
Universidade Federal de Pernambuco

Centro de Informática
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RESUMO

A área da saúde está testemunhando um aumento significativo no uso de inteligência arti-

ficial para aprimorar diversas atividades, incluindo a interpretação de eletrocardiogramas

(ECGs). Essa abordagem tecnológica tem se mostrado cada vez mais vital para agilizar

a análise de ECGs, o que pode ser especialmente demorado sem a assistência da tecnolo-

gia. Com isso, surge a dificuldade de identificar com precisão alterações cardiovasculares

em indiv́ıduos saudáveis, especialmente considerando seu grupo etário, já que a maioria

das pesquisas se concentra em dados card́ıacos problemáticos, deixando uma lacuna na

detecção de mudanças relacionadas ao envelhecimento em pessoas saudáveis. Nesse sen-

tido, este estudo tem como objetivo central explorar o papel da inteligência artificial na

detecção de alterações cardiovasculares no envelhecimento por meio da análise do ECG a

fim de encontrar padrões card́ıacos nas alterações cardiovasculares normais. Para isso, foi

conduzido um experimento empregando algoritmos de aprendizado de máquina supervi-

sionados, especificamente Máquinas de Vetores de Suporte e Floresta Aleatória, em uma

base de dados composta por ECGs de 499 voluntários saudáveis. O experimento tinha

como intuito compreender como o aprendizado de máquina pode ser útil para identificação

de padrões em um ciclo de ECG associadas à alterações cardiovasculares durante o en-

velhecimento saudável. Os resultados do experimento indicaram dificuldade na previsão

precisa do grupo etário dos idosos, com pontuações baixas de no máximo de 0.2 após a

aplicação da técnica PSO para seleção de atributos. Em contraste, os resultados para o

grupo de adultos consistentemente alcançaram pontuações próximas a 0.95, independen-

temente das configurações experimentais e das técnicas de pré-processamento empregadas.

No entanto, com base nos resultados obtidos, pode-se discutir sobre a complexidade da ta-

refa de classificação proposta, bem como levantar potenciais abordagens futuras. Notou-se

ainda a necessidade de investimento em outras técnicas e abordagens computacionais para

estudo mais aprofundado das alterações cardiovasculares relacionadas ao envelhecimento

natural. Pesquisas cont́ınuas nesse sentido contribuem para o melhor entendimento do

processo de envelhecimento humano como um todo.

Palavras-chave: ECG. Aprendizado de Máquina. Envelhecimento. Alterações Cardio-

vasculares.



ABSTRACT

The healthcare field is witnessing a significant increase in the use of artificial intelligence

to enhance various activities, including the interpretation of electrocardiograms (ECGs).

This technological approach has proven increasingly vital in speeding up the analysis of

ECGs, which can be especially time-consuming without the assistance of technology. As a

result, there is a challenge in accurately identifying cardiovascular changes in healthy indi-

viduals, taking into consideration their age group, as much of the research published today

focuses on applying machine learning algorithms to datasets with problematic cardiac re-

cords, leaving a gap in the identification of age-related changes in healthy individuals.

In this regard, this study aims to explore the role of artificial intelligence in detecting

cardiovascular changes associated with aging through ECG analysis in order to find car-

diac patterns in normal cardiovascular alterations. To achieve this, an experiment was

conducted using supervised machine learning algorithms, specifically Support Vector Ma-

chines and Random Forests, on a database comprising ECGs from 499 healthy volunteers.

The experiment sought to understand how machine learning can be useful in identifying

patterns in an ECG cycle associated with cardiovascular changes during healthy aging.

The results of the experiment indicated difficulty in accurately predicting the age group of

the elderly, with scores as low as 0.2 at most after applying the PSO technique for feature

selection. In contrast, results for the adult group consistently achieved scores close to

0.95, regardless of experimental settings and preprocessing techniques employed. Howe-

ver, based on the results obtained, it can be discussed that the proposed classification

task is complex, and potential future approaches can be explored. There is also a need

for investment in other computational techniques and approaches for a more in-depth

study of natural age-related cardiovascular changes. Ongoing research in this direction

contributes to a better understanding of the human aging process as a whole.

Keywords: ECG. Machine Learning. Aging. Cardiovascular Alteration.
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1 INTRODUÇÃO

1.1 Contexto

As pessoas em nações industrializadas estão vivendo mais do que nunca, com uma

significativa elevação na expectativa de vida desde o nascimento e, especialmente, após

os 65 anos [1]. O Japão, os Estados Unidos e a Europa têm relatado um aumento não

apenas na longevidade, mas também em uma vida mais saudável, o mesmo não acontece

nos páıses em desenvolvimento, onde as desigualdades de riqueza, renda, educação e acesso

aos cuidados de saúde têm um impacto direto na expectativa de vida. O envelhecimento

da população também apresenta desafios, especialmente em relação aos cuidados de saúde

e aos custos associados com mudanças na estrutura etária da população, o que resulta

em efeitos profundos na sociedade, incluindo a economia, sistemas de pensões, serviços de

saúde e decisões de alocação de recursos [1].

No contexto nacional, segundo o IBGE, a população brasileira continuou a enve-

lhecer nos últimos anos, com um aumento de 4,8 milhões de idosos desde 2012, chegando

a mais de 30,2 milhões em 2017 [2]. Esse crescimento de 18% no grupo de 60 anos ou mais

reflete a melhoria na expectativa de vida. As mulheres representam a maioria dos idosos,

com 16,9 milhões (56%), enquanto os homens são 13,3 milhões (44%). Esse envelheci-

mento é uma tendência global e ocorreu de maneira mais tardia no Brasil em comparação

com outros lugares, e foi observado em todos os estados, sendo que o Rio de Janeiro e o

Rio Grande do Sul têm as maiores proporções, com 18,6% de suas populações pertencendo

a esse grupo, enquanto o Amapá tem o menor percentual, com 7,2% [2].

Nos últimos anos, o aumento significativo da aplicação da inteligência artificial na

área da saúde tem se concentrado principalmente em questões relacionadas ao câncer, ao

sistema nervoso, às doenças cardiovasculares e, cada vez mais, em doenças infecciosas e

crônicas, devido ao elevado ı́ndice de mortalidade associado a essas condições, especial-

mente entre a população idosa. Esse avanço tem viabilizado diagnósticos precoces precisos,

graças a algoritmos criteriosamente treinados. Exemplos que incluem programas para de-

tectar fraturas de punho aprovado pela FDA e algoritmo que identificou tipos de câncer

pulmonar com avaliação de patologistas, mostrando que o aprendizado de máquina busca

algoritmos auto aperfeiçoados para responder a questões complexas da saúde humana [3].

A área da inteligência artificial aplicada à saúde experimentou um crescimento
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significativo, desempenhando um papel fundamental ao auxiliar médicos em atividades

como diagnóstico, escolhas terapêuticas e previsões de desfechos médicos. Esses sistemas

incorporam uma variedade de abordagens, incluindo redes neurais artificiais, sistemas

especialistas difusos e computação evolutiva, com o objetivo de fornecer suporte aos pro-

fissionais de saúde na gestão de dados e conhecimentos complexos. Apesar dos avanços, a

adoção dessas tecnologias pela comunidade médica ainda é receosa, devido a preocupações

relacionadas à confiança na tecnologia durante o processo de tomada de decisões. Con-

tudo, fica claro que a integração da inteligência artificial pode ser de vital importância

para aprimorar a qualidade da assistência médica, complementando a expertise cĺınica no

panorama futuro da saúde [4].

1.2 Motivação e justificativa

Apesar dos notáveis avanços na saúde e nos protocolos de saúde, as doenças car-

diovasculares (DCV) ainda persistem como uma das principais causas de óbito [5]. De

acordo com um relatório recente da Organização Mundial da Saúde (OMS), as doenças

card́ıacas estão se tornando uma preocupação alarmante em indiv́ıduos com 40 anos ou

mais em todo o mundo [6].

O eletrocardiograma (ECG), ferramenta fundamental no diagnóstico de doenças

card́ıacas, está sendo cada vez mais combinado com tecnologias inteligentes por meio da

integração, emergindo como uma solução crucial para enfrentar a escassez de recursos

médicos [7]. Ao longo das últimas duas décadas, houve um significativo investimento em

pesquisa no desenvolvimento de métodos capazes de classificar automaticamente os bati-

mentos card́ıacos [8]. Com isso, as técnicas de aprendizado de máquina têm desempenhado

um papel vital nas ciências médicas, especialmente na análise de dados centralizados na

nuvem, permitindo acesso global [6].

Ele funciona como um registro da atividade elétrica do coração na superf́ıcie do

corpo, sendo comumente usado em pesquisas de detecção de estresse porque reflete di-

retamente a atividade card́ıaca, que é influenciada por alterações no sistema nervoso

autônomo. O ECG pode ser facilmente medido colocando eletrodos em locais espećıficos

do corpo para medir diferenças de potencial [9].

Uma sessão de registro de ECG costuma durar alguns minutos, e os médicos anali-

sam cuidadosamente as formas de onda do eletrocardiograma, batimento após batimento,
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com o objetivo de diagnosticar a presença de arritmias card́ıacas. Esse processo é conhe-

cido por ser tedioso e demorado, o que torna a classificação automática dos batimentos

card́ıacos a partir dos sinais uma ferramenta importante na prática médica para auxiliar

em diagnósticos relacionados ao sistema cardiovascular [8].

No entanto, ainda há um amplo espaço a ser explorado na análise do ECG para

descobrir associações entre uma variedade de doenças relacionadas ao envelhecimento

e hábitos crônicos e acredita-se que ele possa fornecer informações adicionais valiosas

sobre essas condições. Atualmente, a análise automática é predominantemente focada

em doenças card́ıacas, como arritmia e infarto do miocárdio, com poucos estudos abor-

dando outras áreas, como a relação entre a frequência card́ıaca e o diabetes, por exemplo.

No entanto, é importante continuar pesquisando e investigando o potencial do eletro-

cardiograma em fornecer informações abrangentes sobre várias doenças relacionadas ao

envelhecimento e hábitos crônicos [10].

Nesse âmbito, a participação ativa de pessoas idosas em pesquisas sobre o enve-

lhecimento é motivada por duas razões fundamentais. Primeiramente, trata-se de uma

questão de direitos humanos, um prinćıpio inegociável que reconhece o valor intŕınseco

de cada indiv́ıduo, independentemente da idade, e em segundo lugar, a colaboração ativa

desses idosos na pesquisa enriquece nossa compreensão das suas experiências e necessi-

dades únicas, abrindo caminho para melhorias significativas na qualidade de vida dessa

população. Embora haja desafios a serem enfrentados ao envolver pessoas idosas em pes-

quisas, os esforços empregados nesse sentido têm mostrado ser inestimáveis tanto para os

próprios idosos quanto para o avanço da pesquisa sobre o envelhecimento [11].

1.3 Objetivo da pesquisa

Este trabalho pretende responder as seguintes perguntas de pesquisa:

– Q1 - Quais são as principais alterações cardiovasculares no processo de envelheci-

mento do ser humano?

