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ABSTRACT

Artificial intelligence systems have made impressive progress in recent years, but they
still lag behind simple biological brains in terms of control capabilities and power con-
sumption. Spiking neural networks (SNNs) seek to emulate the energy efficiency, learning
speed, and temporal processing of biological brains. However, in the context of reinforce-
ment learning (RL), SNNs still fall short of traditional neural networks. The primary aim
of this work is to bridge the performance gap between spiking models and powerful deep
RL (DRL) algorithms on specific tasks. To this end, we have proposed new architectures
that have been compared, both in terms of learning speed and final accuracy, to DRL
algorithms and classical tabular RL approaches. This thesis consists of three stages. The
initial stage presents a simple spiking model that addresses the scalability limitations of
related models in terms of the state space. The model is evaluated on two classical RL
problems: grid-world and acrobot. The results suggest that the proposed spiking model
is comparable to both tabular and DRL algorithms, while maintaining an advantage in
terms of complexity over the DRL algorithm. In the second stage, we further explore the
proposed model by combining it with a binary feature extraction network. A binary con-
volutional neural network (CNN) is pre-trained on a set of naturalistic RGB images and
a separate set of images is used as observations on a modified grid-world task. We present
improvements in architecture and dynamics to address this more challenging task with
image observations. As before, the model is experimentally compared to state-of-the-art
DRL algorithms. Additionally, we provide supplementary experiments to present a more
detailed view of the connectivity and plasticity between different layers of the network.
The third stage of this thesis presents a novel neuromorphic architecture for solving RL
problems with real-valued observations. The proposed model incorporates feature extrac-
tion layers, with the addition of temporal difference (TD)-error modulation and eligibility
traces, building upon prior work. An ablation study confirms the significant impact of
these components on the proposed model’s performance. Our model consistently outper-
forms the tabular approach and successfully discovers stable control policies in mountain
car, cart-pole and acrobot environments. Although the proposed model does not outper-
form PPO in terms of optimal performance, it offers an appealing trade-off in terms of
computational and hardware implementation requirements: the model does not require
an external memory buffer nor global error gradient computation, and synaptic updates
occur online, driven by local learning rules and a broadcast TD-error signal. We conclude
by highlighting the limitations of our approach and suggest promising directions for future

research.

Keywords: reinforcement learning; STDP, spiking neural networks; FEAST; ODESA.



RESUMO

Nos ultimos anos, sistemas de inteligéncia artificial tém progredido de forma impres-
sionante, mas ainda estao aquém de cérebros bioldgicos simples em termos de capacidades
de controle e consumo de energia. As redes neurais de impulsos (SNNs) buscam emular
a eficiéncia energética, velocidade de aprendizado e processamento temporal de cérebros
bioldgicos. No entanto, no contexto de aprendizado por refor¢o (RL), as SNNs ainda ficam
aquém das redes neurais tradicionais. O objetivo principal deste trabalho é aproximar em
termos de desempenho os modelos SNN dos algoritmos de aprendizagem profunda por
reforco (DRL) em tarefas especificas. Para isso, propomos novas arquiteturas que foram
comparadas, tanto em termos de velocidade de aprendizado quanto de precisdo final, com
algoritmos DRL e abordagens RL tabulares classicas. Esta tese consiste em trés etapas.
A etapa inicial apresenta um modelo simples de uma rede de impulsos que aborda as
limitacoes de escalabilidade de modelos relacionados em termos do espago de estados. O
modelo é avaliado em dois problemas classicos de RL: grid-world e acrobot. Os resultados
sugerem que o modelo proposto é comparavel ao algoritmo tabular e a DRL, mantendo
uma vantagem em termos de complexidade sobre o algoritmo DRL. Na segunda etapa,
exploramos mais o modelo proposto, combinando-o com uma rede binédria para extracao
de caracteristicas. Uma rede neural convolucional (CNN) bindria é pré-treinada em um
conjunto de imagens RGB naturalistas e um conjunto separado de imagens é usado como
observagoes em uma ambiente modificado de grid-world. Melhorias na arquitetura e na
dinamica sao apresentadas para tratar esse problema mais complexo, com observagoes de
imagens. Como antes, o modelo é comparado experimentalmente com algoritmos DRL do
estado da arte. Além disso, experimentos complementares sao fornecidos com objetivo de
apresentar uma visao mais detalhada da conectividade e plasticidade entre diferentes ca-
madas da rede. A terceira etapa desta tese apresenta uma nova arquitetura neuromorfica
para resolver problemas de RL com observagoes de valores reais. O modelo proposto incor-
pora camadas de reducao de dimensionalidade, com a adi¢cao de modulacao por T'D-error
e eligibility traces, baseando-se em trabalhos anteriores. Um estudo adicional é focado em
confirmar o impacto significativo desses componentes no desempenho do modelo proposto.
O modelo supera consistentemente a abordagem tabular e descobre com sucesso politicas
de controle estaveis nos ambientes mountain car, cart-pole e acrobot. Embora o modelo
proposto nao supere o PPO em termos de laténcia, ele oferece uma alternativa em termos
de requisitos computacionais e de hardware: o modelo nao requer um buffer de memoria
externo nem computacgao de gradiente de erro global. Além disso, as atualizagdes sinap-
ticas ocorrem online, por meio de regras de aprendizado local e um sinal de erro global.

A tese conclui apresentando limitacoes da pesquisa e sugestoes de trabalhos futuros.

Palavras-chave: aprendizagem por reforco; STDP, redes neurais de impulsos; FEAST;
ODESA.
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1 INTRODUCTION

Many of the recent advances in machine learning are inspired by nature. The present
work aims to bring closer two fields rooted in insights from neuroscience and biology:
reinforcement learning (RL) and spiking neural networks (SNNs). Reinforcement learning
is a paradigm that aims to reproduce the way animals learn (SUTTON; BARTO, 2018)). In
contrast to a supervised learning scenario, an RL agent can be trained to perform a task
without an expert teacher or clear, step-by-step knowledge of how to accomplish the goal.
It is generally enough for the agent to be able to repeat trials and to receive a reward
after a successfully executed series of actions. Note the similarity to, for instance, how a
laboratory mouse can be trained to navigate a maze with food as a reward. While the
foundations of RL were laid three decades ago (SUTTON, 1988), the advancements in deep
learning (DL) in the past decade have enabled training RL agents for increasingly more
complex tasks. Some recent examples of deep reinforcement learning (DRL) applications
include playing Atari games (MNTH et al., 2015)), learning agile and dynamic motor skills
for legged robots (HWANGBO et al., 2019)) and training robotic manipulators from scratch
(GU et al), 2017; |ANDRYCHOWICZ et al., 2020)). However, engineered systems are still far
behind their animal counterparts in the ability to quickly learn a new and complex task.
While DRL enables mastery of a specific skill on a high computational budget, nature
has evolved organisms capable of rapid adaptation and learning new skills (CULLY et al.,
2015)).

This limitation is partially due to the training process of artificial neural networks
(ANNSs), which constitute the brain of DRL agents. Training such networks usually in-
volves a large collection of examples stored in a separate memory. Furthermore, an al-
ready trained network would also typically require significantly more power than biological
brains, constraining applications on devices with embedded electronics or an otherwise
limited power supply (BING et al) 2018b).

Traditional ANNs use continuous signals to approximate an unknown function. In con-
trast, SNNs use discrete spikes and process information over time. The use of single-wire
synapses allows the implementation of SNNs in low-power neuromorphic chips, capable
of simulating up to 10® spiking neurons in real time (THAKUR et al., [2018} [FRADY et al.,
2020)). Such neuromorphic hardware is also capable of low-latency sensory response when
using appropriate sensors, such as a dynamic vision sensor (DVS) (GALLEGO et al., 2019).
An implementation based on optical hardware has been shown to further reduce latency
and improve the simulation speed of smaller spiking networks (FELDMANN et al., |2019).

SNNs can be trained using a biologically inspired algorithm known as spike-timing-
dependent plasticity (STDP). An advantage of this method is that each synapse is only

required to be aware of the spikes produced by presynaptic and postsynaptic neurons. By
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combining STDP with a global reinforcement signal (R-STDP), a spiking agent can solve

RL tasks without computing a global error gradient.

1.1 RESEARCH PROBLEM

While there have been recent advancements in spiking networks for reinforcement learning,
SNNs have not been previously shown to be on par with the state-of-the-art when solving
RL tasks in terms of speed and quality of learning. One of the challenges is a trade-
off between the biological plausibility and the complexity of the model. Spiking models
designed to mimic a brain’s functionality tend to have a higher computational cost of
simulation and, thus, not be applicable to practical problems. Even spiking networks
with simple neural models, such as Leaky Integrate-and-Fire (LIF), require additional
complexities to achieve a balanced and stable activity. Thus, in the present work, we
choose a compact model of a spiking network, aimed at a low computational cost of

simulation and eventual implementation on a hardware platform.

1.2 RESEARCH GOALS

The main objective of the present work is to propose a spiking neural network intended
to solve specific RL tasks comparably to other commonly used RL algorithms, both in

terms of speed and control efficiency.

1.2.1 Specific goals

e Propose a spiking model aimed at hardware implementation. To this end, we use
local synaptic plasticity rules that do not require global computations while also
avoiding rate-based neural models, as these can be viewed as approximations of

analog neurons and require additional complexity for implementation.

« Demonstrate competitive performance on classical RL problems when compared to

state-of-the-art non-spiking algorithms.

« Expand the range of possible applications by proposing solutions to improve state-

space scalability and learning from continuous rewards.

1.3 RESEARCH CONTRIBUTIONS

The work presented in this thesis contributes to the growing body of research on rein-
forcement learning and spiking neural networks. A set of novel neuromorphic architectures
are proposed to solve increasingly complex RL tasks. This architectures are aimed at low
memory and hardware requirements, and are compared to state-of-the-art DRL models

at benchmark tasks.
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The following works have been published or submitted for publication within the scope

of this graduate program:

e “Learning from Sparse and Delayed Rewards with a Multilayer Spiking Neural
Network” — International Joint Conference on Neural Networks (IJCNN), 2020
(CHEVTCHENKO; LUDERMIR}, 2020).

e “Combining STDP and binary networks for reinforcement learning from images and
sparse rewards” — Neural Networks 144, 496-506, 2021 (CHEVTCHENKO; LUDER-
MIR, 2021)).

o “Combining PPO and Incremental Conductance for MPPT under Dynamic Shading
and Temperature” — Applied Soft Computing 131, 109748, 2022 (CHEVTCHENKO
et al., 2022).

o “A Neuromorphic Architecture for Reinforcement Learning from Real-Valued Ob-
servations” — preprint available on arXiv (CHEVTCHENKO et al., [2023)).

