
 

 

UNIVERSIDADE FEDERAL DE PERNAMBUCO 

CENTRO DE INFORMÁTICA 

 

 

 

 

 

ELVERSON SOARES DE MELO 

 

 

 

 

 DESVENDANDO BIOMARCADORES: UMA ANÁLISE DE ALGORITMOS DE 

APRENDIZAGEM DE MÁQUINA NA DISTINÇÃO ENTRE INDIVÍDUOS 

SAUDÁVEIS E PRÉ-DIABÉTICOS A PARTIR DE DADOS DE DISPOSITIVOS 

VESTÍVEIS. 

 

 

 

 

 

 

 

 

RECIFE 

2023 



UNIVERSIDADE FEDERAL DE PERNAMBUCO 

CENTRO DE INFORMÁTICA 

BACHARELADO EM SISTEMAS DE INFORMAÇÃO 

 

 

ELVERSON SOARES DE MELO 

 

 

 

 

DESVENDANDO BIOMARCADORES: UMA ANÁLISE DE ALGORITMOS DE 

APRENDIZAGEM DE MÁQUINA NA DISTINÇÃO ENTRE INDIVÍDUOS 

SAUDÁVEIS E PRÉ-DIABÉTICOS A PARTIR DE DADOS DE DISPOSITIVOS 

VESTÍVEIS. 

 

 

TCC apresentado ao Curso de Bacharelado em 

Sistemas de Informação da Universidade 

Federal de Pernambuco, Centro de Informática, 

como requisito para a obtenção do título de 

bacharel em Sistemas de Informação. 

 

Orientadora: Maíra Araújo de Santana 

 

 

  

  

 

 

 

 

 

RECIFE 

2023



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Ficha de identificação da obra elaborada pelo autor, 

através do programa de geração automática do SIB/UFPE 
 

 

 

Melo, Elverson Soares de. 

Desvendando biomarcadores: uma análise de algoritmos de aprendizagem de 

máquina na distinção entre indivíduos saudáveis e pré-diabéticos a partir de dados 

de dispositivos vestíveis. / Elverson Soares de Melo. - Recife, 2023. 

75 : il., tab. 

 

Orientador(a): Maíra Araújo de Santana 

Trabalho de Conclusão de Curso (Graduação) - Universidade Federal de 

Pernambuco, Centro de Informática, Sistemas de Informação - Bacharelado,  

2023. 

 

1. Inteligência Artificial. 2. Diabetes Mellitus. 3. Estado Pré-Diabético. 4. 

Dispositivos Eletrônicos Vestíveis. I. Santana, Maíra Araújo de. (Orientação). II. Título. 

 

000 CDD (22.ed.) 



 

ELVERSON SOARES DE MELO 

 

 

 

DESVENDANDO BIOMARCADORES: UMA ANÁLISE DE ALGORITMOS DE 

APRENDIZAGEM DE MÁQUINA NA DISTINÇÃO ENTRE INDIVÍDUOS 

SAUDÁVEIS E PRÉ-DIABÉTICOS A PARTIR DE DADOS DE DISPOSITIVOS 

VESTÍVEIS. 

 

 

TCC apresentado ao Curso de Bacharelado em 

Sistemas de Informação da Universidade Federal de 

Pernambuco, Centro de Informática, como requisito 

para a obtenção do título de bacharel em Sistemas 

de Informação. 

 

 

 

Aprovado em: 24/08/2023. 

 

 

 

BANCA EXAMINADORA 

 

 

 

 

________________________________________ 

Profaº. Maíra Araújo de Santana (Orientadora) 

Universidade Federal de Pernambuco 

 

 

 

 

_________________________________________ 

Profº. Sérgio Ricardo de Melo Queiroz (Examinador Interno) 

Universidade Federal de Pernambuco 

 

 

 

 

_________________________________________ 

Profaº. Maria Karoline da Silva Andrade (Examinadora Externa) 

Universidade Federal de Pernambuco 

  



 

AGRADECIMENTOS 

Aos meus amados pais Samuel e Lucicleide, pelo esforço que fizeram para me educar, 

pelo estímulo na minha carreira acadêmica, pelo enorme apoio e conselhos em diversos 

momentos, principalmente quando decidi iniciar minha segunda graduação e realizá-la em 

paralelo a um doutorado. 

À minha querida esposa Sophia, pelo carinho, amor e companheirismo no dia a dia. Por 

me ajudar a ser mais forte na vida e no trabalho, e pela compreensão quando necessitei me 

dedicar integralmente aos estudos da graduação e do doutorado, onde passava, por um bom 

tempo, mais de 14 horas consecutivas na universidade. 

À minha orientadora Maíra Araújo de Santana, pelas discussões científicas 

enriquecedoras sobre o tema pesquisa. 

Ao Centro de Informática, por ter me dado à oportunidade de estudar em um centro de 

excelência em informática e com uma ótima estrutura para aprendizagem.  

À banca examinadora, por ter aceitado o convite e pela contribuição oferecida a este 

trabalho. 

A todos os pesquisadores de área de aprendizagem de máquina, espalhados por todos os 

continentes do mundo, que permitiram o desenvolvimento de algoritmos e métodos que foram 

utilizados neste trabalho. 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“O que todos devemos fazer é nos certificar 

que estamos usando a inteligência artificial 
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RESUMO 

O Diabetes é uma doença que atinge 537 milhões de pessoas no mundo. A insuficiência de insulina 

na doença gera um aumento da glicemia, causando enormes danos ao organismo. Devido à grande 

disseminação dessa doença e de seu estágio antecessor, o pré-diabetes, muito se tem investido em 

dispositivos que permitam o monitoramento da doença. Atualmente, estudos estão focando na 

criação de sistemas inteligentes capazes de utilizar dados de dispositivos vestíveis para predição da 

glicemia. Um passo importante é prever quando pessoas saudáveis se tornam pré-diabéticas, de 

forma a alertar sobre a presença dessa condição silenciosa e assim tentar evitar a evolução do 

indivíduo para a Diabetes Melito tipo II. Para alcançar esse objetivo, torna-se imprescindível a 

descoberta de sinais digitais que possam desempenhar o papel de biomarcadores para a doença, 

uma área em constante desenvolvimento na atualidade. Nesse sentido, o propósito deste estudo foi 

avaliar se os sinais digitais obtidos por meio de dispositivos de pulso inteligentes são capazes de 

estabelecer uma distinção satisfatória entre os padrões de sinal de um indivíduo saudável e de um 

indivíduo pré-diabético. Para isso foram utilizados dados públicos de leituras da pulseira Empatica 

E4, coletados de 16 indivíduos. Os dados foram utilizados de duas formas: I) dados brutos 

processados para janela temporal de um minuto, II) dados que passaram pelo processo de 

engenharia de atributos. Para tarefa de predição de presença ou ausência da doença foram utilizados 

algoritmos de aprendizagem de máquina da classe das árvores de decisão, máquinas de vetores de 

suporte, redes neurais e algoritmos Ensemble. Os resultados indicaram que é possível utilizar os 

dados da pulseira para predição da presença da doença, mas que o uso das leituras brutas dos 

sensores para o treinamento de modelos gera predições com uma menor acurácia em relação a 

utilização de atributos que foram filtrados e decompostos. O algoritmo de Random Forest 

apresentou a melhor acurácia entre os algoritmos testados, 77,4% e 77,9% nos grupos de treino e 

teste respectivamente, considerando a base com dados brutos; e acurácias 99,07% e 99,30% de para 

treino e teste na base submetida ao processo de engenharia de atributos.  A aplicação da técnica de 

PCA permitiu a redução do número de atributos em 73% mantendo-se 95% da variabilidade 

presente na base, isso reduziu o custo computacional mantendo uma acurácia de 95,3% e 95,7% 

para treino e teste respectivamente. O treinamento deste modelo permitirá criar soluções usando 

dados de dispositivos vestíveis (pulseiras e relógios inteligentes) para gerar durante a transição para 

a pré-diabetes, facilitando o estabelecimento de medidas preventivas contra o Diabetes.  

 

Palavras-chave: Inteligência Artificial, Diabetes Mellitus, Estado Pré-Diabético, Dispositivos 

Eletrônicos Vestíveis. 



 

ABSTRACT 

Diabetes is a disease that affects 537 million people worldwide. The deficiency of insulin in 

this disease leads to an increase in blood glucose levels. causing enormous damage to the body. 

Due to the great dissemination of this illness and its predecessor stage, pre-diabetes, 

considerable investment has been dedicated to the development of devices that enable disease 

monitoring. Currently, studies are focusing on the creation of intelligent systems capable of 

using data from wearable devices to predict blood glucose. A crucial step is to predict when 

healthy people become pre-diabetic, to raise awareness of the presence of this silent condition 

and thus try to prevent the individual from developing into Type II Diabetes Mellitus. To 

achieve this goal, it is essential to discover digital signals that can play the role of biomarkers 

for the disease, an area in constant development today. In this sense, the purpose of this study 

was to evaluate whether the digital signals obtained through smart wrist devices can establish 

a satisfactory distinction between the signal patterns of a healthy individual and a pre-diabetic 

individual. For this, public data from sensors of the Empatica E4 bracelet, collected from 

sixteen individuals, were used. The data were used in two ways: I) raw data processed for a 

time window of one minute, II) data that went through the feature engineering process. For the 

task of predicting the presence or absence of the disease, machine learning algorithms from the 

decision tree class, support vector machines, neural networks and Ensemble algorithms were 

used. The results showed that it is possible to use wristband data to predict the presence of the 

disease, but the use of raw sensor readings for model training generates predictions with less 

accuracy compared to the model training on attributes that were filtered and decomposed. The 

Random Forest algorithm showed the best accuracy among the tested algorithms, 77.4% and 

77.9% in the training and test groups respectively, considering the database with raw data; and 

accuracies 99.07% and 99.30% for training and testing on the database that went through the 

feature engineering process. The application of the PCA technique allowed the reduction of the 

number of attributes by 73%, keeping 95% of the variability present in the base, this reduced 

the computational cost keeping an accuracy of 95.3% and 95.7% for training and testing, 

respectively. The training of this model will enable the creation of solutions that use data from 

wearable devices (bracelets and smart watches) to generate alerts when an individual progresses 

towards prediabetes, easing the implementation of preventive measures against diabetes. 

Keywords: Artificial Intelligence, Diabetes Mellitus, Prediabetic State, Wearable Electronic 

Devices  
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1  INTRODUÇÃO 

  

1.1 DELIMITAÇÃO DO TEMA 

O Diabetes representa um grupo de doenças que acometem a população humana. Dentre 

elas, a mais comum é a diabetes mellitus tipo II (DM2). Essa doença, que corresponde a cerca 

de 90% dos casos de diabetes, geralmente se desenvolve lentamente, na maior parte das vezes 

em adultos e é precedida por uma condição conhecida como pré-diabetes. A DM2 é 

caracterizada por uma resistência aos efeitos da insulina, um hormônio que responde as 

concentrações de glicose no sangue. Já no pré-diabetes é possível sentir os efeitos dessa 

resistência à insulina, o que faz com que a glicemia se eleve e diversos sintomas comecem a 

surgir (BERG et al., 2019; RODACKI et al., 2022; SOUZA et al., 2012). 

O termo glicemia diz respeito à concentração do carboidrato glicose no sangue de 

indivíduos. A concentração normalmente encontrada num indivíduo em jejum é de 80 a 99 mg 

de glicose para cada dL de sangue. Como a glicose é a fonte energética básica de um animal, 

quando cai muito abaixo dessa concentração, as pessoas começam a sentir efeitos adversos, 

como tonturas e sudoreses, o que é chamado de hipoglicemia, um quadro agudo que é 

facilmente corrigido com a ingestão de alimentos. Quando a glicemia fica acima do patamar de 

99mg/dL de sangue por um período muito grande de dias, começam a surgir complicações 

crônicas como a pré-diabetes e um tipo específico de diabetes (GUYTON; HALL, 2006). 

É recomendado que todo portador do diabetes melito realize aferições diárias de glicose. 

Por isso, foram desenvolvidos ao longo das últimas décadas, aparelhos denominados 

glicosímetros. Boa parte dos glicosímetros comercializados é constituída de um aparelho 

portátil, onde é colocada uma fita de teste contendo uma gota de sangue do paciente. Isso traz 

um enorme inconveniente para o portador, ele precisa furar a ponta do dedo para extração de 

sangue a cada vez que precisa mensurar sua glicemia (KHAN et al., 2019). Embora 

glicosímetros contínuos com microssensores inseridos na pele do paciente estejam cada vez 

mais se tornando comuns, eles ainda são bastante caros e utilizados apenas por poucos pacientes 

que possuem a diabetes melito (geralmente portadores de DM1) ou que estão no grupo de risco 

para seu desenvolvimento, os chamados pré-diabéticos, principalmente em países onde não há 

políticas de reembolso de parte dos altos custos com esse tipo de glicosímetro (DATYE et al., 

2021; SILVA; PATEL, 2023). Isso resulta no fato com que boa parte dos portadores de diabetes 

não tenha acesso a medição contínua da glicemia. Além disso, os pré-diabéticos também ficam 
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desalentados pois não há recomendação do uso desses aparelhos para esse grupo de indivíduos 

(DUAN; KENGNE; ECHOUFFO-TCHEUGUI, 2021). 

Visando tornar a medicação da glicemia algo mais fácil e barato, métodos de detecção 

não-invasivos vêm sendo desenvolvido nas últimas duas décadas. Estes métodos, no entanto, 

sofrem com uma série de desafios, como conseguir uma alta sensibilidade e especificidade, 

aplicação para todas as variações anatômicas e fisiológicas individuais. Além de ter um design 

simplista e portátil, com uma boa usabilidade e experiência para o usuário (LIN, 2017). 

Recentemente, pesquisas vêm sendo realizadas a fim de verificar se dispositivos vestíveis 

comuns, como pulseiras e relógios inteligentes, têm a capacidade de oferecer informações 

esclarecedoras sobre o perfil da glicemia dos utilizadores. Caso isso possa ser colocado em 

prática com boa sensibilidade e especificidade, o número de pessoas com acesso a informações 

sobre sua curva glicêmica diária expandirá incrivelmente (BENT et al., 2021a). Uma questão a 

ser resolvida é se os dados fisiológicos capturados por pulseiras inteligentes são suficientes para 

diferenciação de indivíduos saudáveis e indivíduos que fazem parte do grupo de risco para 

desenvolvimento da diabetes, os pré-diabéticos, e qual a melhor arquitetura de aprendizagem 

de máquina para realizar essa previsão.  

 

1.2 HIPÓTESE  

 

Alguns algoritmos de aprendizagem de máquina devem ser capazes de diferenciar 

indivíduos saudáveis e pré-diabéticos apenas com base no sexo dos indivíduos e em dados 

fisiológicos medidos de maneira não invasiva. 

 

1.3 JUSTIFICATIVA 

 

Devido ao fato de o diabetes atingir mais de 500 milhões de pessoas atualmente, com um 

número ainda maior de pessoas portadoras da pré-diabetes com grandes chances de evoluir em 

para o diabetes (INTERNATIONAL DIABETES FEDERATION, 2021), é necessário o estudo 

de métodos que diagnostiquem a pré-diabetes precocemente. Uma vez que o tratamento inicial, 

seja medicamentoso ou de mudança de estilo de vida, pode interromper a progressão para a 

doença (GIACAGLIA et al., 2022). 

Apesar da sua importância, nenhum dos métodos comercialmente disponíveis são focados 

no público que ainda não é portador da diabetes (LIN, 2017). Apenas nos últimos anos, estudos 
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vêm buscando encontrar padrões utilizando dispositivos não-invasivos que monitorem com 

eficiência e que possam expandir o número de pessoas que tem acesso a um monitoramento da 

glicemia em tempo real (BENT et al., 2021a). Dessa forma faz-se necessário buscar algoritmos 

que consigam detectar a transição de indivíduos saudáveis para o grupo de pré-diabéticos a 

partir de dispositivos não invasivos simples e com uma elevada sensibilidade e especificidade.  
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2  REVISÃO DE LITERATURA 
 

Esta revisão está dividida em 8 partes que abordam desde os conceitos básicos de 

regulação da glicose, falando sobre o diabetes, passando por métodos tradicionais de 

diagnóstico e acompanhamento, chegando até novas tecnologias baseadas em sistemas 

computacionais que auxiliam na prevenção e acompanhamento da doença. 

 

2.1 A GLICEMIA E A INSULINA 

 

A glicemia é um termo utilizado para descrever a concentração de glicose no sangue. A 

glicose é o principal substrato das reações bioquímicas celulares que liberam energia para os 

seres vivos (RODWELL et al., 2017). No ser humano há padrões normais de glicemia. Quando 

uma pessoa está em jejum é adequando que a sua glicemia esteja entre 80 e 90, ou seja, que 

haja entre 80 e 90 mg de glicose para cada 100 ml de sangue. Após a alimentação esse padrão 

se altera, mas há alguns limites que não devem ser ultrapassados para que o indivíduo viva com 

saúde. Esses padrões de concentração de glicose são mantidos graças a Insulina (GUYTON; 

HALL, 2006).  