– Q2 - Quais são os principais algoritmos de inteligência artificial utilizados na análise

do ECG para identificar alterações cardiovasculares em idosos?

– Q3 - Quais as principais técnicas utilizadas para identificar um ciclo de ECG?
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– Q4 - Com um eletrocardiograma é posśıvel identificar alterações esperadas na pessoa

devido ao fator da idade?

Para responder essas perguntas de pesquisa, o objetivo principal deste trabalho é

compreender como o aprendizado de máquina pode ser útil para identificação de padrões

em um ciclo de ECG associadas à alterações cardiovasculares durante o envelhecimento

saudável. Para que seja posśıvel atingir esse objetivo geral, os seguintes objetivos es-

pećıficos foram estabelecidos:

• Identificar as prováveis alterações cardiovasculares que são desenvolvidas no processo

de envelhecimento do ser humano.

• Entender os prinćıpios básicos do exame de eletrocardiograma, incluindo sua repre-

sentação gráfica.

• Explorar técnicas de processamento de sinais e análise de dados especificamente

voltada para eletrocardiograma.

• Analisar a aplicação de modelos de aprendizagem de máquina envolvendo eletrocar-

diogramas.

1.4 Trabalhos relacionados

Xu, Mak e Cheung (2019) [8] apresentaram um método de aprendizado profundo

com alinhamento de sinal para classificação de ECGs brutos em diferentes tipos de bati-

mentos card́ıacos. Os resultados mostram que o classificador proposto obtém uma sen-

sibilidade pelo menos 10% maior na detecção de batimentos irregulares. A segmentação

dos batimentos card́ıacos através de um algoritmo baseado em limiar e o alinhamento dos

batimentos é considerado vital para o desempenho da rede neural profunda. Essa abor-

dagem end-to-end de classificação de ECG busca reduzir o tempo e esforço necessários,

e com isso, conseguiu alcançar um desempenho superior em relação a outras abordagens

existentes para a classificação de arritmias card́ıacas.

O artigo de Xu et al. (2020) [12] propõe uma rede combinada de CNN e RNN para

a classificação de sinais de ECG. A rede consiste em camadas convolucionais, blocos resi-

duais com uma Rede Squeeze-and-Excitation (SENet), camadas bidirecionais de memória

de longo prazo (biLSTM) e camadas totalmente conectadas. A combinação da CNN e
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BiLSTM mostrou um desempenho superior na classificação de batimentos card́ıacos em

comparação com outros modelos existentes. Foram também utilizadas técnicas de pro-

cessamento dos sinais de ECG como remoção de desvio da linha de base, downsampling,

normalização, detecção de picos R e episódios T, extração de batimentos e preenchimento

com zeros para padronização. A rede alcançou alta sensibilidade de reconhecimento e

precisão na detecção de cinco classes de ECG. No entanto, o escopo do estudo se limitou

à arritmia, sugerindo a necessidade de expandir a rede para incluir mais tipos de dados

de ECG para lidar com a diversidade de doenças card́ıacas.

Na pesquisa de Lee et al. (2023) [13] é proposto um sistema de medição de eletro-

cardiograma implementado no volante do véıculo, juntamente com um modelo de apren-

dizado de máquina para classificar o estado de saúde card́ıaca do motorista. Para isso, é

proposta uma estrutura de aprendizado de máquina em dois estágios, treinada com um

subconjunto ótimo de caracteŕısticas extráıdas de dados de ECG de uma única derivação.

A estrutura de classificação em dois estágios alcançou a melhor pontuação F1 e um de-

sempenho de classificação em tempo real. O estudo se concentra em extrair recursos com

base nas ondas do ECG e localizar corretamente os pontos de pico P, Q, R, S e T. Além

disso, são realizados processos de remoção de rúıdo e filtragem do sinal EMG e extração

de caracteŕısticas morfológicas e estat́ısticas usando os pontos de pico. O estudo destaca

que a análise do pico R do ECG pode fornecer informações importantes, como alterações

na frequência card́ıaca.

Strodthoff et al. (2021) [14] realizaram testes com diferentes arquiteturas, como

redes neurais convolucionais e recorrentes, e descobriram que as redes convolucionais ba-

seadas nas arquiteturas ResNet e Inception apresentaram o melhor desempenho em todas

as tarefas. Além disso, eles demonstraram a utilidade da aprendizagem por transferência,

utilizando o PTB-XL como um recurso de pré-treinamento para classificadores genéricos

de ECG. Os resultados mostraram que os algoritmos baseados em aprendizado profundo

superaram outros métodos de classificação em termos de acurácia, sensibilidade e especi-

ficidade.

Zarei et al. (2019) [15] apresentam um novo método automático de detecção de

apneia obstrutiva do sono (AOS) usando sinais de eletrocardiograma (ECG) de derivação

única. O método proposto envolve a extração de caracteŕısticas não lineares usando

coeficientes de transformação wavelet obtidos por uma decomposição do sinal de ECG. Um
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algoritmo de seleção de recursos é aplicado para escolher os melhores recursos. Diferentes

classificadores, como Máquinas de Vetores de Suporte (SVM), Rede Neural Artificial

(ANN) e Regressão Loǵıstica (LR), são investigados para a classificação dos eventos de

apneia.

No artigo de Tseng et al. (2020) [10] é mostrada a análise das posśıveis relações

entre doenças comuns do envelhecimento e hábitos crônicos com registros médicos e ECG,

como diabetes, obesidade, hipertensão e o hábito de fumar. Diversos métodos de pré-

processamento e extração de recursos são utilizados, incluindo o padrão binário reduzido

(RBP), transformação wavelet, análise de forma de onda, redução de rúıdo e detecção de

pontos caracteŕısticos. O algoritmo de agrupamento K-Means é aplicado para identificar

associações entre ECGs e as doenças e hábitos mencionados. No final, a relação entre

ECG e hipertensão, obesidade e tabagismo não é clara, abrindo caminho para pesquisas

futuras nessa área.

O artigo de Butt et al. (2021) [16] apresenta um algoritmo de classificação de ECG

baseado no uso de redes neurais convolucionais pré-treinadas (AlexNet e GoogLeNet) para

distinguir entre quedas e atividades sem queda. São realizadas técnicas como: aplicação de

um filtro eĺıptico para remover rúıdos, como desvio da linha de base e interface de linha de

energia, e, foram obtidos escalogramas dos sinais de ECG filtrados usando transformação

wavelet cont́ınua, que foram então utilizados como entrada para a rede neural. O primeiro

modelo alcançou uma precisão de validação de 98,08% na classificação de quedas versus

sem queda, enquanto o segundo modelo atingiu uma precisão de 98,44% na classificação

de quedas, atividades diárias e nenhuma atividade.

A pesquisa de Wang et al. (2022) [7] aborda um método que utiliza dados de

ECG de três derivações card́ıacas (THML) e quatro modelos de classificação baseados

em redes neurais convolucionais unidimensionais (1D-CNN), combinados com um método

de votação integrado de modelo prioritário. O pré-processamento dos dados envolve a

segmentação precisa dos sinais de ECG, seguida de reamostragem, filtragem de rúıdo

wavelet e normalização de média zero. Por fim, os resultados mostram alta precisão na

classificação de diferentes tipos de arritmias, evidenciando a eficácia do método proposto.

Jiao et al. (2022) [17] apresentam um modelo que combina as vantagens das redes

neurais convolucionais 1D (CNN) e das redes de memória de longo prazo (LSTM) para

extrair recursos espaciais e temporais dos sinais de ECG. O pré-processamento inclui
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remoção de rúıdo usando wavelets Daubechies e segmentação adaptativa dos batimentos

com base na forma de onda QRS. O trabalho destaca a capacidade de generalização

do modelo, eliminando a necessidade de extração manual de recursos e permitindo a

classificação direta do sinal de ECG.

Manik el al. (2019) [18] apresentam um algoritmo de classificação de taquiarrit-

mias ventriculares. O processo de classificação envolveu pré-processamento usando o filtro

mediano para remover o rúıdo e preservar as informações importantes do sinal de ECG.

A extração de caracteŕısticas foi realizada usando a técnica de Análise de Componentes

Principais (PCA), que reduziu o número de amostras e detectou as caracteŕısticas da onda

QRS, essenciais para a detecção de doenças card́ıacas. O algoritmo de classificação utili-

zado foi o Backpropagation modificado (MBP), uma rede neural com retropropagação de

Levenberg Marquardt. O estudo obteve um alto grau de acerto de 91,67% na classificação

das taquicardia ventricular, demonstrando a eficácia da abordagem proposta.

Rahman et al. (2022) [6] desenvolvem um algoritmo de classificação de ECG

baseado em aprendizado de transferência usando três diferentes modelos de aprendizado

profundo: ResNet50, AlexNet e SqueezeNet. O objetivo é detectar arritmias card́ıacas com

alta precisão. O estudo comparou os resultados dos três modelos e obteve uma precisão

de 98.8%, 90.08% e 91% respectivamente. Aumentar o conjunto de dados e ajustar os

parâmetros e posicionamento das imagens contribuiu para o progresso nessa área, que

mostrou-se inovadora e eficaz na detecção e diagnóstico de arritmias multiclasse.

A pesquisa de Zheng et al. (2020) [19] mostra um algoritmo de classificação de

ECG para detectar arritmias card́ıacas que consiste em um estágio de redução de rúıdo em

três etapas, um método de extração de recursos e um modelo de classificação otimizado. O

estudo exaustivo comparou diversos algoritmos de classificação, sendo o Extreme Gradient

Boosting Tree (EGBT) e Gradient Boosting Tree (GBT) os melhores desempenhos. Além

de definir etapas de pré-processamento que envolveram a redução de rúıdo usando filtros

Butterworth Low-pass, Robust LOESS e Non Local Means. A extração de recursos incluiu

medições de ondas e segmentos, bem como medidas de relação entre picos e vales. A

abordagem mostrou-se eficaz na detecção de arritmias com um F1-Score de 0.988 em

pacientes sem condições card́ıacas adicionais.

O artigo de Arquilla et al. (2022) [20] aborda um algoritmo de classificação de

estresse usando sinais de eletrocardiograma (ECG). O estudo investigou a inclusão de
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recursos derivados de picos menores (ondas P, Q, S e T) na forma de onda do ECG, além do

pico R tradicionalmente utilizado. O objetivo era determinar se esses recursos adicionais

melhoram a classificação do estresse e investigar os efeitos do rúıdo na detecção automática

de pico. Os pesquisadores realizaram uma análise comparativa entre dois modelos, um

com recursos de pico R e outro com recursos de picos menores. Ambos os modelos

apresentaram resultados semelhantes em métricas como precisão, sensibilidade, F1, área

sob a curva ROC (AUC) e precisão. Os resultados sugerem que os picos menores podem

ser indicativos de processos independentes dentro do coração, refletindo uma resposta

psicofisiológica ao estresse.

