Evaluation of Non-functional Requirements: Case study of the
AHFE Open Access System

André Luis P. Vasconcelos Jr.!

'Centro de Informatica (CIn) — Universidade Federal de Pernambuco (UFPE)
Caixa Postal 7851 — 50732-970 — Recife — PE — Brazil

alpvj@cin.ufpe.br

Abstract. This article presents a comprehensive quality assessment of the AHFE
Open Access system using an ISO/IEC 9126-1 derived quality model and the
IOMC method. We analyze core non-functional attributes, including search
usability, page load performance, codebase quality, and responsiveness. Through
a systematic case study, we reveal insights into the system's strengths, limitations,
and opportunities for improvement, providing a valuable guide for software
practitioners. Our findings underscore the system's competitive search usability,
while identifying optimization potential in page load times, code modularity, and
test coverage. Notably, AHFE Open Access showcases rapid recovery times and
consistent responsiveness. This study informs future enhancements, contributing to
a higher quality and user-centric evolution of the system.

Resumo. Este artigo apresenta uma avaliagdo da qualidade do sistema AHFE

Open Access usando um modelo de qualidade derivado da ISO/IEC 9126-1 e o
método IQMC. Analisamos atributos ndo funcionais essenciais, incluindo
usabilidade de busca, desempenho de carregamento de pdginas, qualidade do
codigo e responsividade de tela. Através de um estudo de caso sistemdtico,
revelamos insights sobre as forcas, limitagbes e oportunidades de melhoria do
sistema, fornecendo um guia para profissionais da drea. Nossas descobertas
destacam a usabilidade de busca competitiva do sistema, identificando potencial
de otimiza¢do em tempos de carregamento de pdginas, modularidade do cédigo e
cobertura de testes. O AHFE Open Access demonstra tempos de recupera¢do
rdpidos e responsividade consistente. Este estudo informa melhorias futuras,
contribuindo para uma evolucdo com maior qualidade e foco no usudrio.

1. Introduction

Non-functional Requirements (NFRs) have gained significant attention due to their high
impact on modern software systems, influencing both their quality and user satisfaction [1].
While the Functional Requirements (FRs) define what the software does, it is the NFR that
determines how the software behaves and the characteristics it possesses.

In today's digital landscape, the success of software systems relies not only on their
core functionalities (FRs), but also on their ability to meet non-functional requirements.
These requirements encompass crucial aspects such as performance, security, usability, and
maintainability, play a critical role in determining the overall quality and user experience of
a system. In this article, we delve into the evaluation of non-functional requirements
through an insightful case study of the Applied Human Factors and Ergonomics (AHFE)
Open Access System.

The AHFE Open Access serves as a prime example of a software system that caters
to a diverse user base, offering access to a large range of scholarly resources, e.g. books and

articles, in a seamless and user-friendly manner. As the system is already in use, in this
study,we aim to shed light on the evaluation process of non-functional requirements and the
significance of incorporating them into the software evolution lifecycle.

Throughout this article, we explore methodologies and best practices for assessing
the non-functional aspects of the AHFE Open Access System. Guided by the principles
outlined by Robert K. Yin [2], we conduct a single case study. We also address the
challenges that arose during NFR evaluation and share the strategies we employed to
overcome them. Notably, we utilized system mocking to perform production-like tests
without disruption and established internal routes to evaluate specific behaviors. By
dissecting this real-world case study, we provide valuable insights into the practical
application of non-functional requirements evaluation in web-based systems. This, in turn,
empowers the enhancement of software performance, security, and overall quality.

By the end, as we uncover the intricacies of evaluating how non-functional
requirements are being satisfied by the AHFE Open Access System, we aim to achieve
three overarching goals: firstly, to construct a robust quality model tailored for a real-world,
in-use system; secondly, to illustrate how the evaluation of Non-Functional Requirements
(NFRs) can seamlessly integrate into the software development lifecycle, amplifying the
system's overall excellence; and thirdly, to provide a guide for individuals seeking to
replicate this process for their own software systems. By sharing our insights, we empower
the community with the knowledge and tools to not only elevate software performance,
security, and quality, but also to forge a user-centric approach that underpins the modern
software landscape.

2. Background

In this section we provide a context for this paper giving a brief description of four main
streamlines that support the development of our work: FRs/NFRs, ISO/IEC 9126-1,
MCCall's quality model in SWE and the IQMC method. And we also provide an overview
of our object of study: the AHFE Open Access System.

2.1. Functional and Non-functional Requirements (FRs/NFRs)

Requirements Engineering plays a pivotal role in the software development lifecycle by
capturing and defining what a software system needs to accomplish to satisfy stakeholders
requirements [3]. This process involves understanding stakeholder needs, translating them
into specific requirements, and ensuring that the resulting system meets those needs
effectively. Within requirements engineering, two fundamental types of requirements
emerge: functional requirements (FRs) and non-functional requirements (NFRs).

Functional requirements encompass the 'what' of a software system. They delineate
the desired behaviors and functionalities that the system must exhibit. These requirements
delve into the specifics of tasks, actions, and services that the system should execute [4].
Expressed as statements, use cases, or user stories, functional requirements detail how the

system should respond to diverse inputs or events. Notably, functional requirements steer
clear of the 'how' and concentrate solely on defining the system's intended behavior. They
encompass the features, capabilities, and functionalities that are vital for the system to
fulfill its designated purpose.

Contrastingly, non-functional requirements, often referred to as quality attributes or
system qualities, encompass the 'how' of a system's behavior. These requirements
encapsulate the attributes or properties that dictate the system's performance and conduct
[5]. While functional requirements center on the system's functionalities, non-functional
requirements pivot towards the system's overarching quality and constraints. These
requirements span concerns such as system performance, security, scalability, usability, and
availability. Their role is to ensure the system aligns with defined standards, regulatory
norms, and delivers a satisfactory user experience.