A insulina é uma proteína de baixo peso molecular, cerca de 5,8 Kd, produzida pelas 

células β das ilhotas do pâncreas e que atua como um hormônio, estando principalmente 

associada ao metabolismo de carboidratos num animal, embora também esteja envolvida no 

metabolismo de proteínas e de lipídeos. Ela é liberada em grandes quantidades no sangue 

quando uma pessoa realiza a ingestão de uma grande quantidade de alimento, ou de alimentos 

muito calóricos (sua concentração no plasma sanguíneo aumenta 10 vezes em até 5 minutos 

após a ingestão). Quando está na corrente sanguínea, ela possui dois destinos, ou é rapidamente 

degradada pela enzima insulinase, ou se liga aos receptores presentes na membrana plasmática 

das células (GUYTON; HALL, 2006). 

A ligação da insulina no receptor na superfície da célula dispara uma sinalização 

intracelular ao ativar uma proteína tirosina quinase. Os efeitos da cascata de sinalização são 

diversos e entre eles está, principalmente, o aumento da captação de glicose pelas membranas 

das células. Isso faz com que a glicose que está em abundância no sangue de vasos e capilares 

penetre nas células para ser metabolizada, seja para produção imediata de energia como para 

armazenamento em forma de outras substâncias, como por exemplo o glicogênio (um 

carboidrato). Isso causa uma redução da glicemia do indivíduo. É justamente sob a forma de 

glicogênio, que cerca de 60% da glicose obtida logo após as refeições é armazenada no fígado, 



16 
 

sob efeito da insulina. A ação da insulina, além de reduzir os níveis de glicose circulante no 

sangue, também inibe a gliconeogênese (síntese de glicose a partir de substratos que não são 

carboidratos) no fígado, impedindo que o corpo produza glicose, uma vez que já há alta 

disponibilidade de glicose no corpo. Como a insulina participa do metabolismo de diversos 

compostos, e não apenas da glicose, sua falta não causa apenas problemas de elevação do nível 

de açúcar no sangue, mas também provoca a conversão de ácidos graxos em colesterol e 

lipídeos, que são lançados na corrente sanguínea, causando problemas comuns em diabéticos, 

como a aterosclerose (GUYTON; HALL, 2006). Em resumo a presença da insulina causa 

principalmente: 

a) Absorção da glicose pelas células e consequentemente a redução da glicemia; 

b) Interrupção dos mecanismos bioquímicos que sintetizam glicose a partir de outros 

compostos; 

c) Aumento da síntese e armazenamento de proteínas; 

d) Aumento da síntese e armazenamento de gorduras. 

Uma vez que há uma estreita relação entre a glicemia e a concentração de insulina, quanto 

mais glicose disponível no sangue, maior a concentração de insulina, numa relação não linear, 

mas diretamente proporcional. A concentração de insulina chega ao máximo quando a 

concentração de glicose fica entre 400 e 600 mg/100 ml de sangue. A baixa da glicemia, como 

resultado da ação da insulina, estimula a redução da concentração de insulina no sangue. Essa 

relação contribui para a homeostase corpórea, evitando os efeitos indesejados da alta 

concentração de glicose, como: I) desidratação celular, II) perda de glicose pela urina, III) 

aumento da diurese, IV) lesões em tecidos e vasos sanguíneos. Quando essa homeostase é 

perdida pode haver o surgimento do diabetes melito (GUYTON; HALL, 2006). 

 

2.2 O DIABETES 

O diabetes é um conjunto de doenças bastante conhecidas por afetar o ser humano. O 

termo “diabetes” é muito antigo, assim como a doença. Segundo Areteu, um médico turco que 

viveu no segundo século da era atual, a doença era vista como “uma desintegração da carne e 

dos membros em urina”, devido ao fato de os pacientes com essa doença produzirem urina 

numa quantidade maior que a convencional (BERG et al., 2019).  Há dois tipos de doenças que 

são coletivamente chamadas de diabetes, mas que não estão relacionadas entre si, o diabetes 

mellitus e o diabetes insipidus. O primeiro envolve o metabolismo da glicose e a relação com a 
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insulina, sendo tratado com mais detalhes nos próximos tópicos dessa revisão, já o segundo é 

uma doença associada ao controle osmótico de fluidos no corpo humano (GUYTON; HALL, 

2006). Neste trabalho, para fins de simplificação, o diabetes melito será chamado, a partir desse 

ponto, apenas de diabetes, enquanto qualquer menção a outra forma de diabetes será feita com 

o termo diabetes insípido. 

2.2.1 O diabetes insípido (diabetes insipidus) 

O diabetes insípido é uma doença caracterizado por uma alta produção e eliminação de 

urina por um indivíduo, podendo chegar a níveis maiores que 15 litros diários. Essa urina é 

geralmente transparente, diferenciando-se da urina convencional, que possui um aspecto 

amarelado. Além desse sintoma, pacientes com essa doença apresentam uma sede extrema e 

constante, como um impulso de compensação da perda de água. A exposição deste portador a 

médios períodos sem água já é capaz de levar a morte por desidratação (LEVY; PRENTICE; 

WASS, 2019). O diabetes insípido, portanto, não tem nenhuma relação direta com a glicemia 

do indivíduo ou seus níveis de insulina.  

A causa da diabetes insípido está relacionada a uma deficiência na produção ou 

sensibilidade do hormônio vasopressina, também conhecida como hormônio antidiurético, na 

neuro-hipófise ou nos rins, respectivamente. A doença pode ser desenvolvida após o 

desenvolvimento de outras patologias na hipófise, órgão que produz o hormônio. Sem 

quantidade suficiente desse hormônio, os rins não recebem a sinalização necessária para 

reabsorver a urina, e passa a excretá-la em excesso, nesse caso a doença é chamada de diabetes 

insípido central. Outro fator para o desenvolvimento da doença é o consumo excessivo de 

medicamentos que afetam os rins, ou o surgimento de doenças que afetam a medula renal, 

nestes casos, o rim danificado não responde mais à vasopressina, e a doença se torna conhecida 

como diabetes insípido nefrogênico. Menos comumente, causas genéticas e anomalias 

congênitas, também podem levar ao desenvolvimento dessa doença (GUYTON; HALL, 2006). 

A doença é rara, atingindo cerca de 0,004% da população. Seu diagnóstico pode ser feito 

com base no volume de urina produzida em cada 24 h e pela osmolaridade urinária. Uma outra 

opção de diagnóstico é feita a partir da dosagem de um peptídeo glicosilado chamado copeptina. 

Alto níveis desse peptídeo, após a administração de uma solução salina ao paciente, confirmam 

o diagnóstico de diabetes insipidus, tornando-o um bom biomarcador da doença (REFARDT; 

WINZELER; CHRIST-CRAIN, 2020). 
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2.2.2 O diabetes melito (diabetes mellitus) 

 

O diabetes melito é uma doença crônica que envolve principalmente o desenvolvimento 

de níveis elevados de glicose no sangue do indivíduo, estando diretamente ligado a insulina. O 

termo melito deriva do termo em latim mellitus, que significa “adoçado com mel” ou “doce 

como o mel”, fazendo referência a um dos sintomas da doença, a presença de açúcar na urina 

dos portadores da doença (BERG et al., 2019). A doença surge quando o pâncreas não é mais 

capaz de produzir o hormônio, ou quando o corpo não é mais capaz de utilizar a insulina 

produzida de forma eficaz. O aumento da concentração da glicose leva, além dos efeitos já 

citados, ao mal funcionamento dos vasos sanguíneos com extravasamento de fluidos para os 

tecidos, ou problemas na difusão de substâncias, podendo causar infarto, derrame, retinopatia 

e consequentemente cegueira, isquemia e gangrena. É desejável que a glicemia esteja entre 80 

e 90 nos seres humanos. Quando a diabetes é instalada, essa glicemia fica muito mais alta, 

acima de 126 de acordo com as convenções. Apesar disso, um valor acima de 110 já é um forte 

alerta de risco para a doença (GUYTON; HALL, 2006).  

Além da elevação da glicemia, dada a redução da absorção da glicose pelas células, o 

indivíduo diabético também passar a ter problemas com o metabolismo de lipídeos e proteínas, 

já que ambos são diretamente afetados pela insulina, como visto anteriormente (RODWELL et 

al., 2017).  

Como citado, o diabetes melito tem duas causas diferentes, resultando em dois principais 

subtipos distintos da doença: o diabetes tipo I,  que pode também ser conhecido como “diabetes 

de início juvenil” ou “diabetes melito dependente de insulina” (DMID), ocorre quando a síntese 

de insulina fica comprometida, já o diabetes tipo II é conhecido como “diabetes de início tardio” 

ou “diabetes melito não dependente de insulina”  (DMNID) é causado por uma redução da 

sensibilidade das células ao efeito da insulina (GUYTON; HALL, 2006; RODWELL et al., 

2017). Além desses dois grandes subtipos do diabetes, há também o diabetes gestacional, além 

de uma série de subtipos menores. O diagnóstico dos principais subtipos da doença é realizado 

de forma clínica, pois os indivíduos desenvolvem sintomas muitas vezes distintos (RODACKI 

et al., 2022). 

 

2.2.2.1 Diabetes tipo I 

 

O diabetes tipo I (DM1) é derivado da destruição das células β produtoras de insulina 

(no pâncreas), seja por uma doença autoimune, seja por uma outra infeção, ou até mesmo por 
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herança genética que favorece a destruição dessas células. Em geral essa doença surge até o 

início da idade adulta. Os indivíduos portadores, por não produzirem insulina, necessitam que 

o hormônio seja obtido de outras fontes para que eles possam sobreviver, um tratamento 

chamado de insulinoterapia (BERG et al., 2019; RODACKI et al., 2022). 

A falta da insulina nesta forma da doença, além de causar acúmulo de glicose derivada 

da alimentação no sangue, que não é captada de forma eficiente pelas células, também estimula 

os tecidos a produzirem mais glicose. Com isso, esses pacientes podem ter uma glicemia 

aumentada para 300 mg/dL até por volta de 1200 mg/dL, muito maior que a glicemia em uma 

pessoa saudável. Apesar disso, como não há insulina, as células entendem que devem dar 

prioridade ao metabolismo de lipídeos, com liberação de substâncias tóxicas no sangue, levando 

a quadros de acidose metabólica, que rapidamente leva ao coma. Essas alterações metabólicas 

causadas pela doença obrigam o organismo a ajustar suas respostas fisiológicas, levando a sinais 

detectáveis alterados, como alterações na frequência da respiração. Os indivíduos com acidose, 

por exemplo, passam a ter uma respiração rápida e profunda (GUYTON; HALL, 2006). 

 

2.2.2.2 Diabetes tipo II 

 

O tipo II do diabetes é o subtipo mais comum da doença. Cerca de 90% de todos os 

casos de diabetes no mundo se encaixam nessa categoria. Ela é uma doença que está muito 

associada ao sobrepeso e a obesidade, se tornando mais comum com o envelhecimento do 

indivíduo. Mas também há outras causas como, por exemplo, a tendência genética ou a 

obtenção de síndromes que prejudicam a sinalização da captação da insulina. Nessa doença, 

diferentemente da DM1, os portadores possuem níveis normais de insulina ou até mesmo níveis 

elevados, porém as células não respondem mais, criando um fenótipo de resistência à insulina 

(BERG et al., 2019; GUYTON; HALL, 2006; RODACKI et al., 2022). No entanto, também é 

possível que alguns indivíduos portadores de DM2 também desenvolvam tardiamente uma 

deficiência na produção da insulina (RODACKI et al., 2022). 

A DM2 não é uma doença que surge de repente, primeiro o paciente entra em um estado 

conhecido como síndrome metabólica, onde a obesidade é o principal fator. Quando a gordura 

começa a se acumular no fígado e nos músculos, o corpo começa a precisar de cada vez mais 

insulina. Dessa forma, nesse período desenvolve-se a resistência à insulina, além de uma 
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elevação dos padrões normais de glicemia, o desenvolvimento da dislipidemia1, e o surgimento 

da hipertensão. Essa resistência à insulina faz com que cada vez mais a célula β precise produzir 

o hormônio, mas há um limite para isso. Chega um momento em que a quantidade de insulina 

produzida se acumula em grandes quantidades no retículo da célula, causando uma toxicidade. 

O corpo não consegue mais atuar para baixar a glicemia e o paciente desenvolve a diabetes, 

necessitando do uso de drogas que agem reduzindo a resistência à insulina, não havendo 

recuperação para o paciente. Quando a célula não consegue mais lidar com a grande quantidade 

de insulina, então ela entra em apoptose (morte celular). A partir desse momento o DM2 está 

totalmente desenvolvido e avançado, apenas o tratamento para controle da doença pode ser 

realizado, com os medicamentos e com a administração de insulina (BERG et al., 2019; 

GUYTON; HALL, 2006).  Com isso, fica claro que o tipo 2 da diabetes surge de uma forma 

bastante distinta da DM1, sendo uma progressão lenta onde há um estágio anterior chamado de 

pré-diabetes. 

 

2.2.3 O pré-diabetes 

  

O estágio do pré-diabetes é uma fase em que as pessoas ainda não possuem os níveis de 

glicemia alterados o suficiente para possuírem a doença. Esses níveis, contudo, não são 

normais, ou seja, não deveriam ocorrer em pessoas saudáveis. No pré-diabetes estão inseridas 

as pessoas que possuem a glicemia de jejum alterada (100 – 125 mg/dL) e uma sensibilidade 

reduzida a glicose (SOUZA et al., 2012). Apesar disso, os valores de corte dos testes para a 

condição são diferentes entre diferentes associações de saúde. Eles divergem por exemplo entre 

a Organização Mundial da Saúde e a Associação Americana de Diabetes. Dessa forma a 

definição e tamanho do grupo de pessoas pré-diabéticas varia de acordo com o autor de um 

estudo e o instituto que coordena algum levantamento. No entanto, o grupo de pré-diabéticos 

incluem pessoas que possuem certo grau de obesidade e resistência à insulina, assim como 

pessoas com algum grau de deficiência das células β do pâncreas (BEULENS et al., 2019). 

De acordo com a Associação Americana de Diabetes, o pré-diabetes não deve ser 

considerado uma entidade clínica, mas uma faixa de risco para o diabetes e a doença 

cardiovascular, uma vez que a condição está frequentemente associada a obesidade 

(AMERICAN DIABETES ASSOCIATION, 2021). Indivíduos que desenvolvem o pré-

 
1 Elevação das concentrações sanguíneas de triglicerídeos, colesterol e lipoproteínas de baixa densidade. 
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diabetes possuem alto risco de evoluir para o diabetes. No geral, apenas 25% das pessoas com 

essa condição conseguem se recuperar do problema e afastar a doença. Esse risco aumenta com 

a idade do indivíduo e é influenciado pela sua glicemia em jejum. Indivíduos mais idosos 

possuem ainda menos chance de se recuperar do pré-diabetes, assim como aqueles cuja glicemia 

se encontra entre 110 e 125 (limite para diabetes). A síndrome metabólica desenvolvida no pré-

diabetes, também é um fator crucial para o ponto de não retorno, onde a doença está estabelecida 

(GIACAGLIA et al., 2022). 

Para o tratamento do pré-diabetes é recomendado que os indivíduos mudem seu estilo de 

vida, pratiquem mais exercícios físicos, reduzam o consumo de alimentos calóricos e 

consequentemente seu peso. Apesar disso, em alguns casos o tratamento farmacológico é 

necessário para que a pessoa não evolua para o diabetes (GIACAGLIA et al., 2022). No entanto, 

o grande problema para o início do tratamento é o diagnóstico da doença, uma vez que a pré-

diabetes é uma condição silenciosa.  

Diversos estudos criaram modelos de risco para predição do pré-diabetes baseado em 

uma série de características de cada indivíduo. Esses modelos geralmente levam em 

considerações características que não demandam a realização de testes sanguíneos pelos 

indivíduos, mas sim o preenchimento de questionários padronizados, que contém características 

básicas das pessoas e que podem ser boas preditoras para o risco de diabetes. Quando a 

pontuação final do questionário indica a existência de um alto risco para o desenvolvimento da 

doença, é então recomendado que o indivíduo passe a realizar exames laboratoriais para 

acompanhamento médico (BEULENS et al., 2019).  Geralmente as características preditoras 

básicas mais presentes nos questionários são: Idade, índice de massa corpórea (IMC), presença 

de hipertensão e histórico familiar de diabetes (BARBER et al., 2014). 

 

2.3 EPIDEMIOLOGIA DO DIABETES E PRÉ-DIABETES 

 

 O diabetes é uma das grandes doenças do século 21. A Federação Internacional de 

Diabetes estimou um número de doentes em 537 milhões de pessoas adultas (20-79 anos) em 

2021, ou seja, uma em cada dez pessoas no mundo possui a doença (Fig. 1). Em 2045 esse 

número pode chegar a 784 milhões, o que corresponde a uma em cada 8 habitantes do planeta. 

