e
ne-
[1]~=2

<
i

%

US IMPAVIDA

UNIVERSIDADE FEDERAL DE PERNAMBUCO
CENTRO DE INFORMATICA

&
GRADUACAO EM CIENCIA DA COMPUTACAO

U

Centro de
Informatica
UFPE

Henrique Andrade Mariz

Explorando Padrdes de Projeto no Desenvolvimento de Jogos Digitais na
Unity 3D

RECIFE
2023

UNIVERSIDADE FEDERAL DE PERNAMBUCO
CENTRO DE INFORMATICA
CURSO DE BACHARELADO EM CIENCIA DA COMPUTACAO

Henrique Andrade Mariz

Explorando Padrdes de Projeto no Desenvolvimento de Jogos Digitais na
Unity 3D

Monografia apresentada ao Centro de
Informética (ClIn) da Universidade Federal de
Pernambuco (UFPE), como requisito parcial
para conclusdo do Curso de Ciéncia da
Computacdo, orientada pelo professor Leopoldo
Motta Teixeira.

RECIFE
2023

Ficha de identificacdo da obra elaborada pelo autor,
através do programa de geragéo automatica do SIB/UFPE

Mariz, Henrique.

Explorando padrdes de projeto no desenvolvimento de jogos digitais na
Unity3D / Henrique Mariz. - Recife, 2023.

119p.:il.

Orientador(a): Leopoldo Texeira
Trabalho de Conclusdo de Curso (Graduag&o) - Universidade Federal de
Pernambuco, Centro de Informatica, Ciéncias da Computagéo - Bacharel ado,
2023.
Inclui referéncias, anexos.

1. Engenharia de Software. 2. Jogos Digitais. 3. Padrdes de Projeto. 4. Boas
préticas. 5. Unity. |. Texeira, Leopoldo. (Orientagdo). I1. Titulo.

000 CDD (22.ed.)

UNIVERSIDADE FEDERAL DE PERNAMBUCO
CENTRO DE INFORMATICA
CURSO DE BACHARELADO EM CIENCIA DA COMPUTACAO

Henrique Andrade Mariz

Explorando Padrdes de Projeto no Desenvolvimento de Jogos Digitais na
Unity 3D

Monografia submetida ao corpo docente da Universidade Federal de Pernambuco, defendida e
aprovada em 02 de outubro de 2023.

Banca Examinadora:

Orientador

Leopoldo Motta Teixeira

Doutor

Examinador(a)

Breno Miranda
Doutor(a)

AGRADECIMENTOS

Aos meus pais, Abilio e Ana Célia, agradeco por todo o suporte que foi essencial para
a realizacdo de tudo. Obrigado pelo exemplo que séo, pelos sermdes, incentivo, apoio e oragoes.
Vocés foram essenciais ao longo de todo o percurso, ndo teria conquistado as mesmas coisas se
ndo fosse por voceés.

Agradeco a minha irmd, Aline Mariz, que também sempre esteve presente, bem como a
Mariana Siqueira por todo suporte emocional, paciéncia, compreensdo, amor e carinho.

Em especial, gostaria de agradecer a minha avo, a qual ndo tive oportunidade de mostrar onde
eu cheguei. Obrigado por sempre acreditar em mim e me guiar.

Gostaria de agradecer ao meu orientador, Prof. Dr. Leopoldo Motta Teixeira, pela
disponibilidade e encorajamento que foram fundamentais para realizar e prosseguir com este
estudo.

Agradeco, também, aos amigos que me ajudaram neste percurso da graduacéo,
Guilherme Melo, Ivan Neves, Lucas Lin, Matheus Lima e Rodrigo Falcdo, sinto que vocés
tiveram um papel fundamental nesta jornada, tornando-a mais leve, seja nos estudos ou nos

projetos de jogos dos quais realizamos juntos.

RESUMO

A Unity é uma das ferramentas mais populares no desenvolvimento de jogos digitais, pois
oferece uma licenca gratuita ou com étimo custo-beneficio a depender da propor¢do do jogo
desenvolvido. Além de possuir suporte para multiplas plataformas, apresenta também uma
grande comunidade de utilizadores, permitindo o acesso a muita informagdo em foruns que
auxiliam no desenvolvimento, e também disponibilizacdo de codigo e assets. Possui um
ambiente de desenvolvimento com diversos recursos facilitadores para reduzir a complexidade
de implementacéo, principalmente para amadores; entre outros beneficios. No entanto, para ter
qualidade no desenvolvimento de jogos é importante estruturar o codigo de forma eficiente e
organizada, visando ter um codigo manutenivel, com boa performance, flexibilidade e
escalabilidade. Dessa maneira, este trabalho visa explorar os padrdes de projeto mais
frequentemente recomendados para jogos, aplicados a Unity, bem como, as boas e mas praticas
neste ambiente de desenvolvimento, a fim de expor solu¢Ges comprovadas para 0s problemas
recorrentes que permeiam esta area, disponibilizando implementacdes e orienta¢fes praticas

para 0 uso em projetos reais.

Palavras-chave: padrdes de projeto, boas praticas, mas préaticas, jogos digitais, Unity.

ABSTRACT

Unity is one of the most popular tools in the development of digital games, as it offers a free
license or excellent cost-effectiveness depending on the scale of the game being developed. In
addition to supporting multiple platforms, it also boasts a large user community, providing
access to a wealth of information through forums that assist in development, as well as the
sharing of code and assets. It features a development environment with various helpful
resources to reduce implementation complexity, particularly for amateurs, among other
benefits. However, to achieve quality in game development, it is important to structure the code
efficiently and systematically, aiming for maintainable code with good performance, flexibility,
and scalability. Thus, this work aims to explore the design patterns most frequently
recommended for games when applied to Unity. It also delves into best practices and pitfalls in
this development environment in order to present proven solutions to common issues in this

field and provide practical implementations and guidance for use in real projects.

Keywords: design patterns, best practices, bad practices, digital games, Unity.

Sumario

I 1 (oo [V o Lo TSRS 11
I O] 1=] () TSR 12

2. CONCEITOS BASICOSviuiteeiieieie ettt b bbbt 13
2.1. Favorecer a CompoSiGa0 €M VEZ € NEIANGAeveieiiriiiiie e 13
2.2. Alta c0esd0 € baiXx0 aCOPIAMENTOccveiiiice e 13
2.3, SOLID ... bbb bbbt b et r b e 15
2.4, PrINCIPIO KISS ...ttt b bbbt e e 18

3. Ambiente Unity de deSENVOIVIMENTOc.ccviiiiiiieie et st sre e 18
o Y L= (oo (o] (oo | - AT TSP U TP TP PRSPPSO 23
4.1. Revisao Rapida (RR) e Revisdo de Literatura Cinza (RLC)cccooveviiviiieiececcc e 24
4.2, PErgUNTAS 08 PESTUISA. ... e.ververrereesiesietistesteste sttt e ettt b et b ettt e bbb b b nn e se s 24
4.3, EStrategia 8 DUSCA........cviiieiic ittt st re ettt e s be e e s beene e resne e e 25
4.4, Procedimento A SEIECAODoiviiiiiici e 25

5. RESUITA00S € ISCUSSOES. ... ecviutereeiieieeiietesie sttt b bbbttt b b bbb n e e b 27
5.1. Padrdes de Projeto Na UNILYcceciii it sttt s e 28
5.1.1. Padrao SINGIETON.........ciiiiieieieieise s 28

5.1.2. PAOIA0 STALEcuiieiiiteisieietei et 34

5.1.3. Padr@o COMMANTcc.eiuiiiieieieisii ittt neene 42

5.1.4. PAdra0 ODSEIVETc.oiviiiiiieteicieee ettt 49

5.1.5. Padrdo MVP (Model-VIeW-PreSenter) ..ot 58

T B o To | - O I = Tod (o VSRRSO 62

5.1.7. Padr@o ODBJECT POOL.......cc.oiiiiiieiiiiiie e 68

5.1.8. Padrao COMPONENTveiuiieieiieiieiisie sttt b e n e nnea 72

5.1.9. PAdra0 DECOTALONveuiiiiiitiiiteieie ettt 76

5.2. B0&S PratiCas Na UNILYccoiiiiiiieiiiiiieie sttt 80
5.3. MAS PratiCas Na UNILYcccoiiiiiicc ettt st et be et s be e ne e besne e e 88

B. CONCIUSED ...ttt bbb bbbt h ekttt b e b b e e e e ere s 92
7 RETEIBNCHAS ...ttt b bbbt 94

8. ANEXO0 T8 FIGUIAS ...ttt bbb bbbt b e bt bbbttt e b 99

Lista de Figuras

Figura 1 — llustragdo que representa a conexdo entre modulos de forma interna e externa, ou

S€ja, COESA0 € ACOPIAMENTO.viiieie ettt e st e et e s e sreeneenee e 15
Figura 2 — Visualizagdo do editor da UNitY.ccccovveiiiiiiiieicce e 20
Figura 3 — Script vazio recém-criado Na UNItY.cooeiiiiiiiiieeee e 21
Figura 4 — Visualizag&o do inspector ao adicionar um script em um GameObject. 22
Figura 5 — Visualizacdo de prefabs na UNity.ccccoeieiiiiiieiiie e 23
Figura 6 — Diagrama representando o processo de selecéo de recursos (RR e GLR). 27
Figura 7 — Representacdo UML do padréo SINGIETON...........ccevviiiiiiiiiiiniece e 28
Figura 8 — Cadigo-exemplo de um Singleton simples na UNity.cccoceeevienninnienninnenns 29
Figura 9 — Game Manager e Audio Manager como Singletons.c.cccovveveeievieceeieeceenene 31
Figura 10 — Diagrama UML do State Pattern.cccocveeeiieiiiiie s 35
Figura 11 — Representagdo de um fluxo do State no contexto de JOgOS.cccevververerererenenns 36
Figura 12 — Exemplo comum do State Pattern em jogos em um diagrama UML.................... 37
Figura 13 — Representacdo UML do padrao Command.ccccceveeiieiieieeie s 43
Figura 14 — Representacdo UML de exemplo do Command Pattern.............ccccccvvvevviieinennne 45
Figura 15 — Interface Command implementada na UNity.ccooiiiiniiniiiencncsc e 46

Figura 16 — Exemplo de cddigo de um comando de movimentacdo de um jogador na Unity. 46
Figura 17 — Exemplo de cddigo de uma Classe Receiver do padrdo Command na Unity. 47
Figura 18 — Exemplo de cddigo para criar comando na UNity.cccceeveeiiiicieece e 48

Figura 19 — Implementacéo exemplo de uma classe Invoker na Unity do padrdo Command..49

Figura 20 — Representagdo UML do padréo ODSEIVEN..........c.ccciiiiiiiniienesese e 51
Figura 21 — Exemplo de SUbject Na UNItY.ccceoeiiiiiiic e 53
Figura 22 — Exemplo de ObServer NAa UNILY.cccoveiiiieiiececee e 54
Figura 23 — Segundo exemplo de Observer Na UNity..........cccocveiiiieii e 55
Figura 24 — Interface gréfica de UnityEvents, sendo utilizada em um botdo na Unity. 56
Figura 25 — Diagrama demonstrando as interagdes entre as camadas do MVC. 59
Figura 26 — Diagrama demonstrando as interagdes entre as camadas do MVP........................ 60
Figura 27 — Representacdo da estrutura do padrao Factory.ccccovvvvieieeiinie e 64
Figura 28 — Interface IProduct e classe abstrata Factory do padrdo Factory na Unity............ 65
Figura 29 — Representagdo do processo de fragmentacdo de memoria.ccceevevererenenieninns 68
Figura 30 — Representacdo UML do padrdo Object POOL.cccooeiiiiiniiiiiceiee 70

Figura 31 — Hierarquia de cena da Unity ilustrando projéteis numa pool de objetos............... 71

Figura 32 — Visualizacdo do GameObject Player na janela de Inspector no editor da Unity. .73
Figura 33 — Representagcdo UML da estrutura do padrdo Decorator.ccccceerererennnnnns 77
Figura 34 — Visualizacdo de scriptable objects N0 editor...........cccocvevviieiecii e 82
Figura 35 — Visualizacéo das configuracdes de luz, a qual indica o uso de light mapping e indica
como prée-calcular 0S dadoS A& TUZ..........coviiiiiiiiiiieie e 84
Figura 36 — llustragéo da diferenca entre o uso de colliders primitivos e colliders complexos,
COMO 0 MESN COMART ...ttt bbb 85
Figura 37 — Visualizacdo do profiler da Unity, a qual demonstra as alocacGes para o Garbage
Collector (na parte superior) e alocacdo de memdria (na parte inferior).ccccoevvevivvvnnnne. 86
Figura 38 — Visualizacao do profiler da Unity, a qual demonstra as alocagdes para o Garbage
Collector (na parte superior) e alocacdo de memoria (na parte inferior).cccccooevveieinennn. 87
Figura 39 — Visualizacdo do profiler da Unity, a qual demonstra o tempo gasto em scripting ao

realizar e néo realizar cache de referéncias de COMPONENTE.ccooeririiiiiene s 88

Sigla
3D
CEO
CPU
E-book
FSM
GoF

IDE
i0S
KISS
LOD
RLC
RQ
RR
SR
Ul
UML
WebGL

Tabela de Siglas

Significado

Tridimensional

Chief Executive Officer
Central Processing Unit
Eletronic Book

Finite State Machine

Gang of Four

Inteligéncia Artificial
Integrated Development Environment
Iphone Operating System
Keep It Simple, Stupid!
Level of Detail

Revisdo de Literatura Cinza
Review Questions

Revisdo Répida

Systematic Review

User Interface

Unified Modeling Language
Web Graphics Library

11

1. Introducéo

A priori, é importante mencionar que o desenvolvimento de jogos digitais é uma &rea que
tem se tornado cada vez mais popular no Brasil. A pesquisa da Abragames, realizada em 2022,
sobre a industria brasileira de games, constatou que, entre 2018 e 2022, houve um aumento de
cerca de 152% de empresas desenvolvedoras de jogos (Fortim, 2022), evidenciando um pouco
da relevancia atual da area.

Tendo isso em vista, vale também ressaltar uma das game engines mais populares de
desenvolvimento de jogos digitais, a Unity 3D, visto que, nessa mesma pesquisa, a ferramenta
é utilizada por cerca de 83% das empresas desenvolvedoras brasileiras (Fortim, 2022). Varios
autores da area tentam explicar os diversos motivos da popularidade da Unity (Shah, 2017,
Dealessandri, 2020; Schardon, 2023), a exemplo do artigo “Unity Game Development Engine:
A Technical Survey” dos autores Hussain et al. (2020), o qual discorre acerca da definicao da
Unity, faz uma pesquisa técnica e lista as vantagens por ela oferecidas.

Em resumo os motivos da popularidade sdo: licenca gratuita ou com étimo custo-beneficio
a depender da proporcdo do jogo desenvolvido; suporte para multiplas plataformas como
Windows, Linux, Mac, Nintendo Switch, Android, iOS, webGL etc.; grande comunidade ativa,
permitindo o acesso a muita informacdo em foruns - a exemplo da Unity Community, Stack
Over Flow, Game Dev Stack Exchange - como também disponibilizacdo de cddigo e assets
pronto para uso na Unity Asset Store; Ambiente de desenvolvimento com diversos recursos
facilitadores que diminuem a complexidade de implementacéo, principalmente para amadores;
entre outras razdes.

Como era de se esperar pela sua popularidade, a game engine foi utilizada no
desenvolvimento de diversos jogos de sucesso pelo mundo. No blog The Gamer, o autor Jeff
Drake, lista dezenove sucessos mundialmente jogados, como Pokémon Go, Cuphead, Ori and
The Blind Forest, Hearthstone e outros (Drake, 2023). Além disso - segundo John Riccitiello,
CEO da Unity, em 2018 no TechCrunch DisruptSF, evento anual tecnoldgico - a Unity Engine
chegou a estar presente no desenvolvimento de mais da metade de todos os jogos de celular
(Dillet, 2018).

A implementacdo de jogos consiste numa competéncia multidisciplinar que envolve
diversos elementos interdependentes, como personagens, cenarios, fisica, computacgéo gréafica,
inteligéncia artificial, entre outros elementos, por isso, se ndo tiver cuidado, o codigo pode ficar

cada vez mais dificil de dar manutencdo. O post de Artur Levchenko, no blog Visartech,

12

evidencia isso ao dizer que quanto mais complexa e diversificada for a mecénica do jogo,
variedade de contelido e possiveis interacfes, mais dificil sera executar corretamente e evitar o
chamado “codigo espaguete”, ou seja, as conexdes entre classes e moddulos tornam-se
extremamente estreitas, as interacdes das classes ficam fortemente entrelagadas, assim, a
alteracéo de qualquer um dos mecanismos existentes ou a adi¢do de um novo comportamento
torna-se incrivelmente dificil (Levchenko, 2023).

Padr@es de projeto podem ajudar nesse contexto, visto que os autores Gamma et al. (1993)
definem padréo de projeto como um problema que ocorre inUmeras vezes em determinado
contexto, e descreve ainda a solucdo para esse problema, de modo que essa solucéo possa ser
utilizada sistematicamente em distintas situaces. Cada padrdo tem uma caracteristica diferente
para ajudar em algum lugar onde se precisa de mais flexibilidade ou precisa encapsular uma
abstracdo ou de se fazer um codigo menos casado (Gamma et al., 1993).

Portanto, este trabalho se propGe a explorar os padrdes de projeto mais frequentemente
recomendados pela literatura académica e pela literatura cinza para jogos desenvolvidos em
Unity, assim como, as boas e as mas praticas neste ambiente de desenvolvimento, visto que é
importante entender os contextos problematicos que podem surgir durante o desenvolvimento
de jogos, para se utilizar de solugdes adequadas para tais problemas

Para alcancar esse proposito, foi conduzida uma revisao da literatura de forma sistematica,
utilizando de Revisdo Répida (RR) e de Revisdo de Literatura Cinza (GLR) - devido a natureza
pratica e concreta da pesquisa - visando oferecer implementagdes e orientacdes praticas para
projetos na Unity no contexto de jogos, a fim de se obter um cddigo mais flexivel, escalavel,

manutenivel e performatico.

1.1. Objetivos

A Unity 3D é uma das ferramentas mais populares no desenvolvimento de jogos digitais,
sua ampla comunidade auxilia bastante o programador, visto que ha bastante contetdo pronto
para uso, como assets, plugins, bibliotecas, videos, até mesmo muitas duvidas respondidas em
foruns. Tendo isso em vista, muitos dos problemas comuns ja foram discutidos, resolvidos e
disponibilizados na internet.

Portanto, o objetivo deste trabalho é realizar uma pesquisa exploratoria sobre o uso de
padrbes de projeto no desenvolvimento de jogos na Unity 3D, assim como demonstrar sua
aplicacdo pratica em contexto real, visando apresentar aos desenvolvedores solucGes
comprovadas para problemas conhecidos e recorrentes na area, como também a identificacdo

destes cenarios.

13

2. Conceitos Basicos

No mundo da engenharia de software, a construcdo de sistemas eficientes, flexiveis e de
facil manutencdo é uma busca constante. Nesse contexto, padrdes de projeto visam prover
solugdes para problemas recorrentes de forma que estejam alinhadas com estes requisitos. Deste
mesmo modo, este trabalho visa explorar padrdes de projeto, bem como, boas e mas praticas de
cddigo no contexto de desenvolvimento de jogos na Unity. Contudo, antes de adentrar neste
topico, € essencial trazer a definicdo de alguns conceitos prévios, com o intuito de trazer uma
melhor compreensdo ao analisar os beneficios de alguns dos padrbes de projeto que serdo

apresentados.

2.1. Favorecer a composi¢do em vez de heranga

Segundo Gamma et al. (1994), em sistemas orientados a objetos, as duas técnicas mais
frequentemente utilizadas para reutilizar funcionalidades sdo a de heranca de classes e a
composicdo de objetos. No entanto, é importante destacar que ambas as técnicas possuem
vantagens e desvantagens, ndo havendo uma regra rigida que determine a superioridade de uma
sobre a outra. Isto dependera do contexto da situacao.

De maneira geral, de acordo com Barbosa, Régo e Medeiros (2015), a abordagem via
composicao torna as classes encapsuladas e com potenciais custos de manutencdo menores. Por
outro lado, requer mais expertise para usar, demandando mais tempo de desenvolvimento da
equipe. Ja a heranca ndo contempla essas vantagens, mas elimina duplicacdo de codigo e
diminui o tempo de desenvolvimento da equipe, visto que demanda de menos proficiéncia para
ser utilizada (Barbosa, Régo e Medeiros, 2015)

Contudo, o principio abordado neste topico, o de favorecer a composicdo em vez de
heranca, de acordo com Gamma et al, ajuda a manter as classes encapsuladas e focadas em uma
Unica tarefa. Assim, estas classes tendem a permanecer pequenas, bem como, tendem a néo se

tornarem grandes monstros incontrolaveis (Gamma et al., 1994).

2.2. Alta coesdo e baixo acoplamento

Coesao e acoplamento sdo dois conceitos basicos na engenharia de software, 0s quais
estdo relacionados, visto que normalmente quando se tem um alto acoplamento se tem uma
baixa coesao e vice e versa.

Richards e Ford (2020), referem-se a coesdao como uma medida que representa o quéo

relacionadas estdo as partes de um médulo entre si, de modo que, em um cenario ideal, um

14

maodulo é considerado coeso quando todas as suas partes devem ser mantidas juntas, pois ao
separa-las em pedacos menores exigiria acoplamento das partes por meio de chamadas entre
eles.

De forma analoga, qudo menos relacionadas estiverem as partes, menor coesao tem o
maodulo, isto quer dizer que, num cenério de minima coesao, as partes poderiam estar separadas
sem haver acoplamento entre elas, isto €, sem haver chamadas entre si, visto que ndo existe
relacdo de uma com a outra.

Richards e Ford (2020) afirmam que coesdo é uma métrica menos precisa que
acoplamento, visto que para definir acoplamento basta ver as conexdes de entrada e saida de
um artefato de cddigo (componente, classe, fungdo e assim por diante) com outro artefato de
codigo. De maneira mais préatica, pode-se definir como a medida de conexdo entre modulos
diferentes de cddigo, mostrando o qudo dependentes ou interligadas estdo os diferentes
maodulos.

Portanto, é possivel concluir que coesao se refere a conexdo interna de um médulo, ja
acoplamento se refere a conexdo externa de um modulo. Dessa forma, ao projetar software
geralmente tenta-se maximizar a coesdo e minimizar o acoplamento, visto que isto tornaria 0s
maodulos mais independentes de modo que mudangas em um determinado médulo nédo afetaria
ou pouco impactaria outro mddulo. Ou seja, é a partir dai que vem a expressdo alta coesdo,
baixo acoplamento.

De maneira similar, em um projeto evita-se ter acoplamento forte e baixa coesao, visto
que isto tornaria 0s modulos mais dependentes um dos outros, isto é, quando houver mudancas
em um determinado médulo afetaria outros médulos de forma direta, tornando o c6digo mais
dificil de dar manutencdo, visto que haveria mais locais para ajustar do que se 0 mddulo fosse
mais independente. Pode-se visualizar na figura 1, uma representacdo do cenario ideal, o qual
se refere a alta coesdo e baixo acoplamento

Lin (2021) reforga isso ao afirmar que, idealmente, deve-se buscar, de preferéncia,
minimizar as dependéncias entre classes, de maneira que cada classe deve ser capaz de operar
de forma harmoniosa com suas partes internas, em vez de depender fortemente de conexdes
externas.

Pode-se visualizar na figura 1, uma representacdo dos cenarios de alta coesdo e baixo
acoplamento, bem como, o cenario de baixa coesdo e alto acoplamento, com relacdo as

conexdes internas a um modulo (representado por uma caixa) e as conexdes externas.

15

Figura 1 — llustracdo que representa a conexao entre mddulos de forma interna e externa, ou seja, coesdo e

acoplamento.

»'¢ High coupling, low cohesion

Fonte: Lin (2021).

2.3. SOLID

Em harmonia com a definicdo estabelecida por Martin (2017), os principios SOLID
consistem em um arranjo das primeiras letras de cinco principios que nos dizem como organizar
funcBes e estruturas de dados em classes e como essas classes devem ser interconectadas de
forma que sejam tolerantes a mudancas, faceis de entender e bem como a base para sistemas de
software, sendo os principios: o principio da responsabilidade Unica, principio aberto-fechado,
principio da substituicdo de Liskov, principio da segregacao de interface e principio da inversdo
de dependéncia.

De maneira similar, Lin (2021) define os principios SOLID como diretrizes para ajudar
a escrever um codigo mais limpo para que seja mais eficiente de manter e estender. Entretanto
o livro ressalta que em alguns casos, ao aderir ao SOLID, de inicio, pode resultar em um trabalho
adicional, o que talvez demande refatoracdo de algumas de suas funcionalidades em abstracGes

ou interfaces, no entanto, muitas vezes ha uma recompensa a longo prazo (Lin, 2021).
i. Principio da responsabilidade Unica

Conforme Martin (2017) explica, historicamente este principio é descrito como: “um
moddulo deve ter um, e apenas um, motivo para mudar”. Em outras palavras, a classe deve ser
responsavel por um unico ator, de modo que se a classe tiver com a responsabilidade de

diferentes atores, o principio esta sendo violado. Ele ainda reforca que a chave para este

16

principio é a palavra coesdo, a qual é a forca que une o cédigo responsavel por um Unico ator
(Martin, 2017).

Este principio esta bastante ligado com a coeséo, como afirmado por Martin (2017).
Quando se tem uma alta coesdo, o principio da responsabilidade Unica esta sendo respeitado,
visto que as partes internas de um codigo ndao tém motivo para estarem separadas, uma vez que
esta ndo assume responsabilidade de atores diferentes. De maneira similar, caso se tenha baixa
coesdo, significa que existem partes dos médulos as quais nao se relacionam entre si, indicando

que possivelmente a classe estd com responsabilidade de diferentes atores.

ii. Principio aberto-fechado

De acordo com Martin (2017), o principio aberto-fechado diz que um artefato de
software deve estar aberto para extensdo, mas fechado para modificacdo. Ou seja, 0
comportamento de um artefato de software deve ser extensivel, sem a necessidade de modificar
esse artefato (Martin, 2017). Em outras palavras, isso significa que ao adicionar novos recursos
ou funcionalidades a um sistema existente, deve-se realizar estendendo comportamento, sem
gerar alteragdes no codigo original desse sistema.

