| [
e
e~

®!

ey

UNIVERSIDADE FEREDAL DE PERNAMBUCO
CENTRO DE INFORMATICA - CIN
PROGRAMA DE POS-GRADUACAO EM CIENCIA DA COMPUTACAO

JOSE MATHEUS LACERDA BARBOSA

IMPROVING BINARY CLASSIFIERS ON IMBALANCED DATA USING LARGE
LANGUAGE MODELS

Recife
2023

JOSE MATHEUS LACERDA BARBOSA

IMPROVING BINARY CLASSIFIERS ON IMBALANCED DATA USING LARGE
LANGUAGE MODELS

Trabalho apresentado ao Programa de Pods-
graduacao em Ciéncia da Computacao do Centro
de Informéatica da Universidade Federal de Per-
nambuco, como requisito parcial para obtencao
do titulo de Mestre em Ciéncia da Computacao.

Area de Concentracio: Banco de Dados
Orientador: Luciano de Andrade Barbosa

Recife
2023

Catalogacao na fonte
Bibliotecaria Monick Raquel Silvestre da S. Portes, CRB4-1217

B238i Barbosa, José Matheus Lacerda
Improving binary classifiers on imbalanced data using large language
models / José Matheus Lacerda Barbosa. — 2023.
53 f..il., fig., tab.

Orientador: Luciano de Andrade Barbosa.

Dissertacdo (Mestrado) — Universidade Federal de Pernambuco. Cin,
Ciéncia da Computacéo, Recife, 2023.

Inclui referéncias.

1. Banco de dados. 2. Aprendizado por inducéo. |. Barbosa, Luciano de
Andrade (orientador). Il. Titulo.

025.04 CDD (23. ed.) UFPE - CCEN 2023-173

JOSE MATHEUS LACERDA BARBOSA

“IMPROVING BINARY CLASSIFIERS ON IMBALANCED DATA USING LARGE
LANGUAGE MODELS”"

Dissertagao de Mestrado apresentada ao Pro-
grama de Poés-Graduagao em Ciéncia da Com-
putacao da Universidade Federal de Pernambuco,
como requisito parcial para a obtencao do titulo
de Mestre em Ciéncia da Computagao.

Aprovado em: 12/07/2023.

Orientador: Luciano de Andrade Barbosa

BANCA EXAMINADORA

Prof. Dr. Tsang Ing Ren
Centro de Informatica / UFPE

Prof. Dr. Claudio de Souza Baptista
Departamento de Sistemas e Computagao / UFCG

Prof. Dr. Luciano de Andrade Barbosa
Centro de Informatica / UFPE

I want to dedicate this work to my family and friends to thank them for their help and

patience through this journey.

ACKNOWLEDGEMENTS

Firstly, I would like to thank Professor Dr. Luciano de Andrade Barbosa for all the
guidance and teachings that made the completion of this work possible.

To my friends and family for their understanding and patience during important mo-
ments when [couldn’t be present.

I would like to thank CAPES for the financial support, which was undoubtedly a key

factor in the completion of this work.

ABSTRACT

In the realm of real-world classification tasks, the challenge of imbalanced data fre-
quently hinders the efficacy of machine learning models in performing accurate binary
classifications. To address this issue directly, this study introduces "BALANCE," a novel
framework designed to rectify data imbalance in text datasets for binary classification.
BALANCE leverages prompt-based learning to efficiently generate synthetic data that
mimics the characteristics of the minority class. This is achieved by optimizing the de-
coding parameters of a specific natural language generation model and tailoring text gen-
eration to the minority class. A customized prompt is subsequently employed to generate
instances using the fine-tuned language model. We conducted a comprehensive experimen-
tal evaluation using three imbalanced real-world text classification datasets. The findings
of our study reveal that BALANCE consistently outperforms existing methods for data
creation and imbalance correction in the majority of scenarios. These results underscore
the high quality of the generated instances and the potential of BALANCE to significantly

enhance the performance of text classification models when dealing with imbalanced data.

Keywords: data augmentation; prompt-based learning; data balaning; large language

model.

RESUMO

No ambito das tarefas de classificagao do mundo real, o desafio de dados desequili-
brados frequentemente prejudica a eficacia dos modelos de aprendizado de méaquina na
realizacao de classificagoes bindarias precisas. Para abordar esse problema diretamente, este
estudo introduz "BALANCE", um novo framework projetado para corrigir o desequilibrio
de dados em conjuntos de dados de texto para classificagao binaria. O BALANCE utiliza
a aprendizagem baseada em prompt para gerar eficientemente dados sintéticos que imitam
as caracteristicas da classe minoritaria. Isso é alcancado otimizando os parametros de de-
codificacao de um modelo de geracao de linguagem natural especifico, adaptando a geracao
de texto a classe minoritaria. Em seguida, é empregado um prompt personalizado para
gerar instancias usando o modelo de linguagem ajustado. Realizamos uma avaliacao ex-
perimental abrangente usando trés conjuntos de dados de classificacao de texto do mundo
real desequilibrados. Os resultados de nosso estudo revelam que o BALANCE supera con-
sistentemente os métodos existentes para criagao de dados e correcao de desequilibrio na
maioria dos cenarios. Esses resultados destacam a alta qualidade das instancias geradas
e o potencial do BALANCE para melhorar significativamente o desempenho de modelos

de classificacao de texto ao lidar com dados desequilibrados.

Palavras-chaves: aumento de dados; aprendizado por indugao; balanceamento de dados;

grandes modelos de linguagem.

LIST OF FIGURES

[Figure 1 — 'Transtormer Architecture. 16
(Figure 2 — Example of the function of the Attention Mechanism. 17
[Figure 3 — Example of the prompt with few-shot learning.| 20
[Figure 4 — Example of Greedy Search.| 23
[Figure 5 — Example of Beam Search.| 0. 24
[Figure 6 — Beam Search X Human|. 25
(Figure 7 — Sampling Search| 25
[Figure 8 — Temperature - Sampling Search| 25
(Figure 9 — "Top-K Samplingl o 26
(Figure 10 — Top-P Sampling|. 27
[Figure 11 — Methodology proposed by the authors in (RUPAPARA et al, 2021). . . . 28
[Figure 12 — Model proposed by the authors in (SHAIKH et al), 2021) to deal with |
| imbalanced datal o 30
[Figure 13 — The pipeline of EPiIDA. 32
(Figure 14 — Architecture of BALANCE| 33

[Figure 15 — Projections of the BERT vectors using t-SNE.| 43

LIST OF TABLES

[Table 1 — Examples of prompts used for Zero-shot learning. Adapted from (MENG |

| et al 2022).. . . . L. 20
(Table 2 — Examples of augmented data using the method EDA.| 30
[Table 3 — Examples of augmented data using the method AEDA.| 31
[lTable 4 — An example of the process of augmentation done by EPiDA.| 32

[Table 5 — Prompt used to generate a new sentence. The language model generates [

| a new sentence after the last ”"(label of minority class):“ text| 35

[Table 6 — Datasets used in our experiments and the number of positive and neg- |

I afive Tnstances]. 37
(Table 7 — Distribution of the classes of each set, training and testing.| 38
Mahe® — Disinhoh : - [] - o iheh l
I studiedl)o 39
wble 9 — Distributi A 1t] \nd] 1
| studied)o 39
[Table 10 — Distribution of the classes of each set, training and testing (PHEME |
| Dataset).| 39
able 11 — Number of instances for each emotion in Tweet FEmotion Dataset.). . . . 39
[Table 12 — Distribution of the Tweet Emotion Dataset among different datasets.| . . 40
[lable 13 — Distribution of the 'Tweet Emotion Dataset after the process to turn into |
| a binary dataset.|. oo o 40
[Table 14 — Values of parameters atter LLM tuning.| 41

[Table 15 — Values of Precision-Recall AUC on the three datasets. Comparing dif- |

| ferent data augmentation strategies. The values within parentheses rep- |

| resent the differences or improvements observed when using the "BAL- |
| ANCE" method compared to the baseline model (The three first lines).[. 42
[Table 16 — Values of Precision-Recall AUC for the Random Forest (bests perfor- |

| mances on BALANCE) model trained using and not the classification |

| filter in the text generation step to build the final training data.| 44
[lable 17 — Similarity between the original datasets and the generated datasets.,| . . 44
[Table 18 — Examples of generated instances for the Clickbait dataset.|. 44
[Table 19 — Examples ot generated instances for the PHEME dataset.| 45
[Table 20 — Examples of generated instances for the Tweet Emotion dataset.| 45

[Table 21 — Examples of generated instances for the Tweet Emotion dataset.| 45

CONTENTS

1 INTRODUCTIONI 12
1.1 PROBLEM AND MOTIVATION 12
. 13
1.3 WORK ORGANIZATION 13
2 FUNDAMENTALSI. e e e e e e e 15
2.1 TRANSFORMERSI 15
17

23 PROMPT-BASED [EARNING 18
2.3.1 Few-shot Learning| 19
(2.3.2 Zero-shot Learning| Lo 19
24 [MBALANCED DATAl 20
2.4.1 Data-level Approaches|, 21
[2.4.1.1 Oversampling| 21
[2.4.1.2 Undersamplingl 21
2.41.3 Hybrid methods 21
2.4.2 Algorithm-level Approaches 21
(2.4.3 Hybrid Approaches| 22
........................... 22
2.5.1 Greedy Search| 22
29,2 Beam Searchl 23
[2.9.3 Sampling|. 24
2.5.4 Top-K Sampling| 26
[2.5.5 Top-P Sampling (Nucleus)| 26
3 RELATED WORKI e e e e e e e 28

3.1 [RADITIONAL APPROACHES

6.3 AITEMPT OF USE BALANCE FOR SELF- TRAINING]

REFERENCES| o o s 48

12

1 INTRODUCTION

1.1 PROBLEM AND MOTIVATION

Imbalanced data is a common issue in real-world classification tasks (SHAIKH et al., 2021)).
This problem arises in various applications, including the healthcare sector, oil spill de-
tection, credit card fraud detection, cultural modeling, network intrusion detection, text
categorization, and more (PATEL et al) 2020). Imbalanced data poses a challenge as it
skews the model’s focus toward the majority class, potentially affecting the model’s per-
formance on the minority class due to the insufficient number of training instances for
accurate predictions.

Various strategies have been developed to tackle this issue (LIN; CHEN; QI, 2020)). There
are three main approaches to addressing data imbalance problems (KAUR; PANNU; MALHI,
2019)): data-level, algorithm-level, and hybrid approaches.

Data-level approaches modify the training set distribution to increase or decrease the
class imbalance. Examples of methods that are considered data-level approaches are Over-
sampling and Undersampling. Oversampling (SOMTE (CHAWLA et al|, 2002)) increases
the number of instances of the minority class until it reaches the number of examples in
the majority class. Duplication of samples is done using random sampling to augment
the training data(LIN; CHEN; QI, [2020). This method of Oversampling is prone to deal
with overfitting (LIN; CHEN; QI, 2020). Undersampling is used to decrease the number of
instances of the majority class until it equals the number of examples in the minority
class (LIN; CHEN; QI, 2020). This method randomly selects and deletes the majority of
class instances from the training set. Removing instances can cause a loss of essential
information for the classifier (LIN; CHEN; QI, 2020).

Algorithm-based strategies adjust the learning or decision process to increase the im-
portance of the minority class by, for instance, adding a penalty to examples in the
majority class. In this direction, (CHEN; BREIMAN] [2004) present a modified Random
Forest algorithm called Balanced Random Forest. This modification is supposed to do
precisely what is algorithm-based, balancing the importance of the classes, mainly toward
the minority class, and learning the weights for all points on the dataset, which will help
the classification task.

