
Universidade Federal de Pernambuco

Centro de Informática

Graduação em Ciência da Computação

Facilitando a Criação de Testes de UI
Automatizados em Fluxos de Aplicações

iOS

Jacqueline Alves Barbosa

Trabalho de Graduação

Recife - PE
Setembro/2023

Universidade Federal de Pernambuco

Centro de Informática

Jacqueline Alves Barbosa

Facilitando a Criação de Testes de UI Automatizados em
Fluxos de Aplicações iOS

Trabalho apresentado ao Programa de Graduação em
Ciência da Computação do Centro de Informática da Uni-
versidade Federal de Pernambuco como requisito parcial
para obtenção do grau de Bacharel em Ciência da Compu-
tação.

Orientador: Kiev Santos da Gama

Recife - PE
Setembro/2023

Ficha de identificação da obra elaborada pelo autor,
 através do programa de geração automática do SIB/UFPE

Barbosa, Jacqueline Alves.
 Facilitando a criação de testes de UI automatizados em fluxos de aplicações
iOS / Jacqueline Alves Barbosa. - Recife, 2023.
 61 p. : il., tab.

 Orientador(a): Kiev Santos da Gama
 Trabalho de Conclusão de Curso (Graduação) - Universidade Federal de
Pernambuco, Centro de Informática, Ciências da Computação - Bacharelado,
2023.
 Inclui referências, apêndices.

 1. Automação de Testes. 2. iOS. 3. XCUITest. 4. Lua. I. Gama, Kiev Santos
da. (Orientação). II. Título.

 000 CDD (22.ed.)

Dedico este trabalho à Jacqueline de 17 anos, que por
vezes duvidou que conseguiria chegar até aqui. E a todas

as pessoas que em algum momento a ajudaram a não
desistir.

Agradecimentos

Gostaria de agradecer aos meus pais, que para mudar de vida tiveram que deixar muito para
trás, mas que também construíram muito juntos. Obrigada por me ensinarem a importância de
ir atrás do que quero e por sempre apoiarem o que vi como melhor para mim. Quero agradecer
também os meus irmãos, que tiveram um papel fundamental na construção de quem sou e me
incentivaram a querer continuar.

Quero também agradecer aos meus amigos, especialmente aqueles que conheci no Centro
de Informática e que até hoje tenho o privilégio de conviver. Biel, Ícaro, Igor, e Pedro, vocês
tornaram esta jornada mais leve e divertida. Obrigada por me ajudar a persistir e seguir em
frente, uma carona por vez. Um agradecimento especial para os meus amigos Renan e Alyne,
que estiveram ao meu lado nos momentos de desânimo e me ajudaram a não deixar que ele
tomasse conta de mim.

Minha gratidão se estende a todas as pessoas da Apple Developer Academy, que estiveram
presentes ao longo de dois anos de muito aprendizado e crescimento, tanto profissional quanto
pessoal. Minha trajetória tomou um rumo diferente graças a vocês. Entre todos, quero fazer
um agradecimento especial a Kiev, que aceitou me orientar neste trabalho e me deu a confi-
ança necessária para segui-lo. Por fim, quero expressar minha gratidão a todos os professores
que fizeram parte da minha formação, desde o jardim de infância até a graduação. Cada um
de vocês, que escolheu como missão de vida compartilhar conhecimento com tantas pessoas,
desempenhou um papel crucial nesta conquista. Agradeço profundamente por terem ajudado a
me tornar a pessoa que sou hoje.

Obrigada!

7

“A frase mais perigosa que existe em um idioma é: Sempre fizemos assim.”
—GRACE HOPPER

Resumo

O processo de desenvolvimento de aplicativos móveis envolve o planejamento e design da in-
terface gráfica, que geralmente é entregue à equipe de desenvolvimento por meio de mockups,
que é uma representação visual e não funcional do produto demonstrando como os compo-
nentes estarão presentes na interface. Testes, como os de interface de usuário (UI), regressão e
integração, são essenciais para garantir a qualidade do software. No entanto, os testes de UI são
muitas vezes executados de forma manual, o que os torna demorados e vulneráveis a erros, uma
vez que dependem inteiramente da atenção humana que, com o passar do tempo e após várias
repetições durante a realização dos testes, pode perder a atenção e deixar que falhas passem
despercebidas. A automação desses testes oferece diversas vantagens, mas muitas ferramentas
têm barreiras de uso devido ao conhecimento técnico necessário.

No caso de aplicações iOS, um framework muito utilizado é o XCUITest, disponibilizado
pela Apple. Apesar de sua fácil integração com o ambiente de desenvolvimento, contém algu-
mas limitações como a necessidade de que os testes sejam escritos na linguagem Swift e a falta
de uma maneira de realizar uma verificação visual da aplicação sendo testada.

Nesse trabalho é proposto um framework que simplifica a automação de testes de UI em
aplicativos iOS por meio de scripts. Esse framework verifica a integração e a aparência da
interface em diferentes dispositivos e configurações, tornando a automação de testes mais aces-
sível, mesmo para desenvolvedores com pouca experiência. Os testes são executados através
da integração de scripts, escritos em Lua, com o XCUITest, que simula as interações de um
usuário na aplicação.

Foi possível implementar casos de teste com um número reduzido de linhas de código, em
comparação com o uso somente da API do XCUITest, e abstraindo detalhes da implementação
interna da aplicação. Além disso, também foi possível validar visualmente fluxos da aplicação
testada a partir de imagens de referência previamente definifas.

Palavras-chave: Automação de Testes, iOS, XCUITest, Lua

11

Abstract

The mobile app development process involves planning and designing the graphical interface,
which is typically delivered to the development team through mockups, which are a visual and
non-functional representation of the product, demonstrating how the components will be pre-
sent in the interface. Tests, such as user interface (UI), regression, and integration tests, are
essential to ensure software quality. However, UI tests are often performed manually, making
them time-consuming and error-prone, as they rely entirely on human attention, which, over
time and after several repetitions during testing, may lose focus and allow defects to go unno-
ticed. Automating these tests offers several advantages, but many tools have usability barriers
due to the technical knowledge required.

In the case of iOS applications, a widely used framework is XCUITest, provided by Apple.
Despite its easy integration with the development environment, it has some limitations, such
as the requirement that tests be written in the Swift language and the lack of a way to visually
verify the application being tested.

This work proposes a framework that simplifies the automation of UI tests in iOS applica-
tions through scripts. This framework verifies the integration and appearance of the interface
on different devices and configurations, making test automation more accessible, even for de-
velopers with limited experience. Tests are executed through the integration of scripts, written
in Lua, with XCUITest, which simulates user interactions within the application.

It was possible to implement test cases with a reduced number of lines of code, compared
to using only the XCUITest API, and abstracting details of the application’s internal implemen-
tation. Additionally, it was also possible to visually validate flows within the tested application
using pre-defined reference images.

Keywords: Test Automation, iOS, XCUITest, Lua

13

Sumário

1 Introdução 1

2 Fundamentação 3
2.1 Teste de Software 3

2.1.1 Pirâmides de Testes 3
2.1.1.1 Testes Unitários 3
2.1.1.2 Testes de Serviços 3
2.1.1.3 Testes de Interface do Usuário (UI) 4
2.1.1.4 A Pirâmide Clássica 4
2.1.1.5 A Pirâmide Invertida 5

2.1.2 Métodos de Testes 6
2.1.2.1 Estrutural (Caixa-Branca) 6
2.1.2.2 Funcional (Caixa-Preta) 6

2.1.3 Testes Automatizados 6
2.2 Testes de UI 6
2.3 Ferramentas de Testes de UI 7

2.3.1 Web 7
2.3.1.1 Selenium 8
2.3.1.2 Katalon Studio 8

2.3.2 Android 8
2.3.2.1 Espresso 8
2.3.2.2 UI Automator 8
2.3.2.3 Appium 9

2.3.3 iOS 9
2.3.3.1 XCUITest 9
2.3.3.2 EarlGrey 10

2.4 Trabalhos Relacionados 10

3 Solução 13
3.1 Seleção do Ferramental 13

3.1.1 Lua 13
3.1.2 XCUITest 14

3.2 Exemplo de Uso 15
3.3 Arquitetura da Solução 18
3.4 Algoritmo da Solução 20

15

16 SUMÁRIO

3.4.1 Estrutura de Pastas 20
3.4.2 Execução dos Testes 21

4 Análise 23
4.1 Metodologia 23

4.1.1 Seleção da Aplicação 23
4.1.2 Seleção dos Casos de Teste 23
4.1.3 Seleção dos Critérios de Avaliação 30

4.2 Preparação 30
4.2.1 Setup 30
4.2.2 Helpers 32
4.2.3 Caso de Teste 1 34
4.2.4 Caso de Teste 2 34
4.2.5 Caso de Teste 3 35
4.2.6 Caso de Teste 4 35
4.2.7 Caso de Teste 5 36

4.3 Resultados 37
4.3.1 Critérios de Avaliação 37

4.3.1.1 API 37
4.3.1.2 Suporte a Logs 38
4.3.1.3 Suporte a uma grande variedade de propriedades 38
4.3.1.4 Tempo de Execução 39

4.3.2 Considerações Finais 40

5 Conclusão e Trabalhos Futuros 41

A Casos de Teste 43
A.1 Helpers 43
A.2 Caso de Teste 1 44
A.3 Caso de Teste 2 46
A.4 Caso de Teste 3 49
A.5 Caso de Teste 4 51
A.6 Caso de Teste 5 54

Referências Bibliográficas 58

Lista de Figuras

2.1 A Pirâmide de Testes Clássica 4
2.2 A Pirâmide de Testes Invertida 5

3.1 Exemplo - Caso de Teste 1 15
3.2 Referências - Caso de Teste 1 15
3.3 Exemplo - Caso de Teste2 16
3.4 Referências - Caso de Teste 2 17
3.5 Arquitetura da Solução 18
3.6 Registro de Função 19
3.7 Uso de 19
3.8 Estrutura de Pastas 20
3.9 Execução dos Testes 22

4.1 Código Original - Setup 31
4.2 Código com BIUTest - Setup 31
4.3 Código Original - Helpers 32
4.4 Código com BIUTest - Helpers 33
4.5 Detalhes Código Original - Caso de Teste 2 34
4.6 Detalhes Código com BIUTest - Caso de Teste 2 34
4.7 Detalhes Código Original - Caso de Teste 4 35
4.8 Detalhes Código Original - Caso de Teste 5 36
4.9 Depuração 38
4.10 Log de Erro XCUITest 39
4.11 Log de Erro BIUTest 39

A.1 Fluxo - Início Casos de Teste 43
A.2 Código Original - Caso de Teste 1 44
A.3 Código com BIUTest - Caso de Teste 1 44
A.4 Fluxo - Caso de Teste 1 45
A.5 Código Original - Caso de Teste 2 46
A.6 Código com BIUTest - Caso de Teste 2 47
A.7 Fluxo - Caso de Teste 2 48
A.8 Código Original - Caso de Teste 3 49
A.9 Código com BIUTest - Caso de Teste 3 49
A.10 Fluxo - Caso de Teste 3 50
A.11 Código Original - Caso de Teste 4 51

17

18 LISTA DE FIGURAS

A.12 Código com BIUTest - Caso de Teste 1 52
A.13 Fluxo - Caso de Teste 4 53
A.14 Código Original 1 - Caso de Teste 5 54
A.15 Código Original 2 - Caso de Teste 5 55
A.16 Código com BIUTest - Caso de Teste 5 56
A.17 Fluxo - Caso de Teste 5 57

Lista de Tabelas

4.1 Caso de Teste 1 24
4.2 Caso de Teste 2 25
4.3 Caso de Teste 3 26
4.4 Caso de Teste 4 27
4.5 Caso de Teste 5 29
4.6 Lines of Code (LOC) - Casos de Teste 37
4.7 Tempo de Execução - Casos de Teste 40

19

CAPÍTULO 1

Introdução

Durante o processo de desenvolvimento de um aplicativo, a interface de cada tela nos fluxos
planejados é projetada por uma equipe de design que define quais componentes serão usados,
suas especificações e como devem ser apresentados ao usuário final. Esses elementos são
então entregues à equipe de desenvolvimento por meio de mockups, uma representação visual
e não funcional do produto demonstrando como os componentes estarão presentes na interface,
criados com ferramentas como Figma, Adobe XD, Sketch, InDesign, entre outras. Para garantir
que o aplicativo funcione corretamente e que os elementos de design sejam implementados
conforme o planejado, as empresas de software realizam diversos tipos de testes, incluindo
testes de interface de usuário (UI), de integração e de regressão.