Isso vem disparando um alarme para o rápido avanço da doença, que só no ano de 2021 já 

causou a morte de 6,7 milhões de pessoas. Esse número é impressionante, pois quer dizer que 

a cada 5 segundos, uma pessoa morre de diabetes na Terra. Outro fator assustador em relação 
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a doença, é que o número de pessoas portadoras de resistência à insulina, também conhecido 

como pré-diabetes, no ano de 2021 superou o número de diabéticos. A Federação estima que 

cerca de 541 milhões de pessoas estavam com pré-diabetes em 2021. O que implica em mais 

de 1 bilhão de pessoas envolvidas com a doença (INTERNATIONAL DIABETES 

FEDERATION, 2021). 

 

Figura 1 - Dispersão do diabetes melito pelo mundo. 

 

Fonte: International Diabetes Federation (2021) 

Legenda: São mostrados os números de portadores da doença ao longo de 8 regiões mundiais, assim como provável 

número de portadores para os anos de 2030 e 2045. 

 

A prevalência do diabetes é um pouco maior em homens que em mulheres, embora os 

valores sejam muito parecidos, 10,8% em homens e 10,2% em mulheres, e cresce conforme a 

faixa etária analisada aumenta. A doença é mais comum em áreas urbanas que em áreas rurais, 

e atinge principalmente países com renda média ou baixa, onde vivem 432,7 milhões de 

doentes. Sua maior prevalência em relação a polução regional encontra-se no Oriente Médio e 

norte da África, onde cerca de 16% da população possui diabetes. O ranking dos países com o 
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maior número de doentes é liderado pela China, com cerca de 141 milhões de doentes. O Brasil, 

no entanto, não está numa situação favorável, com 15,7 milhões de doentes, ele é o sexto do 

ranking (SUN et al., 2022).  

 

2.4 MÉTODOS DE DIAGNÓTICO DO DIABETES MELITO 

 

Para uma pessoa ser diagnosticada com diabetes é preciso que sua glicemia esteja acima 

de um padrão estabelecido pelos estudiosos do diabetes. Quando não se atinge esse limiar, mas 

a glicemia é maior que a os parâmetros normais, classifica-se o indivíduo como pré-diabético. 

Estes padrões existem em diversos tipos de testes, entre eles estão os testes de: 

a) Teste de glicemia em jejum: Um teste realizado após pelo menos 8h de jejum de alimentos 

ou bebidas que podem alterar o metabolismo da glicose. Neste teste, o padrão inferior 

para diabetes corresponde a uma glicemia de 126, ou seja, uma pessoa cuja proporção de 

glicose no plasma sanguíneo esteja acima de 126 mg/dL pode ser considerada diabética. 

Caso este valor esteja entre 100 e 125, a pessoa pode ser considerada pré-diabética 

(AMERICAN DIABETES ASSOCIATION, 2021; KHAN et al., 2019). 

b) Teste oral de tolerância à glicose: neste teste a glicemia do paciente é aferida duas horas 

após a ingestão de 75 g de glicose. É considerado saudável o paciente cuja glicemia esteja 

abaixo de 140, e diabético o paciente cuja glicemia esteja acima de 200. O intervalo entre 

140 e 200 é atribuído ao pré-diabetes (AMERICAN DIABETES ASSOCIATION, 2021). 

Este é o teste padrão ouro para classificação do diabetes, porém requer 8h de jejum prévio 

à ingestão das 75g de glicose, além de um acompanhamento de uma espera de duas horas 

onde o paciente deve permanecer em repouso no laboratório. Sendo dos 3 tipos de 

exames, aquele com maior desconforto para o paciente (DUAN; KENGNE; 

ECHOUFFO-TCHEUGUI, 2021).  

c) Hemoglobina Glicada (HbA1C): Neste teste é verificada a proporção da proteína 

hemoglobina presente nas células sanguíneas que está ligada a glicose. Ele é capaz de 

identificar uma hiperglicemia crônica, uma vez que não sofre variações diárias como o 

teste de tolerância à glicose ou o teste de glicemia de jejum. Apesar disso, esse teste é 

indireto, pois não afere diretamente a quantidade de glicose no plasma sanguíneo. Um 

valor maior que 6,5% é um indicativo de diabetes, enquanto um valor entre 5,7% e 6,4% 

indica que o indivíduo está na faixa do pré-diabetes (KHAN et al., 2019).  
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Nem sempre há uma equivalência entre os três testes, ou seja, é possível que um dos testes 

classifique uma pessoa como diabética, enquanto outro teste não classifique. Nestes casos os 

testes devem ser repetidos e deve haver pelo menos dois testes distintos da mesma amostra, ou 

o mesmo teste, mas em duas amostras distintas, para classificar alguém como portador de 

diabetes. O teste oral de tolerância a glicose classifica mais pessoas na categoria de diabetes ou 

pré-diabetes que os outros dois testes. Se o teste da hemoglobina glicada variar em relação aos 

testes de detecção de glicemia, deve-se considerar esses últimos como portadores de maior 

acurácia, uma vez que pode haver alguma interferência no teste de aferição de HbA1C e uma 

vez que a HbA1C é uma forma indireta de aferição da glicemia. Apesar disso o teste de HbA1C 

é mais prático, pois não requer um jejum anterior de pelo menos 8 horas, ou que o paciente 

fique pelo menos 2 horas aguardando em um laboratório para realizar um exame após ingerir 

os 75g de glicose (AMERICAN DIABETES ASSOCIATION, 2021). 

Além de diagnosticar a diabetes, também é importante que o médico saiba diferenciar 

entre os principais subtipos da doença. O diagnóstico clínico muitas vezes é capaz de diferenciar 

o diabetes tipo I e o tipo II. Em casos de diagnóstico diferencial, pode-se realizar uma dosagem 

do peptídeo C para avaliar a função secretória das células ß pancreáticas, e também da presença 

de autoanticorpos que atacam essas células (RODACKI et al., 2022). A Figura 2 mostra um 

fluxograma estabelecido pela Sociedade Brasileira de Diabetes para o diagnóstico diferencial 

da doença. Apesar de métodos de diagnóstico diferencial para o diabetes, não há um modelo 

para o caso do pré-diabetes. 

2.5 TECNOLOGIAS UTILIZADAS PARA O ACOMPANHAMENTO DO DIABETES 

MELITO 

 

De acordo com recomendações de diversos institutos internacionais, os indivíduos 

portadores de diabetes devem realizar acompanhamento regular do seu nível de glicose, uma 

vez que a hiperglicemia traz diversos efeitos nocivos. Por outro lado, o uso de medicamentos 

por parte desses pacientes pode causar momentos de hipoglicemia, que pode levar à morte, o 

que também comprova a necessidade de acompanhamento constante dos níveis de glicose 

sanguínea. Uma das recomendações do Instituto Nacional de Saúde dos Estados Unidos é 

realizar essa verificação diariamente em 4 períodos distintos (KHAN et al., 2019). Para 

indivíduos que não possuem a doença, mas que já estão no grupo de pré-diabéticos, o teste 

também é necessário. Segundo a Associação Americana de Diabetes, indivíduos desse grupo 

devem ser testados pelo menos uma vez ao ano (DUAN; KENGNE; ECHOUFFO-
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TCHEUGUI, 2021). Alguns estudiosos, no entanto, argumentam que pelo fato de muitos pré-

diabéticos estarem evoluindo para a doença, seria necessário que a verificação dos níveis de 

glicemia fosse bem mais recorrente (BENT et al., 2021a). Indivíduos não portadores da doença 

e que também não estão no grupo dos pré-diabéticos também precisam acompanhar o seu nível 

de glicemia, porém numa frequência bem menor. Não há uma frequência exata para isso, mas 

simulações mostram que indivíduos com mais de 45 anos devem testar sua glicemia pelo menos 

uma vez a cada 3 anos (DUAN; KENGNE; ECHOUFFO-TCHEUGUI, 2021), o que pode ser 

feito com exames básicos laboratoriais sem a necessidade de tecnologias de acompanhamento 

de glicose.  

 

Figura 2 - Fluxograma para o diagnóstico diferencial do diabetes. 

Fonte: Rodacki et al. (2022) 

 

2.5.1 Métodos invasivos 

 

Os métodos tradicionais de mensuração diária de glicose para indivíduos diabéticos 

envolvem o uso de glicosímetros. Estes aparelhos são acompanhados de tiras de teste que são 

inseridas nos aparelhos logo após o depósito de uma gota de sangue do paciente sobre elas. O 

resultado é rapidamente mostrado no display do aparelho e o paciente pode anotar e guardar 

essa informação (KHAN et al., 2019). Um exemplo de glicosímetro tradicional é mostrado na 

Figura 3A.  
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Um dos inconvenientes dos glicosímetros é a necessidade de furar a extremidade de um 

dos dedos para realização da extração da gota de sangue toda vez que deve ser feita a aferição 

da glicemia. Isso causa desconforto e pode gerar cicatrizes no longo prazo, o que pode levar a 

certa resistência por parte de alguns indivíduos portadores de diabetes (KHAN et al., 2019). 

A necessidade de acompanhar a glicemia por um período contínuo e regular, juntamente 

com a necessidade de evitar perfurações em diversos momentos do dia fomentou o 

desenvolvimento de dispositivos com sensores implantáveis, que se comunicam com aparelhos 

externos (decodificadores) sem nenhum uso de cabeamento. Um dos primeiros aparelhos desse 

tipo capaz de realizar leituras contínuas por pelo menos uma semana e vendido comercialmente 

foi o Dexcom G4 PLATINUM (Fig. 3 D). Lançado no final de 2013, ele utilizava tecnologia 

bluetooth para realizar a conexão entre o sensor e o decodificador. O sensor implantável era 

capaz realizar uma leitura a cada 5 minutos, num total de 288 leituras diárias, com uma alta 

correlação (R = 0,95) entre a glicose predita e a glicose real. Sendo também, capaz de emitir 

alertas de hipo e hiperglicemia. O uso desse aparelho melhorou o controle de glicemia de 83% 

de um total de 74 indivíduos avaliados num estudo. Apesar disso, o aparelho necessitava de 

duas calibrações diárias, ou seja, o usuário precisava fornecer diariamente, a cada 12 horas, seu 

nível de glicose, e para isso deveria utilizar o glicosímetro convencional retirando uma gota de 

sangue da ponta do dedo, o que causava incômodo (NAKAMURA; BALO, 2015; REDA et al., 

2021).  

Posteriormente foi lançado comercialmente o aparelho FreeStyle Libre (Fig. 3E), que é 

vendido até os dias atuais. Seu sensor é capaz de durar o dobro do tempo do Dexcom G4 

PLATINUM, contando com uma auto calibração, o que tornou o dispositivo muito mais 

amigável, fornecendo uma melhor experiência do usuário. Além disso, não há diferença 

significativa na predição da glicose, entre esses dois dispositivos, na maior parte dos casos de 

glicemia, exceto quando os níveis de glicose mudavam rapidamente. Neste caso, o resultado do 

FreeStyle Libre se saiu melhor que o do Dexcom G4 PLATINUM (BOSCARI et al., 2018; 

REDA et al., 2021).  Apesar desses dois aparelhos atingirem uma boa predição de glicose, o 

seu sensor dura pouco tempo, devendo ser trocado em períodos extremamente curtos, gerando 

um incômodo para paciente. Por isso, diversas empresas focaram seus esforços para conseguir 

criar um sensor implantável que durasse por um longo período. Destes, o sensor com maior 

durabilidade é o Eversense XL (Fig. 3F), que pode durar até 6 meses. Embora o tempo entre as 

trocas a do sensor, o que exige a ida do paciente a uma clínica com a presença de pelo menos 2 

profissionais de saúde, seja maior que o tempo exigido por sistemas anteriores, este monitor 
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contínuo de glicose continua sendo recomendado apenas para pessoas portadoras de diabetes, 

visando o controle da hipoglicemia após a administração de medicamentos e a obtenção das 

metas de tratamento (DEISS et al., 2019). 

 

Figura 3 – Modelos de glicosímetros disponíveis comercialmente. 

Fonte: Reda et al. (2021) 

Legenda: (A) Glicosímetros tradicionais, (B) O primeiro glicosímetro não invasivo e de uso contínuo, chamado 

GlucoWatch®, (C) um Holter de glicose chamado de iPro2, desenvolvido para acompanhamento médico da 

glicose, (D) um glicosímetro de medição contínua chamado Dexcon G4, que utilizava um aparelho receptor 

desenvolvido especificamente para processar e armazenar os dados das leituras de glicose, (E) um glicosímetro de 
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medição contínua chamado FreeStyle, que envia dados para um smartphone, (F) o dispositivo Eversense XL, cujo 

sensor dura cerca de 6 meses, (G) um glicosímetro de medição contínua, Medtronic 670G, que também é acoplado 

a um dispositivo de liberação de insulina. 

  

 Apesar de o Eversense XL exigir a troca de sensor num prazo bastante longo, uma 

pequena parte dos usuários relataram algum tipo de irritação na pele após procedimentos de 

inserção ou retirada do sensor, ou até mesmo uma infecção leve que exigiu o uso de antibióticos 

(SANCHEZ et al., 2019). Hoje os métodos invasivos de medição contínua estão evoluindo para 

não causar nenhum tipo de dor ou desconforto ao usuário. Isso está sendo alcançado com o uso 

de materiais flexíveis, miniaturizados e métodos cada vez mais minimamente invasivos. Sendo 

cada vez mais fáceis de usar e geralmente transmitindo dados através de redes sem fio para 

dispositivos de processamento de dados como um aparelho específico ou um smartphone. Além 

disso, os métodos de medição contínua estão cada vez mais buscando fonte alternativas além 

da captação de plasma sanguíneo (REDA et al., 2021). 

 

2.5.2 Métodos não invasivos ou minimamente invasivos 

 

 Visando eliminar o desconforto causado pelas picadas para retirar gotas de sangue, outras 

fontes de dados para os glicosímetros passaram a ser estudadas. Geralmente estes dados 

derivam de tecnologias óticas, transdermais e termais (Fig. 4) (LIN, 2017). 

Figura 4 – Tipos de tecnologias não invasivas para a detecção da glicemia. 

 
Fonte: Adaptado de Lin (2017) 
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Talvez a fonte de dados mais básica para uma coleta não invasiva seja a pele, e por isso, 

desde o século passado, pesquisadores vêm desenvolvendo métodos que utilizam essas 

tecnologias para tentar estimar a concentração de glicose a partir deste órgão. O primeiro 

método não invasivo de medição da glicemia aplicado comercialmente foi utilizando a 

tecnologia transdérmica de iontoforese reversa. O aparelho, desenvolvido na década de 1990, 

era chamado GlucoWatch®. Ele era colocado no pulso, similarmente a um relógio. Esse 

aparelho operava através de um método conhecido como iontoforese reversa, onde uma 

corrente elétrica de baixa intensidade é aplicada gerando o transporte de uma substância através 

da pele para fora do corpo. No caso do GlucoWatch, esse composto era a glicose, sendo medida 

por biossensores amperométricos presentes na face do equipamento que ficava em contato com 

a pele. Todo o ciclo de medição durava cerca de 20 minutos. Os dados de leitura da glicose 

eram integrados a dados de variação brusca de temperatura e quantidade de transpiração, 

capturados respetivamente por sensores de temperatura e condutividade da pele (TIERNEY et 

al., 2000). Um estudo com 92 indivíduos mostrou uma boa correlação (R = 0,88, R² = 0,77) 

entre a concentração de glicose aferida por glicosímetros tradicionais e através do método de 

iontoforese (TAMADA et al., 1999). Apesar de ter uma boa correlação com os dados reais, o 

equipamento não tinha uma correlação extremamente alta. Estudos com um número maior de 

pacientes diabéticos mostrou um RMSE equivalente a cerca de 43 mg/dL entre os dados reais 

e o estimado pelo aparelho, representando um desvio moderado entre a glicemia real e a 

estimada (TIERNEY et al., 2001). Além disso, seus sensores não duravam muito tempo, eles 

conseguiam realizar leituras por 12 horas. Dessa forma, diversos outros métodos de estimativa 

da concentração de glicose através da pele foram sendo desenvolvidos nos últimos 20 anos. 

Apesar disso, o método de iontoforese reversa ainda é utilizado como princípio em novos 

equipamentos de medição não invasiva, como o SugarBEAT, que permanece em 

desenvolvimento e utiliza um dispositivo adesivo na pele, que conectado com smartphone, faz 

leituras a cada intervalo de 5 minutos (YARMAN; KURBANOGLU; SCHELLER, 2020). 

Um outro método de tecnologia transdérmica, a espectroscopia de impedância, foi 

utilizado no aparelho Pendra®, lançado comercialmente no início dos anos 2000, este aparelho 

saiu de linha poucos anos depois, já que seu uso na população e estudos posteriores revelaram 

uma baixa correlação entre a glicemia real e a predita (R=0,35) (WENTHOLT et al., 2005).  

