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ABSTRACT

Quantum State Preparation Algorithms consist of defining a sequence or unitary operations

to load a specific target state on a quantum computer. We can use those algorithms in appli-

cations such as quantum machine learning. However, some state preparation algorithms have

exponential circuit complexity with the number of qubits on the system. That is the case of

amplitude encoding algorithms, which is an encoding type for loading normalized data into

the probability amplitudes of the state. To circumvent this overhead in circuits’ complexity,

works explore specific properties of quantum states to optimize the circuit’s complexity, such

as sparsity or symmetry. Other works explore simplifying the quantum circuit to load an ap-

proximate quantum state. It is the case of Quantum Generative Adversarial Networks, which

use a specific circuit architecture comprised of alternating blocks of single-qubit rotations and

two-qubit entangling controlled gates. But when trained to load random distributions on, we

observed the performance deteriorates as the number of qubits increases in terms of relative

entropy. In this work, we propose different architectures for the Quantum Generative mod-

els based on the state preparation algorithm known as Low-Rank. Through experiments for

loading the 𝑙𝑜𝑔-normal distribution, we show error reductions in quantum state initialization.

Keywords: quantum computing; quantum machine learning; variational quantum circuits;

quantum generative adversarial networks.



RESUMO

Algoritmos de preparação do estado quântico consistem em definir de uma sequência de oper-

ações unitárias para carregar um estado-alvo específico em um computador quântico. Podemos

utilizar estes algoritmos em aplicações como Aprendizagem de Máquina Quântica. No entanto,

alguns algoritmos para inicialização de estados quânticos têm uma complexidade de circuito

exponencial com o número de qubits no sistema. É o caso dos algoritmos de codificação nas

amplitudes, que é um tipo de codificação para carregar dados normalizados nas amplitudes de

probabilidade do estado. Para contornar esta sobrecarga na complexidade, trabalhos exploram

propriedades específicas dos estados quânticos para otimizar a complexidade do circuito, como

a esparsidade ou a simetria. Outros trabalhos exploram a simplificação do circuito quântico

para carregar um estado aproximado. É o caso das Redes Generativas Adversariais Quânti-

cas, que utilizam uma arquitetura de circuito específica composta por blocos alternados de

rotações de um qubit e portas controladas de emaranhamento de dois qubits. Porém, quando

treinadas para carregar distribuições aleatórias, observamos que o desempenho se deteriora à

medida que o número de qubits aumenta segundo a entropia relativa. Neste trabalho, propo-

mos uma arquitetura diferente para os modelos generativos quânticos, baseada no algoritmo

de preparação de estados conhecido como Low-Rank. E através de experimentos para carregar

a distribuição 𝑙𝑜𝑔-normal, mostramos redução no erro da inicialização dos estados quânticos.

Palavras-chave: computação quântica; apredizagem de máquina quântica; circuitos quânticos

variacionais; redes generativas adversariais quânticas.
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1 INTRODUCTION

1.1 THE INPUT PROBLEM

In quantum computing, a Quantum State Preparation Algorithm (QSPA) consists of a

sequence of unitary transformations 𝑈 := 𝑈0𝑈2 · · ·𝑈𝑛−1 acting on an 𝑛-qubit system in order

to perform the mapping 𝑈 |𝜉⟩ ↦→ |𝜓⟩. For a target state |𝜓⟩ and some initial state |𝜉⟩, which

in literature is usually |0⟩⊗𝑛 (MOTTONEN et al., 2004; GLEINIG; HOEFLER, 2021). We use those

algorithms to load classical information into a quantum device. Information can be encoded

the quantum states in different ways (SCHULD; PETRUCCIONE, 2018), as an example we will be

focusing on basis encoding(TRUGENBERGER, 2001; VENTURA; MARTINEZ, 1999) and amplitude

encoding(MOTTONEN et al., 2004; SHENDE; BULLOCK; MARKOV, 2005).

We can represent quantum states as complex unit vectors. And a quantum superposition

can be mathematically described as a linear combination of basis states. Basis encoding consists

of loading the data directly into the basis states of the systems in a uniform superposition.

Consider a a dataset of 𝑚 binary patterns with 𝑛 bits 𝒫 = {𝑥𝑛0 , 𝑥𝑛1 , . . . , 𝑥𝑛𝑚}. A basis encoding

procedure loads the dataset in a superposition as in 1√
𝑚

∑︀𝑚
𝑖=0 |𝑥𝑛𝑖 ⟩. It allows the loading of

exponentially large superposition of binary patterns into a quantum state. Enabling quantum

algorithms to simulate classical circuits’ arithmetic (NIELSEN; CHUANG, 2000).

However, most of the data processing involves several bytes of information. And some

real-life applications need the algorithms to have some level of reliability. And, despite the

advancements, today’s quantum devices are small and noisy. Implementing algorithms and

methods in current devices requires attention to the devices’ limitations (PRESKILL, 2018).

Amplitude encoding consists of loading the normalized data into the amplitudes of a

quantum state. Thus, the 𝑖-th component of the superposition ∑︀
𝑖 𝑥𝑖 |𝑖⟩ corresponds to the

𝑖-th position in the normalized vector 𝑥𝑇 = [𝑥0, . . . , 𝑥𝑛−1]. This corresponds to an exponential

gain in data representation because we need 𝑛 qubits to represent 2𝑛 amplitudes. Nevertheless,

the works that explore quantum circuits for amplitude encoding (MOTTONEN et al., 2004;

SHENDE; BULLOCK; MARKOV, 2005; BERGHOLM et al., 2005; PLESCH; BRUKNER, 2011) result

in an exponential circuit complexity on the number of qubits for preparing an arbitrary state.

Thus the complexity of a QSPA tends to dominate the overall complexity of the circuit. This

bottleneck complexity is known as the input problem (BIAMONTE et al., 2017).

Some works propose QSPA optimized for states with specific properties to reduce the
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exponential cost of amplitude encoding, such as sparse quantum states (GLEINIG; HOEFLER,

2021; VERAS; SILVA; SILVA, 2022) or symmetric and highly entangled states (AKTAR et al., 2022;

CRUZ et al., 2019; BÄRTSCHI; EIDENBENZ, 2019).

1.2 PREPARING APPROXIMATE QUANTUM STATES

The motivation for preparing an approximate state is that, by allowing some fidelity loss

from reducing the quantum circuit’s complexity, the error from noise for preparing the approx-

imate quantum state
⃒⃒⃒
𝜓
⟩

is smaller than the error from the noise for preparing the target state

|𝜓𝑡⟩.

In (ARAUJO et al., 2023), the authors generalize a state preparation algorithm based on

Schmidt decomposition introduced in (PLESCH; BRUKNER, 2011). The Schmidt decomposition

of an arbitrary pure state |𝜓𝐴𝐵⟩ of a composite system ℋ𝐴 ⊗ ℋ𝐵 is written as |𝜓𝐴𝐵⟩ =∑︀𝑟
𝑖=0 𝜆𝑖 |𝜑𝑖⟩ |𝛾𝑖⟩ with (𝜆𝑖), the 𝑖-th Schmidt number, with the number of non-zero Schmidt

coefficients is called Schmidt rank (𝑟 = |{𝜆𝑖}𝑟𝑖=0|). The method introduced in (ARAUJO et al.,

2023) approximates |𝜓𝐴𝐵⟩ by defining a quantum circuit that prepares an approximate state

up to a desired Schmidt rank 𝑟𝑠 with 𝑟𝑠 < 𝑟. In this work, this approximation method will be

called Low-Rank. And it will be used as the basis for our modification proposal.

Loading approximate states represents some advantages considering the limits of current

devices. The Noisy Intermediate-Scale Quantum (NISQ) devices (PRESKILL, 2018) have noisy

qubits and operations with low decoherence time, rendering the preparation of an arbitrary

state impractical. Therefore, by allowing a fidelity loss, we can load the main properties of

some target state |𝜓𝑡⟩ by preparing the approximate state
⃒⃒⃒
𝜓
⟩
.

Other works explore the use of Variational Quantum Algorithms (VQAs) to perform state

approximation (NAKAJI et al., 2022; MARIN-SANCHEZ; GONZALEZ-CONDE; SANZ, 2021). They

consist of constructing a small Parameterized Quantum Circuit (PQC), or ansatz. And by

optimizing its parameters through different methods, the desired quantum state is approxi-

mated (CEREZO et al., 2021; BENEDETTI et al., 2019).s

For example, in (NAKAJI et al., 2022), the authors use auxiliary qubits to incorporate the

signal of the functions they want to approximate on the amplitudes of the states. In (MARIN-

SANCHEZ; GONZALEZ-CONDE; SANZ, 2021), the approximate function loading is generalized,

where the authors define their approximation on a QSPA based on properties presented

in (GROVER; RUDOLPH, 2002). The circuit’s architecture is truncated according to some fidelity
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loss ℒ𝑓𝑖𝑑 = 1−𝜖 for some error 𝜖 and the process of VQA further optimizes the approximation.