Na opinido de Martin (2017), o principio aberto-fechado € uma das forcas motrizes da
arquitetura de sistemas, visto que este tem como objetivo tornar o sistema facil de estender sem
implicar em um grande impacto de mudanca. Segundo ele, este objetivo é alcancado
particionando o sistema em componentes e organizando esses componentes em uma hierarquia
de dependéncias que protege componentes de nivel superior a partir de alteracdes em

componentes de nivel inferior (Martin, 2017).
ili. Principio da substituicdo de Liskov

A heranga na programagéo orientada a objetos permite adicionar funcionalidade por
meio de subclasses, no entanto, isso pode levar a comportamentos inesperados se a herancga for
mal utilizada. Um exemplo disto é quando objeto derivado sobrescreve um método da classe
base e ndo chama ou mantém o comportamento de sua classe base, podendo levar a erros ou
comportamentos inesperados, visto que € esperado que um objeto derivado assuma o papel de
uma classe base com comportamentos extras.

O principio da substituicdo de Liskov tenta evitar isso e tornar subclasses mais robustas
e flexiveis ao postular que classes derivadas devem ser substituiveis por sua classe base, isto €,

uma classe derivada deve manter os comportamentos de sua classe base (Lin, 2021).

17

E vélido ressaltar que uma das formas para resolver este problema é utilizando
composigdo no lugar de herancga, pois em vez de tentar transmitir funcionalidade por meio de
heranca, pode-se criar uma interface ou uma classe separada para encapsular um
comportamento especifico. Basta, em seguida, construir uma composic¢ao de funcionalidades

diferentes misturando e combinando (Lin, 2021).
iv. Principio da segregacdo de interface

Lin (2021) estabelece este principio como a ideia de que uma classe nao deve ser forcada
a depender de métodos que ndo utiliza. Sendo assim, as interfaces tendem a serem menores,
compactadas e com méxima flexibilidade (Lin, 2021).

Dito isto, este principio busca dividir interfaces extensas em interfaces menores, a fim
de evitar que classes sejam forcadas a implementar todo o contetido de uma interface quando,
na verdade, apenas desejam implementar uma parte dela. Ou seja, pode-se concluir que este
principio tem relagdo com o conceito de coesdo, porém aplicado a interfaces, visto que se uma
classe esta sendo obrigada a implementar algo, significa que ela tem interesse apenas em uma
parte do modulo, o que leva a questionar se as partes sao separaveis ou se fazem sentido estarem

juntas, isto é, se estdo coesas.

v. Principio da inversdo de dependéncia

O principio da inversdo de dependéncia diz que médulos de alto nivel ndo devem
depender diretamente de mddulos de baixo nivel, ambos devem depender de abstracdes. Além
disso, abstracdes ndo devem depender de detalhes e detalhes devem depender de abstracGes
(Lin, 2021).

De maneira similar, Martin (2017) afirma que o principio da inversdo de dependéncia
diz que os sistemas mais flexiveis sdo aqueles em que as dependéncias do cddigo-fonte se
referem apenas a abstracdes, ndo a concregdes. Isto significa que classes devem depender de
abstracdes e ndo de implementagdes, uma vez que se uma classe sabe muito sobre como outra
classe funciona, modificar a primeira classe pode prejudicar a segunda ou vice-versa, isto em
um alto grau de acoplamento pode causar um efeito bola neve, no qual um erro pode se
transformar em varios. Em outras palavras, pode-se dizer que ao aplicar este principio esta
enfraguecendo o acoplamento, visto que este principio visa diminuir as consequéncias dos

efeitos causados por conexdes a outros modulos.

18

2.4. Principio KISS

O principio KISS diz respeito a uma expressdo em inglés: “Keep it simples, stupid!”,
traduzindo para o portugués seria algo como “Matenha simples, estapido!”. Em outras palavras,
este principio prega que a simplicidade € a chave em um projeto e complexidade desnecessaria
deve ser evitada. De forma similar, Lin (2021) define este principio como a ideia de que apenas
se deve adicionar complexidade, caso seja necessario, caso contréario deve-se manter simples.

Um exemplo prético deste principio ocorre quando se incorpora um padrdo de projeto
em um software. De inicio, isso pode resultar na inclusdo de estruturas adicionais para dar
manutencdo e em uma configuracdo inicial mais elaborada. Isso, por sua vez, pode tornar o
coédigo mais complexo e dificil de compreender. No entanto, é importante analisar a situacao
para determinar se essa complexidade é justificAvel em relacdo aos beneficios que o padréo
traz. Isto é, se os beneficios proporcionados pelo padrdo ndo compensarem o aumento de
complexidade para uma situacdo que ndo demanda uma solucéo elaborada, € mais sensato optar

por manter a simplicidade.

3. Ambiente Unity de desenvolvimento

De antemdo, € importante esclarecer que a Unity se trata de um motor de jogo (game
engine) utilizado no desenvolvimento de jogos 2D e 3D, a qual é bastante popular no mundo
inteiro. Inclusive, segundo John Riccitiello - CEO da Unity -, em 2018, no TechCrunch
DisruptSF, evento anual tecnoldgico, a Unity Engine chegou a estar presente no
desenvolvimento de mais da metade de todos os jogos de celular.

Conforme pesquisa realizada pela Abragames em 2022 sobre a indUstria brasileira de
games, foi constatado que esta € a ferramenta de trabalho utilizada por cerca de 83% das
empresas do pais que atuam neste ramo, de modo que resta evidente o seu consideravel
crescimento dentro do cenario brasileiro de games (Fortim, 2022).

Em resumo, os motivos de sua popularidade, de acordo com diversos autores que tentam
explicar seu sucesso, sdo a licenga gratuita ou com 6timo custo-beneficio, a depender da
proporcdo do jogo desenvolvidos; suporte para maltiplas plataformas como Windows, Linux,
Mac, Nintendo Switch, Android, iOS, webGL etc.; grande comunidade ativa, permitindo o
acesso a diversas informag6es em foruns, a exemplo da Unity Community, Stack Over Flow,
Game Dev Stack Exchange, como também disponibilizacdo de codigo e assets prontos para uso

na Unity Asset Store; ambiente de desenvolvimento com diversos recursos facilitadores que

19

diminuem a complexidade de implementacdo, principalmente para amadores; entre outras
razdes (Reddit, 2018; Ellis, 2019; Krogh-jacobsen, 2022; Unity, 2023)

3.1. Interface da Unity

O editor da Unity (figura 2) € uma das pecas fundamentais do ambiente de
desenvolvimento, visto que permite a visualizacdo de varios recursos de forma facilitada e
intuitiva para o usuario. Inclusive, as janelas do editor podem ser customizadas a preferéncia
do usuério, bem como € possivel criar extensdes destas para implementar uma visualizacao
prépria de algo que nédo seja possivel por padréo.

Existem diversos recursos no editor da Unity, entretanto, com o intuito de apenas trazer
uma nocéo principal do uso da ferramenta, serdo explicadas as principais janelas do editor, as
quais séo mais utilizadas num fluxo de desenvolvimento. S&o elas: a janela Project, Hierarchy,
Inspector, Scene e Game, conforme destacadas na figura 2.

Inicialmente, a janela Project é a interface responsavel pelo gerenciamento de arquivos
na Unity, como assets, imagens, modelos 3D, scripts, audios, entre outros arquivos que estao
disponiveis para uso no projeto.

A janela Hierarchy, por sua vez, ¢ a interface responsavel por exibir os objetos que estéo
na cena atual do jogo, a qual permite que o desenvolvedor possa definir uma hierarquia entre
0s objetos de jogo numa estrutura de arvore, assim como pastas.

Na sequéncia, a janela Inspector é a interface responsavel por exibir os detalhes de um
elemento selecionado. Ao clicar num objeto que esta na hierarquia ou em um arquivo que esta
na pasta do projeto, ela muda a visualizagdo correspondendo ao objeto selecionado. E
extremamente utilizada para configurar os detalhes de um objeto, a exemplo de adicionar
componentes, adicionar referéncias, atribuir valores a propriedades, entre outros.

Por sua vez, a janela Scene permite a navegacao, visualizacdo e edi¢do da cena numa
perspectiva dentro do mundo virtual do jogo, como se 0 observador da tela estivesse nos
“bastidores” do jogo. A janela Game, por fim, simula a renderizacdo final do jogo, a qual vai
utilizar da cdmera principal, configurada na hierarquia, para permitir a visualizagdo da imagem

advinda da camera.

20

Figura 2 — Visualizacdo do editor da Unity.

Fonte: autoral.
3.2. Fluxo de trabalho na Unity

A Unity utiliza do conceito de cenas para facilitar a criacdo de jogos no editor, e tais
cenas servem para compor o mundo virtual em tempo de edicdo. Um exemplo comum de uso
destas é a construcdo de uma fase de um jogo, visto que permite adicionar objetos
(GameObjects) no mundo, ajustar a posicdo, ter o feedback em tempo real de edicdo, além de
permitir visualizacdo de elementos para depuracéo etc.

Os objetos variados podem ter funcionalidades variadas e dependerdo de seus
componentes atrelados para definir o seu respectivo comportamento, como componente de luz,
camera, colisdo, sprite, input, dudio, entre outros. Diversos componentes sdo disponibilizados
pela Unity para facilitar o desenvolvimento, entretanto, para definir comportamentos
especificos do seu jogo, provavelmente serd necessario criar scripts préprios, isto &,
componentes customizados.

Diante disso, cumpre mencionar que existem maneiras diversificadas de criar um script,
sendo uma delas clicar com o botdo direito do mouse e selecionar a opgao “Create” e, em
seguida, clicar em “C# script” - linguagem de programacéo padrédo na Unity. Assim, um arquivo
de script sera criado com uma classe que deriva de MonoBehaviour - classe base para
componentes na Unity (Figura 3). Na sequéncia, implementado o script, basta associa-lo a um

GameObject (Figura 4) para adicionar o comportamento pretendido.

21

Adicionado o componente ao objeto, este estard vinculado a uma cena e sera
automaticamente instanciado ao executar a cena. Contudo, em tempo de execugdo, tais
componentes s6 podem ser instanciados via AddComponent() ou Instantiate(), ou seja, ndo
podem ser instanciados via palavra-chave new. Ante o exposto, as dependéncias de uma
componente ndo podem ser transmitidas via construtor e, geralmente, fazem-no via Inspector
ao utilizar varidveis publicas ou privadas com o atributo [SerializeField], permitindo que o
editor crie um campo para associacao de valores ou referéncias de objetos.

E importante, ainda, ressaltar que os MonoBehaviours fazem parte do ciclo de vida da
Unity, de modo que esta classe oferece vérias fungbes ou mensagens, que facilitam o
desenvolvimento do cddigo. As principais sdo: Awake(), OnEnable(), Start(), Update(),
FixedUpdate(), OnDisable().

Figura 3 — Script vazio recém-criado na Unity.
using UnityEngine;
using System.Collections;
public class NewBehaviourScript : MonoBehaviour {

ff Use this for initialization

void Start () {

/f/ Update is called once per frame

void Update () {

Fonte: Unity Technologies (2023).

22

Figura 4 — Visualizacdo do inspector ao adicionar um script em um GameObject.

O Inspector

« GameObject

Add Component
O new
Search

New Behaviour Script

New script

Fonte: autoral.

O Awake() é um método executado apenas uma vez no ciclo de vida de um componente,
no momento em que este é carregado. Sua funcdo é de executar ldgica ao carregar o objeto,
como atualizar referéncias, inicializar classes etc., entretanto, neste momento é possivel que
outros componentes ainda ndo estejam completamente inicializados. De maneira parecida
funciona o método Start(), contudo este é executado ap6s o método OnEnable(), o qual sera
esclarecido a seguir.

O método OnEnable() é um método que é executado assim que o componente ou 0
objeto associado € ativado na cena. De forma analoga, funciona o método OnDisable(), cuja
execucao acontece quando o componente ou objeto vinculado é desabilitado.

O método Update é um método disparado a todo frame da aplicacgdo, isto é, o loop de
jogo. De forma similar funciona o método FixedUpdate(), que, por seu turno, € executado em
tempo fixo. Este método é utilizado normalmente para executar operacdes exaustivas, as quais
ndo devem ser desempenhadas a todo frame, porém precisam ser executadas com constancia;

um exemplo disto s&o rotinas de calculos fisicos, como movimentacéo e colisdo.
3.3. Prefabs

Ha diversos recursos na Unity com a finalidade de facilitar o desenvolvimento, sendo o
sistema de prefabs um deles, o qual permite criar, configurar e armazenar um GameObject

completo com todos os seus componentes, valores de propriedade e GameObjects filhos,

23

funcionando como um asset reutilizdvel. Em outras palavras, o prefab funciona como uma

forma de template, ou seja, como um modelo ou receita de qual maneira um objeto deve ser
instanciado.

Quaisquer edicoes feitas em um prefab asset séo refletidas automaticamente nas suas
instancias, permitindo que se facam alteracGes amplas de modo facilitado em todo o projeto,
sem ser necessario repetir a mesma edicdo em cada cOpia do asset. Estas edi¢bes sao feitas

numa cena isolada, de modo que apenas o prefab fica em evidéncia, como pode ser visto na
figura 5.

Figura 5 — Visualizagdo de prefabs na Unity.

9 Arrow

| E~ @ | E
W

P

£
N

¢
] Capsule (Mesh Filter)

&

¥ Mesh Renderer

Fonte: autoral.

4. Metodologia

Baseado na motivacgéo discutida anteriormente, este estudo se propde a explorar e elucidar
padrdes de projeto, como também boas e mas praticas, no ambiente Unity de desenvolvimento,
a fim de oferecer estratégias conhecidas para resolver problemas comuns no contexto de
desenvolvimento de jogos, juntamente com implementagdes e orientacbes praticas de como
aplicar estas propostas no motor de jogos Unity.

Deste modo, foi realizada uma revisao de literatura de forma sistematica, a qual foi baseada
na combinacdo de uma Revisdo Répida (RR) e de uma Revisdo da Literatura Cinza (RLC) a

fim de unir e sintetizar o conhecimento cientifico, com o conhecimento pratico de

24

desenvolvedores, difundido em diversas fontes, seja académica ou experiencial do campo de
atuacao.

Como resultado, este trabalho traz uma compilacao de padrées de projeto, bem como, boas
e mas praticas mais mencionadas no contexto da Unity que foram contempladas na pesquisa.

Os detalhes da metodologia aplicada sdo demonstrados nas proximas secoes.

4.1. Revisdo Rapida (RR) e Revisdo de Literatura Cinza (RLC)

Este estudo utiliza de RR, as quais sdo um estudo secundario baseado em adaptacdes no
processo sistematico de revisdo (SR) com o objetivo de dar suporte em decisdes profissionais
baseadas num contexto mais pratico, conforme descrito por Cartaxo et al. (2020). Estas
49adaptacdes sdo feitas para facilmente transferir conhecimento cientifico para o conhecimento
pratico, reduzindo o custo e tempo, ao omitir ou simplificar algumas etapas do processo de SR
(Cartaxo et al., 2020). Neste contexto, RRs se encaixaram bem devido ao contexto préatico deste
trabalho, visto que procura trazer implementacdes e orientacBes praticas na Unity Engine.

Desta mesma forma, devido a ampla comunidade da Unity, bem como, devido a
natureza do campo de pesquisa, existe um vasto conhecimento informal que esta em blogs,
féruns de desenvolvedores, documentacg@es oficiais e tutoriais online, por isto, este trabalho
também utiliza da literatura cinza para complementar possiveis lacunas ndo contempladas pela
perspectiva académica. Assim sendo, este estudo utiliza de RLC, consoante com Garousi et al.
(2018), o qual define RLC como um tipo de revisdo sistematica que permite a inclusdo de
materiais da literatura como recurso primario, como white papers, blogs, documentacgdo e outras

fontes ndo cientificas.

4.2. Perguntas da pesquisa

Com base nos objetivos desta pesquisa, em consonancia com o que foi inicialmente
introduzido, foram definidas algumas perguntas (RQ), para nortear ambas as revisdes (RLC e
RR) de acordo com as diretrizes definidas por Cartaxo et al. (2020) para a RR e por Garousi et
al. (2018) para RLC, embora sejam similares. Sao elas: (RQ1) “Quais sdo os padrdes de projeto
utilizados por desenvolvedores de jogos no ambiente de desenvolvimento Unity?”; (RQ2)
“Quais boas praticas sdo sugeridas no ambiente de desenvolvimento Unity?”’; (RQ3) “Quais sdo
0s anti-patterns no desenvolvimento de jogos na Unity?”.

Dito isto, a RQ1 almeja coletar os padrdes de projeto aplicados no ambito de

desenvolvimento da Unity. De maneira similar, a RQ2 busca coletar quais sdo as orientagoes

25

sugeridas ao trabalhar no ambiente Unity de desenvolvimento, tal como, a RQ3 se preocupa em

entender quais sdo as mas préaticas que permeiam este mesmo contexto.

4.3. Estratégia de busca

Para conduzir a busca na RR, foi utilizado o Google Académico como ferramenta de
busca visando englobar uma ampla variedade de artigos de pesquisa, uma vez que essa
plataforma indexa documentos das principais bibliotecas digitais, limitando-o, conforme
recomendado por Cartaxo et al. (2020).

Deste modo, diversos testes foram realizados com diferentes palavras-chaves até que
fosse possivel chegar em um resultado satisfatorio via experimentacao, de forma que fossem
obtidos resultados relevantes para as perguntas anteriormente definidas, sendo elas: (“game
programming pattern” OR “design pattern” OR “game pattern” OR “best practices” OR “game
architecture” OR “anti-pattern” OR smell OR “bad practices”) AND (Unity) AND (“game
development”).

A pesquisa da RLC foi realizada de maneira similar, com a alteracdo da ferramenta de
pesquisa devido ao contexto da literatura cinza, sendo alterada para o uso do Google. Sendo
assim, apds diversas experimentacdes, o conjunto de palavras sofreu apenas uma pequena
alteracdo em comparacdo as palavras definidas na RR, sendo estas: (“game programming
pattern™ OR "design pattern” OR "game pattern” OR "best practices” OR "game architecture"
OR "anti-pattern™ OR smell OR "bad practices™) AND (Unity).

4.4. Procedimento de selecdo

Dando sequéncia a metodologia aplicada, foi definido um conjunto de critérios de
selecdo para filtrar os resultados de modo que melhor atendesse as necessidades da pesquisa
em termos de coeréncia, qualidade e disponibilidade, tanto para RR quanto para RLC. Sendo
eles: (1) O contetdo da fonte deve ter conexdo com o contexto de engenharia de software e
estar diretamente associado ao desenvolvimento na Unity; (2) O conteido da fonte deve
responder pelo menos uma das perguntas de forma significativa; e (3) A fonte deve ser de acesso
gratuito, sem custos associados.

A definigéo do item (1) tem como intuito restringir que os resultados ndo se distanciem
para outros contextos, visto que esse trabalho tem como objetivo obter respostas préaticas ao
contexto de desenvolvimento na Unity. De modo similar, o item (2) procura rejeitar mencoes
superficiais, as quais pelo menos contenham explica¢fes plausiveis e coerentes mesmo que

sejam breves. Por fim, o item (3) esta associado a questdo da disponibilidade de acesso devido

26

a alguns resultados apontarem para livros pagos, bem como, nem todo material foi possivel ter
acesso via pessoa fisica ou instituicdo académica.

Durante a pesquisa, 0 Google académico retornou milhares de resultados (cerca de
3.560), desta forma, foi necessario definir um limite de esfor¢o para parar a pesquisa, assim
como recomendado por Garousi et al. (2018). Para a RR definiu-se que apenas os primeiros 200
resultados mais relevantes pelo Google seriam considerados. De maneira semelhante, foi
necessario fazer o mesmo procedimento para a RLC, visto que esta retornava cerca de 28
milhGes de resultados em sua busca no Google, deste modo, foi definido que seriam
considerados apenas os 100 primeiros resultados. No entanto, ndo foi necessario continuar até
o final, pois ao atingir o resultado de nimero 89, o Google emitiu um aviso indicando que varios
resultados haviam sido omitidos para destacar apenas 0s mais relevantes. Portanto, optou-se
por encerrar a pesquisa neste ponto.

Na RR, dentre os primeiros duzentos resultados, foram excluidos aqueles cujos titulos
claramente ndo se relacionavam com o escopo do estudo, deixando-nos com um total de 104
resultados. Em seguida, foram avaliados com base nos resumos, resultando em apenas 39
artigos restantes. Destes, foram descartados aqueles que ndo atendiam ao critério de
disponibilidade de acesso (3), resultando em um total de 36 resultados. Por fim, os textos
completos foram analisados e filtrados de acordo com todos os critérios mencionados,
resultando em um total de 21 artigos selecionados.

De maneira analoga, a RLC passou pelo mesmo processo de filtragem. Inicialmente, 0s
resultados foram avaliados com base nos titulos e no contetdo parcialmente disponibilizado
pela ferramenta de busca, resultando em 52 fontes. Apenas uma fonte foi excluida devido a
problemas de acesso. Em seguida, os textos foram analisados por completo, totalizando em 28
fontes aprovadas. Este processo foi ilustrado na figura 6, a qual podemaos ver as etapas de forma
resumida, totalizando no final 47 recursos ao juntar a pesquisa RR com a RLC e remover as

duplicatas.

(-

Limitagao inicial de
resultados da busca

—
~n
=)
2

—_

Filtro 1: Titulo

—
=
(=]
[

—

Filtro 2: Resumo
(39)

<

Filtro 3: Disponibilidade
(36)

V4

Figura 6 — Diagrama representando o processo de selecdo de recursos (RR e GLR).

4

Limitagao inicial de
resultados da busca
(89)

V4

Filtro 1: Titulo e texto
parcial
(52)

\/

Filtro 2: Disponibilidade
(51)

Filtro 3: Texto completo
(21)

=

RR e RLC
recursos selecionados
(47)

Vs

&

Filtro 3: Texto completo
(28)

27

Fonte: autoral.

5. Resultados e discussoes

Conforme evidenciado no tdpico anterior, apds a conclusdo do processo de selecdo,
permaneceram 47 recursos a serem incorporados ao material de pesquisa. Estes recursos
abrangem tanto padr@es de projeto quanto boas e mas préaticas no contexto do desenvolvimento
Unity para jogos. Consequentemente, os padrdes de projeto foram categorizados e consolidados
em uma discussdo. No entanto, com a inten¢édo de trazer os padrdes mais relevantes, bem como,
tracar um limite de esforco cabivel neste trabalho, foi definido trazer os padrdes de projeto que
foram mencionados pelo menos em quatro destes recursos finalistas. Isto resultou na
identificacdo de nove padrdes, os quais estdo detalhados a seguir.

De maneira semelhante, as boas e mas praticas também foram compiladas em um tépico
de discussdo. O procedimento abordado neste tdpico estd documentado em alguns arquivos
armazenados em uma pasta na nuvem?, que inclui as defini¢des-chave utilizadas para conduzir

a pesquisa.

! Disponivel em: < http://bit.ly/3POBOVK>.

28

5.1. Padrdes de Projeto na Unity

Conforme introduzido inicialmente, na engenharia de software, os padrdes de projeto
oferecem solucBes abrangentes para problemas que surgem repetidamente em determinados
contextos, possibilitando sua reutilizacdo em diversas situacdes. Cada padrdo possui
caracteristicas distintas que podem ser vantajosas quando se busca maior flexibilidade,
encapsulamento, abstracédo, a redugéo do acoplamento, performance, entre outros aspectos.

Este trabalho aborda os padrdes de projeto mais relevantes identificados durante a pesquisa,
conforme detalhado na sec¢éo de selecdo de procedimentos. Ele se concentra na aplicacdo desses
padrdes no desenvolvimento de jogos na Unity, e, por isso, 0s exemplos, bem como, as analises

e situacdes apresentadas estdo direcionadas especificamente para esse contexto.

5.1.1. Padréo Singleton

O Singleton pattern é um padréo bastante popular entre os desenvolvedores, provavelmente
por ser muito facil de ser implementado, como também, bastante poderoso. No entanto, por ser
bastante poderoso, se utilizado de maneira inadequada, pode se tornar um problema.

Charles Hache, desenvolvedor indie de jogos e professor de game design, afirma que esse
padrdo é especialmente Gtil no Unity para (1) gerenciar sistemas e servicos de jogos que exigem
um Unico ponto de acesso, (2) estado persistente, e (3) quando vocé precisa garantir uma
instancia Gnica na vida do jogo, como um GameManager ou AudioManager (Hache, 2023)

Ja Charles Amat, desenvolvedor sénior na empresa de desenvolvimento de software Force5
e dono do canal Infalible Code, fala que este padrdo tem algumas desvantagens sérias que a
maioria dos programadores ndo descobre até que seja tarde demais (Amat, 2020).

i. Definigéo

O Gang of Four define o padréo Singleton como uma classe que precisa garantir uma instancia
Unica e prover um acesso global para a mesma (Gamma et al., 1994).

Figura 7 — Representacdo UML do padréo Singleton.

29

v

Singleton

- instance: Singleton

- Singleton()

+ Getlnstance(): Singleton

Fonte: autoral.

Na figura 7 é possivel ver uma representacdo do padréo no diagrama UML, no qual, de
acordo com a definicdo, a classe contém uma variavel estatica com acesso privado que faz uma
autorreferéncia, bem como, tem um construtor privado responsavel por sua prépria instanciacao
para garantir uma Unica instancia e remover duplicatas. Por Gltimo, prové um acesso global

para a instancia.
ii. Implementacdo na Unity

Existem vérias implementacfes de Singleton, em diferentes graus de robustez. A
implementacdo ilustrada na figura 8 € a mais basica que pode ser feita na Unity. Como
mencionado na secdo sobre o ambiente Unity de desenvolvimento, para estar presente na
hierarquia de objetos de cena e participar do Lifecycle da Unity, um script precisa herdar de
MonoBehaviour. Por causa disto, ndo se pode instanciar diretamente com a palavra-chave new.
Desta forma, a instancia esta sendo atribuida no Awake(), método chamado ao carregar 0s

objetos da cena.

