| [~=2
ne~-
[[

|

g

VIRTUS IMPAVIDA
L |

Universidade Federal de Pernambuco

Centro de Informatica

Graduagdo em Ciéncia da Computagao

Facilitando a Criacao de Testes de Ul
Automatizados em Fluxos de Aplicacoes
iOS

Jacqueline Alves Barbosa

Trabalho de Graduacao

Recife - PE
Setembro/2023

Universidade Federal de Pernambuco

Centro de Informatica

Jacqueline Alves Barbosa

Facilitando a Criacao de Testes de UI Automatizados em
Fluxos de Aplicacoes i0OS

Trabalho apresentado ao Programa de Graduacdo em
Ciéncia da Computacdo do Centro de Informdtica da Uni-
versidade Federal de Pernambuco como requisito parcial
para obtencdo do grau de Bacharel em Ciéncia da Compu-
tagdo.

Orientador: Kiev Santos da Gama

Recife - PE
Setembro/2023

Ficha de identificacdo da obra elaborada pelo autor,
através do programa de geracao automatica do SIB/UFPE

Barbosa, Jacqueline Alves.

Facilitando a criacdo de testes de UI automatizados em fluxos de aplicacdes
iOS / Jacqueline Alves Barbosa. - Recife, 2023.

61 p.:il., tab.

Orientador(a): Kiev Santos da Gama

Trabalho de Conclusio de Curso (Graduacao) - Universidade Federal de
Pernambuco, Centro de Informatica, Ciéncias da Computacdo - Bacharelado,
2023.

Inclui referéncias, apéndices.

1. Automagdo de Testes. 2.10S. 3. XCUITest. 4. Lua. I. Gama, Kiev Santos
da. (Orientacdo). II. Titulo.

000 CDD (22.ed.)

Dedico este trabalho a Jacqueline de 17 anos, que por
vezes duvidou que conseguiria chegar até aqui. E a todas

as pessoas que em algum momento a ajudaram a ndo
desistir.

Agradecimentos

Gostaria de agradecer aos meus pais, que para mudar de vida tiveram que deixar muito para
trds, mas que também construiram muito juntos. Obrigada por me ensinarem a importancia de
ir atrds do que quero e por sempre apoiarem o que vi como melhor para mim. Quero agradecer
também os meus irmaos, que tiveram um papel fundamental na constru¢do de quem sou e me
incentivaram a querer continuar.

Quero também agradecer aos meus amigos, especialmente aqueles que conheci no Centro
de Informética e que até hoje tenho o privilégio de conviver. Biel, fcaro, Igor, e Pedro, vocés
tornaram esta jornada mais leve e divertida. Obrigada por me ajudar a persistir e seguir em
frente, uma carona por vez. Um agradecimento especial para os meus amigos Renan e Alyne,
que estiveram ao meu lado nos momentos de desanimo e me ajudaram a nao deixar que ele
tomasse conta de mim.

Minha gratiddo se estende a todas as pessoas da Apple Developer Academy, que estiveram
presentes ao longo de dois anos de muito aprendizado e crescimento, tanto profissional quanto
pessoal. Minha trajetdria tomou um rumo diferente gracas a vocés. Entre todos, quero fazer
um agradecimento especial a Kiev, que aceitou me orientar neste trabalho e me deu a confi-
anca necessaria para segui-lo. Por fim, quero expressar minha gratiddo a todos os professores
que fizeram parte da minha formacdo, desde o jardim de infancia até a gradua¢do. Cada um
de vocés, que escolheu como missdo de vida compartilhar conhecimento com tantas pessoas,
desempenhou um papel crucial nesta conquista. Agradeco profundamente por terem ajudado a
me tornar a pessoa que sou hoje.

Obrigada!

“A frase mais perigosa que existe em um idioma é: Sempre fizemos assim.”
—GRACE HOPPER

Resumo

O processo de desenvolvimento de aplicativos mdveis envolve o planejamento e design da in-
terface grafica, que geralmente € entregue a equipe de desenvolvimento por meio de mockups,
que € uma representacdo visual e nao funcional do produto demonstrando como os compo-
nentes estardo presentes na interface. Testes, como os de interface de usudrio (UI), regressdo e
integracdo, sdo essenciais para garantir a qualidade do software. No entanto, os testes de Ul sdo
muitas vezes executados de forma manual, o que os torna demorados e vulneraveis a erros, uma
vez que dependem inteiramente da aten¢do humana que, com o passar do tempo e apds vdrias
repeticoes durante a realizacdo dos testes, pode perder a atengdo e deixar que falhas passem
despercebidas. A automacdo desses testes oferece diversas vantagens, mas muitas ferramentas
tém barreiras de uso devido ao conhecimento técnico necessario.

No caso de aplicagdes 10S, um framework muito utilizado € o XCUITest, disponibilizado
pela Apple. Apesar de sua fécil integracdo com o ambiente de desenvolvimento, contém algu-
mas limitagdes como a necessidade de que os testes sejam escritos na linguagem Swift e a falta
de uma maneira de realizar uma verificacao visual da aplicacdo sendo testada.

Nesse trabalho € proposto um framework que simplifica a automacao de testes de Ul em
aplicativos 10S por meio de scripts. Esse framework verifica a integracdo e a aparéncia da
interface em diferentes dispositivos e configuragdes, tornando a automacao de testes mais aces-
sivel, mesmo para desenvolvedores com pouca experiéncia. Os testes sdo executados através
da integracdo de scripts, escritos em Lua, com o XCUITest, que simula as interagdes de um
usudrio na aplicagdo.

Foi possivel implementar casos de teste com um nimero reduzido de linhas de cédigo, em
comparag¢do com o uso somente da API do XCUITest, e abstraindo detalhes da implementagdo
interna da aplicacdo. Além disso, também foi possivel validar visualmente fluxos da aplicagcao
testada a partir de imagens de referéncia previamente definifas.

Palavras-chave: Automacio de Testes, i0S, XCUITest, Lua

11

Abstract

The mobile app development process involves planning and designing the graphical interface,
which is typically delivered to the development team through mockups, which are a visual and
non-functional representation of the product, demonstrating how the components will be pre-
sent in the interface. Tests, such as user interface (UI), regression, and integration tests, are
essential to ensure software quality. However, Ul tests are often performed manually, making
them time-consuming and error-prone, as they rely entirely on human attention, which, over
time and after several repetitions during testing, may lose focus and allow defects to go unno-
ticed. Automating these tests offers several advantages, but many tools have usability barriers
due to the technical knowledge required.

In the case of 10S applications, a widely used framework is XCUITest, provided by Apple.
Despite its easy integration with the development environment, it has some limitations, such
as the requirement that tests be written in the Swift language and the lack of a way to visually
verify the application being tested.

This work proposes a framework that simplifies the automation of UI tests in 1OS applica-
tions through scripts. This framework verifies the integration and appearance of the interface
on different devices and configurations, making test automation more accessible, even for de-
velopers with limited experience. Tests are executed through the integration of scripts, written
in Lua, with XCUITest, which simulates user interactions within the application.

It was possible to implement test cases with a reduced number of lines of code, compared
to using only the XCUITest API, and abstracting details of the application’s internal implemen-
tation. Additionally, it was also possible to visually validate flows within the tested application
using pre-defined reference images.

Keywords: Test Automation, 10S, XCUITest, Lua

13

Sumario

1 Introducao

2 Fundamentacao

2.1

22
2.3

24

Teste de Software
2.1.1 Piramides de Testes
2.1.1.1 Testes Unitarios
2.1.1.2 Testes de Servigos
2.1.1.3 Testes de Interface do Usuario (UI)
2.1.1.4 A Piramide Classica
2.1.1.5 A Piramide Invertida
2.1.2 Métodos de Testes
2.1.2.1 Estrutural (Caixa-Branca)
2.1.2.2 Funcional (Caixa-Preta)
2.1.3 Testes Automatizados
Testes de Ul
Ferramentas de Testes de Ul
2.3.1 Web
2.3.1.1 Selenium
2.3.1.2 Katalon Studio
2.3.2 Android
2.3.2.1 Espresso
2.3.2.2 Ul Automator
2.3.2.3 Appium
2.3.3 1i0S
2.3.3.1 XCUITest
2.3.3.2 EarlGrey
Trabalhos Relacionados

3 Solucao

3.1

32
33
3.4

Selecao do Ferramental
3.1.1 Lua

3.1.2 XCUITest
Exemplo de Uso
Arquitetura da Solugdo
Algoritmo da Solugdo

15

O O 00 000X I I N B BWWWWW e

—_—
(el e N}

N = = = = = e
S o0 B~ W W W

16

34.1
342

4 Analise

SUMARIO

Estrutura de Pastas
Execucdo dos Testes

4.1 Metodologia

4.1.1
4.1.2
4.1.3

Selecao da Aplicagao
Selecao dos Casos de Teste
Selecao dos Critérios de Avaliacao

4.2 Preparagio

4.2.1
422
4.2.3
4.2.4
4.2.5
4.2.6
4.2.7

Setup

Helpers

Caso de Teste 1
Caso de Teste 2
Caso de Teste 3
Caso de Teste 4
Caso de Teste 5

4.3 Resultados

43.1

432

Critérios de Avaliacao

43.1.1 API

4.3.1.2 Suporte a Logs

4.3.1.3 Suporte a uma grande variedade de propriedades
4.3.1.4 Tempo de Execucao

Consideracdes Finais

5 Conclusao e Trabalhos Futuros

A Casos de Teste

A.1 Helpers

A.2 Casode Teste 1
A.3 Caso de Teste 2
A.4 Caso de Teste 3
A.5 Caso de Teste 4
A.6 Caso de Teste 5

Referéncias Bibliograficas

20
21

23
23
23
23
30
30
30
32
34
34
35
35
36
37
37
37
38
38
39
40

41

43
43
44
46
49
51
54

58

2.1
22

3.1
3.2
33
34
3.5
3.6
3.7
3.8
3.9

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11

A.l
A2
A3
A4
A5
A.6
A7
A8
A9

Lista de Figuras

A Pirdmide de Testes Classica
A Piramide de Testes Invertida

Exemplo - Caso de Teste 1
Referéncias - Caso de Teste 1
Exemplo - Caso de Teste2
Referéncias - Caso de Teste 2
Arquitetura da Solugdo
Registro de Funcao

Uso de

Estrutura de Pastas

Execugdo dos Testes

Cédigo Original - Setup
Coédigo com BIUTest - Setup
Cédigo Original - Helpers
Cdédigo com BIUTest - Helpers

Detalhes Cédigo Original - Caso de Teste 2
Detalhes C6digo com BIUTest - Caso de Teste 2
Detalhes Codigo Original - Caso de Teste 4
Detalhes C6digo Original - Caso de Teste 5

Depuracgao

Log de Erro XCUITest

Log de Erro BIUTest

Fluxo - Inicio Casos de Teste

Cédigo Original - Caso de Teste 1
Cédigo com BIUTest - Caso de Teste 1
Fluxo - Caso de Teste 1

Cédigo Original - Caso de Teste 2
Cédigo com BIUTest - Caso de Teste 2
Fluxo - Caso de Teste 2

Cédigo Original - Caso de Teste 3
Cédigo com BIUTest - Caso de Teste 3
A.10 Fluxo - Caso de Teste 3

A.11 Cédigo Original - Caso de Teste 4

17

15
15
16
17
18
19
19
20
22

31
31
32
33
34
34
35
36
38
39
39

43
44
44
45
46
47
48
49
49
50
51

18

LISTA DE FIGURAS

A.12 Coédigo com BIUTest - Caso de Teste 1
A.13 Fluxo - Caso de Teste 4

A.14 Cédigo Original 1 - Caso de Teste 5
A.15 Codigo Original 2 - Caso de Teste 5
A.16 Coédigo com BIUTest - Caso de Teste 5
A.17 Fluxo - Caso de Teste 5

52
53
54
55
56
57

4.1
4.2
4.3
4.4
4.5
4.6
4.7

Lista de Tabelas

Caso de Teste 1

Caso de Teste 2

Caso de Teste 3

Caso de Teste 4

Caso de Teste 5

Lines of Code (LOC) - Casos de Teste
Tempo de Execugdo - Casos de Teste

19

24
25
26
27
29
37
40

CAPITULO 1

Introducao

Durante o processo de desenvolvimento de um aplicativo, a interface de cada tela nos fluxos
planejados € projetada por uma equipe de design que define quais componentes serdo usados,
suas especificacoes e como devem ser apresentados ao usudrio final. Esses elementos sdo
entdo entregues a equipe de desenvolvimento por meio de mockups, uma representacdo visual
e ndo funcional do produto demonstrando como os componentes estardo presentes na interface,
criados com ferramentas como Figma, Adobe XD, Sketch, InDesign, entre outras. Para garantir
que o aplicativo funcione corretamente e que os elementos de design sejam implementados
conforme o planejado, as empresas de software realizam diversos tipos de testes, incluindo
testes de interface de usudrio (UI), de integracdo e de regressao.

Os testes de Ul sdo frequentemente realizados manualmente, nos quais as pessoas testado-
ras seguem um roteiro de interagdes e verificam se a aparéncia da tela corresponde ao design
original representado nos mockups. No entanto, esse processo manual consome muito tempo,
jéa que exitem varios dispositivos e configura¢des onde uma aplicacdo pode ser executada, e esta
sujeito a falhas humanas. Portanto, surgiu a necessidade de automacao desses testes. Os testes
automatizados oferecem diversas vantagens, como redu¢do de custos, testes mais frequentes,
deteccao precoce de defeitos e melhoria na qualidade do sistema em comparacdo com os testes
manuais [5].

Diversos frameworks e ferramentas foram desenvolvidos para a realiza¢do de testes auto-
matizados de UlI, tais como o XCUITest, o EarlGrey e o Appium [4] [14]. Essas ferramentas
ajudam a validar se as funcionalidades da aplicacdo estdo funcionando conforme o esperado.
No entanto, cada ferramenta possui métodos diferentes de verificagdo e geram resultados dis-
tintos para andlise. Além da valida¢do das funcionalidades, € importante verificar se a interface
estd sendo exibida corretamente de acordo com o design original, se 0s componentes estdo na
posicdo correta, se as cores sd0 as mesmas presentes nos mockups, entre outros. Essa veri-
ficac@o especifica ndo é comumente oferecida pelas ferramentas por padrao, exigindo que os
usudrios combinem mais de uma ferramenta para realizar essa validagdo. Além disso, muitas
das ferramentas exigem conhecimento técnico especifico, tanto para a integracdo no projeto
quanto para escrever € manter os testes, o que pode ser uma barreira para pessoas sem conheci-
mento técnico, dificultando a participacdo delas no processo e aumentando o tempo necessario
para que novos membros da equipe se familiarizem com elas.

