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ABSTRACT

In this work, we present an experimental study on the spatial profile of coherent light generated
in a forward four-wave mixing (FWM) process. We are interested in investigating how the
transverse structure of the incident beams, more specifically of the Hermite-Gauss (HG) modes,
is transferred to the generated signal in this nonlinear process. For the experiment, we used
a continuous wave diode laser to excite a sample of Rubidium atoms, on the 8°Rb D2 line,
tuned to the frequency of the 5%S;), (F = 3) — 5°P3), transition. With a Spatial Light
Modulator, we were able to split the laser beam in two and structure them in the desired
modes. These two beams, A and B, with wave vectors /;A and EB, and linear orthogonal
polarizations, with quasi-copropagated configuration, were used to induce two FWM signals in
the directions 2EA — EB and QEB - I;A. The spatial profile of incident beams and the two non-
linear signals were captured by a CMOS camera, and the regimes of a thin or extensive medium
were investigated. We were able to obtain results for a combination of gaussian-HG beams, as
well as HG-HG beams. The profiles obtained by computer simulation were compared with the
experimental measurements. Our theoretical model relies on solving the paraxial equation of
the generated field. It leads to the overlap integrals of the incident beams, which unfold into
some interesting selection rules in the transversal plane, for the thin and extensive medium
regimes, and in the longitudinal axis, only for the long medium regime. Although the extensive
medium regime presents some additional selection rules, the experimental requirements are
difficult to achieve in our system, among them, we highlight the Gouy phase matching. On
the other hand, a good agreement between theory and experiment was observed in the thin

medium regime.

Keywords: Nonlinear optics. Four-wave mixing. Spatial profile. Hermite-Gauss modes. Gouy

phase.



RESUMO

Neste trabalho, apresentamos um estudo experimental sobre o perfil espacial da luz coerente
gerada num processo de mistura de quatro ondas (MQO) para frente. Estamos interessados
em investigar como a estrutura transversal dos feixes, mais especificamente de modos Hermite-
Gauss (HG), é transferida para os feixes gerados neste processo ndo-linear. No experimento,
utilizamos um laser de diodo, continuo, para excitar uma amostra de atomos de Rubidio, na
linha D2 do ®Rb, sintonizado na frequéncia da transicdo 525/ (F' = 3) — 5%P5/5. Com um
Modulador Espacial de Luz, foi possivel dividir o feixe em dois e estrutura-los com os modos
desejados. Esses dois feixes, A e B, com vetores de onda I;A e EB, e polarizacdes lineares e
ortogonais, numa configuracao quase-copropagante, foram utilizados para induzir dois sinais
de MQO nas direcGes QEA — EB e QEB — EA. Os perfis espaciais dos feixes incidentes e dos
dois sinais ndo-lineares foram capturados com uma camera CMOS e os regimes de meio fino e
extenso foram investigados. Obtivemos resultados para uma combinacao de feixes gaussiano-
HG, assim como de feixes HG-HG. Os perfis obtidos por simulacdo em computador foram
comparados com os resultados experimentais. Nosso modelo tedrico consiste na solucdo da
equacdo paraxial do feixe gerado. Ela leva as integrais de overlap dos feixes incidentes, que se
desdobram em algumas regras de selecdo interessantes no plano transversal, para os regimes
de meio fino e extenso, e no eixo longitudinal, apenas para o regime de meio extenso. Embora o
regime meio extenso apresente algumas regras de selecdo adicionais, os requisitos experimentais
sao de dificil realizacdo em nosso sistema, dentre eles, destacamos o casamento da fase de
Gouy. Por outro lado, observamos um bom acordo entre a teoria e o experimento no regime

de meio fino.

Palavras-chaves: Optica n3o-linear. Mistura de quatro ondas. Perfil espacial. Modos Hermite-

Gauss. Fase de Gouy.
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1 INTRODUCTION

Nonlinear optics is a field of study that explores the optical phenomena that arise when the
response of a material to an intense electromagnetic field is not linearly proportional to the
field itself, but rather to higher powers of the field or to a combination of fields if more
than one is applied [1]. It encompasses a wide range of phenomena and offers significant
scientific and technological applications. This branch of optics has made significant progress
in understanding and manipulating light-matter interactions, leading to breakthroughs in areas
such as biophotonics [2], telecommunications [3], and quantum optics [4].

The historical roots of nonlinear optics can be traced back to preliminary papers published
in the mid-20th century. A work published in 1941 [5] laid the foundations by investigating the
optical properties of materials under intense electromagnetic fields even before the invention
of lasers, which occurred in 1960, through the efforts of Theodore Maiman [6]. After the
development of the laser, new concepts could finally be experimentally tested, such as optical
harmonic generation [7], two-photon excitation [8], parametric amplification [9] and phase
matching [10].

Concerning the phenomenon we're interested in, four-wave mixing is a third-order nonlinear
effect that involves the interaction of multiple input electromagnetic waves to generate new
waves at different frequencies, consisting of a combination (sum and/or difference) of the
input frequencies. It was first described in the early 1960s [11], and in its initial years of study,
most experiments were carried out using crystals as the nonlinear medium [12]. Nowadays it
is broadly explored in various nonlinear media, such as semiconductor materials, optical fibers,
gases, and various atomic vapors, which is the case we'll be focusing on in this work.

Structured light refers to light beams that have specific spatial intensity, phase patterns,
and polarization state, deviating from the conventional Gaussian beam profiles. These patterns
can take different forms. In this work, we explore Hermite-Gauss (HG) beam profiles, that are
known to have a rectangular grating shape. They are solutions to the paraxial equation in a
cartesian system of coordinates and have well-defined parity in each of the transversal axes
[13]. Other examples of structured light are Laguerre-Gauss (LG) and Ince-Gauss (IG) beams.
LG beams are solutions to the paraxial equation in a cylindrical system of coordinates, they
have an optical vortex in their center, giving them a doughnut shape, and presenting a helical

wavefront. These beams are known to carry orbital angular momentum as they propagate



12

[14]. IG beams are solutions to the paraxial equation in an elliptical system of coordinates
and can be described as an intermediate case between Hermite and Laguerre beams. They
are characterized by an eccentricity parameter that, when varied from zero to infinity, makes
them closer to an HG or LG mode [15]. The paraxial equation will be derived in section [2.2]
Structured light has gained significant attention in various fields of research, such as optical
tweezers [16], communication [17], information [18], and astrophysics [19].

In recent years there has been some progress in the study of mode transfer in nonlinear
mixing processes. Pires et al. studied in detail the occurrence of mode conversion in a two-wave
mixing process using a variety of mode families, such as HG beams [20], whole and fractional
orbital angular momentum LG beams [21, 22] and IG beams [23]. In another work, Rocha
et al. [24] have made theoretical predictions on the generation of an almost pure HG mode
as the result of four-wave mixing of two different HG modes. For this, they use a cascade
three-level configuration in 8Rb vapor. Furthermore, the research conducted by Offer et al.
[25] presented the importance of the Gouy phase effect in the different thickness regimes in
four-wave mixing in atomic vapor. With their experiment, they demonstrated the generation
of pure LG modes in the extensive medium regime.

In our research, we investigate a degenerate four-wave mixing in a heated rubidium vapor
cell using Hermite-Gauss beams. Our objective is to study the transfer of transverse modes.
In Chapter 2, we establish the foundations of our work, recapping the theory behind the
mechanism of interaction between radiation and matter, leading to the optical Bloch equations.
We also characterize Hermite-Gauss functions as solutions to the paraxial equation and describe
a general four-wave mixing process as a nonlinear third-order process. In Chapter 3, we focused
on the theoretical description of our system, deriving selection rules that govern the mode
transfer, which we use to get computational results. In Chapter 4, we describe our experimental
setup, measuring procedures, and data processing. In Chapter 5, we present our theoretical and
experimental results making a comparison between them. In Chapter 6, we make conclusions

about our work and present perspectives for future investigation.
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2 THEORETICAL FOUNDATION

In this chapter, we present the fundamental concepts that support this research. We approach
the problem of the interaction between radiation and matter, employing the density matrix
formalism to describe the populations and coherences of a two-level atom, leading to the opti-
cal Bloch equations. We analyze the differential equations in the stationary regime, obtaining
an expression for the population difference and coherence and relating it to the atomic sus-
ceptibility. Next, we characterize Hermite-Gauss beams as solutions to the paraxial equation.
Finally, we discuss some basic concepts of nonlinear optics and introduce four-wave mixing

source terms.