Crucially, it is important to recognize that functional and non-functional
requirements are inherently interconnected. They collaboratively shape a holistic set of
requirements for a system. Functional requirements meticulously outline specific features
and functionalities, while non-functional requirements intricately address the system's
broader quality attributes and constraints. Together, these categories of requirements
synergize to craft a system that effectively caters to the needs and expectations of users and
stakeholders alike.

2.2. The ISO/IEC 9126-1 quality standard

A quality model is defined by means of general characteristics of software, which are
further refined into sub-characteristics, which in turn are decomposed into attributes,
yielding to a multilevel hierarchy quality [6]. One of the most relevant and which we use in
this work is ISO/IEC 9126-1 quality standard [7].

The ISO/IEC 9126-1 quality standard provides a framework for defining and
evaluating software quality. It focuses specifically on software product quality and is
divided into several characteristics and sub-characteristics that describe different aspects of
quality. This model is also structured in 4 parts: 1 — quality model, part 2 — external metrics,
part 3 — internal metrics and part 4 — quality in use metrics. In Table I. we show the six
quality characteristics defined in ISO/IEC 9126-1 quality standard and their decomposition
into sub-characteristics.

Characteristics Sub Characteristics

Functionality Suitability

Accuracy

Interoperability

Security

Reliability Maturity

Fault Tolerance

Recoverability

Availability

Usability Understandability

Learnability

Operability

Attractiveness

User error protection

Efficiency Time behavior

Resource utilization

Capacity

Maintainability Analyzability

Changeability

Stability

Testability

Portability Adaptability

Installability

Coexistence

Replaceability

Table 1. ISO/IEC 9126-1 characteristics and sub characteristics.

These quality characteristics and respective sub-characteristics help evaluate the
overall quality of a software product. They provide a comprehensive framework for
identifying and defining the specific non-functional requirements that need to be met. We
provide a quick summary of each of these characteristics in the following way:

1. Functionality: This characteristic relates to the system's ability to provide the
functions that meet specified needs.

2. Reliability: Refers to the software's ability to perform its intended functions without
failures or errors under specific conditions.

3. Usability: Usability focuses on the software's ease of use and the effectiveness of
user interactions.

4. Efficiency: Relates to the software's ability to use resources effectively in order to
perform its functions.

5. Maintainability: Refers to the ease with which the software can be modified,
enhanced, or repaired.

6. Portability: Refers to the software's ability to be transferred from one environment
to another.

By following the ISO/IEC 9126-1 standard, we can ensure that the software product meets
the defined quality requirements and addresses the various aspects of quality that are
important for its intended use [8]. Is important to note that we use this standard as basis for
developing the quality model presented in this paper, based on the IQMC method, for
evaluating the AHFE Open Access system.

2.3. The IQMC method (Individual Quality Model Construction)

The IQMC method is a valuable approach for defining quality models in various software
domains. By adopting a mixed model approach, it provides a starting model that can be
customized for specific domains [9]. In order to achieve this customization, it is necessary
to select a quality framework or perspective that will influence the resulting catalog. In this
case, we use the ISO/IEC 9126-1 quality standard framework, as described in section 2.2.

The IQMC method offers a set of guidelines and techniques aimed at identifying the
appropriate quality features to be included in an individual quality model. It consists of
seven well-defined steps:

1. Investigation of the domain of interest to gain a comprehensive understanding of the
required tasks.

2. Determination of which quality sub-characteristics from the standards are applicable
to the domain of interest.

3. Decomposition of the selected sub-characteristics into a hierarchy of
sub-characteristics.

4. Decomposition of lower-level sub-characteristics, which are used for classification
rather than measurement, into measurable attributes.

5. Recursive decomposition of derived attributes into basic ones.

6. Establishment of relationships between quality attributes, such as logical
dependencies, synergies, and trade-offs.

7. Determination of appropriate metrics for the basic attributes.

The IQMC method has undergone validation in numerous domains, both within academic
research and industrial applications. Its effectiveness and practicality have been
demonstrated in these real-world scenarios [10].

By employing the IQMC method, researchers and practitioners can systematically
define and refine quality models tailored to specific software domains. This approach
enhances the understanding of quality requirements and contributes to the development of
high-quality software solutions.

2.4. Overview of AHFE Open Access System

Applied Human Factors and Ergonomics (AHFE) [11] is an international conference
company that is also a publisher for its generated material specialized in academic journals,
books, and other scholarly publications. The company provides researchers, scholars, and
the general public with access to a wide range of scientific and technical resources. This
company offers an Open Access (OA) platform called AHFE Open Access [12] that was
first released for public use on January/2022 and now stands with over 110 published
volumes wrapping up a total of 4000+ articles from 10 different conferences and now made
freely accessible for the academic community.

AHFE@ AHFE Open Access f v s o

International

Publications AHFE Access Instructions Aims and scope Volumes & Issues Editorial Board
o~ - 7 i) B L e =

AHFE Accelet_‘ating Open Aécess Science in Human Factors
International Engineering and Human-Centered Computing .

) o

Q
Books
@ Computing ® vy Social and Occupational Ergonomics
IOl Rmtion g Editors: Waldemar Karwowski, Henrijs Kalkis, Zenija Roja
. @8 Topics: Social & Occupational Ergonomics
= DESIgn ®© Date: 2023

15 articles
@ Engineering ©

Open Access

Book

= Management &
* Training

e Healthcare ® el ULy Safety Management and Human Factors
'“""""?_“°“’ Editors: Pedro Arezes, Anne Garcia

[fome o

Tonics- Safaty Manacemant and Human Factors

Figure 1. AHFE Open Access Homepage

AHFE Open Access is an initiative by AHFE that aims to promote open access
publishing. Open access refers to the practice of making scholarly research freely available
to the public, removing barriers such as subscription fees or paywalls. AHFE Open Access
allows authors to publish their research articles under an open access license, making them
freely accessible and downloadable by anyone. Figure 1 provides an overview of the
website.

