

UNIVERSIDADE FEDERAL DE PERNAMBUCO
CENTRO DE INFORMÁTICA

GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

Henrique Andrade Mariz

Explorando Padrões de Projeto no Desenvolvimento de Jogos Digitais na

Unity 3D

RECIFE

2023

UNIVERSIDADE FEDERAL DE PERNAMBUCO

CENTRO DE INFORMÁTICA

CURSO DE BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO

Henrique Andrade Mariz

Explorando Padrões de Projeto no Desenvolvimento de Jogos Digitais na

Unity 3D

RECIFE

2023

Monografia apresentada ao Centro de

Informática (CIn) da Universidade Federal de

Pernambuco (UFPE), como requisito parcial

para conclusão do Curso de Ciência da

Computação, orientada pelo professor Leopoldo

Motta Teixeira.

Ficha de identificação da obra elaborada pelo autor,
 através do programa de geração automática do SIB/UFPE

Mariz, Henrique.
 Explorando padrões de projeto no desenvolvimento de jogos digitais na
Unity3D / Henrique Mariz. - Recife, 2023.
 119 p. : il.

 Orientador(a): Leopoldo Texeira
 Trabalho de Conclusão de Curso (Graduação) - Universidade Federal de
Pernambuco, Centro de Informática, Ciências da Computação - Bacharelado,
2023.
 Inclui referências, anexos.

 1. Engenharia de Software. 2. Jogos Digitais. 3. Padrões de Projeto. 4. Boas
práticas. 5. Unity. I. Texeira, Leopoldo. (Orientação). II. Título.

 000 CDD (22.ed.)

UNIVERSIDADE FEDERAL DE PERNAMBUCO

CENTRO DE INFORMÁTICA

CURSO DE BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO

Henrique Andrade Mariz

Explorando Padrões de Projeto no Desenvolvimento de Jogos Digitais na

Unity 3D

Monografia submetida ao corpo docente da Universidade Federal de Pernambuco, defendida e

aprovada em 02 de outubro de 2023.

Banca Examinadora:

 Orientador

Leopoldo Motta Teixeira

Doutor

Examinador(a)

Breno Miranda

Doutor(a)

AGRADECIMENTOS

Aos meus pais, Abílio e Ana Célia, agradeço por todo o suporte que foi essencial para

a realização de tudo. Obrigado pelo exemplo que são, pelos sermões, incentivo, apoio e orações.

Vocês foram essenciais ao longo de todo o percurso, não teria conquistado as mesmas coisas se

não fosse por vocês.

Agradeço à minha irmã, Aline Mariz, que também sempre esteve presente, bem como a

Mariana Siqueira por todo suporte emocional, paciência, compreensão, amor e carinho.

Em especial, gostaria de agradecer à minha avó, a qual não tive oportunidade de mostrar onde

eu cheguei. Obrigado por sempre acreditar em mim e me guiar.

Gostaria de agradecer ao meu orientador, Prof. Dr. Leopoldo Motta Teixeira, pela

disponibilidade e encorajamento que foram fundamentais para realizar e prosseguir com este

estudo.

Agradeço, também, aos amigos que me ajudaram neste percurso da graduação,

Guilherme Melo, Ivan Neves, Lucas Lin, Matheus Lima e Rodrigo Falcão, sinto que vocês

tiveram um papel fundamental nesta jornada, tornando-a mais leve, seja nos estudos ou nos

projetos de jogos dos quais realizamos juntos.

RESUMO

A Unity é uma das ferramentas mais populares no desenvolvimento de jogos digitais, pois

oferece uma licença gratuita ou com ótimo custo-benefício a depender da proporção do jogo

desenvolvido. Além de possuir suporte para múltiplas plataformas, apresenta também uma

grande comunidade de utilizadores, permitindo o acesso a muita informação em fóruns que

auxiliam no desenvolvimento, e também disponibilização de código e assets. Possui um

ambiente de desenvolvimento com diversos recursos facilitadores para reduzir a complexidade

de implementação, principalmente para amadores; entre outros benefícios. No entanto, para ter

qualidade no desenvolvimento de jogos é importante estruturar o código de forma eficiente e

organizada, visando ter um código manutenível, com boa performance, flexibilidade e

escalabilidade. Dessa maneira, este trabalho visa explorar os padrões de projeto mais

frequentemente recomendados para jogos, aplicados à Unity, bem como, as boas e más práticas

neste ambiente de desenvolvimento, a fim de expor soluções comprovadas para os problemas

recorrentes que permeiam esta área, disponibilizando implementações e orientações práticas

para o uso em projetos reais.

Palavras-chave: padrões de projeto, boas práticas, más práticas, jogos digitais, Unity.

ABSTRACT

Unity is one of the most popular tools in the development of digital games, as it offers a free

license or excellent cost-effectiveness depending on the scale of the game being developed. In

addition to supporting multiple platforms, it also boasts a large user community, providing

access to a wealth of information through forums that assist in development, as well as the

sharing of code and assets. It features a development environment with various helpful

resources to reduce implementation complexity, particularly for amateurs, among other

benefits. However, to achieve quality in game development, it is important to structure the code

efficiently and systematically, aiming for maintainable code with good performance, flexibility,

and scalability. Thus, this work aims to explore the design patterns most frequently

recommended for games when applied to Unity. It also delves into best practices and pitfalls in

this development environment in order to present proven solutions to common issues in this

field and provide practical implementations and guidance for use in real projects.

Keywords: design patterns, best practices, bad practices, digital games, Unity.

Sumário
1.Introdução .. 11

 1.1. Objetivos .. 12

2. Conceitos Básicos .. 13

2.1. Favorecer a composição em vez de herança .. 13

2.2. Alta coesão e baixo acoplamento ... 13

2.3. SOLID .. 15

2.4. Princípio KISS ... 18

3. Ambiente Unity de desenvolvimento .. 18

4. Metodologia .. 23

4.1. Revisão Rápida (RR) e Revisão de Literatura Cinza (RLC) .. 24

4.2. Perguntas da pesquisa... 24

4.3. Estratégia de busca ... 25

4.4. Procedimento de seleção .. 25

5. Resultados e discussões ... 27

5.1. Padrões de Projeto na Unity ... 28

5.1.1. Padrão Singleton ... 28

5.1.2. Padrão State .. 34

5.1.3. Padrão Command ... 42

5.1.4. Padrão Observer ... 49

5.1.5. Padrão MVP (Model-View-Presenter) ... 58

5.1.6. Padrão Factory ... 62

5.1.7. Padrão Object Pool ... 68

5.1.8. Padrão Component ... 72

5.1.9. Padrão Decorator ... 76

5.2. Boas práticas na Unity .. 80

5.3. Más práticas na Unity ... 88

6. Conclusão .. 92

7. Referências .. 94

8. Anexo de Figuras .. 99

Lista de Figuras

Figura 1 – Ilustração que representa a conexão entre módulos de forma interna e externa, ou

seja, coesão e acoplamento. .. 15

Figura 2 – Visualização do editor da Unity. ... 20

Figura 3 – Script vazio recém-criado na Unity. .. 21

Figura 4 – Visualização do inspector ao adicionar um script em um GameObject. 22

Figura 5 – Visualização de prefabs na Unity. ... 23

Figura 6 – Diagrama representando o processo de seleção de recursos (RR e GLR). 27

Figura 7 – Representação UML do padrão Singleton... 28

Figura 8 – Código-exemplo de um Singleton simples na Unity. .. 29

Figura 9 – Game Manager e Audio Manager como Singletons. .. 31

Figura 10 – Diagrama UML do State Pattern. ... 35

Figura 11 – Representação de um fluxo do State no contexto de jogos. 36

Figura 12 – Exemplo comum do State Pattern em jogos em um diagrama UML. 37

Figura 13 – Representação UML do padrão Command. .. 43

Figura 14 – Representação UML de exemplo do Command Pattern....................................... 45

Figura 15 – Interface Command implementada na Unity. .. 46

Figura 16 – Exemplo de código de um comando de movimentação de um jogador na Unity. 46

Figura 17 – Exemplo de código de uma Classe Receiver do padrão Command na Unity. 47

Figura 18 – Exemplo de código para criar comando na Unity. .. 48

Figura 19 – Implementação exemplo de uma classe Invoker na Unity do padrão Command. . 49

Figura 20 – Representação UML do padrão Observer. .. 51

Figura 21 – Exemplo de Subject na Unity. ... 53

Figura 22 – Exemplo de Observer na Unity. ... 54

Figura 23 – Segundo exemplo de Observer na Unity. .. 55

Figura 24 – Interface gráfica de UnityEvents, sendo utilizada em um botão na Unity. 56

Figura 25 – Diagrama demonstrando as interações entre as camadas do MVC. 59

Figura 26 – Diagrama demonstrando as interações entre as camadas do MVP. 60

Figura 27 – Representação da estrutura do padrão Factory. .. 64

Figura 28 – Interface IProduct e classe abstrata Factory do padrão Factory na Unity. 65

Figura 29 – Representação do processo de fragmentação de memória. 68

Figura 30 – Representação UML do padrão Object Pool. ... 70

Figura 31 – Hierarquia de cena da Unity ilustrando projéteis numa pool de objetos. 71

Figura 32 – Visualização do GameObject Player na janela de Inspector no editor da Unity. . 73

Figura 33 – Representação UML da estrutura do padrão Decorator. 77

Figura 34 – Visualização de scriptable objects no editor. .. 82

Figura 35 – Visualização das configurações de luz, a qual indica o uso de light mapping e indica

como pré-calcular os dados de luz. ... 84

Figura 36 – Ilustração da diferença entre o uso de colliders primitivos e colliders complexos,

como o mesh collider. ... 85

Figura 37 – Visualização do profiler da Unity, a qual demonstra as alocações para o Garbage

Collector (na parte superior) e alocação de memória (na parte inferior). 86

Figura 38 – Visualização do profiler da Unity, a qual demonstra as alocações para o Garbage

Collector (na parte superior) e alocação de memória (na parte inferior). 87

Figura 39 – Visualização do profiler da Unity, a qual demonstra o tempo gasto em scripting ao

realizar e não realizar cache de referências de componente. .. 88

Tabela de Siglas

Sigla Significado

3D Tridimensional

CEO Chief Executive Officer

CPU Central Processing Unit

E-book Eletronic Book

FSM Finite State Machine

GoF Gang of Four

IA Inteligência Artificial

IDE Integrated Development Environment

iOS Iphone Operating System

KISS Keep It Simple, Stupid!

LOD Level of Detail

RLC Revisão de Literatura Cinza

RQ Review Questions

RR Revisão Rápida

SR Systematic Review

UI User Interface

UML Unified Modeling Language

WebGL Web Graphics Library

11

1. Introdução

A priori, é importante mencionar que o desenvolvimento de jogos digitais é uma área que

tem se tornado cada vez mais popular no Brasil. A pesquisa da Abragames, realizada em 2022,

sobre a indústria brasileira de games, constatou que, entre 2018 e 2022, houve um aumento de

cerca de 152% de empresas desenvolvedoras de jogos (Fortim, 2022), evidenciando um pouco

da relevância atual da área.

Tendo isso em vista, vale também ressaltar uma das game engines mais populares de

desenvolvimento de jogos digitais, a Unity 3D, visto que, nessa mesma pesquisa, a ferramenta

é utilizada por cerca de 83% das empresas desenvolvedoras brasileiras (Fortim, 2022). Vários

autores da área tentam explicar os diversos motivos da popularidade da Unity (Shah, 2017;

Dealessandri, 2020; Schardon, 2023), a exemplo do artigo “Unity Game Development Engine:

A Technical Survey” dos autores Hussain et al. (2020), o qual discorre acerca da definição da

Unity, faz uma pesquisa técnica e lista as vantagens por ela oferecidas.

Em resumo os motivos da popularidade são: licença gratuita ou com ótimo custo-benefício

a depender da proporção do jogo desenvolvido; suporte para múltiplas plataformas como

Windows, Linux, Mac, Nintendo Switch, Android, iOS, webGL etc.; grande comunidade ativa,

permitindo o acesso a muita informação em fóruns - a exemplo da Unity Community, Stack

Over Flow, Game Dev Stack Exchange - como também disponibilização de código e assets

pronto para uso na Unity Asset Store; Ambiente de desenvolvimento com diversos recursos

facilitadores que diminuem a complexidade de implementação, principalmente para amadores;

entre outras razões.

Como era de se esperar pela sua popularidade, a game engine foi utilizada no

desenvolvimento de diversos jogos de sucesso pelo mundo. No blog The Gamer, o autor Jeff

Drake, lista dezenove sucessos mundialmente jogados, como Pokémon Go, Cuphead, Ori and

The Blind Forest, Hearthstone e outros (Drake, 2023). Além disso - segundo John Riccitiello,

CEO da Unity, em 2018 no TechCrunch DisruptSF, evento anual tecnológico - a Unity Engine

chegou a estar presente no desenvolvimento de mais da metade de todos os jogos de celular

(Dillet, 2018).

A implementação de jogos consiste numa competência multidisciplinar que envolve

diversos elementos interdependentes, como personagens, cenários, física, computação gráfica,

inteligência artificial, entre outros elementos, por isso, se não tiver cuidado, o código pode ficar

cada vez mais difícil de dar manutenção. O post de Artur Levchenko, no blog Visartech,

12

evidencia isso ao dizer que quanto mais complexa e diversificada for a mecânica do jogo,

variedade de conteúdo e possíveis interações, mais difícil será executar corretamente e evitar o

chamado “código espaguete”, ou seja, as conexões entre classes e módulos tornam-se

extremamente estreitas, as interações das classes ficam fortemente entrelaçadas, assim, a

alteração de qualquer um dos mecanismos existentes ou a adição de um novo comportamento

torna-se incrivelmente difícil (Levchenko, 2023).

Padrões de projeto podem ajudar nesse contexto, visto que os autores Gamma et al. (1993)

definem padrão de projeto como um problema que ocorre inúmeras vezes em determinado

contexto, e descreve ainda a solução para esse problema, de modo que essa solução possa ser

utilizada sistematicamente em distintas situações. Cada padrão tem uma característica diferente

para ajudar em algum lugar onde se precisa de mais flexibilidade ou precisa encapsular uma

abstração ou de se fazer um código menos casado (Gamma et al., 1993).

Portanto, este trabalho se propõe a explorar os padrões de projeto mais frequentemente

recomendados pela literatura acadêmica e pela literatura cinza para jogos desenvolvidos em

Unity, assim como, as boas e as más práticas neste ambiente de desenvolvimento, visto que é

importante entender os contextos problemáticos que podem surgir durante o desenvolvimento

de jogos, para se utilizar de soluções adequadas para tais problemas

Para alcançar esse propósito, foi conduzida uma revisão da literatura de forma sistemática,

utilizando de Revisão Rápida (RR) e de Revisão de Literatura Cinza (GLR) - devido à natureza

prática e concreta da pesquisa - visando oferecer implementações e orientações práticas para

projetos na Unity no contexto de jogos, a fim de se obter um código mais flexível, escalável,

manutenível e performático.

1.1. Objetivos

A Unity 3D é uma das ferramentas mais populares no desenvolvimento de jogos digitais,

sua ampla comunidade auxilia bastante o programador, visto que há bastante conteúdo pronto

para uso, como assets, plugins, bibliotecas, vídeos, até mesmo muitas dúvidas respondidas em

fóruns. Tendo isso em vista, muitos dos problemas comuns já foram discutidos, resolvidos e

disponibilizados na internet.

Portanto, o objetivo deste trabalho é realizar uma pesquisa exploratória sobre o uso de

padrões de projeto no desenvolvimento de jogos na Unity 3D, assim como demonstrar sua

aplicação prática em contexto real, visando apresentar aos desenvolvedores soluções

comprovadas para problemas conhecidos e recorrentes na área, como também a identificação

destes cenários.

13

2. Conceitos Básicos

No mundo da engenharia de software, a construção de sistemas eficientes, flexíveis e de

fácil manutenção é uma busca constante. Nesse contexto, padrões de projeto visam prover

soluções para problemas recorrentes de forma que estejam alinhadas com estes requisitos. Deste

mesmo modo, este trabalho visa explorar padrões de projeto, bem como, boas e más práticas de

código no contexto de desenvolvimento de jogos na Unity. Contudo, antes de adentrar neste

tópico, é essencial trazer a definição de alguns conceitos prévios, com o intuito de trazer uma

melhor compreensão ao analisar os benefícios de alguns dos padrões de projeto que serão

apresentados.

2.1. Favorecer a composição em vez de herança

Segundo Gamma et al. (1994), em sistemas orientados a objetos, as duas técnicas mais

frequentemente utilizadas para reutilizar funcionalidades são a de herança de classes e a

composição de objetos. No entanto, é importante destacar que ambas as técnicas possuem

vantagens e desvantagens, não havendo uma regra rígida que determine a superioridade de uma

sobre a outra. Isto dependerá do contexto da situação.

De maneira geral, de acordo com Barbosa, Rêgo e Medeiros (2015), a abordagem via

composição torna as classes encapsuladas e com potenciais custos de manutenção menores. Por

outro lado, requer mais expertise para usar, demandando mais tempo de desenvolvimento da

equipe. Já a herança não contempla essas vantagens, mas elimina duplicação de código e

diminui o tempo de desenvolvimento da equipe, visto que demanda de menos proficiência para

ser utilizada (Barbosa, Rêgo e Medeiros, 2015)

Contudo, o princípio abordado neste tópico, o de favorecer a composição em vez de

herança, de acordo com Gamma et al, ajuda a manter as classes encapsuladas e focadas em uma

única tarefa. Assim, estas classes tendem a permanecer pequenas, bem como, tendem a não se

tornarem grandes monstros incontroláveis (Gamma et al., 1994).

2.2. Alta coesão e baixo acoplamento

Coesão e acoplamento são dois conceitos básicos na engenharia de software, os quais

estão relacionados, visto que normalmente quando se tem um alto acoplamento se tem uma

baixa coesão e vice e versa.

Richards e Ford (2020), referem-se a coesão como uma medida que representa o quão

relacionadas estão as partes de um módulo entre si, de modo que, em um cenário ideal, um

14

módulo é considerado coeso quando todas as suas partes devem ser mantidas juntas, pois ao

separá-las em pedaços menores exigiria acoplamento das partes por meio de chamadas entre

eles.

 De forma análoga, quão menos relacionadas estiverem as partes, menor coesão tem o

módulo, isto quer dizer que, num cenário de mínima coesão, as partes poderiam estar separadas

sem haver acoplamento entre elas, isto é, sem haver chamadas entre si, visto que não existe

relação de uma com a outra.

Richards e Ford (2020) afirmam que coesão é uma métrica menos precisa que

acoplamento, visto que para definir acoplamento basta ver as conexões de entrada e saída de

um artefato de código (componente, classe, função e assim por diante) com outro artefato de

código. De maneira mais prática, pode-se definir como a medida de conexão entre módulos

diferentes de código, mostrando o quão dependentes ou interligadas estão os diferentes

módulos.

Portanto, é possível concluir que coesão se refere a conexão interna de um módulo, já

acoplamento se refere a conexão externa de um módulo. Dessa forma, ao projetar software

geralmente tenta-se maximizar a coesão e minimizar o acoplamento, visto que isto tornaria os

módulos mais independentes de modo que mudanças em um determinado módulo não afetaria

ou pouco impactaria outro módulo. Ou seja, é a partir daí que vem a expressão alta coesão,

baixo acoplamento.

De maneira similar, em um projeto evita-se ter acoplamento forte e baixa coesão, visto

que isto tornaria os módulos mais dependentes um dos outros, isto é, quando houver mudanças

em um determinado módulo afetaria outros módulos de forma direta, tornando o código mais

difícil de dar manutenção, visto que haveria mais locais para ajustar do que se o módulo fosse

mais independente. Pode-se visualizar na figura 1, uma representação do cenário ideal, o qual

se refere a alta coesão e baixo acoplamento

Lin (2021) reforça isso ao afirmar que, idealmente, deve-se buscar, de preferência,

minimizar as dependências entre classes, de maneira que cada classe deve ser capaz de operar

de forma harmoniosa com suas partes internas, em vez de depender fortemente de conexões

externas.

 Pode-se visualizar na figura 1, uma representação dos cenários de alta coesão e baixo

acoplamento, bem como, o cenário de baixa coesão e alto acoplamento, com relação às

conexões internas a um módulo (representado por uma caixa) e as conexões externas.

15

Figura 1 – Ilustração que representa a conexão entre módulos de forma interna e externa, ou seja, coesão e

acoplamento.

Fonte: Lin (2021).

2.3. SOLID

Em harmonia com a definição estabelecida por Martin (2017), os princípios SOLID

consistem em um arranjo das primeiras letras de cinco princípios que nos dizem como organizar

funções e estruturas de dados em classes e como essas classes devem ser interconectadas de

forma que sejam tolerantes a mudanças, fáceis de entender e bem como a base para sistemas de

software, sendo os princípios: o princípio da responsabilidade única, princípio aberto-fechado,

princípio da substituição de Liskov, princípio da segregação de interface e princípio da inversão

de dependência.

De maneira similar, Lin (2021) define os princípios SOLID como diretrizes para ajudar

a escrever um código mais limpo para que seja mais eficiente de manter e estender. Entretanto

o livro ressalta que em alguns casos, ao aderir ao SOLID, de início, pode resultar em um trabalho

adicional, o que talvez demande refatoração de algumas de suas funcionalidades em abstrações

ou interfaces, no entanto, muitas vezes há uma recompensa a longo prazo (Lin, 2021).

i. Princípio da responsabilidade única

Conforme Martin (2017) explica, historicamente este princípio é descrito como: “um

módulo deve ter um, e apenas um, motivo para mudar”. Em outras palavras, a classe deve ser

responsável por um único ator, de modo que se a classe tiver com a responsabilidade de

diferentes atores, o princípio está sendo violado. Ele ainda reforça que a chave para este

16

princípio é a palavra coesão, a qual é a força que une o código responsável por um único ator

(Martin, 2017).

