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ABSTRACT

Augmentative and Alternative Communication (AAC) systems assist individuals with com-
plex communication needs to express themselves. Communication cards are a popular method
used in AAC, where users select cards and arrange them in sequence to form a sentence. How-
ever, the limited number of cards displayed and the need to navigate multiple pages or folders
can hinder users’ communication ability. To overcome these barriers, various methods, such as
vocabulary organization, color coding systems, motor planning, and predictive models, have
been proposed to aid message authoring. Predictive models can suggest the most probable next
cards based on prior input. Recent advancements in Artificial Intelligence (Al) and Machine
Learning (ML) have shown potential for improving the accessibility and customization of AAC
systems. This study proposes adapting large language models to communication card predic-
tion in AAC systems to facilitate message authoring. The proposed method involves three
main steps: 1) adapting a text corpus to the AAC domain by either converting it into a corpus
of telegraphic sentences or incorporating features that enable the exploration of visual cues;
2) fine-tuning a transformer-based language model using the adapted corpus; and 3) replacing
the language model decoder weights with an encoded representation of the user's vocabulary
to generate a probability distribution over the user's vocabulary items during inference. The
proposed method leverages that transformers-based language models, such as Bidirectional
Encoder Representations from Transformers (BERT), share the weights of the input embed-
dings layer with the decoder in the language modeling head. Therefore, the plug-and-play
method can be used without additional training for zero-shot communication card prediction.
The method was evaluated in English and Brazilian Portuguese using a zero-shot setting and
a few-shot setting, where a small text corpus was used for fine-tuning. Additionally, the im-
pact of incorporating additional features into the training sentences by labeling them with
the Colourful Semantics structure was assessed. The results demonstrate that the proposed
method’s models outperform models pre-trained for the task. Moreover, the results indicate
that incorporating Colourful Semantics improves the accuracy of communication card predic-
tion. Thus, the proposed method utilizes the transfer learning ability of transformers-based

language models to facilitate message authoring in AAC systems in a low-effort setting.

Keywords: augmentative and alternative communication; message authoring; sentence con-

struction; pictogram prediction; colourful semantics.



RESUMO

Os sistemas de Comunicagdo Aumentativa e Alternativa (CAA) auxiliam individuos com
necessidades complexas de comunicacdo a se expressarem. Um recurso comum em CAA é
o uso de cartdes de comunicacdo, que o usuario pode selecionar e organizar em sequéncia
para formar uma frase. No entanto, o nimero limitado de cartdes exibidos e a necessidade
de navegar por varias paginas ou pastas podem dificultar a construcdo de mensagens. Para
superar essas barreiras, varios métodos foram propostos, como organizacdo de vocabulario,
sistemas de chaves de cores, planejamento motor e modelos preditivos. Os modelos preditivos
podem sugerir os cartdes mais provaveis para completar uma frase. Avancos recentes em
Inteligéncia Artificial (IA) mostram potencial para melhorar a acessibilidade e a personalizacdo
dos sistemas de CAA. Este estudo propde um método para adaptar modelos de linguagem
para predicao de cartdes de comunicacdo em sistemas de CAA para facilitar a elaboracdo
de mensagens. O método proposto envolve trés etapas: 1) adaptar um corpus de texto ao
dominio da CAA, convertendo-o em um corpus de frases telegraficas ou incorporando recursos
que permitem a exploracdo de pistas visuais; 2) ajustar um modelo de linguagem baseado em
transformers usando o corpus adaptado; e 3) substituir os pesos do decodificador do modelo
de linguagem por uma representacdo codificada do vocabulario do usuario para gerar uma
distribuicdo de probabilidade sobre os itens de vocabulario do usuario durante a inferéncia.
O método proposto aproveita que modelos de linguagem baseados em transformers, como
o Bidirectional Encoder Representations from Transformers (BERT), compartilham os pesos
da camada de embeddings de entrada com o decodificador no cabecalho de modelagem de
linguagem. Portanto, o método pode ser usado sem treinamento adicional para a predicdo
de cartdes de comunicacdo. O método foi avaliado em Lingua Inglesa e Lingua Portuguesa
do Brasil usando configuracdes zero-shot e few-shot, em que um pequeno corpus de texto
foi usado para o ajuste fino. Além disso, foi avaliado o impacto da incorporacao de recursos
adicionais nas frases de treinamento, rotulando-as com a estrutura do Colourful Semantics.
Resultados mostram que o método proposto supera modelos pré-treinados e que a inclusao de

Colourful Semantics melhora a precisdo da predicdo de cartdes.

Palavras-chave: comunicacdo aumentativa e alternativa; pranchas de comunicacdo; con-

strucdo de frases; predicdo de pictogramas; colourful semantics.
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1 INTRODUCTION

This chapter presents this thesis, highlighting its context, motivation, objectives, research
questions, scope delimitation, target audience, and contributions. Finally, the structure of the

other chapters is presented.

1.1 CONTEXT AND MOTIVATION

The field of [Augmentative and Alternative Communication (AAC)|aims to provide individ-

uals with [Complex Communication Needs (CCN), as those resulting from conditions involving

autism, cerebral palsy, and developmental disabilities, with methods to supplement or re-
place spoken language. These methods can include communication boards, sign language, and
speech-generating devices. The goal of [AAC] is to enable individuals to effectively communi-
cate their wants, needs, and ideas (BEUKELMAN; LIGHT), |2020; |American Speech-Language-Hearing
Association|, [n.d.). A common approach in is using communication cards, also known as
pictograms, which are graphical representations of concepts, such as actions, objects, people,
animals, descriptions, or places, that can be selected and arranged in sequence to form a
sentence. An example of an system is illustrated in Figure [Il These systems typically
include a content area displaying the available cards for selection and a phrase area displaying
the selected cards arranged to form the sentence. They have been shown to enable children
and adults with [CCN| to communicate and participate in a wide range of environments and
activities (MCNAUGHTON et al., [2019; |CHUNG; CARTER, 2013).

The use of [AA(] boards for communication by individuals with [CCN| has been found to
present certain barriers or difficulties, as previous research highlighted (PEREIRA et al., [2019;
DONATO; SPENCER; ARTHUR-KELLY|, 2018}; JUDGE; TOWNEND, |2013; [BAXTER et al., 2012). To
effectively support message construction, these systems need to facilitate card selection, for
example, through strategies such as paging or organizing cards into categories, as illustrated
in Figure [Tl However, these strategies can also present challenges. The user’s vocabulary may
not fit within the limited cards displayed on the first screen, and the need to navigate multiple
pages or categories can make communication more difficult. Additionally, cards irrelevant to
the desired message can distract the user during the search process.

In JAAC], strategies to facilitate message authoring through card selection have been pro-



18

Figure 1 — Example of AAC system using a predictive communication card suggestion model. Predictive models
may act on the background of these systems to suggest cards to complete sentences in construction.
Notice that the cards have different border colors. This is a color coding approach, usually used in
AAC systems, in which the cards are labeled according to their part of speech or function (e.g.,

green for verbs). The cards with black borders are folders that contain sub-cards (e.g., actions).
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Source: |Pereira et al.| (2022)

posed to support individuals with [CCN], such as cerebral palsy or autism. These strategies

include vocabulary organization methods, color coding systems, motor planning approaches,

and predictive models (FRANCO et al, [2018). Predictive models can suggest the most probable

next cards based on prior input, as illustrated in Figure [I] These models receive the sentence

in construction as input and return the most probable cards to complete the sentence.

Recent advancements in[Artificial Intelligence (Al)|and [Machine Learning (ML)| have signif-
icantly improved high-tech systems. As outlined by |[Elsahar et al.| (2019), the integration

of [Allin [AAC]| systems can enhance accessibility to high-tech devices, increase the speed of out-

put generation, and improve the customization and adaptability of [AAC] interfaces.
(2019) also highlights the potential benefits of incorporating [Al] into systems, specif-

ically mentioning the use of [Natural Language Processing (NLP)| techniques for tasks such as

word and message prediction, automated storytelling, voice recognition, and text expansion.
The incorporation of [Al] in [AAC| systems raises questions about the potential use of [Al to
assist in the creation of grammatically correct, semantically meaningful, and comprehensive
messages within these systems.

In [AAC], card prediction is typically treated as a [NLP] problem. Previous studies on this

task have employed techniques such as n-gram models (HERVAS et al., 2020; (GARCIA; OLIVEIRA||
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MATOS, 2016), or knowledge bases (PEREIRA; FRANCO; FIDALGO, |2020; [MARTINEZ-SANTIAGO
et al}, 2015). However, the main disadvantage of these previous works is that they freeze the
vocabulary after training the models. For example, the vocabulary of an n-gram model is based
on the words (or expressions) that occur in the training corpus. This means that different
users with different vocabularies may be unable to use these models effectively. The vocabulary
of an user can vary depending on many factors, such as age, gender, culture, and personal
preferences. Moreover, [AAC] users can acquire new words and increase their verbal repertoire
(LORAH et al., |2015). This poses a challenge for models that are based on fixed vocabularies.
When a new word needs to be added to the model’s vocabulary, retraining the entire model
can be computationally expensive and time-consuming. Therefore, there is a need for adaptive
models that can efficiently incorporate new words into the existing vocabulary without the
need for extensive retraining.

Recent advancements in have shifted towards using |Large Language Models (LLMs )|

based on transformer architecture (VASWANI et al., 2017)). These have demonstrated state-of-

the-art performance in a wide range of [NLP| tasks. [Language Models (LMs)| like [Bidirectionall
[Encoder Representations from Transformers (BERT)| (DEVLIN et al} 2019), and

[Pre-trained Transformer (GPT)| series (RADFORD et al., 2019; BROWN et al., 2020; OPENAI,

2023) can be used for card prediction as they can understand the context and provide accu-
rate predictions. These models are trained on large amounts of text data, allowing them to
understand the relationships between words and phrases, which can aid in predicting appro-
priate pictograms. Furthermore, these can also be used in few- or zero-shot settings for
[AAC| card prediction. In few-shot learning, the model is trained on a small amount of data.
Zero-shot learning involves applying the model to a task or domain it has not seen during
training without additional training data (XIAN; SCHIELE; AKATA| 2020). The advantage of
using these models in few- or zero-shot settings is that they can generalize to new or unseen
situations. This reduces the need for collecting and annotating large amounts of data, which
can be time-consuming and expensive. Instead, the models can leverage the knowledge learned
from their pre-training on large text corpora to make accurate predictions in new contexts.

Another strategy for facilitating message authoring in [AAC| systems is the use of color cod-

ing systems, such as the Fitzgerald Keys (FITZGERALD), 1949) or the [Colourful Semantics (CS)|

system (BRYAN, 2003). These systems group cards according to their grammatical or semantic
role, respectively. [CS|is a therapeutic tool that employs colors and questions such as Who?,

What Doing?, and What? to facilitate sentence construction and promote understanding of
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well-structured and meaningful sentences in natural language among children with [CS| Pre-
vious studies have demonstrated the effectiveness of using this tool in treating children with
speech difficulties. For instance, (BRYAN| 2003) reported that after eight weeks of treatment,
a child could identify and use semantic roles in constructing phrases while narrating a story
and demonstrated the ability to construct more complex sentences after a few months. Simi-
larly, Bolderson et al.| (2011)), and Christopoulou et al. (2021) observed improved participant
communication performance. Despite its effectiveness, there is a lack of [AA(] systems that
integrate [CS] for communication.

Given this context, the motivation for this work is driven by the following points:

1. Enhancing AAC Systems: Integrating advanced [Al| techniques, such as transformer-
based [LMs] can enhance [AAC systems by providing more accurate and context-aware
card predictions. This can improve the efficiency and effectiveness of message authoring,

facilitating communication for individuals with [CCN]

2. Adaptive Vocabulary Handling: Existing[AAC|systems often struggle to accommodate
individual users with unique vocabularies. By leveraging transformer-based [LMs, we aim
to develop models that efficiently incorporate new words into the vocabulary without
extensive retraining. This adaptive vocabulary handling will enable [AAC|systems to adapt

to the evolving communication needs of users.

3. Few-shot and Zero-shot Learning: The ability of transformer-based [LMs|to generalize
to new or unseen situations in few-shot or zero-shot settings can significantly reduce
the burden of data collection and annotation in [AAC] system development. Leveraging
pre-trained models can save time and resources while providing accurate predictions in

diverse contexts.

4. Integration of [Colourful Semantics! Integrating [CS| into [AAC| systems can promote

the development of well-structured and meaningful sentences in natural language. In-

corporatin rinciples can enhance message construction’s syntactic and semantic
Y

aspects in [AA(] systems.

By addressing these motivations, we aim to contribute to advancing [AAC| systems, making

communication more accessible and efficient for individuals with [CCNI
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1.2 OBJECTIVES AND RESEARCH QUESTIONS

The main objective of this study is to propose a method for communication card prediction
in [AAC] systems using to enhance message authoring by accommodating the variable
vocabularies of AAC users. To reach this primary objective, we have the following
[Objectives (SOs)k

= [SO}1: Propose and assess the performance of a transformer-based neural network model

for enhancing communication card prediction in high-tech [AA(] systems.

= [SO}2: Determine the proposed method's efficacy with minimal or no additional training.

= [SO}3: Evaluate the effectiveness of integrating [Colourful Semantics| (CS]) into commu-

nication card prediction models for [AAC| systems and compare the performance of these

models to those that do not incorporate [CS]

To accomplish these objectives, this work is guided by the following [Research Questions|

[(RQs)}

= [RQ}1: How can a transformer-based neural network be adapted to improve communica-

tion card prediction in [AAC| systems, considering the variability of users’ vocabularies?

= RQ}2: What is the effectiveness of the proposed method for adapting transformer-based
neural networks in terms of communication card prediction accuracy, and how does it

compare to models that require additional training?

= [RQ}3: Does incorporate [Colourful Semantics| (CS)) into communication card prediction

models for systems improve their accuracy, and how does this improvement compare

to models without [CS?

1.3 SCOPE DELIMITATION

This work is delimited into four aspects:

1. Language — The experiments in this work are performed in Brazilian Portuguese and

English;
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2. Experimental design — At this stage, the models are compared using intrinsic metrics

like Top-n accuracy, [Mean Reciprocal Rank (MRR)| and Entropy@K, which can be au-

tomatically computed;

3. Type of|[AA( systems — this work focus on high-tech[AAC] systems based on pictographic
symbols, as shown in Figure [I]

4. Target audience — formed by children with complex communication needs who cannot
write conventionally nor use a conventional keyboard (e.g., QWERTY) to communicate.
Regarding written language, the public of this proposal can or not be literate. In the
case of a literate child, cognitive deficits may compromise the use of written language,
and, in this case, is seen as a complementary resource (i.e., facilitator of commu-
nication). In the case of a non-literate child, is considered an alternative resource

for communication because it is based on a graphics system;

1.4 DOCUMENT STRUCTURE

The remaining chapters of this proposal are structured as follows:

Chapter 2] — Background: presents the theoretical foundations necessary to support this
work

Chapter 3] — Related Work: presents the works related to this research.

Chapter [4] — Methodology: presents the method proposed in this research and the
experiments performed.

Chapter [5] — Experiments: presents the details of the performed experiments.

Chapter [6] — Results: presents the preliminary results.

Chapter [7| — Conclusions: presents the final considerations on the main topics covered

in this proposal, including the contributions achieved and the indications of future works.
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2 BACKGROUND

2.1 AUGMENTATIVE AND ALTERNATIVE COMMUNICATION (AAC)

According to Beukelman and Light (2020), approximately 97 million people in the world
may benefit from [AAC| These people constitute a heterogeneous population regarding diagno-
sis, age, location, communication modality, and extent of use (American Speech-Language-
Hearing Association, |n.d.)). They generally have limitations on gestures, oral, or written commu-
nication, causing functional communication and socialization problems. [AAC| users include not
just people with [CCN] but also children who are at risk for speech development, individuals
who require [AAC] to supplement or clarify their speech, and individuals who require [AAC] to
support comprehension (e.g., those with degenerative cognitive and linguistic disorders such
as Alzheimer's disease), and those with temporary conditions (BEUKELMAN; LIGHT, 2020)).

Considering the external support that can be used on [AAC|interventions, non-technological
systems are often referred to as low-tech (e.g., paper-craft cards, objects, and communication
books), whereas technological systems are referred to as high-tech (e.g., speech-generating
devices, or applications installed in smartphones or tablets). The use of high-tech
systems helps the user to express feelings and opinions, develop understanding, reduce frustra-
tion in trying to communicate, and have a greater power of choice (BEUKELMAN; LIGHT], 2020).
These systems allow users to construct sentences by selecting communication cards from a grid
and arranging them in sequence. Figure [2] presents an example of high-tech [AAC| system with
a content grid (bottom large rectangle), and a sentence area (tiny top rectangle), where cards
are arranged in sequence. High-tech [AAC]| systems have gained ground recently. The advent of
mobile devices like iPad, iPhone, and Android smartphones and tablets facilitated the release
of low-cost systems (LORAH; TINCANI; PARNELL, 2018; LORAH et al., 2022). By searching in
the Apple App Store and Google Play Store for “alternative communication”, we can find
a variety of applications for [AAC] Most apps promote communication using communication
cards, similar to the one shown in Figure 2| Studies have demonstrated the positive effect of
these devices' usage by people with (HOLYFIELD; LORAH| [2022} [HUGHES; VENTO-WILSON;
BOYD), [2022). [Holyfield and Lorah| (2022) showed that using high-tech [AAC]is more pleasant
for children with multiple disabilities versus low-tech and that the communication using the

platform the children prefer (i.e., high-tech) may be more efficient.
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Figure 2 — Example of high-tech AAC system using pictograms. Generally, these systems contain (1) a content
area (large rectangle at the bottom) with the available pictograms for selection and (2) a phrase
area (tiny rectangle at the top) that presents the selected pictograms arranged to form the sentence.

Source: The author (2023)

2.2 MESSAGE AUTHORING IN AAC

[AAC] uses various tools and techniques to support the communication of individuals with
[CCN| In the case of high-tech aided [AAC] the pictographic images in the communication
cards act as visual support to the user. The picture gives meaning to the words in the user's
vocabulary. Such pictograph systems are applied to individuals who are illiterate because of
age or disability and allow communication for people with low cognitive levels or at very early
stages (PALAO, [2019). Many pictogram databases are available online that can be used in
such systems. We can cite the PALAO, 2019)) database, which makes more than 30
thousand pictograms available.

Many of the available high-tech [AAC| systems organize the pictograms in grids, as shown
in Figure 2l The vocabulary organization depends on the user's needs and preferences. Some
may use categories to organize the cards, while others prefer multiple pages. Anyway, such
systems must allow and facilitate card selection for sentence construction (FRANCO et al,,
2018). Among the strategies that can be used to facilitate message authoring in , we can
list the vocabulary organization, the usage of color coding systems, and the usage of a word,

card, or pictogram prediction technique.
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2.2.1 Vocabulary Organization

An initial strategy for facilitating card selection consists of organizing the system grid. There
are different approaches to grid organization (BEUKELMAN; LIGHT, [2020): 1) schematic or
activity organization — the symbols are organized according to event schema within the
individual's day (e.g., routines, activities); 2) taxonomic organization — involves grouping
symbols according to superordinate categories (e.g., the cat is an animal); 3) semantic-

syntactic organization — the symbols are organized according to the part of speech and

their semantic relationships; 4) pragmatic organization —|Pragmatic Organization Dynamid|

[Displays (PODD)| (PORTER, [2007) combines different vocabulary organization strategies, such

as activity and taxonomic organization in addiction to navigational features (e.g., go back, go
forward); 5) alphabetical organization — cards organized in sequence by their labels like a
personal dictionary; 6) chronological organization — often include a single column or row to
represent the sequence or chronology of activities (e.g., brushing teeth, having breakfast); and
7) idiosyncratic organization — considers that each user may have a personal organization

approach that may or not include some elements of the other approaches.

2.2.2 Color Coding Systems

According to [Franco et al|(2018), pictogram selection in a robust may include color-
coding systems and a motor planning protocol. The most used color coding system is a

modification (MCDONALD; SCHULTZ, |1973)) of the Fitzgerald Key (FITZGERALD, 1949). The

system groups pictograms into six colors regarding their [Part-Of-Speech (POS) or grammatical

role, as shown in Figure [3a In addition to using colors, the system suggests organizing the
pictograms from left to right according to their [POS| or role (BEUKELMAN; LIGHT] 2020).
Another color coding system is the [CS| (BRYAN, [2003)). is a therapeutic tool developed
to help children with [CCN]| develop the construction and understanding of written or spoken
sentences. The purpose of this system is to support the development of syntactic structures
through a semantic script (HETTIARACHCHI, 2015). The script is composed of a color key
system associated with key questions (i.e., Who? What Doing? What? Where? What Like?)
that help the individual to understand the semantic role of each constituent of a phrase, as
illustrated in Figure[3b] Colors act as a visual aid to indicate the grammatical structure. While

questions help to link this structure (syntactic) to its meaning (semantics) (LAW et al., [2012).
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Figure 3 — Color coding systems. (a) the Fitzgerald Keys system, which color cards according to their gram-
matical class (e.g., noun). (b) [Colourful Semantics, which color cards according to the role they
can have in a sentence.

