Grace: um simulador de MIPS para estudo da Arquitetura de
Computadores

Luan Silva de Sena Advincula

!Centro de Informética — Universidade Federal de Pernambuco (UFPE)
Recife — PE — Brasil

lssa@cin.ufpe.br

Abstract. In the Hardware Infrastructure course, essential components for com-
puter operation are covered, including processing units, memory, and storage.
The interface between hardware and software is provided by the Instruction Set
Architecture (ISA), commonly known as the instruction set in Portuguese, using
an assembly language implementation generated by high-level language com-
pilers. This language uses mnemonics that abstract the binary representation
of instructions and data, making CPU programming easier and more intuitive.
In the course, students develop Assembly code to understand how instructions
are executed by the processor and how compilers generate this language from
higher-level code. Tools such as instruction set simulators are used to read the
code and generate outputs based on it, displaying data in registers for correct-
ness verification. These tools generally include their own text editor and other
graphical elements to guide the user. Since there are few similar tools, many
of them are not cross-platform and are restricted to specific operating systems,
an open-source, educational-purpose Assembly interpreter in a command-line
format was developed. The goal is to make it cross-platform and easy to use
without the need for a specific text editor. This will facilitate the development of
activities in the Hardware Infrastructure course and will be available for free to
any interested user.

Resumo. Na disciplina de Infraestrutura de Hardware, sdo abordados os com-
ponentes essenciais para o funcionamento do computador, incluindo unidades
de processamento, memoria e armazenamento. A interface entre hardware e
software se dd pela Instruction Set Architecture (ISA) - conhecida como re-
pertorio de instrucoes em portugués, usando uma implementacdo em forma de
linguagem de montagem (Assembly) gerada por compiladores de linguagens de
programagdo de nivel mais alto. Essa linguagem usa mnemonicos que abs-
traem a representacdo bindria das instrucoes e de dados, de forma que seja
mais fdcil e intuitivo a programagdo da CPU. Os alunos da disciplina desen-
volvem cédigos em Assembly para entender como as instrugoes sdo executadas
pelo processador, e consequentemente a forma que os compiladores geram essa
linguagem a partir de cédigos de nivel superior. Ferramentas como simulado-
res de repertorio de instrucoes sdo usadas para ler o codigo e gerar saidas com
base nele, exibindo os dados nos registradores para verificacdo de correcdo.
Geralmente essas ferramentas incluem um editor de texto proprio, além de ou-
tros elementos grdficos para guiar o usudrio. Dado que existem poucas fer-
ramentas similares, muitas delas ndo sdo multiplataforma e estdo restritas a

sistemas operacionais especificos, foi desenvolvido um interpretador de Assem-
bly em formato de linha de comando de codigo aberto e propdsito educacional.
O objetivo é tornd-lo multiplataforma e fdcil de usar, sem a necessidade de usar
um editor de texto especifico. Isso facilitard o desenvolvimento das atividades
da disciplina de Infraestrutura de Hardware e estard disponivel gratuitamente
para qualquer usudrio interessado.

1. Introducao

Um computador € formado por duas partes que trabalham entre si para funcionar perfeita-
mente: software e hardware. Olhando mais detalhadamente para o hardware de um com-
putador, temos varios componentes que desempenham seu papel para o funcionamento
em conjunto, dentre eles a unidade de processamento ou CPU. A CPU é o componente
principal que executa continuamente trés acdes: busca as instru¢cdes na memoria, deco-
difica essas e por fim as executa [Patterson 2005]. Esse componente € responsavel por
executar as instrucdes presentes nos softwares que utilizamos no dia a dia para fazermos
nossos deveres e também desfrutarmos de lazer.