The combination of these two previous approaches is called hybrid strategies. Here,
a data-level approach modifies the training set distribution to learn the importance of
the classes during the training process, which happens in the algorithm-level approaches.
Examples of hybrid methods are described in (SEIFFERT et al., 2010) and (HIDO; KASHIMA;
TAKAHASHI, |2009).

Previous work has demonstrated that such techniques are helpful for tabular and

13

image data (KOZIARSKI, |2021; RUPAPARA et al., 2021)). Different from these data types,
text can contain grammatical structure, context, and semantic information, making it
more challenging to deal with. Particularly for text, data augmentation methods have
been proposed to generate synthetic examples that can be used to balance the training
set (BAYER; KAUFHOLD; REUTER), |2022) by applying transformations to the original text
instances. These strategies can replace words in the original text with their synonyms,
add or remove random words, or use back-to-back translation (WEL ZOU, 2019a; KARIMI,;
ROSSI; PRATI, 2021} |ZHAO et al.,|2022; LIU et al., 2020)). Because it is challenging to develop
generalized rules for language transformation, universal data augmentation techniques in
Natural Language Processing are a big challenge in this field (WEL; ZOU| 2019b).

We propose in this work to use Prompt-based learning (PBL) (LIU et all 2021)) to
improve binary text classifiers on imbalanced data. PBL leverages pre-trained language
models trained on a large volume of data to perform a downstream task. It does so by
passing task-tailored instructions to the model, which as a result, generates text accord-
ingly. Our solution, BALANCE, applies PBL to generate synthetic text instances of the
minority class to balance the training data. To do so, BALANCE first tunes the decoder
hyper-parameters of a given pretrained language model to maximize the generation of mi-
nority class instances. Then, it uses the optimized language model to generate minority
class examples, which are added to the training data if considered relevant by a filtering
classifier.

We have performed an extensive experimental evaluation on three real-world datasets
of binary text classification: clickbait detection, rumor discovery, and sentiment analysis.
The results show that BALANCE outperforms previous imbalanced and data augmen-
tation strategies in two of the datasets, and the BERT model fine-tuned on the original

imbalanced data achieved the best result in the third scenario dataset.

1.2 RESEARCH QUESTIONS
In this work, we answer the following research questions:

1. Generating high-quality synthetic data from Large Language Models. Can Large

Language Models produce high-quality synthetic text instances of a given class?

2. Enhancing Model’s Performance by Balancing Datasets. Can the synthetic text
instances of the minority class generated by LLMs improve the performance of text

classifiers on imbalanced data?

1.3 WORK ORGANIZATION

The remainder of this work is organized as:

14

Chapter 2] presents the basics concepts, terminologies, and researches that helped to ac-
complish this work. Works and researchers in the fields of Transformers, Natural Language
Processing, Natural Language Generation, Text Generation, Prompt-based Learning, and
methods to deal with Imbalanced Data.

Chapter [3| discusses the directly related work, what are the state-of-the-art in the field
that we are working on. We presented the current methods used to deal with imbalanced
text data and the task of text classification. We discuss Traditional Methods used in the
literature to tackle the imbalanced problem in text datasets as well as the Augmentation
Methods, which are the newest methods applied to text datasets.

Chapter [presents our method, BALANCE, its architecture, and its workflow. In
this chapter, we show how BALANCE works, why and all the methodologies used in
the construction of this idea. From the initial model training, going through the Large
Language Model (LLM) tuning, and finally explaining the Text Generation stage.

Chapter [5| shows the setup of experiments, presents the datasets used in this section,
the augmentation strategies compared during the experimentation, and the metrics used
to compare the methods to be fair when showing the results.

Chapter [0] discusses the contributions, and limitations, and presents some ideas and

approaches to work on in the future to improve more and more this job.

15

2 FUNDAMENTALS

This chapter introduces the fundamental concepts utilized throughout this work. Section
2.1 introduces the Transformer Architecture and the models that employ this architecture.
Section 2.2 explores the concepts of Text Generation and Natural Language Generation.
Section 2.3 delves into the concept of Prompt-based Learning and its various iterations.
Finally, in Section 2.4 at the conclusion of this chapter, we will examine methods for

addressing imbalanced data.

2.1 TRANSFORMERS

Transformer is a network architecture proposed in (VASWANI et al., |2017) based on the
attention mechanism. This architecture was proposed as an alternative to sequence-based
ones such as recurrence and convolution.

Similar to previous most competitive neural models, used for sequence transduction,
that have an encoder-decoder structure, here these mechanisms are also used. Figure
shows the Transformers’ architecture.

The original Transformer model is a stack of 6 layers. The output of layer [is the
input of layer [+ 1 until the original input pass through all layers and the final prediction
is reached. There is a 6-layer encoder stack on the left and a 6-layer decoder stack on the
right.

Before the whole process, the inputs are embedded to turn the words into vectors
that the network understands, in the Input Embedding stage. In the Positional Encoding
step is added the information of the relative position of each word to its respective vector
embedding.

On the encoder side, on the left side in Figure[l] the input goes through an Attention
sub-layer and a Feed-Forward Network sub-layer. The Attention layer is used to calculate
the relation between a current word against all other words in the same sentence, including
this current word, this process is called Self-Attention. In the Transformers’ architecture,
all words in the sentence are passed together, which is different from a sequence-to-
sequence model, thus, we need several blocks to do the calculating of Attention, and in
this architecture, we call it Multi-Head Attention.

The process of Self-Attention will generate vectors to represent the words and their
relationships with the other words in the same input, thus turning this information di-
gestible to the next encoder o decoder block, we use a Feed-Forward Network.

These two components (Multi-Head Attention and Feed-Forward Network) are used
in both, the encoder and decoder sides. On the decoder side, on the right side in FigurdI]
we have a different component, the Masked Multi-Head Attention layer is supposed to

16

Figure 1 — Transformer Architecture.

Cutput
Probabilities

1

| Softmax |
| Linear]
p ™
[(Add & Norm Je~
Feed
Forward
f 3 F
p , N | | (Add & Norm Je=y
Add & Norm) Multi-Head
Feed Attention
Forward

) f N x

[Add & Norm Je—,

M
Add & Norm] P
Multi-Head Multi-Head
Attention Attention
I T)

\ y \ f—
Positional B @ Positional
Encoding]] Encoding

Input Output
Embedding Embedding
Inputs Outpuls

(shifted right)

Source: (]VASWANI et al.|, |2017D

mask the sentence and present only one word at a time to the decode, which will turn the
model capable of learning what is the next word in the sentence and to correct the model
if the next word predicted is wrong of the real next word in the sentence.

To predict this next word, at the end of the architecture, we have Linear and Softmax
layers which are used to do that, predict what word has the major odd of being the next
word in the sentence.

Thus, in this architecture, there is no Recurrent Neural Network, Convolutions Neural

Network, or Long-Sort Term Memory, which is the purpose of the Transformer, to replace

17

these old methods.

These previous methods were replaced specifically by the Attention Mechanism. The
Attention Mechanism is a "word-to-word" operation. It will find how each word is related
to all other words in a sequence, including the word being analyzed itself.

Figure [2| shows an example of the function of the Attention Mechanism for the phrase:
"The cat sat on the mat." Attention executes dot products between word vectors and
determines the strongest relationships of a word among all the other words. This procedure
will provide a deeper relationship between words and consequently, will produce better

results.

Figure 2 — Example of the function of the Attention Mechanism.

[rﬁ — the
cat —— i
sat — — sat
on on
the the
mat mat

Source: (ROTHMAN, [2021)

Many models use the Transformer architecture, like BERT (DEVLIN et al., 2018)), GPT
(RADFORD et al., 2018), GPT-2 (RADFORD et al., 2019a)), GPT-3 (BROWN et al., 2020)), T5
(RAFFEL et al., |2020)), and other models.

2.2 TEXT GENERATION

Natural Language Generation (NLG) is a sub-field of Natural Language Processing (NLP),
which deals with building software systems that can generate coherent text and readable
(CELIKYILMAZ; CLARK; GAO, 2020).

Commonly, Natural Language Generation is considered a general term, which encom-
passes a wide range of tasks that take input (e.g., a structures input like a dataset or a
table, a natural language prompt, or even an image) and output a sequence of text that is
coherent and understandable by humans (CELIKYILMAZ; CLARK; GAO, [2020)). With this
general definition, Natural Language Generation can be applied to a range of different
tasks in Natural Language Processing, which are: Question answering, Machine trans-
lation, Long text generation, and Summarization. Other tasks can be done by Natural
Language Generation when the task is modeled in terms of an input as in NLG and the
output is a sequence of tokens.

Text Generation systems usually take linguistic or non-linguistic inputs. Text genera-
tion tasks can be categorized based on the type of inputs (JIN et al., [2020)): meaning-to-text,

data-to-text, text-to-text, visual-to-text, and code-to-text.

18

Meaning-to-text (FLANIGAN et al, 2016} POURDAMGHANI; KNIGHT; HERMJAKOB) 2016}
KONSTAS et al., [2017; BANARESCU et al., |2013|) generation takes concepts or meaning rep-
resentation as inputs and a popular meaning representation is abstract meaning represen-
tation. Data-to-text (MEI; BANSAL; WALTER) 2016} [PEREZ-BELTRACHINI; LAPATA], [2018;
SHA et al, [2018) generation takes structured data records or tables as an input. Text-
to-text (NALLAPATI; ZHAT; ZHOU, 2017; NARAYAN; COHEN; LAPATA) [2018; NALLAPATT et
al., [2016; RUSH; CHOPRA; WESTON, [2015; [LI et al., [2018; [GUPTA et al., [2018) generation
takes natural language texts or sentences as inputs. Typical tasks include text summariza-
tion and paraphrase generation. Visual-to-text generation takes visual information such
as images and videos as inputs. Examples of visual-to-text (LI et al., [2019) tasks are im-
age captioning and visual storytelling. Code-to-text (GUPTA; EKBAL; BHATTACHARY YA
2020)) generation takes code fragments as inputs. Can exist other types of inputs to Nat-

ural Language Generation systems will characterize another type of these systems.

2.3 PROMPT-BASED LEARNING

In traditional supervised learning, a model takes an input x and predicts an output y:
P(y|z;0) (LIU et al., 2023). Thus, to model the conditional probability P(y|z;€) and learn
the parameters 6 to do the predictions, we need to use a dataset containing pairs of inputs
and outputs.

In the Text Classification task, a model receives a text as input and predicts the label
of this text. For example, as input = = "I love this movie." and the model predicts a label
y = pos, classifying this text as a positive text.

Thus, to do traditional supervised learning is necessary to have labeled data for the
target task. This is the a problem with this approach because, for many tasks, finding an
amount of labeled data, where we have a pair of an input and an output y for training
a model, can be challenging (LIU et al., 2023)).

In this scenario, Prompt-based learning is introduced to deal with this problem. Instead
of modeling a conditional probability directly of the input text, prompt-based learning
defined three steps to predict the highest scoring for the output y.

o Prompt Addition - Here is applied a function, (a prompting function) to modify
the input text into a prompt (LIU et al., 2023)). The authors explain this process in

two steps:

— Apply a template, which is a textual string that has two slots: an input slot
[X] for input x and an answer slot [Z] for an intermediate generated answer

text z that will later be mapped into .
— Fill slot [X] with the input text x.