(a) Fitzgerald keys

Noun . Verb Social
Pronoun .Adjective Miscellaneous

(b) Colourful semantics

What
Who? . What? How? Where? When?
Doing?
Agent Verb Theme Manner Location Time

Source: The author (2023)

[CY] differs from other color coding systems by identifying the semantic roles of the con-
stituents of a sentence, which are more significant than the syntactic functions (i.e., subject,
verb, and objects) for individuals with language difficulties (BOLDERSON et al., 2011)). A seman-
tic role is a property that denotes the role played by a word or phrase concerning the predicate
it modifies in a sentence. For example, in the sentence “The boy ate popcorn”, “boy” is the
Agent of the verbal predicate “ate”, while “popcorn” is the Theme. In [CS| the roles Agent,
Theme, Recipient, Manner, Description, Place, and Time are used. According to Bryan| (2003),
these roles are associated with colors and questions with the intention of: (i) make visual dis-
crimination between each semantic role; (ii) further establish the relationship between the
question and the semantic role; (iii) associate each type of phrase with a visual sequence of
colors; and (iv) alert the child when he omitted a semantic role. The author used this tool to
treat a b-year-old child who had difficulties planning sentences and ordering and remembering
words. Her goals during this treatment were: 1) to teach the identification of semantic roles in
written sentences; and 2) encourage the use of knowledge of semantic roles and their functions
to create sentences with the following predicate-argument structures: a) verb+agent+theme;
b) verb+agent+place; c) verb+agent+theme+place; and d) verb+theme-+description.

Several studies demonstrate the effectiveness of using [CSin treating children with speech
difficulties. In the first application made by Bryan| (2003), for example, after eight weeks
of treatment, the child was able to identify and use semantic roles in the construction of
sentences during storytelling, and after a few months, she could notice an advance in the

construction of more complex sentences than those initially taught. |Bolderson et al.| (2011)
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applied [CS| to 6 children aged between 5 and 6 years for nine weeks. After this period, there

was a significant increase in the average length of sentences produced by the children and

in the metrics extracted from the [Renfrew Action Picture Test (RAPT)| (RENFREW, 2016)

tests. Recently, we assessed the acceptance of caregivers to using a high-tech [AAC] system
based on [CS| with their students, patients, or children (PEREIRA; PEREIRA; FIDALGO} [2021).

The proposed system uses [CS| as a script for guiding sentence construction. The proposal

was evaluated using the [Technology Acceptance Model (TAM)| (DAVIS, [1985)). The results

demonstrate that caregivers recognize the usefulness of such a proposal.

2.2.3 Card Prediction

Card prediction can facilitate message authoring in [AAC]| systems by suggesting relevant
communication cards as the user selects the cards to compose a sentence. This can save
the user time and effort and improve the overall usability of the [AAC| system. According to
Beukelman and Light (2020)), such prediction techniques may offer many potential benefits
to users: 1) reduce the number of selections required to construct a sentence, thereby
decreasing the effort for individuals; 2) provide spelling support for users who cannot accurately
spell words; 3) provide grammatical support; and 4) may increase communication rate. The
literature presents a growing number of published studies that use computational resources and
techniques to perform pictogram or word prediction in [AAC| systems, driven by the increasing

use of [All in the field (SENNOTT et al), [2019).

2.3 LANGUAGE MODELING

A is a model that assigns probabilities to sequences of words (JURAFSKY; MARTIN,

2019)). Consider the sentence “Brazil is a beautiful " and wonder what the best word to

complete it is. Most people will choose words like “country”, “place”, or “nation”, for they
are the most probable among those that make sense. This human decision is so natural that
we do not think about how it happens. However, regarding [LMs], deciding what word to use
to complete a sentence depends on the probabilities learned from a training text corpus. For
example, for an n-gram LM} the most probable word is the one that occurs most frequently
following the word “beautiful” in the training corpus. The same model can also assign a

probability to an entire sentence and predict that the sentence “Brazil is a beautiful country”
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has a higher probability of appearing in a text corpus than the same words in a different order.

An n-gram [LM]is the simplest model that assigns probabilities to sentences and sequences
of words (JURAFSKY; MARTIN, 2019)). The aim is to predict the next word based on the n — 1
preceding words. The model uses relative frequency counts to estimate the probability of each
word in a vocabulary V' to be the next in the sequence h. Given a large text corpus, count the
number of times the sequence h is followed by the word w € V. This way, in a bi-gram model
(n = 2), the probability of the word “country” completing the sequence “Brazil is a beautiful
__ " is defined by the equation 2.1, where C' is the function that counts the occurrence of
words or sequences in the corpus. Since this is a bi-gram model, only the last preceding word is

considered in the equation, which can be simplified to P(country|beautiful) or P(w,|w,_1).

C(beautiful country) (2.1)
C(beautiful) '

The probability of an entire sequence can be estimated using the chain rule:

P(country|Brazil is a beautiful) =

P(wlm) = P(wl)P(wg\w1)P(w3|w1:2)...P(wn|w1m,1)
. (2.2)
H wk’wlk 1

The assumption that the probability of the next word depends only on the previous word
is called Markov assumption (JURAFSKY; MARTIN, |2019). Markov models assume it is possible
to predict the probability of a future unit (e.g., next word) by looking only at the current state
(e.g., last preceding word). However, language is a continuous input stream highly affected
by the writer/speaker’s creativity, vocabulary, language development level, etc. If we ask two
different persons to describe the same scene from a picture in a single sentence, there is a
probability of both constructing sentences with a similar sense but using different words or
ordering them differently. Besides, in a written text, the occurrence of a specific word may
depend not only on the n — 1 preceding but on the entire context, which can be the sentence,
the paragraph, all the text, or the text's aim or topic. Still, n-gram models produce strong
results for relatively small corpora and was the dominantapproach for decades (GOLDBERG;
HIRST, 2017). Among the that do not make the Markov assumption, we can highlight

those based on [Recurrent Neural Networks (RNNs)| (ELMAN] 1990) and on the Transformers

architecture (VASWANI et al., 2017)), presented in Section . Both may rely on the usage of

word embeddings (cf. Section for feature extraction.
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2.4 WORD EMBEDDINGS

Word embeddings is a method to represent words using real-valued vectors to encode their
meaning, assuming that words with similar meanings may be closer to each other in the vector
space (JURAFSKY; MARTIN, 2019). Mikolov et al.|(2013a)) proposed the skip-gram model (a.k.a.
word2vec), which learns high-quality vector representations of words from large amounts of
text. The quality of the learned vectors allows similarity calculations between words and even
operations such as King— Man+W oman = Queen, or Madrid— Spain+ France = Paris.
This means that by subtracting the vector of the word Man from the vector of the word King
and summing it with the vector of the word Woman, the result vector is closer to the vector of
the word Queen than any other vector (MIKOLOV; YIH; ZWEIG, 2013; MIKOLOV et al., 2013al).
These vectors can also capture synonymy with quality, for words with similar meanings can
have similar vector representations.

The Skip-gram model’s training objective is to find word vectors useful for predicting
the surrounding words in a sequence or a document (MIKOLOV et al., 2013b). This way, the
model is trained using a self-supervised approach, which avoids the need for any hand-labeled
supervision signal (JURAFSKY; MARTIN, [2019)). Given a sequence of words wy, ws, ..., w,, the
model attempts to maximize the average log probability calculated according to Equation ,
where c is the training context size of words that are surrounding the center word w;. A large
¢ results in more training examples and can result in a high accuracy but may require more
training time (MIKOLOV et al., 2013b)). The basic Skip-gram formulation defines P(w;j|w)
using the softmax function, as in Equation , where v, and v;U are the input and output
vectors of w, and W is the vocabulary size. This formulation is impractical for the cost of
computing the gradient of logP(wo|w;) is proportional to the vocabulary size, which can be
large. Mikolov et al. (2013b)) suggests using the hierarchical softmax (MORIN; BENGIO)| 2005)) as
an efficient approximation of the full softmax. This way, the neural network behind skip-gram
learns the best vector representation for each word in a vocabulary. The final model output is

a dictionary with {word : vector} pairs.

Xn: > logP(wyjlw;) (2.3)

1
M 121 —e<j<e,j#0

.
exp(v;)o Vu; )

Sy exp(v), vy,)

P(wolwr) =
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There are a set of other word embeddings approaches with the same aim: to provide
vector representation to words. We can classify skip-gram as a model that provides static
embeddings, for the representation of a word will be the same indifferently of the context it
occurs. For example, the word bat has a different meaning in the sentences He can’t bat the
ball and Batman dress like a bat. However, in a static word embedding model, it has the same
vector. The transformers architecture (VASWANI et al, 2017)) overcomes this problem by adding
context to the embeddings. In Section [2.5], we present the architecture and how it can be used
to produce contextualized word embeddings.

Scarlini, Pasini and Navigli (2020) proposed |Context-AwaRe Embeddings of Senses (ARES)|

as a semi-supervised approach to producing sense embeddings for all the word senses in
WordNet. WordNet (MILLER, [1995) is a lexical database that groups nouns, verbs, adjec-
tives, and adverbs into sets of synonyms (a.k.a. synsets). Each synset expresses a distinct
concept with its glossary definition and lexical relationships (e.g., meronym, hyperonym, and
hyponym). The linking between the synset and the words it groups is defined by word senses.
In WordNet, a word-sense is identified by a sense-key, for example person%1:03:00::. The
sense-key is represented by lemma%lex_sense, where lemma is the text of the word or collo-
cation as found in the WordNet (e.g., person or playing_period). And lex_sense is encoded as
ss_type:lex_filenum:lex_id:head_word:head_id, where ss_type is the synset type, that corre-
sponds to its part-of-speech (1 for nouns, 2 for verbs, 3 for adjectives, 4 for adverbs, and 5
for satellite adjectivesﬂ), lex_filenum represents the name of the lexicographer file containing
the synset, lex_id is a two-digit decimal integer that, when appended onto lemma, uniquely
distinguishes a sense within a lexicographer file, head_word is the lemma of the first word
of a satellite’s head synset, and head_id is a two-digit decimal integer that, when appended
onto head_word , uniquely distinguishes the sense of head_word within a lexicographer file,
the same as lex_id. More information can be found in the WordNet Documentation?]

For each word-sense in WordNet, the [ARES| construction method finds its occurrences in a
text corpus and computes its embeddings using , which considers all the context (i.e., the
entire sentence) for producing the word embeddings. As a word sense may occur in more the
one sentence, the authors average the embeddings [BERT] produced. Besides, the method also

computes the embedding representation of the word senses’ glossary definition using [BERT]

1 In WordNet, adjectives are arranged in clusters containing head and satellite synsets. For example, the

synset for gone (definition: no longer retained) is satellite for lost (definition: no longer in your possession
or control).
2 <https://WordNet.princeton.edu/documentation /senseidx5wn >


https://WordNet.princeton.edu/documentation/senseidx5wn
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For this, the authors average the [BERT] representations for the words in the sense definition.
For example, the representation for word-sense person%1:03:00:: is the average vector of the
representation produced by [BERT] for each token in its definition: a human being. The final
representation is a 2048 dimensions real-valued vector, which we can divide into two sides: 1)
a contextualized (first 1024 positions), with vectors extracted from the usage examples, and

2) a gloss-based (last 1024 positions), with vectors computed from glossary definition.

2.5 TRANSFORMERS

The Transformers architecture is a neural network model that has become increasingly
popular in [NLP| tasks due to its impressive performance. The architecture was introduced in
the paper “Attention is All You Need" by Vaswani et al.| (2017). It uses a combination of self-
attention and feedforward neural networks to process sequential data, such as sentences or
documents, and extract useful features from them. The Transformer architecture has been used
in many applications, including machine translation, language modeling, and text classification.

The key feature of the Transformer architecture is the attention mechanism, which allows
the model to focus selectively on specific parts of the input sequence while processing it. The
attention mechanism computes a weighted sum of the input sequence, where the relevance
of each input element to the model’s current state determines the weights. In other words,
the attention mechanism learns to assign different importance to different parts of the input
sequence, depending on the context. The self-attention mechanism in Transformers is particu-
larly powerful because it allows the model to attend to any part of the input sequence, not just
the adjacent elements. This means the model can capture long-range dependencies between
the sequence elements, particularly useful for [NLP] tasks (JURAFSKY; MARTIN} [2019).

The Transformer architecture consists of an encoder and a decoder, as show in Figure [4]
The encoder processes the input sequence while the decoder generates the output sequence.
Both the encoder and decoder are composed of a stack of identical layers, each containing
two sub-layers: a multi-head self-attention mechanism and a feedforward neural network. The
self-attention mechanism in each layer allows the model to attend to different parts of the
input sequence at different positions. At the same time, the feedforward network processes the

output of the self-attention mechanism to produce the final output of the layer.



32

Figure 4 — The Transformers architecture. Transformers exclusively utilize self-attention mechanisms to com-
pute input and output representations. The architecture's attention mechanism allows it to capture
long-range dependencies within sequences efficiently, enabling highly parallelizable computations.
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2.5.1 GPT

GPT|(RADFORD et al., 2018; [RADFORD et al., 2019; BROWN et al., 2020)) is an auto-regressive

generative language model that stands for|Generative Pre-trained Transformer. This model uses

the Transformers architecture to learn word representation that transfers with little adaptation
to a wide range of tasks (RADFORD et al., [2018)). The main task is to predict the next word in
a given sequence and then learn the best vectorial word representations. These representations
perform downstream tasks like sentiment analysis, machine translation, etc.

Figure 5] shows the basic architecture of [GPT| The text input passes throughout an embed-
ding layer to be transformed into real-valued vectors, which are then input into the transformer
blocks. The base version of the model uses a 768-dimensional state for word embeddings. The
model vocabulary is a Byte Pair Encoding vocabulary that splits words into subwords. A 12-
layered model was used with 12 attention heads in each self-attention layer, i.e., they used

12 transformer blocks. The output of the last block is used as input for the downstream task
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Figure 5 — Overview of the GPT Architecture - a Deep Learning Model for [Natural Language Processing]
. The model consists of multi-layered transformers that leverage unsupervised learning to
understand and generate human-like text. Its state-of-the-art performance on various language
tasks makes it a popular choice for advancing [NLP] research.
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head. For language modeling, the task head is a linear layer with a softmax activation function
that transforms the output of the transformer blocks into a probability distribution over the
vocabulary. The softmax function ensures that the sum of the probabilities of all vocabulary
tokens equals 1.0. During inference, the token with the highest probability is selected as the
predicted token. The model is trained using a maximum likelihood objective. Given the previ-
ous tokens in the sequence, the goal is to maximize the probability of predicting the correct
token at each time step.

3 (BROWN et al., [2020)), demonstrates that are few-shot learners. This model
and its rivals (e.g., Google PaLM (CHOWDHERY et al., [2022), and DeepMind GOPHER (RAE
et al}, [2021))) promoted a revolution in most of the [NLP}related tasks for not huge amounts of
annotated data are necessary to a downstream task. [GPT}3 was trained with 100 times more
data than its predecessor [GPT}2. Its large version has 175 billion parameters. A large amount
of training data and the number of parameters make [GPT}3 powerful in performing on-the-
fly tasks on which it was never explicitly trained. Among these tasks, we can cite machine

translation, math operations, writing code, etc.

2.5.2 BERT

[BERT] is a language representation model that stands to [Bidirectional Encoder Represen

ftations from Transformers| (DEVLIN et al, |2019). This model uses the attention mechanism
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(VASWANI et al., [2017)) to learn contextual relations between tokens (words or sub-words) in
unlabeled texts by joint conditioning on both left and right contexts in all layers of the model.
Unlike directional models, which process the input in sequence (left-to-right or right-to-left),
[BERT] processes the entire sequence simultaneously. Thus, it allows the model to learn the
word’s context based on all neighborhoods, left and right. Figure [ shows an overview of the
model, which receives a sequence of tokens as input and generates a representation for each
token, which is then used for downstream tasks such as text classification, question answering,
and language generation.

As shown in Figure [6] an embedding layer transforms the input text into vector represen-
tations. uses a Word Piece Embeddings (WU et al., [2016a)), which, to improve handling
of rare words, divide words into a limited set of common sub-word units (e.g., “Playing” into
“Play#" and “#ting"). This way, before inputting text to [BERT] it has to be tokenized. Tok-
enization is splitting a sentence into tokens, which can be words or word pieces in the case of
[BERT] During training, the data generator randomly chooses 15% of the token positions for
prediction. For example, if the i-th token is chosen, it is replaced with (1) the [M ASK] token
80% of the time, (2) a random token 10% of the time, or (3) the unchanged i-th token 10%
of the time. The model attempts to predict the i-th token based on the contextual information
Figure 6 — learning strategy. An embedding layer encodes the input tokens into representation vectors,

which are inputted to the encoder layers. The output is a sequence of vectors, each corresponding
to the input tokens in the same positions. The [MLM] head uses the output vectors to produce a
probability distribution over the model vocabulary. The hidden state size depends on the model

version: 768 for BERT}base and 1024 for BERT}arge. Notice that the embeddings layer and the
decoder layer share weights and that the number 6 in the figure refers to the input sequence length.

Probability distribution over the user vocabulary items

T
softmax
A A A6 X vocab size A A A
Decoder - 768 x vocab size <.
MLM Head 4 A 4 6x768 4 A A \
Dense + LayerNorm ‘||
6x768 I- Same
T T T T T T . weights
BERT encoder layers '
Embeddings (768 x vocab size) < 2
t t t t t t
[CLS] I want to [MASK] [SEP]

Source: The author (2023)
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provided by the non-masked, generating a contextualized representation for each.
The language modeling task consists of predicting the next words to be added in a text

of size N, where the preceding context [wy,...,w;_1] influences the next word probability

p(w;). BERT]allows word prediction through [Masked Language Modeling (MLM)| So, it is not

necessarily a next-word prediction, for the mask can be put in any part of the sentence. Placing
the mask token at the end of the sequence makes simulating the next word prediction possible.
[MLM] predicts the masked tokens in a given sentence. As shown in Figure [0 the classification
layer on top of the encoder output multiplies the output vectors by the embeddings matrix,
transforming them into vocabulary dimension, allowing the[MLM]task. The[MLM]|head consists
of a softmax classifier that outputs a probability distribution over the vocabulary for each
masked token. During training, the model is optimized to minimize the loss between the
predicted and actual tokens.

uses a cross-entropy loss function calculated over the 15% tokens chosen for pre-
diction. Cross-entropy is the average number of bits required to store the information in a
variable if an estimated probability distribution ¢ is used instead of the true distribution p.
In language modeling, p is the real distribution of the language, while ¢ is the distribution
estimated by the model. It is not possible to know the real p. However, given a long sequence
of words W (i.e., a large N), it is possible to approximate the per-word cross-entropy using

Shannon-McMillan-Breiman theorem (ALGOET; COVER), [1988) (cf. Equation [2.5)).

H(p,q) = —]1[109261(”/) (2.5)

This way, given a sequence of tokens W of length NV and a trained language model P, the

cross-entropy is approximated as follows:

1 1
H(W) = —NloggP(W) = —NloggP(wl,wg, e, WH) (2.6)

was adapted for different tasks and different languages. One such adaptation is

[Pretrained BERT Models for Brazilian Portuguese (BERTimbau)| (SOUZA; NOGUEIRA; LOTUFO),
2020), a variant of pre-trained on a large corpus of Brazilian Portuguese text data, the
[Brazilian Web as Corpus (brWaC)]| (FILHO et al/, [2018). is designed to perform
well on a wide range of [NLP| (NLP) tasks in Brazilian Portuguese, such as sentence textual

similarity, recognizing textual entailment, and named entity recognition.
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2.5.3 Transfer Learning

Transfer learning is a machine learning technique that involves leveraging knowledge gained
from one task to improve the performance of another related, or unrelated task (LU et al, 2015;
PAN; YANG, [2010)). Transfer learning has shown great success in applications, particularly
using large language models such as [GPT] [BERT] and others. In transfer learning for [NLP]
a pre-trained language model is fine-tuned on a specific downstream task with a smaller
dataset. This fine-tuning process allows the model to adapt to the specific task by updating
its parameters while retaining the knowledge learned from the pre-training process.

One of the main benefits of transfer learning is allowing for the development of high-
performing models with fewer data and computational resources. This is particularly useful
when labeled data is scarce or costly to obtain. Transfer learning also reduces the time and
effort required to develop a custom model from scratch. Pre-trained models have already
learned a significant amount of linguistic knowledge that can be applied to downstream tasks.
The attention mechanism is an essential component of transfer learning in [NLP| particularly
in transformer-based models such as and BERT] The attention mechanism allows the
model to focus on specific parts of the input sequence relevant to the task while ignoring
irrelevant information. This improves the model’s ability to capture long-range dependencies
and understand the context of the input text.

Formally, transfer learning can be defined as follows (LU et al., 2015)),

Definition 2.5.1. Given a source domain D,, a learning task T, a target domain D;, and a
learning task T}, transfer learning aims to enhance the learning of the target predictive function

fi(+) in Dy using the knowledge in Dy and Ts where Dy # D, or Ty # T;.

