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ABSTRACT

This thesis investigates some limits of the classical theory of elasticity in 2D,

especially concerning forces on topological defects called dislocations. Initially, the

thesis comments each approximating step used in deriving Classical Elasticity. Novel

discussions are made about the continuum assumption and the limits of the sum-to-

integral  approximation.  Moreover,  an  alternative  mathematical  formalism  to

deformations in 2D is introduced in order to obtain simpler equations and physical

inferences. Thereafter, the notion of the core force is studied. This is a correction to

the classical force on dislocation, called Peach-Koehler force, and which appears

when  in  the  presence  of  strain  gradients.  It  has  been  predicted  by  different

approaches but never observed, until  a work which is presented in this thesis. A

simulation model to investigate such force and its results are shown. By comparing

with the previous theoretical approaches, it is verified that none of them is capable of

providing a way to quantitatively predict the core force. Furthermore, it is shown that,

for some systems, results from the core force can be used to predict a definite value

for the core energy of the dislocation.

Keywords: solid state physics; two-dimensional crystals; elasticity theory; plasticity;

dislocations.



RESUMO

Esta tese investiga alguns limites da teoria clássica da eslasticidade em 2D,

especialmente  no  que  concerne  a  forças  em  defeitos  topológicos  chamados

dislocations. Inicialmente, a tese comenta cada passo de aproximação usado ao se

derivar a Elasticidade Clássica. Novas discussões são feitas sobre a suposição do

contínuo e sobre os limites de sua aproximação soma-para-integral. Adicionalmente,

um formalismo matemático alternativo para deformações em 2D é introduzido a fim

de obter equações e inferências física mais simples. Após isso, a noção de força do

“core”  é  estudada.  Esta  é  uma  correção  à  força  clássica  cobre  um dislocation,

chamada força de Peach-Koehler, e que apareça quando na presença de gradientes

de  deformação.  Ela  tinha  sido  prevista  por  diferentes  abordagens,  mas  nunca

observada, até um trabalho que é apresentado nesta tese. Um modelo de simulação

para investigar esta força e seus resultados são mostrados. Ao comparar com as

abordagens teóricas anteriores, verifica-se que nenhuma delas é capaz de fornecer

uma forma de prever quantitativamente a força do “core”. Além disso, é mostrado

que, para alguns sistemas, resultados desta força podem ser usados para prever um

valor definido para a chamada energia do “core” de um dislocation.

Palavras-chave: física  do  estado  sólido;  cristais  bidimensionais;  teoria  da

elasticidade; plasticidade; dislocations.



CONTENTS

1 INTRODUCTION  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 10

1.1 STRUCTURE OF THE THESIS   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 10

1.2 INTRODUCTION TO THE CORE FORCE IDEA .  .  .  .  .  .  .  .  .  .  .  . 12

2 MATHEMATICAL DESCRIPTION OF DEFORMATIONS  .  .  .  .  .  .  . 16

2.1 1D CHAIN   .  .  .  .  .  .  .   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 16

2.1.1 Deformation  of  a  1D  perfect  chain  and  displacement  of  its

constituents .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 16

2.1.2 Continuum  assumption  and  the  Lagrangian  and  Eulerian

descriptions .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 17

2.1.3 Strain field .  .  .  .  .  .  .   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 17

2.1.4 Regularization and the sum-to-integral approximation .  .  .  .  .  .  . 18

2.1.5 A proposal for regularization .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 20

2.2 2D CRYSTALS .  .  .   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 22

2.2.1 Definition of displacement and strain fields in 2D   .  .  .  .  .  .  .  .  . 22

2.2.2 Types of homogeneous deformation .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 24

2.2.3 An alternative mathematical formalism   .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 25

2.3 THE BURGERS VECTOR OF A DISLOCATION .  .  .  .  .  .  .  .  .  .  .  . 27

3 ELASTIC ENERGY AND SOME EXACT RESULTS OF CLASSICAL

ELASTICITY .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 30

3.1 EQUILIBRIUM EQUATIONS OF CLASSICAL ELASTICITY  .  .  .  .  .  . 30

3.1.1 Classical pairwise interactions' contribution to the energy   .  .  .  . 30

3.1.2 Approximations for smooth and small deformations .  .  .  .  .  .  .  . 31

3.1.3 Elastic interaction energy and the continuum assumption .  .  .  .  . 31

3.1.4 Conservative external potential and additional approximations .  . 32

3.1.5 Classical Elasticity Equations in the limit of zero temperature   .  . 33

3.2 EXACT  RESULTS  FOR  THE  DISLOCATION  IN  CLASSICAL

ELASTICITY  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 34

3.2.1 The Peach-Koehler force on a dislocation .  .  .  .  .  .  .  .  .  .  .  .  .  . 34

3.2.2 Conservation of the particle number and dislocation glide   .  .  .  . 35

3.2.3 Triangular crystal, - and -formalism and conformal crystals  .  . 36

3.2.4 The Volterra solutions for the deformation fields of a dislocation . 38



3.2.5 Dislocation dipole in a box with PBC   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 39

4 THE CORE FORCE   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 41

4.1 SOME ASSUMPTIONS ABOUT THE CORE FORCE  .  .  .  .  .  .  .  .  . 41

4.1.1 Effective existence of the core force .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 41

4.1.2 Driving force definition and the separation between PK and core

forces  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 41

4.1.3 Possible properties of the core force   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 42

4.1.4 Summary of the properties to be probed by simulations .  .  .  .  .  . 43

4.1.5 Consequences  for  dislocation  interactions  -  size  effects  and

nonreciprocity   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 43

4.2 HOW TO SIMULATE THE CORE FORCE  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 45

4.2.1 Numerical  precision  in  the  measurings  of  the  core  force

properties  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 45

4.2.1.1 Dislocation position  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 46

4.2.1.2 Background strains  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 47

4.2.1.3 Core force magnitude .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 48

5 PERFORMING SIMULATIONS OF THE CORE FORCE   .  .  .  .  .  .  . 49

5.1 SIMULATION SETUP .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 49

5.1.1 Interparticles' interactions   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 49

5.1.2 Periodic Boundary Conditions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 50

5.1.3 Dislocation dipole  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 50

5.1.4 External body force field   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 51

5.2 SIMULATION RESULTS  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 53

6 CORE ENERGY AND OTHER THEORETICAL APPROACHES   .  .  . 57

6.1 CORE ENERGY AS THE ORIGIN OF THE CORE FORCE  .  .  .  .  .  . 57

6.1.1 General definition of the core energy   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 58

6.1.2 Ambiguity in the standard core energy   .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 59

6.1.3 Crystals with power-law interactions: obtaining the core energy

from the core force .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 60

6.2 ENERGY FUNCTIONAL MODIFICATIONS   .  .  .  .  .  .  .  .  .  .  .  .  .  . 61

7 ANOTHER  APPROACH  WITHIN  CONTINUUM  THEORY:  THE

CORE FIELD   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 63

7.1 A  MODIFICATION  IN  THE  DISLOCATION  DESCRIPTION  -  THE



CORE FIELD .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 63

7.2 FITTING OF VOLTERRA AND CORE FIELD STRAINS  .  .  .  .  .  .  .  . 65

8 FINAL DISCUSSIONS AND CONCLUSIONS  .  .  .  .  .  .  .  .  .  .  .  .  . 68

8.1 SUMMARY OF COMPARISONS BETWEEN THE THEORIES AND

OUR SIMULATIONS .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 68

8.2 OVERVIEW OF THE MAIN NOVEL RESULTS AND PERSPECTIVES 71

REFERENCES  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 73



10

1 INTRODUCTION

This thesis explores elastic and plastic deformations in two-dimensional (2D)

crystals.  The  examination  of  dislocations  and  their  dynamics  emerged  as  a

compelling avenue to probe the boundaries of Classical Elasticity Theory and other

potential  continuum theories. Several  chapters in this work draw heavily from the

article “Forces on dislocations due to strain gradients: theories and 2D simulations”

(PEREIRA,  2022),  while  others  introduce  noteworthy  discussions  that  remain

unpublished.

1.1 STRUCTURE OF THE THESIS

This section serves as a roadmap, offering a comprehensive overview of each

segment  within  the  thesis.  For  a  detailed  exploration  of  novel  findings  and  their

prospects, please refer to the conclusions provided in section 8.2.

Section 1.2 introduces the concept of dislocations and their dynamics, drawing

heavily from the introductory material presented in (PEREIRA, 2022). Prior to delving

into  the  examination  of  forces  acting  on  dislocations,  the  subsequent  chapters

establish the foundational equations of Classical Elasticity. To ensure precision in the

theoretical framework, we commence with first principles, meticulously detailing each

approximation made.

In chapter 2, we present the mathematical portrayal of deformations, initially in

1D and subsequently in 2D. Section 2.1.1 covers fundamental concepts related to

deformation,  displacement,  and  strain.  Section  2.1.2  incorporates  a  continuum

assumption and defines both Lagrangian and Eulerian descriptions.  Section 2.1.3

delves  into  key  aspects  of  the  strain  field,  while  section  2.1.4  addresses  the

significance of regularizing continuum fields. Section 2.1.5 introduces a regularization

procedure that establishes valuable sum-to-integral equivalences.

In section 2.2.1, we extend the definitions of displacements and strains to 2D

crystals  and  introduce  the  concept  of  dislocation.  Section  2.2.2  elucidates  the

meaning  of  each  strain  component.  Section  2.2.3  puts  forth  an  alternative

mathematical formalism that offers advantages in addressing dislocations. Section

2.3 defines and explores the topological charge associated with a dislocation.
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Chapter 3 delves into the physics of elasticity within specific approximations,

commencing with discussions on energy and culminating in exact results regarding

dislocations.  Section  3.1.1  defines  the  type  of  particles'  interaction  potential

considered throughout  this  thesis.  Section  3.1.2 explores  deformations within  the

crystal, incorporating relevant approximations. Section 3.1.3 evaluates the interaction

energy resulting from deformation, assumes continuity, and employs regularization to

establish  sum-to-integral  equivalences.  Section  3.1.4  extends  this  analysis  to

external potentials. Section 3.1.5 sums up these results, presenting the equations of

Classical Elasticity.

In  section 3.2.1,  we derive  the  classical  formula  for  the  force acting  on a

dislocation due to background deformations. Section 3.2.2 defines dislocation glide,

demonstrating it as the sole dislocation motion preserving the total particle number.

Section 3.2.3 utilizes the formalism introduced in section 2.2.3 to derive simplified

equations of Classical Elasticity for triangular crystals. We discuss how the dynamics

of dislocations can lead to the formation of conformal crystals. Section 3.2.4 extends

this  exploration  by  deriving  classical  Volterra  solutions  for  the  deformation  of  a

dislocation.

The text from section 3.2.5 to 8.1 is strongly based on the article (PEREIRA,

2022)  published by  the  present  author.  Section 3.2.5  obtains  some results  for  a

dipole of dislocations in a box with PBC, which will  be usefull  for the simulations.

Chapter 4 establishes fundamental assumptions about the core force, enumerates its

properties, and deliberates on simulation methodologies. Section 4.1.1 underscores

the non-obvious nature of the core force's effective existence. Section 4.1.2 defines

the driving force on a dislocation as the sum of the Peach-Koehler (PK) force and the

core force, serving as a correction beyond Classical Elasticity. Sections 4.1.3 and

4.1.4 catalog and discuss various properties of the core force to be explored through

simulations.  Section  4.1.5  introduces  new  discussions  on  how  the  core  force's

interactions between dislocations can induce size effects and nonreciprocity. Section

4.2.1 examines precautions essential for achieving precision in simulations, covering

aspects such as dislocation position, background strains, and core force magnitude.

Chapter  5  meticulously  outlines  our  simulation  setup  and  presents  its

outcomes. The discussion highlights how choices related to interparticle interactions

(section 5.1.1), boundary conditions (section 5.1.2), dislocation configuration (section

5.1.3), and external force (section 5.1.4) serve to validate key properties of the core
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force while ensuring precision in measuring its magnitude. Section 5.2 unveils the

results,  demonstrating  that  an expression  for  the  core  force,  comprised of  terms

involving  first  and  third  derivatives  of  background  strains,  aligns  well  with  the

simulation data.

After  obtaining  results  from  simulations,  chapters  6  and  7  undertake  a

comparative analysis with various theoretical approaches. Section 6.1 elucidates how

a core force can be derived from a core energy dependence on background strains.

The core energy is defined in section 6.1.1 for general cases, independent of the

chosen  continuum theory.  Section  6.1.2  utilizes  Classical  Elasticity  to  derive  the

standard  core  energy,  revealing  inherent  ambiguities.  In  section  6.1.3,  the  core

energy  of  systems  with  power-law  interactions  is  explored,  establishing  a  direct

relation between this  energy and the coefficients of  the core force based on the

scaling law of these systems. Alternatively, section 6.2 examines modifications to the

classical  energy  functional,  including  nonlinear  and  higher  gradient  terms,  and

analyzes their implications for corrections to the PK force. However, none of these

modifications satisfy the properties observed in the simulations.

