𝑙𝑒(𝑥) is a function that

returns a random value in the interval [−𝑥, 𝑥], and all 𝜆 are factors that scale the noise ratio
depending on the robot’s motion and the current weighting of the sample. Instead of limiting
the noise ranges between fixed values, as in (RÖFER; JÜNGEL, 2004), the authors suggest
scaling the range based on how the weighting of an individual sample relates to the average
of all 𝑀 samples:

𝑤̄𝑚𝑡−1 = 𝑚𝑎𝑥

(︃∑︀
𝑖𝑤

𝑖
𝑡

𝑀𝑤𝑚𝑡
− 1, 0

)︃2

(3.13)

Using this approach, samples with a less than average weighting are moved even if the
robot is not in motion at all, allowing the samples to move toward the real position of the
robot. The authors report employing 100 particles in the implementation. However, as we shall
present in Chapter 6, this set size results in high computation times and the algorithm’s speed
can be improved by adapting the number of particles based on the current confidence.

3.1.3 Simulation 3D League

RoboCup Soccer 3D Simulation League consists of a simulation environment of a soccer
match with two teams, each one composed by up to 11 simulated Nao robots, the official
robot used in the SPL since 2008. RoboCup Soccer 3D competition allows the possibility for
enhancements in the design and implementation of multi-agent high-level behaviors at the
same time it provides a solid low level platform for a realistic physical simulation of the game
(MUZIO et al., 2016).

Researches in this League propose a method to extract landmarks by matching observed
lines and actual lines and selecting the pair with highest likelihood, eliminating ambiguities
(MUZIO et al., 2016). The work also presents an observation model for landmarks (goal posts
and corner flags) that uses relative angles and distances for computing similarities:

𝑝(𝑍 𝑙𝑎𝑛𝑑𝑚𝑎𝑟𝑘
𝑡 |𝑥[𝑚]

𝑡 ) =
∏︁
𝑗

𝑒𝑥𝑝

⎛⎝−(𝑑𝑗 − 𝑑[𝑚]
𝑗 )2

2𝜎2
𝑑

⎞⎠⎛⎝−(𝜓𝑗 − 𝜓[𝑚]
𝑗 )2

2𝜎2
𝜓

⎞⎠ (3.14)

In this model, 𝑝(𝑍 𝑙𝑎𝑛𝑑𝑚𝑎𝑟𝑘𝑠
𝑡 |𝑥[𝑚]

𝑡 ) represents the probability of a measurement 𝑍 𝑙𝑎𝑛𝑑𝑚𝑎𝑟𝑘𝑠
𝑡

being made from a state 𝑥, which is computed from the measured 𝑑𝑗 and expected 𝑑
[𝑚]
𝑗

relative distances, and respective relative angles 𝜓𝑗 and 𝜓[𝑚]
𝑗 . 𝜎𝑑 and 𝜎𝜓 are noise parameters
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generated by the simulation server. In the SSL, relative angles and distances can be used for
modeling observations more reliably than relative 𝑥, 𝑦 coordinates and we take insights from
Equation 3.14 for implementing our proposed methods.

3.2 ADAPTIVE MONTE CARLO LOCALIZATION

The number of particles utilized affects the MCL algorithm’s speed and quality. If the
number is high, it is more likely to converge to the correct state in a few iterations, but its
computational complexity increases. Otherwise, i.e., if a small sample set is used, the algorithm
runs faster but is more likely to diverge (FOX, 2003). One effective approach for improving the
efficiency of particle filters is to adapt the number of samples over time.

As presented by FOX (2003), in the beginning of a global localization task, the robot is
highly uncertain of its state and a large number of samples is needed to accurately represent
its belief. On the other extreme, once the robot knows where it is, only a small number of
samples suffices to accurately track its position. The typical approach of employing a fixed
number of samples requires enough particles for solving both global localization and position
tracking problems, resulting in a distribution with a high number of samples collapsed in similar
states.

Adaptive particle filters focus on changing the sample size on-the-fly, saving computational
resources, while also maintaining a number of particles capable of representing the current dis-
tribution of the particle filter. For that, the algorithm must be able to evaluate the quality of
the current distribution and estimate the desired number of samples. There are several pro-
posed methods for adapting particle filters sizes (STRAKA; ŜIMANDL, 2009), and the following
subsections focus on presenting two methods: the first estimates the ideal number of parti-
cles for the distribution based on the Kullback-Leibler Divergence (KLD) between the target
distribution and the current distribution of the particle filter; the second injects or removes
particles from the filter based on comparisons between the current robot measurements and
expected measurements by the resulting position from the AMCL algorithm.

3.2.1 KLD-Sampling Particle Filter

FOX (2003) introduces a likelihood-based adaptation technique, i.e., it adapts the number
of particles based on the likelihood of observations. The intuition behind this approach is as
follows: if the measured and expected values from observations have high similarity, importance
weights are large and the sample set remains small (typical case during position tracking),
otherwise, if measurements do not match expected values, as is the case when the robot’s
global position is uncertain or it lost track of its position, the sample weights are small and
the sample set becomes large.

The key idea to formulate the approach is as stated as:
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"At each iteration of the particle filter, determine the number of samples such that,
with probability 1− 𝛿, the error between the true posterior and the sample-based
approximation is less than 𝜀."

It computes the error between the target PDF 𝑝 and its sample based approximation 𝑝

using the Kullback-Leibler distance (KL-distance) (COVER; THOMAS, 2006), a function that
measures the difference between probability distributions (or densities), which in case is given
by:

𝐷𝐾𝐿(𝑝, 𝑝) =
∑︁
x𝑖

𝑝(x𝑖|z𝑖)𝑙𝑜𝑔
𝑝(x𝑖|z𝑖)
𝑝(x𝑖|z𝑖)

. (3.15)

Assuming that the target PDF 𝑝 can be represented by a piece-wise discrete PDF with 𝑘
different bins, 𝑝 = (𝑝1, 𝑝2, ..., 𝑝𝑘) represents a vector containing the true probability of each
bin. The sample based approximation 𝑝 approximates these probabilities using 𝑛 particles. The
authors present an analytical proof that, with probability 1− 𝛿, the KL-distance between the
target and the true distributions is less than 𝜀, if we choose the number of samples 𝑛 as:

𝑛 = 1
2𝜀𝜒

2
𝑘−1,1−𝛿, (3.16)

where 𝜒2
𝑘−1 is a 𝜒2 (chi-squared) distribution with 𝑘−1 degrees of freedom. For determining

𝑛 according to 3.16, the Wilson-Hilferty transformation (JOHNSON; KOTZ, 1970) is applied to
compute the quantiles of the 𝜒2 distribution, resulting in:

𝑛 = 𝑘 − 1
2𝜀

(︃
1− 2

9(𝑘 − 1)

√︃
2

9(𝑘 − 1)𝑧1−𝛿

)︃3

, (3.17)

where 𝑧1−𝛿 is the upper 1 − 𝛿 quantile of the standard normal distribution, which are
available in standard statistical tables.

Algorithm 5 presents the author’s proposed implementation for inserting the KLD-sampling
technique into the particle filter algorithm. The number of supported bins 𝑘 for the predictive
distribution is updated after each sample generated. It also checks whether the minimum
number of samples has been generated (typically set to 10). The sampling process is guaranteed
to terminate, since for a given bin size Δ, the maximum number 𝑘 of bins is limited, which
also limits the maximum number 𝑛𝜒 of desired samples.

In the authors’ experiments, KLD-sampling yields better approximations using only 6%
of the samples required by the fixed approach. The method was evaluated in the context of
indoor mobile robot localization using data collected by sonar and laser range-finders along
with odometry measurements from a commercial Pioneer robot. The best results were achieved
employing a value of 0.99 for (1 − 𝛿), and a fixed bin size Δ of 50cm x 50cm x 10º. The
maximum number of samples was limited to 100, 000, and error bounds 𝜀 were varied between
0.4 and 0.015. The results show that, starting with 40, 000 samples, the algorithm reduces the
number of particles to 184 on average, still achieving good tracking results (average error of
52.8cm), while the fixed approach requires 750 samples to achieve comparable accuracy.
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Algorithm 5 KLD-Sampling Particle Filter
Require: 𝑆𝑡−1 = {(𝑥𝑖𝑡−1, 𝑤

𝑖
𝑡−1)|𝑖 = 1, ..., 𝑛} representing the belief 𝐵𝑒𝑙(𝑥𝑡−1), control input

𝑢𝑡−1, observation 𝑧𝑡−1, bounds 𝜀 and 𝛿, bin size Δ, minimum number of samples 𝑛𝜒𝑚𝑖𝑛

Initialize 𝑆𝑡 := ∅, 𝑛 = 0, 𝑛𝜒 = 0, 𝑘 = 0, 𝛼 = 0

while (𝑛 < 𝑛𝜒 and 𝑛 < 𝑛𝜒𝑚𝑖𝑛
) do

// Resampling: Draw state from previous belief
Sample an index 𝑗 from the discrete distribution given by the weights in 𝑆𝑡−1
// Sampling: predict next state
Sample 𝑥𝑛𝑡 from 𝑝(𝑥𝑡|𝑥𝑡−1, 𝑢𝑡−1) with given 𝑥𝑗𝑡−1 and 𝑢𝑡−1
𝑤𝑛𝑡 ← 𝑝(𝑧𝑡|𝑥𝑛𝑡 )
𝛼← 𝛼 + 𝑤𝑛𝑡
𝑆𝑡 ← 𝑆𝑡 ∪ {(𝑥𝑛𝑡 , 𝑤𝑛𝑡 )}
if (𝑥𝑛𝑡 falls into empty bin 𝑏) then

𝑘 ← 𝑘 + 1
// Mark bin as non-empty
𝑏_ℎ𝑎𝑠_𝑠𝑎𝑚𝑝𝑙𝑒← 𝑇𝑟𝑢𝑒
if 𝑛 > 𝑛𝜒𝑚𝑖𝑛

then
// Update the number of desired samples
𝑛𝜒 ← 𝑘−1

2𝜀

(︁
1− 2

9(𝑘−1)

√︁
2

9(𝑘−1)𝑧1−𝛿
)︁3

end if
// Update number of generated samples
𝑛← 𝑛+ 1

end if
end while
// Normalize importance weights at the end
for 𝑖 = 1, ..., 𝑛 do

𝑤𝑖𝑡 ← 𝑤𝑖𝑡/𝛼
end for
return 𝑆𝑡

This work played an important role in the study of adaptive Monte Carlo Localization, as
it introduced the application of adaptive sample set sizes to the mobile robot self-localization
problem, presenting an analytical method for estimating the ideal number of particles and
adaptations of the original MCL algorithm for inserting this step.

3.2.2 Enhanced AMCL for Dynamic Featureless Environments

HE et al. (2023) presents a novel method for adapting the number of samples in an AMCL
algorithm. The method consists of three parts:

• Patrol Iterative Closest Point (ICP): matches real and virtual laser scans generated from
the map.

• Localization Confidence Estimation (LCE): estimates the localization confidence of the
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AMCL and Patrol ICP.

• Adaptive Particle Injector (API): calculates the number of particles that need to be
inserted into the AMCL.

The ICP is employed for minimizing the localization error by matching the scans of the
current position with a set of virtual measurements at the estimated localization of the robot
using a pre-built map of the environment. For obtaining the virtual scans, the algorithm draws
rays from the currently estimated robot pose covering a 270-degree range with a 0.375-degree
step, detecting up to 10 meters distant points.