The above definition considers the case where there is a source domain Dy, and a target
domain Dy, which is the most popular in literature (PAN; YANG, 2010). Each domain D consists
of a feature space x and a probability distribution P(X), where X = xq,...,x, € x. A task
T = {Y, f(-)} consists of a label space Y and a predictive function f,(-), also written as
P(y|x). Besides, in the definition, Dy # D, implies that either x, # x; or Ps(X) # P,(X).
Similarly, the condition T, # T; implies that either Y; # Y; or fs(-) # fi(-). That is, the
source and target domains may have different feature spaces or probability distributions, and

the source and target tasks may have different label spaces or predictive functions. However,
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the source and target domains are related, for some explicit or implicit relationships exist
between their feature spaces.

Zero-shot learning is a type of transfer learning in which a model is trained on a source task
and then applied to a target task with no training data (XIAN; SCHIELE; AKATA, [2020)). In zero-
shot learning, the model is expected to generalize to new tasks or categories not seen during
training. This is achieved by leveraging the shared knowledge, and representations learned from
the source task to make predictions on the target task. For example, a model pre-trained on a
large corpus of text can be used to classify sentiment in a specific domain, such as customer
reviews for a new product, even if the model has never seen data from that domain before.

Few-shot learning involves training a model on a small amount of data to recognize new
categories or tasks. This is achieved by fine-tuning a pre-trained model on the few examples
available for the new task or category. Few-shot learning is useful when collecting large amounts
of labeled data is challenging or expensive. For example, few-shot learning can train a model
to recognize new types of animals with limited labeled data. Zero-shot and few-shot learning
are examples of transfer learning as they both involve leveraging knowledge learned from a pre-
existing task to improve performance on a new task. These approaches have been successfully

applied in various[NLP|tasks like sentiment analysis, question answering, and text classification.
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3 RELATED WORK

This chapter presents the results of a systematic mapping study previously published in
(PEREIRA et al., [2022)). The study aimed to select works that propose card or pictogram pre-
diction methods in [AAC] Section presents the method for selecting works. While Section
presents the selected works.

3.1 WORK SELECTION

The systematic mapping study presented in this chapter aims to analyze the scientific
proposals for communication card prediction in high-tech systems concerning the com-
putational techniques and methods used for prediction and the methods and metrics used to
evaluate the proposals. For this, four were defined, each aimed at a different research
facet. Table [1| shows the and their related research facet. The facets were designed to
help to answer the research questions and obtain a broad view of the current status of research
in the field. They serve to classify the articles obtained from the screening criteria.

[RQH1 (Prediction method) aims to identify the study’s computational method or technique
used for pictogram prediction. This information is essential to understand the field evolution
over time regarding the methods employed to attack the task. 2 (Prediction unit) aims
to identify the prediction unit, which is important to understand how the method makes pre-
dictions. This question is important because the definition of pictogram may not be the same
among the studies. In[AAC] a pictogram is a picture+label pair. The label is generally a word
or expression a text-to-speech application will speak. And the picture or photo is the visual
support for the user to understand its meaning. This question aims to identify what the study

uses to perform prediction: the label, the image, the pair image+label, etc. 3 (Evalua-

Table 1 — Research Questions used in the Mapping Study.

#  Question Facet

RQ1 What are the computational methods/algorithms/artifacts used for pictogram  Prediction method
prediction?

RQ2 What is the prediction unit? Prediction unit

RQ3 How the proposal quality is assessed? Evaluation method

RQ4 What evaluation metric is used? Evaluation metric

Source: The author (2023)
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tion method) aims to identify the method used to evaluate the proposal quality. The way
the proposal is considered may indicate the approach maturity. For example, an automatic
(intrinsic) evaluation may show that the approach is in an initial stage of development (JU-
RAFSKY; MARTIN| [2019)). RQ}4 (Evaluation metric) investigates what metrics the studies used

for evaluation. This information clarifies how the proposal is evaluated.

3.1.1 Data Sources and Search Strategy

Chen, Babar and Zhang (2010) suggest using a search string in scientific databases to
combine terms of interest to extract as many related studies as possible and avoid the inclu-

sion of unrelated studies in the results. Figure [7] presents the used search string. [AA(] stands

for [Augmentative and Alternative Communication| which can also be found as Supplementary

and Alternative Communication. [AAC| systems can also be called voice output devices, com-

munication boards, or Voice Output Communication Aids (VOCAS)| The used string includes

all these terms to increase the search range. The term “word prediction” was included in the
string because different studies may treat pictograms differently. Some consider that the word
on its label better represents a pictogram. Besides, pictogram prediction supports sentence
construction in [AAC] similar to message composition and authoring.

The search string presented in Figure [7| was employed to query eight scientific databases,
namely IEEE Xplore, ACM Digital Library, Google Scholar, PubMed, Science Direct, Scopus,
Springer, and Taylor & Francis OnIindﬂ. The study period encompassed publications from 2015

to 2022, and data collection was carried out between May and June 2022. In total, 467 studies

were retrieved and subsequently organized using the [State of the Art through Systematic]

|1 The string may undergo some modifications based on the database search format. I

Figure 7 — Search string used in the Mapping Study. AAC can also be found as Supplementary and Alternative
Communication. AAC systems can also be called voice output devices, communication boards, or
VOCAS.

( “alternative communication” OR “AAC"” OR "voice output devices” OR
“communication boards” OR “voice output communication aids” OR “VOCAS" )
AND ( “sentence construction” OR “pictogram prediction” OR “pictogram suggestion”
OR “predictive composition” OR "word prediction” OR “message composition” OR
“message authoring” )

Source: The author (2023)
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Figure 8 — Studies returned in the mapping study grouped by sources.

ACM Digital Library
Google Scholar

IEEE

PubMed

Science Direct

Scopus

Springer

Taylor & Francis Online

Source: The author (2023)

[Review (StArt)| tool (FABBRI et al, [2016). The distribution of these studies across different

sources is depicted in Figure[§] Notably, databases associated with health-related domains, such
as PubMed and Taylor & Francis Online, contained more articles. This observation aligns with
the clinical nature of [AAC], which often involves research conducted by speech therapists and
other healthcare professionals. However, the increased adoption of high-tech@and Al in this
domain has led to studies appearing in technology-oriented sources like ACM Digital Library.
Despite being a specialized database, IEEE Xplore yielded no relevant articles. Furthermore, we

identified and excluded 47 duplicated studies using the StArt duplicates classification process.

3.1.2 Study Selection

To assess the relevance of the studies to be included in the final results, we applied the
criteria presented in Table[2] Notice that these are exclusion criteria, meaning that the mapping
results exclude the studies that fall on at least one of them. We opted to include only primary
studies as they may fit better the research questions. This criterion avoids including editorials,
keynotes, biographies, opinions, tutorials, workshop summary reports, progress reports, posters,
thesis, dissertations, book chapters, panels, or literature mappings or reviews, which may not
propose new approaches for pictogram prediction. Some studies focus on word-based systems

in the [AAC] field. We excluded these studies because they may present a word or character
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Table 2 — Mapping study exclusion criteria.

#  Criteria

E1 The study is written in a language other than English;

E2 The study is not a primary study;

E3  The study is not of Augmentative Alternative Communication field;

E4 The study focuses on AAC but does not use any strategies for pictogram suggestion;

E5 The study focus on word prediction with no pictogram;

Source: The author (2023)

prediction techniques that cannot perform pictogram prediction.

The procedure for applying the criteria consisted of screening the studies’ titles, keywords,
and abstracts. In some cases, accessing the study's full text was necessary as insufficient
information is provided in the abstract to decide. It is required when studies are about[AAC| and
mention prediction but do not specify if it is about words or pictograms in the abstracts. Two
researchers performed the screening procedure to avoid individual biases. Any uncertainties or
discrepancies were resolved through a researcher's meeting, where discussions and consensus

were reached to ensure the rigor and reliability of the screening process.

3.1.3 Data Extraction

For data extraction, we applied the keywording technique, as proposed by (PETERSEN
et al), 2008). The method assigns labels or keywords to concepts found in the study’s text.
Some open codes would be obtained, which have to be put into an overall structure. The
categories’ codes may be merged or renamed (PETERSEN; VAKKALANKA; KUZNIARZ, 2015)).
According to (PETERSEN; VAKKALANKA; KUZNIARZ, 2015), the process may only be applied
to the paper’s abstract. However, if the abstracts are unclear, the method may consider the
paper’s introduction, conclusion, or other parts. We applied keywording to the papers' full text
to fit the research questions better. This way, the labels we code while reading the papers help

answer the research questions in Table [1]

3.2 WORK PRESENTATION

This study analyzed 248 papers retrieved using the search strings presented in Figure

[7l However, applying the criteria shown in Table [2 only eight studies were included in the
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Table 3 — List of studies included in the mapping study after applying selection criteria.

Title Author and Year Venue

A semantic grammar for beginning (MARTINEZ-SANTIAGO et al., 2015) Knowledge-Based Systems
communicators

Context-aware communicator for all (GARCIA et al|, [2015) International Conference on
Universal Access in Human-
Computer Interaction

An augmentative and alternative com-  (SATURNO et al., [2015]) Behaviour & Information

munication tool for children and ado- Technology

lescents with cerebral palsy

Evaluating pictogram prediction in a  (GARCIA; OLIVEIRA; MATOS, [2016)) Assistive Technology

location-aware augmentative and al-

ternative communication system

Compositional Language Modeling for  (DUDY; BEDRICK| [2018) Association for Computa-

Icon-Based Augmentative and Alter- tional Linguistics Meeting

native Communication.

Predictive composition of pictogram  (HERVAS et al} [2020) Journal of Ambient In-

messages for users with autism telligence and Humanized
Computing

A semantic grammar for augmentative  (PEREIRA; FRANCO; FIDALGO), [2020)  International Conference on

and alternative communication sys- Text, Speech, and Dialogue

tems

PictoBERT: Transformers for next (PEREIRA et al [2022) Expert Systems with Appli-

pictogram prediction cations

Source: The author (2023)

final results. In Table , we present the included studies, their references, and publishing
venue. Notice that there are three studies published in conferences (GARCIA et al., 2015; DUDY;
BEDRICK|, 2018; |PEREIRA; FRANCO; FIDALGO, 2020), and five published in journals. Besides,
most venues are from the Computer Science field, except for (GARCIA; OLIVEIRA; MATOS,
2016), published in a multidisciplinary journal. is a multidisciplinary field (BEUKELMAN;
LIGHT, 2020), and the participation of the Computer Science community in this field is due
to the need to improve [AAC| interventions to maximize communication for individuals with
CCN| (LIGHT; MCNAUGHTON, 2012) by using mobile applications. Besides, word or pictogram
prediction may involve [NLP] techniques, which rely on machine learning and statistical analysis
(SENNOTT et al., 2019), fields generally populated by computer scientists.

Table presents the results of applying the keywording technique (cf. Section , which
generated 22 keywords along the five studied facets. Next, we discuss these results regarding
each research facet.

Prediction Method: We identified five methods used to perform pictogram prediction
in the studies. We can say that the most common methods are those based on knowledge

bases: semantic grammar (2 studies), concept network (1 study), and direct graph (1 study).
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Table 4 — Studies included in the mapping study after applying keywording.

Facets and Keywords

Study Prediction Prediction Unit  Evaluation Evaluation Outcomes

Method Method Metric
Martinez- Semantic Gram-  Pictogram sense  Automatic None No baseline
Santiago et al.] mar
(2015)
Garcia et all concept network  Pictogram label  None None not reported
(2015)
Saturno et al. Direct graph Pictogram label ~ Quasi  experi- Number of Pic- Positive
(2015)) ment tograms, Time
Garcia, n-gram Pictogram label  Automatic Keystroke saving  Positive
Oliveira and
Matos| (2016))
Dudy and| Deep learning Pictogram re- Automatic MRR, Top-n Ac- No baseline
Bedrick! (2018) lated words curacy
Hervids et all n-gram Pictogram label, Quasi  experi- Time, Number Positive
(2020]) Pictogram POS  ment of  Pictograms,

Top-n Accuracy

Pereira, Semantic Gram-  Pictogram sense  Automatic Precision No baseline
Franco andl mar
Fidalgo| (2020)
Pereira et al. Deep learning Pictogram sense  Automatic Perplexity, Top-n  Positive

(2022)

accuracy

Source: The author (2023)

Two studies using statistical language models based on n-grams (HERVAS et al., 2020; GARCIA;
OLIVEIRA; MATOS, 2016)). These studies trained bi-gram language models by using pre-defined
text corpora. Another characteristic they have in common is that they enrich the models’
knowledge with the user’s actual usage. Two other approaches employed deep learning models
(PEREIRA et al., |2022; |DUDY; BEDRICK, |2018)). They used neural networks trained with synthetic
text corpora generated from natural language text samples. The literature suggests that neu-
ral networks-based language models may perform better than statistical models (GOLDBERG;
HIRST, 2017)). Besides, [Pereira et al.| (2022) compared their model with knowledge-based ap-
proaches and demonstrated improvements. Their models outperformed the semantic grammar
in predicting the correct pictogram to complete a sentence. However, neural networks may re-
quire more computational resources than statistical models or knowledge bases, making their
deployment difficult in production.

Prediction unit: The analyzed studies used four types of prediction units: the pictogram
label, the label’s[POS] the label’s set of related words, and the label’s word sense. As discussed
in Section 2.1} in high-tech [AAC] systems, each pictogram has an associated label or caption,

which can be a word or a multi-word expression. Some analyzed studies consider this label
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enough for making pictogram prediction (GARCIA et al., [2015; SATURNO et al., 2015; GARCIA;
OLIVEIRA; MATOS, [2016} HERVAS et al., |2020). This way, they perform a word prediction and do
not take care of polysemic words. For example, the English word “bat” can have many meanings
(e.g., “nocturnal mouselike mammal” or “a club used for hitting a ball”) and, similarly, many
related pictograms in a given vocabulary. In addition to the label, |Hervas et al.| (2020) opted
to use its[POS| tag as a prediction unit. This approach involves annotating the text with words
grammatical classes (i.e., , such as nouns, verbs, and adjectives. They trained a bi-gram
language model using the sequence of [POS| tags as training data. The aim is to suggest the
pictograms labeled with the predicted [POS| tag to the user. The authors compared the two
approaches and noticed that the prediction improvement based on [POS|sequencing is unclear.
Dudy and Bedrick (2018)) treated a pictogram as a set of synonyms. For a given pictogram, they
look for the labels used in the Symbolstix databasef] and generate a real-valued vector using
pre-trained word embeddings vectors. For example, if a pictogram has four associated words,
the authors get the words’ vectorial representation in the embeddings matrix and average them.
The result is used as the pictogram vectorial representation. The authors used these vectors as
input to their recurrent neural network. Other studies followed an approach similar to Schwab et
al[(2020), which consider that a pictogram is better represented by a concept from a dictionary
(e.g., person: a human being) (MARTINEZ-SANTIAGO et al., |2015; PEREIRA; FRANCO; FIDALGO,
2020; PEREIRA et al., 2022)). This approach assumes that the concept links the pictogram label
and its figure. Martinez-Santiago et al.| (2015]) used concepts from the FrameNet database,
Pereira, Franco and Fidalgo| (2020) used WordNet synsets (a set of synonyms with a glossary
definition, e.g., a person is a human being), and |Pereira et al.| (2022) used WordNet word-
senses (a link between a word and a synset). For more details about the differences between a
synset and a word sense, refer to WordNet documentatiorﬂ Pereira et al. (2022)) encodes each
word-sense to a real-valued vector using the embeddings constructed by Scarlini, Pasini and
Navigli (2020). Approaches based on concepts (synsets, word-senses) may fit better polysemic
words. However, it may require a prepossessing step in the prediction pipeline. An example is
Pereira et al|(2022), which parsed the text corpus for word-sense disambiguation, and Dudy
and Bedrick| (2018), which requires the preexistence of a list of words for each pictogram. On
the other hand, approaches that use labels may not need a preprocessing step, but it does not

treat polysemy.

2
3

<https://www.n2y.com/symbolstix-prime/>
< https://wordnet.princeton.edu/documentation/wngloss7wn>


https://www.n2y.com/symbolstix-prime/
https://wordnet.princeton.edu/documentation/wngloss7wn

45

Evaluation method: The analyzed studies performed two types of experiments for eval-
uating their proposals: automatic evaluation and quasi-experiments. One of the papers only
presents the proposal and some usage examples but does not carry out an assessment (GARCIA
et al}, 2015)). First, we describe the studies that performed an automatic evaluation. Martinez-
Santiago et al.| (2015) evaluated the semantic grammar at each step of its construction.
They tested how well the controlled language (i.e., set of sentences) fits into the semantic
grammar. Garcia, Oliveira and Matos| (2016)) ran several software simulations to measure the
performance of the different pictogram prediction approaches they proposed. They evaluated
the models over a set of sentences indicated by specialists as adequate for the [AAC| domain.
Dudy and Bedrickl (2018)) used the synthetic text corpus they created to evaluate their models.
They divided the corpus into a five-fold split and computed the model performance in each
fold. Pereira, Franco and Fidalgo| (2020) assessed the quality of the predictions made by their
semantic grammar by using it to reconstruct subject-+verb-+object sentences extracted from
the CHILDES database (MACWHINNEY, 2014). All the experiments performed by |Pereira et
al| (2022) were automatic. They used part of the synthetic text corpus they built to assess
the quality of the proposal on predicting pictograms to complete the sentences. Besides, they
asked practitioners to inform examples of sentences usually constructed in [AAC] systems and
evaluated the models’ ability to complete them. Two studies performed a quasi-experiment
involving humans. Saturno et al. (2015)) analyze a student’s performance through a dialogue
with and without using the proposed system. They observed the efficiency and satisfac-
tion of using the system with predictions. The student is a child with complex communication
needs. In [Hervas et al| (2020), a teacher working with autistic children with complex com-
munication needs participated in the experiments, which involved reproducing the children's
conversations in the class over five weeks in the [AAC| tool. This way, most of the studies
used an automatic evaluation and assessed their proposal quality without the participation of
actual [AAC] users. This situation can be explained by the difficulties of accessing people with
complex communication needs, but it also indicates that the field is more exploratory than
experimental.

Evaluation metric: Two studies did not report the used evaluation metrics (MARTINEZ-
SANTIAGO et al,, 2015 |GARCIA et al, 2015). |Saturno et al.| (2015) assessed the number of
pictograms used by the experiment participant to construct the proposed sentences and the
time spent. |Hervas et al.| (2020), which also performed a quasi-experiment, used the same

metrics and a top-n accuracy, indicating whether the model on top-n predicted the participant'’s
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pictogram used. Top-n accuracy was also used by Dudy and Bedrick (2018) and |Pereira et
al| (2022), the two approaches based on deep learning. These approaches used other most
common metrics in the field. |Dudy and Bedrick (2018) used , generally used to
assess information retrieval systems quality, where is wanted to the best item to be in a higher
position in the ranking. |Pereira et al. (2022) used a metric called Perplexity, which indicates
how surprised a language model is when exposed to a new text distribution. In other words,
it quantifies how well the model can predict new, unseen data. Pereira, Franco and Fidalgo
(2020)) evaluated their proposal’s precision for reconstructing the sentences from a corpus. And
finally, |Garcia, Oliveira and Matos (2016]) assessed the system's quality in saving keystrokes.
This way, there is no consensus on the metric most adequate for the task. However, top-
n accuracy is the most used metric among the analyzed studies. As mentioned in Section
[2.1] [AAC] systems use to present pictograms in a grid. This way, we can say top-n accuracy
measures how accurate the system is in predicting the pictograms that will be shown in a grid

of size n.

3.3 CHAPTER CONCLUSIONS

In conclusion, the main disadvantage of the works presented in this chapter is that they
freeze the vocabulary after training the models. For example, the vocabulary of an n-gram
model is based on the words (or expressions) that occur in the training corpus. These models
may not be effective for users with varying vocabulary needs, and updating them can be com-
putationally expensive and time-consuming. Even state-of-the-art models, such as PictoBERT,
based on [BERT], have this limitation. Our proposed approach overcomes these limitations by
allowing for easy adaptation to different vocabularies and user needs without extensive re-
training. It also requires only a small amount of text data for fine-tuning and is plug-and-play,
avoiding the need for training or fine-tuning large language models. This approach represents
a significant advance in state-of-the-art communication card prediction. It provides a more
efficient and adaptive solution to accommodate the varying vocabularies of different users. It
also allows for more flexibility in updating and maintaining the models, making them easier
to use and more accessible for those who need them. As such, it can potentially improve the

communication and quality of life for [AAC users.
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4 PRAACT: PREDICTIVE AUGMENTATIVE AND ALTERNATIVE COMMUNI-
CATION WITH TRANSFORMERS

In this chapter, we present the proposed method for adapting to communication

card prediction in [AAC]| named [Predictive Augmentative and Alternative Communication with|

[Transformers (PrAACT)| As illustrated in Figure [9] the method comprises three main steps:

Corpus Annotation, Model fine-tuning, and Vocabulary Encoding, each with specific inputs
and outputs. By customizing the language model to fit the user’'s vocabulary, the proposed
method facilitates message authoring in [AAC] systems, leveraging the power of transfer learn-

ing from [LLM¢| like BERT| and [GPT| Besides, the proposed method allows for easily adapting

transformers-based [LLMd| to different vocabularies and user needs without extensive retrain-

ing. This approach leverages the power of pre-trained language models like BERT] and [GPT]

which are effective in many [NLP] tasks. In the upcoming sections, we will provide a detailed

explanation of each step in the method.