Authors who choose to publish through AHFE typically retain the copyright to their
work while granting others the right to use, distribute, and build upon their research,
provided proper attribution is given. This helps to increase the visibility and impact of the
research by making it accessible to a broader audience.

AHFE Open Access covers a wide range of disciplines and offers open access
journals, books, and conference proceedings. The platform follows a rigorous peer-review
process to ensure the quality and integrity of the published research. It also provides various
services and features, such as online submission systems, article-level metrics, and
enhanced digital formats.

Overall, AHFE Open Access serves as a platform for researchers to disseminate
their work openly and contribute to the global knowledge base. It aligns with the principles
of open science and facilitates the sharing of research findings with a wide audience of 65
thousand impressions from 85+ countries just over the period of July/2023.

3. Methodology

The methodology for the development of this case study followed the principles of the
classic book written by Robert K. Yin: “Case Study Research: Design and Methods”[2].
3.1 Research project components

According to the author, for case studies, five components of a research project are
particularly important. They are: the study's questions (1); the propositions (2); units of
analysis (3); linking the data to propositions (4); and criteria for interpreting the findings

5).

This first component suggests that the formulation of research questions provides an
important key to establishing an appropriate case study strategy, particularly for questions
of "how" and "why." In our case, the research questions revolved around the non-functional
requirements of the system:

RQ1 - What are the main non-functional requirements for the AHFE system?

RQ2 - How can the non-functional requirements be observed in the system?

RQ3 - Why are these non-functional requirements important for the AHFE system?
RQ4 - What metrics can be used to evaluate these non-functional requirements?

RQ5 - How can we collect these metrics?

RQ6 - How can the results highlight areas for the system improvement?

As for the propositions, each of them focuses on something that should be examined within
the scope of the study. The propositions for this study were:

e The system under consideration will have a level of compliance with a
non-functional requirement proportional to the result of the collected metrics.

e The system will be considered compliant with the industry standards when it
achieves satisfactory metrics for all identified non-functional requirements.

The units of analysis component relates to the fundamental problem of defining what a
"case" is. The definition of the units of analysis is related to how the initial research
questions were formulated. Therefore, our unit of analysis were the attributes of the AHFE
Open Access web service, which included the source code and the web interface.

The fourth and fifth components represent the steps of data analysis in the case
study research, and a research design should provide the foundation for this analysis. We
linked the data to the propositions using the "fit to pattern" approach described by Donald
Campbell [13]. Through this approach, we identified reference system patterns for
comparison. We also applied this idea to the fifth component, as the data fit one pattern
much better than another. A question that could be asked is: What level of fit is required to
be considered a match? The results found in this article are that different patterns contrasted
clearly enough, allowing the interpretation of findings in terms of comparing at least two
competing propositions.

3.2 The Case Study Research Stages

In order to conduct this case study research, we divided the work in 4 stages. They are:
preparation for data collection (1); collection of evidence (2); analysis the evidence from
the case study (3); composing the case study report (4);

All data collection was extracted from the application’s source code and its web
interface using a variety of methods such as technology analysis and online forms involving
the system's stakeholders. It used the IQMC method previously mentioned in section 2.3 for
constructing the web service’s quality model. This guided what kind of metrics were
relevant to collect from the system and its relevant similar systems for comparisons.

After stage 1, we had a set of attributes and their respective metrics. So, for the
second stage, we justified how each metric was going to be collected and applied the
framework and methods based on both literature and techniques used in the market. This
study involved various sources of evidence: Analysis of documentation, Interviews with
stakeholders, Direct/Participant observations, and Analysis of physical artifacts. All records
were saved in files in the form of maps and tables. We also followed the 3 principles
mentioned by Yin [2]: (1) use multiple sources of evidence; (2) create a database for the
case study; (3) maintain the chaining of evidence;

For the stage of analyzing the evidence from the case study, the main method was
the suitability to the pattern described by Donald Campbell [13], which involved comparing
an essentially empirical pattern with a prognostic-based pattern. Whenever the patterns
coincided, its results helped reinforce the internal validity of the case study.

At last, for the fourth stage, it was time to compose the case study report. We used a
simple narrative to describe and analyze the case. The narrative information was enhanced
with tables, graphs, and images. Some of the illustrative structures used are comparative
and linear analytical approaches.

The focus was on reporting the case study in a way that adheres to each of the five
general characteristics described by the author. These characteristics include being
meaningful, comprehensive, considering alternative perspectives, providing sufficient
evidence, and being elaborated in an engaging manner.

4. Quality Model for AHFE Open Access System

In this section we present the core of our work, the construction of a quality model for the
AHFE Open Access System, applying the [QMC method described in section 2.3.

4.1. Study of the domain

Step 1 of IQMC consists of the analysis of the domain of interest, i.e. AHFE Open Access
in our case. We based this analysis on the understanding and evaluation of this system. We
studied this system wusing a range of sources including: documentation, demos,
presentations and architecture models. This was possible because the author of this paper
have access to the source code and stakeholders of AHFE Open Access.

To consolidate the most representative information in the scope of this work and to
end up Step 1 of IQMC, we identified the core functional requirements as a preliminary
step to the quality model construction. Table II shows its content. This information will be
later included in the final quality model in a systematic way, but the purpose at this stage
was to provide a general landscape of the domain whilst learning which type of information
is crucial in this system.

Reference | Description
#1 Articles are freely available to readers.
#2 Articles and Books are easily found and follows a structure.
#3 System administrators can update, create or delete books and articles.
#4 Provide article-level metrics and analytics.

Provide crawlable articles metadata by third-party engines.