Os testes de UI são frequentemente realizados manualmente, nos quais as pessoas testado-
ras seguem um roteiro de interações e verificam se a aparência da tela corresponde ao design
original representado nos mockups. No entanto, esse processo manual consome muito tempo,
já que exitem vários dispositivos e configurações onde uma aplicação pode ser executada, e está
sujeito a falhas humanas. Portanto, surgiu a necessidade de automação desses testes. Os testes
automatizados oferecem diversas vantagens, como redução de custos, testes mais frequentes,
detecção precoce de defeitos e melhoria na qualidade do sistema em comparação com os testes
manuais [5].

Diversos frameworks e ferramentas foram desenvolvidos para a realização de testes auto-
matizados de UI, tais como o XCUITest, o EarlGrey e o Appium [4] [14]. Essas ferramentas
ajudam a validar se as funcionalidades da aplicação estão funcionando conforme o esperado.
No entanto, cada ferramenta possui métodos diferentes de verificação e geram resultados dis-
tintos para análise. Além da validação das funcionalidades, é importante verificar se a interface
está sendo exibida corretamente de acordo com o design original, se os componentes estão na
posição correta, se as cores são as mesmas presentes nos mockups, entre outros. Essa veri-
ficação específica não é comumente oferecida pelas ferramentas por padrão, exigindo que os
usuários combinem mais de uma ferramenta para realizar essa validação. Além disso, muitas
das ferramentas exigem conhecimento técnico específico, tanto para a integração no projeto
quanto para escrever e manter os testes, o que pode ser uma barreira para pessoas sem conheci-
mento técnico, dificultando a participação delas no processo e aumentando o tempo necessário
para que novos membros da equipe se familiarizem com elas.

Nesse contexto, este trabalho propõe o framework BIUTest (User Interface Babysitter), que
permite a automatização de testes de UI em aplicativos iOS por meio de scripts de fácil com-
preensão. Esse framework não apenas verifica a correta integração da aplicação, mas também
como a interface seria apresentada ao usuário final em diferentes dispositivos e configurações.
Sua API simplificada foi projetada para permitir que os casos de teste sejam escritos em poucas

1

2 CAPÍTULO 1 INTRODUÇÃO

linhas e abstraindo detalhes da implementação interna da aplicação, com o objetivo de facilitar
o entendimento por parte de pessoas com pouco conhecimento técnico. Ademais, a estrutura
dos casos de teste foi planejada na intenção de ajudar a assegurar o funcionamento dos fluxos
importantes da aplicação que forem estipulados.

CAPÍTULO 2

Fundamentação

2.1 Teste de Software

Teste de Software é o processo de avaliação de um sistema para garantir que este atenda aos
critérios definidos pelo cliente. O objetivo é identificar discrepâncias entre os resultados reais e
esperados, com foco principal na descoberta de bugs, erros ou requisitos ausentes no software
ou sistema [24]. É uma etapa muito importante do processo de desenvolvimento do software
para a garantia da qualidade do mesmo, e pode ser considerado um investimento.

2.1.1 Pirâmides de Testes

Em Succeeding with Agile: Software Development Using Scrum [3] o autor introduz o con-
ceito da pirâmide de testes, uma representação visual sobre a organização lógica dos testes em
software. A pirâmide é formada por três camadas: testes unitários, testes de serviço, ou de inte-
gração, e testes de UI. A forma de pirâmide é uma metáfora, horizontalmente para a quantidade
de testes necessários de cada tipo, e verticalmente para a complexidade e o tempo necessários
para a execução dos testes. Existem alguns tipos de pirâmides que podem definir o modelo de
testes a ser utilizado e a proporção de cada tipo de teste a ser implementado, dependendo do
contexto de cada projeto. A seguir são especificados cada um dos tipos de teste presentes nas
pirâmides e uma explicação de dois dos modelos existentes.

2.1.1.1 Testes Unitários

Nessa fase os testes são feitos de maneira isolada em partes menores do sistema, como métodos,
funções, classes, ou qualquer parte pequena testável do programa. O objetivo dessa fase é evitar
que erros nessas partes menores sejam propagados para níveis mais altos dos testes.

Normalmente eles são escritos pelas próprias pessoas desenvolvedoras, e podem ser feitos
durante o desenvolvimento. Os testes unitários constituem a maior parte da base de testes do
sistema e são muito rápidos, podendo rodar milhares em poucos minutos.

2.1.1.2 Testes de Serviços

Os testes de serviço, também chamados de testes de integração, são responsáveis por testar a
integração do sistemas com outras partes fora da aplicação, como bancos de dados, sistemas
de arquivos e chamadas de redes para outras aplicações. Nesse caso é necessário rodar não só
a aplicação, como também esses componentes que se comunicam com ela. Por esse motivo
esse tipo de teste demanda um tempo maior para ser executado, em comparação com os testes

3

4 CAPÍTULO 2 FUNDAMENTAÇÃO

unitários. Assim como nos testes unitários, é necessário um conhecimento sobre a estrutura
interna da aplicação para que os testes sejam escritos, por esse motivo eles também são feitos
pelas pessoas desenvolvedoras.

2.1.1.3 Testes de Interface do Usuário (UI)

Os testes de UI são feitos para assegurar que a interface da aplicação está funcionando corre-
tamente. Isso inclui, por exemplo, garantir que uma entrada do usuário acione alguma deter-
minada ação, ou que os dados estão sendo mostrados da forma como foram desenhados para
ser.

Atualmente o mais comum é que esse tipo de teste seja realizado de forma manual, onde as
pessoas responsáveis pelos testes seguem um determinado roteiro de interações e verificam se o
estado da aplicação após cada uma delas é o esperado. No entando, existem ferramentas que são
utilizadas para automatizar parte desses processo. Elas simulam as interações de um usuário e
verificam de diferentes maneiras se a interface está adequada, como por exemplo verificando a
existência de elementos a patir de um identificador ou através de uma análise estática de uma
captura de tela. Essas ferramentas diminuem a possibilidade de falhas humanas e aumentam a
eficiência do processo de testes, reduzindo o tempo gasto nestas atividades [5].

Esse tipo de teste demanda mais tempo do que os unitários e os de serviço. Apesar disso,
mesmo com uma quantidade menor, é possível testar uma boa parte da aplicação.

2.1.1.4 A Pirâmide Clássica

De acordo com a Pirâmide de Testes Clássica, a quantidade de testes unitários deve ser maior
que a quantidade de testes de serviço, e este maior que a de testes de UI. O objetivo dessa
divisão é manter um equilíbrio entre velocidade e eficácia, além de que as alterações feitas em
um nível mais alto da aplicação, na interface e nas APIs, são mais frequentes do que na lógica
das funções implementadas nos códigos, por esse motivo necessitam de um esforço maior para
serem validadas [23]. Na figura 2.1 é possível ver uma representação da versão clássica da
pirâmide.

Figura 2.1 A Pirâmide de Testes Clássica. Fonte: The Practical Test Pyramid [3]

2.1 TESTE DE SOFTWARE 5

2.1.1.5 A Pirâmide Invertida

Outro tipo de modelo de testes é a Pirâmide Invertida, também chamada de Cone de Sorvete.
Na Figura 2.2 é possível ver uma representação dela. Nesse modelo é aplicada uma grande
cobertuda de testes de UI, com uma grande quantidade de testes manuais, e pouca ou nenhuma
cobertura de testes unitários automatizados. Nesse caso os testes são mais focados no resultado
de como a aplicação estará nas mãos do usuário final. Esse modelo não é muito recomendado
nos dias de hoje, já que os testes de UI são mais demorados e, quando realizados manualmente,
são mais suscetíveis a erros despercebidos. Por outro lado, em alguns casos pode fazer sentido
o uso dele, como por exemplo em sistemas legados com poucos testes unitários implementados
ou em casos onde a aplicação sendo desenvolvida é um protótipo que precisa ser rapidamente
validado.

Figura 2.2 A Pirâmide de Testes Invertida. Fonte: Pro iOS Testing [23]

6 CAPÍTULO 2 FUNDAMENTAÇÃO

2.1.2 Métodos de Testes

Para a realização dos testes podem ser aplicados diferentes métodos levando em conta o tipo
do sistema, os conhecimentos da pessoa realizando os testes, as ferramentas disponíveis e os
objetivos da avaliação. Dois exemplos desses métodos são os testes estruturais e os funcionais.

2.1.2.1 Estrutural (Caixa-Branca)

O teste de caixa-branca é uma técnica que testa a utilidade do produto e também a estrutura
interna da aplicação [20]. Por esse motivo, a pessoa realizando o teste necessita ter um conhe-
cimento da implementação do programa sendo testado. Os testes unitários, por exemplo, se
encaixam nessa categoria.

2.1.2.2 Funcional (Caixa-Preta)

Diferente dos testes caixa-branca, os testes caixa-preta não levam em conta a estrutura interna
e como o sistema foi implementado. Nesse método são testadas apenas as funcionalidades do
sistema, comparando os resultados obtidos a partir das entradas com os resultados esperados.
Os testes de UI se encaixam nessa categoria, são analisadas as características gráficas do pro-
grama a partir de cada interação e não se leva em conta o código por trás. Por esse motivo,
pessoas sem conhecimento sobre a implementação podem realizar esse tipo de teste.

2.1.3 Testes Automatizados

A automatização de testes é uma técnica que utiliza um software para realizar automaticamente
o processo de validação das funcionalidades e dos critérios de um sistema. Testes automati-
zados podem levar a custos mais baixos, maior frequência de testes, identificação precoce de
defeitos e maior qualidade do sistema [1], quando comparados com testes realizados manual-
mente.

A indústria de software vem se tornando um ambiente cada vez mais rápido e ágil, com
ênfase em integração, desenvolvimento e entrega contínuos [17]. Esse ambiente coloca no-
vos requisitos em relação à velocidade de testes e necessita de feedbacks mais rápidos e mais
frequentes sobre a qualidade do software. A Integração Contínua (CI) é uma prática no de-
senvolvimento de software, que envolve as pessoas desenvolvedoras unindo suas alterações
de código frequentemente em um repositório central. Posteriormente, são realizados builds e
testes automatizados. Os principais objetivos da integração contínua são acelerar a detecção
e resolução de bugs, aprimorar a qualidade do software e diminuir o tempo necessário para
validar e liberar atualizações de software.