Chapter 7 delves into the core field approach, a modification in the description

of dislocations within continuum theory. Section 7.1 defines the core field, providing a

formula for the core force derived from it,  satisfying all  observed properties in the

simulations. Subsequently, in section 7.2, we present a method to measure the core

field through simulations. However, the results indicate that this approach cannot be

used to predict the coefficients of the core force measured in chapter 5.

Finally, the comparisons between theories and simulations of the core force

are  summarized in  section  8.1.  Section  8.2  offers  an  overview of  our  key  novel

results and presents some perspectives for future exploration.

1.2 INTRODUCTION TO THE CORE FORCE IDEA

The  idea  of  dislocation  defects  was  first  conceived  mathematically

(VOLTERRA, 1907) and later applied in the context of plasticity (TAYLOR, 1934), by

considering the movement of  defects in a periodic lattice.  It  soon became a vital

feature  of  investigation  in  real  three-dimensional  (3D)  crystals  (FRANK,  1952;

HIRTH; LOTHE, 1982; KUBIN, 2013). Since the bubble-raft model (BRAGG; NYE,

1947),  2D  crystals  have  also  been  used  as  simple  models  to  study  dislocation
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dynamics  (e.g.,  using  colloids  (VAN DER MEER et  al.,  2014),  complex  plasmas

(NOSENKO; MORFILL; ROSAKIS, 2011) and vortices in superconductors (MIGUEL;

ZAPPERI, 2013)). Figure 1 shows an experimental example of a 2D crystal after a

plastic  deformation during which the dislocations moved in  order  to  minimize the

energy.

Figure 1 – Configuration of magnetized steel balls in a thin and tilted box. These balls have dipole-
dipole repulsion and forms a crystal when confined. The gravity induces deformation in the crystal
while tilting the box. During such deformation, dislocations can move, nucleate and annihilate. The

final “gravity rainbow” pattern (PIERAŃSKI, 1989) has few remaining dislocations, which are
highlighted in this image by the blue circles.

Source: Retrieved and modified from (PIERAŃSKI, 1989).

 The individual dislocation movement is generally assumed to be governed by

some well-known mechanisms:  the  Peach-Koehler  (PK)  driving  force (PEACH;

KOEHLER, 1950)  and the  Peierls-Nabarro barrier (PEIERLS, 1940; NABARRO,

1947) besides other possible motion's resistance, climb and diffusion mechanisms

(HIRTH;  LOTHE,  1982;  PHILLIPS,  2001;  BULATOV, 2006;  KUBIN, 2013).  These

forces have been widely used to model plastic deformations in Discrete Dislocation

Dynamics  (DDD)  simulations  (BULATOV,  2006,  KUBIN,  2013),  where  the  exact

locations of all atoms can be ignored and one only needs to consider the dynamics of

dislocation lines, in 3D, or points, in 2D. The validity of such mesoscale approach

relies on the forces and mobility law that it considers.

The mechanisms cited above cannot fully explain the full range of new plastic

phenomena  with  technological  impact  observed,  e.g.,  in  micron  and  sub-micron

scales  (GREER,  2011;  KRAFT  et  al.,  2010;  GAO;  BEI,  2016;  VOYIADJIS;

YAGHOOBI,  2017;  VOYIADJIS;  YAGHOOBI,  2019)  (with  a  “smaller  is  stronger”

trend)  and  during  shock  loadings  (MEYERS  et  al.,  2009;  REMINGTON;  RUDD;

WARK,  2015;  ZEPEDA-RUIZ et  al.,  2017;  WEHRENBERG,  2017;  SLIWA et  al.,
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2018; MISHRA et al., 2021). These are situations where high strain gradients and

strain rates appear. As a consequence, several phenomenological and mechanism-

based  models  have  been  developed,  including  corrections  to  the  mobility  law

(GURRUTXAGA-LERMA, 2016), nonlocal Elasticity (ERINGEN, 2002; LAZAR, 2005)

and  strain  gradient  plasticity  (AIFANTIS,  1992;  HUTCHINSON;  FLECK,  1997;

HUANG et al.,  2004; FLECK; HUTCHINSON; WILLIS, 2015; VOYIADJIS; SONG,

2019).

E.  Clouet  (CLOUET,  2011)  observed  that  the  usual  mathematical

representation for  the origin  of  the so-called  core field leads to a fundamentally

different  type  of  driving  force  on  a  dislocation.  It  is  a  force  proportional  to  the

derivatives of the background strains, which are the ones generated by all sources

of strain but the dislocation itself. Such type of force has been called the core force

and  can  contribute,  in  a  fundamental  manner,  for  the  emergence  of  strange

phenomena when high strain gradients are present. Clouet's theoretical framework

predicted a relation between the coefficients of the core force and the ones of the

core field.

Another  approach  for  the  core  force  was  made  by  M.  Iyer  et  al.  (IYER;

RADHAKRISHNAN; GAVINI, 2015), considering that the core force can be viewed as

originated  from  the  interaction  of  the  core  with  the  background  strains.  They

developed  an  Electronic-structure  evaluation  of  the  core  energy,  in  its  standard

definition, for different background strains. They used this to predict the coefficients

of the core force that can act on the dislocation. But they do not discuss about the

ambiguity due to the arbitrariness of the core radius present in the standard core

energy definition.

The aim of our work is to broaden current knowledge about the core force. In

spite  of  the  previous theoretical  works,  such type of  force  has not  been directly

observed and identified, neither through simulations nor through experiments. It is

usually very smaller than PK and to identify it one needs the precise knowledge of

both the strains and the resulting force on a dislocation. To meet this requirement, we

design,  in  the  present  work,  a  2D system where  these variables  are  completely

known.  We  simulate  it,  demonstrating  the  existence,  probing  the  properties  and

measuring the coefficients of the core force on edge dislocations.

By analyzing simulations and theories, we found that the current theoretical

proposals for the core force are insufficient to explain or predict the results of our 2D
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simulations. This is summarized in section 8.1 and shown in a table. We observed

that, e.g., Clouet's approach has quantitative problems and the one used by Iyer et

al. is ill-defined.

As another discovery, we observe that, in systems with scale invariance such

as the one in our simulations, the core energy can be obtained directly from the core

force coefficients.  A definite  value for  this  quantity  is  obtained although the core

energy is usually defined in an ambiguous manner. This unambiguous evaluation can

be compared with other studies which need or predict the existence of a specific core

energy  with  physical  meaning,  such  as  the  KTHNY-theory  for  2D  melting

(STRANDBURG,  1988)  and  the  Kanzaki  force  approach  to  represent  crystalline

defects (GURRUTXAGA-LERMA; VERSCHUEREN, 2019).
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2 MATHEMATICAL DESCRIPTION OF DEFORMATIONS

This chapter discusses some notions about deformations in one-dimensional

(1D)  crystals,  where some definitions  can be easily  introduced,  and in  2D ones,

where  topological  defects  can  appear.  Here  we  propose  a  deeper  analysis  of

discrete-to-continuum  transitions  and  a  new  mathematical  formalism  for  2D

deformations.

2.1 1D CHAIN

Lets start considering a system with N particles placed in a perfect 1D chain

which are spaced by    from their neighbors  .

2.1.1 Deformation of a 1D perfect chain and displacement of its constituents

The  particles  are  then  displaced from  their  positions   in  the

undeformed chain  to new positions , where superscript indexes with greek

letters  in  parentheses  are  used  as  particle  labels.  Here,  neither  a  particle  was

inserted or removed in the system nor there happened a superposition of particles.

Therefore,  the  deformation  is  a  bijective  (one-to-one)  mapping,

where . From this map, we define the displacement  of particle 

as

. (2.1)

Note that, if all displacements are equal, the deformation is simply a rigid body

translation. We are not interested in such trivial case as well as in cases of simply

interchanges  of  particles'  positions  (for  instance,   and   for

some ). The physically relevant deformations are the ones that strains the

system,  that  is,  when there  are  regions where  the interparticles'  distances were

compressed or stretched. The physical relevance here comes from the fact that the

energy depends on these interparticles' distances, as we will  consider in the next

chapter.  In  strained  systems,  particles   and   whose  distance  changed  have

different displacements since, from equation (2.1),

. (2.2)
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2.1.2 Continuum assumption and the Lagrangian and Eulerian descriptions

For the bijective map  , defined in a finite discrete set of points,

there exist a continuous and bijective function  satisfying

. (2.3)

This  is  equivalent  to  considering  the  undeformed  and  deformed  chains  as

continuum systems and the deformation as a continuous and invertible map .

This is the continuum assumption, which usually considers that the function  is

also smooth, that is, infinitely differentiable.

Note that, within the continuum assumption, the deformation is equivalent to a

change  of  variables  or  a  coordinate  transformation  between  the  undeformed

coordinates   and  the  deformed  coordinates  .  We  define  the  Lagrangian

displacement  field by  taking the  displacement  as  a function of  the  undeformed

positions, that is,

     satisfying     ,     (2.4)

and the Eulerian displacement field as a function of the deformed positions, that is,

     satisfying     ,   (2.5)

where  is the inverse of the bijection .

In Elasticity Theory, we make use of the continuum assumption in order obtain

simpler equations for the physics of deformation, which can be in the Lagrangian

description (i.e., using the undeformed positions   as variables) or in the Eulerian

one (i.e., using the undeformed positions  as variables).

2.1.3 Strain field

In practice, the continuum assumption in the equations of Elasticity Theory is

convenient to make some approximations. For example, for nearby particles  and ,

we can approximate

. (2.6)

From this equation and from the discussion in the end of section 2.1.1, we can see

that a nonzero derivative of the displacement field is associated with a straining of

the  system.  Thus,  we  define  the  Lagrangian  and  Eulerian  strain  fields as,

respectively,
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. (2.7)

Note that the Lagrangian and Eulerian displacement fields evaluated for the

same particle are equal, i.e.,   , but the respective strain fields

are not equal. In fact, from equations (2.4) and (2.5),

(2.8)

and

.   (2.9)

In the limit of small strains, which is considered in Linear Elasticity Theory, terms of

second order or higher in strains are neglected and we have  .

Thus, we can simplify the notation in the limit of Linear Elasticity, omitting the

superscript  and  considering  the  type  of  position  variables  as  indicator  of  the

description, that is,

,   ,      and   . (2.10)

From now on, we will use this notation unless there is a need to be explicit.

Finally, in spite of defining the strain field through the displacement field, we

can start by using some way to define discrete strains, such as

    or    , (2.11)

and thereafter make a continuum assumption to define a continuum field  which

satisfies  . The displacement field can then be obtained by integrating

this strain field and using boundary conditions. In this case, the obtained  does

not necessarily obeys the constraints . On the other side, we can start

defining   from   then obtain   by differentiation, arriving at a strain field

which  does  not  necessarily  obey  the  constraints  .  In  general,  we

choose to  start  defining   from its  discrete  values,  since  the  elasticity  theory

depends more on strains than it depends on displacements.

2.1.4 Regularization and the sum-to-integral approximation

It is important to note that there are infinite possibilities to define a continuum

field from discrete points. Figure 2 shows examples of different continuum functions

that  matches  discrete  points.  We  can  use  the  physical  constraint  that  particles
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cannot be on the same place or pass through each other during deformation,

that implies in  and thus

. (2.12)

almost everywhere. Moreover, in a crystal with  particles under periodic boundary

conditions (PBC), which represents an infinite crystal with

,  ,             and      , (2.13)

we have the following constraints due to periodicity

,      and   , (2.14)

where   is  the  crystal's  size.  Nevertheless,  there  are sill  room for  infinite

possibilities of continuum functions. Additional conditions can be considered in order

to define how to obtain a more appropriate continuum function which interpolates the

points associated with the deformed crystal. In Mathematics and Data Science, this

process is called regularization.

Figure 2 – Many different continuum functions can match at a discrete set of points.

Source: Figure retrieved from Wikipedia page on “Regularization (mathematics)”
(<https://en.wikipedia.org/wiki/Regularization_(mathematics)>, 2023).

Lets  consider  the  strain  field.  First  we  need  it  to  be  smooth  in  the

mathematical  sense,  that  is,  infinitely  differentiable.  This  allows us  to  make the

expansion

https://en.wikipedia.org/wiki/Regularization_(mathematics)
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. (2.15)

We will use only the first term of the expansion to derive the Classical Elasticity in

chapter 3 and add the second term to derive a Strain Gradient Theory in chapter 6.