Em relação às tecnologias térmicas, um dos métodos de mensuração da glicose é a 

conformação metabólica de calor, nele a glicemia é deduzida a partir da quantidade de 

dissipação de calor, taxa de fluxo sanguíneo do tecido local e do grau de saturação de oxigênio 
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no sangue. Isso é possível, uma vez que o grau de calor dissipado pelo corpo está correlacionado 

com a quantidade de glicose e oxigênio, já que estes dois estão ligados à geração de energia. 

Um sistema criado por Tang et al. (2008), utilizava três sensores de temperatura, dois sensores 

de umidade, um sensor infravermelho e um dispositivo de medição óptica para estimar esses 

parâmetros.  Uma função matemática desenvolvida para o sistema então calculava a glicemia 

baseada no calor, na taxa de fluxo sanguíneo e no grau de saturação de oxigênio no sangue. O 

coeficiente de correlação entre os dados glicêmicos preditos por esse dispositivo e os dados 

reais foi de R=0,856, um valor muito similar aos métodos anteriores criados nos anos na 

primeira década do século XXI. O outro método de tecnologias térmicas, a conservação do 

calor, foi utilizado em alguns equipamentos desenvolvidos nos últimos 10 anos por Zhang et 

al. (2017). Apesar de seu uso juntamente com tecnologias de aprendizagem de máquina, não 

houve grande aumento no coeficiente de correlação (R = 0,885) entre os valores reais e os 

preditos, em comparação a tecnologias anteriores. 

 As tecnologias não-invasivas mais utilizadas são com certeza as tecnologias ópticas. 

Embora elas sofram com o baixo sinal produzido pelas moléculas de glicose, o que pode gerar 

baixa sensibilidade e especificidade, elas são utilizadas por vários aparelhos registrados para 

comercialização, como: OrSense NBM-200G, C8 MediSensors, Combo Glucometer e Gluco 

Wise. O uso de luz infravermelha para leitura da glicemia é uma dessas possibilidades. Com 

esse tipo de onda, podem ser utilizados o infravermelho médio e o infravermelho próximo, em 

técnicas chamadas de espectroscopia no infravermelho médio e espectroscopia no 

infravermelho próximo (near-infrared spectroscopy – NIR) (LIN, 2017). Nesta última, um 

comprimento de onda de 900 a 1100 nm é emitido sobre a ponta do dedo, evitando a necessidade 

da perfuração. Com isso a glicose é medida opticamente, com base na dispersão e absorção de 

luz através do sangue. Lawand, Parihar e Patil (2015) criaram um sistema onde um LED 

infravermelho emite uma luz no comprimento de onda de 950 nm sobre a ponta do dedo de um 

indivíduo. Um fototransistor converte então a luz em tensão. Essa, por sua vez, é utilizada numa 

regressão polinomial, que prediz a concentração de glicose. Quando comparado com a aferição 

de glicose via glicosímetro tradicional, esse método apresenta um erro médio de 3% e mostra 

uma altíssima correlação entre os níveis reais e os preditos de glicose (R² = 0,93). Apesar disso, 

o trabalho de Lawand, Parihar e Patil (2015) avaliou apenas níveis de glicose inferiores a 100, 

um valor mais baixo do que geralmente é encontrado em diabéticos e pré-diabéticos . 

Diversos fatores tornam as abordagens não-invasivas muito complexas, como um alto 

grau de ruído nos dados, derivado do baixo sinal de leitura de glicose; um alto nível de sudorese, 
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que atrapalha a leitura de alguns sensores; e a interferência do meio externo, por exemplo 

excesso de frio no ambiente de leitura (LIN, 2017). Dessa forma, além da pele, estudos também 

focam em fontes alternativas. Uma delas é a secreção lacrimal. No entanto, a quantidade de 

glicose na lágrima é muito menor que sua concentração no plasma sanguíneo. Um estudo 

comparando 7 conjuntos de glicosímetros + tiras de teste identificou que apenas 1 desses 

sistemas poderia ser utilizado como um instrumento de teste para a glicose em indivíduos. 

Contudo esse estudo validou sua análise apenas em indivíduos saudáveis, não havendo nenhum 

tipo de teste com secreção lacrimal de pessoas com diabetes ou pré-diabetes (CHA et al., 2014). 

Além disso, não é simples produzir lágrimas em todo momento que se queira aferir a glicose. 

Há também estudos que buscam criar sensores a partir de reações enzimáticas que ocorrem com 

o suor do indivíduo, como o caso de tecidos vestíveis com sensores colorimétricos, que 

poderiam indicar alterações na glicemia e concentração de ureia (PROMPHET et al., 2020). 

Apesar da facilidade de obtenção do suor, dispositivos que o utilizam geralmente sofrem com 

problemas de precisão e estabilidade (REDA et al., 2021). 

 Com o avanço da tecnologia e o desenvolvimento de múltiplos métodos não invasivos de 

aferição da glicemia (nem sempre tão eficazes), alguns pesquisadores propuseram unir diversos 

sensores e métodos de detecção, a fim de reduzir as limitações de especificidade de cada 

tecnologia (LIN, 2017). Cada método consegue estimar independentemente a glicemia, e a 

glicemia final pode ser dada pela média ponderada dos resultados de múltiplos sensores. Dessa 

forma, a estimativa da glicemia baseia-se em vários parâmetros fisiológicos dos pacientes. 

Apesar de parecer uma simples tarefa de extrair as médias das predições, deve-se levar em 

consideração diversos tipos de erro podem interferir da leitura de um ou em parte dos sensores. 

Dessa forma, em boa parte dos casos, uma simples média dos resultados dos sensores pode não 

dar o melhor resultado possível. Além disso, uma mudança nos níveis de glicose não reflete 

instantaneamente nos níveis de diversos parâmetros fisiológicos utilizados. Dessa forma, a 

estimativa da glicemia deve levar em conta o tempo de atraso entre as mudanças, aumentando 

em muito a complexidade de todas as análises, de forma que o uso de algoritmos de 

aprendizagem de máquina vem sendo cada vez mais necessários, para corrigir esse tempo de 

atraso e dar resultados mais próximos à realidade (GENG et al., 2017). 

 Uma outra limitação a ser superada pelos dispositivos não invasivos de verificação da 

glicemia é sua adequação a cada indivíduo específico, uma vez que os parâmetros fisiológicos 

e anatômicos de cada indivíduo sofrem variações mesmo no seu estado saudável, como por 

exemplo a cor e espessura da pele. Para superar essa limitação, cada aparelho deve passar por 
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processos de calibração, onde as leituras reais de glicose devem ser levadas em consideração 

no cálculo da glicose estimada. Do lado do sistema, isso aumenta bastante a complexidade do 

algoritmo que será utilizado para compensação. Do lado do usuário, isso pode reduzir a 

qualidade da experiência de uso, de forma que as tecnologias atuais de medição buscam 

simplificar bastante a etapa de calibração dos aparelhos e reduzir sua frequência. Isso é feito 

com sensores e algoritmos cada vez mais robustos, necessitando cada vez mais de inteligência 

artificial (LIN, 2017). 

 

2.6 INTELIGÊNCIA ARTIFICIAL E MANEJO DA DOENÇA 

 

O diabetes tipo II é uma doença evitável, mas o diagnóstico do problema deve ser 

realizado cedo, quando a pessoa ainda está na fase do pré-diabetes. Contudo, como visto 

anteriormente, essa condição é silenciosa. Mapear uma população inteira com exames como 

teste de glicemia de jejum, teste oral de tolerância à glicose, ou medição da HbA1C é inviável 

pois isso necessita a retirada e processamento de amostras sanguíneas de milhões de indivíduos, 

o que seria extremamente custoso e enfrentaria diversas barreiras de aceitação. Um estudo 

conduzido na Inglaterra estimou que os custos de para diagnóstico da DM2, no ano de 2012, 

iniciavam em cerca £ 450 (libras esterlinas) para cada caso positivo detectado. Esses custos 

variavam de acordo com o esquema de diagnóstico realizado. O menor custo foi encontrado 

apenas quando inicialmente era realizada uma pré-triagem com um método de diagnóstico não 

invasivo, e só num segundo estágio era realizado algum teste sanguíneo. O esquema de 

diagnóstico cujo teste sanguíneo era realizado inicialmente chegou a um custo de até 1639 libras 

por caso positivo, um valor altíssimo (KHUNTI et al., 2012). Isso torna claro a necessidade de 

existência de algum método que possa fazer uma pré-seleção de um grupo de pessoas para, só 

então, selecionar dentro desse grupo, aqueles com alterações relacionadas elevação da glicemia 

ou mesmo resistência à insulina. 

Essa abordagem de pré-triagem serve para diagnosticar a possibilidade de pré-diabetes. 

Para isso, geralmente eram utilizadas as ferramentas de cálculo de risco. Contudo era necessário 

encontrar quais as melhores variáveis capazes de prever se uma determinada pessoa pode 

evoluir para a DM2, e para isso diversas ferramentas de predição foram desenvolvidas. Barber 

et al., (2014) revisaram mais de 250 artigos, e encontraram 18 ferramentas destinadas ao 

diagnóstico específico do pré-diabetes. A maior parte dessas ferramentas (11) utilizavam um 

método estatístico clássico para predição, a regressão logística. O restante utilizava algum 

método de aprendizagem de máquina, como árvores de decisão (6 ferramentas) e máquina de 
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vetores de suporte (SVM) (1 ferramenta). Não só os métodos de predição se diferenciavam 

entre as ferramentas, mas também os tipos e a quantidade de variáveis. Quase metade dessas 

ferramentas não citavam nenhum tratamento de dados faltantes, o que é essencial para dados 

coletados de pacientes. Além disso, essas ferramentas também se diferenciavam no quesito do 

responsável pelo seu uso, enquanto algumas poderiam ser utilizadas pelos próprios indivíduos 

como um autoteste, outras deveriam ser aplicadas apenas por profissional de saúde habilitado. 

A aplicação de parte dessas ferramentas no mundo real se torna ainda difícil pois 61% delas 

possuíam falhas no quesito de validação, e um número ainda maior não possuía função de 

calibração.  

Uma dessas ferramentas iniciais que utilizavam aprendizagem de máquina para calcular 

o risco de diabetes e pré-diabetes era o Diabetes Risk Calculator. Ele utiliza a árvore de decisão 

CART e as variáveis: idade, circunferência da cintura, presença de diabetes gestacional, altura, 

raça/etnia, hipertensão, história familiar de diabetes e exercício físico, para classificar o 

indivíduo em 3 níveis de risco: I) diabetes ou pré-diabetes, II) pré-diabetes, III) risco baixo. No 

entanto seu nível de acerto não era tão grande, com sensibilidade e especificidade de 88% e 

75%, respectivamente, para o diagnóstico de diabetes. Mas apenas sensibilidade e 

especificidade de 75% e 65%, respectivamente, para o diagnóstico de pré-diabetes (HEIKES et 

al., 2008). 

Diversos algoritmos de aprendizagem de máquina podem ser utilizados para classificar 

uma determinada instância com base em suas características, ou seja, dado um conjunto de 

características de um indivíduo, poderíamos rotulá-lo como predisposto ou não-predisposto a 

doença. Isso também poderia ser feito para colocar o indivíduo em diferentes graus de risco em 

relação à diabetes. Quando esses algoritmos de aprendizagem de máquina têm acesso a 

classificação de instâncias anteriores, como uma base de dados de aprendizagem, eles são 

chamados de algoritmos de aprendizagem supervisionada (RUSSEL; NORVIG, 2013). Há 

diversos tipos de algoritmos de aprendizagem supervisionada: 

a) Nearest Neighbors (Vizinhos próximos): Em um espaço multidimensional, a classe de 

uma determinada instância provavelmente é similar a classe dos seus vizinhos. Entre os 

algoritmos dessa classe podemos encontrar o NearestCentroid, onde cada classe de 

instâncias é representada pelo centróide de seus membros, neste caso uma nova instância 

é predita com a classe com o centróide mais próximo; e o KNN, no qual a classificação 

de cada instância é calculada a partir de uma votação majoritária simples dos seus 

vizinhos mais próximos, e onde o número de vizinhos (K) é determinado pelo usuário.  
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Embora seja fácil de entender e implementar, o KNN tem como ponto desfavorável a 

necessidade de estabelecer empiricamente o melhor valor para K (SCIKIT-LEARN, 

2022). 

b) Máquinas de vetores de suporte (SVMs):  Esses algoritmos traçam uma linha (uma 

fronteira, um hiperplano) num espaço multidimensional que divide as diferentes classes 

de um problema. O hiperplano ótimo é escolhido entre o conjunto de N hiperplanos 

possíveis, como aquele cuja equidistância para a instância mais próxima de cada classe 

(vetores de suporte) é maximizada. Por ter diversas funções de Kernel, uma SVM é 

capaz de separar classes em problemas linearmente separáveis e problemas não-

linearmente separáveis (OLIVEIRA JUNIOR, 2010). 

c) Classificadores Naive Bayes: Algoritmos classificadores que usam como base a 

probabilística. Eles são baseados no teorema de Bayes, calculando individualmente a 

probabilidade de que uma instância seja de cada classe, e na suposição "Naive" de 

independência condicional entre cada par de características dado o valor da variável 

classe (apesar dessa suposição de independência condicional não ser inteiramente 

verdadeira) (OLIVEIRA; MENDONÇA, 2000). No fim, a classe atribuída à instância é 

aquela cujo valor de probabilidade se mostrou maior. No geral, são algoritmos que 

requerem uma pequena quantidade de dados de treinamento para estimar os parâmetros 

necessários. Tem como Prós o fato de gastar pouco recurso computacional, não sofrer 

grandes influências de outliers, além de funcionar em problemas não lineares. Tem 

como contras o fato de supor que todos os atributos da instância têm a mesma relevância 

estatística. Uma outra característica que limita o uso algoritmos Naive bayes é que fato 

dele possuir como um de seus pressupostos a necessidade de independência entre os 

atributos das instâncias. 

d) Árvores de decisão: Esses algoritmos constroem conjuntos de nós que se ligam através 

de uma hierarquia, criando assim um grafo em forma de árvore. São algoritmos cujo 

entendimento é relativamente simples, pois sua representação é facilmente mostrada de 

forma similar a um fluxograma. Em cada nó da árvore são tomadas decisões, até que se 

atinjam os nós das folhas, que não tomam decisões, mas apenas armazenam o rótulo de 

uma determinada classe após uma série de decisões terem sido tomadas em nós 

anteriores. Cada uma dessas decisões é definida com base na entropia gerada ou no 

ganho de informação. Além de serem facilmente interpretáveis, as árvores lidam bem 

com problemas lineares e não lineares, além de lidar bem como dados não normalizados. 

Apesar disso, não geram bons resultados em pequenos conjuntos de dados, e às vezes é 
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necessária a construção de diversas árvores para obtenção de um bom resultado. Isso é 

feito, por exemplo, com o uso de algoritmos de florestas aleatórias (Random Forests), 

que utilizam uma fração das instâncias do conjunto total, para gerar múltiplas árvores 

cada uma delas gerando uma predição. Assim, uma alteração que poderia impactar uma 

determinada árvore, e assim alterar a predição do algoritmo, terá menos impacto, pois 

haverá centenas ou milhares de árvores de decisão trabalhando em conjunto (GÉRON, 

2019). Essa ideia, de pegar os múltiplos de múltiplos classificadores mais simples para 

obter um resultado é o que está implementado nos métodos “ensemble”. 

e) Redes Neurais Artificiais: São algoritmos que tentam simular o comportamento de um 

conjunto de neurônios biológicos dos animais. Criados na década de 1940, esses 

algoritmos tiveram períodos de destaque, com grande quantidade de estudiosos focados 

no seu desenvolvimento, e também períodos em que foram praticamente abandonados. 

Uma rede neural artificial possui uma camada de entrada e uma de saída, entre elas há 

um número N de camadas escondidas, repletas de neurônios artificiais que se 

comunicam entre si. Nos dias atuais esses algoritmos vêm tendo muito destaque, 

principalmente devido ao surgimento de algoritmos com diversas camadas de neurônios 

ocultos, e que são capazes de realizar aprendizagem profunda, as chamadas redes 

neurais profundas (RNP), que muitas vezes superam outras técnicas de aprendizagem 

de máquina em problemas grandes e complexos. (GÉRON, 2019). 

Atualmente centenas de artigos vêm sendo publicados envolvendo algum aspecto de 

aprendizagem de máquina e inteligência artificial para algum aspecto do diagnóstico, 

tratamento e assistência inteligente para a diabetes. Além do KNN, SVM, Naive Bayes, das 

árvores de decisão e redes neurais, os estudos também vêm utilizando métodos que unem 

diversos tipos de algoritmos para chegar a um melhor resultado, os chamados métodos 

“ensemble”, e métodos que seguem a lógica Fuzzy. Outros sistemas que utilizam técnicas como 

processamento de linguagem natural, além das técnicas clássicas de aprendizagem de máquina, 

também vêm sendo desenvolvidos com foco em assistentes inteligentes de interação mais 

simples com o ser humano portador da diabetes (CHAKI et al., 2022) 

2.7 DESENVOLVIMENTO DE BIOMARCADORES DIGITAIS  

A ciência já avançou a um ponto em que diversas doenças possuem biomarcadores. 