According to the environment map and the currently estimated robot pose, the authors
propose evaluating the matching degree between measured and expected laser scan values
for estimating LCE. The detailed steps are described in Algorithm 6, showing that the ratio
between the number of matched and total points computes LCE.

Algorithm 6 Localization Confidence Estimation Algorithm
Require: pre-built map 𝑀 , laser scan reading 𝐹𝑡, search radius 𝑟, and 𝑠𝑡 representing esti-

mated localization at time 𝑡.
Ensure: 𝑠𝑖𝑧𝑒𝑜𝑓(𝐹𝑡) > 0 and 𝑀 ! = 𝑒𝑚𝑝𝑡𝑦()

Construct KD-tree to represent obstacle points of grid map 𝑀 . 𝐿𝐶𝐸 ← 0, 𝑁𝑡 ←
𝑠𝑖𝑧𝑒𝑜𝑓(𝐹𝑡), 𝑘 ← 0
Get 𝐹𝑡 by mapping the scan points 𝐹𝑡 at pose 𝑠𝑡 onto the grid map.
for 𝑖 < 𝑁𝑡 do

if 𝐹𝑡 has adjacent points within radius 𝑟 then
𝑘 ← 𝑘 + 1

end if
end for
𝐿𝐶𝐸 ← 𝑘

𝑁𝑡

return 𝐿𝐶𝐸

Thirdly, the API module computes the number of particles to be inserted or removed
based on the LCE scores of the pose calculated by Patrol ICP and the average weight of
AMCL particles, denoted as 𝑠1 and 𝑠2, respectively, an adjustable coefficient parameter 𝛼1,
and the angle between the ICP matching result and the AMCL estimated poses, referred to
as ℎ𝑒𝑎𝑑(𝑝𝐼𝐶𝑃 ,𝑝𝐴𝑀𝐶𝐿). The number of inserted particles at a given iteration is calculated by:

𝑁 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝛼1
(︁

1
1,001−𝑠1

− 1
1,001−𝑠2

)︁
if 𝑠1 > 𝑠2 and 𝑠1 ≥ 0.6

1 if 𝑠2 > 𝑠1 and 𝑠1 ≥ 0.6
0 if 𝑠1 < 0.6 or ℎ𝑒𝑎𝑑(𝑝𝐼𝐶𝑃 ,𝑝𝐴𝑀𝐶𝐿) > 90𝑜

(3.18)

The authors’ results show that the proposed method was able to overcome other adaptive
particle filters, being able to reduce localization drift in dynamic featureless environments. The
varied sample set sizes also decreases the occurrence of robot kidnapping. The LCE calculation
allows to fully exploit the information from measurements, increasing the localization accuracy,
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speeding up the convergence of AMCL, and also reducing the number of particles during
position tracking, demonstrating the method’s reliability in computing localization confidence.
However,𝑁𝑡 measurements are employed for computing the LCE, requiring several observations
at each update for achieving a reliable confidence measure. Such number of measurements
might not be feasible for a resource-constrained vision-based observation model, since each
measurement increases the system’s overall computation time.

3.3 RELATED WORK CONSIDERATIONS

In this Chapter, we depicted past work from RoboCup soccer leagues that present tech-
niques for improving the MCL algorithm’s robustness regarding imprecision and deviations in
measurements and movement estimations. However, these methods were designed to suit hu-
manoid and standard platform (NAO and AIBO) robot soccer environments, where matches
tend to be less dynamic and slower-paced compared to the SSL. Therefore, besides adapting
their solutions for the SSL robots and field characteristics, we also searched for methods to
increase the localization processing speed.

We reviewed two methods to reduce the computational complexity of the MCL algorithm
by adapting the number of particles of the distribution during its execution. These techniques,
also called Adaptive Monte Carlo Localization (AMCL), are based on the same idea: when the
robot’s localization is highly uncertain, a large number of samples is needed to find the correct
the robot state; in contrast, as the algorithm converges, more hypotheses are eliminated from
the search space, and less samples are needed to represent the robot’s belief. Thus, we take
insights from these work to accelerate the localization algorithm.

Table 1 summarizes the main contributions, characteristics, and limitations of the work
presented in this Chapter, highlighting their impacts to the methods implemented in this
thesis. We depict the robots utilized by the authors in their experiments, the environment on
which the solutions were evaluated, the key insights we took from their work for improving
our localization algorithm, and their drawbacks, i.e., the major limitations that restrains these
solutions to be directly employed at the RoboCup SSL environment. To review how these
methods compare to our work, Chapter 7 presents the key insights and drawbacks from this
research in Table 7.
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4 PROPOSED SELF-LOCALIZATION METHODOLOGY

This chapter presents the proposed methodology for addressing the mobile robot self-
localization problem in dynamic environments under hardware constrained platforms. The
Monte Carlo Localization (MCL) algorithm is employed due to its ability to deal with gener-
alized distributions, solving both global localization and position tracking problems. However,
for improving its efficiency, the number of particles is adapted during execution, as presented
in section 3.2, reducing the computational complexity during position tracking and enlarging
the search space for global localization. The set size varies based on the current quality of the
distribution, for which we propose a novel measure, computed by applying the measurement
model to the resulting MCL state, given by the weighted sum of the samples states, and
averaging it over multiple iterations, instead of calculating it based on several measurements
from a single iteration, as suggested by HE et al. (2023).

4.1 PROPOSED SELF-LOCALIZATION PIPELINE

Within the researches for building an autonomous SSL robot and previously to the work
presented in this thesis, we proposed an architecture for executing basic SSL soccer skills
autonomously without global localization knowledge (MELO et al., 2022). However, results from
experiments highlighted that this information might be the key for solving the main limitations
of the system. Therefore, we present an improved pipeline that integrates self-localization to
the autonomous robot functionalities, which is illustrated in Figure 8.

The architecture employs the robot’s odometry, computed from the wheels’ encoders and
gyroscope measurements (MELO et al., 2022), for implementing the MCL motion model, which
is used for propagating particles according to the robot’s movement. The measurements from
the environment are acquired by detecting the SSL field elements, namely the goal, field lines,
and field boundaries, using onboard vision. These information are fed into the self-localization
module, which regresses the robot’s pose over time and computes a measure of confidence on
this estimation. The outputs from self-localization and vision processing are employed by the
finite state machine (FSM) which, based on desired skill to be executed, or task to be solved,
makes decisions and sets the robot’s desired action. Lastly, navigation and control execute the
commanded action.

4.1.1 Embedded Vision

The architecture presented by MELO et al.(2022) employs a vision processing pipeline that
detects SSL goals, robots, and balls and estimates their relative positions based on their
projections on the ground (MELO; BARROS, 2023). In the SSL, three main classes of field
elements can be used as references for localization: goals, field markings (lines), and boundaries.
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Figure 8 – Proposed system architecture.

Robot

FINITE STATE
MACHINE

(Robot Skill)

Vision
Field Points
Goal
Ball
Robot

Self-Localization

Robot Pose &
Confidence

Navigation And Control

Odometry

Source: Author

Thus, we integrated field lines and boundaries detection into the vision processing pipeline,
resulting in the module illustrated in Figure 9, and employed the camera transformations
presented in section 2.2 for computing their relative positions.

Figure 9 – Onboard vision processing pipeline.
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Vision processing starts by detecting the objects 2D boxes on the current frame. Then,
grid lines on the image are defined, avoiding lines that intersect detected objects. Thirdly, the
grids are scanned for detecting points from the field lines and boundaries (RÖFER; JÜNGEL,
2004). In vision filtering, the bounding boxes and the field pixels are filtered for excluding false-
positives, and objects get represented by their ground-points, i.e., a pixel that approximates
the object’s bottom-center point. Finally, all ground-points have their relative (𝑥, 𝑦) positions
estimated using the camera transformations presented in section 2.2, by assuming they lay on
the ground.

4.1.2 Navigation and Control

This module is depicted in Figure 10, executing mainly motion control and odometry esti-
mation. It performs a loop that checks whether a new command was received from the FSM;
if yes, it updates the robot’s target destination and movement type that should be executed,
and resets the odometry displacement. If not, the robot’s pose is updated according to the
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odometry estimation, which is sent back to the self-localization module. Then, navigation
sets the movement that should be performed for reaching the desired target, which is turned
into velocity commands, controlled by the motion control. The robot’s movements are esti-
mated from the wheels’ encoders and IMU readings, computing the odometry, and closing the
module’s loop (MELO et al., 2022).

Figure 10 – Low-level control and trajectory estimation.
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4.1.3 Self-Localization

The proposed self-localization technique is based on the MCL algorithm. We initialize the
samples and compute their likelihoods based on the similarities between the robot measure-
ments from the environment and their expected values from each particle state. After normal-
izing the particles’ weights, resampling is performed if needed and the particles are propagated
based on the motion model using the odometry estimation. The resulting distribution is used
for approximating the robot’s current pose and the algorithm’s confidence.

Figure 11 – Schematic for MCL-based self-localization.
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4.2 MCL ENHANCEMENTS BASED ON ROBOCUP RESEARCHES

Section 3.1 presents how most RoboCup soccer leagues employ the MCL algorithm for
solving self-localization problems. Even though the solutions are based on straightforward
textbook implementations, the teams propose minor enhancements for the general algorithm,
increasing its capability to deal with erroneous measurements, inaccurate motion models, and
insufficient resamplings. This section details how we incorporated some of the enhancements
proposed by these researches in the original MCL algorithm.

4.2.1 Motion Model

The motion model from Algorithm 3, proposed by THRUN; BURGARD; FOX (2005), decom-
poses the robot’s translation in polar coordinates, i.e. distance and direction, and presents a
method for adding noises to the movement proportional to the distance traveled, the rotation
performed, and the amount of direction change. However, researches from RoboCup leagues
show that simpler models can be utilized, by adding deviations proportional to the (𝑥, 𝑦) move-
ments to the odometry’s translation. Therefore, our motion model follows the approaches from
RÖFER; JÜNGEL(2004) and RÖFER et al.(2019), and is described in Equation 4.1.

Firstly, 𝜃𝑡−1 refers to the orientation from the sample state 𝑥𝑡−1. Meanwhile, Δ̄𝑥, Δ̄𝑦, and
Δ̄𝜃 denote the measured motion from the odometry input 𝑢𝑡 regarding the local reference
frame. Next, the estimated movements are added to Gaussian noise, with zero mean and stan-
dard deviations proportional to the absolute value of the movement performed by adjustable
factors 𝛾 = (𝛾𝑥, 𝛾𝑦, 𝛾𝜃). The state 𝑥𝑡 is updated by rotating the movement to the global
reference frame and adding it to the previous 𝑥𝑡−1.