Therefore, we also need the strain field to be smooth in the common sense, that is,

with less “roughness” that are associated with fluctuations within small wavelengths.

For instance, the green function in figure 2 is smoother than the blue one. This type

of smoothness makes the terms with higher derivatives in equation (2.15) to decay

rapidly to zero, providing us good perturbative approximations.

Another  condition  for  the  continuum  strain  field  to  be  appropriate  for  our

purposes is to provide good sum-to-integral approximations, that is,

, (2.16)

where   is some smooth function and   is the 1D particle density and we

used . For small strains, we can perturbatively expand  and consider only

sums of the small powers of .

2.1.5 A proposal for regularization

We propose a way to obtain a strain field which is smooth (in the common

sense)  and  provides  some  sum-to-integral  equivalences.  This  regularization  is

possible in a crystal under PBC, for which we can write the strain field as a Fourier

series  in  such  a  way  that  it  avoids  terms with  large  wavelengths,  thus  avoiding

unnecessary roughness. For it, we first use the discrete Fourier transform

(2.17)

to obtain the coefficients of the following Fourier series

     (2.18)

,    (2.19)

where   and   are  the  real  and  imaginary  parts  of  .  One  can  see  that

 by using equations (2.17) and (2.18) and  ,
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where  is the Kroenecker delta (equals to  if  and  if ). Note that, due to

the PBC,  for both definitions of  in equation (2.11), while  for

the second one.  We consider the general case since these identities may not hold

for other definitions, especially when we generalize to 2D crystals.

The  function  in  equation  (2.18)  is  a  Fourier  series  representation  which

optimizes the avoiding of unnecessary roughness. However, if  or ,

it fails in satisfying the periodicity constraint for the integral   or in

satisfying a sum-to-integral equivalence for the sum of squared strains (that is, for

),  respectively.  We  want  the  strain  field  to  always  satisfy  these

equivalences. In order to correct it, we need to subtract a constant and add some

roughness, that is, terms with small wavelengths. We come at the proposal of

(2.20)

as a final  regularization for the strain field which is smoothest as possible and

satisfies

,       and   ,   (2.21)

where the last equation is a result of the Parseval's theorem.

For the sums of cubes or higher powers of , equation (2.20) fails to provide

general  sum-to-integral  equivalences.  In  order  to  also  have  these  equivalences,

some terms with smaller wavelengths should be used in the regularization (more

specifically,  terms  of   with  integer  ).  But  then,  with  such

fluctuations within  small  scales,  the perturbative approximation of  equation (2.15)

would need more terms, with higher derivatives.

With the action of external forces  at each particles and considering the

displacement field obtained by integration of equation (2.20), we can assure

. (2.22)

if we make the following regularization for the continuum external force field

, (2.23)

where   and .

In general, the physical setup of the system already provides a continuum function

for the external force field, but only its values at the particles' positions will matter.
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We then use these values as  and construct the regularized field of equation

(2.23). At positions where there are no particles, it may be different from the one

given by the system's setup.

When deriving a physical theory of elasticity, in the next chapter, we obtain

that the energy is given by sums likes the ones in equations (2.21) and (2.22). Thus,

we  suppose  that  the  discrete  to  continuum  transitions  are  possible  due  to  the

existence  of  regularizations  that  assure  us  sum-to-integral  equivalences.  On  the

other hand, the resulted continuum theory can provide us equations to obtain the

strain  field  for  a  given  system.  Thus,  the  field  resulted  from theory  must  be

“regularized  back”  in  order  to  consistently  predict  both  the  discrete  strain

values and the energy.

2.2 2D CRYSTALS

Now we turn to general 2D crystals, that is, without specifying the unit cell

which is repeated.

2.2.1 Definition of displacement and strain fields in 2D

In 2D deformations, the positions   of a perfect crystal displace to new

positions  by

,   or   , (2.24)

where we use latin subscripts to indicate cartesian components. From this we can

define a displacement field  which satisfies . Here, there are four

different  displacement  derivatives.  In  order  to  define  discrete  values  for  these

derivatives, in the sense of equation (2.11), we use the tensor  (or , in index

form, where  in the Lagrangian description and  in the Eulerian

one). We consider that it has discrete values which can be used to approximate

(2.25)

for all  neighbors of , where we use the Einstein summation convention along this

thesis (e.g., ).

For each particle  ,  the best values of the components of   can be

obtained via least squares by minimizing the sum
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   (2.26)

over all particles  that are nearest neighbors of  in the deformed crystal, where

 associates  each  nearest  neighbor  in  the  deformed  crystal  with  a

nearest neighbor in the prefect one. Thus, we can use the values of  that

minimize  equation  (2.26)  as  the  discrete  values  which,  in  a  continuum

assumption, provide the continuum field  . This is a 2D generalization of

the second definition in equation (2.11). Here, additional care should be taken.

Figure 3 – Region of a triangular crystal which was deformed by a dislocation. The mean center of the
dislocation is indicated by gray  symbol. The lines represent bonds between nearest neighboring

particles, which were defined via Delaunay triangulation. Black thin lines are bonds from the perfect
crystal that continued to exist after deformation. Blue and red lines are bonds that were formed and

broken, respectively. Yellow particles have lost or gained neighbors, while green particles have
exchanged neighbors.

Source: The Author (2023).

Lets  consider  slip  deformations,  along  slip  lines  of  the  crystal,  and  their

beginnings  and  endings,  which  are  called  dislocations.  In  this  case,  particles

exchange neighbors but maintains the same crystalline structure in most part of the

crystal, except very near the dislocations. Lets also consider that each dislocation is

far from others. Figure 3 shows such a system, zooming on a single dislocation.
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In this case, along the slip line (formed by green particles), the displacement

field has a great variation within a small distance. Nevertheless, such variation does

no affect relevant physical quantities, such as energy and particle densities. Due to

the reflection symmetry in figure 3, they are equal for particles on the left and on the

right  side of  figure 3.  We want  the  theory  to  respect  such equivalence of  these

quantities while ignoring dependencies on higher derivatives of . One way to do so,

in triangular crystals, is to  consider that the sum in equations (2.26) runs only

through the neighbors  that have themselves 6 nearest neighbors. In other

words, the particle  in equation (2.26) can be anyone, while the particles  cannot

include any of the yellow particles shown in figure 3. Moreover, the injection 

to be used is the one that minimizes  further. Then the resulting values of  

respect the reflection symmetry in figure 3.

In  the  limit  of  small  deformations,  which  is  used  in  our  thesis,  the  strain

tensor is given by

         or         , (2.27)

where   is the transpose of   (i.e.,  ). The antisymmetric combination of

derivatives of   is neglected here since it does not strain the system. In fact, it is

associated with rotations, as we show in the next subsection. Finally we can define

discrete strain values  directly from the minimization of equation (2.26).

2.2.2 Types of homogeneous deformation

In order to know how each derivative of the displacement field deforms the

system, lets consider the deformation gradient tensor

, (2.28)

where   is the identity matrix (i.e.,  ).  This tensor tells how small  line elements

changed during deformation,  since  .  We can use the  singular  value

decomposition to write

, (2.29)

where  is the proper rotation matrix,  and  are angles,  is the

stretch in the direction of  and  is the stretch in the direction perpendicular to it.

The area element is changed by a factor of  while
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(2.30)

is the  relative density variation. A shape change happens if  , indicating

that a pure shear is applied. A convenient shear quantifier is

(2.31)

and such pure shear is applied at the direction given by . Moreover, note that 

is the net rotation. In the limit of small deformations, ,  and  are small, while 

does not need to be. The deformation gradient tensor then becomes

   (2.32)

                                                            (2.33)

from which we can obtain, by comparing with equation (2.28),

, (2.34)

, (2.35)

and

, (2.36)

while

(2.37)

and thus  does not strains the system in the limit of small deformations.

2.2.3 An alternative mathematical formalism

When considering dislocations with arbitrary Burgers vector directions, which

will be defined in the next subsection, the tensorial formalism which uses the strains

 can  be  arduous.  Here  we  use  complex  numbers  operations  to  define  two

convenient deformation fields,  and , such that

(2.38)

and

, (2.39)
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where  and  are complex representations of the vectors  

and  ,  and   is  the  complex  conjugate  of  .  These  fields  have  interesting

mathematical  and  physical  properties  and  meanings.   describes  pure  shear

deformations,  which  are  responsible  for  shape  changes.   is  associated  with

conformal deformations, that is, the ones which do not affects the shape of the

crystal,  such as relative density variations (given by  ) and rotations (given by

).

One can note that, due to their behavior under rotations,   and   are not

representations of true vectors. In fact, under proper rotations, a true vector (i.e.,

spin-1)  transform as , which can be written as , while we

have

   and   .    (2.40)

This means that  and  are spin-0 and spin-2 fields, respectively. In fact, 

and  are scalar and pseudoscalar fields, respectively. On the other hand, it

makes sense for the shear field to be a spin-2 field since a pure shear on a direction

 becomes the opposite if exerted on the direction , and is the same if exerted

on the direction .

Considering that

     and     ,    (2.41)

we define the (spin-1) Burgers vector density

, (2.42)

which  is  nonzero  only  in  the  presence  of  topological  defects  and  will  be  more

discussed  in  the  next  subsection.  We then  arrive  at  the  following  compatibility

equation

. (2.43)

We  can  use  the  Green's  function  for  the  2D  Laplacian,  given  by

 with   and  ,

where   is  the  Dirac  delta  function,  to  obtain  regular  solutions  for

inhomogeneous differential equations of  and , given by

(2.44)



27

(2.45)

and

(2.46)

, (2.47)

respectively, where  is solution to the respective homogeneous equation such that

the total field satisfy the boundary conditions. Since the superposition principle is

valid in Linear  Elasticity,  we can analyze the deformation contribution due to the

boundary conditions separately from the ones due to defects, external forces, etc.

When  and the boundary conditions are known, equation (2.43) gives  from

(nonlocal values of)  and vice versa, by making use of equations (2.47) and (2.45),

respectively.  We  can  then  entirely  describe  the  deformation  using  only  shape

variations  (i.e.,  shear  deformations,  described  by  )  or,  alternatively,  using  only

variations in density and orientation (i.e., conformal deformations, described by  ).

This shear-conformal duality originates from the mathematical duality between  and

. As we will see in the next chapter, only the -picture can provide a local form of

the field equations of Elasticity. On the other hand, only the -picture can provide a

local form of the Peach-Koehler force.

2.3 THE BURGERS VECTOR OF A DISLOCATION

In 2D and higher dimensions there can appear deformations which cannot be

undeformed  locally.  These  are  topological  defects  and  one  example  is  the

dislocation, main object of analysis in this thesis. Figure 4 shows a perfect triangular

crystal in (a) and a triangular crystal with a dislocation in (b). The topological charge

of the dislocation can be obtained by observing what happens along a circuit around

it.

Consider  a  set  of  distance  vectors   connecting   neighboring

particles such that they closes a circuit, called Burgers circuit in the prefect crystal.

The  particles  in  the  circuit  are  labeled  by   and  ordered  along  it,  such  that

 and  ,  which  gives
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.  Two  examples  of  circuits  like  this  are

illustrated by the sets of green and blue arrows in figure 4(a).

Figure 4 – A perfect triangular crystal and a deformed one, with a dislocation in the center. The arrows
indicate the Burgers circuits, as discussed in the text.

Source: The Author (2023).

 In the same way, the respective distances   in the deformed crystal

respects  . However, it turns out that the theoretical

distances   predicted by the continuum deformation gradient tensor (that is,

), which are shown by the sets of green

and blue arrows in figure 4(b), give . This is due to the fact that the

dislocation presence introduces a slip which starts (or ends) in it, while the values of

 taken from equation (2.26)  ignore the  effect  of  such slip.  Thus,  we can

define the Burgers vector

     (2.48)

for any counterclockwise closed curve enclosing the dislocation and no other defect.

The  first  approximating  step  in  equation  (2.48)  considers  that   is

approximately  the  same  for  any  circuit around  the  dislocation.  The  sum-to-

integral  transition  here  is  generally  approximate  but  not  exact,  since  the

regularization for the continuum  may assure the sum-to-integral equivalence for

integrals over the whole system but cannot guarantee the equivalence for any finite

line integral. The last approximation in equation (2.48) considers the limit of small

deformations, in which the Langrangian and Eulerian descriptions are the same.