Figure 9 — PrAACT: method for adapting to communication card prediction in systems. The
method consists of three main steps: Corpus Annotation, Model Fine-tuning, and Vocabulary En-
coding. The outputs of each step feed into the subsequent step, resulting in a customized language
model for efficient message authoring in @systems.
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Corpus Annotation Model Fine-tuning Vocabulary Encoding
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Personalized
Language Model
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Language Model
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Source: The author (2023)
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4.1 CORPUS ANNOTATION

The Corpus Annotation step of the proposed method is crucial for adapting to
communication card prediction in [AAC] systems. As shown in Figure [10] it inputs a natural
language corpus and outputs an annotated corpus. In this context, it is worth considering that
[AAC] has specific characteristics that differ from natural languages, such as limited vocabulary,
reduced sentence complexity, and reliance on semantic and visual cues. Therefore, the Corpus
Annotation step is a domain adaptation process that requires a corpus for [AAC] or with similar
characteristics. The corpus must contain conversational sentences with simple structures be-
cause individuals with communication impairments often have limited language abilities and
rely on visual cues to communicate. Thus, the corpus needs to reflect the communication
needs of the target audience, which generally requires simple, concise language. Additionally,
[AAC] systems are typically designed to provide users with limited vocabulary options. Complex
language structures may make locating and selecting appropriate communication cards more
challenging. Therefore, using conversational sentences with simple structures in the [AAC| cor-
pus ensures that the language model can accurately predict the most suitable communication
cards for the user.

Obtaining an adequate corpus for[AAC|systems can be challenging. One option is to extract
texts from the WEB or books. Still, these texts may contain complex sentence constructions,
idiomatic expressions, and unfamiliar vocabulary unsuitable for the context of [AAC| Another
Figure 10 — The Corpus Annotation, essential for adapting language models to communication card prediction

in AAC systems, requires a corpus that reflects the needs of individuals with communication
impairments.

Corpus

A 4

—)» Corpus Annotation

Annotated Corpus = = -

Source: The author (2023).
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option is to use specialized corpora developed for [AAC, which are often limited in size and
scope. Therefore, careful consideration must be given to the selection and preparation of the
corpus for the Corpus Annotation step to ensure that it is appropriate for the domain adap-
tation process of the used in [AAC] systems. In this work, we conducted experiments
in English and Brazilian Portuguese. For the English language, we utilized the AACText and
SemCHILDES corpora. AACText (VERTANEN; KRISTENSSON, 2011) is a corpus comprising
around 6,000 sentences of fictional [AAC}ike communications, divided into training, testing,
and development sets. The authors of AACText utilized Amazon Mechanical Turk to construct
this corpus, creating numerous messages that model conversational [AAC| The SemCHILDES
dataset, on the other hand, was used for pre-training PictoBERT (PEREIRA et al., [2022)) for

pictogram prediction. It is a large corpus of North American English comprising 955,489 sen-

tences from the |Child Language Data Exchange System (CHILDES)| database (MACWHINNEY,

2014). As for Brazilian Portuguese, we used the AACptCorpus (PEREIRA et al., 2023a)), and the
construction method is detailed in Section [5.1.2] Chapter [§] presents more details about how
these corpora are used in this study.

The annotation of the corpus can be performed in various ways, depending on the specific
needs of the user or group. Two examples of annotation approaches include (a) transforming
the natural language sentences into telegraphic sentences that use only keywords, such as
verbs, nouns, adverbs, and adjectives, with the lemmas of the words; or (b) annotating it with
grammatical structures of the sentences to create semantic scripts like [CS] (cf. Section [3).
(BRYAN, 2003)) is a therapeutic tool developed to help individuals with understand and
develop the construction of written or spoken sentences. The tool uses a color-coded system
associated with key questions, such as “Who?" “What Doing?” “What?" “Where?" and “What
Like?" help individuals understand the semantic role of each constituent of a phrase. Colors act
as visual aids that indicate the sentence’s grammatical structure, while questions help link this
structure to its meaning. This semantic script can annotate the corpus and create a dataset
for fine-tuning the for communication card prediction.

The following subsections outline two methods for processing the natural language corpus:
one for transforming it into a corpus of telegraphic text (cf. Section and another for
annotating the corpus using the semantic roles derived from (cf. Section [4.1.2).
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4.1.1 Natural Language Text to Telegraphic Text

Telegraphic language is a style of speaking that simplifies the expression of ideas by only
using the most necessary content words while leaving out grammatical function words (like
determiners, conjunctions, and prepositions) and inflectional endings. Telegraphic language
is crucial in [AAC] systems. Individuals with often face challenges in processing and
producing complex linguistic structures. By simplifying the expression of ideas and using only
essential content words, telegraphic language enables individuals to convey their messages
more effectively. Besides, telegraphic language helps to reduce cognitive load and enhance
communication efficiency.

This section presents a method for transforming natural language sentences into tele-
graphic sentences. The proposed method aims to create a telegraphic version of a sentence
by identifying and removing non-content words and inflectional endings. The resulting sen-
tence contains only the essential content words needed to convey the meaning of the original
sentence in a more straightforward and accessible manner. The method uses [POS| tagging
and morphological analysis to identify the non-content words and inflectional endings to be
removed.

First, the sentences must be parsed to extract the words' lemmas and [POS| tags to trans-
form the natural language corpus into a telegraphic language corpus. The [POS] tags identify
the word's function in a sentence, such as whether it is a noun, verb, or adjective. The lem-
mas are the word’s basic form and help reduce the vocabulary’s size by grouping different

forms of the same word. For example, the verb “running” is reduced to its lemma “run”. Once
the sentences have been parsed and annotated with the [POS| tags and lemmas, the resulting
telegraphic sentences will contain only the essential words needed to convey the sentence’s
meaning. Only nouns, pronouns, verbs, adjectives, and adverbs are kept. This process trans-
forms sentences like “| ate a cake at school this morning” into “l eat cake school morning”.
This adaptation will help the model to learn a new language distribution so it will be prepared
to process sentences in which prepositions, articles, and verb inflections are omitted.

Various [NLP)| tools can be used to transform the corpus into telegraphic language. In this
study, experiments for English and Brazilian Portuguese were performed (cf., Chapter [5)).
Spacy (HONNIBAL; MONTANI, 2017)) tool was used for the English experiments. Spacy is

a popular open-source software library that provides efficient and scalable [NLP| functionalities

in Python. It has become a preferred choice for many researchers and developers due to its
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accuracy, speed, and ease of use. Additionally, Spacy provides pre-trained models that can be
used for various [NLP| tasks, such as [POS| tagging and lemmatization.

For Portuguese, the Stanza tool (QI et al., 2020) was used. Stanza is another
open-source[NLP| tool that can be used for various natural language processing tasks, including
[POS] tagging and dependency parsing. It is also available in Python and supports multiple
languages, including Portuguese. Like Spacy, Stanza provides pre-trained models for these
tasks, trained on large datasets, allowing for accurate and efficient analysis of text data.
Stanza also offers a user-friendly interface that allows easy customization of the preprocessing
pipeline, making it a valuable tool for researchers and developers in[NLP| Stanza's Portuguese
models are highly accurate and efficient, providing a comprehensive set of linguistic annotations
that can be used for various [NLP] tasks. However, it's important to note that this method is

generic. Different parsers and tools can be used depending on the specific language and the

intended use of the system.

4.1.2 Using the Colourful Semantics structure

In addition to annotating the corpus with [POS| tags and lemmas to transform it into
telegraphic language, other annotations can also be performed, depending on the [AAC| system
developer’s intentions or the user needs. For example, the (cf. Section annotation
can be added to the corpus to allow training models that use semantic scripts to help the user
understand the sentence meaning. This annotation is based on a color key system and key
questions that guide the individual in understanding the syntactic structure of a phrase and
linking it to its meaning. Including such annotations can enhance the effectiveness of the LLM|
used in[AAC] systems and facilitate message authoring. However, the specific annotations used
in the corpus depend on the intended use of the [AAC] system and the user's needs.

Before using[CSit is important to consider that different verbs can have different structures
that individuals with may not easily understand. For instance, while verbs such as
“to eat” are typically transitive and follow the structure of Agent+Verb+Theme, verbs like
“to be” are copulas and follow the structure of Theme+Verb+Description. This can confuse
people with as the sequence of [CS| roles will change, and then the sequence of colors
will also change. To make it easier for individuals with [CCNs| a simplified structure such as
Subject+Verb+Object may be more appropriate, even for copular verbs like “to be”. This

way, mapping semantics roles to syntactic functions is essential in annotating a corpus with
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roles.

We propose a three-step pipeline for annotating the sentences with the[CS|roles, as depicted
in Figure [11] The pipeline comprises the following steps: tokenization, dependency parsing,
and semantic role labeling. In the tokenization step, the sentences are tokenized, breaking
them into individual words or tokens. This process is essential for preparing the text for further
analysis in the subsequent steps. We approach the other two steps in the following paragraphs.

In the second step, dependency parsing identifies the subject-verb-object structure within
the sentences. This [NLP] technique plays a crucial role in capturing the syntactic organiza-
tion of the sentences by examining the interdependencies between words. It facilitates the
identification of grammatical relationships, including subject-verb and verb-object. For this
purpose, the Portuguese model from Stanza and the English model from SpaCy can harness

their respective linguistic resources and capabilities;

In the third step, [Semantic Role Lebaling (SRL)| identifies the adverbial complements,

such as location, time, and manner. This technique, which surpasses mere syntax analysis,
is crucial in identifying the semantic roles of words within a sentence, including agent, pa-

Figure 11 — lllustration of the three-step pipeline method for annotating sentences using Colourful Semantics
roles.

| ate potatoes at school today

Tokenization

l

I ate potatoes at school today

i

Dependency Parsing
(SVO identification)

l

I ate potatoes at school today
subject verb

Semantic Role
Labeling

!

I ate potatoes at school today
subject verb

Source: The author (2023)
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tient, and instrument. By establishing the syntactic relationships between words, [SRL] assigns

them corresponding semantic roles, contributing to a deeper comprehension of the sentence's

intended meaning. The [Intelligible Verbs and Roles (InVeRo)| semantic parser (CONIA et al.,
2020) can be employed for both languages to perform this analysis. The parser is

particularly renowned for its multilingual capabilities, facilitating the process of semantic role
labeling across different languages. This feature proved advantageous for our study, which
involved experiments conducted in English and Portuguese. Leveraging the capabilities of the
parser, we successfully extracted and labeled the semantic roles associated with each
constituent of the sentences in both languages, thereby enhancing our understanding of the
sentence’s overall structure and meaning.

This three-step pipeline annotates the corpus with syntactic and semantic information,
merging in the roles (e.g., who, what doing, what, when, how, where). For example,
consider the sentence “| ate potatoes at school today”. The dependency parsing technique
identifies the subject “I”, the verb “ate”, and the object “potatoes”. The adverbial complement
“at school” will be identified and labeled as the location semantic role, and “today” as the time
semantic role by the [SRL] technique. This allows the method to assign the semantic roles of
“who” (1), “what doing” (eat), “what” (potatoes), “where"” (at school), and “when"” (today)
to the different constituents of the sentence, according to the [CS| framework.

In this method, it is important to determine how to treat auxiliary verbs (e.g., "be”, “have”,
and “do"), which can have different functions and meanings in a sentence. In this study, we
decided to label auxiliary verbs as “what doing” in the same way as main verbs, as they also
contribute to the action or state described in the sentence. This includes modal verbs such as
“can” and “should”, which indicate possibility or necessity and can be crucial for conveying
meaning in specific contexts. This way, the sentence “| want to eat the cake”, for example,
is annotated as who: I, what doing: want, eat, what: cake. By treating auxiliary verbs in this
way, we aim to capture the whole semantic meaning of the sentence while ensuring that the

predicted communication cards accurately reflect the intended message.

4.2 MODEL FINE-TUNING

This section focuses on the fine-tuning step of [PrAACT]| After the corpus has been an-
notated with [CS] roles and transformed into a corpus of telegraphic language, as described in

Section [4.1] the next step is to train a language model to predict the most appropriate com-
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munication cards to complete a sentence in construction. This section discusses the inputs
and techniques used to fine-tune the model.

As shown in Figure [I2] the inputs of this step are the corpus annotated in the Corpus An-
notation Step (cf. Section and a pre-trained language model that allows transfer learning.
The annotated corpus serves as the training data for the model, and the pre-trained language
model is used as a starting point for transfer learning. These models are large neural networks
trained on vast amounts of text data that have been learned to predict the next word in a
sentence given the previous words or to predict a masked word in a sentence like “Paris is
the [MASK] of France” (cf. Section [2.5). They can be fine-tuned on a smaller, task-specific
dataset, such as our annotated corpus, to make predictions on our target task.

Transfer learning is important because it allows us to use the pre-trained models’ language
understanding abilities (cf. Section . Pre-trained language models have acquired a vast
knowledge of words’ language structure and semantic representation, rendering them valuable
resources for developing communication card prediction models with higher accuracy. Subse-
quently, fine-tuning the pre-trained models on our annotated corpus adjusts the models to the
specific task, potentially enhancing the overall performance.

Different models can be used for communication card prediction in this step. In Chapter[3}
we cite the models used in recent works in this field, which include n-gram language models,
knowledge bases, and [M] However, recent research has shown that transformer-based models
are the best alternative in terms of performance, generalization to unseen text, and adaptation
Figure 12 — Model fine-tuning step. The inputs of this step are the corpus annotated in the Corpus Annotation

Step and a pre-trained language model for transfer learning. The annotated corpus serves as the
training data for the model, while the pre-trained language model is used as a starting point.

Pre-trained
Language Model
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—ﬁ Model Fine-tuning
-

Fine-tuned

Annotated Corpus ~ = =
P Language Model

Source: The author (2023)
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to different users and scenarios (PEREIRA et al.,, [2022). Transformer-based models, such as

BERT]and[GPT], have performed state-of-the-art[NLP]tasks, including language generation and

understanding. These models use an attention mechanism to process the input sequence, which
allows them to capture long-term dependencies and context (cf. Section [2.5]). The following
sub-sections present the challenges of adapting a transformer-based [LM] for communication

card prediction in [AAC]

4.2.1 How to represent a communication card

One of the challenges of using a transformer-based [LM| for this task is how to encode a
communication card to use it as input for a deep neural network. As mentioned in Section [2.5]
transformers models like BERT]| encode the words in a sentence using word embeddings, which
are numerical representations of words that capture semantic and syntactic similarities between
them (cf. Section . As discussed in Chapter , recent works that perform card prediction to
aid message authoring have employed various methods to represent communication cards. One
popular approach is representing communication cards through a concept rather than solely
relying on the caption (MART(NEZ—SANTIAGO et al), 2015 [DUDY; BEDRICK, 2018} [PEREIRA;
FRANCO; FIDALGO) 2020; PEREIRA et al., 2022). This involves associating the communication
card with a specific concept, such as a synset in WordNET (MILLER, |1995)) or a specific
ontology, which can help to better capture the meaning and context of the communication
card beyond just the caption. Other methods have been employed, such as representing the
communication card through the [POS| of the caption or a set of synonyms for the caption.
These different approaches demonstrate the ongoing efforts to develop more effective methods
for predicting communication cards and improving the accessibility of [AAC] systems.

In this section, we outline the method we applied to address how to represent best a
communication card for input to a transformer neural network. Our approach thoroughly ana-
lyzed various representation methods, including the caption, glossary definition, and synonym
approaches discussed in Chapter [3] We also considered additional factors, such as the vi-

sual features of the pictogram. For this, we perform an exploratory experiment using

[Transformer (ViT)|to encode the communication cards’ images.
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4.2.1.1 Preliminary Experiments

To evaluate the efficacy of different methods for representing communication cards, we
fine-tuned BERTimbau| (SOUZA; NOGUEIRA; LOTUFO), 2020)), a Brazilian Portuguese version of
[BERT], using a synthetic corpus of Brazilian Portuguese [AACHike communications (PEREIRA
et al}, [2023a)). Before fine-tuning, however, it was necessary to transform the text-based corpus

into a communication cards-based corpus. This transformation involved linking each word or

[Multi Word Expression (MWE)| in the corpus to its corresponding pictogram using a unique

identifier. We utilized the Brazilian Portuguese set of pictograms available in the ARASAAC
database, which provides a list of keywords and corresponding glossary definitions for each
pictogram. The [ARASAAC] dataset provides a diverse set of pictograms covering various com-
munication contexts, each with keywords that can be used as captions for a pictogram-based
[AAC] system. The keywords also have meaning descriptions, similar to a dictionary. Figure
illustrates three different pictograms with the keyword “banco” and how each pictogram has
a different meaning.

The need for disambiguation arises when a single term corresponds to multiple pictograms.
To resolve this, we utilized the Unsupervised Nearest Neighbors algorithm, specifically the ball

tree algorithm, in conjunction with BERTimbau embeddings to identify the most relevant

Figure 13 — Examples of [ARASAAC] pictograms for the word “banco”, its keywords and meanings.

Keyword: banco
Meaning: Instituicdo financeira (financial institu-
tion).

Keyword: banco

Meaning: Assento, com encosto ou nao, em que
varias pessoas podem sentar-se (Seat, with or
without backrest, on which several people can sit).

Keyword: banco
Meaning:Assento de veiculo automotivo (Automo-
tive vehicle seat).

Source: The author (2023)
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pictogram for each word in a given sentence. The ball tree algorithm, a variant of the Nearest
Neighbors algorithm, is particularly adept at handling high-dimensional data. It divides the
data into nested hyper-spheres, or “balls”, facilitating quicker nearest neighbor queries.

In our study, we employed the ball tree algorithm to identify the most similar items,
or pictograms, for each term in the corpus. The algorithm computes the distance between
the BERTimbau embeddings of the terms and the pictograms, assigning each term to the
pictogram with the smallest distance, i.e., the nearest neighbor. This Unsupervised Nearest
Neighbors algorithm enabled us to associate each term in the corpus with the corresponding
pictogram, thereby creating a suitable corpus for fine-tuning BERTimbau in this context. This
method ensures that each term is linked to the most relevant pictogram, enhancing the accu-
racy and efficiency of the disambiguation process. To tokenize the sentences in the corpus, we
utilized all the keywords in the [ARASAAC] vocabulary, including such as “fazer xixi"
(pee) or “café da manh3" (breakfast). A multi-word expression tokenizer was employed to han-
dle these expressions, resulting in a tokenized sentence like S; = {ele, querer, fazer xixi}.
The sentence was also lemmatized to match the lemmas used as keywords in the ARASAAC]
database. We searched for matching pictograms for each token in the [ARASAAC] database
and performed disambiguation when more than one pictogram was found.

Our approach to disambiguation is similar to that of [Scarlini, Pasini and Navigli| (2020)).
As discussed in Section [2.5.2] each encoder layer of BERT] outputs a representation of each
word that is a contextualized embedding influenced by the other words in the sentence. These
embeddings can provide meaningful vectorial representations of words or sentences applicable
to various tasks (see Section [2.5.2)). Typically, the vector produced by for the special
token [CLS] (appended at the start of each sequence) serves as the sentence representation.
Conversely, the word representation can be derived by accessing the vector at its corresponding
position. For instance, if a word is located second in the sequence following the [CLS] token,
the output vector at the second position can be used as the word representation. In our study,
we utilized for encoding the concatenated pictogram definitions. The summation
of the vectors from the last four encoder layers of for the token [CLS] was deemed
the pictogram representation. Similarly, using the same strategy, we applied to
encode the target token (i.e., the token requiring disambiguation), thereby obtaining a vector
and a roster of encoded candidate pictograms for each token in the sentence. To determine the
most appropriate pictogram for each token, we employed the Unsupervised Nearest Neighbors

with the ball tree algorithm. Figure [14]illustrates this process using the sentence “eu sentei no
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Figure 14 — lllustration of the process for automatically selecting a pictogram from ARASAAC to the word
“banco” in the context “eu sentei no banco” (I sat on the bench)

Pictogram
representations
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Assento de veiculo automotivo
banco Unsupervised

“ Nearest
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banco
— T T )« —
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Token representation: l:l%l:l\ T
BERTimbau ARASAAC API

Eu sentei no banco ‘

Source: The author (2023)

banco” (I sat on the bench) as an example and using the word “banco” as the target word.

Notably, the search for potential pictograms is conducted on [ARASAAC| and BERTimbau| is
employed to encode the meaning of both the target word and the pictogram. Subsequently, the

Unsupervised Nearest Neighbors algorithm with the ball tree algorithm selects the pictogram
with the closest representation to the target word.