1.4 THESIS OUTLINE

Chapter |2 provides a background overview of RL, the spiking neural model and reward-
based synaptic plasticity. Chapter[3|describes the first iteration of the proposed SNN. This
model uses a simplified version of reward-modulated STDP to solve two classical RL tasks
and address a scalability issue identified in related spiking models. The proposed network
is compared to a classical and a deep reinforcement learning algorithm in terms of speed
and latency. Chapter 4] evaluates a modified version of the previously proposed network in
combination with a binary feature extractor. The proposed architecture is demonstrated
to be a competitive alternative to deep reinforcement learning (DRL) in the evaluated
environment with image observations, and it provides a foundation for more complex
future applications of spiking networks. Chapter [5| proposes a neuromorphic architecture
for addressing RL tasks with real-values inputs. Finally, Chapter [6] concludes the thesis by
summarizing the main findings and contributions to the field. Additionally, this chapter
highlights the limitations of the present work and delineates possible directions for future

research.
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2 BACKGROUND

2.1 REINFORCEMENT LEARNING

The concepts of reinforcement learning presented in this section are based mainly on the
RL book by [Sutton e Barto| (2018), which should be consulted for further details.

2.1.1 Problem Formulation

A reinforcement learning (RL) problem can be described as the interaction between an
agent and its environment. At each discrete timestep ¢, the agent needs to decide on an
action a(t) to take based on its current observation of the environment, represented by
a state s(t), and the associated reward r(t). The environment processes the action a(t),
resulting in a new state s(t + 1) and a reward r(¢ 4+ 1). This process continues over time,
generating a sequence of states, actions, and rewards. This setup is illustrated in Figure
Il

A sequence of actions and state observations is called an episode. Considering and
episode with duration of ¢ steps, the goal of an agent is to find a sequence of actions
a(l),a(2),...,a(t) that maximizes the expected total rewards during an episode. The
agent also has to balance the trade-off between exploration and exploitation. Exploration
usually refers to the agent trying more random actions in order to gather information
about the environment. Exploration can also be conducted in a structured manner, where
certain areas of the state-action space are targeted. Exploitation refers to choosing actions
that are known to have produced good results in the past. Efficient learning requires
balancing these two competing demands. Typically, an agent starts taking random actions
and, as the episode progresses, the probability of taking a random action is decreased to

a minimum.

2.1.2 Markov decision process

Most RL problems are formulated within the framework of a Markov Decision Process
(MDP). An environment is considered to be Markovian if the current state observation
s(t) and action a(t) contain all the information necessary to compute the transition to the
next state s(t + 1), and predict the associated reward r(t + 1). In other words, an agent
in a Markovian environment does not need to remember previous states before s(t) in
order to determine the appropriate action a(t). As an example, consider the environment
illustrated in Figure [I} In this environment, the agent only needs to know its current
position to unambiguously decide on the next action. This is because the dynamics of
the environment depend solely on the current state and action, and not on the history

of past states and actions. It is worth noting that not all real-world environments are
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Figure 1 — An illustration of the interaction between an agent and the environment in a RL
problem
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Source: The author, 2023

Markovian, and additional techniques may be necessary to handle non-Markovian aspects
of an environment.

An MDP is defined by tuple (S, A, P, R), where S is a set of states of the environment.
In the context of the present thesis, S is assumed to be finite. In an MDP, a state s € S
contains all the relevant information required to make decisions at any given time step
t. A state transition function P(s(t + 1)|s(t),a(t)) defines the probability of transition-
ing from state s(t) to state s(t + 1) when the agent takes action a. A reward function
R(s(t),a(t),s(t+1)) defines the immediate reward r (¢t + 1) the agent receives after taking
the action a(t) in state s(t) and transitioning to state s(t + 1). A is a set of actions the
agent can take in response to the current state. As with the set of states S, A is assumed
to be finited in the present work. Additionally, a policy 7 defines a transition from states
to actions, specifying which action to take in each state. An optimal policy 7* is one that
achieves the highest possible expected return from any starting state. In other words, by
following the optimal policy the agent obtains the maximum cumulative reward over time.

Considering an agent that starts in state s and follows a specific policy 7 for future
steps, a value function V(s) is used to represent the expected cumulative discounted

reward of a state s. The value function V7 (s) for a policy 7 is defined as:

V7(s) =E, i Yr(t+k+1)

k=0

s(t) = s] , (2.1)

where E, denotes the expected value from following a policy m and ~ is the discount
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factor (0 < v < 1) that determines the relative importance of future rewards compared
to immediate rewards. If 7 is set to 0, the agent is considered “myopic” and aims only at
maximizing the immediate reward r(¢ + 1). On the other hand, taking 7 closer to 1 gives
importance to future rewards.

When the agent employs policy 7 to interact with the environment while simultane-
ously estimating its value using Equation this is considered as an on-policy method
(SUTTON; BARTO, [2018). On the other hand, off-policy methods estimate the value of
a policy different from the one being used to generate the data. A common off-policy
method is Q-learning (WATKINS, 1989)), which estimates the optimal action-value func-
tion, regardless of the policy the agent is following. This algorithm is used as a baseline
in the Chapter [3|and is described in more detail in Section [3.4.2.1]

Formally, an off-policy method uses a behavior policy u to generate behavior, while it
evaluates or improves a target policy w. The key advantage of off-policy methods is that
they can learn from a wide variety of data, including historical or exploratory actions.
However, this can result in slower convergence, as the historical data can present a higher
variance (SUTTON; BARTO), 2018)).

2.1.3 Temporal Difference Learning

Temporal Difference (TD) learning is a RL method that uses ideas from dynamic program-
ming to learn an optimal policy in an online manner. The key idea behind TD learning is
to update the value estimates based on the difference between the current value estimate
and a new, more informed estimate obtained after observing a new state and reward. This

difference is called the temporal difference error ¢:

§=r(t+1) £V (s(t+1) - V(st), (2.2)

where V' (s(t)) and V(s(t + 1)) are the value estimates for the current state and the next
state, respectively, as defined by Equation 2.1 The value function estimates are then

updated using the TD error and a learning rate 7:

V(s(t)) < V(s(t)) + no. (2.3)

In order to illustrate the above rule, consider a linear track environment. The agent
starts at position 0 and travels one unit to the right at each timestep. There is a single
reward of 4+1 at position 90 and the episode ends at position 100, when the agent is
returned to the initial coordinate. Assuming that V is initialized by zeroes, during the
first episode the TD error from Equation is 0, except at position 90. Thus, at the first
episode, the value function is updated at timestep preceding the reward. The expected
reward then propagates backwards during next episodes. This process is depicted in Figure

[2, by using learning rate 7 = 1 and the temporal difference error 6 = 0.9.
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Figure 2 — An illustration of a value function update using TD-learning without eligibility traces
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Source: The author, 2023

2.1.4 Eligibility Traces

The TD learning model described by Equations[2.2]and 2.3 performs an update to the last
visited state s(t), after calculating the error § at state s(t+ 1). In case of an environment
with a single rewarded state, such as the linear track from the previous example, this
means that a value update will be performed sparsely, leading to longer learning times.
This phenomenon is primarily due to the “temporal credit assignment problem” in TD
learning. Note that the value of a single state is updated after the first episode in Figure
2l The sparseness of the reward updates in such scenarios prevents the algorithm from
efficiently propagating the reward information back through the sequence of states.

A potential solution to overcome this limitation is through the use of eligibility traces,
a biologically inspired mechanism that allows the algorithm to update the value estimates
of not only the most recent state but all the previously visited states, proportionally to

their temporal proximity to the reward. This results in a faster propagation of the reward
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signal and value update. The value of a state s(t) is updated by a weighted TD error (t)
with the eligibility trace e(t):

V(s(t)) < V(s(t)) + ne(s,t)d, (2.4)

where e(s,t) is the eligibility trace for state s(t), n is the learning rate, and ¢ is the TD
error as per Equation 2.2 Eligibility traces decays with a factor A between 0 and 1:

e(s,t) = Xe(s,t —1). (2.5)

Note that eligibility traces can be updated using various methods, the most common
being the “replacing traces”, “dutch traces” and “accumulating traces”. In the accumulat-
ing traces method, the eligibility trace for a state increases every time the state is visited.
However, in problems where states can be visited frequently within the same episode, the
eligibility trace can become excessively large, which could lead to unstable learning.

The replacing traces method addresses this problem by setting the eligibility trace
for a visited state to 1, instead of incrementing it. This method can be more suitable
for tasks where states are frequently revisited and is used throughout the present work.
Figure |3|illustrates the value update in the linear track environment, with added replacing
traces. Note that the value update is significantly faster and smoother than by just back-
propagating the temporal difference.

The dutch traces update finds a middle ground by using a step-size parameter a:

e(s,t) = (1 —a)de(s,t — 1)+ 1. (2.6)

If the parameter « is set to zero, the dutch trace becomes equivalent to accumulating
trace. Conversely, setting o to 1 makes the equation above into replacing traces.

Besides being used in reinforcement learning, eligibility traces are extensively used in
spiking neural networks. In this context, eligibility traces act like as a distributed memory
of recent neural activity. The present work explores spiking models with eligibility traces

for feature extraction and temporal credit assignment.
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Figure 3 — A value function update on a linear track using TD-learning with eligibility traces
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Source: The author, 2023

2.2 SPIKING NEURAL NETWORKS

Spiking Neural Networks (SNNs) are a class of artificial neural networks that aim at
emulating aspects of the biological processes observed in the brain more closely than
traditional models. SNNs draw their inspiration from the fact that biological neurons do
not continuously transmit information, but instead, generate discrete spikes of activity.
This action is leveraged in SNNs where information is communicated through sequences
of spikes over time, rather than by constant real numbers as in standard neural networks.
Moreover, SNNs combine memory and processing in a way that reflects the interconnected
structure of the brain. By integrating both functions, SNNs can process and interpret
temporal information more effectively, emulating the dynamic, time-dependent aspects
of biological cognition. The following sections describe the most common spiking neural

models, synaptic plasticity and how these can be used to solve distal reward problems.
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2.2.1 Neural Models
2.2.1.1 |Integrate and Fire

The integrate and fire (IF) is a simplified and computationally efficient model of a biologi-
cal neuron. The voltage potential V,,, of the neuron depends on the membrane capacitance
C, and the input current I(¢):

AV (t)

O =22 = 1), (2.7)

For a discrete representation using Euler method for numerical integration with a time
step At, the voltage potential update is given by:
I(t
Vin(t + At) =V, () + At <(§)> : (2.8)
A spike is emitted when the voltage reaches a certain threshold value Vj,, in which

case the potential resets to Vg

Vm — V;"eset
if V,,, > Vi, then (2.9)

emit spike

2.2.1.2 Leaky Integrate and Fire

The leaky IF model introduces a “leak” term that reflects the diffusion of ions trough the
membrane (ABBOTT), |1999):
dV,

Ot = 1(t) =~ (2.10)

2.2.1.3 Izhikevich

The Izhikevich neuron model (IZHIKEVICH, |2003) is able to reproduce various firing pat-
terns observed in the nervous system, while retaining low computational complexity. The

model is described by:

d

& 0,040 + 50+ 140 — u + 1,

dt (2.11)

du (bv — u)

— =q —_

dt ’
v,

if v > 30mV, then (2.12)

U< u—+d,

where v is the potential of the neuron, u is the recovery variable, and a, b, ¢, d are constants

than can be tuned to reproduce different spiking patterns.