From  vector  calculus  theorems,  we  can  write   as   or  as

,  which  show  that  the  displacement  field  in  the  presence  of  a
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dislocation is multivalued and its derivatives do not commute. In fact, as the integral

keeps  the  same  while  we  decrease  the  integral  region/curve  as  long  as  the

dislocation  is  inside,  then  we  have  that  the  derivatives  of   would  commute

everywhere except  at  the dislocation position. This means that,  in  a system with

dislocations  located at , the Burgers vector density is given by

. (2.49)

In  fact,  equation  (2.49)  is  a  continuum theory  description  for  the  Burgers  vector

density of  classically idealized point dislocations. One way to define  from the

discrete  crystal  configuration  is  to  evaluate  the  discrete  values  of   from

minimization of equation (2.26), make a continuum assumption and take derivatives

to  obtain  .  The result  gives  a  nonlocalized Burgers  vector  density,

which makes sense since the sum in equation (2.48) has a litte dependence on the

circuit chosen. Continuum theory descriptions of the dislocation having a structure

will be discussed in chapter 7.

Finally, we can separate the displacement field into a regular part and a

multivalued singular one, such that

,            and      .     (2.50)

For the case of just a point dislocation  located at the origin, the displacement field

has a singular part which obeys . In this case, we use equations

(2.50), (2.47) and (2.45) to obtain

       and              (2.51)

where . From , we have

, (2.52)

where   is the argument of  ,  that is,   is the angle of the vector   with

respect to the  -direction. In the next chapter, we will see that regular parts of the

deformation  fields  are  needed  for  them  to  satisfy  the  equilibrium  equations  of

Classical Elasticity.
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3 ELASTIC ENERGY AND SOME EXACT RESULTS OF CLASSICAL ELASTICITY

This chapter introduces the physics of elasticity for 2D crystals within some

approximations that are classically taken. Moreover, we obtain exact results about

the dislocation within Classical Elasticity Theory.

3.1 EQUILIBRIUM EQUATIONS OF CLASSICAL ELASTICITY

Under  some  conditions,  the  total  potential  energy  variation  due  to  a

deformation  in  a  crystal  can be  well  approximated by  a  simple  functional  of  the

displacement field.

3.1.1 Classical pairwise interactions' contribution to the energy

In the present thesis, we consider classical identical particles interacting via a

soft pairwise isotropic potential , such that the interaction potential energy is

,         (3.1)

where   and  the  “ ”  in  the  last  passage  appears

because each pair is being counted twice. Considering that the system is infinite, with

a fixed density, the configuration of minimum energy is crystalline for most potentials

 of interest. Thus, the lattice sum

(3.2)

on , sometimes called the Madelung energy, is usually the same for every particle

and depends on the crystal's density and structure.

In chapter  5,  we simulate a system with  ,  which forms a

triangular  crystal  at  zero  temperature.  The  Madelung  energy  in  this  case,  is

calculated to be

, (3.3)

where   is  the  distance  between  neighbors  and   is  obtained  by

summing  over all integer values of  and  except when both are

zero.
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3.1.2 Approximations for smooth and small deformations

For  short  ranged  interactions,  such  as  the  one  that  we  will  use  in  our

simulations, only the pairs of  nearby particles provide non-negligible terms in the

interaction  energy  (equation  (3.1)).  For  such  pairs,  we  can  use  the  smooth

deformation approximation of equation (2.25)

, (3.4)

where the values of  are ones that minimize equation (2.26). Here, in fact, we

used only the first term of the expansion in equation (2.15), neglecting terms with

derivatives of strains. Specifically, we are considering that the -th order derivatives

of  are much smaller than .

Moreover,  we  use  the  small  deformation  approximation that  considers

 to perform expansions up to second order in these quantities. Then we

obtain

,          (3.5)

where the coefficients depend only on distances in the perfect crystal and are given

by

    (3.6)

and

, (3.7)

where  and the primes indicate derivatives.

3.1.3 Elastic interaction energy and the continuum assumption

We will consider that the system is under PBC, in which a rectangular box with

sizes  and  and with  particles is infinitely repeated. In this case, the particles

near the boundaries interact with the image particles. Note that Fourier series and a

regularization like the one of equation (2.20) can also be used here.

As  the  PBC  simulates  an  infinite  system,  by  using  the  approximation  of

equation (3.5) in the interaction energy given by equation (3.1), we can omit the sum

in . In crystals such as the triangular one, symmetry gives us the constants
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      and       ,                   (3.8)

where the undeformed crystal's density  ,  which is   for triangular crystals,

was introduced here for convenience. Now, we can use equation (3.1), (3.5), (3.12),

(3.13) and (3.8) to obtain the total interaction energy due to elastic deformations,

which is given by

                         (3.9)

                       (3.10)

,                                               (3.11)

where the sum is performed over the particles inside the box of PBC, the integral is

performed over the box area, the sum-to-integral equivalence is guaranteed by a

regularization like the one of equation (2.20) and the integral of  is zero due to

the PBC.

3.1.4 Conservative external potential and additional approximations

In the presence of a conservative external potential field , we have the

following external potential energy contribution to the total energy

. (3.12)

We consider that   respects the periodicity of the PBC and has a Fourier series

whose  terms  have  wavelengths  larger  or  equal  to   divided  by  the  minimum

distance of  the crystal's periodicity  in the respective direction (e.g.,  the triangular

lattice shown in figure 4(a) has periodicity  in the -direction and  in the -

direction).

Considering also a small displacement approximation, where the values of

 are much smaller than the minimum wavelength of the Fourier series of , we

can approximate

, (3.13)
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where  is the external body force field. In fact, we are considering that

the external forces on the particles are small in such a way that the displacements

due to it are small.

Now we consider the continuum approximation

. (3.14)

This is not exact since the continuum field  we are considering here is the one

obtained by integration of the continuum fields   considered in the previous

subsection. The four derivative fields  can provide not only a regular field  but

also a singular one if the corresponding , given by equation (2.43), is nonzero.

For total external potential energy due to elastic deformations, we have

 (3.15)

,   (3.16)

where  and the sum-to-integral equivalence is guaranteed in the same

way as equation (2.22) is.

3.1.5 Classical Elasticity Equations in the limit of zero temperature

For the approximations we have made, the total elastic potential energy is

the following functional of the displacement field

,   (3.17)

which provides the following equilibrium equation

(3.18)

We  call  Classical  Elasticity for  equilibrium  the  theory  that  uses  the  previous

equation together with the compatibility equation

, (3.19)

where  and  are the Levi-Civita symbol  and the Burgers vector density

 in index form.

By ignoring the kinetic energy and minimizing the potential one, the  limit of

zero temperature is being considered for the Classical Elasticity equations above.
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The linearity of them allows the use of the superposition principle. Moreover, while

using such continuum theory, it is usual to impose no restrictions of regularization for

the displacements and strain fields. As commented in section 2.1.5, this can lead to

problems when there are fluctuations within scales of  or smaller.

Finally,  we  remark  that  the  Classical  Elasticity  has  the  same  form in  the

Eulerian description.  We are considering that  ,   and   are small  quantities.

Therefore,  in  the passage from an integral  in   to  an  integral  in  ,  we use the

Jacobian determinant

, (3.20)

where the derivatives here are with respect to , and the energy up to second order in

small quantities continues the same, that is,

. (3.21)

For  many  crystals,  such  as  the  triangular  one,  the  elastic  constants  satisfy  the

symmetry . Using this to symmetrize , performing integration

by parts in the external force term and using the divergence theorem, we can write

the energy as

. (3.22)

3.2 EXACT RESULTS FOR THE DISLOCATION IN CLASSICAL ELASTICITY

3.2.1 The Peach-Koehler force on a dislocation

In order to obtain the force on a dislocation, we will evaluate the total energy

variation of the system due to a small variation of the dislocation position. In order to

do so, we use the fact that the Classical Elasticity equations obey the superposition

principle to separate the displacement field into one due to the dislocation and one

due to the background, i.e., .

The background field satisfies the equilibrium condition

. (3.23)

The dislocation field  has,  in turn,  singular  and regular  parts.  The singular  one is

responsible for
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, (3.24)

where  is the dislocation position. A regular part is needed for the dislocation to be

in equilibrium with the crystal, i.e., to satisfy

. (3.25)

From  the  previous  equations  and  considering  a  variation   in  the  dislocation

position we have that

    and    ,    (3.26)

while .

Finally,  varies the total elastic energy of interaction between the dislocation

and the background by

       (3.27)

       (3.28)

. (3.29)

Now,  using  integration  by  parts,  the  divergence  theorem,  the  identity

 and equations (3.23) and (3.24), we find

                  

.  (3.30)

Therefore,  within  Classical  Elasticity,  the  force  on  a  dislocation  due  to  the

background is given by

     (3.31)

and is called the Peach-Koehler force.

3.2.2 Conservation of the particle number and dislocation glide

In any change of the system which does not add or remove a particle, such as

a  dislocation  movement,  the  total  number  of  particles  must  be  conserved.  This

number can be defined within Classical Elasticity by using the Jacobian determinant

as a relative density function, giving
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.   (3.32)

With a variation  of the dislocation position, the number of particles varies

as

(3.33)

     (3.34)

Now, using , the divergence theorem and integration

by parts, we find

(3.35)

,      (3.36)

where  we used the  identity  .  When  ,  we call  it  a

dislocation glide. The continuum theory of Classical Elasticity gives that the glide is

the unique movement that  preserves  ,  unless another dislocation moves at  the

same time in  order  to  counterbalance  .  For  this reason,  the glide is  the most

ubiquitous type of  dislocation  movement  and it  is  the  one that  we  focus on  the

present thesis.

3.2.3 Triangular crystal, - and -formalism and conformal crystals

Lets make explicit the equations of Classical Elasticity for a triangular crystal.

The  symmetry  of  such  crystal  provides  ,

where  and  are the bulk and shear moduli, respectively. Using this in the elastic

energy functional, we obtain the following expression using the formalism introduced

in section 2.2.3

. (3.37)

In this formalism, the equilibrium condition  is

.   (3.38)

This  equation  must  be  considered  together  with  the  compatibility  equation

.  Thus,  using  the  -picture  of  elasticity,  we  can  simplify  the

Classical Elasticity in a single and local fundamental equation, given by
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, (3.39)

which, using equation (), has the general solution

, (3.40)

where  and .

The local character of equation (3.39) would not be possible in the -picture,

that  is,  the  equation  would  have terms depending  on  the  values  of   at  distant

positions. On the other side, the PK force for dislocation glide in the -picture would

have nonlocal dependence on  ,  while it  is  local in the  -picture. In the latter,  it

becomes clear that the dislocation glide is induced only by local background shear

deformations. We have

(3.41)

and then the glide component is given by

,        (3.42)

where  and

  (3.43)

is called  resolved shear. Although other types of forces can appear due to other

types of deformation, as we will investigate in the next chapters, the PK force is the

most predominant in usual physical systems.

In  fact,  background  resolved  shears  induce  dislocation  glide  since  such

movement deforms the crystal locally, shearing it contrary to the background shear,

as we will  see in the discussion of figure 5, in chapter 4. Consequently, the total

shear   decreases in  modulus.  Moreover,  the dislocation  glide do not  alters the

density,  and  thus  preserves  .  Therefore,  in  the  search  for  minimum  energy

(equation  ()),  a  system  where  dislocations  can  be  nucleated,  moved  and

annihilated  can  achieve  a  configuration  with  almost  no  shear  and  no

dislocations.  In  such  case,  the  resulting  configuration  has  only  conformal

deformations, since  implies that the displacement field components satisfy the

Cauchy-Riemann equations. This type of configuration is called a conformal crystal

and it has been observed in systems which are inhomogeneous and near the ground

state  (PIERAŃSKI,  1989;  MENEZES;  SILVA,  2017;  SILVA  et  al.,  2020;  MENG;

GRASON, 2021). One example is the one shown in figure 1.
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3.2.4 The Volterra solutions for the deformation fields of a dislocation

As commented in  the  end of  section  2.3,  where we obtained the  singular

deformations  fields   and  ,  the  dislocation  needs  an  additional  regular

deformation for it to be in equilibrium. We can evaluated this from equation (3.39),

considering the presence of a dislocation   at the origin and no external

forces.  The total  solutions for  such problem of  Classical  Elasticity  are  called the

Volterra solutions.  By using equation (3.40)  and neglecting boundary conditions

contributions, the solution in our case is simply

, (3.44)

where  is the Green function introduced in section 2.2.3. From  we can directly

obtain , which has a regular part  given by

, (3.45)

where we used the result of equation (2.51) for the singular part.

As  and , we can use equations (2.47) and (2.45)

to obtain, respectively,

, (3.46)

and

.                    (3.47)

Finally,  in  explicit  form,  the  Volterra  solutions  for  the  total  deformation  fields

 and  are

     (3.48)

and

. (3.49)

In particular,

(3.50)

and
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.        (3.51)

3.2.5 Dislocation dipole in a box with PBC

Consider  a perfect  2D triangular crystal  with Periodic  Boundary Conditions

(PBC)  in  a  rectangular  box  .  A  dipole  of

dislocations with   at positions  , respectively, is then formed

from the perfect crystal in the slip line  . If   is the displacement vector

generated by a dislocation with  at the origin, then the displacement vectors

of the dislocations in our system are given by

. (3.52)

Note  that  the  dipole  formation  (out  of  the  perfect  crystal)  generates  a

discontinuity in , which increases by  when passing from the region  to the

region  through the line segment between the dislocations, i.e., .