Figura 8 — Codigo-exemplo de um Singleton simples na Unity.

30

using :
public class SimpleSingleto
{
public static { get; private set; }
private voud ()
{
ifl -)
{
= this;
élze
()3
I
}

Fonte: autoral.

Entretanto, esta implementacdo tem alguns problemas: caso um outro objeto acesse a
instancia Singleton no seu préprio Awake(), é possivel que a referéncia seja null, pois a ordem
de execucdo deste método € ndo-deterministica, podendo um objeto ser carregado
anteriormente a outro que esta acima na hierarquia de cena; N&o ha persisténcia dos dados entre
cenas, pois ao trocar de cena todos os objetos séo destruidos; Também é necessario que na cena
corrente do jogo, um GameObject tenha um script da classe SimpleSingleton vinculado; E se
houver mais de um Singleton no jogo, € necessario repetir esse codigo em classes separadas.

Tendo isso em vista, a implementacdo da figura 9 corrige os problemas citados: caso
um objeto acesse o Singleton, esta implementagéo utiliza Lazy Instantiation, no qual instancia
0 objeto sé quando requisitado, e garante que havera uma instancia; Garante a persisténcia entre
cenas, utilizando do método DontDestroyOnLoad() no objeto Singleton; Se ndo houver um
objeto na cena do tipo Singleton, quando for requisitado, cria um; e, também, permite a
reutilizacdo do codigo para que outras classes possam se tornar Singleton. Para isso, basta

herdar de Singleton, como na figura 9.

31

Figura 9 — Game Manager e Audio Manager como Singletons.

using UnityEngine;

public class Singleton<T> : MonoBehaviour where T : Component

!

private static T instance;
public static T Instance

{
get
{
if (instance == null)
{
instance = (T)FindObjectOfType(typeof(T));
if (instance == null)
{
SetupInstance();
}
}
return instance;
}
}
public virtual void Awake()
{
RemoveDuplicates();
}
private static void SetupInstance()
{
instance = (T)FindObjectOfType(typeof(T));
if (instance == null)
{
GameObject gameObj = new GameObject();
gameObj.name = typeof(T).Name;
instance = gameObj.AddComponent<T>();
DontDestroyOnLoad(gameObj);
}
}
private void RemoveDuplicates()
{
if (instance == null)
{
instance = this as T;
DontDestroyOnLoad(gameObject);
}
else
{
Destroy(gameObject);
}
}

32

public class GameManager : < .
{
public class AudioManager : < >
{

Fonte: autoral.

iii. Prés e Contras

Segundo a Unity Technologies (2022), este padrdo, diferentemente de outros, €
relativamente facil de aprender, assim como simples de utilizar, pois basta apenas referenciar a
instancia publica e tera sempre disponivel o objeto Singleton em qualquer componente,
inclusive, entre diferentes cenas. Além de ser performatico, ja que evita a busca por referéncias,
como GetComponent() ou operacdes de Find (Unity Technologies, 2022).

Nystrom (2014) também menciona alguns de seus beneficios, como a possibilidade de
salvar memoria e ciclos de CPU na implementacdo com Lazy Instantiation; A utilidade de ter
membros da classe disponiveis ndo-estaticos mas com acesso global; Capacidade de encapsular
comportamento especifico ao servir como uma interface abstrata para subclasses que desejam
implementar, sem necessidade de alterar as chamadas da instancia. (Nystrom, 2014).

Entretanto, a praticidade do Singleton a longo prazo pode ser bastante perigosa,
principalmente, ao abusar do uso, visto que alguns autores sdo enfaticos ao afirmar que este
padrdo encoraja acoplamento, tornando o cddigo mais dificil de refatorar, assim como, podem
esconder dependéncias tornando mais dificil de solucionar bugs. Como também, impactam
negativamente na testabilidade do codigo, pois segundo a Unity Technologies: “Singletons
dificultam os testes: os testes de unidade devem ser independentes uns dos outros. Como 0
Singleton pode alterar o estado de muitos GameObjects na cena, eles podem interferir no seu
teste.”

Para se utilizar bem deste padrdo, é necessario entender bem 0s contextos e as
necessidades que o exige, pois de acordo com a Unity Technologies: “Desenvolvedores tendem
a aplicar Singletons em situacgdes inapropriadas, introduzindo estados ou dependéncias globais
desnecessarias” (Unity Technologies, 2022). Por isso, Nystrom (2014) se preocupa na

33

utilizacdo deste padrdo, tanto que em seu livro, no capitulo sobre Singletons, comenta: “Este
capitulo € uma anomalia. Todos os outros capitulos deste livro mostram como usar um padréo
de projeto. Este capitulo mostra como ndo usar um.”

Contudo, a utilizacéo deste padréo é um assunto que divide opinides. Enquanto uns ndo
encorajam 0 uso deste padrdo, pois reiteram que este padrédo costuma fazer mais mal do que
bem (Nystrom, 2014), outros dizem que existem contextos dos quais podem ser interessante,
como a Unity Technologies orienta a utilizar, desde que utilize em jogos pequenos dos quais
ndo precise estender continuamente como jogos de nivel empresarial fazem e se use ao minimo
em scripts que precisem de acesso global como Audio Manager, Game Flow Manager (Lin,
2021). Ou entdo, como Tulleken (2016) que em seu artigo 50 Tips and Best Practices for Unity
recomenda utilizar Singletons por conveniéncia, contanto que evite utilizar para classes que nao
sdo0 Unicas e ndo sdo gerenciadoras, como a classe Player. Deve-se utilizar para classes que
sejam Unicas e gerenciem sistemas, como Ul Manager, Audio Manager, Game Manager.
(Tulleken, 2016).

iv. Alternativas

O singleton pattern ndo € a Unica solucdo para acesso global ou que tenha acesso
compartilhado de membros da classe com outros componentes. Em suas proprias palavras,
Nystrom afirma: “Nunca usei a implementacdo completa [de singleton] do Gang of Four em
um jogo. Para garantir a instancia¢do Unica, geralmente simplesmente uso uma classe estatica.
Se isso ndo funcionar, usarei um sinalizador estatico para verificar em tempo de execucéo se
apenas uma instancia da classe foi construida” (Nystrom, 2014).

Nem sempre a melhor solucdo precisa ser algo robusto, muitas vezes, pode ser algo
simples, como simplesmente passar a referéncia de um objeto para um método, explicitando a
dependéncia (Nystrom, 2014).

Diante disso, vale ressaltar alguns padrdes que podem substituir o singleton em alguns
contextos, como o Service Locator, ja que torna um objeto globalmente disponivel, utilizando
de métodos estaticos para prover servicos, porém precisa de uma pré-configuracédo para atribuir
a implementagdo que sera utilizada. Esta abordagem tem o beneficio da flexibilidade, pois
necessitando alterar o servigo, basta alterar a configuracdo e a implementacdo é trocada
(Nystrom, 2014).

Por fim, o Subclass Sandbox pattern € outra opcéao a ser considerada, pois apesar de néo
dispor a instancia globalmente, ele restringe 0 acesso apenas para as subclasses, o que pode

tornar o acesso mais seguro e organizado em determinados cenarios (Nystrom, 2014).

34

5.1.2. Padrao State

Oriundo do Finite State Machine (FSM), o qual consiste em um objeto guardar o status
de um determinado momento e, a partir desse status, permitir alteracdo de seu comportamento
baseado no status. Este padrdo se mostra essencial no desenvolvimento de jogos, pois muitos
elementos de jogos tém suas acdes definidas para determinados estados. Esta afirmacéo pode
ser corroborada por Galach (2019), que diz que a maquina de estados é um dos padrdes de
projeto mais utilizados no desenvolvimento de jogos. E (til para uma variedade de propdsitos,
como IA, animac6es, controladores de jogo, l6gica de jogo, dialogos, cenas e muito, muito mais
(Galach, 2019).

Como mencionado por Hache (2023), o State Pattern é uma forma de implementar o
Finite State Machine (FSM), de um jeito mais limpo e manutenivel, sendo Util para gerenciar
comportamentos dependente de estados complexos. Ao encapsular os estados em objetos

separados, o cadigo fica mais modular e facil de estender a novos estados.
I. Definicéo

O Gang of four define 0 State Pattern como: “Permita que um objeto altere seu
comportamento quando seu estado interno muda. O objeto parecerd ter mudado de classe.”
(Gamma et al., 1994). Ou seja, significa que ao mudar de estado, a classe deve mudar de
comportamento.

Entretanto, para Nystrom (2014), apesar desta definicdo ndo estar equivocada, ela por
si s6 ndo é tdo clara, visto que é possivel implementar esta defini¢do ao utilizar apenas de um
switch case para cada estado na classe, definindo uma acéo especifica para cada um no mesmo
local. Esta implementacdo ainda teria problemas, ja que para adicionar estados ou modificar
comportamentos prévios, a mesma classe seria modificada (Nystrom, 2014).

Neste sentido, Nystrom (2014) esclarece que € importante encapsular 0s
comportamentos de cada estado numa classe separada, dessa forma, ao adicionar novos estados,
ndo é necessario alterar a classe que controla os estados. Ao modificar um comportamento de
um estado existente, a mudanga fica isolada na classe do estado, como também proporciona a
possibilidade de reuso. Deixando, portanto, o codigo mais modular e flexivel a mudancas
(Nystrom, 2014).

35

Figura 10 — Diagrama UML do State Pattern.

Context |-Ste State
Request() ¢ Handle()
state—>Handle()
ConcreteStateA ConcreteStateB
Handle() Handle()

Fonte: Gamma et al. (1994).

Conforme a figura 10, podemos ver um diagrama UML, proposto por Gamma et al.
(1994), que define o design State Pattern de forma geral e basica. Nela podemos observar que
a classe State define uma interface, a qual estados concretos devem implementar seu
comportamento especifico e encapsulado. Como também, percebe-se que a classe Context,
guarda uma referéncia para a classe State e apenas chama o método definido na abstracdo do
State, o método Handle().

Isto é, o Context pode trocar de estado, e assim mudar de comportamento, sem depender
de uma implementacdo concreta. Para adicionar novos estados, basta apenas criar uma nova
classe e implementar a interface State, sem alterar codigo na classe Context. Além disso, a
interface e seus métodos definidos sdo completamente contextuais, podendo variar entre as
implementacdes, inclusive, é possivel que os estados tenham referéncia para a classe Context,
com a finalidade de terem acesso a uma forma de trocar de estado.

Entretanto, em jogos, o State Pattern tem outros elementos comuns em diversas
implementacGes como: um método para a entrada do estado, um que seja executado a todo
frame e um que seja executado na saida do estado, como mostra a figura 11, a qual representa
um possivel fluxo da classe State (e-book Unity). Vale ressaltar que nem todo estado

implementa todos os métodos, muitas vezes estados simples tém alguns dos métodos vazios.

36

Figura 11 — Representacdo de um fluxo do State no contexto de jogos.

Transition from
previous state

Evaluate
each frame

Transition to
next state

Fonte: Lin (2021).

Ainda neste contexto, este gerenciamento da transicdo de estados deve garantir a ordem
de execucdo destes métodos da interface State, sendo de responsabilidade de uma classe
especializada, normalmente conhecida como State Machine, a qual serd melhor detalhada na
préxima secdo. Assim, uma outra classe tem a responsabilidade de estabelecer e iniciar os
estados, como também a maquina de estados. Esta classe desempenha o papel de elo central,
onde se define as implementacdes concretas, a0 mesmo tempo em que fornece os parametros
essenciais para os estados. Na Figura 12, é possivel reconhecé-la como o "ZombieController",

o qual utiliza do State Pattern para compor um zumbi no contexto deste exemplo.

37

Figura 12 — Exemplo comum do State Pattern em jogos em um diagrama UML.

State Machine
_ - currentState: 1State »> 15tate
currentState? OnExit{)
currentSiate = newStats; \
currentState OnEntery |77 + ChangeState(lState) + OnEnter()
+ GetCurrentState(): 1State + Onlpdate()
+ Update(} + OnExit()
1 iy
ZombieController Idie State E E
stiackSiste = new AttackSiata() PR : E E
idleSiate = new dleStata() - stateMachine: StateMachine + OnEnter() U i
stateMachine ChiangeState(idleState) .) Faloila 1
- idleState - IdleState) H
+ OnUpdate() + OnEnter() -
- attackState ; AttackState onExit) ! AttackState
+ OnExi .
___________________ - patrolState ; PatrolState + OnUpdate() + OnEnter()
+ OnExit
: 0 + OnUpdate()
e - Initialization()
stateMachine Updata() . Update[:: * OnE}{IT()
Fonte: autoral.
i. Implementacéo

Como mencionado antes, design patterns nao séo solucdes prontas, elas dependem do
contexto. Em geral, séo apenas uma ideia para resolver um problema comum de determinadas
situacOes. Cada padréo pode ter uma implementacdo com complexidade diferente, por isso,
nem sempre encaixam em qualquer situacdo, visto que podem introduzir complexidade
desnecessaria a priori. Isto acontece com o padréo State.

Dito isto, esta secdo abordara um exemplo de situacdo-problema, a qual o padrdo State
promete melhorar, como também, abordard duas implementa¢des na Unity do State Pattern:
uma solucdo mais basica que tem um problema de acoplamento, porém mais facil de utilizar,
sem preocupacdo com a reutilizagdo a primeira vista. E, outra solugdo um pouco mais complexa
proposta por Jason Weimann (2020), mas que reduz o acoplamento e aumenta a reusabilidade
dos estados. Vale ressaltar que os exemplos a seguir, ndo estdo completos, apenas demonstram
um conceito. Além disso, esta secdo tentard mostrar algum dos recursos dos quais este padréo
possibilita com a finalidade de demonstrar sua utilidade.

Dando continuidade, vejamos a situacdo-problema anteriormente mencionada. O

Anexos A e B mostra um exemplo de implementagéo simples de uma FSM, a qual define o

38

comportamento de um Zumbi que tem os estados de Patrulhar, Atacar e Parado. Toda a légica
esta contida dentro da mesma classe, a qual troca de comportamento através de um switch case
no método Update(), que define uma acdo para cada possivel estado atual.

E possivel visualizar que a implementac&o tem mais de uma responsabilidade, visto que
o script tenta definir comportamentos diferentes numa mesma classe. Pode-se ver também que
a implementacdo do estado de patrulha, precisa de uma flag para apenas executar uma vez uma
certa rotina, assim como precisa depois limpar o que foi feito no momento de troca de estado,
mexendo em diferentes regiGes do cddigo. Considerando isso, imagine se 0s outros estados
estivessem completamente implementados, também precisando de novas flags, novos métodos,
em breve a classe poderia ficar gigante, dificil de manter e com praticamente nenhuma
reusabilidade, visto que haveria muitas dependéncias aninhadas na mesma classe, dificilmente
uma outra classe poderia adicionar comportamento a esta implementacao.

Apesar da implementacdo ser funcional, ndo é escalavel, muitas vezes pode ser Gtil para
testar conceitos ou para comportamentos pequenos dos quais ndo terdo alteracdes. Contudo, a
Unity enfatiza que este tipo de implementacdo pode rapidamente se tornar uma bagunca, pois
para adicionar novos estados ou modificar estados existentes, sera necessario revisitar a mesma
classe varias vezes (Lin, 2021).

De maneira similar, Nystrom (2014) reafirma isto e adiciona que rapidamente a classe
podera inflar, visto que novos atributos especificos de cada estado seriam introduzidos na
mesma classe para controlar as transi¢Ges entre os estados, misturando e inflando a classe.
Tornando mais dificil a manutencéo e acoplada (Nystrom, 2014).

Dessa forma, surge o State Pattern com a finalidade de tornar os estados independentes,
separando em classes diferentes. Os Anexos C, D, E e F compdem um exemplo de
implementacdo do padrdo, de forma simples, para controlar um zumbi. A fim de ter uma
compreensdo mais aprofundada dos beneficios desta implementacéo, o contetido sera abordado
de maneira segmentada.

Assim como vimos na ultima secdo, esta implementacéo utiliza de uma interface IState,
a qual tem os métodos Enter, Update e Exit definidos para serem executados assim que entra
no estado, a cada execucdo de frame, e na saida do estado, respectivamente. A interface pode
ser visualizada no anexo C. Além disso, 0 anexo D também define a classe State Machine, a
qual gerencia a troca de estados, garantindo a ordem de execucdo dos métodos da interface
IState. E importante perceber que essas implementaces provavelmente ndo precisardo de
alteracOes e podem ser reutilizadas em varios outros contextos, ja que dependem apenas de uma

abstracdo.

39

Analisando o anexo E, € possivel ver uma melhoria clara na classe Zumbi Controller, a
qual ficou bem mais enxuta, 0s membros da classe foram minimizados. Agora, a classe ficou
com a responsabilidade de definir, inicializar e repassar 0s parametros necessarios para 0s
estados, como também, para a maquina de estados. Ou seja, a classe agora esta apenas com a
responsabilidade de unir os componentes necessarios para definir o comportamento de um
Zumbi. Dessa forma, ao adicionar novos estados, provavelmente as novas alteracdes seriam
pontuais com pouca alteracdo de codigo e menos impactantes em outras areas.

Por ultimo, no anexo F, pode-se ver a classe Patrol State, o qual é o Unico estado
implementado no exemplo, visto que é suficiente para representar uma implementacao concreta
de estado. E possivel observar que a classe ficou mais legivel e autocontida, ou seja, qualquer
alteracdo ldgica relacionada a como orquestrar o comportamento de patrulha de um zumbi, esta
concentrado nesta classe.

Contudo, o estado de patrulha ainda tem um grande problema, que € comum aos
desenvolvedores na Unity, devido a algumas dificuldades em resolver dependéncias. A classe
estd fortemente acoplada a classe Zombie Controller, visto que em varios momentos acessa a
referéncia da classe do zumbi para acessar os métodos de troca de estado, como também, as
referéncias para as instancias de outros estados com a finalidade de direcionar a transigéo do
proximo estado. Isto é, se porventura um desenvolvedor quisesse reaproveitar o estado de
patrulha para o comportamento de um esqueleto, por exemplo, ndo seria possivel. Primeiro que
ndo seria possivel devido a amarragdo a classe do zumbi, como também, seria necessario que
as transicdes do esqueleto também fossem iguais as transi¢cdes do estado de patrulha.

Dessa forma, € interessante desacoplar estas dependéncias que ndo deveriam ser de
responsabilidade do ato de patrulhar, mas da classe que une os comportamentos individuais,
neste exemplo, ficaria mais coeso, a classe Zumbi Controller definir quais seriam as transi¢oes
que zumbis deveriam ter a partir de determinados estados.

Assim, Weimann (2020), desenvolvedor Unity de jogos que tem um canal famoso de
tutoriais na Unity com 193 mil seguidores, propde uma forma interessante de desacoplar a
I6gica de transicdo de cada estado. A ideia consiste em mover a condi¢do de troca de estado
para a classe Controller, a qual pertencia ao estado, ao adicionar transi¢des a State Machine
definidas pelo trio: estado de origem, estado para transacionar e uma condi¢&o para a transi¢cdo
ocorrer. Assim, a State Machine teria uma nova responsabilidade, ndo apenas a
responsabilidade de verificar se as condigdes de transi¢es foram atingidas, mas também prover

a troca de estado antes da execucdo do método Update (Weimann, 2020).

40

Para entender melhor este conceito, é necessario visualizar os anexos G, H, | e J, pois
foi necessério alterar as classes Zombie Controller, State Machine e Patrol State as quais foram
anteriormente definidas, assim como, definir uma nova classe chamada Transitions (anexo G),
a qual é apenas uma definicdo para um par (estado, condicao), sendo o estado para ir, se a
condic&o for atingida.

Dando continuidade, podemos identificar no anexo H, a classe State Machine alterada,
com uma nova légica para considerar as transi¢cdes. A classe tem um dicionario no qual guarda
uma lista de transicdes baseada numa chave com o tipo da classe, ou seja, ela faz relacdo com
0 estado (tipo) e uma lista de possiveis transicdes do estado, suportando n transicdes.
Adicionalmente, disponibiliza um método para adicionar estas transicGes, como também,
verifica no método update se as transi¢es do estado atual foram atingidas, caso seja positivo,
troca de estado. Em caso negativo, apenas executa a atualizacao do estado.

Nesse contexto, a classe Zombie Controller também teve alteragdes (anexo 1), o qual
descartou as referéncias dos estados e adicionou transi¢fes a maquina de estados. A priori, a
classe pode ter ganho um pouco mais de complexidade, mas o ganho foi consideravel, visto que
as transicdes ndo sao mais ditas pelos estados. Sdo ditas pela classe controladora e repassadas
para a maquina de estados, tornando mais fécil criar novas classes de outros monstros, ou até
mesmo, outras classes que nem tenham relagdo com monstros. Como por exemplo, um soldado,
0 qual poderia, enquanto patrulha, avistar um inimigo e tentar avisar a outros soldados a
presenca de inimigos, para isso, bastaria adicionar a maquina de estados suas proprias transicdes
relacionadas ao estado de patrulha.

Por fim, € importante notar que a classe responsavel pelo estado de Patrulha (anexo J),
ficou um pouco menor. Entretanto, o fato de maior relevancia é que ficou mais facil de ser
utilizada por outros controladores, dando mais flexibilidade ao controlador decidir para qual
estado ir enquanto esta realizando uma patrulha, visto que houve um desacoplamento da classe
Zombie Controller, a classe apenas depende dos componentes essenciais para executar o
comportamento de patrulha, como componente de movimentacéo, detecdo de inimigo, etc.

Além disso, a classe ficou mais facil de ser estendida, com poucas alteragdes, como
alterar os modificadores de acesso dos membros da classe, é possivel reaproveitar alguns
comportamentos. Dessa forma, a Lin (2021) enfatiza que acaba sendo inevitavel criar estados
mais complexos que herdam de outros estados, visto que havera alguns comportamentos em
comum. Quando é utilizado de uma forma mais estruturada, criando niveis de heranca, este tipo

de estrutura pode ser conhecida como maquinas de estado hierarquicas (Lin, 2021).

41

Assim como, a classe poderia depender de abstracdes ao invés de implementacoes
concretas, como diz um dos principios do SOLID, principio da inversdo de dependéncia, para
dar ainda mais flexibilidade. Se a classe de patrulha dependesse de uma abstragdo para o
componente de movimentacéo, por exemplo, daria ainda mais liberdade para os controladores
escolherem diferentes implementagdes de movimentagéo para o estado de patrulha, dando ainda
mais flexibilidade.

iii. Melhorias

Considerando ainda a implementacdo anterior do State Pattern, algumas melhorias
ainda poderiam ser listadas, entretanto adicionariam um pouco mais de complexidade a
arquitetura do padrdo State.

Para comecar, em outros cenarios, pode ser Util ter outros métodos na interface IState.
Um exemplo disto € o método FixedUpdate, o qual é similar ao método Update, mas ndo varia
de acordo com o frame rate do dispositivo, ele executa uma vez a cada x milisegundos
garantidamente. Podendo ser (til para calcular fisica, por exemplo. Ou de repente, pode-se
adicionar um método chamado Handlelnput() para lidar com a entrada de um controle, que
difere para cada estado que o personagem controlado esta disparando diferentes acfes. Estes
métodos da interface dependem de cada contexto.

Adicionalmente, pode-se criar estados base para facilitar implementagfes em comum
entre os estados. Uma possivel demonstracdo disso seria que se todo estado precisar de um
Timer, assim como o estado de patrulha precisa nos exemplos citados, poderia ser o caso de
criar um estado base do qual disponibilizaria esta implementacdo através de heranca.
Entretanto, é necessario ter cuidado pois heranca se mal utilizada, pode levar a quebras de
alguns dos principios do SOLID, assim como outros problemas.

Outro caso, seria adicionar um novo tipo de transicdo a maquina de estados, com
precedéncia as transicdes anteriores, a qual poderia ter um dicionario de transicdo similar ao
apresentado, porém, com a diferenca de que este novo dicionario definiria transi¢cbes de
qualquer estado para outro, ou seja, € um dicionario separado que dita transicdes gerais, das
quais qualquer estado pode transicionar para. Um exemplo disto é o estado de morto no caso
de um monstro, visto que se um monstro morrer, independe qual é o estado atual, deve-se
transicionar para o estado de morto, ja que ficaria impossibilitado de realizar a¢des. Este tipo
de transicdo adiciona bastante complexidade e pode causar bugs, se mal utilizado.

Além disso, pode-se registrar os estados as transi¢bes da maquina de estados numa pilha,

para caso algum estado dependa de ac¢Bes anteriores, possa ter um historico para resgatar o

42

ultimo estado, Nystrom define este comportamento como Pushdown Automata (Nystrom,
2014).

Finalmente, um dltimo cenario alternativo, poderia ser a utilizacdo de mais de uma
maquina de estado no mesmo controlador. Nystrom (2014) define este tipo de uso como
maquinas de estado concorrentes, as quais sao independentes, mas também, podem ter algumas
relacbes, ao invés de criar um estado novo para cada possivel combinagdo, pode-se apenas
checar os estados atuais das maquinas. Um exemplo citado é quando um jogador tem uma
maquina de estado para suas a¢6es como andar, atirar, pular, nadar, entre outras, mas também
tem outra méaquina de estados para 0s equipamentos como armas etc. Nao é necessario criar um
estado novo para andar com uma arma, porém pode-se haver relagdes como no estado atirar do

qual depende do equipamento (Nystrom, 2014).
iv. Pros e contras

Tal como dito anteriormente, o padrdo State, em jogos, € uma necessidade bastante
comum. Um exemplo disto é para definir comportamentos de inteligéncia artificial como
inimigos. Se 0 jogo a ser desenvolvido for utilizar bastante de inteligéncia artificial, diferentes
tipos, acOes etc., usar este padrdo pode ser bastante benéfico pois ajudara a seguir alguns
principios do padrdo SOLID, tornando o codigo mais flexivel e manutenivel, a custo de
complexidade.

Normalmente, o custo-beneficio aumenta quando se tem muitas situacfes similares de
uso e quando se espera gque o projeto ira crescer e ganhar novos estados, novos comportamentos,
como o padrao reforca o principio aberto-fechado, é bastante util nesses cenarios.