Este princípio está bastante ligado com a coesão, como afirmado por Martin (2017).

Quando se tem uma alta coesão, o princípio da responsabilidade única está sendo respeitado,

visto que as partes internas de um código não têm motivo para estarem separadas, uma vez que

esta não assume responsabilidade de atores diferentes. De maneira similar, caso se tenha baixa

coesão, significa que existem partes dos módulos as quais não se relacionam entre si, indicando

que possivelmente a classe está com responsabilidade de diferentes atores.

ii. Princípio aberto-fechado

De acordo com Martin (2017), o princípio aberto-fechado diz que um artefato de

software deve estar aberto para extensão, mas fechado para modificação. Ou seja, o

comportamento de um artefato de software deve ser extensível, sem a necessidade de modificar

esse artefato (Martin, 2017). Em outras palavras, isso significa que ao adicionar novos recursos

ou funcionalidades a um sistema existente, deve-se realizar estendendo comportamento, sem

gerar alterações no código original desse sistema.

 Na opinião de Martin (2017), o princípio aberto-fechado é uma das forças motrizes da

arquitetura de sistemas, visto que este tem como objetivo tornar o sistema fácil de estender sem

implicar em um grande impacto de mudança. Segundo ele, este objetivo é alcançado

particionando o sistema em componentes e organizando esses componentes em uma hierarquia

de dependências que protege componentes de nível superior a partir de alterações em

componentes de nível inferior (Martin, 2017).

iii. Princípio da substituição de Liskov

A herança na programação orientada a objetos permite adicionar funcionalidade por

meio de subclasses, no entanto, isso pode levar a comportamentos inesperados se a herança for

mal utilizada. Um exemplo disto é quando objeto derivado sobrescreve um método da classe

base e não chama ou mantém o comportamento de sua classe base, podendo levar a erros ou

comportamentos inesperados, visto que é esperado que um objeto derivado assuma o papel de

uma classe base com comportamentos extras.

O princípio da substituição de Liskov tenta evitar isso e tornar subclasses mais robustas

e flexíveis ao postular que classes derivadas devem ser substituíveis por sua classe base, isto é,

uma classe derivada deve manter os comportamentos de sua classe base (Lin, 2021).

17

É válido ressaltar que uma das formas para resolver este problema é utilizando

composição no lugar de herança, pois em vez de tentar transmitir funcionalidade por meio de

herança, pode-se criar uma interface ou uma classe separada para encapsular um

comportamento específico. Basta, em seguida, construir uma composição de funcionalidades

diferentes misturando e combinando (Lin, 2021).

iv. Princípio da segregação de interface

Lin (2021) estabelece este princípio como a ideia de que uma classe não deve ser forçada

a depender de métodos que não utiliza. Sendo assim, as interfaces tendem a serem menores,

compactadas e com máxima flexibilidade (Lin, 2021).

 Dito isto, este princípio busca dividir interfaces extensas em interfaces menores, a fim

de evitar que classes sejam forçadas a implementar todo o conteúdo de uma interface quando,

na verdade, apenas desejam implementar uma parte dela. Ou seja, pode-se concluir que este

princípio tem relação com o conceito de coesão, porém aplicado a interfaces, visto que se uma

classe está sendo obrigada a implementar algo, significa que ela tem interesse apenas em uma

parte do módulo, o que leva a questionar se as partes são separáveis ou se fazem sentido estarem

juntas, isto é, se estão coesas.

v. Princípio da inversão de dependência

O princípio da inversão de dependência diz que módulos de alto nível não devem

depender diretamente de módulos de baixo nível, ambos devem depender de abstrações. Além

disso, abstrações não devem depender de detalhes e detalhes devem depender de abstrações

(Lin, 2021).

De maneira similar, Martin (2017) afirma que o princípio da inversão de dependência

diz que os sistemas mais flexíveis são aqueles em que as dependências do código-fonte se

referem apenas a abstrações, não a concreções. Isto significa que classes devem depender de

abstrações e não de implementações, uma vez que se uma classe sabe muito sobre como outra

classe funciona, modificar a primeira classe pode prejudicar a segunda ou vice-versa, isto em

um alto grau de acoplamento pode causar um efeito bola neve, no qual um erro pode se

transformar em vários. Em outras palavras, pode-se dizer que ao aplicar este princípio está

enfraquecendo o acoplamento, visto que este princípio visa diminuir as consequências dos

efeitos causados por conexões a outros módulos.

18

2.4. Princípio KISS

O princípio KISS diz respeito a uma expressão em inglês: “Keep it simples, stupid!”,

traduzindo para o português seria algo como “Matenha simples, estúpido!”. Em outras palavras,

este princípio prega que a simplicidade é a chave em um projeto e complexidade desnecessária

deve ser evitada. De forma similar, Lin (2021) define este princípio como a ideia de que apenas

se deve adicionar complexidade, caso seja necessário, caso contrário deve-se manter simples.

Um exemplo prático deste princípio ocorre quando se incorpora um padrão de projeto

em um software. De início, isso pode resultar na inclusão de estruturas adicionais para dar

manutenção e em uma configuração inicial mais elaborada. Isso, por sua vez, pode tornar o

código mais complexo e difícil de compreender. No entanto, é importante analisar a situação

para determinar se essa complexidade é justificável em relação aos benefícios que o padrão

traz. Isto é, se os benefícios proporcionados pelo padrão não compensarem o aumento de

complexidade para uma situação que não demanda uma solução elaborada, é mais sensato optar

por manter a simplicidade.

3. Ambiente Unity de desenvolvimento

De antemão, é importante esclarecer que a Unity se trata de um motor de jogo (game

engine) utilizado no desenvolvimento de jogos 2D e 3D, a qual é bastante popular no mundo

inteiro. Inclusive, segundo John Riccitiello - CEO da Unity -, em 2018, no TechCrunch

DisruptSF, evento anual tecnológico, a Unity Engine chegou a estar presente no

desenvolvimento de mais da metade de todos os jogos de celular.

Conforme pesquisa realizada pela Abragames em 2022 sobre a indústria brasileira de

games, foi constatado que esta é a ferramenta de trabalho utilizada por cerca de 83% das

empresas do país que atuam neste ramo, de modo que resta evidente o seu considerável

crescimento dentro do cenário brasileiro de games (Fortim, 2022).

Em resumo, os motivos de sua popularidade, de acordo com diversos autores que tentam

explicar seu sucesso, são a licença gratuita ou com ótimo custo-benefício, a depender da

proporção do jogo desenvolvidos; suporte para múltiplas plataformas como Windows, Linux,

Mac, Nintendo Switch, Android, iOS, webGL etc.; grande comunidade ativa, permitindo o

acesso a diversas informações em fóruns, a exemplo da Unity Community, Stack Over Flow,

Game Dev Stack Exchange, como também disponibilização de código e assets prontos para uso

na Unity Asset Store; ambiente de desenvolvimento com diversos recursos facilitadores que

19

diminuem a complexidade de implementação, principalmente para amadores; entre outras

razões (Reddit, 2018; Ellis, 2019; Krogh-jacobsen, 2022; Unity, 2023)

3.1. Interface da Unity

O editor da Unity (figura 2) é uma das peças fundamentais do ambiente de

desenvolvimento, visto que permite a visualização de vários recursos de forma facilitada e

intuitiva para o usuário. Inclusive, as janelas do editor podem ser customizadas à preferência

do usuário, bem como é possível criar extensões destas para implementar uma visualização

própria de algo que não seja possível por padrão.

Existem diversos recursos no editor da Unity, entretanto, com o intuito de apenas trazer

uma noção principal do uso da ferramenta, serão explicadas as principais janelas do editor, as

quais são mais utilizadas num fluxo de desenvolvimento. São elas: a janela Project, Hierarchy,

Inspector, Scene e Game, conforme destacadas na figura 2.

 Inicialmente, a janela Project é a interface responsável pelo gerenciamento de arquivos

na Unity, como assets, imagens, modelos 3D, scripts, áudios, entre outros arquivos que estão

disponíveis para uso no projeto.

 A janela Hierarchy, por sua vez, é a interface responsável por exibir os objetos que estão

na cena atual do jogo, a qual permite que o desenvolvedor possa definir uma hierarquia entre

os objetos de jogo numa estrutura de árvore, assim como pastas.

 Na sequência, a janela Inspector é a interface responsável por exibir os detalhes de um

elemento selecionado. Ao clicar num objeto que está na hierarquia ou em um arquivo que está

na pasta do projeto, ela muda a visualização correspondendo ao objeto selecionado. É

extremamente utilizada para configurar os detalhes de um objeto, a exemplo de adicionar

componentes, adicionar referências, atribuir valores a propriedades, entre outros.

 Por sua vez, a janela Scene permite a navegação, visualização e edição da cena numa

perspectiva dentro do mundo virtual do jogo, como se o observador da tela estivesse nos

“bastidores” do jogo. A janela Game, por fim, simula a renderização final do jogo, a qual vai

utilizar da câmera principal, configurada na hierarquia, para permitir a visualização da imagem

advinda da câmera.

20

Figura 2 – Visualização do editor da Unity.

Fonte: autoral.

3.2. Fluxo de trabalho na Unity

A Unity utiliza do conceito de cenas para facilitar a criação de jogos no editor, e tais

cenas servem para compor o mundo virtual em tempo de edição. Um exemplo comum de uso

destas é a construção de uma fase de um jogo, visto que permite adicionar objetos

(GameObjects) no mundo, ajustar a posição, ter o feedback em tempo real de edição, além de

permitir visualização de elementos para depuração etc.

Os objetos variados podem ter funcionalidades variadas e dependerão de seus

componentes atrelados para definir o seu respectivo comportamento, como componente de luz,

câmera, colisão, sprite, input, áudio, entre outros. Diversos componentes são disponibilizados

pela Unity para facilitar o desenvolvimento, entretanto, para definir comportamentos

específicos do seu jogo, provavelmente será necessário criar scripts próprios, isto é,

componentes customizados.

Diante disso, cumpre mencionar que existem maneiras diversificadas de criar um script,

sendo uma delas clicar com o botão direito do mouse e selecionar a opção “Create” e, em

seguida, clicar em “C# script” - linguagem de programação padrão na Unity. Assim, um arquivo

de script será criado com uma classe que deriva de MonoBehaviour - classe base para

componentes na Unity (Figura 3). Na sequência, implementado o script, basta associá-lo a um

GameObject (Figura 4) para adicionar o comportamento pretendido.

21

Adicionado o componente ao objeto, este estará vinculado a uma cena e será

automaticamente instanciado ao executar a cena. Contudo, em tempo de execução, tais

componentes só podem ser instanciados via AddComponent() ou Instantiate(), ou seja, não

podem ser instanciados via palavra-chave new. Ante o exposto, as dependências de uma

componente não podem ser transmitidas via construtor e, geralmente, fazem-no via Inspector

ao utilizar variáveis públicas ou privadas com o atributo [SerializeField], permitindo que o

editor crie um campo para associação de valores ou referências de objetos.

 É importante, ainda, ressaltar que os MonoBehaviours fazem parte do ciclo de vida da

Unity, de modo que esta classe oferece várias funções ou mensagens, que facilitam o

desenvolvimento do código. As principais são: Awake(), OnEnable(), Start(), Update(),

FixedUpdate(), OnDisable().

Figura 3 – Script vazio recém-criado na Unity.

Fonte: Unity Technologies (2023).

22

Figura 4 – Visualização do inspector ao adicionar um script em um GameObject.

Fonte: autoral.

O Awake() é um método executado apenas uma vez no ciclo de vida de um componente,

no momento em que este é carregado. Sua função é de executar lógica ao carregar o objeto,

como atualizar referências, inicializar classes etc., entretanto, neste momento é possível que

outros componentes ainda não estejam completamente inicializados. De maneira parecida

funciona o método Start(), contudo este é executado após o método OnEnable(), o qual será

esclarecido a seguir.

 O método OnEnable() é um método que é executado assim que o componente ou o

objeto associado é ativado na cena. De forma análoga, funciona o método OnDisable(), cuja

execução acontece quando o componente ou objeto vinculado é desabilitado.

 O método Update é um método disparado a todo frame da aplicação, isto é, o loop de

jogo. De forma similar funciona o método FixedUpdate(), que, por seu turno, é executado em

tempo fixo. Este método é utilizado normalmente para executar operações exaustivas, as quais

não devem ser desempenhadas a todo frame, porém precisam ser executadas com constância;

um exemplo disto são rotinas de cálculos físicos, como movimentação e colisão.

3.3. Prefabs

 Há diversos recursos na Unity com a finalidade de facilitar o desenvolvimento, sendo o

sistema de prefabs um deles, o qual permite criar, configurar e armazenar um GameObject

completo com todos os seus componentes, valores de propriedade e GameObjects filhos,

23

funcionando como um asset reutilizável. Em outras palavras, o prefab funciona como uma

forma de template, ou seja, como um modelo ou receita de qual maneira um objeto deve ser

instanciado.

 Quaisquer edições feitas em um prefab asset são refletidas automaticamente nas suas

instâncias, permitindo que se façam alterações amplas de modo facilitado em todo o projeto,

sem ser necessário repetir a mesma edição em cada cópia do asset. Estas edições são feitas

numa cena isolada, de modo que apenas o prefab fica em evidência, como pode ser visto na

figura 5.

Figura 5 – Visualização de prefabs na Unity.

Fonte: autoral.

4. Metodologia

Baseado na motivação discutida anteriormente, este estudo se propõe a explorar e elucidar

padrões de projeto, como também boas e más práticas, no ambiente Unity de desenvolvimento,

a fim de oferecer estratégias conhecidas para resolver problemas comuns no contexto de

desenvolvimento de jogos, juntamente com implementações e orientações práticas de como

aplicar estas propostas no motor de jogos Unity.

Deste modo, foi realizada uma revisão de literatura de forma sistemática, a qual foi baseada

na combinação de uma Revisão Rápida (RR) e de uma Revisão da Literatura Cinza (RLC) a

fim de unir e sintetizar o conhecimento científico, com o conhecimento prático de

24

desenvolvedores, difundido em diversas fontes, seja acadêmica ou experiencial do campo de

atuação.

Como resultado, este trabalho traz uma compilação de padrões de projeto, bem como, boas

e más práticas mais mencionadas no contexto da Unity que foram contempladas na pesquisa.

Os detalhes da metodologia aplicada são demonstrados nas próximas seções.

4.1. Revisão Rápida (RR) e Revisão de Literatura Cinza (RLC)

Este estudo utiliza de RR, as quais são um estudo secundário baseado em adaptações no

processo sistemático de revisão (SR) com o objetivo de dar suporte em decisões profissionais

baseadas num contexto mais prático, conforme descrito por Cartaxo et al. (2020). Estas

49adaptações são feitas para facilmente transferir conhecimento científico para o conhecimento

prático, reduzindo o custo e tempo, ao omitir ou simplificar algumas etapas do processo de SR

(Cartaxo et al., 2020). Neste contexto, RRs se encaixaram bem devido ao contexto prático deste

trabalho, visto que procura trazer implementações e orientações práticas na Unity Engine.

 Desta mesma forma, devido à ampla comunidade da Unity, bem como, devido à

natureza do campo de pesquisa, existe um vasto conhecimento informal que está em blogs,

fóruns de desenvolvedores, documentações oficiais e tutoriais online, por isto, este trabalho

também utiliza da literatura cinza para complementar possíveis lacunas não contempladas pela

perspectiva acadêmica. Assim sendo, este estudo utiliza de RLC, consoante com Garousi et al.

(2018), o qual define RLC como um tipo de revisão sistemática que permite a inclusão de

materiais da literatura como recurso primário, como white papers, blogs, documentação e outras

fontes não científicas.

4.2. Perguntas da pesquisa

Com base nos objetivos desta pesquisa, em consonância com o que foi inicialmente

introduzido, foram definidas algumas perguntas (RQ), para nortear ambas as revisões (RLC e

RR) de acordo com as diretrizes definidas por Cartaxo et al. (2020) para a RR e por Garousi et

al. (2018) para RLC, embora sejam similares. São elas: (RQ1) “Quais são os padrões de projeto

utilizados por desenvolvedores de jogos no ambiente de desenvolvimento Unity?”; (RQ2)

“Quais boas práticas são sugeridas no ambiente de desenvolvimento Unity?”; (RQ3) “Quais são

os anti-patterns no desenvolvimento de jogos na Unity?”.

Dito isto, a RQ1 almeja coletar os padrões de projeto aplicados no âmbito de

desenvolvimento da Unity. De maneira similar, a RQ2 busca coletar quais são as orientações

25

sugeridas ao trabalhar no ambiente Unity de desenvolvimento, tal como, a RQ3 se preocupa em

entender quais são as más práticas que permeiam este mesmo contexto.

4.3. Estratégia de busca

Para conduzir a busca na RR, foi utilizado o Google Acadêmico como ferramenta de

busca visando englobar uma ampla variedade de artigos de pesquisa, uma vez que essa

plataforma indexa documentos das principais bibliotecas digitais, limitando-o, conforme

recomendado por Cartaxo et al. (2020).

Deste modo, diversos testes foram realizados com diferentes palavras-chaves até que

fosse possível chegar em um resultado satisfatório via experimentação, de forma que fossem

obtidos resultados relevantes para as perguntas anteriormente definidas, sendo elas: (“game

programming pattern” OR “design pattern” OR “game pattern” OR “best practices” OR “game

architecture” OR “anti-pattern” OR smell OR “bad practices”) AND (Unity) AND (“game

development”).

A pesquisa da RLC foi realizada de maneira similar, com a alteração da ferramenta de

pesquisa devido ao contexto da literatura cinza, sendo alterada para o uso do Google. Sendo

assim, após diversas experimentações, o conjunto de palavras sofreu apenas uma pequena

alteração em comparação as palavras definidas na RR, sendo estas: ("game programming

pattern" OR "design pattern" OR "game pattern" OR "best practices" OR "game architecture"

OR "anti-pattern" OR smell OR "bad practices") AND (Unity).

4.4. Procedimento de seleção

Dando sequência à metodologia aplicada, foi definido um conjunto de critérios de

seleção para filtrar os resultados de modo que melhor atendesse às necessidades da pesquisa

em termos de coerência, qualidade e disponibilidade, tanto para RR quanto para RLC. Sendo

eles: (1) O conteúdo da fonte deve ter conexão com o contexto de engenharia de software e

estar diretamente associado ao desenvolvimento na Unity; (2) O conteúdo da fonte deve

responder pelo menos uma das perguntas de forma significativa; e (3) A fonte deve ser de acesso

gratuito, sem custos associados.

A definição do item (1) tem como intuito restringir que os resultados não se distanciem

para outros contextos, visto que esse trabalho tem como objetivo obter respostas práticas ao

contexto de desenvolvimento na Unity. De modo similar, o item (2) procura rejeitar menções

superficiais, as quais pelo menos contenham explicações plausíveis e coerentes mesmo que

sejam breves. Por fim, o item (3) está associado à questão da disponibilidade de acesso devido

26

a alguns resultados apontarem para livros pagos, bem como, nem todo material foi possível ter

acesso via pessoa física ou instituição acadêmica.

Durante a pesquisa, o Google acadêmico retornou milhares de resultados (cerca de

3.560), desta forma, foi necessário definir um limite de esforço para parar a pesquisa, assim

como recomendado por Garousi et al. (2018). Para a RR definiu-se que apenas os primeiros 200

resultados mais relevantes pelo Google seriam considerados. De maneira semelhante, foi

necessário fazer o mesmo procedimento para a RLC, visto que esta retornava cerca de 28

milhões de resultados em sua busca no Google, deste modo, foi definido que seriam

considerados apenas os 100 primeiros resultados. No entanto, não foi necessário continuar até

o final, pois ao atingir o resultado de número 89, o Google emitiu um aviso indicando que vários

resultados haviam sido omitidos para destacar apenas os mais relevantes. Portanto, optou-se

por encerrar a pesquisa neste ponto.

Na RR, dentre os primeiros duzentos resultados, foram excluídos aqueles cujos títulos

claramente não se relacionavam com o escopo do estudo, deixando-nos com um total de 104

resultados. Em seguida, foram avaliados com base nos resumos, resultando em apenas 39

artigos restantes. Destes, foram descartados aqueles que não atendiam ao critério de

disponibilidade de acesso (3), resultando em um total de 36 resultados. Por fim, os textos

completos foram analisados e filtrados de acordo com todos os critérios mencionados,

resultando em um total de 21 artigos selecionados.

De maneira análoga, a RLC passou pelo mesmo processo de filtragem. Inicialmente, os

resultados foram avaliados com base nos títulos e no conteúdo parcialmente disponibilizado

pela ferramenta de busca, resultando em 52 fontes. Apenas uma fonte foi excluída devido a

problemas de acesso. Em seguida, os textos foram analisados por completo, totalizando em 28

fontes aprovadas. Este processo foi ilustrado na figura 6, a qual podemos ver as etapas de forma

resumida, totalizando no final 47 recursos ao juntar a pesquisa RR com a RLC e remover as

duplicatas.

27

Figura 6 – Diagrama representando o processo de seleção de recursos (RR e GLR).

Fonte: autoral.