Thus, the dipole formation adds a deformation with  for 

, i.e.,

, (3.53)

where  is the Heaviside step function, that is,  if  and  if .

The PBC impose that the total deformations satisfy

    and    , (3.54)

for any  and , which then implies in the constraint

,   (3.55)

for any   and  . Therefore, the dislocations of equation (3.52), which do not satisfy

equations (3.54) and (3.55), induces additional deformations which can be obtained

by the method of images, where the image dislocations are located at 

,  with  .  On the other  hand,  the deformation due to  the dipole formation,

expressed in equation (3.53), induces an additional deformation with a homogeneous

strain  that can be obtained through

                                     (3.56)
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and then

         (3.57)

This  uniform  background  strain  is  a  response  of  the  system  as  the  dislocation

movement leaves a resolved shear behind, independently of what makes it move, as

it is commented in the discussion of figure 5 in chapter 4.

The  resolved  component  of  the  shear  strain  (i.e.,  )  acting  on  each

dislocation due to the interaction with the other one and its periodic images, can be

well approximated by the Volterra solution, since their distances are . For each

image at a distance , this is given by

,     (3.58)

where . Therefore, the total background resolved shear is

.        (3.59)

There are closed forms for infinite series that are useful in evaluating equation

(3.59) and other similar sums, namely,

(3.60)

, (3.61)

and

, (3.62)

where  and  are real.

We  can  use  the  fact  that  the  sum  in   in  equation  (3.59)  is  absolutely

convergent and has a closed form, as it was shown in the previous paragraph, to

obtain

, (3.63)

where now the sum in  converges rapidly as  increases. As it will be discussed in

chapter 5, this resolved shear acts as a force of attraction between the dislocations in

the PBC cell.
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4 THE CORE FORCE

4.1 SOME ASSUMPTIONS ABOUT THE CORE FORCE

Our work investigates the core force through simulation and theory. By “core

force”,  we  mean  the  phenomenon  of  background  strain/stress  gradients  being

responsible for a driving force on dislocations. Before going further, we make some

initial assumptions about this force and discuss some of their consequences. They

are intuitive guesses that will be probed in the next chapter, via simulations.

4.1.1 Effective existence of the core force

Although previous works (CLOUET, 2011; IYER; RADHAKRISHNAN; GAVINI,

2015; DAS; GAVINI, 2017) have predicted the core force, a direct observation (i.e.,

via simulation or experiment) is needed in order to confirm its effective action. This is

because such works did not investigate how the background strain gradients can

affect barriers to movement (such as the Peierls-Nabarro or a possibly new one)

which could, in principle, strengthen when in the presence of them.

In fact, it is known that the PN barrier is affected by the background strain (HU

et  al.,  2019).  Thus,  if  this  barrier  is  also  proportional  to  the  background  strain

gradients, it can cancel out or just weaken the effective intensity of the core force. In

our  work, we performed simulations that  can probe if  the observed core force is

effectively a driving one, i.e., capable of driving a dislocation.

4.1.2 Driving force definition and the separation between PK and core forces

The driving force on a dislocation, , is defined through

,     (4.1)

where  is the variation of the total dislocation energy when this defect moves by

. Classical Elasticity evaluation of equation (4.1) leads to the so called Peach-

Koehler force  (PEACH; KOEHLER, 1950). We consider that the core force  is

not a modification of the PK force, but another type of driving force to be added, such

that the total driving force on the dislocation is

.    (4.2)
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Moreover, while   depends only on the background strains  , we consider that

 depends only on the derivatives (i.e., first gradients and possibly higher order

ones) of .

4.1.3 Possible properties of the core force

Our  simulations  are  done  in  the  regime  of  small  strains  and  small  strain

gradients. This allows us to probe some properties of the core force. We expect that,

in this regime, it has the linearity property, i.e.,

  .       (4.3)

The equation above is an intuitive guess about the core force behavior.

Within  the  regime  of  small  deformations,  the  linearity  property  is  a  priori

expected for the elasticity and plasticity phenomena. The core force would then be a

linear response to the background strain gradients, i.e., linearly dependent on them.

In fact, we expect that the core force is perturbatively well-behaved.

We assume that the tensor coefficients ( ,  ,  ...) are constants of the

crystal, depending only on the glide direction. Thus, this force obeys the uniqueness

property.  In  other  words,  the  uniqueness  means  that   depends  only  on  the

present crystal configuration and not on its history. It does not depend on where the

dislocation was before, for example.

The given core force is also symmetric under Burgers vector inversion. This is

not the case for the PK force, which has an explicit  dependence on the Burgers

vector , given by (HIRTH; LOTHE, 1982; PHILLIPS, 2001)

,         (4.4)

where  is the background stress.

Finally,  note  that  the  derivatives  in  equation  (4.3)  are  evaluated  at  the

dislocation position. Thus,  satisfies the locality property. In other words, the force

depends only on the crystal configuration very near the dislocation. This is expected

if such force is indeed originated from the interaction between the background and

the dislocation core structure.
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4.1.4 Summary of the properties to be probed by simulations

The previous assumptions are  yet  to  be  confirmed.  In  summary,  atomistic

simulations or experiments are needed in order to probe the following properties of

the force:

(i)  effective  driving  action,  i.e.,  the  capability  to  move  a  dislocation

through this force;

(ii) linear dependence on the background strain derivatives;

(iii) uniqueness;

(iv) symmetry under Burgers vector inversion;

(v) locality.

The item (i) seems to be the most obvious one, but it still needs to be verified,

as we commented in section 4.1.1.

Our simulations presented in this paper have observed dislocations gliding

due to strain gradient forces, as shown in figure 5, where all the properties (i)-(v) are

satisfied. In section 8.1, we show how the confirmation of each of these properties

can be used to discard some theoretical proposals for the core force.

4.1.5  Consequences  for  dislocation  interactions  -  size  effects  and

nonreciprocity

The force between dislocations can be obtained from the background strains

that  they  induce  on  one  another.  For  the  Classical  Linear  Elasticity  Theory,  the

leading contributions to the deformation fields induced by a dislocation are exactly

solvable  and are  called the  Volterra  solutions  (HIRTH;  LOTHE,  1982;  PHILLIPS,

2001).  Within such theory, the PK and core forces on a dislocation at   due to

another one at  behave as

       and       , (4.5)

respectively,  where we considered the core force only up to first gradients.  If  we

consider the PK force alone, the resulting power-law dynamics has no intrinsic length

scale  and  obeys  the  so-called  similitude  principle  (ZAISER;  SANDFELD,  2014),

leading to a dislocation dynamics that is qualitatively independent of size.

With the additional consideration of , the total interaction loses the single

power-law character and an intrinsic length scale appears, leading to a fundamental
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origin of size effects. Another type of correction to the Classical PK interaction which

behaves similarly to the core force (i.e., with  ), but with a different

angular  dependence,  is  the  PK  force  due  to  the  core-field  strain  and  has  been

investigated as a possible origin of size effects (HENAGER JR; HOAGLAND, 2004;

IRANI et al., 2022).

Figure 5 – Sequence of equilibrium configurations inside the same part of the system where we can
see a dislocation that glided due to the action of the core force induced by . On the right side of

the figure, the neighborhood of the particle marked by a green cross is evidenced. In (a), the
dislocation, represented by the particles with 5 (red) and 7 (blue) neighbors in the Voronoi tessellation,
is in equilibrium. Here, a small PK force pointing to the left is counterbalanced by a core force pointing

to the right. The light blue shown in the background illustrates the variation in , increasing in the
right direction. (b) As we increase the strain gradient in the background of the dislocation position, the

defect moves to the right, reaching a new position where the strain gradient is smaller and the core
force equals PK again, and then it equilibrates. As we can see from the change in the region around

the particle marked by a green cross, the dislocation glide induced a negative resolved shear
deformation (i.e., ).

Source: (PEREIRA, 2022).

 For the dislocation interactions in equation (4.5), an interesting analysis can

be made for the case of a system with identical dislocations. In this case, we have

        and        , (4.6)
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which  are  consequences  of  the  Volterra  strain  properties   and

.  This  means  that  the  core  force  provides  nonreciprocal

interactions between the dislocations. It can be shown that the PK force due to the

core-field  strain  also  has  this  nonreciprocity.  Such  type  of  interaction  violates

Newton's third law and has been extensively studied recently (VAULINA; LISINA;

LISIN, 2015; LOOS; KLAPP, 2020; BRAVERMAN et al., 2021; PONCET; BARTOLO,

2022).  When  two  “particles”  interact  like  this,  they  can,  e.g.,  drive  each  other

indefinitely through the system, under some conditions.

4.2 HOW TO SIMULATE THE CORE FORCE

In this section, we discuss the theoretical motivations for the choice of our

simulation  model.  The  basic  theoretical  equations  that  we  consider  here  were

introduced in chapter 3. We want to test the form of the core force given in equation

(4.3) as a proposed correction for the PK force of equation (3.42). Considering this,

the glide  component  of  the driving force (4.2)  on a dislocation with   in  a

triangular crystal is given by

 , (4.7)

where the background strains and their derivatives are evaluated at the dislocation

position. Here, we comment some precautions that, if taken, allow us to obtain good

numerical precision in our investigations. In the next chapter, we detail the simulation

setup  that  we  chose  to  use,  comment  its  advantages  and  show  the  simulation

results.

4.2.1 Numerical precision in the measurings of the core force properties

Quantitative  investigations  about  the  influence  of  the  background  strain

derivatives on dislocation dynamics are not straightforward to do.  They obviously

require the precise knowledge of the background strain fields on each dislocation and

of the core force acting on it. 

In this section, we explain how to obtain, in simulations, precise measures of

the dislocation position, the background strains on it and the resulting core force.
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4.2.1.1 Dislocation position

In order to study the glide movement, we need a correct way to identify the

position of a dislocation along its glide line. By showing Voronoi diagrams of crystal

configurations, figure 6 illustrates how such movement occurs.

Figure 6 – Steps of an adiabatic dislocation glide in the -direction, as observed in a simulation. The
Voronoi diagrams have the same coloration as in figure 5. In (a), a PK force to the left is

counterbalance by a core force to the right. In the subsequent steps, we increase the core force by
slightly increasing the background strain gradient at the dislocation position and wait till the

configuration equilibrates. The resulting configuration of each step is shown in (b), (c) and (d). The
dotted vertical line on the right is a guide to the eye in order to show the “tilting” of the dislocation at

each step of the glide.

Source: (PEREIRA, 2022).

 In figure 6(a), a PK force to the left is counterbalance by a core force to the

right. Then, by slightly increasing the background strain gradient at the dislocation

position,  we  increase  a  little  the  core  force.  As  a  consequence,  the  dislocation
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“moves” to the right until it reaches a position where the forces equilibrate again. The

resulting configuration is shown in (b). The “movement” turns out to be a tilting of the

line connecting the disclination particles, which are the particles that represent the

dislocation in a Voronoi tesselation and have 5 (red) and 7 (blue) neighbors. On the

right side of figure 6, the line connecting disclination particles is compared with a

vertical dotted line in order to show the tilting. By comparing (a) and (b), we can

hardly say how much the dislocation “moved” in the glide direction (i.e., in the  -

direction). The unique visible difference is that the disclination particles are vertically

aligned in (a) and tilted to the right in (b). By repeating the procedure, increasing the

core force and waiting equilibration, we obtain the configuration in (c). In this case,

there occurred a change in the disclination particles but they continue to be tilted (this

time to the left). Repeating of the procedure again now tilts the disclinations to the

right, as shown in (d).

From figure 6(a) to (d),  the dislocation moved.  If  we define the dislocation

position  as  simply  the  mean  position  between  the  disclination  particles,  the

dislocation movement would be discontinuous, having a hop from (b) to (c). But the

system  configuration  changes  continuously.  There  may  be  a  way  to  define  the

dislocation position such that it changes continuously during the glide. This would be

a more appropriate definition to be used when comparing simulation results with a

theory (which is continuous). Without knowing such definition, only in cases as the

one in (a) we can precisely locate the dislocation position along the -direction, due

to the vertical alignment of the disclinations.

In  our  simulations,  we choose to  consider  only  the situations in  which the

disclinations are aligned perpendicularly to the glide line. Therefore, in the glide of

figure 6, we would consider the configuration (a) and a configuration that is between

(c) and (d) and for which the vertical alignment happens. The disclinations' positions

then provide the exact dislocation position along the glide line. When they are not

aligned in this way, we have some uncertainty about the dislocation position. Our

investigations need an uncertainty much smaller than the lattice constant.