2.2 Testes de UI

Os testes de UI podem ser divididos em duas categorias: o teste das funções da aplicação
por meio da interface do usuário e o teste para garantir que a interface do usuário funcione
corretamente. Esse último pode ser subdividido em dois tipos: o teste para verificar se uma

2.3 FERRAMENTAS DE TESTES DE UI 7

integração de interface funciona corretamente e o teste para verificar se uma interface é exibida
corretamente [18]. Uma das técnicas utilizadas para verificar se a interface está correta é através
de testes de snapshot. Podemos fazer uma especificação da seguinte maneira: enquanto os
testes de UI focam em "o que"aparece na interface, os testes de snapshot verificam "como"os
elementos aparecem na tela.

É de extrema importância assegurar que aplicativos móveis e web sejam exibidos e funcio-
nem adequadamente em uma variedade de dispositivos e navegadores, o que pode levar bastante
tempo devido a diferentes características físicas e configurações de software que o dispositivo
pode apresentar. Entre as características físicas importantes estão o tamanho da tela, a den-
sidade de exibição (ou resolução da tela) e a orientação. Enquanto isso, as configurações de
software relevantes incluem o idioma do telefone, o tamanho da fonte, o modo de cor/contraste,
o nível de brilho, entre outros [7].

Levando isso em consideração, torna-se impraticável a realização de testes de UI exclusi-
vamente de forma manual, uma vez que isso implicaria na necessidade de testar em diversos
dispositivos distintos. Portanto, se fez essencial encontrar métodos para automatizar esse pro-
cesso, possibilitando a realização de testes em uma variedade de dispositivos, cada um com suas
próprias configurações, ao mesmo tempo em que se evita a ocorrência de falhas despercebidas.
Em [9] os autores simplificam a diferenciação entre testes manuais e automatizados ao sugerir
que os testes automatizados são principalmente usados para evitar a ocorrência de novos erros
nos módulos funcionais já verificados. Por outro lado, os testes manuais são mais eficazes na
descoberta de erros novos e inesperados. Portanto as duas estretégias são complementares e
essenciais no processo de garantia de qualidade de uma aplicação.

2.3 Ferramentas de Testes de UI

No contexto das ferramentas de automação de testes de UI, existem várias opções voltadas
para diferentes tipos de interfaces, como desktop, web e dispositivos móveis. Essas ferramen-
tas proporcionam recursos para a criação e execução de casos de teste, além de permitirem a
realização de uma suíte de testes na qual as pessoas testadoras podem definir um conjunto de
testes a serem executados. Nessa seção serão citadas algumas das ferramentas consideradas
estado da arte para diferentes plataformas.

2.3.1 Web

Existem diversas ferramentas para realização de testes de UI para aplicações web, em [13]
e [19] algumas delas são comparadas identificando suas vantagens e desvantagens. A partir
disso foram identificadas duas delas que propõem estratégias diferentes e são algumas das mais
utilizadas para essa tarefa. Essas ferramentas são o Selenium e o Katalon Studio, que serão
apresentados a seguir.

8 CAPÍTULO 2 FUNDAMENTAÇÃO

2.3.1.1 Selenium

O Selenium é um framework de automação amplamente utilizado no campo de testes de apli-
cativos da web. É um projeto de código aberto e é compatível com múltiplos sistemas opera-
cionais e linguagens de programação, além de suportar testes em vários tipos de navegadores.
No entanto existem algumas desvantagens, como a necessidade de construir projetos do zero,
o que pode levar a processos de configuração demorados. Além disso, o Selenium pode não
fornecer razões específicas para falhas nos testes, o que adiciona complexidade ao processo de
depuração.

2.3.1.2 Katalon Studio

Katalon Studio é um software de código aberto reconhecido por sua capacidade de exportar com
facilidade o código de scripts do Selenium, sendo uma possível alternativa à essa ferramenta. É
conhecido como uma ferramenta de teste de automação sem a necessidade de conhecimento em
programação, capturando as atividades do usuário, localizadores da web e gerando relatórios
abrangentes. O Katalon oferece suporte a vários navegadores e sistemas operacionais, o que o
torna uma escolha versátil. Ademais, ele se destaca por sua interface de usuário amigável, o
que o diferencia de outras ferramentas comerciais e de código aberto.

2.3.2 Android

No site oficial para desenvolvedores Android1 existe uma página dedicada à explicação de tes-
tes de UI automatizados, onde também são sugeridas algumas ferramentas para a realização dos
mesmos. Duas delas também são citadas em trabalhos [14] e [21] onde são feitas comparações
entre ferramentas de automatização de testes de UI em aplicações Android.

Por meio destes foi possível relacionar três ferramentas que são consideradas estado da arte
para esse tipo de teste nessa plataforma: o Espresso, o UI Automator e o Appium, que serão
descritos a seguir.

2.3.2.1 Espresso

O Espresso, desenvolvido pelo Google, é uma ferramenta de teste projetada para facilitar a cria-
ção de casos de teste destinados a avaliar a interface do usuário. Ele é amplamente reconhecido
como uma das principais ferramentas de teste para aplicativos Android. O Espresso oferece
flexibilidade para testes de caixa-preta, ao mesmo tempo em que permite a validação de com-
ponentes individuais ao longo do processo de desenvolvimento. Os testes no Espresso podem
ser escritos em Java ou Kotlin, que são linguagens comumente utilizadas por desenvolvedores
nessa plataforma.

2.3.2.2 UI Automator

O manual [26] do UI Automator o descreve como uma ferramenta de teste de interface do
usuário adequada para testes funcionais de UI entre aplicativos, abrangendo tanto aplicativos

1https://developer.android.com/

https://developer.android.com/

2.3 FERRAMENTAS DE TESTES DE UI 9

do sistema quanto aplicativos instalados. Durante os testes, é possível interagir não apenas com
a aplicação sendo testada, mas também com todas as outras no dispositivo. Isso se deve à capa-
cidade da ferramenta de acessar as propriedades dos componentes da interface do dispositivo
onde os testes estão sendo executados. Dessa forma, o UI Automator pode ser caracterizado
como uma ferramenta de teste de caixa-preta, pois não depende da implementação interna da
aplicação.

2.3.2.3 Appium

O Appium é uma ferramenta usada para testar aplicações nativas, híbridas, mobile web e para
desktops. Ela tem suporte para simuladores e execução em aparelhos reais. A aplicação do
Appium funciona através de uma arquitetura cliente-servidor, por isso o processo que está
rodando a automação de testes (nesse caso, o servidor) não precisa estar no mesmo local que a
aplicação sendo testada (nesse caso, o cliente). A ferramenta utiliza o WebDriver spec2 como
API e, através dos drivers de cada plataforma, converte o protocolo WebDriver para chamadas
das bibliotecas específicas de cada uma delas. É necessário ter um certo conhecimento sobre as
especificidades da plataforma e da API para escrever os testes, porém eles podem ser escritos
em diversas linguagens de programação, como Ruby, Java, Node.js, PHP, C#, Clojure e Perl.

Como é um programa separado da IDE usada para desenvolver a aplicação, ocasionalmente
pode ser necessário aguardar uma atualização da ferramenta quando a IDE é atualizada, a fim
de evitar problemas nos testes existentes. Além disso, a configuração da aplicação no Appium
pode ser um pouco complexa.

2.3.3 iOS

Em [4] o autor faz um estudo comparativo entre as principais ferramentas de automatização de
testes de UI para aplicações iOS com o objetivo de demonstrar o estado da arte sobre o assunto.
Além dessa, não foram encontradas outras pesquisas focadas especificamente na plataforma
iOS, por esse motivo foram buscados em sites bastante utilizados pela comunidade para elencar
as quais eram as mais recomendadas para esse tipo de teste. A partir disso, foi possível analisar
três ferramentas que mais foram citadas: o XCUITest, o EarlGrey e o Appium, esse último
já citado e explicado na seção onde foram trazidas as ferramentas para testes em aplicações
Android. A seguir uma breve explicação das outras duas.

2.3.3.1 XCUITest

O XCUITest é um framework criado pela Apple em 2015 para a automatização de testes de
UI. Foi construído em cima do XCTest, um framework de testes integrado no XCode, que
é o ambiente de desenvolvimento integrado (IDE) da Apple. Os testes podem ser escritos
utilizando as linguagens Swift e Objective-C para as aplicações iOS e macOS nativas.

Como o XCUITest vem integrado no XCode, não é necessário nenhum tipo de instalação
ou configuração do ambiente para utilizá-lo. Os testes criados utilizando esse framework são
rápidos e confiáveis. Além disso, o usuário pode executar os testes como parte do seu processo

2https://w3c.github.io/webdriver

https://w3c.github.io/webdriver

10 CAPÍTULO 2 FUNDAMENTAÇÃO

de CI, e ter feedbacks contínuos nos dispositivos testados.
Os testes construídos no XCUITest são do tipo Caixa-Preta, ou seja, não se tem acesso à

instrutura interna do código durante a execução, e nesse caso são rodados em um processo
separado da aplicação em si.

2.3.3.2 EarlGrey

O EarlGrey é uma ferramenta desenvolvida pelo Google com o objetivo de melhorar a sincro-
nização com a aplicação durante os testes, evitando comportamentos não-determinísticos e, por
consequência, os chamados testes "flaky", onde um teste executado várias vezes sem mudan-
ças de ambiente produz resultados diferentes. Em [22] é apontado que essas melhorias foram
feitas baseadas em outra ferramenta de autoria do Google, o Espresso, que foi desenvolvido
justamente para mitigar esses problemas nos testes de UI em aplicações Android.

Os testes construídos com o EarlGrey são do tipo Caixa-Cinza. Apesar de simularem inte-
rações de usuários reais, a pessoa desenvolvedora precisa ter acesso ao código para lidar com
os elementos da tela. Os testes são executados no mesmo processo da aplicação sendo testada,
por esse motivo não é possível interagir com telas de fora dela, como dialogs do sistema por
exemplo.

2.4 Trabalhos Relacionados

À medida que as tecnologias empregadas no desenvolvimento de aplicativos móveis avançam,
é fundamental que os frameworks de teste acompanhem esse progresso. Essa evolução é es-
sencial para viabilizar a avaliação de novos componentes e funcionalidades, possibilitando a
realização de validações nos produtos e contribuindo de maneira significativa para a qualidade
do software. Uma categoria de validação de extrema importância é a validação visual, que
visa garantir que o usuário interaja e visualize a aplicação da maneira prevista durante o de-
senvolvimento. O teste visual assegura o correto funcionamento da interface do usuário (UI) e
engloba tanto a validação da integração adequada da interface quanto a verificação da exibição
correta da mesma [18]. Neste trabalho, é proposta uma ferramenta que se enquadra em ambas
categorias de validação visual, com foco em aplicações desenvolvidas para dispositivos iOS.

Em [4], foi realizado um estudo comparativo entre três das ferramentas mais utilizadas para
a execução de testes de UI na plataforma iOS, com ênfase na validação do funcionamento
da integração dos componentes na aplicação, sem abordar a conformidade visual. Da mesma
forma, em [14], um trabalho semelhante foi conduzido, porém com foco em aplicações para a
plataforma Android.