Para que isto ocorra, € definido o repertdrio de instrugdes que cada CPU entende,
cujo o termo em inglés € Instruction Set Architecture ou ISA. Um destes repertorios €
visto em sala de aula na disciplina de Infraestrutura de Hardware do curso de Ciéncia
da Computacdo do Centro de Informética da UFPE, a arquitetura MIPS. O repertério da
arquitetura MIPS € baseado em registradores de 32 bits [Patterson 2005]. Por motivos
académicos o repertdrio tem como um de seus usos ensinar os alunos como este € outros
repertdrios funcionam fazendo a ponte entre hardware e software.

Atualmente a disciplina tem uma atividade para os alunos codificarem instrugdes
deste repertério para ver de forma ilustrativa o funcionamento destas, aprendendo o
fluxo de comandos e o que a unidade de processamento faz a partir do codigo de alto
nivel desenvolvido por programadores. A atividade é feita por um software, chamado
MARS - MIPS Assembler and Runtime Simulator [Pete Sanderson 2006], que interpreta
as instrucdes e simula o comportamento da unidade de processamento.

Contudo, o MARS possui certos pontos a melhorar, como por exemplo a
atualizacdo de sua interface grafica que tende a ser mais compativel com o sistema ope-
racional Windows, além do fato de possuir pouca documentagdo [Pete Sanderson 2006].
Ferramentas andlogas sdo escassas e também apresentam uma dependéncia forte em pla-
taformas e sistemas operacionais especificos, implicando de certa forma na obrigatorie-
dade do uso desta ferramenta. Além disso, a maioria das ferramentas ndo sdo mantidas e
atualizadas de forma adequada, podendo sofrer com a falta de performance.

Dito isto, o simulador construido no formato de interface de linha de comando
Grace propOe-se a ser uma ferramenta alternativa para o uso dos alunos da disciplina.
Grace € uma alternatica para os alunos que sao afetados pelo problema da ferramenta atual
nao ser multiplataforma ou que simplesmente queiram usar uma ferramenta diferente para
executar as atividades da disciplina.

Adicionalmente a ferramenta proposta € uma solu¢do pensada para ser mantida e
atualizada com mais frequéncia e usando as tecnologias mais recentes para sofrer menos

com a perda de performance inerente aos softwares com o passar do tempo. Sendo estas
acoes fruto de uma das premissas que a ferramenta possui que € ter o cddigo aberto e
auditdvel para assim ter a capacidade de ser mantida e atualizada com mais frequéncia.

2. Contexto

A ISA MIPS € uma arquitetura de conjunto de instru¢des que define como um processador
MIPS executa instrucdes de maquina. E uma arquitetura RISC (Reduced Instruction Set
Computer) que tem o intuito de simplificar a execucdo de instru¢des, minimizando o
numero de ciclos de relégio necessarios para executar cada instrugao.

MIPS ¢€ caracterizada por uma ampla variedade de instru¢des que podem ser exe-
cutadas em paralelo por um processador multiciclo em pipeline, além de um conjunto
de registradores e formatos de instrucdes bem definidos. Além disso € frequentemente
utilizada em sistemas embarcados, como roteadores, dispositivos mdveis e sistemas de
controle industrial, bem como em outros sistemas de alta performance.

Um simulador de MIPS € um software que permite que desenvolvedores ou es-
tudantes de computagdo possam criar, depurar e testar programas escritos em linguagem
assembly do MIPS sem a necessidade de um hardware real MIPS. Ele emula o compor-
tamento do hardware MIPS e fornece uma interface grifica do usudrio para que o pro-
gramador possa executar o codigo, visualizar os registradores do processador, o conteido
da memodria e as interrupg¢des do sistema. Além disso, o simulador permite que o progra-
mador execute o codigo passo a passo, para que ele possa verificar a 16gica do programa,
monitorar as varidveis e depurar problemas, como loops infinitos ou instrucdes invalidas.