Chen et al. (2021) [21] mostram um sistema de diagnóstico automático baseado

em aprendizado profundo para a detecção precoce de insuficiência card́ıaca por meio

de sinais de ECG. O modelo proposto, chamado CBAM-CNN, utiliza uma rede neural

convolucional de atenção para extrair automaticamente caracteŕısticas dos sinais de ECG

e realizar a classificação. Os resultados mostram que o modelo CBAM-CNN é eficaz na

classificação dos sinais de ECG, sendo senśıvel ao rúıdo e tendo sua precisão aprimorada

após o refinamento do sinal. Esse sistema de diagnóstico auxiliado por computador pode

ser útil para médicos e paramédicos no diagnóstico precoce da insuficiência card́ıaca, e há

potencial para expandir seu uso em outros problemas relacionados ao coração.

A pesquisa de Jurado et al. (2022) [5] apresenta uma metodologia para detectar

o desvio do segmento ST em sinais de ECG e quantificar sua escala usando métodos

automatizados de aprendizado de máquina que teve como pré-processamento dos sinais

de ECG a remoção do desvio da linha de base. Caracteŕısticas estat́ısticas e ı́ndices de

qualidade de sinal foram extráıdos dos batimentos separados. Os resultados mostraram

uma precisão de 99,87% na detecção do desvio do segmento ST quando o problema foi

binarizado e 98,30% quando consideradas três classes.

1.5 Estrutura do trabalho

Este documento está estruturado da seguinte forma:

• Caṕıtulo 1 - Introdução;

• Caṕıtulo 2 - Referencial Teórico;

• Caṕıtulo 3 - Metodologia;
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• Caṕıtulo 4 - Resultados;

• Caṕıtulo 5 - Conclusões;
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Tabela 1: Resumo dos trabalhos relacionados

Fonte: Elaborado pelo próprio autor (2023)
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2 REFERENCIAL TEÓRICO

Neste caṕıtulo, serão abordados os principais conceitos sobre os principais temas

presentes neste trabalho. A Seção 2.1 apresenta as etapas no processo de envelhecimento.

Na Seção 2.2 são descritos quais tipos de alterações card́ıacas acontecem durante o enve-

lhecimento natural e saudável do ser humano. E, por fim, a Seção 2.3 apresenta conceitos

sobre inteligência artificial e reconhecimento de padrões, trazendo elementos acerca dos

tipos de aprendizagem de máquina, classificadores e métricas de avaliação, respetivamente.

2.1 Etapas do processo de envelhecimento

Segundo Erminda (1999) [22], o envelhecimento se configura como um processo de

diminuição orgânica e funcional, não decorrente de doença, acontecendo inevitavelmente

com o passar do tempo. Esse processo pode ser considerado um fenômeno biológico

complexo envolvendo mudanças bioqúımicas e morfológicas, com perda progressiva de

diferentes funções fisiológicas na célula, tecido, órgão e no organismo como um todo.

A idade cronológica, que quantifica a passagem do tempo decorrido em dias, meses

e anos desde o nascimento, é um dos meios mais usuais e simples de se obter informações

sobre uma pessoa. A idade biológica é definida pelas alterações corporais e mentais que

ocorrem ao longo do processo de desenvolvimento e caracterizam o processo de envelhe-

cimento humano [23].

Com isso, o envelhecimento é um processo natural, a chamada senescência, que

ocorre ao longo da vida. Desde o nascimento, passamos por mudanças fisiológicas e

visuais que nos levam à maturidade. Mesmo aqueles que são saudáveis e esteticamente

aptos experimentam o decĺınio gradual das funções f́ısicas e a incapacidade funcional, o

que pode resultar em maior dependência na velhice. Em muitos páıses desenvolvidos, a

idade de 60 anos é considerada o ińıcio da velhice e a idade de aposentadoria, mas essas

construções culturais variam de acordo com as diferentes sociedades e culturas ao redor

do mundo [24].

Ademais, com o envelhecimento natural do corpo humano pode ocorrer um con-

junto de processos patológicos associados à idade, chamada de senilidade. É comum que

observações simultâneas de senescência ou senilidade sejam consideradas coincidência, mas

a necessidade de diferenciá-las levou à criação de diretrizes para decisões cĺınicas, como
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diagnóstico, tratamento e acompanhamentos espećıficos [25]. Além disso, na senilidade as

manifestações patológicas são protagonistas e de forma gradual ocasionam um decĺınio no

funcionamento dos sistemas corporais, o que pode resultar em óbito. Quando a senilidade

se manifesta, é importante que os idosos recebam cuidados adequados e apoio emocional

para lidar com suas limitações f́ısicas e cognitivas [26].

2.2 Tipos de alterações card́ıacas durante o envelhecimento natural/saudável

As mudanças na anatomia e fisiologia cardiovascular que ocorrem com o enve-

lhecimento são responsáveis pelas alterações na função cardiovascular que são carac-

teŕısticas [27]. De acordo com Cefalu (2011) [28], as mudanças comuns que ocorrem

no sistema cardiovascular durante o envelhecimento podem ser observadas tanto em ńıvel

estrutural quanto funcional. Os miócitos sofrem uma hipertrofia progressiva e há uma

perda gradual de 90% das células marca-passo no nódulo sinusal, o que resulta em um

ritmo card́ıaco mais lento em repouso e durante atividades f́ısicas. A rigidez do ventŕıculo

esquerdo atinge seu máximo quando há uma redução na complacência. Nesses casos, o

coração responde à diminuição da frequência card́ıaca máxima e ao aumento do volume

sistólico com uma diminuição do débito card́ıaco máximo e uma resposta vasodilatadora

durante o exerćıcio.

Nesta mesma ideia, Stratton et al. (2003) [29] mostra que com o envelhecimento

ocorre uma redução no enchimento diastólico do ventŕıculo esquerdo e em seu relaxa-

mento, que é compensada pela contração do átrio esquerdo. Esse quadro se deve, em

parte, à calcificação das paredes dos vasos, aumento do diâmetro, perda de complacência

causada pela deposição de colágeno e fragmentação da elastina no sistema vascular central

e periférico, levando a um aumento da resistência vascular sistêmica.

Por outro lado, estudos realizados em modelos animais e em seres humanos têm

demonstrado que o envelhecimento e seus efeitos estão associados a três alterações car-

diovasculares: disfunção diastólica, aumento da rigidez arterial, conforme mostrado na

Figura 1, e redução da resposta cronotrópica e inotrópica às catecolaminas. A disfunção

diastólica ocorre devido ao prolongamento do relaxamento miocárdico e à dificuldade

no enchimento diastólico ventricular. O aumento da rigidez arterial resulta em maior

pós-carga. Já a redução da resposta cronotrópica e inotrópica às catecolaminas se deve

à diminuição da responsividade ß adrenérgica. Essas alterações podem ter implicações
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na saúde cardiovascular de indiv́ıduos idosos e, por isso, é importante considerá-las na

avaliação e tratamento desses pacientes [30].

Ainda no contexto da rigidez arterial, ocorre a diminuição da elasticidade da aorta

e das grandes artérias, medida como diminuição da complacência aórtica. À medida que

a aorta se torna menos complacente, há aumento da resistência à ejeção de sangue do

ventŕıculo esquerdo. Isso pode levar a uma série de consequências, como um aumento

da pressão arterial, maior estresse no coração e no sistema circulatório, e um maior risco

de doenças cardiovasculares, como doenças coronárias, acidente vascular cerebral e insu-

ficiência card́ıaca. Outra alteração é fibrose e calcificação do fibroesqueleto do coração,

composto pelos anéis anulares e tŕıgonos fibrosos, juntamente com calcificação das bases

das cúspides aórticas, podendo levar a um aumento da rigidez das valvas card́ıacas e a um

mau funcionamento das mesmas, que podem dificultar o fluxo sangúıneo adequado [27].

Figura 1: Fisiopatologia do envelhecimento vascular

Fonte: Adaptado de Costantino, Paneni e Cosentino (2016)

2.3 IA e reconhecimento de padrões

A inteligência artificial (IA) pode ser vista tanto como parte da engenharia quanto

como parte da ciência, dependendo dos objetivos. No contexto da engenharia da inte-
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ligência artificial, busca-se resolver problemas do mundo real utilizando a IA como um

conjunto de ideias para representar o conhecimento e construir sistemas. Por outro lado,

no contexto cient́ıfico da inteligência artificial, o objetivo é determinar quais ideias, siste-

mas e representações do conhecimento explicam diferentes formas de inteligência. A IA

consegue ajudar especialistas a resolver problemas anaĺıticos avançados e complexos [31].

A medicina moderna possui grandes quantidades de informações e conhecimentos preci-

sos da inteligência artificial como solução do desafio de análise e aplicação, tendo sido

relacionado à previsão de resultados [32].

O reconhecimento de padrões é o estudo de como os computadores e algoritmos

podem observar o ambiente, aprender a distinguir padrões de interesse de seu contexto

e tomar decisões sensatas e razoáveis sobre as categorias dos padrões [33]. Ainda nesta

mesma ideia, Schrouff et al. (2013) [34] relata que reconhecimento de padrões estat́ısticos

é um campo dentro da área de aprendizado de máquina, que se preocupa com a descoberta

automática de regularidades em dados por meio do uso de algoritmos de computador e

com o uso dessas regularidades para realizar ações como classificar os dados em diferentes

categorias.

2.3.1 Tipos de aprendizagem

Com base no problema dado e nos dados dispońıveis, podemos distinguir três tipos

de aprendizado de máquina: aprendizado supervisionado, aprendizado não supervisionado

e aprendizado por reforço [35].

No contexto do aprendizado supervisionado, um sistema computacional é fornecido

com conjuntos de dados de treinamento contendo observações e os valores corresponden-

tes de sáıda conhecidos. O objetivo é adquirir conhecimento sobre regras gerais, também

chamadas de “modelo”, que estabelecem uma relação entre as entradas e as sáıdas. Esse

conhecimento permite que o sistema faça previsões sobre as sáıdas de novos dados que

não foram previamente observados, mas em que temos os valores de entrada dispońıveis.

Existem duas categorias principais de aprendizado supervisionado: a classificação, mos-

trado na figura 2, que lida com valores de sáıda categóricos, e a regressão, que lida com

valores de sáıda numéricos [36]. A classificação é um método para atribuir um rótulo a

uma amostra com base nos atributos, para isso é necessário que tenha rótulos para realizar

a classificação. A regressão é semelhante à classificação, mas a diferença é que ela não
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prevê um rótulo, mas sim tentar prever um valor cont́ınuo, ou seja, caso o objetivo de

um determinado trabalho seja prever um número é necessário usar algum algoritmo de

regressão e não de classificação [37].

Figura 2: Representação de modelo de aprendizado supervisionado

Fonte: Adaptado de Gupta et al (2022)

O aprendizado não supervisionado é uma abordagem de aprendizado de máquina

em que não há supervisão durante o processo. Os dados de entrada, que consistem em

padrões ou imagens não rotulados, são processados pelo modelo para identificar padrões

ocultos. Diferentes algoritmos, como PCA, ICA e K-Means, são utilizados para descobrir

estruturas nos dados fornecidos. Ao contrário do aprendizado supervisionado, não há

dados de sáıda predefinidos, tornando o formato da sáıda desconhecido. Essa aborda-

gem é útil para explorar grandes conjuntos de dados e encontrar padrões significativos.