26

2.2.2 Spike-timing-dependent Plasticity

Training of traditional ANNs usually involves gradient descent methods. Even when used
in an RL framework, an ANN is trained through back-propagation on a sequence of
previously observed samples from the environment (MNIH et al., [2015]). While it is possible
to train SNNs using modified gradient-based optimization, this does not leverage the low-
power requirements of biological neurons (TAVANAEI et al), 2018). Instead of computing a
global gradient over all of the synapses, SNNs can employ a biologically plausible process
called spike-timing-dependent plasticity (STDP). Considering a connection w;; between

presynaptic neuron j and postsynaptic neuron i, this update is described by Equation

213k

Ay eBtm) if At > 0 (pre-before-post)
Awij = ¢ —A_e 2™ if At < 0 (post-before-pre) (2.13)
0 otherwise,

where Aw;; is the change in synaptic weight, At = €505 — tpre. A4 and A_ are positive
constants that define the maximum weight change for potentiation and depression, respec-
tively. Time constants 7, and 7_ are used for potentiation and depression, respectively.
This synaptic plasticity rule only requires each synapse to be aware of corresponding
pre- and post-synaptic neurons. STDP is illustrated in Figure 4] and can be applied to a
network of neurons. In Figure 4 (A) presynaptic neuron repeatedly causes the postsynap-
tic neuron to fire, with a small delay between two events. The pre-post activation causes
the eligibility flag to increase as a function of the delay between spikes, as illustrate in
Figure 4| (B), where the vertical axis indicates the strength of the eligibility change and
the horizontal axis relates to the time between pre and post synaptic spikes. Finally, if
a reward signal is provided after some time, the synaptic strength between pre and post
neurons is increased proportionally to the accumulated eligibility trace (Figure 4| (C)).
Additionally, STDP can be modulated by a global reward signal (R-STDP) and has been
shown to solve reinforcement learning problems without the need for explicit gradient
computation over the synapses. In the present work we focus on RL tasks with delayed
and sparse rewards, resembling how animals are rewarded with food after a successful

task completion.

2.2.3 Addressing RL Problems by Using SNNs and STDP

This final introductory section provides an overview of early works that have laid ground
to the current research in using spiking architectures to solve reinforcement learning prob-
lems.

A rule for synaptic modulation by eligibility traces called MSTDPET is proposed

by [Florian| (2007). Considering a discrete timestep of ¢ and a connection w;; between
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Figure 4 — An illustration of the reward-modulated spike-timing-dependent plasticity (R-
STDP). (A) presynaptic neuron repeatedly causes the postsynaptic neuron to fire,
with a small delay between two events. The pre-post activation causes the eligibility
flag to increase as a function of the delay between spikes (B). (C) If a reward signal
is provided after some time, the synaptic strength between pre and post neurons is
increased proportionally to the accumulated eligibility trace.
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Source: The author, 2023

presynaptic neuron j and postsynaptic neuron ¢, the synaptic weight is updated as follows:

wi;(t + 0t) = w;;(t) + yr(t + 0t) Z;;(t + 6t) (2.14)
Zii(t +6t) = Zi;(t) — Zst) Cis(t) (2.15)
Gij(t) = Py (t) filt) + Py (t) f;(t) (2.16)

P (t) = P(t — 6t)e™/™ + A, f;(t) (2.17)
Py (t) = Py(t = ot)e™™/™ + A_fi(t), (2.18)

where f;(t) is 1 when neuron ¢ fires at time ¢ and 0 otherwise. Z;;(t) is the eligibility
trace, with decay time constant 7. and instantaneous change factor ¢;;(¢). Time constants
7, and 7_ are used to modulate the decaying time of eligibility traces Pg and P;;. The
MSTDPET update ensures that if neuron i consistently fires after the neuron 5 and a
reward signal is received within a time window defined by 7., the connection between the
two neurons is strengthened over time. On the other hand, a negative reward would act
to decrease the probability of postsynaptic neuron i firing as a consequence of neuron j.
This rule is illustrated in Figure [5] by using learning rate y=0.2, 7_=7,=20ms, A;=1
and A_=-1.

A plasticity rule similar to MSTDPET is independently proposed by [Izhikevich| (2007)).
It is experimentally demonstrated to reproduce Pavlovian conditioning in a randomly

connected network of 1000 Izhikevich neurons. In this experiment, a 100 random sets of
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Figure 5 — An illustration of the MSTDPET learning rule, proposed by Florian| (2007
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Source: Adapted from (FLORIAN} 2007)

50 neurons each are selected to represent 100 different stimuli to the network. For instance,
stimuli Sy causes a predefined set of 50 neurons to fire by injecting a superthreshold current
for 1ms. A reward signal is provided with a random delay of up to 1s after stimuli Sy, as
illustrated in Figure [6(a). Note that a random sequence of other stimuli is presented to
the network between stimuli S; and the corresponding reward. Over time, the synapses
connecting to the 50 neurons representing the set S; are strengthened significantly above

the network’s average (Figure [6fc) and (d)).
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Figure 6 — An illustration of Pavlovian learning by a randomly connected network of Izhikevich
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3 LEARNING FROM SPARSE AND DELAYED REWARDS WITH A MULTI-
LAYER SPIKING NEURAL NETWORK

This chapter was originally published as a manuscript at the International Joint Confer-
ence on Neural Networks (IJCNN 2020) (CHEVTCHENKO; LUDERMIR, [2020)).

3.1 INTRODUCTION

While recent advancements in neuromorphic hardware allow energy efficient synthesis of
spiking networks, the training of such networks remains an open problem. An analysis of
related works, presented in Section[3.2] suggests that previously proposed spiking networks
for RL do not scale well with an increased number of sensors. Furthermore, the plasticity
is usually restricted to a single layer and linearly separable problems. The main goal of this
work is to present and evaluate a novel spiking architecture, overcoming the limitations
of previous models in sensory space scalability. In this work, we focus on reinforcement
learning with sparse and delayed rewards. Our SNN is evaluated on classical reinforcement
learning and control tasks and compared to two common RL algorithms: Q-learning and
deep Q-network (DQN). The proposed architecture has four distinct layers and addresses
the limitation of previous models in terms of scalability with input dimensions. Our model
is intended for future implementations on hardware. As such, we follow a strategy similar
to recent works (MOZAFARI et all, 2019; [HAZAN et al., |2018) and use simplified neural and

synaptic plasticity models, prioritizing compactness over biological realism.

3.2 RELATED WORK

Early versions of SNNs with reward-modulated plasticity are independently proposed by
Izhikevich (2007) and |Florian| (2007). In both instances, eligibility traces and STDP are
employed. In particular, Florian| (2007) demonstrate that a fully connected multilayered
network of spiking neurons can solve a temporally coded XOR problem with delayed
reward.

Potjans, Diesmann e Morrison (2011)) propose the first spiking network to implement
an actor-critic framework, a classical RL algorithm. The network’s functionality is demon-
strated on a discrete grid-world environment, where the agent is able to move in four
cardinal directions to reach a target position. Frémaux, Sprekeler e Gerstner| (2013)) also
propose a continuous time actor-critic model with temporal difference (TD) error driven
plasticity. The proposed neuromodulation is later included in a more general three-factor
learning rule in Frémaux e Gerstner| (2016). The network is evaluated on a larger grid-
world task with obstacles, as well as two control tasks, including an acrobot. It should be

noted that both |Potjans, Diesmann e Morrison| (2011) and Frémaux, Sprekeler e Gerstner
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(2013) implemented a spiking network with no hidden layers. Thus, each neuron in the
input layer, also called place neurons, is used to encode a specific state of the environment.
For instance, in order to keep the acrobot problem computationally tractable and limit
the number of input neurons, Frémaux, Sprekeler e Gerstner| (2013)) uses a custom encod-
ing to reduce the dimensionality of the environment and limit the resolution per sensor.
Despite this, the number of place neurons still reaches 11,025 for a four-dimensional state
space. The present work proposes a novel architecture that does not significantly increase
the number of neurons for higher dimensional problems. For instance, 60 input neurons
is enough for an acrobot task with six-dimensional observations.

Nakano et al.| (2015) tackle the input dimensionality problem by proposing an SNN
version of a restricted Boltzmann machine (RBM) with memory. The network is able
to navigate on a T-maze by using visual cues from 28x28 binary images. While this
approach is successful on a high dimensional task, the network is previously trained for
visual processing in a supervised manner. Thus it is unclear whether such an architecture
could be applied to high dimensional control problems and continuous learning.

Rueckert et al.| (2016) introduce an SNN with a model-based RL, including separate
state and context neural populations. While this network is able to solve planning tasks, it
is still limited to a few input dimensions. A related, but more scalable learning rule through
imitation is introduced by [Tanneberg et al. (2016]). The present work draws inspiration
from the models proposed by Rueckert et al.| (2016) and [Tanneberg et al. (2016)), while
maintaining the reinforcement learning paradigm and introducing a population coding
that can be scaled well to more than four dimensions.

Wilson et al.| (2017) evaluate different versions of R-STDP with randomly connected
Izhikevich neurons, introducing variable dopamine concentration over time and space.
The network is trained for locomotion of virtual aquatic animals and is distributed over
the agent’s body. Variable spatio-temporal dopamine concentration seems to significantly
outperform standard R-STDP (IZHIKEVICH, 2007). The network is trained with a sparse
reward signal, although continuous reward is also evaluated with less success. A trained
network is able to correlate the input stimulus with output neurons in order to maximize
motion speed. In order to induce movement of the animat’s body, the input of the network
is a set of fixed periodic signals, without sensory information.

Bing et al|(2018a) show that R-STDP outperforms other state-of-the-art algorithms
based on SNNs for a line-following robotic task. A similar but multilayered SNN model is
demonstrated on a virtual snake robot in (BING et al, |2019), outperforming a single-layer
counterpart. In both works, the reward signal is continuously provided for correction and
the learning process is not aimed at distal rewards, i.e. that are temporally distant from
the actions that led to them.

The power consumption advantage of neuromorphic hardware is demonstrated by
Wunderlich et al.| (2019), where a small spiking network with R-STDP learns to play a
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pong game on a BrainScaleS 2 neuromorphic system. As with the previous related works,
the input layer is used to encode all of the system’s states.

A synaptic plasticity rule with two types of synapses is proposed by Yuan et al.| (2019)).
This rule is intended to better approximate the biological plasticity mechanisms and
involves stochastic and deterministic synapses. While it is a novel learning rule, providing

insight into how the brain performs RL, the scalability of the neural architecture is not
addressed.

