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ABSTRACT

As autonomous vehicles become more common worldwide, there is growing interest in
the safety of their control systems. These systems generally include Neural Networks that
use road images to guide the vehicle’s steering direction. Developing effective strategies
to monitor and test these Neural Networks is thus critical. This dissertation proposes two
distinct but complementary strategies to address this challenge. The first strategy employs
an innovative technique based on the attention maps computed by explainable artificial
intelligence. This approach actively monitors the Neural Network’s operations within the
vehicle, identifying anomalous instances where the Neural Network may behave unexpect-
edly, thereby mitigating potential accident risks. This method was empirically validated
using the Virtual Driving Simulator developed by Udacity. The second part of the dis-
sertation presents a preliminary study of a testing strategy applicable during the Neural
Networks’ testing phase. This strategy involves generating a variety of extreme driving
scenarios to expose and understand the Neural Network’s limitations and weaknesses. A
Neural Network trained on the MNIST dataset to classify digits was employed in this
study, serving as a proof of concept for the effectiveness of attention maps in guiding the
generation of digit variations and identifying corner cases. The analogy between the shape
of a digit and the layout of a road formed the basis for using digit classification in this
preliminary study. The goal is to demonstrate that the efficiency gains achieved with the
application of attention maps would hold promising results if replicated in the automatic
generation of simulated road scenarios for driving simulations. The results suggest that
our approach can substantially improve the safety and reliability of autonomous vehicles.

Keywords: image segmentation; autonomous vehicles safety; explainable artificial intel-
ligence; automated tests generation.



RESUMO

À medida que veículos autônomos se tornam mais comuns em todo o mundo, há um
crescente interesse na segurança de seus sistemas de controle. Esses sistemas geralmente
incluem Redes Neurais que usam imagens da estrada para orientar a direção do volante do
veículo, desempenhando um papel fundamental nesses veículos. Desenvolver estratégias
eficazes para monitorar e testar essas Redes Neurais é, portanto, crítico. Esta dissertação
propõe duas estratégias distintas, mas complementares, para enfrentar esse desafio. A
primeira estratégia emprega uma técnica inovadora baseada nos mapas de atenção cal-
culados pela explainable artificial intelligence. Esta abordagem monitora ativamente as
operações da Rede Neural dentro do veículo, identificando instâncias anômalas onde a
Rede Neural pode se comportar de maneira inesperada, mitigando assim potenciais riscos
de acidentes. Este método foi validado empiricamente usando o Simulador de Direção
Virtual desenvolvido pela Udacity. A segunda parte da dissertação apresenta um estudo
preliminar de uma estratégia de teste aplicável durante a fase de teste das Redes Neurais.
Esta estratégia envolve gerar uma variedade de cenários de condução para expor e en-
tender as limitações e fraquezas da Rede Neural. Uma Rede Neural treinada no conjunto
de dados MNIST para classificar dígitos foi empregada neste estudo, servindo como uma
prova de conceito para a eficácia dos mapas de atenção em orientar a geração de variações
de dígitos e identificar corner cases. A analogia entre a forma de um dígito e o layout de
uma estrada formou a base para usar a classificação de dígitos neste estudo preliminar. O
objetivo é demonstrar que os ganhos de eficiência alcançados com a aplicação de mapas
de atenção podem ser replicados na geração automática de cenários de estrada simulados
para simulações de condução. Os resultados sugerem que nossa abordagem pode melhorar
substancialmente a segurança e a confiabilidade dos veículos autônomos.

Palavras-chave: segmentação de imagens; segurança de veiculos autônomos; inteligência
artificial explicável; geração de testes automatizados.
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1 INTRODUCTION

The development and implementation of autonomous driving systems (ADS) is a complex
and multifaceted endeavor with considerable implications for public safety. Ensuring that
these systems can operate safely and efficiently, even in unknown and uncertain situa-
tions, has stimulated a substantial amount of research into autonomous vehicles, machine
learning, and, most notably, the usage of explainable artificial intelligence (XAI).

This dissertation delves into two key research projects in this domain, both centralizing
the role of XAI, particularly focusing on the utilization of attention maps during the
ADS testing and runtime monitoring phase. Each project is encapsulated in a standalone
chapter, which is divided into main sections: Introduction, Background, Methodology,
Results, and Conclusion.

In the first chapter, we delve into the detailed examination of a runtime monitoring
technique known as ThirdEye. This technique originated a paper titled “ThirdEye: Atten-
tion Maps for Safe Autonomous Driving Systems”(STOCCO et al., 2022). The foundation
and content of this chapter are principally rooted in the findings and discussions presented
in the aforementioned paper. This tool uses attention maps computed by XAI techniques
to differentiate between safe and unsafe driving behaviors. We explore the hypothesis
that uncommon attention maps may indicate unexpected runtime conditions that could
potentially lead to the misbehavior of the autonomous system. In essence, the purpose of
this chapter of the study is to present a comprehensive analysis of ThirdEye’s theoreti-
cal framework, implementation, and empirical evaluation in predicting simulation-based
failures.

The second chapter of the dissertation draws focus on a preliminary study, called
Mutant XAI Generator, centered on a testing strategy employed during the Neural
Networks’ testing phase. This strategy encompasses generating various driving scenarios
to expose and understand the Neural Network’s limitations and weaknesses. The chapter
starts by providing the necessary background for understanding Neural Network’s usage
in autonomous vehicles. The intent is to illustrate how efficiency gains achieved with
attention maps can be mirrored in the automatic generation of simulated road scenarios
for driving simulations.
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2 THIRDEYE- A XAI RUNTIME MONITORING APPROACH FOR AU-
TONOMOUS DRIVING SYSTEMS

2.1 INTRODUCTION

The advancements in autonomous driving systems (ADS) have necessitated the devel-
opment of sophisticated runtime monitoring techniques to ensure safety even under un-
expected conditions. This chapter presents an in-depth exploration of ThirdEye, a novel
tool designed to address this pressing need.

ThirdEye is an innovative application of explainable artificial intelligence (XAI) tech-
niques in the realm of ADS, specifically focusing on the use of attention maps. Attention
maps in this context are computational representations that highlight areas in an input
data that a machine learning model, particularly a neural network, pays most attention to
while making decisions. ThirdEye leverages these attention maps to discern between safe
and unsafe driving behaviors by associating uncommon attention maps with unexpected
runtime conditions.

The primary objective of this chapter is to present a comprehensive examination of
ThirdEye, covering its theoretical underpinnings, practical implementation, and empirical
evaluation. In the process, we delve into the realms of XAI and attention maps, as well
as their importance in autonomous driving scenarios.

The chapter begins by introducing the concept of ThirdEye, followed by a review
of relevant background literature on ADS, XAI, and attention maps. We then move on
to the methodology section, where we describe the design, implementation, and testing
of ThirdEye, including details on how attention maps are computed and utilized in the
system.

In the Results section, we present findings from our empirical study where ThirdEye
was evaluated on its ability to predict simulation-based failures, induced by both unknown
conditions (adverse weather and lighting) and unsafe/uncertain conditions created with
mutation testing. We outline how attention maps were used to generate confidence scores
that differentiated between safe and unsafe driving behaviors.

Finally, in the Conclusion section, we draw upon the results to reflect on the effec-
tiveness of ThirdEye and its potential implications for the safety of ADS. We also discuss
potential areas for future research, inspired by the findings of this study.

Overall, the aim of this chapter is to elucidate the potential of XAI in ensuring the
safety of ADS, exemplified through our study of the ThirdEye tool. By conducting this
research, we aspire to contribute to the broader understanding of autonomous driving
systems and the pivotal role of XAI therein.
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2.2 MOTIVATION

2.2.1 ADS System Monitoring

Autonomous driving systems (ADS) consist of an integration of established systems of
adaptive cruise control, parking assistance, and autopilots into a unified functional unit
(YURTSEVER et al., 2020). Modern ADS are developed with increasing capabilities to act
autonomously with little to no human input, using a perception-plan-execution strategy
(YURTSEVER et al., 2020). The perception part is typically delegated to deep neural net-
works (DNNs) which are capable of learning driving actions from labeled input-output
samples (GRIGORESCU et al., 2020). For ADS, typical inputs consist of driving images,
whereas the outputs are driving commands predicted by the DNN, such as the angle
that the car must steer at to drive safely. The input space of ADS (i.e., all possible
driving images) is huge and hard to cover adequately, even with automated testing tech-
niques (GAMBI; MUELLER; FRASER, 2019; Ben Abdessalem et al., 2018; ABDESSALEM et al.,
2018; Ben Abdessalem et al., 2016; RICCIO; TONELLA, 2020a). Consequently, one of the main
challenges associated with deploying trustworthy ADS on public roads consists in their
need to operate safely even in partially unknown and uncertain environments, which can
result in unpredictable and hazardous situations. On the other hand, increased accep-
tance of such driverless vehicles requires a high degree of robustness also in the presence
of non-modelled phenomena, uncertainties, as well as errors or inaccuracies at the sensor
level (SCULLEY et al., 2015).

Existing works have proposed DNN supervisors to build a safety envelope over a DNN
to assess its level of dependability in operation (HENRIKSSON et al., 2019; KIM; FELDT;

YOO, 2019; XIAO et al., 2021; ZHANG et al., 2018b; WANG et al., 2020; STOCCO et al., 2020;
HUSSAIN; ALI; HONG, 2022; HELL et al., 2021). Generic solutions consist of measuring
the distance of a given data point from the distribution of the training dataset (KIM;

FELDT; YOO, 2019), or through input validation frameworks based on internal inconsis-
tencies (XIAO et al., 2021), or prediction snapshots (WANG et al., 2020). For ADS, spe-
cific runtime monitoring solutions have been proposed to mitigate system-level failures.
Frameworks such as SelfOracle (STOCCO et al., 2020), DeepRoad (ZHANG et al., 2018b),
or DeepGuard (HUSSAIN; ALI; HONG, 2022) monitor the ADS as a black box and exam-
ine its behaviour in response to changeable environmental conditions, essentially only by
considering the input images processed by the system.

2.3 PROBLEM

The main limitations of these approaches are twofold. First, black-box solutions can only
handle data-driven failures induced by significant changes (e.g., corruptions) in the input
image that makes it fall beyond the distribution of the inputs on which the ADS has been
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trained (out-of-distribution, or OOD) (DOLA; DWYER; SOFFA, 2021). Thus, they suffer
from the inability to capture failures caused by an inadequate training of the DNN model
or by bugs at the model level (HUMBATOVA et al., 2020). Second, black-box solutions are
prone to false positives/negatives as their functioning is extraneous to the internal state of
the system, which can lead to a discrepancy between the system being monitored and the
monitor. Indeed, if the ADS and the corresponding monitor have different generalization
capabilities, this can cause false alarms to be reported, or, worse, safety-critical failures
to be missed, as also noticed in the original papers (ZHANG et al., 2018b; STOCCO et al.,
2020; HUSSAIN; ALI; HONG, 2022).

2.4 WORK OBJECTIVES

2.4.1 General Objective

This work investigates the problem of building a white-box ADS failure predictor. Al-
though there are many methods to investigate the internal functioning of a DNN (WANG

et al., 2020; KIM; FELDT; YOO, 2019; GAL; GHAHRAMANI, 2016), this work focuses on the
attention maps produced by explainable artificial intelligence techniques (XAI). Atten-
tion maps (JETLEY et al., 2018; SAMEK et al., 2019; SAMEK; WIEGAND; MÜLLER, 2017) are
post-training approaches that highlight the input pixels that influence the output predic-
tions the most. While primarily used for comprehension and debugging of DNNs, Tjoa
et al. (TJOA et al., 2022) have provided empirical evidence of the informative content of
heatmaps. In this work we leverage attention maps for failure prediction to maintain the
reliability of the ADS within a safety net.

Our technique, implemented in a tool called ThirdEye, consists of a self-attention
monitor for ADS that turns attention maps into XAI-driven scores used as a white-box
confidence estimator of the system. More specifically, ThirdEye performs online moni-
toring capturing visual snapshots during the execution of ADS and leverages the visual
information extracted from the attention maps to automatically identify conditions in
which the system is unconfident. We show that attention snapshots offer clues about
the reliability of the ADS; ThirdEye synthesizes such snapshots into a confidence score
using different summarization strategies (i.e., average, average derivative over time, re-
construction loss). Our technique works in an unsupervised fashion: failure prediction is
performed by setting a threshold over the nominal XAI-confidence scores using probabil-
ity distribution fitting. Anomalous driving conditions are detected when the confidence
scores decrease within a detection window that precedes the failure.

We have evaluated the effectiveness of ThirdEye on the Udacity simulator for self-
driving cars (Udacity, 2017), using ADS available from the literature and a diverse set
of failures induced by adverse operational scenes and mutation testing-simulated mal-
functions. In our experiments on +70 simulations accounting for more than 350 failures,
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ThirdEye was able to safely anticipate up to 98% of them, up to 3 seconds in advance, a
30% increase with respect to SelfOracle (STOCCO et al., 2020), a state-of-the-art black-box
strategy from the literature. The improvement is particularly evident for failures induced
by mutation testing: on average, ThirdEye anticipated 85% more failures caused by
mutated driving models. ThirdEye also achieves a better trade-off between prediction
of misbehaviours and false alarms, with an 𝐹3 improvement up to 49%.

2.4.2 Contributions

Our work makes the following contributions:

Technique. A self-attention monitoring technique for ADS failure prediction based on
attention maps produced by XAI techniques. Our approach is implemented in the
publicly available tool ThirdEye (STOCCO et al., 2022). To the best of our knowl-
edge, this is the first solution that uses XAI techniques to estimate the confidence
of a DNN-based ADS and to anticipate system-level failures.
For the preliminary study, an in-depth exploration of the influence of Explainable AI
on the generation of corner cases for Neural Networks. The established technique
is not only applicable to the present study but can also be leveraged in the cre-
ation of simulated road driving scenarios. This has substantial potential to enhance
the testing methodology for Autonomous Driving Systems (ADS) Neural Networks,
facilitating their robustness and reliability.

Evaluation. An empirical study showing that the XAI-based confidence scores used
by ThirdEye are a promising white-box confidence metric for failure prediction,
outperforming the black-box approach of SelfOracle (STOCCO et al., 2020).

Dataset. A dataset of more than 350 out-of-distribution and mutation-testing-induced
ADS failures, based on the Udacity simulator for self-driving cars. This dataset can
be used to evaluate the performance of failure prediction systems for ADS.
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2.5 BACKGROUND

In this section, relevant concepts will be presented about the subjects related to lane-
keeping Autonomous Driving Systems (ADS) and failure prediction.

2.5.1 Lane-keeping ADS

ADS benefit from data gathered by sensors, cameras, and GPS to perceive the environment
and predict the vehicle’s controls (i.e., steer, brake, acceleration) through advanced DNNs.

This work focuses on ADS that perform behavioural cloning, i.e., the vehicle learns
the lane keeping functionality from humanly-labeled driving samples. The lane-keeping
component is vital for the safe deployment of DNN-based ADS. The U.S. Department of
Transportation, National Highway Traffic Safety Administration (NHTSA) reported that
off road failures are second in frequency and first in cost (+15B USD) (TRANSPORTATION,
2007).