Esses biomarcadores podem ser alguma medida fisiológica, que, quando alterada por indicar 

uma doença, ou mesmo mutações em genes que causam alteração na conformação ou expressão 
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de uma proteína. Hoje, por exemplo, estão se tornando comuns diversos biomarcadores 

genéticos para o diagnóstico de um dos grupos de doença mais estudadas, o câncer, embora 

muitos deles ainda não sejam tão amplamente utilizados devido a sua complexidade 

(KONCINA et al., 2020). As tecnologias da informação vêm cada vez mais somando esforços 

na descoberta desses biomarcadores. Usos de métodos avançados de bioinformática, por 

exemplo, estão possibilitando a varredura completa do transcriptoma de um grupo de 

indivíduos, para descoberta de potenciais padrões que podem indicar a presença do câncer de 

mama (GYŐRFFY, 2021). A descoberta de biomarcadores, no entanto, vem se tornando um 

campo bem mais amplo. O uso de redes neurais profundas, por exemplo, está auxiliando a 

descoberta de biomarcadores a partir de imagens de doenças, expandindo o número de possíveis 

biomarcadores clínicos a partir de informações digitais (ECHLE et al., 2021). 

A popularização de dispositivos vestíveis2 com foco em saúde, vem expandindo de 

forma extraordinária a possibilidade de descoberta de biomarcadores, já que milhares de dados 

são extraídos de um único indivíduo, geralmente de forma contínua. Esses biomarcadores são, 

no entanto, geralmente bem difíceis de serem desvendados, geralmente passando por alguma 

etapa de aplicação de modelos de aprendizagem de máquina e sendo conhecidos como 

biomarcadores digitais. Alguns tipos de relógios digitais possuem alta qualidade na captação 

de dados fisiológicos e por isso já estão autorizados, por algumas agências regulatórias, para o 

acompanhamento de doenças, como epilepsia. No caso específico desta doença, foram 

descobertos padrões de parâmetros fisiológicos (dados de atividade eletrodérmica e dados de 

movimentação) que estão ligados a episódios de convulsão e funcionam como marcadores para 

emissão de alertas ao indivíduo ou a um acompanhante (ONORATI et al., 2017; PICARD; 

BOYER, 2021). 

Geralmente dados utilizados como biomarcadores digitais incluem diversos dados 

derivados da fotopletismografia3, como a oximetria de pulso e frequência cardíaca; dados 

 
2 São dispositivos que estão diretamente acoplados no exterior do corpo humano, ou em suas roupas. Geralmente 

são materiais flexíveis e adaptáveis ao corpo humano, e que podem operar com baixo custo de energia, o que 

facilita sua capação de dados contínua. Roupas com tecidos especiais, tatuagens inteligentes, lentes de contato 

inteligentes, smart rings e smartwatches são exemplos de dispositivos vestíveis (IQBAL et al., 2021). 

3 A fotopletismografia é uma técnica que utiliza a óptica para detectar as alterações no fluxo sanguíneo dos 

tecidos, sendo capaz de acompanhar a pulsação derivada do batimento cardíaco e utilizada em dispositivos como 

oxímetros. Ela também pode ser utilizada para realizar o acompanhamento da pressão arterial e da atividade 

cardíaca para avaliar alguns tipos de doenças vasculares periféricas (BISWAS et al., 2019). 
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derivados de actígrafos4; dados de atividade eletrodérmica, assim como temperatura da pele, 

exposição à radiação (DUNN; RUNGE; SNYDER, 2018). A frequência cardíaca diz respeito 

ao número de batimentos cardíacos por minuto. Em geral, uma pessoa em repouso tem entre 60 

e 100 batimentos cardíacos. Esse ritmo é aferido por medidores especializados, que tem muita 

acurácia, mas também pode ser medido por relógios ou pulseiras inteligentes através da 

fotopletismografia. Embora o grau de acurácia da medição seja um pouco menor nesses últimos 

equipamentos, eles são amplamente dispersos entre a população, ao contrário dos medidores 

especializados em forma de faixa que envolve todo o peito do indivíduo. Nestes aparelhos 

vestíveis em forma de relógios ou pulseiras inteligentes, o batimento cardíaco é medido através 

do fluxo sanguíneo presente abaixo da pele (CORLISS, 2021). Quando há relaxamento dos 

vasos sanguíneos há mais absorbância da luz verde (emitida pelo aparelho), já quando há 

contração a absorbância é menor. Esse movimento dos vasos afeta o volume sanguíneo, que é 

o responsável pela diferença de leitura. A informação desse volume sanguíneo no pulso (blood 

volume pulse) também se torna uma métrica estimada pelos relógios inteligentes (PICARD; 

BOYER, 2021).  

Outra métrica envolvendo os batimentos cardíacos, que também é extraída pelos 

relógios inteligentes é o intervalo interbatidas, também conhecido por intervalo RR, que é o 

intervalo entre dois picos R sucessivos. Os picos R são um dos 5 picos derivados da atividade 

elétrica do coração. Um eletrocardiograma genérico de um paciente saudável possui uma onda 

P, um complexo QRS e uma onda T. O complexo QRS é derivado dos potenciais elétricos 

gerados durante a despolarização dos ventrículos antes do episódio de contração. Alterações no 

intervalo entre esses picos podem representar variações normais dos batimentos derivados de 

diferentes respostas fisiológicas, mas quando intensificadas, podem indicar problemas de saúde 

mas graves, como arritmia cardíaca (GUYTON; HALL, 2006; PAULO; BOCK, 2014). 

Uma outra métrica extraída a partir de relógios e pulseiras inteligentes é a atividade 

eletrodérmica (EDA). Durante muito tempo a EDA foi utilizada apenas para aferição de 

resposta ao estresse num indivíduo, a partir do cálculo da média de seus valores no intervalo de 

tempo avaliado. Essa métrica avalia a condutância da superfície da epiderme, ou seja, 

fenômenos elétricos que estão ocorrendo na superfície da pele, e que são derivados da alteração 

 
4 São aparelhos registram continuamente a movimentação do indivíduo e são geralmente utilizados para avaliação 

do sono. Eles possuem sensores de acelerometria triaxial, ou seja, acelerômetros que medem movimentos nas três 

dimensões (TELLES et al., 2001). 
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da atividade das glândulas sudoríparas. Isto é uma forma indireta de medir a atividade do 

sistema nervoso simpático. Hoje a EDA também vem sendo bastante utilizada para avaliar 

características patológicas de um indivíduo, além de refletir fenômenos como picos de estresse, 

perturbações de sono, alterações na sudorese (PICARD; BOYER, 2021; POSADA-

QUINTERO; CHON, 2020).  

 

2.8 TRABALHOS RECENTES RELACIONADOS 

 

O desenvolvimento de dispositivos vestíveis, que podem extrair uma série de métricas de 

saúde do indivíduo, fez surgir uma imensa fonte de dados fisiológicos de pacientes, e como 

visto anteriormente, através da aplicação de algoritmos de aprendizagem de máquina esses 

dados podem ser associados a variação glicêmica. Nos últimos 5 anos, a busca por um 

dispositivo vestível que possa, eficazmente, substituir aparatos tecnológicos não invasivos no 

diagnóstico da curva glicêmica de um indivíduo, tem se intensificado 

Além da utilização de dispositivos vestíveis de uso comum, os estudos têm desenvolvido 

dispositivos que estão conectados com a Internet, armazenando dados em nuvem a todo tempo, 

podendo fornecer informações a um paciente e seu médico em tempo real. Esse contexto em 

que dispositivos médicos estão cada vez mais conectados com servidores em nuvem, e sem a 

necessidade de fios, é chamado de Internet das Coisas Médicas (Internet of Medical Things - 

IoMT). Um campo com intenso desenvolvimento de hardware, software e busca por 

biomarcadores de doenças (QURESHI; KRISHNAN, 2018).  

Um dos dispositivos inseridos no contexto do IoMT, o iGLU, foi criado com a intenção 

de verificar a glicose sérica de indivíduos portadores de diabetes, pré-diabetes ou de indivíduos 

saudáveis. Como inovações ele trouxe uma predição de glicose baseada em espectroscopia de 

absorbância e refletância com o uso de NIR. As leituras dos sensores eram processadas por uma 

rede neural profunda (RNP) com 10 camadas ocultas, gerando uma alta correlação entre a 

glicose real e a predita (R=0,953) (JAIN; JOSHI; MOHANTY, 2020). Uma atualização do 

sistema, o iGLU 2.0, foi criada logo em seguida. Utilizando uma tecnologia de hardware similar 

e um melhor modelo de ML, baseado em uma regressão polinomial múltipla de grau 3, a nova 

versão foi capaz de estimar glicemias na faixa de 80-420 mg/dL, mostrando um coeficiente de 

correlação (R=0,97%), entre a glicose real e a estimada, superior ao iGLU original (JOSHI et 

al., 2020). Apesar do alto poder preditivo do iGLU, ele ainda está na fase de protótipo e seu 

design não provê uma boa experiência para o usuário, uma vez que necessita que ele fique com 
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3 dedos ligados a sensores (Fig. 5A), isso dificulta sua popularização como dispositivo de uso 

cotidiano. Além do poder preditivo alto, as pesquisas também vêm focando em sensores que 

também utilizam o método de NIR porém com um menor consumo de energia, o que 

proporcionada um maior tempo de monitoramento antes do fim da bateria do dispositivo 

(IBRAHIM; DARWEESH; SOLTAN, 2022). 

Uma alternativa ao desenvolvimento de sensores específicos de glicose seria a utilização 

de aparelhos já existentes, como é o caso do actígrafo (sensor de actimetria), que é muito similar 

a um relógio de pulso. A adequação dos dados captados por este sensor, para predição de 

diabetes foi avaliada por Ramazi et al. (2021). Os autores deste estudo também coletaram dados 

da glicemia de indivíduos através de um aparelho de monitoramento contínuo de glicose. Dados 

demográficos (idade e sexo), dados físicos (peso, altura, circunferência da cintura), dados de 

exames sanguíneos (taxas de colesterol, triglicerídeos e hemoglobina glicada) e de exames de 

urina também foram obtidos. A partir disso, os dados de glicose e actimetria foram inicialmente 

convertidos por uma transformada de Fourier, o que ajudava no reconhecimento de padrões. 

Estes então foram passados para uma rede neural convolucional (CNN) responsável por analisar 

as dependências e interações entre os sensores. A saída desta CNN atuou como input de uma 

rede neural GRU (gated recurrent unit). O resultado da GRU foi processado paralelamente com 

os dados físicos, demográficos e sanguíneos de forma que todo esse pipeline construído pelos 

autores pudesse realizar tarefas de regressão e classificação. Como tarefa de classificação, o 

pipeline construído prevê, com acurácia de 0,9, 0,92, 0,87 e 0,88 se os dados de HbA1c, 

triglicerídeos, colesterol HDL e LDL, respectivamente, irão aumentar ou diminuir um ano após 

a coleta dos dados de um indivíduo. Como tarefa de regressão o pipeline prevê, com erros 

relativamente pequenos (RMSE < 18), o valor dessa diferença das taxas, entre o dado atual e o 

predito para um ano depois. 

Além da actmetria, os dados de outros tipos de sensores também vêm sendo relacionados 

com a diabetes, como os sensores de fotopletismografia. Prabha et al. (2021a) utilizaram dados 

de fotopletismografia de dispositivos vestíveis em 217 indivíduos para tentar predizer a 

presença da doença. Eles pré-processaram os dados contínuos da fotopletismografia, em janelas 

de 5 segundos e utilizaram técnicas de processamento de som (Mel-frequency cepstral 

coefficients - MFCC), seguido de aplicação de KNN e SVM para classificar o indivíduo em 

saudável, pré-diabético ou diabético. Seus resultados mostraram que fotopletismografia pode 

ser uma boa preditora para diabetes, uma vez que a acurácia do KNN foi de 83,87 % e do 

SVM+PCA foi de 92,28%. Os mesmos autores mostraram posteriormente que seu método 
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poderia chegar a acurácia de 99,74%, com o uso de um algoritmo de ML chamado de extreme 

gradient boost (XGBoost) (PRABHA et al., 2021b). Além da presença da doença, a 

fotopletismografia também pode ser utilizada para estimativa da glicemia de uma pessoa. Hina 

e Saadeh (2020) mostraram que o uso de SVM com um kernel gaussiano acoplado a um 

processador digital para eliminação de ruídos é capaz de gerar uma glicemia predita com uma 

alta correlação (R=0,968) com a glicemia real, assim como um baixo RMSE (11,20). Apesar 

disso da alta correlação, o trabalho de Hina e Saadeh (2020) não utilizou dispositivos 

comercialmente disponíveis, o que limita a disseminação do método. 

Figura 5 – Sensores não invasivos utilizados como fonte de dados em estudos de predição de 

glicemia. 

 
Legenda: (A) Protótipo do iGLU, (B) sensor de actimetria e (C) smartwatch Empatica E4. 

Fonte: Elaborado pelo autor com base em imagens publicadas por Jain, Joshi e Mohanty (2020), Ramazi et al. 

(2021) e Yin et al. (2021). 

 

Outros dispositivos vestíveis vendidos comercialmente contam com um maior número de 

sensores que o dispositivo utilizado por Ramazi et al. (2021). Eles geralmente possuem sensores 

de eletrocardiograma, sensores de resposta galvânica da pele, sensores de fotopletismografia e 

acelerômetros. Em 2021 foi proposto o DiabDeep, um framework que combinava sinais 

diversos como: I) dados fisiológicos como ritmo cardíaco, temperatura corpórea, resposta 

galvânica da pele, e pulsação, que são justamente captados por estes dispositivos vestíveis que 

funcionam como smartwatches (Fig. 5C); II) dados demográficos, como idade, peso, gênero, 

altura, sexo, características que podem ser obtidas a partir da interação de um usuário com um 

aplicativo em smartphone. Esse sistema utilizava redes neurais treinadas a partir de um 

paradigma “grow and prune”, onde primeiro se permite que os neurônios criem diversas 

conexões e depois se elimina aquelas que não são significativas. O framework foi construído 

com dois tipos de rede, uma delas executada em um servidor remoto, e outra que é executada 

no dispositivo periférico que o indivíduo carrega, como seu smartphone. Enquanto a arquitetura 

da primeira focava em alta acurácia, a última é menos robusta, focando em eficiência uma vez 
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que precisa rodar em um ambiente com restrição de armazenamento e memória. Apesar disso, 

quando utilizadas em conjunto, essas redes foram capazes de prever com alta acurácia (>95%), 

se indivíduos eram ou não portadores de diabetes. Além disso, elas também foram capazes de 

classificar, com acurácia por volta de 95%, qual o tipo de diabetes que o indivíduo possuía, se 

a DM1 ou a DM2 (YIN et al., 2021).  

Bent et al., (2021a) publicaram um estudo que também utilizava dados de sensores 

derivados da pulseira Empatica E4 em conjunto com dados demográficos dos pacientes. Além 

disso, eles adicionaram dados relacionados a hábitos comportamentais do indivíduo, como 

dados de atividade física, ritmo circadiano, estresse e dados de dieta envolvendo a ingestão de 

calorias, proteínas, açúcares e outros carboidratos. Para cada dado do sensor, eles extraíram 7 

métricas estatísticas, resultando num conjunto de dados final com 69 características. Os autores 

utilizaram essas características para tentar prever a glicose intersticial e tentar classificar os 

níveis de glicose em alta, baixa ou normal, com limiares que variavam para cada indivíduo. 

Para a tarefa de classificação os autores utilizaram redução de dimensionalidade e um algoritmo 

de árvore de decisão, obtendo uma acurácia de 84,3%. Para a tarefa de predição eles utilizaram 

o algoritmo XGBoost obtendo um RMSE de 21,22 mg/dL, o que é um erro relativamente alto. 

Os autores também observaram que os dados mais importantes para o seu modelo eram dados 

relacionados com a dieta do indivíduo. Dados desse tipo, no entanto, não são coletados 

automaticamente por pulseiras ou outro tipo de aparelho, exigindo que o usuário preencha sobre 

seus horários e tipo de alimento nas refeições. 