3.3 PROPOSED SPIKING NETWORK

A diagram of the proposed SNN is shown in Figure[7] In this setup there are three neurons
per dimension (ngy = 3) and the agent chooses between four possible actions. For legibility,
only the connections from active input neurons are shown. The illustrated environment
is a 3x3 grid and the agent receives positional information from two sensors. The input
layer contains N; = ng X ng neurons, where a group of ny neurons is used to encode signal
intensity from each of ng sensors in a one-hot configuration. This way, the input layer
produces ng spikes at any given timestep. Four discrete actions are possible, representing
movement in each cardinal direction. Due to winner take all (WTA) activation, a single
action neuron is selected each timestep to produce a spike. The following sections describe

in more details the neural model and the structure of the proposed network.

3.3.1 Neural Model

Except for the input layer, the neural model is a stochastic leaky integrate-and-fire (LIF).
The neuron accumulates a charge from pre-synaptic spikes and emits a spike to post-
synaptic neurons when the internal potential reaches a threshold. Throughout this thesis,
j is used to refer to the pre-synaptic neuron and ¢ is used for the post-synaptic one. A

discrete-time update rule for the potential of the neuron i is

m
where v;(t) is the potential of neuron i, 7,,, is the membrane discharge time constant and
&i(t) is the Gaussian noise. This noise is centered at zero with 0.2 standard deviation
and applied only to neurons in Place and Qutput layers. This parameter was adjusted
during initial experiments, where it was verified that very low noise level would make the
network converge faster to a sub-optimal policy. On the other hand, a larger noise level
would result in an overly random behavior and slower convergence. The term w,;s;(t —1)
is the potential induced in neuron ¢ from pre-synaptic spike by neuron j, weighted by the

synaptic efficacy between neurons ¢ and j.
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Figure 7 — Diagram of the proposed spiking network. In this setup there are three neurons per
dimension (ng = 3) and the agent chooses between four possible actions. For legibility,
only the connections from active input neurons are shown.
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3.3.2 Synaptic Plasticity

The following is a simplified version of the reward-modulated STDP plasticity rule in-
troduced by Florian (FLORIAN, 2007). When post-synaptic neuron i fires, the eligibility
trace Z;; is set to the value of the pre-synaptic trace P_, decaying exponentially with a
time constant 7.:

Zii(t—1

(3.2)
Te

The change in synaptic efficacy between two neurons depends on pre-synaptic and post-

synaptic spike times, as well as on the reward signal

wM (t — 1)

w;i(t) = wyi(t —1) — +nr(t) Zii(t), (3.3)

Ts
where 7, is the synaptic tag discharge time constant and 7 is the learning rate. Note that
both 7. and 7, are defined as larger than 1. The reward signal r(t) is broadcasted to all
plastic synapses. The rule in Equation is illustrated in Figure [§] Presynaptic trace P_
is used to indicate that neuron j has produced a spike on the previous time step. Spiking
of the postsynaptic neuron ¢ triggers an update of the eligibility trace Z;;. Subsequent
broadcast of the reward signal r prompts an update to the synaptic efficacy w;,. Note
that the time constants 7. and 7, are adjusted according to the expected duration of an

episode for a specific task.
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Figure 8 — The synaptic plasticity model. Presynaptic trace P- is used to indicate that neuron
j has produced a spike on the previous time step. Spiking of the postsynaptic neuron
i (f(7)) triggers an update of the eligibility trace Z;;. Subsequent broadcast of the
reward signal r prompts an update to the synaptic efficacy w; ;
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Source: The author, 2023

3.3.3 Hidden Layer

The hidden layer allows the network to solve problems that are not linearly separable in
the feature space. This layer contains Nj, neurons. Each neuron in the input layer sends n,
excitatory and n_ inhibitory synapses to randomly chosen neurons in the hidden layer. For
example, in Figure [7|each input neuron sends two excitatory and two inhibitory synapses.
In other words, input and hidden layers are sparsely connected with NV; x (ny + n_)
synapses, where ny and n_ are much smaller than N,. In the experiments presented in
this work the weights of these synapses are kept constant (+1 or —1) and are not subject

to modulation by reward.

3.3.4 Place Neurons

This layer is inspired by the neuronal activity of the hippocampus and represents the
position of the agent in the sensory space (O’KEEFE; NADEL, 1978). In some of the related
works it is also the input layer and fully describes the state of the system. In the proposed
model there are N, neurons, which is much smaller than the number of all possible input
states (n;*). Thus, unlike in previous works, place neurons do not encode all possible
positions in the sensory space, but rather the ones that the agent has visited leading to a
reward. An intuitive and experimentally supported (MAMAD et al., 2017)) reasoning is that
we expect an animal in a labyrinth to better remember a path that leads to successive
rewards rather than other available routes. The hidden layer and place neurons are fully
connected with plastic synapses, following the update rule from Equation [3.3] with pre-
synaptic trace P_ resetting to —n,. While a number of hidden neurons can produce a
spike at each time step, only the place neuron with the highest potential sends a spike
to the output layer. This is similar to lateral inhibition found in [Frémaux, Sprekeler e

Gerstner| (2013)) or a global max-pooling layer in Mozafari et al.| (2019) and increases the
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robustness of the learning process.

3.3.5 Output Layer

The output layer in the proposed architecture is very similar to previous works, such as
Potjans, Diesmann e Morrison (2011)), Frémaux e Gerstner| (2016)), Bing et al.| (2018al)
and has N, neurons, each representing a possible discrete action. As in the place layer, in
order to ensure a single action choice only the neuron with highest potential is allowed to
spike at each time step.

The synapses coming to this layer are subject to the same learning rule as in the
previous layer. An intuitive explanation is as follows. Suppose that the agent visits a
number of states, performing an action choice at each state. This is translated to corre-
sponding place and action neurons producing a spike. As described by Equation the
synapses between these neurons will be tagged by the eligibility trace Z;; and gradually
discharge at rate 7.. When a state transition leads to a reward, the synaptic weight will
be increased proportionally to the eligibility trace, following Equation 3.3 In other words,
state-action choices that happened closer to the reward signal become more likely to occur
in the future trials. Over time, more distant choices also become increasingly likely as the
corresponding synaptic weights are successively increased.

Exploration/exploitation balance is also important for a successful learning. Typically
the agent starts randomly exploring the environment until a reward is provided. Over
time, as the plastic connections between hidden, place and action layers are reinforced,
the choice of actions becomes more deterministic. Thus, a policy is learned and exploited
by successive trials. A minimum random choice of action is used to ensure some level of
exploration even after multiple rewarded trials. The experiments described in Section

use a constant 2% random action probability.

3.4 EXPERIMENTS

3.4.1 Setup

The proposed model is compared against baseline algorithms on two simulated tasks:
maze and acrobot. Both environments provide a sparse and binary reward upon success-
fully reaching the goal state, but require different capabilities from the agent. A detailed

description of these environments is provided below.

3.41.1 Maze task

The Morris water-maze is a classical neuroscience experiment, in which a mouse swims
in a pool with opaque water, looking for a submerged platform. Variations of this task
are found in several related works, such as (POTJANS; DIESMANN; MORRISON, [2011)) and
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(FREMAUX; SPREKELER; GERSTNER), [2013). This environment is illustrated in Figure [9
Only the state in the center is rewarded (41). The agent (A) starts in the upper-left
corner and can move in four cardinal directions. Collisions with the U-shaped wall or
with the borders of the maze are not penalized but will make the agent return to the
previous position. In order to learn the task, an agent has to perform a long sequence of
discrete actions and reach a goal that comprises 0.04% of all possible states in a 50x50

maze. A binary reward is received upon reaching the target position.

Figure 9 — Illustration of the maze task. Only the state in the center is rewarded (+1). The
agent (A) starts in the upper-left corner and can move in four cardinal directions.
Collisions with the U-shaped wall or with the borders of the maze are not penalized
but will make the agent return to the previous position

1
« A
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Source: The author, 2023

Preliminary experiments were also conducted with variations of this task, such as
different maze sizes, no walls and up to 5 dimensions. The proposed SNN performed well
in these exploratory experiments and the limiting factor seemed to be the probability
of randomly finding the target, which becomes exponentially harder as the number of
dimensions is increased. As described in the following section, the acrobot environment is

more suitable to evaluate scalability with higher dimensional observations.

3.4.1.2 Acrobot

In order to demonstrate control over a higher and more dynamic state space, we turn
to another classical problem in RL literature. The setup is illustrated in Figure [10] and
the goal is to lift the tip of the robot to a certain level. The environment provides sine
and cosine of both joint angles, as well as the respective angular velocities, making a

total of six state dimensions. The second joint is weakly actuated and the system includes
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gravitational pull. To solve this task, the agent has to consistently swing the actuated
joint, building up the energy. In contrast with the maze, the acrobot problem does not
have a single target state, but the search is performed over a higher, six-dimensional state
space. In order to encourage policies that reduce the time it takes to reach the target
state, the agent receives a binary reward signal when the target is reached with lower
latency than the last 100 trials. This environment is equivalent to the one provided by
OpenAl Gym (BROCKMAN et al., 2016), except for the reward policy, which is modified

to be binary and sparse.

Figure 10 — Illustration of the acrobot task

Episode termination

Source: The author, 2023

3.4.2 Baseline Models

As seen in Section [3.2] existing spiking architectures would require an impractical number
of state neurons for control tasks with more than four sensors. Thus, the proposed archi-
tecture is compared to Q-learning (WATKINS| 1989)), a classical RL algorithm, as well as
its more recent variation, Deep Q@ Network (DQN) (MNIH et al., [2015)), both described in

Sections [3.4.2.1] and [3.4.2.2] It is worth noting that the present work is not intended as

an advance in general reinforcement learning. A competitive comparison between spiking
and state-of-the-art neural networks for RL is left for future works and should include a

multiobjective analysis of performance as well as memory and power requirements.

3421 Q-learning

This is a classical model-free RL algorithm, proposed by |Watking| (1989), itself derived
from temporal difference (TD) learning (SUTTON, |1988)). An agent tries an action a; at a
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state sy, following a transition to a new state s;.; and a reward r. By trying actions in
different states, the agent eventually can learn which state-action tuples are more likely to
lead to a future reward. The estimation of this likelihood is stored in a Q-table Q(s;, a;).

The update is performed after the transition to the state s;,; as follows:

Q(s1,at) = Q(s1,ar) + n(r + YQmax(St41) — Q(5¢, 1)), (3.4)

where 7 is the learning rate, v is the discount factor and Quax(si11) is the maximum
Q-value at the state s, 1. The Q-table is randomly initialized with a uniform distribution
between -1 and 1. To induce exploration, the selected action is not always determined by

its value:

argmax (s, a;), with probability e
ay = i (35)
random, with probability 1 — €,

where € is the exploration probability. A common strategy is to start learning with a high

value of € and gradually decrease it to a small baseline.

3.422 DQN

The traditional Q-learning algorithm works well with a limited number of states and ac-
tions, but as demonstrated in Section [3.4.4] becomes inefficient for problems with multiple
dimensions. One common solution is to replace a Q-table, representing all possible states
and actions, with a parameterized function 6, such as a neural network: Q(s;, as;8;).