Models such as NVIDIA’s DAVE-2 (BOJARSKI et al., 2016b) learn how to drive by
discovering latent patterns within a training set of images collected when the driver is an
expert human pilot, and by predicting the corresponding driving commands imitating the
driving behaviour of the human. In its most simplified form, a lane-keeping ADS such as
DAVE-2 can be seen as a function 𝑓 : 𝑅𝑑 → [−25∘, +25∘] where 𝑑 is the dimension of the
input image 𝑥 ∈ 𝑅𝑑 (e.g., for a 140 × 320 image, 𝑑 = 44800 pixels) and the output is a
vector 𝑦 of length 1, e.g., a real number representing a (predicted) steering angle in the
range

[︁
−25∘, +25∘

]︁
, where −25∘ indicates steering full left, +25∘ indicates steering full

right, and 0 means no steering applied.1

2.5.2 Failure Conditions for lane-keeping ADS

The ISO/PAS 21448 Safety of the Intended Function (SOTIF) standard (STANDARDIZA-

TION, 2019) mandates risk mitigation strategy to be implemented within ADS to reduce
risks and hazards associated with malfunctioning behaviour. At NHTSA Level 4 (High
Automation), a system monitor checks for emerging functional insufficiencies with the aim
to keep a high functional quality also in extreme conditions (WANG et al., 2020; ZHANG

et al., 2018b; HENRIKSSON et al., 2019). The ADS should disengage if the monitor regards
the current conditions as unsafe, requiring the human driver to take control of the vehicle.

Among the root causes for ADS failures (e.g., off road driving) SOTIF recalls exter-
nal unknown and internal uncertain conditions (STANDARDIZATION, 2019). External un-
known conditions consist of “abnormal” inputs representing rare, unexpected, and possibly
unsupported environmental events, for which no prior knowledge was available during the
training of the ADS (e.g., a specific road type, or weather/lighting condition). The DNNs
used within ADS are not invariant to severe data distribution changes and this can cause
1 these values reflect the steering capability of an ADS in a driving simulator (Udacity, 2017).
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system-level failures. Internal uncertain conditions correspond instead to misbehaviors of
the perception component caused by the bugs inherent to the DNN model, introduced
during its development. Instances of such bugs include inadequate training data and
suboptimal choice of the model’s architecture or of the training hyper-parameters (HUM-

BATOVA et al., 2020).

2.5.3 Black-box Unsupervised Failure Prediction

Despite standards such as SOTIF (STANDARDIZATION, 2019), in practice, enumerating
all possible hazardous conditions for an ADS in a written requirement specification is
a challenging, if not infeasible, endeavour. As a consequence, research has considered
failure prediction models that can be trained with no supervision (i.e., no knowledge of
the anomalies), and, to make them more applicable, with no need to access information
of the main system (black-box) (HENRIKSSON et al., 2019; STOCCO et al., 2020; HUSSAIN;

ALI; HONG, 2022; HELL et al., 2021).
A black-box unsupervised failure predictor analyzes inputs and assigns a suspiciousness

score to them, which should be low (below a threshold) if the inputs are supported, or
high (above a threshold) otherwise. Notable examples are one-class SVM (SCHÖLKOPF et

al., 1999), clustering (EVERITT; LANDAU; LEESE, 2009), self-organizing maps (KOHONEN,
2001), and autoencoders (AEs) (CHANDOLA; BANERJEE; KUMAR, 2009).

The variational autoencoder (VAE) is the most popular AE architecture (CHANDOLA;

BANERJEE; KUMAR, 2009) as it is able to efficiently learn the probability distribution of
a large amount of complex data (such as images) using variational inference (AN; CHO,
2015). The VAE is trained to minimize the distance between the original data and its
low-dimensional reconstruction with metrics such as the Mean Squared Error (MSE). A
low MSE indicates that the input has characteristics similar to those of the training set,
whereas a high MSE indicates potentially an OOD sample. As such, VAEs are used in
anomaly detection tasks (HUSSAIN; ALI; HONG, 2022; STOCCO et al., 2020; HENRIKSSON et

al., 2019), as well as automated validity checkers for DNNs (DOLA; DWYER; SOFFA, 2021).
The main limitations of black-box approaches, including VAEs, consist in their zero

knowledge of the system’s internal behaviour, thus they are designed to react only for fail-
ures induced either by the corruption of inputs, or by a large degree of out-of-distributioness.
Indeed, for unknown inputs, the ADS is likely to make a sequence of inaccurate predictions
that may ultimately lead to a system failure, because of the prediction errors accumulated
over time (HAQ et al., 2020).

2.5.4 Deep Neural Networks Explanation

Explaining the predictions of DNNs has been largely studied using several interpretation
methods (TJOA; GUAN, 2019; SAMEK; WIEGAND; MÜLLER, 2017; SAMEK et al., 2019; LAGE
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et al., 2019; LEI; BARZILAY; JAAKKOLA, 2016; SPRINGENBERG et al., 2014; ZEILER; FER-

GUS, 2013). The survey by Tjoa and Guan (TJOA; GUAN, 2019) distinguishes three main
categories, namely verbal methods, signal methods, and saliency methods.

Verbal methods such as decision sets (LAGE et al., 2019) or encoder-decoder frame-
works (LEI; BARZILAY; JAAKKOLA, 2016) have been adopted in NLP problems since they
produce lexical statements that humans can interpret naturally.

Signal methods target the stimulation of individual neurons or collections of neurons
in a DNN to reconstruct an image similar to the input, based on the partial information
stored in the neurons. However, feature maps produced with methods such as guided back-
propagation (SPRINGENBERG et al., 2014), or deconvolutional networks (ZEILER; FERGUS,
2013), are known for producing sparse heatmaps.

Saliency methods explain DNN predictions by attributing a negative or positive value
to each input feature according to how much it influenced the prediction. For instance,
LIME (RIBEIRO; SINGH; GUESTRIN, 2016) is a black-box technique that understands clas-
sification networks’ decisions by assessing how the predictions change in response to local
perturbations of the input data. Other methods use decomposition of signals propagated
by their algorithms and selectively re-arrange them to provide interpretable information.
For example, GradCam (SELVARAJU et al., 2016) uses gradient back-propagation up to
the last convolutional layer to explain classifiers. Differently, LRP (BINDER et al., 2016)
uses relevance scores that are decomposed such that the sum of the scores in each layer of
the DNN will be equal to the output. LRP has the drawbacks of generating noisy expla-
nations as well as very similar outputs for samples pertaining to different classes (JUNG;

HAN; CHOI, 2021).
In this work we consider the attention maps produced by the SmoothGrad algo-

rithm (SMILKOV et al., 2017). Unlike LRP, SmoothGrad makes gradient-based explanations
sharper by adding noise and averaging over these artificially created noisy gradients. Like
GradCAM, attention maps consider the gradient of the output prediction with respect
to the input pixels (JETLEY et al., 2018). Unlike GradCAM, SmoothGrad also works with
regression DNNs such as those of ADS.

2.6 MOTIVATING EXAMPLE

Attention maps are images where relevant locations correspond to hot color intensities
(e.g., red/yellow), whereas irrelevant locations correspond to cold color intensities (e.g.,
blue).

Figure 1 shows an example in which attention maps—obtained with SmoothGrad (SMILKOV

et al., 2017)—are indicative of an upcoming failure of the ADS. In nominal conditions
(left), the ADS focuses on foreground features that characterize the road. In this case,
the attention map portrays two main clusters of attention, corresponding to the road’s
lanes. When driving in unsupported conditions (right), prior to a failure, the ADS is more
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Figure 1 – Attention map of an ADS during nominal driving (left), and a few seconds before an off-road
failure (right).

Source: (STOCCO et al., 2022).

Figure 2 – Training of ThirdEye.
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uncertain. This is reflected in the attention map as only part of the attention still focuses
on the road, while substantial attention is also paid to features in the background.

In the next section, we will describe our proposal for using attention maps by Smooth-
Grad to anticipate failures in conditions that cause the ADS to fail. Our technique aims to
capture a drop of DNN confidence by means of metrics derived from the attention maps,
considering single maps, consecutive maps, or map reconstruction based on nominal maps.

2.7 RELATED WORK

Identifying unexpected driving scenarios is the number one need during ADS testing,
according to the survey with developers and domain experts by Lou et al. (LOU et al.,
2021). The problem has been tackled by researchers either by (1) generating test cases for
ADS, (2) proposing anomaly detection tools. We also provide an overview of (3) generic
OOD detectors and (4) the main XAI methods used for ADS testing.

2.7.1 Test Generation for Autonomous Driving

Test generation techniques mostly use search-based techniques to automatically construct
test cases for DNN-based ADS (MOGHADAM et al., 2022; RICCIO; TONELLA, 2020a; AB-

DESSALEM et al., 2018; Ben Abdessalem et al., 2016; Ben Abdessalem et al., 2018; PEI et al.,
2017a; TIAN et al., 2018; ZHANG et al., 2018b; KIM; FELDT; YOO, 2019). Test cases are real-
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world images of driving scenes, or road abstractions that are rendered within a driving
simulator. Abdessalem et al. (ABDESSALEM et al., 2018; Ben Abdessalem et al., 2016; Ben Ab-

dessalem et al., 2018) combine genetic algorithms and machine learning to test a pedestrian
detection system. Mullins et al. (MULLINS et al., 2018) use Gaussian processes to drive the
search-based test generation towards yet unexplored regions of the input space, whereas
Gambi et al. (GAMBI; MUELLER; FRASER, 2019) propose search-based test generation for
ADS based on procedural content generation.

Test generators aim to maximize the number of failures, whereas our goal is to predict
failures in online mode before they happen. Nevertheless, test generators can be used in
conjunction with ThirdEye, to generate conditions for our approach to predict.

2.7.2 Anomaly Detection in Autonomous Driving

We already discussed SelfOracle (STOCCO et al., 2020), for which we performed an explicit
empirical comparison in this work. DeepGuard (HUSSAIN; ALI; HONG, 2022) uses the
reconstruction error by VAEs to prevent collisions of vehicles with the roadside. Deep-
Road (ZHANG et al., 2018b) validates single driving images based on the distance to the
training set, using embeddings rooted in the features extracted by VGGNet. In other
works (STOCCO; TONELLA, 2021; STOCCO; TONELLA, 2020), continual learning is used
to minimize the false positives of a black-box failure predictor. Hell et al. (HELL et al.,
2021) evaluate three different OOD detection methods, namely VAEs, Likelihood Regret
and the generative modelling SSD, for ADS testing on the CARLA simulator. Henriksson
et al. (HENRIKSSON et al., 2019) use the the negative of the log likelihood as a black-
box anomaly score. Borg et al. (BORG et al., 2022) propose to pair OOD detection with
VAEs with object detection for an automated emergency braking system. Strickland et
al. (STRICKLAND; FAINEKOS; Ben Amor, 2018) use an LSTM solution with multiple metrics
to predict collisions with vehicles at crossroads.

Our approach differs from the aforementioned black-box approaches because it uses a
white-box confidence score of the system synthesized from the attention maps given by
an XAI algorithm. For a broad overview of anomaly detection techniques in autonomous
driving, we refer the reader to the survey by Bogdoll et. al (BOGDOLL; NITSCHE; ZöLLNER,
2022).

2.7.3 Generic OOD Detectors

AutoTrainer (ZHANG et al., 2021a) monitors the training process of a DNN and automat-
ically repairs it when the metrics used during training degrade. In contrast, ThirdEye
operates at testing time, in production, to recognize unexpected execution conditions,
while AutoTrainer operates at training time to fix common training faults.

Zhang et al. (ZHANG et al., 2021b) introduce the notion of relative activation and
deactivation to interpret the decision behavior of a DNN and propose an algorithm for
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automatic detection of OOD inputs. The abstraction relies on classifying neurons into
different states based on stronger relative selectivity, which is a quantitative method of
measuring the impact of a particular neuron, or a subset of them, on the inference of the
model as a whole.

The use of this technique raises some challenges, such as which and how many layers
should be selected, and how the different layers should be aggregated. SelfChecker (XIAO

et al., 2021) is a tool that helps answer these questions, but the evaluation of the DNN
prediction is performed for individual inputs. ThirdEye uses attention map analysis and
does not require to dissect the model layers or the activation states of the neurons, but
just to retrieve the gradients during a normal feedforward pass, making it computationally
more efficient and easier to integrate into the ADS development process.

Finally, Suraksha (ZHAO et al., 2021) is an automated ADS safety evaluation frame-
work that quantitatively analyzes the safety sensitivity of different versions of an ADS.
ThirdEye can be used as one of the safety quantification metrics of Suraksha and help
improve the safety parameters of ADS.

2.7.4 XAI for Autonomous Driving Testing

With the increasing application of DNNs to safety-critical domains such as autonomous
during, XAI algorithms represent one of the standard choices to debug DNN’s predictions
and failures (e.g., during an incident). Moreover, XAI is also being adopted to build novel
testing solutions to test DNN-based systems, including, but not limited to, ADS. In this
section we focus on the main related propositions, i.e., techniques that use attention maps
for ADS testing, and techniques that use XAI as a building block for DNN testing. For
a complete overview of the state of the art on XAI for ADS, we refer the reader to the
survey by Atakishiyev et al. (ATAKISHIYEV et al., 2021).

VisualBackProp (BOJARSKI et al., 2016a) was created to visualize which group of pixels
of the input image contributes more to the predictions of a convolutional neural network
(CNN). Kim and Canny (KIM; CANNY, 2017) explore the use of attention maps for ex-
plaining the CNN behaviour in a ADS. Lateef et al. (LATEEF; KAS; RUICHEK, 2021)
uses generative adversarial networks to train a predictive model that generates attention
maps from road scenes and gives more prominence to the objects in the scene that are
most important to the driver’s decision making (e.g., other cars, pedestrians, and traffic
lights/signs). Xu et al. (XU et al., 2020) investigated the use of XAI techniques to detect
action-inducing objects, i.e., objects that have a relevant effect on a driving decision, and
jointly predict actions and their respective explanations. Mohseni et al. (MOHSENI; JA-

GADEESH; WANG, 2019) train the DAVE-2 model to predict a steering angle given the
attention maps by VisualBackProp (BOJARSKI et al., 2016a). Similarly, ThirdEye also
leverages XAI to increase the level of reliability of an ADS. Differently to the aforemen-
tioned works, ThirdEye focuses on failure prediction of lane-keeping based ADS during
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external unknown and internal uncertain driving conditions.
Fahmy et al. (FAHMY et al., 2020) apply clustering to LRP heatmaps capturing the

relevance of the DNN predictions to automatically support the identification of failure-
inducing inputs. Such data is used for the retraining of a gaze detection system that uses
DNNs to determine the gaze direction of the driver. The authors present an extension
of the previous work (FAHMY; PASTORE; BRIAND, 2022) in which inputs identified by
the heatmap-based mechanism are given in input to a search-based test generator. In
contrast, in this work we use attention maps from SmoothGrad to support the prompt
detection of low-confidence scenarios of a lane-keeping DNN-enabled ADS. Zohdinasab et
al. (ZOHDINASAB et al., 2021) use illumination search to cover a feature map of external
behaviours of an ADS. These feature maps are used as an adequacy criteria of the inputs
generated by an ADS test generator, whereas we use attention maps from the XAI domain
to validate the inputs processed by the ADS.
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2.8 METHODOLOGY/APPROACH

Our approach ThirdEye consists of two main phases, namely Training and Usage. In
the first phase (Training, see Figure 2), ThirdEye automatically generates the attention
maps for nominal driving instances of the ADS (see subsubsection 2.8.1.1). Such attention
maps are a visual snapshot of the ADS performance during nominal driving behaviour.
ThirdEye is based on two intuitions: (1) attention maps derived during the processing
of the inputs by the ADS are indicative of the confidence of the system (TJOA et al.,
2022), and (2) nominal and failure-inducing attention maps exhibit differences that can
be captured by an anomaly detector.