Por sua vez, [16] propôs uma ferramenta para a geração de casos de teste destinados a
aplicações multiplataforma, porém os testes são gerados com base nos componentes visuais
presentes na aplicação, sem considerar as regras de negócio ou os fluxos mais críticos, o que
resulta em uma validação menos focada nos casos de uso da aplicação. Uma abordagem que
leva bastante esse ponto em consideração é o Behavior Driven Development (BDD), em [11]
são citadas diversas vantagens dessa estratégia, como a importância dada às necessidades e va-
lores de negócio e a colaboração e visibilidade do time, mas também algumas desvantagens,

2.4 TRABALHOS RELACIONADOS 11

como a dificuldade de manutenção e uma sobrecarga em times onde somente as pessoas testa-
doras participam do processo de testes.

Já em [18], diversas aplicações da plataforma Android, com diferentes configurações, foram
analisadas por meio de uma abordagem que combinou avaliação manual e análise estática de
capturas de tela, utilizando uma ferramenta de automação de testes. O objetivo era classificar
diferentes tipos de defeitos que podem ser encontrados em aplicações. Além disso, [6] propôs
uma ferramenta de automação de testes de interface, que realiza uma análise em tempo de
execução, mas com foco na verificação da acessibilidade de aplicações Android. Em adição,
[12] faz a proposta de uma ferramenta para análise da interface de aplicações iOS através
de uma representação formal dos elementos com suas propriedades, porém essa técnica não
permite que o resultado das telas seja visto com o objetivo de ser validado visualmente.

Por fim, [15] apresentou um framework e uma ferramenta de automação de testes, seme-
lhantes ao proposto neste trabalho, porém direcionados especificamente para aplicações na
plataforma Android.

CAPÍTULO 3

Solução

Como mencionado anteriormente, os testes destinados a verificar o correto funcionamento da
interface do usuário podem ser divididos em dois tipos: testes de integração de interface e testes
de exibição da interface. A solução proposta neste trabalho se encaixa em uma combinação
dessas duas categorias.

Nos testes de UI manuais, é comum utilizar técnicas baseadas em checklists, nos quais
listas contendo vários casos de teste são criadas apontando erros comuns em cada um deles.
As pessoas testadoras seguem os passos dos casos de uso, verificando se a interface funciona
e é exibida corretamente. Essa mesma abordagem é aplicada na solução proposta, porém de
forma automatizada. Casos de teste são definidos e, por meio de uma sequência de instruções
em cada um deles, as interações do usuário são simuladas e a interface é comparada com uma
imagem de referência previamente definida.

Nessa seção será proposto um framework chamado BIUTest, que tem o objetivo de assegu-
rar o correto funcionamento e a consistência visual de aplicações iOS através de testes de UI
automatizados utilizando scripts de fácil legibilidade e manutenção.

3.1 Seleção do Ferramental

O BIUTest é composto por duas partes que conversam entre si: o script, contendo os casos de
teste a serem executaods, e o motor do framework. Os scripts são escritos em Lua e o fra-
mework que se comunica com o dispositivo é escrito em Swift através do XCUITest. A seguir
são apresentados os motivos levados em consideração para a seleção dessas duas ferramentas.

3.1.1 Lua

Lua é uma linguagem de script interpretada de alto nível que foi concebida em 1993 no Tecgraf,
um laboratório vinculado ao Departamento de Informática da PUC-Rio. Seu propósito inicial
era a extensão de aplicações em geral, prototipagem e a incorporação em software complexos,
como jogos. Atualmente, Lua é amplamente empregada em diversas aplicações industriais,
incluindo softwares como o Photoshop e o Lightroom da Adobe, com foco especial em sistemas
embarcados, como o middleware Ginga para TV digital, e jogos populares, como World of
Warcraft e Angry Birds1.

Lua é reconhecida por sua simplicidade e velocidade, sem sacrificar seu poder de funcio-
nalidade. Apesar de oferecer poucas estruturas iniciais, a linguagem permite a implementação

1https://www.lua.org/portugues.html

13

https://www.lua.org/portugues.html

14 CAPÍTULO 3 SOLUÇÃO

de novas estruturas utilizando os recursos disponíveis. Além disso, Lua é altamente portátil, já
que é distribuída em um pacote compacto - seu código-fonte tem menos de 1 MB - e pode ser
compilada sem alterações em todas as plataformas com um compilador C padrão, abrangendo
desde sistemas Unix e Windows até dispositivos móveis, microprocessadores e mainframes.
Além disso, Lua é um software de código aberto, o que significa que pode ser utilizado e
adaptado para qualquer finalidade.

Conforme evidenciado por [25], linguagens de script geralmente são mais acessíveis para
aprender do que linguagens de programação convencionais, como C++ ou Java, devido à capa-
cidade de abstrair complexidades desnecessárias durante o processo de aprendizado. Isso faz
com que pessoas com menos conhecimento técnico possam usá-las com facilidade.

Por sua portabilidade, o uso de Lua permite que uma solução semelhante à proposta nesse
trabalho seja replicada em outras plataformas, como em Android por exemplo. Dessa maneira
uma mesma pasta correspondente a um caso de teste pode ser utilizada para a execução dos
testes em ambas as plataformas. Essas características combinadas fizeram de Lua uma escolha
ideal para ser a linguagem de script utilizada na criação dos testes no BIUTest.

3.1.2 XCUITest

Como citado na Seção 2.3 de Ferramentas de Testes de UI, o XCUITests e o EarlGrey são
algumas das mais utilizadas para a realização dessa tarefa. A partir disso foi feita uma busca
no site Github2 com o objetivo de analisar projetos que se encaixam no alvo de utilização do
framework proposto nesse trabalho. A busca foi feita filtrando os repositórios públicos que
continham projetos para a plataforma iOS, feitos utilizando a linguagem Swift, que tinham
mais de 200 stars ou forks - indicando que são utilizados de exemplo por diversas pessoas
desenvolvedoras -, e que foram atualizados pelo menos após 2020. Além disso não foram
levados em consideração projetos que continham tutoriais e projetos que não tinham nenhum
tipo de teste implementado.

A partir dessa busca foram selecionados 50 repositórios que foram analisados para verificar
os frameworks mais utilizados para a realização de testes. Desses 50, 23 deles (46%) contêm
apenas testes unitários, sendo que 12 deles (52%) implementam algum tipo de teste de interface
através de comparação visual de componentes por meio de testes de snapshot. Os outros 26
projetos restantes (52%) implementam testes de UI e todos eles utilizam o XCUITest como
ferramenta para tal. Ademais, 2 deles também implementam o EarlGrey, podendo indicar que
alguma dessas ferramentas pode apresentar algum tipo de restrição de uso que nesses casos
tiveram que ser supridas por outra. Além disso, foi observado que 5 das ferramentas que
possuem testes de UI (19%) fizeram algum tipo de implementação para garantia visual através
de comparação com screenshots.

Levando em conta a grande presença do framework XCUITest nos projetos onde foram
realizados testes de UI, ele foi escolhido para ser utilizado na simulação de interações com a
aplicação no framework proposto nesse trabalho.

2https://github.com

https://github.com

3.2 EXEMPLO DE USO 15

3.2 Exemplo de Uso

A seguir é mostrado um exemplo de uso da ferramenta. Foi utilizada a aplicação de exemplo
disponível no repositório da ferramenta. A aplicação tem um campo de texto, dois botões "sign
in"e "sign up"e um texto que fica na parte de baixo. São feitos dois casos de teste, sign-in e
sign-up.

• Sign In: Nesse caso de teste é apertado o botão "sign in", então uma mensagem aparece
informando que o campo de texto está vazio. Um texto é escrito no campo de texto e
o botão "sign in"apertado novamente, mostrando então uma mensagem de sucesso. O
script utilizado para esse caso de teste pode ser visto na Figura 3.1, e as imagens de
referência geradas podem ser vistas na Figura 3.2.

Figura 3.1 Caso de Teste 1. Fonte: Elaborado pela autora

Figura 3.2 Referências Caso de Teste 1. Fonte: Elaborado pela autora

16 CAPÍTULO 3 SOLUÇÃO

• Sign Up: Nesse caso de teste é apertado o botão "sign up", então uma mensagem aparece
requisitando a entrada de um email no campo de texto e o botão "sign in"desaparece. O
botão é apertado novamente e uma mensagem aparece informando que o campo de texto
está vazio. Um texto é escrito no campo de texto e o botão "sign up"apertado novamente,
mostrando então uma mensagem de sucesso. O script utilizado para esse caso de teste
pode ser visto na Figura 3.3, e as imagens de referência geradas podem ser vistas na
Figura 3.4.

Figura 3.3 Caso de Teste 2. Fonte: Elaborado pela autora

3.2 EXEMPLO DE USO 17

Figura 3.4 Referências Caso de Teste 2. Fonte: Elaborado pela autora

18 CAPÍTULO 3 SOLUÇÃO

3.3 Arquitetura da Solução

O motor do framework foi escrito em Swift e tem duas responsabilidades: fazer a comunicação
entre o script e o código nativo que invocará o XCUITest e preparar o ambiente para a execução
dos testes.

A comunicação entre o script e o código nativo ocorre por meio de uma máquina virtual
(VM) que executa todo o código Lua. Isso garante o isolamento, evitando que um erro crítico
afete a aplicação. O código-fonte do Lua inclui uma API C que oferece um conjunto de funções
disponíveis para que o programa se comunique com o Lua. Isso acontece através de uma
pilha virtual que faz a transferência de valores entre as duas partes. Cada elemento na pilha
representa um valor Lua, como nulo, número, string, etc. A VM implementada utiliza essa API
para a comunicação entre o código nativo e o código Lua, acessando a pilha virtual.

Embora seja possível realizar conversões de cada tipo de valor do Lua para Swift e vice-
versa, a estratégia adotada foi simplificar a implementação colocando apenas strings e ponteiros
para funções nativas na pilha. Cada função Swift registrada é guardada na memória e, para cada
uma delas, um ponteiro é gerado e adicionado à pilha. Ao chamar uma função no script Lua, os
parâmetros enviados são inicialmente codificados para uma string contendo um objeto JSON e
então o ponteiro para a função registrada é chamado. Com isso, a função é invocada no código
nativo recebendo essa string, que é então decodificada para o objeto que ela espera receber
como parâmetro.

No framework, as funções Swift registradas na VM através da API no Swift são responsá-
veis por chamar as funções da API do XCUITest, que irão de fato se comunicar com a aplicação
sendo testada simulando as interações do usuário. Na Figura 3.5 é possível ver um esquema
das partes do framework. Em verde estão as partes nativas, em Swift, em rosa estão as partes
em Lua e em azul a comunicação entre as partes.

Figura 3.5 Arquitetura da Solução. Fonte: Elaborado pela autora

3.3 ARQUITETURA DA SOLUÇÃO 19

A seguir, nas Figuras 3.6 e 3.7, é mostrado um exemplo de como uma função pode ser re-
gistrada e, em seguida, chamada no script Lua. Foi registrada uma função chamada enter_text,
que aceita como parâmetro uma struct do tipo EnterTextData, contendo dois campos: field, o
identificador do campo de texto, e text, o texto a ser escrito no campo de texto. No exemplo de
script dado, o texto "biu@email.com"é escrito no campo de texto com identificador "email".

Figura 3.6 Registro de Função. Fonte: Elaborado pela autora

Figura 3.7 Uso de Função. Fonte: Elaborado pela autora

Algumas funções mais comuns nos casos de teste são cadastradas por padrão no framework,
como por exemplo tap_button, enter_text, scroll_up, scroll_down, wait, entre outras. Essas
funções podem ser utilizadas nos scripts sem a necessidade de escrever o código em Swift
demonstrado na Figura 3.6 de registro de função. O usuário pode tanto sobrescrever essas
funções quanto cadastrar novas para serem chamadas através do script. Existem duas funções
especiais que realizam comportamentos particulares: compare_ref e save_ref.