𝑥𝑡 = 𝑥𝑡−1 +

⎛⎜⎜⎜⎜⎝
𝑐𝑜𝑠(𝜃𝑡−1) −𝑠𝑖𝑛(𝜃𝑡−1) 0
𝑠𝑖𝑛(𝜃𝑡−1) 𝑐𝑜𝑠(𝜃𝑡−1) 0

0 0 1

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

Δ̄𝑥+𝒩 (0, 𝛾𝑥|Δ̄𝑥|)
Δ̄𝑦 +𝒩 (0, 𝛾𝑦|Δ̄𝑦|)
Δ̄𝜃 +𝒩 (0, 𝛾𝜃|Δ̄𝜃|)

⎞⎟⎟⎟⎟⎠ (4.1)

4.2.2 Measurement Model

In this work, measurements are acquired by distances of landmarks and lines on the soccer
field relative to the robot’s local reference frame. Since distance measurements are less accurate
for further points, we adopt a similar approach to LAUE; RÖFER (2007), which divides the errors
by the forward distance plus the camera height. Similarly, we assume the standard deviation
𝜎𝑑 to be proportional to the measured distance, which yields:

𝑝(𝑧𝑗𝑡 |𝑥𝑚𝑡 ) = 𝑒𝑥𝑝

⎡⎣−(𝑑𝑗 − 𝑑𝑚𝑗 )2

2𝜎2
𝑑

⎤⎦ = 𝑒𝑥𝑝

⎡⎢⎣−𝛼𝑑
⎛⎝1−

𝑑𝑚𝑗
𝑑𝑗

⎞⎠2
⎤⎥⎦ (4.2)
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where 𝑝(𝑧𝑗𝑡 |𝑥𝑚𝑡 ) expresses the likelihood of the m-th particle regarding the difference be-
tween the j-th distance measurement 𝑑𝑗 and its expected value 𝑑𝑚𝑗 , given the sample state
𝑥𝑚𝑡 . In practice, this method reduces the weight of further measurements to the distribution.
The 𝛼𝑑 factor is an adjustable parameter for weighting the impact of observations to the
distribution (RÖFER; JÜNGEL, 2004), which updates particles importance weights by:

𝑤𝑡 = 𝑤𝑡−1
∏︁
𝑗

𝑝(𝑧𝑗𝑡 |𝑥𝑚𝑡 ) (4.3)

4.2.3 Resampling

Researches comparing different resampling algorithms present conflicting and inconclusive
results, show that there is no best solution (ELFRING; TORTA; MOLENGRAFT, 2021). Therefore,
for this step, a systematic resampling was selected, mostly due to its reduced computational
complexity, however other popular schemes, such as multinomial resampling, residual resam-
pling, or stratified resampling, could be employed as well (LI; BOLIC; DJURIC, 2015).

The samples are selected based on the systematic resampling algorithm and locally moved
based on their importance weights (RÖFER; JÜNGEL, 2004). Less probable samples are moved
more, following the rule from Equation 3.7. The complete resampling process is shown in
Algorithm 7, on which 𝑊 and 𝑋 represent the weights and states of the proposal distribution,
𝑁 is the total number of particles, and 𝑟𝑛𝑑 expresses a function that samples a number
between -1 and 1 according to a uniform distribution. The 𝛿𝑡𝑟𝑎𝑛𝑠 and 𝛿𝑟𝑜𝑡 are parameters for
adjusting the pose deviation added to resampling.

Besides from choosing the resampling algorithm, it is also important to define when resam-
pling should be performed. A common approach is to resample at each time step, however,
this causes an increase in computational costs and may also lead to particles impoverishment,
i.e., samples getting concentrated in a small region (ELFRING; TORTA; MOLENGRAFT, 2021).
Thus, three conditions were defined for deciding if resampling is needed:

1. Samples weights’ sum is low (before normalization): occurs when all particles have low
likelihoods, which indicates degenerancy, i.e., the distribution may have converged to a
wrong region of the state space.

2. Confidence from total odometry motion since last resampling is low: odometry accumu-
lates errors over time and, without resampling, states are updated only by the motion
model. Thus, the confidence in this distribution drops the more the robot moves, requir-
ing resampling.

3. Confidence from a specific sample is high (after normalization): if one particle is assigned
with a high importance weight after normalization (which means other are low), that
sample is more likely to represent the true robot’s state, and resampling will reproduce
more particles in that region.
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Algorithm 7 Systematic Resampling with Motion Deviation
Require: 𝑊 = {𝑤𝑛𝑡 , 𝑛 = 1, 2, ..., 𝑁}, 𝑋 = {𝑥𝑛𝑡 , 𝑛 = 1, 2, ..., 𝑁}, 𝑁

Initialize: 𝜒𝑡 = ∅, 𝑛 = 0, 𝑚 = 0
𝑄 = cumulative_sum(𝑊 )
𝑢0 = (1/𝑁)× |𝑟𝑛𝑑|

while 𝑛 < 𝑁 do
𝑢 = 𝑢0 + 𝑛/𝑁
while 𝑄[𝑚] < 𝑢 do

𝑚 = 𝑚+ 1
end while

𝑥 = 𝑋[𝑚] + (1−𝑊 [𝑚])

⎛⎜⎜⎝
Δ𝑡𝑟𝑎𝑛𝑠 × 𝑟𝑛𝑑
Δ𝑡𝑟𝑎𝑛𝑠 × 𝑟𝑛𝑑
Δ𝑟𝑜𝑡 × 𝑟𝑛𝑑

⎞⎟⎟⎠
𝑤 = 𝑊 [𝑚]
𝜒𝑡 ← 𝜒𝑡 ∪ ⟨𝑥,𝑤⟩
𝑛 = 𝑛+ 1

end while

𝜒𝑡 ← normalize_weights(𝜒𝑡)
return 𝜒𝑡

4.2.4 Integrating Enhancements into MCL

The previous subsections show how the motion model, measurement model, and resampling
were enhanced for improving the MCL general algorithm. Algorithm 8 shows how these methods
were integrated into the MCL update step, on which 𝑋 and 𝑊 represent the particles’ states
and weights, 𝑀 is the number of samples, 𝑢 and 𝑧 are the current motion from odometry and
measurements from the environment, and Δ𝑑 maintains the cumulative distance traveled and
rotation performed since the last resampling.

It starts by initializing the weights’ sum 𝑊𝑠𝑢𝑚 = 0 and updating the displacement Δ𝑑.
Then, each sample has its state 𝑥𝑚 propagated according to the motion model from Equation
4.1, its likelihood 𝑝(𝑧|𝑥𝑚) computed using the measurement model 4.2, and importance weight
updated by 4.3, which gets added to the weights’ sum 𝑊𝑠𝑢𝑚. Consecutively, the weights 𝑊
are normalized by 𝑤𝑚 = 𝑤𝑚/𝑊𝑠𝑢𝑚, and, if one of the conditions for resampling is satisfied,
resampling is performed with Algorithm 3.7 and Δ𝑑 is reset to 0.

The presented enhancements improve the MCL robustness regarding deviations in sensor
measurements and odometry, however it still maintains a fixed number of samples, which
leaves room for improving the algorithm’s computational costs. In addition, no confidence,
or quality, evaluation metrics are presented in this method, which is a useful information not
only for adapting the number of particles, but also for making decisions or planning actions
(SEEKIRCHER; LAUE; RÖFER, 2011).
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Algorithm 8 Enhanced Monte Carlo Localization Update
Require: 𝑋 = {𝑥𝑚|𝑚 = 1, 2, ...,𝑀}, 𝑊 = {𝑤𝑚|𝑚 = 1, 2, ...,𝑀}, 𝑢, 𝑧, Δ𝑑

Initialize: 𝑊𝑠𝑢𝑚 = 0
Δ𝑑 = Δ𝑑+ |𝑢|
for 𝑚 = 1 to 𝑀 do

𝑋[𝑚] = sample_from_motion_model(𝑢, 𝑥𝑚)
𝑊 [𝑚] = 𝑤𝑚 ×measurement_model(𝑧,𝑋[𝑚])
𝑊𝑠𝑢𝑚 = 𝑊𝑠𝑢𝑚 +𝑊 [𝑚]

end for
𝑊 ← normalize_weights(𝑊 )
if needs_resampling(𝑊𝑠𝑢𝑚,max(𝑊 ),Δ𝑑) then
⟨𝑋,𝑊 ⟩ ← systematic_resampling(𝑋,𝑊,𝑀)
Reset Δ𝑑 = 0

end if
return 𝑋,𝑊

4.3 ADAPTING THE NUMBER OF PARTICLES

Section 3.2 reviews two methods of Adaptive Monte Carlo Localization (AMCL). The
first derives from a statistical analysis based on the number of bins needed for representing
the current distribution (FOX, 2003). The second adapts the number of particles based on
the Localization Confidence Estimation (LCE), a metric for evaluating the confidence of the
current distribution, computed by matching real and virtual laser scans (HE et al., 2023).
Differently from these two methods, in the Augmented MCL algorithm, reviewed in 2.3.4,
THRUN; BURGARD; FOX (2005) suggests that the quality of the distribution should be measured
over multiple steps and inserts samples randomly based on this metric, but keeps a fixed set
size.

In summary, these methods propose different approaches for addressing the same concept:
when confidence is low, the algorithm needs to perform global localization, thus the distribution
should be spread through a wider state space. However, the higher the confidence gets, MCL
tends to act as a position tracking, concentrating its particles in a narrower space, thus needing
less samples for representing the true posterior accurately.

In the next section, we propose a novel method for measuring the quality, or confidence, of
the MCL, which derives from measuring the likelihood of the resulting state from the weighted
average of the distribution and smoothing it over multiple steps. We also present how this
measure can be used for updating the number of particles and how they are inserted in the
distribution.

4.3.1 Confidence Estimation

The MCL algorithm estimates a distribution for approximating a PDF that represents the
robot’s belief 𝑏𝑒𝑙(𝑥𝑡). Therefore, a straightforward approach for guessing the robot’s true
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state is to compute the weighted average of the particles’ states, with weights given by their
normalized likelihoods. Some authors also propose splitting the distribution in clusters before
averaging (RÖFER; JÜNGEL, 2004).

No matter the methods, the particles represent multiple hypothesis of the robot’s state,
but the robot localization ends up being represented as a single state. Thus, as proposed by
HE et al. (2023), we wish to evaluate the quality of the MCL not by the distribution, but
by the resulting state. Also, as suggested by THRUN; BURGARD; FOX (2005), we smooth this
estimation through multiple time steps by updating it with a weighted average.

The key idea is to apply the measurement model, also called the observation model, to
the resulting state from the MCL, commonly given by the average state 𝑥𝑎𝑣𝑔𝑡 = ∑︀𝑀

𝑚 𝑤𝑚𝑡 𝑥
𝑚
𝑡 ,

acquiring its current likelihood 𝑤𝑎𝑣𝑔𝑡 = 𝑝(𝑧𝑡|𝑥𝑎𝑣𝑔𝑡 ). From now on, we shall refer to the pair
⟨𝑥𝑎𝑣𝑔𝑡 , 𝑤𝑎𝑣𝑔𝑡 ⟩ by average particle. Then, we update the quality measurement 𝑞𝑡 by the rule:

𝑞𝑡 = 𝛼𝑞𝑞𝑡 + (1− 𝛼𝑞)𝑤𝑎𝑣𝑔𝑡 , (4.4)

which we call Smooth Weighting of Average Particle Observations (SWAPO).