To fine-tune for communication card prediction in the context of this pre-

liminary experiment, it is necessary to modify both the model vocabulary and the input em-
bedding layer. BERT| and [BERTimbau| rely on a vocabulary based on WordPiece (WU et al|

2016b)), which breaks words into a limited set of sub-word units (e.g., “elefante” to “ele”,

“#4#fante”). However, in this experiment, sub-word tokenization is unnecessary, as the tokens
must be unique identifiers that cannot be divided into sub-units. We created a vocabulary of
identifiers for ARASAAC] pictograms. Since each pictogram has a unique identifier, we used
a word-level tokenizer that splits sentences into tokens using white spaces as a delimiter. For
example, the sentence illustrated in Figure [15]is tokenized as “6481 31141 16713".
Changing the vocabulary requires changing the embeddings layer, also. Intuitively, we tell
the model that we changed the vocabulary to use a new language, and the new embedding
vectors represent the terms in this new language. In our experiments, we extract embeddings

from four sources: 1) the pictogram caption (i.e., word or expression); 2) the pictogram caption

synonyms; 3) the pictogram glossary definition from [ARASAAC; and 4) the pictogram image.
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We use the input embeddings layer from as a basis for the caption embeddings.
Formally, given a vocabulary V' composed of words and (w1, ..., wy), the
original embedding B € R"*P where h is the size of the hidden state and D, is the[BERTim]
bau| vocabulary size, and given a new embeddings matrix P € R"Pv where D, = |V|, for
each token t; in V, populate P with the ¢; embeddings from B. For[MWEs| the embeddings of
each token are extracted from [BERTimbaus embeddings layer to a matrix £ € R"*", where
h is the dimensionality of the embedding, and n is the number of tokens in the expression.
We use the mean vector E as the expression’s embedding representation. We use an approach
similar to (DUDY; BEDRICK| 2018)) for caption synonyms. First, we search in for
the list of keywords for each pictogram. The pictogram representation is the average of the
embeddings of its keywords retrieved from BERTimbau's original embeddings layer.

We use the definitions from [ARASAAC] concatenated with keywords to generate embed-
dings from the pictogram definition. A pictogram in lists keywords, each with a

definition. We concatenate this list as
keywordy||de finitiong||...||keyword,||de finition,, (4.1)

, which we use to compute the pictogram vector using two extraction methods. The first extrac-
tion method considers the mean vector of the definition extracted from B (i.e.,
input embeddings). The second method uses the last encoders layer outputs for
the [C'LS)| tokerE]. We also computed representations from pictogram images using a
model pre-trained on ImageNet-21k (14 million images, 21,843 classes) and fine-tuned on
ImageNet 2012 (1 million images, 1,000 classes) (DOSOVITSKIY et al., 2020)E].

We fine-tune with a batch size of 768 sequences with 13 tokens (768 * 13 = 9,984
tokens/batch). Each data batch was collated to choose 15% of the tokens for prediction,
following the same rules as : If the i-th token is chosen, it is replaced with 1) the

1 |BERT] tokenizer adds the [C'LS] token at the beginning of the processed sentences. This token output
representation is generally used as input for classification models.
2 Available at <https://huggingface.co/google/vit-base-patch16-224>

Figure 15 — The sentence Ele quer fazer xixi (he wants to pee) represented using [ARASAAC]| pictograms.

ELE QUERER FAZER XIXI

ol @

09|/

Source: The author (2023)
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Table 5 — Evaluation results of comparing the manners to represent a communication card. Results are sorted
by ACCQ1. The K values for AACQK represent different grid sizes commonly used in AAC boards.

Method PPL ACCO1 ACC@9 ACCE18 ACC@25 ACCE36
Pictogram captions 15.433 0.237 0.530 0.620 0.657 0.702
Pictogram synonyms 14.282 0.225 0.511 0.604 0.647 0.698

Pictogram definition [input embeddings  23.368 0.209 0.492 0.580 0.627 0.673
mean|

Pictogram image + synonyms 122.407  0.042 0.169 0.220 0.255 0.293
Pictogram definition [mean last layer] 22496  0.019 0.122 0.206 0.246 0.295
Pictogram image 106.130  0.007 0.037 0.078 0.112 0.146
Pictogram image + caption 89.685 0.007 0.038 0.076 0.111 0.146
Pictogram definition [CLS] last layer 89.107  0.003 0.062 0.117 0.153 0.203

Source: The author (2023)

[M ASK] token 80% of the times, 2) a random token 10% of the times or 3) the unchanged
i-th token 10% of the times. We use the same optimizer as[BERT| (DEVLIN et al}, 2019)): Adam,
with a learning rate of 1 x 107 for all model versions, with 3; = 0.9, 85 = 0.999, L2 weight
decay of 0.01, and linear decay of learning rate. Fine-tuning was performed in a single 16GB
NVIDIA Tesla V100 GPU for 200 epochs for the captions and synonyms versions and 500
epochs for the other versions. The definition- and image-based versions require more training
time because the input vectors are from a different vectorial space than the

embeddings. The model needs more time to adjust the parameters to these new vectors.

4.2.1.2 Results

Table[5| presents the results obtained by testing each version of the models in terms of top-k
accuracies (ACC@K) and perplexity (PPL). ACC@K is a performance evaluation measure to
assess the accuracy of predictions generated by the model. The ACCOK metric is calculated
by checking if the correct prediction is within the top K predictions made by the model. If
the correct prediction is within the top K, then the ACCOK is 1; otherwise, it is 0. The
ACCQOK value is then averaged over all instances to give a proportion or percentage of correct
predictions within the top K predictions. A higher ACC@K value indicates better accuracy,
with a perfect score of 1.0 indicating that the correct prediction is always within the top K
predictions and a lower score indicating lower accuracy. Various K values were utilized to assess
the accuracy of the predictions, including 1, 9, 18, 25, and 36, which represent different grid

sizes commonly found in [AAC] boards.
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Perplexity (generally noted as PPL or ppl) is the inverse probability assigned to the test
set by the language model, normalized by the number of unique words in the vocabulary
(JURAFSKY; MARTIN, [2019)). Intuitively, if a model gives a high probability to the test set, the
information there is not surprising to the model. Thus, it has lower perplexity, indicating a

good comprehension of language. For example, for a test set W = wq, wo, ..., wy:

N 1
- \/P(wl,wz,...,wN) (4.2)

In which the probability of W can be expanded with the chain rule:

2|~

PP(W) = P(wi, wa, ..., wy)~

N 1

I

=1

PP(W) = fﬂ (4.3)

(wi|w17 ey Wi — ]')

Where P(w;|wy,...,w; — 1) is the probability of the i-th token given the previous i — 1 (i.e.,

the context). Thus, considering a bigram model, we have:

N 1

5

=1 Plwilw; — 1) (44)

PP(W) = fﬂ

Notice that because of the inverse in Equation [4.3] the higher the conditional probability of
the word sequence, the lower the perplexity.
Perplexity can also be obtained by exponentiating the cross-entropy (Equation . In

doing so, we consider perplexity as the average number of words encoded using H(W).

PP(W) — 2H(W) — 2—%logzp(w1,w2,...,w1\r) (45)

Perplexity does not properly apply to [BERT|[MLM] as in BERT] the cross-entropy is
calculated only for masked tokens. However, also assigns the probability of a given

sentence to exist in a test set by assigning the probability of each word when no masked token
is inputted into the model. From the sentence probability, we can calculate the cross-entropy
and the perplexity.

The results show that the model in which the embeddings were calculated using the pic-
togram caption synonyms has the lowest perplexity. This means that this model better under-
stands how the language present in the test set works. Consequently, it can perform better
generalization in diverse scenarios, making it more adaptable and versatile. Conversely, the
model that extracted embeddings solely from the pictograms’ captions demonstrated superior
accuracy. Accuracy is a direct reflection of how correct the predictions of a model are. In this

case, the higher accuracy indicates that this model was more successful in making correct
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predictions. However, the difference between these two models across all metrics may not be
substantial enough to indicate one as superior to the other definitively. It's important to note
that the choice of the best model can depend on the specific requirements of the task at
hand. For instance, if the task prioritizes the general understanding of language and adapt-
ability to different scenarios, the model with lower perplexity might be more suitable. On the
other hand, if the task values the correctness of individual predictions, the model with higher
accuracy might be the better choice. Therefore, selecting the best model should be guided by
the specific objectives and constraints of the task.

Regarding the models in which the pictogram definitions were used to compute embeddings,
using the mean vector of the definition extracted from the BERTimbau|input embeddings were
shown to be more effective. Using the BERTimbau| outputs as the definition representation did
not show good results, with higher perplexities and lower accuracies. Fine-tuning
using these embeddings may require more training data and time, for the vectors are from
a vectorial space different from the model's original. The same happens to the models using
embeddings computed from pictogram images and their combinations. Based on these models’
training and validation loss curves, there is still space for improvement, as the measures keep

falling even after 500 epochs.

4.2.1.3 Preliminary Experiments Conclusions

Therefore, based on the metrics presented in Table[5], the best way to represent a pictogram
in the proposed method is using the pictogram caption or its synonyms. Which of these two
approaches to use depends on the vocabulary characteristics. For example, it is impossible to
use synonyms if no synonyms dataset is available. However, if the same caption is used for
two different pictograms in a vocabulary, it may be difficult for the model to disambiguate
them. Using the pictograms’ concept, as in PictoBERT (PEREIRA et al, [2022)), can solve these
problems. However, it should be noted that for some languages, such as Portuguese, a well-
established lexical database like Princeton WordNET (MILLER, [1995) for English may not be
available. In such cases, using pictogram definitions could be considered as an alternative.
However, the results showed that using definitions performed worse than using only captions
or synonyms. Moreover, encoding communication cards based on their definition might require
more time and resources than using only captions. In this work, we present a novel approach

that can solve this problem efficiently (cf. Section
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4.2.2 Model Adaptation

The experimental results in Section [4.2.1] showed that using captions is sufficient to rep-
resent a communication card for performing predictions using a [ BERT| model. This way, com-
munication card prediction can be compared to a word prediction task. The main difference
between word prediction and communication card prediction in [AAC]is the presence of MWEs|
MWEs| are common in communication cards as they convey complex meanings more concisely
than individual words. For instance, the expression “Good morning” is often represented by
a single pictogram in communication cards. Similarly, the expression “l want to go to the
bathroom” can be represented by a single pictogram that conveys the same meaning. In this
Section, we detail how to adapt BERT] to perform communication card prediction in [AAC]
systems considering the MWESs]

The main difference between the changes made in that we describe in this section
and the changes described in Section |4.2.1.1]is that in this section, we do not modify the entire
embeddings matrix of BERT] Instead, we add the tokens representing to its existing
vocabulary. This approach assumes that MWES| can be effectively represented as single tokens
in the model vocabulary. By doing so, we can capture the meaning of [MWEs more accurately
and avoid tokenizing them into their constituent parts, which can result in a loss of semantic
information. For example, in the Portuguese sentence “Eu gosto de café da manh3" (I like
breakfast), “café da manh3" is a multi-word expression that should be treated as a single token
in the model vocabulary. By adding it to the vocabulary, we ensure that the model can learn
to represent its meaning more accurately.

To add to the [BERT] vocabulary, we first extracted with two or three
words from the [ARASAAC] vocabulary for Brazilian Portuguese. We limited it to three words
because expressions with more than three words may contain complete sentences in which
prediction is not required. Next, we tokenized each [MWE| and computed the mean vector
representation of its constituent tokens from BERT][s original input embeddings. We then
added these tokens to the model vocabulary, along with their corresponding vector
representations. This allowed us to handle[MWEs]in the input sentences and enabled [BERT]to
provide better representations for multi-word expressions in the communication card prediction
task. This approach allows for the model to handle as well as Jout-of-vocabulary]
words using the WordPiece tokenization algorithm. Adding the to the model’s

vocabulary, BERT] can represent these expressions as a single token. They can use its pre-
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trained WordPiece tokenization algorithm to handle words. This way, the model can
handle more complex language expressions, such as idiomatic expressions and domain-specific
terminology, which are often challenging for [AAC] systems.

When using [CS] to predict communication cards, it is necessary to include the tags repre-
senting the structural roles in the model’s vocabulary, such as “<who>" and “</who>". This
is done by averaging the embeddings of each token within the tag. Using [CS| may be more
adequate for bidirectional models like BERT]| because they can better capture the relation-
ships between the different structural elements. For instance, consider the sentence “<who>
| </who> <verb> drink </verb> <what> water </what>". In this example, can
more easily understand that “I” is the subject acting for “drink” and that “water” is the object

of the verb. Thus, incorporating the structural role tags of [CS|in the model's vocabulary can

improve the model's ability to predict communication cards.

4.3 VOCABULARY ENCODING

This section focuses on the Vocabulary Encoding step, the most critical step in [PrAACT]
It enables language models to be used in a zero-shot setting, allowing users to communicate
flexibly and adaptably without requiring pre-defined sentences. As shown in Figure [16] the
inputs for this step are the fine-tuned language model produced in the previous step or a
pre-trained model without fine-tuning, and the user vocabulary, including the communication
cards with their caption.

This step takes advantage of the fact that transformer-based models like [BERT] share
weights between the input embeddings layer and the decoder layer in the head (cf. Sec-

tion [2.5.2)). In BERT] the decoder layer is a linear layer that predicts the masked tokens given

the context. Specifically, during training, masks some input tokens and trains the model
to predict the original tokens. The decoder layer receives the word representations outputted
by the encoder layers of the transformer (hidden states) for the masked tokens. It produces
logits, which are then transformed into probabilities by a softmax function. During inference,
the decoder layer generates new tokens given the hidden states, making it an important part of
the BERT[s[MLM] head model. We can change the model decoder layer to force it to produce
probabilities to a different vocabulary by changing the weight matrices.

This modification involves updating the decoder layer to produce logits for the new vocab-

ulary, which represents the unnormalized probabilities for each vocabulary item. As depicted
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Figure 16 — The Vocabulary Encoding step enables users to communicate flexibly and adaptively without
predefined phrases or sentences by taking advantage of shared weights in the input embeddings
layer and decoder layer of transformer-based models like BERT.

User Vocabulary

A 4

—;‘ Vocabulary Encoding

Personalized
Language Model

Fine-tuned
Language Model

Source: The author (2023)

in Figure [17] the user vocabulary items are passed through the embedding layers to generate
an embedding vector for each item. These resulting embeddings replace the original decoder
layer’s weights, thereby enabling the model to generate new tokens from the user vocabulary.
Subsequently, the softmax function is applied to these logits, transforming them into a prob-
ability distribution over the user vocabulary. This softmax function normalizes the logits and
produces a probability distribution, where each item’s probability corresponds to its likelihood
of being the correct output.

To generate the logits for the new vocabulary, we first encode the user vocabulary into
vectors from the same vectorial space as the model’s original input embeddings. We use the
model’s original embedding layer to perform this encoding. Each vocabulary item is passed
through the embedding layer to extract its representation. The proposed method in this work
enables the addition of MWES| to the model vocabulary, as mentioned in Section [4.2.2] How-
ever, the current section presents a method step that allows for the adjustment of the model
to a new specific vocabulary, which may include new [MWEs| due to user preferences, regional
variations, and other factors. For MWES| that are not in the model vocabulary, we combine the
representations of the multiple words that make up the expression. For example, if the verbal
expression “wake up” is not included in the model vocabulary, it will be tokenized as (“wake”,
“up”), and the communication card vector is the combination (e.g., average) of the vectors of
“wake” and “up”. This produces a h x |V| matrix, where h is the model's hidden states size

and |V| is the user vocabulary size. This matrix is used as the decoder layer weights, allowing
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Figure 17 — Vocabulary Encoding using the Embeddings Layer. The user vocabulary items are passed through
the embedding layers to generate an embedding vector for each item. The resulting embeddings
replace the original decoder layer's weights, allowing the model to generate new tokens from the

user vocabulary. The number 6 refers to the input length, and the number 768 refers to the
[BERT}base hidden states size

‘ Probability distribution over the user vocabulary items ‘

A
‘ softmax ‘
A A 46xUserVocab 4 A A
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Source: The author (2023)

it to output logits for the new vocabulary.

The same modification can be applied to transformer-based language models like [GPT} 2.
Unlike BERT] [GPT}2 is trained as a left-to-right autoregressive language model, predicting the
next token given the context. [GPT}2's decoder is the language modeling head, which shares
weights with the embeddings layer, allowing for generating new tokens given some context.
The language modeling head is a linear layer followed by a softmax function that outputs
the probabilities of the next token given the context. By replacing the language modeling
head with a linear layer with the user vocabulary size and the weights computed from the
embeddings of the user vocabulary, we can generate tokens from the user vocabulary. This
modification ensures the new vocabulary has vectors from the same embedding space as the

model's original input embeddings.
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5 EXPERIMENTS

In this chapter, we present the experiments to evaluate the quality of the models produced
following the method. The performed experiments aim to 1) compare the models
constructed using the method proposed in this work, which requires little or no additional
training rather than a model pre-trained in the task, and 2) compare a model that uses the
[CS]'s semantic roles during predictions with a model that does not. Section presents the
datasets used and the annotation details. Section [5.2]details the models used in the comparison
and the fine-tuning or pre-training implementation details. In Section[5.3] we present the details
of a relevance ranking evaluation, which assesses the ability of models to prioritize relevant
communication cards when completing a sentence related to a specific topic (e.g., feeding).
Finally, in Section[5.4] we present the details of the completion evaluation to assess our models’
quality in predicting appropriate communication cards to complete a given sentence. All the

results and discussions are presented in Chapter [6]

5.1 DATASETS

The proposed method is evaluated in two distinct languages: English and Brazilian Por-
tuguese. This categorization allows for properly classifying each dataset in this section accord-
ing to the corresponding language. For each language, we employed two types of datasets,
namely: 1) an controlled vocabulary that serves as the user vocabulary input for the
proposed method, as described in Section ; and 2) a text corpus utilized for fine-tuning
the models, as detailed in Section [4.3] These datasets form two of the three inputs of the
proposed method, while the pre-trained language model, discussed in Section [5.2] constitutes
the third input, as shown in Figure (18]

Furthermore, we include the corpus employed for training PictoBERT (PEREIRA et al, 2022)
for comparison purposes. Table [f] provides an overview of the datasets used in the study. It
presents information on each dataset's language, size, description, and objective. We give more

details about each dataset in the following subsections.
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Figure 18 — Proposed method’s data input. The corpus is used for fine-tuning the pre-trained model. That is,
adapting the model to the AAC context. The user vocabulary is used for adapting the model to
the user's daily communication.

Corpus User Vocabulary

Source: The author (2023)

5.1.1 Portuguese Controlled Vocabulary

For Brazilian Portuguese, we used the vocabulary constructed by [AAC specialists from
ComunicaTEAE], a Brazilian association formed by parents of children with aimed at
helping other families to have access to and use [AA(] tools. The vocabulary was constructed
using the Reaact PlatformP and is freely available for testing

Figure [19| shows the first page of the used vocabulary. Each communication card has a

<https://comunicatea.com.br/>
<https://reaact.com.br/>
3 Access <https://login.reaact.com.br/login> and click at “Testar Flipbook”.

Table 6 — Summary of the datasets used in the experiments performed in this study. PT-Br stands for Brazilian
Portuguese and EN for English.

Dataset Lang. Size Description Objective
ACCptCorpus PT-Br 13K sen- Composed of AAC-like communica- Fine-tune Brazilian Por-
tences tions annotated with the CS structure.  tuguese models.
ComunicaTEAPT-Br 978 commu- Common use vocabulary constructed Assess the Brazilian Por-
vocabulary nication cards by AAC specialists. tuguese models’ quality.
AACText EN 7K sentences  Composed of AAC-like communica- Fine-tune English few-shot
tions transformed into telegraphic lan-  models.
guage.
SemChildes EN 955K sen-  Sub-set of CHILDES corpus anno- Used for pre-training Picto-
tences tated with word-senses. BERT.
CACE-en EN 715 commu- English version of the CACE-UTAC Assess the English models’
vocabulary nication cards vocabulary translated from Spanish. quality.

Source: The author (2023)


https://comunicatea.com.br/
https://reaact.com.br/
https://login.reaact.com.br/login
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Figure 19 — Screenshot of the first page of the ComunicaTEA vocabulary implemented in the Reaact [AAC
Tool. Notice that communication cards have a picture and a caption and that cards with dashed
border lines are folders that contain related communication cards.

Source: The author (2023)

picture (pictogram or photo) and a caption with the word or expression represented by the
picture. The first screen presents the most frequently used cards to the user, along with folders
marked with dashed border lines such as “pessoas”, “acdes”, “comidas e bebidas”, “lugares”
and “animais”.

We remove from the vocabulary the folders “Algo a dizer” (something to say) and “Per-
guntas” (questions) and their respective communication cards. These folders contained cards
with complete sentences or self-contained expressions, such as “o que estd fazendo?” (what
are you doing?) and “Tive uma ideia” (I got an idea), which do not require prediction and
may be used alone. The resulting vocabulary consisted of 978 communication cards organized
in 22 folders, including the first page as a folder. The cards from the excluded folders were not
considered in the final count, as they are not used in sentence construction. Moreover, certain
communication cards in the vocabulary have a comma separating the words in their captions,
indicating that they can be used with multiple words. We included separate copies of such
cards in the vocabulary to account for this, each with a distinct caption split. An example is
the card with the caption “bem, bom" in Figure |E| which is transformed into two cards: one

with “bem” as caption and the other with “bom".
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Figure 20 — Overview of the method used for constructing AACptCorpus, a synthetic corpus for AAC.