ThirdEye turns the attention maps into XAI-driven confidence scores of the ADS
using different summarization methods (subsubsection 2.8.1.2). We consider a realistic
setting, in which instances of failing driving behaviour cannot be sampled in any represen-
tative way, since failure conditions are potentially very diversified and partly unexpected.
Hence, ThirdEye fits a probability distribution using only nominal scores. Then, it auto-
matically estimates a threshold from such probability distribution (subsubsection 2.8.1.3).
This threshold is derived from the user defined permissiveness of the failure predictor to
accept false alarms – i.e., from the tolerable false positive rate, a tunable parameter of
our approach.

In the second phase (Usage, see Figure 3), ThirdEye is used along with the main
ADS system to automatically predict whether the driving conditions are safe or unsafe,
according to the attention maps retrieved during driving, and the threshold estimated
during the Training phase. If a driving condition is deemed as unsafe, ThirdEye warns
the main driving component of the ADS (or the human driver). In the next sections, we
describe each step of each phase in more detail.

2.8.1 Training of ThirdEye

2.8.1.1 Attention Map Generation

ThirdEye assumes having access to the training set 𝑇 = {𝑥1, 𝑥2, 𝑥3, ..., 𝑥𝑛} used to train
the ADS, and to the trained ADS 𝑓 . Our approach, however, does not need to modify the
ADS model’s architecture, nor to retrain it.

ThirdEye uses the XAI algorithm SmoothGrad (SMILKOV et al., 2017) to retrieve an
attention map for each driving image 𝑥 ∈ 𝑇 used to train 𝑓 . In particular, SmoothGrad
produces an attention map ℎ = {ℎ𝑝} assigning each pixel 𝑝 of 𝑥 a value {ℎ𝑝} = ℋ(𝑥, 𝑓, 𝑝)
according to some function ℋ derived from 𝑓 . In SmoothGrad, the function ℋ constructs
ℎ(𝑥) by differentiating 𝑓 with respect to the input 𝑥:

ℎ(𝑥) = 𝜕𝑓(𝑥)/𝜕𝑥
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The attention map ℎ has the same dimensionality as 𝑥 (i.e., width 𝑊 , height 𝐻, and 𝐶

channels) and represents how much difference a small change in each pixel of 𝑥 would make
to the prediction score of 𝑓 . Since the derivative of the function 𝑓 may fluctuate sharply
at small scales (SMILKOV et al., 2017), SmoothGrad uses a stochastic approximation by
taking random samples in the neighbourhood of the input 𝑥, and averaging the resulting
attention maps. Mathematically,

ℎ̂(𝑥) = 1
𝑛

∑︁
ℎ(𝑥 +𝒩 (𝜇, 𝜎2))

To summarize, SmoothGrad (1) generates 𝑛 versions of the image of interest by adding
Gaussian noise to it, (2) it creates pixel attribution maps for all 𝑛 versions of the image,
and (3) it averages the pixel attribution maps. Averaging over multiple maps “smooths
out” the derivative fluctuations. The output of the attention map generation step is a set
𝐻 = {ℎ1, ℎ2, ..., ℎ𝑛} of attention maps for each image of the training set 𝑇 .

The use of Gaussian noise in the SmoothGrad algorithm is aimed at mitigating the
sharp fluctuations commonly observed when calculating derivatives in complex neural
network models. These derivatives measure the sensitivity of the model to changes in
individual pixel values within an image. Gaussian noise introduces randomness to the
input data, enabling the generation of multiple attention map iterations. Averaging these
iterations results in a smoother and more stable attention map, offering a reliable repre-
sentation of the model’s sensitivity to pixel-level changes in the input image.

2.8.1.2 Confidence Score Synthesis

ThirdEye uses three summarization functions to turn raw attention maps into XAI-
driven confidence scores, namely average, derivative, and reconstruction loss.

Heatmap Average Function (HA). The first summarization function is based on the
intuition that an attention map captured during nominal driving will have high relevance
values (i.e., pixel intensities) focused on specific regions of interest (e.g., the lanes, see
Figure 1), whereas attention will be more scattered and with lower pixel intensities during
bad driving behaviour. As such, the HA function computes the average pixel intensity of
an attention map.

Assuming attention maps have width 𝑊 , height 𝐻 and 𝐶 channels (usually, RGB
channels for colour images), notationally, for each attention map ℎ ∈ 𝐻, the average
attention map score ℎ is computed as follows:

ℎ = 1
𝑊𝐻𝐶

𝑊,𝐻,𝐶∑︁
𝑖=1,𝑗=1,𝑐=1

ℎ[𝑖][𝑗][𝑐]
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Figure 3 – Usage of ThirdEye.
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Source: (STOCCO et al., 2022).

When applied to the whole training set 𝑇 , the HA function returns the set of attention
map average scores of each individual attention map in 𝑇 , 𝐻𝐴 = {ℎ1, ℎ2, ℎ3, ..., ℎ𝑛}.

Heatmap Derivative Function (HD). The second summarization function is based on
the intuition that attention maps that do change frequently during driving could signal a
poorly confident ADS. Thus, the HD function computes the average of the derivative of
attention maps over time. Notationally, for two consecutive attention maps ℎ𝑡−1, ℎ𝑡 ∈ 𝐻,
the average of the derivative of attention map ∇ℎ is computed as follows:

∇ℎ𝑡 = 1
𝑊𝐻𝐶

𝑊,𝐻,𝐶∑︁
𝑖=1,𝑗=1,𝑐=1

ℎ𝑡[𝑖][𝑗][𝑐] − ℎ𝑡−1[𝑖][𝑗][𝑐]

The HD function returns the set of attention map average derivatives of each individ-
ual attention map in 𝑇 (but the first), 𝐻𝐷 = {ℎ1,∇ℎ2, ...,∇ℎ𝑛}.

Heatmap Reconstruction Loss Function (HRL). The third summarization function
uses reconstruction loss, i.e., it is based on learning a reconstruction function of latent
features in the attention maps captured during nominal driving. A failure to reconstruct
data during testing of the ADS can signal the presence of potentially failure inducing
driving conditions.

Reconstructor: The first step involves obtaining a model of normality from the
training driving scenarios. In the training set, we capture the heatmap images under
nominal situations. Then, we train our driving scenario reconstructor with such "normal"
instances of heatmpas. Let us consider a training set 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} of 𝑛 heatmap
image frames, where the index 𝑖 ∈ [1 : 𝑛] of 𝑥𝑖 ∈ 𝑋 represents the discrete time 𝑡.

Depending on the considered architecture, a reconstructor can be single-image or
sequence-based. For single-image reconstructors, only one image frame is considered at a
time. When the discrete time is 𝑡 = 𝑖, 𝑥𝑖 is the input, and the reconstructor recreates it
into 𝑥′

𝑖.
For sequence-based reconstructors, assuming 𝑘 image frames preceding 𝑥𝑖 are used to

reconstruct 𝑥𝑖, the sequence ⟨𝑥𝑖−𝑘, . . . , 𝑥𝑖−1⟩ is the input used to output 𝑥′
𝑖, a prediction of

the actual current heatmap frame 𝑥𝑖. For instance, for 𝑘 = 3 and 𝑖 = 4, the reconstructor
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Figure 4 – Examples of distributions of HA (left), HD (center), and HRL (right) XAI confidence scores.

Source: (STOCCO et al., 2022).

considers the sequence ⟨𝑥1, 𝑥2, 𝑥3⟩ to predict the current heatmap frame 𝑥4.
At the end of this task, each reconstruction error 𝑒𝑖 = 𝑑(𝑥𝑖, 𝑥′

𝑖) can be computed,
where 𝑑 is a proper distance function (e.g., Euclidean distance). This results in the set
of reconstruction errors 𝐸 = {𝑒1, 𝑒2, . . . , 𝑒𝑛}, available for all elements in the training set
𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛}. Following the same guidelines as SelfOracle (STOCCO et al., 2020),
but this time, we are now applying them to attention map images.

The function HRL computes the reconstruction errors of the attention maps according
to a variational autoencoder 𝒱 . Autoencoder (AE) is a DNN designed to reconstruct
its own input. It consists of two sequentially connected components (an encoder, and a
decoder) that are arranged symmetrically. The simplest form of autoencoder (SAE) is a
three-layer DNN: the input layer, the hidden layer, and the output layer (STOCCO et al.,
2020). The encoder of 𝒱 encodes a given input 𝑥 ∈ 𝑅𝑑 to a compressed representation
𝑧 ∈ 𝑅𝑧 using a function 𝑒𝑛𝑐(𝑥) = 𝑧. The decoder of 𝒱 decodes the encoded input with a
reconstruction function 𝑑𝑒𝑐(𝑧) = 𝑥′, where 𝑥′ is the reconstructed input 𝑥. 𝒱 minimizes
a loss function ℒ(𝑥, 𝑑𝑒𝑐(𝑒𝑛𝑐(𝑥))), which measures the distance between the original data
and its low-dimensional reconstruction. Following existing guidelines (STOCCO; TONELLA,
2021), we set the dimension of the encoded representation 𝑧 to 2 and used the mean
squared error (MSE) as a loss function.

Notationally, for each attention map ℎ ∈ 𝐻, the reconstruction error ℎ𝑒 is computed
as follows:

ℎ𝑒 = ℒ(ℎ, 𝑑𝑒𝑐(𝑒𝑛𝑐(ℎ)))

The HRL function returns the set of attention maps’ reconstruction errors of each
individual attention map in 𝑇 , 𝐻𝑅𝐿 = {ℎ𝑒1, ℎ𝑒2, ℎ𝑒3, ..., ℎ𝑒𝑛}.

Windowing of Confidence Scores. To mitigate the effect of individual single frame
outliers, which are not expected to have a big impact on the performance of the ADS,
ThirdEye applies a window function on non-overlapping, fixed length, sequences of
scores. Two simple window functions are considered, one that computes the maximum
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score within a window, and a second that computes the arithmetic mean of the scores
within a window. Window functions are applied to each of the proposed XAI confidence
scores.

2.8.1.3 Probability Distribution Fitting & Threshold Estimation

The sets of (windowed) XAI confidence scores HA/HD/HRL represent a model of nor-
mality collected in nominal driving conditions using different synthesis methods from the
attention maps.

To determine a threshold 𝛾 that sets the expected false alarm rate in nominal con-
ditions below some configurable level, we use probability distribution fitting to obtain a
statistical model of the XAI confidence scores.

In particular, 𝛾 is computed by (1) estimating the shape 𝜅 and scale 𝜃 parameters
of a fitted Gamma distribution of the XAI confidence scores and (2) by selecting an
acceptable false alarm rate (STOCCO et al., 2020). We get a gamma instead of a 𝜒2 distri-
bution because pixel-wise errors have different (channel/pixel dependent) and non-unitary
variances. Definition of Gamma Distribution: Gamma is a probability model for a
continuous variable on [0,∞) which is widely used in engineering, science, and business,
to model continuous variables that are always positive and have skewed distributions. The
probability density function of a random variable 𝑥 ∼ Γ(𝛼, 𝛽) is:

𝑓(𝑥) = 𝛽𝛼

Γ(𝛼)𝑥𝛼−1𝑒−𝛽𝑥, 𝑥 > 0; 𝛼, 𝛽 > 0 (3)

where 𝛼 is the shape parameter (which affects the shape of the distribution), 𝛽 is the
rate parameter (or inverse scale, which stretches/shrinks the distribution), and Γ is the
gamma function. When 𝛼 is large, the gamma distribution closely approximates a normal
distribution with the advantage that the gamma distribution has non-zero density only
for positive real numbers. The gamma function Γ(𝑧) can be seen as a solution to the
interpolation problem of finding a smooth curve that connects the points (𝑛, 𝑚) with
𝑚 = (𝑛 − 1)! at any positive integer value for 𝑛. Such a definition was extended to all
complex numbers with a positive real part by Bernoulli, as a solution to the following
integral:

Γ(𝑧) =
∫︁ ∞

0
𝑥𝑧−1𝑒−𝑥𝑑𝑥, for ℜ(𝑧) > 0;

(STOCCO et al., 2020)
In this work, we set 𝛾 to the 95% percentile (i.e., we deem 5% as an acceptable false

positive rate), in line with previous works (STOCCO et al., 2020). For example, for HRL,
𝛾0.95 = 𝑝0.95(ℒ(ℎ, 𝑔(𝑓(ℎ))|ℎ ∈ 𝑊 (𝐻)), where 𝑊 (𝐻) represents the confidence scores after
windowing.
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2.8.2 Usage of ThirdEye

Figure 3 shows the second phase of our approach, Usage, in which ThirdEye is used as
a runtime monitoring technique during the runtime execution of the ADS.

The ADS generates driving data that are processed by our approach. ThirdEye an-
alyzes the incoming stream of driving images and attention maps are retrieved (subsub-
section 2.8.1.1). Next, confidence scores are synthesized from the attention maps (either
HA/HD/HRL, see subsubsection 2.8.1.2). When sufficient data samples are collected (e.g.,
matching the window size chosen during training, see subsubsection 2.8.1.2), ThirdEye
applies the window function to the stream (either max or mean). Each resulting score is
compared against the threshold 𝛾0.95, which determines whether the windowed sequence
of XAI confidence scores is to be regarded as anomalous. In such a case, a warning is sent
to the ADS (or to the human driver); otherwise, ThirdEye keeps monitoring the next
incoming driving frames.

2.8.3 Implementation

We implemented our approach in a Python tool called ThirdEye, which is available (Stocco,
2022). The tool supports ADS models written in Tensorflow/Keras, and it is integrated
in the Udacity simulator for self-driving cars (Udacity, 2017). For computing the atten-
tion maps, ThirdEye leverages the SmoothGrad (SMILKOV et al., 2017) implementation
available in the toolkit tf-keras-vis (KUBOTA, 2021).
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2.9 EMPIRICAL EVALUATION

2.9.1 Research Questions

We consider the following research questions:
RQ1 (effectiveness): How effective is ThirdEye at predicting failures of ADS? What
is the best configuration?
RQ2 (prediction over time): How does the prediction power of ThirdEye change
when considering different detection periods?
RQ3 (comparison): How does ThirdEye compare with SelfOracle (STOCCO et al.,
2020), a failure predictor from the literature?

The first research question (RQ1) aims to assess whether our approach is able to attain
a high failure prediction rate, and which configuration (i.e., XAI confidence scores and
window functions) yields the best prediction rate score. Ideally, failure prediction is only
useful if it helps to anticipate a failure, which is studied in the second research question
(RQ2). Lastly, to assess the effectiveness of our approach over existing solutions, the final
research question (RQ3) compares ThirdEye with the state-of-the-art failure predictor
for ADS (STOCCO et al., 2020).