4.3.2 Set Size Adaptation

We perform a linear mapping for computing the desired set size 𝑀𝑑𝑒𝑠 based on the current
quality of the distribution 𝑞 through a 𝑚𝑎𝑝(𝑥) function that corresponds to:

𝑦 = 𝑚𝑎𝑝(𝑥, 𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥, 𝑦𝑚𝑖𝑛, 𝑦𝑚𝑎𝑥) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑦𝑚𝑎𝑥 if 𝑥 ≥ 𝑥𝑚𝑎𝑥

𝑦𝑚𝑖𝑛 if 𝑥 ≤ 𝑥𝑚𝑖𝑛

𝑦𝑚𝑖𝑛 + (𝑥−𝑥𝑚𝑖𝑛)(𝑦𝑚𝑎𝑥−𝑦𝑚𝑖𝑛)
𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛

otherwise

(4.5)

We omit the minimum and maximum parameters for simplicity, resulting in:

𝑀𝑑𝑒𝑠 = 𝑚𝑎𝑝(1− 𝑞) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑀𝑚𝑎𝑥 if 1− 𝑞 ≥ 𝑞𝑚𝑎𝑥

𝑀𝑚𝑖𝑛 if 1− 𝑞 ≤ 𝑞𝑚𝑖𝑛

𝑀𝑚𝑖𝑛 + ((1−𝑞)−𝑞𝑚𝑖𝑛)(𝑀𝑚𝑎𝑥−𝑀𝑚𝑖𝑛)
𝑞𝑚𝑎𝑥−𝑞𝑚𝑖𝑛

otherwise

(4.6)

which increases 𝑀𝑑𝑒𝑠 the higher the uncertainty 1− 𝑞 is. Also, a low confidence suggests
that global localization is needed and samples should be spread through a broader state space.
Therefore, we also adjust the deviations Δ𝑡𝑟𝑎𝑛𝑠 and Δ𝑟𝑜𝑡, presented in Algorithm 7, in the
resampling step according to the current confidence 𝑞:

Δ𝑑𝑒𝑠 = 𝑚𝑎𝑝(1− 𝑞) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Δ𝑚𝑎𝑥 if 1− 𝑞 ≥ 𝑞𝑚𝑎𝑥

Δ𝑚𝑖𝑛 if 1− 𝑞 ≤ 𝑞𝑚𝑖𝑛

Δ𝑚𝑖𝑛 + ((1−𝑞)−𝑞𝑚𝑖𝑛)(Δ𝑚𝑎𝑥−Δ𝑚𝑖𝑛)
𝑞𝑚𝑎𝑥−𝑞𝑚𝑖𝑛

otherwise

(4.7)
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Equation 4.6 determines the number of desired samples, but the real size of the distribution
is only updated if resampling is performed. Thus, a new condition for resampling was added,
by checking if the current 𝑀 and desired 𝑀𝑑𝑒𝑠 number of particles differ for more than a
threshold: Δ𝑀 = |𝑀 −𝑀𝑑𝑒𝑠| > Δ𝑀𝑚𝑎𝑥.

4.3.3 Adaptive MCL through SWAPO

We insert the confidence estimation step after weights normalization, since SWAPO is
computed from the Average Particle. Also, the desired number of particles should be updated
before resampling, since it derives a condition for performing resample. Therefore, Algorithm 9
presents how these features are integrated into the previously enhanced MCL algorithm. Note
that the 𝑞 value from the previous step is required now, and that different values for Δ𝑚𝑎𝑥

and Δ𝑚𝑖𝑛 should be chosen for rotation and translation.

Algorithm 9 Adaptive Monte Carlo Localization through SWAPO
Require: 𝑋 = {𝑥𝑚|𝑚 = 1, 2, ...,𝑀}, 𝑊 = {𝑤𝑚|𝑚 = 1, 2, ...,𝑀}, 𝑢, 𝑧, Δ𝑑, 𝑞

1:
2: //Initialize weights’ sum and integrate odometry displacement:
3: 𝑊𝑠𝑢𝑚 = 0
4: Δ𝑑 = Δ𝑑+ |𝑢|
5:
6: //Propagate particles and compute importance weights:
7: for 𝑚 = 1 to 𝑀 do
8: 𝑋[𝑚]← sample_from_motion_model(𝑢, 𝑥𝑚) ◁ Equation 4.1
9: 𝑊 [𝑚]← 𝑤𝑚 ×measurement_model(𝑧,𝑋[𝑚]) ◁ Equation 4.2

10: 𝑊𝑠𝑢𝑚 = 𝑊𝑠𝑢𝑚 +𝑊 [𝑚]
11: end for
12: //Update weights:
13: 𝑊 ← normalize_weights(𝑊 )
14:
15: //Update confidence and number of particles from SWAPO:
16: 𝑥𝑎𝑣𝑔 = ∑︀𝑀

𝑚 𝑊 [𝑚]𝑋[𝑚]
17: 𝑤𝑎𝑣𝑔 ← measurement_model(𝑧, 𝑥𝑎𝑣𝑔) ◁ Equation 4.2
18: 𝑞 = 𝛼𝑞𝑞 + (1− 𝛼𝑞)𝑤𝑎𝑣𝑔 ◁ Equation 4.4
19: 𝑀𝑑𝑒𝑠 ← 𝑚𝑎𝑝(1− 𝑞, 𝑞𝑚𝑖𝑛, 𝑞𝑚𝑎𝑥,𝑀𝑚𝑖𝑛,𝑀𝑚𝑎𝑥) ◁ Equation 4.6
20: Δ𝑀 = |𝑀 −𝑀𝑑𝑒𝑠|
21:
22: //Resample if needed :
23: if needs_resampling(𝑊𝑠𝑢𝑚,max(𝑊 ),Δ𝑑,Δ𝑀) then
24: Δ𝑡𝑟𝑎𝑛𝑠 ← 𝑚𝑎𝑝(1− 𝑞, 𝑞𝑚𝑖𝑛, 𝑞𝑚𝑎𝑥,Δ𝑡𝑟𝑎𝑛𝑠

𝑚𝑖𝑛 ,Δ𝑡𝑟𝑎𝑛𝑠
𝑚𝑎𝑥 ) ◁ Equation 4.7

25: Δ𝑟𝑜𝑡 ← 𝑚𝑎𝑝(1− 𝑞, 𝑞𝑚𝑖𝑛, 𝑞𝑚𝑎𝑥,Δ𝑟𝑜𝑡
𝑚𝑖𝑛,Δ𝑟𝑜𝑡

𝑚𝑎𝑥) ◁ Equation 4.7
26: ⟨𝑋,𝑊 ⟩ ← systematic_resampling(𝑋,𝑊,𝑀𝑑𝑒𝑠𝑖𝑟𝑒𝑑,Δ𝑡𝑟𝑎𝑛𝑠,Δ𝑟𝑜𝑡) ◁ Algorithm 7
27: Reset Δ𝑑 = 0
28: end if
29: return 𝑋,𝑊
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In Algorithm 9, 𝑋 and 𝑊 account for the samples states and weights, 𝑢 and Δ𝑑 are the
current and accumulated motion estimated from the odometry, 𝑧 are the current measure-
ments, and 𝑞 is the current localization confidence. The proposed method starts by initializing
the weights’ sum with 0 (line 3) and adding the current odometry to the accumulated dis-
placement (line 4). Then, the particles are moved according to the motion model 4.1 based on
the current odometry 𝑢 (line 8), their similarities are computed from the measurement model
4.2 (line 9), and added to the weights’ sum (line 10). This process is repeated for all samples
and, at the end, their weights are updated by normalized values (line 13).

The so-called Average Particle is computed by the weighted average from the MCL samples
(line 16) and its similarity is estimated by the measurement model (line 17). The localization
confidence 𝑞 is updated using 4.4 (line 18) and the number of desired particles is computed by
a 𝑚𝑎𝑝 function 4.6 (line 19). Finally, the absolute difference between the current and desired
number of particles is calculated (line 20) for checking resampling conditions.

Besides the resampling conditions presented in section 4.2.3, we also check whether the
Δ𝑀 difference is larger than a threshold (line 23). If any of the conditions is satisfied, Δ𝑡𝑟𝑎𝑛𝑠

and Δ𝑟𝑜𝑡 are updated according to the current localization confidence, i.e., the higher the
confidence is, the more these values decrease, generating tighter poses in the resampling 4.7
(lines 24 and 25). Then, systematic resampling is performed using Algorithm 7 (line 26),
generating a new set for representing the distribution, adapting the number of particles and
their scattering in the states’ space. After resampling, the accumulated odometry displacement
is reset (line 27) and the algorithm returns the new set of samples and weights (line 29).

With this approach, the algorithm is able to reduce its computational complexity during
position tracking, due to the reduced number of samples. Meanwhile, the adaptive deviations
during resampling allows to enlarge the search space in case of low confidence, recovering from
localization losses once they are detected by the quality measure.

Based on Algorithm 9 we add a step to the schematic presented in Figure 11, which includes
updating the localization confidence and the desired number of particles for representing the
distribution. The resulting schematic is shown in Figure 12, highlighting the new block in red.
Note that, the number of particles that should be drawn from the distribution is estimated
before the resampling step occurs.

Figure 12 – Schematic for MCL-based self-localization with confidence estimation and adaptive set sizes.
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5 METHODOLOGY IMPLEMENTATION

The proposed methods were designed to solve the mobile robot self-localization problem
under hardware-constrained scenarios in dynamic environments, which require fast and efficient
solutions. Thus, the techniques must be evaluated not only regarding their accuracy and
robustness towards the localization problem, but also by their computational costs running in
an embedded device.

Following the motivations that led to this research, the techniques were implemented and
evaluated within the RoboCup Small Size League (SSL) environment, addressing the self-
localization problem for a four-wheeled omnidirectional robot inside an SSL soccer field with
reduced dimensions. The hardware and software architectures employed for evaluation were
based on previous work that intend to develop a fully autonomous SSL robot (MELO et al.,
2022). We utilize their proposed solutions for odometry estimation and objects detection
(MELO; BARROS, 2023) for compounding the self-localization algorithm, while also integrating
this new capability to their functional pipeline.

Our self-localization algorithm relies on previous knowledge of the map, i.e., the robot’s
operational environment, which in our application corresponds to the SSL soccer field. We
shall present the main characteristics of this environment, such as dimensions, features, and
landmarks, based on the most recent rules from the RoboCup SSL competition (SMALL SIZE

LEAGUE TECHNICAL COMMITTEE, 2022b).
In the SSL, three main classes of field elements can be used as references for localization:

goals, field markings (lines), and boundaries. The first are already detected by the previously
mentioned objects detection approach (MELO; BARROS, 2023). Therefore, techniques for de-
tecting the remaining elements also needed to be developed for acquiring measurements from
the environment.

Before deploying the self-localization algorithm to the target device, it is important to run
offline tests with onboard-recorded data for adjusting parameters and observing behaviours.
Thus, we generated a dataset with multiple paths and scenarios, containing all the neces-
sary data for testing and evaluating self-localization and tracking algorithms under various
conditions.

The following section presents the characteristics of the SSL environment, on which the
self-localization approach was evaluated, followed by a brief review from the complete robot
architecture presented by MELO et al. (2022), highlighting their hardware specifications, since it
shall be employed throughout this thesis. Then, an approach for detecting the soccer field lines
and boundaries is explained. Afterwards, the process of data recording is described. Finally, we
explain how the proposed self-localization algorithm was implemented based on the available
data and the proposed techniques.
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5.1 ROBOT ARCHITECTURE AND SPECIFICATIONS

A complete architecture for executing basic soccer skills autonomously in the SSL was
introduced in recent work (MELO et al., 2022). The experiments evaluated the proposed system
within three tasks, namely grabbing a ball, scoring on an empty goal, and passing the ball to
another robot, achieving high success rates.