19

The authors gave an example of Prompt Addiction, when x = "I love this movie.",
the template may take a form such as "[X] Overall, it was a [Z] movie.". Then, for

the example, the prompt will be "I love this movie. Overall it was a [Z] movie."

o Answer Search - this strategy searches for the highest scoring text z that maxi-
mizes the odds of the Language Model predicting correctly the text. We first define Z
as a set of possible values for z. Z could range from the entire language in the case of
generative tasks or could be a small subset of the words in the language in the case of
classification, such as defining Z = { "excellent”, ”good”, "OK”, "bad”, " horrible” }

to represent each of the classes in Y = {++,+, ,—, ——}.

We then define a function that fills in the slot [Z] in the prompt with the potential
answer z. After the slot was filled we called this prompt as filled-prompt.

o« Answer Mapping - After we find the highest-scoring answer predicted by the
model, we would like to go from this highest-scoring answer z to the highest-scoring
output y. In some cases, this is trivial, because the answer itself is the output, as in
language generation, but in other cases, we have to identify in z our output y, as in

the classification task.

There are some strategies to use Prompt-based Learning, which are: few-shot and

zero-shot learning.

2.3.1 Few-shot Learning

The concept of Few-shot Learning is inspired by the robust reasoning and analytical
capabilities of humans (SONG et al}, 2023). When humans learn by experience, after being
presented with some examples of that task, this concept inspired the concept of Few-shot
Learning that emulates this human behavior and teaches a machine/algorithm some task
showing limited examples of this task. The definition of Few-shot learning in, (WANG et
all 2020)) is a type of machine learning problem, where a limited of examples of a specific
task is available.

Examples of the use of prompts with Few-shot Learning are (MIN et al., 2022; BROWN
et al., 2020; ITOUVRON et al., 2023)), Figure [3[shows an example of prompt presented by
(MIN et al., |2022)).

2.3.2 Zero-shot Learning

Zero-shot learning performs the prediction task without any labeled data. Instead of giving
training examples, zero-shot learning receives a high-level description of new categories so

that the model can relate them to existing categories that the model has learned about.

20

Figure 3 — Example of the prompt with few-shot learning.

Demonstrations
Circulation revenue has increased by 5% in Finland. \n Positive
Panostaja did not disclose the purchase price. \n Neutral

Paying off the national debt will be extremely painful. \n Negative
The acquisition will have an immediate positive impact. \n
Test input

Prediction = Positive

This description is called a prompt, Table [I| shows some examples of prompts with zero-

shot learning used in (MENG et al, [2022)). The zero-shot learning strategies have been used

in computer vision, machine perception, and natural language processing.

Table 1 — Examples of prompts used for Zero-shot learning. Adapted from QMENG et a1.|, |2022D.

Example | Prompt

1 Sentence 1: mputl Sentence 2: mput2
Does Sentence 1 entail Sentence 27
The answer is:
2 Premise: mputl Hypothesis: mput2

Does the premise entail the hypothesis?
Options: Yes. No. Maybe. The answer is:

3 Premise: mputl Hypothesis: mnput2
What is the relation between the premise and the hypothesis?

Options: Entailment. Neutral. Contradiction. The answer is:
Source: (MENG et al}, 2022)

2.4 IMBALANCED DATA

Imbalanced data is a common issue in the real-world classification task
because it biases the model toward the majority class. This can impact the model’s
performance in the minority class since it may not have enough training instances of this
class to predict it accurately. Over the years, several approaches have been proposed to
deal with this problem, in this section, we present the different strategies proposed to

overcome the imbalanced data issue.

21

2.4.1 Data-level Approaches

Data-level methods aim to balance the class distribution by manipulating the training
samples, including oversampling the minority class, undersampling the majority class,
and combinations of the two above methods (LIN; CHEN; QI, [2020)).

2.4.1.1 Oversampling

The basic idea of oversampling is to increase the size of the minority class to obtain
balanced classes (KAUR; PANNU; MALHI, 2019). This process can be done in different
ways. An example of the oversampling process is random oversampling, where samples of
the minority class are randomly selected and duplicated, increasing their size.

Synthetic Minority Oversampling Technique - SMOTE (CHAWLA et al., 2002)) is a well-
known oversampling process. In SMOTE, synthetic samples are produced with the help

of minority-class samples, through their nearest neighbors using Euclidean distance.

2.4.1.2 Undersampling

Undersampling is the process that draws a random set of samples from the majority class
to balance the classes and the rest of the samples are ignored (KAUR; PANNU; MALHI,
2019)). NearMiss (MANI, 2003) is a typical undersample method based on the nearest
neighbor algorithm. When two points belonging to different classes are very close to each

other in the distribution, this algorithm eliminates the point of the majority class.

2.4.1.3 Hybrid methods

Hybrid methods are those that apply both oversampling and undersampling to handle
the problem of imbalanced data (KAUR; PANNU; MALHIL, 2019).

To obtain a balanced training data, undersampling is used to delete the instances
without useful information according to some criterion. Then oversampling is performed
to replicate existing instances. Thus, the proposed method reduces the chances of losing

informative instances.

2.4.2 Algorithm-level Approaches

Algorithm-level methods aim to lift the importance of minority classes by improving
the existing algorithms, including cost-sensitive learning, ensemble learning, and decision
threshold adjustment (LIN; CHEN; QI, [2020)).

Bagging and Boosting are examples of algorithm-level methods applied to deal with an
imbalanced data problem (LIN; CHEN; QI [2020). Another example of an algorithm-level
method is the Balanced Random Forest (CHEN; BREIMAN, [2004), which improves the

original Random Forest algorithm to handle the imbalanced data problem. In the original

22

Random Forest (BREIMAN, 2001) algorithm an ensemble of decision trees is trained, where
at each node of the tree a subset of all attributes is randomly selected and the best
attribute on which to further grow the tree is taken from that random set. Random
Forest uses the bagging method (bootstrap aggregation), thus, each tree is trained on a
set bootstrapped from the original training set. Whereas in the Balanced Random Forest
(CHEN; BREIMAN, [2004)), each tree is trained with two bootstrapped sets of the same size,
equal to the size of the minority class, being one for the minority class and the other for
the majority class (DEGORSKI; KOBYLINSKI; PRZEPIORKOWSKI, [2008)).

2.4.3 Hybrid Approaches

Hybrid methods refer to combining the two previous methods (data- and algorithms-
level) to handle efficiently the problem of imbalanced data (KAUR; PANNU; MALHI, 2019;
SEIFFERT et al), 2010; [HIDO; KASHIMA; TAKAHASHI, [2009).

An example of the hybrid approach is RUSBoost(KAUR; PANNU; MALHI, [2019)). During
the process of training, RUSBoost weights each example, initializing these weights with
%, where m is the number of examples in the training set. Then, T" weak hypotheses
are trained. In the first step of modeling the hypothesis, RUS - Random Undersampling
(data-level strategies) is applied to remove the majority of class examples until N% is
reached and generate a new training dataset, S';. This new training set has a new weight
distribution, D’;. In the next step, the new dataset and its new distribution are passed
to the base learner to create the weak hypothesis, h;. Then, a pseudo-loss is calculated
between the train with the original dataset and the generated dataset to update the
weight parameter « (algorithm-level method). The weights are updated and normalized
and passed to the next iteration until the process reaches T iterations and produces the
final hypothesis H(x).

2.5 DECODING METHODS

With the increasing interest in open-ended text generation, different methods of decoding

were proposed to that be possible to reach different goals when doing this task E]

2.5.1 Greedy Search

In Greedy Search, at every time-step(¢) during the generation process, we choose the word
that has the highest conditional probability. Figure [] shows an example of the function
of Greedy Search.

Starting from the word "The", the algorithm greedily chooses the next word of highest
probability "nice" and so on, so that the final generated word sequence is ("The", "nice’,

"'woman') having an overall probability of 0.5 % 0.4 — 0.2.

L <https://huggingface.co/blog/how-to-generate>

https://huggingface.co/blog/how-to-generate

23

Figure 4 — Example of Greedy Search.

and 0.05
runs
0.4
\ 5
0.9

The

car

4
N

0.2

Source: (HOW...} 2020))

The major problem of Greedy Search is that it messes high probability words hidden
behind a low probability words. The word "has" with its high conditional probability
of 0.9 is hidden behind the word "dog", which has only the second-highest conditional
probability, so that Greedy Search misses the word sequence "The", "dog", "has".

2.5.2 Beam Search

Beam Search deal with the major problem of Greedy Search. Beam Search reduces the
risk of missing hidden high-probability word sequences by keeping the most likely beams of
hypotheses at each time step and eventually choosing the hypothesis that has the overall
highest probability. Figure [5 shows how Beam Search works.

At time step 1, besides the most likely hypothesis ("The', "nice"), Beam Search also
keeps track of the second most likely one ("The", "dog"). At time step 2, Beam Search
finds that the word sequence ("The', "nice', "'woman"), which has 0.2. Beam Search will
always find an output sequence with the highest probability than greedy search but is not
guaranteed to find the most likely output.

There are some reasons that Beam Search might not be the best decoding option
when doing open-ended generation: Beam Search can work very well in tasks where the
length of the desired generation is more or less predictable as in machine translation or

summarization, in the open-ended generation we do not have control of it, like in story

24

Figure 5 — Example of Beam Search.

and

ns

The

car

-

0.3
/ >
drives

0.1
0.5

turins

0.2
Source: (HOW...} 2020))

generation (MURRAY; CHIANG, 2018} [YANG; HUANG; MA, 2018)); Beam Search heavily
suffers from repetitive generation; and (HOLTZMAN et al., 2019)), the authors argued that,
high-quality human language does not follow a distribution of high probability next words.
In other words, as humans, we want generated text to surprise us and not to be predictable,

Figure [0] presents the authors’ idea.

2.5.3 Sampling

A way to be less boring and predictable is to introduce some randomness. Sampling means
randomly picking the next word w according to its conditional probability distribution.
In Figure [7] we have an example.

In the example we can be seen that the generation is not deterministic, adding more
randomness. The word "car' is sampled from the conditioned probability distribution
P(w|"The”), followed by sampling "drives" from P(w|"The”, "car”).

A big problem when sampling word sequences is often the generation is incoherent do
not sound like written by a human (HOLTZMAN et al., 2019). A way to tackle this problem
is to make the distribution sharper, increasing the likelihood of high-probability words and
decreasing the likelihood of low-probability words, adding a variable called temperature.

Figure [§] shows how it works.

25

Figure 6 — Beam Search X Human

BeamSearch Text is Less Surprising

10] f H" M\ A\ 7 WA WaA'AV,
/frll'lﬂ'ﬁ*'ﬂl'r ’I}aﬂlf 'l,f *‘ﬂ'f '“'ﬂ'l.rp VI ﬁv’ VY VvV \p'v "ﬂ'fw vV

0.8 “
06 - L ﬂ |
—— Human
= ' | - BeamSearch
04 - I
02
0.0 1 '| 1 | AL ' '
0 20 40 &0 80 100
Timestep
Source: QHOLTZMAN et al.], |2019D
Figure 7 — Sampling Search
0.5
D D 3
D N
nice dog car drives is tums
The car drives
Source: 2020))
Figure 8 — Temperature - Sampling Search
0.75
0.6
0.23 02
uln
nice dog car woman guy house
The nice house

Source:

The conditional next word distribution becomes much sharper leaving almost no
chance for the word "car" to be selected. This parameter regulates the randomness while
applying temperature the generation can make a distribution less random, thus when tem-
perature = () the generation will work like the Greedy Search, thus finding a good number

for temperature that fits with the goal generation is the key.

26

2.5.4 Top-K Sampling

Top-K Sampling was introduced in (FAN; LEWIS; DAUPHIN, 2018)), here the &£ most likely
next words are filtered and the probability mass is redistributed among only those k

words.