Existem diversos simuladores de MIPS disponiveis na web, alguns deles sdo gra-
tuitos e de codigo aberto, enquanto outros sdo pagos e proprietiarios. Tomando como
exemplo o MARS, o simulador usado atualmente na disciplina, sua estrutura consiste de
um editor de texto integrado junto ao compilador de Assembly, onde existem elementos
grificos que ajudam o usudrio a entender o funcionamento de um processador como por
exemplo a lista de registradores e seus valores atuais [Pete Sanderson 2006].

Uma interface de linha de comando (CLI) é uma forma de interacdo com um
computador ou sistema operacional por meio de texto digitado em uma linha de comando
[Sampath et al. 2021]. Ao contrdrio das interfaces graficas de usuério (GUI), que utilizam
menus, icones e janelas, a CLI € uma interface de texto simples que aceita comandos e
responde com saidas de texto. A CLI é uma forma poderosa e flexivel de interagir com
sistemas operacionais e aplicativos de software, pois permite que os usudrios realizem
tarefas complexas por meio de uma série de comandos simples. Usudrios avancados e
programadores muitas vezes preferem a CLI porque ela pode ser mais eficiente e mais
rapida do que a GUI para tarefas especificas.

Algumas das vantagens da CLI incluem comandos precisos e personalizados, seu
maior controle e flexibilidade para tarefas complexas e a reducdo da dependéncia de in-
terfaces graficas complexas. Em resumo, a CLI é uma interface de texto simples que
permite que os usudrios interajam com computadores e sistemas operacionais por meio
de comandos digitados em uma linha de comando. E uma ferramenta poderosa e flexivel

para usudrios avancados e programadores, permitindo que eles realizem tarefas comple-
xas de forma eficiente e personalizada.

3. Motivacao

O mote para a concep¢do deste trabalho, foi levada em consideragdao a aplicabilidade
atual da ferramenta MARS na conducao das atividades relacionadas ao entendimento da
linguagem de montagem Assembly e como o processador interpreta essa linguagem para
gerar a manipulacao dos dados em memoria.

A ferramenta atende as demandas basicas requeridas pela disciplina de Infraestru-
tura de Hardware, o sistema € bastante completo e poderoso com funcionalidades bastante
pertinentes como por exemplo a lista interativa dos valores armazenados nos registradores
[Pete Sanderson 2006].

Por ser um sistema desenvolvido por meio da linguagem de programacdo Java em
sua versao 1.4.2 em meados dos anos 2000 [Pete Sanderson 2006], mais precisamente em
2006 por Kenneth Vollmar e Pete Sanderson da Missouri State University, e também pelo
fato de ter sido fruto de uma pesquisa académica, o sistema carece de manutencao para
evitar obsoléncia inerente aos softwares feitos com tecnologias mais antigas. Um dos
principais pontos que Grace pretende trazer como diferencial para 0o MARS € justamente
a possibilidade de ser desenvolvidas novas funcionalidades por meio de contribuicdes
caracteristicas de um software livre.

A Figura 1 mostra a interface grafica do MARS, com os elementos principais da
ferramenta, como a tabela de valores dos registradores, junto a informacdes do programa
Assembly em execucdo e a tabela de enderecos de memoria.

File Edit Run Settings Tools Help

NERERE NEEEIERR Q)[0] "moewamxtommry,

[Registrs | Coproc | Coproco |
N Vaie

= ame | Number

VIData [7] Text

Value (+0) Value (+4) Value (+3) Value (+c)
000000000/ 0x00000000] __0x00000000 __0x00000000)
000000000 0x00000000] __0x00000000] __0x00000000)
000000000/ 0x00000000] _0x00000000] 0x00000000)
000000000 0x00000000] __0x00000000] __0x00000000)
000000000/ 0x00000000] _0x00000000] 0x00000000)
000000000 0x00000000] __0x00000000] __0x00000000)
000000000/ 0x00000000] _0x00000000] 0x00000000)
000000000 0x00000000] __0x00000000] __0x00000000)
000000000/ 0x00000000] _0x00000000] 0x00000000)
000000000 0x00000000] __0x00000000] __0x00000000)
000000000/ 0x00000000] _0x00000000] 0x00000000)
000000000 0x00000000] __0x00000000] __0x00000000] __0x00000000)
0x00000000] __0x00000000] __0x00000000] __0x00000000]__0x00000000)

e[ata)_|~| I v Clascn

001 x00000000]
%00000000] __0x00000000]

