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ABSTRACT

The level of detail on modern geological models requires higher resolution grids
that may render the simulation of multiphase flow in porous media intractable. Moreover,
these models may comprise highly heterogeneous media with phenomena taking place in
different scales. The original Multiscale Finite Volume (MsFV) method can tackle such
issues by constructing a set of numerical operators that map quantities from the fine-scale
domain to a coarser one where the initial problem can be solved at a lower computational
cost and the solution mapped back to the original scale. However, the MsFV formulation
is limited to k-orthogonal grids since it uses a Two-point Flux Approximation (TPFA)
method and employs an algorithm to generate the coarse meshes that is not capable of
handling general geometries. The Multiscale Restriction Smoothed-Basis method (MsRSB)
improves on the MsFV by introducing a new iterative procedure to find the multiscale
operators and modifying the algorithm for the generation of the multiscale geometric
entities to accommodate unstructured coarse grids, but is still limited to structured fine
grids due to the TPFA discretization. Meanwhile, the Multiscale Control Volume method
(MsCV) replaces the TPFA by the Multipoint Flux Approximation with a Diamond
stencil (MPFA-D) scheme on the fine-scale while further enhancing the generation of
the geometric entities to allow truly unstructured grids on the fine and coarse scales for
two-dimensional simulation. In this work we propose an extension to three-dimensional
geometries of both the MsCV and the algorithm to obtain the multiscale geometric
entities based on the concept of background grid. We modify the MPFA-D to use the very
robust Generalised Least Squares (GLS) interpolation technique to obtain the required
auxiliary nodal unknowns. Finally, we also introduce an enhanced version of the 3-D
MsCV with the incorporation of the enhanced MsRSB (E-MsRSB) to enforce M-matrix
properties and improve convergence. We show that the 3-D MsCV method produces good
results employing true unstructured grids on both scales to handle the simulation of the
single-phase flow in anisotropic and heterogeneous porous media.

Keywords: multiscale; MsCV; MPFA-D; GLS; background grid; single-phase flow.



RESUMO

O nível de detalhe nos modelos geológicos modernos demanda o uso de malhas de
alta resolução que podem tornar o problema da simulação do escoamento multifásico em
meios porosos intratável. Além disso, estes modelos podem conter grande heterogeneidade
e fenômenos que ocorrem em diferentes escalas. O Método dos Volumes Finitos Multiescala
(MsFV) é capaz de lidar com tais problemas por meio da construção de um conjunto
de operadores numéricos que mapeiam grandezas do domínio representado na escala de
alta resolução para uma escala de menor resolução onde o problema inicial é resolvido
a um custo computacional reduzido e cuja solução pode ser mapeada de volta à escala
original. Contudo, a formulação do MsFV é limitada a malhas k-ortogonais devido ao uso
do esquema de aproximação do fluxo por dois pontos (TPFA) e ao emprego de algoritmos
para geração das malhas de menor resolução que não são capazes de tratar geometrias
quaisquer. O método Multiscale Restriction Smoothed-Basis (MsRSB) melhora o MsFV
introduzindo um novo procedimento iterativo para calcular os operadores multiescala
e modificando o algoritmo de geração das entidades geométricas do multiescala para
acomodar malhas de baixa resolução não-estruturadas, mas ainda é limitado ao uso de
malhas estruturadas na escala de alta resolução pois mantém a discretização por TPFA.
Enquanto isso, o Multiscale Control Volume Method (MsCV) substitui o TPFA pelo
esquema Multipoint Flux Appoximation with a Diamond Stencil (MPFA-D) na escala
de alta resolução e aprimora o procedimento para geração das entidades geométricas
para permitir que malhas verdadeiramente não-estruturadas sejam usadas nas escalas
de alta e baixa resolução para simulação numérica em duas dimensões. Neste trabalho,
nós propomos uma extensão para geometrias tridimensionais do MsCV e do algoritmo
para geração das entidades geométricas do multiescala baseado no conceito de malha de
fundo. Nós também modificamos o MPFA-D para que seja usado o robusto método de
interpolação das variáveis nodais Global Least Squares (GLS). Finalmente, introduzimos
uma melhoria ao MsCV 3-D com a incorporação do método Enhanced MsRSB (E-MsRSB)
para impor propriedades de uma matriz M à matriz MPFA-D e melhorar a convergência
do método. Nós mostramos que o método MsCV 3-D produz bons resultados com o uso
de malhas verdadeiramente não-estruturadas nas duas escalas para tratar a simulação do
escoamento monofásico em meios porosos anisotrópicos e heterogêneos.

Palavras-chave: multiescala; MsCV; MPFA-D; GLS; malha de fundo; escoamento
monofásico.
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1 INTRODUCTION

The numerical simulation of physical phenomena is a fundamental step to verify
and predict how a proposed model will behave in a real world scenario. In the context
of the Finite Volume formulations, this may involve discrete models whose resolution
ranges from 108 to 109 (ZHOU, 2010; JARAMILLO et al., 2022). Moreover, the study can
comprise phenomena happening in different scales and highly heterogeneous media, as
it is often the case for the flow simulation in porous media (HAJIBEYGI et al., 2008).
For these reasons, the computational complexity of the simulation can quickly render
the problem intractable for conventional methods and hardware. For this purpose, scale
transferring techniques are applied.

The scale transferring techniques can be divided into two main groups: the up-
scaling and the multiscale methods. The upscaling methods rely on a procedure, such as
homogenization, to map the problem on the high resolution scale to a lower resolution
where it is solved. These techniques are relatively simple and capable of effectively reducing
the complexity of the initial problem. Classical local upscaling methods can produce
good results on problems where the length scales of the heterogeneity are well separated
(FARMER, 2002). Global upscaling methods can better handle more challenging scenarios
such as the representation of near-well regions in the context of reservoir simulation
(DURLOFSKY, 2005). Conversely, the multiscale methods compute a set of numerical
operators to map quantities from the fine scale onto a coarser scale, and vice-versa. How-
ever, unlike upscaling, these operators allow to reconstruct an approximate solution on
the fine-scale from the coarse-scale solution (CORTINOVIS, 2016).

The core idea behind each multiscale method is computation of the basis functions,
i.e., the functions that form the scale-transferring numerical operators. In the Multiscale
Finite Element method (MFEM) for elliptical problems, HOU; WU (1997) define local
boundary conditions for each coarse block in order to find the basis functions. This
approach uncouples the coarse blocks leading to a non-conservative velocity field. CHEN;
HOU (2003) addressed the issues on the MFEM by introducing the Mixed Multiscale
Finite Element method (MMFEM) which reimposes conservation on the velocity field by
creating basis functions that compute the pressure and the velocity fields simultaneously.
Furthermore, ARBOGAST; BRYANT (2002) adapted the MMFEM to the simulation of
two-phase flows in petroleum reservoirs.

Among the proposed multiscale formulations, we turn our attention to the Multiscale
Finite Volume (MsFV) method introduced by JENNY; LEE; TCHELEPI (2003) in the
context of subsurface flow simulation. In this approach, an auxiliary dual coarse grid
is employed in order to define the operators by solving local problems in this grid.
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Many improvements have since been proposed to the MsFV such as the introduction of
more complex physics to the model (LUNATI; JENNY, 2006; LEE; WOLFSTEINER;
TCHELEPI, 2008) and an algebraic formulation of the MsFV (ZHOU; TCHELEPI, 2008;
ZHOU; TCHELEPI, 2011).

Most of the formulations in the MsFV family are restricted to structured grids
on both the fine and the coarse scales. This is mainly due to the usage of a Two-point
Flux Approximation scheme (TPFA) on the fine-scale, which is only consistent on k-
orthogonal grids, and the difficulty of generating the multiscale entities in unstructured
geometries (SOUZA et al., 2020). In this sense, MØYNER; LIE 2016 proposed the
Multiscale Restriction-Smoothed Basis (MsRSB) method to enable the use of unstructured
coarse-scale grids. In their work, the authors present an iterative formulation of the
multiscale operators, reducing the amount of recalculations during the simulation to
modify the operators. However, the MsRSB still relies on the TPFA for the discretization
on the fine-scale. This issue is partially addressed by BOSMA et al. (2021) who introduce
an extension of the MsRSB for non M-matrices, the enhanced MsRSB (E-MsRSB). SOUZA
et al. (2020) presented the Multiscale Control Volume (MsCV) which improves on the
original MsRSB by replacing the TPFA with the Multipoint Flux Approximation with a
diamond stencil (MPFA-D) scheme from GAO; WU (2011) and CONTRERAS et al. (2016),
hence allowing for the use of truly unstructured grids on both scales for the simulation of
the 2-D two-phase flow in porous media.

The MPFA-D requires the interpolation of the nodal unknowns involved in its
flux expression. The choice of interpolation strategy is crucial and deeply affects the
convergence of the method. In its 3-D formulation, as described by LIRA FILHO et
al. 2021, the Linearity-Preserving Explicit Weight (LPEW3) interpolation is adopted.
Although it observes the Linearity Preserving Criterion (LPC), it fails to compute accurate
solutions in the presence of strong anisotropy. To overcome these limitations, DONG;
KANG (2022) introduced the Global Least Squares (GLS) interpolation. As it is shown
by CAVALCANTE (2023), it presents a more stable behaviour in the presence of strong
anisotropy and highly heterogeneous media while still observing the LPC.

In the present thesis, we propose an extension of the MsCV (SOUZA et al., 2020) to
3-D geometries coupled with the 3-D MPFA-D (LIRA FILHO et al., 2021) and the robust
GLS interpolation (DONG; KANG, 2022). In order to generate the multiscale geometric
entities, we also extend to 3-D geometries the background grid framework proposed by
SOUZA et al. (2022), so far restricted to 2-D models. Finally, we introduce an enhanced
version of the 3-D MsCV, the E-MsCV, by incorporating the preconditioning technique
from the E-MsRSB (BOSMA et al., 2021) to the definition of the multiscale operators.
We apply the developed framework to the study of the single-phase flow in anisotropic
and heterogeneous porous media.
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1.1 Research objectives

The main objective of this thesis is to study and develop a 3-D multiscale framework
for the simulation of single-phase incompressible flow in anisotropic and heterogeneous
media.

1.1.1 Specific objectives

• Extend the Multiscale Control Volume method (MsCV) to 3-D models;

• Develop the 3-D extension of the multiscale pre-processing algorithm based on a
background grid;

• Incorporate the robust GLS interpolation to the 3-D MPFA-D;

• Introduce the E-MsRSB in the MsCV framework to improve the convergence rate of
the method.