2.9.2 Testbed

We tested ThirdEye through simulation-based testing. The usage of simulation plat-
forms is standard for testing ADS as simulator-generated data yield comparable condi-
tions as the ones experienced in real world (HAQ et al., 2020; LOU et al., 2021; STOCCO;

PULFER; TONELLA, 2022). Moreover, driving simulators allow testing an ADS at the sys-
tem level (online testing) because the DNN is embedded within the operational ecosystem
in which the ADS is designed to operate. Testing the ADS only from the DNN model
perspective (offline testing), disconnected from the ADS system, is not useful to expose
the safety-critical failures that occur during in-field testing, such as the ones considered
in this work (see subsection 2.5.2).

As simulation platform, we used the Udacity simulator for self-driving cars (Udacity,
2017), a cross-platform driving simulator developed with Unity3D (UNITY, 2021), used
in the ADS testing literature (STOCCO et al., 2020; RICCIO et al., 2020; JAHANGIROVA;

STOCCO; TONELLA, 2021; HUSSAIN; ALI; HONG, 2022; STOCCO; TONELLA, 2021; STOCCO;

TONELLA, 2020). The simulator supports various closed-loop tracks for testing behavioral
cloning ADS models, including the ability to generate changeable driving scenarios (e.g.,
weather effects), which is useful to test an ADS on both nominal and unseen conditions.

In this work, we chose the default sunny weather condition as the reference nominal
scenario for our ADS models. Other choices of nominal condition are of course possible
(e.g., snow). For unsupervised learning techniques such as ours (i.e., techniques that do
not assume the availability of a representative set of anomalous conditions when training
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Figure 5 – Examples of conditions from our evaluation set. Left: nominal (sunny). Center: OOD extreme
(snow). Right: OOD moderate (snow).

Source: (STOCCO et al., 2022).

the failure predictor), the only requirement is that the chosen supported conditions are
the same that are known at training time by the ADS.

2.9.3 Object of Study

To implement DNN-based ADS, we use Nvidia’s DAVE-2 model (BOJARSKI et al., 2016b), a
reference model widely used as object of study in prior related work (PEI et al., 2017a; TIAN

et al., 2018; ZHANG et al., 2018b; STOCCO et al., 2020; RICCIO et al., 2020; JAHANGIROVA;

STOCCO; TONELLA, 2021; HUMBATOVA; JAHANGIROVA; TONELLA, 2021). (ZHANG et al.,
2018b) DAVE-2 consists of 9 layers, including a normalization layer, 5 convolutional layers,
and 3 fully connected layers (CommaAI, 2016).

We obtained the trained DAVE-2 model from the replication package of our base-
line (STOCCO et al., 2020), to make sure to test the failure predictors using the same ADS
used in previous work.

2.9.4 Procedure

2.9.4.1 Evaluation Set

We simulate the ADS testing practices customary of industry, where testers use a closed-
loop track in a virtual environment, prior to on-road testing on public roads (CERF, 2018;
BGR Media, LLC, 2018; Waymo Driver, 2021; Waymo Secret Testing, 2017). We consider two
kinds of scenarios for testing our failure predictor.

External unknown scenario. The first kind of testing scenario deals with failures in-
duced by out-of-distribution conditions (OOD), exposing an ADS that has been trained
on some given nominal conditions and environment to different instances of that environ-
ment. We use two OOD benchmarks in our study.

The first benchmark contains simulations provided by the replication package of the
SelfOracle paper (STOCCO et al., 2020). We refer to this benchmark as OODextreme because
it is characterized by severe illumination conditions w.r.t. the nominal sunny scenario (see
Figure 5). It accounts for 21 simulations with different degrees of extreme OOD conditions:
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day/night, rain, snow, fog, day/night + rain, day/night + snow, day/night + fog. These
conditions were created by (i) altering the environment’s skybox (invisible ceiling object
located at the boundary of the map) from sunny to adverse weather luminosity and by
(ii) adding weather particles (snow or rain) rendered at runtime along the track.

We also consider a second benchmark of milder OOD conditions, called OODmoderate,
This second benchmark evaluates our approach considering weather effects only, i.e., with-
out interferences due to adverse weather luminosity (see Figure 5). We deactivated the
adverse weather luminosity skybox, while retaining a single unexpected weather condition
at a time, namely rain, fog, or snow. We executed the DAVE-2 ADS varying the intensity
of each condition in the range

[︁
10%, . . . , 100%

]︁
, thus 10 times for each weather condition

(day/night was discarded because non tunable).
Overall, concerning external unknown scenarios, a total of 51 OOD one-lap simulations

were collected: 21 for OODextreme and 30 for OODmoderate (10 × rain, 10 × fog, 10 × snow).

Internal uncertain scenario. The second kind of testing scenarios deals with faulty ADS
models produced by automated mutation testing (HUMBATOVA; JAHANGIROVA; TONELLA,
2021) that drive on the simulator under nominal conditions (sunny). Intuitively, these sce-
narios simulate the development process of an ADS model that has not been yet trained
adequately. The third benchmark—referred to as Mutants—represent these scenarios. We
obtained instances of mutated DAVE-2 models from the replication package of the Deep-
Crime mutation testing tool (HUMBATOVA; JAHANGIROVA; TONELLA, 2021). DeepCrime
automatically mutates a DNN model using mutation operators designed to mimic real
fault types occurring when developing DNNs, considering both data-level faults (e.g.,
wrongly labelled training data) and model-level faults (e.g., a suboptimal learning rate or
dropout rate).

We executed all DAVE-2 mutants in the Udacity simulator and discarded those that
were consistently failing (e.g., the corruption induced by a particular mutation operator
caused severe malfunctions to the ADS driving from the very beginning of the simula-
tion). A total of 20 one-lap simulations were retained that we confirmed to create internal
uncertain scenarios (more details about the selected mutation operators are in our repli-
cation package (Stocco, 2022).

Summary. Overall, our evaluation set comprises 349 failures that our approach is ex-
pected to predict and anticipate. Mutation testing caused most of the failures (66%), which
is expected from a technique that systematically injects faults, whereas out-of-distribution
conditions induced less failures (34%) as they were applied with different, increasing, levels
of severity. Both scenarios are of interest for a failure predictor, which should be agnostic
about the conditions that cause the failures (i.e., unknown inputs or DNN model bugs).
To estimate the threshold used by ThirdEye, we finalized the evaluation data collection
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by performing three one-lap simulations under nominal sunny weather conditions (one
for each of three benchmarks OODextreme, OODmoderate, and Mutants) using the robust,
unmutated, DAVE-2 model.

2.9.4.2 Detection Windows in Evaluation Set

The Udacity simulator automatically labels individual failing frames as either nominal
or failing using a boolean flag, according to whether the ADS was on track or off-track,
respectively. Since the goal of our framework is on predicting misbehaviors before they
occur, we focus on the part of the simulation preceding each failure, whereas the frames
labeled as failing are not considered.

Each simulation can exhibit multiple failures: in our evaluation strategy we assessed
each failure individually. For each of them, we consider a detection window corresponding
to one second of simulation in the Udacity simulator. We move the detection window from
1 to 3 seconds prior to the failures (time to failure, TTF for short). Studies on pre-crash
automated seat belt systems (ZHAO et al., 2017; LEE; LEE, 2013) indicate a range between
3 seconds to half a second as adequate TTF values for the activation of automated seat
belt tightening. Also, according to previous studies in the Udacity simulator (STOCCO;

TONELLA, 2021), a TTF of 3 seconds is deemed sufficient to avoid failures at 30 mph,
which is the constant cruising speed of the ADS in the simulator.

2.9.4.3 ThirdEye’s Configurations

We evaluate six configurations of ThirdEye. For SmoothGrad (SMILKOV et al., 2017),
we use the same hyper-parameters suggested in the original paper, specifically a noise
level of 20% and 𝑛 = 20 samples for noise attenuation. Regarding the XAI confidence
scores synthesis strategy, we assess all three alternatives, namely heatmap average (HA),
heatmap derivative (HD), and heatmap reconstruction loss (HRL). We also vary the
windowing method strategy in the detection window, using mean or max. On the detection
sequences, if the mean/max score is higher than the automatically estimated threshold
𝛾95, an alarm is triggered (see subsubsection 2.8.1.3).

We executed ThirdEye to capture the attention maps for all simulations of our evalu-
ation set using the studied ADS as input. For the external unknown scenarios (OODextreme

and OODmoderate), we used the DAVE-2 model from the replication package of our base-
line (STOCCO et al., 2020). For the internal uncertain scenarios (Mutants), we used all the
selected 20 mutants.

2.9.4.4 Baseline

We use SelfOracle (STOCCO et al., 2020), a black-box misbehaviour predictor, as baseline
for ThirdEye. We chose SelfOracle for the following reasons: (1) it is designed for the
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Figure 6 – Results for all failure predictors. Scores are computed for 𝛾95. Average 𝐹3 scores are highlighted
in bold, best 𝐹3 scores are highlighted in grey.

Source: (STOCCO et al., 2022).



38

task of failure prediction of ADS; (2) it is a competitive approach; results show that it
outperforms the input validation strategy of DeepRoad (ZHANG et al., 2018b); (3) it was
developed, integrated, and experimented on the Udacity simulator, which mitigates the
threats to the internal validity that are possible when experimenting a tool in a simulation
environment different from the one in which it was implemented.

We use the best configuration of SelfOracle presented in the original paper, i.e., a vari-
ational autoencoder (VAE) that reconstructs driving images and uses the reconstruction
loss as a measure of confidence. The VAE has a latent size of 2 and it was trained to
minimize the MSE (see subsection 2.5.3) between the original and reconstructed nominal
images (sunny). In the original SelfOracle paper, only the arithmetic mean of the detection
window was evaluated (STOCCO et al., 2020). In our study, we evaluate two configurations
of SelfOracle, using both the mean and the max computed on the detection window, the
latter being a new experimental contribution of this work.

2.9.4.5 Metrics used for Analysis

We compute the true positives as the number of correct failure predictions within the
predefined TTF (see Section 2.9.4.2) and the false negatives as the number of missed
failure predictions when our framework does not trigger an alarm in a detection window.
We remember that the false positives and true negatives are measured using nominal
simulations.

Our primary goal is to achieve high Recall (Re), or true positive rate, defined as
Re=TP/(TP+FN)). Recall measures the fraction of safety-critical failures detected by a
technique. It is also important to achieve high precision (Pr), defined as Pr=TP/(TP+FP).
Precision measures the fraction of correct warnings that a technique reports. We also con-
sider the 𝐹𝑏𝑒𝑡𝑎 score (BLAIR, 1979), with 𝛽 = 3.0, as a weighted balance between precision
and recall (𝐹3 = 10·Precision×Recall

9·Precision+Recall ). We are interested in an F-measure that weights recall
higher compared to precision, because the cost associated with false negatives is very high
in the safety-critical domain (BLAIR, 1979) as it means a missed failure detection. In con-
trast, in our setting, the cost associated with false positives is relatively lower compared
to false negatives. A false alarm causes annoyance to the human driver (or to the ADS)
when there is no actual hazard; thus their number should be kept low.

2.9.5 Results

2.9.5.1 Effectiveness (RQ1)

Figure 6 presents the effectiveness results for all configurations of ThirdEye (HA, HD,
HRL) and SelfOracle (Rec. Loss), divided by windowing function (max, mean). Results
are averaged across conditions, split between external unknown conditions (OODextreme

and OODmoderate) and internal uncertain conditions (Mutants). The effectiveness metrics
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consider a confidence threshold 𝛾95 (see Section 2.9.4.3), i.e., the threshold associated with
an expected 5% false positive rate. Precision (Pr) is measured in anomalous conditions,
which explains why it is lower than the expected value associated with 𝛾95, which is 95%
in nominal conditions (see subsubsection 2.8.1.3).

Due to space constraints, in this section, we only comment the average 𝐹3 scores
over all benchmarks. On average, in terms of 𝐹3, ThirdEye with windowing=max
has a 77%/39%/60% average improvement over ThirdEye with windowing=mean, for
HA/HD/HRL, respectively. However, this does not impact negatively the false alarm
rate, which remains low (average Pr values for windowing=max are higher than those for
windowing=mean). HD/HRL scores are slightly higher in terms of 𝐹3 than HA (+2%).

We assessed the statistical significance of these differences using the non-parametric
Mann-Whitney U test (WILCOXON, 1945) (with 𝛼 = 0.05) and the magnitude of the
differences using the Cohen’s 𝑑 effect size (COHEN, 1988). The difference in 𝐹3 score
between HA and HD/HRL were found to be statistically significant (𝑝-value < 0.05) even
if with a negligible and small effect sizes. As expected by looking at the average 𝐹3 scores
of Figure 6, there is no statistically significant difference between HD and HRL (𝑝-value
≥ 0.05).⌈︂

RQ1: The configuration of ThirdEye using heatmap derivative function (HD) and
reconstruction loss function (HRL), configured with windowing=max, achieve the highest
failure prediction rate (𝐹3 = 85%) over all conditions.

⌋︂

2.9.5.2 Prediction Over Time (RQ2)

Figure 6 reports the effectiveness considering different TTF (Column 2). In principle,
failure prediction should get more challenging as we move farther from the failure instant.
This is true for all configuration of ThirdEye, except for HA (windowing=mean), in
which the average prediction power (𝐹3) is higher for {2, 3} seconds before the failures
that 1 second before them, on average (+30%). For ThirdEye HRL/HD/HA with win-
dowing=max, the 𝐹3 scores remain stable over time. On average, the prediction power
decreases only by -6%/-1%/-1% as we move away from the failures.⌈︂

RQ2: On average, the effectiveness of the best configurations of ThirdEye (HRL/HD
windowing=max) remains high up to 3 seconds before the failures (-1% average 𝐹3

decrease).
⌋︂

2.9.5.3 Comparison (RQ3)

Considering the average 𝐹3 scores across benchmarks, all configurations of ThirdEye
are superior to SelfOracle at predicting misbehaviours.
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Figure 7 – Failure (red stroke) induced by mutation testing; threshold 𝛾 is represented by the red line.
Left: ThirdEye predicts the failure a few seconds ahead (see spikes above the threshold).
Right: SelfOracle reacts only when the failure has happened, when the ADS is off-road, and
the input image deviates substantially from the nominal, on-road, driving frames.

Source: (STOCCO et al., 2022).

On the OODextreme benchmark, ThirdEye scores a +142% increase in 𝐹3 w.r.t. Self-
Oracle (the benchmark used in that work). For OODmoderate conditions, average 𝐹3 scores
raise to 62%, for ThirdEye’s windowing=max, whereas the failure detection rate by
ThirdEye (HD) is +16% higher (80%). For Mutants, our results show a remarkable dif-
ference of effectiveness between ThirdEye over SelfOracle. The configuration HD (win-
dowing=max) predicts all failures induced by internal uncertain conditions (Re=100%),
a +35% increase w.r.t SelfOracle, whereas for 𝐹3 the increment is +39%.

Overall, average results for 𝐹3 show significant improvements of ThirdEye over Self-
Oracle, regardless of the configuration being used and the reaction period considered. The
best configurations HD/HRL (windowing=max) from RQ1 achieve +49% failure predic-
tion scores (𝐹3). We assess the statistical significance of the differences between Third-
Eye HD and SelfOracle using the non-parametric Mann-Whitney U test (WILCOXON,
1945) (with 𝛼 = 0.05), the magnitude of the differences using the Cohen’s 𝑑 effect size (CO-

HEN, 1988). Statistical tests tell that the difference in F3 score between HD are statistically
significant (𝑝-value < 0.05) with a large effect size.⌈︂

RQ3: ThirdEye outperforms SelfOracle in terms of failure prediction and minimiza-

tion of false alarms (see 𝐹3), with statistical significance.
⌋︂

We analyzed qualitatively some of the failures, to understand the reasons behind the
disagreements between ThirdEye and SelfOracle. Figure 7 reports a meaningful example
from our experiments concerning a failure induced by mutation testing. In the example
(not show in Figure 7 for space reasons), a mutated version of DAVE-2 is driving on
nominal scenarios and fails in proximity of a bend on the right, missing the bend and
proceeding straight off-road.