Nesse contexto, este trabalho propde o framework BIUTest (User Interface Babysitter), que
permite a automatizacao de testes de Ul em aplicativos iOS por meio de scripts de facil com-
preensdo. Esse framework ndo apenas verifica a correta integragdo da aplicacdo, mas também
como a interface seria apresentada ao usudrio final em diferentes dispositivos e configuracoes.
Sua API simplificada foi projetada para permitir que os casos de teste sejam escritos em poucas

2 CAPITULO 1 INTRODUCAO

linhas e abstraindo detalhes da implementagdo interna da aplica¢do, com o objetivo de facilitar
o entendimento por parte de pessoas com pouco conhecimento técnico. Ademais, a estrutura
dos casos de teste foi planejada na intengdo de ajudar a assegurar o funcionamento dos fluxos
importantes da aplicacdo que forem estipulados.

CAPITULO 2

Fundamentacao

2.1 Teste de Software

Teste de Software € o processo de avaliagdo de um sistema para garantir que este atenda aos
critérios definidos pelo cliente. O objetivo € identificar discrepancias entre os resultados reais e
esperados, com foco principal na descoberta de bugs, erros ou requisitos ausentes no software
ou sistema [24]. E uma etapa muito importante do processo de desenvolvimento do software
para a garantia da qualidade do mesmo, e pode ser considerado um investimento.

2.1.1 Piramides de Testes

Em Succeeding with Agile: Software Development Using Scrum [3] o autor introduz o con-
ceito da piramide de testes, uma representagcdo visual sobre a organizagdo légica dos testes em
software. A piramide € formada por trés camadas: testes unitdrios, testes de servico, ou de inte-
gracgdo, e testes de UI. A forma de piramide € uma metafora, horizontalmente para a quantidade
de testes necessdrios de cada tipo, e verticalmente para a complexidade e o tempo necessarios
para a execucao dos testes. Existem alguns tipos de piramides que podem definir o modelo de
testes a ser utilizado e a proporcao de cada tipo de teste a ser implementado, dependendo do
contexto de cada projeto. A seguir sao especificados cada um dos tipos de teste presentes nas
piramides e uma explicacao de dois dos modelos existentes.

2.1.1.1 Testes Unitarios

Nessa fase os testes sdo feitos de maneira isolada em partes menores do sistema, como métodos,
funcoes, classes, ou qualquer parte pequena testavel do programa. O objetivo dessa fase € evitar
que erros nessas partes menores sejam propagados para niveis mais altos dos testes.

Normalmente eles sdo escritos pelas proprias pessoas desenvolvedoras, e podem ser feitos
durante o desenvolvimento. Os testes unitarios constituem a maior parte da base de testes do
sistema e sdo muito rapidos, podendo rodar milhares em poucos minutos.

2.1.1.2 Testes de Servigos

Os testes de servico, também chamados de testes de integracdo, sdo responsaveis por testar a
integracdo do sistemas com outras partes fora da aplicacdo, como bancos de dados, sistemas
de arquivos e chamadas de redes para outras aplicagdes. Nesse caso € necessdrio rodar ndo s
a aplicacdo, como também esses componentes que se comunicam com ela. Por esse motivo
esse tipo de teste demanda um tempo maior para ser executado, em comparagdo com os testes

4 CAPITULO 2 FUNDAMENTACAO

unitarios. Assim como nos testes unitarios, € necessario um conhecimento sobre a estrutura
interna da aplicagc@o para que os testes sejam escritos, por esse motivo eles também sao feitos
pelas pessoas desenvolvedoras.

2.1.1.3 Testes de Interface do Usuario (UI)

Os testes de Ul sdo feitos para assegurar que a interface da aplicagdo esta funcionando corre-
tamente. Isso inclui, por exemplo, garantir que uma entrada do usudrio acione alguma deter-
minada acdo, ou que os dados estdo sendo mostrados da forma como foram desenhados para
Ser.

Atualmente o mais comum € que esse tipo de teste seja realizado de forma manual, onde as
pessoas responsaveis pelos testes seguem um determinado roteiro de interagdes e verificam se o
estado da aplicacdo apds cada uma delas € o esperado. No entando, existem ferramentas que sao
utilizadas para automatizar parte desses processo. Elas simulam as interacdes de um usudrio e
verificam de diferentes maneiras se a interface estd adequada, como por exemplo verificando a
existéncia de elementos a patir de um identificador ou através de uma andlise estatica de uma
captura de tela. Essas ferramentas diminuem a possibilidade de falhas humanas e aumentam a
eficiéncia do processo de testes, reduzindo o tempo gasto nestas atividades [5].

Esse tipo de teste demanda mais tempo do que os unitdrios e os de servico. Apesar disso,
mesmo com uma quantidade menor, € possivel testar uma boa parte da aplicagao.

2.1.1.4 A Piramide Classica

De acordo com a Pirdmide de Testes Classica, a quantidade de testes unitarios deve ser maior
que a quantidade de testes de servigo, e este maior que a de testes de UL. O objetivo dessa
divisdo é manter um equilibrio entre velocidade e eficicia, além de que as alteracdes feitas em
um nivel mais alto da aplicagdo, na interface e nas APIs, sdo mais frequentes do que na légica
das funcdes implementadas nos codigos, por esse motivo necessitam de um esfor¢o maior para
serem validadas [23]. Na figura 2.1 é possivel ver uma representacdo da versdo classica da
piramide.

A A
more slower
integration

Ul
Tests

Service Tests

more Unit Tests
Isolation faster
\J Y

Figura 2.1 A Piramide de Testes Classica. Fonte: The Practical Test Pyramid [3]

2.1 TESTE DE SOFTWARE 5

2.1.1.5 A PirAmide Invertida

Outro tipo de modelo de testes € a Piramide Invertida, também chamada de Cone de Sorvete.
Na Figura 2.2 é possivel ver uma representacdo dela. Nesse modelo é aplicada uma grande
cobertuda de testes de UI, com uma grande quantidade de testes manuais, € pouca ou nenhuma
cobertura de testes unitdrios automatizados. Nesse caso os testes sdo mais focados no resultado
de como a aplicacdo estard nas maos do usudrio final. Esse modelo nao é muito recomendado
nos dias de hoje, ja que os testes de Ul sdo mais demorados e, quando realizados manualmente,
sdo mais suscetiveis a erros despercebidos. Por outro lado, em alguns casos pode fazer sentido
0 uso dele, como por exemplo em sistemas legados com poucos testes unitdrios implementados
ou em casos onde a aplicac@o sendo desenvolvida € um protétipo que precisa ser rapidamente
validado.

Manual Testing

Ul Tests
(E2E)

Integration Tests

Unit Tests

Figura 2.2 A Piramide de Testes Invertida. Fonte: Pro iOS Testing [23]

6 CAPITULO 2 FUNDAMENTACAO

2.1.2 Métodos de Testes

Para a realizacdo dos testes podem ser aplicados diferentes métodos levando em conta o tipo
do sistema, os conhecimentos da pessoa realizando os testes, as ferramentas disponiveis e os
objetivos da avaliagdo. Dois exemplos desses métodos sao os testes estruturais e os funcionais.

2.1.2.1 Estrutural (Caixa-Branca)

O teste de caixa-branca é uma técnica que testa a utilidade do produto e também a estrutura
interna da aplicagdo [20]. Por esse motivo, a pessoa realizando o teste necessita ter um conhe-
cimento da implementacdo do programa sendo testado. Os testes unitdrios, por exemplo, se
encaixam nessa categoria.

2.1.2.2 Funcional (Caixa-Preta)

Diferente dos testes caixa-branca, os testes caixa-preta ndo levam em conta a estrutura interna
e como o sistema foi implementado. Nesse método sdo testadas apenas as funcionalidades do
sistema, comparando os resultados obtidos a partir das entradas com os resultados esperados.
Os testes de Ul se encaixam nessa categoria, sdo analisadas as caracteristicas graficas do pro-
grama a partir de cada interacdo e nao se leva em conta o cddigo por trds. Por esse motivo,
pessoas sem conhecimento sobre a implementacdo podem realizar esse tipo de teste.

2.1.3 Testes Automatizados

A automatizagdo de testes € uma técnica que utiliza um software para realizar automaticamente
o processo de validagdo das funcionalidades e dos critérios de um sistema. Testes automati-
zados podem levar a custos mais baixos, maior frequéncia de testes, identificacdo precoce de
defeitos e maior qualidade do sistema [1], quando comparados com testes realizados manual-
mente.

A inddstria de software vem se tornando um ambiente cada vez mais rapido e agil, com
énfase em integracdo, desenvolvimento e entrega continuos [17]. Esse ambiente coloca no-
vos requisitos em relacio a velocidade de testes e necessita de feedbacks mais rdpidos e mais
frequentes sobre a qualidade do software. A Integracdo Continua (CI) é uma préatica no de-
senvolvimento de software, que envolve as pessoas desenvolvedoras unindo suas alteracdes
de codigo frequentemente em um repositério central. Posteriormente, sao realizados builds e
testes automatizados. Os principais objetivos da integracdo continua sdo acelerar a detecgcdo
e resolucdo de bugs, aprimorar a qualidade do software e diminuir o tempo necessario para
validar e liberar atualizacdes de software.

2.2 Testes de Ul

Os testes de UI podem ser divididos em duas categorias: o teste das fungdes da aplicagdo
por meio da interface do usudrio e o teste para garantir que a interface do usudrio funcione
corretamente. Esse dltimo pode ser subdividido em dois tipos: o teste para verificar se uma

2.3 FERRAMENTAS DE TESTES DE Ul 7

integracdo de interface funciona corretamente e o teste para verificar se uma interface € exibida
corretamente [18]. Uma das técnicas utilizadas para verificar se a interface esta correta € através
de testes de snapshot. Podemos fazer uma especificacdo da seguinte maneira: enquanto os
testes de Ul focam em "o que"aparece na interface, os testes de snapshot verificam "como"os
elementos aparecem na tela.

E de extrema importancia assegurar que aplicativos méveis e web sejam exibidos e funcio-
nem adequadamente em uma variedade de dispositivos e navegadores, o que pode levar bastante
tempo devido a diferentes caracteristicas fisicas e configuracdes de software que o dispositivo
pode apresentar. Entre as caracteristicas fisicas importantes estdo o tamanho da tela, a den-
sidade de exibicao (ou resolugdo da tela) e a orientacdo. Enquanto isso, as configuracdes de
software relevantes incluem o idioma do telefone, o tamanho da fonte, o modo de cor/contraste,
o nivel de brilho, entre outros [7].

Levando isso em consideragdo, torna-se impraticavel a realizacio de testes de Ul exclusi-
vamente de forma manual, uma vez que isso implicaria na necessidade de testar em diversos
dispositivos distintos. Portanto, se fez essencial encontrar métodos para automatizar esse pro-
cesso, possibilitando a realizagdo de testes em uma variedade de dispositivos, cada um com suas
proprias configuragdes, a0 mesmo tempo em que se evita a ocorréncia de falhas despercebidas.
Em [9] os autores simplificam a diferenciacdo entre testes manuais e automatizados ao sugerir
que os testes automatizados sao principalmente usados para evitar a ocorréncia de novos erros
nos médulos funcionais j4 verificados. Por outro lado, os testes manuais sao mais eficazes na
descoberta de erros novos e inesperados. Portanto as duas estretégias sdo complementares e
essenciais no processo de garantia de qualidade de uma aplicacgao.

2.3 Ferramentas de Testes de Ul

No contexto das ferramentas de automacgdo de testes de U, existem varias opg¢des voltadas
para diferentes tipos de interfaces, como desktop, web e dispositivos méveis. Essas ferramen-
tas proporcionam recursos para a criacdo e execugdo de casos de teste, além de permitirem a
realizacdo de uma suite de testes na qual as pessoas testadoras podem definir um conjunto de
testes a serem executados. Nessa secdo serdo citadas algumas das ferramentas consideradas
estado da arte para diferentes plataformas.

2.3.1 Web

Existem diversas ferramentas para realizacdo de testes de Ul para aplicagdes web, em [13]
e [19] algumas delas sdo comparadas identificando suas vantagens e desvantagens. A partir
disso foram identificadas duas delas que propdem estratégias diferentes e sdo algumas das mais
utilizadas para essa tarefa. Essas ferramentas sdo o Selenium e o Katalon Studio, que serdao
apresentados a seguir.

8 CAPITULO 2 FUNDAMENTACAO

2.3.1.1 Selenium

O Selenium € um framework de automacao amplamente utilizado no campo de testes de apli-
cativos da web. E um projeto de cédigo aberto e é compativel com multiplos sistemas opera-
cionais e linguagens de programacdo, além de suportar testes em varios tipos de navegadores.
No entanto existem algumas desvantagens, como a necessidade de construir projetos do zero,
0 que pode levar a processos de configuracdo demorados. Além disso, o Selenium pode nao
fornecer razdes especificas para falhas nos testes, o que adiciona complexidade ao processo de
depuracao.

2.3.1.2 Katalon Studio

Katalon Studio é um software de c6digo aberto reconhecido por sua capacidade de exportar com
facilidade o c6digo de scripts do Selenium, sendo uma possivel alternativa a essa ferramenta. E
conhecido como uma ferramenta de teste de automacao sem a necessidade de conhecimento em
programacdo, capturando as atividades do usudrio, localizadores da web e gerando relatérios
abrangentes. O Katalon oferece suporte a varios navegadores e sistemas operacionais, 0 que o
torna uma escolha versatil. Ademais, ele se destaca por sua interface de usudrio amigavel, o
que o diferencia de outras ferramentas comerciais e de cddigo aberto.

2.3.2 Android

No site oficial para desenvolvedores Android! existe uma pagina dedicada a explicacio de tes-
tes de UI automatizados, onde também sdo sugeridas algumas ferramentas para a realizagc@o dos
mesmos. Duas delas também sdo citadas em trabalhos [14] e [21] onde sdo feitas comparagdes
entre ferramentas de automatizacdo de testes de Ul em aplicacdes Android.

Por meio destes foi possivel relacionar trés ferramentas que sio consideradas estado da arte
para esse tipo de teste nessa plataforma: o Espresso, o Ul Automator e o Appium, que serao
descritos a seguir.

2.3.2.1 Espresso

O Espresso, desenvolvido pelo Google, € uma ferramenta de teste projetada para facilitar a cria-
¢do de casos de teste destinados a avaliar a interface do usuédrio. Ele é amplamente reconhecido
como uma das principais ferramentas de teste para aplicativos Android. O Espresso oferece
flexibilidade para testes de caixa-preta, a0 mesmo tempo em que permite a validacdo de com-
ponentes individuais ao longo do processo de desenvolvimento. Os testes no Espresso podem
ser escritos em Java ou Kotlin, que sdo linguagens comumente utilizadas por desenvolvedores
nessa plataforma.