O padrdo State pode ajuda-lo a aderir aos principios SOLID ao configurar a logica
interna de um objeto. Cada estado é relativamente pequeno e apenas monitora as condi¢des de
transicdo para outro estado. Mantendo o principio aberto-fechado, vocé pode adicionar mais
estados sem afetar os existentes e evitar trocas ou declaracGes complicadas. Por outro lado, se
vocé tiver apenas alguns estados para monitorar, a estrutura extra pode ser um exagero. Esse
padrdo s6 pode fazer sentido se vocé espera que seus estados crescam até uma certa

complexidade.

5.1.3. Padrdao Command

Akhtar (2020), desenvolvedor de jogos, traz uma analogia interessante sobre o padrao

Command, comparando-o0 com o ato realizar pedidos na realidade, o qual uma pessoa realiza

43

pedidos (ou ordens ou comandos) para outra pessoa, que pode (ou nédo) realizar o pedido
designado. O padrdo Command funciona de forma anéloga, ele é responsavel por transmitir de
um componente para outro a execucao de algum pedido (Akhtar, 2020).

Ele se encontra presente em muitos softwares e jogos, sua aplicacdo mais comum é
prover uma forma de desfazer a¢es, como desfazer erros em um editor de texto, ou planejar
acdes em um jogo de estratégia como Starcraft (jogo famoso de estratégia em tempo real, no
qual consiste em controlar unidades e conquistar bases inimigas). Mas muito mais simples que
isso, muitas vezes, jogos disponibilizam uma forma do usuario escolher quais botBes, ou
atalhos, o usuério quer atribuir para determinadas acdes, como fazer um personagem pular ao

clicar na barra de espaco de um teclado. Normalmente por tras disto, esta o padrdo Command.
I. Definicéo
Este padrdo também foi originado pelo grupo conhecido como Gang of Four, o qual
definiram como um padrio que: “Encapsula uma solicitagdo como um objeto, permitindo assim

parametrizar clientes com diferentes solicitacdes, enfileirar ou registrar solicitaces e oferecer

suporte a operagdes que podem ser revertidas” (Gamma et al., 1994).

Figura 13 — Representacdo UML do padrdo Command.

copy = new CopyCommandieditor) oeE ‘\1
button.setCommand(copy) N] 1,2
- command «interface»
5 Command
| Client + setCommand(command)
~ + executeCommand() + execute()
5
. e 1
B ! !
4 ConcreteCommand1 Concrete
Receiver ; Command2
- receiver
- params
+ operation(a,b,c) + Command1(receiver, params) | |+ execute()
+ execute()
) | ;

receiver.operation(params)

Fonte: Dmitry Zhart (2023).

E possivel observar na figura 13, uma das possiveis representacdes deste padrdo em

UML. Pode-se considerar, a parte indicada pelo nimero 2 na figura 13, como a parte mais

44

importante deste padréo, visto que define uma interface Command com um método Execute(),
que servira de base para desacoplar as chamadas de execugdo do comando.

As classes concretas de comando (nimero 3 na figura 13) implementam esta interface e
definem uma acdo dentro do método Execute(). Elas servem apenas como uma espécie de
intermediacdo entre o invocador da ac¢ao e o receptor da acdo. Encapsulam uma chamada de um
objeto que tem a logica de negdcio, o qual é recebido como referéncia no momento da
construcdo do comando, como também, outros parametros relacionados, se necessario.

Normalmente, a classe Receiver (nimero 4 figura 13) pode ser qualquer objeto que, de

fato, realiza o trabalho por tras da acdo. S8o chamadas dentro do comando e quem realmente
sabe os detalhes da implementacédo da agé&o.
O Client (nimero 5 na figura 13) tem a responsabilidade de construir o comando e passar 0S
parametros, incluindo o Receiver, para o comando. Mas também tem a responsabilidade de
associar o comando desejado para a classe Invoker, delegando a execuc¢do do comando, de fato,
para a classe Invoker.

Por fim, o Invoker (nimero 1 na figura 13) é responsavel por inicializar as execucdes
do comando, visto que esta classe, é a que gerencia as chamadas dos comandos. Dito isto, esta
classe pode executar instantaneamente o comando, como também pode ndo realiza-lo, pode
atrasar a execucdo do comando, pode enfileirar para aguardar execucdo, pode guardar em
estruturas como pilhas e outras formas de armazenamento com a finalidade de ter um histérico
resgatavel das execucdes dos comandos. Tudo depende do contexto da aplicacdo. E importante
notar que apesar da classe poder executar os comandos, ela apenas tem a referéncia para a
interface Command, ou seja, ndo conhece a classe Receiver e nem as classes concretas de
comando.

Assim, ja se tem o padrdo Command, entretanto, o ponto crucial € que basta alterar
pouca coisa para permitir que o padrao desfaca execugdes de comandos ja feitos, algo bastante
atil em muitas aplicagdes.

Basta adicionar um novo método na interface Command, um método responsavel por
desfazer o método Execute(), o método ExecuteUndo(). Adicionalmente, fazer os ajustes
necessarios, dado que as classes concretas de comando precisam implementar o hovo método,
e que o Invoker necessita gerenciar a ordem dos comandos apropriadamente, como guardando
um histdérico numa pilha. Pronto, com isso, agora é possivel realizar implementac6es Uteis em

jogos, como simular agdes e desfazé-las, ou até mesmo possibilitar refazé-las.

ii. Implementacédo

45

Existem implementagdes diversas do padrdo Command, assim como qualquer padréo
de projeto. Contudo, esta secdo aborda uma implementacdo exemplo disponibilizada pela
prépria Unity no e-book “Level up your code with game programming patterns”, a qual ilustra
bem o uso deste padréo, que pode servir como base para outras implementacdes mais complexas

deste padréo.

Figura 14 — Representagdo UML de exemplo do Command Pattern.

InputManager Commandinvoker

RunPlayerCommand
+RunPlayerCommand() ¥ +ExecuteCommandi) +Executel)

+OnUndolnput() +UndoCommandi) +Undo()

RunPlayerCommand

PlayerMover MoveCommand
+obstacleLayer -playerMover
-movement

+Move() +Execute()
+Undal()

Fonte: Lin (2021).

Para melhor ilustrar, sera demonstrado na pratica, as classes definidas na secdo anterior,
com implementacdes reais no contexto de aplicar um comando para mover um jogador. Na
figura 14, pode-se observar a estrutura geral do exemplo, numa representacdo em UML, a qual
a classe MoveCommand é uma implementacdo concreta da interface Command; A classe
PlayerMover representa a classe Receiver; A classe InputManager representa o Client; e a

classe CommandInvoker representa o Invoker, como foram definidos na se¢éo anterior.

46

Figura 15 — Interface Command implementada na Unity.

public interface ICommand

{
void Execute():
voild Undo();

Fonte: Lin (2021).

Vejamos o codigo de cada classe separadamente, iniciando pelo codigo da interface
Command (figura 15) que é a base do padrdo, a qual define o método Execute(), responsavel
por executar o comando, como também, define o método Undo(), responsavel por desfazer a

execucdo de um comando realizado.

Figura 16 — Exemplo de cddigo de um comando de movimentacdo de um jogador na Unity.

public class MoveCommand : ICommand

{
PlayerMover playerMover:;
Vector3 movement;

public MoveCommand(PlayerMover player, Vector3d moveVector)

i
this.playerMover = player;
this.movement = moveVector;

}
public void Execute()
1
playerMover . Move(movement) ;
h
public void Undo()
{

playerMover.Move(-movement) ;

}

Fonte: Lin (2021).

Dando continuidade, a classe MoveCommand, demonstrada na figura 16, implementa a
interface ICommand anteriormente definida. Nela, é possivel visualizar um exemplo de como
mover um jogador através de um comando, o qual é bem simples. Apenas guarda a referéncia

da classe Receiver, que no caso € a classe PlayerMover, a qual recebe atraves de parametros

47

pelo construtor, como também, um vetor que define a movimentacdo. Dessa forma, dentro do
método Execute(), apenas monta uma chamada de método da classe PlayerMover, repassando
0 vetor de movimentacdo. E, de forma similar, realiza a mesma coisa no método Undo(), porém
passa 0 vetor de movimentacdo na direcdo contraria como parametro com a finalidade de
reverter a movimentacao.

Dito isto, é importante mostrar aimplementacédo da classe PlayerMover, pois ela é quem
de fato dita como funciona a movimentacdo do jogador, ou seja, ela que contém a logica de

negocio.

Figura 17 — Exemplo de codigo de uma Classe Receiver do padrdo Command na Unity.

public class PlayerMover @ MonoBehaviour

{
[SerializeField] private LayerMask obstacleLayer:
private const fleoat boardSpacing = 1F;

public wvoid Move(Vector3 movement)

i

transform.position = transform.position + movement;

}

public bool IsValidMove(Vectord movement)
i
return !Physics._ Rayeast(transform.position, movement, board-
Spacing, obstacleLayer);
}
}

Fonte: Lin (2021).

Como é possivel observar na figura 17, a classe PlayerMover, € um componente da
Unity, como qualquer outro, apenas com a especialidade de aplicar movimento ao GameObject
do qual esta vinculado, que no caso, define a movimentacao de um jogador em um tabuleiro ou
grid através do método Move que soma o vetor recebido a posicdo atual do jogador, de forma
instantanea, fazendo-o movimentar.

Tendo isso em vista, vejamos como o0 comando é criado e, em seguida, executado. Para
isso, deve-se olhar para a classe que representa o Client, que nesse contexto € o InputManager.
Entretanto, esta classe tem outras l6gicas as quais ndo sdo importantes para o exemplo, portanto
sera mostrado apenas a parte importante. Ao observar a figura 14, percebe-se que 0 método
RunPlayerCommand, presente na classe InputManager, € o responsavel por fazer a ligacéo
entre o PlayerMover e o CommandInvoker.

Desta forma, basta apenas olhar o método RunPlayerCommand, na figura 18 abaixo.

Neste trecho de codigo, é visivel que a classe apenas cria um comando do tipo MoveCommand,

48

passando 0s parametros necessarios, e passa 0 comando para ser executado pela classe
ComandInvoker em seguida, através de um método estatico disponibilizado pela classe
CommandIinvoker. E valido ressaltar que nem toda implementacéo da classe Invoker utiliza de
métodos estaticos, neste caso, foi uma forma de centralizar a execucéo dos comandos de forma

pratica.

Figura 18 — Exemplo de cédigo para criar comando na Unity.

private void RunPlayerCommand(PlayerMover playerMover, Vector3 move-
ment)

{
if (playerMover == null)
i
return;
}
if (playerMover.IsValidMove(movement))
{

ICommand command = new MoveCommand(playerMover, movement);
CommandInvoker .ExecuteCommand(command) ;

Fonte: Lin (2021).

Por ultimo, para finalizar, é importante ver como funciona a classe CommandInvoker,
que é um exemplo de um Invoker (figura 19). Pode-se observar, no método ExecuteCommand,
gue além de executar o comando recebido, a classe guarda as referéncias para 0s comandos
executados numa estrutura de pilha. Dessa forma, permite uma forma de resgatar o histérico e,
caso seja necessario, realizar uma operacdo para desfazer o comando, apenas acessando o0

primeiro elemento da pilha e chamando o método Undo() presente na interface ICommand.

49

Figura 19 — Implementacdo exemplo de uma classe Invoker na Unity do padrdo Command.

public class CommandInvoker

{

private static Stack<ICommand> undoStack = new Stack<ICommand=();

public static void ExecuteCommand(ICommand command)

{
command . Execute() ;
undoStack .Push{command) ;

}

public static void UndoCommand()

{
if (undoStack.Count = @)

{
ICommand activeCommand = undoStack.Pop():;
activeCommand .Undo() ;

Fonte: Lin (2021).

iii. Prés e contras

Tal como outros padrdes abordados neste trabalho, este padréo introduz complexidade
ao cddigo, visto que adiciona uma camada entre o Invoker e o Receiver. Entretanto, este padrdo
ndo é tdo complexo, o que pode fazer valer a pena para a grande maioria dos casos.

Curiosamente, Nystrom (2014) revela que este padrdo é um de seus favoritos, pelo fato
de que a maioria dos programas que escreveu, sejam jogos ou outros programas, ele sempre
acaba utilizando-o em algum lugar. Quando bem usado, desembaraca codigos complicados.

Nédo é a toa a exaltacdo de Nystrom (2014) sobre este padrdo, pois é simples de
implementar e esta bem alinhado com os principios do SOLID, como o principio da
responsabilidade Unica e o principio do aberto-fechado, ja que desacopla as classes que invocam
operacdes das classes que performam as operacgdes e, também, pode introduzir novos comandos
sem quebrar outros comandos feitos. Assim como pode criar um conjunto de comandos,

compostos por outros comandos, para criar comandos complexos.

5.1.4. Padrao Observer

De acordo com Nystrom (2014), o padrdo Observer é um dos mais amplamente
utilizados padrdes de projeto originais do grupo Gang of Four. Ele argumenta que este padrao

50

é tdo difundido que Java o colocou em sua biblioteca principal (java.util.Observer), como
também, C# o incorporou diretamente na linguagem (com a palavra-chave event).

Imagine um jogo, no qual o jogador recebe um dano de um monstro inimigo. Quando
isso acontece, varios componentes diferentes do jogo podem querer reagir a esta situacao. Entre
0s quais o componente de dudio pode tocar um audio que representa dano; um componente de
particulas pode liberar particulas de sangue; um componente de interface pode diminuir a barra
que representa vida do jogador; entre varias outras possiveis reacfes. O padrdo Observer é
crucial neste tipo de cenario, o qual prové uma comunicagao de “um-para-muitos” de forma

desacoplada, deixando o codigo mais modular e flexivel.
i. Definicdo

O grupo Gang of Four descreve o Observer como um padrdo comportamental que:
“Define uma dependéncia de um-para-muitos entre objetos, de modo que quando um objeto
muda de estado, todos os seus dependentes sdo notificados e atualizados automaticamente”
(Gamma et al., 1994).

Em adicéo a isto, Nystrom (2014), em seu livro Game Programing Patterns, destrincha
este padrdo de forma mais préatica. Trata-o como uma situacdo na qual ha uma comunicacgao
entre o Subject, objeto no qual é responsavel por notificar outros objetos. Estes sdo chamados
de Observers, eles escutam as notificacbes lancadas pelo Subject e reagem como bem
entenderem.

Neste sentido, Nystrom (2014) ainda reforgca que o Subject precisa ter uma lista dos
Observadores dos quais deve notificar. Porém, ndo € de responsabilidade do Subject gerenciar
esta lista. Ele apenas deve disponibilizar uma API publica para que os préprios Observers
possam se adicionar como também se remover desta lista. Ou seja, os Observers que tém a

responsabilidade de se inscrever e desinscrever da lista de notificagao.

51

Figura 20 — Representacdo UML do padrdo Observer.

Observerl
-subjectToObserve

-OnThingHappened()

+ThingHappened: Action

+DoThingl()

-subjectToObserve

-OnThingHappenad()

Fonte: Lin (2021).

A Unity Technologies mostra a relagdo entre o Subject e os Observers, na figura 20,
através de uma representacdo UML de uma possivel implementacdo na Unity Engine. Nela,
pode-se visualizar que foi escolhida a utilizacdo de uma Action na classe Subject para
referenciar as implementacGes dos Observers. Em termos conceituais, esta implementacéo
poderia ser substituida por uma lista de interface 10bserver, as quais 0os Observers deveriam
implementar. Entretanto, assim como dito anteriormente, a linguagem C# ja prové artificios
para facilitar o desenvolvimento deste padrdo, que neste caso, a classe Action prové a API
necessaria para o registro de funcdes externas a Subject, as quais sdo delegadas para que sejam
executadas no momento que a ac¢ao for invocada.

Tendo isso em vista, ainda na figura 20, é importante perceber que os Observers se
inscrevem na acdo ThingHappened, definida na classe Subject. Este Gltimo, apenas invoca a
acao Thing Happened para aqueles que se registraram. Isto €, para a classe Subject ndo faz
diferenca se ha apenas um observador ou varios. Inclusive, a classe Subject ndo tem nocéo do
que os Observers fazem ao serem notificados, como também, os Observadores ndo sabem da
existéncia de outros Observadores, eles agem de forma independente. Ou seja, pode-se
adicionar novos Observers para reagir a Action Thing Happened e nada no cddigo precisaria
ser alterado, respeitando 0s conceitos o principio da responsabilidade Unica e o principio aberto-
fechado do SOLID.

I. Implementagdo

52

Existem varias formas de implementar o padrdo Observer, inclusive diferentes tipos de
linguagem podem ter recursos diferentes para implementar este padrdo. Em C# é muito comum
se utilizar de eventos, palavra-chave event em C#, ou utilizar de acbes, usando a classe
Action<T>, ao invés de implementar utilizando uma interface 10bserver. Além disso, algumas
bibliotecas j& utilizam este padrdo por debaixo dos panos. Um exemplo disto é a classe
ObservableCollection<T>, a qual consiste em uma cole¢do genérica de dados que implementa
0 padrdo Observer e invoca eventos quando a colecdo é alterada, permitindo que classes
observadoras se inscrevam nesses eventos para executar rotinas.

Tendo isso em vista, este topico abordara dois exemplos de uso do padrdo Observer,
importantes ao contexto aqui discutidos, na Unity. Inicialmente, sera abordado uma
implementacao que diz respeito a uma situacdo hipotética de jogo, fazendo alusdo as classes
Subjects e Observers anteriormente discutidas na secao de definicdo. E, por fim, mostrar o uso
de UnityEvents, um artificio da Unity que facilita o vinculo entre componentes utilizando
apenas de um drag and drop.

A priori, na figura 21 abaixo, pode-se ver um exemplo pratico de uma classe que esta
fazendo um papel de Subject. A classe SingleEnemyDectector representa um componente que
detecta o inimigo mais préximo em um determinado alcance. Esta classe disponibiliza os
eventos OnNewEnemyDetected e OnStopDetectEnemy, que séo respectivamente disparados ao
detectar um novo inimigo e ao perder a deteccdo de um inimigo previamente detectado. Ou
seja, 0s Observers que estiverem inscritos nestes eventos serdo notificados quando os eventos

forem disparados.

53

Figura 21 — Exemplo de Subject na Unity.

SingleEnemyDetector : MonoBehaviour

EnemyDetected(GameObject sender, Collider enemyDetected);
= d OnNewEnemyDetected;
ected OnStopDetectEnemy;

Collider DetectedEnemy

{ return enabled ? detectedEnemy :

if (detectedEnemy !=
{
if(detectedEnemy !=)
OnStopDetectEnemy? . Invoke(self.gameObject, detectedEnemy);
detectedEnemy = -
if(I=)
OnNewEnemyDetected?. Invoke(self.gameObject, detectedEnemy);

Detect();

Fonte: autoral.

Isto posto, para implementar oficialmente o padréo discutido, basta apenas um objeto se
inscrever nestes eventos para ser notificado, para assim, adicionar um comportamento em
resposta ao evento. Deste modo, € valido observar as figuras 21 e 23, as quais associam uma
rotina em resposta aos eventos disponibilizados na Figura 21, isto é, realizam o papel de

Observer.

54

Figura 22 — Exemplo de Observer na Unity.
yAimSpotter : MonoBehaviour

[SerializeField]
1emyDetector enemyDetector;
[SerializeField]
GameObject aimPrefab;

Dictionary<int, GameObject> aimDictionary = Dictionary<int, GameObject>();

OnEnable()
enemyDetector.OnNewEnemyDetected += AddAimToEnemy;
enemyDetector.OnStopDetectEnemy += RemoveAimOfEnemy;

OnDisable()

enemyDetector.OnNewEnemyDetected —= AddAimToEnemy;
enemyDetector.OnStopDetectEnemy —= RemoveAimOfEnemy;

AddAimToEnemy(GameObject sender, Collider enemyDetected)
ject aim = Instantiate(aimPrefab, enemyDetected.transform);
aimDictionary.Add(enemyDetected.gameObject.GetInstanceID(), aim);
RemoveAimOfEnemy(GameObject sender, Collider enemyDetected)
removedAim = aimDictionary[enemyDetected.gameObject.GetInstanceID()];

aimDictionary.Remove(enemyDetected.gameObject.GetInstanceID());
Destroy(removedAim);

Fonte: autoral.

A classe EnemyAimSpotter, disponibilizada na figura 22, representa uma classe que
adiciona uma mira para inimigos detectados, como também remove a mira adicionada quando
perde a detec¢do do inimigo previamente detectado. Para isso, a classe inscreve o método
AddAimToEnemy, o qual cria uma mira e guarda a referéncia para tal numa colecéo de dados,
para responder ao evento OnNewEnemyDetected, responsavel por notificar quando um inimigo
¢ detectado. Dessa maneira, sempre que um inimigo novo for detectado, uma mira sera
adicionada a este inimigo. O analogo também ¢é feito para quando o inimigo sai de deteccéo.

Um ponto importante a ressaltar é que a classe remove o vinculo dos métodos discutidos
com os eventos quando é desabilitada ou destruida, como podemos ver no método OnDisable()
na figura 22. Este € um fator importante, pois se uma classe a qual ndo esta mais disponivel
ainda estiver registrada em um evento, pode causar bugs quando o evento for langado, ja que

este ndo sabe se a classe ainda esta disponivel e, dessa forma, falhara ao tentar notificar um

55

objeto indisponivel. Segundo Nystrom (2014), este € um motivo comum de bugs ao utilizar o
padrdo Observer, por isso deve-se ser rigoroso quanto a limpeza da inscricdo do Observer ao
Subject.

Dito isto, € valido ressaltar que toda a l6gica necessaria para adicionar uma mira a um
inimigo esta auto-contida numa classe separada da classe que tem a légica de detectar inimigos,
ou seja, estad alinhado com o principio da responsabilidade Unica. Bem como, o principio do
aberto-fechado também esta sendo respeitado, ja que se for necessario adicionar novas ldgicas,
novas respostas, aos eventos discutidos, basta apenas criar novas classes para adicionar
comportamento, sem necessariamente modificar o cddigo pré-existente. Um exemplo disso é
pode ser visto na figura 23, a qual mostra uma classe tocando sons ao detectar inimigos e ao

perder a deteccao.

Figura 23 — Segundo exemplo de Observer na Unity.

AudioPlayer : MonoBehaviour

ion Target Acquired/Lost
ializeField] Si

AudioClip targetlLost;

0O

singleEnemyDetector.OnNewEnemyDetected += PlayTargetAcquiredAudio;
singleEnemyDetector.OnStopDetectEnemy += PlayTargetlLostAudio;

0

singleEnemyDetector.OnNewEnemyDetected —= PlayTargetAcquiredAudio;
singleEnemyDetector.OnStopDetectEnemy —= PlayTargetlLostAudio;

PlayTargetAcquiredAudio(GameObject sender, Collider enemyDetected)

AudioManager.Instance.PlayerAudio(targetAcquired);

PlayTargetLostAudio(GameObject sender, Collider enemyDetected)

AudioManager.Instance.PlayerAudio(targetLost);

56

Fonte: autoral.

Na sequéncia, conforme mencionado no inicio deste topico, o segundo exemplo trata-
se da utilizacdo de UnityEvents. Esta classe, a qual faz parte da biblioteca da Unity, funciona
de forma similar a agdes ou eventos, porém prové uma interface grafica para o padrdo Observer.
O intuito é facilitar o vinculo entre o Subject e 0 Observer, como também, tornar mais pratico
0 uso de eventos para pessoas que nao sao tdo familiarizadas com programacao.

Varios componentes de interface do usuario fornecidos pela engine utilizam de
UnityEvents. Um exemplo disto é o componente de botdo, o qual permite arrastar outros scripts
da cena para vincular um meétodo que sera executado quando o evento OnClick() é lancado.
Dessa forma, pode-se facilmente vincular algumas acbes na Cena para adicionar
comportamentos novos sem necessariamente programar. Pode-se visualizar o uso disso na
figura 24 abaixo, a qual tem vinculado duas respostas ao evento OnClick(), o método

OnThingHappened do script AudioObserver esta vinculado duas vezes.

Figura 24 — Interface grafica de UnityEvents, sendo utilizada em um botdo na Unity.

@ - Button

0.1

Automatic

Visualize

server.OnThingHappened

arver.OnThingHappenad

Fonte: autoral.

Pode-se dizer que uma vantagem do uso desta classe é que nem o script do botéo e nem
0 AudioObserver tem uma dependéncia explicita. No exemplo anterior, apesar do script
responsavel por detectar inimigos ndo saber quem escuta seus eventos, 0s observadores tinham
uma dependéncia com a classe SimpleEnemyDetector. J& ao utilizar da interface para vincular

0s observadores, o vinculo fica registrado no arquivo de cena da Unity.

57

Entretanto, apesar de UnityEvents serem praticos em alguns momentos, sua
performance é mais lenta do que se comparado aos eventos, ou agdes, disponibilizados pela
biblioteca base de C# e por isso, deve-se estar atento quanto a seu uso. Outro problema
associado a este uso é que em projetos grandes pode nao ser ideal arrastar cada script via editor.
As referéncias podem ficar dificeis de arrastar, tanto em quantidade, quanto em complexidade,
caso a hierarquia da cena esteja muito complexa. Este assunto sera melhor explicado na secéo

sobre mas praticas.
ii. Prés e contras

De acordo com a Unity Technologies, o padrdo Observer ajuda a dissociar objetos, ja
que o publicador do evento nédo precisa saber nada sobre os proprios assinantes do evento. Em
vez de criar uma dependéncia direta entre uma classe e outra, o sujeito e o observador
comunicam-se mantendo um certo grau de separac¢ao (Lin, 2021). Em adicdo a isso, Nystrom
(2014) fala que o padrao Observer € uma 6tima maneira de permitir que pedacos de codigo ndo
relacionados conversem entre si sem que se fundam em um grande pedaco.

Em outras palavras, este padrdo permite que objetos sejam mais c0oesos e coerentes,
devido ao fato de conseguir comunicar partes do codigo sem que haja uma dependéncia
explicita entre as partes, como também, permite que cada observador implemente sua prépria
I6gica para responder a notificacdo de forma independente, em conformidade com o principio
do aberto-fechado. De acordo com Lin (2021), isto simplifica a depuracdo de codigo, bem
como, a realizagéo de testes de unidade.