From the plot on the left, we can see that the white-box approach by ThirdEye (HD
windowing=max) is able to anticipate the failure as the XAI confidence score spikes a few
seconds before the off-road episode. On the other hand, SelfOracle misses the failure. The
reconstruction errors (plot on the right) of the driving frames raise above the threshold
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only when the ADS is already off-track and the image captured by the camera deviates
substantially from the nominal or nearly-failing on-road images.

2.9.6 Threats to Validity

2.9.6.1 Internal validity

We compared all variants of ThirdEye and SelfOracle under identical experimental set-
tings and on the same evaluation set (subsubsection 2.9.4.1). The main threat to internal
validity concerns our implementation of the testing scripts to evaluate the failure predic-
tion scores, which we tested thoroughly. Concerning the training of ADS model, we used
artifacts publicly available in the replication packages of the SelfOracle (STOCCO et al.,
2020) and DeepCrime (HUMBATOVA; JAHANGIROVA; TONELLA, 2021) papers. Regard-
ing the simulation platform, we used the Udacity simulator adopted in analogous failure
prediction studies (STOCCO et al., 2020; HUSSAIN; ALI; HONG, 2022).

2.9.6.2 External validity

The limited number of self-driving systems in our evaluation poses a threat in terms of
generalizability of our results to other ADS. Moreover, results may not generalize, or
generalize differently, when considering other simulation platforms than Udacity. For the
attention maps, we considered only attention maps produced by SmoothGrad (SMILKOV

et al., 2017), and the effectiveness of our tool may change when considering different XAI
algorithms.

2.9.6.3 Reproducibility

All our results, the source code of ThirdEye, the simulator, and all subjects are avail-
able (Stocco, 2022).

2.10 DISCUSSION

2.10.1 XAI for Failure Prediction

Our study highlights the complexity and the variety of failure scenarios that runtime mon-
itoring techniques should aim to handle. Attention maps are typically used qualitatively
by humans to understand how a DNN processes its inputs. In this work, we used them
quantitatively, under the assumption that they contain information that can potentially
be used to assess the behaviour of DNNs (SAMEK; WIEGAND; MÜLLER, 2017; TJOA et al.,
2022) and, by extension, of the ADS that use them.

Our approach depends on the capability of attention maps to constitute a reference
model of normal driving behaviour. Well-trained DNNs better capture the relevant struc-
tures in an image, thus produce more meaningful attention maps than poorly trained
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DNNs, which rather rely on global image statistics. Apart from this requirement, atten-
tion maps offer a more transparent and effective assessment of the ADS behaviour than
a black-box technique because they indicate the degree of attention (or lack thereof) of
the ADS in response to an input. Our results confirm that they are generally more ef-
fective than a competing black-box technique on both unknown (out-of-distribution) and
uncertain (mutation testing) scenarios.

2.10.2 Discussing ThirdEye’s Configurations

All configurations of ThirdEye are stable in terms of prediction power and we observed
no big drop as we move to a longer duration between prediction and failure. For example,
for ADS models produced by automated mutation testing, this can be explained by the
fact that these self-driving cars are always characterized by a relatively high proportion
of uncertainty internal to the system, which ultimately causes a failure that ThirdEye
is able to detect because its predictions are made based on information that reflects the
(buggy) internal state of the system.

We evaluated two windowing alternatives, max vs mean. Each has pros and cons: max
is more reactive than mean, as it is enough to observe a spike in the window to trigger
an alarm, which may potentially lead to a higher recall. At the same time, usage of max
during threshold estimation makes 𝛾95 higher, because a higher threshold must be chosen
to ensure as few as 5% false positives in nominal conditions. A higher 𝛾95 leads naturally
to a lower recall. The combination of the two factors, higher reactivity and higher 𝛾95

threshold, may either lead to better or to worse performance of max vs mean. Hence, the
choice can only be made empirically and it is quite interesting that our empirical results
show very clearly and neatly the superiority of max over mean.

2.10.3 Comparison with Other Approaches

Attention maps by XAI are not the only way to analyze the internal functioning of an
ADS. For instance, other white-box approaches have been proposed in the literature,
such as solutions based on activation traces (KIM; FELDT; YOO, 2019), cross-layer dis-
section (WANG et al., 2020), or uncertainty quantification measures (MICHELMORE et al.,
2020). These methods have two main drawbacks that hinder their applicability as online
failure predictors. First, in general, these methods are known for being computationally
very expensive, thus they may not be real-time viable solutions. Second, these techniques
must be integrated into the development process from the very beginning, as they require
a white-box access to the model’s architecture and to the training data, because the ADS
must be retrained or modified to enable the computation of white-box confidence scores.
Unlike these methods, we experiment with attention maps because they do offer a white-
box view of the DNN internals without requiring access to the training data, nor the need
to modify or retrain the ADS model.
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2.11 CONCLUSION AND FUTURE WORKS

In this work, we describe and evaluate a white-box failure predictor that estimates the
confidence of a DNN-based ADS in response to unpredictable execution contexts. Our tool
ThirdEye performs confidence estimation by turning attention maps derived from the
XAI domain into confidence scores of the driving ADS. Our approach is able to anticipate
many potentially safety-critical failures by several seconds, with a low false alarm rate in
anomalous conditions, and a fixed 5% expected false alarm rate in nominal conditions,
outperforming a black-box predictor from the literature.

Future work includes extending the comparison to other white-box confidence esti-
mators. At the same time, alternative confidence score synthesis methods based on the
semantic of the input image will be investigated, as well as other XAI algorithms. More-
over, we also plan to extend the detection of finer-grained driving quality degradations
(e.g., erratic driving behaviour) and to study self-healing mechanisms within the simula-
tor.
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3 MUTANT XAI GENERATOR- A XAI TEST CASES INPUT GENERATORS
FOR NEURAL NETWORKS

3.1 INTRODUCTION

This chapter delves into a critical aspect of autonomous driving systems (ADS): the iden-
tification and understanding of Neural Networks’ limitations and weaknesses. Building
upon the foundational knowledge provided in Chapter 2, this chapter introduces a pre-
liminary study of a strategy called XAI Mutant Generator, which is aimed at producing
an array of driving scenarios. In this chapter, we explore a connection between the ab-
stract form of digits and real-world driving scenarios, using a Neural Network trained on
the MNIST dataset to classify digits as an analogy for road layouts.

It is important to underline that the XAI Mutant Generator is not intended to operate
in isolation. Its purpose is to synergize with the ThirdEye technique described in the pre-
ceding chapter. By combining XAI Mutant Generator’s scenario creation capability with
ThirdEye’s explainable AI-driven behavior prediction, we strive to enhance our testing
capabilities and increase safety measures in autonomous driving systems. This synergy
allows us to generate high-quality test inputs for the Udacity simulator, harnessing the
strengths of both techniques for a more robust, thorough evaluation.

The chapter begins with an introduction that sets the context for the research, explain-
ing the importance and need for an effective testing strategy during the Neural Networks’
testing phase. Following this, the background section delves into a review of relevant
literature on Neural Networks, XAI, attention maps, and their usage in ADS.

In the Methodology section, we outline the steps taken to implement the XAI Mutant
Generator, detailing how attention maps were employed to guide the generation of digit
variations, and the process for identifying corner cases. The comparison of digits and road
layouts forms an important aspect of this explanation.

The Results section presents our findings, offering insights into how the XAI Mutant
Generator exposed the limitations of the Neural Network. Through systematic analysis, we
illustrate how the application of attention maps could enhance the generation of simulated
road scenarios for driving simulations, thereby contributing to the safety and reliability
of ADS.

The Conclusion section provides a summary of the research, reflects on the implica-
tions of the findings, and suggests potential avenues for further research. We discuss how
the XAI Mutant Generator represents a novel and efficient strategy to improve the test-
ing phase of Neural Networks in ADS, offering a robust mechanism for identifying and
rectifying weaknesses.

In sum, this chapter aims to contribute to the growing body of knowledge around
the efficacy of XAI techniques in ADS, specifically focusing on the implementation and
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outcomes of the XAI Mutant Generator as an innovative approach to Neural Networks’
testing.

3.2 MOTIVATION

In the context of Neural Networks for autonomous driving, the process of testing scenario
generation assumes critical significance. This process involves designing intricate driving
scenarios to discover corner cases or unusual situations that could potentially trigger erro-
neous behavior from the Neural Network (PEI et al., 2017b; ZHANG et al., 2018a). Identifying
these corner cases allows for the retraining of the network, which can lead to improved
resilience and performance, a technique that is commonly referred to as adversarial train-
ing (GOODFELLOW; SHLENS; SZEGEDY, 2014). This approach assists in improving the
model’s capability to cope with unexpected, real-world scenarios, consequently making
the autonomous driving systems safer and more reliable (KOROSEC, 2019). Furthermore,
the generation of diverse and representative scenarios is also critical to ensure the robust-
ness of the Neural Network against sensor inaccuracies and uncertainties (SIMON et al.,
2020). Therefore, investing in advanced testing scenario generation methods can substan-
tially contribute to the development of robust and trustworthy ADS (LI et al., 2020).

3.3 WORK OBJECTIVES

3.3.1 General Objective

The Mutant XAI Generator encompasses a preliminary study that investigates the
application of Explainable AI (XAI) in the creation of road test scenarios. The primary
objective is to determine if XAI can effectively guide the generation of road layouts that
will potentially cause failures in Neural Networks (NNs) embedded within Autonomous
Driving Systems (ADS). To this end, a NN trained on the MNIST dataset - a collection
of digit images - was used as the study’s subject, facilitating the evaluation of the effec-
tiveness of the corner case generation process guided by XAI. The underlying concept was
to view a digit layout as a road layout, and by altering the digit layout, induce the NN,
trained on the MNIST dataset, to misclassify its label.

This evaluation consisted of a comparative analysis between a random generation
method and a method guided by Explainable AI. The generation process can be thought
of as a mutation operation wherein the digit image undergoes modifications. Particularly,
the Explainable AI-guided method focuses on mutating the portions of the digit image
that are given higher attention scores by the XAI techniques.

For comparison, we examined various parameters, including the number of mutations
required to lead to a misclassification and the total number of misclassifications identi-
fied over a series of controlled experiments. By conducting these evaluations, we seek to
demonstrate that the use of attention maps derived from XAI can be an effective means
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for automatic generation of diverse test scenarios. Such methods, if proven effective, could
provide significant enhancements to the safety and reliability of autonomous vehicles by
providing better guidance on potential areas of weakness during the simulation of driving
scenarios.

3.3.2 Contributions

Our work makes the following contributions:

Technique. The core contribution of this work is a novel, high-efficiency methodology,
leveraging Explainable AI to guide test case generation for driving simulators. This
approach significantly reduces misclassification detection time and increases the
number of corner cases generated, thereby enhancing the robustness and safety of
Autonomous Driving Systems.

Evaluation. An in-depth exploration of the influence of Explainable AI on the gener-
ation of corner cases for Neural Networks. The established technique is not only
applicable to the present study but can also be leveraged in the creation of simu-
lated road driving scenarios. This has substantial potential to enhance the testing
methodology for Autonomous Driving Systems (ADS) Neural Networks, facilitating
their robustness and reliability.

Dataset. Mutant XAI Generator culminated in the creation of a dataset compris-
ing more than 100 uniquely mutated images that led to misclassifications in an
MNIST-trained Neural Network. This curated dataset is a tangible contribution to
the research community, serving as a useful tool for other researchers to evaluate
and improve their own networks or to replicate and extend the present study.
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3.4 BACKGROUND

In this chapter, relevant concepts will be presented about the subjects related to test cases
input generations for Neural Netowrk testing.

3.4.1 Road Representation using the MNIST Dataset

Figure 8 – Visual analogy illustrating the similar role of attention maps in selecting control points for
both digits and roads.

(a) DIGIT control points representation. Derived
from digit’s attention maps.

(b) ROAD control points representation. Derived
from car’s front camera attention maps.

Source: The Author (2022).

The MNIST dataset (DENG, 2012), comprising images of handwritten digits, is a ubiq-
uitous tool in machine learning tasks. This study employs this dataset to represent road
layouts, where different digits and their variations can model a variety of road configura-
tions. The process of mutating these digit-images allows us to generate an extensive array
of road scenarios for testing ADS in virtual simulators.

In Figure 8a, a visual representation of the control point selection process for a digit,
derived from attention maps generated by the Explainable AI Gradcam++ technique
(CHATTOPADHAY et al., 2018), is presented. Correspondingly, Figure 8b on the right-hand
side showcases the selection of control points grounded in the road’s layout, incorporating
attention maps extracted from the front-facing camera images of the vehicle.

In their work, Riccio and Tonella (2021) explore the representation of roads through
the mutation of digit-images from the MNIST dataset. Their technique served as an
early attempt to build a bridge between the representation of road scenarios and digit
datasets commonly used in machine learning. This pioneering concept of using digit-
image mutation to create diverse and unrealistic road configurations set the foundation
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for the methodology employed in this preliminary study. By expanding on their work,
the objective of this preliminary study is to develop a more efficient approach, aiming
to minimize the quantity of iterations necessary for the identification of misclassified
instances, allowing a more thorough and diverse testing of ADS in virtual simulators
(Riccio and Tonella, 2021).

3.4.2 Guiding Test Samples Generation with Explainable AI

The key to an efficient mutation process lies in generating meaningful, diverse, and chal-
lenging road scenarios. Explainable AI, with its ability to interpret and explain AI model
decisions, can direct the mutation of digit-images in a manner that maximizes these out-
comes. By focusing on key areas in the digit-images identified through XAI, the mutation
process can effectively generate a wide range of common and corner case road scenarios.

3.4.3 Unexplored Synergy of MNIST and XAI in ADS Testing

This research explores the under-investigated intersection of MNIST-based road repre-
sentation and XAI-guided mutation. This innovative preliminary study holds significant
potential for enhancing the ADS testing process in virtual simulators.

By leveraging Explainable AI techniques, we aim to guide the mutation process strate-
gically, thus speeding up the process of finding corner cases in Neural Networks. This
optimization is critical in the context of autonomous driving simulation, where each iter-
ation can consume substantial time, ranging from several minutes to hours. By reducing
the number of iterations needed to identify corner cases, this approach could lead to
significant time savings in ADS testing.

Moreover, by generating a diverse array of road scenarios, our method is designed to
expose potential weaknesses in ADS. This capability not only helps improve their overall
performance but also enhances their safety measures. Ultimately, the combined use of
MNIST-based road representation and XAI-guided mutation could significantly boost
the effectiveness and efficiency of ADS testing.