Then, the update rule in the Equation [3.4] becomes:

0111 =0+ 77(YtQ — Q(5¢,a4;0:)) Vo, Q(5¢,a1; 6¢) (3.6)
Y;‘/Q =r+ ’YQmaX(St—&—l; Ot)a (37)

where Y;Q is a target value for Q(s;, a;; 8;), representing expected value from taking action
a; on state s;.

The deep Q network (DQN) algorithm, proposed by [Mnih et al.| (2015), introduces
two new techniques that significantly improve learning: periodic target network update
and experience replay. This way the target value YtQ is computed with an offline copy of
the parameters 6;, which is updated every 7, steps. The online neural network is trained
through gradient descent using batches, sampled from a large memory bank of observed
(8¢, at, 7, S¢+1) transitions.

It is worth pointing to a distinction between Q-learning and the DQN algorithms.
While both Q-learning and the proposed spiking network learn from discrete inputs, DQN

uses a multilayer perceptron to approximate the Q-function. On the maze task, this means



39

Table 1 — Q-learning hyperparameters search space

Hyperparameter Search Space

Learning rate 7 [0.01, 0.1, 0.2, 0.5]
Discount factor ~ [0.5, 0.8, 0.9, 0.95, 0.99]

Exploration fraction [0.01, 0.1, 0.2, 0.5]
Source: The author, 2023

that DQN would receive as an input the XY coordinates of the agent. A discrete one-hot
encoding could also be used, as with the proposed spiking architecture. However, the
latter approach greatly increases the number of input neurons, slowing down the learning
process significantly. On the other hand, when using two neurons as an input for XY
coordinates, a large maze would require pinpoint accuracy for the agent not to miss the
relatively small target area (0.04% of a 50x50 maze). In both encoding methods, albeit
for different reasons, DQN was found to struggle to find a path in the maze environment
larger than 10 x 10. Because Q-learning is a classical baseline for low dimensional tasks,
DQN was used as a baseline for the acrobot environment only, where it outperforms

Q-learning.

3.4.3 Hyperparameters

Hyperparameter selection is an important part of training a model and usually has signifi-
cant influence on performance. A grid search over all possible combinations of parameters
is often impractical due to the computational cost of a single simulation. Manual tuning is
a viable alternative but it is often not better than performing random trials (BERGSTRA et
al., 2011)). Thus, in order to ensure a fair comparison, the hyperparameters of the baseline
algorithms are optimized. Note that the proposed spiking network is adjusted manually
and optimization is left for future works.

Considering the large number of parameters and the high computational cost per eval-
uation, automatic hyperparameter search is often preferred. In the present work we employ
a commonly used Tree-of-Parzen-Estimators (TPE) algorithm, introduced by Bergstra et
al| (2011). The hyperparameters are iteratively evaluated and optimized to minimize a
cost function. For both the maze and acrobot tasks the cost function is the area under
the latency curve of a trial (see Figures [11] and [13).

The hyperparameter search spaces for the Q-learning and DQN algorithms are de-
scribed in Tables [I] and [2] The exploration fraction refers to the portion of the total
number of trials that the exploration factor takes to decrease linearly from initial 100% to
a baseline of 2%. The search space is based on values commonly found in related literature,
as well as on preliminary experiments.

The optimization algorithm is executed for a minimum of 100 trials and the evaluation
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Table 2 — DQN hyperparameters search space.

Hyperparameter

Search Space

Learning rate n

le-6, le-5, le-4, le-3]

Discount factor v

0.9, 0.95, 0.99, 1.0]

Exploration fraction 0.1, 0.2, 0.5]
Activation function relu, sigmoid, tanh]
Number of hidden layers

Neurons per hidden layer [16, 32, 64, 128, 256]
Optimizer GD, Adam]

1000, 10000, 50000]

Mini-batch size 16, 32, 64, 128, 256]

Update period 7, (steps)  [500, 1000, 2000]
Source: The author, 2023

Replay buffer size

[
[
[
[
1, 2]
[
[
[
[

is terminated when no better configuration is proposed in the last 50 iterations. Each
optimization trial contains 1,000 episodes for the maze task and 2,000 episodes for the
acrobot task. The final configurations for each algorithm are listed below.

Q-learning is used as a baseline for both maze and acrobot tasks:
» Learning rate 7 — maze/acrobot: 0.2

o Discount factor v — maze: 0.95, acrobot: 0.9

« Exploration fraction — maze/acrobot: 0.1

The DQN algorithm is optimized on the acrobot task. We also evaluate the default
parameters provided by OpenAl Baselines (DHARIWAL et al., 2017)), shown in parentheses:

o Learning rate n — le-3 (5e-4)

« Discount factor v — 0.95 (1.0)

« Exploration fraction — 0.1
 Activation function — relu (tanh)

o Number of hidden layers — 2 (1)

« Neurons per hidden layer — 256 (64)
o Optimizer — Adam

o Replay buffer size — 50000

 Mini-batch size — 256 (32)
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Table 3 — Hyperparameters of the proposed SNN

Hyperparameter Maze Acrobot

# of input neurons N; 100 60
# of hidden neurons N, 300 300
# of place neurons N, 300 500
# of output neurons N, 4 3

Input-hidden n, and n_ 15 15
Hidden-place 7, 65 102
Hidden-place 7, 108 10°
Place-action 7, 20 65
Place-action 7, 10° 10?

Source: The author, 2023

 Update period 7, — 500 (1000)

The manually adjusted parameters of the proposed SNN are presented in Table [3|

3.4.4 Results

The proposed spiking network and the Q-learning algorithm are evaluated on the 50x50
maze task, described in Section We measure the latency of each agent — the
number of steps it takes to reach the target state. Figure [11] shows the average latency as
a function of episodes. Shaded region is the standard deviation over 10 trials. The latency
is averaged continuously with a running window of 100 episodes. An episode is terminated
if the agent reaches the goal state or performs over 2,500 actions. A trial comprises the
training of a single agent over 2,000 episodes and the presented curves are an average of
10 trials.

As seen in Figure[11] the agent controlled by our multilayer SNN takes longer than Q-
learning to start exploiting a policy, although both reach a stable latency at about 1,300
episodes. This result contrasts with previous works, where single layer spiking networks
achieved similar latency decay to TD learning (POTJANS; DIESMANN; MORRISON, 2011])
(FREMAUX; SPREKELER; GERSTNER, [2013)). A possible explanation is that while the single
layer networks implement a spiking version of TD learning, our network follows a different
approach and relies on synaptic traces for temporal back-propagation.

Additionally, the proposed network has more layers and synapses that are subject to
modulation by reward. While this slows down learning, the spiking network is ultimately
able to learn the necessary series of actions to increase reward incidence and reduce
latency. A sample path is illustrated in Figure [I2] Color codes correspond to episodes

from the same trial.
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Figure 11 — Average latency on the maze task. Shaded region is the standard deviation over 10
trials
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We now evaluate the proposed SNN, Q-learning and the deep Q network on the acrobot
problem. This task requires accurate control over a 6 dimensional observation space, as
described in Section [3.4.1.2] While DQN networks are trained on continuous input from
the six sensors, both Q-learning and SNN receive a discrete input with 10 levels for each
sensor, i.e. a 10° state space. The discrete control output is the same for all agents —
apply left, right or no torque.

Despite this being a more challenging task, our SNN agent is able to learn a control
strategy, as shown in Figure Shaded region is the standard deviation over 10 trials.
Standard deviation is high for the default DQN and is not shown for readability. As in
the maze task, the presented latency is averaged over 100 episodes. The termination of a
single episode is achieved after 500 steps or when the acrobot is able to reach the target
height, illustrated in Figure [0} As this is a more difficult task, a trial lasts for 10,000
episodes.

An analysis of Figure shows that Q-learning is unable to find efficient control
strategies. This is expected, as on this task the Q-table has 3 x 10° entries, accounting
for all possible state-action combinations. Executing the algorithm for significantly longer
(100,000 episodes) also does not improve the average latency. On the other hand, the
proposed SNN is able to bring the average latency down to about 300 steps. An example

of a successful episode is shown in Figure [I4 The agent reaches the goal height in the
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Figure 12 — Sample paths followed by an SNN on the maze task. Color codes correspond to
episodes from the same trial.
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final step. A video sample is available at <https://youtu.be/rbBZMZ4hb_o>.

Note that both Q-learning and the SNN perform control over the same discrete space.
Surprisingly, the default configuration of DQN struggles to learn a stable controller, al-
though at times it can reach better solutions on average than the SNN agent. The DQN
with optimized hyperparameters is more stable than default version and learns faster than

other agents, although it is still less stable than the spiking network.


https://youtu.be/r5BZMZ4hb_o
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Figure 13 — Average latency on the acrobot task. Shaded region is the standard deviation over
10 trials. Standard deviation is high for the default DQN and is not shown for

readability.
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Figure 14 — Time-lapse of a successful episode with the SNN controller. The agent reaches the
goal height in the final step

a) b)

Source: The author, 2023
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3.5 CONCLUSION

The present work advances the field by presenting a new spiking architecture that over-
comes a limitation of previous models in terms of sensory space scalability. Additionally,
the proposed network is aimed for implementation on neuromorphic hardware by using
sparse connectivity and simplified neural and plasticity models.

Experimental evaluation shows that our SNN outperforms traditional Q-learning on
an acrobot task with six-dimensional observations, using 60 input and 800 hidden neurons.
Such task would require 10 input neurons in the previously proposed models (POTJANS;
DIESMANN; MORRISON], 2011; FREMAUX; SPREKELER; GERSTNER/, 2013; FREMAUX; GER-
STNER, 2016} WILSON et al., [2017). While an optimized deep Q-network is able to find
better solutions on this task, the spiking controller is more stable and does not require a
large memory bank. This makes it an efficient solution particularly for systems with mem-
ory and energy constraints. It is also worth noting that our network is trained through
simplified STDP instead of gradient descent, which improves potential energy require-
ments (WUNDERLICH et al., 2019)).
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4 COMBINING STDP AND BINARY NETWORKS FOR REINFORCEMENT
LEARNING FROM IMAGES AND SPARSE REWARDS

This chapter was originally published as a manuscript at Neural Networks (CHEVTCHENKO;
LUDERMIR, 2021)).

4.1 INTRODUCTION

In the previous chapter, we introduced a simple network that used a discrete binary
vector with sparse activations for input encoding. For instance, in the case of the acrobot
environment, we utilized six input dimensions, encoding them using ten distinct bins.
This ensured that precisely 10% of the input neurons are active at any given timestep.
However, this approach has its limitations when dealing with denser input signals.

This chapter explores the impact of connectivity and synaptic parameters between the
input and hidden layers on the network’s capacity to learn a policy from more complex
inputs. To achieve this, we employ a pre-trained binary Convolutional Neural Network
(CNN) to extract features from naturalistic images. The derived dense feature vector is
then integrated with an SNN, which is trained online through reward-modulated STDP.