1.3 APPROXIMATING DENSITY FUNCTIONS WITH GENERATIVE MODELS

A Generative Adversarial Network (GAN) is a machine learning method composed of a pair

of machine learning models. Those are the generative network 𝒢 for sampling new synthetic

data, often known as the generator. And a discriminative network 𝒟 for telling apart between

fake and real data samples, also known as the discriminator. 𝒢 is optimized to sample data

that can deceive 𝒟, and 𝒟 is optimized to determine if a data sample is fake or real more

accurately. (GOODFELLOW et al., 2020).

In a quantum computing context, Quantum Generative Adversarial Networks (QGANs),

the generator, or discriminator, can be defined as quantum or classical models (LLOYD; WEED-

BROOK, 2018). However, for approximating a density function, it is commonplace to fixate the

definition of the generator as quantum and allow definition flexibility for the discriminator as

either quantum or classical. We use QGAN for sampling data according to a density function,

where the state loaded by the generator mimics the target density function.

Across the literature, some works explore using QGANs for approximating the data distri-

bution. However, they rely on a specific architecture type for the PQC (SITU et al., 2020; ZENG

et al., 2019; ZOUFAL; LUCCHI; WOERNER, 2019). In works as (ROMERO; ASPURU-GUZIK, 2021;

NIU et al., 2022), the authors investigate using a quantum discriminator in the adversarial pro-

cess. However, they need more qubits than a QGAN with a quantum generator and a classical

discriminator, which, for a NISQ device, means introducing more noisy qubits and operations.

Or require some post-processing for data sampling, as in (ROMERO; ASPURU-GUZIK, 2021).

1.4 OUR APPROXIMATION PROPOSAL

In our methodology, we focus on defining the PQC of the generator in the QGAN. As

previously stated, some works rely on a specific architecture type to make the PQC. The

architecture tipically consists of alternating blocks of single-qubit rotations and two-qubit

entangling controlled operations (ZOUFAL; LUCCHI; WOERNER, 2019; CHEN et al., 2020). This

architecture is known to be hardware-efficient (KANDALA et al., 2017). But we propose a PQC

based on Low-Rank QSPA adaptive on the target Schmidt rank 𝑟𝑠 and qubit register split into

𝑚 = ⌊𝑛+1
𝑞

⌋ groups. For 𝑞, the maximum number of qubits per group. For the remainder of
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this work, the terms ansatz and PQC will be used interchangeably for referring to quantum

circuits with optimizable parameters

1.5 MOTIVATION

The generative model presented in (ZOUFAL; LUCCHI; WOERNER, 2019) serves as the basis

of our proposal. The authors trained the generative model for loading random distributions

into the probabilities of quantum states. One of which was the 𝑙𝑜𝑔-normal (𝜇 = 1, 𝜎 = 1)

distribution. In this work, we will focus on the 𝑙𝑜𝑔-normal distribution because the authors

in (ZOUFAL; LUCCHI; WOERNER, 2019) used it not just as a proof of concept but also in an

application of Quantum Finance.

The performance of the QGAN in our basis reference uses the hardware-efficient architec-

ture to define the ansatz. And its approximation quality seems to deteriorate as the number

of qubits in the system grows in terms of Kullback-Leibler divergence. Authors in (ARAUJO et

al., 2023; AGLIARDI; PRATI, 2022) also noted this limitation.

Using a QSPA to define an ansatz architecture is not a novel approach (MARIN-SANCHEZ;

GONZALEZ-CONDE; SANZ, 2021). Nevertheless, we must remark that without the appropriate

optimizations, the resulting circuit can be just as complex as a circuit for preparing an arbitrary

quantum state. And methods such as the one previously mentioned, though resulting in good

approximations, rely heavily on utilizing previous knowledge of the target distribution. That is

impractical for applications of QGANs, where that knowledge is often unknown.

1.6 OBJECTIVES

We seek to define an adaptive ansatz based on Low-Rank QSPA(ARAUJO et al., 2023) to

reduce the KL divergence, or relative entropy (RE), between the target distribution and the

distribution loaded by the circuit. Given some desired Schmidt rank 𝑟𝑠, we build the ansatz

up to a target rank 𝑟𝑠 with optimizable parameters randomly initialized. And since we split

the qubits of the system into 𝑚 = ⌊𝑛+1
𝑞

⌋ groups, the architecture of the Low-Rank ansatz is

applied to each of those groups separately in parallel, further simplifying the circuit’s overall

architecture.
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1.6.1 Specific objectives

1. Improve the QGANs performance on systems of higher dimension, by using the Low-Rank

ansatz on the generator without any previous knowledge of the target distribution.

2. Quantify improvements achieved using the Low-Rank ansatz on the QGAN for different

qubit group splits against the existing method (ZOUFAL; LUCCHI; WOERNER, 2019) on

numerical simulations.

1.7 CONTRIBUTIONS

The main contribution of this work is proposing an ansatz with an architecture defined by

the QSPA Low-Rank adaptive on the target rank (𝑟𝑠) and on the number of layers and qubit

groups. In addition, we also improved the approximations generated by the QGAN using the

Low-Rank ansatz.

Other contributions parallel to the one presented in this work were in (ARAUJO et al., 2023)

published in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-

tems, which our main contributions were perfoming some simulations comparing the method

introduced in the work with the approximation method using QGANs, and other minor ad-

justments. Another contribution was made in (VALE et al., 2023), which was submitted to an

international journal, where we contributed to the implementation of the method, writing the

text and by performing experiments comparing the method introduced the work with other

existing procedures.

1.8 OUTLINE

We organized the remainder of this work in the following: Chapter 2 presents some theoret-

ical background of quantum computing, generative adversarial networks, and VQAs. Chapter 3

introduces the QGAN for loading probability distributions on quantum states, as well as more

details concerning its limitations. Chapter 4 presents the QSPA based on Schmidt decompo-

sition and how we used it in our methodology. Chapter 5 discusses the experiment results

and comparisons between the replicate QGAN and our method. And chapter 6 presents some

concluding remarks on our results and discussions for possible future works.



19

2 THEORETICAL BACKGROUND

2.1 QUANTUM COMPUTING

Quantum computing consists of taking advantage of intrinsic properties in quantum physics

by encoding information into quantum states and using it to perform computations. However,

when explaining quantum computing, it is common practice in the literature to compare it

with a simple example of how classical computers process and encode information.

The Binary Digit (BIT) is the smallest unit of information in the computer, which can

assume two different states, either 1 or 0, exclusively. It is by combining several bits that

a classical computer performs most of the complex computation (NIELSEN; CHUANG, 2000;

MCMAHON, 2007; YANOFSKY; MANNUCCI; MANNUCCI, 2008).

As the classical bit, the smallest unit in a quantum computer is also composed of a two-

state system called Quantum Binary Digit (QUBIT). However, unlike its classical counterpart,

a qubit can assume the states 1, 0, or a superposition of both states. The last property is

known as superposition.

We can mathematically represent the qubit using Dirac’s notation |⟩, with |0⟩ as the

quantum analog of the state 0 and |1⟩ of the state 1. We can write the column vectors

equivalents of the qubit states previously described as follows:

|0⟩ =

⎡⎢⎢⎣ 1

0

⎤⎥⎥⎦ ; |1⟩ =

⎡⎢⎢⎣ 0

1

⎤⎥⎥⎦
We write the superposition of a single-qubit quantum state as a linear combination of the

basis states. With each basis state multiplied but a scalar in C, representing the probability

amplitude of its corresponding state.

|𝜓⟩ = 𝛼 |0⟩ + 𝛽 |1⟩

Meaning that, though the qubit is in both states at the same time, the outcome of the

superposition is probabilistic because whenever we try to measure it, the superposition collapses

to one of the states. With |𝛼|2, the probability for the qubit to collapse to |0⟩, and |𝛽|2 for

it to collapse to |1⟩. As expected from probability properties, they must sum up to one:

|𝛼|2 + |𝛽|2 = 1.
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We can join several single qubit states to represent more complex states on quantum

computers. The tensor product |0⟩ ⊗ |1⟩ represents this combination of several qubit states.

However, works across the literature usually omit the symbol representing the tensor product,

with multi-qubit systems written as |0⟩ |1⟩ or |01⟩. Thus, a superposition of an 𝑛-qubit system

would be defined as a linear combination of the states, as shown in Eq. (2.1). With {0, 1}𝑛

as the set of all possible binary strings of size 𝑛. And |𝛼𝑥|2, the probability of measuring the

𝑥-th state.

|𝜓⟩ =
∑︁

𝑥∈{0,1}𝑛

𝛼𝑥 |𝑥⟩ (2.1)

We use quantum operators, or gates, to manipulate the basis states and their corresponding

amplitudes. They are represented mathematically as unitary matrices 𝑈 ∈ C𝑁×𝑁 , with 𝑁 = 2𝑛

in an 𝑛-qubit system. The most basic set of gates is called the Pauli gates, which consist of

single-qubit operations.