2.3.2.2 Ul Automator

O manual [26] do Ul Automator o descreve como uma ferramenta de teste de interface do
usudrio adequada para testes funcionais de Ul entre aplicativos, abrangendo tanto aplicativos

"https://developer.android.com/

https://developer.android.com/

2.3 FERRAMENTAS DE TESTES DE Ul 9

do sistema quanto aplicativos instalados. Durante os testes, € possivel interagir ndo apenas com
a aplicagdo sendo testada, mas também com todas as outras no dispositivo. Isso se deve a capa-
cidade da ferramenta de acessar as propriedades dos componentes da interface do dispositivo
onde os testes estdo sendo executados. Dessa forma, o Ul Automator pode ser caracterizado
como uma ferramenta de teste de caixa-preta, pois ndo depende da implementacdo interna da
aplicacao.

2.3.2.3 Appium

O Appium € uma ferramenta usada para testar aplicagdes nativas, hibridas, mobile web e para
desktops. Ela tem suporte para simuladores e execucdo em aparelhos reais. A aplicacdo do
Appium funciona através de uma arquitetura cliente-servidor, por isso 0 processo que esta
rodando a automacao de testes (nesse caso, o servidor) ndo precisa estar no mesmo local que a
aplicagio sendo testada (nesse caso, o cliente). A ferramenta utiliza 0 WebDriver spec’ como
API e, através dos drivers de cada plataforma, converte o protocolo WebDriver para chamadas
das bibliotecas especificas de cada uma delas. E necessario ter um certo conhecimento sobre as
especificidades da plataforma e da API para escrever os testes, porém eles podem ser escritos
em diversas linguagens de programagdo, como Ruby, Java, Node.js, PHP, C#, Clojure e Perl.

Como € um programa separado da IDE usada para desenvolver a aplicacdo, ocasionalmente
pode ser necessdrio aguardar uma atualizacdo da ferramenta quando a IDE € atualizada, a fim
de evitar problemas nos testes existentes. Além disso, a configurag¢do da aplicagdo no Appium
pode ser um pouco complexa.

2.3.3 i0OS

Em [4] o autor faz um estudo comparativo entre as principais ferramentas de automatizacao de
testes de Ul para aplicagcdes 10S com o objetivo de demonstrar o estado da arte sobre o assunto.
Além dessa, ndao foram encontradas outras pesquisas focadas especificamente na plataforma
i0S, por esse motivo foram buscados em sites bastante utilizados pela comunidade para elencar
as quais eram as mais recomendadas para esse tipo de teste. A partir disso, foi possivel analisar
trés ferramentas que mais foram citadas: o XCUITest, o EarlGrey e o Appium, esse ultimo
ja citado e explicado na secdo onde foram trazidas as ferramentas para testes em aplicacdes
Android. A seguir uma breve explicagcdo das outras duas.

2.3.3.1 XCUITest

O XCUTITest ¢ um framework criado pela Apple em 2015 para a automatizagdo de testes de
UL Foi construido em cima do XCTest, um framework de testes integrado no XCode, que
¢ o ambiente de desenvolvimento integrado (IDE) da Apple. Os testes podem ser escritos
utilizando as linguagens Swift e Objective-C para as aplicacdes iOS e macOS nativas.

Como o XCUITest vem integrado no XCode, ndo € necessdrio nenhum tipo de instalagdo
ou configuragdo do ambiente para utilizd-lo. Os testes criados utilizando esse framework sdao
répidos e confidveis. Além disso, o usudrio pode executar os testes como parte do seu processo

thtps://w3c.github.io/webdriver

https://w3c.github.io/webdriver

10 CAPITULO 2 FUNDAMENTACAO

de CI, e ter feedbacks continuos nos dispositivos testados.

Os testes construidos no XCUITest sdo do tipo Caixa-Preta, ou seja, ndo se tem acesso a
instrutura interna do cédigo durante a execuc¢do, e nesse caso sdo rodados em um processo
separado da aplicacdo em si.

2.3.3.2 EarlGrey

O EarlGrey € uma ferramenta desenvolvida pelo Google com o objetivo de melhorar a sincro-
nizacdo com a aplica¢c@o durante os testes, evitando comportamentos nao-deterministicos e, por
consequéncia, os chamados testes "flaky", onde um teste executado vdrias vezes sem mudan-
cas de ambiente produz resultados diferentes. Em [22] € apontado que essas melhorias foram
feitas baseadas em outra ferramenta de autoria do Google, o Espresso, que foi desenvolvido
justamente para mitigar esses problemas nos testes de Ul em aplicacdes Android.

Os testes construidos com o EarlGrey sao do tipo Caixa-Cinza. Apesar de simularem inte-
racOes de usudrios reais, a pessoa desenvolvedora precisa ter acesso ao codigo para lidar com
os elementos da tela. Os testes sdo executados no mesmo processo da aplicacao sendo testada,
por esse motivo ndo € possivel interagir com telas de fora dela, como dialogs do sistema por
exemplo.

2.4 Trabalhos Relacionados

A medida que as tecnologias empregadas no desenvolvimento de aplicativos méveis avangam,
¢ fundamental que os frameworks de teste acompanhem esse progresso. Essa evolugdo € es-
sencial para viabilizar a avaliagdo de novos componentes e funcionalidades, possibilitando a
realizacdo de valida¢des nos produtos e contribuindo de maneira significativa para a qualidade
do software. Uma categoria de validacdo de extrema importancia é a validacdo visual, que
visa garantir que o usudrio interaja e visualize a aplicacdo da maneira prevista durante o de-
senvolvimento. O teste visual assegura o correto funcionamento da interface do usudrio (UI) e
engloba tanto a validacdo da integracao adequada da interface quanto a verificacdo da exibi¢cdo
correta da mesma [18]. Neste trabalho, € proposta uma ferramenta que se enquadra em ambas
categorias de validag@o visual, com foco em aplicacdes desenvolvidas para dispositivos 10S.

Em [4], foi realizado um estudo comparativo entre trés das ferramentas mais utilizadas para
a execugdo de testes de UI na plataforma i0S, com énfase na valida¢do do funcionamento
da integracdo dos componentes na aplicacdo, sem abordar a conformidade visual. Da mesma
forma, em [14], um trabalho semelhante foi conduzido, porém com foco em aplica¢des para a
plataforma Android.

Por sua vez, [16] propds uma ferramenta para a geracdo de casos de teste destinados a
aplicagdes multiplataforma, porém os testes sdo gerados com base nos componentes visuais
presentes na aplicacdo, sem considerar as regras de negécio ou os fluxos mais criticos, o que
resulta em uma validagdo menos focada nos casos de uso da aplicacdo. Uma abordagem que
leva bastante esse ponto em consideragdo € o Behavior Driven Development (BDD), em [11]
sdo citadas diversas vantagens dessa estratégia, como a importancia dada as necessidades e va-
lores de negdcio e a colaboracdo e visibilidade do time, mas também algumas desvantagens,

2.4 TRABALHOS RELACIONADOS 11

como a dificuldade de manutencdo e uma sobrecarga em times onde somente as pessoas testa-
doras participam do processo de testes.

Jaem [18], diversas aplica¢des da plataforma Android, com diferentes configuracdes, foram
analisadas por meio de uma abordagem que combinou avaliagdo manual e andlise estatica de
capturas de tela, utilizando uma ferramenta de automacao de testes. O objetivo era classificar
diferentes tipos de defeitos que podem ser encontrados em aplicacdes. Além disso, [6] propds
uma ferramenta de automacao de testes de interface, que realiza uma andlise em tempo de
execucdo, mas com foco na verificacdo da acessibilidade de aplicacdes Android. Em adicao,
[12] faz a proposta de uma ferramenta para andlise da interface de aplica¢des 10S através
de uma representacdo formal dos elementos com suas propriedades, porém essa técnica ndo
permite que o resultado das telas seja visto com o objetivo de ser validado visualmente.

Por fim, [15] apresentou um framework e uma ferramenta de automacgdo de testes, seme-
lhantes ao proposto neste trabalho, porém direcionados especificamente para aplicacdes na
plataforma Android.

CAPITULO 3

Solucao

Como mencionado anteriormente, os testes destinados a verificar o correto funcionamento da
interface do usudrio podem ser divididos em dois tipos: testes de integracio de interface e testes
de exibicdo da interface. A solucdo proposta neste trabalho se encaixa em uma combinagdo
dessas duas categorias.

Nos testes de Ul manuais, ¢ comum utilizar técnicas baseadas em checklists, nos quais
listas contendo varios casos de teste sdo criadas apontando erros comuns em cada um deles.
As pessoas testadoras seguem os passos dos casos de uso, verificando se a interface funciona
e é exibida corretamente. Essa mesma abordagem € aplicada na solucdo proposta, porém de
forma automatizada. Casos de teste sdo definidos e, por meio de uma sequéncia de instrucdes
em cada um deles, as intera¢des do usudrio sdo simuladas e a interface é comparada com uma
imagem de referéncia previamente definida.

Nessa se¢do serd proposto um framework chamado BIUTest, que tem o objetivo de assegu-
rar o correto funcionamento e a consisténcia visual de aplicagdes i0S através de testes de Ul
automatizados utilizando scripts de fécil legibilidade e manutencao.

3.1 Selecao do Ferramental

O BIUTest é composto por duas partes que conversam entre si: o script, contendo os casos de
teste a serem executaods, € o motor do framework. Os scripts sdo escritos em Lua e o fra-
mework que se comunica com o dispositivo € escrito em Swift através do XCUITest. A seguir
sdo apresentados os motivos levados em consideracio para a selecio dessas duas ferramentas.

3.1.1 Lua

Lua € uma linguagem de script interpretada de alto nivel que foi concebida em 1993 no Tecgraf,
um laboratério vinculado ao Departamento de Informética da PUC-Rio. Seu propésito inicial
era a extensao de aplicagdes em geral, prototipagem e a incorporagdo em software complexos,
como jogos. Atualmente, Lua ¢ amplamente empregada em diversas aplicacdes industriais,
incluindo softwares como o Photoshop e o Lightroom da Adobe, com foco especial em sistemas
embarcados, como o middleware Ginga para TV digital, e jogos populares, como World of
Warcraft e Angry Birds!.

Lua € reconhecida por sua simplicidade e velocidade, sem sacrificar seu poder de funcio-
nalidade. Apesar de oferecer poucas estruturas iniciais, a linguagem permite a implementagao

"https://www.lua.org/portugues.html

13

https://www.lua.org/portugues.html

14 CAPITULO 3 SOLUCAO

de novas estruturas utilizando os recursos disponiveis. Além disso, Lua € altamente portatil, ja
que ¢ distribuida em um pacote compacto - seu cédigo-fonte tem menos de 1 MB - e pode ser
compilada sem altera¢des em todas as plataformas com um compilador C padrio, abrangendo
desde sistemas Unix e Windows até dispositivos mdveis, microprocessadores € mainframes.
Além disso, Lua é um software de cédigo aberto, o que significa que pode ser utilizado e
adaptado para qualquer finalidade.

Conforme evidenciado por [25], linguagens de script geralmente sdo mais acessiveis para
aprender do que linguagens de programacdo convencionais, como C++ ou Java, devido a capa-
cidade de abstrair complexidades desnecessarias durante o processo de aprendizado. Isso faz
com que pessoas com menos conhecimento técnico possam usd-las com facilidade.

Por sua portabilidade, o uso de Lua permite que uma solu¢do semelhante a proposta nesse
trabalho seja replicada em outras plataformas, como em Android por exemplo. Dessa maneira
uma mesma pasta correspondente a um caso de teste pode ser utilizada para a execucdo dos
testes em ambas as plataformas. Essas caracteristicas combinadas fizeram de Lua uma escolha
ideal para ser a linguagem de script utilizada na criacao dos testes no BIU7est.

3.1.2 XCUITest

Como citado na Se¢do 2.3 de Ferramentas de Testes de Ul, o XCUITests e o EarlGrey sao
algumas das mais utilizadas para a realizacdo dessa tarefa. A partir disso foi feita uma busca
no site Github? com o objetivo de analisar projetos que se encaixam no alvo de utiliza¢do do
framework proposto nesse trabalho. A busca foi feita filtrando os repositorios publicos que
continham projetos para a plataforma 10S, feitos utilizando a linguagem Swift, que tinham
mais de 200 stars ou forks - indicando que sdo utilizados de exemplo por diversas pessoas
desenvolvedoras -, e que foram atualizados pelo menos apds 2020. Além disso ndo foram
levados em consideracao projetos que continham tutoriais e projetos que nao tinham nenhum
tipo de teste implementado.

A partir dessa busca foram selecionados 50 repositorios que foram analisados para verificar
os frameworks mais utilizados para a realizacao de testes. Desses 50, 23 deles (46%) contém
apenas testes unitarios, sendo que 12 deles (52%) implementam algum tipo de teste de interface
através de comparagdo visual de componentes por meio de testes de snapshot. Os outros 26
projetos restantes (52%) implementam testes de Ul e todos eles utilizam o XCUITest como
ferramenta para tal. Ademais, 2 deles também implementam o EarlGrey, podendo indicar que
alguma dessas ferramentas pode apresentar algum tipo de restricdo de uso que nesses casos
tiveram que ser supridas por outra. Além disso, foi observado que 5 das ferramentas que
possuem testes de UI (19%) fizeram algum tipo de implementacio para garantia visual através
de comparagdo com screenshots.

Levando em conta a grande presenca do framework XCUITest nos projetos onde foram
realizados testes de UI, ele foi escolhido para ser utilizado na simulacdo de interacdes com a
aplicagc@o no framework proposto nesse trabalho.

2https://github.com

https://github.com

3.2 EXEMPLO DE USO 15

3.2 Exemplo de Uso

A seguir € mostrado um exemplo de uso da ferramenta. Foi utilizada a aplica¢dao de exemplo
disponivel no repositorio da ferramenta. A aplicacio tem um campo de texto, dois botdes "sign
in"e "sign up"e um texto que fica na parte de baixo. Sao feitos dois casos de teste, sign-in e
sign-up.

« Sign In: Nesse caso de teste € apertado o botdo "sign in", entdo uma mensagem aparece
informando que o campo de texto estd vazio. Um texto € escrito no campo de texto e
o botdo "sign in"apertado novamente, mostrando entdo uma mensagem de sucesso. O
script utilizado para esse caso de teste pode ser visto na Figura 3.1, e as imagens de
referéncia geradas podem ser vistas na Figura 3.2.