• save_ref: Tira um screenshot do estado atual da tela e salva na pasta de imagens de
referências de acordo com o modelo e a versão do iOS do dispositivo onde o teste está
sendo executado.

• compare_ref: Tira um screenshot do estado atual da tela e compara com a imagem de
referência correspondente, seguindo a ordem da lista de imagens salvas.

A preparação do ambiente para a execução dos testes será demonstrada a seguir, na Seção
3.4.2.

20 CAPÍTULO 3 SOLUÇÃO

3.4 Algoritmo da Solução

3.4.1 Estrutura de Pastas

Para a execução dos testes, a ferramenta acessa uma pasta chamada biu-test que deve ser refe-
renciada no target de testes de UI no projeto Xcode da aplicação. A estrutura da pasta pode ser
vista na Figura 3.8.

Figura 3.8 Estrutura de Pastas. Fonte: Elaborado pela autora

Na raiz existem três pastas:

• libs: Contém arquivos do tipo .lua com bibliotecas, que podem ser de terceiros. Os
arquivos dessa pasta são carregados primeiro na VM do Lua, dessa maneira podem ser
utilizadas pela pessoa desenvolvedora durante os testes. No exemplo, existem uma bibli-
oteca para lidar com objetos JSON e outra para uso de base64;

• shared: Contém arquivos do tipo .lua contendo variáveis e funções que podem ser utili-
zadas por todos os casos de teste. Os arquivos dessa pasta são carregados na VM do Lua
após os arquivos da pasta "libs". No exemplo foi adicionado um arquivo helpers.lua;

3.4 ALGORITMO DA SOLUÇÃO 21

• test-cases: Possui n pastas contendo um caso de teste diferente em cada uma. Essa pasta
inclui um arquivo obrigatório test.lua, contendo o script com a sequência de interações a
serem executadas durante o teste, um arquivo opcional setup.json contendo argumentos e
variáveis de ambiente que devem ser usadas durante a execução do caso de teste, e n pas-
tas contendo as imagens de referência do caso de teste. Cada pasta é nomeada de acordo
com o dispositivo em que as imagens de referência foram geradas, seguindo a conven-
ção <Modelo do Dispositivo><Versão do iOS>. As imagens dentro das pastas devem
ser nomeadas reference_<number>.png, onde <number> corresponde à ordem da ima-
gem a ser comparada, ou seja, reference_0.png será a primeira a ser comparada, seguida
de reference_1.png, e assim sucessivamente. Essas imagens são automaticamente ge-
radas e salvas durante a execução dos testes, usando a função save_ref. Portanto, para
atualizá-las, basta utilizar essa função nos pontos em que as comparações devem ser fei-
tas e executar o caso de teste correspondente. Depois de geradas as imagens, a pessoa
escrevendo os testes substitui save_ref por compare_ref para realizar as comparações.

3.4.2 Execução dos Testes

A execução da solução é feita em duas etapas que funcionam sequencialmente: a configuração
do ambiente e a execução dos casos de teste. Ao iniciar a execução dos testes, os arquivos pre-
sentes na pasta "libs"são carregados na VM do Lua para que as bibliotecas fiquem disponíveis
para serem utilizadas nos casos de teste, em seguida o mesmo acontece com os arquivos da
pasta "shared". Logo após, as funções Swift padrão da ferramenta são registradas na VM do
Lua para que seja possível chamá-las a partir do script. Em seguida são registradas as funções
Swift definidas pela pessoa desenvolvedora, caso seja necessário.

Após a etapa de configuração, se inicia a execução dos casos de teste. A ferramenta entra
em cada uma das pastas presentes em "test-cases", carrega os arquivos setup.json e as imagens
de referência presentes na pasta e em seguida e executa o arquivo test.lua na VM configurada.
Cada função previamente registrada é chamada de acordo com o script, e uma ação é refletida
na aplicação. Em especial, a função compare_ref ativa a execução da comparação do estado
atual da tela com a imagem de referência atual. Na Figura 3.9 é mostrado um esquema da
execução dos testes.

22 CAPÍTULO 3 SOLUÇÃO

Figura 3.9 Execução dos Testes. Fonte: Elaborado pela autora

CAPÍTULO 4

Análise

4.1 Metodologia

Para a análise do framework proposto nesse trabalho foi escolhida uma aplicação seguindo
um contexto em que ele seria usado na realidade, open source e que já incluía testes de UI
na sua implementação. A partir disso foram selecionados casos de testes implementados na
aplicação e esses foram reescritos utilizando o BIUTest. Com isso os códigos e resultados
foram comparados levando em conta critérios selecionados previamente.

4.1.1 Seleção da Aplicação

Durante o processo de seleção de ferramentas mencionado na Seção 3.1, ao analisar os repo-
sitórios no GitHub, foram observados projetos com diversos níveis de maturidade e cobertura
de testes. A aplicação a ser utilizada nas análises foi selecionada com base em vários critérios,
como o número de stars e forks que o repositório recebeu, o status de ser mantido por uma
empresa consolidada com uma base de usuários significativa, a presença de uma boa cobertura
de testes de UI, bem como a disponibilidade de uma licença que permitisse a realização dos
testes neste trabalho.

O projeto selecionado para conduzir as análises foi a aplicação de teste da SDK iOS do
Stripe1. Essa SDK oferece um serviço de pagamento online e fornece a infraestrutura técnica
necessária para prevenção de fraudes e operações bancárias. O repositório do projeto2 pode ser
encontrado no Github.

4.1.2 Seleção dos Casos de Teste

Após a seleção da aplicação foram explorados os casos de teste de UI já implementados no
projeto. Uma suíte de testes em particular se tornou interessante para servir como objeto de
análise por possuir 10 casos de testes, sendo 5 pares onde cada par consiste no mesmo caso de
teste usando configurações de linguagem diferentes: um com a aplicação sendo executada em
inglês e o outro em francês. Assim foi identificada uma oportunidade de aprimorar esses casos
de teste utilizando o framework BIUTest proposto nesse trabalho. Os casos de teste verificam
a integração da SDK em uma aplicação de teste, validando diversas funcionalidades através da
simulação de interações com a aplicação e uma verificação do estado final após essas serem
realizadas. A seguir são especificados os casos de testes que serão utilizados para comparação

1https://stripe.com/br
2https://github.com/stripe/stripe-ios

23

https://stripe.com/br
https://github.com/stripe/stripe-ios

24 CAPÍTULO 4 ANÁLISE

entre a ferramenta usada no projeto e a ferramenta aqui proposta:

• Transação Simples: Esse caso de teste simula uma compra simples com um cartão. Ini-
cialmente são selecionados alguns produtos e em seguida o botão "Buy Now"é apertado.
Na tela de checkout o botão "Pay from"é apertado direcionando o usuário para a tela de
seleção de forma de pagamento. O cartão Visa de final "4242"é selecionado e o usuário
volta para a tela de checkout. Ao apertar em "Buy"é mostrado um alerta confirmando o
sucesso da compra. A Tabela 4.1 fornece uma descrição formal desse caso de uso e na
Figura A.2 é possível ver como foi implementado originalmente na aplicação.

Caso de Teste 1
Funcionalidade: Transação Simples
Objetivo: Realizar uma compra simples com um cartão
Etapas:
1 Apertar o botão "Settings"
2 Apertar o botão "None"na seção "Require Shipping Address Fields"
3 Apertar o botão "Done"
4 Selecionar o vestido, sapato marrom e sapato vermelho
5 Apertar o botão "Buy Now"
6 Apertar o botão "Pay from"
7 Apertar o botão "Visa ending in 4242"

8 Verificar se foi redirecionado para a tela de checkout com os
produtos e modo de pagamento corretos selecionados

9 Apertar o botão "Buy"
10 Verificar se aparece o alerta com mensagem de sucesso
11 Apertar o botão "OK"

Tabela 4.1 Caso de Teste 1

4.1 METODOLOGIA 25

• Checkout Seguro: Esse caso de teste simula uma compra com um cartão que necessita
de autenticação por parte do banco. Inicialmente são selecionados alguns produtos e
em seguida o botão "Buy Now"é apertado. Na tela de checkout o botão "Pay from"é
apertado direcionando o usuário para a tela de seleção de forma de pagamento. O cartão
Visa de final "3220"é selecionado e o usuário volta para a tela de checkout. Ao apertar
em "Buy"aparece a tela de autenticação, os botões "Learn more about authentication"e
"Need help?"são apertados para mostrar uma ajuda sobre essa funcionalidade e então
o botão "Complete Authentication"é selecionado, um alerta é mostrado confirmando o
sucesso da compra. A Tabela 4.2 fornece uma descrição formal desse caso de uso e na
Figura A.5 é possível ver como foi implementado originalmente na aplicação.

Caso de Teste 2
Funcionalidade: Checkout Seguro

Objetivo: Realizar uma compra com um cartão que necessita de autenticação
por parte do banco

Etapas:
1 Apertar o botão "Settings"
2 Apertar o botão "None"na seção "Require Shipping Address Fields"
3 Apertar o botão "Done"
4 Selecionar o vestido, sapato marrom e sapato vermelho
5 Apertar o botão "Buy Now"
6 Apertar o botão "Pay from"
7 Apertar o botão "Visa ending in 3220"

8 Verificar se foi redirecionado para a tela de checkout com os
produtos e modo de pagamento corretos selecionados

9 Apertar o botão "Buy"
10 Verificar se aparece tela de autenticação de cartão
11 Apertar o botão "Learn more about authentication"
12 Apertar o botão "Need help?"
13 Verificar se aparecm, os textos de explicação
14 Apertar o botão "Continue"
15 Apertar o botão "Buy"
16 Verificar se aparece o alerta com mensagem de sucesso
17 Apertar o botão "OK"

Tabela 4.2 Caso de Teste 2

26 CAPÍTULO 4 ANÁLISE

• Pagamento com Apple Pay: Esse caso de teste simula uma compra utilizando o Apple
Pay3. Inicialmente são selecionados alguns produtos e em seguida o botão "Buy Now"é
apertado. Na tela de checkout o botão "Pay from"é apertado direcionando o usuário para
a tela de seleção de forma de pagamento. A opção "Apple Pay"é selecionada e o usuário
volta para a tela de checkout. Ao apertar em "Buy"aparece o modal de validação da
forma de pagamento. A Tabela 4.3 fornece uma descrição formal desse caso de uso e na
Figura A.8 é possível ver como foi implementado originalmente na aplicação.

Caso de Teste 3
Funcionalidade: Pagamento com Apple Pay

Objetivo: Realizar uma compra utilizando o Apple Pay como forma de
pagamento

Etapas:
1 Apertar o botão "Settings"
2 Apertar o botão "None"na seção "Require Shipping Address Fields"
3 Apertar o botão "Done"
4 Selecionar o vestido, sapato marrom e sapato vermelho
5 Apertar o botão "Buy Now"
6 Apertar o botão "Pay from"
7 Apertar o botão "Apple Pay"
8 Verificar se aparece o modal de validação da forma de pagamento

Tabela 4.3 Caso de Teste 3

3https://www.apple.com/br/apple-pay

https://www.apple.com/br/apple-pay

4.1 METODOLOGIA 27

• Adicionar Novo Cartão: Esse caso de teste simula a adição de um novo cartão como
forma de pagamento. Inicialmente são selecionados alguns produtos e em seguida o
botão "Buy Now"é apertado. Na tela de checkout o botão "Pay from"é apertado dire-
cionando o usuário para a tela de seleção de forma de pagamento. A opção "Add New
Card"é selecionada e o usuário é levado para a tela de adição de cartão. São adiciona-
dos dados de um cartão e o botão "Done"é apertado. Aparece um alerta informando
que o cartão está vencido e então os dados são atualizados. É selecionado o botão
"Done"novamente e o usuário retorna para a tela de checkout. Então o botão "Buy"é
apertado e aparece um alerta informando que houve um erro que o cartão foi recusado. A
Tabela 4.4 fornece uma descrição formal desse caso de uso e na Figura A.11 é possível
ver como foi implementado originalmente na aplicação.