Sentence Collection Corpus Augmentation Text Cleaning
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1
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Source: The author (2023)

5.1.2 Portuguese Corpus

To our knowledge, Brazilian Portuguese has no corpus of the [AAC| domain. Existing ap-
proaches developed for English cannot simply be translated to Portuguese due to the two
languages’ distinct grammatical and syntactic structures. For example, Portuguese has a more
complex system of verb conjugation, gender and number agreement, and word order than
English. This section describes the method used to construct a corpus of sentences resembling
those utilized in Brazilian Portuguese [AAC| systems. The method encompasses three key phases
outlined in the sub-sections: sentence collection, corpus augmentation, and text cleaning, as

depicted in Figure . We name the produced corpus ACCptCorpus (PEREIRA et al., 2023a)).

5.1.2.1 Sentence Collection

For sentence collection, we invited 18 professionals, including speech therapists, psychol-
ogists, and parents of children with , to inform the sentences they consider the most
commonly constructed in different contexts using high-tech [AAC] Each participant answered
a questionnaire asking them to construct sentences about home, school, kitchen, and leisure
contexts and sentences free of context. We collected 667 unique sentences, which we now
refer to as human-composed.

This number of sentences may not be enough to cover [AAC| communication. However,
they can be used as a reference to generate similar sentences based on similarity in vocabulary
and structure (syntactic and semantics). As a vocabulary, we used the dataset
(PALAO, 2019), which provides a diverse set of pictograms covering a variety of communication

contexts. Each pictogram has a set of keywords, which can be used as captions for a pictogram-
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based system. We use the Brazilian Portuguese [ARASAA( list of keyword{?| as our

vocabulary, removing punctuations and keywords with more than three tokens (e.g., Material
de estimulacdo sensorial). We used the human-composed sentence as examples for generating

new sentences with similar structures.

5.1.2.2 Text Augmentation

For corpus augmentation, we used 3 (BROWN et al,| 2020)E] with a few-shot learning
approach. We provide some examples to GTP-3 in the form of text prompts and ask it to
produce new similar examples by completing our prompts. [GPT}3 is an [LLM] trained to predict
the next word. It is a powerful tool for text generation, for it can complete text prompts like
the one shown in Figure [2I] For composing the prompts, we shuffled the vocabulary items and
divided them into groups of 20. Then, we randomly selected five words (or expressions) from
each group and used them to search for example sentences from the human-composed set.

We sample from 3 to 6 example sentences for each group and use them as few-shot examples.

* Available at <https://api.arasaac.org/api/keywords,/br>

5 We used text-davinci-002 available via the OpenAl API.

Figure 21 — 3 text prompt used for sentence generation.

Generate new Portuguese sentences using the words in this vocabulary: “delas”, “vizinho”, “avé”,
“médico”, "beb&”, “pai”, “professor”, “policial”, “garota”, “profissdes”, “primas”, “irm3", “criancas”,
“rapaz”, "av6", “de vocés", “motorista”, “filho"”, “dentista”, “adulto”.

##

Example 1: eu tenho um filho e uma filha.

#H#

Example 2: eu vi meu filho feliz.

##

Example 3: nds gostamos delas.

##

Example 4: meu avd foi trabalhar.

##

Example 5: vocé é um grande professor.

#H#

Example 6: nés vamos seguir o professor.

##

Example 7:

Source: The author (2023)


https://api.arasaac.org/api/keywords/br
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5.1.2.3 Text Cleaning

We performed a data cleaning step on the automatically generated corpus. This step
included (a) removing sentences containing offensive content, using the method proposed by
(LEITE et al., [2020)); (b) removing sentences with higher perplexities according to BERTimbau
(SOUZA; NOGUEIRA; LOTUFO), 2020), a Portuguese Brazilian version of [BERT] selecting those
in the first quartile to be removed; and (c) removing sentences with less than three or more
than 10 tokens. To compute perplexity, the model utilizes a copy of the input sentence as the
label and assigns a probability to each word. From this, the cross-entropy and perplexity can

be derived (PEREIRA et al., 2022).

5.1.2.4 The Constructed Corpus

Table [7| presents the details of the produced corpus regarding the number of words and
sentences. It provides information such as the total number of words, the number of unique
words, the average sentence length, and the number of sentences. This information can be
useful for understanding the overall structure and composition of the corpus.

Figure presents a chart that displays the frequency of words in the corpus, with a
separate section for stop words, sorted by frequency. The chart provides an overview of the
most common terms used in the corpus. It can help identify patterns or trends in the language
used. The most frequent word (excluding stopwords) in the corpus is “quero” (i.e., "l want”),
which indicates that the corpus might be focused on expressing wants or desires. In [AAC] it
is common for users to express their needs and desires, which makes the presence of the word
“quero” not surprising. The chart also displays the frequency of stop words, which are the
words that are not semantically meaningful, such as “0”, “a", "de", etc. Stop words in high
frequency indicate that the corpus contains many common, everyday languages rather than

specialized or technical ones. Overall, the chart in Figure 22| can be a useful tool for analyzing

Table 7 — Portuguese dataset summary.

Words ‘ Sentences

Total Unique ‘ Total Max Length Min Length Mean Length Most Frequent Length

89572 4758 | 13796 11 3 6 6 (3432 times)

Source: The author (2023)
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Figure 22 — Frequency distribution of words in the constructed corpus.

(a) Words frequency. (b) Stop-words frequency.
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the language used in a corpus and gaining insight into the topics and themes it covers.

The chart in Figure [23] displays the frequency of word combinations, specifically bigrams
and trigrams, in the corpus. Bigrams are combinations of two words, such as “l am,” and
trigrams are combinations of three words, such as “l am going.” The chart is sorted by
frequency, with the most frequent bigrams and trigrams appearing at the top. This type of
analysis is useful for identifying common phrases and idiomatic expressions used in the corpus
and understanding the relationship between words in the language. Additionally, it can provide
insight into the style and tone of the text, such as whether it is formal or informal. Overall, the
chart in Figure [23]| can be a valuable tool for understanding the language used in the corpus
at a deeper level. For example, the most frequent bigram is “eu quero” (I want), indicating
that the corpus might be focused on expressing wants or desires. Additionally, it can be used
to identify patterns in the language, such as specific conjunctions or prepositions, which can
further inform the analysis of the corpus.

In Figure 24 we can see the human-composed corpus’s word and bigram frequency distri-
butions. This figure is useful for comparing the distribution of the generated corpus with the

human-composed corpus. The comparison of the generated corpus with the human-composed

Figure 23 — Frequency distribution of N-gram in the constructed corpus.

(a) Bigram frequency. (b) Trigram frequency.

eu quero eu gosto de
eu nao eu nao quero
eu vou eu quero ir
eu tenho eu quero um
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nao quero eu nao gosto
eu estou gosto de comer
quero ir nao gosto de
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Source: The author (2023)
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Figure 24 — Word and n-gram frequency distribution in the human-composed corpus.

(a) Words frequency.
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corpus is divided into four categories: words, stop-words, bigrams, and trigrams. When analyz-
ing the distributions, we notice that the human-composed and generated corpus have similar
distributions. Additionally, the top 10 most frequent words and stop-words of the human-
composed corpus have a similar presence in the generated corpus.

The coverage of the constructed corpus can be used to evaluate the quality and repre-
sentativeness of the automatically generated sentences. It is defined as the fraction of the
sentences generated by the text augmentation method assigned to the same cluster as at least
one human-composed sentence. To quantify the coverage, we employed a clustering-based
approach to generate sentence embeddings for both the human-composed and augmented

corpora. We used the k-means clustering algorithm to group the sentence embeddings into

clusters. We used BERTimbau| (SOUZA; NOGUEIRA; LOTUFO, [2020) to generate sentence em-

beddings using the average vector outputted by the last 4 encoder layers to the [C'LS] token.
To evaluate the coverage of the generated corpus, we collected an additional 203 sentences
from|[AAC specialists. This set is referred to as the test set of the human-composed corpus. The
original 667 sentences collected from the specialists constitute the training set of the human-
composed corpus. The test set provides a means of measuring the quality and reliability of the
generated corpus by comparing its content with the human-composed sentences.
The line chart in Figure [25] depicts the coverage ratio of three different scenarios: the blue

line represents the coverage ratio of the automatically generated corpus over the test set of
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Figure 25 — Coverage of the automatically generated corpus over the human-composed sentences.
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the human-composed corpus. The orange line represents the automatically generated corpus
coverage ratio over the human-composed corpus training set. Finally, the green line represents
the coverage ratio of the test set of the human-composed corpus over the training set.

As the number of clusters increases from 10 to 200, we can observe that the blue line
(coverage of the automatically-generated corpus over the test set of the human-composed
corpus) decreases deeper than the other two lines. This can be explained by the fact that the
human-composed corpus is smaller than the generated one, leading to a decrease in coverage
as the number of clusters increases. However, it is important to note that both the orange and
green lines remain relatively stable throughout the range of the number of clusters, showing
that the coverage of the auto-generated corpus over the training set and the test set of the
human-composed corpus over the training set, respectively, is not significantly affected by the
number of clusters.

The results demonstrate that the generated corpus is semantically similar to the original
human-composed corpus, with a coverage ratio of up to 0.7 for the training set of the human-
composed corpus, even when a large number of clusters is used. The coverage ratio is slightly
lower but still significant for the test set of the human-composed corpus, remaining up to 0.5

with fewer than 130 clusters utilized.
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5.1.2.5 Corpus Annotation

For annotating the Portuguese Corpus (ACCptCorpus), we utilized the Portuguese model
available in the Stanza [NLP]tool. This model allowed us to turn the corpus into a telegraphic
format, making it easier to analyze and extract key information. Furthermore, we also employed
the [CY roles to provide a more detailed annotation of the corpus. To extract the syntactic
structure and semantic roles from the corpus, we used dependency parsing and [SRL] Depen-
dency parsing allowed us to extract the subject+verb+object structure of each sentence. We
used the Portuguese model from Stanza [NLP| (QI et al}, [2020). [SRL] was used to extract adver-
bial complements such as location, time, and manner. This allowed us to identify and label the
semantic roles associated with each sentence constituent. For [SRL, we used the se-
mantic parser (CONIA et al., 2020). By combining these two techniques, we could annotate our
corpus with both syntactic and semantic information, which merged in the [CS|roles (e.g., who,
what doing, and what). For example, let us consider the sentence “Eu comi pipoca na escola
hoje” (I ate popcorn at school today) from AACptCorpus. The dependency parsing technique
identified the subject "eu” (l), the verb “comi” (ate), and the object “pipoca” (popcorn).
The adverbial complement “na escola” (at school) was identified and labeled as the location
semantic role, “hoje” (today) as the time semantic role by thetechnique. This allowed us
to assign the semantic roles of “who” (eu), “what doing” (comi), “what” (pipoca), “where"
(na escola), and “when" (hoje) to the different constituents of the sentence, according to the

framework.

5.1.3 English Controlled Vocabulary

For the English version of the vocabulary, we utilized a translated version of the [CACE}
vocabulary [f| originally in Spanish. The translation of [CACE| posed fewer challenges than
the translation of ComunicaTEA vocabulary since it only employs [ARASAAC] pictograms, en-
abling us to use the ARASAAC| API to obtain translations. Additionally, it facilitated mapping
the communication cards in the vocabulary to WordNet concepts. [ARASAAC] provides a map-
ping between pictograms and synsets, which is advantageous in testing the PictoBERT model
based on WordNet concepts.

The translation process of the [CACEJUTAC] vocabulary to English involved searching for

6 <https://www.utac.cat/descarregues/cace-utac>


https://www.utac.cat/descarregues/cace-utac

77

Figure 26 — Communication cards in [CACEJUTAC| vocabulary. (a) presents dome of the original |[CACE| cate-
gories before translation. (b) show the communication cards inside the “persons” folder.

(a) Example of |CACE|folders. (b) Cards inside the Persons folder.
EXPRESIONES PERSONAS ACTIVIDADES Y FAMILIA MADRE PADRE HERMANA
809080
ageni0| | 2 &
@ ﬁ ii ﬁ S| | A .
PREGUNTAS Y VERBOS OBJETOS HERMANO ABUELA ABUELO TiO/A
PARTICULAS
|| g =
@ @gﬁ» Sh R | &
2, I'm < | &
TRANSPORTES | | CUERPO, HIGIENE ROPA Y ALIMENTOS Y . NIRO NIRA
Y SALUD COMPLEMENTOS BEBIDAS
> h o f

Source: The author (2023)

[ARASAAC] pictograms that matched the ones used in [CACE] and listing the words related to
that pictogram in English. It is important to note that ARASAAC] has multiple words associated
with a single pictogram in each language, which resulted in a list of potential translations for
each communication card. A human expert then assessed each list and chose the ARASAAC]
word that was the best translation for the original Spanish caption.

The [CACEJUTA( vocabulary used in this study, similarly to ComunicaTEA, is organized
into folders that group communication cards by semantic categories, such as “foods” or “de-
scriptors”. The vocabulary comprises a total of 24 folders and 715 pictograms. However, since
[CACE] is originally in Spanish and contains some regional expressions, we excluded some of
the cards that might not be used in other Spanish-speaking countries or may not have a direct
translation in English. Figure 26] shows a few examples of [CACE folders and communication

cards in their original Spanish version.

5.1.4 English Corpora

In this section, we present two corpora for English. The first is the AACText
IKRISTENSSON|, 2011)) corpus, which consists of 6K sentences that resemble like com-
munications. The second corpus is used for pre-training the PictoBERT model, the [Semantid

[CHILDES (SemCHILDES)|, which is not used in our experiments but is still relevant to mention.

The AACText corpus consists of fictional [AACHike communications comprising approx-
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imately 6K sentences, divided into training, test, and development sets. The authors used
Amazon Mechanical Turk to construct the corpus to create many messages that model con-
versational [AAC] Workers were asked to invent messages using a scanning-style [AAC] interface
for communication. The authors found that their crowdsourced collection better modeled con-
versational [AAC| than datasets based on telephone conversations or newswire text. The authors
also leveraged their crowdsourced messages to intelligently select sentences from larger Twit-
ter, blog, and Usenet datasets. We use the AACText corpus for fine-tuning the English few-shot
models. To adapt the AACText corpus for use in our communication card prediction method,
we first transformed it into a telegraphic language corpus. To achieve this, we removed sen-
tences containing commas, which are typically not used in pictogram-based [AAC| systems. We
then used the Spacy English parser to extract the[POS|and lemmas of the words in the remain-
ing sentences. We included two versions of each sentence in the corpus: the telegraphic and
the natural language version. While communications are generally telegraphic, users may
use natural language or include prepositions or verb inflections. This resulted in 7K sentences

for the training set and 1K for both test and validation.

The [SemCHILDES| dataset was created by |Pereira et al.| (2022)) for pre-training Picto-

BERT for pictogram prediction. The [SemCHILDES]is a large corpus (955,489 sentences) of
North American English from the |CHILDES| database (MACWHINNEY, 2014). To use it for pre-

training PictoBERT, the authors labeled part of [CHILDES| with word-senses using SupWSD
(PAPANDREA; RAGANATO; BOVI, [2017)) and attributed a sense key to each content word (verb,
nouns, adjectives, and adverbs). Functional words (e.g., pronouns and prepositions) were kept
in their original form, and the result is a large word-sense-labeled dataset suitable for training a
language model. An advantage of SemCHILDES] over other word-sense labeled datasets is that
it comes from conversational data, which is more similar to the type of language used in [AAC]
communication. The authors also annotated part of the British English corpus of [CHILDES|
with semantic roles, allowing for the fine-tuning of PictoBERT to perform pictogram prediction

based on the semantic structure.

5.2 MODELS

In this section, we present the models used in our experiments, depicted in Table [8] We
used three types of models: pre-trained, fine-tuned, and zero-shot. The pre-trained model

we used is PictoBERT, pre-trained for pictogram prediction in the [AAC] context. The fine-
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Table 8 — Summary of the models used in the experiments performed in this study.

Model Type Lang. Training Size  Dataset

PictoBERT Pre-trained EN 955K sentences SemCHILDES
BERT-AAC few-shot  Fine-tuned EN 7K sentences AACText
BERT-AAC zero-shot Zero-shot EN - -

GPT-2-AAC Zero-shot EN - -
BERTptAAC Fine-tuned PT-br 13K sentences = AACptCorpus
BERTptCS Fine-tuned PT-br 13K sentences ~ AACptCorpus w/ CS roles

Source: The author (2023)

tuned models, which we also call few-shot models, are those that we fine-tuned from models
pre-trained for word prediction like BERT| Zero-shot models are those for which we do not
have any adjustments on their weights but change only language modeling head weights
with the controlled vocabulary embeddings. We detail the models, the modifications, and the

implementation details in the following subsections.

5.2.1 PictoBERT

PictoBERT (PEREIRA et al., |2022) is a model trained for predicting the next pictogram
in a sentence constructed using [AAC| boards. The model is an adaptation of the [BERT] in
which the input embeddings have been modified to allow word-sense usage instead of words,
considering that a word-sense represents a pictogram better than a simple word. PictoBERT
outperforms the previously used n-gram models and knowledge bases for the same task. The
model can also be fine-tuned to adapt to different users’ needs, making transfer learning its
main characteristic.

The vocabulary for PictoBERT is derived from word senses and functional words from
SemCHILDES. The sense keys (e.g., person%1:03:00: : ) from WordNet represent word senses
in the corpus while functional words (e.g., pronouns) are in their original form (e.g., I). To create
PictoBERT, the vocabulary was changed to a Word Level based, using SemCHILDES
to train a Word Level tokenizer. The embeddings layer in BERT|was also modified using [ARES]
embeddings (SCARLINI; PASINI; NAVIGLI, |2020)) to replace the original embeddings. The
[ARES| embeddings were chosen because they were computed using BERT]| and are in the
same vectorial space as the BERT[s original embeddings. For each position in the vocabulary
occupied by a word-sense, the vector referent to its sense-key in [ARES] is inserted into the

PictoBERT embedding layer. The original BERT| embedding is used for functional words.
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In addition, multi-word expressions that are not in WordNet are represented using BERT]s
tokenizer and averaging their embeddings from [BERT] Finally, PictoBERT is trained using
transfer learning from [BERT]s pre-trained weights.

PictoBERT was trained using the North American part of the dataset,
divided into 98/1/1 splits for training, validation, and testing. The training and validation sets
were used for pre-training, with a batch size of 128 sequences, each containing 32 tokens.
Each data batch was collated to select 15% of the tokens for prediction using the same
rules as BERT] Specifically, the selected token was replaced with [MASK] token 80% of the
time, a random token 10% of the time, and the original token 10% of the time. PictoBERT
was trained for 500 epochs using the Adam optimizer, with a learning rate of 1 x 1074,
B1 = 0.9, By = 0.999, L2 weight decay of 0.01, and linear decay of the learning rate. The
training was conducted on a single 16GB NVIDIA Tesla V100 GPU, with each epoch taking
20 minutes. The total training time for each version would be approximately 166.7 hours
(500 epochs x 20 minutes/epoch = 10,000 minutes = 166.7 hours) or approximately 7 days,
assuming continuous training. The model weights were adjusted using the training split, while

the validation split was used to monitor the model's performance during training.

5.2.2 Fine-tuned models

This sub-section presents the fine-tuned models, modifications, and implementation de-
tails. The objective of fine-tuning was to adjust the pre-trained models to communication card
prediction considering the particularities of the domain. This includes considering the structure
of the language used, for example. The fine-tuning examples shown in this section are instan-
tiations of [PrAACT], the method proposed in this work and presented in Chapter [4] Therefore,

the process for fine-tuning each model is illustrated by extending the diagram in Figure [9

Figure 27] illustrates instantiated to construct BERT-AAC, a[BERT}based model
for communication card prediction in English[AAC] systems. As presented in Chapter|[4]

consists of three main steps: Corpus Annotation, Model Fine-Tuning, and Vocabulary Mapping.
In this instantiation, the Corpus Annotation step takes AACText as input. It outputs a mixed
corpus with telegraphic and natural language sentences, which reflects the particularities of
the language used in [AAC] systems. The Model Fine-Tuning step takes the mixed corpus
and the pre-trained BERT}Harge as input and fine-tunes the model to predict communication

cards in the [AAC| domain using [MLM] Finally, the Vocabulary Mapping step receives the fine-
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Figure 27 — PrAACT adapted to construct BERT-AAC, a version of BERT-large for communication card
prediction in English @]systems.