D

K

Figura 1. Interface do programa MARS

A interface grafica do MARS € bastante completa, mostrando com simplicidade

vdrios elementos Uteis para o usudrio no momento da execugdo do programa. Contudo,
a ferramenta poderia ter um fluxo de execug@o mais 4gil em questdo de interface, onde
atualmente um usudrio por exemplo ao querer visualizar os enderecos de memoria teria
que clicar na tela vdrias vezes no botao com a seta verde abaixo da tabela.

Por outro lado, uma ferramenta que usa de uma interface de linha de comando,
por mais que tenha que se ter um estudo mais elaborado de seus comandos, é poten-
cialmente mais 4gil na hora de apresentar os dados do programa para o usudrio, sendo
essa maior flexibilidade de execugao de ferramenta um dos pontos a serem alcangados no
desenvolvimento da solug¢do proposta.

4. Grace

O sistema proposto para servir como alternativa a ferramenta MARS recebeu o nome de
”Grace”, em homenagem a cientista da computacdo Grace Hopper. Hopper € lembrada
pelo pioneirismo em criar as primeiras linguagens de programacdo para computadores,
que utilizavam comandos em ingl€s para tornar a programac¢do mais acessivel e compre-
ensivel [de Meira 2023].

A tecnologia empregada na construgdo desse sistema € o Java na sua versdo 17,
juntamente com o Maven como gerenciador de dependéncias e a biblioteca PicoCLI
para estabelecer a interface de linha de comando. PicoCLI é uma biblioteca Java com
a premissa de simplificar o desenvolvimento de interfaces de linha de comando, com ele-
mentos variados que sdo uteis para o programador, como por exemplo suporte a POSIX,
GNU e MS-DOS, estas sendo normas para compatibilidade entre sistemas operacionais,
e também conta com um esquema de colorizacao da saida dos comandos [Popma].

Com o objetivo de oferecer uma experiéncia de uso simplificada, o programa foi
desenvolvido como uma Interface de Linha de Comando (CLI) que pode ser executada in-
dependentemente do sistema operacional, gracas a portabilidade proporcionada pela Java
Virtual Machine (JVM). O comando basico para uso da ferramenta na linha de comando
€ o grace caminho-arquivo.asm, onde passamos como argumento do comando o caminho
do arquivo de instrugdes escolhido para ser simulado, com um exemplo de arquivo ilus-
trado na Figura 2. Atualmente, o nimero de linhas de c6digo que o sistema possui é de
cerca de 250, nimero que aumentard com a implementacao de funcionalidades que ainda
serdo construidas.

Essa abordagem permite principalmente que estudantes de Infraestrutura de Hard-
ware, ao se depararem com a necessidade de compreender e simular instru¢des de lingua-
gem assembly MIPS, possam utilizar o simulador sem preocupacdes com incompatibi-
lidades de plataforma. No cerne da sua funcionalidade, o simulador Grace oferece uma
plataforma para a execug¢do de conjuntos de instrucdes MIPS. Existem duas possibilidades
de execuc¢do atualmente na ferramenta:

e primeiramente, temos a execu¢do interativa, habilitada por padrdo pela ferra-
menta, onde cada instrug¢do € lida e executada uma a uma, com o resultado da

addi %$t1, 4
lw $t2, 100(%$t1)

label:
add $t0, 5t@, $tl
bne $t@, $t2, label
sw $t1, 100(%$t0)

Figura 2. Exemplo de instrugoes MIPS

instrucdo em memoria e nos registradores sendo escrito no terminal pelas funcio-
nalidades da PicoCLI, seguindo o exemplo da Figura 3;

* alternativamente, ao usar a flag —run-all junto ao comando bésico, a ferramenta ira
ser executada de uma vez, gerando assim um arquivo de registro com cada passo
executado pela leitura das instrucoes.