Além disso, outros fatores interessantes deste padrdo € que existem diversas
implementacBes prontas para uso, como mencionado anteriormente, e sao extremamente Uteis
para a interface do usuario, ja que permite separar a l6gica de negdcio da I6gica da interface de
usuario, fazendo com que a interface apenas mude quando notificada. Inclusive, esta é a base
para outro padrdo de projeto, o qual serd melhor detalhado na préxima se¢do, 0 MVP, também
conhecido como Model-View-Presenter.

Em contraponto, o Observer pode adicionar complexidade ao projeto, como também,
pode impactar na performance a depender de seu uso. De acordo com Nystrom (2014), algumas
pessoas podem considerar sistemas que utilizem de eventos como lentos, entretanto ele afirma
que o custo associado ao padrdo € em sua grande maioria insignificante, com excecdo apenas
de programas criticos de desempenho, pois existem artificios dos quais podem mitigar o custo
deste padrdo, pois no final das contas, enviar notificagdes é simplesmente percorrer uma lista e

chamar alguns métodos virtuais.

58

A primeira vista, o padrdo ocorre de forma sincrona, com isso, ao inscrever diversos
observadores com rotinas exaustivas, pode ocasionar travamentos. Entretanto, segundo a Unity
Technologies, nestes casos, pode-se combinar o padrdo Observer com o padrdo Command, para
disponibilizar uma espécie de fila de priorizacdo dos eventos, esta solucdo € conhecida como
Event Queue (Lin, 2021).

Outro problema deste padrdo é que como o Subject ndo tem responsabilidade de
gerenciar a lista de Observers dos quais estdo registrados, é de responsabilidade do Observer
se inscrever e se remover da lista. Desta forma é importante ter atencdo para adicionar e remover
observadores da lista de notificacdo. E necessario garantir que um objeto destruido, se remova
da lista para ndo ocasionar erros. Conforme Nystrom (2014), este € um problema comum em
sistemas de notificacdo, chamado de lapsed listener problem.

Por fim, com base em Lin (2021), os observadores ainda dependem da classe que esta
publicando o evento e isto, pode ser considerado um ponto negativo. Entretanto, existem
implementacdes que ajudam a desacoplar ainda mais, como por exemplo, usar um gerenciador
de eventos estatico (ou singleton) que lida com todos 0s eventos e realiza a intermediacdo entre

0 Observer e o Subject.

5.1.5. Padrdo MVP (Model-View-Presenter)

O padrdo MVP (Model-View-Presenter) é um padrdo arquitetural, uma variacdo do
padrdo MVC, o qual € comum de ser utilizado no desenvolvimento de interfaces de programas
em geral, no intuito de reduzir dependéncias desnecessarias, separando-as em camadas, as quais

tém suas responsabilidades bem estabelecidas.
i. Definicéo

Primeiramente, antes de entrar nos detalhes da definicdo do padrdo MVP, é importante
entender o padrédo, do qual o MVP foi originado, 0 MVC. Neste sentido, o padrdo MVC é um
acrénimo para Model-View-Controller, este nome representa as camadas das quais este padrdo
é dividido. Segundo Lin (2021), cada camada é bem definida, cada uma das partes do MVC,
realizam apenas uma coisa e fazem isso bem, podendo se considerar, de forma superficial, como
uma forma de extensdo do principio da responsabilidade Unica.

De acordo com Lin (2021). a camada Model é responsavel por conter os dados e ndo
performa légicas de jogo ou algoritmos. Ja a camada View é responsavel por formatar e

apresentar os dados de forma grafica para o usuario. Por fim, na ultima camada, o Controller é

59

responsavel por processar os dados de jogo, como realizar algoritmos e manipular dados em
tempo de execucao.

Figura 25 — Diagrama demonstrando as interagdes entre as camadas do MVC.

Controller

Fonte: Stannered (2010).

Existem diversas variaces do préprio MVC a depender da linguagem e framework do
qual se esta inserido e utiliza de eventos (Padrdo Observer) para se comunicar efetivamente
com as camadas. Tendo isso em vista, uma possivel visualizacdo das interacdes do MVC esta
presente na figura 25. Num cendrio hipotético, um usuério interage com a camada da View ao
clicar num bot&o, disparando um evento de clique. Assim, o Controller escuta o evento e realiza
alguma acéo, como aplicar uma logica e manipular os dados da Model, neste exemplo, poderia
ser algo como realizar um pulo em um personagem do jogo, o qual poderia esbarrar num
obstaculo e perder vida. Em seguida, a camada Model ao ser alterada, neste caso ter a vida
alterada, dispara um evento visto que houve uma mudanca de estado. Desta forma, a camada
da View observa essa mudanca e atualiza a representacdo grafica.

E importante frisar que a camada Controller e a View, em conformidade com suas
responsabilidades, ndo guardam dados para si e funcionam com base no padrdao Observer. Além
disso, no MVC é comum um Controller ter mais de uma View associada.

A partir disto, pode-se dar inicio a definicdo do padrdo MVP, o qual substitui a camada
Controller por uma camada chamada de Presenter, a qual, diferentemente do Controller, tem
a funcdo de ser um intermediario entre a View e o Model, deixando a Model mais distante da
View, como pode-se observar na figura 26. Além disso, € menos comum a camada que substitui
o Controller, ter varias Views associadas, € mais comum ser um para um. Segundo Lin (2021),
apesar de serem parecidos e manterem a separacao de conceitos, as camadas interagem de forma

diferente, bem como, tém responsabilidades um pouco diferentes.

60

Figura 26 — Diagrama demonstrando as interacdes entre as camadas do MVP.

state-change manipulates

events l |

Presenter

updates Ul events

Fonte: Lin (2021).

Ao desenvolver no ambiente Unity, o framework de Ul (Ul toolkit ou UnityUl) prové
diversos componentes que ja agem como uma View, ndo necessitando desenvolver
componentes individuais do zero, porém estes componentes sdo genéricos e nao tem
especializacéo.

Desta forma, os componentes que agem como Presenters, adicionam alguma
funcionalidade de apresentacdo a estas Views disponibilizadas. No MVC, as Views acabam
sendo mais especializadas, pois como pode-se observar na figura 25, elas tém uma referéncia
direta a0 modelo. Lafritz (2022), corrobora com esta afirmacdo, ao dizer que o MVP ¢
tipicamente utilizado na Unity, porque ndo se pode fazer muito com a View e a renderizacdo, ja
que isto é feito de maneira interna ou pelos bastidores, e como a alteracdo destes elementos é
integrada com eventos, faz necessario ter um intermediario para atualizar a camada da View,

bem como, atribuir uma logica para a View.

61

ii. Implementacdo

Para formalizar um exemplo de implementacédo deste padréo, sera utilizado um codigo
disponibilizado no e-book Level your code with game programming patterns, publicado pela
Unity Technologies. Neste exemplo, sera abordado um sistema de vida, o qual tera um modelo
que representa a vida de um personagem, um apresentador que realiza uma logica para fazer
atualizagdes gréaficas, como também, manipular os dados de vida; por fim, ndo sera necessario
implementar uma View, visto que a Unity disponibiliza um componente Slider, o qual se encaixa
perfeitamente para representar uma barra de vida.

Para comecar, pode-se visualizar no anexo K, o cddigo relacionado ao modelo. Este
consiste num modelo para representar uma vida de um personagem, disponibilizando APIs para
modificacdo, como um método para incrementar, decrementar ou recuperar por completo a
vida, assim como também disponibiliza um evento para quando a vida for alterada, outros
componentes poderem ser notificados.

E importante notar que a classe Health ndo implementa légica de jogo, ndo depende de
nenhuma outra classe e, pode ser facilmente aproveitada para outras situacdes, como vida de
itens etc. Esta classe ndo necessariamente precisaria herdar de MonoBehaviour visto que nao
utiliza do ciclo de vida de um componente da Unity e isto pode deixar desnecessariamente
carregada a classe.

Em seguida, a classe HealthPresenter é demonstrada no anexo L, a qual tem uma
referéncia para a classe Health e para um componente Slider, a qual atribui uma l6gica simples
para aplicar dano e cura, como também, realiza um vinculo entre o evento de alteracdo de vida
com a atualizacdo do valor da barra do Slider. Esta é a classe mais especializada dentre as outras
classes, pois ela é um intermediario, mas dificilmente sera reaproveitada para outras situacoes.

E importante notar que comportamentos adicionais poderiam ser implementados nesta
classe, como por exemplo: ndo poder realizar uma cura se 0 componente de vida estiver zerado.
Por fim, outros GameQbjects irdo interagir com o Health Presenter para aplicar dano, cura etc.

Como mencionado, a View ja esta implementada pela Unity e a I6gica de como sera o
comportamento da barra de vida, estd implementada na classe HealthPresenter, diferentemente
de como seria no MVC a primeira vista. Outros fatores de comportamento poderiam ser feitos
na classe HealthPresenter, como por exemplo alterar a direcdo da barra, entre outras logicas
relacionadas. Como o cddigo da classe Slider ndo é disponibilizado, entretanto pode ser vista
uma documentacao sobre (Unity, 2023) Além disso, o relevante de se perceber aqui é que o

componente Slider estd separado de outros componentes, ndo tem dependéncia para outras

62

classes que néo seja de renderizagdo. Portanto, permite que facilmente seja reutilizado em outro

contexto.
iii. Prés e contras

Tendo em vista que a abordagem do MVP reforca o principio da responsabilidade Gnica
e separa bem o0s conceitos, € de se esperar que a longo prazo seja perceptivel que o cddigo fica
mais facil de manter e escalar.

De acordo com Lin (2021), neste tipo de abordagem, os desenvolvedores tendem a
realizar classes menores e mais legiveis, com poucas dependéncias, 0 que provavelmente leva
a ter menos lugares de codigo quebraveis ou escondendo bugs.

Em adicdo a isso, Lin (2021) afirma que promove uma divisdo do trabalho, ja que ha
uma modularidade maior de codigo, se vocé precisar de Views mais complexas, pode-se separar
um desenvolvedor frontend para lidar apenas com a composicdo de Views para a interface,
enquanto outros realizam a l6gica de jogo.

Além disso, 0 uso de testes de unidade no codigo sera facilitado, pois devido a separacédo
bem estabelecida dos conceitos de ldgica, interface e modelo, sera mais facil realizar técnicas
de teste como 0 mock, o qual simula objetos para testar isoladamente alguns casos de teste, bem
como, facilita o uso de testes da propria ferramenta de Unity, ndo necessariamente precisando
executar o jogo para realizar testes (Lin, 2021).

Contudo, este padrdo pode ser um pouco mais complexo que outros padrées de projeto,
visto que utiliza-lo leva a criar mais classes e manter uma certa organizacdo, projeto e
componentes pequenos podem ndo beneficiar tanto deste padrdo. Por isso, conforme a Unity
Technologies afirma, € necessario planejar para averiguar se é 0 caso do projeto utilizar deste
padrdo, como também, nem todo contexto cabera facilmente nessas camadas, visto que nem
todo componente da Unity é facilmente quebrado em dados, l6gica e interface. Um exemplo
disto, segundo Lin (2021), é o MeshRenderer, componente do qual renderiza a malha de

triangulos que representa um modelo 3d.

5.1.6. Padréo Factory

Em jogos, frequentemente surge a necessidade de criar inimigos, obstaculos, itens e
outros elementos dinamicamente durante a execucdo. Portanto, ter uma maneira de abstrair a
I6gica de criacdo de objetos em uma classe especializada pode se revelar altamente vantajoso a
longo prazo, pois isso permite evitar modificagbes em classes que ndo necessitam de

conhecimento sobre a classe exata que esta sendo instanciada, dependendo apenas de uma

63

abstracdo comum, tornando o sistema mais flexivel e facil de manter, como também mais
organizado.

Isto posto, pode-se verificar que o padrdo Factory se encaixa neste contexto, conforme
esclarecido por Charles Hache (2023), em seu artigo “Top 7 Design Patterns Every Unity Game
Developer Should Know”. Vejamos: “O padrao Factory é particularmente Util quando vocé
precisa criar varios tipos de objetos, como inimigos ou itens, que compartilham uma interface
comum ou classe base. Ajuda a encapsular o processo de criagdo de objetos, tornando seu
codigo mais sustentavel ¢ escalavel” (Hache, 2023).

Além do mais, a Unity Technologies (2023) também afirma que
as vezes é (til ter um objeto especial que crie outros objetos. Muitos jogos geram uma variedade
de coisas ao longo do jogo, e muitas vezes vocé ndo sabe o que precisa em tempo de execucao

até que realmente precise.
i. Definicdo

O grupo Gang of Four estabelece o padrdo Factory como um padréo criacional, o qual
define uma interface para criar um objeto, mas permite que subclasses decidam qual classe
instanciar. Este permite que uma classe adie a instanciacao para suas subclasses (Gamma et al.,
1994).

64

Figura 27 — Representacdo da estrutura do padrdo Factory.

zzinterfaces>s>

IProduct

+ProductMame: string

+Initializa()

ProductA

+GatProduct(): IProduct +GetProduct(): IProduct

Fonte: Lin (2021).

Por conseguinte, pode-se visualizar a estrutura do padrdo Factory, conforme ilustrado
na figura 27. Primeiramente, é necessario definir uma interface comum entre os produtos, para
assim, poder criar uma Factory, uma classe abstrata que tem um método para retornar uma
instancia de IProduct.

Os produtos concretos implementam a interface IProduct e definem seu comportamento
especifico. Bem como, as fabricas concretas implementam a classe abstrata Factory e, também,
definem seu comportamento especifico. Neste exemplo, os produtos concretos precisam definir
0 nome do produto, como também terem uma logica de inicializacdo e as fabricas concretas
sabem como instanciar um produto concreto, assim como, podem definir uma rotina a ser
executada pés-criacao.

Deste modo, quando um cliente pedir um produto para uma classe do tipo Factory,
recebera uma instancia de IProduct, ou seja, o cliente ndo tem conhecimento da classe
especializada do produto, apenas da abstracdo. E importante notar que o cliente também pode
depender da abstracdo de Factory ao invés de uma fabrica concreta, facilitando assim, a troca
de implementacdo de criacdo de objeto, caso necessario.

E valido ressaltar que as fabricas podem precisar de alguma funcionalidade comum

compartilhada. Por isso, nesta definigdo fala-se de classes abstratas. Contudo, de acordo com

65

Krogh-Jacobsen (2022), nestes cenarios € importante atentar-se ao principio da substituicéo de
Liskov, um dos principios SOLID, ao usar subclasses.

Além disso, ndo necessariamente precisam de fato criar uma instancia, elas podem
reaproveitar instancias previamente alocadas, porém este cenario € mais conhecido como o

padrdo Object Pool, o qual tem uma se¢éo destinada neste trabalho.

ii. Implementacao

Esta secdo abordara uma implementacdo exemplo do padrdo Factory demonstrada no
e-book Level Up Your Code With Game Programming Patterns, a qual ilustra uma fabrica que
cria instancias de um produto A numa certa posicdo do mundo, executa uma rotina de
inicializacdo do produto e o retorna para o cliente que hipoteticamente solicitou. Além disto, o
exemplo se aproveita do sistema de prefabs da Unity, conforme discutido anteriormente na
secdo deste trabalho sobre a Unity, o qual trata-se de um GameObject pré-configurado no editor
que contém a receita de como instanciar o objeto, adicionando os componentes e pardmetros

registrado no prefab.

Figura 28 — Interface IProduct e classe abstrata Factory do padrdo Factory na Unity.

public interface IProduct

{
public string ProductMame { get; set; }

public void Initialize();

H

public abstract class Factory : MonoBehaviour

{
public abstract IProduct GetProduct(Vector3 position);

{/ shared method with all factories

Fonte: Lin (2021).

Dito isto, na figura 28 podemos ver uma defini¢cdo da interface dos produtos deste
exemplo, o qual apenas define um método para inicializacdo do produto, assim como, uma

propriedade para o nome do produto. Adicionalmente, também € visivel a definigdo da classe

66

abstrata Factory, a qual tem um método abstrato que precisa de um pardmetro de posic¢éo apenas
para atribuir a posi¢do do produto, bem como retorna um produto da interface IProduct.

E importante notar que esta interface bem como os métodos da classe abstrata depende
do contexto o qual o produto e a fabrica estdo inseridos, podendo ter mais elementos definidos
em ambos, assim como, outros parametros. Um exemplo disto é que se o produto criado
representasse um projétil, talvez fizesse sentido passar uma direcdo a qual o projétil foi
disparado (além da posicéo inicial), bem como, repassar para a interface do produto. O
interessante deste padrdo é que se uma arma (classe hipotética) precisasse criar um projétil, ela
ndo precisaria saber criar um projétil, esta responsabilidade estaria presente na fabrica de
projéteis, a qual apenas solicitaria uma instancia de projétil.

Continuando o exemplo, pode-se observar a implementacédo de um produto concreto e
uma fabrica concreta no anexo L (ProductA e ConcreteFactoryA, respectivamente). Conforme
o exemplo mencionado, é notdrio observar que a classe ProductA implementa a interface
IProduct, ou seja, define 0 nome de seu produto, bem como, dita uma légica de inicializacao
para ela mesma, procurando uma referéncia de um script de particula, o qual manda parar a
execucdo e recomecar.

Nesse mesmo contexto, percebe-se que a classe ConcreteFactoryA tem uma referéncia
para um prefab, ou seja, tem a receita para criar o0 objeto do tipo ProductA. Desta forma, no
método GetProduct, instancia um novo GameObject a partir do prefab do tipo ProductA. Em
seguida, executa 0 método de inicializagdo da interface IProduct e retorna o produto.

Dito isto, vale ressaltar que cada classe ficou com sua responsabilidade bem definida, ja
que o proprio produto sabe se inicializar e a fabrica sabe coordenar este processo de
inicializacdo. Ademais, criar novos produtos ndo impacta um possivel cliente que usufrui do
servico de uma fabrica visto que novos scripts seriam criados, mas nada no cliente precisaria
ser alterado, ja que este recebe apenas uma interface IProduct. Deste mesmo modo, trocar de
fabrica (I6gica de construcao) seria algo trivial como apenas atribuir uma nova referéncia.Ou
seja, ao criar um novo produto, ou modificar o atual para tocar um &udio ao invés de controlar
particulas, nenhum codigo do cliente precisaria ser alterado.

Por fim, é valido salientar que a classe Factory ndo necessariamente precisa herdar de
MonoBehaviour, porém no ambiente da Unity é comum e, muitas vezes, pratico passar a
referéncia de prefabs via serialized field no editor da Unity, assim como na demonstracao de
codigo de fabrica concreta ilustrada no anexo L. Neste sentido, outras abordagens poderiam ser

utilizadas para a classe referenciar um produto, como utilizar de injecdo de dependéncia, criar

67

objetos utilizando a palavra-chave new ou até mesmo procurar por objetos previamente criados

na hierarquia de cena da Unity.
iii. Prés e Contras

O padrédo Factory promove encapsulamento e abstracdo do comportamento de
construcdo de um objeto, o que traz uma separacao clara entre 0s componentes do sistema, bem
como, permite que um cliente requisite um objeto a uma classe especializada na construcéo do
mesmo, sem precisar conhecer detalhes de implementacdo. Por fim, permite adi¢cdo de novos
produtos sem quebrar codigo anterior no cliente, assim como, torna facil a troca de algoritmo
de criacdo. Ou seja, este padrdo promove um cédigo flexivel, manutenivel e escalavel com
acoplamento baixo.

Segundo Charles Hache (2023), em seu artigo “Top 7 Design Patterns Every Unity
Game Developer Should Know”, os beneficios deste padrdo sdo o encapsulamento da criagdo
de objetos, promocdo de reusabilidade de cddigo e escalabilidade, assim como, a promogéo de
baixo acoplamento.

Ademais, de acordo com o artigo “Factory Method”, do Refactoring Guru, este padréo
esta alinhado com o principio do aberto-fechado, pois € possivel introduzir novos produtos no
programa, sem quebrar codigo previamente existente no cliente. Como também, est4 alinhado
com o principio da responsabilidade Unica, visto que a parte do cddigo relacionada a criacdo de
objetos € movida para uma classe especializada em construir objetos, deixando o cdédigo mais
facil de manter. E por fim, evita o acoplamento entre o criador e as classes concretas dos
produtos (Refactoring Guru, 2023).

Contudo, em alguns casos, pode nao ser ideal implementar o padrdo Factory, pois este
pode introduzir um pouco de complexidade desnecessaria. Krogh-Jacobsen (2022) corrobora
com isto ao afirmar que o beneficio maximo deste padréo é atingido quando se tem muitos
produtos para configurar, para que quando novos tipos de produtos sejam definidos, ndo precise
alterar um codigo anterior. Entretanto, para casos com poucos produtos ou poucas
modificacOes, pode-se introduzir sobrecarga desnecessaria.

Ademais, conforme o artigo “Factory Method”, do Refactoring Guru, “O codigo pode
se tornar mais complicado, pois € necessario introduzir muitas subclasses novas para
implementar o padrdo. O melhor cenario é quando vocé introduz o padrdo em uma hierarquia

existente de classes de criadores.” (Refactoring Guru, 2023).

68

5.1.7. Padréao Object Pool

A performance e a otimizacdo Sdo assuntos recorrentes em muitos jogos, pois a
otimizacdo de um jogo pode garantir que jogos possam rodar em dispositivos menos potentes,
bem como, usar ao maximo um dispositivo para rodar graficos pesados e bonitos, por exemplo.
Ou até mesmo um simples travamento rapido de jogo pode tornar a experiéncia do jogador
frustrante. Esta ideia é reforgada por Nystrom (2014), o qual afirma que jogos séo softwares
criticos de desempenho.

Mesmo em linguagens com recursos de gerenciamento de memoria, como o Garbage
Collector na linguagem de programacao C#, é preciso ter cuidado com a alocacdo e liberacao
de memoria. Em conformidade com isto, a Unity Technologies afirma que ao instanciar um
grande volume de objetos, tem-se 0 risco de causar pequenas pausas em um jogo, provocadas
por um pico de colecdes de lixo, feitos pelo Garbage Collector (Krogh-Jacobsen, 2022)

Em adicdo a isto, segundo Krogh-Jacobsen (2022), picos de colecdo do Garbage
Collector normalmente estdo acompanhados de nimero de criagdo e destruicdo de objetos

devido a alocacéo e liberagcdo de memoria.

Figura 29 — Representagdo do processo de fragmentagdo de memoria.

HEAP 1S potTanllY empTY

ALLOCATE OBTELT 'FOb' (7 BYTLS)

B)
THED ALLOCATE 'BAR' (I2 13‘2’763? 1
v b | T S MR R |
"
1E WE TRY TO AUDLATE ANOTHER "BAR’ 1T weu"\'"Fn ArOTIWHERE
] R R | il
SeoPs! A I SooPs! A T
| Bac | [2ar =

Fonte: (Nystrom, 2014).

E, nesse sentido, a fragmentacdo de memoria interligada a este contexto, pois ao alocar
e liberar espaco dinamicamente, pode-se deixar pedagos pequenos e vazios de memoria
espalhados na heap, colecdo responsavel memoria. E possivel visualizar o processo de

fragmentacdo de memoria na figura 29, o qual Nystrom (2014) mostra que depois de alocar e

69

desalocar objetos na memoria, podem ficar pequenos espagos vazios na memoria, 0s quais
podem ser pequenos demais para serem aproveitados por objetos maiores, mesmo havendo
espaco total liberado para eles. Deste modo, necessita redistribuir a memaoria ou aumentar seu
tamanho total, o que pode gastar processamento ou memdria desnecessariamente.

O padréo Object Pool ajuda a reduzir as chamadas do Garbage Collector, pois este
reutiliza objetos ja criados para evitar este processo de alocacao e liberacdo de memoria. A
Unity Technologies corrobora isto ao afirmar que: “Object Pooling é uma forma de otimizar
seus projetos e diminuir a carga que recai sobre a CPU ao criar e destruir rapidamente novos
objetos. E uma boa pratica e um padrio de projeto a se ter em mente para ajudar a aliviar o
poder de processamento da CPU para lidar com tarefas mais importantes e ndo ser inundado

por chamadas repetitivas de cria¢ao e destrui¢do.” (Unity, 2023).
I. Definicéo

Diferentemente de outros padrdes aqui mencionados neste trabalho, este é um padréo
voltado a otimizacdo. A Unity Technologies define este padrao como: “O Object Pooling € uma
técnica de otimizacdo para aliviar a CPU ao criar e destruir muitos GameObjects.” (Unity 2023).
Ja Nystrom (2014), define este padrdo como uma estratégia para melhorar o desempenho e o
uso de memodria reutilizando objetos de uma colecao (Pool) fixa, em vez de alocé-los e libera-
los individualmente.

De forma mais prética, o padrdo Object Pool consiste em definir uma classe (Pool) que
mantenha uma colecdo de objetos reutilizaveis. De modo que quando solicitado, a pool reutiliza
objetos previamente criados que estdo disponiveis na colecéo.

Cada objeto desta pool suporta uma consulta para saber se este esta “ativo” no momento.
Quando a pool é inicializada, ela cria toda a colecdo de objetos antecipadamente e inicia todos
para o estado desativado. Esta por sua vez, quando recebe uma requisicdo de objeto, procura
um objeto disponivel, inicializa-o como “ativo” e o retorna para quem solicitou. Quando o
objeto ndo for mais necessario, este volta ao estado “desativado”. Dessa forma, os objetos
podem ser criados e destruidos livremente sem a necessidade de alocar memoria ou outros

recursos em tempo de execucao.

70

Figura 30 — Representacdo UML do padrdo Object Pool.

ObjectPoo

+ Getinstance():ObjectPool

+ AcquireObject():GameObject

GameObject + ReleaseObject(obje ETIF‘EI“IEC{I_EET :void

A Q

Fonte: Doran e Casanova (2017).