The spiking network is an extension of its previous version, with improvements in
architecture and dynamics to address a more challenging task. We focus on extensive
experimental evaluation of the proposed model with optimized state-of-the-art baselines,
namely proximal policy optimization (PPO) and deep Q network (DQN). The models are
compared on a grid-world environment with high dimensional observations, consisting of
RGB images with up to 256 x256 pixels. The experimental results show that the proposed
architecture can be a competitive alternative to deep reinforcement learning (DRL) in the
evaluated environment and provide a foundation for more complex future applications of
spiking networks.

The remaining of this chapter is organized as follows. Related works are presented in
Section [4.2] Section [4.3] provides a detailed description of the proposed model. Section
discusses the experimental setup and presents the results of our study. Finally, Section

[4.5] concludes the chapter and outlines potential avenues for future research.

4.2 RELATED WORKS

The problem of training SNNs from images with delayed rewards is previously addressed
by Nakano et al. (2015)) with a spiking version of a free-energy-based RL model (OTSUKA;
YOSHIMOTO; DOYA, 2010). A T-maze environment is used to validate the proposed model
with visual cues consisting of 28 x28 binary images from the MNIST dataset. The present

work is evaluated on a more challenging version of this task, using RGB images with up
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to 256 x256 pixels. Inspired by Nakano et al. (2015]), we also evaluate a pre-trained binary
CNN as a feature extractor. However, this network is trained on a different set of images
from the ones presented in the testing environment.

Wunderlich et al. (2019) make a small spiking network with R-STDP learn to play
a simplified version of an Atari pong game on a BrainScaleS 2 neuromorphic system.
The main objective of this work is to demonstrate the power consumption advantage of
neuromorphic hardware and the presented architecture has similar scalability limitations
of previous works.

Kaiser et al. (2019) propose a framework for neural simulation that interacts with
robotic models. A previously proposed synaptic plasticity rule SPORE (KAPPEL et al.,
2018)) is evaluated on ball balancing and line following tasks, with observations provided by
a small number of visual neurons (16x16 and 16x4 respectively). The authors show that
gradually decreasing learning rate over time improves the performance of the algorithm.
This work provides an important contribution to joining the fields of robotics and spiking
networks. However, the framework is aimed at simulating biologically realistic neurons
and synapses, without demonstrating competitive performance in comparison with deep
learning methods. While biological realism is not an obvious impediment to state-of-the-
art performance, in the present work we choose to focus on comparing the proposed model
with modern DRL algorithms (MNIH et al., 2015; SCHULMAN et al., 2017)).

A hybrid approach to training SNNs is recently explored by Tang, Kumar e Michmizos
(2020). In this work, training of a spiking actor is assisted by a deep learning critic, using
the DDPG algorithm (LILLICRAP et al) [2015)). Thus, when a critic network successfully
approximates the reward function of the environment, the spiking actor can be efficiently
deployed on a robot. The joint training is optimized and shown to be more effective on
the test environment than DDPG alone and DDPG-to-spiking conversion methods. On
the other hand, another recent work by [Bing et al.| (2020) compares a spiking network,
trained via R-STDP, to DQN-to-spiking conversion. On the evaluated lane following task,
the R-STDP is shown to be more effective than DQN converted to a spiking network
after training. Similarly, in the current work we combine a pre-trained binary CNN with
a spiking model trained via R-STDP and show it to be competitive against PPO and
DQN algorithms.

A learning rule called e-prop is proposed by Bellec et al.| (2020) and applied to a
recurrent spiking network. This rule is shown to approximate the performance of an
LSTM network trained via backpropagation through time on two discrete Atari games.
This is a promising method and it is worth noting that the spiking recurrent network is
trained online, receiving only the current frame at each step. However, the results are not
directly compared to DRL alternatives and speed of learning is not addressed. Similarly
to the present work, the temporal parameters related to eligibility traces are gradually

increased during simulation. The current work is focused on demonstrating competitive
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performance on both speed and quality of learning, comparing our approach to optimized
state-of-the-art RL algorithms. In the future we intend to explore recurrent connectivity
as well as online training of a convolutional spiking network, both present in Bellec et al.
(2020)).

Independently from Bellec et al.| (2020), Chung e Kozma (2020) propose an STDP-
based learning rule for a spiking network with feedback modulation. The learning rule
is based on rate of firing instead of individual spikes. While this network is shown to
be able to solve two classical control problems, the performance is comparable to an
online actor-critic agent from Sutton e Barto (2018). In a previous work (CHEVTCHENKO;
LUDERMIR}, 2020), we have shown that the proposed spiking model can achieve comparable
performance to the DQN algorithm on a similar control task to the one found in (Chung e
Kozma, (2020). However, an optimized DQN is shown to find better control policies than
the spiking model. Thus, we dedicate special attention to optimization of hyperparameters
for baseline models in this chapter, as this can have a significant impact on performance
(ENGSTROM et al, |2019).

4.3 THE PROPOSED NETWORK

The proposed model is based on a previously introduced architecture (CHEVTCHENKO; LU-
DERMIR), 2020). The main components of the network and its interaction with the environ-
ment are illustrated in Figure[15] Some active neurons are highlighted in this illustration.
Observations from the environment are processed by a feature extraction network. Input
and hidden layers are sparsely connected with static inhibitory and excitatory synapses,
while the next layers are fully connected with plastic synapses. A winner-take-all (WTA)
activation is used in the place and action layers. The agent-environment interaction is
done in a cyclic manner. At each step, the environment is modified by the agent’s action
and provides a new observation, as well as a scalar reward signal when appropriate. The

following sections describe in more details the structure and dynamics of the model.

4.3.1 Neural model

The spiking model used in this work is analogous to the integrate-and-fire (IF) model,
without leakage and refractory period. The internal potential of the neuron is a weighted
sum of presynaptic spikes with added noise. If the internal potential reaches a certain
threshold, the neuron emits a single spike and resets it’s potential. Our model is sim-
ulated with a custom code instead of an existing software for spiking neurons. Thus,
by prioritizing ease of simulation and implementation on hardware, we do not use bio-
logically realistic parameters. Consequently, the parameters presented in this work are

unitless, although a physical dimension can be assigned.
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Figure 15 — Diagram of the proposed model. Some active neurons are highlighted in this illus-
tration. Observations from the environment are processed by a feature extraction
network. Input and hidden layers are sparsely connected with static inhibitory and
excitatory synapses, while the next layers are fully connected with plastic synapses.
A winner-take-all (WTA) activation is used in the place and action layers
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The neuron accumulates a charge from presynaptic spikes and emits a spike to postsy-
naptic neurons when the internal potential reaches a threshold. Throughout this chapter,
j and 7 are used to refer to the presynaptic and postsynaptic neurons, respectively. A

discrete-time update rule of neuron 7 is as follows:

vi(t) = vt — 1) +&(t,00) + ij,isj (1), (4.1)

where v;(t) is the potential of neuron ¢ and &;(t) is a Gaussian noise. The noise is centered
at zero with o, standard deviation and applied only to neurons in place and output layers.
The activation of the presynaptic neuron is a binary variable s;. The term w;;s;(t — 1)
is the potential induced in neuron ¢ from presynaptic spike by neuron j, weighted by the
synaptic efficacy between neurons i and j. Other layer-specific parameters are described

in the next sections.

4.3.2 Feature extraction network

In the previous work, the spiking network is shown to learn RL tasks from sparse inputs
with up to six sensors in a one-hot discretization method (CHEVTCHENKO; LUDERMIR,

2020). While this encoding is effective for a small number of analog sensors, it results
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in an impractically large input layer when dealing with higher dimensional inputs, such
as images. For instance, a 128x128 RBG image with a 10-bit one-hot encoding would
require 491,520 input neurons. In order to overcome this limitation, a convolutional neu-
ral network is used as a feature extractor. A binary CNN (COURBARIAUX et al., 2016)
is evaluated in the present work. Note that with an appropriate binarization method,
any feature extractor could be used in this step. However, a binary network offers two
appealing advantages when combined with an SNN. First, a pre-trained binary CNN can
be at least as power-efficient as a spiking network. Second, any layer of a binary network
can simply become the input layer of an SNN, where ‘1’ indicates a spike. In the present
implementation, a ‘-1’ activation is considered an absence of a spike in the corresponding
input neuron. Thus, no analog-to-digital conversion is required, as would be the case with
a standard CNN, resulting in a larger input layer or time-based encoding. It is worth
noting that a custom hardware would be required to simultaneously exploit benefits of
both spiking and binary networks. The hybrid model presented in this chapter could al-
low a more compact implementation of the stateless feature extraction and input-hidden
neurons, where synaptic traces are not used.

An illustration of the binary convolutional architecture used in this work is provided
in Figure [16| Differently from a traditional supervised learning scenario, this network is
trained on a small number of randomly chosen images. This speeds up training, as the
network does not have to learn how to categorize different images into classes. Instead,
the convolutional filters are trained to discriminate between a random set of 100 images.
The hidden fully connected layer with 128 neurons is used as an input for the spiking
network. Note that the feature extraction network is trained on a separate class of images
from what is used as observations in the RL environment. More details on the dataset
partition are provided in Section [£.4.1]

Figure 16 — A diagram of the binary CNN used as a feature extractor. The network is pre-trained
on a small set of randomly selected images
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The training of a binary network as a feature extractor can be summarized in the
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following steps:
1. Select a random subset of 100 images for training.
2. Create a binary network with 100 output neurons.
3. Train the network as a classification problem with 100 categories until convergence.
4. Save the trained model, discarding the last layer.

The implementation of this network is largely based on the one provided in the Fast
Machine Learning Lab repository (KREIS; HOANG; DUARTE, 2020)) and is included in the
sample code (See[A|for supplementary materials). An Adam optimizer is used with default
parameters. The model is trained during 1000 epochs and the learning rate decays linearly
from 1072 at the start of training to 10=% at the end.

The trained feature extractor has 128 output neurons, each binary neuron producing
a +1 or -1 activation. In the present work a -1 is considered as an absence of a spike in
the input layer of the SNN. It is also possible to use a pair of inhibitory and excitatory
neurons in the input layer. In this case, a -1 or +1 activation would produce a spike in the
corresponding inhibitory or excitatory neurons. However, this approach is not evaluated

in the experiments as it would double the number of neurons in the input layer.

4.3.3 Input and hidden layers

These first two layers are functionally similar to layers in a fully connected binary neural
network and have static weights. The purpose of the hidden layer is to allow the network
to solve problems that would not be linearly separable in the feature space, mapping the
input signal to a sparse representation with a reduced overlap. A biological inspiration
behind this type of connectivity can be found, for instance, in a drosophila mushroom
body (ZHANG et al., [2013). More specifically, a sparse connectivity between the antennal
lobe (AL) and the mushroom body (MB) is shown to decrease overlap between similar
signals and improve discrimination capability (see Section 2.6 in |Zhang et al.| (2013)) for
more details).