𝑋 =

⎡⎢⎢⎣ 0 1

1 0

⎤⎥⎥⎦ ;𝑍 =

⎡⎢⎢⎣ 1 0

0 −1

⎤⎥⎥⎦ ;𝑌 =

⎡⎢⎢⎣ 0 −𝑖

𝑖 0

⎤⎥⎥⎦
We can also define single-qubit operations by any parameterized unitary gates, which can

be particularly useful for loading specific amplitudes or building new custom operations. The

parameterized rotations mathematically represent unitary operators according to some angle

𝜃.

𝑅𝑥(𝜃) =

⎡⎢⎢⎣ 𝑐𝑜𝑠( 𝜃2) −𝑖𝑠𝑖𝑛( 𝜃2)

−𝑖𝑠𝑖𝑛( 𝜃2) 𝑐𝑜𝑠( 𝜃2)

⎤⎥⎥⎦ 𝑅𝑦(𝜃) =

⎡⎢⎢⎣ 𝑐𝑜𝑠( 𝜃2) −𝑠𝑖𝑛( 𝜃2)

𝑠𝑖𝑛( 𝜃2) 𝑐𝑜𝑠( 𝜃2)

⎤⎥⎥⎦ 𝑅𝑧(𝜃) =

⎡⎢⎢⎣ 𝑒−𝑖 𝜃
2 0

0 𝑒𝑖
𝜃
2

⎤⎥⎥⎦
In a multi-qubit system, single qubit operators can be applied to qubits in parallel, following

the properties of the tensor product. Given two unitary gates 𝐴 and 𝐵, and the state |𝑥𝑦⟩,

we employ those gates to the state as in (𝐴 ⊗ 𝐵) |𝑥𝑦⟩ = 𝐴 |𝑥⟩ ⊗ 𝐵 |𝑦⟩. We can exploit

this property for a state in superposition because we can perform operations in several states

concurrently due to their linearity.

Controlled gates are specific in terms of manipulating states.These gate types use a set

of one or more qubits as the control for applying an operation 𝑈 on a target qubit.The

control qubits determine the condition state to which the operation should apply an action to
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the target. Consider the state |𝑥𝑦⟩. The controlled-𝑈 with the first state as control and the

second as the target employs the operation 𝑈 on state |𝑦⟩ if the basis state |𝑥⟩ is equal to

some desired basis state |𝑠⟩. Fig. 1 displays an example of a controlled state |𝑥 = 1⟩.

Figure 1 – Action of a controlled 𝑈 when the control state 𝑥 is 1

|𝑥 = 1⟩ |𝑥 = 1⟩

|𝑦⟩ 𝑈 |𝑦⟩𝑈

Source: The author (2023)

The controlled gate called controlled-NOT, or CNOT for short, consists of flipping the

target qubit if the control qubit is on state |1⟩. Its importance comes from the fact that one

can decompose any unitary into a sequence of single-qubit gates and CNOTs (DIVINCENZO,

1995; LLOYD, 1995; DIVINCENZO, 1998). Having a universal gate set represents one of the

criteria for building quantum computers (DIVINCENZO, 2000).

Figure 2 – Matrix and quantum circuit notation of a CNOT

𝐶𝑁𝑂𝑇 =

⎡⎢⎢⎢⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤⎥⎥⎥⎥⎥⎦ =

Source: NIELSEN; CHUANG (2000)

One must apply measurement operations to the system to extract any information encoded

in the quantum state. If the circuit loads a superposition of basis states, as shown in Equa-

tion (2.1), then its output is probabilistic. When measuring the quantum circuit’s qubits, the

probability of it returning a basis state 𝑦 is 𝑝(𝑦) = |𝛼𝑥=𝑦|2. Projective measurements (DJORD-

JEVIC, 2021) can describe the probability value 𝑝(𝑦). Given a measurement operator 𝑀𝑦 on

an arbitrary quantum state in superposition |𝜓⟩, the notation for probability in terms of 𝑀𝑦

is as follows:

𝑝(𝑦) = ⟨𝜓|𝑀 †
𝑦𝑀𝑦 |𝜓⟩ (2.2)

And the state post-measurement is defined as in Equation(2.3), where the factor 1√
⟨𝜓|𝑀†

𝑦𝑀𝑦 |𝜓⟩

normalizes the resulting state so that probability amplitudes may still sum up to 1. The prob-

abilities relative to a specific state arise from the projective measurements 𝑀𝑦 = |𝑦⟩ ⟨𝑦| for

some 𝑦 ∈ {0, 1}𝑛.
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𝑀𝑦 |𝜓⟩ = 𝑀𝑦 |𝜓⟩√︁
⟨𝜓|𝑀 †

𝑦𝑀𝑦 |𝜓⟩
(2.3)

Observables 𝑃 further generalize projective measurements. Provided such observables have

a spectral decomposition 𝑃 = ∑︀
𝑦𝑚𝑦𝑃𝑦, for some projection onto the eigenspace of 𝑃 ,

𝑃𝑦 = |𝑒𝑦⟩ ⟨𝑒𝑦|, where the elements {|𝑒𝑦⟩} and {𝑚𝑦} represent its eigenvectors and their

corresponding eigenvalues, respectively. Thus the probability for measuring a certain 𝑚𝑖 is

defined as follows:

𝑝(𝑚𝑦) = 𝑚𝑦 ⟨𝜓|𝑃𝑦 |𝜓⟩ (2.4)

Since the circuit’s output is probabilistic, it is common practice to perform several mea-

surements for a better result estimate. Therefore, when measuring the results relative to a

specific observable 𝑃 , one can compute its expectation value as in equation (2.5). This result

will be employed in methods that perform circuit parameter optimization discussed in Section

2.2.

⟨𝑃 ⟩ =
∑︁
𝑦

𝑚𝑦 ⟨𝜓|𝑃𝑦 |𝜓⟩ (2.5)

2.1.1 Quantum State Preparation Algorithms

A QSPA is an algorithm responsible for loading data into quantum states. This algorithm

allows researchers to encode specific data. Two examples of information encoding strategies are

basis and amplitude encoding when dealing with information encoding on the states. (SCHULD;

PETRUCCIONE, 2018). In this work, we will focus on amplitude encoding algorithms.

Basis encoding is the act of encoding information on the basis states. For a system that

uses qubits as basis states, this is analogous to encoding boolean logic into the states. How-

ever, a few adaptations are necessary because operations onto the quantum states must be

reversible. For example, (TRUGENBERGER, 2001) introduces an algorithm that prepares a uni-

form superposition of a set of 𝑀 binary patterns of size 𝑛.

|𝑀⟩ = 1√
𝑀

𝑀−1∑︁
𝑖=0

|𝑥𝑖⟩ (2.6)



23

Now let 𝐴 be a unitary operator that encodes the function 𝑓 , where 𝐴 |𝑥⟩ |0⟩ = |𝑥⟩ |𝑓(𝑥)⟩.

The superposition in equation(2.6) Allows us to evaluate the function 𝑓 on an exponentially

large number of binary patterns in parallel.

𝐴 |𝑀⟩ |0⟩ = 1√
𝑀

𝑀−1∑︁
𝑖=0

|𝑥𝑖⟩ |𝑓(𝑥𝑖)⟩ (2.7)

A drawback of this loading method is that applications need more qubits to encode the

necessary data and operations. It is an overhead particularly disadvantageous for NISQ devices

with low decoherence time and noisy qubits.

An amplitude encoding algorithm is responsible for loading the desired data into the prob-

ability amplitudes of the state. We must normalize classical data before the execution of the

encoding algorithm. This type of encoding allows to load data into exponentially large spaces.

That represents an advantage for applications in machine learning.

Amplitude encoding consists of setting the angles of parameterized gates so that the

probability amplitudes of the quantum state resembles the desired data we want to load in the

state. In the case of a single qubit system, we accomplish this by computing the angles of the

operations that perform the following mapping:

𝑈 † (𝑎0 |0⟩ + 𝑎1 |1⟩) ↦→ |0⟩ (2.8)

Where 𝑈 † represents a sequence of unitary operators and 𝑎0, 𝑎1 are the probability ampli-

tudes in C, where |𝑎0|2 + |𝑎1|2 = 1. By writing the probability amplitudes in their polar form,

as in |𝜓⟩ = 𝑟0𝑒
𝑖𝜑0 |0⟩ + 𝑟1𝑒

𝑖𝜑1 |1⟩. It is possible to compute the angles of the rotations that

map |𝜓⟩ ↦→ |0⟩. Since the sum of the square magnitude of each probability amplitude sum up

to 1 we can rewrite |𝜓⟩ as in Equation(2.9).

|𝜓⟩ = 𝑐𝑜𝑠(𝜃)𝑒𝑖𝜑0 |0⟩ + 𝑠𝑖𝑛(𝜃)𝑒𝑖𝜑1 |1⟩ (2.9)

By making −𝛾0 = 𝜑1 − 𝜑0 and −𝛾1 = −𝜑0 − 𝜑1. The sequence of rotations is given in

Equation(2.10). Where 𝑈 † = 𝑅𝑧(−𝛾1)𝑅𝑦(−𝜃)𝑅𝑧(−𝛾0). Thus, to prepare the state |𝜓⟩, one

would need to apply 𝑈 . Figure 3 displays the gate sequence for preparing |𝜓⟩ in quantum

circuit notation.