Figure 9 — Top-K Sampling

1.0+

Y wevi, e Pw]“The”) = 0.68 S v, s P(w]“The”, “car”) = 0.99

K_/% K_/H

OMDDDDDDDDDD 0o

nice dog car woman guy man people big house cat dri_ves is turns stops down a not the small told

P(w| “Then) P(w LcThen , “Car”)
Source: (HOW...} 2020))

In the example presented in Figure[9 we have k = 6, in both sampling steps, we limited
our sampling pool to 6 words, dividing all probability distribution among k words.

The main concern about Top-K Sampling is that after defining a number for £ it
is not dynamically adapted, this can be problematic as some words might be sampled
from a very sharp distribution (right side of Figure @[), whereas others from a much flat
distribution (left side of Figure [9).

Step t = 1 eliminates the possibility of sampling words like, "people", "big", "house",
and "cat", which seem like reasonable candidates. Thus, limiting the sample pool to a
fixed size k could limit the model to produce gibberish for sharper distributions and limit

the model’s creativity for flat distribution.

2.5.5 Top-P Sampling (Nucleus)

To tackle the problems present in Top-K Sampling, (HOLTZMAN et al., [2019)) created Top-P
Sampling (Nucleus).

Instead of sampling only from the most likely k& words, Top-P Sampling chooses from
the smallest possible set of words whose cumulative probability exceeds the probability
p. The probability mass is then redistributed among this set of words. This way, the
size of the set of words (the number of words in the set) can dynamically increase and
decrease according to the next word’s probability distribution. Figure [I0]shows how Top-P
Sampling works.

Setting p = 0.92, Top-P Sampling picks the minimum number of words to exceed
together p = 92% of the probability mass. In the first example (left side of Figure [10)),

27

Figure 10 — Top-P Sampling

1.0

> weviy, P(w[“The”) = 0.94 2 weViy, P(w[“The”, “car”) = 0.97

- Y F_/%

OMDDDDDDDDDD JUO-___ ___

nice dog car woman guy man people big house cat drives is turns stops down a not the small told

P(w|“The”) P(w|“The”, “car”)
Source: (HOW...} 2020))

this included the 9 most likely words, whereas it only has to pick the top 3 words in the
second example (right side of Figure to exceed 92%. It can be seen that it keeps a
wide range of words where the next word is less predictable, and only a few words when
the next word seems more predictable. This resolves the problem in Top-K Sampling of
dynamically adapting the number of words in each step.

These are some decoding methods, separately they work in some way, but we can
mix some of the different ways to decode open-ended generation and reach our goal when
doing this task. By joining these different methods we can produce the generation that we
want, altering the parameters of temperature, k, and p we can alter the way the algorithm

works and produce the text generation that fits with our problem.

28

3 RELATED WORK

Different approaches have been proposed to tackle the problem of imbalanced datasets,
from traditional methods, which alter the training set distribution, to data augmentation
methods, which introduce new examples into the training set. In this chapter, we briefly

discuss these methods and highlight the main similarities and differences with our work.

3.1 TRADITIONAL APPROACHES

Traditional approaches that deal with imbalanced data are divided into data-level, algorithm-
level, and hybrid methods.
In (RUPAPARA et al} 2021)) the authors present a work that used data-level approaches

to analyze their impact on toxic comments. Figure [11| shows the methodology proposed
in this work.

Figure 11 — Methodology proposed by the authors in (]RUPAPARA et al,L |2021D.

Data Spilitting

Preprocessing g S
of Text o 0
e = I3
c _—

=S 0

\ 4 o]

F — = = P E—
Features Model
Extraction Evaluation

f_‘r_‘\ N
Data Re- Model .

. - Trained Model
sampling Training

L — L —

Source: (RUPAPARA et al} 2021)

Their workflow starts with the Tozic Comments (TOXIC...} 2018)) which is the dataset

used in the experiments. This uses a multi-label dataset, where the examples were labeled

into identily hate, insult, obscene, severe toxic, threat, toxic, and toxicity. The authors
turned it into a binary dataset where the instances in the dataset only belong to one of
the two classes: toxic or non-toxic.

The next step is the Preprocessing of Text, which performs the following tasks: tok-
enization, number removal, stemming, spelling correction and stopword removal. Next,

their solution performs Features Eztraction by transforming the text into vectors of

29

numbers. The authors use two different strategies to perform the feature extraction in
their experiments: Term Frequency-Inverse Document Frequency (TF-IDF) and Bag-of-
Words(BoW). The next module of the solution tries different scenarios of data resampling:
undersampling, and oversampling.

Despite the similarities between our work and this one in terms of utilizing traditional
approaches to handle imbalanced datasets, the primary contribution lies in the introduc-
tion of a novel ensemble algorithm known as RVVC (Regression Vector Voting Classifier).
It is crucial to clarify that the experiments were conducted to assess whether this newly
proposed algorithm, RVVC, when integrated into the suggested methodology (trained
model) as shown in Figure , outperforms other algorithms.

The traditional approaches significantly enhanced the performance of the proposed
ensemble, RVVC, when random undersampling was employed to balance the dataset,
leading to the best results compared to other algorithms tested. Furthermore, utilizing
SMOTE for dataset balancing during the oversampling experiments further improved
the performance of RVVC compared to tests conducted on imbalanced and randomly
undersampled balanced datasets.

(SEIFFERT et al., 2010)) propose to use hybrid methods by mixing the resampling data
and boosting algorithm classifiers. In the paper, the researchers proposed a new approach
to tackle the imbalanced data problem, called RUSBoost. During the learning process,
RUSBoost learns the weights for all instances on the training data. At the same time,

RUSBoost does a Random Undersampling in the original dataset to balance the classes.

3.2 DATA AUGMENTATION

The use of Natural Language Generation (NLG) to deal with the problem of an imbalanced
data set is a growing field in Natural Language Processing. This section presents a brief
overview of previous approaches that have used NLG to deal with imbalanced datasets in
text.

The authors in (SHAIKH et al., 2021)) have used NLG to handle imbalanced data, aiming
to improve classification accuracy using deep learning models. Figure presents the
model proposed in this work.

In the first stage, the input to the model is a text-imbalanced dataset. This dataset is
divided into different sets. A set for each class. Next, each set representing a class is passed
to the Text Generator to generate instances for this class. Their solution, however, does not
perform any filtering on the generated sentences. They assume that the language model
produces high-quality content for the task, which, as we show later, is not necessarily
true. The generation process is repeated until each set reaches the number of examples of
the majority class.

In (WEIL; ZOU, 2019b) we have a related work here the authors present EDA: Easy Data

Augmentation, a new way to do the data augmentation task in a easy way. In this work,

Figure 12 — Model proposed by the authors in (SHAIKH et al., 2021 to deal with imbalanced data.

Imbalanced

Dataset with
n class
labels

A 4

))
corpus 1 /—\
Divide] Text Balanced
Dataset in n F>E="3lGenerator for »{Dataset with » Deep Neural Network
corpus Corpus j nclass Based Classification
corpus n \Ialfls/
— —

Source: (SHAIKH et al, 2021)

Table 2 — Examples of augmented data using the method EDA.

Operation Sentence
Original A sad, superior human comedy played out on the back roads of life.
SR A lamentable, superior human comedy played out on the backward road of life
RI A sad, superior human comedy played out on funniness the back roads of life.
RS A sad, superior human comedy played out on roads back the of life.
RD A sad, superior human out on roads of life.

a training example is selected to be applied to four operations, Synonym Replacement -
SR, Random Insertion - RI, Random Swap - RS, and Random Deletion - RD. Table

Source: (WET; ZOU| [2019b)

shows an example given by the authors.

For each operation, the researchers defined how the augmentation would work:

o Synonym Replacement - SR: randomly choose n words from the sentence that are
not stop words. Replace each of these words with one of its synonyms chosen at

random.

o Random Insertion - RI: find a random synonym of a random word in the sentence

that is not a stop word. Insert that synonym into a random position in the sentence.

Do this n times.

o Random Swap - RS: randomly choose two words in the sentence and swap their

position. Do this n times.

o Random Deletion - RD: randomly remove each word in the sentence with probability

p.

The authors executed several experiments with different scenarios, changing algo-

rithms and datasets. The results showed that, in general, the studied metric was improved

before being applied EDA for training the algorithms.

31

Table 3 — Examples of augmented data using the method AEDA.

Original a sad , superior human comedy played out on the back roads of life .
Aug 1 a sad , superior human comedy played out on the back roads ; of life ; .
Aug 2 a , sad . , superior human ; comedy . played . out on the back roads of life .
Aug 3 | :asad ;, superior | human : comedy , played out ? on the back roads of life .

Source: (KARIMI; ROSST; PRATT, 2021))

Another related work is (KARIMI; ROSST; PRATI, [2021)). In their work, they introduced
a data augmentation method known as AEDA (An Easier Data Augmentation). AEDA
involves the insertion of random punctuation marks into the original data to generate
new examples. Specifically, they select a random number between 1 and one-third of the
sequence length to determine the quantity of punctuation marks to be inserted. This
approach ensures that at least one punctuation mark is added while preventing excessive
punctuation insertion. The authors emphasize the importance of this step in defining
the model’s effectiveness because adding too many punctuation marks might negatively
impact the model’s performance.

Once the number of punctuation marks to be inserted is randomly determined, AEDA
proceeds to randomly select positions for these marks. The insertions precisely match the
number of punctuation marks determined in the previous step. Finally, AEDA randomly
selects punctuation marks to be inserted into the sequence from the following set: ".", ";",
tpromromr ot Table [3] shows of augmented data created by AEDA.

In (ZHAO et al, [2022)), the authors present a method for data augmentation called
EPiDA (Easy Plug-in Data Augmentation). They claim that most existing works consider
only the quality or the diversity of augmentation data and thus cannot fully exploit the
potential of data augmentation for Natural Language Processing. Their solution employs
two mechanisms to control both the diversity and the quality of augmentation data, which
are: relative entropy mazimization (REM) and conditional entropy minimization (CEM).

For REM, they modify the objective function to add a term D to express the relative
entropy, this term D calculates the difference between two distributions, the larger the
difference is, the more diverse the augmented sample is. Whereas, for CEM, the authors
add to the objective function a new term, H, which represents the conditional entropy,
here they are trying to minimize the entropy of the selected sample and to maximize the
mutual information with the original sample, this process gives tries to augment samples
of high prediction probability and high similarity with the original sample.

Figure (13| shows the EPiDA’s pipeline. It comprises a data augmentation algorithm,
a Sample Evaluation And Selection (SEAS), and a classifier,

The data augmentation algorithm and the classifier can be customized. The Sample
FEvaluation and Selection - SEAS is where the EPiDA is applied, with the classifier trained

in the available training data, and the SEAS uses the return of loss given by the classifier

32

Figure 13 — The pipeline of EPiDA.

T selected C
input candidate samples
sample | samples .
DA | ~ Classifier
l] feedback ° .
Candidate samples {® @ 'YX } High quality samples CE R XK} l
(scored by CEM)
High diversity samples o o ®) High diversity and quality samples [, g}
(scored by REM) (REM+CEM)

Source: (ZHAO et al}, 2022)

Table 4 — An example of the process of augmentation done by EPiDA.

Sentence Score Div | Score Qua. | Total

Original | Go Set a Watchman comes out Tuesday and I'm really excited for it 0.00 1.00 1.00
Aug 1 Go Set a Watchman comes out Tuesday and I'm really mad for it 0.96 0.03 0.99
Aug 2 Go Set a Watchman out Tuesday and I'm really excited for it 0.05 0.92 0.97
Aug 3 | Go Set a security guard comes out Tues and I'm really excited for it 0.86 0.15 1.01

Source: (ZHAO et al., 2022)

to evaluate whether this augmented sample has diversity and quality.