O aprendizado não supervisionado desempenha um papel importante na descoberta de

conhecimento em dados não rotulados [38]. Os tipos mais comuns de algoritmos usados

no aprendizado não supervisionado são os modelos de Clustering, técnica com o objetivo

principal de agrupar itens de forma que aqueles com mais semelhanças sejam agrupados

e aqueles com pouca ou nenhuma semelhança sejam colocados juntos, e Association, que

diferente do clustering é usada para encontrar correlações entre variáveis em um grande

banco de dados [39].

O último tipo de aprendizado de máquina é o de reinforcement learning, e de acordo

com Bonaccorso (2017) [40] o aprendizado por reforço é uma abordagem na qual um

agente aprende a tomar decisões em um ambiente interativo. O agente recebe um retorno
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qualitativo, chamado recompensa, do ambiente após tomar ações em estados espećıficos.

O objetivo é aprender uma poĺıtica, que é uma sequência de ações que maximizam a

recompensa imediata e acumulativa. Mesmo que o agente cometa ações imperfeitas, a

poĺıtica global deve resultar na maior recompensa total. O aprendizado por reforço é

eficaz em ambientes dinâmicos, estocásticos e nos quais não é posśıvel ter uma medida

precisa de erro.

2.3.2 Classificadores

A Máquina de Vetores de Suporte (do inglês, Support Vector Machine - SVM ) é

um modelo de aprendizado de máquina supervisionado, que envolve a construção de um

hiperplano que separa os dados de diferentes classes de forma otimizada. O objetivo é

encontrar o hiperplano que maximize a margem entre as classes, ou seja, a distância entre

os pontos mais próximos de cada classe. Esses pontos mais próximos são chamados de

vetores de suporte, dáı o nome do modelo. A técnica combina três conceitos: a solução de

optimal hyperplanes (que permite expandir a solução em vetores de suporte), convolution

of the dot-product (que estende as superf́ıcies de solução de linear para não linear) e notion

of soft margin (que permite erros no conjunto de treinamento). A questão da construção

do hiperplano foi resolvida em 1965, assim um hiperplano ótimo foi definido como a

função de decisão linear com margem máxima entre os vetores das duas classes. Esse

algoritmo foi testado e comparado com outros algoritmos clássicos na época, revelando

um desempenho muito bom durante o estudo de comparação, apesar de sua aparente

simplicidade na superf́ıcie de decisão [41].

A figura 3 mostra visualmente como é feito a separação de dados através de um

hiperplano maximizado pela margem ótimo entra as classes.

Uma árvore de decisão tem diversos nós, cada nó interno da árvore contém um

teste que é usado para decidir qual ramo seguir a partir desse nó. Os nós folha contém

rótulos de classe e quando um caso de teste alcança um nó folha o algoritmo faz a devida

classificação. As árvores que são desenvolvidas pelo C4.5, um algoritmo amplamente utili-

zado desenvolvido por J. Ross Quinlan, são rápidas e confiáveis, devido ao fato de possuir

propriedades que tornaram a árvore de decisão uma ferramenta segura para classificação

em aprendizado de máquina [42].

A Floresta Aleatória é um método de aprendizado de máquina que combina várias
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Figura 3: Modelo da Máquina de Vetores de Suporte (SVM)

Fonte: Adaptado de Cortes, Paneni e Vapnik (1995)

árvores de decisão independentes para realizar classificação ou regressão. Cada árvore é

treinada em uma amostra aleatória dos dados de treinamento e, em seguida, as árvores

votam para determinar a classe mais popular ou a média das previsões das árvores é to-

mada como resultado final [43]. Ela usa a técnica de bagging para corrigir a tendência das

árvores de decisão ao overfitting. Tem sido uma excelente alternativa para classificação

e regressão mesmo tendo cedido espaço para Gradient Boost, que utiliza a técnica de

boosting, onde cada árvore é criada com o intuito de corrigir os erros da anterior [37].

Esse algoritmo é apropriado para situações na qual a base dados possui uma alta dimen-

sionalidade, devido a facilidade de trabalhar com valores nulos, categóricos, numéricos e

binários, o que acaba sendo eficiente para vários tipos de conjuntos de dados [44]. Ele

geralmente possui uma performance significativa em comparação a modelos de uma árvore

só, como é o caso do C4.5 [45].

A figura 4 mostra a representação hipotética de uma árvore de decisão e a figura

5 as etapas do processo de decisão da Floresta Aleatória.
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Figura 4: Representação hipotética das árvore de decisão

Fonte: Adaptado de Carl e Salzberg (2008)

Figura 5: Processo da Floresta Aleatória

Fonte: Adaptado de Sun et al (2020)
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2.3.3 Métricas de avaliação

Acurácia, sensibilidade e especificidade são três medidas básicas para validar uma

performance de um classificador [46]. A acurácia é calculada pela divisão dos verdadeiros

positivos pela soma total dos resultados positivos, com isso ele mede o quão relevante são

os resultados [37]. Ela mede a capacidade de identificar corretamente todas as amostras,

não só positivas como também negativas. Sensibilidade, é conhecida por recall ou TPR

(taxa de verdadeiros positivos), pois mede a frequência de amostras positivas verdadeiras

em comparação com todas as amostras tidas como positivas. Já a especificidade, conhecida

como inverse recall ou TNR (taxa de verdadeiros negativos), é o contrário da sensibilidade,

mede a capacidade de identificar as amostras negativas [46].

Tabela 2: Termos usados para definir sensibilidade, especificidade e acurácia

Fonte: Adaptado de Zu, Zheng e Wang (2010)

Um dos principais objetivos de uma matriz de confusão é entender o desempenho

atual de um classificador ao realizar alguma tarefa de previsão. No caso de um classificador

binário pode ter quatro resultados, são eles: verdadeiros positivos (TP), verdadeiros nega-

tivos (TN), falsos positivos (FP) e falsos negativos (FN) [37]. Ela apresenta informações

sobre a frequência de detecção correta de um comportamento e com que frequência é

classificado com outro tipo. Essa análise funciona como uma alternativa à validação de

classificação discreta, tendo vantagens como: robustez no quesito de distribuição de dados,

avaliação rigorosa da validade e mostra informações valiosas sobre os erros [47].

Mandrekar (2010) [48] define a curva ROC como simples “plotagem” de sensibili-

dade x especificidade. A curva ROC ilustra a variação da taxa de verdadeiros positivos
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Figura 6: Representação da matriz de confusão

Fonte: Adaptado de Jiao e Du (2016)

em relação à taxa de falsos positivos ao longo do tempo, fornecendo uma representação

visual do desempenho do classificador. Uma regra prática estabelece que o gráfico deve

se projetar no canto superior esquerdo para indicar um melhor desempenho. Quando um

gráfico está localizado à esquerda e acima de outro, isso indica uma melhoria no desem-

penho. A diagonal no gráfico representa o comportamento de um classificador que faz

adivinhações aleatórias. O cálculo da AUC (área sob a curva) fornece uma métrica para

avaliar o desempenho do classificador [37]. Segundo [49] este cálculo funciona como um

teste para discriminar se uma certa condição está presente ou não. Uma AUC próximo a

1.0 representa uma discriminação perfeita, sendo uma métrica diretamente proporcional,

fazendo com que um resultado de 0.5 já representa um teste sem capacidade discriminação,

não sendo recomendada.

Tabela 3: Intervalos da métrica AUC e suas respectivas classificações

Fonte: Adaptado de Zu, Zheng e Wang (2010)

A figura abaixo ilustra um exemplo da curva ROC em um classificador de Árvore de
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Decisão, contendo duas classes (0 e 1) e o resultado da métrica AUC de forma individual.

Figura 7: Curva ROC

Fonte: Harrison (2019)
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3 MATERIAL E MÉTODO

Nesta seção, encontra-se o delineamento dos passos realizados na busca por res-

postas em direção aos objetivos estabelecidos neste trabalho, como mostrado na figura

8. A metodologia, através da experimentação envolveu entendimento da base de dados,

estudo exploratório dos sinais, pré-processamento dos dados para garantir a qualidade e

consistência das informações, o desenvolvimento do classificador e por fim validação dos

modelos através de métricas, por exemplo acurácia, precisão e sensibilidade.

Figura 8: Diagrama da metodologia do experimento

Fonte: Elaborado pelo próprio autor (2023)
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3.1 Base de dados

A base de dados, Autonomic Aging PhysioNet, utilizada no experimento, teve seus

dados coletados no Departamento de Medicina Psicossomática e Psicoterapia do Hospital

Universitário de Jena. O estudo recebeu aprovação ética da Faculdade de Medicina da

Friedrich Schiller University Jena, e todos os participantes forneceram consentimento

por escrito pela participação na base de dados disponibilizando os próprios batimentos

card́ıacos.

O conjunto de dados compreende registros de eletrocardiogramas na derivação II,

amostrados a 1000 Hz, usando um sistema MP150 da BIOPAC e um sistema Task Force

Monitor da CNSystems. Dos dois aparelhos citados que foram utilizados para captação

de registros de eletrocardiograma, apenas os dados do MP150 da BIOPAC Systems foram

contabilizados, já que tinha apenas um canal de ECG, o que contribui para reduzir a

complexidade do processamento e economizar recursos computacionais.

Os arquivos de dados do conjunto de dados seguem um formato padrão WFDB

aberto, comumente utilizado para armazenar informações médicas de sinais biológicos,

que foi utilizado para realização do estudo exploratório dos sinais. Os registros dos 500

voluntários são organizados com números consecutivos após ordenação aleatória, as faixas

etárias originais da base de dados foram categorizadas em 15 grupos, abrangendo idades

de 18 a 92 anos, mas para o estudo houve a redução do número de grupo para somente três:

jovens (abaixo dos 20 anos), adultos (20 à 59 anos) e idosos (60 anos ou mais). Um ponto

importante que foi observado foi a ausência dos dados de idade de um dos voluntários, que,

para os propósitos do estudo, acabou sendo considerada relevante. Devido a importância

da idade para o experimento, esse voluntário foi exclúıdo da base de dados, resultando

em um total de 499 participantes.

A distribuição da idade dos voluntários foi feita de forma desigual, cerca de 90%

dos participantes foram alocados no grupo 2, enquanto apenas 7% pertenciam ao grupo 3

e 3% ao grupo 1. Essa discrepância na quantidade de dados em cada grupo resultou em

um conjunto desbalanceado, ou seja, a amostra não apresenta uma distribuição uniforme

de indiv́ıduos por faixa etária, o que implicou na necessidade do balanceamento dos dados

na experimentação.
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3.2 Estudo exploratório dos sinais

O estudo exploratório dos sinais do eletrocardiograma é uma etapa fundamental

para a compreensão e análise da atividade elétrica do coração, já que fornece informações

valiosas sobre a saúde cardiovascular dos indiv́ıduos presentes na base de dados. Neste

estudo, foram analisados três ECGs de voluntários de forma aleatória, utilizando a bibli-

oteca wfdb que possui métodos para processar e interpretar esses sinais.