Na Figura 30, contém uma representacdo simples, em forma de diagrama, do padrédo
Object Pool. Pode-se visualizar que a Classe ObjectPool disponibiliza um método para um
possivel cliente requisitar instancias de um objeto, neste caso um GameObject. Assim como
também disponibiliza um método para liberar o objeto de volta para a pool. E valido ressaltar
que estes métodos precisam respeitar a I6gica anteriormente discutida, bem como, esta é uma
representacdo simples deste padrdo. Contudo, a depender do contexto, é possivel este padrdo
ser implementado em conjunto com outros padrfes para ficar mais abstraido, tal qual, facilitar

acesso e garantir instancia Gnica, como o padrao Factory e o Singleton, respectivamente.
ii. Implementacdo

Esta secdo abordard uma implementacdo exemplo do padrdo Object Pool demonstrada
no e-book Level Up Your Code With Game Programming Patterns, a qual utiliza de uma
biblioteca da propria Unity, UnityEngine.Pool, que dispde uma colecdo genérica, adaptada ao
contexto Unity, feita para simplificar o processo de criagdo de uma pool, bem como, dispor uma
colecdo otimizada baseada em pilha para manipular os objetos reutilizaveis. Em seguida, sera
demonstrado apenas um exemplo mais genérico com o intuito de apenas ilustrar uma possivel
implementacdo mais reutilizavel e escalavel.

A classe RevisedGun ilustrada no anexo M, representa a classe de uma arma, a qual cria
instancias de um projetil utilizando o padrdo Object Pool. Este é um exemplo comum em jogos
para se utilizar deste padrao, visto que em pouco tempo uma arma pode criar varias instancias
de um projétil, assim como, se dentro do jogo tiverem vérias armas atirando ao mesmo tempo,

pode-se causar uma sobrecarga ao instanciar e destruir diversos projéteis. Desta forma, faz-se

71

sentido utilizar deste padrdo para reutilizar projéteis e evitar este cenério ao criar objetos
repetidos. Na figura 31, consegue-se visualizar estes projéteis na hierarquia de cena da Unity,

0s quais, dentre eles, alguns estao ativos e outros desativados, esperando para serem utilizados.

Figura 31 — Hierarquia de cena da Unity ilustrando projéteis numa pool de objetos.

Active pooled objects

Inactive pooled objects

Fonte: Lin (2021).

Ainda neste exemplo, no anexo M, é perceptivel que a classe utiliza de uma pool de
projéteis, a qual utiliza da colecdo ObjectPool<T> disponibilizada pela Unity na documentacao
(ref. 7.4). Mesmo tendo essa colecdo pronta, ainda é necessario passar alguns callbacks no
construtor da colecdo para adicionar légica a pool. Vejamos: (1) rotina para criar o objeto em
questdo ao inicializar; (2) rotina para executar ao receber um objeto; (3) rotina para executar ao
liberar um objeto; (4) rotina caso seja necessario destruir um objeto. Além disso, outros
parametros configuraveis como o tamanho inicial da pool e tamanho méaximo da pool.

Entretanto, esta implementacdo ndo escala bem, pois ndo da suporte para facilmente
trocar o tipo de objeto ou disponibilizar formas de reutilizar a classe, bem como néo depende
de abstracGes, além de que toda a logica de criagdo estd na propria classe da arma. Desta forma,
é possivel fazer melhorias no exemplo do anexo M para ficar de acordo os principios SOLID,
como combinar com o padrdo Factory para tornar o padrdo Object Pool mais escalavel,

manutenivel e flexivel. O anexo N demostra uma forma de realizar isto.

72

iii. Pros e Contras

Apesar deste padrdo aumentar o desempenho, ao promover uma economia de recursos
ao reutilizar objetos e, consequentemente, reduzir as interrup¢oes do Garbage Collector, como
também diminuir a fragmentagdo de memoria, € importante medir o custo-beneficio de eu uso,
pois este introduz complexidade.

Nystrom (2014) reforca que é preciso gerenciar a memoria de forma adequada ao
contexto, pois a depender do tamanho da pool, é possivel desperdicar memaria caso a pool seja
maior do que o necessario, como também, em caso de ser menor do que 0 necessario pode se
ter comportamentos indesejados ao chegar na capacidade maxima da pool, como ndo retornar
um objeto, a depender da implementacdo.

Ademais, existem algumas estratégias para lidar com estes casos, como por exemplo,
num cenario de uma pool de particulas, atingir a capacidade maxima e faltar uma particula pode
ndo fazer falta visualmente para um usuario. J& numa pool de audios, é possivel causar
estranheza ndo tocar o som que é associado ao feedback de um inimigo, neste caso, pode-se
desativar o ultimo objeto da colecdo da pool ou 0o som mais baixo e entdo reutiliza-lo. Como
também, é possivel instanciar objetos fora da pool para os casos extras e depois destrui-los
guando ndo sdo mais necessarios.

Vale ressaltar ainda que € imprescindivel que os objetos requisitados, em algum
momento, retornem para a pool quando estiverem inutilizados. Ao se esquecer disso pode
ocasionar a falta de objetos na pool. Além disso, deve-se reciclar o objeto apropriadamente para
ndo deixar resquicios da ultima utilizacdo. Caso contrario, um objeto reutilizado pode ter algum
mal funcionamento ndo previsto, como por exemplo, um projétil pode ser inicializado na

posicdo de mundo errada.

5.1.8. Padrdo Component

Conforme Nystrom (2014) aponta em seu livro Game Programming Patterns no
capitulo sobre o padrdo Component, diversos conceitos introdutérios de arquitetura de software
nos dizem que diferentes dominios em um programa devem ser mantidos isolados uns dos
outros, ou seja, dominios como fisica, renderizagdo, inteligéncia artificial, som e outros, devem
estar em classes separadas. Neste contexto, o padrdo Component se encaixa muito bem, visto
que € bastante util para desacoplar classes de dominios diferentes, assim como, reduzir classes
extremamente grandes e dificeis de trabalhar, separando-as em pequenos componentes

independentes e reutilizaveis.

73

O padrdao Component é bastante utilizado no mundo dos jogos, inclusive, é utilizando
como base este padréo que a Unity Engine baseia sua arquitetura. Conforme descrito em sua
documentacdo, um componente € a classe base para tudo anexado a um GameObiject, a qual
adiciona funcionalidade, e um GameObject é a classe base para todas as entidades em Unity
Scenes (Unity, 2023). Um exemplo de uso é visivel na figura 32, a qual ilustra um GameObject
de um jogador (Player) com alguns componentes atrelados no inspector: Player Input

Component, Movement Component, Single Enemy Detector, Capsule Collider e outros.

Figura 32 — Visualizacdo do GameObject Player na janela de Inspector no editor da Unity.

Layer Player

Capsule (Mesh Filter)

Capsule

¥ Mesh Renderer
y v Capsule Collider
Rigidbody

+ Player Input Component (Script)

Movement Component B Flayer (Movement Component)

+ Movement Component (Script)

Mo

+ Single Enemy Detector (Script)

ayer (Transform)

Enemy

Fonte: autoral.
i. Definigédo

Nystrom (2014) define o padrdo Component como uma forma de permitir que uma Unica
entidade abranja varios dominios sem acoplar os dominios entre si. Dito de outra forma, uma
Unica entidade deve abranger multiplos dominios, de maneira que o c6digo para cada um desses
dominios fique separado na sua propria classe, isto &, seu proprio componente. Desta forma, a
entidade se torna essencialmente um recipiente para os diferentes componentes.

Utilizar componentes significa trabalhar com a composicdo de objetos (componentes)

para compor objetos complexos. Para ilustrar esse conceito, pode-se pensar num objeto de jogo

(entidade), que representa o personagem de um jogador, o qual pode ter varios componentes

74

atribuidos para definir seu comportamento, como um componente para responder inputs, outro
componente para adicionar movimentagéo, coliséo, renderizacdo, animacéo, detectar inimigos,
inventario etc.

Entretanto é valido ressaltar que apesar deste padréo reforcar comportamentos mais
genéricos e reaproveitaveis, assim como, a separacdo de dominios, é inevitavel haver interacGes
entre alguns componentes. Segundo Nystrom (2014), componentes perfeitamente desacoplados
que funcionam isoladamente sdo um bom ideal, mas ndo funcionam na pratica. O fato de esses
componentes fazerem parte do mesmo objeto implica que fazem parte de um todo maior e
precisam ser coordenados. 1sso significa comunicagéo.

Desta forma, alguns componentes precisam interagir com outros componentes, como
por exemplo, um componente de detec¢do de inimigos provavelmente vai precisar interagir
com um componente de colisdo, entretanto, ndo hd uma regra: isto pode ser feito por
referenciacdo direta, compartilhando algum estado comum na entidade comum, utilizando de
outros padrées como o mediator para intermediar mensagens entre classes etc. De acordo com
Nystrom (2014), ndo ha uma melhor resposta para isto e que, provavelmente, em um projeto
real, acaba-se utilizando um pouco de cada forma, contudo, ele reforca que prefere sempre
comecar simples e ao longo do projeto melhorar a forma de comunica¢do quando surgir a
necessidade.

Outro ponto relevante € que a separacdo de dominios em componentes diferentes
permite o reuso destes em entidades completamente diferentes. A modo de exemplo, uma
entidade que representa uma porta, assim como um inimigo, pode utilizar de um componente
de vida. Embora cada um seja de natureza diferente, eles podem compartilhar de componentes
iguais, bem como, podem adicionar ou remover componentes em tempo de execucdo para
modificar seu comportamento.

Para complementar, Nystrom (2014) afirma que os componentes sdo basicamente plug-
and-play para objetos. Eles nos permitem construir entidades complexas com comportamento
rico, conectando diferentes objetos componentes reutilizaveis em soquetes da entidade.

ii. Implementagao

No livro Gaming programming patterns, Nystrom mostra uma implementagéo simples
para representar a ideia do padrdo Component. Inicialmente, ele demonstra uma classe
monolitica, a qual chama de Bjorn, esta por sua vez, estd com bastante responsabilidade

(Disponivel no anexo O). O método Update desta classe roda todo frame e faz as seguintes

75

coisas: Verifica se o input do joystick esta sendo movimentado, a partir disso, altera o vetor
velocidade, verifica se ha colisdo ap6s modificacdo, verifica se a sprite precisa ser alterada caso
esteja andando numa outra dire¢do, como também manda atualizar o grafico. Tudo num mesmo
método.

Desta forma, Nystrom (2014) prople extrair uma interface em comum entre oS
diferentes dominios, que no caso é o préprio método Update, com diferentes parametros para
cada caso (anexo P). Assim, ele separa o codigo em trés classes que implementam a interface
Update: InputComponent, responsavel pela leitura de input; PhysicsComponent, responsavel
por realizar célculos fisicos; e o GraphiciComponent, responsavel por fazer atualizagdes
gréaficas. Apos essa refatoracdo, embora haja formas de melhorar o c6digo-exemplo, 0 método
na classe Bjorn ficou bem mais limpo, pois extraiu-se o codigo de diferentes dominios para
classes separadas, as quais implementam uma interface, ou seja, sdo mais faceis de serem
trocadas por outros componentes que implementam a mesma interface, bem como, a classe
Bjorn apenas repassa as chamadas para seus componentes, tomando uma forma de entidade.

De uma forma similar funciona o padrdo Component na Unity, embora seja um pouco
mais complexa, esta complexidade estd bastante abstraida pelo préprio editor da Unity. De
acordo com a Unity Technologies: “Para personalizar e adicionar componentes no Editor, vocé
pode escrever seus proprios scripts. Para criar um componente com script, VOcé precisa escrever
o0 script e anexa-lo a um GameObject. Os scripts anexados a um GameObject aparecem na
janela do Inspetor do GameObject porque o editor os trata como componentes integrados”
(Unity, 2023).

Dessa forma, assim como visto na figura 32, pode-se anexar componentes a
GameObijects (entidade), podendo utilizar de componentes previamente criados pela Unity ou
implementar seus proprios scripts. Para isso, basta herdar da classe MonoBehaviour, a qual
funciona uma classe base, definindo métodos comuns dos quais componentes usam para lidar
com o lifecycle da Unity. Pode-se visualizar, no anexo Q, um exemplo de implementacéo de
um componente de movimento que esta anexado no game object Player ilustrado na figura 32.
Resumidamente, este o script define uma movimentagdo basica utilizando de um componente

built-in de fisica da Unity.
iii. Pros e Contras

Este padrdo permite desacoplar o cddigo em componentes separados, de forma que
possam ser reutilizados em diferentes entidades, compondo o comportamento de uma entidade

de forma customizada, bem como, permite a adi¢do e remogédo de componentes em tempo de

76

execucao. Além disto, a criagdo de novos componentes, ndo necessariamente impactam na
modificacdo de componentes pré-existentes. Ou seja, componentes ddo uma grande
flexibilidade alta para compor objetos complexos. Inclusive, esta abordagem tem se
demonstrado bastante Util para jogos, visto que diversas engines, como a Unity, Unreal e outras,
se baseiam neste padrdo para arquitetar suas solucdes, tal como afirmado por Suscheuski
(2019).

Entretanto, de acordo com Nystrom (2014), é necessario também ter cuidado com a
forma que esses componentes sdo referenciados, visto que uma alta complexidade de
relacionamento entre componentes pode tornar o codigo mais desafiador, assim como, pode
levar a um alto nivel de indirecdo para obter componentes em tempo de execucgdo e isto em
loops internos com desempenhos criticos, pode levar a um desempenho ruim.

Um exemplo disto é utilizar o método GetComponent<T> para obter referéncia de um
componente dentro de um método Update(), o qual, como mencionado anteriormente, roda em
todo frame da aplicacdo. Isto sera melhor detalhado na secdo deste trabalho sobre boas e méas
praticas na Unity.

A utilizacdo de componentes estd diretamente ligada ao principio de priorizar
composicdo ao invés de heranga, o qual foi anteriormente mencionado na se¢éo sobre conceitos
prévios. Portanto, é plausivel sustentar que potencialmente, devido a independéncia de
componentes, se obtém mais eficientemente comportamentos genéricos ao compor objetos
utilizando componentes, bem como, tornam o cédigo mais encapsulado e mais facil de manter,
conforme colocado por Marcelo no artigo “Developing games with object composition: A case
study using the Unity3D platform” (Barbosa et al., 2015).

E valido ressaltar ainda que, em projetos grandes, a composi¢do de componentes num
sistema de jogo, como a Unity, pode levar a alguns problemas relacionados a alta dependéncia
entre componentes ou instancias de objetos de jogo, conforme apontado por Barbosa et al.
(2015), entretanto, para este tipo de situacdo, pode-se utilizar do padrédo de injecdo de
dependéncia na arquitetura do sistema, visto que este pretende fornecer uma maneira flexivel
de gerenciar associacdes indiretas entre componentes dependentes, eliminando a
responsabilidade do programador de lidar de fazer estes vinculos de forma direta. (Barbosa et
al., 2015).

5.1.9. Padrao Decorator

No mundo de jogos é bem comum existir situacdes nas quais é desejavel adicionar

pequenas funcionalidades extras ou pequenas modificacdes a um certo elemento do jogo. Isto

77

é bem comum em jogos 0s quais provém upgrades para o jogador, isto é, adicionar melhorias
ou acessorios a um determinado elemento de jogo, como por exemplo uma arma, uma
armadura, um carro, entre outros.

Um exemplo disto é o jogo Archero, o qual consiste em um jogo mobile do género
arcade em que o jogador explora diversos calabougos enquanto vai matando monstros e
ganhando upgrades em seu arco e flecha. A mecanica do jogo se baseia nessas melhorias, visto
que suas flechas podem ficar mais rapidas, mais fortes, aplicar efeitos ao oponente, ricochetear
em paredes etc.

Dito isto, uma maneira de implementar este tipo de comportamento ¢ com o padréo
Decorator, pois este prové uma forma de adicionar pequenas funcionalidades extras ou
pequenas modificacbes (de forma dindmica) a um objeto de modo que ndo altera a

responsabilidade original dele.
i. Definicdo

O padrao Decorator tambéem foi um dos padrdes introduzidos pelo grupo Gang of Four
no livro “Design Patterns: Elements of Reusable Object-Oriented Software”, o qual o definem
como um padrdo estrutural que permite anexar responsabilidades adicionais a um objeto
dinamicamente, utilizando de “decoradores”. Estes fornecem uma alternativa flexivel a

subclasse para estender a funcionalidade (Gamma et al., 1994).

Figura 33 — Representagdo UML da estrutura do padrdo Decorator.

| Client I a = new ConcComponent()
b = new ConcDecoratorl(a)

¢ = new ConcDecorator2(b) 3
L. c.execute()
«interface» t
Component
+ execute()
p i i 3
Concrete Base Decorator
Component
- wrappee: Component
+ BaseDecorator(c: Component) wrappee = ¢
+ execute() + execute()
4 /:l}‘ wrappee.execute()

Concrete
Decorators

super:execute()
+ execute()

extra()
+ extra()

78

Fonte: Dmitry Zhart (2023).

Na figura 33, é observavel uma representacdo da estrutura, a qual esta dividida em cinco
partes: (1) A interface de um componente, a qual sera implementada tanto pelo componente
concreto, quanto pelo decorador; (2) A classe concreta de um componente, classe que define
um comportamento basico de um componente e que pode ser decorada; (3) A classe base de
decoracdo, esta é a chave do padréo visto que a classe contém uma referéncia para uma interface
Component a qual usa para delegar as operacdes da interface de forma encapsulada; (4)
Decoradores concretos, estes sdo responsaveis por definir comportamentos extras ao
sobrescrever os metodos da classe base de decoracéo, porém, a priori, mantém as chamadas
para a interface encapsulada; (5) O cliente, quaisquer classes que facam a composicdo de

componente e decoragdo, bem como, utilize da interface (Refactoring guru, 2023).
ii. Implementacédo

Esta secdo abordard um exemplo simples de implementacdo do padrdo Decorator no
ambiente Unity de desenvolvimento. O caso de a ser demonstrado aplica decoragdes a uma
classe que representa uma flecha, adotando melhorias na producdo destas, também
denominadas como buffs ou upgrades. Ou seja, ha uma determinada mistura com um sistema
de buffs improvisado para o exemplo, porém este ndo deve ser o foco do exemplo em analise.

Nesse contexto, o referido exemplo consiste na defini¢cdo de uma interface chamada de
IArrow (anexo R) para representar uma flecha que, por questdes de exemplo, a interface
consiste em apenas métodos para retornar o dano causado pela flecha, bem como retornar a
velocidade e a dire¢do, juntamente com um método para configurar informacdes relacionadas
ao arco que atira a flecha, como o dano do arco e a direcéo de disparo.

A partir disto, uma implementacao concreta de flecha é feita, a classe Arrow (anexo S),
que apenas implementa a interface anteriormente mencionada, definindo valores para os
campos referidos e, também, permite ser serializavel pela Unity.

De maneira similar, a classe ArrowDecorator (anexo T) - classe base para decoragdes -
implementa a interface IArrow, no entanto, utiliza de uma referéncia do tipo IArrow, recebida
via construtor, para repassar as chamadas da interface implementada para a referéncia recebida
de forma encapsulada.

Com base nisso, é factivel criar as classes decoradoras. Nos anexos U e V, é possivel
observar as classes IronArrow e LighterArrow, ambas herdam da classe ArrowDecorator, deste

modo, para criar uma instancia delas, € necessario passar uma instancia de l1Arrow - uma classe

79

para ser decorada. Percebe-se também que, neste contexto, cada uma sobrescreve um método,
ambas apenas adicionam um bonus nas propriedades de dano e velocidade, respectivamente.
Isto é feito de modo que ainda se mantém uma chamada para a interface original, que esta
encapsulada via heranca do ArrowDecorator, a fim de respeitar o comportamento da classe
original, apenas adicionando uma modificagéo, responsabilidade ou efeito.

Tendo isso em vista, 0 padrdo Decorator estd implementado, entretanto, ainda é
necessario mostrar a parte relacionada ao cliente, ou seja, a parte que consome este padrao.
Todavia, para usufruir deste padrdo na Unity, foi necessario fazer algumas adaptacdes devido
ao fato dos componentes da engine necessitarem herdar de MonoBehaviour para fazerem parte
de uma entidade de jogo, além do mais, ndo é possivel instanciar uma classe MonoBehaviour
via palavra-chave new.

Por isto, foi utilizada uma abordagem para separar a l6gica de uma flecha atrelada ao
framework da Unity (lifecycle, serializagdo e mensagens Unity) em uma classe
(ArrowBehaviour) e a parte légica de uma flecha em outra (Arrow). Esta abordagem é
conhecida como Humble Object. Desta forma, a classe ArrowBehaviour lida com a l6gica da
Unity e repassa para a classe Arrow, a qual agora pode ser instanciada via palavra-chave new.
Assim, é possivel ter uma praticidade maior na utilizacdo do padrdo Decorator.

Dito isto, pode-se visualizar, no anexo W, a classe ArrowBehaviour, que lida com a
parte de lifecycle, serializacdo e mensagens da Unity, como ja mencionado, bem como, repassa
as chamadas para a interface IArrow, que ela mesmo criou. Embora a propria classe pudesse ter
instanciado decoracBes para a flecha, esta ainda ndo é a classe responsavel por isto neste
contexto.

No anexo X, é possivel visualizar uma classe responsavel por criar flechas, a
ArrowFactory. Além de instanciar uma ArrowBehaviour, a classe recebe uma lista de buffs
ativos (do tipo IArrow) e troca a instancia interna de ArrowBehaviour, como se fosse uma linha
de montagem. Por fim, a titulo apenas de ilustracdo, é permitido visualizar no anexo Y como a
classe € decorada de fato, mostrando o método ApplyBuff (IArrow buffReceiver).

Diante do exposto, é véalido ressaltar que as decoracbes feitas (IronArrow e
LighterArrow) foram apenas ilustragcbes simples para aplicar decoragbes num determinado
objeto. E importante mencionar, ainda, que elas poderiam ter sido mais elaboradas, pois, neste
caso, foi utilizado de buffs apenas para exemplificar sua utilidade num contexto mais real de
jogo, entretanto este padrdo ndo se resume a apenas este cenario.

Em Jdltima analise, é importante pontuar que, devido ao padrdo Decorator

implementado neste contexto, tornou-se possivel adicionar extensées ou modificacdes no

80

comportamento de uma flecha em tempo de execucdo, sem precisar alterar a classe Arrow ou a
Classe ArrowBehaviour, como também ndo foi preciso utilizar de subclasses. Para isto, basta
criar novas classes que herdam de ArrowDecorator que decoram a interface e, apenas neste

exemplo, associar ao sistema de buffs.
iii. Pros e Contras

Conforme exposto neste topico, o padrdo em analise prové uma forma de estender o
comportamento de um objeto sem necessariamente fazer subclasse, aléem de permitir adicionar
e remover responsabilidades em tempo de execuc¢do. Dessa forma, € possivel dividir uma classe
em varias classes menores, de modo que, ao adicionar novos comportamentos, ndo havera
modificacdes em classes prévias, ou seja, segue-se em harmonia com 0s principios da
responsabilidade Unica e com o principio aberto-fechado, consoante apontado por Adrian
Bilescu (2023), em seu artigo “Investing in Code Quality: The Decorator Pattern and Its Role
in Implementing SOLID Principles”.

De acordo com Cuong Le (2016), em seu trabalho “Design Patterns - Implementation
in video game programming”, é recomendado o uso do padrdao Decorator quando existe a
necessidade de adicionar responsabilidades a objetos, de forma que ndo envolva outros
componentes, como também, estas responsabilidades devem ser modificacdes leves, de maneira
gue o comportamento central do objeto permanega 0 mesmo.

Em atencdo a isso, ao se utilizar de um grande numero de decoradores, possivelmente
havera uma sobrecarga de complexidade. Contudo, se bem utilizado, Cuong Le (2016) defende
que este padrdo prové uma flexibilidade aprimorada em comparacdo a subclasses, visto que
evita herancas profundas e classes complicadas.

Por outro lado, existem pontos negativos, posto que, segundo Bilescu (2023), é possivel
que este padrdo possa ndo ser cabivel em toda e qualquer situacdo, uma vez que nem sempre é
possivel adicionar comportamentos que ndo dependam da ordem de composi¢cdo, como
também, quando for necessario fazer modificacGes internas de estado. Além disso, ao utilizar
de muitos decoradores, tem-se a possibilidade de adicionar complexidade nas interacGes das
classes, bem como, é tangivel ter um alto nivel de indirecéo, o0 que pode impactar em cenarios

criticos de performance.

5.2. Boas praticas na Unity

A Unity é muito popular entre os desenvolvedores de jogos, inclusive, uma de suas

provaveis causas de sua popularidade, € a facilidade de acesso, visto que a Unity proporciona

81

um mecanismo fécil de trabalhar. Assim sendo, este capitulo se dedica a explorar as boas
praticas identificadas na pesquisa previamente mencionada, no contexto da Unity, com o

objetivo de fornecer um guia para nortear desenvolvedores.

i. Torne toda cena executavel

De acordo com Tulleken (2016) e Juego (2021), no seu artigo “7 Ways to Keep Unity
Project Organized: Unity3d Best Practices”, ¢ uma boa préatica tornar toda cena executavel a
fim de evitar ter que trocar de cena para rodar o jogo e testar mais rapidamente.

Entretanto, segundo Tulleken (2016), isto pode ser complicado se existirem objetos que
persistem entre carregamentos de cena. Ele afirma que uma das maneiras de fazer isso € ao
utilizar de Singletons para objetos persistentes entre cenas que serdo carregados quando nao

estiverem presentes na cena (Tulleken, 2016).
Ii. Use prefabs frequentemente

Varios dos recursos de estudo utilizados neste trabalho mencionam o uso de prefab de
forma natural, visto que é um recurso bastante comum de ser utilizado na Unity, uma vez que
este mecanismo, como mencionado anteriormente, é utilizado para criar objetos pré-
configurados e reutilizaveis. Entretanto, pelo menos trés destes materiais reforcam o uso deste
mecanismo na Unity de forma frequente para facilitar a composicao de cena (Tulleken, 2016;
Bucher, 2017; Juego, 2021).

De acordo com Tulleken (2016), os Gnicos objetos de jogo em sua cena que ndo devem
ser prefabs (ou parte de um prefab) sdo as pastas. Mesmo objetos usados apenas uma vez devem
ser prefabs, uma vez que isso torna mais facil fazer alterac@es ja que torna o objeto isolado ao

contexto da cena.
lii. Use scriptable objects

Conforme a Unity Technologies 2023) define, ScriptableObject é uma classe
serializavel da Unity que permite armazenar grandes quantidades de dados compartilhados
independentemente de instancias de script. A figura 34 demonstra a visualizacdo de um

scriptable object no editor da Unity através do inspector.