Além da tarefa de classificação do tipo de diabetes a partir de sinais fisiológicos 

capturados por smartwatches, estudos também buscam realizar uma tarefa de regressão para 

conseguir prever índices como a HbA1C e algumas métricas de glicemia. Um estudo com 8 

pessoas pré-diabéticas e outras 8 com glicemia em níveis normais mostrou que algumas 

métricas, como a média da glicose diária de um paciente, podem ser estimadas, com baixo nível 

de erro, a partir de um conjunto de sinais fisiológicos capturados pelos smartwatches. Neste 

estudo foram construídas florestas aleatórias específicas para cada uma das 27 métricas de 

variação de glicose avaliadas, das quais 11 foram obtidas com alta acurácia. Da mesma forma, 

a HbA1c também pode ser estimada, com baixo erro (RMSE = 0,281), a partir do mesmo 

conjunto de sinais fisiológicos captados por sensores de acelerometria, frequência cardíaca, 

atividade eletrodérmica ou temperatura. Apesar disso, este estudo não contou muita diversidade 

étnica e racial, o que pode limitar seus resultados para a população em geral (BENT et al., 

2021b).  
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Um outro estudo também focou num público composto por paciente diabéticos e não-

diabéticos, mas utilizando dados fisiológicos obtidos de um tipo diferente de smartwatch que o 

utilizado por Bent et al. (2021b). Além da frequência cardíaca e atividade eletrodérmica, outros 

dados como, nível de oxigênio no sangue (SPO2), pressão arterial diastólica, pressão arterial 

sistólica e temperatura corporal também foram utilizados por (AHMED et al., 2023) para 

estimar os níveis de glicose em pacientes diabéticos. Neste estudo, Ahmed et al. (2023) testaram 

os algoritmos SVM e Random Forest, uma RNP, e um algoritmo com a lógica Fuzzy, para 

predição da glicemia. Os 4 algoritmos testados resultaram em baixos valores de RMSE, que 

variou entre 0,183 até 0,197, valores menores que o obtido por Bent et al. (2021b). 

Interessantemente, o algoritmo de Random Forest superou os algoritmos de redes neurais 

profundas na predição da glicemia em relação a métrica de RMSE (RMSE = 0,183), que 

descreve o desvio médio dos valores reais de glicemia em relação aos valores preditos pelo 

algoritmo. 

Dados como frequência cardíaca, atividade eletrodérmica e movimentação também 

foram recentemente utilizados como informações de entrada para uma árvore de decisão que 

mostrou uma certa capacidade (AUC = 0,76) de detectar eventos de hipoglicemia em pacientes 

diabéticos que faziam terapia com insulina e por isso tinham mais chances de desenvolver 

hipoglicemia. Para isso Lehmann et al., (2023) utilizaram um relógio Garmin vivoactive 4S em 

conjunto com uma pulseira Empatica E4 e um glicosímetro Dexcom G6 para coletar dados de 

paciente durante 30 dias. 

Apesar do fato de que trabalhos recentes vêm conseguindo correlacionar, com baixo erro, 

métricas de glicose com dados extraídos de sensores de smartwatches, uma das limitações para 

sua aplicação em larga escala é o fato de a maior parte das pulseiras e relógios inteligentes não 

possuírem todos os sensores que geralmente são utilizados nos estudos (BENT et al., 2021b). 

Outro ponto fraco a ser levantado é o fato de alguns estudos apontarem que os dados gerados 

pelos sensores de relógios e pulseiras inteligentes são muito predispostos a conterem erros de 

leituras, artefatos e possuem muita interferência de ruído, e que por isso não devem ser fontes 

ótimas de dados para alimentar diversos tipos de algoritmos de aprendizagem de máquina. E 

que por isso devem ser filtrados e decompostos antes do uso em qualquer tarefa de predição ou 

classificação (FÖLL et al., 2021).  

Um resumo de todos os trabalhos relacionados revisados pode ser visto no Quadro 1. 
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Quadro 1 – Principais características de trabalhos relacionados.  

Autor/data 
Equipamento/ método de 

coleta de dados 

Parâmetros avaliados 
Algoritmos utilizados Finalidade Desempenho 

(JAIN; 

JOSHI; 

MOHANTY, 

2020) 

iGLU/ espectroscopia de 

absorbância e refletância 

com o uso de NIR 

Glicose Sérica Rede Neural Profunda 

(10 neurônios e 10 

camadas ocultas) 

Predição do índice 

glicêmico 

RMSE = 11,56 

MAD = 9,89 

(JOSHI et al., 

2020) 

iGLU2/ espectroscopia de 

absorbância e refletância 

com o uso de NIR 

Glicose Sérica Regressão Polinomial 

Múltipla de grau 3 

Predição do índice 

glicêmico 

RMSE = 13,57 

MAD = 9,42 

Ramazi et al. 

(2021) 

Actígrafo, exame 

sanguíneo, exame de 

urina, avaliação física, 

dados demográficos.  

Movimentação em tempo 

real, idade, sexo, peso, 

altura, circunferência da 

cintura, colesterol, 

triglicerídeos, hemoglobina 

glicada 

Rede Neural 

Convolucional (CNN) 

seguida de uma rede 

neural GRU 

Classificação e 

predição de taxas 

como HbA1c, 

triglicerídeos, 

colesterol HDL e 

LDL 

Classificação de 

HbA1C:  

• Acurácia = 0,90 ± 

0,02  

• AUROC= 0,88 ± 

0,02 

Predição de HbA1C: 

• RMSE = 1,37 ± 

0,8 

Prabha et al. 

(2021a) 

Pulseira Empatica E4 Fotopletismografia KNN e SVM Classificação de 

pacientes saudáveis, 

KNN: Acurácia = 

83,87%  
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diabéticos e pré-

diabéticos. 

SVM+PCA:  

Acurácia = 92,28%. 

Hina e 

Saadeh 

(2020) 

Protótipo que utiliza uma 

emissão de LED NIR com 

um comprimento de onda 

de λ=940 nm 

Fotopletismografia SVM Predição do índice 

glicêmico 

RMSE = 11,20 

mARD = 7,62% 

(YIN et al., 

2021) 

Pulseira Empatica E4; 

questionários em 

smartphones Samsung 

Galaxy S4. 

Ritmo cardíaco, temperatura 

corpórea, resposta galvânica 

da pele, pulsação, idade, 

peso, gênero, altura, sexo. 

Redes Neurais Classificar 

indivíduos 

portadores e não 

portadores de 

diabetes; diferenciar 

DM1 e DM2. 

Acurácia = 94,6% 

para predição de 

três classes;  

Acurácia = 96,3% 

para predição de 

duas classes. 

(BENT et al., 

2021a) 

Pulseira Empatica E4 e 

Glicosímetro Dexcom G6 

Acelerometria, frequência 

cardíaca, atividade 

eletrodérmica e temperatura, 

dados demográficos, dados 

de hábitos: estresse, dietas, 

exercícios, ritmo circadiano 

e outros. 

Árvore de decisão e 

XGBoost 

Classificar o nível de 

glicose e prever a 

glicose intersticial. 

Acurácia = 82% 

Recall = 82% 

Precisão = 82,3% 

F1 score = 82,1% 
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(BENT et al., 

2021b) 

Pulseira Empatica E4 Acelerometria, frequência 

cardíaca, atividade 

eletrodérmica e temperatura. 

Random Forest  Estimar 27 métricas 

de variação de 

glicose e a HbA1C 

em pacientes 

saudáveis e pré-

diabéticos. 

HbA1C:  

• RMSE= 0,357 

• MAPE= 5,1% 

Métricas restantes: 

• 0,25 < RMSE < 

763 

• 4,14 < MAPE < 

162,79  

 Ahmed et al. 

(2023) 

Pulseira RiverSong Wave 

O2  

Frequência cardíaca, 

atividade eletrodérmica, 

nível de oxigênio no sangue 

(SPO2), pressão arterial 

diastólica, pressão arterial 

sistólica, temperatura 

corporal e tremores. 

SVM, Random Forest, 

RNP e lógica Fuzzy. 

Predição do índice 

glicêmico 

Random Forest: 

• 0,183 < RMSE < 

0,189 

• MAE = 0,102 

(LEHMANN 

et al., 2023) 

Relógio Garmin 

vivoactive 4S e Pulseira 

Empatica E4  

Frequência cardíaca, 

atividade eletrodérmica e 

movimentação. 

Árvore de decisão. Predição de 

episódios de 

hipoglicemia (tarefa 

de classificação). 

AUROC = 0,76 ± 

0,07 
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3  OBJETIVOS 

 

3.1 OBJETIVO GERAL 

 

Avaliar modelos de aprendizagem de máquina a partir de dados de dispositivos vestíveis 

e verificar se eles são capazes de prever, com eficácia, se um indivíduo pode ser caracterizado 

como pré-diabético. 

 

3.2 OBJETIVOS ESPECÍFICOS 

 

a) Obter e realizar o processamento dos dados brutos da pulseira Empatica E4 obtidos do 

banco de dados PhysioNet; 

b) Realizar um teste de prova de conceito para avaliar o desempenho de vários algoritmos 

na tarefa de classificação do estado de saúde de indivíduos com base nas leituras 

derivadas da pulseira Empatica E4; 

c) Realizar um teste de prova de conceito para avaliar a performance de diversos 

algoritmos na tarefa de classificação do estado de saúde de indivíduos a partir de uma 

base contendo atributos engenheirados derivados da pulseira Empatica E4. 
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4  METODOLOGIA 

 

4.1 FONTE DE DADOS 

 

Os dados foram obtidos a partir do banco de dados PhysioNet (GOLDBERGER et al., 

2000), um portal que armazena diversas bases de dados que envolvem experimentos sobre a 

fisiologia humana. O banco de dados utilizado foi o “BIG IDEAs Lab Glycemic Variability and 

Wearable Device Data” (https://physionet.org/content/big-ideas-glycemic-wearable/1.0.0/) 

publicado inicialmente em setembro de 2022 e atualizado em março de 2023 (CHO et al., 2023). 

 

4.2 DESCRIÇÃO DO BANCO DE DADOS 

 

O banco de dados possui informações sobre dados fisiológicos de 16 indivíduos. Desses, 

9 eram do sexo feminino e 7 eram do sexo masculino. Metade dos indivíduos possuíam valores 

de HbA1C superiores a 5,7 e dessa forma são portadores de pré-diabetes (5 mulheres e 3 

homens). A outra metade possuía níveis normais de HbA1C (4 homens e 4 mulheres). Todos 

os indivíduos possuíam idades que variavam entre 35 e 65 anos.  

Os dados disponibilizados para cada indivíduo são dados de leitura de métricas 

fisiológicas extraídas a partir da pulseira Empatica E4 e a partir do glicosímetro Dexcom 6. A 

pulseira Empática forneceu os dados de atividade eletrodérmica, volume sanguíneo no pulso 

(blood volume pulse), ritmo cardíaco, intervalo interbatidas (intervalo entre os batimentos 

cardíacos), temperatura da pele e dados de movimentação (acelerômetro nos eixos X, Y e Z). 

Cada um desses dados foi coletado simultaneamente, porém o intervalo de tempo entre as 

leituras variava de acordo com o tipo de sensor. Os dados de movimentação eram lidos 32 vezes 

por segundo, enquanto os dados de pulsação eram lidos no dobro dessas vezes (64 leituras por 

segundo). Outros dados têm leituras menos frequentes, como a atividade eletrodérmica e a 

temperatura da pele, ambas aferidas 4 vezes por segundo; o intervalo interbatidas a cada 781 

milésimos de segundo, e por último o ritmo cardíaco, uma vez por segundo. O glicosímetro 

Dexcom 6 forneceu dados diversos, mas principalmente dados da glicemia a cada intervalo de 

3 minutos. Os dados do Dexcom, no entanto, não foram utilizados neste estudo.  

 

4.3 PRÉ-PROCESSAMENTO DOS DADOS 

4.3.1 Pré-processamento para construção de uma base de dados de sinais brutos 

 

https://physionet.org/content/big-ideas-glycemic-wearable/1.0.0/
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O primeiro passo do pré-processamento foi padronizar o intervalo de tempo de leitura 

para cada sensor. Isso foi realizado considerando-se a média das leituras numa janela de tempo 

de 1 minuto, ou seja, todas as leituras obtidas no intervalo de um minuto foram somadas e 

divididas pelo número de leituras. Assim, cada sensor passou a apresentar apenas um valor por 

minuto. Essa transformação foi realizada com o método “resample” da biblioteca Pandas 

(versão 1.4.3) do Python (versão 3.9.12). 

Assim como os dados originais da base, os dados pré-processados da base estavam 

separados por indivíduo e por sensor utilizado para sua captação. Dessa forma havia 16 arquivos 

para cada sensor, cada um possuindo os dados de um determinado indivíduo. O passo seguinte 

foi unir todos os dados de um indivíduo, neste momento foram considerados os seguintes dados: 

I) atividade eletrodérmica (EDA), II) ritmo cardíaco, III) intervalo interbatidas (IBI - intervalo 

entre os batimentos cardíacos), IV) temperatura da pele, V) pulsação (blood volume pulse), VI) 

sexo e VII) categoria de saúde. Excluindo-se os dados VI e VII, todos os outros dados variaram 

com o passar dos minutos e por isso o conteúdo dos diversos arquivos foram mesclados através 

de um procedimento de “full outer join” utilizando como chave primária o momento de cada 

leitura. A descrição dos atributos da base de dados final está mostrada no Quadro 2. 

Quadro 2 – Descrição dos atributos da base de dados 

Atributo Descrição Tipo 

Coluna 0 Atividade eletrodérmica Variável Real 

Coluna 1 Ritmo cardíaco Variável Real 

Coluna 2 Intervalo interbatidas Variável Real 

Coluna 3 Volume sanguíneo no pulso Variável Real 

Coluna 4 Temperatura da pele Variável Real 

Coluna 5 Sexo Variável categórica (binária) 

0 = Feminino 

1 = Masculino 

Coluna 6 Categoria de saúde de onde 

os dados foram coletados 

(Classe) 

Variável categórica (binária) 

0 = Hb1AC < 5,6 (Indivíduo 

Saudável) 

1 = Hb1AC ≥ 5,7 (Indivíduo Pré-

diabético) 
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Como os dados são reais ou binários, não houve nenhuma necessidade de transformação 

das categorias. No entanto, apesar de não necessitarem desse tipo de transformação, os dados 

da base não estavam normalizados. Para realização desse procedimento foi utilizada a função 

StandardScaler() do pacote Scikit-Learn (PEDREGOSA et al., 2011), que transforma um valor 

X em um valor Y a partir da função: Y = (X - U) / S, onde U é a média dos valores de um 

atributo e S é a o desvio padrão. 

Dados faltantes presentes na base foram tratados a partir de imputação considerando o 

método dos vizinhos mais próximos. Nesse método, os valores faltantes são imputados 

utilizando os valores, do mesmo atributo, das instâncias com características mais similares as 

instâncias cujo valores estão ausentes. Para realização da imputação foi utilizada a classe 

KNNImputer do pacote Scikit-Learn (versão 1.1.1). No caso de uma determinada instância 

conter apenas valores faltantes, não foi realizada uma imputação, mas sim a exclusão da 

instância da base de dados. 

4.3.2 Pré-processamento para construção de uma base de dados de sinais decompostos 

 

Para avaliar se há diferenças do desempenho da tarefa de classificação entre a utilização 

de dados brutos derivados da pulseira Empatica E4 e a utilização de dados frutos da 

decomposição de sinais, produzimos uma segunda base de dados. Essa base era composta pelos 

dados de ritmo cardíaco, temperatura da pele, volume sanguíneo do pulso, sexo e pela 

decomposição de dois sinais, o intervalo interbatidas e a atividade eletrodérmica. O processo 

de engenharia de atributos desses dois sinais foi realizado através da biblioteca FLIRT (versão 

0.0.2) (FÖLL et al., 2021). Essa biblioteca possui diversas funções, dentre elas funções 

específicas para lidar com os dados produzidos pela pulseira Empatica E4.  

Para o processamento dos dados foram utilizadas duas funções da biblioteca, a função 

flirt.hrv.get_hrv_features() e flirt.eda.get_eda_features(), aplicadas nos dados de IBI e EDA 

respectivamente. A primeira função recebeu como parâmetros: window_length = 1200, 

window_step_size = 60, domains = ['td', 'fd', ‘nl’, 'stat'] e threshold = 0,5. O parâmetro 

window_step_size diz respeito ao nível de granularidade da análise em relação ao tempo, um 

valor igual a 60 (como configurado) quer dizer que o processamento será feito a cada intervalo 

de 60 segundos, de forma a estar na mesma escala de tempo que o restante dos dados dos outros 

três sensores. A opção de utilizar a lista ['td', 'fd', ‘nl’, 'stat'] no parâmetro ‘domains’ gera 

características em todos os domínios possíveis para esse tipo de dado, como o domínio de tempo 
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e frequência, além de características estatísticas e características não-lineares capazes de 

quantificar a incerteza nas sequências dos intervalos interbatidas. Essa função foi responsável 

por decompor o dado de intervalo interbatidas em 54 novos atributos. Já a segunda função 

recebeu como parâmetros: window_length= 1200, window_step_size = 60, produzindo ao final 

44 atributos, dos quais 2 (phasic and tonic entropy) foram eliminados por conter muitos valores 

infinitos para diversas instâncias. 

As etapas subsequentes de normalização e imputação de dados foram realizadas da 

mesma forma que o procedimento descrito anteriormente. Porém, instâncias onde havia valores 

faltantes para os dados decompostos pelo FLIRT foram excluídas do conjunto de dados. 