𝑅𝑧(−𝛾1)𝑅𝑦(−𝜃)𝑅𝑧(−𝛾0) |𝜓⟩ = |0⟩ (2.10)
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Figure 3 – Gate sequence for preparing |𝜓⟩ which consists of the decomposition of a 𝑆𝑈(2) gate

|0⟩ |𝜓⟩𝑅𝑧(𝛾1) 𝑅𝑦(𝜃) 𝑅𝑧(𝛾0)

Source: NIELSEN; CHUANG (2000)

For an 𝑛-qubit system, the gate sequence for preparing an arbitrary state |𝜓𝑛⟩ must be more

elaborate. That is because, when encoding a small set of data values into a superposition, we

must ensure it does not affect previously encoded data values. Thus, the operation sequence

that performs the mapping 𝑈 † |𝜓𝑛⟩ ↦→ |0⟩⊗𝑛 occurs in different stages. Each corresponds to

the disentanglement of a qubit, as in 𝑈 †
𝑛 |𝜓𝑛⟩ ↦→

⃒⃒⃒
𝜓𝑛−1

⟩
|0⟩. For

⃒⃒⃒
𝜓𝑛−1

⟩
, an arbitrary (𝑛− 1)-

qubit state, with 2𝑛−1 amplitudes. And at 𝑚-th stage the remaining 𝑚 qubits would already

have been disentangled, resulting in the disentanglement of the 𝑚-th qubit.

𝑈 †
𝑚

⃒⃒⃒
𝜓𝑛−𝑚+1

⟩
|0⟩⊗𝑚−1 ↦→

⃒⃒⃒
𝜓𝑛−𝑚

⟩
|0⟩⊗𝑚 (2.11)

In (MOTTONEN et al., 2004), the authors realize the gate sequence that performs the

mapping in Equation (2.11) using uniformly controlled rotations. Given that we have 𝑛−𝑚+1

qubits in superposition, we apply 2𝑛−𝑚+1-controlled operations with controls over all 2𝑛−𝑚+1

possible basis states. And for each basis state used as control, we compute the angles for each

rotation to map the 𝑚-th qubit to the target basis state (which, in this case, is |0⟩). When

the full gate sequence is defined, its inverse performs the state preparation 𝑈 |0⟩⊗𝑛 ↦→ |𝜓𝑛⟩

(Figure 4).

Figure 4 – State preparation of a 3-qubit system using uniformly controlled 𝑅𝑦 rotations

|0⟩⊗3

𝑅𝑦(𝜃)

|𝜓⟩𝑅𝑦(𝜃0) 𝑅𝑦(𝜃1)

𝑅𝑦(𝜃00) 𝑅𝑦(𝜃01) 𝑅𝑦(𝜃10) 𝑅𝑦(𝜃11)

Source: MOTTONEN et al. (2004)

One disadvantage of this method is that each multi-controlled adds up to the overall

complexity of the circuit in terms of depth and CNOT count. In (SHENDE; BULLOCK; MARKOV,

2005), the authors further optimize the construction of the QSPA. The angles of each stage are

computed similarly but are applied to the circuit using quantum multiplexers. The method using
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multiplexers is further generalized by (BERGHOLM et al., 2005), where the authors multiplex

single-qubit 𝑈 gates on each stage. And by incorporating phases into the multiplexed gates,

the quantum circuit complexity for state preparation is reduced by half.

2.2 VARIATIONAL QUANTUM ALGORITHMS

Variational Quantum Algorithms (VQAs) (CEREZO et al., 2021) are a class of quantum

algorithms that use a hybrid quantum-classical approach for solving specific problems. Using a

low-depth parameterized quantum circuit to initialize a trial state, |𝜓(Θ)⟩, with the parameters

Θ. Given a target state
⃒⃒⃒
𝜓
⟩
, One can approximate the output trial state by optimizing the

parameters Θ iteratively using classical methods analogous to a neural network.

VQAs solutions are promising because they involve using low-depth quantum circuits,

offloading the parameter processing and optimization to the classical computer. Current devices

are still noisy and of small scale if compared to what would be required to compose a fully

realized error-corrected quantum computer. Thus, researchers must consider noisy qubits,

operations, and low decoherence times when proposing new solutions to real-life applications.

Across the literature, this class of algorithms usually involves three key components: The

Ansatz, Loss function and the Optimization method (CEREZO et al., 2021; PRIETO, 2022;

MITARAI et al., 2018).

2.2.1 Ansatz

The ansatz refers to the quantum circuit’s architecture. That is, the sequence of controlled

and parameterized operations and on which qubit they must act. Some works also refer to it as

Variational Quantum Circuit (VQC) or Parameterized Quantum Circuit (PQC). We optimize

the parameters from the quantum circuit to approximate the desired result.

The gate configuration of the ansatz and its initial parameters depends on the application

and the device. (CEREZO et al., 2021). Across the literature, it is common to find works using a

sequence of rotation gates, often called rotation blocks, intertwined with a series of controlled

entangling operations called the entanglement block. (AGLIARDI; PRATI, 2022; CHEN et al.,

2020; ROMERO; ASPURU-GUZIK, 2021; DUAN; HSIEH, 2022; SITU et al., 2020). In Figure 5, we

show an example of this architecture.

The architecture presented in Figure 5 is said to be hardware efficient (MITARAI et al.,
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Figure 5 – Hardware-efficient ansatz architecture for a 5-qubit system. Where 𝑎 refers to the rotation axis
𝑎 ∈ {𝑥, 𝑦, 𝑧}. And 𝑈 can be any parameterized or non parameterized controlled unitary. This is
one example of the many possible models.

|𝜓𝑖𝑛⟩

𝑅𝑎(𝜃𝑙,0) 𝑅𝑎(𝜃𝑙,4)

𝑅𝑎(𝜃𝑙,1) 𝑈 𝑅𝑎(𝜃𝑙,5)

𝑅𝑎(𝜃𝑙,2) 𝑈 𝑅𝑎(𝜃𝑙,6)

𝑅𝑎(𝜃𝑙,3) 𝑈 𝑅𝑎(𝜃𝑙,7)

𝑅𝑎(𝜃𝑙,4) 𝑈 𝑅𝑎(𝜃𝑙,8)

Source: The author (2023)

Figure 6 – Example of qubit connectivity from the device ibmq_belem

10 2

3

4

Source: IBM (2023)

2018; KANDALA et al., 2017). That is the case because, on a physical device, qubits follow a

specific connectivity (as an example, see Figure 6). Thus, each qubit has a certain number of

neighboring qubits over which one can perform controlled operations without applying quantum

swaps to bring them closer together. Therefore, to use a controlled gate on non-neighboring

qubits, we must add some swap gates so the quantum operation may act on the system as

expected. Thus, we achieve hardware efficiency by changing the entanglement block layout to

match the device’s qubit connectivity.
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2.2.2 Loss function

Also known as the objective function, error function, cost function, or criterion, it de-

termines the performance quality of the machine learning model (GOODFELLOW; BENGIO;

COURVILLE, 2016). We use this function type in gradient-based optimization of parameters for

some function 𝑓(𝑥,Θ), which represents the output of model 𝑓 on point 𝑥 with the parameter

set Θ.

The definition of the loss function ℒ heavily depends on the problem the researcher is trying

to solve. For example, in a supervised machine learning problem, the loss function is defined

according to a given desired label 𝑦. We use a quantum circuit as a machine learning model

with circuit measurements defining the output labels (NEUMANN; PHILLIPSON; VERSLUIS, 2019;

SCHULD et al., 2020).

2.2.3 Optimization method

When referring to optimization methods, we refer to methods for updating the VQC pa-

rameters to minimize ℒ. For applications involving VQA, the optimization methods can be

either gradient-based or gradient-free (CEREZO et al., 2021). The genetic algorithms are the

methods that derive gradient-free approaches. However, they tend to be costly as the number

of parameters or qubits increases (PRIETO, 2022). In contrast, gradient-based optimization

optimizes quantum circuit parameters according to the gradient vector (CEREZO et al., 2021;

PRIETO, 2022; MITARAI et al., 2018). In this work, we shall focus on VQAs using gradient-based

optimization.