5. Resultados e discussões

Conforme evidenciado no tópico anterior, após a conclusão do processo de seleção,

permaneceram 47 recursos a serem incorporados ao material de pesquisa. Estes recursos

abrangem tanto padrões de projeto quanto boas e más práticas no contexto do desenvolvimento

Unity para jogos. Consequentemente, os padrões de projeto foram categorizados e consolidados

em uma discussão. No entanto, com a intenção de trazer os padrões mais relevantes, bem como,

traçar um limite de esforço cabível neste trabalho, foi definido trazer os padrões de projeto que

foram mencionados pelo menos em quatro destes recursos finalistas. Isto resultou na

identificação de nove padrões, os quais estão detalhados a seguir.

De maneira semelhante, as boas e más práticas também foram compiladas em um tópico

de discussão. O procedimento abordado neste tópico está documentado em alguns arquivos

armazenados em uma pasta na nuvem1, que inclui as definições-chave utilizadas para conduzir

a pesquisa.

1 Disponível em: < http://bit.ly/3POB0vK>.

28

5.1. Padrões de Projeto na Unity

Conforme introduzido inicialmente, na engenharia de software, os padrões de projeto

oferecem soluções abrangentes para problemas que surgem repetidamente em determinados

contextos, possibilitando sua reutilização em diversas situações. Cada padrão possui

características distintas que podem ser vantajosas quando se busca maior flexibilidade,

encapsulamento, abstração, a redução do acoplamento, performance, entre outros aspectos.

Este trabalho aborda os padrões de projeto mais relevantes identificados durante a pesquisa,

conforme detalhado na seção de seleção de procedimentos. Ele se concentra na aplicação desses

padrões no desenvolvimento de jogos na Unity, e, por isso, os exemplos, bem como, as análises

e situações apresentadas estão direcionadas especificamente para esse contexto.

5.1.1. Padrão Singleton

O Singleton pattern é um padrão bastante popular entre os desenvolvedores, provavelmente

por ser muito fácil de ser implementado, como também, bastante poderoso. No entanto, por ser

bastante poderoso, se utilizado de maneira inadequada, pode se tornar um problema.

Charles Hache, desenvolvedor indie de jogos e professor de game design, afirma que esse

padrão é especialmente útil no Unity para (1) gerenciar sistemas e serviços de jogos que exigem

um único ponto de acesso, (2) estado persistente, e (3) quando você precisa garantir uma

instância única na vida do jogo, como um GameManager ou AudioManager (Hache, 2023)

Já Charles Amat, desenvolvedor sênior na empresa de desenvolvimento de software Force5

e dono do canal Infalible Code, fala que este padrão tem algumas desvantagens sérias que a

maioria dos programadores não descobre até que seja tarde demais (Amat, 2020).

i. Definição

O Gang of Four define o padrão Singleton como uma classe que precisa garantir uma instância

única e prover um acesso global para a mesma (Gamma et al., 1994).

Figura 7 – Representação UML do padrão Singleton.

29

Fonte: autoral.

Na figura 7 é possível ver uma representação do padrão no diagrama UML, no qual, de

acordo com a definição, a classe contém uma variável estática com acesso privado que faz uma

autorreferência, bem como, tem um construtor privado responsável por sua própria instanciação

para garantir uma única instância e remover duplicatas. Por último, provê um acesso global

para a instância.

ii. Implementação na Unity

Existem várias implementações de Singleton, em diferentes graus de robustez. A

implementação ilustrada na figura 8 é a mais básica que pode ser feita na Unity. Como

mencionado na seção sobre o ambiente Unity de desenvolvimento, para estar presente na

hierarquia de objetos de cena e participar do Lifecycle da Unity, um script precisa herdar de

MonoBehaviour. Por causa disto, não se pode instanciar diretamente com a palavra-chave new.

Desta forma, a instância está sendo atribuída no Awake(), método chamado ao carregar os

objetos da cena.

Figura 8 – Código-exemplo de um Singleton simples na Unity.

30

Fonte: autoral.

Entretanto, esta implementação tem alguns problemas: caso um outro objeto acesse a

instância Singleton no seu próprio Awake(), é possível que a referência seja null, pois a ordem

de execução deste método é não-determinística, podendo um objeto ser carregado

anteriormente a outro que está acima na hierarquia de cena; Não há persistência dos dados entre

cenas, pois ao trocar de cena todos os objetos são destruídos; Também é necessário que na cena

corrente do jogo, um GameObject tenha um script da classe SimpleSingleton vinculado; E se

houver mais de um Singleton no jogo, é necessário repetir esse código em classes separadas.

 Tendo isso em vista, a implementação da figura 9 corrige os problemas citados: caso

um objeto acesse o Singleton, esta implementação utiliza Lazy Instantiation, no qual instancia

o objeto só quando requisitado, e garante que haverá uma instância; Garante a persistência entre

cenas, utilizando do método DontDestroyOnLoad() no objeto Singleton; Se não houver um

objeto na cena do tipo Singleton, quando for requisitado, cria um; e, também, permite a

reutilização do código para que outras classes possam se tornar Singleton. Para isso, basta

herdar de Singleton, como na figura 9.

31

Figura 9 – Game Manager e Audio Manager como Singletons.

32

Fonte: autoral.

iii. Prós e Contras

Segundo a Unity Technologies (2022), este padrão, diferentemente de outros, é

relativamente fácil de aprender, assim como simples de utilizar, pois basta apenas referenciar a

instância pública e terá sempre disponível o objeto Singleton em qualquer componente,

inclusive, entre diferentes cenas. Além de ser performático, já que evita a busca por referências,

como GetComponent() ou operações de Find (Unity Technologies, 2022).

Nystrom (2014) também menciona alguns de seus benefícios, como a possibilidade de

salvar memória e ciclos de CPU na implementação com Lazy Instantiation; A utilidade de ter

membros da classe disponíveis não-estáticos mas com acesso global; Capacidade de encapsular

comportamento específico ao servir como uma interface abstrata para subclasses que desejam

implementar, sem necessidade de alterar as chamadas da instância. (Nystrom, 2014).

Entretanto, a praticidade do Singleton a longo prazo pode ser bastante perigosa,

principalmente, ao abusar do uso, visto que alguns autores são enfáticos ao afirmar que este

padrão encoraja acoplamento, tornando o código mais difícil de refatorar, assim como, podem

esconder dependências tornando mais difícil de solucionar bugs. Como também, impactam

negativamente na testabilidade do código, pois segundo a Unity Technologies: “Singletons

dificultam os testes: os testes de unidade devem ser independentes uns dos outros. Como o

Singleton pode alterar o estado de muitos GameObjects na cena, eles podem interferir no seu

teste.”

Para se utilizar bem deste padrão, é necessário entender bem os contextos e as

necessidades que o exige, pois de acordo com a Unity Technologies: “Desenvolvedores tendem

a aplicar Singletons em situações inapropriadas, introduzindo estados ou dependências globais

desnecessárias” (Unity Technologies, 2022). Por isso, Nystrom (2014) se preocupa na

33

utilização deste padrão, tanto que em seu livro, no capítulo sobre Singletons, comenta: “Este

capítulo é uma anomalia. Todos os outros capítulos deste livro mostram como usar um padrão

de projeto. Este capítulo mostra como não usar um.”

Contudo, a utilização deste padrão é um assunto que divide opiniões. Enquanto uns não

encorajam o uso deste padrão, pois reiteram que este padrão costuma fazer mais mal do que

bem (Nystrom, 2014), outros dizem que existem contextos dos quais podem ser interessante,

como a Unity Technologies orienta a utilizar, desde que utilize em jogos pequenos dos quais

não precise estender continuamente como jogos de nível empresarial fazem e se use ao mínimo

em scripts que precisem de acesso global como Audio Manager, Game Flow Manager (Lin,

2021). Ou então, como Tulleken (2016) que em seu artigo 50 Tips and Best Practices for Unity

recomenda utilizar Singletons por conveniência, contanto que evite utilizar para classes que não

são únicas e não são gerenciadoras, como a classe Player. Deve-se utilizar para classes que

sejam únicas e gerenciem sistemas, como UI Manager, Audio Manager, Game Manager.

(Tulleken, 2016).

iv. Alternativas

O singleton pattern não é a única solução para acesso global ou que tenha acesso

compartilhado de membros da classe com outros componentes. Em suas próprias palavras,

Nystrom afirma: “Nunca usei a implementação completa [de singleton] do Gang of Four em

um jogo. Para garantir a instanciação única, geralmente simplesmente uso uma classe estática.

Se isso não funcionar, usarei um sinalizador estático para verificar em tempo de execução se

apenas uma instância da classe foi construída” (Nystrom, 2014).

Nem sempre a melhor solução precisa ser algo robusto, muitas vezes, pode ser algo

simples, como simplesmente passar a referência de um objeto para um método, explicitando a

dependência (Nystrom, 2014).

Diante disso, vale ressaltar alguns padrões que podem substituir o singleton em alguns

contextos, como o Service Locator, já que torna um objeto globalmente disponível, utilizando

de métodos estáticos para prover serviços, porém precisa de uma pré-configuração para atribuir

a implementação que será utilizada. Esta abordagem tem o benefício da flexibilidade, pois

necessitando alterar o serviço, basta alterar a configuração e a implementação é trocada

(Nystrom, 2014).

Por fim, o Subclass Sandbox pattern é outra opção a ser considerada, pois apesar de não

dispor a instância globalmente, ele restringe o acesso apenas para as subclasses, o que pode

tornar o acesso mais seguro e organizado em determinados cenários (Nystrom, 2014).

34

5.1.2. Padrão State

Oriundo do Finite State Machine (FSM), o qual consiste em um objeto guardar o status

de um determinado momento e, a partir desse status, permitir alteração de seu comportamento

baseado no status. Este padrão se mostra essencial no desenvolvimento de jogos, pois muitos

elementos de jogos têm suas ações definidas para determinados estados. Esta afirmação pode

ser corroborada por Galach (2019), que diz que a máquina de estados é um dos padrões de

projeto mais utilizados no desenvolvimento de jogos. É útil para uma variedade de propósitos,

como IA, animações, controladores de jogo, lógica de jogo, diálogos, cenas e muito, muito mais

(Galach, 2019).

Como mencionado por Hache (2023), o State Pattern é uma forma de implementar o

Finite State Machine (FSM), de um jeito mais limpo e manutenível, sendo útil para gerenciar

comportamentos dependente de estados complexos. Ao encapsular os estados em objetos

separados, o código fica mais modular e fácil de estender a novos estados.

i. Definição

O Gang of four define o State Pattern como: “Permita que um objeto altere seu

comportamento quando seu estado interno muda. O objeto parecerá ter mudado de classe.”

(Gamma et al., 1994). Ou seja, significa que ao mudar de estado, a classe deve mudar de

comportamento.

Entretanto, para Nystrom (2014), apesar desta definição não estar equivocada, ela por

si só não é tão clara, visto que é possível implementar esta definição ao utilizar apenas de um

switch case para cada estado na classe, definindo uma ação específica para cada um no mesmo

local. Esta implementação ainda teria problemas, já que para adicionar estados ou modificar

comportamentos prévios, a mesma classe seria modificada (Nystrom, 2014).

Neste sentido, Nystrom (2014) esclarece que é importante encapsular os

comportamentos de cada estado numa classe separada, dessa forma, ao adicionar novos estados,

não é necessário alterar a classe que controla os estados. Ao modificar um comportamento de

um estado existente, a mudança fica isolada na classe do estado, como também proporciona a

possibilidade de reuso. Deixando, portanto, o código mais modular e flexível a mudanças

(Nystrom, 2014).

35

Figura 10 – Diagrama UML do State Pattern.

Fonte: Gamma et al. (1994).

Conforme a figura 10, podemos ver um diagrama UML, proposto por Gamma et al.

(1994), que define o design State Pattern de forma geral e básica. Nela podemos observar que

a classe State define uma interface, a qual estados concretos devem implementar seu

comportamento específico e encapsulado. Como também, percebe-se que a classe Context,

guarda uma referência para a classe State e apenas chama o método definido na abstração do

State, o método Handle().

Isto é, o Context pode trocar de estado, e assim mudar de comportamento, sem depender

de uma implementação concreta. Para adicionar novos estados, basta apenas criar uma nova

classe e implementar a interface State, sem alterar código na classe Context. Além disso, a

interface e seus métodos definidos são completamente contextuais, podendo variar entre as

implementações, inclusive, é possível que os estados tenham referência para a classe Context,

com a finalidade de terem acesso a uma forma de trocar de estado.

Entretanto, em jogos, o State Pattern tem outros elementos comuns em diversas

implementações como: um método para a entrada do estado, um que seja executado a todo

frame e um que seja executado na saída do estado, como mostra a figura 11, a qual representa

um possível fluxo da classe State (e-book Unity). Vale ressaltar que nem todo estado

implementa todos os métodos, muitas vezes estados simples têm alguns dos métodos vazios.

36

Figura 11 – Representação de um fluxo do State no contexto de jogos.

Fonte: Lin (2021).

Ainda neste contexto, este gerenciamento da transição de estados deve garantir a ordem

de execução destes métodos da interface State, sendo de responsabilidade de uma classe

especializada, normalmente conhecida como State Machine, a qual será melhor detalhada na

próxima seção. Assim, uma outra classe tem a responsabilidade de estabelecer e iniciar os

estados, como também a máquina de estados. Esta classe desempenha o papel de elo central,

onde se define as implementações concretas, ao mesmo tempo em que fornece os parâmetros

essenciais para os estados. Na Figura 12, é possível reconhecê-la como o "ZombieController",

o qual utiliza do State Pattern para compor um zumbi no contexto deste exemplo.

37

Figura 12 – Exemplo comum do State Pattern em jogos em um diagrama UML.

Fonte: autoral.

ii. Implementação

Como mencionado antes, design patterns não são soluções prontas, elas dependem do

contexto. Em geral, são apenas uma ideia para resolver um problema comum de determinadas

situações. Cada padrão pode ter uma implementação com complexidade diferente, por isso,

nem sempre encaixam em qualquer situação, visto que podem introduzir complexidade

desnecessária a priori. Isto acontece com o padrão State.

Dito isto, esta seção abordará um exemplo de situação-problema, a qual o padrão State

promete melhorar, como também, abordará duas implementações na Unity do State Pattern:

uma solução mais básica que tem um problema de acoplamento, porém mais fácil de utilizar,

sem preocupação com a reutilização à primeira vista. E, outra solução um pouco mais complexa

proposta por Jason Weimann (2020), mas que reduz o acoplamento e aumenta a reusabilidade

dos estados. Vale ressaltar que os exemplos a seguir, não estão completos, apenas demonstram

um conceito. Além disso, esta seção tentará mostrar algum dos recursos dos quais este padrão

possibilita com a finalidade de demonstrar sua utilidade.

Dando continuidade, vejamos a situação-problema anteriormente mencionada. O

Anexos A e B mostra um exemplo de implementação simples de uma FSM, a qual define o

38

comportamento de um Zumbi que tem os estados de Patrulhar, Atacar e Parado. Toda a lógica

está contida dentro da mesma classe, a qual troca de comportamento através de um switch case

no método Update(), que define uma ação para cada possível estado atual.

É possível visualizar que a implementação tem mais de uma responsabilidade, visto que

o script tenta definir comportamentos diferentes numa mesma classe. Pode-se ver também que

a implementação do estado de patrulha, precisa de uma flag para apenas executar uma vez uma

certa rotina, assim como precisa depois limpar o que foi feito no momento de troca de estado,

mexendo em diferentes regiões do código. Considerando isso, imagine se os outros estados

estivessem completamente implementados, também precisando de novas flags, novos métodos,

em breve a classe poderia ficar gigante, difícil de manter e com praticamente nenhuma

reusabilidade, visto que haveria muitas dependências aninhadas na mesma classe, dificilmente

uma outra classe poderia adicionar comportamento a esta implementação.

Apesar da implementação ser funcional, não é escalável, muitas vezes pode ser útil para

testar conceitos ou para comportamentos pequenos dos quais não terão alterações. Contudo, a

Unity enfatiza que este tipo de implementação pode rapidamente se tornar uma bagunça, pois

para adicionar novos estados ou modificar estados existentes, será necessário revisitar a mesma

classe várias vezes (Lin, 2021).

De maneira similar, Nystrom (2014) reafirma isto e adiciona que rapidamente a classe

poderá inflar, visto que novos atributos específicos de cada estado seriam introduzidos na

mesma classe para controlar as transições entre os estados, misturando e inflando a classe.

Tornando mais difícil a manutenção e acoplada (Nystrom, 2014).

Dessa forma, surge o State Pattern com a finalidade de tornar os estados independentes,

separando em classes diferentes. Os Anexos C, D, E e F compõem um exemplo de

implementação do padrão, de forma simples, para controlar um zumbi. A fim de ter uma

compreensão mais aprofundada dos benefícios desta implementação, o conteúdo será abordado

de maneira segmentada.

Assim como vimos na última seção, esta implementação utiliza de uma interface IState,

a qual tem os métodos Enter, Update e Exit definidos para serem executados assim que entra

no estado, a cada execução de frame, e na saída do estado, respectivamente. A interface pode

ser visualizada no anexo C. Além disso, o anexo D também define a classe State Machine, a

qual gerencia a troca de estados, garantindo a ordem de execução dos métodos da interface

IState. É importante perceber que essas implementações provavelmente não precisarão de

alterações e podem ser reutilizadas em vários outros contextos, já que dependem apenas de uma

abstração.

39

Analisando o anexo E, é possível ver uma melhoria clara na classe Zumbi Controller, a

qual ficou bem mais enxuta, os membros da classe foram minimizados. Agora, a classe ficou

com a responsabilidade de definir, inicializar e repassar os parâmetros necessários para os

estados, como também, para a máquina de estados. Ou seja, a classe agora está apenas com a

responsabilidade de unir os componentes necessários para definir o comportamento de um

Zumbi. Dessa forma, ao adicionar novos estados, provavelmente as novas alterações seriam

pontuais com pouca alteração de código e menos impactantes em outras áreas.

Por último, no anexo F, pode-se ver a classe Patrol State, o qual é o único estado

implementado no exemplo, visto que é suficiente para representar uma implementação concreta

de estado. É possível observar que a classe ficou mais legível e autocontida, ou seja, qualquer

alteração lógica relacionada a como orquestrar o comportamento de patrulha de um zumbi, está

concentrado nesta classe.

Contudo, o estado de patrulha ainda tem um grande problema, que é comum aos

desenvolvedores na Unity, devido a algumas dificuldades em resolver dependências. A classe

está fortemente acoplada à classe Zombie Controller, visto que em vários momentos acessa a

referência da classe do zumbi para acessar os métodos de troca de estado, como também, as

referências para as instâncias de outros estados com a finalidade de direcionar a transição do

próximo estado. Isto é, se porventura um desenvolvedor quisesse reaproveitar o estado de

patrulha para o comportamento de um esqueleto, por exemplo, não seria possível. Primeiro que

não seria possível devido à amarração a classe do zumbi, como também, seria necessário que

as transições do esqueleto também fossem iguais as transições do estado de patrulha.

Dessa forma, é interessante desacoplar estas dependências que não deveriam ser de

responsabilidade do ato de patrulhar, mas da classe que une os comportamentos individuais,

neste exemplo, ficaria mais coeso, a classe Zumbi Controller definir quais seriam as transições

que zumbis deveriam ter a partir de determinados estados.

Assim, Weimann (2020), desenvolvedor Unity de jogos que tem um canal famoso de

tutoriais na Unity com 193 mil seguidores, propõe uma forma interessante de desacoplar a

lógica de transição de cada estado. A ideia consiste em mover a condição de troca de estado

para a classe Controller, a qual pertencia ao estado, ao adicionar transições a State Machine

definidas pelo trio: estado de origem, estado para transacionar e uma condição para a transição

ocorrer. Assim, a State Machine teria uma nova responsabilidade, não apenas a

responsabilidade de verificar se as condições de transições foram atingidas, mas também prover

a troca de estado antes da execução do método Update (Weimann, 2020).

40

Para entender melhor este conceito, é necessário visualizar os anexos G, H, I e J, pois

foi necessário alterar as classes Zombie Controller, State Machine e Patrol State as quais foram

anteriormente definidas, assim como, definir uma nova classe chamada Transitions (anexo G),

a qual é apenas uma definição para um par (estado, condição), sendo o estado para ir, se a

condição for atingida.

Dando continuidade, podemos identificar no anexo H, a classe State Machine alterada,

com uma nova lógica para considerar as transições. A classe tem um dicionário no qual guarda

uma lista de transições baseada numa chave com o tipo da classe, ou seja, ela faz relação com

o estado (tipo) e uma lista de possíveis transições do estado, suportando n transições.

Adicionalmente, disponibiliza um método para adicionar estas transições, como também,

verifica no método update se as transições do estado atual foram atingidas, caso seja positivo,

troca de estado. Em caso negativo, apenas executa a atualização do estado.

Nesse contexto, a classe Zombie Controller também teve alterações (anexo I), o qual

descartou as referências dos estados e adicionou transições à máquina de estados. A priori, a

classe pode ter ganho um pouco mais de complexidade, mas o ganho foi considerável, visto que

as transições não são mais ditas pelos estados. São ditas pela classe controladora e repassadas

para a máquina de estados, tornando mais fácil criar novas classes de outros monstros, ou até

mesmo, outras classes que nem tenham relação com monstros. Como por exemplo, um soldado,

o qual poderia, enquanto patrulha, avistar um inimigo e tentar avisar a outros soldados a

presença de inimigos, para isso, bastaria adicionar à máquina de estados suas próprias transições

relacionadas ao estado de patrulha.

Por fim, é importante notar que a classe responsável pelo estado de Patrulha (anexo J),

ficou um pouco menor. Entretanto, o fato de maior relevância é que ficou mais fácil de ser

utilizada por outros controladores, dando mais flexibilidade ao controlador decidir para qual

estado ir enquanto está realizando uma patrulha, visto que houve um desacoplamento da classe

Zombie Controller, a classe apenas depende dos componentes essenciais para executar o

comportamento de patrulha, como componente de movimentação, deteção de inimigo, etc.