82

Figura 34 — Visualizacdo de scriptable objects no editor.

T

Open

Fonte: Anuj Shrestha (2022).

A Unity Technologies (2023) incentiva o uso de scriptable objects para armazenar
valores ou para configurar objetos, ao inves de utilizar MonoBehaviours neste propdsito, pois
previne duplicacbes de dados, visto que as configuragcbes podem ser reutilizadas em outros
contextos.

Em consonancia com isso, Tulleken (2016) em seu artigo “50 Tips and Best Practices
for Unity (2016 Edition)” recomenda o uso de scriptable objects na Unity em varios cenarios,
como para guardar informacdes de level, para configurar objetos no inspector e para especializar
prefabs.

Além disso, scriptable objects tornam o editor mais versatil, podendo servir de objeto
intermediario para conectar componentes, além de poder ser utilizado de diversos modos. Um
exemplo disto € que os padrdes de projeto Command e Observer podem ser implementados em
conjunto com scriptable objects para prover uma forma mais conveniente de plugar comandos
ou eventos (observables) com o editor (Unity Technologies, 2023).

Inclusive, estas formas diversas sdo mais bem detalhadas no e-book “Create modular
game architecture in Unity with ScriptableObjects”, o qual mostra formas de modificar a
arquitetura de seu jogo para incluir scriptable objects a fim de tornar a arquitetura mais flexivel
e modular. Este seria 0 proximo padrdo a ser abordado na se¢do de padrBes de projeto,
entretanto devido ao corte necessario para definir o escopo deste trabalho - o qual foi
mencionado anteriormente - ndo foi possivel cobrir, visto que este padréo teve apenas trés

mencoes.

83

iv. Utilize o profiler para analisar possiveis problemas de performance

O profiler é uma ferramenta que vocé pode usar para obter informagdes de desempenho
sobre seu jogo na Unity. E possivel executa-lo no Editor para obter uma visao geral da alocago
de recursos engquanto desenvolve seu aplicativo, como também, pode conecta-lo a dispositivos
em sua rede ou dispositivos conectados a sua maquina para testar como seu aplicativo é
executado na plataforma de langamento pretendida.

Este retine e exibe dados sobre o desempenho do seu aplicativo em areas como CPU,
memoria, renderizador e audio. E uma ferramenta Gtil para identificar areas de melhoria de
desempenho em seu aplicativo e iterar nessas areas. E possivel identificar coisas como como
seu codigo, ativos, configuracbes de cena, renderizacdo de camera e configuracbes de
construcdo afetam o desempenho de seu aplicativo. Ele exibe os resultados em uma série de
gréficos, para que vocé possa visualizar onde ocorrem os picos de desempenho do seu aplicativo
(Unity Technologies, 2023).

Dito isto, diversas fontes encontradas na pesquisa incentivam o uso desta ferramenta
para analise (Kundurthy, 2016; Tulleken, 2016; Blafield, 2021) como também, Unity (2023)
também reforca ao afirmar: “O Unity Profiler fornece informacdes de desempenho sobre seu
aplicativo, mas ndo poderé ajuda-lo se vocé ndo o usar. Crie um perfil do seu projeto no inicio
do desenvolvimento, ndo apenas quando estiver proximo da entrega. Investigue falhas ou picos

assim que eles aparecerem”.
V. Revise as configuracGes de qualidade e otimizacéo

Ao compor uma cena na Unity, possivelmente existem objetos que ndo precisam estar
rodando na qualidade méaxima ou ndo precisam de solu¢des complexas e custosas, as quais
podem ser simplificadas. A falta desse tipo de ajuste pode estar desnecessariamente gastando
processamento ou memoria do seu jogo e estas configura¢bes improprias ou inadequadas,
também é considerada uma ma pratica para alguns desenvolvedores, conforme Borelli et al.
(2020). Dito isto, Kundunrthy (2016) recomenda a reviséo de algumas configuragdes, como o
uso de light mapping, occlusion culling, level of detail (LOD), batching e atlas texture.

Light mapping é uma técnica que utiliza dados de luz previamente calculados, os quais
sdo armazenados em uma cache, desta forma os dados séo apenas acessados em tempo de
execucdo ao inves de calculados em tempo de execucdo, trazendo melhorias impactantes se

comparadas ao uso de luz em tempo real (Kundunrthy, 2016).

84

Figura 35— Visualizacdo das configuracdes de luz, a qual indica o uso de light mapping e indica como pré-calcular

os dados de luz.

el

Object

WAl §ughe W Rendere

. ¥ Mesh Renderer
T htrr 4t

v

Fonte: Praveen Kundurthy (2016).

Occlusion culling é um recurso disponivel na Unity para otimizar a renderizacao de
objetos que ndo estdo sendo vistos pela cdmera ou quando ha objetos obstruindo a visibilidade,
desativando sua renderizacdo, desta forma, economiza drawcalls, ou seja, reduz o
processamento grafico, bem como, o uso de meméria (Kundunrthy, 2016).

Level of detail (LOD), é um recurso disponivel na Unity para trocar objetos que estéo
muito distante da cAmera para objetos mais simples, como por exemplo, uma arvore que esta
distante ndo precisa ser renderizada ou ter os vértices com a mesma qualidade que uma arvore
proxima a camera. Deste modo, a Unity permite configurar niveis de detalhe para cada objeto,
de forma que quando atinja o limiar, ela automaticamente substitua por objetos mais simples e,
de forma anéloga, o inverso. Ao aplicar este tipo de configuracdo pode reduzir a sobrecarga que
uma cena pode ter (Kundunrthy, 2016).

Batching (lote) combina objetos do jogo em uma Unica draw call. Vocé obtém os
melhores beneficios do processamento em lote ao planejar quais objetos serdo agrupados em
lote numa unica drawcall. A Unity, para 0os materiais iguais, automaticamente aplica o
agrupamento em lote, entretanto para alguns objetos é necessario atribuir manualmente se é um
batching estatico ou dindmico, ou seja, objetos que sdo estaticos ou que se movem,

respectivamente. Neste mesmo contexto, Kundunrthy (2016) ainda aponta que pode-se utilizar

85

de atlas texture, uma forma de combinar diversas texturas em uma Unica textura compactada e
otimizada que reduz o nimero de draw calls ao agrupar no mesmo lote.

Outro ponto valido para se atentar, segundo (Yin, ref. 18), é o tamanho das texturas (e
imagens) importadas no projeto, visto que possivelmente estas ndo precisam estarem sendo
renderizadas na qualidade maxima e a Unity oferece diferentes algoritmos de compressdo para
redimensionar as imagens de forma mais apropriada.

Somado a isso, Kundunrthy (2016) recomenda também habilitar a opcdo de
mipmapping, a qual reduz a resolucdo da imagem caso a imagem esteja distante da camera.

Por fim, Borelli (2020) e Aguiar (2023) reforgcam a reviséo da escolha dos colliders,
componentes de colisdo, visto que componentes complexos de colisdo usam de mais recursos
computacionais do que componentes simples e primitivos. Desta forma, € uma boa pratica
trocar os colliders complexos por colliders mais simples, se for possivel realizar a troca sem
impactar negativamente no game design do jogo.

Para complementar, pode-se visualizar na figura 36, a fim de ilustrar a diferenca, a qual

consiste num experimento realizado por Aguiar (2023).

Figura 36 — llustracdo da diferenca entre o uso de colliders primitivos e colliders complexos, como 0 mesh
collider.

Primitive Colliders Mesh Colliders

Fonte: Aguiar (2023).

vi. Considere utilizar do padrao object pool ao invés de criar objetos dinamicamente

E importante considerar o uso de object pool quando estiver instanciando objetos

dinamicamente, pois 0 uso deste padréo, pois apesar de introduzir uma complexidade, traz

86

vantagens em relacdo a fragmentagdo de memdria e a diminuicdo de esforco do Garbage
Collector, conforme discutido na se¢do padrdo object pool e pontuado por Aguiar (2023), assim
como, na documentacdo da Unity (Unity Technologies, ref. 11). Além disso, o Garbage
Collector fica mais lento a medida que o uso de memdria aumenta, visto que tem mais memoria
para escanear e liberar dados néo utilizados.

De forma complementar, pode-se visualizar - nas figuras 37 e 38 - uma comparacao,
com relacdo ao ndo uso e ao uso de object pool, respectivamente, do profiler da Unity -
ferramenta para analisar diversos aspectos do jogo como consumo de memdria, cpu, Garbage
Collector etc. Na parte superior da figura 37, é possivel observar picos de atuacdo do Garbage
Collector, bem como, € possivel observar na parte inferior a alocagdo dindmica de memoria,
mostrando diversas variacdes ao longo do tempo ao alocar a mesma. Em contrapartida, na parte
superior da figura 38, € possivel observar que ndo ha chamadas ao Garbage Collector, bem

como a alocacdo de memoria se mantém estavel.

Figura 37 — Visualizacdo do profiler da Unity, a qual demonstra as aloca¢@es para o Garbage Collector (ha parte
superior) e alocagdo de memdaria (na parte inferior).

Fonte: Aguiar (2023).

87

Figura 38 — Visualizacdo do profiler da Unity, a qual demonstra as alocacdes para 0 Garbage Collector (na parte

superior) e alocagdo de memoria (na parte inferior).

Fonte: Aguiar (2023).

vii. Realize cache de componentes e objetos

A Unity tem uma arquitetura baseada na composicdo de componentes em objetos de
jogo e é normal componentes precisarem acessar funcionalidades de outros componentes, visto
gue é necessario separar 0s dominios para aumentar o reuso destes, conforme discutido na se¢cdo
sobre 0 padrdo Component. Contudo, € importante guardar as referéncias destes componentes
(caso haja reuso na classe), pois realizar operacdes de busca toda vez que precisar utilizar de
uma funcionalidade de um componente terceiro desperdica esfor¢co da CPU. O mesmo se aplica
para objetos.

Aguiar (2023) faz uma comparacdo ao realizar e nao realizar cache de componentes e
objetos, enfatizando a relevancia de realizar cache, bem como, pontua a importancia de evitar
algumas chamadas built-in, como Transform.position que por baixo dos panos realiza uma
operacdo de GetComponent() para procurar o componente Transform, responsavel por guardar
dados de posicéo, rotacao e escala do objeto de jogo.

O mesmo autor menciona um teste realizado que move 800 caixas, as quais se movem
alterando a posicéo dos objetos no Update() via Transform.position, em um caso é realizado
cache e no outro ndo (Aguiar, 2023). Deste modo, ao comparar, percebe-se uma queda da média

de tempo gasto em um script de 30 ms para 23 ms. Ainda ho mesmo artigo, ele faz também

88

uma comparacdo com referéncia de objetos e mostra uma média de diferenca de 41 ms para 23
ms (Aguiar, 2023), a qual pode ser visualizada na figura 39.

Figura 39 — Visualizacdo do profiler da Unity, a qual demonstra o tempo gasto em scripting ao realizar e ndo

realizar cache de referéncias de componente.

Using GameObject.Find(...) Using Cached References

Fonte: Aguiar (2023).
viii. Cuidado ao manusear Materials

A Unity compartilha materiais entre os objetos a fim de economizar memdria e apenas
limpa os materiais que a propria IDE criou ou quando troca de cena, de acordo com a
documentacao oficial (Unity, 2023).

Entretanto, segundo a thread do Reddit “What are some bad practices to avoid when
using Unity?” isto ndo ¢ muito evidente e normalmente ¢ uma fonte de memory leak, visto que
chamadas para Renderer.material - forma de adquirir uma referéncia do material de um objeto
- cria uma copia do material compartilhado, a qual ndo é automaticamente limpa, desta forma,

€ necessario destruir o material ao destruir um objeto.

5.3. Mas praticas na Unity

De acordo com Ibrahim (2023) - Tech lead com anos de experiéncia em Unity, mesmo
que existam diversos recursos facilitadores - principalmente para prototipar - para fazer projetos

89

maiores que vao para producgdo, algumas destas préaticas facilitadoras podem rapidamente
causar desordem no codigo.

Desta forma, ao embarcar no mundo de desenvolvimento de jogos com a Unity, é
fundamental conhecer ndo apenas as melhores praticas, mas também as armadilhas que podem
surgir ao longo do caminho, a fim de evitar préticas que possam prejudicar a eficiéncia do

desenvolvimento, como também, a qualidade do jogo desenvolvido.
I. Falta de separacdo de conceitos

Um script MonoBehaviour que implementa, ao mesmo tempo, diferentes
responsabilidades, dificulta a evolucéo dos projetos, visto que ndo ha a separacdo dos conceitos
de forma efetiva.

Mesmo a Unity sendo baseada numa arquitetura de componentes (Padrdo Component),
conforme explicado anteriormente, a qual tenta separar diferentes dominios em componentes
isolados de modo que possam ser reaproveitados para compor entidades diferentes, cabe ao
programador utilizar do principio da responsabilidade unica para quebrar classes grandes em
classes menores de forma coesa. Ao criar classes que ndo separem bem seus conceitos, diversos
maodulos podem ficar acoplados, de forma que fique dificil reutilizar o mesmo componente para
outros contextos. Quando as responsabilidades estdo bem partidas, naturalmente havera uma
maior reusabilidade dos componentes.

Segundo Borelli et al. (2020) , um erro comum é criar uma classe associada ao Player
(jogador) que implementa toda légica, como ler inputs, determinar o estado do jogador, mover
0 jogador, entre outras. Existem formas de contornar estes acoplamentos, utilizando do padréo

Observer, Command, State e outros, como abordado na secdo de padrGes de projeto.
ii. Acoplamento de objetos via Inspector

Conforme apontado previamente, na Unity é possivel acoplar scripts (MonoBehaviour)
em outros objetos via editor, utilizando a ferramenta chamada de Inspector. MonoBehaviours
dos quais utilizam de variaveis publicas ou privadas com o atributo [SerializeField] permitem
que o editor crie um campo para associacdo de valores ou referéncias de outros objetos, apenas
arrastando ou configurando valores.

Esta pratica embora seja bastante Util para alguns contextos, quando mal utilizada, pode
levar a problemas de manutencdo: (1) Para o cddigo, ndo hé visibilidade do acoplamento, bem
como, ndo ha valor atribuido. S0 é possivel visualizar via Inspector ou ao quebrar em tempo de

execucdo. Por isso é necessario adicionar checagens para verificar se o valor foi carregado

90

apropriadamente (é possivel avisar, antes de executar utilizando realizando sobrecarga no
método OnValidate() que roda apenas no editor); (2) Se houver refatoracbes de nome de classe,
as referéncias podem ser perdidas, sendo necessario reatribuir manualmente.

Contudo, este € um tema polémico pois existem outros desenvolvedores que defendem
0 uso desta pratica, visto que seu custo-beneficio pode ser melhor que outras préaticas (uso do
GameObiject.Find() ou sistema de mensagens da Unity) em termos de performance, bem como,
é bastante conveniente. Além disso, ao utilizar com o sistema de prefabs ou script objects da
Unity, permite trocar de objeto, implementacdo, entre outras coisas, apenas com um simples
arrastar de objetos no Inspector, como também, as informacdes ficam salvas num arquivo
separado reutilizavel (.prefab ou .asset). Em uma pesquisa realizada por Borelli et al. (2020),
retornou-se 31% de respostas positivas, 34% negativas e 35% neutras quanto a esta pratica,

devido aos fatores anteriormente mencionados.
iii. Dependéncia de componente nao explicita

As classes do tipo MonoBehaviour ndo permitem construtores, ou seja, quando ha
dependéncia, ndo da para explicitar via construtor, algo bastante usual na programacéo
orientada a objetos. Desta forma, é comum acoplar objetos via editor ou procurar por referéncias
no método Awake() que é chamado ao carregar 0 componente.

Ao procurar por referéncias, é comum utilizar do método GetComponent() para retornar
uma referéncia de um componente, visto que esta forma é mais performatica pois nao percorre
toda hierarquia da cena, apenas percorre 0s componentes atrelados a entidade correspondente.

Entretanto, precisa que o programador tenha previamente configurado a entidade da
gual o componente esta anexado, caso contrario, pode-se retornar um componente ndo esperado
ou null, causando potenciais bugs. Isto pode ser evidenciado pela thread do Reddit “What are
some bad practices to avoid when using Unity?”, como também, ¢ mencionado por Tulleken
(2016).

Uma forma de explicitar esta dependéncia é utilizar do atributo [RequireComponent()],
pois este atributo avisa ao editor que ali ha uma dependéncia e que se ndo tiver atribuida, no
momento que for adicionado o componente em questdo, a dependéncia também é adicionada.
E valido ressaltar que a propria Unity em sua documentagio comenta que o uso deste atributo

pode ser Util para evitar erros de configuracdo no componente (Lin, 2021).

iv. Chamadas exaustivas em contexto critico de performance

91

Existem alguns recursos na Unity que facilitam determinadas coisas para o
programador, entretanto, alguns destes recursos, embora praticos sdo custosos (como por
exemplo, a referéncia estatica para a camera principal, Camera.main), e podem ser ainda mais
perigosos se executados num contexto critico, como por exemplo o método Update() que roda
a todo frame da aplicacéo.

Por isso, € importante evitar chamadas exaustivas em contextos criticos. Se o intuito for
utilizar dessas chamadas, € melhor chamar num contexto mais seguro, que execute apenas uma
vez, como por exemplo o método Awake() que executa uma Unica vez ao carregar um
componente (no mesmo exemplo de Camera.main, poderia guardar a referéncia, ao invés de
utilizar esta chamada em todo corpo do cddigo). No entanto, o ideal é utilizar de recursos mais
otimizados, se possivel que ndo sejam exaustivos, mas nem sempre é possivel, vide método
Instantiate(), unica forma de instanciar GameObijects.

Ellis (2019) define uma lista de chamadas exaustivas que devem ser evitadas em
contexto critico como: métodos relacionados a GetComponent, FindObjectOfType e
AddComponent; Meétodos baseados em strings como Invoke, SendMessage e Find;
Camera.main e comparacdes com null para objetos do tipo Unity.Object.

Além disso, é valido ressaltar que a instanciacao e destruicao de objetos via Instatiate()
e Destroy(), podem ocasionar pausas para o0 Garbage Collector entrar em agdo, bem como, sao
consideradas chamadas custosas, visto que 0s objetos de jogo podem ter diversos componentes
pesados, como por exemplo, componentes graficos e malhas de colisdo. Desta forma, é boa
pratica evitar estas chamadas em contextos criticos e a propria Unity Technologies reforca o
uso do padrao object pool para estes casos (Unity, 2023).

De forma complementar, a pesquisa de Borelli et al. (2020), reforca as afirmacdes
anteriores, bem como, também diz que célculos pesados de fisica ndo devem ser executados

durante o método Update(), seria mais apropriado de ser executado no FixedUpdate().
v. Estratégia de temporizacdo fragil

De acordo com Borelli et al. (2020) um erro tipico ¢ a atualizagdo do objeto do jogo em
uma atualizagdo baseada em quadros - por exemplo, um movimento fixo é realizado a cada
quadro - tornando a velocidade da animacdo dependente da taxa de quadros e, portanto,
variando em dispositivos diferentes, ou no mesmo dispositivo em contexto diferente.

Em outras palavras, quando um desenvolvedor prové uma movimentagdo via método
Update(), o qual roda em todo quadro da aplicagdo, mas ndo multiplica pela diferenca de tempo

entre os quadros, significa que a movimentacao fica dependente de quadros e ndo do tempo.

92

Desta forma, dispositivos com diferentes FPS (frames por segundo), atualizam a movimentagéo
diferentemente.

Como mencionado, uma forma simples € multiplicar pela diferenca de tempo, porém
também pode-se vincular o calculo aum método como o FixedUpdate() que sempre é executado

na mesma diferencga de tempo de forma fixa, isto €, ndo haveria varia¢Oes entre os quadros.
vi. Uso do any state no componente AnimationController

Conforme mencionado por Nardone et al. (2023), o uso da transicdo de estado any no
componente de animacdo da Unity, ou seja, 0 uso de uma transi¢cdo que pode vir de qualquer
estado dado uma determinada condi¢do em uma maquina de estados na animagcdo, é considerada
por alguns desenvolvedores como uma ma pratica, visto que pode ocasionar comportamentos
inesperados, pois € realizada a transicdo para o estado independente de qual estado esta,

inclusive, se mal configurado, pode transicionar para o prdprio estado vinculado ao any.
vii. Atribuir diretamente a velocidade do objeto e sobrescrever forga

Na Unity existe um componente chamado Rigidbody, o qual lida os célculos de fisica
da engine, ou seja, este € o0 componente que calcula gravidade, velocidade, forcas aplicadas e
etc (Unity Technologies, 2023).

Dito isto, ao utilizar deste componente para aplicar calculos fisicos num objeto de jogo
e alterar diretamente sua velocidade, ao invés de aplicar forca diretamente, pode ser considerado
uma ma pratica para alguns desenvolvedores de acordo com Borelli et al (2020) (a ndo ser que
seja intencional), pois alterar a velocidade diretamente implica em sobrescrever as forgas as
quais estdo sendo aplicadas no objeto no momento. Isto pode causar comportamentos

inesperados, como arremessos inesperados, atravessar paredes, entre outros.

6. Conclusao

Em dltima andlise, é essencial enfatizar a importancia da Unity como uma das
ferramentas mais populares no desenvolvimento de jogos digitais. 1sso se deve a uma série de
motivos, como sua licenca acessivel, suporte para véarias plataformas, uma comunidade ativa,
uma variedade de recursos que simplificam o processo de criacdo de jogos, entre outros
motivos.

Tal destaque é ainda mais notavel no contexto brasileiro, no qual o setor de jogos tem

experimentado um crescimento significativo, como também a ampla adogéo desta engine como

93

uma das principais ferramentas utilizadas na producdo de jogos no pais, segundo a pesquisa
realizada pela AbraGames, consoante demonstrado neste trabalho.

No entanto, como mencionado ao longo deste estudo, o desenvolvimento de jogos é uma
tarefa complexa e multidisciplinar, que envolve diversos elementos interdependentes. Um dos
principais desafios € manter o codigo do jogo eficiente, organizado e sustentavel ao longo do
tempo. A falta de estrutura adequada pode resultar no temido "codigo espaguete”, dificultando
a manutencdo e evolucdo do projeto.

Nesse contexto, os padrdes de projeto desempenham um papel fundamental no combate
a falta de modularizacdo, fornecendo solu¢Ges comprovadas aos problemas recorrentes de
cddigo e permitindo que os desenvolvedores criem sistemas mais flexiveis, escalaveis e de facil
manutencao.

Assim sendo, conduziu-se uma revisao da literatura de forma sistematica, a fim de obter
tanto a perspectiva de académicos quanto a perspectiva de individuos que utilizam a Unity no
cotidiano para obter os padrdes de projeto mais recomendados para esta, assim como as boas e
as mas praticas que circundam este entorno.

Em virtude de todo o exposto, esta monografia contribui para a disseminacdo de
diretrizes que auxiliam os desenvolvedores de jogos - os quais utilizam a plataforma Unity -
oferecendo orientagBes préaticas e formas de implementar solucGes mais eficazes, tornando o
desenvolvedor mais apto a identificar condi¢es problematicas, incluindo armadilhas comuns,
além de aprimorar o julgamento critico de quando estas solu¢des sdo apropriadas, visto que elas
podem introduzir complexidade.

Consequentemente, com esses conhecimentos em mé&os, os profissionais da area tém a
oportunidade de elevar a qualidade de seus jogos, contribuindo para o continuo crescimento e

sucesso da industria de jogos digitais no Brasil.

94

7. Referéncias

AKHTAR, S. Implementing a Command Design Pattern in Unity. Disponivel em:
https://faramira.com/implementing-a-command-design-pattern-in-unity/. Acesso em: 02, ago.,
2023.

AGUIAR, R. Unity 3D Best Practices: Physics. 2023. Disponivel em: https://x-
team.com/blog/unity-3d-best-practices-physics/. Acesso em: 20, ago., 2023.

AMAT, C. Everything You Need to Know About Singletons in Unity. 2020. Disponivel em:
https://www.youtube.com/watch?v=mpMO0C6quQjs. Acesso em: 19, ago., 2023.

BARBOSA, M. B.; REGO, A. B.; MEDEIROS, I. Developing games with object composition:
A case study using the Unity3D platform. Computing Track — Short Papers, 2015.

BILESCU, A. Investing in Code Quality: The Decorator Pattern and Its Role in Implementing
SOLID Principles. Disponivel em: https://www.codementor.io/@adrianbilescu/investing-in-
code-quality-the-decorator-pattern-and-its-role-in-implementing-solid-principles-24jb2i9ghf.
Acesso em: 05, set., 2023.

BLAFIELD, J. Optimizing mobile games in a Unity environment. 2021. 35 paginas.
Monografia (Curso de Information and Communications Technology) - JAMK University of

Applied Sciences, Jyvaskyla.

BORELLI, A.; NARDONE, V.; LUCCA, G. A.; CANFORA, G. PENTA, M. D. Detecting
Video Game-Specific Bad Smells in Unity Projects. MSR '20: Proceedings of the 17th

International Conference on Mining Software Repositories, p. 198 — 208, 2020.

BUCHER, N. Introducing Design Patterns and Best Practices in Unity. 2017. Disponivel em:
https://dl.acm.org/doi/10.1145/3077286.3077322. Acesso em: 08, ago., 2023.

CARTAXO, B.; PINTO, G.; SOARES, S. Rapid Reviews in Software Engineering.
Contemporary Empirical Methods in Software Engineering. Springer, p. 356 — 383, 2020.

DEALESSANDRI, M. What is the best game engine: is Unity right for you? Disponivel em:
https://www.gamesindustry.biz/what-is-the-best-game-engine-is-unity-the-right-game-engine-

for-you. Acesso em: 19, jun., 2023.

95

DILLET, R. Unity CEO says half of all games are built on Unity. 2018. Disponivel em:
https://techcrunch.com/2018/09/05/unity-ceo-says-half-of-all-games-are-built-on-unity/.
Acesso em: 22, set., 2023.