2.1 LIGHT-MATTER INTERACTION

To model the interaction between electromagnetic radiation and matter, we begin by
considering a two-level atom, illustrated in figure [T and taking electromagnetic radiation as
a classical field, without quantizing it in terms of photons. We can describe this approach
as semiclassical since it combines the classical nature of the electromagnetic field with the
quantum structure of the atom's energy levels. This treatment is given in several textbooks,

and we closely follow the approach taken by Yariv [26].

Figure 1 — Energy diagram for a two-level system.

&1 — 12)

E (w) 21

&1 1)

Source: the author (2023).

We start by considering the Hamiltonian of the system, which we separate in two terms,
as
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The first term, Hy, is the atom Hamiltonian, whose eigenstates are the states of the atom

considered,

Holj) = &lj),  forje{1,2}, (2.2)

where &; is the energy of state |j). The second term, H,,;, is the interaction Hamiltonian,
which we take as an electric dipole interaction, neglecting the magnetic component of the

field, since its effect is much smaller in comparison. It can be written as

~

where [i = er’ is the atomic electric dipole operator. Its diagonal terms, [i;;, are taken to be

null, since dipole interactions connect states that are opposites in parity. We may write the

dipole moment operator as

= jilj) (k| = : (2.4)
gk fior 0

—

E(7,t) is the electric field of the incident beam, which we can write as a monochromatic

cosine wave of frequency w and wave vector £k,

E(7,t) = & Ey(F) cos (wt) | -
E02(F) [eiwt + efiwt] ’

=€

where € is the polarization direction and Ey(7) is a slow varying spatial profile, compared
to the dimensions of the atoms. This way, we can write the components of the interaction
Hamiltonian as

H'mt,jk = <]|Hznt’k> 5
- o 2.6
Mk E(] (7” ( )

— _ 5 )[eiwt + e—iwt] ,

where [i;, = [iji, - € is the projection of the dipole moment onto the electric field. Now, we

define the Rabi frequency as
fijk Eo ()

L T

(2.7)
and rewrite equation ([2.6]),
Hint, i = — B[ + e 7] | (2.8)

Next, we build the density matrix of the system. Density matrix formalism is useful when

dealing with ensemble problems, in which the system is described by a statistical mixture
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of individual samples [27]. Let's start by writing an arbitrary state of the atom as a linear

combination of its eigenstates,

9) = S eili) (29)

and we define the density matrix in terms of the state of the system as

p= 1)l (2.10)

which gives

. , | P P12
p="> pikli)(kl = : (2.11)
ik P21 P22

where the coefficients of p are given in terms of the coefficients of the wave function as
Pik = CjC}, . (2.12)

The diagonal terms of the density matrix, p;;, are called population terms and represent the
percentage of atoms in the ensemble that are in the state |j). On the other hand, the off-
diagonal terms, p;i, for j # k, are called coherence terms, and represent how well coupled are
the levels considered. These are directly related to the response of the medium in which the field
is being applied. The normalization condition of the wave function leads to the normalization
condition of the matrix trace,

Te(p) =1, (2.13)

which denotes probability conservation. It means that the probability associated with all pos-

sible outcomes is 1, i.e., we are sure to find an atom in any one of the energy states.

2.1.1 Bloch equations

The evolution of the density matrix is governed by Liouville's equation, given by

dp i, =
— 5. H 2.14
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where the square brackets refer to the commutator of the operators. Direct substitution of p

and H gives us the following equations:

d 1
% = ﬁ(pIQHﬂ — partia) (2.15)
d 1
% = ﬁ(ﬁmHlQ — p12Hay) | (2.16)
d 1
% = ﬁ[ﬂn(gl — &) + (p11 — pa2)Hia] , (2.17)
d i
% = ﬁ[ﬂm(& —&1) + (p22 — p11)Hai] (2.18)
which we can rewrite as
d 2

%(Pm —pu1) = E(P12H21 — pnHia) , (2.19)
dprz _ 1 & —¢& H 22
T [p12(E1 — &) — (paz — p11)Hia] - (2.20)

Up until now, we made no considerations concerning relaxation terms. Dissipation of energy
should naturally arise from spontaneous decay, mostly due to collisions [26]. Assuming the
relaxation follows an exponential law, we should add a decay term of I' for the population

terms and I'/2 for the coherence terms [28],

dA 21
dfm = E(pIQHQI - P21H12) - (Apzl - Apgl)r ) (2-21)
d 7 I
% = ;.L[Plz(gl — &) — (p22 — p11)Hig] — P2y - (2.22)

Apyy = pag — p11 is the difference between the populations, ApY; is the population difference
in the absence of radiation, and it's easy to see that p1o = pj,. Equations (2.21]) and (2.22))
are the so-called optical Bloch equations. They describe the time evolution of a two-level atom
excited by radiation close to the resonance of a transition, decaying by spontaneous emission.

Now, we decompose the coherence in terms that vary fast and slowly,
pra = 012 (2.23)

substituting it in the optical Bloch equations, along with Hy5 and Hs;, and making the rotating

wave approximation (RWA), we arrive at

dApay

dt

d , ,
% = ZngApgl — 0'12(26 + F/2) s (225)

= 2’i(0’12921 — 0'21912) — (Apgl — Apgl)F s (224)
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where 0 = w — wy is the detuning of the laser to the resonance frequency of the system,
defined as wy = (F» — Ey)/h.

We expect that for long application time intervals of the field, the system should reach equi-
librium, where the populations and coherences enter a steady state, which we call a stationary

regime. To analyze the stationary solutions of the system, we should put

dApy dp12
= = = 2.2
7 0 and o 0, (2.26)
leaving us with a system of equations:
2’i(0’12921 — 0'21(212) — (Apgl — Apgl)F = 0 s (227)
ingApgl — 012<i(5 + F/2) =0. (228)

Solving for Aps; and oo, we get the solutions

62 +T7%/4 0
21a|? + 62 + [2/4 P2
Qy9(d +i1'/2) 0

= — Apsy, . 2.
012 2’912‘2+(52+F2/4 p21 ( 30)

Apy = (2.29)

Figure 2 — Dependence of the (a) population difference, and (b) real and (c) imaginary parts of the coherence
on the detuning from resonance, for different amplitudes of the field 215 = Q.

Source: the author (2023).

In Figure [2] we plot the quantities we derived in the stationary regime in terms of the de-
tuning of the laser from resonance, considering that in the absence of radiation, the population
is fully in the ground state, ApY, = —1. In (a), the population difference tends to zero for
stronger fields near resonance. In (b) and (c), we notice that the real and imaginary parts of
coherence have a behavior similar to that of refraction and absorption, respectively. This will
become clear when we derive the atomic susceptibility next. In (c), we can also notice power
broadening, i.e., the enlargement of the spectral line width due to saturation of the system

under higher powers of the field.
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2.1.2 Atomic susceptibility

To evaluate the response of the system, we express the macroscopic polarization induced
by the field as
P = N{ji) = NTa(pji) (2.31)

where N is the atomic density. Expanding and projecting this expression onto the outer field,

we get

—

P& = N (fino126™ + firaoore ) . (2.32)

Substitution of (2.30)) into (2.32)) gives

N|aw*Ey [dcos (wt) — (T'/2) sin (wt) 0

Poeo .
‘ I 212 + 02 + T2/4 e

(2.33)

We can also express the polarization of the medium in terms of the atomic susceptibility,
x=x —ix", as

P = Relegx Epe™] |

. (2.34)
P& =¢eoEy[x cos (wt) + x" sin (wt)] .
Comparison between equations (2.33) and (2.34) results in
N |fir2]?6Ap3
Y = 2] "0 Ay, ’ (2.35)
£0h(2]2)? + 62 +12/4)
n o __ N|ﬁ12|2(F/2)Apgl (236)

T eoh(2]Qu? + 62 +T2/4)

Figure 3 — Dependence of the (a) real and (b) imaginary parts of susceptibility on the detuning from resonance,
for different amplitudes of the field 2.5 = 2.