1.2 Thesis organization

This thesis is structured as follows. This first chapter provides an introduction and
a review of multiscale methods for the simulation of flows in porous media. The second
chapter is dedicated to present the mathematical formulation used in this work. In the
third chapter, we introduce the numerical formulation used for the discretization of the
problem in the fine-scale. Next, we detail the 3-D multiscale formulation developed. In the
fifth chapter, we describe the extension of the algorithm proposed for the generation of
the multiscale geometric entities based on the concept of a background grid. The sixth
chapter contains a series of examples devised to show the application of the multiscale
framework applied to the simulation of single-phase flow in porous media. Finally, in the
seventh and final chapter we present the conclusions and suggest future works. We also
present a discussion on the implementation issues in the Appendix A.
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2 MATHEMATICAL FORMULATION

In this chapter, we briefly present the governing equations and respective adopted
assumptions for the 3-D single-phase flow of an incompressible fluid in anisotropic and
heterogeneous porous media. From these equations, the partial differential equation (PDE)
that dictates this phenomenon can be deduced.

2.1 Mass conservation equation

The mass conservation equation on porous media for the multi-phase flow over a
physical domain Ω× [0, 𝑡], with Ω ⊂ R3, is given by (CARVALHO, 2005):

−∇ · (𝜌𝑖
−→𝑣 𝑖) + 𝑞𝑖 = 𝜕 (𝜑𝜌𝑖𝑆𝑖)

𝜕𝑡
, (2.1)

where 𝜑 is the porosity of the medium and −→𝑣 𝑖, 𝜌𝑖, 𝑞𝑖 and 𝑆𝑖 correspond to the velocity,
density, source/sink terms, and saturation of the phase 𝑖, respectively.

Let a single-phase flow of an incompressible fluid in a non-deformable medium.
Neglecting any chemical or thermal reactions and the effects of adsorption and dispersion,
then Equation (2.1) can be simplified as:

−𝜌∇ · −→𝑣 + 𝑞 = 0 ∴ ∇ · −→𝑣 = 𝑄 (2.2)

where 𝑄 = 𝑞/𝜌. Equation (2.2) is the Poisson’s equation for a diffusive phenomenon in
three dimensions.

2.2 Darcy’s law

First elucidated by Henry Darcy in 1856, Darcy’s law is an empirical law that
describes the flow of a fluid in a porous media under the following assumptions (EWING,
1983):

1. The fluid is considered to be a newtonian fluid;

2. The fluid does not chemically react with the medium;

3. The flow is considered to be laminar;
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4. The permeability does not depend on the pressure and the temperature of the fluid;

5. The slippage effect of gases at low pressure is neglected;

6. Any electrokinetic effect is disregarded.

Hence, in the multiphase flow context, Darcy’s law can be written as:

−→𝑣 𝑖 = −
˜
𝒦𝜆𝑖 (∇𝑝𝑖 − 𝜌𝑖

−→𝑔 ) with 𝜆𝑖 = 𝑘𝑟𝑖

𝜇𝑖

, (2.3)

where 𝜆𝑖, 𝑝𝑖, 𝑘𝑟𝑖 and 𝜇𝑖 stand for the mobility, the pressure, the relative permeability and
the viscosity of the phase 𝑖, respectively, −→𝑔 represents the gravitational effect, and

˜
𝒦 is

a positive definite symmetric full permeability tensor satisfying the ellipticity condition
(BORSUK; KONDRATIEV, 2006; VÉRON, 2004).

The absolute permeability
˜
𝒦 is a measure of the capacity of the medium to allow a

fluid to flow. In turn, the relative permeability is a dimensionless parameter that gauges the
effective permeability of the phase. The permeability tensor can be expressed in Cartesian
coordinates as follows:

˜
𝒦(−→𝑥 ) =

⎛⎜⎜⎜⎝
𝐾𝑥𝑥 𝐾𝑥𝑦 𝐾𝑥𝑧

𝐾𝑥𝑦 𝐾𝑦𝑦 𝐾𝑦𝑧

𝐾𝑥𝑧 𝐾𝑦𝑧 𝐾𝑧𝑧

⎞⎟⎟⎟⎠ . (2.4)

Once again assuming a single-phase flow of an incompressible fluid in a rigid
medium and neglecting the effects of gravity, Equation (2.3) can be simplified as:

−→𝑣 = −
˜
𝒦∇𝑝. (2.5)

2.3 Elliptic pressure equation

Given equations (2.2) and (2.5), we can write the elliptic pressure equation as:

∇ · −→𝑣 = 𝑄, with −→𝑣 = −
˜
𝒦∇𝑝. (2.6)

Typical boundary conditions for Equation (2.6) are given by:
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𝑝 = 𝑔𝐷 for −→𝑥 ∈ Γ𝐷, (2.7)
−→𝑣 · −→𝑛 = 𝑔𝑁 for −→𝑥 ∈ Γ𝑁 , (2.8)

where Γ𝐷 and Γ𝑁 represent the Dirichlet and Neumann boundaries, respectively, and
−→𝑛 denotes the unit outward normal vector. The global domain boundary is given by
𝜕Ω = Γ𝐷 ∪ Γ𝑁 , such that Γ𝐷 ∩ Γ𝑁 = ∅
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3 NUMERICAL FORMULATION

In this chapter, we discuss the finite volume discretization used for the elliptic
pressure equation (2.6) at the fine-scale. Here, we summarize the main aspects of the
MPFA-D scheme and the GLS interpolation for the vertex unknowns.

3.1 Finite volume formulation

To discretize Equation (2.6) at the fine-scale, we have employed the Multipoint
Flux Approximation with a Diamond stencil (MPFA-D) method (LIRA FILHO et al.,
2021), replacing the original nodal interpolation algorithm with the Generalized Least
Squares (GLS) interpolation of the vertex unknowns (DONG; KANG, 2022).

To ensure clarity, we adopt an overloaded notation and consider Ω to also represent
the discrete computational domain, while Γ denotes its associated boundary. Additionally,
Ω can be subdivided into a set of 𝑛𝑘 non-overlapping control volumes. By integrating
Equation (2.6) over an individual control volume 𝑅̂ and applying Gauss’s theorem, the
following expression is obtained:

∫︁
Ω𝑅̂

∇ · −→𝑣 dΩ𝑅̂ =
∫︁

Γ𝑅̂

−→𝑣 · −→𝑛 dΓ𝑅̂ =
∫︁

Ω𝑅̂

𝒬 dΩ𝑅̂, (3.1)

where Ω𝑅̂ and Γ𝑅̂ denote the volume and the boundary of the control volume 𝑅̂, respectively.
By applying the mean value theorem, Equation (3.1) can be rewritten as:

∑︁
𝑚∈Γ𝑅̂

(−→𝑣 · −→𝑁 )|𝑚 = 𝒬𝑅̂Ω𝑅̂, (3.2)

where 𝒬𝑅̂ is the average source term in 𝑅̂, 𝑚 is a face of 𝑅̂ and −→𝑛 is the area vector
associated to 𝑚. As discussed in (AAVATSMARK et al., 1998a; AAVATSMARK et al.,
1998b), various strategies can be employed to approximate the flux expression described
in Equation (3.2), leading to the development of different schemes.

3.2 The Multipoint Flux Approximation with a Diamond stencil (MPFA-D)

The MPFA-D provides a full pressure support (EDWARDS; ZHENG, 2008) dis-
cretization of Equation (2.6) for 3-D tetrahedral meshes. Given the arrangement shown in
Figure 1, the flux through the face 𝐼𝐽𝐾 is approximated by:
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Figure 1 – Two tetrahedra 𝑅̂ and 𝐿̂ sharing a face 𝐼𝐽𝐾 illustrating the main entities in the MPFA-D
scheme.

P Q

I

J

K

𝑅̂𝐿̂
ℎ𝑅̂

×

Source: (LIRA FILHO et al., 2021).

−→𝑣 𝑅̂ ·
−→
𝑁 𝐼𝐽𝐾 ≈ −𝐾𝑛

𝑒𝑓𝑓 [2(𝑝𝑅̂ − 𝑝𝐿̂)−𝐷𝐽𝐼(𝑝𝐼 − 𝑝𝐽)−𝐷𝐽𝐾(𝑝𝐾 − 𝑝𝐽)] , (3.3)

where 𝐾𝑛
𝑒𝑓𝑓 is the transmissibility coefficient given by a harmonic average of the orthogonal

projection of the permeability tensor onto the face 𝐼𝐽𝐾 written as:

𝐾𝑛
𝑒𝑓𝑓 =

𝐾𝑛
𝑅̂

𝐾𝑛
𝐿̂

𝐾𝑛
𝑅̂

ℎ𝐿̂ + 𝐾𝑛
𝐿̂
ℎ𝑅̂

, (3.4)

and 𝐷𝐽𝐼 and 𝐷𝐽𝐾 are the cross-diffusion terms given by:

𝐷𝐽𝐼 =
−−→𝜏𝐽𝐾 ·

−→
𝐿̂𝑅̂

|
−→
𝑁 𝐼𝐽𝐾 |2

− 1
|
−→
𝑁 𝐼𝐽𝐾 |

(︃
𝐾𝐽𝐾

𝑅̂

𝐾𝑛
𝑅̂

ℎ𝑅̂ +
𝐾𝐽𝐾

𝐿̂

𝐾𝑛
𝐿̂

ℎ𝐿̂

)︃
(3.5)

𝐷𝐽𝐾 =
−→𝜏𝐽𝐼 ·
−→
𝐿̂𝑅̂

|
−→
𝑁 𝐼𝐽𝐾 |2

− 1
|
−→
𝑁 𝐼𝐽𝐾 |

(︃
𝐾𝐽𝐼

𝑅̂

𝐾𝑛
𝑅̂

ℎ𝑅̂ +
𝐾𝐽𝐼

𝐿̂

𝐾𝑛
𝐿̂

ℎ𝐿̂

)︃
, (3.6)

with:

𝐾𝑛
𝑟 =
−→
𝑁 𝑇

𝐼𝐽𝐾 ˜
𝒦𝑟

−→
𝑁 𝐼𝐽𝐾

2|−→𝑁 𝐼𝐽𝐾 |
(3.7)

𝐾𝑖𝑗
𝑟 =

−→
𝑁 𝑇

𝐼𝐽𝐾 ˜
𝒦𝑟
−→𝜏 𝑖𝑗

2|−→𝑁 𝐼𝐽𝐾 |
(3.8)

−→𝜏 𝑖𝑗 = −→𝑁 𝐼𝐽𝐾 ×
−→
𝑖𝑗 , (3.9)

for 𝑖,𝑗 = 𝐼, 𝐽, 𝐾 and 𝑟 = 𝑅, 𝐿.