In classical machine learning, optimizing the model to improve output quality would be

analog to optimize its parameters by minimizing the loss function ℒ. We must compute the

gradient of ℒ to determine how much the parameters are updated. And, by calculating the

difference between the parameter vector and its gradient according to 𝑥, we obtain a new 𝜃𝑗

closer to a minimal point of ℒ. To prevent parameter updates 𝜃𝑗+1 from beyond the minima,

we multiply the gradient by a small factor 𝜂. Often referred to as learning rate. The scalar

𝜂 defines how much the parameters are updated. Equation (2.12) exemplifies a parameter

update. This process is known as gradient descent. (GOODFELLOW; BENGIO; COURVILLE, 2016;

BISHOP; NASRABADI, 2006).
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𝜃𝑗+1 = 𝜃𝑗 − 𝜂
𝜕

𝜕𝜃𝑗
ℒ(𝑦, 𝑓(𝑥, 𝜃𝑗)) (2.12)

In deep neural networks, we use the gradient derived from the loss function to update the

parameters of the intermediate layers. This process is known as the error back-propagation

(GOODFELLOW; BENGIO; COURVILLE, 2016; BISHOP et al., 1995). One cannot access the inter-

mediate states of a sequence of unitary operations in a quantum circuit without affecting the

circuit’s output.

One can infer the circuit’s output by computing the quantum circuit’s expectation value.

Due to the intrinsic properties of quantum mechanics, the circuit’s output is probabilistic.

However, by querying the quantum circuit several times and performing measurements ac-

cording to some observable 𝐾̂, it is possible to compute its expectation value ⟨𝐾̂⟩. Thus, for

a given parameter 𝜃𝑗, one can analytically infer its gradient by shifts of 𝜃𝑗 ± 𝜖, for some shift

angle 𝜖. In the case of Pauli observables, we define the shift angle as 𝜖 = 𝜋
2 (MITARAI et al.,

2018; BENEDETTI et al., 2019; SCHULD et al., 2019).

𝜕⟨𝐾̂⟩
𝜕𝜃𝑗

=
⟨𝐾̂⟩𝜃𝑗+𝜖 − ⟨𝐾̂⟩𝜃𝑗−𝜖

2 (2.13)

Now that we defined how we compute the gradient, one can use the traditional updating

methods traditionally used in classical machine learning to update the circuit’s parameters.

In this work, we shall use ADAM (KINGMA; BA, 2014) because the authors (ZOUFAL; LUCCHI;

WOERNER, 2019) used it for optimizing QGANs.

2.3 GENERATIVE ADVERSARIAL NETWORKS

Generative adversarial networks, or GANs, are a type of machine learning model consisting

of a pair of deep neural networks. The neural networks composing this model are the generator,

denoted as 𝐺, and the discriminator, represented as the letter 𝐷. The role of the discriminator

is to distinguish the input as real or fake data created by the generator. And the generator

generates data samples that are capable of deceiving the discriminator.

Thus, both networks are optimized competitively. Let 𝑥𝐺 = 𝐺(𝑧) be the fake samples

created by the generator. With 𝑧, some random noise. And let 𝑃 = {𝑥1, . . . , 𝑥𝑝}, the dataset

batch with 𝑝 samples, where the fake samples 𝑥𝑔 have the same dimension as the real ones.
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And the output of the discriminator 𝑦 = 𝐷(𝑥𝑖) is within {0, 1}, indicating if the input received

is fake or real. For 𝑦𝑔 = 𝐷(𝐺(𝑧)), the discriminator’s labeling generated data as being fake.

We train the discriminator to maximize its performance towards better discrimination be-

tween real or fake samples. Equation (2.14) shows the loss function for the discriminator. We

can see that the discriminator is optimized by minimizing the loss as 𝑦𝑔 → 1. And maximizing

as 𝑦 → 0.

ℒ𝐷 = 1
𝑝

𝑝∑︁
𝑖=1

[𝑙𝑜𝑔(𝑦𝑖) + 𝑙𝑜𝑔(1 − 𝑦𝑔𝑖 )] (2.14)

We train the generator to minimize the performance of the discriminator for distinguishing

the generated data as fake.

ℒ𝐺 = −1
𝑝

𝑝∑︁
𝑖=1

log(𝑦𝑔𝑖 ) (2.15)

This type of optimization enables the generator to sample synthetic data gradually closer

to samples from the dataset, thus learning the intrinsic distribution of the data. (GOODFELLOW

et al., 2020).
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3 QUANTUM GENERATIVE ADVERSARIAL NETWORKS

We can consider different configurations when building the models for exploring the poten-

tial of quantum computing in adversarial learning. In (LLOYD; WEEDBROOK, 2018), the authors

present some discussions for cases where either the data from which the underlying distribution

defines the samples or where the generative or discriminative network can be either quantum

or classical. They further state that, for quantum data, a quantum generative network is better

suited for the problem.

However, this work will focus on quantum generative networks for sampling classical data

with a classical discriminator dedicated to distinguishing classical fake samples from real ones.

The generative network is a variational quantum circuit trained to load the dataset’s underlying

distribution into the quantum state.

3.1 DISTRIBUTION LOADING

QGANs, as its classical counterpart, can be used as a model for sampling synthetic data

from the underlying distribution of a dataset. Works as in (SITU et al., 2020; ROMERO; ASPURU-

GUZIK, 2021; ZENG et al., 2019) present a hybrid quantum-classical framework. The authors

use VQC for classical data sampling, where the expected value of the measurements samples

the data. And the data sampling is possible because the circuit’s parameters are optimized so

that the probability amplitudes of the state it produces approximate the data’s distribution.

In (ZOUFAL; LUCCHI; WOERNER, 2019), the authors present the same hybrid quantum-

classical framework, using a quantum generator and a classical discriminator, training the

quantum circuits for loading the data’s distribution. The architecture of the VQC used by

Figure 7 – Hybrid quantum-classical framework for quantum generative adversarial learning. Where 𝑥𝑟 is a
real data sample, and 𝑥𝑔 a generated sample. And 𝒟 is a classical discriminator.

Source: The author (2023)
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Figure 8 – Architecture of VQC proposed by (ZOUFAL; LUCCHI; WOERNER, 2019), for a 4-qubit system. Where
𝑙 refers to the layer index.
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Source: ZOUFAL; LUCCHI; WOERNER (2019)

the authors consists of a sequence o rotation gates alternated with blocks of controlled gates

(Figure 8). We will refer to those blocks as rotation and entanglement.

In (ZOUFAL; LUCCHI; WOERNER, 2019), the authors derived results from the numerical sim-

ulations to show the potential of training QGAN to load a random distribution. For a dataset

of 20, 000 randomly generated uni-dimensional samples following a specific probability distri-

bution 𝑝(𝑥). The authors optimized the generative network so that the frequencies produced

by the measurements of the qubits would approximate 𝑝(𝑥).

The QGAN implemented in (ZOUFAL; LUCCHI; WOERNER, 2019) the authors trained to

sample integers within the range [0, 2𝑛 − 1], for 𝑛 as the number of qubits in the system. The

discriminative network tries to distinguish the frequencies returned by the quantum circuit

against frequencies inferred from a batch with 2000 samples. Thus, the VQC updates the

parameters according to the loss presented in 2.3. The authors performed numerical simulations

of a QGAN for loading different distributions. Those were 𝑙𝑜𝑔-normal, triangular, and bimodal.

In this chapter, we will focus on the 𝑙𝑜𝑔-normal distribution (𝜇 = 1, 𝜎 = 1) because the

authors in (ZOUFAL; LUCCHI; WOERNER, 2019) also use it in a real-life application for Quantum

Finance. And In (ARAUJO et al., 2023), the authors could reuse the implementation introduced

in (ZOUFAL; LUCCHI; WOERNER, 2019) for sampling points within the interval 𝑥𝑖 ∈ [0, . . . , 20]

where every 𝑥𝑖 is equidistant.

We were able to replicate the experiments loading the 𝑙𝑜𝑔-normal distribution (𝜇 = 1, 𝜎 =

1) in (ZOUFAL; LUCCHI; WOERNER, 2019), by training the QGAN. The QGAN was trained to

mimic frequencies of the discretized 𝑙𝑜𝑔-normal distribution on 2𝑛 equidistant points in the

interval [0, 20] using two different initialization types. For all initialization types, the initial state

was in |0⟩⊗𝑛, with 𝑛 representing the number total of qubits on the system. Each initialization



32

Figure 9 – Comparison of the mean frequencies infered by the state vector from the 10 executions returned
by the QGAN’s VQC in the 𝑙𝑜𝑔-normal distribution (𝜇 = 1, 𝜎 = 1) discretized in 23 points in
[0, . . . , 20].

(a) Random initialization

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
X

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P(
X)

(qgan) RE=0.0915(±0.0043)
(target) RE=0.0

(b) Uniform initialization

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
X

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P(
X)

(qgan) RE=0.0901(±0.0064)
(target) RE=0.0

Source:The author (2023)

type was set to prepare the input state for the VQC and they shall be referred to as uniform

and random initialization for the remainder of this work.

For the random initialization, the input state of the ansatz remained as |0⟩⊗𝑛 with randomly

initialized parameters following a uniform distribution in [−𝜋, 𝜋]. To prepare the input state

using uniform initialization, besides parameters random initialization, we applied Hadamard

gates to each qubit 𝐻⊗𝑛. To determine how similar are the fake and real frequencies we used

𝐾𝐿-divergence, also referred to as Relative Entropy (RE).