.compare_ref()
.tap_button("sign in")
.compare_ref()

.enter_text { text = "biu@email.com", field = "email" }
.tap_button("sign in")
.compare_ref()

Figura 3.1 Caso de Teste 1. Fonte: Elaborado pela autora

15:37 7 - 15:37 7 - 15:37 < -

hiy@email.com|

sign in with biu@email.com

(2w) T mMARRmman
a s d f gh j k I
& zZ X c Vb nm &
123 @ espago retorno

® ¢

empty email

Figura 3.2 Referéncias Caso de Teste 1. Fonte: Elaborado pela autora

16

CAPITULO 3 SOLUCAO

« Sign Up: Nesse caso de teste € apertado o botdo "sign up", entdo uma mensagem aparece
requisitando a entrada de um email no campo de texto e o botdo "sign in"desaparece. O
botdo € apertado novamente e uma mensagem aparece informando que o campo de texto
estd vazio. Um texto € escrito no campo de texto e o botdo "sign up"apertado novamente,
mostrando entdo uma mensagem de sucesso. O script utilizado para esse caso de teste
pode ser visto na Figura 3.3, e as imagens de referéncia geradas podem ser vistas na
Figura 3.4.

.compare_ref()
.tap_button("sign up")
.compare_ref()
. tap_button("sign up")

.compare_ref()

.enter_text { text = "biu@email.com", field = "email"™ }
. tap_button("sign up")

.compare_ref()

Figura 3.3 Caso de Teste 2. Fonte: Elaborado pela autora

15:37

3.2 EXEMPLO DE USO

< & 15:37 < @ 15:37

enter your email empty email

15:37 < @

hiu@emailcon{

sign up with biu@email.com

Figura 3.4 Referéncias Caso de Teste 2. Fonte: Elaborado pela autora

17

18 CAPITULO 3 SOLUCAO

3.3 Arquitetura da Solucao

O motor do framework foi escrito em Swift e tem duas responsabilidades: fazer a comunicacao
entre o script e 0 c6digo nativo que invocard o XCUITest e preparar o ambiente para a execugdo
dos testes.

A comunicacdo entre o script e o c6digo nativo ocorre por meio de uma maquina virtual
(VM) que executa todo o cédigo Lua. Isso garante o isolamento, evitando que um erro critico
afete a aplicacdo. O cédigo-fonte do Lua inclui uma API C que oferece um conjunto de fungdes
disponiveis para que o programa se comunique com o Lua. Isso acontece através de uma
pilha virtual que faz a transferéncia de valores entre as duas partes. Cada elemento na pilha
representa um valor Lua, como nulo, nimero, string, etc. A VM implementada utiliza essa API
para a comunicagdo entre o cddigo nativo e o cédigo Lua, acessando a pilha virtual.

Embora seja possivel realizar conversdes de cada tipo de valor do Lua para Swift e vice-
versa, a estratégia adotada foi simplificar a implementacao colocando apenas strings € ponteiros
para fungdes nativas na pilha. Cada fungdo Swift registrada € guardada na memoria e, para cada
uma delas, um ponteiro é gerado e adicionado a pilha. Ao chamar uma fung¢ao no script Lua, os
parametros enviados s@o inicialmente codificados para uma string contendo um objeto JSON e
entdo o ponteiro para a funcao registrada é chamado. Com isso, a funcdo € invocada no cédigo
nativo recebendo essa string, que € entdo decodificada para o objeto que ela espera receber
como parametro.

No framework, as fun¢des Swift registradas na VM através da API no Swift sdo responsa-
veis por chamar as fun¢des da API do XCUITest, que irdo de fato se comunicar com a aplicagcao
sendo testada simulando as intera¢des do usudrio. Na Figura 3.5 € possivel ver um esquema
das partes do framework. Em verde estdo as partes nativas, em Swift, em rosa estdo as partes
em Lua e em azul a comunicagdo entre as partes.

S
:‘; Aplicativo
o
o
]
o
XCUITest
Funcdes Registradas Script de Teste
o)
o
5 API biu (Swift) API biu (Lua)
@ JSON
API Lua (C)

Figura 3.5 Arquitetura da Solugdo. Fonte: Elaborado pela autora

3.3 ARQUITETURA DA SOLUCAO 19

A seguir, nas Figuras 3.6 e 3.7, ¢ mostrado um exemplo de como uma funcao pode ser re-
gistrada e, em seguida, chamada no script Lua. Foi registrada uma funcio chamada enter_text,
que aceita como parametro uma struct do tipo EnterTextData, contendo dois campos: field, o
identificador do campo de texto, e text, o texto a ser escrito no campo de texto. No exemplo de
script dado, o texto "biu@email.com"€ escrito no campo de texto com identificador "email".

struct EnterTextData: Codable {
let text: String
let field: String

BIUTest.register("enter_text") { (data: EnterTextData) in
let textField = self.app.textFields[data.field]
textField.typeText(data.text)

Figura 3.6 Registro de Funcdo. Fonte: Elaborado pela autora

biu.enter_text { text = "biu@email.com", field = "email" }

Figura 3.7 Uso de Funcfo. Fonte: Elaborado pela autora

Algumas fungdes mais comuns nos casos de teste sdo cadastradas por padrao no framework,
como por exemplo tap_button, enter_text, scroll_up, scroll_down, wait, entre outras. Essas
fungdes podem ser utilizadas nos scripts sem a necessidade de escrever o cédigo em Swift
demonstrado na Figura 3.6 de registro de funcdo. O usudrio pode tanto sobrescrever essas
fungdes quanto cadastrar novas para serem chamadas através do script. Existem duas funcdes
especiais que realizam comportamentos particulares: compare_ref e save_ref.

» save_ref: Tira um screenshot do estado atual da tela e salva na pasta de imagens de
referéncias de acordo com o modelo e a versdo do 10OS do dispositivo onde o teste esta
sendo executado.

* compare_ref: Tira um screenshot do estado atual da tela e compara com a imagem de
referéncia correspondente, seguindo a ordem da lista de imagens salvas.

A preparagdo do ambiente para a execugdo dos testes serd demonstrada a seguir, na Sec¢ao
3.4.2.

20 CAPITULO 3 SOLUCAO

3.4 Algoritmo da Solucao

3.4.1 Estrutura de Pastas

Para a execugdo dos testes, a ferramenta acessa uma pasta chamada biu-test que deve ser refe-
renciada no target de testes de Ul no projeto Xcode da aplicacdo. A estrutura da pasta pode ser

vista na Figura 3.8.
blu test j
Ilhs shared / test-cases \

VW

sign-up 5|gn in

B B[B8 || B B

json.lua base64.lua helpers.lua setupjson test.lua iPhone 14;i0S 16.2

st.compare_ref()

st.tap_view("login")

st.enter_text { field = "email”, “user@gmail.com" }
= "123456" } reference_0.png reference_1.png

ompare_ref ()
st.tap_view("login")
st.compare_ref ()

reference 2.png

Figura 3.8 Estrutura de Pastas. Fonte: Elaborado pela autora

Na raiz existem trés pastas:

e libs: Contém arquivos do tipo ./ua com bibliotecas, que podem ser de terceiros. Os
arquivos dessa pasta sdo carregados primeiro na VM do Lua, dessa maneira podem ser
utilizadas pela pessoa desenvolvedora durante os testes. No exemplo, existem uma bibli-
oteca para lidar com objetos JSON e outra para uso de base64;

* shared: Contém arquivos do tipo ./ua contendo varidveis e fungdes que podem ser utili-
zadas por todos os casos de teste. Os arquivos dessa pasta sdo carregados na VM do Lua
apods os arquivos da pasta "libs". No exemplo foi adicionado um arquivo helpers.lua;

3.4 ALGORITMO DA SOLUCAO 21

* test-cases: Possui n pastas contendo um caso de teste diferente em cada uma. Essa pasta
inclui um arquivo obrigatdrio test.lua, contendo o script com a sequéncia de interagdes a
serem executadas durante o teste, um arquivo opcional sefup.json contendo argumentos e
varidveis de ambiente que devem ser usadas durante a execucdo do caso de teste, € n pas-
tas contendo as imagens de referéncia do caso de teste. Cada pasta € nomeada de acordo
com o dispositivo em que as imagens de referéncia foram geradas, seguindo a conven-
¢do <Modelo do Dispositivo><Versdo do iOS>. As imagens dentro das pastas devem
ser nomeadas reference_<number>.png, onde <number> corresponde a ordem da ima-
gem a ser comparada, ou seja, reference_0.png serd a primeira a ser comparada, seguida
de reference_I.png, e assim sucessivamente. Essas imagens sdo automaticamente ge-
radas e salvas durante a execug@o dos testes, usando a func¢do save_ref. Portanto, para
atualiza-las, basta utilizar essa fung¢do nos pontos em que as comparagdes devem ser fei-
tas e executar o caso de teste correspondente. Depois de geradas as imagens, a pessoa
escrevendo os testes substitui save_ref por compare_ref para realizar as comparacoes.

3.4.2 Execucao dos Testes

A execucdo da solucdo € feita em duas etapas que funcionam sequencialmente: a configuracao
do ambiente e a execucao dos casos de teste. Ao iniciar a execuc¢ao dos testes, os arquivos pre-
sentes na pasta "libs"sdo carregados na VM do Lua para que as bibliotecas fiquem disponiveis
para serem utilizadas nos casos de teste, em seguida o0 mesmo acontece com 0s arquivos da
pasta "shared". Logo apds, as funcdes Swift padrdo da ferramenta sdo registradas na VM do
Lua para que seja possivel chama-las a partir do script. Em seguida sao registradas as funcdes
Swift definidas pela pessoa desenvolvedora, caso seja necessario.

ApOs a etapa de configuragdo, se inicia a execucdo dos casos de teste. A ferramenta entra
em cada uma das pastas presentes em "test-cases', carrega os arquivos setup.json € as imagens
de referéncia presentes na pasta e em seguida e executa o arquivo test.lua na VM configurada.
Cada func¢do previamente registrada € chamada de acordo com o script, € uma ac¢ao € refletida
na aplicacdo. Em especial, a fun¢do compare_ref ativa a execucdo da comparagdo do estado
atual da tela com a imagem de referéncia atual. Na Figura 3.9 € mostrado um esquema da
execugao dos testes.

22

Inicio da

execugdo

setup

CAPITULO 3 SOLUCAO

Cria VM lua

Carrega source do
> BiuTest na v

Carrega arquivos
Jua da pasta
“libs" na VM

—>|

Carrega arquivos
Jua da pasta
“shared” na VM

Registra fungdes
Swift padréo da
ferramenta na VM

—>|

Registra fungdes
—| swift do usuario na
M

casos de teste da
test/test-cases"

compare_ref

compare_ref()

A 4
Executa test.lua na " Cason da
l€— Nao — teste
M vazio?
A

Fim do Caso de Teste —

Lista de
referéncias
vazia

O

Acessa e remove

lista de referéncias

imagem

Tira snapshot da
tela atual da
aplicagao

3] compara snapshot

com referéncia

caso de
teste falha

Imagens
iguais

Caso de
teste
continua

Figura 3.9 Execuc¢ao dos Testes. Fonte: Elaborado pela autora

— Sim

CAPITULO 4

Analise

4.1 Metodologia

Para a andlise do framework proposto nesse trabalho foi escolhida uma aplica¢do seguindo
um contexto em que ele seria usado na realidade, open source e que j4 incluia testes de Ul
na sua implementacdo. A partir disso foram selecionados casos de testes implementados na
aplicagcdo e esses foram reescritos utilizando o BIUTest. Com isso os cddigos e resultados
foram comparados levando em conta critérios selecionados previamente.

4.1.1 Selecao da Aplicacao

Durante o processo de selecao de ferramentas mencionado na Secdo 3.1, ao analisar os repo-
sitérios no GitHub, foram observados projetos com diversos niveis de maturidade e cobertura
de testes. A aplicacdo a ser utilizada nas anélises foi selecionada com base em vérios critérios,
como o numero de stars e forks que o repositdrio recebeu, o status de ser mantido por uma
empresa consolidada com uma base de usudrios significativa, a presenca de uma boa cobertura
de testes de UI, bem como a disponibilidade de uma licenca que permitisse a realizacdo dos
testes neste trabalho.

O projeto selecionado para conduzir as andlises foi a aplicacio de teste da SDK iOS do
Stripe!. Essa SDK oferece um servico de pagamento online e fornece a infraestrutura técnica
necessdria para prevencio de fraudes e operacdes bancirias. O repositério do projeto® pode ser
encontrado no Github.

4.1.2 Selecao dos Casos de Teste

Ap6s a selecdo da aplicacdo foram explorados os casos de teste de Ul ja implementados no
projeto. Uma suite de testes em particular se tornou interessante para servir como objeto de
andlise por possuir 10 casos de testes, sendo 5 pares onde cada par consiste no mesmo caso de
teste usando configuracdes de linguagem diferentes: um com a aplicac@o sendo executada em
inglés e o outro em francés. Assim foi identificada uma oportunidade de aprimorar esses casos
de teste utilizando o framework BIUTest proposto nesse trabalho. Os casos de teste verificam
a integracao da SDK em uma aplicacao de teste, validando diversas funcionalidades através da
simulacdo de interagdes com a aplicacdo e uma verificagdo do estado final apds essas serem
realizadas. A seguir sdo especificados os casos de testes que serdo utilizados para comparagao

"https://stripe.com/br
thtps://github.com/stripe/stripe—ios

23

https://stripe.com/br
https://github.com/stripe/stripe-ios

24 CAPITULO 4 ANALISE

entre a ferramenta usada no projeto e a ferramenta aqui proposta:

* Transacao Simples: Esse caso de teste simula uma compra simples com um cartdo. Ini-
cialmente sdo selecionados alguns produtos e em seguida o botdao "Buy Now"¢ apertado.
Na tela de checkout o botdo "Pay from"é apertado direcionando o usudrio para a tela de
selecdo de forma de pagamento. O cartdo Visa de final "4242"¢ selecionado e o usudrio
volta para a tela de checkout. Ao apertar em "Buy"é mostrado um alerta confirmando o
sucesso da compra. A Tabela 4.1 fornece uma descri¢do formal desse caso de uso e na
Figura A.2 € possivel ver como foi implementado originalmente na aplicacao.