Figure 13 – SSL Robot with onboard vision module.
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The system’s main hardware specifications are summarized in Table 2 and illustrated in
Figure 13. A 4GB NVIDIA Jetson Nano, containing a CPU and a GPU, is employed for process-
ing embedded vision and decision-making, achieving an average processing speed of 30 frames
per second with 10.8 Watts power consumption. Onboard images are captured by a Logitech
C922 monocular camera with a 640x480 resolution. An ARM Cortex-M7 microcontroller unit
(MCU), namely STM32F767ZI, processes low-level control and odometry, which movements
are estimated from 2-channel 1024 steps incremental encoders and an MPU-60X0 family In-
ertial Measurement Unit (IMU). The CPU and MCU communicate through User Datagram
Protocol (UDP) socket packets for guaranteeing low latency (CAVALCANTI; JOAQUIM; BARROS,
2022).

Their functional pipeline can be summarized in four modules, where the first two are
executed by the Jetson Nano’s CPU and GPU, and the remaining by the MCU:

1. Objects Detection and Position Estimation: balls, robots, and goals have their 2D bound-
ing boxes detected by a CNN-based technique, and their relative positions are estimated
utilizing the camera’s intrinsic and extrinsic parameters regarding the robot axis (MELO;

BARROS, 2023).
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Table 2 – Hardware Specifications.

Hardware Specifications
CPU Quad-core ARM A57 @ 1.43 GHz
GPU 128-core Maxwell
MCU STM32F767ZI

Camera Logitech C922
IMU MPU-6050

Encoders MILE 1024 CPT
Motors Maxon EC-45 flat - 50W
Battery LiPo 2200mah 4S 35C

Source: (MELO et al., 2022)

2. Decision-Making: Finite State Machines (FSM) are designed for solving the desired tasks,
based mainly on the objects’ relative positions, setting a target destination, a movement
type, and action commands, such as kicking the ball.

3. Embedded Navigation: defines three types of movements, designed for performing rota-
tions around the robot’s axis, rotating around a target point (usually a detected object),
and performing linear movements towards a target destination.

4. Trajectory Estimation: wheels’ encoders and gyroscope readings are employed for esti-
mating the robot’s odometry. The angular movement is calculated by periodically inte-
grating angular speed from the gyroscope, while translational movements are computed
from the wheels’ speeds applied to the robot’s kinematics model.

Note that the soccer skills were implemented without global localization knowledge. How-
ever, more detailed analysis from experiments highlighted the importance of this information
for surpassing the main limitations of the proposed system, pointed as: planning more efficient
paths, discarding out-of-field information, avoiding entering in the defender area, and making
more efficient field explorations.

The proposed methods from this thesis were implemented employing the hardware pre-
sented by MELO et al. (2022), which have shown to suit the problem of developing an au-
tonomous robot for implementing SSL basic skills. As presented in section 4.1, we integrate
the self-localization algorithm as a new module to the system and evaluate its performance
regarding processing speed and localization accuracy.

5.2 THE SSL ENVIRONMENT

The Small Size League is divided into two divisions with separate tournaments, namely
division A and division B, on which games are played between two teams of 11 and 6 robots,
respectively. Both divisions employ fields and robots with the same general characteristics,
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Figure 14 – SSL field dimensions (in mm) and markings for division B.
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except that division A adopts higher field dimensions, due to the increased number of robots.
Thus, for simplicity, we present the field characteristics based on division B, which we shall
refer to as SSL-B from now on.

Figure 14 illustrates the SSL-B environment dimensions, borders, markings, and goals. The
field is fit into a 10.4 meters times 7.4 meters green carpeted surface with a playing area of
9 meters times 6 meters. The robots’ area continues from the playing area for 0.3 meters,
referred to as field margins, delimited by the so-called field boundaries, or borders, which are
barred by 0.1 meters tall black walls. The field markings are made of 0.01 meters wide and
white (paint, spray, white carpet or strong tape) lines. Lastly, the goals consist of two 0.16
meters high vertical side white walls joined at the back by a 0.16 meters high vertical rear
white wall, as shown in 15.

For computing the robot’s localization, we adopt the same coordinates system from the
SSL-Vision software (ZICKLER et al., 2010), which defines the positive x-axis pointed to the
right, the positive y-axis to the top, and the positive z-axis upward the ground plane, with the
origin at the field’s center, which yields that points of the ground correspond to the 𝑍 = 0
plane.
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Figure 15 – Top-view of SSL goal dimensions (in mm) for division B. All walls are white.

Source: (SMALL SIZE LEAGUE TECHNICAL COMMITTEE, 2022b)

5.3 DATA RECORDING

Due to the unavailability of a complete SSL-B field, the experiments were conducted
within a 6m x 4.5m area, configured as positive-half SSL field, which dimensions are detailed
in Figure 17. We generated a dataset containing onboard-recorded images and odometry data,
acquired with the hardware presented in section 5.1, and ground-truth positions, acquired by
SSL-Vision (ZICKLER et al., 2010). Figure 16 illustrates the environment employed throughout
the recordings.

Figure 16 – Recordings environment with a 6m x 4.5m SSL field.
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Figure 18 illustrates examples of images from the dataset, which corresponding ground-
truth positions and odometry data are saved in CSV files. We split the dataset into three types
of paths: squared (sqr), random (rnd), and in-game situations (igs). For each path type, we set
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Figure 17 – Reduced positive-half field dimensions in millimeters.
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the robot’s maximum speed to 1 (labeled as 01), 1.5 (02), and 2 m/s (03), resulting in nine
scenarios with different average speeds, duration, and odometry accuracies. Table 3 depicts
the dataset characteristics for each scenario, containing their durations, average translational
and rotational velocities of the robot over the trajectory, average frame capture rates and the
odometry’s Root Mean Square Error (RMSE), which is used for composing the MCL algorithm.

Squared Paths. The robot performs three laps of 5m x 2.5m rectangular paths in this
scenario, mainly with forward and clockwise rotational moves. As a result, the robot rarely
sees or detects the goal during the trajectories, and reaches higher velocities due to distances
between points being further.

Random Paths. The robot navigates through 25 random poses on the field, combining
linear and angular movements. At the start, the robot looks towards the goal, allowing for
corrections of mirrored pose estimations. In contrast, inertial odometry tracking accumulates
more errors, due to the longer durations and the combinations of translation and rotational
movements.

In-Game Situation Paths. This scenario reproduces a similar robot soccer game situation
to the Vision Blackout challenge stage II: scoring on an empty goal. The robot is positioned
at the field’s corner, and the ball in the opposite half. In this scenario, three movements are
executed: rotating on its axis to look towards the ball, moving to the goal-to-ball line projection
looking towards the ball, and moving forward to kick it to the goal.
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Table 3 – Dataset Characteristics.

Name Duration
(s)

Avg. Trans.
Vel. (m/s)

Avg. Rot.
Vel. (deg/s)

FPS
(Hz)

Odometry
RMSE

sqr_01 97.295 0.469 0.250 22.22 0.472
sqr_02 81.378 0.567 0.290 22.05 0.468
sqr_03 70.989 0.662 0.342 20.66 1.245

rnd_01 114.211 0.423 0.367 21.27 0.476
rnd_02 101.969 0.531 0.456 19.94 0.945
rnd_03 95.123 0.589 0.464 21.10 0.911

igs_01 25.402 0.325 0.268 21.37 0.284
igs_02 25.099 0.395 0.255 21.87 0.420
igs_03 25.333 0.382 0.274 21.59 0.258

Source: Author

Figure 18 – Images from the onboard-recorded dataset in three different scenarios.

(a) rnd_01. (b) sqr_02. (c) igs_03. (d) igs_03.

Source: Author

5.4 DETECTING FIELD LINES AND BOUNDARIES

In the SSL, three main classes of field elements can be used as references for localization:
goals, field markings (lines), and boundaries. Goals can be detected using the approach from
(MELO; BARROS, 2023). Thus, we implemented approaches for detecting field lines and bound-
aries using adaptations of grid-based line detection techniques from other RoboCup Leagues
(RÖFER; JÜNGEL, 2004; RÖFER et al., 2019), and their processing times were evaluated running
on the Jetson Nano.

5.4.1 Grid-based Line Detection

Past researches in the RoboCup showed that extracting pixels on lines instead of detecting
complete lines is a faster and more robust approach, due to the robot soccer dynamism, which
often causes lines to be partially covered by other robots or limited by the camera’s field of
view (RÖFER; JÜNGEL, 2004).

This approach sets vertical and horizontal lines in the image and performs pixel-by-pixel
color segmentation along them. Then, a state machine decides whether objects of interest exist,
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or not, inside the segmented line, mostly by counting the number of pixels of certain colors, or
the number of pixels since a certain color was detected last. For reducing computational costs,
we adopt only vertical line scans and color segmentation is realized by setting thresholds that
decide whether a pixel is black, white, green, or none of them.

5.4.2 Field Boundaries Detection

Field boundaries, or borders, are 0.1 meters tall black walls upon the green carpeted field.
Therefore, a straight forward approach is to look for a sequence of black pixels after a green-to-
black transition. The first pixel corresponds to the point the border touches the floor, i.e. with
𝑍 = 0, which we shall refer to as field boundary ground-point. We can estimate its relative
position to the onboard camera and, consequently, to the robot, with the camera intrinsic and
extrinsic parameters employing the formulations presented in 2.2.

Algorithm 10 presents our solution for detecting the field boundary ground-point within
a vertical line of the image. A bottom-up scan is performed, making color segmentation and
checking whether a black pixel exists; if yes, we check if a number of subsequent pixels, defined
as 𝑚𝑖𝑛_𝑤𝑎𝑙𝑙_𝑙𝑒𝑛𝑔𝑡ℎ, are also black, and if yes, the first pixel of the sequence is taken as
our desired ground-point. Figure 19 illustrates the resulting frame after performing multiple
vertical line scans, highlighting boundary points with red cross marks.

Algorithm 10 Field Boundary Detection
Require: 𝑖𝑚𝑔, 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙_𝑙𝑖𝑛𝑒𝑠, and 𝑚𝑖𝑛_𝑤𝑎𝑙𝑙_𝑙𝑒𝑛𝑔𝑡ℎ

Initialize: 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦_𝑝𝑖𝑥𝑒𝑙𝑠 = ∅
for 𝑙𝑖𝑛𝑒𝑥 in 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙_𝑙𝑖𝑛𝑒𝑠 do

𝑤𝑎𝑙𝑙_𝑝𝑖𝑥𝑒𝑙𝑠 = ∅
𝑝𝑖𝑥𝑒𝑙𝑦 = 𝑖𝑚𝑔ℎ𝑒𝑖𝑔ℎ𝑡 − 1
while 𝑝𝑖𝑥𝑒𝑙𝑦 > 0 do

𝑝𝑖𝑥𝑒𝑙← 𝑖𝑚𝑔[𝑝𝑖𝑥𝑒𝑙𝑦, 𝑙𝑖𝑛𝑒𝑥]
if 𝑠𝑖𝑧𝑒𝑜𝑓(𝑤𝑎𝑙𝑙_𝑝𝑖𝑥𝑒𝑙𝑠) > 𝑚𝑖𝑛_𝑤𝑎𝑙𝑙_𝑙𝑒𝑛𝑔𝑡ℎ then

𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦_𝑝𝑖𝑥𝑒𝑙𝑠 ∪ 𝑤𝑎𝑙𝑙_𝑝𝑖𝑥𝑒𝑙𝑠[0]
else

if 𝑖𝑠𝐵𝑙𝑎𝑐𝑘(𝑝𝑖𝑥𝑒𝑙) then
𝑤𝑎𝑙𝑙_𝑝𝑜𝑖𝑛𝑡𝑠 ∪ 𝑝𝑖𝑥𝑒𝑙

else
𝑤𝑎𝑙𝑙_𝑝𝑖𝑥𝑒𝑙𝑠 = ∅

end if
end if
𝑝𝑖𝑥𝑒𝑙𝑦 ← 𝑝𝑖𝑥𝑒𝑙𝑦 − 1

end while
end for
return 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦_𝑝𝑖𝑥𝑒𝑙𝑠
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Figure 19 – SSL field boundary detection.