Source: the author (2023).
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In Figure [3 we plot the susceptibility as a function of the detuning. Due to its direct
derivation from the coherence, they present a similar behavior as shown in figure , aside from
some scaling constants. The susceptibility is related to a complex refractive index [29] through

the relation
n=+ve=+vV1+y, (2.37)

which, for y < 1, can be expanded as

ﬁ%1+§+0u%. (2.38)
We may define
n=n+ik, (2.39)

where n is the usual refractive index, and « is related to the absorption coefficient [30]. The
comparison between equations (2.38) and ([2.39)) associates the susceptibility with the optical

properties of the medium,

n=14+x"/2, (2.40)

k=—x"/2. (2.41)

2.1.3 Doppler broadening

The motion of the atoms at room temperature induces the Doppler effect, which makes

the atoms feel an incoming field with a shifted frequency,
W=w—Fk-7, (2.42)

where ¥ is the velocity of the atom. If the atom moves toward the beam, it experiences a
blueshift, whereas if it moves away from the beam, it experiences a redshift. We might rewrite

the detuning of the laser to take this shift into account,

—

5 =5—Fk-v. (2.43)

To account for the effect of this shift, we need to consider the distribution of velocities among
the atoms in the sample. For simplicity, we are assuming the Maxwell-Boltzmann distribution

of velocity in one dimension, which obeys a Gaussian distribution [31],

Flo) = —— exp (-”2> | (2.44)
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where u is the most probable velocity of the atoms in the ensemble, given by

[2k 5T
w=y === (2.45)
m

kg is the Boltzmann constant, and 7" is the temperature of the system. This distribution will

serve as a weight function to integrate the susceptibility over all velocities,

NORN BTGNS
- (2.46)
_ /f(v)y(a—km)dv.

Figure 4 — Comparison between normalized Doppler free and Doppler broadened profiles of (a) real and (b)
imaginary parts of susceptibility, at room temperature (T' = 300 K), for a field amplitude of
Q15 =T, and T = 27 - 6.07 MHz, which corresponds to the D2 line of 85Rb.

Source: the author (2023).

Figure [4] shows a comparison between the natural line and an enlarged Doppler line of
susceptibilities under room temperature. The Doppler-free profile of the imaginary part has a
Lorentzian shape, while the Doppler broadened line has what is called a Voigt shape, i.e., the
convolution between a Lorentzian and a Gaussian curve. This difference in the width of the
lines is exploited when performing saturated absorption spectroscopy, in which Doppler-free

lines are carved over the Doppler broadened profiles (see subsection |4.1.1)).
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2.2 PARAXIAL WAVE EQUATION AND HERMITE-GAUSS MODES

Hermite-Gauss functions are a set of solutions to the homogeneous paraxial wave equation.

To derive the paraxial wave equation we start by writing Maxwell's equations inside matter:

V.-D=p, (2.47)
V-B=0, (2.48)
~ OB
E=-=" 2.49
V x 5 (2.49)
.~ 9D
VXH:J+aat, (2.50)

where E is the electric field, B is the magnetic flux density, D = 505 + P is the electric
displacement, P is the polarization, H= g/uo — M is the magnetic field, M is the magne-
tization and p and J are the distributions of free charge and current. Manipulation of these

equations takes to the wave equation,

(2.51)

where n is the refractive index. This equation indicates that the polarization acts as a source for
the electromagnetic field. Next, to get rid of the time dependence, we make the substitutions
E(7,t) = eE(F)e~™' and P(F,t) = ¢éP(F)e ™" This simplifies the equation to the so-called

Helmholtz equation,
V?’E + K°E = —k—QP (2.52)

€0

Next, we make the paraxial approximation, which first consists in separating the fast os-
cillation component of the fields in the propagation direction, E(7) = u(7)e** and P(7) =

zkz

p(r)e Here we consider a wave propagating in the z direction, and u(7) and p(7) are
smoothly varying envelopes, carrying information about the transverse shape of the beams.

Making this substitution, the equation becomes

0%*u ou k?
— + 2tk— = —— 2.
Vu+82+za Eop, (2.53)

where V2 is the Laplacian operator in the transverse plane. The second part of the paraxial

approximation is based on the assumption that the curvature of the envelope varies slowly,

82
82

<k H < K |u| . (2.54)
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This condition is necessary to prevent the beam from rapidly diverging. We may write the
inhomogeneous paraxial equation,
k2

ou
2 2tk— = ——p. 2.
VLU+ 1 az Eop ( 55)

Homogeneous solutions are vacuum solutions, characterized by no source term. So for now,

we should look for the case where p = 0,

L Ou
viu+2m5;=o. (2.56)

Several families of functions may arise as solutions to this equation depending on the
system of coordinates considered. In this work, we are interested in Hermite-Gauss functions,
which emerge as solutions in a Cartesian system of coordinates. Therefore, we should make
the substitution

Pu  0%u ou
— + — +2ik— =0. 2.57
ox?  Oy? 0z (2.57)

First, let us express the Gaussian solution to introduce some parameters and properties common

to all other solutions,

ug(z,y,2) =C o exp [— 7+ y2] exp [ikx2 il y2] exp [—ivg(2)], (2.58)

w(z) w?(2) 2R(2)

where C' is a normalization constant; w(z) = wgy/1 + (2/2zr)? is the waist parameter (radius
of the transverse profile) and wy is the minimum waist; R(z) = z[1 + (2r/2)?] is the radius
of curvature of the wavefront; zp = 7w3/\ is the Rayleigh length, which characterizes the
divergence of the beam, representing the distance over which the beam propagates from
the focus point while its cross-sectional area doubles; and the term ¢ (z) = tan~'(z/zg)
is the Gouy phase, which is a gradually acquired phase as the beam propagates. The beam
accumulates a maximum phase of 7 as it propagates from z = —oo to +-00. FigureH]illustrates
the longitudinal and transverse profiles of a Gaussian beam, highlighting its parameters listed
above.

From the illustration, we can see that the beam diverges as it propagates, approaching
the shape of a cone far from the minimum waist. The angle © inside that cone defines the
divergence of the beam. It can be calculated by the expression

O =2 lim ) (2.59)

z—o0  dz

which evaluates to
2\

TWwy

O = (2.60)
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Figure 5 — (a) Longitudinal profile of a Gaussian beam, with a visual demonstration of the beam parameters.
(b) Transverse profile of a Gaussian beam.

Source: (a) from reference [32] and (b) the author (2023).

The divergence is inversely proportional to the beam spot size. A Gaussian beam that is harshly
focused to a small spot diverges quickly as it travels away from the focus. On the other hand,
to reduce the divergence of a laser beam in the far field and maximize its peak intensity at
greater distances, the beam must have a larger cross-section at the minimum waist. This
relationship between the divergence of a beam and its width is fundamental to the theory of
diffraction of light [33], and it does not depend on the intensity profile of the beam.

Finally, Hermite-Gauss functions are expressed as

HG . (x,y, 2) = 2 Conn H,, <ﬁ$> H,, (ﬁy) exp l—xQ +y2]

Tw(z) w(z) w(z) w?(z)
l~ 23 g | (2.61)
x exp |ik OR(2) ] exp [—ivuc(2)] -

These solutions are characterized by two integer indices, m and n, with m,n > 0, each pair
(m,n) defines a mode. C,,,,, = /2~(m*7) /m!n! are normalization constants for each mode and
H, (&) is a Hermite polynomial of order j in the variable £&. The Gouy phase for a Hermite-Gauss
mode is defined as ¥uq(z) = (N + 1)tan~'(2/zg) and depends on the mode order of the
beam, defined as N = m+n. It should be noted that the Gaussian beam is a particular case of
the Hermite-Gaussian modes, for which (m,n) = (0,0). In this case, the Hermite polynomials
are simple constants, and all other changes produced by m and n vanish. In contrast with
the Gaussian case, higher-order Hermite-Gaussian modes accumulate a maximum phase of
(N + 1)m as they propagate from z = —oco to +o0o. All the other parameters are defined just

as was presented in the Gaussian case.
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Hermite-Gauss functions constitute an orthogonal and complete set of solutions to the

paraxial equation, expressed in the relations:

/H@Mmmmﬂmmwz%wgﬂ, (2.62)
3" HG (F) HG,, (7)) = 8(z — 2/, y — ) (2.63)
These properties imply that any solution to the equation can be expressed as a unique linear
combination of HG modes. They also present a well-defined parity in each axis, equal to those
of the associated Hermite polynomials. They have a rectangular grating-like shape and a phase

distribution that resembles a chessboard. These spatial properties can be seen in Figure [6]

Figure 6 — Transverse intensity and phase distribution of the first Hermite-Gaussian modes.