Caso de Teste 1
Funcionalidade: | Transagcdo Simples
Objetivo: Realizar uma compra simples com um cartao
Etapas:
1 Apertar o botdo "Settings"
2 Apertar o botdo "None'"na se¢ao "Require Shipping Address Fields"
3 Apertar o botdo "Done"
4 Selecionar o vestido, sapato marrom e sapato vermelho
5 Apertar o botao "Buy Now"
6 Apertar o botdao "Pay from"
7 Apertar o botdo "Visa ending in 4242"
g Verificar se foi redirecionado para a tela de checkout com os
produtos e modo de pagamento corretos selecionados
9 Apertar o botao "Buy"
10 Verificar se aparece o alerta com mensagem de sucesso
11 Apertar o botao "OK"

Tabela 4.1 Caso de Teste 1

4.1 METODOLOGIA 25

Checkout Seguro: Esse caso de teste simula uma compra com um cartdo que necessita
de autenticacdo por parte do banco. Inicialmente sdo selecionados alguns produtos e
em seguida o botao "Buy Now"é apertado. Na tela de checkout o botdo "Pay from"é
apertado direcionando o usudrio para a tela de selecao de forma de pagamento. O cartdo
Visa de final "3220"¢é selecionado e o usudrio volta para a tela de checkout. Ao apertar
em "Buy"aparece a tela de autenticagdo, os botdes "Learn more about authentication"e
"Need help?"sao apertados para mostrar uma ajuda sobre essa funcionalidade e entdo
o botdo "Complete Authentication"¢ selecionado, um alerta é mostrado confirmando o
sucesso da compra. A Tabela 4.2 fornece uma descricdo formal desse caso de uso e na

Figura A.5 € possivel ver como foi implementado originalmente na aplicacao.

Caso de Teste 2

Funcionalidade: | Checkout Seguro

Objetivo: Realizar uma compra com um cartdo que necessita de autentica¢ao
por parte do banco

Etapas:

1 Apertar o botdo "Settings"

2 Apertar o botdo "None"na se¢do "Require Shipping Address Fields"

3 Apertar o botdo "Done"

4 Selecionar o vestido, sapato marrom e sapato vermelho

5 Apertar o botdo "Buy Now"

6 Apertar o botdao "Pay from"

7 Apertar o botdo "Visa ending in 3220"

2 Verificar se foi redirecionado para a tela de checkout com os
produtos e modo de pagamento corretos selecionados

9 Apertar o botao "Buy"

10 Verificar se aparece tela de autenticagdo de cartdao

11 Apertar o botdo "Learn more about authentication"

12 Apertar o botao "Need help?"

13 Verificar se aparecm, os textos de explicacao

14 Apertar o botdo "Continue"

15 Apertar o botao "Buy"

16 Verificar se aparece o alerta com mensagem de sucesso

17 Apertar o botao "OK"

Tabela 4.2 Caso de Teste 2

26

CAPITULO 4 ANALISE

* Pagamento com Apple Pay: Esse caso de teste simula uma compra utilizando o Apple
Pay’. Inicialmente sdo selecionados alguns produtos e em seguida o botio "Buy Now"é
apertado. Na tela de checkout o botao "Pay from"é apertado direcionando o usudrio para
a tela de selecao de forma de pagamento. A opcao "Apple Pay"é selecionada e o usudrio
volta para a tela de checkout. Ao apertar em "Buy"aparece o modal de validacao da
forma de pagamento. A Tabela 4.3 fornece uma descri¢do formal desse caso de uso e na
Figura A.8 € possivel ver como foi implementado originalmente na aplicacao.

Caso de Teste 3
Funcionalidade: | Pagamento com Apple Pay
Objetivo: Realizar uma compra utilizando o Apple Pay como forma de
pagamento
Etapas:
1 Apertar o botdo "Settings"
2 Apertar o botdo "None"na secio "Require Shipping Address Fields"
3 Apertar o botdo "Done"
4 Selecionar o vestido, sapato marrom e sapato vermelho
5 Apertar o botdo "Buy Now"
6 Apertar o botao "Pay from"
7 Apertar o botdao "Apple Pay"
8 Verificar se aparece o modal de validagdo da forma de pagamento

Tabela 4.3 Caso de Teste 3

3https://www.apple.com/br/apple—pay

https://www.apple.com/br/apple-pay

4.1 METODOLOGIA 27

* Adicionar Novo Cartao: Esse caso de teste simula a adi¢cdo de um novo cartdao como

forma de pagamento. Inicialmente sdo selecionados alguns produtos e em seguida o
botdo "Buy Now"é apertado. Na tela de checkout o botdo "Pay from"é apertado dire-
cionando o usudrio para a tela de selecao de forma de pagamento. A opcio "Add New
Card"é selecionada e o usudrio € levado para a tela de adi¢do de cartdo. Sdo adiciona-
dos dados de um cartdo e o botdo "Done"é apertado. Aparece um alerta informando
que o cartio estd vencido e entdo os dados sdo atualizados. E selecionado o botio
"Done"novamente e o usudrio retorna para a tela de checkout. Entdo o botao "Buy"é
apertado e aparece um alerta informando que houve um erro que o cartdo foi recusado. A
Tabela 4.4 fornece uma descricdo formal desse caso de uso e na Figura A.11 é possivel

ver como foi implementado originalmente na aplicacdo.

Caso de Teste 4
Funcionalidade: | Adicionar Novo Cartdo
Objetivo: Realizar a adicdo de um novo cartdo como forma de pagamento
Etapas:
1 Apertar o botdo "Settings"
2 Apertar o botdo "None"na se¢do "Require Shipping Address Fields"
3 Apertar o botao "Done"
4 Selecionar o vestido, sapato marrom e sapato vermelho
5 Apertar o botdo "Buy Now"
6 Apertar o botao "Pay from"
7 Apertar o botdo "Add New Card..."
8 Verificar se aparece a tela de adi¢do de cartdo
9 Adicionar o texto "4000000000000069"no campo de nimero do cartdo
10 Adicionar o texto "02/28"no campo de data de validade do cartao
11 Verificar se atualiza a tela mostrando a parte de tras do cartdo
12 Adicionar o texto "223"no campo de CVC do cartdo
13 Adicionar o texto "90210"no campo de cédigo postal
14 Apertar o botao "Done"
15 Verificar se aparece o alerta com a mensagem de cartdo expirado
16 Apertar o botdao "OK"
17 Remover os tltimos 4 caracteres no campo de nimero do cartdo
18 Adicionar o texto "0341"no campo de nimero do cartdao
19 Apertar o botdo "Done"
20 Apertar o botao "Buy"
21 Verificar se aparece o alerta com a mensagem de cartdo recusado
22 Apertar o botao "OK"

Tabela 4.4 Caso de Teste 4

28

CAPITULO 4 ANALISE

* Opcao de Pagamento Padrao: Este caso de teste tem como objetivo verificar a persis-

téncia das opcdes de pagamento na tela de escolha e, em caso de logout, garantir que a
op¢ao padrio esteja selecionada. Inicialmente sdo selecionados alguns produtos e em se-
guida o botao "Buy Now"¢ apertado. Na tela de checkout o botdao "Pay from"é apertado
direcionando o usudrio para a tela de selecdo de forma de pagamento. Aqui, verifica-se
se o método de pagamento padrdo é "Apple Pay"e, em seguida, seleciona-se o cartdo Visa
com final "3220". A simula¢@o do retorno a tela de produto € realizada e o botao "Buy
Now"é pressionado novamente. E feita uma verificacdo para garantir que a opgio sele-
cionada anteriormente seja mantida e, em seguida, o botao "Apple Pay"é pressionado.
Esses passos sdo repetidos para assegurar que, ao sair e retornar a tela, a opcao seleci-
onada permaneca inalterada. Em seguida, o cartdo Visa com final "3220"¢é selecionado
novamente como método de pagamento e o usudrio faz logout na tela de configuragdes.
Ap6s isso, simula-se novamente a entrada na tela de selecdo de método de pagamento
e verifica-se se a op¢ao padrdo, ou seja, "Apple Pay", estd selecionada. A Tabela 4.5
fornece uma descri¢do formal desse caso de uso e nas Figuras A.14 e A.15 € possivel ver

como foi implementado originalmente na aplicagdo.

4.1 METODOLOGIA

29

Caso de Teste 5
Funcionalidade: | Opcao de Pagamento Padrao
. Verificar a persisténcia das op¢des de pagamento na tela de escolha e,
Objetivo:) - - : .
em caso de logout, garantir que a op¢ao padrdo esteja selecionada
Etapas:
1 Apertar o botdao "Settings"
2 Apertar o botdo "None"na secdo "Require Shipping Address Fields"
3 Apertar o botao "Done"
4 Selecionar o vestido, sapato marrom e sapato vermelho
5 Apertar o botdo "Buy Now"
6 Apertar o botao "Pay from"
7 Verificar se a opcao "Apple Pay"estd selecionada
8 Apertar o botdao "Visa ending in 3220"
9 Apertar o botdo "Products"
10 Apertar o botao "Buy Now"
11 Apertar o botao "Pay from"
12 Verificar se a op¢do "Visa ending in 3220 "esta selecionada
13 Apertar o botdo "Apple Pay"
14 Apertar o botdao "Products"
15 Apertar o botao "Buy Now"
16 Apertar o botdo "Pay from"
17 Verificar se a op¢do "Apple Pay"estd selecionada
18 Apertar o botao "Visa ending in 3220"
19 Apertar o botdo "Products”
20 Apertar o botdo "Settings"
21 Apertar o botdo "Log out"
22 Apertar o botdo "Done"
23 Apertar o botao "Buy Now"
24 Apertar o botdao "Pay from"
25 Verificar se a opcdo "Apple Pay"estd selecionada

Tabela 4.5 Caso de Teste 5

30 CAPITULO 4 ANALISE

4.1.3 Selecao dos Critérios de Avaliacao

Diversos fatores podem ser utilizados para medir a qualidade de um framework de automati-
zacdo de testes, incluindo fatores que dependem do contexto em que ele estd sendo utilizado,
como o tamanho do projeto, a quantidade de pessoas envolvidas no desenvolvimento e na ga-
rantia de qualidade, os recursos disponiveis, entre outros. Mesmo assim, € possivel determinar
alguns requisitos que catacterizam uma boa ferramenta para essa tarefa. Alguns trabalhos foram
feitos realizando a comparacdo de frameworks de automatizacdo de testes [8] [14], e a partir
desses foi possivel chegar em pontos a serem analisados na avaliacdo do framework proposto
nesse trabalho. Abaixo € apresentado quais sdo esses pontos.

« API: E importante que o framework tenha uma API simples que ndo necessite que a pes-
soa testadora escreva uma grande quantidade de codigo para realizar operacdes simples,
como apertar um botdo por exemplo. Além disso, a clareza do cédigo torna mais facil
garantir a precisdo dos testes e simplifica as futuras alteragoes;

« Suporte a Logs: E importante que a pessoa testando tenha acesso a logs claros do que
acontece durante os testes para que, no caso de algum erro, seja facil encontrar onde ele
esté;

* Suporte a uma grande variedade de propriedades: Um dos objetivos de uma ferra-
menta de automacao de testes de Ul € analisar as propriedades da aplicagdo. Contudo,
¢ dificil prever quais propriedades serdo pertinentes em todas as andlises. Portanto, o
framework deve disponibilizar um conjunto adequado de abstragdes para que o usudrio
possa especificar as propriedades relevantes.

* Tempo de Execucao: Os testes de Ul estdo no topo da piramide de teste, o que demonstra
que € o tipo de teste que mais demanda tempo, 0 que por consequéncia acarreta em mais
custo. Por esse motivo € necessdrio que o uso da ferramenta ndo adicione muito tempo
ao processo de testes;

4.2 Preparacao

A seguir sdo apresentadas as implementagdes dos casos de teste no c6digo original presente no
repositdrio da aplicacdo selecionada e os mesmos casos implementados utilizando o BIUTest.
Os testes foram executados utilizando o simulador nativo do XCode. O modelo do simulador
foi o 1Phone 14 com sistema operacional 10S 16.4. A mdquina onde os testes foram executados
é um MacBook Pro versdo 2015* com sistema operacional macOS Monterey.

4.2.1 Setup

Antes de comecar a executar os casos de teste, é necessdrio realizar uma configuragdo inicial
para fornecer propriedades personalizadas que serdo utilizadas pela aplicacdo durante a sua

“https://support.apple.com/kb/sp7l9?locale=en_US

https://support.apple.com/kb/sp719?locale=en_US

4.2 PREPARACAO 31

inicializacdo. Isso pode incluir o envio de varidveis de ambiente, que adaptam certas funciona-
lidades da aplicagdo com base na sua implementacdo, ou argumentos, que serdo usados durante
os testes para modificar as configuracdes da aplicacio ou para permitir a utilizacdo de dados de
teste. No contexto dos casos de teste que estamos analisando aqui, sdo fornecidas uma chave
de autenticagdo e uma URL que permitem o uso de dados de teste durante a execugdo, em vez
de dados de produgdo. Na Figura 4.1 € possivel ver como esse setup foi feito no cddigo original
e na Figura 4.2 como foi feito utilizando o BIUTest.

Toda a criacdo e configuracdo do XCUIApplication, que representa a aplicagdo sendo tes-
tada, € feita automaticamente pelo BIUTest, dessa maneira a pessoa testadora precisa somente
criar um arquivo JSON com os argumentos e varidveis de ambiente a serem utilizados.

override func setUp() {
|

continueAfterFailure = false

1 f
= XCUIApplication()
stripePublishableKey = "pk_test_6Q7qTz180kUj5K5ArgayVsFDO@Sa5AHM]3"

backendBaseURL = "https://stp-mobile-legacy-test-backend-17.stripedemos.com/"
.launchArguments.append(contentsOf: [
"-StripePublishableKey", stripePublishableKey, "-StripeBackendBaseURL", backendBaseURL,

.launchEnvironment = ["UITesting": "true"]
.launch()

Figura 4.1 Setup Original. Fonte: Repositério da Aplicacdo de Teste

"launch_arguments": [
"-StripePublishableKey", "pk_test_6Q7qTz180kUj5K5ArgayVsFD0@Sa5AHM;j3",
"-StripeBackendBaseURL", "https://stp-mobile-legacy-test-backend-17. ipedemos.com/"
I,

"launch_environment": {
"UITesting": "true"

Figura 4.2 Setup com BIUTest. Fonte: Elaborado pela autora

32 CAPITULO 4 ANALISE

4.2.2 Helpers

Os casos de teste comegam desabilitando a necessidade de inserir o endereco, selecionando
trés produtos e avancando para a tela de checkout. Para simplificar a execugdo dessas acoes,
algumas fun¢des foram implementadas, uma vez que elas se repetem em todos os casos de
teste. A Figura 4.3 ilustra como esse codigo foi implementado na versdo original, enquanto a
Figura 4.4 mostra a implementac¢do utilizando o BIUTest. O fluxo de telas nessa etapa pode ser
visualizado na Figura A.1.