The classifier calculates its loss to assess the diversity of the generated sample produced
by the data augmentation algorithm. The EPiDA mechanism seeks to maximize this value
since a larger loss indicates that the augmented sample differs from the ones utilized during
the classifier’s training process. This ensures the diversity of the generated sample.

Regarding the quality of the augmented samples, the authors developed a mechanism
to calculate the consistency between the original and augmented samples. This difference
is compared to a given threshold, and if the condition that this difference is less than the
prefixed threshold is ensured the quality of that given generated sample.

Table [4] shows examples of sentences augmented by the method presented by the

paper (ZHAO et al), 2022). The authors explain that the generation of conflicting instances,

whereas high diversity is more probably of low quality, and vice versa. To address this
problem, they sum two scores, yielding the total score, which ensures a sample with a

satisfactory balance between diversity and quality.

33

4 THE FRAMEWORK: BALANCE

This chapter presents BALANCE, our solution that generates text instances in the mi-
nority class using large language models (LLMs). Figure shows an overview of it.
First, in the Model Training module, BALANCE creates an initial classifier (Cp) from
an imbalanced training set. Next, it tunes the decoding hyperparameters of a pretrained
LLM using Cp, which measures the quality of the LLM’s output (LLM Tuning). Then,
in the Text Generation step, the tuned LLM generates the synthetic instances, which
are selected by the imbalanced classifier to compose the balanced dataset along with the
original training set. Finally, the balanced classifier is built using this dataset. We provide

further details of each module in the following sections.

Figure 14 — Architecture of BALANCE.

1 - Training Model

Calculate Metrics

Embala nced dataseti—) Train model —)-‘ Model trained

2 - Large Language Model Tuning 3 - Text Generation
(Language Model) 1

l Text Generation

Optimization

-
l /Sy:thetic Generated Text
/

(Optimized Language Model)—/

4 - Retraining Model

Calculate Metrics

Train model Model trained

Source: This research

e
Balanced dafaset

34

4.1 TRAINING MODEL

In our proposed method, we have different steps where we will need certain inputs and
generate various outputs. These outputs will be used in future framework modules.

At this moment, we are limited to working with imbalanced data; thus, we will utilize
the available resources. In this module, we apply hyperparameter optimization to the
selected algorithm classifier using a subset of the imbalanced dataset. In our experiments,
we utilized the Optuna Library for this optimization. Hyperparameter optimization is a
crucial step in our solution. Even when using an imbalanced dataset to train a model,
an optimized classifier at this stage ensures that the model will perform at its best given
the scenario. This optimized classifier will play a vital role in our proposed framework’s
subsequent modules. In our experiments, we referred to this initial model, trained on
imbalanced datasets, as Classt fierg or Cy. To assess the impact of the selected classifier
on the classification task, we experimented with three different algorithms: Bert, Random
Forest, and Support Vector Machine.

Hence, it is evident that each module has distinct purposes and inputs, and they
will generate varying outputs that will be employed in future steps. Ensuring the proper
functioning of each previous module is essential for the smooth workflow of BALANCE.

With optimization and model training, the primary objective of this step will be
achieved. In our pipeline, we have included an additional subtask for evaluating the per-
formance of this classifier trained on the imbalanced data. This task is conducted to

monitor the model’s improvement at the conclusion of the entire framework.

4.2 LARGE LANGUAGE MODEL TUNING

In this module, our objective is to fine-tune the decoding hyperparameters of a pretrained
Large Language Model to enhance its capacity for open-ended text generation. Conse-
quently, this refinement will lead to the generation of high-quality synthetic instances
aligned with our specific interests.

Previous approaches relied on manually configuring hyperparameter values during the
decoding step of language models for text generation (SHAIKH et al., |2021). However, as
our goal is to produce text within a target (minority) class to address imbalanced data,
our solution focuses on tuning the following hyperparameters: temperature, top-p, and
top-k to ensure a broader coverage of sentences within that class.

In our experiments, we employed the Generative Pretrained Transformers 2 (GPT-
2) (RADFORD et al|, [2019b) as our Large Language Model (LLM) for this phase. The
choice of GPT-2 was primarily driven by our need to operate within the constraints of
our computational resources, while still benefiting from a model known for its proficient

performance in text generation tasks.

35

Table 5 — Prompt used to generate a new sentence. The language model generates a new sentence after
the last ”(label of minority class):“ text.

Each item in the following list contains a (label of minority class):

(label of minority class): sentence;

(label of minority class): sentence,

(label of minority class):

Source: This research

In each trial, we instruct the model to generate n examples within the target class
(with n=100 in our experiments). To create each example, BALANCE randomly selects
10 instances from the training dataset and employs few-shot learning by applying the
prompt presented in Table[5] Utilizing the imbalanced classifier, BALANCE predicts the
class labels for these n generated instances. Subsequently, it calculates the percentage of
samples classified as belonging to the target (minority) class. This process iterates until
it reaches a predetermined number of trials.

Instead of exhaustively testing all possible combinations of hyperparameter values,
we employ Bayesian Optimization (MOCKUS, 2005)) to search for the optimal set of val-
ues. Ultimately, the optimization process selects the set of values that yield the highest
coverage of samples classified within the target class.

After completing all subtasks within this module, we will compile a set of the optimal
hyperparameter values for open-ended text generation. These values will then be applied
to generate instances that will serve the purpose of balancing the dataset, which is the
primary objective of the next step.

Once more, it’s worth noting that in our framework, the output of each step serves
as input for the subsequent one, underscoring the importance of each step functioning

effectively in sequence.

4.3 TEXT GENERATION

The next step in our pipeline generates instances to balance the training set. To achieve
the purpose of this step, we have as input the outputs generated in previous modules: the
imbalanced classifier, previously trained on the first module, and the tuned large language
model.

As in the LLM tuning process, we define a prompt to generate new examples. We
construct the prompt following the same structure outlined in Table[5], and then we utilize
the fine-tuned Language Model to generate a new instance. To prevent the inclusion of
noisy examples in the training dataset, we use the imbalanced classifier to determine
whether the generated instance belongs to the minority class.

This subtask holds significant importance within this step. With the best classifier

36

available at this stage (the one trained on the imbalanced dataset), we perform a classifi-
cation task for each synthetically generated instance. Only if a specific condition is met,
we add this new instance to the dataset.

This process continues until the number of instances in the minority class matches that
of the majority class. Instead of adding instances with a default classification threshold
probability of belonging to the minority class equal to 0.5, we implement the following
procedure to determine the optimal threshold value: we systematically vary this value
within the range of 0.5 to 0.9. For each threshold value, we create a classifier using the
Model Training with the newly added instances and evaluate its performance on the
validation set. BALANCE selects the classifier that achieves the highest F1 value as the
final balanced classifier.

By adjusting the classification threshold, we can generate different datasets as the
condition for adding new instances changes. Consequently, we can identify the best-
performing classifier and, in turn, determine the optimal threshold value for adding new
instances, thus ensuring the exclusion of poorly generated instances.

Upon completing this step, we will possess a balanced dataset, consisting of the original
instances supplemented with meticulously filtered synthetic instances. This constitutes the

output of this module.

4.4 RETRAINING MODEL

In essence, the BALANCE framework comprises the three preceding modules. This step
serves as a final check to ensure that all processes have been executed correctly and that
the model’s performance has improved.

In contrast to the initial step, where we began with a balanced dataset, we now take the
output from the previous module, which consists of a dataset balanced by the BALANCE
framework, along with the model classifier. Using this new dataset, we proceed to train
the classifier and then compare its performance with the classifier trained at the outset

of the framework, which was initially trained on the imbalanced dataset.

37

5 EXPERIMENTAL EVALUATION

We developed various experiments to evaluate our proposed framework. In this section,

we present the setup and the results of these experiments.

5.1 SETUP

5.1.1 Datasets

We used three imbalanced datasets to evaluate the performance of our work. Table [0]

presents their distribution regarding positive and negative examples and their imbalance

ratio. In the following, we provide details about each of them.

Table 6 — Datasets used in our experiments and the number of positive and negative instances.

‘ Positive ‘ Negative | Imbalance Ratio

Clickbait Dataset 9,276 29,241 1:3.15
PHEME Dataset 1,972 3,830 1:1.94
Tweet Emotion Dataset | 1,611 5,486 1:3.40

Source: This research

« The Clickbait Dataset is provided by The Clickbait Challenge] and is composed
of examples of clickbait headlines posted on Twitter. Clickbait is a certain kind of
web content advertisement that is designed to entice its readers into clicking an

accompanying link. Below are some examples of this type of content:

— A Man Falls Down And Cries For Help Twice. The Second Time, My Jaw
Drops.

— 9 Out Of 10 Americans Are Completely Wrong About This Mind-Blowing Fact.
— Here’s What Actually Reduces Gun Violence.

The Clickbait Dataset is composed of 38,517 Twitter posts. The posts were collected
from 27 major United States news publishers between November 2016 and June
2017. To avoid publisher and topical biases, a maximum of ten posts per day and
publisher were sampled. All posts were annotated following a 4-point scale, starting
at 0.0 and finishing at 1.0. A score of 0.0 means that the post is classified as non-click-
baiting, a score of 0.33 is defined as slightly click-baiting, a score of 0.66 is regarded

as considerably click-baiting, and a score of 1.0 means that the post is heavily

1

<https://webis.de/events/clickbait-challenge />

https://webis.de/events/clickbait-challenge/

38

click-baiting. Five annotators from Amazon Mechanical Turk did these annotations.
9,276 posts were considered clickbait by the majority of annotators, and 29,241 no
clickbait. Table [7] shows the division of the training and test sets that we used in

our experiments.

Table 7 — Distribution of the classes of each set, training and testing.

Set clickbait | no-clickbait
Train | 4,761 14,777
Test 4,515 14,464

Source: This research

« The PHEME Dataset(ZUBIAGA; LIAKATA; PROCTER), 2016 comprises Twitter

posts about different topics/events during breaking news. The events were:

— Ferguson unrest - citizens of Ferguson in Michigan, United States of America,
protested after the fatal shooting of an 18-year-old African American, Michael
Brown, by a white police officer (ZUBIAGA; LIAKATA; PROCTER, [2016).

— Ottawa shooting - shootings occurred in Ottawa Parliament Hill in Canada,
resulting in the death of a Canadian soldier (ZUBIAGA; LIAKATA; PROCTER)
2016).

— Sydney siege - a gunman held hostage ten customers and eight employees of
a Lindt chocolate located at Martin Place in Sydney, Australia (ZUBIAGA;
LIAKATA; PROCTER, [2016)).

— Charlie Hebdo shooting - two brothers forced their way into the offices of the
French satirical weekly newspaper Charlie Hebdo in Paris, killing 11 people
and wounding 11 more (ZUBIAGA; LIAKATA; PROCTER, [2016)).

— Germanwings plane crash - a passenger plane from Barcelona to Dusseldorf
crashed in the French Alps, killing all passengers and crew. The plane was
ultimately found to have been deliberately crashed by the co-pilot of the plane
(ZUBIAGA; LIAKATA; PROCTER| 2016)).

Journalists annotated the posts as rumors or non-rumors. The annotation of tweets
sampled for all five events led to a collection of 5,802 annotated tweets, of which
1,972 were classified as rumors and 3,830 were classified as non-rumors. Table [9)

shows the distribution of these posts in the five events.

In our experiments, we performed binary classification with the posts labeled as
rumors or non-rumors. Table [10] depicts the distribution of the classes used in our

experiments.

39

Table 8 — Distribution of annotations of rumors and non-rumors for the five events studied.