𝐷(𝑝||𝑔) =
∑︁
𝑥𝑖

𝑝(𝑥𝑖)𝑙𝑜𝑔
(︃
𝑝(𝑥𝑖)
𝑔(𝑥𝑖)

)︃
(3.1)

We inferred the frequencies displayed in Figure 9 from the state vector obtained by the

numerical simulations, then we computed the mean of the frequencies from 10 executions. We

defined the generative model as VQC trained to load the 𝑙𝑜𝑔-normal distribution (𝜇 = 1, 𝜎 = 1)

over 1, 000 training epochs. We created the dataset with 20, 000 randomly generated uni-

dimensional samples in the interval [0, 20], with each training epoch using a batch size of

2, 000 samples. The standard deviation of the frequencies between executions was below order

of 10−4, so we will not display them in the figures.
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Figure 10 – Comparison of the mean frequencies from 10 executions returned by the QGAN’s VQC in the
𝑙𝑜𝑔-normal distribution (𝜇 = 1, 𝜎 = 1) discretized in 25 points in [0, . . . , 20].

(a) Random initialization
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Figure 11 – Mean relative entropies and errors over all 10 executions, for quantum systems with qubits ranging
from 3 to 7 qubits.
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3.2 LIMITATIONS

Indeed, using a shallow VQC in a 3-qubit system, one might be able to approximate a

random distribution, as in the case of the 𝑙𝑜𝑔-normal distribution. However, by replicating

the experiments with the same configurations on systems with a higher number of qubits, we

observed the performance of the QGAN’s VQC deteriorates as the number of qubits on the
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system increase. Figure 10 illustrates the mean frequencies generated by a VQC on a 5-qubit

system.

By varying the number of qubits within the range [3, 7], we could compute the mean relative

entropies over all 10 executions. The obtained results further evidence the QGAN limitation

concerning the number of qubits. We displayed the estimated mean relative entropies and the

errors in Figure 11. Works as in (AGLIARDI; PRATI, 2022; ARAUJO et al., 2023) also observed

this limitation.

The results acquired from replicating (ZOUFAL; LUCCHI; WOERNER, 2019) and its limitations

served as the basis reference and inspiration for our modification proposal.
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4 METHODOLOGY

In this Section, we introduce the QSPAs used as the base of our methodology. And we

further discuss what elements of those algorithms we used to define the structure of the ansatz.

4.1 STATE PREPARATION BASED ON SCHMIDT DECOMPOSITION

In (PLESCH; BRUKNER, 2011), the authors propose a state preparation algorithm that

exploits the bi-partitioning of a quantum state. They introduced bi-partitioning to optimize

the quantum circuit that loads the quantum state into the system. They based the algorithm

on the Schmidt decomposition of a quantum state. And in this Section, we will detail its most

relevant steps.

The Schmidt decomposition is a restatement of the Singular Value Decomposition (SVD)

applied to tensors in Hilbert spaces (NIELSEN; CHUANG, 2000). Consider a given quantum

state |𝜓𝐴𝐵⟩ in a composite system ℋ𝐴 ⊗ ℋ𝐵. We can rewrite the system in Equation (4.1).

This expression is called the Schmidt decomposition of state |𝜓𝐴𝐵⟩. For {|𝜑𝑖⟩}2𝑚

𝑖=0 ∈ ℋ𝐴 and

{|𝛾𝑖⟩}2𝑛−𝑚

𝑖=0 ∈ ℋ𝐵, with 𝑚 = ⌊𝑛2 ⌋ and the values {𝜆𝑖} correspond to the Schmidt coefficients,

with ∑︀𝑖 |𝜆𝑖|2 = 1.

|𝜓𝐴𝐵⟩ =
𝑟∑︁
𝑖=0

𝜆𝑖 |𝜑𝑖⟩ |𝛾𝑖⟩ (4.1)

The number of non-zero Schmidt coefficients represents the Schmidt rank 𝑟 = |{𝜆𝑖}𝑟𝑖=0|.

Each of these coefficients corresponds to a singular value in the SVD of the system 𝑈𝐷𝑉 †.

Let {|𝛼𝑗⟩} and {|𝛽𝑘⟩}, two sets of any fixed orthonormal basis for ℋ𝐴 and ℋ𝐵, respectively,

then we can rewrite the state |𝜓𝐴𝐵⟩ as in Equation (4.2) with 𝜆𝑖 = 𝑑𝑖𝑖 corresponding the

entries of the diagonal matrix 𝐷, known as singular values. And for 𝑢𝑗𝑖 and 𝑣𝑖𝑘 corresponding

to the entries in the matrices 𝑈 and 𝑉 †, respectively.

|𝜓𝐴𝐵⟩ =
∑︁
𝑗,𝑖,𝑘

𝑢𝑗𝑖𝑑𝑖𝑖𝑣𝑖𝑘 |𝛼𝑗⟩ |𝛽𝑘⟩ (4.2)

The algorithm starts by computing the Schmidt decomposition of a desired state |𝑝𝑠𝑖𝐴𝐵⟩.

For simplicity, let us consider |𝜓𝐴𝐵⟩ as a 4-qubit state we wish to encode in a superposition

as in Equation (4.3). For a complex value 𝑐𝑥, the probability amplitude of the basis state |𝑥⟩.
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⃒⃒⃒
𝜓𝐴𝐵

⟩
= 𝑐0000 |0000⟩ + 𝑐0001 |0001⟩ + 𝑐0010 |0010⟩ + 𝑐0011 |0011⟩ +

𝑐0100 |0100⟩ + 𝑐0101 |0101⟩ + 𝑐0110 |0110⟩ + 𝑐0111 |0111⟩ +

𝑐1000 |1000⟩ + 𝑐1001 |1001⟩ + 𝑐1010 |1010⟩ + 𝑐1011 |1011⟩ +

𝑐1100 |1000⟩ + 𝑐1101 |1101⟩ + 𝑐1110 |1110⟩ + 𝑐1111 |1111⟩

(4.3)

In textbooks, SVD is a method for factoring matrices. Nevertheless, to perform Schmidt

decomposition of the state
⃒⃒⃒
𝜓𝐴𝐵

⟩
, we must define how we wish to partition the state. We

accomplish state partitioning by creating a partition matrix from which the rows and columns

map to different sets of qubits. Let us label each qubit as |𝑤𝑥𝑦𝑧⟩, with 𝑤𝑥 as the basis states

of the two most significant qubits and 𝑦𝑧 labeling the two least-significant qubits. Thus, we

can define the partition matrix as in Equation (4.4).

|𝑦𝑧⟩

|𝑤𝑥⟩

|00⟩ |01⟩ |10⟩ |11⟩

|00⟩ 𝑐0000 𝑐0001 𝑐0010 𝑐0011

|01⟩ 𝑐0100 𝑐0101 𝑐0110 𝑐0111

|10⟩ 𝑐1000 𝑐1001 𝑐1010 𝑐1011

|11⟩ 𝑐1100 𝑐1101 𝑐1110 𝑐1111

(4.4)

With the partition matrix defined, we must now compute its SVD, thus obtaining the

Schmidt coefficients {𝜆𝑖} and the unitary operators 𝑈 and 𝑉 †. Afterwards, we begin the

construction of the quantum circuit for encoding |𝜓𝐴𝐵⟩. As in any QSPA, assuming the initial

state is |0⟩⊗𝑛, the main goal is to compute a sequence of unitary transformations 𝑈 that

perform the mapping 𝑈 |0⟩⊗𝑛 ↦→ |𝜓𝐴𝐵⟩. The method proposed by (PLESCH; BRUKNER, 2011)

accomplishes the preparation of |𝜓𝐴𝐵⟩ by dividing it into four phases, as shown in Figure 12.

For more details on how we decompose the operators 𝜆̂, 𝑈 and 𝑉 , in Figure 12, into single

qubit gates and CNOTs, please refer to (SHENDE; BULLOCK; MARKOV, 2005; BERGHOLM et al.,

2005). On phase 1, the operator 𝜆̂ prepares the Schmidt coefficients in the quantum state,

resulting in the following superposition:

(𝜆̂⊗ 𝐼⊗2) |00⟩ |00⟩ = 𝜆00 |00⟩ |00⟩ + 𝜆01 |01⟩ |00⟩ + 𝜆10 |10⟩ |00⟩ + 𝜆11 |11⟩ |00⟩ (4.5)
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Figure 12 – Example of a 4-qubit quantum circuit defined to load |𝜓𝐴𝐵⟩ using the QSPA proposed by (PLESCH;
BRUKNER, 2011)

Phase 1 Phase 2 Phase 3

Phase 4

Source: The author (2023)

In phase 2, the quantum circuit applies a sequence of CNOTs on the system, using the

qubits of the first register as controls, thus "copying" the basis states to the second register.