4.2.1.2 Background strains

A direct observation of the crystal configuration around a dislocation provides

the  total strain  fields.  These are  the  resulting  deformations  generated by  all  the
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sources of strains, such as the dislocation itself, other defects, boundary conditions,

external body force fields, etc.

In order to evaluate only the background strain fields on a given dislocation

(i.e., the ones generated by all the sources except by the dislocation itself), we need

to use a theoretical framework that gives how each source (or group of sources) of

strain acts. This can easily be done if the system is well described by the Classical

Linear Hyperelasticity (or simply Classical Elasticity) theory of elastic deformations.

This is the case for our simulations, which occurs in the linear regime.

4.2.1.3 Core force magnitude

In  general,  the  PK  and  the  core  forces  act  simultaneously  to  drive  the

dislocation.  Classical  Elasticity  can  be  used  to  evaluate  the  PK force  with  good

approximation. Resistances to movements may also be present. By knowing the PK

and the resistances and by measuring the total force, we can obtain the core force.

But without knowing the correct mobility law of dislocation dynamics in the

system,  we  cannot  measure  the  total  force  on  the  dislocation  by  measuring  its

movement.  Unless the system is  in  static  equilibrium, and then the total  force is

certainly  zero.  This  also avoids the consideration of  nonequilibrium effects in  the

theory. Also, if the resistances to movement are negligible, equations simplify even

more and, in equilibrium, we have that the core force is simply the negative of the PK

force.

Our  simulations  use  equilibrium  situations  of  a  system  with  negligible

resistances to movement. In these cases, we use Classical Elasticity to evaluate the

PK force and then obtain the core force, which is simply the negative of .
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5 PERFORMING SIMULATIONS OF THE CORE FORCE

5.1 SIMULATION SETUP

In our simulations,  we use a model  system in which we can probe all  the

properties of the core force (listed in section 4.1) and also measure its magnitude. It

takes the precautions commented in section 4.2.1 for having better precisions in the

numerical results. It also enables us good control over the system, allowing us to

probe the core force properties.  In the following,  we describe our system and its

advantages in  having  good knowledge and control  over  the strain  fields  and the

dislocation positions.

In section 5.1.1, we tell the pair interaction between the particles and explain

how its choice facilitates us to probe properties (i), (ii), (iii) and (v) of section 4.1.

Then sections 5.1.2 and 5.1.3 describe the boundary conditions and the dislocations

configuration, and how they facilitate the measure of the core force magnitude and

the check of properties (ii), (iv) and (v). These properties are also more easy to check

with the the external body force described in section 5.1.4.

5.1.1 Interparticles' interactions

The  simulations  have  particles  with  power  law  repulsive  interactions

. Interactions like this have been used as a simple model in many

situations,  including  dislocation  studies  (VANSADERS;  DSHEMUCHADSE;

GLOTZER, 2018; KAPFER; KRAUTH, 2015). Analytical expressions for the bulk and

shear  moduli  resulted  from  this  interaction  can  be  obtained  by  lattice  sums  of

equation (3.7). We obtain

         and         , (5.1)

where  and  was defined in section 3.1.1.

Such  type  of  system  is  useful  for  our  analysis  due  to  its  easiness  for

dislocation  glide  (i.e.,  a  low Peierls-Nabarro  barrier,  as  observed  in  our  results),

facilitating the check of the effective action of a driving force such as the core force,

i.e., property (i) of section 4.1. In this case, the action can happen for small strain

gradients, avoiding nonlinear effects and allowing us to test the linearity (ii) property.
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Moreover, the negligible Peierls-Nabarro barrier avoids the hysteresis in the

movement which can appear due to the barrier. Consequently, an adiabatic “come

and go” movement of the dislocation will not have hysteresis unless the force on it is

not uniquely determined by the current configuration. This checks the uniqueness (iii)

property. 

Finally, the short-ranged character of the interaction facilitates us to probe the

locality (v) property. Otherwise, in a possible occurrence of nonlocal effects, we could

not track at first if their origin is in the core force or in the interparticles' interaction.

5.1.2 Periodic Boundary Conditions

Since the particles in our simulations are repulsive, they must be confined

physically  or  by  the  use  of  Periodic  Boundary  Conditions  (PBC).  In  a  physical

confinement,  the  theory  could  not  considerate  the  discretization  effects  in  the

boundary precisely,  since the edge has irregularities due to the crystal  structure.

Moreover, in PBC we can use Fourier series and the regularization commented in

section 2.1.5, enabling better approximations in the formulation of Linear Elasticity.

Therefore, we use PBC in which the theory is more precise, helping us to

probe  the  linearity  (ii)  and  locality  (v)  properties  commented  in  section  4.1.  We

simulate  particles in a rectangular cell 

with , where  is the lattice spacing.

5.1.3 Dislocation dipole

The PBC constrain the total Burgers vector to be zero. Therefore, other type of

source for background strains must appear: other defects. We consider simulations

in which we take a perfect crystal and nucleate a dipole of dislocations. They are

formed in the slip line , have Burgers vectors  and positions ,

respectively, where   is the distance between them. This is what we considered in

section 3.2.5.

Figure 7 illustrates the configuration of the dislocations and their images due

to the PBC. The symmetric configuration in our system helps us to probe the property

(iv) commented in section 4.1, i.e., the symmetry of the core force under Burgers

vector inversion.
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Figure 7 – Simulation box (the central one in the figure) and its images due to the PBC. In a horizontal
slip line, a dipole of dislocation is formed within the perfect crystal. Then we use PK and core forces to

control the dislocations' positions.

Source: (PEREIRA, 2022).

 The background shear strain   at  each dislocation induced by the dipole

formation and the PBC was derived in section 3.2.5 and is given by

, (5.2)

where . The first term on the r.h.s. of equation (5.2) is a result of the

negative resolved shear induced by the gliding of the dislocations from the nucleation

point until their current positions (separated by ), in the sense of what is shown on

the right side of figure 5.

5.1.4 External body force field

Each dislocation of the dipole in PBC is subjected to a PK force of attraction to

the other one. They tend to annihilate each other and return the crystal to its perfect

configuration. External body force fields can be used in order to induce background
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strain fields that act as configurational forces and counteract the attraction between

the dislocations,  keeping them apart  from each other  at  a  fixed distance  .  The

configurational force that we intend to induce is the core force.

We induce appropriate strain  gradients  in  the  system using 1D and radial

external body forces. We use  and , where

,   and  .  We  simulate  for  different

values of the length parameter , namely ,  and .

Figure 8 – Profile of the external potential field , where
 and , and of its derivative, used in our simulations. (b) Plot of

 for the system under action of , as derived from equation (5.3), with ,
 (light red) and  (dark red). For these values of , we observe the dislocations

to equilibrate, respectively, at  and , as shown by A and B. The plot is shown
near the position of the dislocation on the right side.

Source: (PEREIRA, 2022).
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 We observed that, for these choices of external potential, the dislocations can

be kept apart  with  sufficiently small  strains and strain derivatives in the system,

allowing  the  usage  of  Classical  Elasticity  with  good  approximation.  Such  regime

allows us  to  probe the linearity  (ii)  property  of  the  core  force,  as  commented in

section 4.1. The induced background strains also have enough variation within a few

lattice spacings, allowing us to probe the locality (v) property. We can use equation ()

to evaluate such strains. They are given by

  (5.3)

and  in the 1D case and by

,       (5.4)

(5.5)

and  in the radial case.

Figure 8(a) shows the profile of  and its derivative. The symmetry of the

external  potential  is  convenient  in  order  to  test  the  core  force  symmetry  under

Burgers  vector  inversion  (property  (iv)  commented  in  section  4.1).  It  is  also

convenient  in  the  identification  of  dislocation  positions,  since  the  alignment

commented in section 4.2.1.1 occurs simultaneously for both the dislocations.

5.2 SIMULATION RESULTS

As commented in section 4.2.1.3, we consider only the situations in which the

dislocations are at rest. Then, by analyzing different situations like this, we can obtain

how the different contributions to the force counterbalance each other. By changing

the strain gradients (e.g., through a change in  ) that are responsible for the core

force contribution, the dislocations are driven to the new positions where the resulting

force  is  zero  and  they  equilibrate.  In  fact,  by  increasing  the  core  force,  the

dislocations are driven apart, i.e., in a direction that is opposite to the PK force. This

observation confirms the property (i) of section 4.1, i.e., that the core force is not a

drag force but a driving one.

In our simulations, the resulting force on the dislocations is always able to

drive them back and forth without any sign of hysteresis, indicating that the Peierls-
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Nabarro barrier is very small. This also confirms the property (iii) of section 4.1, i.e.,

the uniqueness of the core force. From one equilibrium configuration to the other we

use  overdamped  evolution  for  the  particles  in  the  simulations.  No  unstable

equilibrium appears, as we probed by using a small temperature through Brownian

Dynamics (SATOH, 2011).

For the system in which we apply   with  , figure 8(b) shows

the graph of  the strain  gradient  ,  as  generated by  the external  force and

evaluated through equation (5.3), near the position at which the dislocation 

is equilibrated in our simulations with   (light red) and   (dark

red). In this region,  and then, if we turn off the external force (i.e., set ),

the dislocation shown in the figure would move to the left until it finally annihilates the

other dislocation, which would be precisely at . We can see in the figure that, by

increasing  , the strain gradient increases and the dislocation moves to the right

until  it  equilibrates in a new position. The same happens simultaneously with the

other  dislocation  in  the  other  direction.  This  mirror  symmetry,  observed  in  all

simulations, confirms the property (iv) of section 4.1, i.e., the Burgers vector inversion

symmetry of the core force.

We gather  the  data  of  equilibrium situations  (i.e.,  dislocations  at  rest  with

)  in  varying  intensities  of   for  the  three  different  values  of  the

parameter   considered.  As  we  consider  only  the  cases  in  which  the  dislocation

positions are well-defined, as commented in section 4.2.1.1, their distances can be

precisely evaluated. For these cases, we use equations (5.2) and (5.3) to evaluate

the  background  deformations  and  plot  in  figure  9(a)  the  values  of   versus

 acting at the dislocations' equilibrated positions. Note that a linear relation is

predicted for this graph if we consider equation (4.7) up to first gradient. A simple fit

results in , but we clearly see that the force counteracting the PK one

does not depend solely on the value of .

In principle, the problem here could have a nonlocal origin, as we can see

from figure 8(b) that the strain derivative varies greatly within a few lattice spacings.

But  we  find  that,  by  considering  higher  order  derivative  terms  in  equation  (4.7)

evaluated precisely at the dislocation positions, we can match the data with a good fit

and then the locality property (v) of section 4.1 is valid. The motivation to consider

the higher order derivative terms is discussed in the following. 
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Figure 9 – Relations between the background resolved shear and strain gradients on the dislocation

 for equilibrium configurations in our simulations with the 1D external force field. All the

deformations can be obtained from the distance between the dislocations using equations () and (). In

(a) we can see that  alone cannot explain the force which is counterbalancing the PK one. By

including a force due to , a good fit to the data is obtained, as it is shown in (b).

Source: (PEREIRA, 2022).

 The cases A and B of figure 9(a) are the same of figure 8(b). In the transition

from A to B, the dislocations are driven apart and their new equilibrium positions

have smaller . If we compare the cases B and C, where C was simulated with

a different external force field, we can see that the PK forces (originated from ) in

them are almost equal, whereas the strain gradients   are different. Thus the
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core force that counterbalance PK must depend on other factors that are different in

these cases, such as the higher order derivatives   and  . Locally, these

derivatives are the main differences between the situations B and C of figure 9(a)

besides  the  difference  in  .  We  can  better  fit  the  data  by  considering,  for

instance, an additional contribution like  (provided that  changes sign

under a change in the sign of ) or  in the force of equation (4.7).

In the end of section 6.1.1, we show some theoretical arguments that make us

believe that the core force cannot be linear with  and thus  must be zero.

Using only the  and  terms in equation (4.7), the fitting of the data provides

 and  . Figure 9(b) shows how the formula for the

force is greatly improved by the third gradient term. Note that all the terms used here

are linear in the strains, confirming the property (ii) of section 4.1, i.e., the linearity of

the core force.

Finally, we use the data for the simulations with radial forces (in which there

appears ) and fit the general equilibrium condition

  (5.6)

to obtain the values  and . The other background

strain derivatives were not considered since their values are relatively much smaller

in our system.
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6 CORE ENERGY AND OTHER THEORETICAL APPROACHES

In this chapter and in the next one, we investigate some theoretical predictions

about  the  core  force  that  are  found in  the  literature  and  also  other  possibilities.