In the present work, we evaluate how different connectivity patterns affect the net-
work’s ability to learn, i.e. to produce a sequence of actions that increase the probability
of reaching a rewarded state. Details on these experiments are given in Section
Notably, a simple random and sparse connectivity that was used in the previous work is
not the best option when the number of input neurons is increased. See Section
for experimental comparison between different connectivity schemes.

Considering a network with N; and N}, input and hidden neurons, the connectivity

from each input to multiple hidden neurons is parametrized in the following manner:
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e n, and n_ — number of excitatory and inhibitory synapses, expressed as a percentage
of N h-

e a, and a_ — amplitude of connectivity. A value close to 0 means that the input
neuron will make connections only to closest neurons in the hidden layer. A value

of 1 corresponds to random connectivity to any neuron in the next layer.

Excitatory and inhibitory synapses have a static weight of +1 and -1, respectively. A
sample of connectivity patterns that can be encoded by the above parameters is presented
in Figure [I7} Note that the input pattern produced by the feature extraction network
is relatively dense, with about 50% of input neurons active at any time step. In this
case, a sparse hidden layer is also used to reduce overlap between these binary patterns.
Sample activations from input and hidden layers are presented in Figure 19} Additional
experiments, comparing the overlap of spiking patterns from input and hidden layers, are

presented in Section [A]

Figure 17 — On the left: illustration of inhibitory connectivity for a single input and 10 hidden
neurons. Excitatory connectivity is defined analogously. On the right, a sample
of possible input-hidden connectivity patterns. (A) completely random, (B) local
excitatory and global inhibitory connections and (C) local inhibitory and excitatory
connections. Filled circles indicate active neurons
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4.3.4 Place neurons

This layer mimics the experimentally observed behavior of biological place cells within the

hippocampus (O’KEEFE; NADEL, [1978). These cells tend to fire in groups associated with
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the position of the agent in the sensory space. Moreover, place cells are demonstrated
to fire consistently along a path that leads to a reward (MAMAD et al) 2017). In the

present work, place cells are fully connected to the previous hidden layer with plastic
synapses. Intuitively, this layer is used to reduce the dimensionality of the task to the
most frequently visited states.

The synaptic plasticity used here is a simplified version of the reward-modulated STDP
rule introduced by (2007). A binary variable P_ is used to indicate the state of
the presynaptic neuron from the hidden layer. P_ is set to 1 when a neuron has fired and
-1 otherwise. When the postsynaptic neuron ¢ fires, the eligibility trace Z;; is incremented
by P_, decaying exponentially with a time parameter 7., as defined in the Equation [3.2]

The change in synaptic strength between two neurons depends on the eligibility trace,
modulated by a global reward signal, as per Equation . The reward signal r(t) is
broadcasted to all plastic layers and reinforces synapses with larger trace values (Z;;).
In the absence of a reward, all weights decay towards zero and consequently encourage a
random exploratory behavior. This is also referred as L2 regularization in related literature
(CHUNG; KOZMA|, [2020). The above plasticity is illustrated in Figure [18] In this example,
T, 18 set to 20 and 7, to 50.

Figure 18 — Illustration of the synaptic plasticity model. A spike by the postsynaptic neuron
triggers an update of the eligibility trace Z;;. A later broadcast of the reward signal
r prompts an update to the synaptic efficacy w;;
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The time parameters 7. and 7, can also be dynamically adjusted, according to the
duration of a trial and reward frequency of a specific task. In the present work 7, is kept

at a constant value, and 7, increased linearly during a trial from 1 to a maximum value

max
TS

Section [£.4.3.2] A possible alternative would be to use a range of time constants on a
larger network, which may be the case in biological brains (GERSTNER et al., [2018)).

. The hyperparameters used during the experiment are optimized and presented in

The potential of a place neuron, described by Equation [4.1] is clipped between -1
and +1. When a spike is produced, the corresponding neuron is reset to the minimum
potential of -1. This is done to ensure that a different place cell is active at each time
step.

While a number of hidden neurons can produce a spike at each time step, the winner-
take-all (WTA) activation is used in the place layer, i.e. only the place neuron with the
highest potential sends a spike to the next layer. This is similar to lateral inhibition found
in Frémaux, Sprekeler e Gerstner| (2013) or a global max-pooling layer in Mozafari et al.

(2019) and increases the robustness and speed of the learning process.

4.3.5 Output layer

In contrast to the previous version of this network (CHEVTCHENKO; LUDERMIR, 2020)),
the number of neurons in the output layer scales linearly with the number of output
dimensions. Thus, the action layer has N, neurons, divided in the same number of groups
as there are action dimensions. For example, as illustrated in Figure |15 an agent in a 2D
maze can move independently along two axes with three discreet movements available for
each axis. Note that, as in the place layer, a neuron with the highest potential in a group
is going to produce a spike. In order to increase exploration in the beginning of a trial,
the noise in the output layer is linearly decreased from o,'** to a final o,, value.

Figure illustrates sample activation from input to output layers for 50 discrete
steps. Note that without the reward signal to drive the synaptic plasticity, the activations

are random.
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Figure 19 — Sample of activation from input to the output layers for 50 discrete steps. Each dot
corresponds to an active neuron at the time step indicated by the horizontal axis.
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4.4 EXPERIMENTAL EVALUATION

The proposed architecture is compared against two state-of-the-art deep reinforcement
learning algorithms: PPO (SCHULMAN et al., [2017) and DQN (HASSELT; GUEZ; SILVER,
2016)). Both baseline algorithms are evaluated with optimized hyperparameters to ensure

a fair comparison. A detailed description of the experimental setup is provided below.

4.4.1 Environment

While the architecture presented in Section can be applied to arbitrary RL tasks
with a discrete and finite environment, we focus on a commonly used grid-world environ-
ment for benchmarking. This environment is inspired by a classical neuroscience exper-
iment called Morris water-maze, in which a mouse swims in a pool with opaque water,
looking for a submerged platform. The grid-world is illustrated in Figure 20 Analogous
environments, albeit with low dimensional observations, can be found in related works
(CHEVTCHENKO; LUDERMIR|, [2020; [POTJANS; DIESMANN; MORRISON, 2011 FREMAUX;
SPREKELER; GERSTNER), 2013} [ROSENFELD; SIMEONE; RAJENDRAN], [2019). Additional
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experiment in Section [A] provides a comparison between this environment with image and

positional observations.

Figure 20 — Ilustration of the grid environment. The agent (A) starts in a random corner and
can move in 8 discrete directions. Collisions with the U-shaped wall and with the
borders of the maze are considered, but not penalized. Only the state in the cen-
ter is rewarded (41). Note that observations provided by the environment are not
positions, but colored images from a dataset, illustrated in Figure

1
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Source: The author, 2023

The grid-world is adapted to evaluate the ability to learn from higher dimensional
observations. To this end, the position of the agent in the grid corresponds to a color image
of up to 256x256 pixels (CHALADZE; KALATOZISHVILL 2017)). Each image is uniquely
and randomly assigned. A sample of the dataset is provided in Figure [2I] Thus, this task
becomes a more challenging version of a digit matching T-maze problem, considered by
Nakano et al.| (2015). In order to consistently receive a reward, the agent has to take a
long series of discrete actions, based on color image observations.

The Linnacus 5 dataset (CHALADZE; KALATOZISHVILI, [2017), illustrate in Figure [21]
contains 5 classes: berry, bird, dog, flower and other (negative set). We select 100 random
images from the negative subset for training of the binary CNN, described in Section
402

4.4.2 Baseline models

Here we briefly describe two DRL algorithms that are used as baselines. Both are well
known and have been extensively benchmarked. Our implementation is based on the

Stable Baselines3 (SB3) library, which is a set of reliable implementations of reinforcement
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Figure 21 — A sample of images used as multidimensional observations for the agent

Source: The author, 2023

learning algorithms in PyTorch (RAFFIN et al, 2019). No modifications are made to the

algorithms, except to allow hyperparameter tuning, as described in Section [£.4.3]

4421 Deep Q network

This can be viewed as an extension of a classical Q-learning algorithm, proposed by
Watkins (1989), itself derived from temporal difference (TD) learning (SUTTON, |1988).
The original Q-learning algorithm is suitable for discrete actions but is inefficient on multi-
dimensional observations, as previously demonstrated on an acrobot problem (CHEVTCHENKO;
LUDERMIR,, 2020)).

This limitation of a tabular Q-learning can be mitigated by replacing a table of Q

values with a function approximator, such as a neural network. Furthermore, the deep Q

network (DQN) algorithm, proposed by Mnih et al.[(2015)), introduces two new techniques

that significantly improve learning:

o Periodic target network update — in order to improve the stability of the learning
process, there are two copies of the policy network. A target network is used for
policy execution, while the online network is modified during training. The target

network is periodically updated from this copy.

o Experience replay — the online network is trained through gradient descent using

batches, sampled from a large memory bank of observed transitions.

Both the network update period and the size of the training batch are among the
hyperparameters that can significantly influence the performance of a DQN. These and

other hyperparameters are selected through optimization, as described in Section
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Note that when observations consist of images, or similar multidimensional inputs, the

memory bank required to successfully train an agent can become prohibitively large.

4.4.2.2 Proximal policy optimization

Proposed by [Schulman et al.| (2017), this algorithm is currently one of the most popular
and best performing on a range of applications. Compared to DQN, PPO typically requires
a much smaller memory buffer and the training is computationally less expensive. PPO
is an on-policy algorithm, i.e. the same policy network is modified during learning and
is used to make decisions. In contrast, the DQN algorithm uses one network to interact
with the environment while another one is trained from the collected observations. One
of the main contributions of PPO is that the update process is regulated in order to avoid
making abrupt changes to the policy. This smooth on-policy update is used to mitigate
the smaller memory and avoid committing to an unrecoverable policy. Even so, PPO
can be notably brittle and usually requires some adjustments to achieve stable learning
(ENGSTROM et al., [2019). In the present work we use an actor-critic policy network with a
shared CNN for image processing. As with the DQN implementation, the architecture of
the networks and the algorithm’s hyperparameters are optimized for the benchmarking

environment.

4.4.3 Hyperparameter optimization

Both baseline algorithms, as well as the proposed SNN, have a number of hyperparame-
ters that can significantly influence speed and quality of learning in a given environment.
While it is possible to perform manual tuning of parameters for better performance, this
can often be no better than a random search (BERGSTRA et al., 2011)). On the other hand,
the computational costs of ANN training and environment simulation tend to make an
exhaustive search in the hyperparameter space impractical. A popular middle ground is
found in Bayesian optimization, which is used when there is a limited evaluation budget,
such as deep learning. Thus, in order to avoid manually introducing bias into bench-
marking models and ensure a fair comparison, we perform automatic hyperparameter

optimization using a recently introduced Optuna framework (AKIBA et al., |2019).