3.5 RESEARCH QUESTION

With this background in mind, our study seeks to answer the following central research
question:

Can Explainable AI, when compared to traditional mutation methods, serve as a more
efficient technique for generating corner cases of Neural Networks?
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3.6 RELATED WORK

The domain of testing and ivestigating Neural Networks, especially in the context of
autonomous driving systems (ADS), has garnered considerable attention over the years.
Several works have investigated various dimensions of this domain, offering critical insights
and methodologies that have shaped our understanding of Neural Networks’ vulnerabili-
ties and the measures required to improve their robustness.

One of the primary inspirations behind the XAI Mutant Generator has been the paper
"Model-based exploration of the frontier of behaviours for deep learning system testing"
by Riccio and Tonella (2020) (RICCIO; TONELLA, 2020b). This pioneering work is one
of the first to use digits from the MNIST dataset as an analogy to road layouts, which
formed the basis for our methodology.

One remarkable study that significantly contributes to the field is the work of Pei et
al. (2017) titled “DeepXplore: Automated Whitebox Testing of Deep Learning Systems”
(PEI et al., 2017b). They introduced a rigorous approach for testing deep learning systems
through differential testing, inspiring further research in the field. The philosophy of
systematic testing is echoed in our work on the XAI Mutant Generator, albeit with
a twist, by leveraging explainable AI to comprehend Neural Networks’ limitations and
weaknesses.

Zhang et al.’s (2018) work "DeepRoad: GAN-Based Metamorphic Autonomous Driving
System Testing" (ZHANG et al., 2018a) also used a novel approach to generate realistic and
challenging driving scenarios for testing using Generative Adversarial Networks (GANs).
Their approach bears similarity with our work where we generate various driving scenarios.
However, we harness the power of attention maps and digit variations from the MNIST
dataset to simulate different scenarios.

Finally, the relevance and applicability of ADS in the real world have been demon-
strated by Waymo’s robotaxi pilot, which served more than 6,200 riders in its first month
in California (KOROSEC, 2019), and Li et al.’s (2020) discussion on the utilization of deep
reinforcement learning for multi-objective optimization (LI et al., 2020). These underscore
the practical implications of improving the robustness of Neural Networks in ADS.

In conclusion, the XAI Mutant Generator is situated within a rich and growing body
of research seeking to enhance the safety, reliability, and efficacy of Neural Networks in
ADS. By using explainable AI, our work offers a unique approach to test and comprehend
these networks, contributing to this evolving landscape.
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3.7 METHODOLOGY/APPROACH

The mutation of a digit, whether through a random or natural process, fundamentally
involves vectorizing the digit’s image, extracting the control points that define its layout,
randomly selecting one of these points, and applying a random displacement to its ge-
ometric coordinates (x, y). When the mutation process is guided by attention methods,
the procedure remains largely similar, but with a critical distinction: the selection of the
control point for mutation is not random. Instead, it relies on the application of attention
map techniques to identify the control point nearest to the area of the image with the
highest attention score.

Consequently, we can break down the Attention Maps guided digit mutation process
into four main steps:

(1) Extraction of Attention Maps: The attention map is derived from the original digit
image using the SmoothGrad method, as referenced in subsection 2.5.4.

(2) Digit Vectorization: The original digit image undergoes vectorization to extract
the control points - a step analogous to the one employed in random mutation. Equipped
with both the attention map, which indicates the regions of the digit image with the
highest attention scores, and the positions of all control points, we proceed to the final
step.

(3) Control Point Selection: Appropriate algorithms are employed to choose the opti-
mal point for mutation. This selection is based on the location with the highest attention
score in the image. Once this point has been identified, a displacement is applied to its
coordinates. The image is subsequently reconverted to its rasterized format. This raster-
ized image then serves as a new input for the neural network, enabling the measurement
of prediction feedback. This study introduces two novel algorithms designed to optimize
control point selection based on attention maps: Scan-Square Distance-Based Point Selec-
tion (SS-DBPS) and Control-Point-Scan Weight-Based Selection (CPS-WBS). SS-DBPS
selects the control point based on its proximity to the area with the highest attention score
within the attention map image. Conversely, CPS-WBS operates by assigning a score to
each control point according to the attention score within its vicinity. This score, termed
“weight”, is subsequently utilized in a weighted selection process. Detailed explanations
and operational mechanisms of both these algorithms will be presented in the ensuing
sections.

(4) Control Point Displacement: The final step in our methodology involves displac-
ing the selected control point. We use two strategies: a fixed displacement method and
an adaptive displacement method. The latter adjusts the displacement value based on
the feedback from the neural network to increase the efficiency of finding misclassified
cases. Our study reveals that this adaptive displacement method, applied in both ran-
dom and attention-guided mutations, significantly enhances the efficiency in identifying
misclassification instances in neural networks. The two methods will be explained in the
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subsection 3.7.4.
It is important to note that this entire process constitutes a single iteration. The

research presented in this study demonstrates that utilizing attention maps to guide the
digit mutation process significantly reduces the total number of iterations necessary to find
a mutated digit that results in a misclassification by the neural network when compared
to a random guided mutation method.

3.7.1 Extraction of Attention Maps

The initial phase of our process involves extracting the attention maps. This involves uti-
lizing the Gradient-weighted Class Activation Mapping (GradCAM++) technique. Origi-
nating as an improvement over the earlier GradCAM method, GradCAM++ provides an
advanced and effective means of visualizing attention in Convolutional Neural Networks.
It works by attributing an ’attention score’ to each pixel in the input image, a score which
quantifies the pixel’s contribution to the neural network’s final prediction.

In practical terms, this translates to the generation of a new image—commonly re-
ferred to as a ’heatmap’ or ’attention map’—where each pixel’s intensity corresponds to
its attention score. In this way, areas of the image that significantly influence the final
prediction of the Neural Network are made visually identifiable, facilitating targeted and
informed mutations in subsequent stages of the process.

Figure 9 – Examples of different attention score distributions of the digit “5” based on its shape.

Source: The Author (2022).

As depicted in Figure 9, attention score distribution varies significantly depending on
the specific configuration of the digit 5. Some instances demonstrate a higher concentration
of attention toward the upper segment of the digit. Conversely, in other cases, attention
is distributed more uniformly across the entire digit. Additionally, certain configurations
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yield a more compartmentalized attention distribution, with attention being allocated to
distinct regions within the digit. Such variations underline the impact of the digit’s shape
on the distribution of attention scores, reflecting the complexity and variability inherent
in the interpretative processes of neural networks.

3.7.2 Digit Vectorization

The initial form of the digit images from the MNIST dataset is bitmap; thus, the second
stage of the mutation process necessitates the conversion of these bitmaps into vector
representations. This conversion, otherwise referred to as vectorization, facilitates the
extraction of control points that delineate the digit’s shape. Through these control points,
we can either regenerate the original digit bitmap or create a variation thereof through
the alteration of one or more control point coordinates - a process termed ’Mutation’. The
result of this step is a compilation of control points that are capable of reconstructing the
original digit bitmap.

CP = ⟨(𝑥1, 𝑦1), (𝑥2, 𝑦2), (𝑥3, 𝑦3), . . . , (𝑥𝑛, 𝑦𝑛)⟩

The Figure 10 shows an illustrative example of the control points for the number 5.

Figure 10 – Ilustrative example of control points of the digit 5.

Source: The Author (2022).

The method by which we select the control point for displacement, and thus create the
mutated digit, will be elaborated upon in the ensuing section on Control Point Selection
methods.

3.7.3 Control Point Selection and Mutation

The process of mutation is crucial to the generation of corner cases, and the choice of
the control point to be displaced for this mutation is particularly significant. However,
instead of randomly choosing control points, this study uses a more informed method for
control point selection, based on the insights gained from the attention maps. This section
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will dive into the detailed methodology used for Control Point Selection and Mutation,
highlighting how the attention maps can be utilized for more effective mutation in our
context.

3.7.3.1 Scan-Square Distance-Based Point Selection (SS-DBPS)

This algorithm operates on the principle of analyzing square areas of the attention map
image and identifying the one that has the highest score of attention, in other words, the
area that stimulates the highest response on the Neural Network.

The algorithm accepts three parameters: an explanation image (xai_image), and the x
and y dimensions of a square (x_sqr_size, y_sqr_size) that scans across the explanation
image. The xai_image is the output of the Gradcam++ explainability method. This
grayscale image carries pixel values ranging between 0 and 255, each of which corresponds
to the neural network’s ’attention’ score. The dimensions of the square determine the
region within the xai_image where the attention score is computed.

The process begins by defining the x and y dimensions of the xai_image. Subsequently,
the algorithm initiates a nested loop, shifting the defined square region across the entire
xai_image. For every position of the square, the sum of pixel values (sum_xai) within that
square region is computed. This sum acts as the ’attention score’ for that particular region.
The algorithm keeps track of the region with the highest sum (greater_value_sum_xai),
updating it whenever a region with a larger sum is encountered. The final output of
this algorithm is the x and y position of the square (x_final_pos, y_final_pos) that
correspond to the highest attention score.

After identifying the region with the highest attention score, a control point from the
digit’s vectorized form is selected based on proximity. More specifically, the control point
closest to the identified region is chosen.

The Figure 11 shows the Attention-Square Point Selection (SS-DBPS) Method. The
image represents a digit from the MNIST dataset, overlaid with the xai_image output
of the Gradcam++ explainability method. Pixel intensities in the xai_image signify the
attention scores as assigned by the neural network. The square box highlights a particular
region of the image under evaluation. The attention score of this region, the sum of pixel
intensities within the square, is calculated and compared with other regions as the square
slides across the entire image.

3.7.3.2 Control-Point-Scan Weight-Based Selection (CPS-WBS)

The algorithm 2 operates by identifying regions in the attention map and calculating their
probability of selection, which is based on the region’s attention score. This algorithm,
known as the Control-Point-Scan Weight-Based Selection (CPS-WBS) method, processes
each control point, considers the neighboring region in the attention map, computes the
attention score for the region, and then uses this score to compute the selection probability.
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Algorithm 1: Scan-Square Distance-Based Point Selection (SS-DBPS)
Data: xai_image, x_sqr_size, y_sqr_size
Result: greater_value_sum_xai, x_final_pos, y_final_pos

1 𝑥_𝑑𝑖𝑚← shape(𝑥𝑎𝑖_𝑖𝑚𝑎𝑔𝑒)[0];
2 𝑦_𝑑𝑖𝑚← shape(𝑥𝑎𝑖_𝑖𝑚𝑎𝑔𝑒)[1];
3 𝑔𝑟𝑒𝑎𝑡𝑒𝑟_𝑣𝑎𝑙𝑢𝑒_𝑠𝑢𝑚_𝑥𝑎𝑖← 0;
4 𝑥_𝑓𝑖𝑛𝑎𝑙_𝑝𝑜𝑠← 0;
5 𝑦_𝑓𝑖𝑛𝑎𝑙_𝑝𝑜𝑠← 0;
6 for 𝑦_𝑠𝑞𝑟_𝑝𝑜𝑠 in range(0, 𝑦_𝑑𝑖𝑚− 𝑦_𝑠𝑞𝑟_𝑠𝑖𝑧𝑒) do
7 for 𝑥_𝑠𝑞𝑟_𝑝𝑜𝑠 in range(0, 𝑥_𝑑𝑖𝑚− 𝑥_𝑠𝑞𝑟_𝑠𝑖𝑧𝑒) do
8 𝑠𝑢𝑚_𝑥𝑎𝑖← 0;
9 for 𝑦_𝑖𝑛_𝑠𝑞𝑟 in range(0, 𝑦_𝑠𝑞𝑟_𝑠𝑖𝑧𝑒) do

10 𝑦_𝑝𝑖𝑥𝑒𝑙_𝑝𝑜𝑠← 𝑦_𝑠𝑞𝑟_𝑝𝑜𝑠 + 𝑦_𝑖𝑛_𝑠𝑞𝑟;
11 for 𝑥_𝑖𝑛_𝑠𝑞𝑟 in range(0, 𝑥_𝑠𝑞𝑟_𝑠𝑖𝑧𝑒) do
12 𝑥_𝑝𝑖𝑥𝑒𝑙_𝑝𝑜𝑠← 𝑥_𝑠𝑞𝑟_𝑝𝑜𝑠 + 𝑥_𝑖𝑛_𝑠𝑞𝑟;
13 𝑠𝑢𝑚_𝑥𝑎𝑖← 𝑠𝑢𝑚_𝑥𝑎𝑖 + 𝑥𝑎𝑖_𝑖𝑚𝑎𝑔𝑒[𝑦_𝑝𝑖𝑥𝑒𝑙_𝑝𝑜𝑠][𝑥_𝑝𝑖𝑥𝑒𝑙_𝑝𝑜𝑠];

14 if 𝑠𝑢𝑚_𝑥𝑎𝑖 > 𝑔𝑟𝑒𝑎𝑡𝑒𝑟_𝑣𝑎𝑙𝑢𝑒_𝑠𝑢𝑚_𝑥𝑎𝑖 then
15 𝑔𝑟𝑒𝑎𝑡𝑒𝑟_𝑣𝑎𝑙𝑢𝑒_𝑠𝑢𝑚_𝑥𝑎𝑖← 𝑠𝑢𝑚_𝑥𝑎𝑖;
16 𝑥_𝑓𝑖𝑛𝑎𝑙_𝑝𝑜𝑠← 𝑥_𝑠𝑞𝑟_𝑝𝑜𝑠;
17 𝑦_𝑓𝑖𝑛𝑎𝑙_𝑝𝑜𝑠← 𝑦_𝑠𝑞𝑟_𝑝𝑜𝑠;

Figure 11 – The Attention-Square Point Selection (SS-DBPS) method applied on a digit from the MNIST
dataset with the Gradcam++ output.

Source: The Author (2022).

This algorithm accepts three parameters: the explanation image (xai_image), a list of
control points (control_points_list), and a square size (square_size). The square size is
related to the size of the neighborhood considered around each control point for calculating
the attention score. Depending on the square size, different border variables are set, which
determine the range for scanning the neighborhood of a control point.
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The algorithm begins by calculating the dimensions of the xai_image. After this, it
starts a loop over each control point in the control_points_list. For each control point, it
computes the sum of pixel values within the corresponding square region in the xai_image.
This sum represents the attention score of the control point’s neighborhood.

After calculating the attention scores for all control points, it sums these scores to
get a total sum (sum_xai_list). Then, the algorithm computes a list of weights by expo-
nentiating the ratio of the individual attention score to the total sum and multiplying it
by 100. These weights represent the ’importance’ of each control point. The weights are
then normalized by dividing them by their total sum to generate the list of probabilities
(list_of_probabilities).

The output of this algorithm is the list of weights and the list of probabilities, both of
which represent the likelihood of selection of the control points based on their neighbor-
hood’s attention scores. In the context of the MNIST digits, these probabilities can guide
the selection of the control points for mutation, aiming to generate corner cases for the
neural network.

The Figure 13 illustrates the Control-Point Weight-Based Selection (CP-WBS) method
in action. Control points, marked on the attention map of an MNIST digit, are each
surrounded by a square region. Each region’s attention score, calculated from the pixel
intensities within, is displayed next to it.