Unfortunately, all of them have issues and none of them were found to predict the

coefficients of the core force without a direct measurement from the simulations. But

many properties are correctly predicted by some approaches and interesting results

are found.

We can separate the theoretical approaches into two types: continuum theory

modifications and core energy analysis. Any type of continuum theory of elasticity is

an  approximation  and  its  prediction  about  the  dislocation  energy  must  be

complemented by a core energy correction. In section 6.1, we focus on the core

energy consideration and try to find ways of measuring it in order to predict the core

force. Also, we show a case in which we can go the other way around, i.e., use the

coefficients in the core force to evaluate the core energy. In section 6.2, we show

some efforts to modify the Classical Elasticity theory in order to better describe the

dislocation dynamics, without resorting to core energy considerations.

6.1 CORE ENERGY AS THE ORIGIN OF THE CORE FORCE

This section investigates the core energy and its relation with the core force.

Note that all  the properties of the core force guessed in chapter 4 (i.e.,  effective

driving action, linearity, uniqueness, etc.) and confirmed in chapter 6 are obeyed if

we write the force of equation (4.3) in the form

 , (6.1)

where we only  need to  know how to evaluate  the crystal's  core energy function

 in a unique way.

In section 6.1.1, a general  definition of the core energy is given. The final

evaluation of it depends on how the continuum theory is considered. Section 6.1.2

shows the standard way to do so and its problems with ambiguity are commented.

Finally, in section 6.1.3, we show that, in systems with power law interactions, we

can obtain the core energy from measurements of the core force.
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6.1.1 General definition of the core energy

The general idea for the core energy ( ) is that it represents the energetic

correction  necessary  for  the  continuum  theory  result  ( )  to  match  the  total

dislocation energy ( ) in the real crystal, i.e., .

The evaluation of   depends on the theory considered and the standard

one is presented in section 6.1.2. The crystal's , on the other hand, has a definite

way to be evaluated. It is obtained from the total energy of the crystal when deformed

only  by  the  dislocation  presence  minus  the  energy  of  the  crystal  without  it.  By

considering the crystal's energy as a function of the particles' positions, we can write

, (6.2)

where   and   are the particles' positions with and without the dislocation

presence, respectively. We are not using  instead of  in order to consider

the possibility of having deformations at the background of the dislocation.

In practice,   increases with the size of the crystal, diverging for infinite

crystals. The continuum theory prediction also diverges. On the other hand, the core

energy remains finite. Therefore, we consider energetic evaluations inside a circular

region, with radius  and centered at the dislocation, and define

. (6.3)

The  convergence  of  this  limit  is  usually  fast  enough,  as  the  continuum  theory

becomes accurate far from the core.

Figure 10 – Illustration of the effects of  and  around an edge dislocation. The reflection
symmetry in the  direction implies that the change in the core energy must be the same for positive
and negative values of these deformations. Therefore, this energy cannot depend linearly on them.

Source: (PEREIRA, 2022).
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The presence of  background strains can affect  the core energy and some

symmetric considerations can be made a priori. For instance, linear dependences of

 on  and  are forbidden for an edge dislocation with , as we can see

from figure 10. Consequently, the force obtained from equation (6.1) does not have

terms linearly proportional to  or to .

6.1.2 Ambiguity in the standard core energy

The standard way to evaluate the continuum theory prediction   for the

dislocation energy is through equation (3.22), by using the dislocation strains in the

integral.  The classical strain fields of a dislocation are obtained from the Volterra

solution. In polar coordinates, there exist functions  such that the solution for a

dislocation  at the origin, have the form (HIRTH; LOTHE, 1982)

. (6.4)

Note that the integral of equation (3.22) using Volterra strains diverges logarithmically

for both large and small  radii.  The usual procedure to obtain   is to integrate

equation  (3.22)  in  a  region  between  a  fixed  core  radius   and a  larger  radius

. By doing so, the core energy is standardly defined as (HIRTH; LOTHE,

1982)

, (6.5)

where  the  pre-logarithmic  factor   depends  on  the  elastic  constants,  e.g.,

 for the triangular crystal.

The choice of the core radius   is arbitrary and usually taken to be of the

order of the Burgers vector modulus  , which is frequently the lattice spacing. By

taking  simulations  for  large values of   and using  the  correct  ,  equation  (6.5)

converges and   is  then independent  of  .  See (IYER;  RADHAKRISHNAN;

GAVINI, 2015; PIZZAGALLI; DEMENET; RABIER, 2009; HU et al., 2019) for some

recent calculations of  from simulations of straight dislocations in some relevant

3D crystals.

In order to obtain the core force through equation (6.1), we need to know how

the  core  energy  depends  on  the  background  strains.  By  using  background

deformations  in  the  defected  crystal  of  the  simulation  and  measuring  the
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corresponding  core  energies,  the  dependence   can  be

evaluated,  as it  was done in previous works (IYER; RADHAKRISHNAN; GAVINI,

2015;  DAS;  GAVINI,  2017).  These  works  used  the  evaluated  derivatives  of

 to predict  the core force, through equation (6.1). But this core energy

definition has problems with uniqueness, i.e., with the property (ii) of section 4.1, as

we discuss in the following.

The standard core energy greatly depends on the choice of the core radius.

Once  measured  for  some  ,  the  energy   for  any  other  core  radius  is

. Since the factor  is also a function of the

background  strains,  in  general,  we  have  that  .  This

means that the arbitrary choice of   affects the dependence  

and the core force of equation (6.1). As uniqueness is a confirmed property of the

core  force,  the  standard  core  energy  is  not  appropriate,  due  to  its  ambiguous

definition, to be used in equation (6.1).

There  are  some  known  definitions  for  the  core-energy  which  are

unambiguous, e.g., in the framework of the KTHNY-theory (STRANDBURG, 1988)

and  in  the  Kanzaki  force  approach  (GURRUTXAGA-LERMA;  VERSCHUEREN,

2019). The correct one to be used in equation (6.1) and then predict the correct core

force acting on a dislocation is still to be discovered.

6.1.3 Crystals with power-law interactions: obtaining the core energy from the

core force

By considering that equation (6.1) is valid, the measured coefficients of the

core force give us the derivatives of  . Here we show

that there are systems in which we can obtain the absolute value of the core energy

directly from its derivatives. In such cases, the core energy can be obtained from

measures of the core force. This happens in systems with power-law interactions,

which are known to have special  relations, such as the Virial  Theorem, between

energy and force.

If the particles interact via a power-law potential  , we have the

scaling law  for the total potential energy. This is satisfied by

, as we can see from equation (6.2), by  , which comes from a continuum
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theory, and therefore by  . The scaling law describes how these

energies depend on the density, which scales as  . Thus, the energies have no

other dependence on the density but the power law . In 2D Linear

Elasticity, the density is   and then the scaling law tells us that the

dependence of   on   is in the form , while the

dependences on  and on  are not known, in principle. We can write this

as

, (6.6)

where   is  a  function  of  the  deviatoric  deformations   and   which

change the shape but not the size of the crystal. If the core energy depends also on

derivatives  of  ,  i.e.,  if  ,  we  have

.

By taking derivatives of equation (6.6) with respect to  and , it is easy to

show that

.    (6.7)

Therefore, by relating the derivatives of  in equation (6.1) with the coefficients in

equation (4.3), the scaling law of equation (6.7) tells us that the core energy at zero

background deformations is

     (6.8)

for  systems with  power-law interparticle  interactions  .  With  the  results  for

 obtained from simulations in section 5.2, we find 

for the system with   and density . A definite value for

the core energy can be used, e.g.,  to obtain the appropriate core radius through

equation (6.5) and predict the melting temperature in 2D, through the KTHNY-theory

(STRANDBURG, 1988).

6.2 ENERGY FUNCTIONAL MODIFICATIONS

The dislocation energy within the continuum Elasticity theory depends on the

energy functional and on how the dislocation is described. In order to obtain the core

force  within  continuum theory,  here  we  investigate  possible  modifications  of  the
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functional.  In  the  next  chapter,  we  investigate  a  modification  of  the  dislocation

description.

We recall  that the Peach-Koehler force results from the Classical Elasticity

functional, expressed in equation (3.22), and the Burgers vector definition, .

In the Supplementary Material (SM) of (PEREIRA, 2022), it is derived in a similar way

to  what  is  done  in  section  3.2.1  but  considering  an  additional  term  like

, where  are constants, inside the integral of equation (3.22).

This modification in the energy functional can provide strain gradient forces without

using a core energy. It is a type of Strain Gradient Theory (SGT), that is, a continuum

theory that considers relevant influences of strain gradients in the elasticity/plasticity.

The correction to the PK force derived this way in the SM of (PEREIRA, 2022) is

.    (6.9)

It obeys properties such as uniqueness, locality and linearity but it has problems with

the symmetry under the inversion   (property (iv) of section 4.1), which was

confirmed by our simulations to be valid in the observed core force.

SGTs  of  Elasticity  which  correctly  obey  the  symmetries  have  long  been

studied (LAZAR; KIRCHNER, 2007; PO et al., 2018). For example, we can add a

term   in  equation  (3.22),  which  correctly  obeys  the  symmetries,  and

obtain  through a procedure similar to the one used in section 3.2.1. The resulting

force has a term proportional to second gradients of strains. This second gradient

force is similar to the third term in the r.h.s of equation (4.7) and is originated from a

generalized Elasticity Theory, without considering the core energy. Unfortunately, no

correct account for a first gradient force on dislocations, with the properties that we

observe in this work, was ever obtained in this way.

Another possible correction within continuum theory is to consider nonlinear

terms in the energy functional. But the formal derivations of the configurational force

in Nonlinear Elasticity (STEINMANN, 2002) provide only nonlinear corrections to PK,

which  disobey  the  property  (ii)  of  section  4.1,  and  have  no  strain  gradient

dependence.
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7 ANOTHER APPROACH WITHIN CONTINUUM THEORY: THE CORE FIELD

A formal  way to describe corrections to  the Volterra dislocation field  is  by

making use of (fictious) localized forces which can generate the core field (CLOUET,

2011). This field acts as a correction to the Volterra field near the dislocation core. It

represents the other terms in a Laurent series solution for the elastic fields outside

the core.

In this chapter, we show how the core field approach can predict a core force

which  respect  the  properties  observed  in  our  simulations.  However,  it  cannot

quantitatively  predict  the  coefficients  of  the  core  force,  as  we  probed  through

simulations which measure the core field.

7.1 A MODIFICATION IN THE DISLOCATION DESCRIPTION - THE CORE FIELD

We  can  try  to  correct  the  Classical  Elasticity  by  modifying  the  way  we

characterize a dislocation. To do so, we present here an approach that provides a

prediction  of  the core  force,  as derived in  (CLOUET,  2011).  But,  as  commented

further  in  the  end  of  this  section,  we  observe  that  it  cannot  predict  the  correct

coefficients of the core force, and therefore it is quantitatively wrong.

The classical (Volterra) displacement field   of a dislocation at the origin is

the solution of the equations

        and        . (7.1)

The first equation comes from the Burgers vector definition and the second one is the

Classical Elasticity field equation (3.18) for zero body forces. In polar coordinates, the

Volterra field has the form

.     (7.2)

A simple way to modify such dislocation description is to consider that there

are some forces acting near the dislocation core. Thus, the so-called core field ,

which is the solution of

, (7.3)

must  be  considered  in  order  to  correct  the  Volterra  approximation.  Here,

 is an ad hoc body force density field associated with the dislocation.
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In the literature (CLOUET, 2011;  HENAGER JR; HOAGLAND, 2004),   is usually

considered as a set of point forces.

Note that the net contribution of  must be zero, i.e., , since no

net force appears in the dislocation region. Moreover, as it represents a core effect,

this force must be zero outside some core radius, where Classical Elasticity is valid.

Therefore, the core field decays and has the following multipole expansion

,     (7.4)

where   and   depend  on  the  dipolar  and  quadrupolar  moments  of  ,

respectively.

Other constraints on  are necessary in order to obey the reflection symmetry

of the edge dislocation. For the case , we must have  for

the  reflection  (parity)  operation  ,  i.e.,   and

. In this case, the contribution to the energy due to  interacting

with the background deformation can be directly obtained from the energy functional

of equation (3.21). We can make a multipole expansion and use the symmetries to

simplify it, obtaining

          

,    (7.5)

where  ,  ,  ,  ,

,  ,  ,

 and  . Also, by symmetry, a change in

the sign of   changes the sign of the quadrupolar moments  ,   and   in

equation (7.5).