Event ‘ Rumors ‘ Non-rumors
Charlie Hebdo 458 1,621
Ferguson 284 859
Germanwings Crash 238 231
Ottawa Shooting 470 420
Sydney Siege 522 699
Total 1972 | 3.830

Table 9 — Distribution of annotations of rumors and non-rumors for the five events studied.

Source: This research

Table 10 — Distribution of the classes of each set, training and testing (PHEME Dataset).

Set

rumours

non-rumours

Train
Test,

1,583
389

3,058
772

Source: This research

Table 11 — Number of instances for each emotion in Tweet Emotion Dataset.

Emotion | Number of Instances
anger 1701
fear 2252
joy 1611
sadness 1533
Total | 7097

Source: This research

« The Tweet Emotion Datasetf| (MOHAMMAD; BRAVO-MARQUEZ, [2017) is a set of

Twitter posts with its emotions in four categories: anger, fear, joy, and sadness. The
distribution of the Tweet Emotion Dataset is presented in Table [I0} We split this
dataset into training, validation, and test sets as shown in Table [12]

Similar to (IMRAN et al., 2020)), In our binary classification task, we employed this
dataset by converting the emotion “joy” into the positive class, while categorizing

all other emotions as part of the negative class. Table [13|shows the new distribution

in terms of training, validation, and test set.

All of the datasets that we worked with are imbalanced, Table [6] shows the ratio

between the classes.

2

<https://saifmohammad.com/WebPages/Tweet EmotionIntensity-dataviz.html>

https://saifmohammad.com/WebPages/TweetEmotionIntensity-dataviz.html

40

Table 12 — Distribution of the Tweet Emotion Dataset among different datasets.

Emotion ‘ Train ‘ Valid ‘ Test

anger 857 84 760
fear 1147 | 110 | 995
joy 823 74 714

sadness 786 74 673
Total \ 3613 \ 342 \3142

Source: This research

Table 13 — Distribution of the Tweet Emotion Dataset after the process to turn into a binary dataset.

Positive Negative

Training 823 2,790
Validation 74 2268
Test 714 1,428

Source: This research

5.1.2 Augmentation Strategies

We executed the following augmentation and imbalanced strategies for this evaluation:

o Traditional imbalanced methods: We ran the implementation of SMOTE, balanced

Random Forest, undersampling, and RUSBoost available on the imbalanced learn
package (LEMAIiTRE; NOGUEIRA; ARIDAS, [2017).

AEDA (KARIMI; ROSST; PRATTI, 2021)) is a text augmentation technique that performs
random insertion of punctuation marks in sentences. We execute the implementation
provided by its authors [, AEDA creates k instances from a single one in the training
set. In this evaluation, we use the following values of k: 1, 2, and 4. Due to space
limitations, during process on GPU, we only report the k value with the best result

in the test set.

EPiDA (ZHAO et al.,[2022) applies different entropy strategies to enhance augmented
data’s diversity and semantic consistency. It receives as input a classification model
(BERT in this evaluation) and a data augmentation algorithm (EDA in this evalu-
ation). We used the implementation provided by its authors ﬁ

Zero-shot (SHAIKH et al., 2021): this method uses a zero-shot strategy to gener-
ate synthetic text instances. In this evaluation, we executed their text generation

method due to its similarities to our solution.

3
4

https://github.com/akkarimi/aeda_ nlp
https://github.com/zhaominyiz/EPiDA

41

o BALANCE: we use the Generative Pretrained Transformers 2 (GPT-2) as the pre-
trained Language Model, provided by HuggingFace [| The choice for GPT-2 was for
the use of a free-use LLM and at the beginning of the work the GPT-2 was the best
free model available. For the LM Optimization, we use Optuna [] to search for the
best set of hyper-parameters in the following intervals: top-k [1-10]; top-p [0-1]; and
temperature [0-1]. Table |14 shows the best values for each dataset.

Table 14 — Values of parameters after LLM tuning.

Topy | Top, | Temperature
Clickbait 2 0.3915 0.7061
PHEME 2 0.3931 0.7111
Tweet Emotion 4 0.3801 0.6805

Source: This research

For each dataset, we executed the data augmentation strategies to generate the number
of instances that fully balanced its training data (1:1). We also evaluated these methods
on different algorithms. We used the scitkit-learn [] implementation of Random Forest
(RF) and Support Vector Machine (SVM), and the uncased BERT checkpoint available on
huggingface | We report the results of these algorithms trained on the original imbalanced
training set as BERT,, SVMg, and RFy.

5.1.3 Evaluation Metrics

We used Precision-Recall Area Under Curve (AUC) to evaluate the quality of the binary
classifiers. We chose this metric because it is appropriate to imbalanced datasets (SAITO;

REHMSMEIER, 2015) with no need to define a specific classification threshold.

5.2 RESULTS

Table [15| presents the Precision-Recall AUC of all approaches. BALANCE using Random
Forest achieved the highest values for two datasets: 0.926 on Clickbait and 0.922 on
PHEME. The closer baseline on Clickbait was BERT+SMOTE with Precision-Recall
AUC of 0.79, and on PHEME was BERT+AEDA with 0.876. On the Tweet Emotion
dataset, however, BERT, (the BERT model trained on the original imbalanced data)
outperformed all the imbalanced methods (Precision-Recall AUC of 0.916). However, our
approach obtained competitive results (Precision-Recall AUC of 0.885 by BALANCE-
BERT).

https://huggingface.co/gpt2
https://optuna.org/
<https://scikit-learn.org/stable/>
https://huggingface.co/bert-base-uncased

0w N o

https://scikit-learn.org/stable/

42

Table 15 — Values of Precision-Recall AUC on the three datasets. Comparing different data augmentation
strategies. The values within parentheses represent the differences or improvements observed
when using the "BALANCE" method compared to the baseline model (The three first lines).

Clickbait Dataset | PHEME Dataset | Tweet Emotion Dataset
BERT, 0.772 0.812 0.916
SVM, 0.624 0.852 0.793
RFy 0.664 0.844 0.892
BERT+SMOTE 0.790 0.800 0.869
SVM+SMOTE 0.622 0.809 0.771
RF+SMOTE 0.669 0.794 0.790
BERT+Under 0.601 0.796 0.818
SVM+Under 0.618 0.795 0.705
RF+Under 0.678 0.794 0.618
Balanced RF 0.674 0.826 0.827
RUSBoost 0.623 0.783 0.808
BERT+AEDA 0.745 0.876 0.908
SVM+AEDA 0.614 0.833 0.740
RF+AEDA 0.622 0.835 0.888
EPiDA 0.735 0.840 0.904
Zero-shot 0.663 0.813 0.660
BERT+BALANCE 0.811(+0.039) 0.815(+0.003) 0.885(-0.031)
SVM+BALANCE 0.867(40.243) 0.852(0) 0.822(+40.03)
RF+BALANCE 0.926(+0.262) 0.922(+0.074) 0.826(-0.066)

Source: This research

To investigate the possible reasons for the performance of BALANCE in the Tweet
Emotion dataset, we projected, using t-SNE, the BERT vector representation of the orig-
inal and the generated examples. Figure shows the vector projections. The Tweet
Emotion’s projections of the generated examples are scattered with disjoint clusters, un-
like the other two datasets, where the generated instances are more compact. Another
observation from these plots is that, in all datasets, the generated examples are much
more spread than the original ones, which might bring some diversity to the training set.

To continue this analysis, we manually inspected a random sample of 100 generated
examples of each dataset to calculate the proportion of corrected instances. 69% of the
instances generated for the Clickbait dataset were correct, 71% for the PHEME dataset
and only 53% for the Tweet Emotion dataset. This might explain the worse performance
of BALANCE compared to the imbalanced classifiers on the Tweet Emotion Dataset, even
with the classifier’s filter removing part of this noise, as we discuss later in this section.

Another analysis we conducted to understand the different performances of BAL-

ANCE in the datasets was to calculate the similarity between the original dataset and

43

Figure 15 — Projections of the BERT vectors using t-SNE.

° s Generated e Generated
Criginal Original

.

(a) Clickbait’s projections. (b) PHEME’s projections

o Generated
QOriginal

c¢) Tweet Emotion’s projections.
J

Source: This research

the generated one compared to the other datasets. Table shows the similarities. For
the Clickbait Dataset, for example, the original dataset was the most similar to the gen-
erated one (0.85), but the Tweet Emotion dataset also obtained a high similarity. This
might occur because both Clickbait and Tweet Emotion are datasets from Twitter. The
same happened with the PHEME dataset: the best value for cosine similarity was 0.72
when comparing the original with the generated dataset. Regarding the Tweet Emotion
dataset, the similarity between the original and the generated datasets was 0.84, which is
the same value to the one between the Tweet Emotion and the Clickbait datasets. Due
to the proximity of these numbers, it seems that this similarity-based analysis is not very
helpful to understand, for instance, the better performance of BERT on the Tweet Emo-
tion dataset, which uses the original dataset, in comparison to the models created using
the generated instances.

The numbers in Table[T5]also show that the choice of classification algorithm influences
the Precision-Recall AUC for BALANCE. This value varied on the PHEME dataset from
0.922 using Random Forest to 0.815 with BERT. Our solution presented similar variations
in the other datasets (Clickbait Dataset and Tweet Emotion Dataset).

It is also interesting to note that it is not always beneficial to balance the data since, in
many cases, the models trained on the original imbalanced dataset achieved better results
than the balanced methods in the three datasets. For instance, on the PHEME dataset,
none of them achieved better results than the classifiers trained on balanced data with
BALANCE.

To evaluate the impact of the classification filter in the text generation step, we trained

44

Table 16 — Values of Precision-Recall AUC for the Random Forest (bests performances on BALANCE)
model trained using and not the classification filter in the text generation step to build the

final training data.

Using | Clickbait | PHEME | Tweet
Filter Emotion
No 0.918 0.918 0.751
Yes 0.926 0.922 0.826

Source: This research

Table 17 — Similarity between the original datasets and the generated datasets.

Original \Generated | Clickbait | PHEME | Tweet Emotion
Clickbait 0.85 - -
PHEME 0.49 0.72 -

Tweet Emotion 0.84 0.44 0.84

Source: This research

Table 18 — Examples of generated instances for the Clickbait dataset.

Clickbait

What do the internet’s biggest internet personalities think about women in general?

I don’t know if it was the internet or a bad diet

but it did make me feel better about myself.

Why are so many people afraid of their bank accounts

Source: This research

a random forest model without it in this phase, i.e., we considered all the synthetic
examples generated by the optimized LM to train the model. Table[16|presents the results.
As one can see, there is an increase in the Precision-Recall AUC values for the classifier
that uses the filter to select the most promising minority class instances. This increment is
higher for the Tweet Emotion dataset (from 0.751 to 0.826) than the other two datasets.
This indicates that the instances generated by the LLM for this dataset are noisier than
the others. Conversely, the performance of the classifiers with no filter on the Clickbait and
PHEME datasets indicates that the optimized LLM in the text generation step already
provides high-quality synthetic examples to balance the training set.

Tables , , and show some generated instances. The Clickbait examples (Ta-
ble seem suitable since they are catchy headlines. The generated sentences for the
PHEME dataset (Table can be classified as rumors. Regarding the Tweet Emotion
dataset (Table , the two first sentences express some emotion, but the third one only
lists usernames with no text whatsoever mentioning emotions. This example shows the
importance of using the imbalanced trained classifier to filter and prevent adding noisy

instances to the training data generated by the LLM.

45

Table 19 — Examples of generated instances for the PHEME dataset.

PHEME

#Sydney siege is a tragedy, but it’s not a terrorist attack.