3.7.4 Control Point Displacement

Following the identification of the optimal control point for mutation, a displacement is
applied to its position. The displacement method utilized within this study takes two
principal forms. The first approach involves a random selection of direction (either x or y)
and the application of a fixed displacement value. The second method, termed ’Adaptive
Displacement,’ also involves a random selection of direction for displacement but differs
in the calculation of displacement magnitude. In the Adaptive Displacement method,
the displacement value is adjusted according to the Neural Network’s feedback. Specif-
ically, for each iterative mutation, the network’s response to the mutated candidate is
evaluated. If the response does not exhibit significant change, the displacement factor is
incrementally increased until a substantial variation in the Neural Network response is
observed. At this point, the displacement factor is reset to its initial value, and the process
continues. The Adaptive Displacement method was employed in both mutation guidance
methods—random and attention-based—in this study. The results indicate that the Adap-
tive Displacement method provides greater efficiency in identifying misclassification cases
compared to methods without adaptive displacement.

The ’Apply Displacement to Mutant’ algorithm is a key component of the point mu-
tation process, specifically designed to apply a random displacement to a selected control
point. The algorithm begins by randomly selecting one of the two coordinates of the con-
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Algorithm 2: Control-Point-Scan Weight-Based Selection (CPS-WBS)
Data: xai_image, control_points_list, square_size
Result: list_of_weights, list_of_probabilities

1 𝑥_𝑑𝑖𝑚← shape(𝑥𝑎𝑖_𝑖𝑚𝑎𝑔𝑒)[0];
2 𝑦_𝑑𝑖𝑚← shape(𝑥𝑎𝑖_𝑖𝑚𝑎𝑔𝑒)[1];
3 if square_size equals 3 then
4 𝑦_𝑏𝑜𝑟𝑑𝑒𝑟_𝑢𝑝← −1;
5 𝑦_𝑏𝑜𝑟𝑑𝑒𝑟_𝑏𝑜𝑡𝑡𝑜𝑚← 1;
6 𝑥_𝑏𝑜𝑟𝑑𝑒𝑟_𝑟𝑖𝑔ℎ𝑡← 1;
7 𝑥_𝑏𝑜𝑟𝑑𝑒𝑟_𝑙𝑒𝑓𝑡← −1;
8 else
9 𝑦_𝑏𝑜𝑟𝑑𝑒𝑟_𝑢𝑝← −2;

10 𝑦_𝑏𝑜𝑟𝑑𝑒𝑟_𝑏𝑜𝑡𝑡𝑜𝑚← 2;
11 𝑥_𝑏𝑜𝑟𝑑𝑒𝑟_𝑟𝑖𝑔ℎ𝑡← 2;
12 𝑥_𝑏𝑜𝑟𝑑𝑒𝑟_𝑙𝑒𝑓𝑡← −2;
13 𝑥𝑎𝑖_𝑙𝑖𝑠𝑡← [];
14 for pos in control_points_list do
15 𝑥_𝑠𝑞𝑟_𝑝𝑜𝑠← int(𝑝𝑜𝑠[0]);
16 𝑦_𝑠𝑞𝑟_𝑝𝑜𝑠← int(𝑝𝑜𝑠[1]);
17 𝑠𝑢𝑚_𝑥𝑎𝑖← 0;
18 for 𝑦_𝑖𝑛_𝑠𝑞𝑟 in range(𝑦_𝑏𝑜𝑟𝑑𝑒𝑟_𝑢𝑝, 𝑦_𝑏𝑜𝑟𝑑𝑒𝑟_𝑏𝑜𝑡𝑡𝑜𝑚 + 1) do
19 𝑦_𝑝𝑖𝑥𝑒𝑙_𝑝𝑜𝑠← 𝑦_𝑠𝑞𝑟_𝑝𝑜𝑠 + 𝑦_𝑖𝑛_𝑠𝑞𝑟;
20 if 𝑦_𝑝𝑖𝑥𝑒𝑙_𝑝𝑜𝑠 ≥ 0 and 𝑦_𝑝𝑖𝑥𝑒𝑙_𝑝𝑜𝑠 ≤ 𝑦_𝑑𝑖𝑚− 1 then
21 for 𝑥_𝑖𝑛_𝑠𝑞𝑟 in range(𝑥_𝑏𝑜𝑟𝑑𝑒𝑟_𝑙𝑒𝑓𝑡, 𝑥_𝑏𝑜𝑟𝑑𝑒𝑟_𝑟𝑖𝑔ℎ𝑡 + 1) do
22 𝑥_𝑝𝑖𝑥𝑒𝑙_𝑝𝑜𝑠← 𝑥_𝑠𝑞𝑟_𝑝𝑜𝑠 + 𝑥_𝑖𝑛_𝑠𝑞𝑟;
23 if 𝑥_𝑝𝑖𝑥𝑒𝑙_𝑝𝑜𝑠 ≥ 0 and 𝑥_𝑝𝑖𝑥𝑒𝑙_𝑝𝑜𝑠 ≤ 𝑥_𝑑𝑖𝑚− 1 then
24 𝑠𝑢𝑚_𝑥𝑎𝑖←

𝑠𝑢𝑚_𝑥𝑎𝑖 + 𝑥𝑎𝑖_𝑖𝑚𝑎𝑔𝑒[𝑦_𝑝𝑖𝑥𝑒𝑙_𝑝𝑜𝑠][𝑥_𝑝𝑖𝑥𝑒𝑙_𝑝𝑜𝑠];

25 Append 𝑠𝑢𝑚_𝑥𝑎𝑖 to 𝑥𝑎𝑖_𝑙𝑖𝑠𝑡;
26 𝑠𝑢𝑚_𝑥𝑎𝑖_𝑙𝑖𝑠𝑡← sum(𝑥𝑎𝑖_𝑙𝑖𝑠𝑡);
27 𝑙𝑖𝑠𝑡_𝑜𝑓_𝑤𝑒𝑖𝑔ℎ𝑡𝑠← [];
28 𝑙𝑖𝑠𝑡_𝑜𝑓_𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠← [];
29 for 𝑠𝑢𝑚_𝑣𝑎𝑙𝑢𝑒, 𝑝𝑜𝑠 in zip(𝑥𝑎𝑖_𝑙𝑖𝑠𝑡, 𝑐𝑜𝑛𝑡𝑟𝑜𝑙_𝑝𝑜𝑖𝑛𝑡𝑠_𝑙𝑖𝑠𝑡) do
30 Append exp((𝑠𝑢𝑚_𝑣𝑎𝑙𝑢𝑒/𝑠𝑢𝑚_𝑥𝑎𝑖_𝑙𝑖𝑠𝑡) * 100) to 𝑙𝑖𝑠𝑡_𝑜𝑓_𝑤𝑒𝑖𝑔ℎ𝑡𝑠;
31 𝑠𝑢𝑚_𝑤𝑒𝑖𝑔ℎ𝑡𝑠_𝑙𝑖𝑠𝑡← sum(𝑙𝑖𝑠𝑡_𝑜𝑓_𝑤𝑒𝑖𝑔ℎ𝑡𝑠);
32 for 𝑤𝑒𝑖𝑔ℎ𝑡 in 𝑙𝑖𝑠𝑡_𝑜𝑓_𝑤𝑒𝑖𝑔ℎ𝑡𝑠 do
33 Append 𝑤𝑒𝑖𝑔ℎ𝑡/𝑠𝑢𝑚_𝑤𝑒𝑖𝑔ℎ𝑡𝑠_𝑙𝑖𝑠𝑡 to 𝑙𝑖𝑠𝑡_𝑜𝑓_𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠;
34 return 𝑙𝑖𝑠𝑡_𝑜𝑓_𝑤𝑒𝑖𝑔ℎ𝑡𝑠, 𝑙𝑖𝑠𝑡_𝑜𝑓_𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠;

trol point using the random choice function. This function randomly picks an item from
a list, in this case, either the x or y coordinate. Following this selection, it operates by
assigning a ’displacement’ value that is calculated as a random proportion (ranging from
0.01 to 0.6) of a predefined extent.

The algorithm then makes a decision to either add or subtract this displacement
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Algorithm 3: Mutant Displacement Application
Data: Control point coordinates (control_point_coordinates), Extent of

displacement (extent)
Result: Coordinate of the displaced mutant (result)

1 Define the lower bound of mutation (MUT_LOWER_BOUND = 0.01);
2 Define the upper bound of mutation (MUT_UPPER_BOUND = 0.6);
3 Define the mutation offset probability (MUT_OF_PROB = 0.5);
4 Choose a random coordinate from the control point (coordinate_chosen ←

random.choice(control_point_coordinates));
5 Calculate the displacement (displacement ← uniform(MUT_LOWER_BOUND,

MUT_UPPER_BOUND) * extent);
6 if random.uniform(0, 1) ≥ MUT_OF_PROB then
7 Apply positive displacement (result ← coordinate_chosen + displacement);
8 else
9 Apply negative displacement (result ← coordinate_chosen - displacement);

from the original control point’s value. This decision is determined by generating another
random value and comparing it with a predefined probability threshold (0.5 in this case).
If the generated random value is greater or equal to this threshold, the displacement is
added; otherwise, it is subtracted.

The algorithm operates under the assumption that the control point’s value and the
displacement extent are floating-point numbers. It also leverages Python’s uniform func-
tion to generate random values with a uniform probability distribution within a specified
range, ensuring a fair, unbiased selection process.

The resultant value, computed by applying the displacement to the original control
point’s value, is converted to its string representation for final output. This approach
ensures a certain level of randomness in the control point mutation process, which in turn
contributes to the overall robustness of the method.

3.7.4.1 Adaptive Extent

As briefly introduced in the preceding subsection, this preliminary study introduces an
innovative approach to the displacement algorithm, incorporating the concept of Adap-
tive Displacement. As detailed in Algorithm algorithm 3, the calculation of the displace-
ment value is dependent on a random selection of a number between the predefined
MUT_LOWER_BOUND and MUT_UPPER_BOUND constants. This number is then
multiplied by an extent factor, leading to the fact that a higher extent factor results in a
more significant displacement applied to the digit’s coordinate.

The strategy used to escalate the extent is based on the response of the neural network
to a sequence of generated mutations. If the neural network’s response shows no significant
variation in the prediction (e.g., the generated digits are not challenging enough to be
failure inducing) after a set number of iterations (n), an increment factor is applied to
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increase the extent. This process continues until the neural network’s response reveals a
positive variation exceeding a predefined threshold. At this point, the extent value resets
to its initial value, and the cycle repeats.

It is critical to note that the initial extent value requires careful calibration. Coupled
with the extent resetting strategy, it helps mitigate the risk of generating highly deformed
digits due to excessive displacement. This balance ensures the production of meaningful
and valid mutated digits for the testing process.

3.7.4.2 Main Mutation Loop

Figure 12 – Workflow representing all the steps necessary to complete one iteration of the mutation
process.

Source: The Author (2022).

In the primary mutation algorithm, the objective is to iteratively mutate the original
digit image until it can be misclassified by the neural network model, or until the maximum
number of iterations has been reached. The algorithm works as follows:

The process starts with the initialization of parameters such as the extent (used to
control the displacement magnitude for mutation), the selection_method that determines
the approach for control point selection (distance-based or weight-based), and the num-
ber_of_iterations_to_allow_adaptive, which dictates when adaptive extent modifica-
tions can be enabled.

The main mutation workflow’s process can be observed in Figure 12. It encompasses
all the steps executed during each iteration until reaching the maximum iteration limit.

1. The class of the original digit is predicted using the neural network model.

2. The attention map of the original digit image is extracted using the Gradcam++
explainability method.
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3. Control points from the original digit image are identified.

4. A control point for mutation is chosen based on the selected method (distance or
weight-based) and the attention map.

5. A displacement, governed by the extent, is applied to the selected control point,
resulting in a set of mutated_control_points.

6. A new digit image (mutated_digit_image) is created by rasterizing the mutated
control points.

7. The class of the mutated digit image is predicted using the neural network model.

If the predicted class of the mutated digit image is different from the original, it
signifies that a misclassification has been achieved, leading to the termination of the
mutation process.

If no misclassification is observed, the fitness function value for the original and mu-
tated digit images are calculated based on the neural network predictions for these images.
If the fitness function of the mutated image shows an improvement over the original, in-
dicating that the mutation is leading the neural network toward misclassification, the
original image is replaced with the mutated image.

However, if the mutated image does not show an improvement in the fitness function
value, the extent is adaptively updated (if permitted by the iteration count), ensuring
that the displacement magnitude for subsequent mutations can be adjusted in response
to previous unsuccessful mutation attempts.

Through this iterative mutation process, the algorithm aims to progressively guide the
evolution of the digit image toward a state that the neural network model is likely to mis-
classify, thereby identifying potential vulnerabilities in the model’s prediction capability.

In Figure 13, each control point is encompassed by a red square box. The attention
score of each region is determined by summing the attention scores of all the individual
pixels enclosed within the respective red square box. Subsequently, this aggregated score
is transformed into a probability value that directly corresponds to the magnitude of
the attention score. This transformation is accomplished via a straightforward weighted
calculation.

Point Probability Value = PAS× 100
TAS (3.1)

Where PAS is the sum of the attention score inside the square area for the specific
point (PAS - Point Attention Sum) and the TAS is the sum of the attention score inside
the square area for all the points (TAS - Total Attention Sum).
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Figure 13 – Control points on an MNIST digit’s attention map, each surrounded by a square region, with
the region’s attention score displayed for guiding mutation operations.

Source: The Author (2022).
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Algorithm 4: Main Mutation Algorithm
Input: MNIST_dataset, model, Max_number_of_iterations
Output: Missclassification_found, original_digit_image

1 extent ← 0.2;
2 original_digit_image ← get_digit_from_dataset(MNIST_dataset);
3 original_NN_prediction ← model.predict(original_digit_image);
4 selection_method ← “distances”;
5 number_of_iterations_to_allow_adaptive ← 10;
6 iteration ← 0;
7 while iteration ≤ Max_number_of_iterations do
8 iteration ← iteration + 1;
9 original_NN_prediction_class ← model.predict_classes(original_digit_image);

10 attention_map_image ← extract_attention_gradcam++(original_digit_image);
11 original_control_points_list ← extract_control_points(original_digit_image);
12 control_point_for_mutation ← select_control_point(attention_map_image,

original_control_points_list , selection_method);
13 mutated_control_points_list ←

apply_displacement(control_point_for_mutation, extent);
14 mutated_digit_image ← rasterize_digit(original_control_points_list);
15 mutated_NN_prediction_class ← model.predict_classes(mutated_digit_image);
16 if mutated_NN_prediction_class != original_NN_prediction_class then
17 Missclassification_found ← True;
18 break;
19 end
20 original_NN_prediction ← model.predict(original_digit_image);
21 original_fitness_function_value ←

evaluate_fitness_function(original_NN_prediction);
22 mutated_NN_prediction ← model.predict(mutated_digit_image);
23 mutated_fitness_function_value ←

evaluate_fitness_function(mutated_NN_prediction);
24 if original_fitness_function_value - mutated_fitness_function_value >

threshold_fitness_function then
25 original_digit_image ← mutated_digit_image;
26 end
27 else
28 extent ← adaptive_check_and_update(iteration,

number_of_iterations_to_allow_adaptive, extent);
29 end
30 end
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3.8 RESULTS

3.8.1 Research Questions

We consider the following research questions:
RQ1 (efficiency): How efficient is the Mutant XAI Generator attention-based mu-
tation operator in exposing failures? What is the best attention guide method for that
purpose?
RQ2 (effectiveness): How many misclassifications Mutant XAI Generator is ca-
pable to generate considering the number of mutations iterations?
RQ3 (comparison): How does Mutant XAI Generator compare with the random
mutation methods.