Table II. AHFE Open Access core functional requirements

4.2. Identification of sub characteristics

In this subsection we present steps 2 and 3 from the IQMC method. Although not explicitly
stated in the ISO/IEC 9126-1 standard, in our work with quality models we have considered
sub-characteristics as classifiers of quality concepts, whilst attributes have measures to
allow evaluating particular aspects of the domain. According to Step 2, we start by selecting
the sub-characteristics from the ISO/IEC 9126-1 quality model that apply to our domain.
Ideally, all sub-characteristics would apply, which is quite reasonable since modern
software systems are usually quite complex. But in order to limit the amount of work in this
article we will only to the core functionalities described in Table II. Therefore, we go over
each of the sub-characteristics and analyze if they relate to any of our functional
requirements, excluding the ones that does not.

Next, we take these high-level sub-characteristics and decompose them into a
second level. We present this second level in the rest of this subsection, although we cannot
develop the detail of all selected first-level sub-characteristics of the ISO/IEC 9126-1, we
focus only on selected sub-characteristics that we find as the most important ones.

Correctness:

@ Article Search: One of the most fundamental properties of the system is
enabling users to find articles of interest.

@ Administrator operability: The system is an interface to interact with the
open access database. So it is crucial that administrators can update these
system informations.

Reliability:

@ System downtime: This system is utilized by multiple users all over the
world, with multiple timezones. And the utilization involves multiple and
consistent accesses, therefore it needs to be available with zero downtime.

@ Error handling: Given that data can be modified, old links and references
can become outdated. The system should take care of guiding the user in
those flows.

Efficiency:

@ Page Load Time: 1t is super important for the system to be indexed by third
party solutions. Most of this is done by crawling bots that scan the system
and extracts its metadata. To do that, the system needs to present a consistent
response time over all pages. But, instead, we will be using the Page Load
Time as it is easier to compare with different systems and is the one that will
affect the final user the most.

@ Page Size: Similarly, we will also consider the page size as it is an important
factor, especially when the system is designed to work on mobile devices
and possible restrained internet data caps have to be considered.

Integrity:

@ Protected internal features: Since the platform accommodates both users and
administrators, it is essential that certain features are only accessible given
the right permissions.

Maintainability:

@ Runtime resource utilization: Since this system continuously executes and
requires resources, the measurement of the resources required during its
normal operations is relevant.

Flexibility:

€ Code modularity: It refers to the practice of breaking down our software into
small, independent, and reusable modules, each responsible for a specific set
of functionalities. By adhering to code modularity, we can achieve higher
levels of scalability. As our project grows, we can easily add or replace
modules without disrupting the entire codebase. This flexibility allows us to
adapt to changing requirements and accommodate future expansions without
significant refactoring.

Testability:

@ Codebase tests coverage: Test coverage refers to the extent to which our
code is exercised by automated tests. By maintaining comprehensive test
coverage, we can build a more reliable and maintainable software system.
Automated tests rigorously evaluate our code, helping to identify and rectify
defects, bugs, or unexpected behavior. With a robust suite of tests, we can
catch issues early in the development process, minimizing the risk of critical
bugs reaching production.

Portability:

€ Multi-device interface responsiveness: This refers to the capability of our
applications and websites to adapt seamlessly to various devices, including
desktops, laptops, tablets, and smartphones. By ensuring responsiveness
across different screen sizes and resolutions, we deliver an optimal user
experience to all our users, regardless of the device they use.

Reusability:

@ Client assets: In our web-based system, we utilize a variety of assets such as
buttons and text fields to enhance the user interface. By standardizing these
assets across the platform, we aim to significantly improve the user
experience while also streamlining the development process.

4.3. Identification of attributes

In this subsection we present steps 4 and 5 of IQMC. The main goal here is to convert these
lower level sub-characteristics into basic attributes like String, Number, Date or a primitive
so it can be measurable. Some limitations were applied for the sake of this work, so we are
only investigating the following sub-characteristics:

Article Search: Defines one attribute (Search usability) that records wether the users
can efficiently use the search tool to fulfill their needs.

Administrator operability: It refers to how much of the system content can be
modified by a system administrator directly on the platform.

System downtime: It offers two attributes. Amount of system downtime at all times
or in fragments of time (Downtime) and the time to recover from a downtime (Time to
recover).

Error handling: Similarly, we have two attributes. System Mapped Errors and User
recoverability from errors, defining how much of the routes are handles unexpected
behaviors and the user response on how to deal with those handlings.

Page Load Time: Two attributes are offered. Being the Average and the Maximum
load time for articles pages on the system. We only take the load time of articles pages as
they're where the actual information is available.

Page Size: One attribute 1s described, stating the average data present on the articles
page measured in kilo bytes Kb.

Code modularity: A single attribute is offered: Modularity score. This will describe
how well structured the codebase is.

Codebase tests coverage: Describes one attribute, stating the amount of coverage on
the codebase.

Multi-device interface responsiveness: Provides a responsiveness score that
measures how well the system responds to different devices interfaces.

Client assets: Offers a single attribute describing how much of the assets used on the
client web interface is reusable.

The decision behind each basic attributes takes into account which framework or
technology will be used to collect the data, therefore we more details in Section 5.1. In
order to complete this step, Table III presents the characteristics and respective derived and
basic attributes.

Characteristic | Sub-characteristic Derived Attribute Basic attribute

C Article Search Search usability points Number
orrectness

Administrator Administrator operability | Number (Percentage)
operability coverness
Reliability System downtime Downtime Number / Number
Time to recover Number
Efficiency Page Load Time (PLT) | Average PLT Number
Maximum PLT Number
Page Size Page Average Size Number
Flexibility Code modularity Modularity score Number
Testability Codebase tests Codebase testing Number (Percentage)
coverage coverage
Portability Multi-device interface | Responsiveness score Number
responsiveness
Reusability Client assets Reusable assets Number (Percentage)

Table III. Decomposition of the characteristics into attributes.