20

3.2.1 Boundary conditions treatment

The flux on a face submitted to Dirichlet boundary conditions is approximated by:

−→𝑣 𝑅̂ ·
−→
𝑁 𝐼𝐽𝐾 ≈ −

[︃
2

𝐾𝑛
𝑅̂

ℎ𝑅̂

(𝑝𝑅̂ − 𝑔𝐷
𝐽 ) + 𝐷𝐽𝐼(𝑔𝐷

𝐽 − 𝑔𝐷
𝐼 ) + 𝐷𝐽𝐾(𝑔𝐷

𝐽 − 𝑔𝐷
𝐾)
]︃

, (3.10)

where 𝑔𝐷
𝐼 , 𝑔𝐷

𝐽 and 𝑔𝐷
𝐾 are the prescribed values on the boundary, with 𝐷𝐽𝐼 and 𝐷𝐽𝐾 :

𝐷𝐽𝐼 =

(︂
−−→𝜏𝐽𝐾 ·

−→
𝐽𝑅̂

)︂
|
−→
𝑁 𝐼𝐽𝐾 |

𝐾
(𝑛)
𝑅̂

ℎ𝑅̂

+ 𝐾𝐽𝐾
𝑅̂

, (3.11)

𝐷𝐽𝐾 =

(︂
−→𝜏𝐽𝐼 ·
−→
𝐽𝑅̂

)︂
|
−→
𝑁 𝐼𝐽𝐾 |

𝐾
(𝑛)
𝑅̂

ℎ𝑅̂

+ 𝐾𝐽𝐼
𝑅̂

. (3.12)

Furthermore, for faces on the Neumann boundary, the boundary condition value is:

−→𝑣 𝑅̂ ·
−→
𝑁 𝐼𝐽𝐾 = 𝑔𝑁 . (3.13)

3.2.2 Vertex unknowns interpolation

As it can be seen from Equation (3.3), the MPFA-D’s unique flux expression, apart
from the cell unknowns, includes vertex unknowns that must be eliminated in order to
obtain a completely cell-centered approximation. This can be achieved by rewriting the
vertex variables as a linear combination of the surrounding cell-centered values:

𝑝𝑣 =
𝑛𝑘∑︁

𝑘=1

𝜔𝑘𝑝𝑘. (3.14)

Here, we have opted to use the Global Least Squares (GLS) interpolation (DONG;
KANG, 2022). It is a linear-preserving interpolation technique capable of handling het-
erogeneous and highly anisotropic media while maintaining a good convergence rate as
discussed by CAVALCANTE (2023).

DONG; KANG (2022) introduce the following metric for the magnitude of the
anisotropy of the permeability coefficient

˜
𝒦:

𝒜(
˜
𝒦) =

(︃
1− 3(det

˜
𝒦)1/3

tr
˜
𝒦

)︃2

. (3.15)
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Figure 2 – Local structure and notation for an internal node.

−→𝑥 𝑣

𝐾𝑖𝑗 ,1 𝐾𝑖𝑗 ,2−→𝑥 𝜎𝑗
•
−→
𝑡 𝜎𝑗 ,1

−→
𝑡 𝜎𝑗 ,2

−→𝑛 𝜎𝑗

𝜎𝑗

Source: (DONG; KANG, 2022).

It allows to take into account the physical aspects of the problem in addition to the
geometric ones during the calculation of the weights.

A piecewise linear function is also defined around the interpolated node 𝑣:

𝑃𝑖(−→𝑥 ) = −→𝑔 𝑇
𝑖 (−→𝑥 −−→𝑥 𝑣) + 𝑝𝑣, (3.16)

in which −→𝑔 𝑖 are the coefficients of the linear combination and −→𝑥 𝑣 is the position of the
node 𝑣.

For an internal node, as illustrated in Figure 2, the weights of the GLS interpolation
are computed by finding the least squares (LS) solution of:

min
V

⎛⎝𝑛𝐾∑︁
𝑖=1

(𝛿𝑈𝑖)2 +
𝑛𝑓∑︁

𝑗=1

[︁
(𝛿𝐹𝑗)2 + (𝛿𝑇𝑗,1)2 + 𝜏 2

𝑗,2(𝛿𝑇𝑗,2)2
]︁⎞⎠ , (3.17)

where 𝑛𝐾 and 𝑛𝑓 are the number of control volumes and the number of faces surrounding
node 𝑣, respectively. Furthermore:

𝜏𝑗,2 = |−→𝑡 𝜎𝑗 ,2|−𝜂𝑗 (3.18)
𝜂𝑗 = max

(︁
𝒜(

˜
𝒦𝑖𝑗,1),𝒜(

˜
𝒦𝑖𝑗,2)

)︁
(3.19)

𝛿𝑈𝑖 = 𝑃𝑖(−→𝑥 )− 𝑝𝑖,

𝛿𝐹𝑗 = −→𝑛 𝜎𝑗 ˜
𝒦𝑖𝑗,1
−→𝑔 𝑖𝑗,1 −−→𝑛 𝜎𝑗 ˜

𝒦𝑖𝑗,2
−→𝑔 𝑖𝑗,2 ,

𝛿𝑇𝑗,1 = −→𝑡 𝑇
𝜎𝑗 ,1
−→𝑔 𝑖𝑗,1 −

−→
𝑡 𝑇

𝜎𝑗 ,1
−→𝑔 𝑖𝑗,2 , (3.20)

𝛿𝑇𝑗,2 = −→𝑡 𝑇
𝜎𝑗 ,2
−→𝑔 𝑖𝑗,1 −

−→
𝑡 𝑇

𝜎𝑗 ,2
−→𝑔 𝑖𝑗,2 ,

U = (𝑝1, . . . , 𝑝𝑛𝑘
)𝑇 ,

V = (−→𝑔 𝑇
1 , . . . ,−→𝑔 𝑇

𝑛𝑘
, 𝑝𝑣)𝑇 ,
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and −→𝑡 𝜎𝑗 ,1,
−→
𝑡 𝜎𝑗 ,2 are non co-linear tangent vectors to the face 𝜎𝑗.

The problem described by Equation (3.17) can be rewritten as:

M𝑣V = N𝑣U, (3.21)

whose LS solution is:

V =
(︁
M𝑇

𝑣 M𝑣

)︁−1
M𝑇

𝑣 N𝑣U. (3.22)

It follows that:

(𝜔1, . . . , 𝜔𝑛𝑘
) = −→𝑒

(︁
M𝑇

𝑣 M𝑣

)︁−1
M𝑇

𝑣 N𝑣, (3.23)

where −→𝑒 is the last column of a (3𝑛𝑘 + 1)× (3𝑛𝑘 + 1) identity matrix, i.e., the weights
correspond to the last row of

(︁
M𝑇

𝑣 M𝑣

)︁−1
M𝑇

𝑣 N𝑣.

For nodes on the Neumann boundary, the interpolated value takes the form:

𝑝𝑣 =
𝑛𝑘∑︁

𝑘=1

𝜔𝑘𝑝𝑘 + 𝜔𝑐, (3.24)

in which 𝜔𝑐 stands for the contribution of the Neumann boundary value to 𝑝𝑣.

The minimization problem seen in Equation (3.17) is modified to include the
contribution of the boundary condition, so that the new problem to be solved in the LS
sense is:

min
V

⎛⎝𝑛𝐾∑︁
𝑖=1

(𝛿𝑈𝑖)2 +
𝑛𝑓∑︁

𝑗=1

[︁
(𝛿𝐹𝑗)2 + (𝛿𝑇𝑗,1)2 + 𝜏 2

𝑗,2(𝛿𝑇𝑗,2)2
]︁

+
𝑛𝑏∑︁

𝑘=1
(𝛿𝑁𝑘)2

⎞⎠ , (3.25)

where:

𝛿𝑁𝑘 = −−→𝑛 𝑇
𝜎𝑘,𝑏 ˜
𝒦𝑖𝑘

−→𝑔 𝑖𝑘
− 𝑔𝑁

(︁−→𝑥 𝜎𝑘,𝑏

)︁
, (3.26)

𝑛𝑏 is the number of boundary faces surrounding the node and 𝑔𝑁

(︁−→𝑥 𝜎𝑘,𝑏

)︁
corresponds to

the Neumann boundary condition value at face 𝜎𝑘,𝑏.

The final solution for the weights can be found similarly to the internal nodes. For
a more detailed description of the assembly procedure of these local problems, refer to
(DONG; KANG, 2022).
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4 MULTISCALE FORMULATION

4.1 Multiscale framework

The core idea behind every multiscale scheme is to use the coarse scale as an auxiliary
basis that can be used to approximate the solution of the fine-scale system of equations.
This is achieved by using two numerical operators that, together, are capable of projecting
information back and forth between these two discrete scales: the prolongation operator
P and the restriction operator R. The prolongation operator stores the basis functions,
that in turn, capture the influence that each coarse volume has on its corresponding
support region. On the other hand, the restriction operator R maps the distribution of
the fine-scale quantities onto the coarse-scale. In practical terms, for a problem with a
fine-scale and coarse-scale containing 𝑛𝑓 , and 𝑛𝑐 control volumes, respectively, P and R
are matrices with dimensions 𝑛𝑓 × 𝑛𝑐 and 𝑛𝑐 × 𝑛𝑓 .

By definition P approximates the fine-scale solution p by projecting the coarse
scale solution p𝑐 onto the fine-scale space, as it follows:

p ≈ p𝑚𝑠 = Pp𝑐. (4.1)

where p𝑚𝑠 denotes the multiscale approximate solution.

Let the fine-scale discrete system of equations be:

Ap = q. (4.2)

In order to find pc, we need to find a system defined on the coarse scale, similarly
to Equation (4.2). By replacing the approximation of the exact solution of Equation (4.1)
in (4.2) and premultiplying by the restriction operator, a coarse-scale system is found:

RA (Pp𝑐) = Rq ∴ A𝑐p𝑐 = q𝑐, (4.3)

where A𝑐 = RAP and q𝑐 = Rq.