Cada ECG continha um extenso registro de dados, com uma média de 976.665

amostras por voluntário. Devido a essa grande quantidade de informações, optou-se por

realizar um recorte curto na qual não retornasse as ondulações iniciais do sinal, seleci-

onando amostras compreendidas entre 2500 e 15000 (aproximadamente 12s do exame),

visando reduzir a complexidade computacional da análise e garantir resultados mais con-

cisos e viśıveis. Uma das primeiras observações importantes foi a inexistência de valores

nulos nos registros de ECG que proporcionaram uma maior confiabilidade e segurança na

interpretação dos resultados obtidos ao longo do estudo.

Na sequência, a biblioteca heartpy foi escolhida para a detecção do complexo

QRS, essa detecção é crucial para o diagnóstico de arritmias e outras anomalias do ritmo

card́ıaco. Medidas de frequência card́ıaca também foram analisadas devido a importância

na avaliação da regularidade dos batimentos card́ıacos e para detectar posśıveis irregu-

laridades ou divergências da normalidade. Um aspecto notável durante o estudo foi a

constatação de que não foi necessária a redução de rúıdo, pois o sinal capturado apre-

sentava uma qualidade satisfatória, livre de interferências significativas que pudessem

comprometer as análises subsequentes.

3.3 Pré-processamento de dados

3.3.1 Técnica de janelamento

Neste estudo, foi proposto a utilização da técnica de janelamento de sinais para

extrair informações relevantes do ECG, que divide o sinal cont́ınuo em segmentos menores

para análise detalhada.

Inicialmente, o processo de janelamento visou capturar segmentos de 1 segundo

(1000 amostras) de cada ECG, de acordo com a frequência de amostragem de 1000Hz. No

entanto, ao tentar aplicar a técnica de extração de atributos verificou-se que as colunas
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contendo os dados de batimentos card́ıacos utilizando o método da biblioteca heartpy

ficavam nulas devido ao intervalo de tempo reduzido, o que se deve à limitação temporal

para a extração confiável de atributos card́ıacos em segmentos tão curtos.

Para contornar essa limitação, uma estratégia foi adotada, envolvendo um segundo

estágio de janelamento. Nesse estágio, segmentos de 5 segundos (5000 amostras) fo-

ram considerados, permitindo a aquisição completa de informações sobre os atributos

card́ıacos, o que demonstrou ser mais eficaz para a extração precisa dos parâmetros dese-

jados, superando as restrições temporais impostas pelo janelamento de 1 segundo.

A implementação dos janelamentos de 1 segundo e 5 segundos foi facilitada pela

utilização da função peakdetection.make windows também da biblioteca heartpy, função

que permitiu a criação eficiente de janelas de diferentes tamanhos.

3.3.2 Conversão de tipo de dados númericos e limpeza da base de dados

Para otimizar o processamento e a análise desses sinais, muitas vezes é necessário

lidar com a conversão de tipos de dados e a limpeza de registros com campos ausentes.

Neste contexto, este estudo aborda a técnica de conversão de tipos de dados, enfocando a

transformação de tipos de int64 e float64 para int32 e float32, para otimizar a eficiência

de processamento, reduzir os requisitos de memória e acelerar as análises subsequentes.

Posteriormente, foi aplicado a técnica dropna() para lidar com registros incompletos. Isso

foi feito para evitar distorções ou imprecisões nos resultados das análises posteriores e na

previsão do modelo, garantindo que apenas os registros completos e consistentes fossem

considerados.

3.3.3 Normalização de dados

A normalização desempenha um papel fundamental na preparação de dados para

análise e modelagem, especialmente em contextos onde diferentes atributos têm escalas

variadas. Assim, no âmbito da análise de sinais de eletrocardiograma a normalização é

essencial para garantir que as variações de escala nos atributos não afetem negativamente

a precisão das técnicas de previsão. Este estudo aborda a metodologia de normalização

utilizando quatro técnicas distintas a serem comparadas: StandardScaler, técnica que pa-

droniza os atributos para ter média zero e desvio padrão unitário, MinMaxScaler, técnica

que dimensiona os atributos para um intervalo especificado entre 0 e 1, MaxAbs, técnica
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que dimensiona os atributos para o intervalo [-1, 1] tomando o valor absoluto máximo

como referência e RobustScaler, técnica que utiliza estat́ısticas robustas para dimensionar

os atributos, reduzindo o impacto de outliers.

A normalização tem como objetivo principal ajustar as escalas dos atributos para

que fiquem em uma faixa similar, evitando assim que atributos com escalas maiores te-

nham um impacto desproporcional sobre os resultados da análise. Neste estudo, a nor-

malização foi realizada seguindo um formato ideal, onde as etapas de fit transform foram

aplicadas inicialmente à base de treino, ajustando os parâmetros da normalização de

acordo com essa base e em seguida o método transform foi aplicada à base de testes,

utilizando os parâmetros previamente ajustados, garantindo a coerência entre os dados

de treino e teste.

Os resultados indicaram que as técnicas de normalização StandardScaler e Ro-

bustScaler apresentaram os melhores resultados, tal qual será mostrado adiante na seção

de resultados.

3.4 Extração de atributos

A análise de sinais de eletrocardiograma é uma tarefa complexa que envolve a

extração de informações relevantes a partir dos dados brutos, permitindo entender mais

sobre a saúde card́ıaca e a atividade elétrica do coração. Nesse contexto, a extração de

atributos é uma etapa crucial, onde medidas significativas são derivadas dos sinais de ECG

para avaliar padrões, variações e caracteŕısticas espećıficas. Essa experimentação envolve

a exploração do processo de extração de atributos dos sinais, empregando informações

de localização, frequência e batimentos card́ıacos, utilizando métodos da biblioteca tftb e

heartpy.

Foi utilizada a biblioteca tftb com o módulo processing, fazendo uso dos métodos

loctime, locfreq e inst freq. A primeira desempenhou um papel fundamental ao identi-

ficar os pontos de máxima relevância espacial nos sinais. Tal identificação facilitou a

caracterização de elementos vitais, como as ondas R, P e Q.

A função locfreq contribuiu com a estimativa das frequências predominantes pre-

sentes no próprio sinal, componente da pesquisa que revelou-se crucial para a análise das

oscilações card́ıacas.

No prosseguimento da investigação, o método inst freq desempenhou um papel
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central na extração de informações de frequência, revelando informações para a compre-

ensão das flutuações da atividade card́ıaca ao longo do tempo, o que por sua vez, auxiliou

na detecção de padrões de ritmo e variações de frequência card́ıaca.

A biblioteca heartpy ajudou na obtenção de informações detalhadas sobre os bati-

mentos card́ıacos através do método process, na qual diversos parâmetros foram extráıdos,

cada um proporcionando uma visão única sobre a atividade card́ıaca. Isso incluiu medidas

como batimentos por minuto, intervalo entre batimentos, desvio padrão dos intervalos NN,

desvio padrão das diferenças dos intervalos NN, raiz quadrada do somatório dos quadrados

das diferenças dos Intervalos NN, PNN20 e PNN50, além de medidas como HR MAD,

SD1 e SD2, estas últimas ligadas à análise da variabilidade da frequência card́ıaca. A

partir dessa abordagem, métricas baseados no pico R foram extráıdos, como por exemplo

a média dos intervalos R-R e desvio padrão dos intervalos R-R, fornecendo uma compre-

ensão mais abrangente da atividade card́ıaca.

3.5 Divisão dos conjuntos de treino e teste

A divisão adequada da base de dados é uma etapa essencial na construção de

modelos de aprendizado de máquina, permitindo avaliar a capacidade do modelo de ge-

neralizar para novos dados não vistos durante o treinamento. Nesse contexto, o método

train test split da biblioteca sklearn é frequentemente utilizado para separar os dados em

conjuntos de treinamento e teste. O estudo explora o processo de separação da base de

dados em duas partes distintas na proporção 80-20, onde 80% dos dados foram alocados

para a base de treino, que é utilizada para treinar o modelo, e 20% para a base de teste.

Além disso, o atributo random state foi definido como 42 para garantir a reprodutibi-

lidade dos resultados assegurando que a divisão dos dados seja consistente e replicável,

isso significa que ao executar o mesmo código várias vezes com o mesmo valor, a divisão

dos dados será sempre a mesma, permitindo que outros pesquisadores ou desenvolvedores

obtenham os mesmos resultados ao executar o código.

3.6 Balanceamento de dados

O balanceamento de conjuntos de dados é uma consideração cŕıtica ao lidar com

tarefas de classificação, especialmente quando há desequiĺıbrio significativo entre as classes
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alvo. Neste estudo, a técnica de balanceamento foi aplicada visando melhorar o desem-

penho do modelo em classes minoritárias pelo fato que 90% dos registros de sinais de

eletrocardiograma dos voluntários correspondem ao grupo de adultos. Duas abordagens

de balanceamento foram exploradas, uma envolvendo o aumento das classes minoritárias e

a outra diminuição das amostras da classe majoritária, utilizando a biblioteca imbalanced-

learn, que fornece ferramentas para lidar com classificação com classes desequilibradas.

Na primeira combinação, foram empregados os métodos RandomUnderSampler

e RandomOverSampler. O RandomUnderSampler reduz a amostragem da classe majo-

ritária para igualar o tamanho das classes minoritárias, enquanto o RandomOverSampler

aumenta a amostragem da classe minoritária para igualar o tamanho da classe majo-

ritária. Na segunda combinação, foram utilizadas as técnicas NearMiss e SMOTE, o

primeiro é uma técnica de subamostragem que seleciona amostras da classe majoritária

com base na proximidade com as amostras da classe minoritária e o segundo gera novas

amostras sintéticas para a classe minoritária, ampliando o conjunto de dados e atenuando

o desequiĺıbrio.

Quando a análise foi estendida para lidar com três rótulos na classe alvo (jovens,

adultos e idosos), a classe de adultos sofreu redução de amostras, enquanto as classes de

jovens e idosos tiveram aumento na amostragem. Quando a binarização da coluna alvo

foi realizada, observou-se que a classe de adultos sofreu diminuição e a classe de idosos

sofreu aumento, sendo importante lembrar que nesse cenário o rótulo jovens não estava

presente, o que influenciou a dinâmica do balanceamento.

Cada combinação de estratégia de balanceamento apresenta suas próprias vanta-

gens e desvantagens. Ao comparar diferentes abordagens, incentiva-se a exploração dos

efeitos de diferentes tipos de desbalanceamento no desempenho do modelo, permitindo

que a escolha de qual combinação funciona melhor para a base de dados do estudo. No

fim, os resultados que serão mostrados na seção posterior revelaram que a segunda com-

binação de balanceamento apresentou melhores resultados em termos de desempenho do

modelo.