Source: Author

5.4.3 Field Markings Detection

Detecting field markings, which consist of 0.01 meters wide and white (paint, spray, white
carpet or strong tape) lines, is a more challenging task in the SSL, due to their thin widths
and the robot’s low height. Therefore, a robust approach for detecting these elements requires
more elaborate conditions after color segmentation. Once they are detected, their relative
positions can also be estimated since they lay on the ground.

An approach for detecting field markings in vertical line scans is depicted in Algorithm 11.
It scans the vertical line from bottom to top classifying the pixels’ colors. While a black pixel is
not found, it checks if the current pixel is white; if yes, it starts appending the following pixels
to a 𝑓𝑖𝑒𝑙𝑑_𝑙𝑖𝑛𝑒 list. When a green pixel is detected, it checks whether the list size satisfies
the 𝑚𝑖𝑛_𝑙𝑒𝑛𝑔𝑡ℎ and 𝑚𝑎𝑥_𝑙𝑒𝑛𝑔𝑡ℎ conditions; if yes, the mean pixel from the list is taken for
representing that line’s point and the list is reset.

Figure 20 illustrates the presented technique applied to two different frames, with detected
field markings highlighted by red cross marks. In the first, we see a successful utilization of
the algorithm, on which the detected points correspond to true marking of the field. However,
in the second image we note that several field (green) pixels were classified as markings
(white), highlighting the limitations of a simple threshold-based color segmentation, which is
prone to false classifications when the illumination changes. Also, when compared to the field
boundary detection, Algorithm 11 presents a higher computational cost. We shall evaluate and
compare their performances regarding processing time, which led to not using field markings
as references for localization.

5.4.4 Practical Considerations

The camera transformations from 5.4 can be applied to the detected field points for
computing their relative positions to the robot, by using the prior knowledge that they lay on
the ground, which implies 𝑍 = 0. However, as we shall present in the following chapter, the
results from field markings detection were not fast and reliable enough for it to be employed
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Figure 20 – Field lines detection.

(a) Successful line detection.

(b) Erroneous line detection.

Source: Author

in self-localization.
For minimizing the computation costs, only a single vertical scan line was employed for ac-

quiring measurements, performing the presented boundary detection technique. For increasing
the information gain, the line’s position on the screen was randomly changed at each iteration,
excluding positions inside detected objects’ bounding boxes.
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Algorithm 11 Field Markings Detection
Require: 𝑖𝑚𝑔, 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙_𝑙𝑖𝑛𝑒𝑠, 𝑚𝑖𝑛_𝑙𝑒𝑛𝑔𝑡ℎ, and 𝑚𝑎𝑥_𝑙𝑒𝑛𝑔𝑡ℎ

Initialize: 𝑙𝑖𝑛𝑒_𝑝𝑖𝑥𝑒𝑙𝑠 = ∅
for 𝑙𝑖𝑛𝑒𝑥 in 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙_𝑙𝑖𝑛𝑒𝑠 do

𝑖𝑠_𝑓𝑖𝑒𝑙𝑑_𝑙𝑖𝑛𝑒 = 𝑓𝑎𝑙𝑠𝑒
𝑤ℎ𝑖𝑡𝑒_𝑝𝑖𝑥𝑒𝑙𝑠 = ∅
𝑝𝑖𝑥𝑒𝑙𝑦 = 𝑖𝑚𝑔ℎ𝑒𝑖𝑔ℎ𝑡 − 1
while 𝑝𝑖𝑥𝑒𝑙𝑦 > 0 do

𝑝𝑖𝑥𝑒𝑙← 𝑖𝑚𝑔[𝑝𝑖𝑥𝑒𝑙𝑦, 𝑙𝑖𝑛𝑒𝑥]
if 𝑖𝑠𝐵𝑙𝑎𝑐𝑘(𝑝𝑖𝑥𝑒𝑙) then

𝑤ℎ𝑖𝑡𝑒_𝑝𝑖𝑥𝑒𝑙𝑠 = ∅
𝑏𝑟𝑒𝑎𝑘

else
if !𝑖𝑠𝐺𝑟𝑒𝑒𝑛(𝑝𝑖𝑥𝑒𝑙) and 𝑖𝑠_𝑓𝑖𝑒𝑙𝑑_𝑙𝑖𝑛𝑒 then

𝑖𝑠_𝑓𝑖𝑒𝑙𝑑_𝑙𝑖𝑛𝑒 = 𝑡𝑟𝑢𝑒
else

if 𝑖𝑠𝐺𝑟𝑒𝑒𝑛(𝑝𝑖𝑥𝑒𝑙) and 𝑖𝑠_𝑓𝑖𝑒𝑙𝑑_𝑙𝑖𝑛𝑒 then
𝑖𝑠_𝑓𝑖𝑒𝑙𝑑_𝑙𝑖𝑛𝑒 = 𝑓𝑎𝑙𝑠𝑒
if 𝑚𝑖𝑛_𝑙𝑒𝑛𝑔𝑡ℎ ≤ 𝑠𝑖𝑧𝑒𝑜𝑓(𝑤ℎ𝑖𝑡𝑒_𝑝𝑖𝑥𝑒𝑙𝑠) ≤ 𝑚𝑎𝑥_𝑙𝑒𝑛𝑔𝑡ℎ then

𝑚𝑒𝑎𝑛_𝑤ℎ𝑖𝑡𝑒_𝑝𝑖𝑥𝑒𝑙← 𝑚𝑒𝑎𝑛(𝑤ℎ𝑖𝑡𝑒_𝑝𝑖𝑥𝑒𝑙𝑠)
𝑙𝑖𝑛𝑒_𝑝𝑖𝑥𝑒𝑙𝑠 ∪𝑚𝑒𝑎𝑛_𝑤ℎ𝑖𝑡𝑒_𝑝𝑖𝑥𝑒𝑙

end if
𝑤ℎ𝑖𝑡𝑒_𝑝𝑖𝑥𝑒𝑙𝑠← ∅

end if
end if
if 𝑖𝑠_𝑓𝑖𝑒𝑙𝑑_𝑙𝑖𝑛𝑒 then

𝑤ℎ𝑖𝑡𝑒_𝑝𝑖𝑥𝑒𝑙𝑠 ∪ 𝑝𝑖𝑥𝑒𝑙
end if

end if
end while

end for
return 𝑙𝑖𝑛𝑒_𝑝𝑖𝑥𝑒𝑙𝑠

5.5 PROPOSED METHOD IMPLEMENTATION

The proposed methods from chapter 4 contain several adjustable parameters that must be
set before deployment. Also, for implementing an MCL algorithm two models are required:

• Motion model: describes how the state evolves, based on the robot’s movement.

• Measurement model: estimates the sample likelihood, based on the current robot mea-
surement and its expected value given the particle state.
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5.5.1 Motion Model

The first follows the implementation from section 4.2.1, employing the odometry acquired
from the architecture presented by MELO et al.(2022), which computes the robot’s translational
movement from the wheels’ speeds using forward kinematics, as explained in section 2.1, and
estimates rotations from the gyroscope measurements.

5.5.2 Measurement Model

From the outputs of our vision processing pipeline we define measurement models for two
types of observations: goals and boundary points. Boundaries can be seen from almost any
location on the field and provide information about both Cartesian directions; however, the field
is symmetric regarding them, which may cause mirrored pose estimations. On the other hand,
goals are rarely seen from the robot’s perspective but give orientation information, enabling
to correct mirroring issues on a half-field setup, however, their computed relative positions
are only rough estimates, since they can not be retrieved correctly from the 2D bounding
box. Figure 21 illustrates a resulting frame after vision processing is applied, highlighting the
detected goal’s bounding box and the detected boundary point.

Figure 21 – Observations with onboard vision on a SSL field for a MCL algorithm.

(a) Resulting frame after vision processing. (b) Robot and particle visions.
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Source: Author

Boundary Points Observation. Field boundary XY relative coordinates to the robot are
computed using camera parameters by assuming they lay on the ground and converted to
relative distance, 𝑑, and bearing, 𝜓. For each of the 𝑀 samples, the expected distance 𝑑𝑚 is
computed by projecting a line from its position towards the measured 𝜓 direction, and finding
the first intersection with a field border, as shown in Figure 21. Similarities are computed from
the measurement model presented in section 4.2 using Equation 4.2, simplified as:

𝑝(𝑧𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦𝑡 |𝑥𝑚𝑡 ) = 𝑒𝑥𝑝

⎡⎢⎣−𝛼𝑑
⎛⎝1− 𝑑𝑚

𝑑

⎞⎠2
⎤⎥⎦ (5.1)
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Goal Observation. As the goals’ 2D bounding boxes do not provide enough information
for estimating their relative positions accurately, we express similarities from goal observations
as booleans, i.e., 1 or 0. The particle’s vision field-of-view is projected onto the field, as in
Figure 21, determining whether a goal is inside its vision range. If the robot detects a goal and
the particle’s vision does not cover it, the similarity is set to 0; otherwise, it is 1. This logic in
summarized by the truth table 4, on which the first columns represents if a goal was detected
or not by the robot’s vision, and the "Particle" column expresses if the sample’s field-of-view
covers the goal or not.

Table 4 – Truth Table for Goal Observations.

Robot Particle 𝑝(𝑧𝑔𝑜𝑎𝑙𝑡 |𝑥𝑚𝑡 )
0 0 1
0 1 1
1 0 0
1 1 1

Source: Author

Computing Likelihoods. The sample likelihood is expressed by the product of boundary
and goal observations, and the importance weights are updated by Equation 4.3, resulting in:

𝑤𝑚𝑡 = 𝑤𝑚𝑡−1𝑝(𝑧
𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦
𝑡 |𝑥𝑚𝑡 )𝑝(𝑧𝑔𝑜𝑎𝑙𝑡 |𝑥𝑚𝑡 ) (5.2)

5.6 ALGORITHM IMPLEMENTATION

We applied the motion and measurement models to algorithms 8 and 9, implementing them
as Python scripts. The methods were first run on an AMD Ryzen 5 4500 CPU, containing 6
CPU cores at 2.3GHz, employing the rSoccer framework for visualizing the robot, particles,
and odometry positions (MARTINS et al., 2022). Figure 22 illustrates self-localization being
performed on the igs_03 scenario from the recorded dataset. The green-background area
corresponds to the valid positions of the SSL field from the dataset, and blue, yellow, and
red circles correspond to the particles, the average particle, and the odometry, respectively,
while the robot with colored patterns on the top represents the ground-truth robot position.
This visualization allows to observe the particles’ behaviours and how they are affected by the
parameters of the algorithm, thus, facilitating their fine-tuning process before deploying the
algorithm to the robot hardware.