4.4. Dependencies and metrics
In this subsection we sketch some examples of steps 6 and 7 of IQMC.

(1) Concerning dependencies among non-functional requirements, we can point out
some interesting relations. So, for instance, the attribute Reusable assets will have a
positive influence over the Responsiveness score, since using standardized assets will
prevent unexpected components behaviors. Constantly updating the history of the
monitoring process will consume computational resources. In addition to that, the Time fo
Recover and the Downtime have a logical dependency as the faster the recoverability of the
system is, less time will be spent in an unavailability state. We can also establish two
relationships for the Page Load Time: the first one with Search usability points as the user
searching scenario involves opening multiple pages until the ideal is found and doing it in a
faster way will improve the overall user experience, thus the search usability; the second is
with the Page Size which forms a direct proportionality because larger page sizes require
more data to be downloaded from the web server to the user's browser, and the transfer time
adds to the overall load time.

(2) Exploring the interdependencies among non-functional requirements unveils
intriguing relationships. To illustrate, the Reusable assets attribute wields a favorable
impact on the Responsiveness score. The employment of standardized assets curtails

unforeseen component behaviors. It's worth noting that continually updating the monitoring
process history can exact a computational resource toll. In tandem, the Time to Recover and
Downtime exhibit logical interdependence—an expedited recovery mechanism correlates
with reduced unavailability duration. Additionally, we can explore two connections
involving the Page Load Time: firstly, its correlation with the Search usability points. Given
that the user search scenario often entails navigating numerous pages before reaching the
desired outcome, expediting this process amplifies the overall user experience and,
consequently, search usability. Secondly, a direct proportionality emerges between Page
Load Time and Page Size. Bulkier page sizes necessitate greater data transfer from the web
server to the user's browser, thereby augmenting the overall load time.

As for the metrics, all of them are of three basic types: number; number over
number; number percentage. Some examples are:

o Number. An example is the average Page Load Time that declares how long it takes
for a page to load, measured in milliseconds.

® Number percentage. An example is Codebase testing coverage stating the
percentage of code that is included in at least one automated test.

® Number over number. The most usual case, for instance Downtime stating the
amount of unavailability over a period of time.

5. Case Study - Application of Quality Model to AHFE Open Access System

In this section, we present the results of the case study that focuses on the evaluation of
non-functional requirements within the AHFE Open Access System. In the next
subsections, we present the stages of the case study.

5.1. Preparation to collect data

In the preparation for data collection stage of a case study, it is important to select the
frameworks, techniques and methods that will be used to measure each of the
sub-characteristics basic attributes from the Quality Model built during section 4. Once
again, some further limitations were applied minding the scope of this article. Therefore,
we arbitrarily selected only a set of the attributes to effectively investigate on this case
study.

Search usability points: We prepared a practical survey for users to see how long it
takes for them to find a relevant article of a given topic, using only the website search bar. It
will be considered relevant if the person downloads the article complete file. The results
will be compared against the average session duration in minutes [14] of top similar
websites with a search engine: Google Scholar, Open Access Library (OALib) [15] and
Springer Open [16].

Time to recover: For data collection, we will deploy a mirrored version of the
system, complete with identical resources and a selection of deliberately detrimental
endpoints designed to provoke system failures. By analyzing system logs, we can pinpoint

the timestamps corresponding to the initiation and resolution of these breakdowns.
Subsequently, we will compute the current time-to-recovery by calculating the delta
difference between these timestamps. While numerous studies delve into determining the
optimal Maximum Tolerable Downtime (MTD) [17], we maintain a focus on conciseness in
this article. Our evaluation strategy involves a comparative analysis against open-source
codebases utilizing akin technologies.

Page Load Time: To collect this, we first have to clarify how the page loading of the
system works: it uses a technology called SSR (Server-side rendering) meaning that the
content of the website is generated on the server, then sent to the browser [18]. All analyzed
platforms also uses this kind of technology as it is a standard on SEO (Search Engine
Optimization) webpages. Based on that, we will take the timestamp of when the server
returns the page content and compare to the timestamp of when the GET request was made.
To evaluate if the results from this metric are on toes with the industry standards and the
case studied system's core functionality described at Reference #5 of Table II, we will
compare the Maximum PLT to to the maximum waiting time of Google crawlers since
Google Search is the leading search engine on the actuality [19] and the Average PLT with
similar platforms mentioned when describing the plan for the Search usability points.

Page Size: The same approach used for Page Load Time will be replicated on this
metric but instead of time, we will be getting the page data size.

Modularity score: This will be collected through the help of SonarQube - a
widely-used platform for continuous code quality inspection. It provides various code
analysis features, including code modularity checks. It can identify issues related to
package dependencies, cyclic dependencies, and overall code structure [20]. The
Maintainability score reported takes the modularity in consideration therefore will be the
one used for this metric. The platform will also be used on popular open source codebases
to get an estimate of the real world application.

Codebase testing coverage: Similarly, we will be using a code coverage reports
generator for Java projects solution to collect this metric: JaCoCo [21]. And similarly to the
Modularity score mentioned above, we will also use JaCoCo against popular and
well-founded open source Java codebases to compare.

Responsiveness score: Our approach entails conducting a field study to gauge this
aspect. The methodology involves enlisting a group of participants to execute a series of
tasks on both desktop computers and mobile devices. Subsequently, we will compute the
average deviation as a quantifiable metric and juxtapose it against analogous
platforms—akin to the methodology proposed for the Search usability points assessment.

5.2. Data collection

In this stage, we will be applying the techniques discussed in the previous sub-section. It is
worth to mention that for all of the sub-characteristics metrics that involves user data
collection, we will be using the standardized recommended number of 5 participants in our
qualitative study [22]. These participants, aged from 25 to 35, are all familiar with academic

routines and have completed their higher-level studies. Importantly, they are not avid users
of any of the measured platforms, which ensures that we collect data from unbiased
individuals.