The resulting superposition after we apply the CNOTs to the system is as follows:

𝜆00 |00⟩ |00⟩ + 𝜆01 |01⟩ |01⟩ + 𝜆10 |10⟩ |10⟩ + 𝜆11 |11⟩ |11⟩ (4.6)

Phases 3 and 4 occur in parallel, and the operators 𝑈 and 𝑉 † are responsible for mapping

each basis state to their corresponding quantum state in {|𝜑𝑖⟩} or {|𝛾𝑖⟩}, respectively, for

𝑖 ∈ {0, 1}2. The resulting superposition after phases 3 and 4 is as follows:

|𝜓𝐴𝐵⟩ =
∑︁

𝑖∈{0,1}2

𝜆𝑖 |𝜑𝑖⟩ |𝛾𝑖⟩ (4.7)

Though we have chosen specific groups of qubits for partitioning the desired state, one

can apply this method with other qubit partitionings.

4.2 LOW-RANK

In (ARAUJO et al., 2023), the authors proposed a QSPA that further generalized the al-

gorithm introduced in (PLESCH; BRUKNER, 2011). They call their method Low-Rank. And it

is used as a basis for our method. The Low-Rank QSPA can work as in (PLESCH; BRUKNER,

2011) by first loading all coefficients, but it can also prepare an approximate state, starting
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by partially loading the Schimidt Coefficients. The approximation is derived from the low-rank

approximation of matrices using SVD. Thus, allowing the definition of a quantum circuit that

loads a quantum state approximate to |𝜓𝐴𝐵⟩ up to a desired Schmidt rank 𝑟𝑠, with 𝑟𝑠 < 𝑟.

Given an arbitrary quantum state |𝜓𝐴𝐵⟩ with a Schmidt Rank 𝑟 = |{𝜆𝑖}|. A quantum circuit

construction for a Low-Rank approximation of |𝜓𝐴𝐵⟩ would load the first 𝑟𝑠 Schmidt Coeffi-

cients of the state partitioning |𝜓𝐴𝐵⟩ = ∑︀𝑟𝑠
𝑖 𝜆𝑖 |𝜑𝑖⟩ |𝛾𝑖⟩, since the coefficients are sorted from

greatest to smallest, choosing the first 𝑟𝑠 will lead to the best possible approximation (ECKART;

YOUNG, 1936). Leaving us with an approximation of rank 𝑟𝑠 = |{𝜆𝑖}𝑟𝑠
𝑖=0|, where we simplify

the operators 𝑈 and 𝑉 † to isometries. The overall structure of the circuit is exemplified in

Figure 13.
Figure 13 – Quantum Circuit for a Low-Rank approximation on a 4-qubit system. With 𝑟𝑠 = 2.

Load  Schmidt
coefficients

Phase 1 Phase 2 Phase 3

Phase 4

Source: The author (2023)

Therefore, by using the Low-Rank approximation of a state, we can reduce the quantum

circuit’s complexity relative to the operation count. Nevertheless, the approximated QSPA

offers benefits on current devices. NISQ devices have noisy qubits and operations with low

decoherence time, thus making the exact loading arbitrary state impractical. Therefore, by

allowing a fidelity loss ℒfid = 1 − |⟨𝜓𝑡|𝜓𝑜⟩|2, for some target state |𝜓𝑡⟩ and some output state

|𝜓𝑜⟩, we can load the main properties of |𝜓𝑡⟩ by reducing the number of noisy operations.

This is done so that the error for preparing the approximate state, on a real device, is less than

preparing the exact state.



39

4.3 ADAPTIVE ANSATZ

We based the adaptive ansatz of our proposed method on the same construction presented

in (ARAUJO et al., 2023). However, instead of computing the circuit’s operations and parameters

according to a target state |𝜓𝑡⟩ with a desired rank 𝑟𝑠, it is possible define the quantum circuit

for a desired rank 𝑟𝑠 with optimizable randomly initialized parameters. And we use parameters

that are optimizable through the process of VQA. That is, we train the circuit to approximate

|𝜓𝑡⟩.

Because we do not use previous knowledge of |𝜓𝑡⟩ to define the circuit for a desired rank

𝑟𝑠, we must infer the dimensions of operations such as 𝑈 and 𝑉 †. Given the partitions size

𝑚 = ⌊𝑛2 ⌋ and 𝑛̄ = 𝑛 − 𝑚, for 𝑛, the total number of qubits. Then, 𝑑𝑖𝑚(𝑈) = 2𝑛̄ × 2𝑛̄ and

𝑑𝑖𝑚(𝑉 †) = 2𝑚 × 2𝑚 define the dimensions of 𝑈 and 𝑉 †, respectively. And the effective rank

is inferred from the previously computed dimensions 𝑟 = 𝑚𝑖𝑛(2𝑛̄, 2𝑚).

We also incorporated the repetition of the circuit through a configurable number of layers.

It is a property commonly employed by some works that use VQA (ZOUFAL; LUCCHI; WOERNER,

2019; AGLIARDI; PRATI, 2022; PRIETO, 2022). Besides building an ansatz using a configurable

number of layers, we included the feature of qubit grouping. That is, grouping a subsets of

qubits in different registers and defining the Low-Rank ansatz independently in each of those

groups, in parallel. We added this feature to further simplify the resulting quantum circuit. Each

ansatz per-group and each layer repetition was assigned with randomly initialized parameters

independently. Figure 14 details the overall circuit structure.

Figure 14 – Qubit grouping and layering of the Low-Rank ansatz
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Source: The author (2023)
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5 EXPERIMENTS AND RESULTS

In our experiment configuration, we performed numerical simulations using the QGAN with

generative network 𝒢 defined as a VQC using our adaptive ansatz introduced in Chapter 4.

We defined the discriminative network 𝒟 as a simple multilayer perceptron using the PyTorch

library (PASZKE et al., 2017). Our main goal was to train 𝒢 to load a target distribution 𝑃 ,

discretized on the interval of equidistant data points in [0, 20], so that every data point sampled

as 𝑥𝑖 ∈ [0, 20] follows the distribution approximated by 𝒢.

For our experiments, we chosed to focus on the 𝑙𝑜𝑔-normal (𝜇 = 1, 𝜎 = 1) distribution

because it is the distribution used by (ZOUFAL; LUCCHI; WOERNER, 2019) as proof of concept

and as an application of Quantum Finance. To determine the quality of the approximation of 𝒢,

we used Relative Entropy (RE), presented in Equation (3.1), where the output frequencies were

inferred from the output state vector of the distribution loaded by 𝒢 for each point 𝑥𝑖 ∈ [0, 20].

We also compared the QGAN frequencies with the discretized 𝑙𝑜𝑔-normal distribution using

RE on the same data points. And we opted to focus on the Random and Uniform initialization

methods, which are the same initialization methods used in Section 3.1.

To create the dataset, we sampled 20, 000 points within interval [0, 20], following the 𝑙𝑜𝑔-

normal (𝜇 = 1, 𝜎 = 1) distribution. We trained QGAN with 1, 000 epochs and a batch size

of 2, 000 samples. Each single execution had its duration ranging from 30 minutes to more

than one hour, depending on number of qubits on the system. We used ADAM (KINGMA; BA,

2014) optimization method with the same hyper-parameters defined to optimize the replicate

in Section 3.1.

We varied the qubit number of the circuit within the range [3, 7] as in the replicate of

Section 3.2. And with the option of defining ansatzes with subgroups of qubits (see Figure

14), we also varied the number of qubit groups within the range [2, 𝑞] for 𝑞 = ⌊𝑛+1
2 ⌋ and

a single layer for both Replicate QGAN and QGAN using Low-Rank defined ansatz. For the

remainder of this chapter, the qubit grouping shall be called build qubits. And the QGAN using

a Low-Rank ansatz shall be referred to as Low-Rank QGAN.

With those configurations, we ran 10 executions to perform statistical tests on the QGANs

outputs. The numerical simulations for the quantum circuit implementations were carried out

using Qiskit (ALEKSANDROWICZ et al., 2019) and did not target any specific device’s coupling

map. All the results were computed from noiseless simulations. Due to time limitations we did
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not run experiments on Low-Rank QGAN with ansatzes defined with more than one layer and

different ranks.

5.1 EXPERIMENTS FOR 3 QUBIT SYSTEMS

For a 3-qubit system, 𝒢 approximates the 𝑙𝑜𝑔-normal distribution with slightly better

results for a 𝒢 defined with Low-Rank ansatz, with a mean RE of 0.0244(±0.0) for Ran-

dom initialization and 0.0914(±0.0) for Uniform initialization, against 0.0915(±0.0043) and

0.092(±0.0078) of the Replicate QGAN with Random and Uniform initialization respectively.

Figure 15 displays mean frequencies for the Low-Rank QGAN with the best mean RE score,

the Low-Rank QGAN with Random initialization, against the mean frequencies of the replicate

with the same initialization. This result is already expected since we observed in Section 3.1 the

QGAN proposed by (ZOUFAL; LUCCHI; WOERNER, 2019) can also approximate the 𝑙𝑜𝑔-normal

distribution with the current configurations. We can see the progression of RE over the 1, 000

training epochs through all 10 executions displayed in Figure 16. With the replicate having a

more stable optimization relative to the Low-Rank QGAN.