Além disso, a classe ficou mais fácil de ser estendida, com poucas alterações, como

alterar os modificadores de acesso dos membros da classe, é possível reaproveitar alguns

comportamentos. Dessa forma, a Lin (2021) enfatiza que acaba sendo inevitável criar estados

mais complexos que herdam de outros estados, visto que haverá alguns comportamentos em

comum. Quando é utilizado de uma forma mais estruturada, criando níveis de herança, este tipo

de estrutura pode ser conhecida como máquinas de estado hierárquicas (Lin, 2021).

41

Assim como, a classe poderia depender de abstrações ao invés de implementações

concretas, como diz um dos princípios do SOLID, princípio da inversão de dependência, para

dar ainda mais flexibilidade. Se a classe de patrulha dependesse de uma abstração para o

componente de movimentação, por exemplo, daria ainda mais liberdade para os controladores

escolherem diferentes implementações de movimentação para o estado de patrulha, dando ainda

mais flexibilidade.

iii. Melhorias

Considerando ainda a implementação anterior do State Pattern, algumas melhorias

ainda poderiam ser listadas, entretanto adicionariam um pouco mais de complexidade à

arquitetura do padrão State.

Para começar, em outros cenários, pode ser útil ter outros métodos na interface IState.

Um exemplo disto é o método FixedUpdate, o qual é similar ao método Update, mas não varia

de acordo com o frame rate do dispositivo, ele executa uma vez a cada x milisegundos

garantidamente. Podendo ser útil para calcular física, por exemplo. Ou de repente, pode-se

adicionar um método chamado HandleInput() para lidar com a entrada de um controle, que

difere para cada estado que o personagem controlado está disparando diferentes ações. Estes

métodos da interface dependem de cada contexto.

Adicionalmente, pode-se criar estados base para facilitar implementações em comum

entre os estados. Uma possível demonstração disso seria que se todo estado precisar de um

Timer, assim como o estado de patrulha precisa nos exemplos citados, poderia ser o caso de

criar um estado base do qual disponibilizaria esta implementação através de herança.

Entretanto, é necessário ter cuidado pois herança se mal utilizada, pode levar a quebras de

alguns dos princípios do SOLID, assim como outros problemas.

Outro caso, seria adicionar um novo tipo de transição à máquina de estados, com

precedência as transições anteriores, a qual poderia ter um dicionário de transição similar ao

apresentado, porém, com a diferença de que este novo dicionário definiria transições de

qualquer estado para outro, ou seja, é um dicionário separado que dita transições gerais, das

quais qualquer estado pode transicionar para. Um exemplo disto é o estado de morto no caso

de um monstro, visto que se um monstro morrer, independe qual é o estado atual, deve-se

transicionar para o estado de morto, já que ficaria impossibilitado de realizar ações. Este tipo

de transição adiciona bastante complexidade e pode causar bugs, se mal utilizado.

Além disso, pode-se registrar os estados as transições da máquina de estados numa pilha,

para caso algum estado dependa de ações anteriores, possa ter um histórico para resgatar o

42

último estado, Nystrom define este comportamento como Pushdown Automata (Nystrom,

2014).

Finalmente, um último cenário alternativo, poderia ser a utilização de mais de uma

máquina de estado no mesmo controlador. Nystrom (2014) define este tipo de uso como

máquinas de estado concorrentes, as quais são independentes, mas também, podem ter algumas

relações, ao invés de criar um estado novo para cada possível combinação, pode-se apenas

checar os estados atuais das máquinas. Um exemplo citado é quando um jogador tem uma

máquina de estado para suas ações como andar, atirar, pular, nadar, entre outras, mas também

tem outra máquina de estados para os equipamentos como armas etc. Não é necessário criar um

estado novo para andar com uma arma, porém pode-se haver relações como no estado atirar do

qual depende do equipamento (Nystrom, 2014).

iv. Prós e contras

Tal como dito anteriormente, o padrão State, em jogos, é uma necessidade bastante

comum. Um exemplo disto é para definir comportamentos de inteligência artificial como

inimigos. Se o jogo a ser desenvolvido for utilizar bastante de inteligência artificial, diferentes

tipos, ações etc., usar este padrão pode ser bastante benéfico pois ajudará a seguir alguns

princípios do padrão SOLID, tornando o código mais flexível e manutenível, a custo de

complexidade.

Normalmente, o custo-benefício aumenta quando se tem muitas situações similares de

uso e quando se espera que o projeto irá crescer e ganhar novos estados, novos comportamentos,

como o padrão reforça o princípio aberto-fechado, é bastante útil nesses cenários.

O padrão State pode ajudá-lo a aderir aos princípios SOLID ao configurar a lógica

interna de um objeto. Cada estado é relativamente pequeno e apenas monitora as condições de

transição para outro estado. Mantendo o princípio aberto-fechado, você pode adicionar mais

estados sem afetar os existentes e evitar trocas ou declarações complicadas. Por outro lado, se

você tiver apenas alguns estados para monitorar, a estrutura extra pode ser um exagero. Esse

padrão só pode fazer sentido se você espera que seus estados cresçam até uma certa

complexidade.

5.1.3. Padrão Command

Akhtar (2020), desenvolvedor de jogos, traz uma analogia interessante sobre o padrão

Command, comparando-o com o ato realizar pedidos na realidade, o qual uma pessoa realiza

43

pedidos (ou ordens ou comandos) para outra pessoa, que pode (ou não) realizar o pedido

designado. O padrão Command funciona de forma análoga, ele é responsável por transmitir de

um componente para outro a execução de algum pedido (Akhtar, 2020).

Ele se encontra presente em muitos softwares e jogos, sua aplicação mais comum é

prover uma forma de desfazer ações, como desfazer erros em um editor de texto, ou planejar

ações em um jogo de estratégia como Starcraft (jogo famoso de estratégia em tempo real, no

qual consiste em controlar unidades e conquistar bases inimigas). Mas muito mais simples que

isso, muitas vezes, jogos disponibilizam uma forma do usuário escolher quais botões, ou

atalhos, o usuário quer atribuir para determinadas ações, como fazer um personagem pular ao

clicar na barra de espaço de um teclado. Normalmente por trás disto, está o padrão Command.

i. Definição

Este padrão também foi originado pelo grupo conhecido como Gang of Four, o qual

definiram como um padrão que: “Encapsula uma solicitação como um objeto, permitindo assim

parametrizar clientes com diferentes solicitações, enfileirar ou registrar solicitações e oferecer

suporte a operações que podem ser revertidas” (Gamma et al., 1994).

Figura 13 – Representação UML do padrão Command.

Fonte: Dmitry Zhart (2023).

É possível observar na figura 13, uma das possíveis representações deste padrão em

UML. Pode-se considerar, a parte indicada pelo número 2 na figura 13, como a parte mais

44

importante deste padrão, visto que define uma interface Command com um método Execute(),

que servirá de base para desacoplar as chamadas de execução do comando.

As classes concretas de comando (número 3 na figura 13) implementam esta interface e

definem uma ação dentro do método Execute(). Elas servem apenas como uma espécie de

intermediação entre o invocador da ação e o receptor da ação. Encapsulam uma chamada de um

objeto que tem a lógica de negócio, o qual é recebido como referência no momento da

construção do comando, como também, outros parâmetros relacionados, se necessário.

Normalmente, a classe Receiver (número 4 figura 13) pode ser qualquer objeto que, de

fato, realiza o trabalho por trás da ação. São chamadas dentro do comando e quem realmente

sabe os detalhes da implementação da ação.

O Client (número 5 na figura 13) tem a responsabilidade de construir o comando e passar os

parâmetros, incluindo o Receiver, para o comando. Mas também tem a responsabilidade de

associar o comando desejado para a classe Invoker, delegando a execução do comando, de fato,

para a classe Invoker.

Por fim, o Invoker (número 1 na figura 13) é responsável por inicializar as execuções

do comando, visto que esta classe, é a que gerencia as chamadas dos comandos. Dito isto, esta

classe pode executar instantaneamente o comando, como também pode não realizá-lo, pode

atrasar a execução do comando, pode enfileirar para aguardar execução, pode guardar em

estruturas como pilhas e outras formas de armazenamento com a finalidade de ter um histórico

resgatável das execuções dos comandos. Tudo depende do contexto da aplicação. É importante

notar que apesar da classe poder executar os comandos, ela apenas tem a referência para a

interface Command, ou seja, não conhece a classe Receiver e nem as classes concretas de

comando.

Assim, já se tem o padrão Command, entretanto, o ponto crucial é que basta alterar

pouca coisa para permitir que o padrão desfaça execuções de comandos já feitos, algo bastante

útil em muitas aplicações.

Basta adicionar um novo método na interface Command, um método responsável por

desfazer o método Execute(), o método ExecuteUndo(). Adicionalmente, fazer os ajustes

necessários, dado que as classes concretas de comando precisam implementar o novo método,

e que o Invoker necessita gerenciar a ordem dos comandos apropriadamente, como guardando

um histórico numa pilha. Pronto, com isso, agora é possível realizar implementações úteis em

jogos, como simular ações e desfazê-las, ou até mesmo possibilitar refazê-las.

ii. Implementação

45

Existem implementações diversas do padrão Command, assim como qualquer padrão

de projeto. Contudo, esta seção aborda uma implementação exemplo disponibilizada pela

própria Unity no e-book “Level up your code with game programming patterns”, a qual ilustra

bem o uso deste padrão, que pode servir como base para outras implementações mais complexas

deste padrão.

Figura 14 – Representação UML de exemplo do Command Pattern.

Fonte: Lin (2021).

Para melhor ilustrar, será demonstrado na prática, as classes definidas na seção anterior,

com implementações reais no contexto de aplicar um comando para mover um jogador. Na

figura 14, pode-se observar a estrutura geral do exemplo, numa representação em UML, a qual

a classe MoveCommand é uma implementação concreta da interface Command; A classe

PlayerMover representa a classe Receiver; A classe InputManager representa o Client; e a

classe CommandInvoker representa o Invoker, como foram definidos na seção anterior.

46

Figura 15 – Interface Command implementada na Unity.

Fonte: Lin (2021).

Vejamos o código de cada classe separadamente, iniciando pelo código da interface

Command (figura 15) que é a base do padrão, a qual define o método Execute(), responsável

por executar o comando, como também, define o método Undo(), responsável por desfazer a

execução de um comando realizado.

Figura 16 – Exemplo de código de um comando de movimentação de um jogador na Unity.

Fonte: Lin (2021).

Dando continuidade, a classe MoveCommand, demonstrada na figura 16, implementa a

interface ICommand anteriormente definida. Nela, é possível visualizar um exemplo de como

mover um jogador através de um comando, o qual é bem simples. Apenas guarda a referência

da classe Receiver, que no caso é a classe PlayerMover, a qual recebe através de parâmetros

47

pelo construtor, como também, um vetor que define a movimentação. Dessa forma, dentro do

método Execute(), apenas monta uma chamada de método da classe PlayerMover, repassando

o vetor de movimentação. E, de forma similar, realiza a mesma coisa no método Undo(), porém

passa o vetor de movimentação na direção contrária como parâmetro com a finalidade de

reverter a movimentação.

Dito isto, é importante mostrar a implementação da classe PlayerMover, pois ela é quem

de fato dita como funciona a movimentação do jogador, ou seja, ela que contém a lógica de

negócio.

Figura 17 – Exemplo de código de uma Classe Receiver do padrão Command na Unity.

Fonte: Lin (2021).

Como é possível observar na figura 17, a classe PlayerMover, é um componente da

Unity, como qualquer outro, apenas com a especialidade de aplicar movimento ao GameObject

do qual está vinculado, que no caso, define a movimentação de um jogador em um tabuleiro ou

grid através do método Move que soma o vetor recebido à posição atual do jogador, de forma

instantânea, fazendo-o movimentar.

Tendo isso em vista, vejamos como o comando é criado e, em seguida, executado. Para

isso, deve-se olhar para a classe que representa o Client, que nesse contexto é o InputManager.

Entretanto, esta classe tem outras lógicas as quais não são importantes para o exemplo, portanto

será mostrado apenas a parte importante. Ao observar a figura 14, percebe-se que o método

RunPlayerCommand, presente na classe InputManager, é o responsável por fazer a ligação

entre o PlayerMover e o CommandInvoker.

Desta forma, basta apenas olhar o método RunPlayerCommand, na figura 18 abaixo.

Neste trecho de código, é visível que a classe apenas cria um comando do tipo MoveCommand,

48

passando os parâmetros necessários, e passa o comando para ser executado pela classe

ComandInvoker em seguida, através de um método estático disponibilizado pela classe

CommandInvoker. É válido ressaltar que nem toda implementação da classe Invoker utiliza de

métodos estáticos, neste caso, foi uma forma de centralizar a execução dos comandos de forma

prática.

Figura 18 – Exemplo de código para criar comando na Unity.

Fonte: Lin (2021).

Por último, para finalizar, é importante ver como funciona a classe CommandInvoker,

que é um exemplo de um Invoker (figura 19). Pode-se observar, no método ExecuteCommand,

que além de executar o comando recebido, a classe guarda as referências para os comandos

executados numa estrutura de pilha. Dessa forma, permite uma forma de resgatar o histórico e,

caso seja necessário, realizar uma operação para desfazer o comando, apenas acessando o

primeiro elemento da pilha e chamando o método Undo() presente na interface ICommand.

49

Figura 19 – Implementação exemplo de uma classe Invoker na Unity do padrão Command.

Fonte: Lin (2021).

iii. Prós e contras

Tal como outros padrões abordados neste trabalho, este padrão introduz complexidade

ao código, visto que adiciona uma camada entre o Invoker e o Receiver. Entretanto, este padrão

não é tão complexo, o que pode fazer valer a pena para a grande maioria dos casos.

Curiosamente, Nystrom (2014) revela que este padrão é um de seus favoritos, pelo fato

de que a maioria dos programas que escreveu, sejam jogos ou outros programas, ele sempre

acaba utilizando-o em algum lugar. Quando bem usado, desembaraça códigos complicados.

Não é à toa a exaltação de Nystrom (2014) sobre este padrão, pois é simples de

implementar e está bem alinhado com os princípios do SOLID, como o princípio da

responsabilidade única e o princípio do aberto-fechado, já que desacopla as classes que invocam

operações das classes que performam as operações e, também, pode introduzir novos comandos

sem quebrar outros comandos feitos. Assim como pode criar um conjunto de comandos,

compostos por outros comandos, para criar comandos complexos.

5.1.4. Padrão Observer

De acordo com Nystrom (2014), o padrão Observer é um dos mais amplamente

utilizados padrões de projeto originais do grupo Gang of Four. Ele argumenta que este padrão

50

é tão difundido que Java o colocou em sua biblioteca principal (java.util.Observer), como

também, C# o incorporou diretamente na linguagem (com a palavra-chave event).

 Imagine um jogo, no qual o jogador recebe um dano de um monstro inimigo. Quando

isso acontece, vários componentes diferentes do jogo podem querer reagir a esta situação. Entre

os quais o componente de áudio pode tocar um áudio que representa dano; um componente de

partículas pode liberar partículas de sangue; um componente de interface pode diminuir a barra

que representa vida do jogador; entre várias outras possíveis reações. O padrão Observer é

crucial neste tipo de cenário, o qual provê uma comunicação de “um-para-muitos” de forma

desacoplada, deixando o código mais modular e flexível.

i. Definição

 O grupo Gang of Four descreve o Observer como um padrão comportamental que:

“Define uma dependência de um-para-muitos entre objetos, de modo que quando um objeto

muda de estado, todos os seus dependentes são notificados e atualizados automaticamente”

(Gamma et al., 1994).

Em adição a isto, Nystrom (2014), em seu livro Game Programing Patterns, destrincha

este padrão de forma mais prática. Trata-o como uma situação na qual há uma comunicação

entre o Subject, objeto no qual é responsável por notificar outros objetos. Estes são chamados

de Observers, eles escutam as notificações lançadas pelo Subject e reagem como bem

entenderem.

 Neste sentido, Nystrom (2014) ainda reforça que o Subject precisa ter uma lista dos

Observadores dos quais deve notificar. Porém, não é de responsabilidade do Subject gerenciar

esta lista. Ele apenas deve disponibilizar uma API pública para que os próprios Observers

possam se adicionar como também se remover desta lista. Ou seja, os Observers que têm a

responsabilidade de se inscrever e desinscrever da lista de notificação.

51

Figura 20 – Representação UML do padrão Observer.

Fonte: Lin (2021).

A Unity Technologies mostra a relação entre o Subject e os Observers, na figura 20,

através de uma representação UML de uma possível implementação na Unity Engine. Nela,

pode-se visualizar que foi escolhida a utilização de uma Action na classe Subject para

referenciar as implementações dos Observers. Em termos conceituais, esta implementação

poderia ser substituída por uma lista de interface IObserver, as quais os Observers deveriam

implementar. Entretanto, assim como dito anteriormente, a linguagem C# já provê artifícios

para facilitar o desenvolvimento deste padrão, que neste caso, a classe Action provê a API

necessária para o registro de funções externas a Subject, as quais são delegadas para que sejam

executadas no momento que a ação for invocada.

Tendo isso em vista, ainda na figura 20, é importante perceber que os Observers se

inscrevem na ação ThingHappened, definida na classe Subject. Este último, apenas invoca a

ação Thing Happened para aqueles que se registraram. Isto é, para a classe Subject não faz

diferença se há apenas um observador ou vários. Inclusive, a classe Subject não tem noção do

que os Observers fazem ao serem notificados, como também, os Observadores não sabem da

existência de outros Observadores, eles agem de forma independente. Ou seja, pode-se

adicionar novos Observers para reagir a Action Thing Happened e nada no código precisaria

ser alterado, respeitando os conceitos o princípio da responsabilidade única e o princípio aberto-

fechado do SOLID.

i. Implementação

52

 Existem várias formas de implementar o padrão Observer, inclusive diferentes tipos de

linguagem podem ter recursos diferentes para implementar este padrão. Em C# é muito comum

se utilizar de eventos, palavra-chave event em C#, ou utilizar de ações, usando a classe

Action<T>, ao invés de implementar utilizando uma interface IObserver. Além disso, algumas

bibliotecas já utilizam este padrão por debaixo dos panos. Um exemplo disto é a classe

ObservableCollection<T>, a qual consiste em uma coleção genérica de dados que implementa

o padrão Observer e invoca eventos quando a coleção é alterada, permitindo que classes

observadoras se inscrevam nesses eventos para executar rotinas.

 Tendo isso em vista, este tópico abordará dois exemplos de uso do padrão Observer,

importantes ao contexto aqui discutidos, na Unity. Inicialmente, será abordado uma

implementação que diz respeito a uma situação hipotética de jogo, fazendo alusão às classes

Subjects e Observers anteriormente discutidas na seção de definição. E, por fim, mostrar o uso

de UnityEvents, um artifício da Unity que facilita o vínculo entre componentes utilizando

apenas de um drag and drop.

 A priori, na figura 21 abaixo, pode-se ver um exemplo prático de uma classe que está

fazendo um papel de Subject. A classe SingleEnemyDectector representa um componente que

detecta o inimigo mais próximo em um determinado alcance. Esta classe disponibiliza os

eventos OnNewEnemyDetected e OnStopDetectEnemy, que são respectivamente disparados ao

detectar um novo inimigo e ao perder a detecção de um inimigo previamente detectado. Ou

seja, os Observers que estiverem inscritos nestes eventos serão notificados quando os eventos

forem disparados.

53

Figura 21 – Exemplo de Subject na Unity.

Fonte: autoral.

Isto posto, para implementar oficialmente o padrão discutido, basta apenas um objeto se

inscrever nestes eventos para ser notificado, para assim, adicionar um comportamento em

resposta ao evento. Deste modo, é válido observar as figuras 21 e 23, as quais associam uma

rotina em resposta aos eventos disponibilizados na Figura 21, isto é, realizam o papel de

Observer.

54

Figura 22 – Exemplo de Observer na Unity.

Fonte: autoral.

A classe EnemyAimSpotter, disponibilizada na figura 22, representa uma classe que

adiciona uma mira para inimigos detectados, como também remove a mira adicionada quando

perde a detecção do inimigo previamente detectado. Para isso, a classe inscreve o método

AddAimToEnemy, o qual cria uma mira e guarda a referência para tal numa coleção de dados,

para responder ao evento OnNewEnemyDetected, responsável por notificar quando um inimigo

é detectado. Dessa maneira, sempre que um inimigo novo for detectado, uma mira será

adicionada a este inimigo. O análogo também é feito para quando o inimigo sai de detecção.

Um ponto importante a ressaltar é que a classe remove o vínculo dos métodos discutidos

com os eventos quando é desabilitada ou destruída, como podemos ver no método OnDisable()

na figura 22. Este é um fator importante, pois se uma classe a qual não está mais disponível

ainda estiver registrada em um evento, pode causar bugs quando o evento for lançado, já que

este não sabe se a classe ainda está disponível e, dessa forma, falhará ao tentar notificar um

55

objeto indisponível. Segundo Nystrom (2014), este é um motivo comum de bugs ao utilizar o

padrão Observer, por isso deve-se ser rigoroso quanto à limpeza da inscrição do Observer ao

Subject.

Dito isto, é válido ressaltar que toda a lógica necessária para adicionar uma mira a um

inimigo está auto-contida numa classe separada da classe que tem a lógica de detectar inimigos,

ou seja, está alinhado com o princípio da responsabilidade única. Bem como, o princípio do

aberto-fechado também está sendo respeitado, já que se for necessário adicionar novas lógicas,

novas respostas, aos eventos discutidos, basta apenas criar novas classes para adicionar

comportamento, sem necessariamente modificar o código pré-existente. Um exemplo disso é

pode ser visto na figura 23, a qual mostra uma classe tocando sons ao detectar inimigos e ao

perder a detecção.