Commencing in a chronological order, we proceeded to assess the Search Usability
Points. To this end, we designated a task for each participant to undertake—a task involving
the search for a pertinent article of interest, ideally suited for their respective final theses.
Notably, all five participants are well-versed in article research practices, but have never
used none of the three platforms. Capitalizing on this familiarity, we executed a hands-on
survey, wherein each participant engaged with the task using a desktop computer. The study
was conducted across three distinct platforms: AHFE Open Access, Springer Open, and
OALIib. Pertinently, we recorded the time taken by each participant to accomplish this
task—for every second passed, one point was added. The timer commenced the moment the
platform's homepage loaded and ceased upon the participant's commitment to read the
article—typically signaled by clicking to download the full text. Consequently, we captured
five instances for each platform, culminating in the generation of average times for
comparison. The findings, showcased in Table IV, encapsulate the average time per
platform. Naturally, a lower value indicates superior performance in this context.

WebSystem Search Usability Points
AHFE Open Access 97
Springer Open 67
OALib 81

Table I'V. Data collection for Search Usability Points

The subsequent two sub-characteristics, namely Page Load Time and Page Size,
were jointly assessed. Leveraging an online tool, we gauged load times across diverse
global locations. This tool also furnished page size metrics, simplifying data collection. The
challenge lay in amassing sufficient data to derive a credible average for each location,
followed by consolidating these figures into unified averages for page load time and size.
This comprehensive data acquisition unfolded across three distinct websites: (1) AHFE
Open Access; (2) Springer Open; (3) Open Access Library - OALib. A Python script,
crafted by the author, facilitated the random selection of 25 articles from each site. This
script automated the online tool, transcending the need for the web interface. The script
mimicked requests and substituted them with multiple parametrized CURL commands,
tailored for various locations and URLs. Detailed results are accessible in Table V.

Websystem Average Page Size Average PLT Maximum PLT

AHFE Open Access 1400 KB 1.52s 2.54s
Springer Open 438.7 KB 1.35s 2.46s
OALIb 656.7 KB 3.1s 3.86s

Table V. Data collection for Page Load Time and Page Size

Likewise, the Modularity Score and Codebase testing coverage underwent
simultaneous evaluation. The initial step encompassed the identification of open-source
codebases sharing a similar tech stack with AHFE Open Access. Given the system's
bifurcation into backend (Java with SpringBoot) and frontend (Next.JS), our focus
narrowed onto the backend, housing the crux of server logic and intricate structures ripe for
analysis. In this context, our scrutiny embraced solely the backend. Among the systems
available for comparison, we chose two: (1) ThingsBoard—an open-source 10T platform
for data collection, processing, visualization, and device management [23]; (2) Apollo—a
reliable configuration management system. It can centrally manage the configurations of
different applications and different clusters [24]. These platforms were chosen because both
uses Java with Springboot on the backend and follows very similar code structure as our
AHFE Open Access. Employing the JaCoCo tool for assessing codebase test coverage
proved to be a streamlined process, entailing repository cloning and the addition of a Maven
plugin to the package. The focal metric for each system rested on total Lines coverage,
extracted from the analytical insights of the tool's report. Similarly, leveraging the
SonarQube platform, a parallel methodology was applied to the trio of repositories. The
outcome materialized in the form of the Code Smell metric, embedded within the generated
Maintainability report—where a lower value signifies enhanced code quality. The detailed
results for both evaluations are comprehensively presented in Table VI.

WebSystem Repository Lines coverage (JaCoCo) Code Smell (SonarQube)
AHFE Open Access 57% 1320

(Backend)

Thingsboard 93% 520

Apollo 89% 650

Table VI. Data collection for Modularity Score and Codebase testing coverage

Continuing our evaluation, we turn our attention to the 7ime to Recover
sub-characteristic. Adhering to the suggested approach, we established a malicious
endpoint within AHFE Open Access, mirroring the procedure for the remaining two
systems, namely Thingsboard and Apollo. The shared utilization of the Spring Boot

framework across these systems facilitated a streamlined process, ensuring a more authentic
comparison. We used the native /shutdown endpoint available under Spring Boot Actuator
and measured this metric. Expanding on the details provided in Section 5.1, the collected
results are available for reference in Table VII.

WebSystem Repository Time to Recover

AHFE Open Access (Backend) | 22s

Thingsboard 37s

Apollo 33s

Table VII. Data collection for Time to Recover

Finally, we assess our metric for the Responsiveness score. To achieve this, we
delineated a task for our participants, tailored to various devices, thereby illuminating the
influence on task completion times. Our chosen devices encompassed the Apple MacBook
Air M2, symbolizing the desktop computing realm, and the Apple iPhone 14 Pro Max,
emblematic of mobile interactions. Adhering to our earlier stipulation of involving a group
of five participants, they underwent this testing protocol. Once more, we harnessed the
platforms of OALib and Springer Open as our testing grounds, allowing us to parallel the
tasks and scrutinize outcomes. These tasks encompassed downloading a specific article's
PDF based solely on its title and extracting the corresponding DOI link. Notably, our
participants boasted familiarity with Apple products, and we gave them a brief five-minute
window to navigate each platform using the desktop device prior to task initiation.
Additionally, a strategic sequencing was employed—participants commenced tasks on the
desktop device before transitioning to the mobile counterpart, with the intention of
potentially garnering more favorable mobile browsing results. A comprehensive tabulation
of our final results is available within Table VIII.

WebSystem Multi-device Deviation
AHFE Open Access 1.5s
Springer Open 7.0s
OALib 1.5s

Table VIII. Data collection for Responsiveness score

5.3. Analyzing the data

Within this subsection, we analyze the data gleaned from our case study. Our exploration
aims to extract meaningful insights that illuminate the performance and characteristics of
the AHFE Open Access System. By scrutinizing this data, we uncover valuable trends and
correlations, contributing to a comprehensive understanding of the system's non-functional
requirements and overall user experience.