Instrugdo lida: addi $t1, 4
Registradores

Nome Valor Armazenado Ultimo uso em instrugdo

—_— Program Counter: 0x00000001
| $zero | 8 H]
| $at | 2
| $vO |
| $vl |
| $a0 |
| $al |
| $a2 |
| $a3 |
| $to |
| $tl |
| $t2 |
| $t3 |
| st4 |
| $t5 |
| $t6 |
| st7 |
| $s0 |
| |
I |
| |
I |
| |
I |
| |
I |
| |
I |
| |
I |
E
|

Meméria usada: 0%

Pilha: 0%

$s51
$s2
$s3
$s4
$s5
$s6
$s7
$t8
$t9
$k0
$k1
$gp
$sp
$tp
$ra |

Figura 3. Exemplo de saida de dados da ferramenta Grace

Outras opcdes de comando que podem ser adicionadas ao comando bésico sio -D
(ou —decimal) e -B (ou —binary), que se tratam de op¢des para mudar a base numérica
que os dados armazenados nos registradores € na memoria sido apresentados para a base
decimal ou para a base bindria, respectivamente.

A ferramenta ainda estd em fase de desenvolvimento, logo apenas um subconjunto
de instrucdes presentes na arquitetura MIPS pode ser lida com sucesso. Sao as seguintes
instrucdes aritméticas: add, addi, sub, subi; instrucdes de transferéncia de dados: Iw, sw;
e instrucoes de jump: j, jal, beq e bne [Gasparetto], fantando serem impfementadas vinte
e quatro instrucdes, além de treze chamadas de sistema que simulam o comportamento de
dispositivos de entrada e saida para o usudrio e sete diretivas usadas para armazenar dados
na memoria. Vale ressaltar ainda a possibilidade de ser desenvolvida por qualquer pessoa
que sinta a vontade de contribuir para o projeto, abrindo assim um leque de possibilidades,
como por exemplo dar suporte a repertérios de instru¢cdes mais complexos que sigam o
padrao CISC [Patterson 2005].

A ferramenta faz o parsing, ou seja, a anélise sintatica de cada linha por vez, onde
serd lido o mnemonico da instrug¢do para a sua correta execucao, guardando a ordem da
instrucao no arquivo para o caso de haver instrucdes de jump ou de branching que possam
alterar a ordem de execu¢do do arquivo. Apds essa fase, caso ndo ocorram erros de
execugdo como por exemplo uma instrucao invalida e caso o programa esteja executando
na sua forma padrdo, um snapshot das informagdes de registradores e da memdria € escrito
na tela do terminal, onde a execucao fica parada até que o usudrio aperte o botao Enter do
teclado.

O tratamento de erros da aplicacdo € simples, ao capturar uma instrucao invalida,
0 programa para a execugdo e apresenta em tela a mensagem de erro "Nao foi possivel
simular o arquivo”’com uma mensagem personalizada com a instru¢do que ocasionou o
erro e a linha correspondente a esta no arquivo.

Um ponto a se colocar sobre a ferramenta Grace € que pelo fato de ser uma
CLI, possui independéncia de um editor de texto padrdo, onde fica totalmente a cargo
do usudrio a escolha do editor de texto de sua preferéncia para escrever as representacoes
das instru¢des Assembly a serem executadas pelo usudrio.

Ao executar o conjunto de instrug¢des desejado, o usudrio também pode escolher o
tipo de saida e relatorio de corretude que pretende ter: o sistema foi projetado tanto para
servir como um programa interativo ao longo da execucao das instru¢des mostrando em
linha de comando todos os dados disponiveis, seja de valores armazenados em registra-
dores ou em memoria, que foram atualizados pelas instru¢gdes, como pode também ser
executado de uma vez e mostrado o passo a passo feito pelas instrucdes por meio de um
arquivo de registro.