Source: the author (2023).

2.3 NONLINEAR OPTICS

Nonlinear optical phenomena usually arise from the application of an intense electromag-
netic field to an optically nonlinear material. In the case of linear optics, we describe the
response of the material as an induced polarization, which depends linearly on the electric field

strength and is often written as the relation

—

P=co)XVWQE. (2.64)

The term XV represents the linear susceptibility of the material. In the case of nonlinear

optics, the material’s response can be described by expressing the induced polarization as a
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power series in the field strength, with each power corresponding to an order of the nonlinear
polarization as

ﬁ:ﬁ(1)+ﬁ(2)+ﬁ(3)+...
(2.65)

- — - = —

)XV QO E+X?PQEE+Y® QEEE+---),

where P = £,¥ ™ & E™ is the nonlinear polarization of order n. Each ¥ ™ is a tensor of order
n + 1, containing 3" components. They represent nonlinear susceptibilities of order n and
are responsible for several nonlinear optical phenomena. In general, symmetries of the problem
should be considered to reduce the complexity of these terms. For instance, centrosymmetric
media, such as atomic vapors, present null even order susceptibilities, ¥ *®) = 0.

The importance of polarization in the description of nonlinear optical phenomena arises
from its ability to generate new spectral components of the electromagnetic field. This is

evident from the wave equation inside matter (2.51).

2.3.1 Four-wave mixing

Four-wave mixing (FWM) is a third-order process in which the interaction between three
fields in a nonlinear medium generates a fourth one. The frequency of the generated field must
be a linear combination of the frequencies of the input fields. Figure [5] illustrates a general
case of FWM, where the atomic system interacts with incident fields whose frequencies are
w1, wo and ws, and generates a new field with frequency w,. We consider, for example, that

W4 = W1 + Wy — Ws.

Figure 7 — General four-wave mixing scheme. (a) Shows three incident beams interacting with a nonlinear
medium characterized by x(®), resulting in the generation of a nonlinear signal, (b) displays a
possible energy diagram for this process, and (c) illustrates the orientation of the wavevectors in
the process and the spatial phase mismatch Ak = El + Eg — Eg — E4.

(a) (b) (c)
I -
E1 S E3 E-’L
T — ] 3) E.1 R
E—— "= i AT
E, s = -
Gy ky i
2

Source: the author (2023).
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This example can be modeled by a field containing three spectral components with plane
wavefronts,

E(t) — Ele—iunt + E2e—iw2t + E3e—iu.;3t +ecec. . (266)

Calculation of the third-order polarization induced in the medium as P = [FE(t)]® outputs 44
different frequency components if positive and negative frequencies are considered distinct.
Usually, experimental setups are built to observe a specific component. If we write the induced

polarization as
P(t) = X pulwn)e (2.67)
where p,(w,,) is the coefficient of each frequency component of the induced polarization. The

component py(wy) in the example is
]54(&)1 + wo — u.}3) = 6€0X(3)E1E2E§ . (268)

It is important to note that x(®) itself depends on the frequencies of the fields, or better
said, on the coherences of the medium. Nonlinear optical processes involve the coupling of
multiple photons, resulting in the generation of new frequencies. The strength of this coupling
and the efficiency of the nonlinear process depend on the specific coherences present in the
medium. Therefore, x©® is larger and the nonlinear process occurs more efficiently when the
frequencies involved are close to the resonant frequencies of the medium.

The spatial dependence of the fields gives rise to phase matching conditions, which are
determined by the solution of the wave equation . These conditions play a crucial role in
ensuring efficient signal generation. In particular, the intensity of the nonlinear signal follows
a relation given by

I, o sinc*(AkL) , (2.69)

where L represents the length of the medium. The behavior of the sinc function indicates that
the signal strength is maximized when the phase mismatch (Ak) is minimized. Considering
experimental conditions, this implies that the angle between the incident beams should be

small.
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3 THEORETICAL MODEL

In this chapter, we build the theoretical model that describes the mode transfer in the four-
wave mixing process we worked on. We begin by describing the four-wave mixing setup we
perform experimentally and translate it into a theoretical description. Next, we solve the
paraxial wave equation considering a third-order nonlinear polarization. Selection rules arise
from the solution of the wave equation, with particular considerations regarding the thickness
of the medium. With these selection rules, we can obtain theoretical results for the expected
intensity distribution, as well as the exact contribution of the modes participating in the

nonlinear signal.

3.1 EXPERIMENTAL CONSIDERATIONS

We start this section by showing the four-wave mixing setup in our experimental system.
We focus two incident beams in a vapor cell. They are denoted by E4 and Eg, have lin-
ear polarizations that are orthogonal to each other, and are aligned in a quasi-copropagated
arrangement. On the other side of the cell, in addition to the transmitted beams, EA and
EB, the beams generated by the nonlinear process, F>4_p and Fyp_ 4, emerge. The beams

originate from the same laser source, resulting in coherence and phase synchronization.

Figure 8 — (a) Shows the four-wave mixing setup in our experiment and (b) shows the wavevectors arrangement
in the process, together with the phase mismatch.

(a)

vapor cell

25}

2B-A

t
w

m M
=

Source: the author (2023).
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Our vapor cell contains atomic vapor of 8°Rb and 8"Rb, although we performed our
experiment in transitions belonging to 8Rb, more specifically, transitions corresponding to
the D2 line, from ground level 52S) /5 (F' = 3) to excited level 5P 5. Figure @ shows the

energy levels of **Rb.

Figure 9 — Rubidium 85 D2 transition hyperfine structure, with frequency splittings between the hyperfine
energy levels.

Source: taken from reference [34].
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In summary, our experiment is a degenerate four-wave mixing since all the beams involved
in the process have the same frequencies. We want to look at the signals generated by the
absorption of two photons from A and stimulated emission by a photon from B, and vice-versa.
Considering this arrangement, the polarizations of the beams involved occur in pairs, thus signal
2A— B has the same polarization as B, and signal 2B — A has the same polarization as A. The
diagrams in figure b) illustrate the momentum conservation of the process, highlighting the
phase mismatch. As discussed in subsection 2.1.1, maximizing efficiency relies on minimizing
the phase mismatch, which requires a small angle between the beams. In our experiment, the
angle has the purpose of spatially separating the generated signals from the transmitted light
of beams A and B. However, from a computational standpoint, there are no drawbacks in
making the beams perfectly parallel to each other, nullifying the phase mismatch.

With the assumptions made, we write the polarization induced in our system as
P= SOX(I)(EA + EB + E)QAfB + E)QBfA) + 3EOX(3)(E%EE + E%EZ) . (3.1)

The linear component is responsible for the absorption of the beams by the atomic medium.
For the nonlinear terms, the second-order polarization is null since we are treating a centrosym-
metric medium, and for the third-order polarization, we write specifically those contributions
that generate the nonlinear signals we are interested in. From now on, we will focus on solving
the wave equation for the nonlinear polarization 152(2)73 = 360)((3)5315;, which is responsible

for generating the signal 2A — B. It should be noted that the solution for 2B — A can be

obtained by analogy, just by reversing the labels.