The innovative strategies proposed in this study – guided mutation using attention
maps, Scan-Square Distance-Based Point Selection (SS-DBPS) and Control-Point-Scan
Weight-Based Selection (CPS-WBS) algorithms for control point selection, and Adaptive
Displacement method for displacement calculation – have been thoroughly tested and
validated. Their performance in reducing the number of iterations necessary to find mis-
classifications in the Neural Network, as compared to conventional random mutation and
displacement methods, underscores their effectiveness and practical value in advancing
the field of Autonomous Driving Systems (ADS) testing.

In the course of our experimentation, several patterns and insights have surfaced that
elucidate the behavior and response of neural networks under the impact of the proposed
methodologies. These findings not only validate the premise of the study but also open
up further avenues for exploration and refinement of the techniques.

The investigation’s findings have been organized into two primary categories: qualita-
tive and quantitative results. The qualitative analysis focuses on the visual quality and
recognizable nature of the mutated digits that cause misclassification in the neural net-
work, whereas the quantitative analysis emphasizes the computational efficiency of the
proposed mutation strategies and their capacity to generate misclassifications.

3.8.2 Qualitative Analysis

An important aspect of our research was the qualitative examination of the mutated dig-
its. We observed the nature of these mutations and how they affect the Neural Network’s
misclassification. Emphasis was placed on whether the mutations were still recognizable
as digits, despite the changes applied. A series of digit mutations that resulted in misclas-
sifications are provided for examination, serving as effective corner cases for the study.

The Figure 14 presents a series of mutation digit samples generated using our proposed
strategies. For each sample, the first column exhibits the original digit image and its
corresponding label. The second column illustrates the mutated digit generated by each
method, followed by the respective prediction made by the Neural Network, which notably
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Figure 14 – Comparison of original, mutated digits and their respective Neural Network prediction
heatmaps.

Source: The Author (2022).

differs from the original labels. The third column displays the heatmap of the mutated
digit, highlighting areas that significantly influenced the Neural Network’s prediction.

Upon comparing the mutated digits produced by the Control-Point-Scan Weight-
Based Selection (CPS-WBS) and Scan-Square Distance-Based Point Selection (SS-DBPS)
methods, there is not a substantial difference in the overall layout of the digits. Any mi-
nor discrepancies arise from the repetitive mutations concentrated in specific areas when
using the distance-based method. In contrast, the weight-based selection method tends to
distribute the control points selected for mutation more evenly across the digit, leading
to a more uniform mutation distribution.

3.8.3 Quantitative Analysis

In our quantitative analysis, we focused on two primary metrics: the number of iterations
required to discover a misclassification and the number of misclassifications generated by
each method. This subsection will delineate the efficiency gains obtained from incorpo-
rating an attention strategy as compared to a purely random method. Furthermore, we
will present the significant impact of the adaptive extent on both strategies, namely the
attention-guided and random-guided methods. The results elucidate the considerable ad-
vantages provided by the adaptive extent, amplifying the performance of both strategies.

3.8.3.1 Number of iterations to find missclassifciations

The efficacy of the mutation process was evaluated based on the average number of iter-
ations needed to generate a misclassified digit. Boxplots charts were utilized to represent
these results, allowing for a comprehensive comparative analysis between the performance
of attention-guided methods and the random mutation strategy. Furthermore, the influ-
ence of the adaptive extent on this process was also examined, showcasing its critical role
in the efficiency of the mutation process.
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Figure 15 – Candlestick chart comparing average iterations for misclassification across different strategies.

(a) Attention Weight Based (CPS-WBS) (b) Attention Distance Based (SS-DBPS)

Source: The Author (2022).

Figure 15 illustrates the outcomes of an experiment involving 250 digits from the
MNIST dataset, manipulated using the two attention methods and the conventional ran-
dom one. For clarity, the results are presented through two candlestick charts, each com-
paring an attention method with the random approach. In both experiment iterations, the
same 250 digits were used, with the reproducibility of the random method being disabled
in the second round.

In Figure 15a, we observe the average number of iterations required to discover a
misclassification using the probability weight-based strategy (CPS-WBS). The attention
method averaged around 425 iterations to generate a misclassification, while the con-
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ventional random approach required approximately 600 iterations, indicating that the
attention-based method was more efficient by around 175 iterations.

Conversely, Figure 15b showcases the performance of the distance-based strategy (SS-
DBPS) in comparison with the conventional random method. Here, the attention distance
method averaged around 410 iterations to generate a misclassification, implying a gain of
approximately 190 iterations over the conventional method, and a modest improvement of
about 15 iterations over the probability-based method. The repetition of these patterns in
various experiment runs highlights the consistent superiority of the distance-based method
over both the probability-based and random strategies.

The candlestick chart in Figure 16 presents the results of another experiment iteration,
this time incorporating the adaptive extent strategy into both the attention-guided and
conventional random control point selection methods. This experiment also employed 250
distinct MNIST dataset digits from the previous iterations.

Figure 16 – Boxplots chart comparing average iterations for misclassification across different strategies.

Source: The Author (2022).
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The chart indicates that the implementation of the adaptive technique profoundly
affected the performance of the Attention strategy, with a less pronounced impact on
the conventional random strategies. The conventional method maintained a consistent
average, but the adaptive technique resulted in a reduced upper limit, implying that
misclassifications were achieved with fewer iterations than when the method was executed
without the adaptive feature.

Based on the preliminary analysis presented in this section, it can be stated that the use
of Explainable AI techniques in mutation processes demonstrates promising results. Both
the distance-based (SS-DBPS) and the probability-based (CPS-WBS) attention-guided
methods showed a significant reduction in the average number of iterations necessary to
generate a misclassified digit when compared to traditional random mutation methods.
This improvement in efficiency, particularly in the case of the distance-based method, pro-
vides initial positive evidence towards answering our research question: "Can Explainable
AI, when compared to traditional mutation methods, serve as a more efficient technique
for generating corner cases of Neural Networks?"

However, to fully answer this question, we must not only consider the speed of gen-
erating misclassified digits but also evaluate the quantity of misclassifications found by
each method. Therefore, in the upcoming section "Number of Misclassifications Found,"
we will further investigate these strategies’ effectiveness by examining the volume of mis-
classifications they each were able to generate, adding another dimension to our analysis.

3.8.3.2 Number of Misclassifications Identified

Given the need to quantify the misclassifications generated by each method, coupled with
the average number of iterations required to locate a misclassification as discussed in the
preliminary analysis, we identified another crucial parameter for our investigation: the
maximum number of iterations set for the experiment.

Reflecting on this, a further experiment was designed with a maximum number of
iterations significantly greater than the upper limit represented by the boxplots in our
preceding analysis. This configuration was intended to maximize the possible number of
misclassifications discovered. To maintain a consistent approach, another set of 250 digits
were extracted from the MNIST dataset for this new experiment run.

After conducting the aforementioned experiment and meticulously processing the re-
sulting metadata, we were able to simulate a variety of scenarios by assigning different
values to the maximum number of iterations. This process allowed us to quantify the num-
ber of misclassifications identified within each scenario, and subsequently, to construct a
chart demonstrating the behavior of different strategies as a function of the maximum
number of iterations. The results are as follows:

In Figure 17, we provide a comparative analysis of the performance of attention strate-
gies versus the standard random method. The primary criterion employed to evaluate the
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Figure 17 – Performance comparison of strategies based on the maximum number of iterations and re-
sultant misclassifications.

(a) Comparative: Attention Probability-Based
strategy (CPS-WBS) vs normal method.

(b) Comparative: Attention Probability-Based
strategy (SS-DBPS) vs normal method.

Source: The Author (2022).

strategies is the Area Under the Curve (AUC). Figure 17a (on the left) illustrates the
performance of the Attention Probability-Based strategy against the standard random
method. Notably, the results suggest that the attention method outperforms the random
method across the chosen range of maximum number of iterations for the experiment (max
= 1000). Specifically, the AUC for the attention technique indicates a value approximately
2.5 times greater than that of the standard method.

On the right in Figure 17b, we present the results for the Attention Distance-Based
strategy. Similar to its probability-based counterpart, this strategy outperforms the stan-
dard random method across the entire range of maximum iterations. It is only when the
maximum number of iterations approaches 1000 that the random method begins to gen-
erate a similar amount of misclassifications as the attention method. However, despite
this narrowing gap, the overall AUC of the attention technique still surpasses that of the
random method.

An additional series of experiments were conducted to investigate the impact of in-
corporating the adaptive extent strategy into the methods under examination. To ensure
consistency and facilitate comparative analysis, the methodology used to generate the
previous results was replicated precisely, with the same bunch of 250 digits selected from
the dataset. The outcomes of these iterative tests are presented in Figure 18.

The results underscored the significant influence that the addition of the adaptive
extent strategy has on the mutation process. Evidently, the integration of this strategy
augmented the quantity of mutations generated by both methodologies across the entire
range of maximum mutations. A particularly noteworthy observation is that for a segment
of the range of maximum mutations - more precisely, proximate to the maximum value
on the X-axis - the random method seemingly outperforms the attention-based one.

For a more comprehensive comparison and to emphasize the disparities among the
methods, the data from each technique was incorporated into a single chart. As depicted in
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Figure 18 – Performance comparison of strategies based on the maximum number of iterations and re-
sultant misclassifications using adaptive extent strategy.

(a) Comparative: Attention Probability-Based
Adaptive strategy (CPS-WBS) vs Normal
Adaptive method.

(b) Comparative: Attention Distance-Based Adap-
tive strategy (SS-DBPS) vs Normal Adaptive
method.

Source: The Author (2022).

figure Figure 19, the metrics of all the techniques are consolidated for ease of comparison.
In Figure 19a, the left-hand chart represents the techniques in relation to the Probability
Based Strategy (CPS-WBS), whereas Figure 19b on the right embodies the techniques
in respect to the Distance Based Strategy (SS-DBPS). In both visualizations, the area
under the curve (AUC) of the attention techniques surpasses that of the normal random
method. When considering the adaptive extent strategy, it is apparent that techniques
with this strategy implemented achieve a higher AUC relative to the others.

Figure 19 – Performance comparison of strategies based on the maximum number of iterations and re-
sultant misclassifications using adaptive extent strategy.

(a) Comparison of CPS-WBS mutation strategies:
attention, normal, attention adaptive, and nor-
mal adaptive.

(b) Comparison of SS-DBPS mutation strategies:
attention, normal, attention adaptive, and nor-
mal adaptive.

Source: The Author (2022).

The comprehensive comparative chart in Figure 20 encapsulates six distinct plots that
represent three methods: Attention Distance, Attention Probability, and Normal Random,
both with and without the incorporation of the adaptive extent. In the case of Attention
Distance and Probability methods without the adaptive extent, they demonstrate superior
performance over the Normal Random method across the entire range of the x-axis, which
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represents the maximum number of mutations.
However, when inspecting the plots demonstrating the three techniques that utilize

the adaptive extent, a more nuanced pattern is observed. For approximately the initial
80% of the range on the x-axis, both the Attention Distance and Attention Probability
methods prevail over the Normal Random method. Remarkably, in the concluding 20%
of the range, the Normal Adaptive method begins to surpass the performance of the
Attention Adaptive methods. This intriguing transition emphasizes the critical role of
adaptive extent in the mutation process and further elucidates the comparative dynamics
of these strategies.

Figure 20 – Comprehensive comparison of Attention Distance, Attention Probability, and Normal Ran-
dom methods, with and without the Adaptive Extent, demonstrating shifting performance
dynamics

Source: The Author (2022).

3.8.3.3 Confusion Matrix of Misclassifications

The following tables present the confusion matrix for the number of misclassifications
generated by each method. The set-up for this experiment paralleled the previous one,
taking into account 250 digits from the MNIST dataset. Notably, the maximum number
of mutations per digit was fixed at a threshold of 1000 mutations.
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Probability Method Distance Method

Table 1 – Without Adaptive Extent
(CPS-WBS)

Att vs Rnd Att Yes Att No

Rnd Yes 31 7

Rnd No 48 164

Table 2 – Without Adaptive Extent
(SS-DBPS)

Att vs Rnd Att Yes Att No

Rnd Yes 21 15

Rnd No 31 183

Table 3 – With Adaptive Extent
(CPS-WBS)

Att vs Rnd Att Yes Att No

Rnd Yes 133 43

Rnd No 33 41

Table 4 – With Adaptive Extent
(SS-DBPS)

Att vs Rnd Att Yes Att No

Rnd Yes 112 63

Rnd No 30 45

Source: The Author.

On the left-hand side, two tables display the results for the Probability-based method.
The upper table (Table 1) presents the outcome using the attention-guided strategy as
opposed to the normal one, without employing adaptive extent. The lower table (Table 3),
meanwhile, reveals the results when the adaptive extent is applied.

On the right-hand side, the outcomes for the Distance-based method are shown. The
top table (Table 2) represents the results without using the adaptive extent, while the
bottom table (Table 4) shows the outcome when the adaptive extent is utilized.

As per the analysis of these results, we can corroborate the superior performance of
the attention-guided strategy in generating a greater number of misclassifications across
both strategies—distances and probabilities. After integrating the adaptive extent into
both strategies, a significant improvement in the results generated by the normal method
is evident in contrast to the attention method. In fact, as demonstrated in Table 4, the
normal method surpassed the attention method by generating 33 additional misclassifi-
cations. This intriguing trend can initially be elucidated by our previous analysis. Given
that the number of mutations in this experiment was capped at 1000, the normal adaptive
method has been observed to outperform the Attention Adaptive method.
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3.9 CONCLUSION AND FUTURE WORK

Throughout the course of the preliminary study, we embarked on the exploration of the
central question: “Can Explainable AI, when compared to traditional mutation methods,
serve as a more efficient technique for generating corner cases of Neural Networks?”. This
inquiry took us through various experimental designs and rigorous testing, with the aim
of establishing a solid comparative foundation between traditional mutation methods and
Explainable AI techniques.

Our findings, derived from extensive experimentation, indicate a clear superiority of
Attention guided methods over traditional random ones in generating corner cases. The
edge was prominent and consistent across different experimental setups, underscoring the
robustness of the Explainable AI approach.

Moreover, our research journey led us to an innovative addition to the arsenal of AI
strategies: the Adaptive Extent strategy. Incorporating this into the existing techniques,
we observed a significant enhancement in performance across the board. Both Attention
guided methods and traditional ones benefited from the Adaptive Extent strategy, making
it a versatile tool that augments the overall efficiency of corner case generation.

Looking beyond the confines of this research, the promising results from the Attention
Guided strategies open up avenues for further study. One of the most exciting prospects
is the integration of this strategy in the realm of driving simulation. The explainable AI
images obtained from vehicle front cameras and the superior performance of the Attention
guided strategies in finding misclassifications imply an increased potential for the discovery
of challenging road layouts during the testing of Autonomous Driving Systems (ADS).
This enhanced ability to uncover corner cases that lead to system failure strengthens the
testing process, leading to more reliable and safe ADS.

This research stands as a testament to the transformative potential of Explainable
AI in creating efficient techniques for corner case generation. By augmenting traditional
methods with AI-guided strategies, we can greatly improve the performance and versatility
of our systems. However, it is essential to bear in mind that our work is but one step in
a larger journey. As the field continues to evolve, it is incumbent upon future research
to further explore and refine these strategies, ensuring their optimal application across
diverse domains.
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