 

4.4 ALGORITMOS AVALIADOS 

 

Objetiva-se saber se há uma diferença nos parâmetros fisiológicos, captados pela 

pulseira Empatica E4, que seja suficiente para classificar um indivíduo em saudável ou pré-

diabético. Para esta tarefa de classificação utilizamos a biblioteca Scikit-Learn, que possui todas 

as funções necessárias para cada uma das etapas de um projeto envolvendo aprendizagem de 

máquina. 

A fim de encontrar um algoritmo com maior capacidade preditora testamos três classes 

distintas de algoritmos: máquinas de vetores de suporte (SVM), implementada pelas classes 

svm.SVC() e svm.LinearSVC(); árvores de decisão, implementada pelas classes  

ensemble.RandomForestClassifier() e tree.DecisionTreeClassifier(); e redes neurais 

implementada pela classe neural_network.MLPClassifier(); assim como um meta-estimador 

das classe ensemble.StackingClassifier() construído a partir das melhores configurações dos 

melhores algoritmos de cada tipo de algoritmo. 

Todos os algoritmos de aprendizagem supervisionada avaliados neste trabalho tiveram 

seus hiperparâmetros otimizados através de várias permutações entre os valores dos parâmetros, 

realizadas em conjunto com uma validação tipo 10-fold cross validation (estratificado). Isso foi 

realizado a partir da função GridSearchCV, que recebe um objeto do tipo pipeline, um o valor 

k (neste caso k=10) para a validação cruzada e um conjunto de parâmetros a serem testados. Os 

parâmetros utilizados para a otimização de cada um dos algoritmos testados estão listados no 

Quadro 3. 
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4.5  VALIDAÇÃO ESTATÍSTICA 

 

Após a obtenção dos melhores hiperparâmetros para cada algoritmo, os dados foram 

divididos em conjuntos de treinamento (70% da base) e de teste (30% da base), sendo obtidas 

as métricas de Acurácia, Precisão, Sensibilidade e Área sob a Curva ROC. Essas mesmas 

métricas foram obtidas a partir da execução de um uma validação cruzada 10-fold no conjunto 

de treinamento. Obtendo-se então 10 valores de cada métrica para cada algoritmo no conjunto 

de treinamento e 1 valor para a comparação de treinamento e teste. Foi realizado um teste de 

ANOVA para verificar se algum dos algoritmos testados é capaz de superar os outros em 

relação a cada uma das 4 métricas avaliadas. Um teste t de student foi realizado entre o 

algoritmo com o maior valor médio de uma determinada métrica e o valor médio dela para cada 

Quadro 3 – Hiperparâmetros avaliados para cada um dos algoritmos de aprendizagem de 

máquina. 

Algoritmo Hiperparâmetros: valores 

SVC 

C: [1, 0.1] 

gamma: ['auto','scale'] 

kernel: ['rbf', 'sigmoid'] 

LinearSVC 

C: [1, 0.5, 0.1, 0.05] 

max_iter: 3000 

loss: ['squared_hinge','hinge'] 

DecisionTreeClassifier 

criterion: ['gini', 'entropy'] 

min_samples_leaf: [2,3] 

max_depth: [3,5,6,7,9,11,13,15,17,19] 

min_samples_split= [2,3,5,7] 

Random ForestClassifier 

criterion: ['gini', 'entropy'] 

min_samples_leaf: [1,2,3,4] 

max_depth: [5, 10, 20, 30, 50, None] 

min_samples_split= [2,3,5] 

MLPClassifier 

hidden_layer_sizes: [(10,10), (10,20), (20, 50), (20,20,30), 

(50,100, 50), (20, 50, 50), (20,20,30), (10,10,10,10)] 

alpha: [0.00001, 0.000001, 0.0001] 

learning_rate_init: [0.001, 0.0005] 

activation': ['tanh', 'relu'] 
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um dos algoritmos restantes, de forma a verificar-se quais de fato eram os melhores algoritmos 

de predição. O tempo de execução de cada algoritmo para as funções de treino e teste também 

foi calculado, para ser utilizado como critério de desempate quando os scores de qualidade dos 

métodos não diferirem significativamente.  

 A visualização compacta das etapas realizadas neste trabalho está mostrada na Figura 6. 

 Figura 6 – Resumo geral do fluxo de trabalho utilizado neste estudo. 

 
 Fonte: Elaborado pelo Autor 
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5  RESULTADOS E DISCUSSÃO 

 

5.1 ANÁLISE EXPLORATÓRIA DA BASE CONTENDO OS DADOS BRUTOS 

DERIVADOS DOS SENSORES 

  

A base de dados resultante da transformação das leituras brutas dos sensores, que 

estavam disponíveis no PhysioNet, possui uma dimensão de 196.336 instâncias contendo 7 

atributos, 6 independentes e 1 dependente, como descrito com maiores detalhes na seção de 

metodologia. Ao realizar-se a transformação de cada leitura bruta dos sensores para uma média 

de seus valores, numa janela de um minuto, seguida da junção dos dados dos diversos sensores 

de um mesmo indivíduo, observou-se que em alguns minutos da série temporal, não havia 

quaisquer leituras. Nesses casos, as instâncias foram excluídas da base de dados, resultando em 

uma base com 144.535 instâncias. 

Uma análise adicional, entretanto, mostrou que há casos em que ocorrem dados faltantes 

em um ou dois atributos de uma determinada instância. No entanto essa ocorrência não é 

uniforme, a quantidade de dados faltantes variou muito entre os atributos da base, enquanto os 

atributos EDA e BVP não possuíam dados faltantes e os atributos HR e temperatura possuíam 

23 e 2 valores faltantes respectivamente, o atributo IBI possuía 35.013 valores faltantes, pouco 

mais de 24% dos valores. Para todos esses casos, novos dados foram imputados através do 

método dos vizinhos mais próximos. A distribuição dos dados antes e após a imputação está 

mostrada na Figura 7. Como pode ser observado, a imputação causou mínimos impactos na 

distribuição dos dados da maior parte das variáveis, exceto da variável IBI cuja média deslocou-

se um pouco mais para esquerda da distribuição. A Figura 7 também mostra aspectos 

interessantes do perfil dos dados — a maior parte dos dados não apresenta uma distribuição 

normal. Apenas a variável IBI parece ter uma distribuição que se assemelha a uma distribuição 

normal. A variável BVP possui uma distribuição em forma de uma curva leptocúrtica, enquanto 

as variáveis TEMP e HR são assimétricas, TEMP com assimetria negativa e HR com assimetria 

positiva. Já a variável EDA apresenta um conjunto de valores com uma distribuição muito 

similar a uma distribuição exponencial. 

Uma outra característica dessa base de dados é a ausência de valores duplicados, 

evitando a necessidade de qualquer tratamento adicional. Observamos também que não há 

correlações fortes entre a maior parte dos atributos da base (Fig. 8A). Enquanto isso há atributos 

que apresentam pouca ou nenhuma correlação com os outros atributos. O atributo BVP, por 
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exemplo, apresenta uma correlação quase nula com todos os outros atributos da base. Também 

podemos observar que a base de dados possui uma distribuição de dados bastante homogenia 

em relação às classes (Figura 8B, diagonal direta). 

Figura 7 – Histograma dos atributos antes e depois da imputação de dados. 

 

Legenda: No eixo X estão mostrados os valores dos atributos para cada instância, no eixo Y é mostrada a 

quantidade de instâncias que possuem uma determinada faixa de valor. Podemos ver que a imputação teve maior 

impacto na variável IBI – Interbeat Interval. 

 

 Antes de iniciar as etapas de treinamento e teste dos algoritmos, foi realizada uma 

otimização dos hiperparâmetros. As melhores configurações para cada algoritmo estão 

mostradas na Figura 9.  
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Figura 8 – Perfil de correlação e distribuição dos atributos da base de dados. 

Fonte: Elaborado pelo autor  
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Para o algoritmo CART, implementado pela classe DecisionTreeClassifier, os melhores 

valores foram: criterion = gini, o que especifica o Gini impurity, que indica a chance de novos 

dados serem classificados de forma incorreta caso lhes fosse dado um valor aleatório de classe 

de acordo com a distribuição de classe observada; min_samples_split = 7, que especifica o 

menor número de amostras necessárias para que um nó interno seja dividido; min_samples_leaf 

= 3, que especifica o número mínimo de amostras que podem estar em um nó folha; 

max_depth=13, o que quer dizer que a árvore não será expandida até o máximo possível, ela só 

poderia ser expandida até 13 nós. 

Para o comitê de árvores de decisão, implementado pela classe Random ForestClassifier, 

os melhores valores foram criterion = entropy, uma medida que irá indicar a desordem de um 

determinado nó para medir a qualidade da divisão daquele nó; max_depth=50, o que quer dizer 

que cada árvore na floreta aleatória não será expandida até o máximo possível, ela só poderia 

ser expandida até 50 nós; min_samples_split = 5, , que especifica o menor número de amostras 

necessárias para que um nó interno seja dividido; min_samples_leaf = 1; que especifica o 

número mínimo de amostras que podem estar em um nó folha, neste caso, apenas uma amostra. 

Os hiperparâmetros variam bastante entre os dois tipos de algoritmos de máquinas de 

vetores de suporte testados. A variação dos hiperparâmetros do LinearSVC praticamente não 

afetou a predição do algoritmo, o que pode ser visto por uma série de curvas sobrepostas (painel 

central à esquerda). O contrário foi observado com os hiperparâmetros do algoritmo SVC, onde 

os melhores valores foram, kernel=rbf; que especifica a função de decisão do algoritmo e 

permite a solução de problemas mais complexos; C=1; que é um parâmetro de regularização, 

quanto maior mais estreita é a margem de decisão da função, quanto menor, mais simples a 

função de decisão; gamma = auto, que define o quão longe irá a influência de um exemplo de 

treinamento, ou seja, de qual será o tamanho da influência das instâncias selecionadas como os 

vetores de suporte. O valor de gamma igual a “auto” significa que gamma assume o resultado 

da divisão: 1/número_de_atributos. Logo, neste caso, gamma é igual a 0,2. 

Em relação às redes neurais, ficou claro que um maior número de camadas ocultas reduziu 

a qualidade do modelo, assim como o uso de mais de 50 neurônios por camada. O melhor 

resultado foi obtido com o uso de 3 camadas ocultas, tendo 20 neurônios na primeira camada 

oculta, 50 na segunda e 50 na terceira. A melhor função de ativação (parâmetro que decide se 

o neurônio vai ser ativado ou não) dada pelo hiperparâmetro “activation” foi a função 

hiperbólica tangencial, representada pelo valor “tanh”. A melhor configuração do modelo 

também conta com uma taxa de aprendizado (learning_rate_init) de 0,001 e um valor alpha = 

1x10-5, que especifica um termo de regularização menor que o padrão para esse algoritmo.  
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Figura 9 – Resultado da otimização dos hiperparâmetros dos modelos testados. 

 
Fonte: elaborado pelo autor 
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5.2 ANÁLISE DA PROVA CONCEITUAL E DA QUALIDADE DOS MODELOS PARA 

CLASSIFICAÇÃO DA PRÉ-DIABETES  

 

Os modelos, já com seus hiperparâmetros otimizados, foram submetidos a validação 

cruzada dentro do conjunto de treinamento e, para cada modelo, 4 métricas foram extraídas. Os 

resultados, mostrados na Figura 10, indicam que é possível utilizar aprendizagem de máquina 

e dados de dispositivos vestíveis para classificar indivíduos portadores da pré-diabetes e 

indivíduos saudáveis. Apesar disso, essa classificação não é perfeita, a acurácia da predição não 

é elevada. Ela variou entre 0,612 até 0,774, o que quer dizer que no melhor caso, 77,4% das 

predições foram corretas e 22,6 % foram incorretas.   

 

Figura 10 – Resultado das métricas de avaliação de desempenho dos modelos. 

 
Fonte: elaborado pelo autor 
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Legenda: Os asteriscos representam a significância estatística da comparação entre duas médias. Neste caso, 

cada valor está comparado com o valor do algoritmo com o maior score em cada uma das 4 métricas. **** 

representa um p-value < 0,0001. 

 

O algoritmo Random Forest teve uma performance significativamente melhor que os 

outros modelos testados em termos de acurácia (Fig. 10A) e precisão (Fig. 10C), ou seja, o 

modelo possui uma melhor capacidade de não classificar como positivo, algo que é negativo. 

Isso quer dizer que o modelo tem a menor taxa de falso positivo entre todos os modelos. Em 

outras palavras ele é o algoritmo que menos classifica dados de pacientes sem pré-diabetes 

como sendo dados de pré-diabéticos. Apesar disso, o Random Forest teve uma sensibilidade 

um pouco menor que o algoritmo SVC (Fig. 10 D). Além de uma maior acurácia e precisão o 

Random Forest também tem o melhor equilíbrio entre a taxa de falsos positivos e a taxa de 

positivos verdadeiros, representado por uma AUC (area under the curve) de 0,855, 

significativamente maior que a dos outros algoritmos (Fig. 10B). 

Uma vez que o Random Forest possui a melhor acurácia, precisão e AUC dos 3 

algoritmos, mas possui uma sensibilidade inferior ao SVC, tentou-se criar um classificador 

misto que utilizava as entradas do SVC, do Random Forest e da rede neural MLP. O gráfico da 

curva ROC para esses três métodos, assim como o do classificador heterogêneo está mostrado 

na Figura 11. Fica claro que a criação do comitê heterogêneo não gerou nenhuma melhora em 

relação a utilização única do algoritmo Random Forest, mas gerou aumento do custo 

computacional, o que nos leva a descartar esse modelo. A curva DET (Figura 11) deixa claro 

que há uma sobreposição entre a performance do classificador heterogêneo e do Random Forest, 

havendo diferença apenas em valores muito baixos de falsos positivos e negativos. 

 

Figura 11 – Curvas ROC e DET para cada um dos modelos testados. 

 
Fonte: Elaborado pelo autor 
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Nota: A curva ROC mostra o balanço entre positivos verdadeiros e falso positivos, a área sob a curva ROC é um 

indicador da qualidade do modelo, quanto maior a área melhor o modelo. A curva DET mostra o comportamento 

do modelo de acordo com a taxa de falsos positivos contra a taxa de falsos negativos, fica claro que para obter-se 

uma baixíssima taxa de falsos negativos, ou seja, dados indicativos de pré-diabetes classificados como saudáveis, 

há uma alta taxa de falsos positivos. Observa-se no gráfico que as linhas de Stacking Classifier e do Random Forest 

estão sobrepostas. 

 

Após a execução da validação cruzada no conjunto de treino, os modelos também foram 

comparados em relação ao conjunto de teste. Como esperado, o algoritmo de Random Forest 

teve uma melhor performance em relação aos outros algoritmos testados. A comparação com 

um comitê heterogêneo de classificação também mostrou a efetividade do Random Forest, pois 

a diferença de acurácia no seu uso, sozinho ou em conjunto com outros 3 algoritmos, foi de 

apenas 0,07%.  

Figura 12 – Acurácia da predição no conjunto de teste. 

 
Fonte: Elaborado pelo autor 

 

Os resultados detalhados das predições de cada um dos algoritmos avaliados podem ser 

vistos na Figura 13, que mostra as matrizes de confusão geradas. Fica claro que o algoritmo 

SVC produz um número muito menor de erros em relação a dados de pré-diabéticos (rótulo 1) 

classificados como dados de indivíduos saudáveis (rótulo 0), apenas 3523 erros, num universo 

de 23626 dados de pré-diabéticos, uma taxa de falso negativo de 14,91%. Apesar disso, ele 

apresenta uma das maiores taxa de falso positivo dentre todos os algoritmos, 46,96%, um valor 

muito maior que o apresentado pelo Random Forest cuja taxa é de 27,06%. Isso reflete uma 

baixa precisão (68,42%) no algoritmo SVC com o kernel RBF. 

Como para um teste de diagnóstico deve haver um equilíbrio entre o número de falsos 

positivos e falsos negativos e, uma vez que o SVC produz uma taxa de falso positivo muito 

grande (quase um erro a cada duas estimativas), apesar da sua baixa taxa de falso negativo, ele 

é menos adequado para uma tarefa de predição da pré-diabetes que o algoritmo Random Forest 
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que apresentou a maior área sob a curva ROC nos dados de treino (Figura 11) e apresenta uma 

taxa de falso positivo de 27,06% e uma taxa de falso negativo de 17,76%. 

 

Figura 13 – Matrizes de confusão resultantes da predição do conjunto de teste. 