3.7 Seleção de atributos

A seleção de atributos também é uma etapa fundamental no processo de cons-

trução de um modelo preditivo. Esta técnica permite que o modelo se concentre em
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caracteŕısticas relevantes e ignore atributos irrelevantes ou redundantes. Neste estudo, a

seleção de atributos foi realizada apenas nos testes voltados para classificação binária de

faixa etária entre adultos e idosos, devido aos melhores resultados obtidos em comparação

à previsão de três classes. Foram aplicadas quatro técnicas de seleção de atributos, cada

uma delas testada em combinação com as abordagens de balanceamento e normalização

utilizadas anteriormente. As técnicas de seleção de atributos inclúıram: SelectKBest,

SelectFromModel, PSO e VarianceThreShold.

SelectKBest, técnica que apresenta uma maneira de avaliar e escolher os k melhores

atributos com base em testes estat́ısticos, no caso do experimento deste trabalho foi

testado com valor igual à 2000.

Outra estratégia usada foi o SelectFromModel. Nessa abordagem um estimador de

modelo, como umaMáquina de Vetores de Suporte, foi utilizado para avaliar a importância

dos atributos, selecionando os que têm uma contribuição significativa para o desempenho

do modelo.

A penúltima abordagem testada foi o PSO, que trabalha simulando o comporta-

mento de um enxame de part́ıculas para encontrar a combinação ideal de atributos que

otimizam um objetivo espećıfico, como maximizar a acurácia de um modelo, sendo par-

ticularmente útil para explorar de maneira eficiente o espaço de atributos, buscando um

equiĺıbrio entre a busca exaustiva e a eficiência computacional.

Por fim, a VarianceThreshold foi escolhida, já que oferece uma abordagem dife-

rente, focando na remoção de atributos com baixa variância através da premissa de que

atributos com pouca variação possuem pouca informação discriminativa.

Cada uma dessas técnicas traz uma perspectiva única para a seleção de atributos,

permitindo que pelos resultados de cada combinação fosse no fim escolhida a abordagem

mais adequada às necessidades espećıficas da previsão desse experimento.

3.8 Modelos de classificação

Neste trabalho, foram explorados dois tipos de classificadores: Floresta Aleatória

e SVM.

Esses modelos foram escolhidos para este trabalho devido ao conhecimento prévio

em aprendizado de máquina, bem como à leitura de estudos relacionados que citaram

ambos em alguns trabalhos. Eles se mostraram promissores para o objetivo de previsão
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com base em dados de ECG, o que respaldou a decisão de utilizá-los.

O classificador da Floresta Aleatória foi configurado com uma série de parâmetros

para otimizar o desempenho: o parâmetro n estimators foi variado de 100 a 500 para

avaliar o impacto do número de árvores na floresta na precisão do modelo e o parâmetro

class weight foi ajustado para balanced a fim de tratar o desequiĺıbrio de classes de maneira

apropriada.

O SVM foi utilizado com um kernel linear, uma escolha comum para tarefas de

classificação, com o parâmetro C definido como 1, afetando a regularização do modelo,

e o parâmetro gamma foi definido como auto, o que indica que o valor será calculado

automaticamente.

Cada modelo foi treinado e testado utilizando diferentes combinações das técnicas

de balanceamento, normalização e seleção de atributos previamente mencionadas. Essas

combinações permitiram avaliar como cada modelo reagia a diferentes configurações e

preparações dos dados.

3.9 Avaliação do modelo

A avaliação adequada dos modelos de classificação foi a última etapa do processo

de classificação, a fim de entender a eficácia de cada abordagem e selecionar a confi-

guração que melhor se adequa aos objetivos do estudo. Nesta etapa da metodologia, cada

modelo foi avaliado de forma abrangente, empregando uma variedade de métricas para

compreender melhor os resultados.

Para cada modelo, foi utilizado com principal método avaliativo o classification report

da biblioteca scikit-learn, que fornece uma visão detalhada das métricas de avaliação, in-

cluindo precisão, que mede a proporção de instâncias classificadas como positivas pelo

modelo que realmente são positivas em relação ao total de instâncias classificadas como

positivas, sensibilidade que mede a proporção de instâncias positivas corretamente identi-

ficadas pelo modelo em relação ao total de instâncias verdadeiramente positivas e f1-score

que combina a precisão e a sensibilidade em um único valor.

Além disso, para avaliar a capacidade discriminativa dos modelos, duas métricas

adicionais foram empregadas: a área sob a curva ROC e especificidade. A primeira mede

a habilidade do modelo em distinguir entre classes positivas e negativas voltado para

a proporção de verdadeiros negativos em relação ao total de negativos, já a segunda
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complementa a sensibilidade ao fornecer informações sobre a capacidade do modelo de

identificar corretamente os casos negativos

A combinação dessas métricas oferece uma visão necessária do desempenho dos mo-

delos em diferentes cenários, levando em consideração configurações de balanceamento,

normalização e seleção de atributos. Isso permitiu comparar as abordagens e identificar

qual modelo e configuração obtiveram os melhores resultados em termos de capacidade

preditiva e inferir posśıveis conclusões finais a respeito do processo de classificação abor-

dado neste material.



42

4 RESULTADOS E DISCUSSÃO

Neste caṕıtulo, apresentaremos e discutiremos os resultados decorrentes do de-

senvolvimento e aplicação do algoritmo de aprendizado de máquina por meio da expe-

rimentação. Os resultados obtidos por meio deste estudo foram organizados em cinco

seções distintas, cada uma contribuindo para a compreensão do processo de criação do

algoritmo e suas implicações no diagnóstico de padrões relacionados a essas alterações.

A primeira seção tem como objetivo apresentar os sinais de eletrocardiograma dos

três voluntários escolhidos na etapa de estudo exploratório dos sinais, visando mostrar

visualmente o registro de ECG de cada indiv́ıduo. A segunda seção é voltada exclusiva-

mente para resultados comparativos e visuais do processo de detecção do complexo QRS

e picos R dos três registros. A terceira seção foca na comparação do tempo de execução

da criação de cada base de dados com seu respectivo tempo de janelamento. A quarta

seção é voltada exclusivamente para modelos com três tipos de alvo: jovens, adultos e

idosos. Por fim, a última seção concentra-se na análise dos resultados após a binarização

dos rótulos de alvo, a fim de avaliar posśıvel mudança significativa com a exclusão do

menor alvo e o impacto da aplicação de seleção de atributos nos resultados do modelo.

4.1 Sinais de eletrocardiograma de três voluntários

Para que fosse posśıvel realizar todo o processo de construção de um modelo de

aprendizado de máquina foi necessário antes estudar e entender como estavam distribúıdos

e apresentados alguns eletrocardiogramas dos voluntários, para extrair informações vali-

osos sobre as variações e caracteŕısticas dos sinais cardiovasculares presentes em cada

registro.

Todo o processo de estudo exploratório dos sinais foi realizado em três voluntários

aleatórios de identificação: 326, 733 e 1120. Além de utilizar apenas o canal 0 do exame,

que representa o sinal de ECG, como mostrado na figura 9.

4.2 Comparativo das técnicas de detecção do Complexo QRS e picos R

Foi realizado a identificação dos complexos QRS e dos picos R de três registros

aleatórios, a fim de analisar uma posśıvel interferência de fatores externos. Essa análise
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Figura 9: Comparação dos eletrocardiogramas de três voluntários

Fonte: Elaborado pelo próprio autor (2023)

visava verificar se tais fatores poderiam causar falsos picos, distorções nas amplitudes e

formas das ondas, ou até mesmo ocultar completamente os picos reais.

Devido ao registro do sinal do ECG ser bem extenso para ńıveis visuais e de análise,

a quantidade de dados da gravação de sinal foi limitada em 8000 amostras. As imagens a

seguir mostram a detecção realizada com sucesso dos picos R em três tipos de estratégias

utilizadas: xqrs.detect, correctpeaks e heartpy respectivamente.

Na primeira tentativa utilizando o xqrs.detect o voluntário 326 não teve seus picos

detectados corretamente, diferentemente dos outros dois. A figura 10 apresenta a com-

paração da detecção de picos: na esquerda uma detecção má sucedida e na direita uma

bem sucedida.

A incorporação do método correct peaks da biblioteca wfdb como a segunda abor-

dagem de detecção revelou-se altamente eficaz na realização da identificação precisa dos

picos R, mostrado na figura 11. Esse sucesso foi ainda mais evidente quando aplicado

ao caso espećıfico do voluntário no qual o método de detecção anterior não conseguiu
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Figura 10: Comparação da detecção de picos má sucedida e bem sucedida

Fonte: Elaborado pelo próprio autor (2023)

obter resultados satisfatórios, como pode ser observado claramente na imagem ilustrativa

acima.

Por último, o método de detecção, utilizando a biblioteca hearty, se destacou ao

conquistar sucesso na detecção de picos R em todos os três voluntários analisados, como

é demonstrado na figura 12. Essa consistente eficácia não foi afetada pelas variações nos

tamanhos das amostras card́ıacas individuais, reforçando o resultado positivo em meio à

detecção de picos R.

4.3 Tempo de execução das bases de dados após janelamento

Para comparar os efeitos de diferentes estratégias de janelamento, duas abordagens

foram adotadas, e o tempo de processamento necessário para criar a base de dados após

a aplicação de cada técnica foi avaliado.

Ao utilizar um janelamento de 1 segundo, o processo de construção do DataFrame

levou um total de 246 segundos, mostrando uma eficiência relativa em comparação com a

alternativa de janelamento de 5 segundos. Neste último caso, houve um aumento notável

no tempo de processamento, demandando um peŕıodo de 1124 segundos, equivalente a

aproximadamente 4,57 vezes mais tempo para ser conclúıdo, como evidenciado na figura

13.

É posśıvel que a diferença significativa no número de colunas resultante dos dife-

rentes tamanhos de janelamento tenha contribúıdo para o aumento no tempo de processa-
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Figura 11: Resultado da utilização da técnica correct peaks no voluntário 326

Fonte: Elaborado pelo próprio autor (2023)

mento. O janelamento de 5000 amostras resultou em 5028 atributos, enquanto o de 1000

amostras por segundo teve 1013 atributos, representando quase 5 vezes mais colunas.

4.4 Avaliação dos modelos com três rótulos de grupos de idades

A análise inicial dos resultados obtidos pelo modelo desenvolvido, empregando os

algoritmos classificadores Floresta Aleatória e SVM, será fundamentada na categorização

em três classes distintas. Esse enfoque permitirá avaliar a capacidade do modelo em

diferenciar grupos etários através dos registros de eletrocardiograma provenientes de in-

div́ıduos saudáveis, além de ter um objetivo crucial de verificar a viabilidade de identificar

idosos com base nas caracteŕısticas de frequência e localização presentes nos eletrocardio-

gramas. Ao conduzir essa comparação entre os classificadores, será posśıvel obter resulta-

dos importantes sobre a eficácia do modelo em relação às tarefas de categorização etária

e detecção de idosos.