Figura 23 – Segundo exemplo de Observer na Unity.

56

Fonte: autoral.

Na sequência, conforme mencionado no início deste tópico, o segundo exemplo trata-

se da utilização de UnityEvents. Esta classe, a qual faz parte da biblioteca da Unity, funciona

de forma similar a ações ou eventos, porém provê uma interface gráfica para o padrão Observer.

O intuito é facilitar o vínculo entre o Subject e o Observer, como também, tornar mais prático

o uso de eventos para pessoas que não são tão familiarizadas com programação.

 Vários componentes de interface do usuário fornecidos pela engine utilizam de

UnityEvents. Um exemplo disto é o componente de botão, o qual permite arrastar outros scripts

da cena para vincular um método que será executado quando o evento OnClick() é lançado.

Dessa forma, pode-se facilmente vincular algumas ações na Cena para adicionar

comportamentos novos sem necessariamente programar. Pode-se visualizar o uso disso na

figura 24 abaixo, a qual tem vinculado duas respostas ao evento OnClick(), o método

OnThingHappened do script AudioObserver está vinculado duas vezes.

Figura 24 – Interface gráfica de UnityEvents, sendo utilizada em um botão na Unity.

Fonte: autoral.

 Pode-se dizer que uma vantagem do uso desta classe é que nem o script do botão e nem

o AudioObserver tem uma dependência explícita. No exemplo anterior, apesar do script

responsável por detectar inimigos não saber quem escuta seus eventos, os observadores tinham

uma dependência com a classe SimpleEnemyDetector. Já ao utilizar da interface para vincular

os observadores, o vínculo fica registrado no arquivo de cena da Unity.

57

 Entretanto, apesar de UnityEvents serem práticos em alguns momentos, sua

performance é mais lenta do que se comparado aos eventos, ou ações, disponibilizados pela

biblioteca base de C# e por isso, deve-se estar atento quanto a seu uso. Outro problema

associado a este uso é que em projetos grandes pode não ser ideal arrastar cada script via editor.

As referências podem ficar difíceis de arrastar, tanto em quantidade, quanto em complexidade,

caso a hierarquia da cena esteja muito complexa. Este assunto será melhor explicado na seção

sobre más práticas.

ii. Prós e contras

De acordo com a Unity Technologies, o padrão Observer ajuda a dissociar objetos, já

que o publicador do evento não precisa saber nada sobre os próprios assinantes do evento. Em

vez de criar uma dependência direta entre uma classe e outra, o sujeito e o observador

comunicam-se mantendo um certo grau de separação (Lin, 2021). Em adição a isso, Nystrom

(2014) fala que o padrão Observer é uma ótima maneira de permitir que pedaços de código não

relacionados conversem entre si sem que se fundam em um grande pedaço.

 Em outras palavras, este padrão permite que objetos sejam mais coesos e coerentes,

devido ao fato de conseguir comunicar partes do código sem que haja uma dependência

explícita entre as partes, como também, permite que cada observador implemente sua própria

lógica para responder à notificação de forma independente, em conformidade com o princípio

do aberto-fechado. De acordo com Lin (2021), isto simplifica a depuração de código, bem

como, a realização de testes de unidade.

Além disso, outros fatores interessantes deste padrão é que existem diversas

implementações prontas para uso, como mencionado anteriormente, e são extremamente úteis

para a interface do usuário, já que permite separar a lógica de negócio da lógica da interface de

usuário, fazendo com que a interface apenas mude quando notificada. Inclusive, esta é a base

para outro padrão de projeto, o qual será melhor detalhado na próxima seção, o MVP, também

conhecido como Model-View-Presenter.

Em contraponto, o Observer pode adicionar complexidade ao projeto, como também,

pode impactar na performance a depender de seu uso. De acordo com Nystrom (2014), algumas

pessoas podem considerar sistemas que utilizem de eventos como lentos, entretanto ele afirma

que o custo associado ao padrão é em sua grande maioria insignificante, com exceção apenas

de programas críticos de desempenho, pois existem artifícios dos quais podem mitigar o custo

deste padrão, pois no final das contas, enviar notificações é simplesmente percorrer uma lista e

chamar alguns métodos virtuais.

58

A primeira vista, o padrão ocorre de forma síncrona, com isso, ao inscrever diversos

observadores com rotinas exaustivas, pode ocasionar travamentos. Entretanto, segundo a Unity

Technologies, nestes casos, pode-se combinar o padrão Observer com o padrão Command, para

disponibilizar uma espécie de fila de priorização dos eventos, esta solução é conhecida como

Event Queue (Lin, 2021).

Outro problema deste padrão é que como o Subject não tem responsabilidade de

gerenciar a lista de Observers dos quais estão registrados, é de responsabilidade do Observer

se inscrever e se remover da lista. Desta forma é importante ter atenção para adicionar e remover

observadores da lista de notificação. É necessário garantir que um objeto destruído, se remova

da lista para não ocasionar erros. Conforme Nystrom (2014), este é um problema comum em

sistemas de notificação, chamado de lapsed listener problem.

Por fim, com base em Lin (2021), os observadores ainda dependem da classe que está

publicando o evento e isto, pode ser considerado um ponto negativo. Entretanto, existem

implementações que ajudam a desacoplar ainda mais, como por exemplo, usar um gerenciador

de eventos estático (ou singleton) que lida com todos os eventos e realiza a intermediação entre

o Observer e o Subject.

5.1.5. Padrão MVP (Model-View-Presenter)

O padrão MVP (Model-View-Presenter) é um padrão arquitetural, uma variação do

padrão MVC, o qual é comum de ser utilizado no desenvolvimento de interfaces de programas

em geral, no intuito de reduzir dependências desnecessárias, separando-as em camadas, as quais

têm suas responsabilidades bem estabelecidas.

i. Definição

Primeiramente, antes de entrar nos detalhes da definição do padrão MVP, é importante

entender o padrão, do qual o MVP foi originado, o MVC. Neste sentido, o padrão MVC é um

acrônimo para Model-View-Controller, este nome representa as camadas das quais este padrão

é dividido. Segundo Lin (2021), cada camada é bem definida, cada uma das partes do MVC,

realizam apenas uma coisa e fazem isso bem, podendo se considerar, de forma superficial, como

uma forma de extensão do princípio da responsabilidade única.

De acordo com Lin (2021). a camada Model é responsável por conter os dados e não

performa lógicas de jogo ou algoritmos. Já a camada View é responsável por formatar e

apresentar os dados de forma gráfica para o usuário. Por fim, na última camada, o Controller é

59

responsável por processar os dados de jogo, como realizar algoritmos e manipular dados em

tempo de execução.

Figura 25 – Diagrama demonstrando as interações entre as camadas do MVC.

Fonte: Stannered (2010).

Existem diversas variações do próprio MVC a depender da linguagem e framework do

qual se está inserido e utiliza de eventos (Padrão Observer) para se comunicar efetivamente

com as camadas. Tendo isso em vista, uma possível visualização das interações do MVC está

presente na figura 25. Num cenário hipotético, um usuário interage com a camada da View ao

clicar num botão, disparando um evento de clique. Assim, o Controller escuta o evento e realiza

alguma ação, como aplicar uma lógica e manipular os dados da Model, neste exemplo, poderia

ser algo como realizar um pulo em um personagem do jogo, o qual poderia esbarrar num

obstáculo e perder vida. Em seguida, a camada Model ao ser alterada, neste caso ter a vida

alterada, dispara um evento visto que houve uma mudança de estado. Desta forma, a camada

da View observa essa mudança e atualiza a representação gráfica.

É importante frisar que a camada Controller e a View, em conformidade com suas

responsabilidades, não guardam dados para si e funcionam com base no padrão Observer. Além

disso, no MVC é comum um Controller ter mais de uma View associada.

A partir disto, pode-se dar início à definição do padrão MVP, o qual substitui a camada

Controller por uma camada chamada de Presenter, a qual, diferentemente do Controller, tem

a função de ser um intermediário entre a View e o Model, deixando a Model mais distante da

View, como pode-se observar na figura 26. Além disso, é menos comum a camada que substitui

o Controller, ter várias Views associadas, é mais comum ser um para um. Segundo Lin (2021),

apesar de serem parecidos e manterem a separação de conceitos, as camadas interagem de forma

diferente, bem como, têm responsabilidades um pouco diferentes.

60

Figura 26 – Diagrama demonstrando as interações entre as camadas do MVP.

Fonte: Lin (2021).

Ao desenvolver no ambiente Unity, o framework de UI (UI toolkit ou UnityUI) provê

diversos componentes que já agem como uma View, não necessitando desenvolver

componentes individuais do zero, porém estes componentes são genéricos e não tem

especialização.

Desta forma, os componentes que agem como Presenters, adicionam alguma

funcionalidade de apresentação a estas Views disponibilizadas. No MVC, as Views acabam

sendo mais especializadas, pois como pode-se observar na figura 25, elas têm uma referência

direta ao modelo. Lafritz (2022), corrobora com esta afirmação, ao dizer que o MVP é

tipicamente utilizado na Unity, porque não se pode fazer muito com a View e a renderização, já

que isto é feito de maneira interna ou pelos bastidores, e como a alteração destes elementos é

integrada com eventos, faz necessário ter um intermediário para atualizar a camada da View,

bem como, atribuir uma lógica para a View.

61

ii. Implementação

Para formalizar um exemplo de implementação deste padrão, será utilizado um código

disponibilizado no e-book Level your code with game programming patterns, publicado pela

Unity Technologies. Neste exemplo, será abordado um sistema de vida, o qual terá um modelo

que representa a vida de um personagem, um apresentador que realiza uma lógica para fazer

atualizações gráficas, como também, manipular os dados de vida; por fim, não será necessário

implementar uma View, visto que a Unity disponibiliza um componente Slider, o qual se encaixa

perfeitamente para representar uma barra de vida.

Para começar, pode-se visualizar no anexo K, o código relacionado ao modelo. Este

consiste num modelo para representar uma vida de um personagem, disponibilizando APIs para

modificação, como um método para incrementar, decrementar ou recuperar por completo a

vida, assim como também disponibiliza um evento para quando a vida for alterada, outros

componentes poderem ser notificados.

É importante notar que a classe Health não implementa lógica de jogo, não depende de

nenhuma outra classe e, pode ser facilmente aproveitada para outras situações, como vida de

itens etc. Esta classe não necessariamente precisaria herdar de MonoBehaviour visto que não

utiliza do ciclo de vida de um componente da Unity e isto pode deixar desnecessariamente

carregada a classe.

Em seguida, a classe HealthPresenter é demonstrada no anexo L, a qual tem uma

referência para a classe Health e para um componente Slider, a qual atribui uma lógica simples

para aplicar dano e cura, como também, realiza um vínculo entre o evento de alteração de vida

com a atualização do valor da barra do Slider. Esta é a classe mais especializada dentre as outras

classes, pois ela é um intermediário, mas dificilmente será reaproveitada para outras situações.

É importante notar que comportamentos adicionais poderiam ser implementados nesta

classe, como por exemplo: não poder realizar uma cura se o componente de vida estiver zerado.

Por fim, outros GameObjects irão interagir com o Health Presenter para aplicar dano, cura etc.

Como mencionado, a View já está implementada pela Unity e a lógica de como será o

comportamento da barra de vida, está implementada na classe HealthPresenter, diferentemente

de como seria no MVC à primeira vista. Outros fatores de comportamento poderiam ser feitos

na classe HealthPresenter, como por exemplo alterar a direção da barra, entre outras lógicas

relacionadas. Como o código da classe Slider não é disponibilizado, entretanto pode ser vista

uma documentação sobre (Unity, 2023) Além disso, o relevante de se perceber aqui é que o

componente Slider está separado de outros componentes, não tem dependência para outras

62

classes que não seja de renderização. Portanto, permite que facilmente seja reutilizado em outro

contexto.

iii. Prós e contras

 Tendo em vista que a abordagem do MVP reforça o princípio da responsabilidade única

e separa bem os conceitos, é de se esperar que a longo prazo seja perceptível que o código fica

mais fácil de manter e escalar.

De acordo com Lin (2021), neste tipo de abordagem, os desenvolvedores tendem a

realizar classes menores e mais legíveis, com poucas dependências, o que provavelmente leva

a ter menos lugares de código quebráveis ou escondendo bugs.

Em adição a isso, Lin (2021) afirma que promove uma divisão do trabalho, já que há

uma modularidade maior de código, se você precisar de Views mais complexas, pode-se separar

um desenvolvedor frontend para lidar apenas com a composição de Views para a interface,

enquanto outros realizam a lógica de jogo.

 Além disso, o uso de testes de unidade no código será facilitado, pois devido a separação

bem estabelecida dos conceitos de lógica, interface e modelo, será mais fácil realizar técnicas

de teste como o mock, o qual simula objetos para testar isoladamente alguns casos de teste, bem

como, facilita o uso de testes da própria ferramenta de Unity, não necessariamente precisando

executar o jogo para realizar testes (Lin, 2021).

 Contudo, este padrão pode ser um pouco mais complexo que outros padrões de projeto,

visto que utilizá-lo leva a criar mais classes e manter uma certa organização, projeto e

componentes pequenos podem não beneficiar tanto deste padrão. Por isso, conforme a Unity

Technologies afirma, é necessário planejar para averiguar se é o caso do projeto utilizar deste

padrão, como também, nem todo contexto caberá facilmente nessas camadas, visto que nem

todo componente da Unity é facilmente quebrado em dados, lógica e interface. Um exemplo

disto, segundo Lin (2021), é o MeshRenderer, componente do qual renderiza a malha de

triângulos que representa um modelo 3d.

5.1.6. Padrão Factory

Em jogos, frequentemente surge a necessidade de criar inimigos, obstáculos, itens e

outros elementos dinamicamente durante a execução. Portanto, ter uma maneira de abstrair a

lógica de criação de objetos em uma classe especializada pode se revelar altamente vantajoso a

longo prazo, pois isso permite evitar modificações em classes que não necessitam de

conhecimento sobre a classe exata que está sendo instanciada, dependendo apenas de uma

63

abstração comum, tornando o sistema mais flexível e fácil de manter, como também mais

organizado.

Isto posto, pode-se verificar que o padrão Factory se encaixa neste contexto, conforme

esclarecido por Charles Hache (2023), em seu artigo “Top 7 Design Patterns Every Unity Game

Developer Should Know”. Vejamos: “O padrão Factory é particularmente útil quando você

precisa criar vários tipos de objetos, como inimigos ou itens, que compartilham uma interface

comum ou classe base. Ajuda a encapsular o processo de criação de objetos, tornando seu

código mais sustentável e escalável” (Hache, 2023).

Além do mais, a Unity Technologies (2023) também afirma que

às vezes é útil ter um objeto especial que crie outros objetos. Muitos jogos geram uma variedade

de coisas ao longo do jogo, e muitas vezes você não sabe o que precisa em tempo de execução

até que realmente precise.

i. Definição

O grupo Gang of Four estabelece o padrão Factory como um padrão criacional, o qual

define uma interface para criar um objeto, mas permite que subclasses decidam qual classe

instanciar. Este permite que uma classe adie a instanciação para suas subclasses (Gamma et al.,

1994).

64

Figura 27 – Representação da estrutura do padrão Factory.

Fonte: Lin (2021).

Por conseguinte, pode-se visualizar a estrutura do padrão Factory, conforme ilustrado

na figura 27. Primeiramente, é necessário definir uma interface comum entre os produtos, para

assim, poder criar uma Factory, uma classe abstrata que tem um método para retornar uma

instância de IProduct.

Os produtos concretos implementam a interface IProduct e definem seu comportamento

específico. Bem como, as fábricas concretas implementam a classe abstrata Factory e, também,

definem seu comportamento específico. Neste exemplo, os produtos concretos precisam definir

o nome do produto, como também terem uma lógica de inicialização e as fábricas concretas

sabem como instanciar um produto concreto, assim como, podem definir uma rotina a ser

executada pós-criação.

Deste modo, quando um cliente pedir um produto para uma classe do tipo Factory,

receberá uma instância de IProduct, ou seja, o cliente não tem conhecimento da classe

especializada do produto, apenas da abstração. É importante notar que o cliente também pode

depender da abstração de Factory ao invés de uma fábrica concreta, facilitando assim, a troca

de implementação de criação de objeto, caso necessário.

É válido ressaltar que as fábricas podem precisar de alguma funcionalidade comum

compartilhada. Por isso, nesta definição fala-se de classes abstratas. Contudo, de acordo com

65

Krogh-Jacobsen (2022), nestes cenários é importante atentar-se ao princípio da substituição de

Liskov, um dos princípios SOLID, ao usar subclasses.

Além disso, não necessariamente precisam de fato criar uma instância, elas podem

reaproveitar instâncias previamente alocadas, porém este cenário é mais conhecido como o

padrão Object Pool, o qual tem uma seção destinada neste trabalho.

ii. Implementação

Esta seção abordará uma implementação exemplo do padrão Factory demonstrada no

e-book Level Up Your Code With Game Programming Patterns, a qual ilustra uma fábrica que

cria instâncias de um produto A numa certa posição do mundo, executa uma rotina de

inicialização do produto e o retorna para o cliente que hipoteticamente solicitou. Além disto, o

exemplo se aproveita do sistema de prefabs da Unity, conforme discutido anteriormente na

seção deste trabalho sobre a Unity, o qual trata-se de um GameObject pré-configurado no editor

que contém a receita de como instanciar o objeto, adicionando os componentes e parâmetros

registrado no prefab.

Figura 28 – Interface IProduct e classe abstrata Factory do padrão Factory na Unity.

Fonte: Lin (2021).

Dito isto, na figura 28 podemos ver uma definição da interface dos produtos deste

exemplo, o qual apenas define um método para inicialização do produto, assim como, uma

propriedade para o nome do produto. Adicionalmente, também é visível a definição da classe

66

abstrata Factory, a qual tem um método abstrato que precisa de um parâmetro de posição apenas

para atribuir a posição do produto, bem como retorna um produto da interface IProduct.

 É importante notar que esta interface bem como os métodos da classe abstrata depende

do contexto o qual o produto e a fábrica estão inseridos, podendo ter mais elementos definidos

em ambos, assim como, outros parâmetros. Um exemplo disto é que se o produto criado

representasse um projétil, talvez fizesse sentido passar uma direção a qual o projétil foi

disparado (além da posição inicial), bem como, repassar para a interface do produto. O

interessante deste padrão é que se uma arma (classe hipotética) precisasse criar um projétil, ela

não precisaria saber criar um projétil, esta responsabilidade estaria presente na fábrica de

projéteis, a qual apenas solicitaria uma instância de projétil.

Continuando o exemplo, pode-se observar a implementação de um produto concreto e

uma fábrica concreta no anexo L (ProductA e ConcreteFactoryA, respectivamente). Conforme

o exemplo mencionado, é notório observar que a classe ProductA implementa a interface

IProduct, ou seja, define o nome de seu produto, bem como, dita uma lógica de inicialização

para ela mesma, procurando uma referência de um script de partícula, o qual manda parar a

execução e recomeçar.

Nesse mesmo contexto, percebe-se que a classe ConcreteFactoryA tem uma referência

para um prefab, ou seja, tem a receita para criar o objeto do tipo ProductA. Desta forma, no

método GetProduct, instancia um novo GameObject a partir do prefab do tipo ProductA. Em

seguida, executa o método de inicialização da interface IProduct e retorna o produto.

Dito isto, vale ressaltar que cada classe ficou com sua responsabilidade bem definida, já

que o próprio produto sabe se inicializar e a fábrica sabe coordenar este processo de

inicialização. Ademais, criar novos produtos não impacta um possível cliente que usufrui do

serviço de uma fábrica visto que novos scripts seriam criados, mas nada no cliente precisaria

ser alterado, já que este recebe apenas uma interface IProduct. Deste mesmo modo, trocar de

fábrica (lógica de construção) seria algo trivial como apenas atribuir uma nova referência.Ou

seja, ao criar um novo produto, ou modificar o atual para tocar um áudio ao invés de controlar

partículas, nenhum código do cliente precisaria ser alterado.

Por fim, é válido salientar que a classe Factory não necessariamente precisa herdar de

MonoBehaviour, porém no ambiente da Unity é comum e, muitas vezes, prático passar a

referência de prefabs via serialized field no editor da Unity, assim como na demonstração de

código de fábrica concreta ilustrada no anexo L. Neste sentido, outras abordagens poderiam ser

utilizadas para a classe referenciar um produto, como utilizar de injeção de dependência, criar

67

objetos utilizando a palavra-chave new ou até mesmo procurar por objetos previamente criados

na hierarquia de cena da Unity.

iii. Prós e Contras

O padrão Factory promove encapsulamento e abstração do comportamento de

construção de um objeto, o que traz uma separação clara entre os componentes do sistema, bem

como, permite que um cliente requisite um objeto a uma classe especializada na construção do

mesmo, sem precisar conhecer detalhes de implementação. Por fim, permite adição de novos

produtos sem quebrar código anterior no cliente, assim como, torna fácil a troca de algoritmo

de criação. Ou seja, este padrão promove um código flexível, manutenível e escalável com

acoplamento baixo.

 Segundo Charles Hache (2023), em seu artigo “Top 7 Design Patterns Every Unity

Game Developer Should Know”, os benefícios deste padrão são o encapsulamento da criação

de objetos, promoção de reusabilidade de código e escalabilidade, assim como, a promoção de

baixo acoplamento.