O BlUTest realiza a busca dos elementos que correspondem ao identificador enviado como
parametro, o que dispensa a pessoa responsavel pelos testes de especificar exatamente onde
o elemento estd localizado. Neste exemplo, ndo é necessdrio indicar que o botdo contendo
um sapato vermelho estd dentro de uma célula. Além disso, algumas fungdes para auxiliar
na sincronizag¢do com os elementos sao implementadas por padrdo no BIUTest. Por exemplo,
no cédigo original foi necessdrio utilizar um waitToAppear para aguardar o botdo estar apa-
recendo antes de interagir com a tela, no BIUTest a funcdo tap_button ja realiza essa espera
antes de tentar interagir com o elemento.

func d try(_ app: XCUIApplication) {
app. '"Emoji Apparel"].buttons["Settings"].tapWhenHittableInTestCase(self)
let noneButton = app.tat .children(matching: .cell).element(boundBy: 12).staticTexts["None"]
waitToAppear(noneButton
app.tables.firstMatch.swipeUp()
noneButton.tapWhenHittableInTestCase(self)
app.navigationBars["Settings"].buttons["Done"].tapWhenHittableInTestCase(self)

tItems(_ app: XCUIApplication) {
let cellsQuery = app.col tionView 11s

cellsQuery.otherElements ntaining(. icText, identifier: "\ ").element.tapWhenHittableInTestCase(self)

app.collectionViews.stati ts["‘A"].tapWhenHittableInTestCase(self)

cellsQuery.otherElem aining(.staticText, identifier: " 4").children(matching: .other)
.element(boundBy: 0).tapWhenHittableInTestCase(self)

Figura 4.3 Helpers Original. Fonte: Repositério da Aplicagao de Teste

4.2 PREPARACAO 33

= {}

.disable_address_entry = function()
.tap_button("Settings")
.scroll_up()

.tap_button("#2|None")
.tap_button("Done")

.select_items = function(items)

i, item in ipairs(items) do
biu.tap_button(item)

.select_payment_method = function(method)
.tap_button("Buy Now")

.tap_button("Pay from")

.wait_for(method)

. tap_button(method)

Figura 4.4 Helpers com BIUTest. Fonte: Elaborado pela autora

34 CAPITULO 4 ANALISE

4.2.3 Caso de Teste 1

Nas Figuras A.2 e A.3, podemos observar a implementacido deste caso de teste tanto sem o
uso do framework proposto neste trabalho quanto com ele. Neste caso, notamos que o teste
original verifica apenas se as interagcdes indicadas, como pressionar os botdes, sdo possiveis
de serem realizadas. No entanto, ao utilizar o framework BIUTest, nao apenas garantimos a
viabilidade das interacdes, mas também asseguramos que a tela vista pelo usudrio esta correta,
uma vez que o framework realiza uma comparagdo com a referéncia previamente armazenada.
Na Figura A.4 € possivel ver o fluxo de telas desse caso de teste.

4.2.4 Caso de Teste 2

Na Figura 4.5 podemos observar que algumas instrucdes no cddigo sao bem especificas da
implementagdo e pode ndo ser facilmente entendidas por uma pessoa sem conhecimento técnico
de aplicacdes 10S e interno da aplicacdo, por exemplo o uso de scrollViews e alerts na busca
por elementos. A Figura 4.6 realiza as mesmas interagcdes com a aplicacdo sendo testadas com
uma linguagem mais clara. A Figura A.7 demonstra o fluxo de telas realizado nesse caso de
teste.

let elementsQuery = app.scrollViews.otherElements

let learnMore = elementsQuery.buttons["Learn more about authentication"]
learnMore.tapWhenHittableInTestCase(self)

elementsQuery.buttons["Need help?"].tapWhenHittableInTestCase(self)

app.scrollViews.otherElements.buttons["Continue"].tapWhenHittableInTestCase(self)
let success = app.alerts["Success"].buttons["OK"]

success.tapWhenHittableInTestCase(self)

Figura 4.5 Cddigo original com busca de elementos detalhada. Fonte: Repositério da Aplicagdo de
Teste

biu.tap_button("Learn more about authentication")
biu.tap_button("Need help?")
biu.compare_ref()

biu.tap_button("Continue")
biu.wait_for("Buy")
biu.tap_button("0K")

Figura 4.6 Cdédigo usando BIUTest com busca de elementos abstraindo implementagao interna. Fonte:
Elaborado pela autora

4.2 PREPARACAO 35

4.2.5 Caso de Teste 3

Esse caso de teste ja era pequeno e relativamente simples de entender. A melhoria no c6digo
utilizando o BIUTest e nesse caso estd mais relacionada a adi¢do de uma fungdo helper para a
selecdo de forma de pagamento, e poderia ser replicada sem muito esforco no codigo original.
Na Figura A.10 € possivel ver o fluxo de telas desse caso de teste.

4.2.6 Caso de Teste 4

Este caso de teste exemplifica mais uma interacdo, que € a de inserir texto em um campo
de texto. Uma vantagem presente no codigo original, representado na Figura 4.7, € que os
elementos podem ser armazenados em varidveis, evitando assim buscas repetidas quando eles
precisam ser usados novamente. O fluxo de telas desse caso de teste pode ser visualizado na
Figura A.13.

let cardNumberField = tablesQuery.textFields["card number"]
let cvcField = tablesQuery.textFields["CVC"]

let zipField = tablesQuery.textFields["Postal code"]
cardNumberField.tapWhenHittableInTestCase(self)
cardNumberField.typeText("4000000000000069")

let expirationDateField = tablesQuery.textFields["expiration date"]
expirationDateField.typeText("02/28")

cvcField.typeText("223")

zipField.typeText("90210")

Figura 4.7 Cédigo original armazenando elementos em varidveis. Fonte: Repositério da Aplicagdo de
Teste

36 CAPITULO 4 ANALISE

4.2.7 Caso de Teste 5

Nesse caso, podemos observar que, apesar da vantagem de poder salvar os elementos em va-
ridveis, nem sempre isso € possivel de ser utilizado. Isso € evidenciado no cédigo original,
conforme representado na Figura 4.8, onde alguns elementos, como o botdo "Products", pre-
cisam ser buscados vérias vezes devido as transi¢des de tela que ocorrem cada vez que ele é
pressionado. O fluxo de telas deste caso de teste € ilustrado na Figura A.17.

app.navigationBars["Checkout"].buttons["Products"].tapwWhenHittableInTestCase(self)
buyNowButton.tapWhenHittableInTestCase(self)
payFromButton.tapWhenHittableInTestCase(self)

XCTAssertTrue(applePay.isSelected)
XCTAssertFalse(visa.isSelected)

visa.tapWhenHittableInTestCase(self)

app.navigationBars["Checkout"].buttons["Products"].tapWhenHittableInTestCase(self)

Figura 4.8 Cdédigo original repetindo busca por elementos. Fonte: Repositdrio da Aplicacio de Teste

4.3 RESULTADOS 37

4.3 Resultados

Nesta se¢do, serdo apresentados os resultados derivados das andlises realizadas nos casos de
teste selecionados, considerando os critérios de avaliacdo previamente definidos. Ao término,
realizaremos uma breve discussdo dos resultados, destacando os principais pontos observados
durante as andlises.

4.3.1 Critérios de Avaliacao
43.1.1 API

Lines of Code (LOC) € uma métrica utilizada para medir o tamanho de um software ao quan-
tificar as linhas de cédigo do programa. Além disso, ela funciona como uma abordagem de
estimativa para mensurar o esforco envolvido no processo de desenvolvimento de software
[10]. A Tabela 4.6 mostra uma comparacao na quantidade de linhas necessdrias para escrever
cada caso de teste. Nao foram levadas em consideracgao as linhas utilizadas para o setup de cada
caso e as partes que sio repetidas, contidas nas fungdes helpers. Para essa andlise foi utilizada
a ferramenta cloc’, que realiza a contagem de linhas de cédigo de diversas linguagens diferen-
tes. E possivel notar que utilizando o BIUTest foram necessarias menos linhas de cédigo para
a escrita dos casos de teste. Nos casos realizados nessa andlise, o uso do framework significou
uma diminui¢do de, em média, 50,4% na quantidade de linhas de cédigo.

LOC
XCUITest | BIUTest
Caso de Teste 1 13 6
Caso de Teste 2 18 9
Caso de Teste 3 12 5
Caso de Teste 4 33 17
Caso de Teste 5 35 22

Tabela 4.6 Lines of Code (LOC) - Casos de Teste

Ao compararmos os c6digos dos casos de teste utilizando o XCUITest e o BIUTest, também
se pode notar que, sem o uso do framework, é preciso ter um conhecimento maior sobre a
implementagdo da aplicacdo. Por exemplo, no Caso de Teste 2 € possivel ver na Figura A.5
que para apertar o botdo "OK"foi especificado que o mesmo estd presente em um alerta, ja na
Figura A.6 foi usada somente a instrucao de apertar um botdo. Essa abstracdo traz algumas
desvantagens, primeiro em relagdo ao tempo de execucdo, que serd comentado em um topico
a seguir, e segundo em relacdo a identificacdo de elementos com o mesmo nome. Para esses
casos, foi implementada uma notag@o que pode ser utilizada para identificar qual dos elementos
deve ser escolhido para realizar a interagdo, € possivel ver essa notacdo no script dos helpers
dos casos de uso analisados, na linha 6 da Figura 4.4. Essa abordagem pode acrescentar um

Shttps://github.com/AlDanial/cloc

https://github.com/AlDanial/cloc

38 CAPITULO 4 ANALISE

esforco a mais na manutencao dos casos de teste, ja que se algum dos botdes mudar de posi¢dao
o nimero pode precisar ser atualizado.

4.3.1.2 Suporte a Logs

Como o BIUTest utiliza o XCUITest, acaba se beneficiando do seu suporte a logs que é bastante
detalhado, fornecendo um relatdrio de execugdo em tempo real durante a execugdo dos testes,
caracteristica que o destaca em relagdo a outras ferramentas de testes de Ul, como mostrado
em [4]. Na Figura 4.9 € possivel ver um exemplo desse relatério.

Line: 11 Col: 1 | (=
StaticText"
21.65s Find the " 4" StaticText

21.76s Tap " 4" StaticText
21.76s Wait for com.stripe.SimpleSDKExample to idle

21.80s Find the " 4" StaticText

21.86s Check for interrupting elements affecting " 4" StaticText

21.91s Synthesize event

22.25s Wait for com.stripe.SimpleSDKExample to idle

22.29s Checking existence of “"Buy Now" Button®

22.36s Checking existence of “"Buy Now" Button'

23.43s Checking ‘Expect predicate ‘“hittable == 1° for object "Buy
Now" Button®

23.44s Find the "Buy Now" Button

23.54s Tap "Buy Now" Button

23.54s Wait for com.stripe.SimpleSDKExample to idle

23.59s Find the "Buy Now" Button

23.64s Check for interrupting elements affecting "Buy Now" Button

23.68s Synthesize event

24.01s Wait for com.stripe.SimpleSDKExample to idle

24.47s Checking existence of “"Pay from" Button®

t
t
t
t
t
t
t
t
t
t

o e e e I I Y

Figura 4.9 Informacdes de depuragdo no console do Xcode durante a execucdo dos testes. Fonte:
Elaborado pela autora

Adicionalmente, o BIUTest também herda do XCUITest os logs de erro no caso de um
teste falhar. Esses logs auxiliam a pessoa testadora a identificar onde o erro ocorreu € como
corrigi-lo. A Figura 4.10 exemplifica um caso em que o botdo "Close"ndo pode ser localizado.
Como o BIUTest possui algumas funcionalidades adicionais, eventuais erros especificos podem
ocorrer. No entanto, a informacdo sobre esses erros € apresentada de maneira semelhante,
como evidenciado na Figura 4.11. Quando a tela ndo corresponde a imagem de referéncia
previamente salva, € fornecido ao usudrio a imagem de referéncia, a captura da tela e a diferenca
entre elas.

4.3.1.3 Suporte a uma grande variedade de propriedades

Como foi mencionado na Sec¢do 4.2.1, através do envio de argumentos e varidveis de ambiente
€ possivel que a aplicacdo seja executada utilizando diferentes configuracdes, como linguagem
por exemplo. Com o BIUTest isso € feito por meio do arquivo JSON presente em cada caso

4.3 RESULTADOS 39

B Automatic Screenshot
@ 0 XCUIElement.tapWhenHittableInTestCase(_:)
& 1 BasiclntegrationUITests.test3DS2()

Figura 4.10 Informacdes de erro na falha do caso de teste no XCUITest. Fonte: Elaborado pela autora

B reference

B snapshot @ @
B difference

Figura 4.11 Informacdes de erro na falha do caso de teste no BIUTest. Fonte: Elaborado pela autora

de teste, no XCUITest essa passagem de argumentos e varidveis também € possivel através das
varidveis disponiveis na classe de comunicagdo com a aplicacao, como foi mostrado nas Figuras
4.1 e 4.2. Além disso, no BlUTest € possivel ter referéncias salvas para diversos modelos de
dispositivo e sistemas operacionais, permitindo que os testes sejam executados em todos eles e
garantindo a conformidade visual nos mesmos, ja 0 XCUITest nao tem essa funcionalidade.

4.3.1.4 Tempo de Execucdo

Foi feita uma comparacdo do tempo de execugdo dos casos de teste com e sem a utilizagdao
do framework BIUTest. A andlise foi feita executando cada caso de teste cinco vezes, e entdo
foi observado o menor tempo, o maior e o tempo médio de cada um. Na Tabela 4.7 pode-se
observar os resultados encontrados.

A partir dos dados coletados durante as execugdes, € perceptivel que a utilizagdo do fra-
mework acrescentou uma quantidade consideravel de tempo, uma média de 3,8 segundos, em
cada caso de teste. No total, houve um aumento de 6,7% no tempo de execu¢do quando todos
os casos de teste foram combinados. Esse aumento no tempo era esperado, uma vez que o
nivel de abstracao do BIUTest € mais elevado, o que significa que o framework precisa buscar
o elemento necessdrio para realizar a interacdo em mais partes da interface. Além disso, a
capacidade de armazenar o elemento em uma varidvel para ser reutilizado posteriormente tam-
bém contribui para reduzir o tempo, uma vez que nio serd necessario procurd-lo novamente
quando ocorrer outra intera¢do. Essa € uma op¢ao de desenvolvimento que pode ser feita como
melhoria para o framework.

40 CAPITULO 4 ANALISE

Tempo de Execucao (s)

Menor | Maior | Média | % Média
XCUITest | 37,2 39,6 38,2
Caso de Teste 1 | BIUTest 40,7 41,7 41,1 +7,6%
XCUITest | 449 45,5 45,2
Caso de Teste 2 | BIUTest 48,9 52,7 50,5 +11,7%
XCUITest | 32,6 33,7 33,1
Caso de Teste 3 | BIUTest 34,1 36,8 34,9 +18,1%
XCUITest | 50,9 52,5 51,6
Caso de Teste 4 | BIUTest 56,8 59,0 57,6 +11,6%
XCUITest | 64,6 66,5 65,4
Caso de Teste 5 | BIUTest 67,3 69,3 68,2 +4,3%

Tabela 4.7 Tempo de Execugdo - Casos de Teste

4.3.2 Consideracoes Finais

Através da andlise dos resultados com base nos critérios de avalia¢do selecionados, é evidente
que o uso do BIUTest apresentou vantagens e também desvantagens em diferentes aspectos. O
framework oferece uma API mais simples e legivel, exigindo menos conhecimento técnico e
um entendimento especifico da implementagao da aplicac@o para utiliza-lo. Essa caracteristica
também facilita a atualizacdo e manutencao dos testes de forma menos trabalhosa. No entanto,
isso resulta em um tempo de execucdo dos casos de teste mais longo, que por si s ja sdo
extensos. Além disso, em casos onde exista mais de um elemento com 0 mesmo nome na tela
sendo testada, € necessdrio uma notacao especifica para identificar qual deles deve ser utilizado
para a interacdo, adicionando um esforco a mais na manutencao do caso de teste em questao.