Caso de Teste 4
Funcionalidade: Adicionar Novo Cartão
Objetivo: Realizar a adição de um novo cartão como forma de pagamento
Etapas:
1 Apertar o botão "Settings"
2 Apertar o botão "None"na seção "Require Shipping Address Fields"
3 Apertar o botão "Done"
4 Selecionar o vestido, sapato marrom e sapato vermelho
5 Apertar o botão "Buy Now"
6 Apertar o botão "Pay from"
7 Apertar o botão "Add New Card. . . "
8 Verificar se aparece a tela de adição de cartão
9 Adicionar o texto "4000000000000069"no campo de número do cartão
10 Adicionar o texto "02/28"no campo de data de validade do cartão
11 Verificar se atualiza a tela mostrando a parte de trás do cartão
12 Adicionar o texto "223"no campo de CVC do cartão
13 Adicionar o texto "90210"no campo de código postal
14 Apertar o botão "Done"
15 Verificar se aparece o alerta com a mensagem de cartão expirado
16 Apertar o botão "OK"
17 Remover os últimos 4 caracteres no campo de número do cartão
18 Adicionar o texto "0341"no campo de número do cartão
19 Apertar o botão "Done"
20 Apertar o botão "Buy"
21 Verificar se aparece o alerta com a mensagem de cartão recusado
22 Apertar o botão "OK"

Tabela 4.4 Caso de Teste 4

28 CAPÍTULO 4 ANÁLISE

• Opção de Pagamento Padrão: Este caso de teste tem como objetivo verificar a persis-
tência das opções de pagamento na tela de escolha e, em caso de logout, garantir que a
opção padrão esteja selecionada. Inicialmente são selecionados alguns produtos e em se-
guida o botão "Buy Now"é apertado. Na tela de checkout o botão "Pay from"é apertado
direcionando o usuário para a tela de seleção de forma de pagamento. Aqui, verifica-se
se o método de pagamento padrão é "Apple Pay"e, em seguida, seleciona-se o cartão Visa
com final "3220". A simulação do retorno à tela de produto é realizada e o botão "Buy
Now"é pressionado novamente. É feita uma verificação para garantir que a opção sele-
cionada anteriormente seja mantida e, em seguida, o botão "Apple Pay"é pressionado.
Esses passos são repetidos para assegurar que, ao sair e retornar à tela, a opção seleci-
onada permaneça inalterada. Em seguida, o cartão Visa com final "3220"é selecionado
novamente como método de pagamento e o usuário faz logout na tela de configurações.
Após isso, simula-se novamente a entrada na tela de seleção de método de pagamento
e verifica-se se a opção padrão, ou seja, "Apple Pay", está selecionada. A Tabela 4.5
fornece uma descrição formal desse caso de uso e nas Figuras A.14 e A.15 é possível ver
como foi implementado originalmente na aplicação.

4.1 METODOLOGIA 29

Caso de Teste 5
Funcionalidade: Opção de Pagamento Padrão

Objetivo: Verificar a persistência das opções de pagamento na tela de escolha e,
em caso de logout, garantir que a opção padrão esteja selecionada

Etapas:
1 Apertar o botão "Settings"
2 Apertar o botão "None"na seção "Require Shipping Address Fields"
3 Apertar o botão "Done"
4 Selecionar o vestido, sapato marrom e sapato vermelho
5 Apertar o botão "Buy Now"
6 Apertar o botão "Pay from"
7 Verificar se a opção "Apple Pay"está selecionada
8 Apertar o botão "Visa ending in 3220"
9 Apertar o botão "Products"
10 Apertar o botão "Buy Now"
11 Apertar o botão "Pay from"
12 Verificar se a opção "Visa ending in 3220"está selecionada
13 Apertar o botão "Apple Pay"
14 Apertar o botão "Products"
15 Apertar o botão "Buy Now"
16 Apertar o botão "Pay from"
17 Verificar se a opção "Apple Pay"está selecionada
18 Apertar o botão "Visa ending in 3220"
19 Apertar o botão "Products"
20 Apertar o botão "Settings"
21 Apertar o botão "Log out"
22 Apertar o botão "Done"
23 Apertar o botão "Buy Now"
24 Apertar o botão "Pay from"
25 Verificar se a opção "Apple Pay"está selecionada

Tabela 4.5 Caso de Teste 5

30 CAPÍTULO 4 ANÁLISE

4.1.3 Seleção dos Critérios de Avaliação

Diversos fatores podem ser utilizados para medir a qualidade de um framework de automati-
zação de testes, incluindo fatores que dependem do contexto em que ele está sendo utilizado,
como o tamanho do projeto, a quantidade de pessoas envolvidas no desenvolvimento e na ga-
rantia de qualidade, os recursos disponíveis, entre outros. Mesmo assim, é possível determinar
alguns requisitos que catacterizam uma boa ferramenta para essa tarefa. Alguns trabalhos foram
feitos realizando a comparação de frameworks de automatização de testes [8] [14], e a partir
desses foi possível chegar em pontos a serem analisados na avaliação do framework proposto
nesse trabalho. Abaixo é apresentado quais são esses pontos.

• API: É importante que o framework tenha uma API simples que não necessite que a pes-
soa testadora escreva uma grande quantidade de código para realizar operações simples,
como apertar um botão por exemplo. Além disso, a clareza do código torna mais fácil
garantir a precisão dos testes e simplifica as futuras alterações;

• Suporte a Logs: É importante que a pessoa testando tenha acesso a logs claros do que
acontece durante os testes para que, no caso de algum erro, seja fácil encontrar onde ele
está;

• Suporte a uma grande variedade de propriedades: Um dos objetivos de uma ferra-
menta de automação de testes de UI é analisar as propriedades da aplicação. Contudo,
é difícil prever quais propriedades serão pertinentes em todas as análises. Portanto, o
framework deve disponibilizar um conjunto adequado de abstrações para que o usuário
possa especificar as propriedades relevantes.

• Tempo de Execução: Os testes de UI estão no topo da pirâmide de teste, o que demonstra
que é o tipo de teste que mais demanda tempo, o que por consequência acarreta em mais
custo. Por esse motivo é necessário que o uso da ferramenta não adicione muito tempo
ao processo de testes;

4.2 Preparação

A seguir são apresentadas as implementações dos casos de teste no código original presente no
repositório da aplicação selecionada e os mesmos casos implementados utilizando o BIUTest.
Os testes foram executados utilizando o simulador nativo do XCode. O modelo do simulador
foi o iPhone 14 com sistema operacional iOS 16.4. A máquina onde os testes foram executados
é um MacBook Pro versão 20154 com sistema operacional macOS Monterey.

4.2.1 Setup

Antes de começar a executar os casos de teste, é necessário realizar uma configuração inicial
para fornecer propriedades personalizadas que serão utilizadas pela aplicação durante a sua

4https://support.apple.com/kb/sp719?locale=en_US

https://support.apple.com/kb/sp719?locale=en_US

4.2 PREPARAÇÃO 31

inicialização. Isso pode incluir o envio de variáveis de ambiente, que adaptam certas funciona-
lidades da aplicação com base na sua implementação, ou argumentos, que serão usados durante
os testes para modificar as configurações da aplicação ou para permitir a utilização de dados de
teste. No contexto dos casos de teste que estamos analisando aqui, são fornecidas uma chave
de autenticação e uma URL que permitem o uso de dados de teste durante a execução, em vez
de dados de produção. Na Figura 4.1 é possível ver como esse setup foi feito no código original
e na Figura 4.2 como foi feito utilizando o BIUTest.

Toda a criação e configuração do XCUIApplication, que representa a aplicação sendo tes-
tada, é feita automaticamente pelo BIUTest, dessa maneira a pessoa testadora precisa somente
criar um arquivo JSON com os argumentos e variáveis de ambiente a serem utilizados.

Figura 4.1 Setup Original. Fonte: Repositório da Aplicação de Teste

Figura 4.2 Setup com BIUTest. Fonte: Elaborado pela autora

32 CAPÍTULO 4 ANÁLISE

4.2.2 Helpers

Os casos de teste começam desabilitando a necessidade de inserir o endereço, selecionando
três produtos e avançando para a tela de checkout. Para simplificar a execução dessas ações,
algumas funções foram implementadas, uma vez que elas se repetem em todos os casos de
teste. A Figura 4.3 ilustra como esse código foi implementado na versão original, enquanto a
Figura 4.4 mostra a implementação utilizando o BIUTest. O fluxo de telas nessa etapa pode ser
visualizado na Figura A.1.

O BIUTest realiza a busca dos elementos que correspondem ao identificador enviado como
parâmetro, o que dispensa a pessoa responsável pelos testes de especificar exatamente onde
o elemento está localizado. Neste exemplo, não é necessário indicar que o botão contendo
um sapato vermelho está dentro de uma célula. Além disso, algumas funções para auxiliar
na sincronização com os elementos são implementadas por padrão no BIUTest. Por exemplo,
no código original foi necessário utilizar um waitToAppear para aguardar o botão estar apa-
recendo antes de interagir com a tela, no BIUTest a função tap_button já realiza essa espera
antes de tentar interagir com o elemento.

Figura 4.3 Helpers Original. Fonte: Repositório da Aplicação de Teste

4.2 PREPARAÇÃO 33

Figura 4.4 Helpers com BIUTest. Fonte: Elaborado pela autora

34 CAPÍTULO 4 ANÁLISE

4.2.3 Caso de Teste 1

Nas Figuras A.2 e A.3, podemos observar a implementação deste caso de teste tanto sem o
uso do framework proposto neste trabalho quanto com ele. Neste caso, notamos que o teste
original verifica apenas se as interações indicadas, como pressionar os botões, são possíveis
de serem realizadas. No entanto, ao utilizar o framework BIUTest, não apenas garantimos a
viabilidade das interações, mas também asseguramos que a tela vista pelo usuário está correta,
uma vez que o framework realiza uma comparação com a referência previamente armazenada.
Na Figura A.4 é possível ver o fluxo de telas desse caso de teste.

4.2.4 Caso de Teste 2

Na Figura 4.5 podemos observar que algumas instruções no código são bem específicas da
implementação e pode não ser facilmente entendidas por uma pessoa sem conhecimento técnico
de aplicações iOS e interno da aplicação, por exemplo o uso de scrollViews e alerts na busca
por elementos. A Figura 4.6 realiza as mesmas interações com a aplicação sendo testadas com
uma linguagem mais clara. A Figura A.7 demonstra o fluxo de telas realizado nesse caso de
teste.

Figura 4.5 Código original com busca de elementos detalhada. Fonte: Repositório da Aplicação de
Teste

Figura 4.6 Código usando BIUTest com busca de elementos abstraindo implementação interna. Fonte:
Elaborado pela autora

4.2 PREPARAÇÃO 35

4.2.5 Caso de Teste 3

Esse caso de teste já era pequeno e relativamente simples de entender. A melhoria no código
utilizando o BIUTest e nesse caso está mais relacionada à adição de uma função helper para a
seleção de forma de pagamento, e poderia ser replicada sem muito esforço no código original.
Na Figura A.10 é possível ver o fluxo de telas desse caso de teste.