5. Estudo Comparativo

Ap6s o desenvolvimento da aplicacdo, seguindo um subconjunto de funcionalidades em
relacdo ao que foi proposto inicialmente, para fins de pesquisa académica e validacdo da
ferramenta Grace como alternativa ao MARS, foi usada a metodologia de estudo compa-
rativo entre estas. Foram levados em consideracdo os seguintes critérios: flexibilidade,
portabilidade e manutencdo.

Antes de dar inicio ao estudo em si, serd descrito cada critério e sua aplicabilidade
na comparacao entre 0 MARS e Grace. Em relagdo ao quesito flexibilidade e manutencao,
o objetivo € comparar os detalhes técnicos de cada tecnologia por meio de testes de en-

trada e saida, a manutencdo tem as particularidades de mensurar se o cédigo pode ser
mantido, estendido e melhorado continuamente.

O objeto dos testes serd naturalmente um arquivo de instru¢des Assembly (de-
clarado com a extensao .asm) com instrucdes que estejam contempladas no Grace para
manter a paridade de funcionalidades. A portabilidade diz respeito ao qudo disponivel
uma tecnologia é em quesito de plataformas. Ou seja, se a tecnologia funciona plena-
mente independente de sistemas operacionais.

5.1. Flexibilidade

Dando inicio ao estudo comparativo entre as duas ferramentas, talvez o principal ponto
avaliador entre estas seja a flexibilidade. Ao analisar o MARS, € nitida a presenca de
elementos variados na interface grafica. Pode-se apontar como exemplos a tela apresen-
tando o contetdo dos trinta e dois registradores que sdo atualizados de forma interativa a
medida que as instrugdes sdo lidas, as palavras de 32 bits armazenadas em memoria, além
de um editor de texto embutido.

Ja a solugdo Grace trabalha de uma forma diferente. A ferramenta Grace, por ser
uma CLI, ndo possui uma interface gréfica tdo apurada, porém a execugao do sistema
como um todo é mais performética por ndo necessitar de carregar os elementos em uma
aplicagdo de interface gréfica no sistema.

Somado a esse ponto a ferramenta apresenta tanto a possibilidade de saida intera-
tiva no terminal com o usudrio controlando a leitura e execu¢do de cada instrucao, com
uma ilustragdo dos dados tao explicativa quanto a prépria interface grafica do MARS.

Existe também a possibilidade de geracdo de um arquivo de registros, este que
apresenta tanto os valores em base hexadecimal, como também em base decimal e bindria.
Com disso, Grace nos apresenta alguns elementos do proprio MARS, este que serviu de
inspirag@o para a construcdo do novo sistema, combinando-se também novos elementos
visando assim um uso mais refinado e préatico deste tipo de ferramenta.

Tomando como norte os pontos levantados acima, Grace e MARS indiscutivel-
mente cumprem o papel de executar codigo Assembly e apresentar ao usudrio o contetdo
em memoria ap0s a leitura das instru¢des. Levando-se em conta a versatilidade de Grace
em mostrar estes mesmos resultados, € possivel afirmar que esta ferramenta leva vantagem
em relacdo a ferramenta MARS no critério Flexibilidade.

5.2. Portabilidade

A portabilidade, como mencionado anteriormente, faz referéncia ao quao disponivel em
multiplas plataformas um sistema estd. Quando observamos a ferramenta MARS, ela
funciona plenamente nos sistemas operacionais Linux, Windows e MacOs pelo fato do
executavel gerado funcione de maneira que qualquer sistema que tenha a JVM (Java Vir-
tual Machine) instalada consiga usar a ferramenta.

Analogamente, a ferramenta Grace por ter sido desenvolvida em Java e executada
como jar, possui a mesma caracteristica da ferramenta MARS, sendo assim duas ferra-
mentas que compartilham do mesmo nivel de portabilidade.