A escolha entre a utilizacdo de um framework ou outro pode depender de vérios fatores,
como o tamanho do projeto, da empresa, o nimero de pessoas envolvidas no desenvolvimento
e o nivel de conhecimento técnico dessas pessoas, entre outros. Considerando diversos pontos,
€ possivel que uma ferramenta seja mais adequada para um contexto do que a outra, e, princi-
palmente, o uso de uma nao exclui a possibilidade de usar a outra. Portanto, € vidvel escolher
casos especificos nos quais seja mais apropriado utilizar uma ou outra ferramenta.

CAPITULO 5

Conclusao e Trabalhos Futuros

Durante o desenvolvimento de uma aplicacdo, € crucial assegurar que o estado de sua interface
nos fluxos existentes seja deterministico. Isso significa que ao seguir uma mesma sequéncia de
interacdes com as mesmas entradas, o estado final da aplicacdo deve ser o mesmo. Empresas
de software aplicam diversos tipos de testes com esse propdsito, como testes de interface de
usudrio (UI), de regressao e de integracdo, que podem ser realizados manualmente ou por meio
de ferramentas de automatizacdo. Os testes automatizados oferecem vantagens como custos
mais baixos, maior frequéncia de testes, identificacdo precoce de defeitos e maior qualidade do
sistema em comparacdo com testes manuais.

Ao longo dos anos, vdrias ferramentas foram desenvolvidas para auxiliar na execugdo de
testes automatizados, e diferentes técnicas podem ser empregadas, dependendo do contexto da
aplicacdo, do tamanho da equipe, dos recursos disponiveis e dos objetivos de validagdo. Os
testes automatizados de Ul sdo essenciais para verificar o correto funcionamento dos compo-
nentes da interface e como eles sdo apresentados ao usudrio final. Neste trabalho, foi proposto
o framework BIUTest com o objetivo de abordar ambas as dreas de validacdo em aplicagdes
10S.

Foi realizada uma andlise do uso desse framework por meio de uma comparacao com uma
aplicag@o que ja possui testes de Ul implementados, replicando os mesmos casos de teste uti-
lizando o BIUTest. A andlise revelou vantagens do framework, incluindo uma API de fécil
leitura e entendimento, que requer menos conhecimento interno da aplicagdo. Além disso, o
BIUTest oferece a capacidade de comparar telas durante a execucdo dos testes com imagens
de referéncia, garantindo que a aparéncia seja consistente em diferentes dispositivos e versoes
do sistema operacional. Levando em conta que fluxos importantes da aplicacao sejam testados
utilizando o framework, é possivel ajudar a assegurar que continuam com seu funcionamento
e visual corretos ap6és mudancas realizadas na aplicacdo. No entanto, o uso do framework
também apresentou desvantagens, como um aumento no tempo de execugao dos casos de teste.

Em relacdo a trabalhos futuros, durante as andlises realizadas foram identificadas quatro
possibilidades de expansio do framework proposto. A seguir sdo listadas cada uma delas.

* Melhoria da Busca por Elementos: A busca por elementos para realizar cada intera-
¢do € um dos pontos que pode ser melhorado. De acordo com o caso de teste sendo
executado, permitir a reutilizacao de elementos em interacdes repetidas, evitando buscas
desnecessdrias, pode resultar em um menor tempo na execucao dos testes.

* Melhoria de Sincronizac¢ao: Pode ser implementada também uma melhoria de sincroni-
zacdo durante a execugdo dos testes, evitando que interagdes ocorram durante animagdes

41

42

CAPITULO 5 CONCLUSAO E TRABALHOS FUTUROS

ou transi¢des de tela, eliminando a necessidade de a pessoa testadora definir tempos de
espera.

Suporte a Gravacao: Outra oportunidade consiste na adicdo de suporte a gravagdo de
testes, permitindo que os scripts sejam gerados durante a execu¢do da aplicacdo e utili-
zados em execucoes futuras dos casos de teste.

Implementaciao em Android: Considerando que muitas aplicacdes iOS possuem con-
trapartes em dispositivos Android, uma oportunidade de aprimoramento seria a imple-
mentacdo do BIUTest para aplicagdes nessa plataforma. Isso permitiria que a mesma
pasta contendo o script e as referéncias a serem comparadas fosse utilizada para testar
aplicativos em ambas as plataformas.

21:25

APENDICE A

Casos de Teste

A.1 Helpers

7 - 21:09 =T -

Settings Done Settings Emoji Apparel

REQUIRED BILLING ADDRESS FIELDS

None

Postal code

Name

Full

SN O

uss2000 @ ussaoo0 @

REQUIRED SHIPPING ADDRESS FIELDS

None

Email

All

SHIPPING TYPE
Shipping

Delivery

SESSION

Log out

(PostalAddress|Phone) ‘ \

uss3000 (@) [l uss 700

& \
Buy Now US$ 47,00

Figura A.1 Fluxo Inicial dos Casos de Teste. Fonte: Elaborado pela autora

21:09

< Products Checkout

& High-Heeled Shoe
\ Mans Shoe
‘ Dress

Pay from

Total

Buy

9)
1

US$ 10,00

Us$ 7,00

US$ 30,00

US$ 47,00

44

&

APENDICE A CASOS DE TESTE

A.2 Caso de Teste 1

func testSimpleTransaction() {
disableAddressEntry(app)
selectItems(app)

app.buttons["Buy Now"].tapWhenHittableInTestCase(self)

let payFromButton = app.buttons.matching(identifier: "Pay from").element
waitToAppear(payFromButton)
payFromButton.tapWhenHittableInTestCase(self)

let visa = app.tables.staticTexts["Visa ending in 4242"]
visa.tapWhenHittableInTestCase(self)
app.buttons["Buy"].tapWhenHittableInTestCase(self)

let success = app.alerts["Success"].buttons["0K"]
success.tapWhenHittableInTestCase(self)

Figura A.2 Caso de Teste 1 Original. Fonte: Repositério da Aplicacao de Teste

helpers.disable_address_entry()
helpers.select_items { "¥", "&", "4&" }
helpers.select_payment_method("Visa ending in 4242")

biu.compare_ref()
biu.tap_button("Buy")
biu.wait_for("Success")

biu.tap_button("0K")

Figura A.3 Caso de Teste 1 com BIUTest. Fonte: Elaborado pela autora

A.2 CASODE TESTE 1

21:39 e T @ 21:39 e T @

Cancel Payment Method Edit < Products Checkout

L High-Heeled Shoe US$ 10,00
‘ Mans Shoe Us$ 7,00
‘ Dress US$ 30,00

Apple Pay v

Visa ending in 3063 Pay from Visa 4242 Sucsess

Visa ending in 3220 Total US$ 47,00 : Your purchase was successful!
Visa ending in 3238 oK

Visa ending in 3246

Visa ending in 3253

Visa ending in 4242

4+ Add New Card...

The sample backend attaches some test cards:

« 4242 4242 4242 4242
A default VISA card.

+ 4000 0000 0000 3220
Use this 10 105 ittt CatION.

Figura A.4 Fluxo Caso de Teste 1. Fonte: Elaborado pela autora

45

46 APENDICE A CASOS DE TESTE

A.3 Caso de Teste 2

func test3DS2() {
disableAddressEntry(app)
selectItems(app)

let buyNowButton = app.buttons["Buy Now"]

buyNowButton. tapWhenHittableInTestCase(self)

let payFromButton = app.buttons.matching(identifier: "Pay from").element
payFromButton.tapWhenHittableInTestCase(self)

let visa = app.tables.staticTexts["Visa ending in 3220"]
visa.tapWhenHittableInTestCase(self)
app.buttons["Buy"].tapWhenHittableInTestCase(self)

let elementsQuery = app.scrollViews.otherElements

let learnMore = elementsQuery.buttons["Learn more about authentication"]
learnMore.tapWhenHittableInTestCase(self)

elementsQuery.buttons["Need help?"].tapWhenHittableInTestCase(self)
app.scrollViews.otherElements.buttons["Continue"].tapWhenHittableInTestCase(self)
let success = app.alerts["Success"].buttons["0K"]

success.tapWhenHittableInTestCase(self)

Figura A.5 Caso de Teste 2 Original. Fonte: Repositério da Aplicacio de Teste

A.3 CASO DE TESTE 2 47

helpers.disable_address_entry()
helpers.select_items { "¥.", "&", "4" }
helpers.select_payment_method("Visa ending in 3220")

biu.tap_button("Buy")
biu.wait_for("Complete Authentication")

biu.compare_ref()

biu.tap_button("Learn more about authentication")
biu.tap_button("Need help?")

biu.compare_ref()

biu.tap_button("Continue")

biu.wait_for("Buy")

biu.tap_button("0K")

Figura A.6 Caso de Teste 2 com BIUTest. Fonte: Elaborado pela autora

48

21:09 -

Cancel Payment Method

Apple Pay

Visa ending in 3063
Visa ending in 3220
Visa ending in 3238
Visa ending in 3246

Visa ending in 3253

8888880

Visa ending in 4242

4+ Add New Card...

The sample backend attaches some test cards:

+ 4242 4242 4242 4242
A default VISA card.

- 4000 0000 0000 3220
Use this t0 tesintine ikttt tication

Edit

APENDICE A CASOS DE TESTE

21:09

.))
i

< Products Checkout
Secure checkout Cancel

L High-Heeled Shoe US$ 10,00
Card
Bank Logo @ Network
\ Mans Shoe USs$ 7,00
3D Secure 2 Test Screen

This is a test 3D Secure 2 authentication for a
Dress US$ 30,00 transaction, showing an out-of-band (OOB) flow.
' In live mode, customers may be asked to open their

banking app installed on their phone to complete

authentication.
Pay from Visa 3220

Total US$ 47,00

Learn more about authentication
This can contain more information about
authentication provided by the card issuer.

Need help?

Buy

21:10

)
L]

< Products Checkout

L High-Heeled Shoe US$ 10,00
‘ Mans Shoe Us$ 7,00
‘ Dress US$ 30,00

Pay fre T 23220
Success
Yo h ful!
TOtal ‘our purchase was successful 7'00

OK

Figura A.7 Fluxo Caso de Teste 2. Fonte: Elaborado pela autora

A.4 CASO DE TESTE 3 49

A.4 Caso de Teste 3

O func testPopApplePaySheet() {
disableAddressEntry(app)
selectItems(app)

let buyNowButton = app.buttons["Buy Now"]
buyNowButton. tapWhenHittableInTestCase(self)

let payFromButton = app.buttons.matching(identifier: "Pay from").element
payFromButton.tapWhenHittableInTestCase(self)

let tablesQuery = app.tables

let applePay = tablesQuery.staticTexts["Apple Pay"]
applePay.tapWhenHittableInTestCase(self)
app.buttons["Buy"].tapWhenHittableInTestCase(self)

Figura A.8 Caso de Teste 3 Original. Fonte: Repositério da Aplicacéo de Teste

helpers.disable_address_entry()
helpers.select_items { "¥.", "&", "4" }
helpers.select_payment_method("Apple Pay")

biu.tap_button("Buy")
biu.wait_seconds("1")
biu.compare_ref()

Figura A.9 Caso de Teste 3 com BIUTest. Fonte: Elaborado pela autora

50

21:47

Cancel Payment Method

Apple Pay

Visa ending in 3063
Visa ending in 3220
Visa ending in 3238
Visa ending in 3246

Visa ending in 3253

Visa ending in 4242

+

Add New Card...

The sample backend attaches some test cards

« 4242 4242 42.
A default VI

SAc

+ 4000 0000 00
Use this to tes

s | [CATION

= =

Edit

v

APENDICE A CASOS DE TESTE

21:47

< Products Checkout

L High-Heeled Shoe
‘ Mans Shoe

04
A Dress

Pay from

Total

.))
1

US$ 10,00

US$ 7,00

US$ 30,00

Apple Pay

US$ 47,00

& Pay X

Simulated Card - AmEx
«ee+ 1234 >
Add Billing Address

Pay Emoji Apparel
US$ 47,00

Payment Not Completed

Figura A.10 Fluxo Caso de Teste 3. Fonte: Elaborado pela autora

A.5 CASO DE TESTE 4

A.5 Caso de Teste 4

func testCCEntry() {
disableAddressEntry(app)
selectItems(app)

let buyNowButton = app.buttons["Buy Now"]
buyNowButton.tapWhenHittableInTestCase(self)

let payFromButton = app.buttons.matching(identifier: "Pay from").element
payFromButton.tapWhenHittableInTestCase(self)

let tablesQuery = app.tables

let addButton = app.tables.staticTexts["Add New Card.."]
addButton.tapWhenHittableInTestCase(self)

let cardNumberField = tablesQuery.textFields["card number"]

let cvcField = tablesQuery.textFields["CVC"]

let zipField = tablesQuery.textFields["Postal code"]
cardNumberField.tapwWhenHittableInTestCase(self)
cardNumberField.typeText("4000000000000069")

let expirationDateField = tablesQuery.textFields["expiration date"]

expirationDateField.typeText("02/28")
cvcField.typeText("223")
zipField.typeText("90210")

let addcardviewcontrollernavbardonebuttonidentifierButton = app.navigationBars["Add a Card"]
.buttons["AddCardViewControllerNavBarDoneButtonIdentifier"]

addcardviewcontrollernavbardonebuttonidentifierButton.tapWhenHittableInTestCase(self)

app.alerts["Your card has expired."].buttons["OK"].tapwWhenHittableInTestCase(self)

cardNumberField.tapwWhenHittableInTestCase(self)

let deleteString = String(repeating: XCUIKeyboardKey.delete.rawValue, count: 4)

cardNumberField.typeText(deleteString)

cardNumberField.typeText("0341")

addcardviewcontrollernavbardonebuttonidentifierButton.tapWhenHittableInTestCase(self)

let buyButton = app.buttons["Buy"]

buyButton.tapWhenHittableInTestCase(self)

let errorButton = app.alerts["Error"].buttons["0K"]

errorButton.tapWhenHittableInTestCase(self)

Figura A.11 Caso de Teste 4 Original. Fonte: Repositério da Aplicacio de Teste

51

52

APENDICE A CASOS DE TESTE

helpers.disable_address_entry()
helpers.select_items { "¥.", "&", "4" }
helpers.select_payment_method("Add New Card..")

biu.
biu.
biu.
biu.
biu.
biu.
biu.

biu.
biu.
biu.

biu.
biu.
biu.

biu.
biu.
biu.
biu.

enter_text { text ""4000000000000069", field = "card number" }
compare_ref()

enter_text { text = "@02/28", field = "expiration date" }
compare_ref()

enter_text { text = "223", field = "CvC" }

enter_text { text = "90210", field = "Postal code" }
tap_button("Done")

wait_for("Your card has expired.")
compare_ref()
tap_button("0K")

delete_text { letter_count = 4, field = “card number" }
enter_text { text = "0341", field = "card number" }
tap_button("Done")

wait_for("Buy")
tap_button("Buy")
wait_for("Error")
tap_button("0K")

Figura A.12 Caso de Teste 4 com BIUTest. Fonte: Elaborado pela autora

22:02 e T @

Cancel Payment Method Edit

Apple Pay v

Visa ending in 3063
Visa ending in 3220
Visa ending in 3238
Visa ending in 3246
Visa ending in 3253
Visa ending in 4242

4+ Add New Card...