3.2 SOLUTIONS TO THE PARAXIAL WAVE EQUATION

In this section, we will focus our efforts on solving the wave equation,

— n2 GQEQA_B 82]3(3)
V2B p— — 2 = pg——a B
2A—B 2 12 Ho o2

First, we apply the manipulation demonstrated in section [2.2 arriving at the inhomogeneous

(3.2)

paraxial wave equation,

Ousa_p
0z

Now, we use the orthogonality and completeness properties to expand the nonlinear signal

V3 uga_p + 2ik = 32D ul . (3.3)

envelope in terms of the Hermite-Gauss functions,

g 5(7) = 3 A (2)HG o (7) | (3.4)



30

where A,,,(2) is the probability amplitude, representing the contribution coefficient of each
mode (m,n), and u(7) and ug(7) are pure Hermite-Gauss modes themselves, with modes

(ma,na) and (mp,ng), respectively,
uo () = HGppny, (7), a€{A B}. (3.5)
Substitution of (3.4) and (3.5)) in equation (3.3) results in

0
3 (vi + 2ik82> Ay (2)HGo (7) = =3K*XPHG, ,,, (MHGE, . (7). (3.6)

m,n

Distributing the differential operator, and using the fact that HG,,,(¥) is a solution to the

homogeneous equation, we arrive at

MATA mpnp

ZHGmn Apn(2) = —zmx MG (MHG. (7). (3.7)

Now, we multiply this equation by HG)  (7') and integrate it over the transverse plane. Using

the orthogonality of the HG functions leads to

9 A (2) = ——zk: / / YOHG2  (AHGE  (FHGE (7) dady . (3.8)

az mAmnA mpnp

Considering that our input fields are strong enough to undergo little or no transverse structure
variation inside the cell, we uncouple the spatial dependency of x®). Finally, integration over

z, results in

Nn(2) = —2ikx® [[[HGE,, (VG (FIHC;,, () drdyd=,  (39)

which we call the overlap integrals of the interacting beams. It can be interpreted as the
projection of the generated nonlinear field onto the space of HG functions.

The integrals in = and y are performed over the entire transverse plane. There is no loss of
generality when considering experimental conditions where the beam waists are much smaller
than the diameter of the cell. Now, for the longitudinal axis, some considerations have to
be made, since our cell has a limited length. We integrate over an extension of size L, which
represents the length of the vapor cell, centered around the origin. Finally, we write the integrals
as

+L/2 400 +00

Apn(L) = —zkx3) / / / HG?,  (MHGE, . (MHG, (7 dedydz . (3.10)

—L/2 —00 —00
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3.3 OVERLAP INTEGRALS

In this section, we'll focus on solving the overlap integrals ([3.10)), which will lead to some

selection rules that govern the mode transfer. We start by expanding the HG functions inside

the integral,
6 +L/2 +00 +o0 1
(L) = =iy Ocnre [ [ ] —
—L/2—00 —00

o [‘(xz ) (wmz) i w%j(z) i w%AlB<Z>>1
oz, [ Y20 ]y [ V20 g [ V2e
[ e [ [

wa(z) wp(z) woa—p(2)
Slorel i et
> +y® [ 2k kB koa—B
XeXp[ 2 (RA(Z) Rp(z)  Roa_pl >]

X exp [— 2iN 4tan™* ( & > + iNgtan™* ( >
~R(A) ZR(B)

+ iNyy pgtan~! <Z> ] dxdydz .
ZR(2A—B)

The term Cunrans = (2 Crngng Cmn, Where Cj; is the normalization coefficient of each

m;ma,mp MmaANA BB

HG mode (j,1). The parameters k,, wq(2), Ra(2) and 2 (a) of each beam are properly labeled,
where a € {A, B,2A — B}.

To evaluate these integrals, we assume that Boyd's criterion [10] holds in our system. It
is an empiric criterion that establishes some requirements to maximize signal generation. In
short, it states that the Rayleigh length of the beams involved in the process should be the
same, which results in the relation:

ZR(A) = ZR(B) — #R(2A—B) »

(3.12)

2 2 2
Wy W Wy p

A Ap deas

Since our system is degenerate, the beams also have the same wavelength, which implies that

they must have the same waist. After applying these considerations to the overlap integral,
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we get the expression,

s L/2 oo too 2 4 o
MMMz—Wmﬁwmm%Bzfééuﬂdmpk42@J
<HZ, L\U/iﬂ HE,, L\U/Zﬂ i, L\U/iﬂ (3.13)
iz, [ Y2, [ 2w | Y2

X exp [—i(2NA — Np — NQA_B)tan_l(Z/ZR)} dxdydz .

Now, we make the substitution # = /22 /w(z) and § = v/2y/w(z), and we may separate the

integrals,
3 e
Aon(L) = =Zikx e [ 12, (9, (2)H;, (@) da
+00
~ * ~ x [~ —20% 3~
x / 0y, (9)Hy,, (9)H,, (§)e™" dg (3.14)
+L/2
% / e*i(?NA7NBfN2A_B)tan71(Z/ZR) dZ )
w?(2)
—L/2

3.3.1 Transverse integrals

The transverse integrals are similar to each other, both consisting of a product of Hermite

functions and a Gaussian term,

I, = / H2, (#)H:, (2)H: (2)e 2 di, (3.15)

L= [ W2 ), (), (5)e ™ dg. (3.16)

The arguments of these integrals are functions with well-defined parity and are being integrated
over a symmetric interval. They are nonzero only when the product of Hermite polynomials is

an even function, which occurs when the sum of indexes is an even number,
2ma +mp + moa_p = 27, JeN,
(3.17)
2nA+TLB+n2A_B:2j, jGN,

which can be unified in a single condition involving the mode order of the beams,

2N4 + N+ Nog_p = 27, jeN. (3.18)
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We interpret this selection rule as a conservation of parity, where the parity of the generated
signal is equal to the parity of the product of the incident beams. More specifically, since beam
A participates twice in the process, its contribution is nullified, and the parity of the nonlinear

signal is always determined by the parity of beam B,
Np + Nou_p = 27, jeN. (3.19)

We emphasize that this result holds without making any assumptions about the length of
the medium. Therefore, it is valid for both cases when the medium is short compared to the
Rayleigh length of the beam, as well as when the medium is long compared to the Rayleigh

length of the beam.

3.3.2 Longitudinal integrals

The longitudinal integral is expressed as

+L/2e—i(?NA—NB—NQA—B)tan_l(Z/ZR) (3.20)
. 2
7, 1+ (2/2r)

It is important to note that the contribution of the longitudinal phase, resulting from the
curvature radius, has been nullified by Boyd's criterion. As a result, only dependence on the

Gouy phase remains. Using the identity
e~en " (#/7r) = cog [tan_l(z/zR)} —isin [tan_l(z/zR)} , (3.21)

and taking the triangle of figure |10 as a guide, we are able to rewrite the integral in the form

+L/2 ) L AN
L= / ] 5 | —— i2/2r ] dz (3.22)
i + (2/2R) 1+ (z/zr)?

where AN = 2N, — N — Nyy_p is the variation of mode order.

Figure 10 — Right triangle with angle » = tan™!(z/zR).

1+ (z/2p)?
z/zR

1

Source: the author (2023).
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This integral can be analytically evaluated and results in

2zptanY(L/2zp), if AN =0;

i+ L/22n AN/2 i+ L2 —AN/2 AN £0 (3.23)
Z—L/QZR Z—L/QZR ’ ‘

IZ - 1ZR

AN

This solution yields different results when considering the cases of a thin or extensive medium,
which are related to the Gouy phase matching.
In the thin medium case, zz/L > 1, and we obtain

lim I,=L, V¥ AN. (3.24)

zr/L>1
In this limit, the medium is short in comparison to the Rayleigh length of the beam, which
means that it accumulates a negligible Gouy phase during the propagation inside the medium.
As a result, modes that don’t necessarily satisfy the Gouy phase matching end up contributing
significantly to the nonlinear signal.
Now, in the extensive medium case, zg/L < 1, and we get

TZR, if AN =0;
lim I, = (3.25)

0, if AN #0.