Multiscale methods differentiate themselves based on how the prolongation and
restriction operators are defined. In this thesis, we extend the Multiscale Control Volume
(MsCV) (SOUZA et al., 2020) to 3-D domains. The MsCV method uses the prolongation
operator of the Multiscale Restriction-Smoothed Basis (MsRSB) (MØYNER; LIE, 2016)
in combination with the MPFA-D in 2-D. The resulting framework allows the use of
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Figure 3 – Illustration of the MsCV geometric entities.

(a) The fine-scale mesh Ω𝑓 (thin lines) and the
background grid Ω𝑏𝑔 (bold lines). (b) The primal coarse mesh Ω𝑃

𝑐 .

(c) The dual coarse mesh Ω𝐷
𝑐 (red).

(d) An example of support region 𝐼𝑗 (dark
blue) and its boundary 𝐵𝑗 (green) high-
lighting 𝐻𝑗 (orange) and the correspond-
ing primal volume (light blue).

Source: Author.

unstructured meshes on all scales. To adapt the MsCV to general 3-D grids, two issues
need to be addressed: the use of a consistent flux approximation and the definition of
an algorithm capable of generating the multiscale geometric entities on these grids. The
first issue is resolved by replacing the standard 2-D MPFA-D by the 3-D MPFA-D (LIRA
FILHO et al., 2021) in which we introduce the robust GLS interpolation as defined on
the previous chapter. The latter is addressed by extending the background grid strategy
presented by SOUZA et al. (2022) to 3-D geometries. Furthermore, we also propose an
enhanced version of the 3-D MsCV, the E-MsCV, which applies the preconditioning
technique described by BOSMA et al. (2021) to improve convergence.

4.2 Multiscale geometric entities

In this section, we will summarize the geometric entities employed by the MsCV
and the MsRSB methods based on the concepts introduced by (SOUZA et al., 2020;
SOUZA et al., 2022; MØYNER; LIE, 2016). The algorithms used to generate these entities
will be discussed in Chapter 5. Illustrations to the concepts presented below are provided
in Figure 3.
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Fine-scale mesh (Ω𝑓) The fine-scale mesh is the higher resolution discretization of the
physical domain. It is usually the same grid used to estimate the physical properties
of the medium.

Background grid (Ω𝑏𝑔) The background grid is an auxiliary grid used as a reference to
partition the fine-scale mesh and generate the primal and dual coarse meshes. This
is a concept introduced in the multiscale context by SOUZA et al. (2022) for the
2-D case. Figure 3a presents both the fine-scale and the background grid.

Primal coarse mesh (Ω𝑃
𝑐 ) This is a lower-resolution grid obtained by agglomerating

volumes from the fine-scale mesh, as it can be seen in Figure 3b. In the original MsCV
and MsRSB methods, this mesh is generated via some partitioning tool. However,
in this work we use the concept of a background grid to determine the multiscale
entities.

Dual coarse mesh (Ω𝐷
𝑐 ) The dual coarse mesh is an auxiliary grid used to enforce mass

conservation on the boundaries of the primal coarse volumes and later used in the
flux reconstruction algorithm to find a conservative flux field from the multiscale
solution. This grid is represented in Figure 3c by the red regions.

Primal coarse center (𝑥𝑃 ) The primal coarse center is the fine-scale volume closest to
the centroid of the corresponding primal coarse volume. MØYNER; LIE (2016) and
BARBOSA et al. (2018) discuss different approaches to define the primal coarse
center, but we have chosen to employ the aforementioned definition for the sake of
simplicity.

Support region of a primal coarse volume 𝑗 (𝐼𝑗) The support region can be inter-
preted as the region of influence of a primal coarse center in the global domain. This
is equivalent to:

P𝑖,𝑗 ̸= 0, ∀𝑖 ∈ 𝐼𝑗. (4.4)

It is important to note that the primal coarse center itself, as well as the support
boundary 𝐵𝑗, is not part of the support region.

Support boundary of a primal coarse volume 𝑗 (𝐵𝑗) The support boundary con-
sists of all cells that share at least one face with a cell in the support region 𝐼𝑗 but
are not a part of it themselves.

Global support boundary (𝐺) The global support boundary is the set of all cells that
belong to the support boundary of a primal coarse volume, i.e.:

𝐺 =
𝑛𝑐⋃︁

𝑗=1
𝐵𝑗 (4.5)
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Global support boundary in a support region (𝐻𝑗) This is the set of cells that are
in the global support boundary and belong to the support region of 𝑗. Equivalently:

𝐻𝑗 = 𝐼𝑗 ∩𝐺 (4.6)

Figure 3d illustrates an example of a support region, its boundary and the intersection
with 𝐻𝑗.

4.3 The MsCV operators in 3-D

The MsCV method proposed by SOUZA et al. (2020) is based on the MsRSB
(MØYNER; LIE, 2016) which uses an iterative process to define the basis functions for the
prolongation operator. We use the foundations of the original MsCV with some adaptations
for the 3-D case to define the iterative procedure of constructing the prolongation operator.

The prolongation operator is initialized as the characteristic function of each primal
coarse volume, i.e.,

𝑃 0
𝑖𝑗 =

⎧⎪⎨⎪⎩1 if Ω𝑓,𝑖 ∈ Ω𝑃
𝑐,𝑖

0 otherwise
. (4.7)

As pointed out by MØYNER; LIE (2016), other initial guesses could be used, but
this choice is made for its simplicity and because it already provides partition of unit. The
initial operator is then modified through weighted Jacobi iterations of the form:

𝑃 𝑛+1
𝑗 = 𝑃 𝑛

𝑗 − 𝜔𝐷−1𝐴𝑝𝑟𝑒𝑃 𝑛
𝑗 , (4.8)

where 𝜔 is the relaxation parameter of the Jacobi iteration set to 2/3, 𝐷−1 is the inverse
of the main diagonal of the preconditioned MPFA-D left-hand side term, and 𝐴𝑝𝑟𝑒 is the
preconditioned MPFA-D matrix. Here, the preconditioned matrix is a direct application
of the technique described by SOUZA et al. (2020) and is given by:

𝐴𝑝𝑟𝑒
𝑖𝑗 =

⎧⎪⎨⎪⎩𝐴𝑖𝑗 if 𝑖 ̸= 𝑗

𝐴𝑖𝑖 −
∑︀𝑛𝑓

𝑘=1 𝐴𝑖𝑘 otherwise
. (4.9)

Given the iterative process in Equation (4.8), the smoothing procedure applied to
compute each basis function 𝑃𝑗 is detailed in Algorithm 1. The fourth step of the procedure
is performed in order to ensure mass conservation since the fine-scale cells involved in this
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calculation contribute only to the support region of the coarse cell 𝑗 and, therefore, should
hold the maximum value in the prolongation operator. Figure 4 illustrates the smoothing
procedure of the basis functions.

Algorithm 1: The MsCV iterative smoothing procedure of the basis functions
Input: The initial guess P0

Output: The prolongation operator P
Compute the initial increment 𝑑𝑗 = −𝜔𝐷−1𝐴𝑝𝑟𝑒𝑃 𝑛

𝑗 ;
Modify 𝑑𝑗 to ensure the partition of unity and avoid growth outside the support
region:

𝑑𝑖𝑗 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑑𝑖𝑗−𝑃 𝑛

𝑖𝑗

∑︀
𝑘∈𝐻𝑗

𝑑𝑖𝑘

1+
∑︀

𝑘∈𝐻𝑗
𝑑𝑖𝑘

if Ω𝑓,𝑖 ∈ 𝐻𝑗

𝑑𝑖𝑗 if Ω𝑓,𝑖 ∈ 𝐼𝑗 and Ω𝑓,𝑖 /∈ 𝐻𝑗

0 otherwise

(4.10)

Set 𝑃 𝑛+1
𝑗 = 𝑃 𝑛

𝑗 + 𝑑𝑗;
Set 𝑃 𝑛+1

𝑖,𝑗 = 1 for all fine-scale cells 𝑖 that belong solely to the support region of the
primal center 𝑗;

Rescale 𝑃𝑗 to ensure partition of unity, i.e., set 𝑃 𝑛+1
𝑗 = 𝑃 𝑛+1

𝑗 /
∑︀

𝑖 𝑃𝑖,𝑗;
Calculate the local error for cells outside the global support boundary:

𝑒𝑗 = max
𝑖/∈𝐺
|𝑑𝑖𝑗| (4.11)

If ‖e‖∞ ≤ 𝑡𝑜𝑙, stop and set 𝑃 = 𝑃 𝑛+1. Else, go to step 1;

Finally, for the restriction operator, we use the Finite Volume restriction operator
described by JENNY; LEE; TCHELEPI (2003) defined as:

R𝑖𝑗 =

⎧⎪⎨⎪⎩1 if Ω𝑓,𝑗 ∈ Ω𝑃
𝑐,𝑖

0 otherwise
. (4.12)

4.4 The Enhanced MsCV (E-MsCV)

As discussed by BOSMA et al. (2021), the MsRSB’s prolongation operator may show
slow convergence when applied to non M-matrices. To overcome this issue, a modification
to the fine-scale matrix is suggested so that the M-matrix properties are reinforced, making
the convergence rate of the method closer to when it is applied to a TPFA matrix.

As we will show in our experiments, the 3-D MsCV presents the same convergence
issues. Since the MsCV prolongation operator is based on the MsRSB, it is natural to
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Figure 4 – The smoothing process of the multiscale basis functions.

(a) Initial guess. (b) 100 iterations. (c) 500 iterations.

Source: Author.

consider the application of the aforementioned procedure to our new framework. We
designate this modified version of the MsCV the Enhanced MsCV (E-MsCV).

The E-MsCV improves on the MsCV by adopting the preconditioning technique
proposed by BOSMA et al. (2021). It modifies the transmissibility matrix 𝐴 by filtering
all positive off-diagonal entries. This ensures M-matrix properties and improves the
convergence rate of the Jacobi iterations. This preconditioning technique can be written
as:

𝐴*
𝑖𝑗 = min (𝐴𝑖𝑗, 0) , for 𝑖 ̸= 𝑗, (4.13)

𝐴𝑝𝑟𝑒
𝑖𝑗 =

⎧⎪⎨⎪⎩𝐴*
𝑖𝑗 if 𝑖 ̸= 𝑗

𝐴*
𝑖𝑖 −

∑︀𝑛𝑓

𝑘=1 𝐴*
𝑖𝑘 otherwise

. (4.14)

The remaining of the E-MsCV follows the same iterative procedure described in
Algorithm 1.