Upon analyzing the outcomes gleaned from the Search Usability Points assessment,
a noteworthy observation surfaces: AHFE Open Access exhibits a disadvantage concerning
its search feature. This divergence in user experience can be attributed, in part, to the
system's notably smaller article library in comparison to the other two systems. While the
efficiency of the search tool itself may not be at fault, the scarcity of content emerges as a
plausible source of the challenge. Despite this setback, upon filtering out instances where
topics were less densely populated within the system, slightly elevated completion times
persist. Notably, this phenomenon can be attributed to the impact of page loading time,
which occasionally extended participant waiting periods before engaging with full article
abstracts. Further elaboration on this aspect is slated for the subsequent paragraph.

Based on the data gathered for Page Load Time and Page Size, it is evident that our
analyzed system aligns with industry expectations concerning the average page load time.
However, a swift data scrutiny reveals an unusually high maximum PLT compared to the
average, attributable to the geographical location of the system's servers in North America.
Insights gleaned from website traffic disclose that while 20% of visits originate from North
America, over 30% originate from European nations that don't enjoy proximity to the
server. Furthermore, the Average Page Size deviates considerably from the norm,
surpassing the compared system's average by more than double. Delving into the rationale
behind this discrepancy, it becomes apparent that the other systems have judiciously
streamlined their pages by omitting resource-intensive elements such as images.

The data collection for the Modularity Score yielded a compelling revelation,
shedding light on the studied system's deficiency in terms of code modularity. A
comparative analysis against elevated industry benchmarks positions AHFE Open Access at
a discernible disadvantage. Nonetheless, despite the system's inherent simplicity, the
SonarQube platform underscored several recommended code modifications. This
underscores a pertinent area for enhancement, beckoning focused efforts to bolster the
system's modularity.

With the outcomes of the Codebase testing coverage analysis in hand, a
conspicuous departure from established industry patterns, that were collected within this
study, becomes evident. This deviation may find its roots in the scale of the projects under
comparison, where the open-source landscape beckons numerous developers, inherently
mandating extensive test coverage. However, it's worth noting that AHFE Open Access falls
significantly below the threshold that might warrant leniency in this regard.

Examining the metrics for the Time to Recover sub-characteristic, a noteworthy
distinction emerges, placing AHFE Open Access at a pronounced advantage in comparison

to the other assessed systems. Despite sharing a common technological framework, our
studied case distinguishes itself as a simpler construct, boasting reduced intricacies in terms
of logic and third-party dependencies. Notably, AHFE Open Access leverages deployment
within a Kubernetes network, a facet that underpins its resilience. In the event of a failure,
the impact is localized to a single operational pod, potentially translating to near-zero
downtime. This attributes a compelling real-world edge to our testing outcomes.

Shifting our focus to the data compilation for the Responsiveness score, a revealing
panorama comes into view. AHFE Open Access solidifies its stance in a notably
advantageous position, showcasing minimal deviation between mobile and desktop devices.
This distinction is especially pronounced when juxtaposed with Springer Open, where the
mobile experience is cleary affected by interface limitations. Notably, despite the mobile
experience bearing striking semblance to desktop usage, the statistics from July 2023
illuminate an interesting facet: a mere 15% of website interactions occurred via
smartphones or tablets. This intriguing statistic gives rise to a hypothesis—conducting
article research on mobile devices might not be a prevailing norm, with stakeholders
seemingly accustomed to engaging in such tasks primarily via desktop computers.

5.4. Final Remarks

The comprehensive examination of the gathered data has unveiled a wealth of insights into
the performance and other non-functional requirements of the AHFE Open Access System.
This section presented a detailed exploration of the findings, highlighting significant
observations and their implications.

Overall, our approach of constructing a quality model to guide the case study has
proven highly effective. Despite the article's inherent limitations in scope, we successfully
delved into six key sub-characteristics, assessing the system's response to pertinent
non-functional requirements. The analysis reveals that while the AHFE Open Access
System does address the NFRs, it becomes apparent that certain requirements teeter on the
edge of acceptability. Identifying these specific gaps offers an opportunity for targeted
improvements, aiming to elevate the system to meet industry standards and stakeholder
needs.

In essence, this in-depth analysis provides a multifaceted view of AHFE Open
Access, underlining both its strengths and areas ripe for improvement. The insights gleaned
from these data-driven assessments pave the way for informed decisions and targeted
enhancements, fostering a more refined and user-centric software ecosystem.

6. Conclusions, limitations and future work

In this study, we conducted a comprehensive assessment of the AHFE Open Access
system's non-functional attributes using a quality model derived from the ISO/IEC 9126-1
standard. The application of the IQMC method allowed us to systematically evaluate the
system's performance across various sub-characteristics and attributes. The findings offer

valuable insights into the system's strengths, areas for improvement, and potential avenues
for future enhancement.

6.1. Conclusions
Our analysis revealed several noteworthy conclusions:

Search Usability: AHFE Open Access demonstrated competitive search usability;
however, its smaller article library may impact user experience. Further investigation into
expanding content could contribute to enhancing search efficiency.

Page Load Time and Size: The system's average page load time aligned with
industry norms, while the maximum load time and page size reflected geographical
disparities. Addressing these disparities and optimizing content delivery could lead to
improved user experience.

Modularity and Code Coverage: The system exhibited potential areas for
improvement in terms of code modularity and test coverage. Enhancing these aspects could
lead to more maintainable and reliable codebases.

Time to Recover: AHFE Open Access demonstrated a commendably rapid recovery
time, positioning it advantageously against comparable systems. Leveraging its Kubernetes
deployment, the system's resilience contributed to minimal downtime.

Responsiveness: The system showcased consistent responsiveness across various
devices, with minimal deviation between mobile and desktop interfaces. Insights from user
behavior patterns suggest potential opportunities for responsive design enhancements.