In this limit, the medium is long in comparison to the Rayleigh length of the beam, which
means that it accumulates a significant Gouy phase during the propagation inside the medium.
Consequently, the modes that contribute to the nonlinear signal are those that satisfy Gouy
phase matching. The selection rule, AN = 0, is valid only in the extensive regime and explicitly

represents the conservation of mode order,

Noa_p = 2N4 — Ng. (3.26)
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4 THE EXPERIMENT

In this chapter, we intend to describe our experiment, pointing out key instruments and de-
scribing the procedures performed in our measurements. First, we describe our experimental
setup, then we detail the functionality of the spatial light modulator (SLM) and how we control
it. We finish by describing the method we use to take our measurements and how we proceed

to process our images.

4.1 EXPERIMENTAL SETUP

Our system is composed of a laser, mirrors, beam splitters, fibers, an SLM, and other optical
components. Figure [11| shows the main structure of the experimental setup we are gonna be

describing in the next lines. For the experiment, we used a diode laser from Sanyo, model

Figure 11 — Experimental setup.

Source: the author (2023).

DL7140-201S, at wavelength A = 780 nm, with homemade electronics, for temperature and
current control. The laser’s frequency is modulated using a waveform generator (WFG) from
Agilent, model 33521A. The first part of the system is a saturated absorption spectroscopy
(SAS) arrangement. This first part of the experiment is important, so we can tune the frequency

of the laser to the desired transition. It will be detailed in the next subsection.
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As the beam is emitted by the laser, it has a messy shape that doesn't resemble a Gaussian
profile. So, to clear its appearance, we pass the beam through an optical fiber right after the
SAS. Once it exits the fiber, the beam has an almost perfect Gaussian shape, aside from some
subtle interference. Figure|12|shows a comparison between the profiles of the beam before and

after it goes through the optical fiber. Then we direct the beam to an SLM, which we use to

Figure 12 — Comparison between the beam profile (a) before and (b) after the optical fiber.

Source: taken from reference [35].

divide the beam in two, A and B, and shape them in the desired Hermite-Gauss modes. As the
beams propagate, they separate, and with the use of half-wave plates, we adjust them with
linear and orthogonal polarizations. The beams meet in a polarizing beamsplitter (PBS) and
cross their paths further ahead inside a rubidium vapor cell that is heated to approximately
72 °C. For this, we use a heater for glass cells and a temperature controller, both from Thorlabs,
models GCH25-75 and TC200, respectively. The interaction of the two beams, A and B, with
wavevectors IQA and EB, with the atomic medium generates two four-wave mixing signals, at
directions QEA — EB and 2/53 — EA. After the Rb cell, we separate the beams by polarization
using a PBS and then further isolate them mechanically by blocking the transmitted beams.

We align the system to detect one of the signals, using a CMOS camera.

4.1.1 Saturated absorption spectroscopy setup

In this subsection, we detail the SAS system in our experiment. Saturation spectroscopy is
a powerful technique that allows us to eliminate the Doppler effect and then, precisely measure
the energy levels and transitions of an atomic or molecular sample. Figure [13| illustrates our
SAS arrangement. First, we pass the beam through an optical isolator that will prevent
reflected light from returning to the laser head. Next, we deflect a few Watts of power using
a non-polarizing beamsplitter (a simple thin glass plate). The light deflected passes through a

rubidium cell at room temperature and reflects back on itself passing through a neutral density
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Figure 13 — Saturated absorption spectroscopy setup.

Source: the author (2023).

(ND) filter twice. This way two beams are passing through the sample, one of them with much
greater intensity. The reflected weaker beam is collected using a simple photodetector. This
arrangement depends on both the beams passing through the sample over each other. Due to
the Doppler effect, this technique will involve the excitation of different velocity groups by each
one of the beams, separately, except when the beams are tuned to the resonant frequency.
In the resonance condition, the two beams, which propagated in opposite directions, interact
with the same atoms that, in this case, are at rest, v = 0. The stronger beam will saturate the
transitions while the weaker beam, which we call probe beam, will be less absorbed. We detect
the probe beam, which will exhibit large absorption lines, corresponding to the fine structure
of the atoms, and thinner transmission lines carved over the absorption lines, at the resonant
frequencies, corresponding to the hyperfine structure of the atoms.

Another interesting property of this technique is the occurrence of spurious peaks that
don’t correspond to real transitions, but to crossovers of the resonant frequencies. When the
lasers are tuned to the mean of two resonant frequencies, wco = (w; + wq)/2, atoms with
velocity v = £(ws — wy)/2k will feel each beam tuned to one of the resonant frequencies.
The pump beam will saturate the transitions to one of the excited levels, and the probe beam,
which is resonant to the other transition, will be transmitted. This mechanism carves another
peak inside the Doppler profile, which is usually greater than the transition peaks, due to being
the result of the interaction of the laser with atoms belonging to two velocity groups. Figure
illustrates the mechanism of the crossover peaks.

The saturated absorption spectrum can be used as a reference to control the frequency of
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Figure 14 — (a) Energy levels of a three-level system illustrating the crossover frequency. (b) The spectrum of
the probe beam will exhibit an intermediate peak between the resonant frequencies.

Source: the author (2023).

the laser. We use it basically as a frequency ruler. Figure|[15|shows the spectrum of the saturated
spectroscopy in our system. The bigger plot shows four Doppler profiles corresponding to the
fine structure of ®*Rb and 8"Rb, each containing inner peaks that correspond to the hyperfine
structure, half of them are transitions and the other half are crossovers. In the inset plot, we
zoom in to highlight the structure of the ®Rb (F, = 3) Doppler line, because it's the range

of frequencies in which we performed our measurements.

Figure 15 — Saturated absorption spectrum of Rubidium in our system. The inset graph is a zoom of the
8Rb (F, = 3) Doppler curve.

Source: the author (2023).
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4.2 SPATIAL LIGHT MODULATOR

In this work, we use an LCOS-SLM (liquid crystal on silicon spatial light modulator)
from Hamamatsu Photonics, model X10468-02. A liquid crystal spatial light modulator is a
device used to modulate the phase of an incident wavefront [36]. The chip is composed of a
silicon base with pixels, made of aluminum electrodes. This substrate is covered by a layer of
nematic liquid crystal and the whole ensemble is protected by a glass plate. An incident laser
beam should pass through the glass plate and interact with the liquid crystal (LC), before
being reflected. The LC molecules present an elongated ellipsoidal shape and the property of
birefringence. The transversal axes of the crystal hold the same refractive index, which we call

ordinary, n,, whilst the longitudinal axis holds an extraordinary refractive index, n..

Figure 16 — (a) LCOS-SLM inner structure and peripheral devices. (b) Representation of a liquid crystal
molecule, highlighting its refractive indexes in each axis.

Source: (a) taken from the SLM manual [37] and (b) the author.

The orientation of the liquid crystal molecules is controlled by applying a voltage to each
pixel of the display. This can be done with high precision using a computer connected to the
controller through a digital video interface signal. In this way, with a Python program, we
generate a graphical user interface containing a built mask, where the phase ranging from 0
to 27 is converted to an 8-bit scale (discretely ranging from 0 to 255) in bitmap format. Each
level corresponds to a voltage intensity applied to a pixel of the display, which modulates the

alignment of the crystals and results in a two-dimensional refractive index distribution.
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4.2.1 Generation of higher-order modes

To generate higher-order modes in light beams, we must input masks on the SLM contain-
ing the phase profile we want to imprint on the wavefront. This, together with a diffraction
grating, is capable of generating beams with high efficiency and a high degree of purity in the
desired modes, in the first diffraction order [38]. Figure [17]shows the composition of the phase
profile and diffraction grating to generate a HGy; mode. In this case, the phase profile adds
a shift of m rad in the phase between the top and the bottom hemispheres of the diffraction

grating.

Figure 17 — Composition of the mask to generate a HGg; mode.

Source: the author (2023).

This can be further perfected by encoding amplitude modulation onto the SLM. There
are some different ways to modulate the amplitude of the beam [39, 40], one of the simplest
techniques is to obtain an arbitrary combination of amplitude and phase modulation, based
on spatially changing the diffraction efficiency [41]. The basic idea is to spatially modulate the
phase depth encoded on the hologram (before, fixed at 27) as the amplitude profile of the
mode we want to obtain, in this case, |[HGq;|. This allows us to control the amount of light
reaching the first diffraction order, effectively deflecting undesired light. Figure [18| illustrates

this proceeding.