 Ademais, de acordo com o artigo “Factory Method”, do Refactoring Guru, este padrão

está alinhado com o princípio do aberto-fechado, pois é possível introduzir novos produtos no

programa, sem quebrar código previamente existente no cliente. Como também, está alinhado

com o princípio da responsabilidade única, visto que a parte do código relacionada a criação de

objetos é movida para uma classe especializada em construir objetos, deixando o código mais

fácil de manter. E por fim, evita o acoplamento entre o criador e as classes concretas dos

produtos (Refactoring Guru, 2023).

Contudo, em alguns casos, pode não ser ideal implementar o padrão Factory, pois este

pode introduzir um pouco de complexidade desnecessária. Krogh-Jacobsen (2022) corrobora

com isto ao afirmar que o benefício máximo deste padrão é atingido quando se tem muitos

produtos para configurar, para que quando novos tipos de produtos sejam definidos, não precise

alterar um código anterior. Entretanto, para casos com poucos produtos ou poucas

modificações, pode-se introduzir sobrecarga desnecessária.

Ademais, conforme o artigo “Factory Method”, do Refactoring Guru, “O código pode

se tornar mais complicado, pois é necessário introduzir muitas subclasses novas para

implementar o padrão. O melhor cenário é quando você introduz o padrão em uma hierarquia

existente de classes de criadores.” (Refactoring Guru, 2023).

68

5.1.7. Padrão Object Pool

A performance e a otimização são assuntos recorrentes em muitos jogos, pois a

otimização de um jogo pode garantir que jogos possam rodar em dispositivos menos potentes,

bem como, usar ao máximo um dispositivo para rodar gráficos pesados e bonitos, por exemplo.

Ou até mesmo um simples travamento rápido de jogo pode tornar a experiência do jogador

frustrante. Esta ideia é reforçada por Nystrom (2014), o qual afirma que jogos são softwares

críticos de desempenho.

 Mesmo em linguagens com recursos de gerenciamento de memória, como o Garbage

Collector na linguagem de programação C#, é preciso ter cuidado com a alocação e liberação

de memória. Em conformidade com isto, a Unity Technologies afirma que ao instanciar um

grande volume de objetos, tem-se o risco de causar pequenas pausas em um jogo, provocadas

por um pico de coleções de lixo, feitos pelo Garbage Collector (Krogh-Jacobsen, 2022)

Em adição a isto, segundo Krogh-Jacobsen (2022), picos de coleção do Garbage

Collector normalmente estão acompanhados de número de criação e destruição de objetos

devido à alocação e liberação de memória.

Figura 29 – Representação do processo de fragmentação de memória.

Fonte: (Nystrom, 2014).

E, nesse sentido, a fragmentação de memória interligada a este contexto, pois ao alocar

e liberar espaço dinamicamente, pode-se deixar pedaços pequenos e vazios de memória

espalhados na heap, coleção responsável memória. É possível visualizar o processo de

fragmentação de memória na figura 29, o qual Nystrom (2014) mostra que depois de alocar e

69

desalocar objetos na memória, podem ficar pequenos espaços vazios na memória, os quais

podem ser pequenos demais para serem aproveitados por objetos maiores, mesmo havendo

espaço total liberado para eles. Deste modo, necessita redistribuir a memória ou aumentar seu

tamanho total, o que pode gastar processamento ou memória desnecessariamente.

O padrão Object Pool ajuda a reduzir as chamadas do Garbage Collector, pois este

reutiliza objetos já criados para evitar este processo de alocação e liberação de memória. A

Unity Technologies corrobora isto ao afirmar que: “Object Pooling é uma forma de otimizar

seus projetos e diminuir a carga que recai sobre a CPU ao criar e destruir rapidamente novos

objetos. É uma boa prática e um padrão de projeto a se ter em mente para ajudar a aliviar o

poder de processamento da CPU para lidar com tarefas mais importantes e não ser inundado

por chamadas repetitivas de criação e destruição.” (Unity, 2023).

i. Definição

 Diferentemente de outros padrões aqui mencionados neste trabalho, este é um padrão

voltado a otimização. A Unity Technologies define este padrão como: “O Object Pooling é uma

técnica de otimização para aliviar a CPU ao criar e destruir muitos GameObjects.” (Unity 2023).

Já Nystrom (2014), define este padrão como uma estratégia para melhorar o desempenho e o

uso de memória reutilizando objetos de uma coleção (Pool) fixa, em vez de alocá-los e liberá-

los individualmente.

 De forma mais prática, o padrão Object Pool consiste em definir uma classe (Pool) que

mantenha uma coleção de objetos reutilizáveis. De modo que quando solicitado, a pool reutiliza

objetos previamente criados que estão disponíveis na coleção.

Cada objeto desta pool suporta uma consulta para saber se este está “ativo” no momento.

Quando a pool é inicializada, ela cria toda a coleção de objetos antecipadamente e inicia todos

para o estado desativado. Esta por sua vez, quando recebe uma requisição de objeto, procura

um objeto disponível, inicializa-o como “ativo” e o retorna para quem solicitou. Quando o

objeto não for mais necessário, este volta ao estado “desativado”. Dessa forma, os objetos

podem ser criados e destruídos livremente sem a necessidade de alocar memória ou outros

recursos em tempo de execução.

70

Figura 30 – Representação UML do padrão Object Pool.

Fonte: Doran e Casanova (2017).

 Na Figura 30, contém uma representação simples, em forma de diagrama, do padrão

Object Pool. Pode-se visualizar que a Classe ObjectPool disponibiliza um método para um

possível cliente requisitar instâncias de um objeto, neste caso um GameObject. Assim como

também disponibiliza um método para liberar o objeto de volta para a pool. É válido ressaltar

que estes métodos precisam respeitar a lógica anteriormente discutida, bem como, esta é uma

representação simples deste padrão. Contudo, a depender do contexto, é possível este padrão

ser implementado em conjunto com outros padrões para ficar mais abstraído, tal qual, facilitar

acesso e garantir instância única, como o padrão Factory e o Singleton, respectivamente.

ii. Implementação

 Esta seção abordará uma implementação exemplo do padrão Object Pool demonstrada

no e-book Level Up Your Code With Game Programming Patterns, a qual utiliza de uma

biblioteca da própria Unity, UnityEngine.Pool, que dispõe uma coleção genérica, adaptada ao

contexto Unity, feita para simplificar o processo de criação de uma pool, bem como, dispor uma

coleção otimizada baseada em pilha para manipular os objetos reutilizáveis. Em seguida, será

demonstrado apenas um exemplo mais genérico com o intuito de apenas ilustrar uma possível

implementação mais reutilizável e escalável.

A classe RevisedGun ilustrada no anexo M, representa a classe de uma arma, a qual cria

instâncias de um projétil utilizando o padrão Object Pool. Este é um exemplo comum em jogos

para se utilizar deste padrão, visto que em pouco tempo uma arma pode criar várias instâncias

de um projétil, assim como, se dentro do jogo tiverem várias armas atirando ao mesmo tempo,

pode-se causar uma sobrecarga ao instanciar e destruir diversos projéteis. Desta forma, faz-se

71

sentido utilizar deste padrão para reutilizar projéteis e evitar este cenário ao criar objetos

repetidos. Na figura 31, consegue-se visualizar estes projéteis na hierarquia de cena da Unity,

os quais, dentre eles, alguns estão ativos e outros desativados, esperando para serem utilizados.

Figura 31 – Hierarquia de cena da Unity ilustrando projéteis numa pool de objetos.

Fonte: Lin (2021).

Ainda neste exemplo, no anexo M, é perceptível que a classe utiliza de uma pool de

projéteis, a qual utiliza da coleção ObjectPool<T> disponibilizada pela Unity na documentação

(ref. 7.4). Mesmo tendo essa coleção pronta, ainda é necessário passar alguns callbacks no

construtor da coleção para adicionar lógica a pool. Vejamos: (1) rotina para criar o objeto em

questão ao inicializar; (2) rotina para executar ao receber um objeto; (3) rotina para executar ao

liberar um objeto; (4) rotina caso seja necessário destruir um objeto. Além disso, outros

parâmetros configuráveis como o tamanho inicial da pool e tamanho máximo da pool.

Entretanto, esta implementação não escala bem, pois não dá suporte para facilmente

trocar o tipo de objeto ou disponibilizar formas de reutilizar a classe, bem como não depende

de abstrações, além de que toda a lógica de criação está na própria classe da arma. Desta forma,

é possível fazer melhorias no exemplo do anexo M para ficar de acordo os princípios SOLID,

como combinar com o padrão Factory para tornar o padrão Object Pool mais escalável,

manutenível e flexível. O anexo N demostra uma forma de realizar isto.

72

iii. Prós e Contras

Apesar deste padrão aumentar o desempenho, ao promover uma economia de recursos

ao reutilizar objetos e, consequentemente, reduzir as interrupções do Garbage Collector, como

também diminuir a fragmentação de memória, é importante medir o custo-benefício de eu uso,

pois este introduz complexidade.

Nystrom (2014) reforça que é preciso gerenciar a memória de forma adequada ao

contexto, pois a depender do tamanho da pool, é possível desperdiçar memória caso a pool seja

maior do que o necessário, como também, em caso de ser menor do que o necessário pode se

ter comportamentos indesejados ao chegar na capacidade máxima da pool, como não retornar

um objeto, a depender da implementação.

Ademais, existem algumas estratégias para lidar com estes casos, como por exemplo,

num cenário de uma pool de partículas, atingir a capacidade máxima e faltar uma partícula pode

não fazer falta visualmente para um usuário. Já numa pool de áudios, é possível causar

estranheza não tocar o som que é associado ao feedback de um inimigo, neste caso, pode-se

desativar o último objeto da coleção da pool ou o som mais baixo e então reutilizá-lo. Como

também, é possível instanciar objetos fora da pool para os casos extras e depois destruí-los

quando não são mais necessários.

 Vale ressaltar ainda que é imprescindível que os objetos requisitados, em algum

momento, retornem para a pool quando estiverem inutilizados. Ao se esquecer disso pode

ocasionar a falta de objetos na pool. Além disso, deve-se reciclar o objeto apropriadamente para

não deixar resquícios da última utilização. Caso contrário, um objeto reutilizado pode ter algum

mal funcionamento não previsto, como por exemplo, um projétil pode ser inicializado na

posição de mundo errada.

5.1.8. Padrão Component

Conforme Nystrom (2014) aponta em seu livro Game Programming Patterns no

capítulo sobre o padrão Component, diversos conceitos introdutórios de arquitetura de software

nos dizem que diferentes domínios em um programa devem ser mantidos isolados uns dos

outros, ou seja, domínios como física, renderização, inteligência artificial, som e outros, devem

estar em classes separadas. Neste contexto, o padrão Component se encaixa muito bem, visto

que é bastante útil para desacoplar classes de domínios diferentes, assim como, reduzir classes

extremamente grandes e difíceis de trabalhar, separando-as em pequenos componentes

independentes e reutilizáveis.

73

O padrão Component é bastante utilizado no mundo dos jogos, inclusive, é utilizando

como base este padrão que a Unity Engine baseia sua arquitetura. Conforme descrito em sua

documentação, um componente é a classe base para tudo anexado a um GameObject, a qual

adiciona funcionalidade, e um GameObject é a classe base para todas as entidades em Unity

Scenes (Unity, 2023). Um exemplo de uso é visível na figura 32, a qual ilustra um GameObject

de um jogador (Player) com alguns componentes atrelados no inspector: Player Input

Component, Movement Component, Single Enemy Detector, Capsule Collider e outros.

Figura 32 – Visualização do GameObject Player na janela de Inspector no editor da Unity.

Fonte: autoral.

i. Definição

 Nystrom (2014) define o padrão Component como uma forma de permitir que uma única

entidade abranja vários domínios sem acoplar os domínios entre si. Dito de outra forma, uma

única entidade deve abranger múltiplos domínios, de maneira que o código para cada um desses

domínios fique separado na sua própria classe, isto é, seu próprio componente. Desta forma, a

entidade se torna essencialmente um recipiente para os diferentes componentes.

Utilizar componentes significa trabalhar com a composição de objetos (componentes)

para compor objetos complexos. Para ilustrar esse conceito, pode-se pensar num objeto de jogo

(entidade), que representa o personagem de um jogador, o qual pode ter vários componentes

74

atribuídos para definir seu comportamento, como um componente para responder inputs, outro

componente para adicionar movimentação, colisão, renderização, animação, detectar inimigos,

inventário etc.

Entretanto é válido ressaltar que apesar deste padrão reforçar comportamentos mais

genéricos e reaproveitáveis, assim como, a separação de domínios, é inevitável haver interações

entre alguns componentes. Segundo Nystrom (2014), componentes perfeitamente desacoplados

que funcionam isoladamente são um bom ideal, mas não funcionam na prática. O fato de esses

componentes fazerem parte do mesmo objeto implica que fazem parte de um todo maior e

precisam ser coordenados. Isso significa comunicação.

Desta forma, alguns componentes precisam interagir com outros componentes, como

por exemplo, um componente de detecção de inimigos provavelmente vai precisar interagir

com um componente de colisão, entretanto, não há uma regra: isto pode ser feito por

referenciação direta, compartilhando algum estado comum na entidade comum, utilizando de

outros padrões como o mediator para intermediar mensagens entre classes etc. De acordo com

Nystrom (2014), não há uma melhor resposta para isto e que, provavelmente, em um projeto

real, acaba-se utilizando um pouco de cada forma, contudo, ele reforça que prefere sempre

começar simples e ao longo do projeto melhorar a forma de comunicação quando surgir a

necessidade.

 Outro ponto relevante é que a separação de domínios em componentes diferentes

permite o reuso destes em entidades completamente diferentes. A modo de exemplo, uma

entidade que representa uma porta, assim como um inimigo, pode utilizar de um componente

de vida. Embora cada um seja de natureza diferente, eles podem compartilhar de componentes

iguais, bem como, podem adicionar ou remover componentes em tempo de execução para

modificar seu comportamento.

Para complementar, Nystrom (2014) afirma que os componentes são basicamente plug-

and-play para objetos. Eles nos permitem construir entidades complexas com comportamento

rico, conectando diferentes objetos componentes reutilizáveis em soquetes da entidade.

ii. Implementação

 No livro Gaming programming patterns, Nystrom mostra uma implementação simples

para representar a ideia do padrão Component. Inicialmente, ele demonstra uma classe

monolítica, a qual chama de Bjorn, esta por sua vez, está com bastante responsabilidade

(Disponível no anexo O). O método Update desta classe roda todo frame e faz as seguintes

75

coisas: Verifica se o input do joystick está sendo movimentado, a partir disso, altera o vetor

velocidade, verifica se há colisão após modificação, verifica se a sprite precisa ser alterada caso

esteja andando numa outra direção, como também manda atualizar o gráfico. Tudo num mesmo

método.

 Desta forma, Nystrom (2014) propõe extrair uma interface em comum entre os

diferentes domínios, que no caso é o próprio método Update, com diferentes parâmetros para

cada caso (anexo P). Assim, ele separa o código em três classes que implementam a interface

Update: InputComponent, responsável pela leitura de input; PhysicsComponent, responsável

por realizar cálculos físicos; e o GraphiciComponent, responsável por fazer atualizações

gráficas. Após essa refatoração, embora haja formas de melhorar o código-exemplo, o método

na classe Bjorn ficou bem mais limpo, pois extraiu-se o código de diferentes domínios para

classes separadas, as quais implementam uma interface, ou seja, são mais fáceis de serem

trocadas por outros componentes que implementam a mesma interface, bem como, a classe

Bjorn apenas repassa as chamadas para seus componentes, tomando uma forma de entidade.

 De uma forma similar funciona o padrão Component na Unity, embora seja um pouco

mais complexa, esta complexidade está bastante abstraída pelo próprio editor da Unity. De

acordo com a Unity Technologies: “Para personalizar e adicionar componentes no Editor, você

pode escrever seus próprios scripts. Para criar um componente com script, você precisa escrever

o script e anexá-lo a um GameObject. Os scripts anexados a um GameObject aparecem na

janela do Inspetor do GameObject porque o editor os trata como componentes integrados”

(Unity, 2023).

 Dessa forma, assim como visto na figura 32, pode-se anexar componentes a

GameObjects (entidade), podendo utilizar de componentes previamente criados pela Unity ou

implementar seus próprios scripts. Para isso, basta herdar da classe MonoBehaviour, a qual

funciona uma classe base, definindo métodos comuns dos quais componentes usam para lidar

com o lifecycle da Unity. Pode-se visualizar, no anexo Q, um exemplo de implementação de

um componente de movimento que está anexado no game object Player ilustrado na figura 32.

Resumidamente, este o script define uma movimentação básica utilizando de um componente

built-in de física da Unity.

iii. Prós e Contras

Este padrão permite desacoplar o código em componentes separados, de forma que

possam ser reutilizados em diferentes entidades, compondo o comportamento de uma entidade

de forma customizada, bem como, permite a adição e remoção de componentes em tempo de

76

execução. Além disto, a criação de novos componentes, não necessariamente impactam na

modificação de componentes pré-existentes. Ou seja, componentes dão uma grande

flexibilidade alta para compor objetos complexos. Inclusive, esta abordagem tem se

demonstrado bastante útil para jogos, visto que diversas engines, como a Unity, Unreal e outras,

se baseiam neste padrão para arquitetar suas soluções, tal como afirmado por Suscheuski

(2019).

Entretanto, de acordo com Nystrom (2014), é necessário também ter cuidado com a

forma que esses componentes são referenciados, visto que uma alta complexidade de

relacionamento entre componentes pode tornar o código mais desafiador, assim como, pode

levar a um alto nível de indireção para obter componentes em tempo de execução e isto em

loops internos com desempenhos críticos, pode levar a um desempenho ruim.

Um exemplo disto é utilizar o método GetComponent<T> para obter referência de um

componente dentro de um método Update(), o qual, como mencionado anteriormente, roda em

todo frame da aplicação. Isto será melhor detalhado na seção deste trabalho sobre boas e más

práticas na Unity.

A utilização de componentes está diretamente ligada ao princípio de priorizar

composição ao invés de herança, o qual foi anteriormente mencionado na seção sobre conceitos

prévios. Portanto, é plausível sustentar que potencialmente, devido a independência de

componentes, se obtém mais eficientemente comportamentos genéricos ao compor objetos

utilizando componentes, bem como, tornam o código mais encapsulado e mais fácil de manter,

conforme colocado por Marcelo no artigo “Developing games with object composition: A case

study using the Unity3D platform” (Barbosa et al., 2015).

É válido ressaltar ainda que, em projetos grandes, a composição de componentes num

sistema de jogo, como a Unity, pode levar a alguns problemas relacionados à alta dependência

entre componentes ou instâncias de objetos de jogo, conforme apontado por Barbosa et al.

(2015), entretanto, para este tipo de situação, pode-se utilizar do padrão de injeção de

dependência na arquitetura do sistema, visto que este pretende fornecer uma maneira flexível

de gerenciar associações indiretas entre componentes dependentes, eliminando a

responsabilidade do programador de lidar de fazer estes vínculos de forma direta. (Barbosa et

al., 2015).

5.1.9. Padrão Decorator

No mundo de jogos é bem comum existir situações nas quais é desejável adicionar

pequenas funcionalidades extras ou pequenas modificações a um certo elemento do jogo. Isto

77

é bem comum em jogos os quais provém upgrades para o jogador, isto é, adicionar melhorias

ou acessórios a um determinado elemento de jogo, como por exemplo uma arma, uma

armadura, um carro, entre outros.

Um exemplo disto é o jogo Archero, o qual consiste em um jogo mobile do gênero

arcade em que o jogador explora diversos calabouços enquanto vai matando monstros e

ganhando upgrades em seu arco e flecha. A mecânica do jogo se baseia nessas melhorias, visto

que suas flechas podem ficar mais rápidas, mais fortes, aplicar efeitos ao oponente, ricochetear

em paredes etc.

Dito isto, uma maneira de implementar este tipo de comportamento é com o padrão

Decorator, pois este provê uma forma de adicionar pequenas funcionalidades extras ou

pequenas modificações (de forma dinâmica) a um objeto de modo que não altera a

responsabilidade original dele.

i. Definição

O padrão Decorator também foi um dos padrões introduzidos pelo grupo Gang of Four

no livro “Design Patterns: Elements of Reusable Object-Oriented Software”, o qual o definem

como um padrão estrutural que permite anexar responsabilidades adicionais a um objeto

dinamicamente, utilizando de “decoradores”. Estes fornecem uma alternativa flexível à

subclasse para estender a funcionalidade (Gamma et al., 1994).

Figura 33 – Representação UML da estrutura do padrão Decorator.

78

Fonte: Dmitry Zhart (2023).

Na figura 33, é observável uma representação da estrutura, a qual está dividida em cinco

partes: (1) A interface de um componente, a qual será implementada tanto pelo componente

concreto, quanto pelo decorador; (2) A classe concreta de um componente, classe que define

um comportamento básico de um componente e que pode ser decorada; (3) A classe base de

decoração, esta é a chave do padrão visto que a classe contém uma referência para uma interface

Component a qual usa para delegar as operações da interface de forma encapsulada; (4)

Decoradores concretos, estes são responsáveis por definir comportamentos extras ao

sobrescrever os métodos da classe base de decoração, porém, a priori, mantém as chamadas

para a interface encapsulada; (5) O cliente, quaisquer classes que façam a composição de

componente e decoração, bem como, utilize da interface (Refactoring guru, 2023).

ii. Implementação

Esta seção abordará um exemplo simples de implementação do padrão Decorator no

ambiente Unity de desenvolvimento. O caso de a ser demonstrado aplica decorações a uma

classe que representa uma flecha, adotando melhorias na produção destas, também

denominadas como buffs ou upgrades. Ou seja, há uma determinada mistura com um sistema

de buffs improvisado para o exemplo, porém este não deve ser o foco do exemplo em análise.