After the algorithms’ were validated and parameters were adjusted, the methods were
run on the 4GB NVIDIA Jetson Nano, the target hardware of our application, using the pre-
sented dataset. We evaluate the complete system’s processing time with and without adapting
the sample set sizes of the MCL, showing that the second approach drastically reduces the
computational costs of the algorithm without losing its accuracy.
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Figure 22 – Proposed method behaviour visualization in rSoccer (MARTINS et al., 2022).

Source: Author
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6 EXPERIMENTS AND RESULTS

This chapter aims to validate our proposed self-localization solution. Experiments were
conducted employing the onboard recorded data and evaluated running on the hardware pre-
sented in sections 5.3 and 5.1. Firstly, we evaluate our vision processing pipeline, highlighting
the performance of our proposed grid-based field detection algorithms regarding processing
time on the Jetson Nano. Then, we present results from the MCL algorithm 8 regarding ac-
curacy and computation speed, comparing its performance with and without adapting the set
sizes.

6.1 EMBEDDED VISION EVALUATION

Algorithms 10 and 11 were run on the Jetson Nano using a single randomly positioned
vertical scan at each iteration. Figure 23 shows the resulting processing times of each method,
along with other capabilities from the vision processing pipeline, and examples of processed
images, highlighting the field points are presented in figures 24 and 25.

Figure 23 – Evaluating processing times of vision modules.

Source: Author

Figure 24 – Resulting frame after performing field markings detection on ten uniformly spaced vertical scan
lines.

(a) Successful detection. (b) Erroneous detection. (c) Erroneous detection.

(d) Successful detection. (e) Erroneous detection. (f) Successful detection.

Source: Author
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The system takes 26 milliseconds on average for scanning a vertical line performing marking
detection, more than 3 times slower than boundary detection. This result yields that detecting
field boundaries on 3 different line scans would be faster than detecting a single marking, for
example. In addition, Figure 24 highlights the method’s sensibility to illumination changes,
mainly due to the color segmentation causing field (green) pixels to be classified as white,
but also due to the field lines being too thin, requiring low 𝑚𝑖𝑛_𝑙𝑒𝑛𝑔𝑡ℎ and 𝑚𝑎𝑥_𝑙𝑒𝑛𝑔𝑡ℎ
thresholds. Therefore, the method was not employed in the system, and markings were not
used as references for self-localization.

Figure 25 – Resulting frame after performing field boundary detection on ten uniformly spaced vertical scan
lines.

(a) Successful detection. (b) Successful detection. (c) Successful detection.

(d) Successful detection. (e) Successful detection. (f) Successful detection.

Source: Author

Boundary detection presented more reliable results while also achieving faster processing
speeds. The system takes 8 milliseconds on average for scanning a vertical line performing
the boundary detection algorithm 10. In addition, it is less prone to false-positives, which are
usually caused by wrong color segmentation due to imperfections on the field border walls, as
illustrated in Figure 25.

The complete module takes 41 milliseconds to process, on average, resulting in an approx-
imate rate of 24 frames per second. We depict the processing times from the vision processing
tasks in Figure 26.

Figure 26 – Complete vision processing pipeline processing times.

Source: Author
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6.2 SELF-LOCALIZATION EVALUATION

We evaluate the accuracy of our proposed self-localization solution within three scenarios
of the dataset: rnd_01, sqr_02, and igs_03. Also, the experiments were conducted under
two assumptions: a 1 meter radius seed of the robot’s initial position is known (I), as in the
SSL Vision Blackout Challenge (SMALL SIZE LEAGUE TECHNICAL COMMITTEE, 2022a); and
no information of the initial robot pose is known (II). Since the MCL algorithm relies on
probabilistic functions, these experiments were run three times on each scenario. Thus, each
algorithm was evaluated in a total of eighteen runs. Accuracy was measured by the Root Mean
Square Error (RMSE) over the entire trajectory and we also report if the algorithm was able
to regress the robot’s pose correctly or not.

6.2.1 Localization Given a Seed Position

Note that, in the cases where a seed position is given, the algorithm still has no information
of the the robot’s initial orientation, which directly impacts the particles’ propagation and
likelihood updates. Thus, even though this prior knowledge enables to reduce the initial search
space, it is not sufficient for addressing the localization problem as position tracking.

Firstly, we measure the accuracy and processing times of the self-localization using a fixed
number of 100 particles, i.e., we employ Algorithm 9, but the 𝑀𝑚𝑖𝑛 and 𝑀𝑚𝑎𝑥 are set to 100.
Figure 27 shows the resulting trajectory over one round of each scenario, demonstrating that
the algorithm was able to find and maintain the robot’s pose. However, the particles tend to
spread when the robot is far from the borders, mostly due to the observations becoming less
accurate for higher distances. Even so, the self-localization algorithm was able to recover the
robot’s tracking in all cases, reducing its distance to the ground truth position, as illustrated
in Figure 28, which shows the odometry (green) and MCL (blue dashed) distances to ground
truth over time, in meters and seconds. It highlights that the MCL trajectory was able to
maintain a lower distance than odometry to the ground-truth during most of the trajectory,
and specially at the end, when the robot stops and the particles converge to its state, resulting
in errors lower than 0.2 meters (the robot’s diameter is 0.18 meters).

For adapting the number of particles, 𝑀𝑚𝑖𝑛 and 𝑀𝑚𝑎𝑥 were set to 20 and 200, respectively,
and we plot the same comparisons for a qualitative analysis. Figure 29 shows that similar
trajectories were achieved using adaptive set sizes. However, the algorithm took more steps to
recover from deviations, which were also higher, mostly due to the reduced number of samples.
The higher errors are more evident in Figure 30, which plots the distances to the ground-truth
over time. In comparison to the fixed sample sets, not only the deviations during the trajectory
were higher, but also the final distance to the ground-truth.

Quantitative results are presented in Table 5. The reduced accuracy from Adaptive MCL
is an expected consequence from reducing the number of particles. Even so, results show that
our adaptive MCL algorithm was able to localize and maintain the robot’s tracking, while
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Figure 27 – Trajectory comparisons from MCL, odometry and ground-truth in 3 scenarios, using a fixed number
of 100 particles, and starting from a 1 meter seed of the robot’s position.

(a) rnd_01. (b) sqr_02. (c) igs_03.

Source: Author

Figure 28 – Distances from MCL and odometry to ground-truth over time in 3 scenarios, using a fixed number
of 100 particles, and starting from a 1 meter seed of the robot’s position. The x- and y-axis
indicate the elapsed time and distances in seconds and meters, respectively.

(a) rnd_01. (b) sqr_02. (c) igs_03.

Source: Author

Figure 29 – Trajectory comparisons from MCL, odometry and ground-truth in 3 scenarios, using adaptive set
sizes from 20 to 200 samples, and starting from a 1 meter seed of the robot’s position.

(a) rnd_01. (b) sqr_02. (c) igs_03.

Source: Author

also achieving lower errors than the odometry trajectory. Also, we share the average rates
for processing the complete system’s pipeline in frames per second (FPS), which includes
the onboard vision and self-localization, demonstrating that adapting the number of particles
drastically increases the processing speed of self-localization.

Note that the results in Table 5 include the times from vision processing, which was shown
to consume approximately 41 milliseconds. A detailed analysis of self-localization processing
times over iterations of the sqr_02 scenario is shown in Figure 31. The dashed plots correspond
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Figure 30 – Distances from MCL and odometry to ground-truth over time in 3 scenarios, using adaptive set
sizes from 20 to 200 samples, and starting from a 1 meter seed of the robot’s position. The x-
and y-axis indicate the elapsed time and distances in seconds and meters, respectively.

(a) rnd_01. (b) sqr_02. (c) igs_03.

Source: Author

Table 5 – Accuracy and Total Processing Times Comparison.

Scenario Odometry MCL (M=100) Adaptive MCL
RMSE (m) RMSE (m) FPS (Hz) RMSE (m) FPS (Hz)

rnd_01 0.454 0.323 9.782 0.381 13.845
sqr_02 0.474 0.396 9.168 0.447 14.333
igs_03 0.251 0.220 9.805 0.239 13.619

Source: Author

to the adaptive MCL algorithm and the red color indicates plots of processing times, while
blue plots are the number of particles. We highlight the 44 ms and 11.5 ms lines, showing that
the AMCL was able to achieve almost 4 times the speed of MCL, due to the reduced number
of samples.

A more in-depth performance evaluation is presented in Figure 32. It depicts the times
required for processing each functional block from the self-localization schematic presented in
Figure 12 with 100 and 20 particles. The set size most affected the resampling and likelihood
estimation steps; however, the first had a much lower impact on the system’s pipeline (approx-
imately 1 ms with 100 particles). Even though the propagation of the particles is also affected
by the number of samples, it has shown to suffer less from the set size adaptation, mostly due
to its implementation being paralyzed as matrix operations. Therefore, exploiting parallelism
in the likelihood estimation may bring benefits to the self-localization pipeline, since they are
also independent for each particle.

6.2.2 Localization Without Prior Information

Results from the previous section demonstrated that our proposed methods were capable of
converging to the correct localization and maintaining the robot’s tracking when the particles
are initialized within a range of the initial ground-truth position. Therefore, in this section,
we evaluate the methods’ capability to correctly localize the robot without prior information
about its initial coordinates. For that, we present the algorithms’ success rates in converging
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Figure 31 – Self-localization processing times and number of particles over iterations on the sqr_02 scenario.
The left y-axis accounts the set size and the right y-axis shows the processing time in milliseconds,
while the x-axis is the number of the corresponding frame from the dataset.

Source: Author

to the correct pose on multiple attempts and discuss what impacts the most on these results.
The algorithm could converge to the correct pose in 6 of the 15 attempts using a fixed

number of 100 samples. We depict the details and characteristics observed in the three types
of scenarios: igs, rnd, and sqr.

In the igs scenario the robot starts near the field corner and performs a rotation around its
axis. Therefore, its initial measurements have high accuracy, and it acquires information from
multiple borders. These characteristics cause the algorithm to rapidly converge, however, in
some situations it might converge to symmetric poses, since the goal was not observed, which
is the only reference for fixing mirrored poses in our method. This behavior is highlighted in
Figure 33, which presents the errors of MCL and odometry over time.

In contrast, the rnd scenario starts by performing a linear forward movement looking to-
wards the goal, but acquiring little and imprecise information from the field borders. We observe
that the goal observation rapidly discards a wide range of states, but, in most cases, it was
insufficient for converging to the correct pose, which diverged as soon as the robot started
looking towards other directions, as presented in the distance comparisons in Figure 34. Based
on the results from this scenario, we believe that observing the goal for a longer time with
more varied movements would enable the robot to correctly self-localize.

The highest success rate was achieved in the sqr scenario. It has almost no goal observa-
tions, but contains more varied and precise measurements, since the robot approximates to
the field borders and rotates looking towards them. The measurements from field boundaries
allow the algorithm to converge to a pose that corresponds to them, however, the lack of goal
observations cause mirrored pose estimations. Therefore, we observe that, in the cases where



76

Figure 32 – Complete self-localization pipeline processing times with 100 and 20 particles.