Figure 18 — Amplitude modulation encoding onto the HGy; mask.

Source: the author (2023).
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In our system, we use masks with double holograms, to simultaneously divide our laser
beam in two and modulate their shape and phase. Figure [19 shows some examples of masks

we use and the resulting beams we get from them.

Figure 19 — (a) Example of masks used in our system and (b) their resulting beams.

Source: the author (2023).

4.3 MEASUREMENTS

In this section, we provide details about our measurement process and how we proceed
with the processing of the recorded images. In this work, we use a CMOS (complementary
metal-oxide-semiconductor) camera from Thorlabs, model DCC1545M, shown in Figure 20 It

has a resolution of 1280 x 1240 pixels and sensitive dimensions of 6.656 x 5.325 mm.

Figure 20 — CMOS camera, model DCC1545M.

Source: taken from the camera manual [42].

For the measurement, we limit the sweeping range of the laser to the 8°Rb (F = 3)

Doppler curve, and take a short video of the observed signal as it appears to get stronger
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(when the laser approaches the transitions) and faded (when the laser moves away from the
resonance). We can notice that the background of the signal presents some scattered light
from the transmitted beams, which we also record separately to further clean the image of the

signals. We proceed with our measurements in the order described:
1. Record a short video of the nonlinear signal;

2. Block the incident beam A and record a short video of the scattered light from the beam

B;

3. Block the incident beam B and record a short video of the scattered light from the
beam A.

Then, we follow with the cleaning of the background of the signals:
4. Separate the frames from the videos recorded;
5. Select the best frame from the video of the nonlinear signal,

6. Select the best frames from the videos of the scattered light, the ones which best

resemble the background of the nonlinear signal;
7. Subtract the scattered light from the signal image.

Figure [21] follows as an example of the measurement of a Gaussian signal and cleaning of the

scattered light.
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Figure 21 — Example of measurement and cleaning of the image. In (a) is the chosen frame of the observed
nonlinear signal with scattered light, (b) and (c) are the chosen frames of the scattered light from
beams A and B, respectively, and (d) is the result of the subtraction of the scattered light from
the nonlinear signal.

Source: the author (2023).

Next, we apply a color gradient to our image that allows a better evaluation of the intensity
profile of the beam. The color gradient has lower-level colors that delimit the boundary of the
beams and higher-level colors that give a better perspective on the intensity layers. See figure

22

Figure 22 — Comparison between (a) the grayscale gradient and (b) the color gradient applied to the signal
presented in Figure 21[d).

Source: the author (2023).
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We further improve our image by removing interference patterns from the beam, arising
from the propagation through thin layers, such as lenses, filters, and glass plates, and from
direct interference with scattered light. To do this, we perform an averaging procedure in
clusters of pixels of the image. We define a parameter ¢, and a cluster as the square of side
2¢ + 1 around a pixel of the image, as shown in figure 23] The intensity of the central pixel
is redefined as the average intensity of the pixels inside the square. By doing this with each

pixel we obtain a smoother image, free from rough interference fringes.

Figure 23 — lllustration of the averaging method. The image represents a 20 x 20 image that will be averaged
with a parameter ¢ = 4. The red square represents the central pixel of the cluster, highlighted as
the surrounding yellow squares.

|
2¢+1

Source: the author (2023).

Figure [24] shows the averaging procedure in the image from figure 22|(b), with different values
for the parameter /. For the measurements we did in this work, we usually perform the averaging

with a parameter ¢ ranging from ¢ = 10 to ¢ = 15.
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Figure 24 — Comparison between the smoothing of the signal image for different values of the parameter £.

Source: the author (2023).
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5 RESULTS

In this chapter, we present and compare our experimental and theoretical results. The chapter
is divided into sections, each focusing on a specific thickness regime. We provide a detailed
description of the setup and conditions required to achieve these regimes and showcase the

transverse profiles we measured together with their corresponding theoretical profiles.

5.1 THIN MEDIUM REGIME

To achieve the thin medium regime, we need an interaction length (length of the cell)
much smaller than the Rayleigh length of the beam, zgz/L > 1. Our cell has a length of
approximately L = 7 cm, and we set the waist of the beams to wy ~ 250 um, giving a
Rayleigh length of zp ~ 25 cm, therefore a ratio zz/L ~ 3.57. For the FWM setup, we
align the beams using guide masks (GMx), consisting of small square copper plates with holes,
where the beams pass through, separated by 2 mm intervals, as shown in Figure b). We
enumerate the holes on the guide masks from 1 to 4, from left to right. Then, we align beam
A to holes 2 and 3 of GM1 and GM2, respectively. On the other hand, we align beam B to
holes 3 and 2 of GM1 and GM2, making them cross in the middle, where the rubidium cell is
located. The masks are spaced at a distance of 60 cm from each other, resulting in a small
angle between the beams (around 0.007 rad). Signal 24 — B is expected to be approximately
aligned to holes 1 (GM1) and 4 (GM2), and signal 2B — A to holes 4 (GM1) and 1 (GM2).

Figure 25 — (a) Scheme of the beams crossing each other inside the cell. (b) Sketch of the guide masks used
to align the beams.

Source: the author (2023).

With this configuration, we obtained measurements for some combinations of Gaussian-
HG and HG-HG modes. In Figure [26] we show the profile of the modes we combined in the
Gaussian-HG case and their corresponding superposition within the cell. It is important to note

that higher-order beams exhibit a greater spread, making it more challenging to achieve overlap
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and resulting in increased scattered light. Therefore, we imposed a limit on the maximum mode
order of the incident beam, setting it to NV = 2. Figures , and illustrate the results for
each combination case, Gaussian-HG, HG-HG (with us = up) and HG-HG (with u4 # ug).

Figure 26 — Intensity distribution of the incident beams used to perform the experiment in the gaussian-HG
case, and their overlap in the position of the cell.

Source: the author (2023).

Figure 27 — Intensity profile for a combination of gaussian-HG modes in the thin medium regime. Here, we
show the intensity distribution of the incident w4 beams (up is gaussian in every case), and a
comparison between the theoretical and experimental distribution of the nonlinear signals.

Source: the author (2023).
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Figure 28 — Intensity profile for a combination of HG-HG modes, with u4 = up, in the thin medium regime.
Here, we show the intensity distribution of the incident beams and a comparison between the
theoretical and experimental distribution of the nonlinear signals.

Source: the author (2023).

Figure 29 — Intensity profile for a combination of HG-HG modes, with u4 # up, in the thin medium regime.
Here, we show the intensity distribution of the incident beams and a comparison between the
theoretical and experimental distribution of the nonlinear signals.

Source: the author (2023).

In general, we observe a good agreement between our experimental and theoretical results
in terms of the number of lobes in the nonlinear signals. However, some discrepancies are
apparent in their relative intensities, which we attribute mostly to a poor overlap of the beams.
Notably, the signal 2A — B resulting from the combination of uy = HGy; and up = HGyy,
in figure 29 is missing a lower right lobe, and we were not able to measure the signal 2B — A
from the same combination. Another aspect to consider regarding our theoretical model is
that we have not accounted for linear effects, which was done in detail by Motta in [43]. His

calculations demonstrate that the linear terms lead to absorption, which he represents as an
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efficiency term that may depend on the mode indices. In his work, he simplifies the analysis by
neglecting this dependence, but the inclusion of this efficiency factor with mode dependence
could rearrange the relative contributions of the modes to the nonlinear signals, resulting in a

more accurate resemblance between the theoretical and experimental profiles.