The sample backend attaches some test cards:

« 4242 4242 4242 4242
A default VISA card.

- 4000 0000 0000 3220
Use this t0 tes imainaaiakkantabags tication.

22:02 e T @

Cancel Add a Card Done

Card Scan Card

wvisa 0069 02/28 223 90210

You can add custom footer views to the add
card screen.

A.5 CASO DE TESTE 4 53

22:02 e T @

Cancel Add a Card Done

Card Scan Card
visa 0069 02/28 223 9021d
Your card has expired.

You can add custom footer views to the add
card screen. oK

22:02 e T @

< Products Checkout

L High-Heeled Shoe US$ 10,00
‘ Mans Shoe Us$ 7,00
‘ Dress US$ 30,00

Pay from Visa 0341

Error
Total US$ 47,00 Your card was declined.

OK

Figura A.13 Fluxo Caso de Teste 4. Fonte: Elaborado pela autora

54

APENDICE A CASOS DE TESTE

A.6 Caso de Teste 5

sDefault() {

disableAddressEntry(app)

selectItems(app)

let buyNowButton = app.buttons["Buy Now"]
buyNowButton.tapWhenHittableInTestCase(self)

let payFromButton = app.buttons.matching(identifie "Pay from").element
payFromButton.tapWhenHittableInTestCase(self)

let tablesQuery = app.tables

let applePay = tablesQuery.cells["Apple Pay"]
waitToAppear(applePay)
XCTAssertTrue(applePay.isSelected)

let visa = tablesQuery.cells["Visa ending in 3220"]
visa.tapWhenHittableInTestCase(self)

app.navigationBars["Checkout"].buttons["Products"].tapWhenHittableInTestCase(self)
buyNowButton.tapWhenHittableInTestCase(self)
payFromButton.tapWhenHittableInTestCase(self)

XCTAssertTrue(visa.isSelected)
XCTAssertFalse(applePay.isSelected)

applePay.tapWhenHittableInTestCase(self)

Figura A.14 Caso de Teste 5 Original - Parte 1. Fonte: Repositério da Aplicagdo de Teste

A.6 CASO DE TESTE 5 55

app.navigationBars["Checkout"].buttons["Products"].tapWhenHittableInTestCase(self)
buyNowButton.tapWhenHittableInTestCase(self)

payFromButton.tapWhenHittableInTestCase(self)

(applePay.isSelected)
e(visa.isSelected)

visa.tapWhenHittableInTestCase(self)

gationBars["Checkout"].buttons["Products"].tapWhenHittableInTestCase(self)
s["Emoji Apparel"].buttons["Settings"].tapWhenHittableInTestCase(self)

en(matching: .cell).element(boundBy: 18) exts["Log out"].tapWhenHittableInTestCase(self)
tionBars["Settings"].buttons["Done"].tapWhenHittableInTestCase(self)

buyNowButton.tapWhenHittableInTestCase(self)
payFromButton.tapWhenHittableInTestCase(self)

waitToAppear(applePay)
XCTAssertTrue(applePay.isSelected)
XCTAssertFalse(visa.isSelected)

Figura A.15 Caso de Teste 5 Original - Parte 2. Fonte: Repositorio da Aplicacdo de Teste

56

APENDICE A CASOS DE TESTE

helpers.disable_address_entry()
helpers.select_items { "¥", "4", "&

biu.
.tap_button("Pay from")
.wait_for("Apple Pay")

biu
biu

biu.
biu.

biu.
. tap_button("Buy Now")
biu.
biu.

biu

biu.
biu.
biu.
.tap_button("Pay from")
biu.

biu

biu.

biu.
biu.
biu.
biu.
biu.

biu.
biu.

biu

biu.

Figura A.16 Caso de Teste 5 com BIUTest. Fonte: Elaborado pela autora

tap_button("Buy Now")

compare_ref()
tap_button("Visa ending in 3220")
tap_button("Products")

tap_button("Pay from")
compare_ref()

tap_button("Apple Pay")
tap_button("Products")
tap_button("Buy Now")

compare_ref()
tap_button("Visa ending in 3220")

tap_button("Products")
tap_button("Settings")
scroll_up()
tap_button("Log out")
tap_button("Done")

tap_button("Buy Now")
tap_button("Pay from")
.wait_for("Apple Pay")
compare_ref()

A.6 CASO DE TESTE 5

22:15 = - 22:15 = -

Cancel Payment Method Edit Settings Emoji Apparel
uss2000 @ ussaooo @

Apple Pay v
Visa ending in 3063
&) Visaending in 3220 \
2 Visaending in 3238
& Visa ending in 3246
Visa ending in 3253 CEDEY Q

&) Visaending in 4242

4+ Add New Card...

The sample backend attaches some test cards:

« 4242 4242 4242 4242
A default VISA card.

+ 4000 0000 0000 3220

Use this 10 tes e S accanatt

ication.

22:16

Settings
REQUIRED BILLING ADDRESS FIELDS

None
Postal code
Name

Full

REQUIRED SHIPPING ADDRESS FIELDS

None
Email
(PostalAddress|Phone)

All

SHIPPING TYPE
Shipping

Delivery

SESSION

Log out

LN

Buy Now US$ 47,

9)

Done

Cancel

- 22:16

Apple Pay

Visa ending in 3063
Visa ending in 3220
Visa ending in 3238
Visa ending in 3246
Visa ending in 3253

Visa ending in 4242

Add New Card...

« 4242 4242 4242 4242
A default VISA card.

+ 4000 0000 0000 3220

Payment Method

22:16

Cancel Payment Method

Apple Pay

Visa ending in 3063
Visa ending in 3220
Visa ending in 3238
&) Visaending in 3246

) Visaending in 3253

) Visaending in 4242

4+ Add New Card...

The sample backend attaches some test cards:

« 4242 4242 4242 4242
A default VISA card.

+ 4000 0000 0000 3220

Use this 10 tesalReatamteaaantication.

=T -

Edit

The sample backend attaches some test cards:

Use this 10 105 it LiCation.

Figura A.17 Fluxo Caso de Teste 5. Fonte: Elaborado pela autora

57

Referéncias Bibliograficas

[1] Emil Alégroth. Visual GUI Testing: Automating High-level Software Testing in Industrial
Practice. PhD thesis, Chalmers University of Technology and Goteborg University, 2015.

[2] Apple. User Interface Tests | Apple Developer Documentation. https:
//developer.apple.com/documentation/xctest/user_interface_
tests. [Online; accessed 22-July-2023].

[3] Mike Cohn. Succeeding with Agile: Software Development Using Scrum. Addison Wes-
ley, 2009.

[4] Henrique Forioni de Lima. Estudo comparativo de frameworks de automatizagao de testes
de ui para aplicativos i0s. Bachelor Thesis, 2019.

[5] Elfriede Dustin. Effective Software Testing: 50 Ways to Improve Your Software Testing.
Addison Wesley, 2002.

[6] Marcelo Medeiros Eler, Jose Miguel Rojas, Yan Ge, and Gordon Fraser. Automated
accessibility testing of mobile apps. In 2018 IEEE 11th International Conference on
Software Testing, Verification and Validation (ICST), pages 116126, 2018.

[7] Sidong Feng, Mulong Xie, and Chunyang Chen. Efficiency matters: Speeding up au-
tomated testing with gui rendering inference. In Proceedings of the 45th International
Conference on Software Engineering, ICSE °23, page 906-918. IEEE Press, 2023.

[8] Shuai Hao, Bin Liu, Suman Nath, Ramesh Govindan, and William G.J. Halfond. Puma:
Programmable ui-automation for large scale dynamic analysis of mobile apps. In The In-

ternational Conference on Mobile Systems, Applications, and Services (MobiSys). ACM,
June 2014.

[9] Katja Karhu, Tiina Repo, Ossi Taipale, and Kari Smolander. Empirical observations on
software testing automation. In 2009 International Conference on Software Testing Veri-
fication and Validation, pages 201-209, 2009.

[10] Anureet Kaur. Comparative analysis of line of code metric tools. International journal of
scientific research in science, engineering and technology, 2:1285-1288, 2016.

[11] Rakesh Kumar Lenka, Srikant Kumar, and Sunakshi Mamgain. Behavior driven develop-
ment: Tools and challenges. In 2018 International Conference on Advances in Computing,
Communication Control and Networking (ICACCCN), pages 1032—-1037, 2018.

59

https://developer.apple.com/documentation/xctest/user_interface_tests
https://developer.apple.com/documentation/xctest/user_interface_tests
https://developer.apple.com/documentation/xctest/user_interface_tests

60 REFERENCIAS BIBLIOGRAFICAS

[12] Joe Ligman, Marco Pistoia, Omer Tripp, and Gegi Thomas. Improving design validation
of mobile application user interface implementation. In 2016 IEEE/ACM International
Conference on Mobile Software Engineering and Systems (MOBILESoft), pages 277-278,
2016.

[13] Bismal Majeed, Saba Khalil Toor, Kanwal Majeed, and Moazzama Nadeem Ahmad
Chaudhary. Comparative study of open source automation testing tools: Selenium, ka-
talon studio & test project. In 2021 International Conference on Innovative Computing
(ICIC), pages 1-6, 2021.

[14] Meiliana, Irwandhi Septian, Ricky Setiawan Alianto, and Daniel. Comparison analysis
of android gui testing frameworks by using an experimental study. Procedia Computer
Science, 135:736-748, 2018. The 3rd International Conference on Computer Science and
Computational Intelligence (ICCSCI 2018) : Empowering Smart Technology in Digital
Era for a Better Life.

[15] Robert Gomes Melo. Frevo: um framework e uma ferramenta para automacao de testes.
Master’s thesis, Universidade Federal de Pernambuco, 2016.

[16] Andre Augusto Menegassi and Andre Takeshi Endo. Automated tests for cross-platform
mobile apps in multiple configurations. IET Software, 14(1):27-38, feb 2020.

[17] Helena Olsson, Hiva Alahyari, and Jan Bosch. Climbing the"stairway to heaven'"a
multiple-case study exploring barriers in the transition from agile development towards
continuous deployment of software. Proceedings - 38th EUROMICRO Conference on
Software Engineering and Advanced Applications, SEAA 2012, 2012.

[18] Sartinas Packevi¢ius, Greta RudZioniené, and Eduardas Barei$a. Automated visual testing
of application user interfaces using static analysis of screenshots. International Journal
of Software Engineering and Knowledge Engineering, 31(02):167-191, 2021.

[19] Elis Pelivani and Betim Cico. A comparative study of automation testing tools for web
applications. In 2021 10th Mediterranean Conference on Embedded Computing (MECO),
pages 1-6, 2021.

[20] Neha Sharma and Shilpi Singh. Software testing techniques: A literature review. Inter-
national Journal of Innovative Research in Technology, 2020.

[21] Harshit Singh, Shambhu Kumar Jha, Deepa Gupta, and Ajay Vikram Singh. Gui testing
android application. In 2022 10th International Conference on Reliability, Infocom Tech-
nologies and Optimization (Trends and Future Directions) (ICRITO), pages 1-6, 2022.

[22] Aditya Atul Tirodkar and Sundeep Singh Khandpur. Earlgrey: ios ui automation tes-
ting framework. In 2019 IEEE/ACM 6th International Conference on Mobile Software
Engineering and Systems (MOBILESoft), pages 12—15, 2019.

[23] Avi Tsadok. Pro iOS Testing - XCTest Framework for UI and Unit Testing. Apress, 2020.

REFERENCIAS BIBLIOGRAFICAS 61

[24] Maneela Tuteja and Gaurav Dubey. A research study on importance of testing and quality
assurance in software development life cycle (sdlc) models. International Journal of Soft
Computing and Engineering (IJSCE), 2012.

[25] Peter Warren. Teaching programming using scripting languages. Journal of Computing
Sciences in Colleges, 17:205-216, 2001.

[26] https://developer.android.com/training/testing/other-components/ui-automator. [Online;
accessed 05-September-2023].

	Introdução
	Fundamentação
	Teste de Software
	Pirâmides de Testes
	Testes Unitários
	Testes de Serviços
	Testes de Interface do Usuário (UI)
	A Pirâmide Clássica
	A Pirâmide Invertida

	Métodos de Testes
	Estrutural (Caixa-Branca)
	Funcional (Caixa-Preta)

	Testes Automatizados

	Testes de UI
	Ferramentas de Testes de UI
	Web
	Selenium
	Katalon Studio

	Android
	Espresso
	UI Automator
	Appium

	iOS
	XCUITest
	EarlGrey

	Trabalhos Relacionados

	Solução
	Seleção do Ferramental
	Lua
	XCUITest

	Exemplo de Uso
	Arquitetura da Solução
	Algoritmo da Solução
	Estrutura de Pastas
	Execução dos Testes

	Análise
	Metodologia
	Seleção da Aplicação
	Seleção dos Casos de Teste
	Seleção dos Critérios de Avaliação

	Preparação
	Setup
	Helpers
	Caso de Teste 1
	Caso de Teste 2
	Caso de Teste 3
	Caso de Teste 4
	Caso de Teste 5

	Resultados
	Critérios de Avaliação
	API
	Suporte a Logs
	Suporte a uma grande variedade de propriedades
	Tempo de Execução

	Considerações Finais

	Conclusão e Trabalhos Futuros
	Casos de Teste
	Helpers
	Caso de Teste 1
	Caso de Teste 2
	Caso de Teste 3
	Caso de Teste 4
	Caso de Teste 5

	Referências Bibliográficas