AACtext BERT-large CACE-en

\ 4 \ 4 \ 4
Corpus Annotation H Model Fine-tuning Hocabulary Encoding
- -
I
1

Mixed AACText
Telegraphic and NL

BERT-AAC

- BERT-AAC (CACE-en head)

Source: The author (2023)

tuned model and the [CACE}en vocabulary as input. It outputs a BERT}ike model that can
predict communication cards using [CACELen vocabulary cards. The model input is raw text
(telegraphic or not) with the [M ASK] token on the place where the communication card
prediction is needed, such as the end of a sentence: “l want [MASK]".

BERT-AAC was fine-tuned with a batch size of 128 sequences with 20 tokens (192 *
20 = 2,560 tokens/batch). Each data batch was collated to choose 15% of the tokens for
prediction, following the same rules as : If the i-th token is chosen, it is replaced with 1)
the [M AS K] token 80% of the time, 2) a random token 10% of the time or 3) the unchanged
i-th token 10% of the time. We use the same optimizer as BERT] (DEVLIN et al, [2019)): Adam,
with a learning rate of 1 x 107 for all model versions, with 3; = 0.9, 8 = 0.999, L2 weight
decay of 0.01, and linear decay of learning rate. Fine-tuning was performed in a single 16GB
NVIDIA Tesla T4 GPU for 50 epochs, each taking approximately 1 minute.

For the vocabulary mapping step, the[BERT}large tokenizer is used to tokenize the captions
of each communication card in the en vocabulary. Next, the input embeddings layer
of the BERT}arge model is used to extract a vector representation for each token in the
captions. The communication card embedding vector is then obtained by taking the mean of
the representations of its caption tokens. For instance, the card with the caption “work out”
is tokenized as [“work” and “out"], and its vector representation is calculated as the mean of

e("work")+e("out"

the embeddings of “work” and “out”. Thus, e("work out") = 5 ) where ¢ is the

embeddings matrix, and 2 is the number of tokens in the caption. The decoder layer in the

BERT head is replaced with a Linear transformation layer that maps the hidden states
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Figure 28 — PrAACT adapted to construct BERTptCS, a version of BERT that performs communication
card prediction in Brazilian Portuguese considering the (e.g., who? what doing? what?). This
illustration also applies to BERTptAAC, which does not use @

AACptCorpus BERTimbau CommunicaTEA

\ 4 \ 4

Corpus Annotation Model Fine-tuning Vocabulary Encoding

BERTptCS
(ComunicaTEA
head)

AACptCorpus with
CS roles

BERTpICS -

Source: The author (2023)

output of BERT[s encoders into the output classes, where the number of classes is equal to
the [CACE}en vocabulary size. The softmax function is applied to the linear layer output at
inference time to convert them into a probability distribution over the [CACE}en vocabulary.
Each value represents the probability of each item in the vocabulary replacing the [M ASK]
token in a sentence like “I want to eat [MASK]".

Figure [28] depicts adapting to construct BERTptCS, a Brazilian Portuguese ver-
sion of BERT that predicts communication cards using the [CS| framework. The process of
constructing BERTptCS is similar to the one used for BERT-AAC. First, the AACptCor-
pus is annotated using [CS roles, which involve identifying a sentence’s subject, verb, object
and adverbial complements (i.e., location, manner, and time). We used Stanza to ex-

tract Subject-Verb-Object (SVO)| structures and for semantic parsing, as mentioned

in Section [5.1.2.5] The resulting annotated corpus contains sentences such as “<quem> eu
</quem> <verbo> querer comer </verbo> <o_que> pipoca </o_que>", which indicate
the subject (“eu”), verb (“querer comer”), and object (“pipoca”).

We employed BERTimbau (SOUZA; NOGUEIRA; LOTUFO, 2020) as the pre-trained model
as input for the fine-tuning step. To incorporate the roles, such as “<quem>" (who) and
“<o_que>" (what), into the original vocabulary of the model, we added corresponding vectors
to the embedding layers that represent these new tokens. To achieve this, we first tokenized
the [CS|roles and then captured the representation of each token from the BERTimbau original

embedding layer. The role representation was obtained as the mean vector of its constituent
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tokens. For instance, the role “<o_que>" was tokenized as “<", “o", “_", “que”, “>", and
its corresponding representation vector was computed as the mean vector of these tokens. The
reason for using the vector representations of tokens like “<" and “>" is to prevent the model
from generalizing the role’s meaning to similar tokens. If we just used the representations of

o" and “que” tokens, the model might generalize the role “<o_que>" to other contexts
where “0" and “que” are used together, even when they do not represent the same role. By
adding the special tokens “<" and “>", we ensure that the model learns to associate these
representations only with their intended roles, avoiding potential confusion.

BERTptCS was fine-tuned using a batch size of 384 sequences with 33 tokens (384 *
33 = 12,672 tokens/batch). Each data batch was collated to choose 15% of the tokens for
prediction, following the same rules as : If the i-th token is chosen, it is replaced with 1)
the [M AS K] token 80% of the time, 2) a random token 10% of the time or 3) the unchanged
i-th token 10% of the time. We use the same optimizer as (DEVLIN et al., 2019): Adam,
with a learning rate of 1 x 107° for all model versions, with 3; = 0.9, 35 = 0.999, L2 weight
decay of 0.01, and linear decay of learning rate. Fine-tuning was performed in a single 16GB
NVIDIA Tesla T4 GPU for 50 epochs.

The vocabulary encoding process used for BERTptCS was performed similarly to that
of BERT-AAC, where mean vectors were utilized. The input data consisted of communi-
cation cards in the ComunicaTEA vocabulary, and each card’s caption was tokenized using
the BERTimbau tokenizer. Next, we extracted a vector representation for each token in the
captions from the BERTimbau input embeddings layer. The communication card embedding
vector was then computed as the mean of the representations of its caption tokens. This
method ensures that the resulting embeddings contain information from all the words in the
caption and can represent the communication card accurately. We replace the weights of the
BERTimbau [MLM] head decoder layer with the encoding resulting embeddings. This way, the
model can produce a probability distribution over the ComunicaTEA vocabulary for completing
a sentence like “<quem> eu </quem> <verbo> ir </verbo> <onde> [MASK] </onde>".

For the construction of BERTptACC, the process is similar to that of BERTptCS. However,
in BERTptACC, we do not use[CStags (e.g., <quem> </quem>) in the training text. Instead,
we keep the words in the corresponding roles positions: <who> <verb> <what> <how>
<where> <when> to ensure the usage of direct order sentences. Unlike BERTptCS, there is
no modification in the model’s input vocabulary for BERTptACC. Additionally, the training

dataset for BERTptAAC contains more minor sequences compared to BERTptCS, requiring
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fewer computational resources.

To fine-tune BERTptAAC, we used a batch size of 512 sequences with 17 tokens (512 *
17 = 8,704 tokens/batch). Each data batch was collated to choose 15% of the tokens for
prediction, following the same rules as : If the i-th token is chosen, it is replaced with 1)
the [M AS K] token 80% of the time, 2) a random token 10% of the time or 3) the unchanged
i-th token 10% of the time. We use the same optimizer as (DEVLIN et al., 2019): Adam,
with a learning rate of 1 x 107° for all model versions, with 5; = 0.9, 35 = 0.999, L2 weight
decay of 0.01, and linear decay of learning rate. Fine-tuning was performed in a single 16GB

NVIDIA Tesla T4 GPU for 50 epochs.

5.2.3 Zero-shot models

In Figure[29] we present the part of [PrAACT] that enables using pre-trained large language

models without additional training. This approach is known as a zero-shot approach as it
requires no training for the specific task at hand. The model is a modified version of a pre-
trained model to produce a probability distribution over the communication cards’ vocabulary.

Adapting the pre-trained models involves replacing the decoder layer in the language mod-
eling head with the embeddings matrix that represent the communication cards in a given
vocabulary. We evaluated this approach with two large pre-trained models, BERT}Harge and
[GPT}2, and used the [CACE}en vocabulary. For BERT}Harge, we utilized the same method as
for BERT}FAAC to encode the vocabulary and replace the decoder, and we named the adapted
model BERT-AAC zero-shot. For 2, we computed the communication card embeddings
using the model’s input embeddings layer and updated the Linear layer used as the language

modeling head with the resulting vectors. We named this model [GPT}2-AAC.
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Figure 29 — Proposed zero-shot approach for adapting pre-trained language models to perform communication-
aware language tasks without additional training. The approach involves modifying the decoded
layer in the language modeling head, enabling models like [ BERT|and 2 for card prediction.

Pre-trained
User Vocabul
Language Model ser vocabuiary

———3VVocabulary Encoding

Personalized
Language Model

Source: The author (2023)

5.3 RELEVANCE RANKING EVALUATION

The Relevance Ranking Evaluation aims to assess the ability of different models to pri-

oritize relevant communication cards when completing a sentence related to a specific topic.

Specifically, considering the sentence "l want to go ", which must be completed by a lo-
cation, we evaluate how well the models rank the cards related to the location topic compared
to other cards. This experiment aims to measure the ability to identify and rank the most
relevant cards for a given sentence, such as identifying the most relevant location cards to
complete the sentence. The results of this experiment provide insights into how the model can
be further improved to enhance its usability for individuals with communication impairments.

For the Relevance Ranking Evaluation, we focused on assessing only the English models
due to the availability of a pre-trained model (i.e., PictoBERT) to compare against. This ex-
periment evaluated the quality of the few-shot and zero-shot models produced by the proposed
method against a pre-trained model. Specifically, we compared PictoBERT (pre-trained) with
BERT-AAC few-shot, BERT-AAC zero-shot, and GPT-2-AAC zero-shot models. The goal was
to assess the ability of these models to rank communication cards related to a specific topic
(e.g., location) when completing a given sentence. This experiment provides insights into the
quality of models produced by the proposed method and their potential for improving the
communication of individuals with [CCNL

We use the test set of the SemCHILDES corpus for the Relevance Ranking Evaluation. The
ground-truth cards used in this experiment were selected from the CACE-en vocabulary. To

pre-process the dataset, we selected only the sentences where the last token was in the CACE-
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en vocabulary and belonged to one of the four folders: “food”, “beverage”, “places”, “time”,
and “attributes”. An example of a sentence that would be considered for this evaluation is “I
want to eat _ " where the model needs to predict a food as the relevant card. This way,
the cards within the folder “foods” are considered the ground-truth references. The model’s
task, in this case, is to attribute higher probabilities to the cards within the folder “foods”
than to any other card in the vocabulary. Using PictoBERT in this scenario requires mapping
the controlled vocabulary to the word senses and functional words in the models’ vocabulary.

This is done as described in Section 5.1.3

In this experiment, we used the |[Area Under the Receiver Operating Characteristic (AU-|

as the evaluation metric to measure the ability of the models to prioritize the relevant
communication cards when completing a sentence. This metric evaluates the model’s ability to
correctly rank the relevant cards higher than others. To calculate the AUROC]score, the items
in the CACE-en vocabulary labeled with the folder “food"”, “beverage”, “places”, “time”, and
“attributes” were considered as the ground truth references (A). In contrast, the remaining
items were considered as B. The probability scores for all the items in B was calculated using
the model, and the items in B were sorted by their probability scores in descending order. The
true positive and false positive rates were calculated, and the [AUROC] scores were calculated
for the [ROC| curve. A higher [AURO(] score indicates better model performance in correctly

ranking the relevant communication cards.

The can be expressed mathematically as:

1
AUROC = / TPR(FPR)"\dFPR, (5.1)
0

where T PR is the true positive rate, defined as the fraction of items in A that are correctly
ranked, and F'PR is the false positive rate, defined as the fraction of items not in A that are
incorrectly ranked. The integral is taken over the F'PR from 0 to 1. The integrand numerator
represents the tangent line’s slope to the [ROC| curve at a given point. The denominator is the
horizontal distance between the given and the point (0,1). The score ranges from 0
to 1, where a score of 1 indicates perfect performance and a score of 0.5 indicates random

guessing.
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5.4 COMPLETION EVALUATION

The Completion Evaluation experiment aimed to assess the quality of the models in predict-
ing appropriate communication cards to complete a given sentence. Through this experiment,
we aimed to identify the best-performing model and potential areas for further improvement
in the prediction of communication cards. In this experiment, we compare the performance of
models trained with and without incorporating the roles of [CS| Specifically, we compared the
accuracy of models trained on sentences with and without these roles. The goal was to assess
whether incorporating [CS| roles improves the prediction accuracy of communication cards.

In this experiment, we used two models, BERTptCS and BERTptAAC. We chose these
models because they were trained on the same dataset but with different features. BERTptCS
incorporates [CY| roles while BERTptAAC does not. By comparing the performance of these
two models, we could assess the impact of including [CS| roles in the training data on the
prediction accuracy of communication cards. Additionally, since both models are based on the
samearchitecture and were trained in the same language (i.e., Brazilian Portuguese), we
could isolate the impact of the inclusion or exclusion of [CS]| roles on the model's performance.

For this experiment, we used the test set from the AACptCorpus, consisting of 667 sen-
tences constructed by humans. To evaluate the ability of the models to predict appropriate
communication cards to complete a given sentence, we masked the last token of each sen-
tence, excluding the Colourful Semantics roles tags. To illustrate, a sentence like “<quem>
eu </quem> <verbo> comer < /verbo> </o_que> pipoca </o_que>" is transformed into
“<quem> eu </quem> <verbo> comer </verbo> </o_que> [MASK]| </o_que>". For
the BERTptAAC model, we mask the sentence as follows: “eu comer [MASK]".

As mentioned in Chapter [3} previous work on communication card prediction has used
keystroke saving, [MRR] top-k accuracy, and perplexity as metrics for automatically evaluating
pictogram prediction models. However, perplexity may not be the most suitable metric to
assess the quality of models in a sentence completion task. Perplexity is commonly used to
evaluate language models based on their ability to predict the next word given some context.
However, in a sentence completion task where the model is asked to predict the missing word
in a given sentence, the focus is not only on the likelihood of the predicted word but also on
whether it is the correct word that makes sense in the context. Still, it does not take into
account the appropriateness or relevance of the predicted items. Additionally, keystroke saving

is unsuitable for our experiment, as the methods we are comparing will not change the [AAC]
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system grid or folders, so the number of selections to construct a given sentence should be
the same. Therefore, in this experiment, we use top-k accuracy (ACC@K) and to assess
the quality of the predictions made by the models. For ACC@OK, we use different values of K
(1,9, 18, 25, 36) to simulate the grid sizes in systems. ACCG@K measures the proportion
of times that the correct communication card appears within the top K predicted cards.

In addition to top-k accuracy and[MRR)], we add Entropy@K to our metrics set, as it provides
insight into the diversity of the predicted pictograms, which is essential in [AAC| scenarios where
users may have a limited vocabulary. Entropy@K measures the uncertainty of the top-K items
suggested by a model. The metric calculates the entropy of the probability distribution of the
top-K predictions. This way, the higher the Entropy@K score, the more uncertain the model’s

predictions are. Entropy@K can be calculated as:

1 K
EntropyQK = ——- > log(p(yi| X)), (5.2)

i=1
where K is the number of predictions to consider, p(y;|X) is the predicted probability (in log
scale) of the i-th pictogram given the input sentence X . This equation measures the entropy
or “surprise” of the model's predictions up to the top K items for each input. A lower score

indicates more confident and consistent predictions across different inputs.
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6 RESULTS

This chapter presents the findings obtained from the experiments conducted to evaluate
the proposed models’ performance in the prediction of communication cards. This chapter is
divided into three sections: Relevance Ranking Evaluation, Completion Evaluation, and Models
Analysis. The Relevance Ranking Evaluation (cf. Section assesses the models’ ability to
prioritize relevant communication cards when completing a sentence related to a specific topic.
The Completion Evaluation (cf. Section compares the performance of models trained
with and without incorporating Colourful Semantics roles. Finally, in the Models Analysis (cf.

Section |6.3)), we present an analysis comparing the models’ predictions.

6.1 RELEVANCE RANKING EVALUATION RESULTS

Figure [30] shows the average[AUROC] and the standard deviation (Std) of different models’
predictions to complete sentences from four different topics: Foods, Beverage, Places, Time,
and Attributes. The models are evaluated on each topic separately.

The results presented in Figure indicate that the BERT-AAC few-shot model, con-
structed using all [PrAACT]s stepts, outperformed the pre-trained PictoBERT on all topics
evaluated. Although the PictoBERT was pre-trained with a larger corpus of 955K sentences,
the BERT-AAC few-shot model, which was fine-tuned with only 7K sentences, demonstrated
higher accuracy in completing sentences related to foods, beverages, places, time, and at-
tributes. This demonstrates the efficacy of the proposed method. Additionally, implementing
PictoBERT requires annotating the user vocabulary with word-sense keys from WordNet or
other electronic lexicons, adding an extra disambiguation step. In contrast, BERT-AAC en-
codes the user vocabulary using the model input embeddings layer without requiring external
resources. Therefore, the proposed method offers a more efficient and straightforward approach
to communication card prediction without sacrificing accuracy.

The results of the zero-shot adapted models showed that they were slightly below the
performance of the pre-trained models overall. This suggests that while zero-shot adaptation
is a promising technique, there is still room for improvement. Regarding communication card
prediction, using a pre-trained model is currently the most effective approach. However, zero-

shot adaptation could be helpful in situations with specific vocabulary or context requirements
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Figure 30 — AUROC average (AVG) and standard deviation (Std) of models’ predictions to complete sentences
from four different topics: Foods, Beverage, Places, Time, and Attributes. The model marked with
an * is the BERT-AAC zero-shot evaluated with a (.) at the end of each sentence.

PictoBERT
BERT-AAC few-shot
GPT2-AAC 0-shot
BERT-AAC 0-shot
BERT-AAC 0-shot*

AUROC

Foods Beverage Places Time Attributes Overall

Source: The author (2023)

that a pre-trained model does not cover. Overall, these findings highlight the potential of
both pre-training and zero-shot adaptation for improving the accuracy of communication card
prediction models. In addition, these findings suggest that zero-shot models can be a good
alternative when a large dataset for pre-training or fine-tuning is not available. The proposed
method has demonstrated the ability to fit different vocabularies of different users without
requiring additional training. This is a crucial advantage for applications that cater to diverse
user groups with varying communication needs. Overall, the results suggest that zero-shot
models can provide a viable and efficient solution for communication card prediction, especially
when data availability is limited.

The results in Figure show that the zero-shot version of BERT-AAC, denoted with a
* outperformed both the PictoBERT and the fine-tuned BERT-AAC in two topics: Time and
Attributes. This happened because we added an ending dot to each sentence in the test set
to improve the model’s performance. BERT is a bidirectional model, and providing right-side
context should enhance its ability to fill in the mask. For instance, if the sentence is “l want to
eat [MASK]", BERT should assign a high probability to punctuation tokens to fill the mask.
However, in a usage scenario, adding a dot at the end of the sequence may not be appropriate,
especially if the user wants to construct a question. Figure [31] shows the predictions of bert-
large-uncased for the sentence “Do you want to eat [MASK]."”, with the dot at the end of

the sequence. We can observe that the model assigned a higher probability to the question
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Figure 31 — Top-5 predictions of bert-large-uncased for the sentence “Do you want to eat [MASK]." with
a dot at the end of the sequence. Screenshot taken from the Huggingace model card: [<https:
//huggingface.co/bert-large-uncased>.

0.750
?
) 0.065
something
0.017
here
_ 0.013
anything
) 0.009
again

Source: The author (2023)

mark “7" despite the added dot, which indicates that the dot may interfere with the model's

performance. We present more comparisons of models’ predictions in Section [6.3]

6.2 COMPLETION EVALUATION RESULTS

Table [9] shows the results of the top-n accuracy (ACC@K) and Mean Reciprocal Rank
(MRR) of BERTptCS and BERTptAAC. The results demonstrate that both models, BERTptCS
and BERTptAAC, perform better at higher values of K, as indicated by the increasing values
of ACC@K. Additionally, BERTptCS outperforms BERTptAAC in all ACCOK metrics, with
the most significant difference being at ACC@1. However, when looking at MRR, we can see
that BERTptCS also outperforms BERTptAAC, but with a smaller margin. Yet, on average,
BERTptCS is better at ranking the correct communication card prediction in the top positions
of the list of candidates compared to BERTptAAC. Overall, these results suggest that using
the [CY| structure can improve the accuracy of the communication card prediction model.

Table [10] presents the results of Entropy@K for the BERTptCS and BERTptAAC models.
The entropy measures the uncertainty of the distribution of the predicted communication cards.

Table 9 — Results of top-n accuracy (ACC@K) and Mean Reciprocal Rank (MRR) for the BERTptCS and
BERTptAAC models on the evaluation dataset.

Model ACCO1 ACC@9 ACC@18 ACC@25 ACC®@36 MRR
BERTptCS 0,50 0,74 0,81 0,85 0,87 0,58
BERTptAAC 0,45 0,69 0,77 0,80 0,84 0,53

Source: The author (2023)


https://huggingface.co/bert-large-uncased
https://huggingface.co/bert-large-uncased
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Table 10 — Results of Entropy@K for BERTptCS and BERTptAAC.