4.5 Flux reconstruction algorithm

By construction, the multiscale solution is mass conservative on the coarse scale.
However, if the prolongated solution is used to calculate the fluxes on the fine scale,
the resulting field will not be mass conservative since the algorithm used to obtain the
prolongation operator decouples the domain for the solution of local problems within each
support region. Hence, one must compute a new pressure field to accommodate the error
introduced by the initial multiscale solution while keeping the mass conservation on the
interfaces of the primal coarse cells. In this work, a procedure based on JENNY; LEE;
TCHELEPI (2003) and SOUZA et al. (2020) is employed to obtain such pressure field.

The reconstructed pressure field is composed by the original multiscale solution on
the boundaries of the primal coarse volume and a new solution computed in the interior



29

of the coarse cell. First, we determine the fluxes on the surface of each primal coarse cell
using the prolongated solution. Next, for each coarse cell, we use the fluxes calculated on
the previous step as Neumann boundary conditions to solve Equation (2.6) restricted to
the primal coarse volume. This is can be written as:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−∇ · (

˜
𝒦∇𝑝) = 𝑞𝑓 in Ω𝑃 ,

∇𝑝 · −→𝑛 = 𝑣𝑚𝑠 on 𝜕Ω𝑃 ,

𝑝 = 𝑝𝑚𝑠 in𝑥𝑃 if 𝜕Ω𝑃 ∩ Γ𝐷 = ∅

, (4.15)

where 𝑝 is the new pressure field computed inside each primal coarse cell, −→𝑛 is the outward
normal unit vector to the interface, 𝑝𝑚𝑠 is the initial multiscale solution obtained by the
prolongation of the coarse scale solution and 𝑣𝑚𝑠 is the flux field computed using 𝑝𝑚𝑠. The
latter condition on Equation (4.15) ensures that each local problem is well posed even
for the primal coarse volumes that do not contain any volumes on the fine-scale on the
Dirichlet boundary by forcing the primal coarse center to hold its initial value.
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5 THE BACKGROUND GRID FRAMEWORK

One of the key phases of any variant of the MsFV framework is the generation of
the primal and dual coarse grids. Properly defining these meshes can substantially reduce
the number of steps taken by the iterative multiscale procedure.

A common approach to generate the primal coarse grid is by subdividing the
computational domain using a partitioning tool such as Metis (KARYPIS; KUMAR, 1998).
That is the alternative adopted by (MØYNER; LIE, 2016; BOSMA et al., 2017; SOUZA
et al., 2020). Although straightforward, this procedure has the shortcoming of often being
solely based on the geometry of the domain which in turn may lead to inconsistencies and
loss of accuracy on the solution in the presence of highly heterogeneous media, as pointed
out by MØYNER; LIE (2016) and MEHRDOOST (2019), who resort to mesh adaptation
to mitigate these issues.

SOUZA et al. (2022) introduce a new procedure to generate the multiscale coarse
grids by employing an auxiliary background grid that guides the definition of both the
primal and dual coarse meshes. The background grid scheme intends to follow three
assumptions:

1. The fine-scale grid is derived from the geological discretization of the domain;

2. The primal coarse grid should conform to the geological features of the medium; and

3. As far as possible, the grids from the background grid framework should be appliable
to the upscaling context. Hence, strongly non-convex volumes should be avoided.

It is worth pointing out that the fine-scale and the background grid are independent
from each other. The grids may have different topologies and the background grid is not
necessarily a coarser version of the fine-scale grid. In fact, the background grid may be
adapted to features in the physical domain and not follow the profile of the fine-scale
discretization.

In this chapter, we present a novel 3-D extension of the original 2-D background
grid framework and apply it to generate the multiscale coarse grids used for the simulations.
The main steps of the algorithm are outlined by the flowchart in Fig. 5.

5.1 Primal coarse grid generation

The first step of the background grid framework is the generation of the primal
coarse grid’s entities, namely the volumes and faces. This procedure is described in
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Figure 5 – Main steps of the background grid framework for 3-D geometries.
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Source: Author.

Algorithm 2.

Firstly, it is necessary to find the fine cells owned by each background grid volume.
The ownership relation is defined by checking if the background grid volume contains the
fine cell’s centroid. Assuming that the background grid is formed only by convex polyhedra,
this verification is performed by constructing a Delaunay tessellation (DELAUNAY et al.,
1934) and checking if the point is within one of the simplexes.

Next, we need to guarantee that the clusters of fine cells generated are connected
by face, that is, if a fine cell in a cluster shares at least a face with another fine cell in the
same cluster. This is done iteratively by checking the fine volumes in a disconnected cluster
and reassigning them to a new primal coarse volume so that now the face connectivity
criterion is obeyed. The while loop in Algorithm 2 performs this step. By making those
checks iteratively, we ensure that the status of a fine volume that could not be reassigned
is not reevaluated until all the other fine cells have been checked as well.

After all corrections are performed, we can define the primal coarse faces. For
each primal coarse volume assembled, we retrieve the fine-scale faces that are in this
primal volume and filter those that either are in the domain’s boundary or are shared with
another primal coarse cell. At the end, we have the primal coarse faces, i.e., the surface
that delimits the corresponding primal coarse cell.
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Algorithm 2: Primal coarse grid generation
Input: The fine-scale grid and the background grid
Output: The primal coarse grid
Assign each fine cell to the background grid volume that contains its centroid;
For each cluster of fine cells, construct a graph of face connectivity within the set,
i.e., an edge in the graph indicates that a face is shared between two fine volumes;

Set 𝑆 as a linked list containing the fine volumes in disconnected components of
the graphs from the previous step;

while 𝑆 is not empty do
Get the first volume from 𝑆;
if the volume is connected to a well formed primal coarse volume then

Assign the volume to this primal volume;
else

Push the volume to end of 𝑆;
end

end
for each primal coarse volume 𝐶𝑗 assembled do

𝐹𝑗 ← the set of fine-scale faces forming the fine cells in 𝐶𝑗;
𝐹 1

𝑗 ← the fine faces in 𝐹𝑗 that are in the domain’s boundary;
𝐹 2

𝑗 ← the fine faces in 𝐹𝑗 that are shared with other primal coarse cells;
𝜕𝐶𝑗 ← 𝐹 1

𝑗

⋃︀
𝐹 2

𝑗 , the primal coarse faces of 𝐶𝑗;
end

5.2 Primal coarse centers calculation

Given the primal coarse grid, we can now determine the primal coarse centers of
each primal coarse volume. As discussed in Section 4.2, the primal coarse centers are the
fine cells whose centroids are the closest to the centroid of the background grid volume
corresponding to the primal coarse volume. Similarly, we can define the primal coarse
faces centers as the fine-scale face whose centroid is the nearest to the centroid of the
corresponding background grid face. Both definitions are detailed in Algorithm 3.

5.3 Dual coarse grid generation

Once we have defined the primal coarse grid, the next step of the background grid
framework is to generate the dual coarse grid. Here, we take the approaches devised by
SOUZA et al. (2020) and SOUZA et al. (2022) as the basis for our own procedure to
delimit the dual coarse grid.
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Algorithm 3: Primal coarse centers computation
Input: The fine-scale grid, the background grid and the primal coarse grid
Output: A mapping of the centers for each primal coarse volume
for each primal coarse volume 𝐶𝑗 do

𝐷𝑗 ← the euclidean distances between the fine cells in 𝐶𝑗 and the centroid of
the background grid volume corresponding to 𝐶𝑗;

𝑥𝑃
𝑗 ← arg min𝑘∈𝐶𝑗

𝐷𝑗
𝑘;

end
for each primal coarse face 𝐹𝑗 do

𝐷𝑗 ← the euclidean distances between the fine faces in 𝐹𝑗 and the centroid of
the background grid face corresponding to 𝐹𝑗;

𝑥𝐹
𝑗 ← arg min𝑘∈𝐹𝑗

𝐷𝑗
𝑘;

end

5.3.1 Dual coarse edges definition

A dual grid edge can be defined as the shortest path between a primal coarse
center and the center of a primal coarse face in the same volume. Since we are using the
background grid as reference, we can interpret the shortest path geometrically, i.e., as the
line segment connecting both points. Then, the dual coarse edge can be delimited as the
set of fine-scale volumes intercepted by this line segment.

Algorithm 4 summarizes the procedure described above. The line segment-fine mesh
intersection is computed by checking if the line segment intersects any of the fine faces
that form a fine volume, which reduces the problem to computing a line-plane intersection.
Furthermore, by adopting this strategy, we can guarantee the face connectivity within the
dual coarse edge since if the line segment intercepts an internal fine face, then it intercepts
both fine volumes sharing this face.

Algorithm 4: Dual coarse edges definition
Input: The fine-scale grid, the background grid and the primal coarse grid
Output: An assignment of fine-scale volumes to dual coarse edges
ℰ ← an empty dictionary to store the fine volumes in each dual coarse edge;
for each primal coarse volume 𝐶𝑗 do

𝑥𝐶𝑗 ← the centroid of 𝐶𝑗’s center;
for each face of 𝐶𝑗 do

𝑥𝐹𝑗 ← the centroid of the face’s center;
𝐿← the line segment connecting 𝑥𝐶𝑗 and 𝑥𝐹𝑗 ;
𝑉 ← the set of fine volumes in 𝐶𝑗 that are intercepted by 𝐿;
ℰ [(𝐶𝑗, 𝐹𝑗)]← 𝑉 ;

end
end
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5.3.2 Dual coarse faces definition

The dual coarse faces are the remaining entities in the dual coarse grid to be defined.
Similar to the previous stages of the pre-processing algorithm, the background grid is used
as a reference and stand-in for the primal coarse grid. For each background grid volume,
we establish that a dual face is delimited by the quadrilateral formed by the centroid of
the volume, the centroids of two neighboring faces and the point of intersection between
the plane formed by the previous points and the edge shared by the chosen faces. Figure
6 provides a 2-D view of this arrangement where 𝑥𝑃 is the centroid of the background
grid volume, 𝐹1 and 𝐹2 are the centroids of two adjacent faces, and 𝑃 is the point of
intersection between the plane section 𝑥𝑃 𝐹1𝐹2 and the edge shared between the adjacent
faces.

Figure 6 – The arrangement of the points that define a dual face from a 2-D perspective. All points lying
inside the red region form a dual face.
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Source: Author.