DRAKE, J. 19 Great Games That Use The Unity Game Engine. Disponivel em:
https://www.thegamer.com/unity-game-engine-great-games. Acesso em: 19, jun., 2023.

DORAN, J. P.; CASANOVA, M. Game development patterns and best practices: better
games, less hassle. Birmingham, Uk: Packt Publishing Ltd, 2017.

ELLIS, M. Unity Performance Best Practices with Rider, Part 1. 2019. Disponivel em:
https://blog.jetbrains.com/dotnet/2019/02/21/performance-indicators-unity-code-rider/.
Acesso em: 02, set., 2023.

FORTIM, I. Pesquisa da industria brasileira de games 2022. ABRAGAMES: Séao Paulo, pp.
68, 2022. Disponivel em: https://www.abragames.org/pesquisa-da-industria-brasileira-de-

games.html. Acesso em: 18, jun., 2023.

GALACH, P. How to implement State Machine in Unity. Disponivel em:
https://www.patrykgalach.com/2019/03/18/design-pattern-state-machine/. Acesso em: 01, set.,
2023.

GAMMA, E.; HELM, R.; JOHNSON, R.; VLISSIDES, J. Design Patterns: Abstraction and
Reuse of Object-Oriented Design. Lecture Notes in Computer Science, vol 707, p. 406 — 431,
1993.

GAMMA, E.; HELM, R.; JOHNSON, R.; VLISSIDES, J. Design patterns: elements of
reusable object-oriented software. Boston: Addison-Wesley, 1994.

GAROUSI, V.; FELDERER, M.; MANTYLA, M. V. Guidelines for including grey literature
and conducting multivocal literature reviews in software engineering Information and
Software Technology, p. 1 — 22, 2018.

HACHE, C. Top 7 Design Patterns Every Unity Game Developer Should Know. 2023.
Disponivel em: https://www.linkedin.com/pulse/top-7-design-patterns-every-unity-game-

developer-should-charles-hache/. Acesso em: 20, ago., 2023.

96

HUSSAIN, A.; SHAKEEL, H.; HUSSAIN, F.; UDDIN, N.; GHOURI, T. L. Unity Game
Development Engine: A Technical Survey. University of Sindh Journal of Information and
Communication Technology, v. 4 (2), p. 73 — 81, 2020.

IBRAHIM, M. Structuring Your Unity Code For Production - Important Best Practices. 2023.
Disponivel em: https://www.codementor.io/ @mody/structuring-your-unity-code-for-

production-important-best-practices-25bmix6f3qg. Acesso em: 16, ago., 2023.

JUEGO, S. 7 Ways to Keep Unity Project Organized: Unity3d Best Practices. Disponivel em:
https://www.juegostudio.com/blog/7-ways-to-keep-unity-project-organized-unity3d-best-
practices. Acesso em: 20, set., 2023.

KARPOVICH, A.; PYATKI, D. Improving the performance of unity 3d mobile games.

Electronic collected materials of xi junior researchers’ conference, p. 154 — 156, 2019.

KROGH-JACOBSEN, T. Level up your code with game programming patterns. Disponivel
em: https://blog.unity.com/games/level-up-your-code-with-game-programming-patterns.
Acesso em: 02, set., 2023.

KUNDURTHY, P. Software Performance Optimizations for Games: Best Practices. 2016.
Disponivel em: https://www.intel.com/content/www/us/en/developer/articles/technical/unity-
software-performance-optimizations-for-games-best-practices.html. Acesso em: 04, set., 2023.

LAFRITZ, J. Model-View-Controller Family. Disponivel em: https://blog.devgenius.io/model-
view-controller-family-3a0d869d81ea. Acesso em: 03, set., 2023.

LEVCHENKO, A. Unity ECS: How Does It Work and Why You Should Use It. Disponivel
em: https://www.visartech.com/blog/what-is-entity-component-system-ecs-and-how-to-

benefit-in-unity/. Acesso em: 19, jun., 2023.
LIN, W. Level up your code with game programming patterns. Unity, 2021.

MARTIN, R. C. Clean Architecture: A Craftsman's Guide to Software Structure and
Design. Pearson, 2017.

NARDONE, V.; MUSE, B.; ABIDI, M.; KHOMH, F.; DI PENTA, M. Video Game Bad
Smells: What They Are and How Developers Perceive Them. ACM Transactions on Software
Engineering and Methodology, p. 1 — 35, 2023.

97

NYSTROM, R. Game Programming Patterns. 2014.

REDDIT. "What are some bad practices to avoid when using Unity?". Disponivel em:
https://www.reddit.com/r/Unity3D/comments/9yg57s/what_are_some_bad_practices_to_avoi

d_when_using/. Acesso em: 02, set., 2023.

REFACTORING GURU. Factory Method. Disponivel em: https://refactoring.guru/design-
patterns/factory-method. Acesso em: 04, set., 2023.

RICHARDS, M.; FORD, N. Fundamentals of Software Architecture. O'Reilly Media, 2020.

SCHARDON, L. What is Unity? — A Guide for One of the Top Game Engines. Disponivel em:
https://gamedevacademy.org/what-is-unity/. Acesso em: 19, jun., 2023.

SHAH, V. Reasons Why Unity3D Is So Much Popular In The Gaming Industry. Disponivel
em: https://medium.com/@vivekshah.P/reasons-why-unity3d-is-so-much-popular-in-the-

gaming-industry-705898a2a04. Acesso em: 19, jun., 2023.

SUSCHEUSKI, D.; BURACHONAK, 1. Architectural design pattern entity-component-
system. Electronic collected materials of xi junior researchers’ conference, p. 144 — 146,

2019.

TULLEKEN, H. 0 Tips and Best Practices for Unity (2016 Edition). Disponivel em:
https://www.gamedeveloper.com/design/50-tips-and-best-practices-for-unity-2016-edition-.
Acesso em: 11, set., 2023.

UNITY. Control of an object's position through physics simulation. Disponivel em:

https://docs.unity3d.com/ScriptReference/Rigidbody.html. Acesso em: 02, set., 2023.

UNITY. Slider Scripting API. Disponivel em:
https://docs.unity3d.com/2022.2/Documentation/Manual/script-Slider.ntml. Acesso em: 03,
ago., 2023.

UNITY. Pool.ObjectPool_1 Class. A stack based IObjectPool<T0>. Disponivel em:
https://docs.unity3d.com/ScriptReference/Pool.ObjectPool_1.html. Acesso em: 15, set., 2023.

UNITY. Creating Components with Scripts. Disponivel em:
https://docs.unity3d.com/Manual/CreatingComponents.html. Acesso em: 26, ago., 2023.

98

WEIMANN, J. Unity Bots with State Machines - Extensible State Machine/FSM. Jason
Weimann. YouTube. https://www.youtube.com/watch?v=V75hgcsCGOM. Publicado em 26
de abril de 2020.

99

8. Anexo de Figuras

Figura A — Parte de uma implementacéo simples de FSM na Unity para controlar um zumbi.

using UnityEngine;
public class ZombieController_Unrefactored : MonoBehaviour

{
public enum ZombieStates
{
Attack,
Patrol,
Idle
}

[field: SerializeField] public Animator Animator { get; private set; }

[field: SerializeField] public EnemyDetector EnemyDetector { get; private set; }
[field: SerializeField] public MovementComponent MovementComponent {get;private set;}
[field: SerializeField] public float PatrolTime { get; private set; }

public ZombieStates currentState { get; private set; }
public Timer PatrolTimer { get; private set; }

private bool isFirstFrameOfPatrolState;
public void Update()
{
switch (currentState)
{
case ZombieStates.Attack:
Attack(); // T0-DO
break;
case ZombieStates.Patrol:
if (isFirstFrameOfPatrolState)
{
PatrolTimer.Start();
Animator.SetBool(nameof(PatrolState), true);
EnemyDetector.enabled = true;
isFirstFrameOfPatrolState = false;
}
Patrol();
break;
case ZombieStates.Idle:
Idle(); // T0-DO
break;
}
}
public void Awake()
g
PatrolTimer = new Timer(PatrolTime);
}
S s

Fonte: autoral.

100

Figura B — Continuagdo da Figura A, a qual mostra a implementacdo de uma FSM simples na Unity para controlar

um zumbi.
VASEY
public void Awake()
{
PatrolTimer = new Timer(PatrolTime);
}
private void Patrol()
{
if (PatrolTimer.HasFinishedTimer())
{
currentState = ZombieStates.Idle;
PatrolExit();
return;
}else if (EnemyDetector.HasDetectedEnemiesThisFrame())
{
currentState = ZombieStates.Idle;
PatrolExit();
return;
}
MovementComponent.RandomMove();
}
private void PatrolExit()
{
PatrolTimer.Reset();
Animator.SetBool(nameof(PatrolState), false);
EnemyDetector.enabled = false;
isFirstFrameOfPatrolState = true;
}
private void Idle()
{
// checar transicées de estado e acgédes...
}
private void Attack()
{
// checar transicées de estado e acédes...
}
}

Fonte: autoral.

101

Figura C — Definicéo da interface IState na Unity, a qual os estados devem implementar conforme padrédo State.

public interface IState

{

// executa logica ao entrar no estado

public void Enter();

// executa logica por frame, como também, logica de transi¢ao*
public void Update();

// executa ldgica ao sair do estado

public void Exit();

Fonte: autoral.

Figura D — Exemplo de implementacéo de uma State Machine conforme o padrédo State.

using System;

[Serializable]
public class StateMachine

{

//quarda estado atual
public IState CurrentState { get; private set; }

//Inicializa o estado
public void Initialize(IState startingState)

{
CurrentState = startingState;

startingState.Enter();
}

//troca de estado
public void ChangeState(IState nextState)

{
if (nextState == CurrentState)
return;
CurrentState.Exit();
CurrentState = nextState;
CurrentState.Enter();
I

//repasse para a chamada do Update do estado atual
public void Update()

{
if (CurrentState == null)
{
return;
b
CurrentState.Update();
b

Fonte: autoral.

102

103

Figura E — Implementacdo exemplo de um Zumbi Controller, responsavel apenas por definir os estados e

inicializa-los.

using UnityEngine;
public class ZombieController : MonoBehaviour

{

[field: SerializeField] public Animator Animator { get; private set; }
[field:SerializeField] public EnemyDetector EnemyDetector { get; private set; }

[field: SerializeField] public MovementComponent MovementComponent { get; private set; }
[field: SerializeField] public float PatrolTime { get; private set; }

public StateMachine StateMachine { get; private set; }
public PatrolState PatrolState { get; private set; }
public AttackState AttackState { get; private set; }
public IdleState IdleState { get; private set; }

private void Start()

1
//Inicializando varidveis
PatrolState = new PatrolState(this,EnemyDetector,MovementComponent,Animator,PatrolTime);
AttackState = new AttackState(); // pode ter outros parametros também
IdleState = new IdleState(); // pode ter outros parametros também
StateMachine = new StateMachine();
StateMachine.Initialize(IdleState);
}

private void Update() => StateMachine.Update();

Fonte: autoral.

Figura F — Implementacéo exemplo do estado de patrulha de um zumbi.

using UnityEngine;

public class PatrolState : IState

{

private ZombileController zombie;

private MovementComponent movementComponent;
private Animator animator;

private EnemyDetector enemyDetector;

public Timer PatrolTimer { get; private set; }

public Patrolstate(ZombieController zombile, EnemyDetector enemyDetector,
MovementComponent movementComponent, Animator animator, float patrolTime)

{
this.zomb1ie = zombie;
this.movementComponent = movementComponent;
this.animator = animator;
this.enemyDetector = enemyDetector;
PatrolTimer = new Timer(patrolTime);

}

public void Enter()

{
PatrolTimer.S5tart();
animator.SetBool({nameof(PatrolState),true);
enemyDetector.enabled = true;

I

public void Update()

{
if (enemyDetector.HasDetectedEnemiesThisFrame())
1

zombile.StateMachine.ChangeState(zombie.AttackState);
}
else iLf(PatrolTimer.HasFinishedTimer())
1
zombie.StateMachine.ChangeState(zombie.IdleState);

1
movementComponent.RandomMove();

I

public void Exit()

{
PatrolTimer.Reset();
animator.SetBool{nameof(PatrolState), false);
enemyDetector.enabled = false;

}

Fonte: autoral.

104

Figura G — Implementac&o da classe Transition, responsavel por combinar o par (Estado, Condi¢éo).

public class Transition

{
public Func<bool> Condition { get; }
public IState To { get; }
public Transition(IState to, Func<bool> condition)
{
To = to;
Condition = condition;
¥
}

Fonte: autoral.

105

106

Figura H — Adic&o de transicdes na classe StateMachine.

public class StateMachineWithTransition
{
public IState CurrentState { get; private set; }

private Dictionary<Type, List<Transition>> transitions = new Dictionary<Type, List<Transition>>
(); private List<Transition> currentTransitions = new List<Transition>();

private static List<Transition> EmptyTransitions = new List<Transition>(0);

public void Update()

{
var transition = GetTransition();
if (transition != null)
ChangeState(transition.To);
CurrentState.Update();
}
public void ChangeState(IState state)
{
if (state == CurrentState)
return;
CurrentState?.Exit();
CurrentState = state;
transitions.TryGetValue(CurrentState.GetType(), out currentTransitions);
if (currentTransitions == null)
currentTransitions = EmptyTransitions;
CurrentState.Enter();
}
public void AddTransition(IState from, IState to, Func<bool> predicate)
{
if (transitions.TryGetValue(from.GetType(), out var transitionList) == false)
{
transitionList = new List<Transition>();
transitions[from.GetType()] = transitionList;
}
transitionList.Add(new Transition(to, predicate));
}
private Transition GetTransition()
{
foreach (var transition in currentTransitions)
if (transition.Condition())
return transition;
return null;
}

Fonte: autoral.

107

Figura | — Definindo transicdes na classe Zombie Controller e adicionando-as a StateMachine.

public class ZombieControllerWithStateMachineTransition: MonoBehaviour
{
[field: SerializeField] public Animator Animator { get; private set; }
[field: SerializeField] public EnemyDetector EnemyDetector { get; private set; }
[field: SerializeField] public MovementComponent MovementComponent { get; private set; }
[field: SertializeField] public float PatrolTime { get; private set; }

public StateMachineWithTransition StateMachine { get; private set; }

private void Start()
{
//Iniciando varidveis
var PatrolState = new PatrolState Refactored(EnemyDetector, MovementComponent, Animator,
PatrolTime);
var AttackState = new AttackState(); // pode ter outros pardmetros também
var IdleState = new IdleState(); // pode ter outros pardmetros também
StateMachine = new StateMachineWithTransition();
//definindo fungdes de transigdo
Func<bool> IsPatrolTimeOver() => () => PatrolState.PatrolTimer.HasFinishedTimer();
Func<bool> IsEnemyOnRange() => () == EnemyDetector.HasDetectedEnemiesThisFrame();
/e
// definindo transigdes
StateMachine.AddTransition(PatrolState, IdleState, IsPatrolTimeOver());
StateMachine.AddTransition(PatrolState, AttackState, IsEnemyOnRange());
oy
StateMachine.ChangeState(IdleState);
¥
private void Update() => StateMachine.Update();

Fonte: autoral.

108

Figura J — Removendo transi¢es de estado e dependéncia do Zombie Controller no estado de patrulha visto

anteriormente.

public class PatrolState_Refactored : IState

{

private MovementComponent movementComponent;

private Animator animator;
private EnemyDetector enemyDetector;

public Timer PatrolTimer { get; private set; }

public PatrolState_Refactored(EnemyDetector enemyDetector,
MovementComponent movementComponent, Animator animator, float patrolTime)

{
this.movementComponent = movementComponent;
this.animator = animator;
this.enemyDetector = enemyDetector;
PatrolTimer = new Timer{patrolTime);

}

public void Enter()

{
PatrolTimer.Start(};
animator.SetBool(nameof(PatrolState), true);
enemyDetector.enabled = true;

}

public void Update()

{
movementComponent.RandomMove();

}

public void Exit()

{
PatrolTimer.Reset(};
animator.SetBool(nameof(PatrolState), false);
enemyDetector.enabled = false;

}

Fonte: autoral.

109

Figura K — Codigo de um modelo que representa a vida de um item ou personagem na Unity.

public class Health: MonoBehaviour

i
public event Action HealthChanged;
private const int minHealth = 8;
private const int maxHealth = 188;

private int currentHealth;

public int CurrentHealth { get == currentHealth: set == current-
Health = value: }

public int MinHealth => minHealth:

public int MaxHealth => maxHealth:

public void Increment{int amount)

{
currentHealth += amount;
currentHealth = Mathf.Clamp{currentHealth, minHealth, max-
Health);
UpdateHealth();
i
public void Decrement(int amount)
{
currentHealth -= amount;
currentHealth = Mathf.Clamp({currentHealth, minHealth, max-
Health):
UpdateHealth():
'
public wvoid Restore()
{
currentHealth = maxHealth;
UpdateHealth()
'
public wvoid UpdateHealthi)
i
HealthChanged? . Invoke() ;
t

Fonte: Lin (2021).

110

Figura L — Exemplo de implementacdo concreta de produto e fabrica na Unity.

public class ProductA : MonoBehaviour, IProduct
1
[SerializeField] private string productMame = "ProductA”;

i

public string ProductName { get == productName; set == productName
= value ; }

private ParticleSystem particleSystem;

public void Initialize()

{
// any unigue logic to this product
gameObject.name = productName;

particleSystem = GetComponentInChildren<ParticleSystem=();
particleSystem?.Stop();
particleSystem?.Play();

public class ConcreteFactoryA : Factory

{
[SerializeField] private ProductA productPrefab;

public override IProduct GetProduct(Vector3 position)
{
/{ create a Prefab instance and get the product component
GameObject instance = Instantiate(productPrefab.gameObject,
position, Quaternion.identity);
ProductA newProduct = instance.GetComponent<ProductA=();

/{ each product contains its own logic
newProduct.Initialize();

return newProduct;

Fonte: (Unity, 2023).

111

Figura M — Exemplo de implementacéo do padrdo Object Pool na Unity, utilizando de biblioteca pronta feita pela

propria Unity.

using UnityEngine.Popol;

public class RevisedGun : MonoBehaviour

1

// stack-based ObjectPool available with Unity 2821 and above
private I0ObjectPool<RevisedProjectile> objectPool;

/4 throw an exception if we try to return an existing item, already
in the pool

[SerializeField] private bool collectionCheck = true;

// extra options to control the pool capacity and maximum size

[SerializeField] private int defaultCapacity = 28:

[SerializeField] private int maxSize = 188;

private void Awake()

{
objectPool = new ObjectPool<RevisedProjectile=(CreateProjec-
tile,
OnGetFromPool, OnReleaseToPool, OnDestroyPooledObject,
collectionCheck, defaultCapacity, maxSize);
!

/4 invoked when creating an item to populate the object pool
private RevisedProjectile CreateProjectile()
i
RevisedProjectile projectileInstance = Instantiate(projec-
tilePrefab)
projectileInstance.0bjectPool = objectPool;
return projectileInstance;

H

// invoked when returning an item to the object pool
private void OnReleaseToPool({RevisedProjectile pooledObject)
i

pooledObject . gamedbject.SetActive(false);
!

/4 invoked when retrieving the next item from the ocbject pool
private void OnGetFromPool(RevisedProjectile pooledObject)
i
pooledObject.gamedbject.SetActive(true);
!

/4 invoked when we exceed the maximum number of pooled items (i.e.
destroy the pooled object)
private void OnDestroyPooledObject({RevisedProjectile pooledObject)

i
Destroy(pooledObject.gamedbject) ;
}
private void FixedUpdate()
i
}

Fonte: (Unity, 2023).

112

Figura N — Exemplo de melhoria a Figura M, ao utilizar de generics, bem como, aplicar o padrdo Factory em

conjunto com o padrdo Object Pool na Unity.

ObjectPoolFactory<T> : MonoBehaviour, IObjectPool<T>
T : MonoBehaviour, IPoolableProduct<T>

[SerializeField]
T productPrefab;

I0bjectPool<T> objectPool;

[SerializeField] collectionCheck =

[SerializeField] defaultCapacity = 20;
[SerializeField] maxSize = 100;

O

objectPool = ObjectPool<T>(CreateProduct,OnGetFromPool, OnReleaseToPool,
OnDestroyPooledObject,collectionCheck, defaultCapacity, maxSize);

IPoolableProduct<T> T : MonoBehaviour
IObjectPool<T> ObjectPool {

ReleaseToPool();

Fonte: autoral.

Figura O — Codigo em ¢ + + para exemplificar uma classe monolitica antes de aplicar o padrdo Component.

void Bjorn::update(World& world, Graphics& graphics)

{

// Apply user dinput to hero's velocity.
switch (Controller::getJoystickDirection())
{
case DIR_LEFT:
velocity_ —-= WALK_ACCELERATION,
break;

case DIR_RIGHT:
velocity_ += WALK_ACCELERATION;
break;
b

// Modify position by velocity.
x_ += velocity_;
world.resolveCollision(volume_, x_, y_, velocity_);

// Draw the appropriate sprite.
Sprite* sprite = &spriteStand_;
if (velocity_ < @)
{

sprite = &spriteWalkLeft_;

h
else if (velocity_ > Q)

{
sprite = &spriteWalkRight_;
t

graphics.draw(*sprite, x_, y_);

Fonte: (Nystrom, 2014)

113

Figura P — Extracdo de componentes da classe monolitica anteriormente demonstrada, em ¢ + +.

class Bjorn

(

public:
int velocity;
int x, y;

void update(World& world, Graphics& graphics)

{
input_.update(*this);
physics_.update(*this, world);
graphics_.update(*this, graphics);

b

private:
InputComponent input_;
PhysicsComponent physics_;
GraphicsComponent graphics_;

I g

Fonte: (Nystrom, 2014)

114

Figura Q — Implementacdo exemplo de um componente de movimentacdo na Unity.

iour, IMoveable

[serializeField]
moveSpeed;

y rb;
direction;

Awake()
rb = GetComponent<Rigidbody=();
rb.constraints = RigidbodyConstraints.FreezeRotation;
rb.useGravity = ;
FixedUpdate()
direction *= moveSpeed * Time.fixedDeltaTime;
rb.MovePosition(rb.position + direction);
Move(Vector3 direction)
direction.y = 8;
if(direction.magnitude = 1)

{

direction.Nermalize();
.direction = direction;

RandomMove()

Move(GetRandomDirection());

r3 s5_direction;
Vector3 GetRandomDirection()

Fonte: autoral.

115

116

Figura R — Interface IArrow, utilizada de exemplo na Unity para implementar uma interface de um componente

do padréo Decorator na Unity.

: IBuffable

IArrow
bowDamage] ;

Setup(Vector3 arrowDirectien,

GetDamage();

GetSpeed();
3 GetDirection();

Fonte: autoral.

Figura S — Classe Arrow, utilizada de exemplo na Unity para implementar um componente concreto de interface

do padréo Decorator na Unity.

IArrow

t bowDamage;

SerializeField]
ri ¢ C arrowDamage = 5;
[SerializeField]
ivat bat speed = 10;
Vector3 direction;
Arrow({ speed, t arrowDamage)

Arrow(Arrow arrowToClone)
IArrow Interface
GetDamage(){ return arrowDamage+bowDamage; }

Vector3 GetDirection() { return direction; }
.speed; }

GetSpeed() { return
1t bowDamage)

Setup(Vector3 arrowDirection,

= arrowDirection;

.direction
bowDamage;

.bowDamage

Fonte: autoral.

Figura T — Classe ArrowDecorator, utilizada de exemplo na Unity para implementar uma classe base de
decoracéo do padrdo Decorator.

IronArrow : ArrowDecorator

bonusDamage;

IronArrow(bonusDamage, IArrow arrow) : (arrow)

.bonusDamage = bonusDamage;

GetDamage()

return .GetDamage() + bonusDamage,

Fonte: autoral.

Figura U — Classe IronArrow, utilizada de exemplo na Unity para implementar uma classe concreta de
decoracéo do padréo Decorator.

IronArrow : ArrowDecora
bonusDamage;
IronArrow(bonusDamage, IArTow arrow) : (arrow)

.bonusDamage = bonusDamage;

GetDamage()

return .GetDamage() + bonusDamage;

Fonte: autoral.

117

118

Figura V — Classe LighterArrow, utilizada de exemplo na Unity para implementar uma classe concreta de

decoracéo do padrdo Decorator.

LighterArrow : Arr

bonusSpeed;
Lighte i bonusSpeed, IArrow arrow) : (arrow)

.bonusSpeed = bonusSpeed;

GetSpeed()

return .GetSpeed() + bonusSpeed;

Fonte: autoral.

Figura X — Classe ArrowFactory, utilizada de exemplo na Unity para fabricar componentes decorados do padrao
Decorator.

ArrowFactory : BuffManager<IArrow=

[SerializeField]
ArrowBehaviour arrowBehaviour;

IArrow CreateArrow(Transform parent,
Tr 'm arrowdrigin,
Vector3 direction,
bowDamage = 8)

newArrowBehaviour = Instantiate(arrowBehaviour,
arrowlrigin.positien,
arrowBehaviour. transform.rotation,
parent);

newArrowBehaviour.CurrentArrow.Setup(direction, bowDamage);
foreach (buff in BufflList)
{

arrowBuffed = buff.ApplyBuff(newArrowBehaviour.Currentirrow);
newArrowBehaviour.CurrentArrow = arrowBuffed;

return newArrowBehaviour.CurrentArrow;

Fonte: autoral.

119

Figura Y — Método ApplyBuff(), utilizado de exemplo na Unity para retornar uma decoragdo aplicada a um
componente do padrdo Decorator.

IArrow ApplyBuff(IArrow buffReceiver)

return IronArrow(bonusDamage, buffReceiver);

Fonte: autoral.

	d85b14f2c3565746a0e11a596ab4b6df1d7758cefe865c8cf40cf54e7344a097.pdf
	d85b14f2c3565746a0e11a596ab4b6df1d7758cefe865c8cf40cf54e7344a097.pdf
	d85b14f2c3565746a0e11a596ab4b6df1d7758cefe865c8cf40cf54e7344a097.pdf
	d85b14f2c3565746a0e11a596ab4b6df1d7758cefe865c8cf40cf54e7344a097.pdf