Note that equation (7.5) does not represent the core energy, since it is zero

when  there  are  no  background  deformation,  but  it  carries  all  the  symmetries

expected for  . The derivatives in equation (7.5) are evaluated at the dislocation

position and then the energy varies as the defect moves. From equation (4.1), such

variation of   implies in a force acting on the dislocation which has the same

form of  equation  (4.3)  and satisfies  all  the  properties  guessed in  chapter  4  and

confirmed in chapter 5. Up to first gradients of strains, this approach gives
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. (7.6)

This approach predicts that the coefficients appearing in the core force are the

moments of   that appear in the core field. In principle, these moments can be

measured by comparing the theoretical  dislocation field,  which is  the sum of  the

Volterra and core field ones, with the one observed in the crystal, as long as the core

field consideration is a good way to correct the Volterra approximation. In the next

section,  we  analyze  this  through simulation.  Unfortunately,  we observed that  the

correct coefficients for the core force measured through simulations, i.e.,   and

, cannot be obtained by the core field analysis.

7.2 FITTING OF VOLTERRA AND CORE FIELD STRAINS

From the core field approach, corrections to the Volterra approximation for the

deformations generated by a dislocation can be predicted. We have, for example,

that the hydrostatic strain   generated by a dislocation with   at

the origin has the Volterra solution

(7.7)

and the core field correction (HENAGER JR; HOAGLAND, 2004)

(7.8)

in  the dipolar  approximation,  where   and   and   are the

dipolar moments of   as defined in the previous section. We can measure the

moments  of   by  a  direct  analysis  of  the  strain  fields  in  the  real  crystal's

dislocation compared with the strains given by Volterra and the core field.

In order to analyze the strain fields due to the dislocation alone, we prepared

the system of chapter 5 in such a way that:

1. the dipole of dislocations has a separation ;

2. a homogeneous strain which cancels the one of equation (3.57) is applied;

3. another horizontal line of particles is included for the system to satisfy the PBC

in the -direction.

This results in a simulation cell  with   and   where the

dislocations can equilibrate with no need of external sources of strain. We let the

system equilibrate without external forces and thereafter translate it in the -direction
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until the dislocation with  stays at . Only the dislocations themselves and

their images are sources of strain.

In the simulation, the strains at each particle position are estimated through

the relative positions between it and its neighbors. First, we can compare the real

hydrostatic strain field with the Volterra solution which, using equation (7.7) and the

results of the end of section 3.2.5, is

     

 .   (7.9)

As a test, we fit equation (7.9) to the data of the actual strains in the simulation in

order to obtain  and compare it with the theoretical value . Since near the

core the Volterra fields are expected to diverge from the real ones, we fitted to the

data at positions farther than a cutoff distance  from the centers of the dislocations.

Figure 11 shows how the fitted value for   depends on  . For   it

fluctuates around a fixed value which is different but near the theoretical one.

Figure 11 – Values for  obtained by fitting equation (7.9) to the hydrostatic strains of the
real crystal in the region outside a cutoff distance  from the centers of the dislocations. As  

increases, it fluctuates around a value near the theoretical prediction  (green line).

Source: Supplementary Material of (PEREIRA, 2022).

Now we turn to the core field correction which, for a single dislocation, is given

by equation (7.8). Then the core field contribution for the total hydrostatic strain is
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 . (7.10)

Moreover, the dislocations can induce a homogeneous  in the system. Figure 12

shows the results for  and  from fitting  to the data of the actual strains

in the simulation minus the Volterra contribution of equation (7.9). As we can see, far

from the  core,  the  fit  for   converges  to  a  value  very  different  from the  one

obtained by measuring  in the simulations of core force in chapter 5.

Figure 12 – Values for (a)  and (b)  obtained by fitting equation (7.10) plus a constant  to the
hydrostatic strains of the real crystal subtracted by equation (7.9). The fit consider points in the region

outside a cutoff distance  from the centers of the dislocations. As   increases,  converges a
value different from the one obtained in chapter 5.

Source: Supplementary Material of (PEREIRA, 2022).
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8 FINAL DISCUSSIONS AND CONCLUSIONS

This  final  chapter  reviews  and  discusses  the  theoretical  and  simulational

results concerning the core force. Then, it concludes the thesis by overviewing the

main novel results and discussing perspectives on possible future works.

8.1 SUMMARY OF COMPARISONS BETWEEN THE THEORIES AND OUR 

SIMULATIONS

In  the  previous  chapters,  we  presented  some  theoretical  approaches

developed with the aim of providing a correction to the PK force, i.e, the core force.

We analyzed if these theories are in agreement with the results of our simulations.

Special attention was paid to the physical properties revealed in our simulations, i.e.,

linearity,  locality,  symmetry  under  Burgers  vector  inversion,  uniqueness  and

effectiveness  to  drive  a  dislocation.  When  possible,  quantitative  comparisons

concerning the core force values were also made.

In this section, we introduce the table 1 in order to present a summary of the

comparisons made between the different theories and the results of our simulations.

These theories are listed along the first column, the properties are listed from the

second  to  the  sixth  columns,  while  the  last  column  refers  to  the  quantitative

prediction of the core force (see table 1). For instance, if  a given theory obeys a

certain property, we signal the table with a “yes”, in the opposite case, we signal it

with a “no”.

If a theory does not satisfy a property such as linearity, locality, symmetry or

uniqueness, it  cannot be the core force observed in our system. Consequently, it

does not satisfy the property of effectiveness in our simulations and we cannot make

a quantitative  investigation  about  it.  The noneffectiveness can be due to  several

reasons. For instance, Nonlinear Elasticity is expected a priori  to be noneffective

here since it  presumes high deformations for the nonlinear effects to be present,

which is not the case in our simulations. In contrast, the assumptions for the SGT

that resulted in equation (6.9) expect that it would be present in our simulations, but

our results showed no such force since this theory does not satisfy the symmetry that

we observed.
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Table 1 – Here we list some theoretical approaches that were commented in the previous chapter and
predict forces on the dislocations that go beyond the PK force: Nonlinear Elasticity (STEINMANN,
2002), Nonlocal Elasticity (LAZAR, 2005), the Strain Gradient Theory (SGT) of section 6.2 and the

core field (CLOUET, 2011) approaches that result in equations (6.9) and (7.6), respectively, and the
core energy approach of equation (6.1) that can considerate the standard core energy shown in

equation (6.5), as done in (IYER; RADHAKRISHNAN; GAVINI, 2015), or simply a definite ad hoc core
energy. In section 5.2, we observe through simulations that a correction to the PK force is needed in
order to explain the results. Properties of this correction, such as linearity, locality, symmetry under

Burgers vector inversion, uniqueness and driving effectiveness were analyzed and quantitative
measures of the force were made. In this table, we compare the theoretical approaches with the
results of our simulations, indicating if these theories satisfy the properties and are quantitatively

correct.

Theoretical
approach

Linear Local Symmetric Unique Effective Quantitative

Nonlinear
Elasticity

no yes no yes no -

Nonlocal
Elasticity

yes no no yes no -

SGT yes yes no yes no -

Core field yes yes yes yes possibly no

Standard Core
Energy

yes yes yes no no -

Ad Hoc Core
Energy

yes yes yes yes possibly no

Source: Adapted from (PEREIRA, 2022).

The  Nonlinear  Elasticity  theory  of  (STEINMANN,  2002)  presumes  high

deformations in the system. Our simulations used small background strains and, as

expected a priori, the linear response of the core force was observed. In addition to

nonlinearity, the antisymmetry under  inversion is also predicted by this theory and

was not observed. Thus, such theory is not effective in our case and we could not

quantitatively  investigate  it.  But  it  can  be  relevant  in  simulations  with  high

deformations.

The Nonlocal Elasticity theory of (LAZAR, 2005) predicts nonlocal effects in

the force when the background strains have high variations within the region around

the dislocation. Our simulations have such type of background strain variations, as it

can be seen in figure 8, but all the effects observed can be explained locally. In other

words, we do not need to know the background strains and their derivatives at other

positions  but  only  at  the  dislocation  position.  In  addition  to  nonlocality,  the

antisymmetry under  inversion is also predicted by the Nonlocal theory and was not

observed in our simulations. Thus, such theory is not effective in our case and we
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could not quantitatively investigate it. Although unlikely, this theory may be relevant in

simulations with other crystal or in 3D.

The  results  of  our  simulations  are  compatible  with  a  force  that  is  linearly

proportional to local values of the background strain gradients. This is satisfied by the

Strain Gradient Theory (SGT) commented in section 6.2 that results in equation (6.9).

But, as we can see directly from the equation, it does not obey the symmetry under

Burgers vector inversion that is observed in our simulations. Thus, such theory is not

effective in our case and we could not quantitatively investigate it. Although unlikely,

this theory may be relevant in simulations with other crystal or in 3D.

It is easy to show that the core field approach, addressed in chapter 7, and

used  in  (CLOUET,  2011),  do  satisfy  some  properties  (that  is,  linearity,  locality,

symmetry  and  uniqueness)  of  the  core  force  observed  in  our  simulations.  This

approach also predicts that the values of the coefficients of the core force ( , 

, ...) are equal to the values of the coefficients of the core field ( , , ...). The latter

was calculated through fittings of the crystal's deformations with the theoretical ones.

We  perform  such  fittings  in  figure  12  and  observe  that  the  fitted  value  for

 depends on the fitting region and does not match with  in

any meaningful case. Thus, the core field approach prediction is not quantitatively

satisfactory. It may possibly have some effectiveness in our system, i.e., either it is

wrong or it is true and other type of correction is needed to complement it.

The equation (6.1) gives an approach to obtain the core force through a given

core  energy,  which  is  taken  as  a  function  of  the  background  strains  and  their

derivatives.  This  approach  straightforwardly  satisfies  the  linearity,  locality  and

symmetry properties. If we consider an ad hoc core energy which is unique and gives

a core force that quantitatively match the simulational results, then such approach

satisfies all the properties of table 1. This is the ultimate theoretical way to describe

the core force observed in our simulations. The remaining question is if the ad hoc

core energy can be evaluated through other methods. Otherwise we could not predict

the core force coefficients without directly measuring them.

The standard way to evaluate the core energy is the one of equation (6.5), but

it has ambiguity in the choice of the core radius. Thus, such standard core energy

(that was used in (IYER; RADHAKRISHNAN; GAVINI, 2015)) does not satisfies the

uniqueness  property  and  then cannot  be  effective  and  quantified  in  our  system,

which observed a unique core force.
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8.2 OVERVIEW OF THE MAIN NOVEL RESULTS AND PERSPECTIVES

In sections 2.1.4 and 2.1.5, as well as during the derivation of equations (3.10)

and (3.16), we extensively discussed the necessity of regularization in the continuum

approach to elasticity.  While we demonstrated a suitable regularization for simple

cases, questions persist regarding the limits of its applicability and the optimal choice

in the presence of dislocations.

An  alternative  mathematical  formalism  for  2D  elasticity  was  proposed  in

section  2.2.3  and  used  in  sections  2.3,  3.2.3  and  3.2.4.  This  formalism  yielded

simpler equations and provided physical insights in specific cases. In principle, its

utility may extend to other scenarios and could potentially be generalized to 3D.

In section 4.1.5, when examining the core force, we noted its nonreciprocal

property  in  the  interaction  between  identical  dislocations.  Witnessing  this

phenomenon in action would be intriguing. For instance, configurations might exist

where two dislocations perpetually drive each other in a specific direction.

The challenges faced in observing and precisely measuring the effects of the

core  force  in  simulations  were  outlined section  4.2.1.  We proposed a  simulation

model, which was implemented in chapter 5. While additional difficulties may arise in

experiments and 3D simulations, it is likely feasible to overcome them to some extent

of precision.

In  section  3.2.3,  through  the  analysis  of  energy  and  Peach-Koehler  force

expressions,  we  deduced  the  existence  and  structure  of  conformal  crystals.

Considering the effective influence of core forces, it might be possible to detect their

signatures in the final configuration of the few remaining dislocations in the conformal

crystal, given the presence of relevant strain gradients in such crystals.

Our simulation results proved to be at odds with predictions from established

theoretical  approaches,  as  extensively  discussed  in  the  last  two  chapters  and

summarized in the previous section. In an attempt to reconcile discrepancies, we

conducted  an  additional  simulation  for  one  of  these  approaches—the  core  field

method—in section 7.2. However, it was not able to predict the correct core force

coefficients.

In principle, three potential avenues of research may hold promise in providing

good  predictions,  although  these  endeavors  have  faced  challenges  thus  far.  To

achieve analytical predictions, researchers can explore modifications to the energy
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functional or to the description of dislocations within continuum theory. Alternatively,

efforts could be directed towards developing an appropriate method for measuring

the  core  energy,  enabling  a  semi-analytical  approach  to  predict  the  core  force.

Notably, in section 6.1.3, we took a reverse approach, obtaining the core energy in

our  system from the results  of  the core  force.  Comparing this  energy with  other

measurement methods may yield valuable physical insights.
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