4.2.6 Caso de Teste 4

Este caso de teste exemplifica mais uma interação, que é a de inserir texto em um campo
de texto. Uma vantagem presente no código original, representado na Figura 4.7, é que os
elementos podem ser armazenados em variáveis, evitando assim buscas repetidas quando eles
precisam ser usados novamente. O fluxo de telas desse caso de teste pode ser visualizado na
Figura A.13.

Figura 4.7 Código original armazenando elementos em variáveis. Fonte: Repositório da Aplicação de
Teste

36 CAPÍTULO 4 ANÁLISE

4.2.7 Caso de Teste 5

Nesse caso, podemos observar que, apesar da vantagem de poder salvar os elementos em va-
riáveis, nem sempre isso é possível de ser utilizado. Isso é evidenciado no código original,
conforme representado na Figura 4.8, onde alguns elementos, como o botão "Products", pre-
cisam ser buscados várias vezes devido às transições de tela que ocorrem cada vez que ele é
pressionado. O fluxo de telas deste caso de teste é ilustrado na Figura A.17.

Figura 4.8 Código original repetindo busca por elementos. Fonte: Repositório da Aplicação de Teste

4.3 RESULTADOS 37

4.3 Resultados

Nesta seção, serão apresentados os resultados derivados das análises realizadas nos casos de
teste selecionados, considerando os critérios de avaliação previamente definidos. Ao término,
realizaremos uma breve discussão dos resultados, destacando os principais pontos observados
durante as análises.

4.3.1 Critérios de Avaliação

4.3.1.1 API

Lines of Code (LOC) é uma métrica utilizada para medir o tamanho de um software ao quan-
tificar as linhas de código do programa. Além disso, ela funciona como uma abordagem de
estimativa para mensurar o esforço envolvido no processo de desenvolvimento de software
[10]. A Tabela 4.6 mostra uma comparação na quantidade de linhas necessárias para escrever
cada caso de teste. Não foram levadas em consideração as linhas utilizadas para o setup de cada
caso e as partes que são repetidas, contidas nas funções helpers. Para essa análise foi utilizada
a ferramenta cloc5, que realiza a contagem de linhas de código de diversas linguagens diferen-
tes. É possível notar que utilizando o BIUTest foram necessárias menos linhas de código para
a escrita dos casos de teste. Nos casos realizados nessa análise, o uso do framework significou
uma diminuição de, em média, 50,4% na quantidade de linhas de código.

LOC
XCUITest BIUTest

Caso de Teste 1 13 6
Caso de Teste 2 18 9
Caso de Teste 3 12 5
Caso de Teste 4 33 17
Caso de Teste 5 35 22

Tabela 4.6 Lines of Code (LOC) - Casos de Teste

Ao compararmos os códigos dos casos de teste utilizando o XCUITest e o BIUTest, também
se pode notar que, sem o uso do framework, é preciso ter um conhecimento maior sobre a
implementação da aplicação. Por exemplo, no Caso de Teste 2 é possível ver na Figura A.5
que para apertar o botão "OK"foi especificado que o mesmo está presente em um alerta, já na
Figura A.6 foi usada somente a instrução de apertar um botão. Essa abstração traz algumas
desvantagens, primeiro em relação ao tempo de execução, que será comentado em um tópico
a seguir, e segundo em relação a identificação de elementos com o mesmo nome. Para esses
casos, foi implementada uma notação que pode ser utilizada para identificar qual dos elementos
deve ser escolhido para realizar a interação, é possível ver essa notação no script dos helpers
dos casos de uso analisados, na linha 6 da Figura 4.4. Essa abordagem pode acrescentar um

5https://github.com/AlDanial/cloc

https://github.com/AlDanial/cloc

38 CAPÍTULO 4 ANÁLISE

esforço a mais na manutenção dos casos de teste, já que se algum dos botões mudar de posição
o número pode precisar ser atualizado.

4.3.1.2 Suporte a Logs

Como o BIUTest utiliza o XCUITest, acaba se beneficiando do seu suporte a logs que é bastante
detalhado, fornecendo um relatório de execução em tempo real durante a execução dos testes,
característica que o destaca em relação à outras ferramentas de testes de UI, como mostrado
em [4]. Na Figura 4.9 é possível ver um exemplo desse relatório.

Figura 4.9 Informações de depuração no console do Xcode durante a execução dos testes. Fonte:
Elaborado pela autora

Adicionalmente, o BIUTest também herda do XCUITest os logs de erro no caso de um
teste falhar. Esses logs auxiliam a pessoa testadora a identificar onde o erro ocorreu e como
corrigi-lo. A Figura 4.10 exemplifica um caso em que o botão "Close"não pôde ser localizado.
Como o BIUTest possui algumas funcionalidades adicionais, eventuais erros específicos podem
ocorrer. No entanto, a informação sobre esses erros é apresentada de maneira semelhante,
como evidenciado na Figura 4.11. Quando a tela não corresponde à imagem de referência
previamente salva, é fornecido ao usuário a imagem de referência, a captura da tela e a diferença
entre elas.

4.3.1.3 Suporte a uma grande variedade de propriedades

Como foi mencionado na Seção 4.2.1, através do envio de argumentos e variáveis de ambiente
é possível que a aplicação seja executada utilizando diferentes configurações, como linguagem
por exemplo. Com o BIUTest isso é feito por meio do arquivo JSON presente em cada caso

4.3 RESULTADOS 39

Figura 4.10 Informações de erro na falha do caso de teste no XCUITest. Fonte: Elaborado pela autora

Figura 4.11 Informações de erro na falha do caso de teste no BIUTest. Fonte: Elaborado pela autora

de teste, no XCUITest essa passagem de argumentos e variáveis também é possível através das
variáveis disponíveis na classe de comunicação com a aplicação, como foi mostrado nas Figuras
4.1 e 4.2. Além disso, no BIUTest é possível ter referências salvas para diversos modelos de
dispositivo e sistemas operacionais, permitindo que os testes sejam executados em todos eles e
garantindo a conformidade visual nos mesmos, já o XCUITest não tem essa funcionalidade.

4.3.1.4 Tempo de Execução

Foi feita uma comparação do tempo de execução dos casos de teste com e sem a utilização
do framework BIUTest. A análise foi feita executando cada caso de teste cinco vezes, e então
foi observado o menor tempo, o maior e o tempo médio de cada um. Na Tabela 4.7 pode-se
observar os resultados encontrados.

A partir dos dados coletados durante as execuções, é perceptível que a utilização do fra-
mework acrescentou uma quantidade considerável de tempo, uma média de 3,8 segundos, em
cada caso de teste. No total, houve um aumento de 6,7% no tempo de execução quando todos
os casos de teste foram combinados. Esse aumento no tempo era esperado, uma vez que o
nível de abstração do BIUTest é mais elevado, o que significa que o framework precisa buscar
o elemento necessário para realizar a interação em mais partes da interface. Além disso, a
capacidade de armazenar o elemento em uma variável para ser reutilizado posteriormente tam-
bém contribui para reduzir o tempo, uma vez que não será necessário procurá-lo novamente
quando ocorrer outra interação. Essa é uma opção de desenvolvimento que pode ser feita como
melhoria para o framework.

40 CAPÍTULO 4 ANÁLISE

Tempo de Execução (s)
Menor Maior Média % Média

XCUITest 37,2 39,6 38,2
Caso de Teste 1 BIUTest 40,7 41,7 41,1 +7,6%

XCUITest 44,9 45,5 45,2
Caso de Teste 2 BIUTest 48,9 52,7 50,5 +11,7%

XCUITest 32,6 33,7 33,1
Caso de Teste 3 BIUTest 34,1 36,8 34,9 +18,1%

XCUITest 50,9 52,5 51,6
Caso de Teste 4 BIUTest 56,8 59,0 57,6 +11,6%

XCUITest 64,6 66,5 65,4
Caso de Teste 5 BIUTest 67,3 69,3 68,2 +4,3%

Tabela 4.7 Tempo de Execução - Casos de Teste

4.3.2 Considerações Finais

Através da análise dos resultados com base nos critérios de avaliação selecionados, é evidente
que o uso do BIUTest apresentou vantagens e também desvantagens em diferentes aspectos. O
framework oferece uma API mais simples e legível, exigindo menos conhecimento técnico e
um entendimento específico da implementação da aplicação para utilizá-lo. Essa característica
também facilita a atualização e manutenção dos testes de forma menos trabalhosa. No entanto,
isso resulta em um tempo de execução dos casos de teste mais longo, que por si só já são
extensos. Além disso, em casos onde exista mais de um elemento com o mesmo nome na tela
sendo testada, é necessário uma notação específica para identificar qual deles deve ser utilizado
para a interação, adicionando um esforço a mais na manutenção do caso de teste em questão.

A escolha entre a utilização de um framework ou outro pode depender de vários fatores,
como o tamanho do projeto, da empresa, o número de pessoas envolvidas no desenvolvimento
e o nível de conhecimento técnico dessas pessoas, entre outros. Considerando diversos pontos,
é possível que uma ferramenta seja mais adequada para um contexto do que a outra, e, princi-
palmente, o uso de uma não exclui a possibilidade de usar a outra. Portanto, é viável escolher
casos específicos nos quais seja mais apropriado utilizar uma ou outra ferramenta.

CAPÍTULO 5

Conclusão e Trabalhos Futuros

Durante o desenvolvimento de uma aplicação, é crucial assegurar que o estado de sua interface
nos fluxos existentes seja determinístico. Isso significa que ao seguir uma mesma sequência de
interações com as mesmas entradas, o estado final da aplicação deve ser o mesmo. Empresas
de software aplicam diversos tipos de testes com esse propósito, como testes de interface de
usuário (UI), de regressão e de integração, que podem ser realizados manualmente ou por meio
de ferramentas de automatização. Os testes automatizados oferecem vantagens como custos
mais baixos, maior frequência de testes, identificação precoce de defeitos e maior qualidade do
sistema em comparação com testes manuais.

Ao longo dos anos, várias ferramentas foram desenvolvidas para auxiliar na execução de
testes automatizados, e diferentes técnicas podem ser empregadas, dependendo do contexto da
aplicação, do tamanho da equipe, dos recursos disponíveis e dos objetivos de validação. Os
testes automatizados de UI são essenciais para verificar o correto funcionamento dos compo-
nentes da interface e como eles são apresentados ao usuário final. Neste trabalho, foi proposto
o framework BIUTest com o objetivo de abordar ambas as áreas de validação em aplicações
iOS.

Foi realizada uma análise do uso desse framework por meio de uma comparação com uma
aplicação que já possui testes de UI implementados, replicando os mesmos casos de teste uti-
lizando o BIUTest. A análise revelou vantagens do framework, incluindo uma API de fácil
leitura e entendimento, que requer menos conhecimento interno da aplicação. Além disso, o
BIUTest oferece a capacidade de comparar telas durante a execução dos testes com imagens
de referência, garantindo que a aparência seja consistente em diferentes dispositivos e versões
do sistema operacional. Levando em conta que fluxos importantes da aplicação sejam testados
utilizando o framework, é possível ajudar a assegurar que continuam com seu funcionamento
e visual corretos após mudanças realizadas na aplicação. No entanto, o uso do framework
também apresentou desvantagens, como um aumento no tempo de execução dos casos de teste.