Todas as análises foram conduzidas com base em critérios cruciais, incluindo a

normalização dos dados comparativa com StandardScaler e RobustScaler (métodos que

tiveram melhores resultados), o dimensionamento após o balanceamento das amostras

utilizando as técnicas de NearMiss e SMOTE e a aplicação de janelas temporais de
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Figura 12: Detecção de picos R utilizando a biblioteca heartpy

Fonte: Elaborado pelo próprio autor (2023)

Tabela 4: Resultado do modelo Floresta Aleatória sem a técnica de balanceamento

Normalização Modelo Rótulo Precisão Sensibilidade F1-Score

StandardScaler Floresta Aleatória
0 0 0 0
1 0.91 1 0.95
2 0 0 0

Fonte: Elaborado pelo próprio autor (2023)

durações distintas: 5 segundos e 1 segundo. Essa abordagem sistemática permite avaliar

minuciosamente o desempenho do nosso modelo em diferentes contextos.

4.4.1 Classificador Floresta Aleatória sem balanceamento

Primeiramente, realizou-se uma avaliação do modelo sem executar a etapa de ba-

lanceamento. Observou-se que o rótulo 0 possúıa 2949 registros, o rótulo 1 possúıa 83849

registros e o rótulo 2 possúıa 5946 registros. É relevante ressaltar que a etapa de ba-

lanceamento é importante em conjuntos de dados altamente desbalanceados, e, devido a

esta importância, a ausência desse processo teve um impacto significativo nos resultados

com previsões para as classes minoritárias (rótulos 0 e 2) imprecisas, tendo a precisão,

sensibilidade e f1-score igual a zero utilizando o modelo Floresta Aleatória e normalização

StandardScaler, já o rótulo 1 de classe majoritária teve resultados bem expressivos, con-

forme disponibilizado na tabela 4.
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Figura 13: Diferença do tempo de execução

Fonte: Elaborado pelo próprio autor (2023)

4.4.2 Resultados dos classificadores com balanceamento (Janelamento de 5s)

Em seguida, já com a base de dados balanceada, foi feita uma comparação dos

resultados de precisão, sensibilidade e f1-score dos dois modelos, como mostrado na tabela

5. Em geral, a normalização RobustScaler parece oferecer ligeiramente melhores resultados

do que a StandardScaler, particularmente no que diz respeito à sensibilidade e ao f1-score.

Já o modelo Floresta Aleatória também tendeu a ter um desempenho ligeiramente melhor

do que o SVM, conforme indicado pelo f1-score mais alto em muitos dos cenários.

No quesito de rótulos contendo os grupos de idades a serem previstos, os resultados

para o rótulo voltado aos jovens não são bons, aproximando sempre de 0.05 de precisão

e f1-score, independentemente do modelo ou da normalização utilizada. Diferentemente

para o rótulo de voluntários adultos, os resultados sempre estiveram como o melhor em

comparação aos outros. Vale lembrar que esse foi o grupo majoritário da base dados antes

de ser balanceado.

Por fim, para o rótulo “idosos”, os resultados variam entre baixos e razoáveis a

depender da métrica, ficando com a segunda posição nos melhores resultados de previsão

do modelo treinado, com a combinação Floresta Aleatória e RobustScaler mostrando um

desempenho um pouco melhor.



48

Tabela 5: Comparação dos modelos com janelamento de 5s

Normalização Modelo Rótulo Precisão Sensibilidade F1-Score

StandardScaler

SVM
0 0.04 0.19 0.06
1 0.92 0.65 0.76
2 0.13 0.42 0.2

Floresta Aleatória
0 0.07 0.23 0.11
1 0.94 0.74 0.83
2 0.24 0.68 0.35

RobustScaler

SVM
0 0.05 0.31 0.08
1 0.93 0.6 0.73
2 0.17 0.6 0.27

Floresta Aleatória
0 0.06 0.21 0.1
1 0.94 0.75 0.83
2 0.24 0.68 0.35

Fonte: Elaborado pelo próprio autor (2023)

4.4.3 Resultados dos classificadores com balanceamento (Janelamento de 1s)

Comparando os resultados anteriores, observamos uma redução na precisão do

grupo de idosos ao utilizar um janelamento de 1 segundo, evidenciado na tabela 6. En-

quanto a média de precisão e o f1-score eram de 0.16 e 0.25, respectivamente, com o

janelamento de 5 segundos, o uso do janelamento de 1 segundo resultou em precisões

próximas a 0.1.

No entanto, essa diferença não se refletiu nos valores de sensibilidade e f1-score, os

quais mantiveram um padrão semelhante. O desempenho do modelo Floresta Aleatória

geralmente superou o do SVM levemente para este conjunto de dados e rótulos. Além

disso, a estratégia de normalização utilizando o RobustScaler tendeu a oferecer resultados

mais favoráveis em comparação com o uso do StandardScaler, sobretudo para os rótulos

0 e 1.

Embora os resultados de cada rótulo tenham se aproximado independentemente

do tipo de avaliação empregada, é importante ressaltar que o janelamento de 5 segundos

resultou em um desempenho superior em relação aos outros parâmetros avaliados.

4.4.4 Comparação dos janelamentos com novas métricas

Na tabela 7 é apresentado os resultados comparativos para dois intervalos de jane-

lamento, considerando sua acurácia, pontuação ROC-AUC e especificidade. Observa-se
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Tabela 6: Comparação dos modelos com janelamento de 1s

Normalização Modelo Rótulo Precisão Sensibilidade F1-Score

StandardScaler

SVM
0 0.03 0.26 0.05
1 0.91 0.42 0.58
2 0.09 0.4 0.14

Floresta Aleatória
0 0.04 0.15 0.06
1 0.93 0.42 0.58
2 0.1 0.77 0.17

RobustScaler

SVM
0 0.03 0.29 0.06
1 0.92 0.4 0.56
2 0.09 0.41 0.14

Floresta Aleatória
0 0.05 0.16 0.07
1 0.93 0.42 0.58
2 0.1 0.77 0.17

Fonte: Elaborado pelo próprio autor (2023)

Tabela 7: Comparação dos modelos sob aspecto de acurácia, roc-auc score e especificidade

Normalização Modelo Janelamento Acurácia ROC-AUC Score Especificidade

StandardScaler
SVM

1s 0.42 0.53 0.63
5s 0.67 0.59 0.44

Floresta Aleatória
1s 0.44 0.62 0.69
5s 0.72 0.75 0.59

RobustScaler
SVM

1s 0.4 0.53 0.66
5s 0.59 0.64 0.59

Floresta Aleatória
1s 0.43 0.62 0.7
5s 0.73 0.81 0.44

Fonte: Elaborado pelo próprio autor (2023)

uma considerável variação nos resultados de acurácia para diferentes combinações. No

entanto, ao analisar o intervalo de janelamento de 5 segundos nota-se uma tendência

de resultados mais altos em comparação com o de 1 segundo, especialmente no modelo

Floresta Aleatória, onde a diferença é aproximadamente 0.2 em relação ao SVM.

Quanto à pontuação ROC-AUC, os resultados também favorecem o intervalo de

5 segundos, independentemente da normalização e do modelo utilizado. Notavelmente,

a combinação do RobustScaler com o modelo Floresta Aleatória apresentou o melhor

desempenho nesse aspecto apesar dos resultados semelhantes.

Por fim, em contraste com as outras métricas avaliadas, a especificidade apresen-

tou um desempenho superior no intervalo de janelamento de 1 segundo. Novamente, os

resultados exibem variações, porém, não evidenciam uma tendência clara em relação à

normalização e ao intervalo de janelamento.
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4.5 Avaliação dos modelos com dois rótulos de grupos de idades

Nesta seção, apresentaremos todos os resultados subsequentes após a aplicação da

binarização ao alvo. Diferentemente da abordagem anterior, onde os rótulos eram divi-

didos em três grupos distintos, nesta etapa do estudo o foco se volta para a previsão de

apenas dois grupos etários: adultos e idosos. Uma vez que os resultados prévios demons-

traram vantagens no uso da janela de 5 segundos, todas as avaliações subsequentes foram

conduzidas com base nesse peŕıodo de janela. Importante destacar que as técnicas de

normalização e os classificadores utilizados anteriormente foram mantidos com as mesmas

combinações empregadas.

4.5.1 Comparativo dos resultados de cada classificador

Apresentado na tabele 8, observa-se uma notável consistência na obtenção de altos

ı́ndices de precisão para o grupo de adultos, semelhantemente quando tinha três rótulos,

independentemente das diversas combinações empregadas de técnicas de normalização e

modelos, oscilando entre 0.95 e 0.96. A sensibilidade, igualmente, mantém-se em pata-

mares relativamente elevados, variando entre 0.69 e 0.77, enquanto o f1-score oscila entre

0.8 e 0.86.

Por outro lado, para o grupo de idosos, as métricas exibem consistentemente valores

inferiores. A precisão desloca-se entre 0.1 e 0.13, a sensibilidade varia de 0.41 a 0.54 e

o f1-score oscila entre 0.16 e 0.2, o que indica ainda que o modelo encontra desafios na

correta previsão dos casos positivos relacionados a idosos.

Destaca-se que, em ambas as categorias, a configuração que geralmente se destaca

com os melhores resultados é a combinação “RobustScaler - Floresta Aleatória”, eviden-

ciado pela observação dos valores mais elevados de precisão, sensibilidade e f1-score para

o rótulo 0.

Na tabela 9 é mostrado que os modelos Floresta Aleatória exibem acurácia e espe-

cificidade superiores a 0.75 e 0.76, respectivamente, independentemente da normalização,

indicando um médio desempenho na previsão, sem focar unicamente em um grupo es-

pećıfico. Contudo, o SVM, quando normalizado com RobustScaler, registra queda leve

tanto na acurácia (de 0.74 para 0.68) quanto na especificidade (de 0.76 para 0.69).

Em relação à métrica ROC-AUC score, o modelo Floresta Aleatória apresentou
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Tabela 8: Comparação dos modelos após processo de binarização do alvo

Normalização Modelo Rótulo Precisão Sensibilidade F1-Score

StandardScaler
SVM

0 0.95 0.76 0.85
1 0.1 0.41 0.16

Floresta Aleatória
0 0.96 0.76 0.85
1 0.12 0.52 0.2

RobustScaler
SVM

0 0.96 0.69 0.8
1 0.1 0.54 0.17

Floresta Aleatória
0 0.96 0.77 0.86
1 0.13 0.52 0.2

Fonte: Elaborado pelo próprio autor (2023)

Tabela 9: Modelos após binarização sob aspecto de acurácia, ROC-AUC score e especi-
ficidade

Normalização Modelo Acurácia ROC-AUC Score Especificidade

StandardScaler
SVM 0.74 0.62 0.76

Floresta Aleatória 0.75 0.72 0.76

RobustScaler
SVM 0.68 0.65 0.69

Floresta Aleatória 0.76 0.72 0.76

Fonte: Elaborado pelo próprio autor (2023)

um desempenho consistente, alcançando um valor de 0.72, independentemente da técnica

de normalização adotada, valor que foi superior ao obtido pelo modelo SVM, que teve

uma média de 0.63.