5.2 EXTENSIVE MEDIUM REGIME

Firstly, we justify the use of the term "extensive medium" as opposed to the terminology
found in the literature, "thick medium", to avoid ambiguities with respect to different concepts.
"Thick medium" often refers to media with high optical depth, meaning a high atomic density,
which results in greater light absorption. On the other hand, the "extensive medium" regime
we are referring to regards the length of the medium in relation to the beam’s Rayleigh
length, which characterizes its divergence. To achieve the extensive medium regime, we need
an interaction length much bigger than the Rayleigh length of the beam, zp/L < 1. We
recall the length of the cell, L = 7 c¢cm, and we were able to set the waist of the beam to
wp = 50 pm, giving a Rayleigh length of zr &~ 1 cm, therefore a ratio zg/L ~ 0.14. To obtain

this regime, we tried using two different setups, illustrated in figure [30]

Figure 30 — Setups used to obtain the extensive regime. In the first setup (a) we focus both incident beams
with a lens. In the second setup (b) we focus only beam A while keeping beam B wide.

Source: the author (2023).

In the first setup, we align the beams in parallel to each other. Using a lens, we then make
the beams cross each other while focusing at the center of the cell. The issue with setup 1
is that the interaction between the two beams occurs within a very small length and volume.

As a result, the effective ratio zg/L is not what was expected (we can't assure we are in the
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extensive regime), and the efficiency of the process is reduced due to the participation of a
limited number of atoms in the nonlinear process. It is important to note that the intensity of
the signal is proportional to the square of the number of atoms, I oc N2. In the second setup,
we focus only beam A by using a lens before the beams meet in the PBS. We keep the beam
B wide so that beam A passes through it along the entire length of the cell. In addition to
the reduced volume of interaction between the beams, the issue with setup 2 is that it does
not meet Boyd's criteria for maximizing efficiency. By adjusting the beams to have different
waists, we also create a significant mismatch in their Rayleigh lengths. Unfortunately, we were
unable to obtain experimental results for the extensive medium case. However, we will present
theoretical results and compare them with the thin medium case.

We start by presenting the first case in detail, in order to analyze every aspect of the
phenomenon and the consequences of the selection rules. Figure shows the modes of

incident beams A and B for the case of a gaussian-HG combination.

Figure 31 — Input modes of the incident beams A and B.

Source: the author (2023).

In this case, where uy = HGg; and ug = HGqy, their respective mode orders are Ny = 1
and Np = 0. The longitudinal selection rule, which is valid in the extensive medium regime,
predicts the conservation of mode orders of the nonlinear signals. Therefore, in this regime, we
should expect Noy_p = 2N4 — Ng = 2 and Nop_4 = 2N — N4 = —1. Hermite functions
are defined for positive integers only, so the negative indices solutions predicted for the 2B — A
signal are not physically possible. This occurs for every combination of gaussian-HG modes in
the extensive medium regime, only the signal 2A — B is generated.

Figure [32] shows the resulting nonlinear signal 2A — B from the combination of incident
beams shown in figure 31} in each thickness regime. The black and white diagrams illustrate

the numerical values of the coefficients A,,,, theoretically calculated in ([3.10]). It should be
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Figure 32 — Transverse profiles and mode composition of the nonlinear signal 24 — B in the extensive and
thin medium regimes, considering the incident beams from figure 31}

Source: the author (2023).

immediately noticed the difference between the number of modes contributing to each case.
In the extensive regime, the conservation of mode order (Noy_p = 2Ny — Np = 2) limits
the contribution of modes belonging to a single diagonal of the diagram, containing only
modes with order N = 2, while in the thin medium regime, a wide range of mode orders arise
as contributing to the nonlinear signal. The only simplification we get in the thin regime is
related to the conservation of parity of the modes involved (mp +m = 2j and np +n = 27,
j € N), nullifying those with odd indexes m and n. From these diagrams, we can write the
solutions of the nonlinear signals as u$%e5™e = 0.707 HGgy — 0.707 HGgy and ulli", =
0.053 HGgg + 0.019 HGpe — 0.019 HGoy — 0.025 HGgy — 0.007 HGoo + 0.008 HGy4o + - - - .
It's interesting to notice that our theoretical results align with the conclusions obtained
by Offer et al. [25]. Their investigation of a cascade four-wave mixing with Laguerre-Gauss
modes showed that the transition from a thin medium to an extensive medium regime led to a
reduction in the variety of modes contributing to the generated signals. Although their system
shows a more pronounced narrowing down to a single mode due to the difference in wavelength

between the beams, it's a common consequence for any FWM arrangement considering the
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phase-matching conditions that arise in the extensive regime.

The following figures illustrate the theoretical results for a combination of modes in the
thin and extensive medium regimes, for the cases we were able to measure the FWM signal
in the thin regime. Figure [33| shows the results for the combination of gaussian-HG modes,
figures [34| and 35| show the results for the combination of HG-HG modes, where u4 = up and

us # up, respectively.

Figure 33 — Theoretical intensity profile for a combination of gaussian-HG modes in the extensive and thin
medium regimes. Here, we show the intensity distribution of the incident u 4 beam (up is gaussian
in every case), the distribution of the theoretical nonlinear signal us 4 g for each thickness regime,
and diagrams representing the coefficients of the contributing modes to the nonlinear signals.

Source: the author (2023).

Figure 34 — Theoretical intensity profile for a combination of HG-HG modes, with u4 = up, in the extensive
and thin medium regimes. Here, we show the intensity distribution of the incident beams, the dis-
tribution of the theoretical nonlinear signals for each thickness regime, and diagrams representing
the coefficients of the contributing modes to the nonlinear signals.

Source: the author (2023).
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Figure 35 — Theoretical intensity profile for a combination of HG-HG modes, with w4 # up, in the extensive
and thin medium regimes. Here, we show the intensity distribution of the incident beams, the dis-
tribution of the theoretical nonlinear signals for each thickness regime, and diagrams representing
the coefficients of the contributing modes to the nonlinear signals.

Source: the author (2023).
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6 CONCLUSIONS

In this work, we investigated the transfer of transverse modes of Hermite-Gauss beams in a
nonlinear optical process, specifically degenerate four-wave mixing in a sample of rubidium
vapor. From the theoretical model, we derived selection rules that govern the mode transfer
for each thickness regime. In summary, the first selection rule, valid for both regimes, states
that the parity of the mode indexes of the generated signals must match the parity of the
beam that participates only once in the process. The second selection rule, exclusive to the
extensive regime, dictates that the process must conserve mode order, limiting the modes
contributing to the generated signals. These selection rules allowed us to obtain the expected
intensity profiles of the generated fields and the coefficients of their expansion in terms of the
Hermite-Gauss function space.

In the experiment, we successfully obtained results for the thin medium regime. However,
we encountered difficulties in the extensive medium regime, primarily due to the small volume
of overlap between the incident beams. This significantly reduced the efficiency of the process
and made it difficult to detect the generated signal. Furthermore, we encountered challenges
regarding the length of overlap between the beams, making it difficult to confidently affirm
that we were operating in the extensive medium regime. Additionally, in another instance, we
did not meet Boyd's criteria for maximizing efficiency.

Theoretical and experimental results obtained for the thin medium regime showed overall
agreement in their shapes, with minor deformations and slight deviations in intensity. The
process we studied is known to have low efficiency, and the fact that the generated signals
share the same frequency as the incident beams poses difficulties in isolating them from the
transmitted beams. The use of spatial filters, such as mechanical blocking of the transmitted
beams, leads to the scattering of light, resulting in interference with the generated signals.

In addition, it is interesting to observe distinct results arising only from variations in the
sample length, leading to different longitudinal phase matching. By satisfying Boyd's criteria,
the phase terms associated with the curvature radius of the beams are eliminated, leaving the
longitudinal dependence on the Gouy phase alone.

Further investigation should be directed toward meeting the experimental requirements
of the extensive medium regime to obtain measurements for comparison with the theoretical

predictions. It is worth noting that these requirements have already been accomplished in a



55

three-level cascade system [25], where the atomic sample is excited in the infrared, and the
nonlinear signal is generated at higher frequencies. This system is more viable as the four-wave
mixing can be done with perfectly overlapped incident beams, and the generated signal can
be isolated using a spectral filter.

Another perspective involves exploring this system using alternative high-order beam func-
tion bases, like Laguerre, Ince, Hypergeometric modes, and more. Furthermore, extending the
investigation to include input modes that are not pure in the incident beams A and B. This

has only been done in theoretical studies, as seen in [24].
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