Algorithm 5: Dual coarse faces definition
Input: The fine-scale grid, the background grid and the primal coarse grid
Output: An assignment of fine-scale volumes to dual coarse faces
𝒟 ← an empty dictionary to store the fine volumes in each dual coarse face;
for each background grid volume 𝐶𝑏𝑔

𝑗 do
𝐹 𝑎𝑑𝑗

𝑗 ← all pairs of adjacent faces that form 𝐶𝑏𝑔
𝑗 ;

𝑁 ← the set of the normal vectors to the planes defined by the centroids of 𝐶𝑏𝑔
𝑗

and each pair of faces in 𝐹 𝑎𝑑𝑗
𝑗 ;

for each plane 𝑃𝑘 defined in the previous step do
Retrieve the fine volumes inside 𝐶𝑏𝑔

𝑗 that are intercepted by the plane;
𝒟𝑘 ← the fine volumes that are intercepted by 𝑃𝑘 and whose centroids’
projection is inside the region delimited by the points that form 𝑃𝑘;
𝒟
[︁(︁

𝐶𝑏𝑔
𝑗 , 𝐹 𝑎𝑑𝑗

𝑗,𝑘

)︁]︁
← 𝒟𝑘, where 𝐹 𝑎𝑑𝑗

𝑗,𝑘 is the pair of adjacent faces whose
centroids form 𝑃𝑘;

end
end

The outer loop in Algorithm 5 determines all pairs of adjacent faces in the back-
ground grid volume, i.e., all faces that share an edge, and then computes the planes defined
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by the centroid of the background grid volume and the centroids of each pair of faces.
Once those are well defined, we can proceed to check which fine cells are intercepted by a
plane and lie within the region of the dual face. The first step is done by simply checking
if a cell has vertices in opposing sides of the plane.

In order to filter the fine volumes that are inside the region of the dual face, we
verify if the projection of the cell’s centroid is inside the dual face. Although the plane
section of the dual face is formed by the three points of the plane 𝑃𝑘 plus the point of
intersection between the plane and the edge shared by the adjacent faces, we need only to
check if the projection sits between the two line segments that connect the background
grid volume centroid to the adjacent faces. If so, then the fine cell is part of the dual face.
At the end, a dictionary of all fine volumes in a dual face is assembled.

5.4 Construction of the support regions

Once the multiscale coarse grids are defined, we can pass on to construct the
support regions of each primal coarse volume. In the present approach, we take advantage
of the dual coarse grid to delimit the boundaries of the support regions so that we do not
have to compute new surfaces as it is done in the original MsCV pre-processing algorithm
(SOUZA et al., 2020).

The steps to construct the support region of each primal coarse volume are outlined
in the Algorithm 6. At the outer for loop, we define the primal coarse volumes involved in
the support region of 𝐶𝑗. Next, using the background grid, we can establish the bounding
surface of this cluster formed by dual faces around the primal coarse volume of interest.
This bounding surface is used as a preliminary support boundary since it already contains
all fine cells that actually form 𝐵𝑗 but it also includes additional cells that belong to the
support region 𝐼𝑗. An example of this initial support boundary is shown in Figure 7 for
the structured case.

Given the initial support boundary, the support region itself can be now defined.
In our procedure, a growth strategy is applied by adding fine volumes to 𝐼𝑗 until the
preliminary support boundary is reached. This idea is similar to a breadth first search in
graphs. In this case, our target nodes would be the fine cells in 𝐵*

𝑗 and a branch in the
search algorithm would stop as soon it reaches one of those volumes. Finally, we fix the
support boundary so that the additional cells are removed and included in the support
region.
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Algorithm 6: Construction of the support regions
Input: The fine-scale grid, the primal coarse grid, the dual coarse grid and the

background grid
Output: The support region of each primal coarse center
for each primal coarse volume 𝐶𝑗 do

Find the primal volumes sharing at least a node with 𝐶𝑗 using the background
grid as reference;

Get the background grid faces from the cells in the previous step that form the
boundary of this set;

Retrieve the dual faces that intercept the node neighbors;
Define 𝐵*

𝑗 , the initial support region boundary, as the set of fine cells part of a
dual face that contains a background grid face in the boundary of the node
neighbors;

Set 𝐼𝑗 ← 𝐶𝑗 as the initial support region;
while there are fine-scale volumes to be incorporated to the support region do

𝐼+
𝑗 ← the fine-scale volumes that share at least a face with a fine volume in
𝐼𝑗;

if 𝐼+
𝑗 − 𝐼𝑗 −𝐵*

𝑗 ̸= ∅ then
𝐼𝑗 ← 𝐼𝑗 ∪ (𝐼+

𝑗 −𝐵*
𝑗 );

else
Stop;

end
end
Set 𝐵𝑗 as the support region’s boundary by filtering from 𝐵*

𝑗 all the fine cells
that do not share a face with another cell outside of 𝐼𝑗;

Add the cells filtered on the previous step to 𝐼𝑗;
end
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Figure 7 – An example of preliminary support boundary (red) generated during the execution of Algorithm
6. The dark bold lines delimit the background grid neighbors of the volume of interest (lighter
lines). The exceeding cells are circled in blue.

Source: Author.
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6 RESULTS AND DISCUSSION

In this chapter, we present a series of examples to evaluate the performance of
the proposed 3-D MsCV and E-MsCV. In the first test, we have manufactured a simple
problem with a 1-D linear solution in a conical domain in order to evaluate the performance
of the 3-D MsCV in a homogeneous and isotropic medium and showcase the ability of the
background grid framework to generate the multiscale grids on unconventional geometries.
The second example was adapted from EYMARD et al. (2011) in a homogeneous and mildly
anisotropic medium. In the third example, we consider an anisotropic and heterogeneous
medium with a constant source term. In the last example, we consider a reservoir with a
spherical heterogeneity and discuss the multiscale solutions on a barrier and a channel
configurations. For all examples, we have performed simulations using both the 3-D MsCV
and the E-MsCV.

We define the following error norms for the multiscale solution (SOUZA et al.,
2022):

||p𝑟𝑒𝑓 − p𝑚𝑠||2 =
⎛⎝∑︀Ω𝑖∈Ω𝑓

|𝑝𝑟𝑒𝑓
𝑖 − 𝑝𝑚𝑠

𝑖 |2∑︀
Ω𝑖∈Ω𝑓

|𝑝𝑟𝑒𝑓
𝑖 |2

⎞⎠1/2

, (6.1)

||p𝑟𝑒𝑓 − p𝑚𝑠||∞ =
maxΩ𝑖∈Ω𝑓

|𝑝𝑟𝑒𝑓
𝑖 − 𝑝𝑚𝑠

𝑖 |
maxΩ𝑖∈Ω𝑓

|𝑝𝑟𝑒𝑓
𝑖 |

, (6.2)

where the superscripts 𝑚𝑠 and ref correspond to the multiscale solution and the reference
fine-scale solution, respectively. No smoothing procedures to improve the multiscale
solutions were adopted.

For the timing results, all tests were run in a system with Intel® Core™ i5-8250U
CPU and 8 GB RAM memory. To solve the fine-scale system of equations, the SciPy’s
(VIRTANEN et al., 2020) implementation of the Generalized Minimal Residual Method
(GMRES) was used. Furthermore, the time considered is the average of 10 executions of the
same problem in the same grid and, for the E-MsCV executions, a structured hexahedral
coarse grid is used to generate the MsCV entities such that the coarsening ratio is fixed at
each experiment.

6.1 Homogeneous and isotropic medium in a cone-shaped domain

In the first example, we study the simulation of a single-phase incompressible flow
in a homogeneous and isotropic medium. The domain has the shape of a cone around the



39

Cartesian 𝑧-axis with height and radius equal to 1 and 3, respectively. We consider the
following exact solution:

𝑢(𝑥, 𝑦, 𝑧) = 𝑥, (6.3)

with permeability tensor given by:

˜
𝒦(𝑥, 𝑦, 𝑧) =

⎛⎜⎜⎜⎝
1 0 0
0 1 0
0 0 1

⎞⎟⎟⎟⎠ . (6.4)

For all problems solved here, Dirichlet boundary conditions are applied to the
whole domain boundary.

For this simulation, we have used a fine-scale grid containing 119,840 cells and
an unstructured background grid with 272 tetrahedra. In Figure 8, the multiscale coarse
grids used for the simulation are shown. The background grid based pre-processing
framework is capable of generating coherent unstructured grids suited for simulation even
in unconventionally shaped domains, as it is the case.

Figure 8 – The multiscale coarse grids used for the simulation in the cone-shaped domain.

(a) Primal coarse grid. (b) Dual coarse grid (red).

Source: Author.

Table 1 presents the 𝐿2 and 𝐿∞ norms of the error calculated for the MsCV and
E-MsCV executions. Both approaches have similar performances, with the 𝐿2 norm of
the error lower than 0.5% while the 𝐿∞ norm of the error stays around 7%. Figure 9
also shows that both solutions are qualitatively close to each other and to the reference
solution. However, the solution obtained using the E-MsCV converges much faster than
that found using the original MsCV technique. While the latter takes almost 500 iterations
to converge, the former reaches approximately the same error rate with just over 100
iterations.
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Table 1 – The 𝐿2 and 𝐿∞ norms of the errors for the homogeneous and isotropic medium in a cone-shaped
domain case.

Error (%) MsCV E-MsCV
||𝑢||2 0.11 0.14
||𝑢||∞ 7.73 7.00

Figure 9 – The fine-scale reference solution (a) and the multiscale solutions using the MsCV (b) and the
E-MsCV (c) techniques. Slice at 𝑦 = 0 highlighting the contour lines.

(a) Fine-scale solution. (b) MsCV solution. (c) E-MsCV solution.

Source: Author.

6.2 Homogeneous and mildly anisotropic case

For this example, we consider the Test Case 1 proposed by EYMARD et al. (2011)
with a regular solution over the domain Ω = [0, 1]3 implying in a non-homogeneous
Dirichlet condition over the whole domain boundary Γ:

𝑢(𝑥, 𝑦, 𝑧) = 1 + sin (𝜋𝑥) sin
(︂

𝜋
(︂

𝑦 + 1
2

)︂)︂
sin

(︂
𝜋
(︂

𝑧 + 1
3

)︂)︂
, (6.5)

and an anisotropic permeability tensor:

˜
𝒦(𝑥, 𝑦, 𝑧) =

⎛⎜⎜⎜⎝
1 0.5 0

0.5 1 0.5
0 0.5 1

⎞⎟⎟⎟⎠ . (6.6)

We have executed the simulations on a fine-scale grid containing 243,840 tetrahedral
cells and, to compute the multiscale solutions, we have used a 6 × 6 × 6 structured
hexahedral background grid, which corresponds to a coarsening ratio of around 1,129, and
an unstructured tetrahedral background grid with 192 cells, coarsening ratio of around
1,270. For each grid, we performed simulations with the MsCV and E-MsCV.
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In Table 2, the 𝐿2 and 𝐿∞ norms of the error from each execution are presented. In
all scenarios, the 𝐿2 norm of the error is inferior to 0.5% with a reasonable but significant
error on the 𝐿∞ norm. Nevertheless, as it can be seen in Figure 10, the solutions are
qualitatively close to the reference solution in Figure 10a and are satisfactory to good
approximations of the fine-scale solution. In this example, the multiscale solutions on a
structured background grid produce lower errors than their unstructured counterparts.
This is partially justified by the fact that, in a homogeneous medium, the support regions
generated in a structured background grid are more compact and produce basis functions
that can transition more smoothly between them. In an unstructured background grid, on
the other hand, the coarse cells may be unaligned to the solution and the permeability
tensor, affecting the shape of the basis functions and, by extension, the final solution.