Nesse contexto, o referido exemplo consiste na definição de uma interface chamada de

IArrow (anexo R) para representar uma flecha que, por questões de exemplo, a interface

consiste em apenas métodos para retornar o dano causado pela flecha, bem como retornar a

velocidade e a direção, juntamente com um método para configurar informações relacionadas

ao arco que atira a flecha, como o dano do arco e a direção de disparo.

A partir disto, uma implementação concreta de flecha é feita, a classe Arrow (anexo S),

que apenas implementa a interface anteriormente mencionada, definindo valores para os

campos referidos e, também, permite ser serializável pela Unity.

De maneira similar, a classe ArrowDecorator (anexo T) - classe base para decorações -

implementa a interface IArrow, no entanto, utiliza de uma referência do tipo IArrow, recebida

via construtor, para repassar as chamadas da interface implementada para a referência recebida

de forma encapsulada.

Com base nisso, é factível criar as classes decoradoras. Nos anexos U e V, é possível

observar as classes IronArrow e LighterArrow, ambas herdam da classe ArrowDecorator, deste

modo, para criar uma instância delas, é necessário passar uma instância de IArrow - uma classe

79

para ser decorada. Percebe-se também que, neste contexto, cada uma sobrescreve um método,

ambas apenas adicionam um bônus nas propriedades de dano e velocidade, respectivamente.

Isto é feito de modo que ainda se mantém uma chamada para a interface original, que está

encapsulada via herança do ArrowDecorator, a fim de respeitar o comportamento da classe

original, apenas adicionando uma modificação, responsabilidade ou efeito.

Tendo isso em vista, o padrão Decorator está implementado, entretanto, ainda é

necessário mostrar a parte relacionada ao cliente, ou seja, a parte que consome este padrão.

Todavia, para usufruir deste padrão na Unity, foi necessário fazer algumas adaptações devido

ao fato dos componentes da engine necessitarem herdar de MonoBehaviour para fazerem parte

de uma entidade de jogo, além do mais, não é possível instanciar uma classe MonoBehaviour

via palavra-chave new.

Por isto, foi utilizada uma abordagem para separar a lógica de uma flecha atrelada ao

framework da Unity (lifecycle, serialização e mensagens Unity) em uma classe

(ArrowBehaviour) e a parte lógica de uma flecha em outra (Arrow). Esta abordagem é

conhecida como Humble Object. Desta forma, a classe ArrowBehaviour lida com a lógica da

Unity e repassa para a classe Arrow, a qual agora pode ser instanciada via palavra-chave new.

Assim, é possível ter uma praticidade maior na utilização do padrão Decorator.

Dito isto, pode-se visualizar, no anexo W, a classe ArrowBehaviour, que lida com a

parte de lifecycle, serialização e mensagens da Unity, como já mencionado, bem como, repassa

as chamadas para a interface IArrow, que ela mesmo criou. Embora a própria classe pudesse ter

instanciado decorações para a flecha, esta ainda não é a classe responsável por isto neste

contexto.

No anexo X, é possível visualizar uma classe responsável por criar flechas, a

ArrowFactory. Além de instanciar uma ArrowBehaviour, a classe recebe uma lista de buffs

ativos (do tipo IArrow) e troca a instância interna de ArrowBehaviour, como se fosse uma linha

de montagem. Por fim, a título apenas de ilustração, é permitido visualizar no anexo Y como a

classe é decorada de fato, mostrando o método ApplyBuff (IArrow buffReceiver).

Diante do exposto, é válido ressaltar que as decorações feitas (IronArrow e

LighterArrow) foram apenas ilustrações simples para aplicar decorações num determinado

objeto. É importante mencionar, ainda, que elas poderiam ter sido mais elaboradas, pois, neste

caso, foi utilizado de buffs apenas para exemplificar sua utilidade num contexto mais real de

jogo, entretanto este padrão não se resume a apenas este cenário.

Em última análise, é importante pontuar que, devido ao padrão Decorator

implementado neste contexto, tornou-se possível adicionar extensões ou modificações no

80

comportamento de uma flecha em tempo de execução, sem precisar alterar a classe Arrow ou a

Classe ArrowBehaviour, como também não foi preciso utilizar de subclasses. Para isto, basta

criar novas classes que herdam de ArrowDecorator que decoram a interface e, apenas neste

exemplo, associar ao sistema de buffs.

iii. Prós e Contras

Conforme exposto neste tópico, o padrão em análise provê uma forma de estender o

comportamento de um objeto sem necessariamente fazer subclasse, além de permitir adicionar

e remover responsabilidades em tempo de execução. Dessa forma, é possível dividir uma classe

em várias classes menores, de modo que, ao adicionar novos comportamentos, não haverá

modificações em classes prévias, ou seja, segue-se em harmonia com os princípios da

responsabilidade única e com o princípio aberto-fechado, consoante apontado por Adrian

Bilescu (2023), em seu artigo “Investing in Code Quality: The Decorator Pattern and Its Role

in Implementing SOLID Principles”.

De acordo com Cuong Le (2016), em seu trabalho “Design Patterns - Implementation

in video game programming”, é recomendado o uso do padrão Decorator quando existe a

necessidade de adicionar responsabilidades a objetos, de forma que não envolva outros

componentes, como também, estas responsabilidades devem ser modificações leves, de maneira

que o comportamento central do objeto permaneça o mesmo.

Em atenção a isso, ao se utilizar de um grande número de decoradores, possivelmente

haverá uma sobrecarga de complexidade. Contudo, se bem utilizado, Cuong Le (2016) defende

que este padrão provê uma flexibilidade aprimorada em comparação a subclasses, visto que

evita heranças profundas e classes complicadas.

 Por outro lado, existem pontos negativos, posto que, segundo Bilescu (2023), é possível

que este padrão possa não ser cabível em toda e qualquer situação, uma vez que nem sempre é

possível adicionar comportamentos que não dependam da ordem de composição, como

também, quando for necessário fazer modificações internas de estado. Além disso, ao utilizar

de muitos decoradores, tem-se a possibilidade de adicionar complexidade nas interações das

classes, bem como, é tangível ter um alto nível de indireção, o que pode impactar em cenários

críticos de performance.

5.2. Boas práticas na Unity

A Unity é muito popular entre os desenvolvedores de jogos, inclusive, uma de suas

prováveis causas de sua popularidade, é a facilidade de acesso, visto que a Unity proporciona

81

um mecanismo fácil de trabalhar. Assim sendo, este capítulo se dedica a explorar as boas

práticas identificadas na pesquisa previamente mencionada, no contexto da Unity, com o

objetivo de fornecer um guia para nortear desenvolvedores.

i. Torne toda cena executável

De acordo com Tulleken (2016) e Juego (2021), no seu artigo “7 Ways to Keep Unity

Project Organized: Unity3d Best Practices”, é uma boa prática tornar toda cena executável a

fim de evitar ter que trocar de cena para rodar o jogo e testar mais rapidamente.

Entretanto, segundo Tulleken (2016), isto pode ser complicado se existirem objetos que

persistem entre carregamentos de cena. Ele afirma que uma das maneiras de fazer isso é ao

utilizar de Singletons para objetos persistentes entre cenas que serão carregados quando não

estiverem presentes na cena (Tulleken, 2016).

ii. Use prefabs frequentemente

Vários dos recursos de estudo utilizados neste trabalho mencionam o uso de prefab de

forma natural, visto que é um recurso bastante comum de ser utilizado na Unity, uma vez que

este mecanismo, como mencionado anteriormente, é utilizado para criar objetos pré-

configurados e reutilizáveis. Entretanto, pelo menos três destes materiais reforçam o uso deste

mecanismo na Unity de forma frequente para facilitar a composição de cena (Tulleken, 2016;

Bucher, 2017; Juego, 2021).

De acordo com Tulleken (2016), os únicos objetos de jogo em sua cena que não devem

ser prefabs (ou parte de um prefab) são as pastas. Mesmo objetos usados apenas uma vez devem

ser prefabs, uma vez que isso torna mais fácil fazer alterações já que torna o objeto isolado ao

contexto da cena.

iii. Use scriptable objects

Conforme a Unity Technologies 2023) define, ScriptableObject é uma classe

serializável da Unity que permite armazenar grandes quantidades de dados compartilhados

independentemente de instâncias de script. A figura 34 demonstra a visualização de um

scriptable object no editor da Unity através do inspector.

82

Figura 34 – Visualização de scriptable objects no editor.

Fonte: Anuj Shrestha (2022).

A Unity Technologies (2023) incentiva o uso de scriptable objects para armazenar

valores ou para configurar objetos, ao invés de utilizar MonoBehaviours neste propósito, pois

previne duplicações de dados, visto que as configurações podem ser reutilizadas em outros

contextos.

Em consonância com isso, Tulleken (2016) em seu artigo “50 Tips and Best Practices

for Unity (2016 Edition)” recomenda o uso de scriptable objects na Unity em vários cenários,

como para guardar informações de level, para configurar objetos no inspector e para especializar

prefabs.

Além disso, scriptable objects tornam o editor mais versátil, podendo servir de objeto

intermediário para conectar componentes, além de poder ser utilizado de diversos modos. Um

exemplo disto é que os padrões de projeto Command e Observer podem ser implementados em

conjunto com scriptable objects para prover uma forma mais conveniente de plugar comandos

ou eventos (observables) com o editor (Unity Technologies, 2023).

Inclusive, estas formas diversas são mais bem detalhadas no e-book “Create modular

game architecture in Unity with ScriptableObjects”, o qual mostra formas de modificar a

arquitetura de seu jogo para incluir scriptable objects a fim de tornar a arquitetura mais flexível

e modular. Este seria o próximo padrão a ser abordado na seção de padrões de projeto,

entretanto devido ao corte necessário para definir o escopo deste trabalho - o qual foi

mencionado anteriormente - não foi possível cobrir, visto que este padrão teve apenas três

menções.

83

iv. Utilize o profiler para analisar possíveis problemas de performance

 O profiler é uma ferramenta que você pode usar para obter informações de desempenho

sobre seu jogo na Unity. É possível executá-lo no Editor para obter uma visão geral da alocação

de recursos enquanto desenvolve seu aplicativo, como também, pode conectá-lo a dispositivos

em sua rede ou dispositivos conectados à sua máquina para testar como seu aplicativo é

executado na plataforma de lançamento pretendida.

 Este reúne e exibe dados sobre o desempenho do seu aplicativo em áreas como CPU,

memória, renderizador e áudio. É uma ferramenta útil para identificar áreas de melhoria de

desempenho em seu aplicativo e iterar nessas áreas. É possível identificar coisas como como

seu código, ativos, configurações de cena, renderização de câmera e configurações de

construção afetam o desempenho de seu aplicativo. Ele exibe os resultados em uma série de

gráficos, para que você possa visualizar onde ocorrem os picos de desempenho do seu aplicativo

(Unity Technologies, 2023).

 Dito isto, diversas fontes encontradas na pesquisa incentivam o uso desta ferramenta

para análise (Kundurthy, 2016; Tulleken, 2016; Blåfield, 2021) como também, Unity (2023)

também reforça ao afirmar: “O Unity Profiler fornece informações de desempenho sobre seu

aplicativo, mas não poderá ajudá-lo se você não o usar. Crie um perfil do seu projeto no início

do desenvolvimento, não apenas quando estiver próximo da entrega. Investigue falhas ou picos

assim que eles aparecerem”.

v. Revise as configurações de qualidade e otimização

Ao compor uma cena na Unity, possivelmente existem objetos que não precisam estar

rodando na qualidade máxima ou não precisam de soluções complexas e custosas, as quais

podem ser simplificadas. A falta desse tipo de ajuste pode estar desnecessariamente gastando

processamento ou memória do seu jogo e estas configurações impróprias ou inadequadas,

também é considerada uma má prática para alguns desenvolvedores, conforme Borelli et al.

(2020). Dito isto, Kundunrthy (2016) recomenda a revisão de algumas configurações, como o

uso de light mapping, occlusion culling, level of detail (LOD), batching e atlas texture.

 Light mapping é uma técnica que utiliza dados de luz previamente calculados, os quais

são armazenados em uma cache, desta forma os dados são apenas acessados em tempo de

execução ao invés de calculados em tempo de execução, trazendo melhorias impactantes se

comparadas ao uso de luz em tempo real (Kundunrthy, 2016).

84

Figura 35 – Visualização das configurações de luz, a qual indica o uso de light mapping e indica como pré-calcular

os dados de luz.

Fonte: Praveen Kundurthy (2016).

Occlusion culling é um recurso disponível na Unity para otimizar a renderização de

objetos que não estão sendo vistos pela câmera ou quando há objetos obstruindo a visibilidade,

desativando sua renderização, desta forma, economiza drawcalls, ou seja, reduz o

processamento gráfico, bem como, o uso de memória (Kundunrthy, 2016).

Level of detail (LOD), é um recurso disponível na Unity para trocar objetos que estão

muito distante da câmera para objetos mais simples, como por exemplo, uma árvore que está

distante não precisa ser renderizada ou ter os vértices com a mesma qualidade que uma árvore

próxima a câmera. Deste modo, a Unity permite configurar níveis de detalhe para cada objeto,

de forma que quando atinja o limiar, ela automaticamente substitua por objetos mais simples e,

de forma análoga, o inverso. Ao aplicar este tipo de configuração pode reduzir a sobrecarga que

uma cena pode ter (Kundunrthy, 2016).

Batching (lote) combina objetos do jogo em uma única draw call. Você obtém os

melhores benefícios do processamento em lote ao planejar quais objetos serão agrupados em

lote numa única drawcall. A Unity, para os materiais iguais, automaticamente aplica o

agrupamento em lote, entretanto para alguns objetos é necessário atribuir manualmente se é um

batching estático ou dinâmico, ou seja, objetos que são estáticos ou que se movem,

respectivamente. Neste mesmo contexto, Kundunrthy (2016) ainda aponta que pode-se utilizar

85

de atlas texture, uma forma de combinar diversas texturas em uma única textura compactada e

otimizada que reduz o número de draw calls ao agrupar no mesmo lote.

Outro ponto válido para se atentar, segundo (Yin, ref. 18), é o tamanho das texturas (e

imagens) importadas no projeto, visto que possivelmente estas não precisam estarem sendo

renderizadas na qualidade máxima e a Unity oferece diferentes algoritmos de compressão para

redimensionar as imagens de forma mais apropriada.

Somado a isso, Kundunrthy (2016) recomenda também habilitar a opção de

mipmapping, a qual reduz a resolução da imagem caso a imagem esteja distante da câmera.

Por fim, Borelli (2020) e Aguiar (2023) reforçam a revisão da escolha dos colliders,

componentes de colisão, visto que componentes complexos de colisão usam de mais recursos

computacionais do que componentes simples e primitivos. Desta forma, é uma boa prática

trocar os colliders complexos por colliders mais simples, se for possível realizar a troca sem

impactar negativamente no game design do jogo.

Para complementar, pode-se visualizar na figura 36, a fim de ilustrar a diferença, a qual

consiste num experimento realizado por Aguiar (2023).

Figura 36 – Ilustração da diferença entre o uso de colliders primitivos e colliders complexos, como o mesh

collider.

Fonte: Aguiar (2023).

vi. Considere utilizar do padrão object pool ao invés de criar objetos dinamicamente

 É importante considerar o uso de object pool quando estiver instanciando objetos

dinamicamente, pois o uso deste padrão, pois apesar de introduzir uma complexidade, traz

86

vantagens em relação a fragmentação de memória e a diminuição de esforço do Garbage

Collector, conforme discutido na seção padrão object pool e pontuado por Aguiar (2023), assim

como, na documentação da Unity (Unity Technologies, ref. 11). Além disso, o Garbage

Collector fica mais lento à medida que o uso de memória aumenta, visto que tem mais memória

para escanear e liberar dados não utilizados.

De forma complementar, pode-se visualizar - nas figuras 37 e 38 - uma comparação,

com relação ao não uso e ao uso de object pool, respectivamente, do profiler da Unity -

ferramenta para analisar diversos aspectos do jogo como consumo de memória, cpu, Garbage

Collector etc. Na parte superior da figura 37, é possível observar picos de atuação do Garbage

Collector, bem como, é possível observar na parte inferior a alocação dinâmica de memória,

mostrando diversas variações ao longo do tempo ao alocar a mesma. Em contrapartida, na parte

superior da figura 38, é possível observar que não há chamadas ao Garbage Collector, bem

como a alocação de memória se mantém estável.

Figura 37 – Visualização do profiler da Unity, a qual demonstra as alocações para o Garbage Collector (na parte

superior) e alocação de memória (na parte inferior).

Fonte: Aguiar (2023).

87

Figura 38 – Visualização do profiler da Unity, a qual demonstra as alocações para o Garbage Collector (na parte

superior) e alocação de memória (na parte inferior).

Fonte: Aguiar (2023).

vii. Realize cache de componentes e objetos

 A Unity tem uma arquitetura baseada na composição de componentes em objetos de

jogo e é normal componentes precisarem acessar funcionalidades de outros componentes, visto

que é necessário separar os domínios para aumentar o reuso destes, conforme discutido na seção

sobre o padrão Component. Contudo, é importante guardar as referências destes componentes

(caso haja reuso na classe), pois realizar operações de busca toda vez que precisar utilizar de

uma funcionalidade de um componente terceiro desperdiça esforço da CPU. O mesmo se aplica

para objetos.

 Aguiar (2023) faz uma comparação ao realizar e não realizar cache de componentes e

objetos, enfatizando a relevância de realizar cache, bem como, pontua a importância de evitar

algumas chamadas built-in, como Transform.position que por baixo dos panos realiza uma

operação de GetComponent() para procurar o componente Transform, responsável por guardar

dados de posição, rotação e escala do objeto de jogo.

 O mesmo autor menciona um teste realizado que move 800 caixas, as quais se movem

alterando a posição dos objetos no Update() via Transform.position, em um caso é realizado

cache e no outro não (Aguiar, 2023). Deste modo, ao comparar, percebe-se uma queda da média

de tempo gasto em um script de 30 ms para 23 ms. Ainda no mesmo artigo, ele faz também

88

uma comparação com referência de objetos e mostra uma média de diferença de 41 ms para 23

ms (Aguiar, 2023), a qual pode ser visualizada na figura 39.

Figura 39 – Visualização do profiler da Unity, a qual demonstra o tempo gasto em scripting ao realizar e não

realizar cache de referências de componente.

Fonte: Aguiar (2023).

viii. Cuidado ao manusear Materials

 A Unity compartilha materiais entre os objetos a fim de economizar memória e apenas

limpa os materiais que a própria IDE criou ou quando troca de cena, de acordo com a

documentação oficial (Unity, 2023).

Entretanto, segundo a thread do Reddit “What are some bad practices to avoid when

using Unity?” isto não é muito evidente e normalmente é uma fonte de memory leak, visto que

chamadas para Renderer.material - forma de adquirir uma referência do material de um objeto

- cria uma cópia do material compartilhado, a qual não é automaticamente limpa, desta forma,

é necessário destruir o material ao destruir um objeto.

5.3. Más práticas na Unity

De acordo com Ibrahim (2023) - Tech lead com anos de experiência em Unity, mesmo

que existam diversos recursos facilitadores - principalmente para prototipar - para fazer projetos

89

maiores que vão para produção, algumas destas práticas facilitadoras podem rapidamente

causar desordem no código.

Desta forma, ao embarcar no mundo de desenvolvimento de jogos com a Unity, é

fundamental conhecer não apenas as melhores práticas, mas também as armadilhas que podem

surgir ao longo do caminho, a fim de evitar práticas que possam prejudicar a eficiência do

desenvolvimento, como também, a qualidade do jogo desenvolvido.

i. Falta de separação de conceitos

Um script MonoBehaviour que implementa, ao mesmo tempo, diferentes

responsabilidades, dificulta a evolução dos projetos, visto que não há a separação dos conceitos

de forma efetiva.

Mesmo a Unity sendo baseada numa arquitetura de componentes (Padrão Component),

conforme explicado anteriormente, a qual tenta separar diferentes domínios em componentes

isolados de modo que possam ser reaproveitados para compor entidades diferentes, cabe ao

programador utilizar do princípio da responsabilidade única para quebrar classes grandes em

classes menores de forma coesa. Ao criar classes que não separem bem seus conceitos, diversos

módulos podem ficar acoplados, de forma que fique difícil reutilizar o mesmo componente para

outros contextos. Quando as responsabilidades estão bem partidas, naturalmente haverá uma

maior reusabilidade dos componentes.

Segundo Borelli et al. (2020) , um erro comum é criar uma classe associada ao Player

(jogador) que implementa toda lógica, como ler inputs, determinar o estado do jogador, mover

o jogador, entre outras. Existem formas de contornar estes acoplamentos, utilizando do padrão

Observer, Command, State e outros, como abordado na seção de padrões de projeto.

ii. Acoplamento de objetos via Inspector

Conforme apontado previamente, na Unity é possível acoplar scripts (MonoBehaviour)

em outros objetos via editor, utilizando a ferramenta chamada de Inspector. MonoBehaviours

dos quais utilizam de variáveis públicas ou privadas com o atributo [SerializeField] permitem

que o editor crie um campo para associação de valores ou referências de outros objetos, apenas

arrastando ou configurando valores.

Esta prática embora seja bastante útil para alguns contextos, quando mal utilizada, pode

levar a problemas de manutenção: (1) Para o código, não há visibilidade do acoplamento, bem

como, não há valor atribuído. Só é possível visualizar via Inspector ou ao quebrar em tempo de

execução. Por isso é necessário adicionar checagens para verificar se o valor foi carregado

90

apropriadamente (é possível avisar, antes de executar utilizando realizando sobrecarga no

método OnValidate() que roda apenas no editor); (2) Se houver refatorações de nome de classe,

as referências podem ser perdidas, sendo necessário reatribuir manualmente.