Model Entropy@l Entropy@9 Entropy@18 Entropy©@25 Entropy@36
BERTptCS 0,31 19,73 36,06 47,74 79,91
BERTptAAC 1,02 22,68 45,57 59,42 95,43

Source: The author (2023)

The lower the entropy, the more confident the model is in its predictions. The table shows
that both models have higher entropy scores as the value of K increases. BERTptCS has lower
entropy scores than BERTptAAC for all values of K, which indicates that BERTptCS is better
at predicting the correct communication card, as it has a more concentrated distribution
of probabilities. Additionally, BERTptCS has an entropy of 0.31 for Entropy@1, indicating
that it makes a very confident prediction for the top candidate. In contrast, BERTptAAC
has an entropy of 1.02, indicating it is less confident in its top prediction. This suggests
that incorporating the [CS] structure in the training process can lead to a more accurate and
confident communication card prediction model.

The results of the experiments show that BERTptCS outperforms BERTptAAC in terms of
all metrics evaluated. Specifically, the ACCOK metric shows that BERTptCS has higher accu-
racy than BERTptAAC for all values of K (1, 9, 18, 25, and 36). Furthermore, the MRR values
of BERTptCS are also higher than BERTptAAC, indicating that BERTptCS provides more
relevant and accurate predictions. In addition, the Entropy@K metric shows that BERTptCS
produces more uniform distributions of predicted tokens across all positions than BERTptAAC.
These results demonstrate that incorporating the [CS| structure into the fine-tuning process of
BERT improves the accuracy and relevance of the model’s predictions and the uniformity of
the predicted tokens' distribution. Therefore, we conclude that BERTptCS is a better model

than BERTptAAC for predicting communication cards.

6.3 MODELS' PREDICTIONS ANALYSIS

This section aims to present a qualitative analysis of the predictions made by the different
models to complete example sentences. The analysis aims to understand better how each model
works and identify potential errors or limitations. In the following subsections, we present the
analysis for both the English models (cf. Section and the Portuguese models (Section
. The qualitative analysis provides valuable insights into how the models perform and
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can help guide further improvements to their architecture and training.

6.3.1 English Models

This section presents a qualitative analysis of the English models for communication card
prediction. These models include PictoBERT, BERT-AAC in zero and few-shot settings, and
GPT2-AAC in the zero-shot setting. We analyze the models’ ability to predict the most ap-
propriate communication cards based on the context of an incomplete sentence. Our analysis
provides insights into the strengths and weaknesses of each model and highlights the challenges
of adapting large language models to the specific needs of [AAC| systems. By comparing and
contrasting the performance of different models, we aim to guide researchers and practitioners
in the field of [AAC| who seek to develop more accurate and efficient communication aids.

In Figure 32 we present the top-12 predictions made by four English models for com-
munication card prediction: PictoBERT, BERT-AAC zero and few-shot, and GPT2-AAC. The
sentence to be completed was the telegraphic “l want eat”. The predictions made by all models
are meaningful and relevant for the given sentence, suggesting that they have learned relevant
associations between words and concepts. However, we observed that GPT2-AAC assigned
high probabilities to cards with captions that may not typically be used to complete such a
sentence, such as “pantie”, “listen”, or “cousin”, which may indicate that this model has some
limitations in capturing the context and structure of AAC-related language.

PictoBERT is another model that assigned high probabilities to cards not usually used to
complete the tested sentence, “l want eat.” This could be attributed to the characteristics of
the training corpus. As mentioned in Section [5.1.4] the corpus used for training PictoBERT
is based on transcriptions of children’s speech from [CHILDES] The texts in [CHILDES| may
contain figurative language from storytelling or reading children’s books, which could explain
the high probabilities assigned to items like she, they, he, and fingers (PEREIRA et all 2022).
It is possible that these words were used in the training corpus in contexts related to eating,
resulting in the high probabilities assigned to them in the sentence completion task.

The BERT-AAC models accurately predicted suitable communication cards to complete
the sentence “l want eat [MASK]". The models made meaningful predictions, except for the
word “you” in the top-12 predicted cards, which may not be a usual completion for the given
sentence. For the few-shot model, it was noticed that most of the top-12 communication cards

represent eatable things such as “lunch” and “pizza”. Other cards are adverbs that can describe
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Figure 32 — English models’ predictions for completing the sentence "l want eat”.

(a) PictoBERT.
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the action, such as “fast”, “now"”, and “outside”. Overall, the models show promising results
in predicting suitable communication cards for the given sentence, which can aid individuals
with communication difficulties in expressing their needs and desires related to food.

The BERT-AAC zero-shot predictions shown in the figure refer to the sequence “I want
eat [MASK]."”, with a dot in after the masked token. The predictions are meaningful in this
case. We can notice that the model has given high probabilities to cards referring to pronouns

[ LT}

such as “it” and “this.” It also assigned high probabilities for adverbs such as “now,” “more,”

and “today,” as well as the word “first,” which is also an adverb in the given context, i.e.,
sentence. However, there are fewer eating-related cards in the top-12 compared to BERT-AAC
few-shot predictions.

In Figure 32, we also present the Kurtosis@100, which is a measure of flatness of the
probability distributions obtained from the probabilities assigned to the top-100 cards. Kurtosis
is a statistical measure that indicates the degree of tailedness or peakedness of a probability
distribution. It measures the relative amount of data in the tails of a distribution compared
to the data near the mean. A higher kurtosis value indicates that the distribution has more of
its data in the tails, and a lower kurtosis value indicates that the distribution is flatter. The
Kurtosis@100 formula used in this work is shown below:

?:1(1%’ - %)4

- ~ 3, (6.1)

where n is the number of items in the distribution, p; is the probability of the ith item, and

the term *
n

is the expected probability for each item in a uniform distribution. The formula
subtracts 3 from the result to obtain a kurtosis value of 0 for a uniform distribution.

From the figure, it can be observed that PictoBERT predictions and GPT2-AAC zero-shot
have the most peaked distributions. In contrast, BERT-AAC models have flatter distributions.
A flat distribution in BERT-AAC models may indicate that the model is unable to predict a
specific word to fill the mask confidently, and therefore, it is assigning a relatively equal proba-
bility to all possible words. However, in the context of communication card prediction models,
a flat distribution can indicate that the model is not overfitting to a particular set of examples.
Therefore, it is producing more diverse and potentially more generalizable predictions. On the
other hand, a peaked distribution may indicate that the model is overfitting to the training
data and cannot generalize well to new examples.

In conclusion, the English models for communication card prediction, including PictoBERT,

BERT-AAC in zero and few-shot settings, and GPT2-AAC in the zero-shot setting, have
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demonstrated their ability to predict appropriate communication cards based on the context of
the incomplete sentence. However, there are still challenges in adapting large language models
to the specific needs of [AA(] systems, and each model has its strengths and weaknesses.
By comparing and contrasting the performance of different models, this analysis can guide
researchers and practitioners in developing more accurate and efficient communication aids. It is
important to note that the training corpus’s characteristics can affect the models’ performance,
as seen with PictoBERT. Overall, the results suggest that these models have the potential to

aid individuals with [CCN]in expressing their needs and desires related to food and eating.

6.3.2 Portuguese Models

This section analyzes the two Brazilian Portuguese models, BERTptCS and BERTptAAC.
The analysis focuses on examining the output of the models and identifying patterns and
trends in the predictions. Through a qualitative analysis, we aim to understand better how
each model performs regarding predicted tokens' accuracy, relevance, and distribution. This
analysis provides insights into the strengths and limitations of each model, which can be used
to guide future development and improvement of [AAC] systems. The analysis is conducted

considering the communication cards present in the ComunicaTEA vocabulary.

Figure 33 — Portuguese models’ predictions for the beginning of sentence construction.

(a) BERTptCS top-12 predictions for “<quem> [MASK] </quem>".
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Figure [33| shows examples of predictions performed by BERTptCS and BERTptAAC, sim-
ulating the beginning of sentence construction. The communication cards in the figure are
composed of the pictogram images, the caption, and the probability the model has given to
each card. Analyzing the predictions, we notice that the predictions made by BERTptCS con-
sist mainly of agentive words, which can play the role of the agent in a sentence (e.g., “eu”,
i.e., "I"). While the predictions made by BERTptAAC are a mix of verbs and pronouns, as the
model has no information on how the user wants to initiate the construction of the sentence,
either by the subject or by the verb. The use of CS roles brings more context to the prediction,
and this can be verified in the example shown, which simulates the user choosing the first
sentence communication card. Notice that if the user prefers to start from the verb, they can
do so, and the model will predict the most suitable communication card to fill the mask in
“<verbo> [MASK] < /verbo>". Examples like this highlight the importance of using CS roles,
as they can treat the sentence components differently, providing more accurate predictions.

The Kurtosis@100 values for both BERTptCS and BERTptAAC at the beginning of sen-
tence construction are quite high, which may indicate that both models are overfitting to
the training data and cannot generalize well to new examples. The small number of training
examples could cause this overfitting, but it could also be due to the characteristics of the
training corpus used for fine-tuning. The corpus has many sentences that begin with the word
“eu”, which is the most frequent word. However, it is worth noting that the human-composed
sentences, which specialists informed as the ones they consider common in |JAAC] also
have many sentences starting with “eu” (cf. Section . This suggests that this may be a
characteristic of the domain.

In Figure [34] we present examples of predictions for inserting the verb object complement
in the sentence “eu quero comer” (| want to eat). The predictions made by BERTptCS and
BERTptAAC are quite similar if we consider using a <o_que> mark for the [C5] model. Both
the models, BERTptCS and BERTptAAC, assigned high probabilities to eatable things when
predicting the verb object complement for the sentence “eu quero comer” (I want to eat). The
predictions made by BERTptAAC for inserting the verb object complement in the sentence “eu
quero comer” are affected by the structure of the training corpus. If we compare BERTptAAC
to its equivalent English version in this work, the BERT-AAC few-shot, we notice that both
models assigned high probabilities to non-eatable things to complete the sentence “l want to
eat [MASK]". BERTptAAC was fine-tuned using a version of AACptCorpus that does not use

CS roles but maintains the words in the sentences following the CS order (e.g., who, what
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doing, what, how, where). Therefore, it is expected that in the training corpus, complements

for “what” occur with high frequencies.

Figure 34 — Portuguese models’ predictions for verb completion.

(a) BERTptAAC top-12 predictions for “eu quero comer [MASK]".
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One advantage of BERTptCS over BERTptAAC is its ability to make more accurate pre-

dictions using other roles besides the complement. For example, suppose the user wants to
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construct a sentence indicating where he/she wants to eat. Using BERTptAAC as we trained
it would require the user first to inform what they want to eat, or they would see communi-
cation cards for locations with a considerably lower probability. However, with [CS| the user
can provide more context to the model, which is useful for making more accurate predictions,
as demonstrated in Figure [34] and our experiments in Section [6.2] For example, Figure [340
shows the predicted complements for the location’s role. All the communication cards suggest
locations except for the card with “Pizza". Figure shows the top-12 predicted comple-
ments for the time role. All the predicted complements for time are consistent, except for
“mais” (more), which must have occurred together with time complements during training. It
is important to note that the mapping process can sometimes group unrelated words, leading
to unexpected predictions. Also, slight differences in the training data can lead to differences
in the model's predictions, as seen with the prediction of “mais” in this example. It's worth
noting that designing the user interface to facilitate the interaction using [CS] is beyond the

scope of this work.

6.4 USAGE GUIDELINES: HOW CAN OTHERS USE THIS WORK?

Researchers, developers, and practitioners interested in utilizing the [PrAACT]| method and
findings presented in this work can follow the guidelines outlined below to enhance communi-

cation card prediction in [AAC] systems:

= Constructing a Synthetic [AAC| Corpus: Researchers can extend the method for con-
structing the synthetic [AAC] corpus to create their own corpus. This approach can be
applied to different languages or specific target populations. By following the methodol-
ogy described in Section and in (PEREIRA et al., 2023a)), researchers can adapt the

process and gather data relevant to their specific context and objectives.

= Fine-tuning a Language Model: The constructed synthetic [AAC] corpus can be used

for fine-tuning transformer-based language models such as [BERT]| or [GPT| Researchers

can combine the corpus with the methodology presented in Section to adapt the
language model for communication card prediction. This process allows for personalized
message authoring in [AAC| systems, enhancing the system's relevance and accuracy in

generating suggestions.
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= Developing [AAC| Systems with Communication Card Prediction: Developers can

leverage the proposed method to design [AA(] systems that perform communication card
or word prediction based on the user's vocabulary. To implement this, developers must
create a language modeling head comprising the encoded user vocabulary for each user.
Incorporating the user’s vocabulary into the model can generate a probability distribution
over the user's vocabulary items during inference. This distribution can suggest the
most appropriate communication cards to complete a sentence, facilitating efficient and

effective message composition.

Utilizing Existing BERT Models: As demonstrated in the results chapter, no addi-
tional training is required to apply the proposed method. Developers can use the current
versions of available on platforms like HuggingFac{] to implement communica-
tion card prediction in [AAC]| systems. By following the proposed method, developers can
adapt these existing models without extensive training resources, saving time and effort

in the development process.

Utilizing Models based on Colourful Semantics: When using models based on [CS]
it is necessary to prepare input sequences with the [CS|roles. For example, if a user starts

composing a sentence by selecting the word as the agent and intends to choose the
verb of the sentence, the input sequence should be prepared as “<who> | </who>
<verb> [MASK] </verb>". Incorporating roles ensures the model understands the

intended semantic structure and produces accurate predictions based on the user’s input.

1

<https://huggingface.co/models>


https://huggingface.co/models
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7 CONCLUSION

This chapter presents the conclusions of this work. Section presents the final consid-
erations of the main topics of this work. Section offers the contributions of this work,
including the articles published or under review. Section presents the limitations of this
work. Finally, Section shows the next steps.

7.1 FINAL CONSIDERATIONS

This study aims to propose a method for adapting large language models to communication

card prediction in [Augmentative and Alternative Communication (AAC)| systems to facilitate

message authoring for individuals with [Complex Communication Needs (CCN)| who rely on
AAC| The proposed method involves adapting a transformer-based |Language Model (LM)|
(e.g., BERT and GPT-2) to the domain by fine-tuning it using a telegraphic sentence

corpus or incorporating visual cues. The model is then modified by replacing its[LM] head with
an encoded version of the user's vocabulary. This allows it to produce a probability distribution

over the user’s vocabulary items during inference. The proposed method takes advantage of the

transfer learning ability of transformer-based language models, such as [Bidirectional Encoder|

[Representations from Transformers (BERT)| to facilitate message authoring in systems

in a low-effort setting. We evaluate the proposed method in English and Brazilian Portuguese

and demonstrate that the models produced using this method outperform models pre-trained

for the task. Additionally, we demonstrate that incorporating the [Colourful Semantics (CS)|

structure into the fine-tuning process of [BERT] enhances the accuracy and relevance of the

model’s predictions.

With these results, we answered the [Research Questions (RQs)| presented in Section .

1 (“How can a transformer-based neural network be adapted to improve communication
card prediction?”) is answered by the method described in Chapter [4 which presents how
to adapt transformer-based to perform communication card prediction. 2 (“What is
the performance of adapted transformer-based neural network models for communication card
prediction in high-tech AAC systems in a zero-shot or few-shot setting?") is answered by the
experimental results presented in Section [6.1} which demonstrates that a[BERT}based adapted

model fine-tuned only with 7K sentences outperforms a model pre-trained for the task with a
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955K sentences corpus. While [RQ}3 (“Can the use of [Colourful Semantics improve the

accuracy of communication cards prediction models for [AAQ systems?”) is answered by the
experimental results presented in Section [6.2] which demonstrate that using[CS]roles enhances
the accuracy and relevance of the model’s predictions.

The main findings of this work highlight the effectiveness of adapting transformer-based
neural networks for communication card prediction in systems. The proposed method,
which involves fine-tuning a transformer-based [LM] using a telegraphic sentence corpus or
incorporating visual cues, successfully enhances the accuracy and relevance of the model's
predictions. By adapting transformer-based models like and GPT-2, we demonstrate
that it is possible to improve communication card prediction without the need for extensive
training data. Even with a relatively small dataset of 7K sentences, the fine-tuned models
outperform models pre-trained on much larger corpora (955K sentences). This suggests that
transfer learning with adaptation to the domain is an effective approach for low-effort
message authoring in high-tech [AAC systems.

Furthermore, the incorporation of [CS| structure into the fine-tuning process of [BERT]im-
proves the model's accuracy by considering the roles of who, what doing and what the model
produces more accurate and contextually relevant predictions. This demonstrates the potential
of incorporating linguistic structure in training models for [AAC] systems.

Overall, this study contributes to the field of [AAC| by providing a method that empowers
individuals with to author messages more effectively using communication cards. The
findings also highlight the importance of leveraging transformer-based neural networks and

linguistic structures to enhance the performance of communication card prediction models.

7.2 CONTRIBUTIONS

This work presents two main contributions:

1. A method that harnesses the transfer learning ability of transformers-based language

models to facilitate message authoring in [AAC| systems in a low-effort setting.

2. An strategy for incorporating [CS| into communication card prediction models for [AAC]

systems.

Besides these main contributions, we also advance the state of the art because we:
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= Make a systematic mapping study of methods used for prediction in [AAC| systems,
which allow developers and researchers to embassies the decisions regarding pictogram

prediction in [AAC] systems;
= Construct a corpus of [AACHike sentences for Brazilian Portuguese;

= Provide an experiment on how to represent communication cards for prediction models

better;

= Provide |Deep Learning (DL)| models to perform communication card prediction with

high quality.

We highlight that some of these contributions have been published or are under review.
We also have other publications that contribute to this thesis. All these publications are listed

below:

= Pereira, J. A., Pereira, J. A., & Fidalgo, R. do N. (2021). Caregivers Acceptance of
Using Semantic Communication Boards for teaching Children with Complex Communi-
cation Needs. Anais Do XXXII Simpésio Brasileiro de Informatica Na Educacdo (SBIE
2021). This paper presents a study on the acceptance of therapists, parents, and ed-
ucators of children with [CCN| using a communication board that performs pictogram

prediction as an educational tool.

= Pereira, J. A., Macédo, D., Zanchettin, C., De Oliveira, A. L., & Fidalgo, R. D. (2022).
Pictobert: Transformers for next pictogram prediction. Expert Systems with Applications,
202, 117231. This paper presents our experiments on pre-training [BERT] for pictogram

prediction in English.

= Pereira, J. A., Medeiros, S. de, Zanchettin, C., & Fidalgo, R. do N. (2022). Pictogram
Prediction in Alternative Communication Boards: a Mapping Study. Anais Do XXXIII
Simpésio Brasileiro de Informatica Na Educacdo (SBIE 2022). This paper presents a

systematic mapping study we performed on the methods used for pictogram prediction

in [AAC] systems.

» Pereira, J. A., Nogueira, R., Zanchettin, C., & Fidalgo, R. do N. An Augmentative and
Alternative Communication Synthetic Corpus for Brazilian Portuguese. The 23rd |IEEE
International Conference on Advanced Learning Technologies (ICALT 2023). This paper

presents our method to construct the Brazilian Portuguese [AAC] corpus.
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» Pereira, J. A., Nogueira, R., Zanchettin, C., & Fidalgo, R. do N. Predictive Authoring
for Brazilian Portuguese Augmentative and Alternative Communication. Under review.
Submitted to the Special Issue on Natural Language Processing Applications for Low-
Resource Languages of the Cambridge Natural Language Engineering Journal in Decem-
ber (2022). This paper presents our experiments on communication card prediction for

Brazilian Portuguese. Preprint published in Pereira et al. (2023Db).

» Pereira, J. A., Pereira, J., Zanchettin, C., & Fidalgo, R. do N. Praact: Predictive
Augmentative and Alternative Communication with Transformers. Under review. Sub-
mitted to the Expert Systems with Applications journal in August 2023. This paper
presents our experiments on communication card prediction for English. Preprint pub-

lished in [Pereira et al.| (2023)).

7.3 LIMITATIONS

Despite the relevant results, it is necessary to assume some limitations that can be ad-

dressed in future works. We will list them below:

» Portuguese dataset — This work employs a synthetic corpus of sentences constructed
using a pre-defined vocabulary generated through an automated process. While this
corpus augments sentences typically used by practitioners of [AAC], it may not accurately

reflect the language used in actual [AAC| boards.

» Communication card representation evaluation — the experiments for finding the best way
to encode pictograms for prediction using the neural network has a sense disambiguation

step that was not evaluated in other datasets or scenarios;

» User-centered evaluation — The effectiveness of [AAC solutions should be evaluated
through user-centered approaches, in which individuals with [CCN] actively participate
in the evaluation process. This approach allows for a more comprehensive assessment of

the solution’s functionality and usability.

7.4 FUTURE WORK

In future work we intend to:
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. Experiment on the best manner to represent a communication card using as a basis

the same corpus used for PictoBERT, which is already annotated with word senses that

can be mapped to [Aragonese Portal of Augmentative and Alternative Communication|

(ARASAAC)| pictograms;

. Perform ablation experiments changing a) model size; b) vocabulary encoding aggrega-

tion method (e.g., average or sum);
. Implement a[AA(] system that performs prediction using the Reaact platform as a basis;

. Compare the effectiveness of BERTptCS and BERTpAAC] when used by humans.
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