 
Fonte: Elaborado pelo Autor 

Legenda: 0 representa a classe “saudável” e 1 representa a classe “pré-diabético” 
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5.3 ANÁLISE DA BASE CONTENDO OS DADOS DECOMPOSTOS PELO PACOTE 

FLIRT E APLICAÇÃO DO ALGORITMO DE RANDOM FOREST 

 

A base de dados resultante do uso do FLIRT para decomposição de sinais possui uma 

estrutura bem distinta da base de dados das leituras brutas dos sensores, cujos dados estavam 

disponíveis no PhysioNet. Enquanto esta possuía apenas 7 atributos, sendo 6 independentes e 

1 dependente, a base contendo os sinais decompostos possui 99 atributos, sendo 98 

independentes e 1 dependente. Os atributos dessa nova base de dados são representados apenas 

por variáveis numéricas e pela variável categórica binária ‘sexo’. Em relação a quantidade de 

instâncias, enquanto a base de dados brutos possuía 144.535 instâncias a base de dados do 

FLIRT possui apenas 86437. Essa redução de aproximadamente 40% do número de instâncias 

reflete a presença de ruídos, artefatos e a baixa qualidade de sinal dos sensores em determinados 

momentos da série temporal.  

Devido a elevada quantidade de atributos, foi realizada a redução de dimensionalidade 

através da aplicação do algoritmo de PCA. Foram geradas duas bases de dados após a aplicação 

do PCA, na primeira delas foram mantidos apenas os 10 principais componentes, que 

respondiam por 80,48% da variância contida na amostra; na segunda foram mantidos um 

número de componentes que explica 95% da variância da amostra, valor esse que foi obtido 

com o uso de 26 componentes principais, ou seja, pouco mais de um quarto do total de atributos 

presente na base de dados processada pelo FLIRT. A Figura 14 mostra a distribuição dos novos 

atributos, percebe-se que boa parte deles apresenta uma distribuição normal, embora haja, em 

alguns, a presença do fenômeno de curtose. Também fica claro que os atributos não são 

correlacionados, ou possuem apenas uma fraca correlação, evidenciando o efeito do PCA. 

Foi realizada uma otimização dos hiperparâmetros do algoritmo derivado do melhor 

modelo obtido a partir da base de dados dos sinais brutos, o algoritmo de Random Forest. Para 

base completa e para ambas as bases de dados, com 10 e 26 componentes principais, os 

melhores valores de parâmetros foram criterion = entropy, min_samples_split = 2 e 

min_samples_leaf = 1. Quanto a profundidade máxima da árvore, não houve diferença de score 

para valores acima de 50 para as bases reduzidas, como pode ser observado na Figura 15. Nota-

se nesta figura, que as linhas vermelha e azul (que representam a profundidade de 50 e ausência 

de poda por profundidade (valor “None”)) estão totalmente sobrepostas. Apesar disso, uma 

árvore podada é mais simples e por isso, o valor de 50 foi escolhido para o hiperparâmetro 

max_depth. O valor de 30 foi escolhido para max_depth na base de dados completa. 
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Figura 14 - Correlação e distribuição dos atributos das bases após a aplicação do FLIRT e PCA. 

 
Fonte: Elaborado pelo Autor 

Legenda: Os quadros da linha diagonal em vermelho mostram um histograma de cada atributo, o restante dos 

quadros mostra comparações par a par de variáveis. Base com 10 (A) e 26 (B) componentes principais. 
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Figura 15 - Resultado da otimização dos hiperparâmetros do Random Forest nas bases de dados 

após a aplicação do FLIRT e PCA. 

 

Fonte: Elaborado pelo autor 

 

Os modelos, já com seus hiperparâmetros otimizados, foram submetidos a validação 

cruzada dentro do conjunto de treinamento das duas bases de dados. Assim como na análise 

com os dados brutos dos sensores, nessas novas bases também foram extraídas quatro métricas 

de performance dos modelos. Os resultados, mostrados na Figura 16, indicam uma 

superioridade no modelo construído sobre a base de dados contendo os 26 componentes 

principais. Para todas as quatro métricas avaliadas, há diferença estatisticamente significativa 

entre a base contendo 10 e a base contendo 26 atributos. Quando comparamos esses resultados 

com os resultados da validação cruzada utilizando o modelo Random Forest sobre a base de 

dados dos sinais brutos, fica claro que a utilização do FLIRT para decomposição de sinal da 

dos sensores aumenta em mais de 20% a acurácia de predição do modelo, chegando a valores 
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superiores a 90%. A utilização de uma base com 26 componentes principais em conjunto com 

o modelo de Random Forest teve uma sensibilidade de 96,4% na detecção de pré-diabetes, ou 

seja, apenas 3,6% dos padrões fisiológicos indicativos de pré-diabetes foram classificados 

erroneamente. O que indica que a aplicação do FLIRT sobre os dados de IBI, EDA foi capaz 

de gerar bons biomarcadores digitais para a doença. Isso deixa claro que é possível utilizar 

aprendizagem de máquina e dados processados de dispositivos vestíveis para classificar 

indivíduos portadores da pré-diabetes e assim alertar quando determinados parâmetros 

fisiológicos de uma pessoa estão indicando a entrada numa fase de risco para o desenvolvimento 

do diabetes mellitus tipo 2.  

 

Figura 16 - Resultado da validação cruzada com o algoritmo de Random Forest nas novas bases 

de dados.  

 
Fonte: Elaborado pelo Autor 

Legenda: “RF_10_comp” refere-se à aplicação do Random Forest sobre a base de dados onde foram mantidos os 

10 principais componentes, já o “RF_10_comp” refere-se à base onde foram mantidos 26 componentes principais.  

O “RF_96_atrib refere-se a base completa. O p-value mostrado refere-se à aplicação do teste de ANOVA e **** 

representa um p-value de 0,0001 no teste t de Student para comparação entre as médias em relação à média com 

maior valor em cada métrica. 

 

A Figura 17 mostra como a aplicação do FLIRT alterou a área sob a curva ROC em 

relação a utilização da base de dados com sinais brutos. A curva DET também deixa claro como 

a utilização de 26 componentes é bem melhor que a utilização de 10 componentes principais, e 
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como a utilização da base completa supera em eficácia a utilização das bases com 

dimensionalidade reduzida. 

 

Figura 17 – Curvas ROC e DET construída a partir do uso de Random Forest em bases com 

diferentes dimensionalidades. 

 
Fonte: Elaborado pelo Autor 

Legenda: O padrão de nomes “RFC_FLIRT...” refere-se aos modelos aplicados base de dados cujos sinais de IBI 

e EDA foram processados pelo pacote FLIRT, já o modelo “RFC_raw_signal” refere-se à aplicação do Random 

Forest na base de dados com os sinais brutos captados pelos sensores da Pulseira Empatica E4. 

 

A aplicação do modelo treinado no conjunto de testes gerou scores igualmente altos em relação a 

validação cruzada realizada no conjunto de treinamento, eliminando a possibilidade da ocorrência de 

um super ajustes do modelo aos dados do conjunto de treinamento. A acurácia da predição do conjunto 

de teste foi de 93,38% utilizando a base de dados com 10 componentes principais. Já com a base 

contendo os 26 atributos, a acurácia da predição foi de 95,77%, sendo necessário apenas 50% a mais 

de tempo para completar a tarefa de treino em relação a base menor. A utilização da base completa 

contendo 98 atributos, por outra lado, levou 68% a mais de tempo que a base contendo apenas 10 

componentes, gerando uma acurácia de 99,3%. Já a tarefa de predição levou aproximadamente o mesmo 

tempo para os três modelos. A Tabela 1 contém todas as 4 métricas previamente avaliadas, agora aplicas 

no conjunto de teste. 

 

Tabela 1 – Métricas da aplicação do Random Forest para predição no conjunto de teste 

 
Acurácia Precisão Recall AUROC 

Base com 10 componentes 93,38 % 93,11% 93,26% 98,31% 

Base com 26 componentes 95,77% 94,75% 96,65% 99,29% 

Base com 98 atributos 99,3% 99,13% 99,42% 99,97% 

Fonte: Elaborado pelo Autor 
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 Este estudo prova que é possível utilizar ambos os dados de pulseiras inteligentes, brutos 

e processados, para a tarefa de diferenciação de pessoas saudáveis e pessoas portadoras de pré-

diabetes utilizando o algoritmo de Random Forest. Apesar disso a utilização de dados 

processados pelo FLIRT aumentou muito a taxa predições corretas do algoritmo.  

Essa tarefa de diferenciação foi previamente investigada por dois estudos. No primeiro, 

Prabha et al., (2021a) obtiveram uma alta acurácia na predição do estado de saúde dos 

indivíduos, valores de 83,87% e 84,49% ao utilizar algoritmos e KNN e SVM. Esse valor, 

apesar de alto, é bem mais baixo que o encontrado no presente trabalho com o uso do FLIRT. 

Prabha et al., (2021a) também utilizaram dados diferentes dos nossos. Apesar dos dados 

utilizados por esses autores derivarem do mesmo modelo de pulseira, a Empatica E4, foram 

utilizados apenas dados coletados a partir do sensor de fotopletismografia, não utilizando dados 

de atividade eletrodérmica ou de temperatura. Os dados de fotopletismografia também não 

foram utilizados no seu estado bruto, os autores aplicaram um processamento a partir dos 

MFCCs, um conjunto de características amplamente utilizadas em reconhecimento de fala e 

processamento de sinais de áudio. Embora tenham utilizado apenas o sinal de 

fotopletismografia, os autores também utilizaram outros atributos como peso, altura e idade dos 

indivíduos, características que não foram utilizadas por nós no atual estudo. Ao fim, Prabha et 

al., (2021a) obtiveram uma base com 107 atributos. Esses autores também utilizaram a técnica 

de PCA para redução de dimensionalidade da base de dados, elevando a acurácia da 

classificação com SMV de 84,49% para 92,28%. Esse comportamento é inverso ao observado 

no presente estudo, onde a aplicação do PCA, embora tenha reduzido levemente o tempo de 

treinamento do modelo, também reduziu sua acurácia. 

  Outra diferença em relação ao nosso estudo, é que Prabha et al., (2021a) utilizaram 

dados de pessoas saudáveis, diabéticas e pré-diabéticas visando um tarefa de classificação 

nesses três estados. Sua base, no entanto, estava bastante desbalanceada em relação a pessoas 

pré-diabéticas, que correspondiam a apenas 7,37% dos indivíduos, isso dificulta uma 

comparação direta com nosso modelo, pois não sabemos se o modelo apresentado pelos autores 

tem maior percentual de acerto em relação aos indivíduos saudáveis, diabéticos ou aos pré-

diabéticos. 

Posteriormente os mesmos autores publicaram um novo estudo, onde testaram métodos 

combinados para redução de dimensionalidade em conjunto com o algoritmo de XGBoost, 

obtendo uma acurácia de 99,93% na predição dos estados de saúde (PRABHA et al., 2021b)., 
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um valor superior ao encontrado no presente trabalho  Essa alta acurácia foi obtida na predição 

de todas as classes: saudáveis, diabéticos e pré-diabéticos. Apesar de a fonte de dados ser a 

mesma pulseira, os dados adicionais utilizados pelos autores foram distintos, enquanto nós 

utilizamos o sexo, Prabha et al., (2021b) utilizaram dados de peso, altura e idade, o que pode 

ter maximizado a acurácia de seu modelo. Outra diferença entre os trabalhos está na população 

avaliada, enquanto os autores utilizaram dados de 217 pacientes, nós conseguimos chegar a 

uma acurácia também superior a 99% com dados de apenas 15 pacientes. É possível que um 

número de pacientes analisados também eleve a acurácia do modelo de Random Forest obtido 

neste trabalho.  

Uma das vantagens da existência de dois estudos, Prabha et al. (2021b) e o presente 

estudo, realizados com duas populações distintas e utilizando métodos distintos de 

processamento dos sinais brutos derivados de pulseiras inteligentes comprovar que esses sinais 

são bons preditores e podem servir de biomarcadores digitais para detecção de pré-diabetes em 

pacientes do mundo todo. 

 O presente estudo, no entanto, não está livre de limitações. Como foram utilizados dados 

públicos presentes em bases de dados, não tivemos a opção de escolha de indivíduos do estudo, 

assim como não pudemos realizar aumento do número de indivíduos amostrados nem recuperar 

leituras de diferentes períodos. Uma das limitações em relação a quantidade de dados reside no 

fato de serem utilizados dados de apenas 15 indivíduos, um valor que não abrange toda a 

variedade de tonalidade de cor de pele e etnias presente na população global, da mesma for que 

anteriormente citado por (BENT et al., 2021b). Isso, no entanto, não quer dizer que a captura 

de novos dados não será capaz de gerar modelos com performances similares frente a um maior 

número de indivíduos. 

 Outra limitação que pode impactar nas altas métricas obtidas neste estudo é o tipo de 

validação utilizada. Neste estudo foi utilizada uma validação cruzada de 10 rounds, com uma 

divisão de instâncias totalmente aleatória, além de um grupo de teste à parte. Embora cada 

instância da base represente um tempo de coleta do indivíduo, que reflete o estado fisiológico 

daquele indivíduo apenas num determinado instante, de forma que cada instância represente 

apenas uma “fotografia” da saúde do indivíduo naquele instante, é possível que o modelo se 

ajuste bastante ao padrão de dados fisiológicos das 15 pessoas avaliadas e que a performance 

seja parcialmente reduzida quando aplicado a dados de novos indivíduos. Ao escolher esse tipo 

de validação, foi levado em conta que outros estudos publicados também utilizaram validação 
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cruzada de 10 rounds, como o estudo realizado por Prabha et al. (2021b). Além disso, levamos 

em consideração que uma redução de uma fração de pessoas, para atuar como um conjunto de 

validação de dados, pode reduzir muito a variabilidade de dados que teríamos a nossa 

disposição para treinamento dos modelos. No entanto, consideramos esta limitação como um 

elemento que poderia introduzir um certo viés no estudo. Uma alternativa para eliminação desse 

viés seria a fusão de dados de mais de um banco que utilizasse os mesmos critérios e 

equipamentos de coleta de dados, o que aumentaria o número de indivíduos disponíveis. Outra 

alternativa seria realizar uma validação do tipo Leave-one-person-out cross validation 

(LOOCV), onde cada pessoa como atuaria como um conjunto de validação em cada um dos 

rounds da validação cruzada. Esse método de validação vem se tornando uma alternativa em 

estudos com dados captados por sensores e derivados de estudos com seres humanos, onde nem 

sempre se pode aumentar o número de indivíduos utilizados nos experimentos 

(GHOLAMIANGONABADI; KISELOV; GROLINGER, 2020). 
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6  CONCLUSÃO 

 

  A busca por métodos não invasivos que sejam capazes de gerar alguma informação 

relevantes sobre o estado de saúde das pessoas vem se intensificando ano após ano. Com o 

avanço e popularização dos métodos de aprendizagem de máquina a descoberta de 

biomarcadores de doenças saiu exclusivamente do ambiente dos laboratórios de saúde e passou 

a fazer parte do campo de pesquisa da tecnologia da informação. A grande quantidade de dados 

sobre saúde, fez surgir um campo imenso de busca por biomarcadores digitais. Atualmente, 

esta é área ativa de busca no campo de prevenção e acompanhamento da diabetes.  

 Neste trabalho mostramos que é possível utilizar dados de atividade eletrodérmica, 

temperatura, sexo, frequência cardíaca, intervalo interbatidas e volume sanguíneo no pulso, 

derivados de sensores presentes na pulseira Empatica E4, para predição do pré-diabetes. Apesar 

disso, ficou claro que o uso de dados brutos para treinar modelos de aprendizado de máquina 

não gera bons classificadores, que embora sejam melhores que um classificador aleatório, ainda 

possuem altas taxas de erros. Por outro lado, o trabalho evidenciou que a aplicação da biblioteca 

FLIRT para processamento de dados brutos, seguido da aplicação do algoritmo de Random 

Forest é capaz gerar um ótimo balanço entre sensibilidade e especificidade. Como opção para 

redução de custo computacional também é possível reduzir a dimensionalidade de base 

mantendo os 26 componentes principais para classificar com alta confiança a instalação da pré-

diabetes em um indivíduo a partir de dados de dispositivos vestíveis.  

 Apesar de atuar como prova de conceito, esse trabalho não fornece uma solução final para 

o problema da predição da pré-diabetes. Estudos futuros devem buscar aumentar o número de 

pessoas incluídas no estudo, assim como buscar maximizar a diversidade de marcas de relógios 

inteligentes incluídas no mesmo, a fim de tornar a solução mais democrática para a população 

em geral. Além de incrementar o número de amostras e variedades de dispositivos vestíveis, 

estudos futuros também devem estar atentos para a realização de uma validação cruzada do tipo 

LOOCV, não realizada neste estudo, além do método de validação por k-fold cross validation, 

a fim de reduzir possíveis vieses do estudo derivados do sobreajuste dos modelos de 

aprendizagem de máquina ao perfil fisiológico dos pacientes.  

 Por fim, apesar dos desafios em estudos amplos com variados participantes e dispositivos, 

é inegável a urgência desse tipo de pesquisa. Especialmente porque o estudo atual confirma a 

relevância desses parâmetros fisiológicos em atuarem como biomarcadores digitais valiosos 

para a detecção antecipada do desenvolvimento de uma condição cada vez mais prevalente na 

população, o pré-diabetes.   
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