With respect to the performances of the proposed methods, it is notable that both
the original MsCV strategy and the E-MsCV version have similar error rates. However,
from our experiments, the E-MsCV has a better convergence rate, taking 121 iterations
while the original MsCV technique needed to be halted after 250 iterations. In addition,
the MsCV is subject to oscillations during the iterative process, which was not observed
in the E-MsCV.

Table 2 – The 𝐿2 and 𝐿∞ norms of the errors for the homogeneous and mildly anisotropic case.

Structured background grid Unstructured background gridError (%)
MsCV E-MsCV MsCV E-MsCV

||𝑢||2 0.29 0.18 0.40 0.28
||𝑢||∞ 11.81 8.69 16.12 14.97

For this example, we also analyse the computational cost to simulate the problem
by solving the original system of equations and by using the E-MsCV. The timing results
presented in Figure 11 show that the E-MsCV tends to perform similarly to the fine-scale
solution, except for one of the runs in which the E-MsCV outperforms the GMRES solver
by a factor of 3. Since the problem is homogeneous and only mildly anisotropic, the
classical GMRES can find a solution within a reasonable time, not justifying the use of an
approximate multiscale solution.

6.3 Heterogeneous and anisotropic case

In this example, we consider an adaptation of the third example from SOUZA et al.
(2022) to study the robustness of the MsCV in a heterogeneous and anisotropic medium.
The problem consists in the simulation of a single-phase flow in a unitary cubic domain
Ω = [0, 1]3 with the following source term:
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Figure 10 – The fine-scale (a) and multiscale (b-e) solutions of the homogeneous and mildly anisotropic
case highlighting the contour curves. Slice at 𝑦 = 0.

(a) Fine-scale reference solution.
(b) Structured background grid, MsCV solu-

tion.

(c) Structured background grid, E-MsCV so-
lution.

(d) Unstructured background grid, MsCV so-
lution.

(e) Unstructured background grid, E-MsCV
solution.

Source: Author.

𝑄(−→𝑥 ) =

⎧⎪⎨⎪⎩1, −→𝑥 ∈
[︁

3
8 , 5

8

]︁3
,

0, otherwise
. (6.7)

The region where the source term is set can be seen in Figure 12. At the boundary,
the Dirichlet condition 𝑔𝐷 = 0 is adopted. Furthermore, the permeability tensor is the
same proposed by EYMARD et al. (2011) in the Benchmark Test Case 2, as it can be
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Figure 11 – Average time to obtain a solution to the Homogeneous and mildly anisotropic case by solving
the fine-scale system of equations (blue) and via the E-MsCV method (red).
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seen in Figure 13, and is given by:

˜
𝒦(𝑥, 𝑦, 𝑧) =

⎛⎜⎜⎜⎝
𝑦2 + 𝑧2 + 1 −𝑥𝑦 −𝑥𝑧

−𝑦𝑥 𝑥2 + 𝑧2 + 1 −𝑦𝑧

−𝑧𝑥 −𝑧𝑦 𝑥2 + 𝑦2 + 1

⎞⎟⎟⎟⎠ . (6.8)

The simulations were conducted in a fine-scale grid with 90,831 tetrahedral cells.

In Table 3, the 𝐿2 and 𝐿∞ norms of the error are displayed. The 3-D MsCV and
the E-MsCV both perform well in the 𝐿2 norm, with a relative error inferior to 6%. Figure
14 shows that the multiscale solutions are qualitatively close to the fine-scale reference
solution, specially on a structured 6× 6× 6 hexahedral background grid.

From Table 3, it is noticeable that both methods produce high errors on the
𝐿∞ norm. Although this problem does not have an analytical solution, by the discrete
maximum principle (DMP), the approximate solution should be greater than 0 in all
domain. In Figure 14, we can see that the multiscale is prone to spurious oscillations,
depending on the background grid. It also produces negative pressure values on all cases.
However, the fine-scale MPFA-D solution itself violates the DMP, and the oscillatory
behaviour seems to be propagated and amplified by the multiscale basis functions.

Still regarding Figure 14, it is possible to see that the solutions on the 6× 6× 6
background grid is able to better capture the diffusion pattern of the reference solution.
Besides the fact that it is a more refined grid, from Figure 15, we can see that the dual
grid generated from the 5× 5× 5 background grid contains faces crossing the region where
the source term is non null. This affects the quality of the basis functions since the source
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term is spread among multiple volumes instead of being captured mostly within a single
support region.

Table 3 – The 𝐿2 and 𝐿∞ norms of the errors for the heterogeneous and anisotropic case.

5× 5× 5 background grid 6× 6× 6 background gridError (%)
MsCV E-MsCV MsCV E-MsCV

||𝑢||2 5.04 3.95 1.93 1.84
||𝑢||∞ 30.18 53.68 16.04 16.93

Figure 12 – The region within the reservoir where the source term is set (red). Slice at 𝑧 = 0.5.

Source: Author.

Figure 13 – Visualization of the permeability field (𝐾𝑥𝑥) of the heterogeneous and anisotropic case.

Source: Author.
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Figure 14 – The fine-scale (a) and multiscale (b-e) solutions of the heterogeneous and anisotropic case
highlighting the contour curves. Slice at 𝑧 = 0.5.

(a) Fine-scale reference solution.
(b) Structured 5×5×5 background grid, MsCV

solution.

(c) Structured 5 × 5 × 5 background grid, E-
MsCV solution.

(d) Structured 6×6×6 background grid, MsCV
solution.

(e) Structured 6 × 6 × 6 background grid, E-
MsCV solution.

Source: Author.

6.4 Reservoir with a spherical heterogeneity

In this final example, we study the simulation of a single-phase flow in a reservoir
containing a spherical heterogeneity within the domain Ω = [−2, 2]3. The following
boundary conditions are applied:
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Figure 15 – The dual coarse grids generated for the heterogeneous and anisotropic case highlighting the
background grid (black lines) and the region where the source term is non null (blue line).
Slices at 𝑧 = 0.6 for (a) and 𝑧 = 0.5 for (b).

(a) Structured 5 × 5 × 5 background grid. (b) Structured 6 × 6 × 6 background grid.

Source: Author.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑔𝐷 = 0 on Γ𝐷,1

𝑔𝐷 = 1 on Γ𝐷,2

𝑔𝑁 = 0 on Γ𝑁

, (6.9)

where Γ𝐷,1 corresponds to the planes 𝑥 = −2, Γ𝐷,2 corresponds to the plane 𝑥 = 2, and
Γ𝑁 is set at the planes 𝑦 = −2, 𝑦 = 2, 𝑧 = −2 and 𝑧 = 2.

The permeability field is illustrated in Figure 16, where the heterogeneity region
shaped as a sphere centered at the origin with a radius equal to 0.75 is embedded in a
homogeneous domain with a permeability tensor given by:

˜
𝒦1(𝑥, 𝑦, 𝑧) =

⎛⎜⎜⎜⎝
1 0 0
0 1 0
0 0 1

⎞⎟⎟⎟⎠ . (6.10)

The goal of this example is to test the changes in the solution when applying background
grids that are conforming or not to the heterogeneity, and evaluate the ability of the 3-D
MsCV to capture such formation. We simulate two configurations, a barrier and a channel,
with permeability tensors respectively given by:
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˜
𝒦2(𝑥, 𝑦, 𝑧) =

⎛⎜⎜⎜⎝
10−3 0 0

0 10−3 0
0 0 10−3

⎞⎟⎟⎟⎠ , (6.11)

˜
𝒦3(𝑥, 𝑦, 𝑧) =

⎛⎜⎜⎜⎝
103 0 0
0 103 0
0 0 103

⎞⎟⎟⎟⎠ . (6.12)

The simulations were conducted in a fine-scale grid with 159,893 tetrahedral cells.

The multiscale solution for the channel configuration is presented in Figure 18 for
different background grid topologies. In all cases, the solutions remain qualitatively close
to the fine-scale reference solution shown in Figure 17b. Although the results obtained with
the unstructured grid are able to better capture the channel’s geometry, it presents a higher
error on the boundaries. The errors in Table 4 corroborate with the previous observations,
as the 𝐿2 norm of the error is approximately 0.6% with the structured background grid
and below 4% with the unstructured one despite the high values for the 𝐿∞ norm of errors.
On both grids, the performance of the MsCV and E-MsCV are still comparable. As with
the previous examples, the original MsCV’s iterations present a slower convergence rate
and did not converge on the prescribed tolerance criterion equal to 10−3, requiring to stop
the iterative procedure after 500 iterations to achieve a result with errors of the same
magnitude as those presented by the E-MsCV, which in turn took 132 iterations.

In Figure 19, the multiscale solution for the barrier configuration is displayed. In
this configuration, the solution using the original MsCV preconditioning fails to converge
regardless of the background grid used. On the other hand, the E-MsCV converges. Albeit
not able to fully capture the barrier in the reservoir, the E-MsCV’s solution still manages
to reasonably show its main features on both background grids. As seen in Table 5, the 𝐿2

norm of the errors on the solution using the E-MsCV are still satisfactory even though the
𝐿∞ norm of the error is very high.

Table 4 – The 𝐿2 and 𝐿∞ norms of the errors for the simulation of a reservoir containing a spherical
heterogeneity under a channel configuration.

Structured background grid Unstructured background gridError (%)
MsCV E-MsCV MsCV E-MsCV

||𝑢||2 0.69 0.59 2.00 3.62
||𝑢||∞ 18.79 19.04 33.87 49.30
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Figure 16 – The spherical heterogeneity region (red) within the reservoir.

Source: Author.