Contudo, este é um tema polêmico pois existem outros desenvolvedores que defendem

o uso desta prática, visto que seu custo-benefício pode ser melhor que outras práticas (uso do

GameObject.Find() ou sistema de mensagens da Unity) em termos de performance, bem como,

é bastante conveniente. Além disso, ao utilizar com o sistema de prefabs ou script objects da

Unity, permite trocar de objeto, implementação, entre outras coisas, apenas com um simples

arrastar de objetos no Inspector, como também, as informações ficam salvas num arquivo

separado reutilizável (.prefab ou .asset). Em uma pesquisa realizada por Borelli et al. (2020),

retornou-se 31% de respostas positivas, 34% negativas e 35% neutras quanto a esta prática,

devido aos fatores anteriormente mencionados.

iii. Dependência de componente não explícita

 As classes do tipo MonoBehaviour não permitem construtores, ou seja, quando há

dependência, não dá para explicitar via construtor, algo bastante usual na programação

orientada a objetos. Desta forma, é comum acoplar objetos via editor ou procurar por referências

no método Awake() que é chamado ao carregar o componente.

 Ao procurar por referências, é comum utilizar do método GetComponent() para retornar

uma referência de um componente, visto que esta forma é mais performática pois não percorre

toda hierarquia da cena, apenas percorre os componentes atrelados a entidade correspondente.

Entretanto, precisa que o programador tenha previamente configurado a entidade da

qual o componente está anexado, caso contrário, pode-se retornar um componente não esperado

ou null, causando potenciais bugs. Isto pode ser evidenciado pela thread do Reddit “What are

some bad practices to avoid when using Unity?”, como também, é mencionado por Tulleken

(2016).

Uma forma de explicitar esta dependência é utilizar do atributo [RequireComponent()],

pois este atributo avisa ao editor que ali há uma dependência e que se não tiver atribuída, no

momento que for adicionado o componente em questão, a dependência também é adicionada.

É válido ressaltar que a própria Unity em sua documentação comenta que o uso deste atributo

pode ser útil para evitar erros de configuração no componente (Lin, 2021).

iv. Chamadas exaustivas em contexto crítico de performance

91

Existem alguns recursos na Unity que facilitam determinadas coisas para o

programador, entretanto, alguns destes recursos, embora práticos são custosos (como por

exemplo, a referência estática para a câmera principal, Camera.main), e podem ser ainda mais

perigosos se executados num contexto crítico, como por exemplo o método Update() que roda

a todo frame da aplicação.

Por isso, é importante evitar chamadas exaustivas em contextos críticos. Se o intuito for

utilizar dessas chamadas, é melhor chamar num contexto mais seguro, que execute apenas uma

vez, como por exemplo o método Awake() que executa uma única vez ao carregar um

componente (no mesmo exemplo de Camera.main, poderia guardar a referência, ao invés de

utilizar esta chamada em todo corpo do código). No entanto, o ideal é utilizar de recursos mais

otimizados, se possível que não sejam exaustivos, mas nem sempre é possível, vide método

Instantiate(), única forma de instanciar GameObjects.

Ellis (2019) define uma lista de chamadas exaustivas que devem ser evitadas em

contexto crítico como: métodos relacionados a GetComponent, FindObjectOfType e

AddComponent; Métodos baseados em strings como Invoke, SendMessage e Find;

Camera.main e comparações com null para objetos do tipo Unity.Object.

Além disso, é válido ressaltar que a instanciação e destruição de objetos via Instatiate()

e Destroy(), podem ocasionar pausas para o Garbage Collector entrar em ação, bem como, são

consideradas chamadas custosas, visto que os objetos de jogo podem ter diversos componentes

pesados, como por exemplo, componentes gráficos e malhas de colisão. Desta forma, é boa

prática evitar estas chamadas em contextos críticos e a própria Unity Technologies reforça o

uso do padrão object pool para estes casos (Unity, 2023).

De forma complementar, a pesquisa de Borelli et al. (2020), reforça as afirmações

anteriores, bem como, também diz que cálculos pesados de física não devem ser executados

durante o método Update(), seria mais apropriado de ser executado no FixedUpdate().

v. Estratégia de temporização frágil

De acordo com Borelli et al. (2020) um erro típico é a atualização do objeto do jogo em

uma atualização baseada em quadros - por exemplo, um movimento fixo é realizado a cada

quadro - tornando a velocidade da animação dependente da taxa de quadros e, portanto,

variando em dispositivos diferentes, ou no mesmo dispositivo em contexto diferente.

Em outras palavras, quando um desenvolvedor provê uma movimentação via método

Update(), o qual roda em todo quadro da aplicação, mas não multiplica pela diferença de tempo

entre os quadros, significa que a movimentação fica dependente de quadros e não do tempo.

92

Desta forma, dispositivos com diferentes FPS (frames por segundo), atualizam a movimentação

diferentemente.

Como mencionado, uma forma simples é multiplicar pela diferença de tempo, porém

também pode-se vincular o cálculo a um método como o FixedUpdate() que sempre é executado

na mesma diferença de tempo de forma fixa, isto é, não haveria variações entre os quadros.

vi. Uso do any state no componente AnimationController

 Conforme mencionado por Nardone et al. (2023), o uso da transição de estado any no

componente de animação da Unity, ou seja, o uso de uma transição que pode vir de qualquer

estado dado uma determinada condição em uma máquina de estados na animação, é considerada

por alguns desenvolvedores como uma má prática, visto que pode ocasionar comportamentos

inesperados, pois é realizada a transição para o estado independente de qual estado está,

inclusive, se mal configurado, pode transicionar para o próprio estado vinculado ao any.

vii. Atribuir diretamente a velocidade do objeto e sobrescrever força

 Na Unity existe um componente chamado Rigidbody, o qual lida os cálculos de física

da engine, ou seja, este é o componente que calcula gravidade, velocidade, forças aplicadas e

etc (Unity Technologies, 2023).

 Dito isto, ao utilizar deste componente para aplicar cálculos físicos num objeto de jogo

e alterar diretamente sua velocidade, ao invés de aplicar força diretamente, pode ser considerado

uma má prática para alguns desenvolvedores de acordo com Borelli et al (2020) (a não ser que

seja intencional), pois alterar a velocidade diretamente implica em sobrescrever as forças as

quais estão sendo aplicadas no objeto no momento. Isto pode causar comportamentos

inesperados, como arremessos inesperados, atravessar paredes, entre outros.

6. Conclusão

Em última análise, é essencial enfatizar a importância da Unity como uma das

ferramentas mais populares no desenvolvimento de jogos digitais. Isso se deve a uma série de

motivos, como sua licença acessível, suporte para várias plataformas, uma comunidade ativa,

uma variedade de recursos que simplificam o processo de criação de jogos, entre outros

motivos.

Tal destaque é ainda mais notável no contexto brasileiro, no qual o setor de jogos tem

experimentado um crescimento significativo, como também a ampla adoção desta engine como

93

uma das principais ferramentas utilizadas na produção de jogos no país, segundo a pesquisa

realizada pela AbraGames, consoante demonstrado neste trabalho.

No entanto, como mencionado ao longo deste estudo, o desenvolvimento de jogos é uma

tarefa complexa e multidisciplinar, que envolve diversos elementos interdependentes. Um dos

principais desafios é manter o código do jogo eficiente, organizado e sustentável ao longo do

tempo. A falta de estrutura adequada pode resultar no temido "código espaguete", dificultando

a manutenção e evolução do projeto.

Nesse contexto, os padrões de projeto desempenham um papel fundamental no combate

à falta de modularização, fornecendo soluções comprovadas aos problemas recorrentes de

código e permitindo que os desenvolvedores criem sistemas mais flexíveis, escaláveis e de fácil

manutenção.

Assim sendo, conduziu-se uma revisão da literatura de forma sistemática, a fim de obter

tanto a perspectiva de acadêmicos quanto a perspectiva de indivíduos que utilizam a Unity no

cotidiano para obter os padrões de projeto mais recomendados para esta, assim como as boas e

as más práticas que circundam este entorno.

Em virtude de todo o exposto, esta monografia contribui para a disseminação de

diretrizes que auxiliam os desenvolvedores de jogos - os quais utilizam a plataforma Unity -

oferecendo orientações práticas e formas de implementar soluções mais eficazes, tornando o

desenvolvedor mais apto a identificar condições problemáticas, incluindo armadilhas comuns,

além de aprimorar o julgamento crítico de quando estas soluções são apropriadas, visto que elas

podem introduzir complexidade.

 Consequentemente, com esses conhecimentos em mãos, os profissionais da área têm a

oportunidade de elevar a qualidade de seus jogos, contribuindo para o contínuo crescimento e

sucesso da indústria de jogos digitais no Brasil.

94

7. Referências

AKHTAR, S. Implementing a Command Design Pattern in Unity. Disponível em:

https://faramira.com/implementing-a-command-design-pattern-in-unity/. Acesso em: 02, ago.,

2023.

AGUIAR, R. Unity 3D Best Practices: Physics. 2023. Disponível em: https://x-

team.com/blog/unity-3d-best-practices-physics/. Acesso em: 20, ago., 2023.

AMAT, C. Everything You Need to Know About Singletons in Unity. 2020. Disponível em:

https://www.youtube.com/watch?v=mpM0C6quQjs. Acesso em: 19, ago., 2023.

BARBOSA, M. B.; RÊGO, A. B.; MEDEIROS, I. Developing games with object composition:

A case study using the Unity3D platform. Computing Track – Short Papers, 2015.

BILESCU, A. Investing in Code Quality: The Decorator Pattern and Its Role in Implementing

SOLID Principles. Disponível em: https://www.codementor.io/@adrianbilescu/investing-in-

code-quality-the-decorator-pattern-and-its-role-in-implementing-solid-principles-24jb2i9ghf.

Acesso em: 05, set., 2023.

BLÅFIELD, J. Optimizing mobile games in a Unity environment. 2021. 35 páginas.

Monografia (Curso de Information and Communications Technology) - JAMK University of

Applied Sciences, Jyväskylä.

BORELLI, A.; NARDONE, V.; LUCCA, G. A.; CANFORA, G. PENTA, M. D. Detecting

Video Game-Specific Bad Smells in Unity Projects. MSR '20: Proceedings of the 17th

International Conference on Mining Software Repositories, p. 198 – 208, 2020.

BUCHER, N. Introducing Design Patterns and Best Practices in Unity. 2017. Disponível em:

https://dl.acm.org/doi/10.1145/3077286.3077322. Acesso em: 08, ago., 2023.

CARTAXO, B.; PINTO, G.; SOARES, S. Rapid Reviews in Software Engineering.

Contemporary Empirical Methods in Software Engineering. Springer, p. 356 – 383, 2020.

DEALESSANDRI, M. What is the best game engine: is Unity right for you? Disponível em:

https://www.gamesindustry.biz/what-is-the-best-game-engine-is-unity-the-right-game-engine-

for-you. Acesso em: 19, jun., 2023.

95

DILLET, R. Unity CEO says half of all games are built on Unity. 2018. Disponível em:

https://techcrunch.com/2018/09/05/unity-ceo-says-half-of-all-games-are-built-on-unity/.

Acesso em: 22, set., 2023.

DRAKE, J. 19 Great Games That Use The Unity Game Engine. Disponível em:

https://www.thegamer.com/unity-game-engine-great-games. Acesso em: 19, jun., 2023.

DORAN, J. P.; CASANOVA, M. Game development patterns and best practices: better

games, less hassle. Birmingham, Uk: Packt Publishing Ltd, 2017.

ELLIS, M. Unity Performance Best Practices with Rider, Part 1. 2019. Disponível em:

https://blog.jetbrains.com/dotnet/2019/02/21/performance-indicators-unity-code-rider/.

Acesso em: 02, set., 2023.

FORTIM, I. Pesquisa da indústria brasileira de games 2022. ABRAGAMES: São Paulo, pp.

68, 2022. Disponível em: https://www.abragames.org/pesquisa-da-industria-brasileira-de-

games.html. Acesso em: 18, jun., 2023.

GALACH, P. How to implement State Machine in Unity. Disponível em:

https://www.patrykgalach.com/2019/03/18/design-pattern-state-machine/. Acesso em: 01, set.,

2023.

GAMMA, E.; HELM, R.; JOHNSON, R.; VLISSIDES, J. Design Patterns: Abstraction and

Reuse of Object-Oriented Design. Lecture Notes in Computer Science, vol 707, p. 406 – 431,

1993.

GAMMA, E.; HELM, R.; JOHNSON, R.; VLISSIDES, J. Design patterns: elements of

reusable object-oriented software. Boston: Addison-Wesley, 1994.

GAROUSI, V.; FELDERER, M.; MANTYLA, M. V. Guidelines for including grey literature

and conducting multivocal literature reviews in software engineering Information and

Software Technology, p. 1 – 22, 2018.

HACHE, C. Top 7 Design Patterns Every Unity Game Developer Should Know. 2023.

Disponível em: https://www.linkedin.com/pulse/top-7-design-patterns-every-unity-game-

developer-should-charles-hache/. Acesso em: 20, ago., 2023.

96

HUSSAIN, A.; SHAKEEL, H.; HUSSAIN, F.; UDDIN, N.; GHOURI, T. L. Unity Game

Development Engine: A Technical Survey. University of Sindh Journal of Information and

Communication Technology, v. 4 (2), p. 73 – 81, 2020.

IBRAHIM, M. Structuring Your Unity Code For Production - Important Best Practices. 2023.

Disponível em: https://www.codementor.io/@mody/structuring-your-unity-code-for-

production-important-best-practices-25bmix6f3q. Acesso em: 16, ago., 2023.

JUEGO, S. 7 Ways to Keep Unity Project Organized: Unity3d Best Practices. Disponível em:

https://www.juegostudio.com/blog/7-ways-to-keep-unity-project-organized-unity3d-best-

practices. Acesso em: 20, set., 2023.

KARPOVICH, A.; PYATKI, D. Improving the performance of unity 3d mobile games.

Electronic collected materials of xi junior researchers’ conference, p. 154 – 156, 2019.

KROGH-JACOBSEN, T. Level up your code with game programming patterns. Disponível

em: https://blog.unity.com/games/level-up-your-code-with-game-programming-patterns.

Acesso em: 02, set., 2023.

KUNDURTHY, P. Software Performance Optimizations for Games: Best Practices. 2016.

Disponível em: https://www.intel.com/content/www/us/en/developer/articles/technical/unity-

software-performance-optimizations-for-games-best-practices.html. Acesso em: 04, set., 2023.

LAFRITZ, J. Model-View-Controller Family. Disponível em: https://blog.devgenius.io/model-

view-controller-family-3a0d869d81ea. Acesso em: 03, set., 2023.

LEVCHENKO, A. Unity ECS: How Does It Work and Why You Should Use It. Disponível

em: https://www.visartech.com/blog/what-is-entity-component-system-ecs-and-how-to-

benefit-in-unity/. Acesso em: 19, jun., 2023.

LIN, W. Level up your code with game programming patterns. Unity, 2021.

MARTIN, R. C. Clean Architecture: A Craftsman's Guide to Software Structure and

Design. Pearson, 2017.

NARDONE, V.; MUSE, B.; ABIDI, M.; KHOMH, F.; DI PENTA, M. Video Game Bad

Smells: What They Are and How Developers Perceive Them. ACM Transactions on Software

Engineering and Methodology, p. 1 – 35, 2023.

97

NYSTROM, R. Game Programming Patterns. 2014.

REDDIT. "What are some bad practices to avoid when using Unity?". Disponível em:

https://www.reddit.com/r/Unity3D/comments/9yg57s/what_are_some_bad_practices_to_avoi

d_when_using/. Acesso em: 02, set., 2023.

REFACTORING GURU. Factory Method. Disponível em: https://refactoring.guru/design-

patterns/factory-method. Acesso em: 04, set., 2023.

RICHARDS, M.; FORD, N. Fundamentals of Software Architecture. O'Reilly Media, 2020.

SCHARDON, L. What is Unity? – A Guide for One of the Top Game Engines. Disponível em:

https://gamedevacademy.org/what-is-unity/. Acesso em: 19, jun., 2023.

SHAH, V. Reasons Why Unity3D Is So Much Popular In The Gaming Industry. Disponível

em: https://medium.com/@vivekshah.P/reasons-why-unity3d-is-so-much-popular-in-the-

gaming-industry-705898a2a04. Acesso em: 19, jun., 2023.

SUSCHEUSKI, D.; BURACHONAK, I. Architectural design pattern entity-component-

system. Electronic collected materials of xi junior researchers’ conference, p. 144 – 146,

2019.

TULLEKEN, H. 0 Tips and Best Practices for Unity (2016 Edition). Disponível em:

https://www.gamedeveloper.com/design/50-tips-and-best-practices-for-unity-2016-edition-.

Acesso em: 11, set., 2023.

UNITY. Control of an object's position through physics simulation. Disponível em:

https://docs.unity3d.com/ScriptReference/Rigidbody.html. Acesso em: 02, set., 2023.

UNITY. Slider Scripting API. Disponível em:

https://docs.unity3d.com/2022.2/Documentation/Manual/script-Slider.html. Acesso em: 03,

ago., 2023.

UNITY. Pool.ObjectPool_1 Class. A stack based IObjectPool<T0>. Disponível em:

https://docs.unity3d.com/ScriptReference/Pool.ObjectPool_1.html. Acesso em: 15, set., 2023.

UNITY. Creating Components with Scripts. Disponível em:

https://docs.unity3d.com/Manual/CreatingComponents.html. Acesso em: 26, ago., 2023.

98

WEIMANN, J. Unity Bots with State Machines - Extensible State Machine/FSM. Jason

Weimann. YouTube. https://www.youtube.com/watch?v=V75hgcsCGOM. Publicado em 26

de abril de 2020.

99

8. Anexo de Figuras

Figura A – Parte de uma implementação simples de FSM na Unity para controlar um zumbi.

Fonte: autoral.

100

Figura B – Continuação da Figura A, a qual mostra a implementação de uma FSM simples na Unity para controlar

um zumbi.

Fonte: autoral.

101

Figura C – Definição da interface IState na Unity, a qual os estados devem implementar conforme padrão State.

Fonte: autoral.

102

Figura D – Exemplo de implementação de uma State Machine conforme o padrão State.

Fonte: autoral.

103

Figura E – Implementação exemplo de um Zumbi Controller, responsável apenas por definir os estados e

inicializá-los.

Fonte: autoral.

104

Figura F – Implementação exemplo do estado de patrulha de um zumbi.

Fonte: autoral.

105

Figura G – Implementação da classe Transition, responsável por combinar o par (Estado, Condição).

Fonte: autoral.

106

Figura H – Adição de transições na classe StateMachine.

Fonte: autoral.

107

Figura I – Definindo transições na classe Zombie Controller e adicionando-as a StateMachine.

Fonte: autoral.

108

Figura J – Removendo transições de estado e dependência do Zombie Controller no estado de patrulha visto

anteriormente.

Fonte: autoral.

109

Figura K – Código de um modelo que representa a vida de um item ou personagem na Unity.

Fonte: Lin (2021).

110

Figura L – Exemplo de implementação concreta de produto e fábrica na Unity.

Fonte: (Unity, 2023).

111

Figura M – Exemplo de implementação do padrão Object Pool na Unity, utilizando de biblioteca pronta feita pela

própria Unity.

Fonte: (Unity, 2023).

112

Figura N – Exemplo de melhoria a Figura M, ao utilizar de generics, bem como, aplicar o padrão Factory em

conjunto com o padrão Object Pool na Unity.

Fonte: autoral.

113

Figura O – Código em c + + para exemplificar uma classe monolítica antes de aplicar o padrão Component.

Fonte: (Nystrom, 2014)

114

Figura P – Extração de componentes da classe monolítica anteriormente demonstrada, em c + +.

Fonte: (Nystrom, 2014)

115

Figura Q – Implementação exemplo de um componente de movimentação na Unity.

Fonte: autoral.

116

Figura R – Interface IArrow, utilizada de exemplo na Unity para implementar uma interface de um componente

do padrão Decorator na Unity.

Fonte: autoral.

Figura S – Classe Arrow, utilizada de exemplo na Unity para implementar um componente concreto de interface

do padrão Decorator na Unity.

Fonte: autoral.

117

Figura T – Classe ArrowDecorator, utilizada de exemplo na Unity para implementar uma classe base de

decoração do padrão Decorator.

Fonte: autoral.

Figura U – Classe IronArrow, utilizada de exemplo na Unity para implementar uma classe concreta de

decoração do padrão Decorator.

.

Fonte: autoral.

118

Figura V – Classe LighterArrow, utilizada de exemplo na Unity para implementar uma classe concreta de

decoração do padrão Decorator.

Fonte: autoral.

Figura X – Classe ArrowFactory, utilizada de exemplo na Unity para fabricar componentes decorados do padrão

Decorator.

Fonte: autoral.

119

Figura Y – Método ApplyBuff(), utilizado de exemplo na Unity para retornar uma decoração aplicada a um

componente do padrão Decorator.

Fonte: autoral.

	d85b14f2c3565746a0e11a596ab4b6df1d7758cefe865c8cf40cf54e7344a097.pdf
	d85b14f2c3565746a0e11a596ab4b6df1d7758cefe865c8cf40cf54e7344a097.pdf
	d85b14f2c3565746a0e11a596ab4b6df1d7758cefe865c8cf40cf54e7344a097.pdf
	d85b14f2c3565746a0e11a596ab4b6df1d7758cefe865c8cf40cf54e7344a097.pdf