Figure 15 – Mean frequencies comparison for a 3-qubit system. Using Random initialization.
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Figure 16 – Mean RE progression for a 3-qubit system.
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5.2 EXPERIMENTS FOR SYSTEMS WITH QUBIT NUMBERS FROM 4 TO 6

When performing experiments on systems with qubit number higher than 3, we used differ-

ent qubit grouping ( or Build qubits) of the Low-Rank for testing different circuit architectures.

Using the Low-Rank QGAN, we obtained better overall RE scores than the Replicate QGAN.

Tables 1 and 2 summarize the mean RE scores of the 10 experiment iterations for Low-Rank

and the Replicate QGAN.

Table 1 – Mean RE for the Replicate QGAN for Random and Uniform initialization

init type
n-qubits

4 5 6

Random 0.5751(±0.0808) 1.4871(±0.3054) 1.8939(±1.6134)
Uniform 0.591(±0.1386) 1.5159(±0.2347) 2.1781(±1.3231)

Source: The author (2023)

From RE scores summary on table 2, we observe the initialization highly affects the resulting

distribution approximation. Because though we were able to obtain better overall results using

Low-Rank QGAN, the experiments on Random initialization still resulted in better RE scores.

For a 6-qubit system, the resulting ansatz of Low-Rank has a total of 3 and 8 CNOTs,

using 2 and 3 build qubits, respectively. Against 5 CNOTs of the ansatz used in the Replicate

QGAN. This evidences that we could obtain better approximations even with a slightly higher
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Table 2 – Mean RE for the Low-Rank QGAN with different Build qubits using Random and Uniform initial-
ization

Random initialization

n-qubits
Build qubits

2 3

4 0.0847(±0.0) -
5 0.5961(±0.0) 0.2229(±0.0)
6 0.514(±0.0) 0.735(±0.0)

Uniform initialization

n-qubits
Build qubits

2 3

4 0.4965(±0.0) -
5 1.1644(±0.0) 0.5474(±0.0)
6 0.8215(±0.0) 0.5734(±0.0)

Source: The author (2023)

Figure 17 – Frequencies returned by the Low-Rank and Replicate QGANs for a 6-qubit system using Random
initialization

(a) Low-Rank QGAN, 2 Build Qubits
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number of CNOTs.

Our goal is to improve the approximation of the distribution loaded by QGAN. Thus, for

the remainder of this chapter we will solely focus on 7-qubit systems.
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Figure 18 – Frequencies returned by the Low-Rank and Replicate QGANs for a 7-qubit system using Random
and Uniform initialization respectively

(a) Low-Rank QGAN, 3 Build Qubits
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5.3 EXPERIMENTS FOR 7 QUBIT SYSTEMS

By running experiments on 7-qubit systems, we obtained similar improvements in terms of

RE scores. Tables 3 and 4 summarize the final mean scores of the 10 iterations for the Replicate

and Low-Rank QGAN. The ansatz for the Replicate QGAN contained 6 CNOTs. For the ansatz

used in Low-Rank QGAN the build qubits varied whithin the set 2, 3, 4, resulting in ansatzes

with 3, 8 and 13 CNOTs respectively. As the results summarized in table 2, there is not a

big gap between the RE scores for both initialization types compared to the Replicate QGAN.

However, unlike the results in table 2, the experiments on Uniform initialization resulted in

better RE scores. A possible explanation for those differences is the random initialization of

parameters starting on better regions, which is also a recurring point of interest in machine

learning applications such as Deep Learning (SUTSKEVER et al., 2013; NARKHEDE; BARTAKKE;

SUTAONE, 2022).

Table 3 – Mean RE for the Replicate QGAN for Random and Uniform initialization on 7-qubit system

Init type Mean RE
Random 2.6332(±0.481)
Uniform 2.18(±0.6072)

Source: The author (2023)

Figure 18 displays the mean frequencies returned by the Low-Rank QGAN, with 3-build
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qubits, and the Replicate QGAN for a 7-qubit system. With the Low-Rank QGAN using

Random initialization and the Replicate QGAN using the Uniform initialization. We chosed

those models for displaying the obtained frequencies because they returned the best RE scores

on their respective score summaries (see Tables 3 and 4). In Figure 18 we show that Low-Rank

QGAN better approximates the 𝑙𝑜𝑔-normal distribution. This result was expected, given the

mean RE score is smaller than the Replicate QGAN.

Table 4 – Mean RE for the Low-Rank QGAN for Random and Uniform initialization on 7-qubit system

init type
Build qubits

2 3 4

Random 0.8973(±0.0) 0.4184(±0.0) 0.6013(±0.0)
Uniform 0.5561(±0.0497) 0.472(±0.102) 1.2194(±0.1477)

Source: The author (2023)

Nevertheless, looking into the progression of the mean RE scores over the 1, 000 training

epochs of the Replicate QGAN of Figure 19. We remark a slight oscillation of the scores of

the Replicate QGAN compared to the Low-Rank QGAN with 3 Build Qubits. One possible

explanation is that the quantum circuit architecture of a QSPA usually involve several param-

eters, which means optimizing the results on a larger parameter space than the ansatz used

by the Replicate QGAN. Another possible explanation is that ansatz architecture and initial

state highly influence how the parameters are optimized. Figures 19c-19d display the mean RE

score progression.

Though the mean RE scores in Figure 19 do not represent much oscillation for the Replicate

QGAN, we can still obtain better RE scores with the Low-Rank QGAN for the 𝑙𝑜𝑔-normal

(𝜇 = 1, 𝜎 = 1) distribution.
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Figure 19 – Mean RE progression for a 7-qubit system for Low-Rank and Replicate QGANs.

Uniform Initialization
(a) Low-Rank QGAN, 3 Build Qubits

0 200 400 600 800 1000
n epochs

0

5

10

15

20

25

RE

mean+std
mean
mean-std

(b) Replicate QGAN

0 200 400 600 800 1000
n epochs

0

5

10

15

20

25

RE

mean+std
mean
mean-std

Random Initialization
(c) Low-Rank QGAN, 3 Build Qubits

0 200 400 600 800 1000
n epochs

0

5

10

15

20

25

RE

mean+std
mean
mean-std

(d) Replicate QGAN

0 200 400 600 800 1000
n epochs

0

5

10

15

20

25

RE

mean+std
mean
mean-std

Source: The author (2023)



47

6 CONCLUSION

In this work, we proposed a method for defining an adaptive ansatz based on the QSPA

presented in (ARAUJO et al., 2023), which builds a quantum circuit for loading a quantum

state up to a desired Schmidt rank 𝑟𝑠, called Low-Rank. We defined the ansatz without any

previous knowledge of the desired quantum state. We used the Low-Rank ansatz in a Quantum

Generative Adversarial Network (QGAN) proposed by (ZOUFAL; LUCCHI; WOERNER, 2019) for

approximating the 𝑙𝑜𝑔-normal distribution (𝜇 = 1, 𝜎 = 1) on higher dimension states. We

performed this modification because we observed that the performance of the original QGAN

deteriorated in terms of Relative Entropy (RE) scores as we increased the number of qubits in

the system.

By running experiments on QGANs with an ansatz defined by our methodology, we obtained

better RE scores than the original QGAN over different initialization types. As a subsequent

result, the frequencies for the distribution loaded by the QGAN using our methodology better

approximate the desired 𝑙𝑜𝑔-normal distribution on systems with qubit numbers ranging from

4 to 7. As an example, for a 7-qubit, the best RE score was ≈ 0.514. An improvement if

compared to the original QGAN best RE score of ≈ 2.4034, for a 7-qubit system.

We achieved improvements on QGANs using our methodology. However, there are still

research opportunities that future works can explore. The frequencies loaded by the QGAN

with our ansatz better approximate the desired distribution on systems with more than 3 qubits

compared to the original QGAN, but they are not ideal. Relative to RE scores, it would be

≤ 0.05, which is slightly below the mean RE score obtained by our methodology on a 3-qubit

system. Thus, a possible future work can be on how to improve the approximations of QGANs.

In this work, we solely focused on the 𝑙𝑜𝑔-normal (𝜇 = 1, 𝜎 = 1) distribution, which

authors in (ZOUFAL; LUCCHI; WOERNER, 2019) used as a distribution for asset pricing on a

quantum finance application. Another possible future work can explore different distributions

and applications where we could use the QGANs. A subsequent research opportunity lies in the

fact that to load other distributions or similar distributions with different parameters (mean,

kurtosis, etc. ), we must retrain the QGAN. In future works, researchers could investigate

how to enable the QGAN to load different distribution types with distinct moments without

training the model from scratch.

In our work, we relied heavily on the random initialization of parameters without using any
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previous knowledge of the data. Even in experiments with uniform initialization, we prepare

the input state using the operator 𝐻⊗𝑛. The model becomes susceptible to problems such as

barren plateaus and having the optimization stuck at local minima. Another possible future

work could explore how to incorporate some previous knowledge about the problem or the data.

And apply that knowledge either in the definition of the ansatz or in some other components

of the VQA to avoid such issues.
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