5.3. Manutencao

No critério que diz respeito a manutenibilidade, os argumentos sdo mais favoraveis para
Grace. Pelo fato da ferramenta MARS ter tido sua dltima atualizacdo em 2016, o grau de
manutencdo da ferramenta € bastante aquém do necessdrio para qualquer tipo de software.

Mesmo sendo bastante funcional, o MARS carece de atualizacdes de inter-
face e de algumas funcionalidades que poderiam ser otimizadas, como por exemplo a
documentagao explicativa do MARS que na verdade consiste em um resumo do artigo
escrito por seus criadores. Além disto, ainda vale ressaltar o fato do cédigo-fonte ndo
estar acessivel para outros desenvolvedores.

Ja a ferramenta Grace tem como uma das premissas ser uma ferramenta open-
source que possa ser mantida e estendida por varios programadores que tenham interesse
para tal. O cddigo serd disponibilizado em um repositério Git [Conservancy | hospedado
no gerenciador de codigo-fonte e controle de versao Github.

Tabela 1. Avaliacao das ferramentas MARS e Grace.

Nome | Flexibilidade | Portabilidade | Manuten¢ao
Grace X X X
MARS X

6. Conclusao

Como Grace Hopper outrora foi referéncia na constru¢ao dos primeiros compiladores
que serviram de rocha matriz para as linguagens de programacdo modernas, a ferramenta
construida que leva seu nome propde acima de tudo praticidade no decorrer do aprendi-
zado dos alunos da disciplina de Infraestrutura de Hardware.

Possuindo como referéncia a Tabela 1, onde € mostrada a avaliacao das ferramen-
tas MARS e Grace, resultado do estudo comparativo entre as duas, podemos perceber
que as ferramentas sdo bastante parecidas em diversos aspectos, com seus pontos fortes e
fracos.

A Interface de Linha de Comando Grace cumpre o seu papel proposto na
motivacao, atingindo assim os objetivos estabelecidos de fornecer aos alunos de Infra-
estrutura de Hardware uma alternativa de software simulador de Assembly MIPS mais
moderna a nivel de implementa¢do de cédigo e com funcionalidades distintas do seu con-
corrente MARS.

6.1. Trabalhos futuros

Quando se vé o cendrio atual da ferramenta, a primeira coisa a se pensar como trabalho
futuro seria fazer as instrucoes presentes no repertério MIPS que ainda ndo foram imple-
mentadas, como também refinar a saida de dados de acordo com a utilizagdo dos usudrios
finais do sistema.

Vale destacar também a possibilidade de disponibilizar a ferramenta num termi-
nal integrado a uma aplicagdo web, ficando assim disponivel para qualquer usuério com
acesso a Internet.

Ao se ter um panorama futuro dos rumos que a ferramenta pode tomar, por sua
destacada caracteristica open-source, Grace pode ser cada vez mais melhorado e exten-
dido a medida que for necessario por seus usudrios, entusiastas do open-source € a quem
mais interessar sobre essa drea da computacdo que estabelece a sua base.

Referéncias

Conservancy, S. F. Git. Disponivel em https://git-scm.com/. https://git-scm.com/.
de Meira, R. C. C. (2023). Grace Hopper.

Gasparetto. Mips Instruction Set.

Patterson, D. (2005). Organizagcdo e projeto de computadores: a interface hard-
ware/software.

Pete Sanderson, K. V. (2006). MARS: An Education-Oriented MIPS Assembly Language
Simulator.

Popma, R. PicoCLI Disponivel em https://picocli.info/.

Sampath, H., Merrick, A., and Macvean, A. (2021). Accessibility of command line inter-
faces. In Proceedings of the 2021 CHI Conference on Human Factors in Computing
Systems, CHI *21, New York, NY, USA. Association for Computing Machinery.