It’s a war on terror.

onedog84: Over 50 people have been arrested in #Ferguson.

police have been called to the scene of the shooting, but no one has been arrested.

The suspect is still at large.

Source: This research

Table 20 — Examples of generated instances for the Tweet Emotion dataset.

Tweet Emotion

a fan of the @Bryan_ Bennett Twitter account. I love the way he’s so funny and funny.

not sure if I'm a good person or not but I am a very good friend. I love you.

mmy_mccarthy @Qjames_daniel @mike bennett @brian_ cameron @david_ gordon

Table 21 — Examples of generated instances for the Tweet Emotion dataset.

Source: This research

46

6 CONCLUSIONS AND FUTURE WORK

6.1 CONCLUSION

In this work, we presented BALANCE, a framework to create synthetic text examples
using prompt-based learning to tackle data imbalance and improve classifiers in the text
classification task. The process of BALANCE is composed of different stages. First, it
trains a classifier with the available data, which is the imbalanced data.

In the next step, a Large Language Model (LLM) is turned to generate synthetic
instances which are of our interest. In the Text Generation module, we use the previously
tuned LLM to generate the synthetic examples and to balance the dataset.

With the balancing dataset, BALANCE retrains the classifier and verifies if the model’s
performance was improved.

Our experiments showed that BALANCE improves the performance of classifiers for
text classification (Clickbait Dataset and PHEME Dataset). Furthermore, it outperformed
state-of-the-art data augmentation strategies in two scenarios (Clickbait Dataset and
PHEME Dataset) and has competitive results in the other (Tweet Emotion Dataset).

As demonstrated by the results of the experiments, the proposed method produces
high-quality text examples and can be used to improve performance on a classification
task.

6.2 FUTURE WORK

Although the experiments showed promising results, our work has some limitations. The
first is related to the prompt used to generate the synthetic instances. Future work can
be done to build more sophisticated prompts, more specifically for such a goal task.

Another topic that could be the target of future work is the restriction of this work to
binary problems. Hence, investigating if this method can improve the models when facing
a multi-class problem.

In future works toward the results’ analysis, we can investigate the diversity of the
generated instances, this analysis can provide the information to compare diversity with
possible instances which just would add noise to the dataset.

We also can investigate different ratios of imbalanced data, collecting more datasets
to experiment with or even generating datasets with different unbalanced rates.

In future investigations, one can also analyze how this proposed method would behave
with other classifiers using Machine Learning packages such as pycaretﬂ and LazyPredictE]

and using ensembles.

<https://pycaret.org/>
2 <https://lazypredict.readthedocs.io/en/latest />

https://pycaret.org/
https://lazypredict.readthedocs.io/en/latest/

47

6.3 ATTEMPT OF USE BALANCE FOR SELF-TRAINING

In a parallel project, we investigated using BALANCE to generate synthetic instances in
self-training. First, the initial model is trained, and the synthetic instances are generated
using the Model Training and LLM Tuning modules. Then the self-training iterations
start by predicting the positive and negative instances from the synthetic data, adding
them to their respective class in the training data. A new classifier is created, and this
process continues until some stop criterion (e.g., all instances added to the training data).
Some experiments were executed, but the results were not promising. This can also be a

direction for future work.

48

REFERENCES

BANARESCU, L.; BONIAL, C.; CAI, S.; GEORGESCU, M.; GRIFFITT, K.;
HERMJAKOB, U.; KNIGHT, K.; KOEHN, P.; PALMER, M.; SCHNEIDER, N.
Abstract meaning representation for sembanking. In: Proceedings of the 7th linguistic
annotation workshop and interoperability with discourse. [S.1.: s.n.], 2013. p. 178-186.

BAYER, M.; KAUFHOLD, M.-A.; REUTER, C. A survey on data augmentation
for text classification. ACM Comput. Surv., Association for Computing Machinery,
New York, NY, USA, v. 55, n. 7, dec 2022. ISSN 0360-0300. Disponivel em:
<https://doi.org/10.1145/3544558>.

BREIMAN, L. Random forests. Machine learning, Springer, v. 45, p. 5-32, 2001.

BROWN, T.; MANN, B.; RYDER, N.; SUBBIAH, M.; KAPLAN, J. D.; DHARIWAL,
P.; NEELAKANTAN, A.; SHYAM, P.; SASTRY, G.; ASKELL, A. et al. Language
models are few-shot learners. Advances in neural information processing systems, v. 33,
p. 1877-1901, 2020.

CELIKYILMAZ, A.; CLARK, E.; GAO, J. Evaluation of text generation: A survey.
arXiv preprint arXiv:2006.14799, 2020.

CHAWLA, N. V.; BOWYER, K. W.; HALL, L. O.; KEGELMEYER, W. P. Smote:
synthetic minority over-sampling technique. Journal of artificial intelligence research,
v. 16, p. 321-357, 2002.

CHEN, C.; BREIMAN, L. Using random forest to learn imbalanced data. University of
California, Berkeley, 01 2004.

DEGORSKI, L.; KOBYLINSKI, L.; PRZEPIORKOWSKI, A. Definition extraction:
improving balanced random forests. In: IEEE. 2008 International Multiconference on
Computer Science and Information Technology. [S.1.], 2008. p. 353-357.

DEVLIN, J.; CHANG, M.-W.; LEE, K.; TOUTANOVA, K. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805,
2018.

FAN, A.; LEWIS, M.; DAUPHIN, Y. Hierarchical neural story generation. arXiv preprint
arXiw:1805.048353, 2018.

FLANIGAN, J.; DYER, C.; SMITH, N. A.; CARBONELL, J. Generation from Abstract
Meaning Representation using tree transducers. In: Proceedings of the 2016 Conference
of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies. San Diego, California: Association for Computational
Linguistics, 2016. p. 731-739. Disponivel em: <https://aclanthology.org/N16-1087>.

GUPTA, A.; AGARWAL, A.; SINGH, P.; RAI, P. A deep generative framework for
paraphrase generation. In: Proceedings of the aaai conference on artificial intelligence.
[S.l.: s.n.], 2018. v. 32, n. 1.

https://doi.org/10.1145/3544558
https://aclanthology.org/N16-1087

49

GUPTA, D.; EKBAL, A.; BHATTACHARYYA, P. A semi-supervised approach to
generate the code-mixed text using pre-trained encoder and transfer learning. In:
Findings of the Association for Computational Linguistics: EMNLP 2020. Online:
Association for Computational Linguistics, 2020. p. 2267-2280. Disponivel em:
<https://aclanthology.org/2020.findings-emnlp.206>.

HIDO, S.; KASHIMA, H.; TAKAHASHI, Y. Roughly balanced bagging for imbalanced
data. Statistical Analysis and Data Mining: The ASA Data Science Journal, v. 2, n. 5-6,
p. 412-426, 2009. Disponivel em: <https://onlinelibrary.wiley.com/doi/abs/10.1002/
sam.10061>|

HOLTZMAN, A.; BUYS, J.; DU, L.; FORBES, M.; CHOI, Y. The curious case of neural
text degeneration. arXiv preprint arXiv:1904.09751, 2019.

HOW to generate text: using different decoding methods for language generation with
Transformers. 2020. <https://huggingface.co/blog/how-to-generate>.

IMRAN, A. S.; DAUDPOTA, S. M.; KASTRATI, Z.; BATRA, R. Cross-cultural polarity
and emotion detection using sentiment analysis and deep learning on covid-19 related
tweets. IEEE Access, v. 8, p. 181074-181090, 2020.

JIN, H.; CAO, Y.; WANG, T.; XING, X.; WAN, X. Recent advances of neural text
generation: Core tasks, datasets, models and challenges. Science China Technological
Sciences, Springer, v. 63, p. 1990-2010, 2020.

KARIMI, A.; ROSSI, L.; PRATI, A. AEDA: An easier data augmentation technique for
text classification. In: Findings of the Association for Computational Linguistics: EMNLP
2021. Punta Cana, Dominican Republic: Association for Computational Linguistics, 2021.
p. 2748-2754. Disponivel em: <https://aclanthology.org/2021.findings-emnlp.234>.

KAUR, H.; PANNU, H. S.; MALHI, A. K. A systematic review on imbalanced data
challenges in machine learning: Applications and solutions. ACM Comput. Surv.,
Association for Computing Machinery, New York, NY, USA, v. 52, n. 4, aug 2019. ISSN
0360-0300. Disponivel em: <https://doi.org/10.1145/3343440>.

KONSTAS, I.; IYER, S.; YATSKAR, M.; CHOI, Y.; ZETTLEMOYER, L. Neural
AMR: Sequence-to-sequence models for parsing and generation. In: Proceedings of the
55th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers). Vancouver, Canada: Association for Computational Linguistics, 2017. p.
146-157. Disponivel em: <https://aclanthology.org/P17-1014>.

KOZIARSKI, M. Csmoute: Combined synthetic oversampling and undersampling
technique for imbalanced data classification. In: IEEE. 2021 International Joint
Conference on Neural Networks (IJCNN). [S.1], 2021. p. 1-8.

LEMAITRE, G.; NOGUEIRA, F.; ARIDAS, C. K. Imbalanced-learn: A python
toolbox to tackle the curse of imbalanced datasets in machine learning. Journal
of Machine Learning Research, v. 18, n. 17, p. 1-5, 2017. Disponivel em: |[<http:
//jmlr.org/papers/v18/16-365.html>.

LI, S.; TAO, Z.; LI, K.; FU, Y. Visual to text: Survey of image and video captioning.
IEEE Transactions on Emerging Topics in Computational Intelligence, v. 3, n. 4, p.
297-312, 2019.

https://aclanthology.org/2020.findings-emnlp.206
https://onlinelibrary.wiley.com/doi/abs/10.1002/sam.10061
https://onlinelibrary.wiley.com/doi/abs/10.1002/sam.10061
https://huggingface.co/blog/how-to-generate
https://aclanthology.org/2021.findings-emnlp.234
https://doi.org/10.1145/3343440
https://aclanthology.org/P17-1014
http://jmlr.org/papers/v18/16-365.html
http://jmlr.org/papers/v18/16-365.html

50

LI, Z.; JTIANG, X.; SHANG, L.; LI, H. Paraphrase generation with deep reinforcement
learning. In: Proceedings of the 2018 Conference on Empirical Methods in Natural

Language Processing. Brussels, Belgium: Association for Computational Linguistics,
2018. p. 3865-3878. Disponivel em: <https://aclanthology.org/D18-1421>.

LIN, E.; CHEN, Q.; QI, X. Deep reinforcement learning for imbalanced classification.
Applied Intelligence, Springer, v. 50, n. 8, p. 2488-2502, 2020.

LIU, P.; YUAN, W.; FU, J.; JIANG, Z.; HAYASHI, H.; NEUBIG, G. Pre-train, prompt,
and predict: A systematic survey of prompting methods in natural language processing.
arXiv preprint arXiv:2107.13586, 2021.

LIU, P.; YUAN, W.; FU, J.; JIANG, Z.; HAYASHI, H.; NEUBIG, G. Pre-train, prompt,
and predict: A systematic survey of prompting methods in natural language processing.
ACM Computing Surveys, ACM New York, NY, v. 55, n. 9, p. 1-35, 2023.

LIU, R.; XU, G.; JIA, C.; MA, W.; WANG, L.; VOSOUGHI, S. Data boost: Text
data augmentation through reinforcement learning guided conditional generation.

In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP). Online: Association for Computational Linguistics, 2020. p.
9031-9041. Disponivel em: <https://aclanthology.org/2020.emnlp-main.726>.