6.2. Limitations

Despite the comprehensive nature of this study, several limitations need to be considered.
Firstly, the scope of the case study is limited to a specific system, AHFE Open Access, and
may not generalize to other contexts. Additionally, the study focused on a subset of
attributes due to constraints in resources and time. The reliance on qualitative user data
collection methods introduces subjectivity and potential biases. Furthermore, the study's
effectiveness is contingent on the selected benchmarks and similar systems used for
comparison.

6.3. Future Work

To build upon the insights gained from this study, several directions for future work
emerge:

Enhanced Search Functionality: Investigate strategies to augment the system's
search usability, potentially through content expansion, advanced search algorithms, or user
behavior analysis.

Optimized Page Loading: Address geographical disparities in page load times and
sizes, exploring content delivery networks (CDNs) and image optimization or lazy loading
techniques.

Codebase Quality: Pursue initiatives to improve code modularity and test coverage,
leveraging insights from industry best practices and open-source projects.

Responsive Design Refinement: Further analyze user behavior patterns and
preferences to refine responsive design strategies and enhance the user experience across
various devices.

Benchmark Diversification: Expand the scope of benchmark systems and attributes
for a more comprehensive and robust comparison, accommodating diverse technology
stacks and usage scenarios.

Quantitative Validation: Combine qualitative insights with quantitative data,
employing larger participant samples and statistical analysis to validate and strengthen the
findings.

Long-Term Performance Monitoring: Implement continuous monitoring and
assessment of the system's non-functional attributes to track improvements and address
potential regressions over time.

In conclusion, this study has provided valuable insights into the non-functional
requirements of the AHFE Open Access system, shedding light on its performance,
strengths, and areas for optimization. While acknowledging its limitations, this work serves
as a foundation for future endeavors aimed at enhancing the system's quality, user
experience, and overall impact.

References

[1] Chng, L., et al.: Non-functional Requirements in Software Engineering, vol. 5. Springer
Science and Business Media, Berlin (2012)

[2] Yin, R. K. (2003). Case study research: design and methods. 3rd ed. Thousand Oaks,
Calif., Sage Publications.

[3] S. Wagner, D. Méndez-Fernandez, M. Kalinowski and M. Felderer, "Agile requirements
engineering in practice: Status quo and critical problems", CLEI Electron. J., vol. 21, no.
1, 2018.

[4] Supplement 4-A, A Procedure for Requirements Analysis". Systems Engineering
Fundamentals (PDF). United States Government US Army. 2001. ISBN
978-1484120835

[5] Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J.: Non-Functional Requirements in
Software Engineering. International Series in Software Engineering, vol. 5, p. 476.
Springer, Heidelberg (1999)

[6] X. Franch, J. Carvallo, “A Quality-Model-Based approach for describing and evaluating
software packages,” In Proceedings 10th IEEE Joint Conference on Requirements
Engineering (RE), 2002.

[7] International Organization for Standardization, ISO/IEC standard 9126: Software
Engineering — Product Quality, part 1. 2001.

[8] Olsina L., Lew P, Dieser A., Rivera B.: Updating Quality Models for Evaluating New
Generation Web Applications. Journal of Web Engineering, Special issue: Quality in
new generation Web applications. Rinton Press. USA. 11:(3), (2012)

[9] E. Demidenko, "Mixed models: theory and applications," 1st ed., Ed. Wiley Series in
Probability and Statistics, 2004.

[10] J. Carvallo, X. Franch, C. Quer, “Determining criteria for selecting software
components: lessons learned,” IEEE Software, 2007, pp. 84-94.

[11] [Applied Human Factors and Ergonomics International Conference]. (2023). AHFE
Conference. Retrieved July 30, 2023, from http://ahfe.org/

[12] AHFE Open Access. (2023). AHFE Open Access. Retrieved July 30, 2023, from
https://openaccess.cms-conferences.org/

[13] Campbell, D. T. (1975). Degrees of freedom and the case study. Comparative Political
Studies, 8, 178-193.

[14] Rajesh Kumar Goutam (2018). Correlation Based Evaluation for Search Tools. 2018
5th International Conference on Signal Processing and Integrated Networks (SPIN).

[15] Open Access Library (OALib). (2023). OALib. Retrieved August 3, 2023, from
https://www.oalib.com/

[16] Springer Open Access. (2023). SpringerOpen. Retrieved August 3, 2023, from
https://www.springeropen.com/

[17] NIST SP 800-34, REV 1; Contingency Planning Guide for Federal Information
Systems; National Institute of Standards and Technology; U.S. Department of
Commerce: Gaithersburg, MD (May 2010).

[18] What is server-side rendering: definition, benefits and risks. (2022, July 21). Solutions
Hub. Retrieved July 7, 2023, from
https://solutionshub.epam.com/blog/post/what-is-server-side-rendering

[19] "Search Engine Market Share Worldwide | StatCounter Global Stats". StatCounter
Global Stats. Archived from the original on December 10, 2020. Retrieved April 9,
2021.

[20] Code Quality Tool & Secure Analysis with SonarQube. (2023). Sonar. Retrieved
August 10, 2023, from https://www.sonarsource.com/products/sonarqube/

[21] Intro to JaCoCo. (2023, May 5). Baeldung. Retrieved July 8, 2023, from
https://www.baeldung.com/jacoco

[22] Nielsen, Jakob, and Landauer, Thomas K.: "A mathematical model of the finding of
usability problems," Proceedings of ACM INTERCHI'93 Conference (Amsterdam, The

Netherlands, 24-29 April 1993), pp. 206-213.

[23] T. (2016). GitHub - thingsboard/thingsboard: Open-source IoT Platform - Device
management, data collection, processing and visualization. GitHub. Retrieved August
10, 2023, from https://github.com/thingsboard/thingsboard/

[24] A. (2016). GitHub - apolloconfig/apollo: Apollo is a reliable configuration
management system suitable for microservice configuration management scenarios.
GitHub. Retrieved August 10, 2023, from https://github.com/apolloconfig/apollo