(a) Processing times with 100 samples.

(b) Processing times with 20 samples.

Source: Author

Figure 33 – Distances from MCL and odometry to ground-truth over time in 2 rounds of the igs scenario, using
fixed set sizes of 100 samples, without prior localization knowledge. The x- and y-axis indicate the
elapsed time and distances in seconds and meters, respectively.

(a) Successful localization. (b) Erroneous localization.

Source: Author

localization did not converge correctly, it was mostly due to mirroring issues, which can be
seen in Figure 35.

Similar results were achieved using adaptive set sizes in the sqr and igs scenarios. In
contrast, the algorithm converged correctly in all attempts of the rnd scenario, resulting in a
total of 9 successful localization. Table 6 depicts the success rates of each scenario using fixed
and apative set sizes, showing the number of times the algorithm correctly converged among
the 5 attempts executed in each scenario.

Results from sqr and igs scenarios are derived from the same analysis presented for fixed set
sizes, which showed that most erroneous localization occurred due to mirrored pose estima-
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Figure 34 – Distances from MCL and odometry to ground-truth over time in 2 rounds of the rnd scenario, using
fixed set sizes of 100 samples, without prior localization knowledge. The x- and y-axis indicate the
elapsed time and distances in seconds and meters, respectively.

(a) Successful localization. (b) Erroneous localization.

Source: Author

Table 6 – Localization success rates on each scenario using adaptive and non-adaptive set sizes.

Scenario MCL (M=100) Adaptive MCL
rnd_01 1/5 5/5
sqr_02 3/5 2/5
igs_03 2/5 2/5

Source: Author

tions. As for rnd scenarios, in comparison to the non-adaptive MCL, we observe that the initial
number of 200 particles provides more information for converging to the correct pose while the
robot is looking towards the goal, avoiding mirroring issues. While the goal is detected, the
algorithm’s confidence grows and particles not looking towards the goal are removed, reducing
the search space and improving the robustness against mirrored poses.
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Figure 35 – Errors and trajectories comparison from MCL and odometry to ground-truth over time in 2 rounds
of the sqr scenario, using fixed set sizes of 100 samples, without prior localization knowledge. The
x- and y-axis indicate the elapsed time and distances in seconds and meters, respectively.

(a) Distances from successful localization. (b) Distances from erroneous localization.

(c) Trajectories from successful localization.
(d) Trajectories from erroneous localization. The

algorithm converged to a mirrored pose.

Source: Author
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7 FINAL CONSIDERATIONS

This thesis presented a solution for estimating a mobile robot’s self-localization in dynamic
environments under a hardware constrained platform. An onboard monocular camera is used
for acquiring information, employing a CNN-based method for detecting objects and vertical
scans for detecting points of landmarks. Detected elements are transformed to relative positions
using the camera intrinsic and extrinsic parameters relative to the robot’s axis. Also, the robot’s
odometry is estimated from the wheels’ encoders, applying forward kinematics transformations,
and gyroscope measurements. Information from odometry and onboard vision are combined
into a Monte Carlo Localization (MCL) algorithm for regressing the robot’s pose over time.

MCL was enhanced based on techniques proposed by other researches from RoboCup
leagues, which were proven to increase the algorithm’s robustness regarding erroneous mea-
surements and imprecise odometry tracking in the robot soccer environment. In addition, we
propose a novel measure of confidence for estimating the quality of the current MCL particles
by applying the measurement model to the resulting state from self-localization, which in case
was computed from the samples’ weighted average. We also implement a mapping for adapt-
ing the number of particles during execution based on the current confidence, increasing the
algorithm’s overall processing speed while also maintaining its capability to track the robot’s
state.

We evaluate these methods within the RoboCup Small Size League environment, running
our proposed onboard vision and self-localization pipelines on a 4GB NVIDIA Jetson Nano,
which receives odometry updates from an ARM Cortex-M7 microcontroller. The resulting
system was able to localize the robot’s pose using the SSL soccer field boundaries and goals
as references, while also detecting dynamic objects of the SSL environment, namely balls and
other robots, achieving up to 15 FPS processing speeds.

In this chapter we review the conclusions of this research, which key insights and drawbacks
are summarized in Table 7. In section 7.1, we discuss to what extent the defined objectives
were accomplished. Section 7.2 depicts the main advantages and scientific contributions of this
thesis. In contrast, section 7.3 presents drawbacks and limitations of our proposed methods
and experiments. Lastly, section 7.4 suggests future work for enhancing the methods from this
research.

Table 7 – Review of main contributions and drawbacks from our work.

Platform Environment Key Insights Drawbacks
SSL Omnidi-
rectional Robot
(hardware specifi-
cations in Table 2)

RoboCup
Small Size
League

- Adapts modelings from multiple RoboCup
soccer leagues to the SSL
- Proposes conditions for resampling
- Estimates the localization confidence based
on measurements from multiple iterations
- Adapts the set size and resample deviation
based on the current confidence

- Does not use field lines for localization
- Converges to symmetric poses
- Requires specialized knowledge for tuning
parameters
- Experiments conducted in non-dynamic sit-
uations with a reduced environment

Source: Author
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7.1 OBJECTIVES CONCLUSION

Three main objectives were defined within the Introduction of this thesis: introducing a so-
lution for estimating an SSL robot’s self-localization using onboard sensing and processing only
(I); proposing a confidence metric for evaluating the localization quality during execution (II);
and proposing an approach for increasing the processing speed of MCL-based self-localization
algorithms (III).

The architecture and pipelines presented in section 4.1 were built upon the hardware and
functional modules from previous work that proved to fit the needed requirements for building
an autonomous SSL robot (MELO et al., 2022). We improve the onboard vision processing
pipeline with detection of more SSL elements and add a new self-localization module, showing
how it can be integrated into the system.

Results showed that our proposed architecture was able to localize and maintain the robot’s
true pose in scenarios where a seed of its initial position are given, which is the case for
the RoboCup SSL Vision Blackout self-localization challenge. However, the experiments were
conducted within a reduced version of the SSL field, which does not provide enough information
to solve the SSL self-localization problem to its full extent.

Objectives II and III were addressed in section 4.3, which presents a novel method for
computing the quality of the current distribution and how to adapt the number of particles of
the MCL algorithm based on this estimation. The approach was able to drastically increase the
system’s computation speed, while also maintaining the capability to track the robot’s pose.
Also, the confidence measure may be useful for implementing active localization, i.e., making
decisions and movements based on the current localization confidence.

7.2 IMPROVEMENTS AND CONTRIBUTIONS

This thesis presents techniques for pushing the state-of-the-art towards building more
autonomous robots in the RoboCup SSL. We improve the architecture proposed by MELO et al.

(2022), integrating a self-localization capability that allows to implement more effective state
machines and planning more efficient paths for solving soccer tasks autonomously.

A public dataset containing onboard-recorded and ground-truth navigation data was gen-
erated and used for evaluating the methods proposed in this thesis. This data can be used not
only for developing self-localization and tracking algorithms, but also for evaluating onboard
vision processing solutions. It allows for testing and evaluation under various conditions, and
objective comparisons can be realized by using the presented metrics and baseline results.

Section 4.2 presents how solutions from other RoboCup leagues can be combined and
integrated into the MCL algorithm for improving its robustness regarding erroneous measure-
ments and imprecise odometry estimations. Also, we propose conditions for choosing whether
resampling shall be performed or not. A systematic resampling algorithm was employed due
to its reduced computational complexity.
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Lastly, a method for measuring the MCL distribution quality was presented, based on
the likelihood of the current average particle, i.e., the weighted sum of the MCL samples.
We propose a technique for adapting the samples’ number and spreading during execution,
based on the current confidence. Even though the approach was validated within the SSL
environment, it can be easily reproduced and may also bring benefits to other applications.

We seek to expand this work and apply it as a conference paper or journal. By the time
this thesis was written, the following paper have published during our researches:

• MELO, J. G.; MARTINS, F.; CAVALCANTI, L.; FERNANDES, R.; ARAúJO, V.;
JOAQUIM, R.; MONTEIRO, J. G.; BARROS, E. Towards an autonomous robocup small
size league robot. In: 2022 Latin American Robotics Symposium (LARS), 2022 Brazilian
Symposium on Robotics (SBR), and 2022 Workshop on Robotics in Education (WRE).
[S.l.: s.n.], 2022. p. 1–6.

• MELO, J. G.; BARROS, E. An embedded monocular vision approach for ground-
aware objects detection and position estimation. In: RoboCup 2022:. [S.l.]: Springer
International Publishing, 2023. p. 100–111. ISBN 978-3-031-28469-4.

7.3 DRAWBACKS AND LIMITATIONS

One drawback from our proposed confidence estimation and set size adaptation approaches
is that they require parameters to be empirically tuned, not presenting an analytical estima-
tion for their values. However, other researches in the self-localization problem showed that
applying particle filters demands a proper configuration of a variety of different parameters
(BURCHARDT; LAUE; RÖFER, 2011). Therefore, this drawback is a common characteristic in
MCL-based algorithms.

The implemented system performed poorly in the self-localization problem when no infor-
mation of its initial position was given, achieving low success rates using both adaptive and
non-adaptive MCL. We believe this result yields from the lack of information due to using a
single scan line detecting field boundaries only. Thus, field markings and multiple scan lines
are necessary for improving the self-localization accuracy and success rates.

The experiments were limited to non-dynamic situations in a reduced half-field SSL config-
uration. Employing other moving robots and ball would evaluate our capability to detect these
objects on movement and avoid them during line scans for detecting field elements. Using a
complete field configuration causes more distant measurements, specially for field boundaries,
highlighting again the importance of field markings detection. Also, it allows to evaluate our
algorithm’s robustness regarding mirrored pose estimations. Therefore, the ultimate validation
for a self-localization technique in the SSL would require experiments on complete field with
other moving objects.
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7.4 FUTURE WORK

As discussed in the previous section and presented in experiments results, the perception of
SSL field elements (goals, markings, and boundaries) still leaves room for several improvements.
Firstly, more reliable and faster approaches for detecting field markings must be investigated.
More robust color segmentation and more precise camera parameters can be learned from
data, allowing to improve field points detection and relative position estimation. Also, the
CNN-based objects detection approach can be trained for detecting field crossings as well
(SZEMENYEI; ESTIVILL-CASTRO, 2019).

Analysis from time computation of self-localization showed that likelihood computation
is the most time consuming part of the algorithm. This step is independent for each sample
of the MCL and, thus, can be implemented as parallel operations. This approach may bring
benefits to the algorithm’s processing speed without causing accuracy losses.

The proposed self-localization algorithms require tuning of several parameters. In this the-
sis, these parameters were adjusted by observing the distribution’s behavior in multiple tests.
BURCHARDT; LAUE; RÖFER (2011) showed that Particle Swarm Optimization (PSO) can be
employed for finding a set of parameters that leads to more precise position estimates than
hand-tuned ones, and we shall investigate this approach for tuning our proposed methods.

Lastly, the confidence estimation and set size adaptation techniques presented in section 4.3
can be easily implemented and evaluated in other environments and platforms. Evaluating their
performances within other applications would enhance the proposed methods’ contribution the
scientific community, specially regarding MCL-based algorithms.
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