MANI, I. knn approach to unbalanced data distributions: a case study involving
information extraction. In: . [S.1.: s.n.], 2003.

MEI, H.; BANSAL, M.; WALTER, M. R. What to talk about and how? selective
generation using LSTMs with coarse-to-fine alignment. In: Proceedings of the 2016
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies. San Diego, California: Association for
Computational Linguistics, 2016. p. 720-730. Disponivel em: <https://aclanthology.org/
N16-1086>.

MENG, Y.; HUANG, J.; ZHANG, Y.; HAN, J. Generating training data with language
models: Towards zero-shot language understanding. arXiv preprint arXiv:2202.04538,
2022.

MIN, S.; LYU, X.; HOLTZMAN, A.; ARTETXE, M.; LEWIS, M.; HAJISHIRZI,
H.; ZETTLEMOYER, L. Rethinking the role of demonstrations: What makes
in-context learning work? In: Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing. Abu Dhabi, United Arab Emirates:
Association for Computational Linguistics, 2022. p. 11048-11064. Disponivel em:
<https://aclanthology.org/2022.emnlp-main.759>.

MOCKUS, J. The bayesian approach to global optimization. In: SPRINGER. System
Modeling and Optimization: Proceedings of the 10th IFIP Conference New York City,
USA, August 31-September 4, 1981. [S.1.], 2005. p. 473-481.

MOHAMMAD, S. M.; BRAVO-MARQUEZ, F. Emotion intensities in tweets. arXiv
preprint arXiv:1708.03696, 2017.

MURRAY, K.; CHIANG, D. Correcting length bias in neural machine translation. arXiv
preprint arXiv:1808.10006, 2018.

https://aclanthology.org/D18-1421
https://aclanthology.org/2020.emnlp-main.726
https://aclanthology.org/N16-1086
https://aclanthology.org/N16-1086
https://aclanthology.org/2022.emnlp-main.759

o1

NALLAPATI, R.; ZHAIL F.; ZHOU, B. Summarunner: A recurrent neural network based
sequence model for extractive summarization of documents. In: Proceedings of the AAAI
conference on artificial intelligence. [S.1.: s.m.], 2017. v. 31, n. 1.

NALLAPATI, R.; ZHOU, B.; SANTOS, C. dos; GULCEHRE, C.; XIANG, B. Abstractive
text summarization using sequence-to-sequence RNNs and beyond. In: Proceedings of
the 20th SIGNLL Conference on Computational Natural Language Learning. Berlin,
Germany: Association for Computational Linguistics, 2016. p. 280-290. Disponivel em:
<https://aclanthology.org/K16-1028>.

NARAYAN, S.; COHEN, S. B.; LAPATA, M. Ranking sentences for extractive
summarization with reinforcement learning. In: Proceedings of the 2018 Conference
of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Papers). New Orleans, Louisiana:
Association for Computational Linguistics, 2018. p. 1747-1759. Disponivel em:
<https://aclanthology.org/N18-1158>.

PATEL, H.; RAJPUT, D. S.; REDDY, G. T.; IWENDI, C.; BASHIR, A. K.; JO, O. A
review on classification of imbalanced data for wireless sensor networks. International
Journal of Distributed Sensor Networks, SAGE Publications Sage UK: London, England,
v. 16, n. 4, p. 1550147720916404, 2020.

PEREZ-BELTRACHINI, L.; LAPATA, M. Bootstrapping generators from noisy data.
In: Proceedings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers).
New Orleans, Louisiana: Association for Computational Linguistics, 2018. p. 1516-1527.
Disponivel em: <https://aclanthology.org/N18-1137>.

POURDAMGHANI, N.; KNIGHT, K.; HERMJAKOB, U. Generating English from
Abstract Meaning Representations. In: Proceedings of the 9th International Natural
Language Generation conference. Edinburgh, UK: Association for Computational
Linguistics, 2016. p. 21-25. Disponivel em: <https://aclanthology.org/W16-6603>.

RADFORD, A.; NARASIMHAN, K.; SALIMANS, T.; SUTSKEVER, I. et al. Improving
language understanding by generative pre-training. OpenAl, 2018.

RADFORD, A.; WU, J.; CHILD, R.; LUAN, D.; AMODEI, D.; SUTSKEVER, I. et al.
Language models are unsupervised multitask learners. OpenAl blog, v. 1, n. 8, p. 9, 2019.

RADFORD, A.; WU, J.; CHILD, R.; LUAN, D.; AMODEI D.; SUTSKEVER, 1.
Language models are unsupervised multitask learners. In: . [S.1.: s.n.], 2019.

RAFFEL, C.; SHAZEER, N.; ROBERTS, A.; LEE, K.; NARANG, S.; MATENA, M.;
ZHOU, Y.; LI, W.; LIU, P. J. Exploring the limits of transfer learning with a unified
text-to-text transformer. The Journal of Machine Learning Research, JMLRORG, v. 21,
n. 1, p. 5485-5551, 2020.

ROTHMAN, D. Transformers for Natural Language Processing: Build innovative deep
neural network architectures for NLP with Python, PyTorch, TensorFlow, BERT,
RoBERTa, and more. [S.1.]: Packt Publishing Ltd, 2021.

https://aclanthology.org/K16-1028
https://aclanthology.org/N18-1158
https://aclanthology.org/N18-1137
https://aclanthology.org/W16-6603

52

RUPAPARA, V.; RUSTAM, F.; SHAHZAD, H. F.; MEHMOOD, A.; ASHRAF,
[.; CHOI, G. S. Impact of smote on imbalanced text features for toxic comments
classification using rvve model. IEEFE Access, IEEE, v. 9, p. 78621-78634, 2021.

RUSH, A. M.; CHOPRA, S.; WESTON, J. A neural attention model for abstractive
sentence summarization. In: Proceedings of the 2015 Conference on Empirical Methods
in Natural Language Processing. Lisbon, Portugal: Association for Computational
Linguistics, 2015. p. 379-389. Disponivel em: <https://aclanthology.org/D15-1044>.

SAITO, T.;, REHMSMEIER, M. The precision-recall plot is more in-

formative than the roc plot when evaluating binary classifiers on

imbalanced datasets. PLOS ONE, v. 10, n. 3, p. e0118432, 2015.
Https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0118432type=printable.
Disponivel em: <https://app.dimensions.ai/details/publication /pub.1012273932>.

SEIFFERT, C.; KHOSHGOFTAAR, T. M.; HULSE, J. V.; NAPOLITANO, A.
Rusboost: A hybrid approach to alleviating class imbalance. IEEE Transactions on
Systems, Man, and Cybernetics - Part A: Systems and Humans, v. 40, n. 1, p. 185-197,
2010.

SHA, L.; MOU, L.; LIU, T.; POUPART, P.; LI, S.; CHANG, B.; SUI, Z. Order-planning
neural text generation from structured data. In: Proceedings of the AAAI Conference on
Artificial Intelligence. [S.].: s.n.], 2018. v. 32, n. 1.

SHAIKH, S.; DAUDPOTA, S. M.; IMRAN, A. S.; KASTRATI, Z. Towards improved
classification accuracy on highly imbalanced text dataset using deep neural language
models. Applied Sciences, v. 11, n. 2, 2021. ISSN 2076-3417. Disponivel em:
<https://www.mdpi.com/2076-3417/11/2/869>.

SONG, Y.; WANG, T.; CAI, P.; MONDAL, S. K.; SAHOO, J. P. A comprehensive
survey of few-shot learning: Evolution, applications, challenges, and opportunities. ACM
Comput. Surv., Association for Computing Machinery, New York, NY, USA, feb 2023.
ISSN 0360-0300. Just Accepted. Disponivel em: <https://doi.org/10.1145/3582688>.

TOUVRON, H.; LAVRIL, T.; IZACARD, G.; MARTINET, X.; LACHAUX, M.-A_;
LACROIX, T.; ROZIERE, B.; GOYAL, N.; HAMBRO, E.; AZHAR, F. et al. Llama:
Open and efficient foundation language models. arXiv preprint arXiv:2502.13971, 2023.

TOXIC Comment Classification Challenge. 2018. <https://www.kaggle.com/c/
jigsaw-toxic-comment-classification-challenge>|

VASWANI, A.; SHAZEER, N.; PARMAR, N.; USZKOREIT, J.; JONES, L.; GOMEZ,
A. N.; KAISER, L.; POLOSUKHIN, I. Attention is all you need. Advances in neural

information processing systems, v. 30, 2017.

WANG, Y.; YAO, Q.; KWOK, J. T.; NI, L. M. Generalizing from a few examples:

A survey on few-shot learning. ACM Comput. Surv., Association for Computing
Machinery, New York, NY, USA, v. 53, n. 3, jun 2020. ISSN 0360-0300. Disponivel em:
<https://doi.org/10.1145/3386252>.

WEI, J.; ZOU, K. Eda: Easy data augmentation techniques for boosting performance on
text classification tasks. arXiv preprint arXiv:1901.11196, 2019.

https://aclanthology.org/D15-1044
https://app.dimensions.ai/details/publication/pub.1012273932
https://www.mdpi.com/2076-3417/11/2/869
https://doi.org/10.1145/3582688
https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge
https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge
https://doi.org/10.1145/3386252

53

WEIL J.; ZOU, K. EDA: Easy data augmentation techniques for boosting performance
on text classification tasks. In: Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP). Hong Kong, China: Association
for Computational Linguistics, 2019. p. 6382-6388. Disponivel em: <https:
//aclanthology.org/D19-1670>.

YANG, Y.; HUANG, L.; MA, M. Breaking the beam search curse: A study of (re-)
scoring methods and stopping criteria for neural machine translation. arXiv preprint
arXiv:1808.09582, 2018.

ZHAO, M.; ZHANG, L.; XU, Y.; DING, J.; GUAN, J.; ZHOU, S. EPiDA: An easy
plug-in data augmentation framework for high performance text classification. In:
Proceedings of the 2022 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies. Seattle, United States:
Association for Computational Linguistics, 2022. p. 4742-4752. Disponivel em:
<https://aclanthology.org/2022.naacl-main.349>.

ZUBIAGA, A.; LIAKATA, M.; PROCTER, R. Learning reporting dynamics during
breaking news for rumour detection in social media. arXiv preprint arXiv:1610.07363,
2016.

https://aclanthology.org/D19-1670
https://aclanthology.org/D19-1670
https://aclanthology.org/2022.naacl-main.349

	8d8f838ae152a1365720811ce7d9315d06d306f615383cf66e80d1acfe5254a8.pdf
	Title page

	Souza, Éder Mateus de
	8d8f838ae152a1365720811ce7d9315d06d306f615383cf66e80d1acfe5254a8.pdf
	
	Acknowledgements
	Abstract
	Resumo
	List of Figures
	List of Tables
	Contents
	Introduction
	Problem and Motivation
	Research Questions
	Work Organization

	fundamentals
	Transformers
	Text Generation
	Prompt-based Learning
	Few-shot Learning
	Zero-shot Learning

	Imbalanced Data
	Data-level Approaches
	Oversampling
	Undersampling
	Hybrid methods

	Algorithm-level Approaches
	Hybrid Approaches

	Decoding Methods
	Greedy Search
	Beam Search
	Sampling
	Top-K Sampling
	Top-P Sampling (Nucleus)

	Related Work
	Traditional Approaches
	Data Augmentation

	The Framework: BALANCE
	Training Model
	Large Language Model Tuning
	Text Generation
	Retraining Model

	Experimental Evaluation
	Setup
	Datasets
	Augmentation Strategies
	Evaluation Metrics

	Results

	Conclusions and Future Work
	Conclusion
	Future Work
	Attempt of Use BALANCE for Self-Training

	References