Em relação a trabalhos futuros, durante as análises realizadas foram identificadas quatro
possibilidades de expansão do framework proposto. A seguir são listadas cada uma delas.

• Melhoria da Busca por Elementos: A busca por elementos para realizar cada intera-
ção é um dos pontos que pode ser melhorado. De acordo com o caso de teste sendo
executado, permitir a reutilização de elementos em interações repetidas, evitando buscas
desnecessárias, pode resultar em um menor tempo na execução dos testes.

• Melhoria de Sincronização: Pode ser implementada também uma melhoria de sincroni-
zação durante a execução dos testes, evitando que interações ocorram durante animações

41

42 CAPÍTULO 5 CONCLUSÃO E TRABALHOS FUTUROS

ou transições de tela, eliminando a necessidade de a pessoa testadora definir tempos de
espera.

• Suporte à Gravação: Outra oportunidade consiste na adição de suporte à gravação de
testes, permitindo que os scripts sejam gerados durante a execução da aplicação e utili-
zados em execuções futuras dos casos de teste.

• Implementação em Android: Considerando que muitas aplicações iOS possuem con-
trapartes em dispositivos Android, uma oportunidade de aprimoramento seria a imple-
mentação do BIUTest para aplicações nessa plataforma. Isso permitiria que a mesma
pasta contendo o script e as referências a serem comparadas fosse utilizada para testar
aplicativos em ambas as plataformas.

APÊNDICE A

Casos de Teste

A.1 Helpers

Figura A.1 Fluxo Inicial dos Casos de Teste. Fonte: Elaborado pela autora

43

44 APÊNDICE A CASOS DE TESTE

A.2 Caso de Teste 1

Figura A.2 Caso de Teste 1 Original. Fonte: Repositório da Aplicação de Teste

Figura A.3 Caso de Teste 1 com BIUTest. Fonte: Elaborado pela autora

A.2 CASO DE TESTE 1 45

Figura A.4 Fluxo Caso de Teste 1. Fonte: Elaborado pela autora

46 APÊNDICE A CASOS DE TESTE

A.3 Caso de Teste 2

Figura A.5 Caso de Teste 2 Original. Fonte: Repositório da Aplicação de Teste

A.3 CASO DE TESTE 2 47

Figura A.6 Caso de Teste 2 com BIUTest. Fonte: Elaborado pela autora

48 APÊNDICE A CASOS DE TESTE

Figura A.7 Fluxo Caso de Teste 2. Fonte: Elaborado pela autora

A.4 CASO DE TESTE 3 49

A.4 Caso de Teste 3

Figura A.8 Caso de Teste 3 Original. Fonte: Repositório da Aplicação de Teste

Figura A.9 Caso de Teste 3 com BIUTest. Fonte: Elaborado pela autora

50 APÊNDICE A CASOS DE TESTE

Figura A.10 Fluxo Caso de Teste 3. Fonte: Elaborado pela autora

A.5 CASO DE TESTE 4 51

A.5 Caso de Teste 4

Figura A.11 Caso de Teste 4 Original. Fonte: Repositório da Aplicação de Teste

52 APÊNDICE A CASOS DE TESTE

Figura A.12 Caso de Teste 4 com BIUTest. Fonte: Elaborado pela autora

A.5 CASO DE TESTE 4 53

Figura A.13 Fluxo Caso de Teste 4. Fonte: Elaborado pela autora

54 APÊNDICE A CASOS DE TESTE

A.6 Caso de Teste 5

Figura A.14 Caso de Teste 5 Original - Parte 1. Fonte: Repositório da Aplicação de Teste

A.6 CASO DE TESTE 5 55

Figura A.15 Caso de Teste 5 Original - Parte 2. Fonte: Repositório da Aplicação de Teste

56 APÊNDICE A CASOS DE TESTE

Figura A.16 Caso de Teste 5 com BIUTest. Fonte: Elaborado pela autora

A.6 CASO DE TESTE 5 57

Figura A.17 Fluxo Caso de Teste 5. Fonte: Elaborado pela autora

Referências Bibliográficas

[1] Emil Alégroth. Visual GUI Testing: Automating High-level Software Testing in Industrial
Practice. PhD thesis, Chalmers University of Technology and Goteborg University, 2015.

[2] Apple. User Interface Tests | Apple Developer Documentation. https:
//developer.apple.com/documentation/xctest/user_interface_
tests. [Online; accessed 22-July-2023].

[3] Mike Cohn. Succeeding with Agile: Software Development Using Scrum. Addison Wes-
ley, 2009.

[4] Henrique Forioni de Lima. Estudo comparativo de frameworks de automatização de testes
de ui para aplicativos ios. Bachelor Thesis, 2019.

[5] Elfriede Dustin. Effective Software Testing: 50 Ways to Improve Your Software Testing.
Addison Wesley, 2002.

[6] Marcelo Medeiros Eler, Jose Miguel Rojas, Yan Ge, and Gordon Fraser. Automated
accessibility testing of mobile apps. In 2018 IEEE 11th International Conference on
Software Testing, Verification and Validation (ICST), pages 116–126, 2018.

[7] Sidong Feng, Mulong Xie, and Chunyang Chen. Efficiency matters: Speeding up au-
tomated testing with gui rendering inference. In Proceedings of the 45th International
Conference on Software Engineering, ICSE ’23, page 906–918. IEEE Press, 2023.

[8] Shuai Hao, Bin Liu, Suman Nath, Ramesh Govindan, and William G.J. Halfond. Puma:
Programmable ui-automation for large scale dynamic analysis of mobile apps. In The In-
ternational Conference on Mobile Systems, Applications, and Services (MobiSys). ACM,
June 2014.

[9] Katja Karhu, Tiina Repo, Ossi Taipale, and Kari Smolander. Empirical observations on
software testing automation. In 2009 International Conference on Software Testing Veri-
fication and Validation, pages 201–209, 2009.

[10] Anureet Kaur. Comparative analysis of line of code metric tools. International journal of
scientific research in science, engineering and technology, 2:1285–1288, 2016.

[11] Rakesh Kumar Lenka, Srikant Kumar, and Sunakshi Mamgain. Behavior driven develop-
ment: Tools and challenges. In 2018 International Conference on Advances in Computing,
Communication Control and Networking (ICACCCN), pages 1032–1037, 2018.

59

https://developer.apple.com/documentation/xctest/user_interface_tests
https://developer.apple.com/documentation/xctest/user_interface_tests
https://developer.apple.com/documentation/xctest/user_interface_tests

60 REFERÊNCIAS BIBLIOGRÁFICAS

[12] Joe Ligman, Marco Pistoia, Omer Tripp, and Gegi Thomas. Improving design validation
of mobile application user interface implementation. In 2016 IEEE/ACM International
Conference on Mobile Software Engineering and Systems (MOBILESoft), pages 277–278,
2016.

[13] Bismal Majeed, Saba Khalil Toor, Kanwal Majeed, and Moazzama Nadeem Ahmad
Chaudhary. Comparative study of open source automation testing tools: Selenium, ka-
talon studio & test project. In 2021 International Conference on Innovative Computing
(ICIC), pages 1–6, 2021.

[14] Meiliana, Irwandhi Septian, Ricky Setiawan Alianto, and Daniel. Comparison analysis
of android gui testing frameworks by using an experimental study. Procedia Computer
Science, 135:736–748, 2018. The 3rd International Conference on Computer Science and
Computational Intelligence (ICCSCI 2018) : Empowering Smart Technology in Digital
Era for a Better Life.

[15] Robert Gomes Melo. Frevo: um framework e uma ferramenta para automação de testes.
Master’s thesis, Universidade Federal de Pernambuco, 2016.

[16] Andre Augusto Menegassi and Andre Takeshi Endo. Automated tests for cross-platform
mobile apps in multiple configurations. IET Software, 14(1):27–38, feb 2020.

[17] Helena Olsson, Hiva Alahyari, and Jan Bosch. Climbing the"stairway to heaven"a
multiple-case study exploring barriers in the transition from agile development towards
continuous deployment of software. Proceedings - 38th EUROMICRO Conference on
Software Engineering and Advanced Applications, SEAA 2012, 2012.

[18] Šarūnas Packevičius, Greta Rudžionienė, and Eduardas Bareiša. Automated visual testing
of application user interfaces using static analysis of screenshots. International Journal
of Software Engineering and Knowledge Engineering, 31(02):167–191, 2021.

[19] Elis Pelivani and Betim Cico. A comparative study of automation testing tools for web
applications. In 2021 10th Mediterranean Conference on Embedded Computing (MECO),
pages 1–6, 2021.

[20] Neha Sharma and Shilpi Singh. Software testing techniques: A literature review. Inter-
national Journal of Innovative Research in Technology, 2020.

[21] Harshit Singh, Shambhu Kumar Jha, Deepa Gupta, and Ajay Vikram Singh. Gui testing
android application. In 2022 10th International Conference on Reliability, Infocom Tech-
nologies and Optimization (Trends and Future Directions) (ICRITO), pages 1–6, 2022.

[22] Aditya Atul Tirodkar and Sundeep Singh Khandpur. Earlgrey: ios ui automation tes-
ting framework. In 2019 IEEE/ACM 6th International Conference on Mobile Software
Engineering and Systems (MOBILESoft), pages 12–15, 2019.

[23] Avi Tsadok. Pro iOS Testing - XCTest Framework for UI and Unit Testing. Apress, 2020.

REFERÊNCIAS BIBLIOGRÁFICAS 61

[24] Maneela Tuteja and Gaurav Dubey. A research study on importance of testing and quality
assurance in software development life cycle (sdlc) models. International Journal of Soft
Computing and Engineering (IJSCE), 2012.

[25] Peter Warren. Teaching programming using scripting languages. Journal of Computing
Sciences in Colleges, 17:205–216, 2001.

[26] https://developer.android.com/training/testing/other-components/ui-automator. [Online;
accessed 05-September-2023].

	Introdução
	Fundamentação
	Teste de Software
	Pirâmides de Testes
	Testes Unitários
	Testes de Serviços
	Testes de Interface do Usuário (UI)
	A Pirâmide Clássica
	A Pirâmide Invertida

	Métodos de Testes
	Estrutural (Caixa-Branca)
	Funcional (Caixa-Preta)

	Testes Automatizados

	Testes de UI
	Ferramentas de Testes de UI
	Web
	Selenium
	Katalon Studio

	Android
	Espresso
	UI Automator
	Appium

	iOS
	XCUITest
	EarlGrey

	Trabalhos Relacionados

	Solução
	Seleção do Ferramental
	Lua
	XCUITest

	Exemplo de Uso
	Arquitetura da Solução
	Algoritmo da Solução
	Estrutura de Pastas
	Execução dos Testes

	Análise
	Metodologia
	Seleção da Aplicação
	Seleção dos Casos de Teste
	Seleção dos Critérios de Avaliação

	Preparação
	Setup
	Helpers
	Caso de Teste 1
	Caso de Teste 2
	Caso de Teste 3
	Caso de Teste 4
	Caso de Teste 5

	Resultados
	Critérios de Avaliação
	API
	Suporte a Logs
	Suporte a uma grande variedade de propriedades
	Tempo de Execução

	Considerações Finais

	Conclusão e Trabalhos Futuros
	Casos de Teste
	Helpers
	Caso de Teste 1
	Caso de Teste 2
	Caso de Teste 3
	Caso de Teste 4
	Caso de Teste 5

	Referências Bibliográficas