Comparando ambos os métodos, o Floresta Aleatória mostra melhor desempenho

geral em termos de acurácia, enquanto o SVM conseguiu equiparar ao outro modelo

na métrica de especificidade utilizando a normalização StandardScaler. A melhor escolha,

baseada nas métricas acima para o problema, também foi o modelo Floresta Aleatória com

normalização RobustScaler, atingindo a maior acurácia global e mantendo bons valores

de especificidade em ambos os rótulos.

4.5.2 Diferença de resultados após aplicação da seleção de atributos

Ambos os classificadores passaram por avaliação após a aplicação da técnica de

seleção de atributos, utilizando quatro diferentes métodos: PSO, SelectKBest, SelectK-

Model e VarianceThreshold. O método PSO diminui o número de atributos para 2014,

enquanto o SelectKBest foi realizado testes com diferentes k, porém o que alcançou melhor

resultado foi k=2000. O método VarianceThreeshold baixou para 3512 e SelectKModel
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com threeshold = ‘mean’ resultou em 3211 atributos.

A figura 14 ilustra os resultados de cada técnica de seleção de atributos. Inici-

almente, foram avaliadas métricas de precisão, sensibilidade e f1-score, que manteve o

padrão alto de previsão para adultos, apresentando valores mais elevados em comparação

aos idosos. Independentemente da técnica de seleção de atributos empregada, todas as

métricas demonstraram valores consistentemente altos, atingindo patamares acima de 0.8

para a previsão de adultos, enquanto os resultados para idosos permaneceram em torno

de 0.2.

Vale destacar um ponto relevante: a redução do número de atributos antes do trei-

namento do modelo demonstrou ser suficiente para aumentar as métricas, principalmente

os valores de precisão. Esse ganho culminou no melhor resultado obtido dentre todos os

testes realizados especificamente quando observamos o modelo Floresta Aleatória combi-

nado com a técnica PSO.

Ainda na mesma figura, analisando as comparações entre os classificadores, percebe-

se que o Floresta Aleatória apresentou ligeira superioridade em relação ao SVM em grande

parte dos resultados. A exceção ocorreu somente no método VarianceThreshold, no qual

o SVM mostrou vantagem para o grupo de idosos.

Em seguida foi conduzida uma avaliação das métricas de acurácia, ROC-AUC

score e f1-score, que diferentemente da avaliação da figura 14 na qual as métricas eram

representadas por rótulo, essa focava no desempenho geral do modelo. Este comparativo

está apresentado na figura 15.

O modelo Floresta Aleatória demonstrou consistentemente um desempenho supe-

rior em comparação com o SVM em todas as métricas avaliadas independentemente da

técnica utilizada, o que pode ser mais viśıvel nos resultados do ROC-AUC score com

uma diferença de 0.15 a 0.3. Nos resultados de acurácia e especificidade os valores se

mantiveram próximos, mas com uma vantagem média de cerca de 0.015 para o Floresta

Aleatória.

4.5.3 Melhor abordagem e configuração após experimentação

Após diversas experimentações com diferentes combinações, chegamos à conclusão

da configuração de modelo mais eficaz para a análise de sinais de ECG. Entre as di-

ferentes abordagens avaliadas, o modelo classificador da Floresta Aleatória se destacou
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Figura 14: Comparativo de resultados com seleção de atributos

Fonte: Elaborado pelo próprio autor (2023)

como a escolha mais adequada, fornecendo resultados mais consistentes em comparação

ao SVM. No pré-processamento, os melhores resultados das métricas avaliadas vieram da

combinação da técnica RobustScaler de normalização e das técnicas NearMISS e SMOTE

para tratar do desbalanceamento do alvo, que juntos geraram melhores resultados com

5000 amostras para cada rótulo comparado com RandomUnderSampler e RandomOver-

Sampler. O algoritmo PSO teve o melhor resultado na seleção de atributos, que otimizou

parâmetros diminuindo a quantidade de colunas de 5028 para 2014. Por último, a extração

de atributos da base de dados teve desempenho superior sendo feita com o janelamento

de 5 segundos em comparação ao de 1 segundo.

No entanto, mesmo com todas essas otimizações e aplicações de técnicas pré-

processamento, o desafio persiste no que diz respeito ao grupo de idosos. Apesar das

melhorias significativas em termos de precisão com essa configuração espećıfica, o resul-

tado ainda atingiu um patamar nada agradável em termos de previsão do alvo deste grupo.

Isso sinaliza que existem fatores intŕınsecos aos padrões card́ıacos dos idosos saudáveis no

contexto de frequência e localização de sinal que demandam uma análise mais aprofundada

e talvez abordagens mais espećıficas para aumentar a assertividade.



54

Figura 15: Comparativo de novos resultados com seleção de atributos

Fonte: Elaborado pelo próprio autor (2023)
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5 CONCLUSÃO E TRABALHOS FUTUROS

O avanço tecnológico da inteligência artificial tem desempenhado um papel fun-

damental ao tornar a medicina mais eficiente e precisa. No entanto, quando se trata de

aplicar modelos de aprendizado de máquina para prever grupos de idade com base em

ECG, surge um desafio distinto e complexo. Este trabalho buscou explorar essa complexi-

dade, com o objetivo espećıfico de compreender a viabilidade de diferenciar com precisão

grupos de adultos e idosos saudáveis por meio de caracteŕısticas extráıdas desses sinais.

A fim de validar a ńıtida detecção de alterações cardiovasculares normais através unica-

mente da frequência e localização dos sinais. Diversas conclusões puderam ser obtidas e

serão apresentadas a seguir.

5.1 Desempenho do modelo

Foi observado que empregando técnicas do campo de aprendizado supervisionado,

especificamente os modelos de Máquina de Vetores de Suporte e Floresta Aleatória, foi

obtido percepções importantes sobre a relação entre caracteŕısticas cardiovasculares e a

idade das pessoas. A análise comparativa dos resultados revelou que, enquanto ambos os

modelos apresentaram desempenho semelhante, a Floresta Aleatória demonstrou superi-

oridade, indicando sua capacidade de capturar padrões mais complexos nos dados.

No entanto, é notável que, apesar dos esforços empreendidos no pré-processamento

dos dados, incluindo normalização, balanceamento de classes e seleção de atributos, não

foi posśıvel atingir resultados satisfatórios na previsão do grupo de idosos. A precisão

máxima alcançada para esse grupo foi de apenas 0.2, sugerindo que as alterações cardi-

ovasculares inerentes ao processo de envelhecimento não foram tão discerńıveis por meio

das caracteŕısticas extráıdas escolhidas quanto às variações associadas aos adultos. Indi-

cando que os padrões de frequência e localização não foram suficientes para diferenciar

grupos de idades.

O processo de seleção de atributos se mostrou crucial para melhorar o desempenho

na previsão do grupo de idosos, sugerindo que determinadas caracteŕısticas extráıdas

dos sinais desempenham um papel mais significativo na diferenciação etária em certos

grupos. Portanto, explorar mais a fundo quais são essas caracteŕısticas e como elas se

correlacionam com as alterações cardiovasculares associadas ao envelhecimento pode ser
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útil para futuros estudos.

Uma observação relevante é que o desequiĺıbrio entre as classes de adultos e idosos

pode ter influenciado os resultados, já que o grupo de adultos que representou a grande

maioria dos voluntários teve um alto ńıvel de acurácia na previsão. Por outro lado, o

grupo de idosos, embora tenha passado pelo processo de balanceamento, continuou a

apresentar resultados desafiadores, inferindo que esse desequiĺıbrio intŕınseco às classes

pode ter dificultado a capacidade dos modelos de generalizar as caracteŕısticas distintivas

do grupo de idosos.

5.2 Complexidade do problema

Embora os métodos não tenham alcançado desempenho satisfatório na previsão

dos grupos de idosos via sinais de ECG, esses resultados são importantes para indicar que

a complexidade das variações cardiovasculares associadas ao envelhecimento exige abor-

dagens mais elaboradas. Ao continuar a explorar as relações entre ECG, envelhecimento

e saúde cardiovascular, podemos aprimorar as técnicas de análise e considerar fatores

adicionais para alcançar uma previsão mais precisa das idades de indiv́ıduos saudáveis.

Pode-se investir ainda em abordagens de aprendizagem profunda, visto que podem lidar

melhor com problemas de maior complexidade. Dessa forma, avançamos rumo a uma

compreensão mais abrangente dos processos card́ıacos em diferentes fases da vida.

O fato que nenhum dos trabalhos relacionados citados neste trabalho não tem

temática voltado para envelhecimento ou indiv́ıduos saudáveis também enfatiza a singula-

ridade e a relevância do trabalho realizado, uma vez que abordou uma lacuna significativa

na literatura cient́ıfica. Ao direcionar a atenção para a complexidade das mudanças no

ECG em relação à idade em indiv́ıduos saudáveis, este estudo oferece uma base sólida

para futuras pesquisas.

Essa pesquisa contribui para um avanço significativo na compreensão dos processos

card́ıacos em diferentes fases da vida, que podem beneficiar não apenas a previsão da idade

em indiv́ıduos saudáveis, mas também o desenvolvimento de estratégias mais eficazes para

a promoção da saúde cardiovascular ao longo do envelhecimento.
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5.3 Trabalhos futuros

Com o objetivo de expandir e aprofundar o tema em questão, como trabalhos

futuros, sugere-se:

• Realizar investigações mais aprofundadas para identificar e desenvolver caracteŕısticas

espećıficas dos sinais de ECG que melhor capturem as nuances das alterações car-

diovasculares relacionadas ao envelhecimento.

• Enriquecer o conjunto de recursos e potencialmente melhorar a capacidade de pre-

visão de grupos etários ao incorporar dados de diferentes modalidades, como in-

formações cĺınicas ou dados de imagem card́ıaca.

• Explorar outros modelos de aprendizado de máquina e até mesmo abordagens base-

adas em redes neurais, além de SVM e Floresta Aleatória, para avaliar se são mais

adequados para a tarefa em questão. Sugere-se ainda avaliações de desempenhos de

redes convolutivas, visto que têm se destacado na resolução de problemas complexos.

• Reduzir os efeitos do desequiĺıbrio de classes e possibilitar uma análise mais precisa

das caracteŕısticas associadas ao envelhecimento ao expandir a amostra, com um

foco particular na inclusão de dados de idosos em maior quantidade.

• Conduzir testes em um conjunto independente de dados cĺınicos para validar a

aplicabilidade cĺınica do modelo desenvolvido, avaliando como ele se comporta em

situações do mundo real.

• Contribuir para aprimorar a previsão de grupos etários ao incorporar informações

temporais dos sinais de ECG, como análise de padrões de variabilidade da frequência

card́ıaca ao longo do tempo.

• Expandir o escopo da pesquisa para incluir a análise de sinais voltados à indiv́ıduos

que possuem condições card́ıacas espećıficas ou patologias, como arritmias investi-

gando como pode ser aplicada para identificar e caracterizar essas condições.
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