Figure 17 – Fine-scale reference solutions for the single-phase simulation of a reservoir containing a
spherical heterogeneity under a barrier (a) and channel (b) configuration. Slice at 𝑦 = 0.

(a) Barrier configuration. (b) Channel configuration.

Source: Author.

Table 5 – The 𝐿2 and 𝐿∞ norms of the errors for the simulation of a reservoir containing a spherical
heterogeneity under a barrier configuration.

Structured background grid Unstructured background gridError (%)
MsCV E-MsCV MsCV E-MsCV

||𝑢||2 7× 108 6.02 7× 105 6.93
||𝑢||∞ 5× 107 83.78 8× 106 86.79
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Figure 18 – Multiscale solutions under a channel configuration using different background grids and
preconditioning techniques. Slice at 𝑦 = 0.

(a) Structured background grid, MsCV solu-
tion.

(b) Unstructured background grid, MsCV so-
lution.

(c) Structured background grid, E-MsCV so-
lution.

(d) Unstructured background grid, E-MsCV
solution.

Source: Author.
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Figure 19 – Multiscale solutions under a barrier configuration using different background grids and
preconditioning techniques. Slice at 𝑦 = 0.

(a) Structured background grid, MsCV solu-
tion.

(b) Unstructured background grid, MsCV so-
lution.

(c) Structured background grid, E-MsCV so-
lution.

(d) Unstructured background grid, E-MsCV
solution.

Source: Author.
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7 CONCLUSIONS

In this thesis, we have presented a 3-D extension to the Multiscale Control Volume
(MsCV) method coupling it with the 3-D MPFA-D and the robust GLS interpolation for
the simulation of single-phase flow in heterogeneous and anisotropic porous media. In
addition, we have proposed an extension to 3-D geometries of the very flexible multiscale
pre-processing algorithm by SOUZA et al. (2022) based on the concept of a background
grid and an enhanced version of the 3-D MsCV (E-MsCV) that incorporates the enhanced
MsRSB preconditioning (BOSMA et al., 2021) to improve the convergence.

From our experiments, the 3-D MsCV is capable of approximating the reference
fine-scale solution to a good degree on low to intermediate complexity scenarios and
the E-MsCV is able to converge on more challenging scenarios. It was also possible to
notice that, despite of the robustness of the MPFA-D with the GLS interpolation, there
are violations of the DMP which are exacerbated in the multiscale solution. Finally, the
background grid framework was able to correctly generate the multiscale grids in the
tested scenarios, working with truly unstructured fine-scale and background grids. We
have noticed that the background grid framework may show some limitations when faced
with a fine-scale grid that contains highly deformed elements, generating inconsistent dual
coarse grids.

Herein are some suggestions for future works:

• Study smoothing techniques to improve the 3-D MsCV’s solution;

• Extend the framework to the simulation of multiphase flow in porous media;

• Explore new approaches to generate the multiscale geometric entities under the
background grid framework by adapting it to the underlying geological characteristics;

• Fix the inconsistencies observed in the background grid-based pre-processing when
applied to very distorted grids;

• Investigate the DMP violations on the multiscale solution by introducing a defect
correction scheme as proposed by (CAVALCANTE et al., 2022; SOUZA et al., 2023);

• Probe algebraic multiscale strategies in place of the MsRSB;

• Examine the use of the multiscale operators and solution as a pre-conditioner to the
fine-scale system of equations;

• Study HPC techniques to enable the multiscale framework for large-scale simulations.
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APPENDIX A – IMPLEMENTATION ISSUES

In this appendix, the architecture and implementation of the proposed methods is
presented, as the libraries and packages that were employed to enable the development
process.

A.1 Libraries and packages

The proposed methods were developed in Python language (ROSSUM; BOER,
1991) with the help of some libraries and packages. Python was the language of choice
for its high-level syntax, allowing for a quick development without having to worry about
low-level operations, and the wide availability of libraries for scientific computing with
active community support. In this section, we will present the packages used during the
code development.

A.1.1 NumPy

NumPy (HARRIS et al., 2020) is an open-source Python library that implements
algorithms and data structures to handle and operate with multidimensional arrays and
matrices. It provides an efficient way to perform numerical operations with large collections
of values. In addition, it is widely used in the context of scientific computing and it has a
large active community of users.

For the proposed implementation, NumPy’s data structures were used as the basis
for representing vectors and matrices, and efficiently computing operations on large sets of
values.

A.1.2 SciPy

SciPy (VIRTANEN et al., 2020) is a collection of mathematical algorithms and
convenience functions implemented using NumPy. It provides a wide range of functionalities
from sparse matrices algorithms, to graph representation and linear systems solvers. In
this thesis, we primarily used the modules for sparse matrices and the solvers for linear
systems of equations.
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A.1.3 NetworkX

NetworkX (HAGBERG; SCHULT; SWART, 2008) is a Python package for the
creation, manipulation, and study of the structure, dynamics, and functions of complex
networks. Here, the graph algorithms and data structures were used in the multiscale
pre-processing algorithm, namely the algorithms to check the connected components of a
graph.

A.1.4 IMPRESS

IMPRESS (Intuitive Multilevel Preprocessor for Smart Simulation) (SOUZA, 2020)
is an open source Python package for mesh management and pre-processing developed
within the PADMEC/LCCV research group. The IMPRESS is based on the PyMOAB
package, a Python binding of the C/C++ library MOAB (Mesh Oriented Database)
(TAUTGES et al., 2004; MAHADEVAN et al., 2020) which implements data structures
and routines to represent and manipulate unstructured grids.

In the present work, IMPRESS was used for the management of the grids involved
in the implementation. The data structures and functions provided allow to efficiently
retrieve useful information such as adjacencies, neighbors, areas and volumes. Moreover,
IMPRESS allows to easily associate data to elements in the mesh and later recover it.

A.2 Architecture of the computational implementation

In this thesis, three methods were implemented: the 3-D MPFA-D, the background
grid pre-processing framework, and the 3-D MsCV. Therefore, following this division, the
computational code was also split into three major modules, as seen in the diagram of
Figure 20:

• The MPFA-D module, including the implementation of the scheme itself and the
nodal interpolations;

• The background grid module, which contains all data structures and procedures
related to the multiscale pre-processing algorithm; and

• The MsCV module, consisting of the implementation of the multiscale operators and
the pre-conditioning techniques discussed in Chapter 4.

The communication between the modules is done via file input/output, that is,
the byproducts of a module are passed to another using files. This way, they can operate
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Figure 20 – Simplified architecture of the implementation of the proposed methods showing the modules
(orange boxes) and the main classes (yellow ellipsis).

Source: Author.

independently from each other and it is relatively easy to replace one of the implementations
as long the interface remains the same.

All modules were designed under the object-oriented programming paradigm (OOP),
with each distinguishable unit implemented as a class. Furthermore, the program was
designed to make use of the vectorization technique, avoiding unnecessary loops where
possible and rewriting procedures as vector-matrix operations to improve performance
and take advantage of NumPy.

The code for both the MPFA-D and the multiscale framework implementations is
publicly available at the mpfad and the background-grid GitHub repositories, respectively.

A.2.1 The MPFA-D module

The MPFA-D module is composed by the MpfadScheme class, which implements
the assembly of the linear system of equations, and the sub-module of nodal interpolations.
In the latter, there are two techniques implemented: the GLS, as presented in Chapter 3,
and the Inverse Distance Weighting (IDW) (QUEIROZ et al., 2014).

The MpfadScheme class contains an instance of one of the interpolation techniques
as an attribute. The interpolation technique can be swapped simply by passing a different
instance to the class constructor. Similarly, a new interpolation technique can be added to
the sub-module and used in the MpfadScheme by implementing the required interfaces.

Furthermore, the MpfadScheme class produces as output the MPFA-D system of
linear equations exported as NumPy array files. The solution of the system of equations
is not computed by the class, but, for the examples presented in this thesis, we used the
SciPy’s implementation of the Generalized Minimal Residual method (GMRES) (SAAD,
2003) to obtain its solution.
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A.2.2 The Background Grid module

The Background Grid module comprises the structures and procedures that imple-
ment the 3-D background grid multiscale pre-processing algorithm. The main class in this
module is the MultiscaleCoarseMeshGenerator which carries out the steps described in
Chapter 5. The fine-scale mesh and the background grid are represented by IMPRESS’
grid objects and they are loaded from a mesh file.

The output of the MultiscaleCoarseMeshGenerator class are a mesh file with
properties assigning each fine-scale volume to its type in the primal and dual coarse
grids, and Python’s dictionaries exported as binary files containing the composition of the
support region and the support boundary of each primal coarse volume.

A.2.3 The MsCV module

The final module contains the implementation of the proposed MsCV method.
Here, an instance of the MsCV problem is represented by an instance of the MsCVOperator
class. As an input, the class constructor receives both the pre-processing files and the files
corresponding to the MPFA-D system of equations.

In this thesis, we proposed both the 3-D extension of the original MsCV and an
enhanced version, the E-MsCV. Since the main difference between each method is the
preconditioning technique used for the Jacobi iterations, both are implemented within the
MsCVOperator class. To switch between the formulations, one needs only to specify which
preconditioning will be used.


	Title page
	Acknowledgements
	Abstract
	Resumo
	List of Figures
	List of Tables
	List of Acronyms
	Contents
	Introduction
	Research objectives
	Specific objectives

	Thesis organization

	Mathematical formulation
	Mass conservation equation
	Darcy's law
	Elliptic pressure equation

	Numerical formulation
	Finite volume formulation
	The Multipoint Flux Approximation with a Diamond stencil (MPFA-D)
	Boundary conditions treatment
	Vertex unknowns interpolation


	Multiscale formulation
	Multiscale framework
	Multiscale geometric entities
	The MsCV operators in 3-D
	The Enhanced MsCV (E-MsCV)
	Flux reconstruction algorithm

	The background grid framework
	Primal coarse grid generation
	Primal coarse centers calculation
	Dual coarse grid generation
	Dual coarse edges definition
	Dual coarse faces definition

	Construction of the support regions

	Results and discussion
	Homogeneous and isotropic medium in a cone-shaped domain
	Homogeneous and mildly anisotropic case
	Heterogeneous and anisotropic case
	Reservoir with a spherical heterogeneity

	Conclusions
	References
	Implementation issues
	Libraries and packages
	NumPy
	SciPy
	NetworkX
	IMPRESS

	Architecture of the computational implementation
	The MPFA-D module
	The Background Grid module
	The MsCV module