4.43.1 Baseline algorithms

The following set of hyperparameters are found to more significantly impact the perfor-
mance and are automatically optimized. These hyperparameters are selected based on the
ones evaluated in related literature, as well as preliminary experiments with the grid-world

environment and a range of models provided by SB3.

o Number of filters in the convolutional layers — a two-layered convolutional network

is used for feature extraction.
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o Number of neurons in the hidden layer — the third layer in the policy network is

fully connected and acts as a hidden layer.

o Buffer size — this is the size of the memory used for policy training. As described in
Section [4.4.2) DQN requires a significantly larger memory buffer than PPO.

o Learning rate — this parameter is evaluated in an order of magnitude range around

the default value for the Adam optimizer.

o Batch size — as with most deep learning models, the size of the minibatch used for

training is usually much smaller than the entire memory buffer.

o Discount factor — this parameter determines how much weight the model gives to
events from a more distant past. A value of 0 means that the agent is trained based
only on an immediate outcome. On the other hand, setting this value to 1 would
indicate that all past iterations are considered to be equally important to the present

outcome.

o Train frequency — this applies to DQN and represents the number of steps between
training of the policy network. A value of 1 means that the weights of the network

are adjusted at each simulation step, which results in additional computational cost.

« Exploration fraction — in order to encourage exploration of the environment, the ini-
tial policy of a DQN agent is completely random. The probability of taking a random

action is over time decreased to a minimum value, which is also a hyperparameter.

o Number of surrogate loss optimization epochs — this parameter describes the number
of epochs that the PPO policy is updated for.

o Clipping — as described in Section [£.4.2.2] this parameter is used by the PPO al-
gorithm to adjust the level of possible change in the network in order to avoid
unrecoverable policies. A larger value can increase learning speed, although at some

stability cost.

The optimization criterion used in this work is to minimize the average latency mea-
sured during 1000 episodes, with the environment randomly initialized before each episode.
This encourages both learning speed and low final latency. An optimization run for a given
model consists of 100 iterations and the model with the lowest average latency is then
used for experiments presented in Section [£.4.4, Models are optimized for two environ-
ment configurations: 10x10 and 20x20 grids, both with 64x64 RGB observations. The
considered hyperparameters and the corresponding search spaces are presented on Tables
[ and [ for the DQN and PPO algorithms respectively. The final selected hyperparam-
eters are indicated on the tables with letters a (10x10 grid) and b (20x20 grid). Note
that the search space includes the default parameters provided by Raffin et al. (2019).
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Table 4 — Optimized hyperparameters of DQN

Hyperparameter Search space
# of filters in the 1% convolutional layers (16, 32(a), 64(b)]
# of filters in the 2°¢ convolutional layer (16, 32(b), 64(a)]
# of neurons in the hidden layer (64, 128(a,b), 256]
Buffer size [10k, 20k(a), 50k(b)]
Learning rate (1073, 10~*(b), 10~°(a)]
Batch size (16, 32(a,b), 64]
Discount factor [0.9(a,b), 0.99, 0.999]
Train frequency (steps) [1(a,b), 5, 10]
Exploration fraction [5%, 10%(b), 20%(a)]
Final exploration rate [2.5%, 5%(a), 10%(b)]

Source: The author, 2023

Table 5 — Optimized hyperparameters of PPO

Hyperparameter Search space
# of filters in the 1% convolutional layer [16(a), 32, 64(b)]
# of filters in the 2" convolutional layer (16, 32(a,b), 64]
# of neurons in the hidden layer (64, 128, 256(a,b)]
Buffer size [1k(a), 2k(b), 4K]
Learning rate (1073, 10~*(a,b), 1077]
Batch size (32, 64(a), 128(b)]
Discount factor [0.9(a), 0.99(b), 0.999]
# of surrogate loss optimization epochs [5, 10(a), 20(b)]
Clipping parameter 0.1, 0.2(b), 0.4(a)]

Source: The author, 2023

While the baseline algorithms use a CNN policy network, we also evaluate a combi-
nation of a BinaryNet feature extractor and the PPO algorithm with and MLP policy.

These experiment is described in Section [A]

4.4.3.2 The proposed network

The optimization of the proposed network is divided into two parts. The connectivity
between input and hidden layers is optimized in a linear track environment, inspired by a
similar experiment described by Frémaux, Sprekeler e Gerstner| (2013). The linear track
is a simplification of the grid-world, described in Section [4.4.1} Due to its low simulation
cost, it allows for a complete search in a small hyperparameter space.

In the linear track experiment, the agent is presented with a sequence of n observations

(RGB images). Since the plastic weights of the network are initially set to zero, the agent
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Table 6 — Connectivity hyperparameters

Hyperparameter Search space
ny (5%, 10%, 20%, 50%]
n_ 5%, 10%, 20%, 50%)
ay (0.1, 0.25, 0.5, 1.0]
a_ (0.1, 0.25, 0.5, 1.0]

Source: The author, 2023

performs a series of random actions aq, as, ..., a, due to a low noise level in each neuron.
Next, a reward signal is broadcasted and the same sequence of observations is presented

to the agent, which produces a new set of actions af,a), ...,a,,. After the reward, the

an.
agent is expected to perform a similar sequence of actions, when presented with the same
observations. Note that due to the noise, the actions are not entirely deterministic. Thus,
an error rate F is computed by comparing the action pairs produced by the agent during

the first and second runs:

A low error rate means that the agent is able to successfully form synapses based on
eligibility traces in order to reproduce the action sequence that have lead to a reward.
A total of 256 combinations of input-hidden connectivity parameters is evaluated. The
range of these parameters is presented in Table @ For each combination of [ny,n_,a,,a_]
parameters, the error rate is an average of ten independent runs.

Other hyperparameters of the network are presented in Table [7] These are optimized
in the same manner as the baseline algorithms and the selected hyperparameters are also
indicated with letters a (10x10 grid) and b (20x20 grid). The parameter ‘o,, decrease
time’ indicates the # of timesteps o, takes to go from ¢'** to minimum constant of 0.1.
Likewise, ‘7, increase time’ is the simulation time required for 7, to go from a minimum
value of 1 to a maximum 7."**. The number of neurons in the hidden layer is kept con-
stant at 1000 for all following experiments, except in Section [4.4.3 where the impact of

individual parameters is evaluated.

4.4.4 Results

In the following experiments we measure the latency of each agent, i.e. the number of
states it takes to reach the target. The latency is averaged with a running window of 10
episodes. An episode is terminated if the agent reaches the goal state or iterates over 100
(10x10 grid) or 400 (20x20 grid) steps. A trial comprises the training of a single agent

over 1,000 episodes and the presented curves are an average of 10 trials.
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Table 7 — Optimized hyperparameters of the proposed network

Hyperparameter Search space
# of neurons in the place layer [50, 100(a), 200(b)]
o, (place neurons) [0.2(b), 0.4(a), 0.8]
oM (action neurons) (0.2, 0.4(a,b), 0.8]
0, decrease time (action neurons) (103, 10*(a,b), 10°]
7% (hidden-place layer) [10, 20, 40(a,b)]
Tm‘”” (place-action layer) [10(a,b), 20, 40]
7. increase time (hidden-place layer)  [103, 10*(b), 10°(a)]
7. increase time (place-action layer) (103, 10%(b), 105(a)]
7, (hidden-place layer) [1000, 2000(a), 4000(b)]
s (place-action layer) [1000(a), 2000, 4000(b)]

Source: The author, 2023

4441 Connectivity optimization

The list of hyperparameters presented in Table [0 is exhaustively evaluated on a linear
track environment, as described in Section [4.4.3] The error rate from Equation is
averaged for ten independent runs, with the track size set to 500 observations. Thus,
for each of the ten runs, a unique random image is assigned to a step of the track. A
distribution of the obtained results, obtained through grid search optimization of the
input-hidden connectivity, is presented in Figure This distribution suggests that a
random connectivity is unlikely to produce a good results. The following connectivity
parameters obtained the best average error rate of 0.5% and are selected for further
evaluation: [ny,n_,a,,a_]=[5%, 10%, 1.0, 0.25]. A list with other ten best connectivity
configurations is provided in Table [I4 A sample of activations from input and hidden
layers is also illustrated in Figure [47] Additional experiments in Section suggest
that the amplitude parameters a, and a_ do not play a significant role in the evaluated
environment.

Besides this set of optimal parameters, Figure [22| also highlights the performances of
two other configurations: a) the connectivity that was manually selected in the previous
work (CHEVTCHENKO; LUDERMIR, 2020) [5%, 5%, 1.0, 1.0] and b) a more densely con-
nected version [50%, 50%, 1.0, 1.0]. Also note that while configuration [5%, 5%, 1.0, 1.0]
and the optimal one are relatively close in terms of evaluated error rate (0.5% vs 2%),
there is a significant performance difference between the two networks, as evaluated in

the grid-world environment (see Figure [26| for a qualitative comparison).
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Figure 22 — Probability distribution of the error rate, obtained through grid search optimization
of the input-hidden connectivity
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4.4.42 Comparison with baseline models

In this section we compare the proposed SNN with the baseline algorithms. The optimized
set of hyperparameters for each algorithm is highlighted in Tables [4] [5 and [7]}

SNN, PPO and DQN are evaluated on a grid-world of size 10x10 and observations
consisting of 64x64 RGB images from the Linnaeus 5 dataset. The results are presented
in Figure 23] Latency is averaged across ten trials with shaded regions corresponding to
standard deviation. The performance of a random agent is also provided for reference.
Both PPO and SNN significantly outperform the DQN algorithm. PPO and SNN have
similar performance, however SNN achieves slightly better final latency.

Figure [24] provides results on a larger, 20x20 grid-world. The relative performance is
similar to the 10x10 configuration, with SNN and PPO significantly outperforming DQN.
Note that the optimized PPO achieves lower latency during first 200 episodes. However,
the performance of SNN can be tailored to improve latency by adjusting a single temporal

parameter, as demonstrated in Section [4.4.4.3]
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Figure 23 — A comparison of the proposed network with PPO and DQN algorithms on a 10x10
grid-world. The observations consist of 64x64 RGB images from the Linnaeus 5
dataset. Latency is averaged across ten trials with shaded regions corresponding to
standard deviation
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4,443 Impact of hyperparameters

This Section provides additional experiments to evaluate the effect of changing individual
hyperparameters of the proposed network. For the following experiments, unless otherwise
stated, the configuration a from Table[7]is used. Note that a solid blue line is always used
in the figures for the latency curve of default SNN.

The linear track experiment is used to evaluate a range of parameters of the input and
hidden layers. Figure illustrates the influence of the number of neurons in the hidden
layer, which is varied from 100 to 2000. While in the main experiments from Section [4.4.4.2]
we have used a network with 1000 hidden neurons, this experiment indicates that this
parameter could be further optimized without loss of performance. On the other hand,
the sparsity parameters ny and n_ have significant impact on the network's ability to
discriminate between different states. This is demonstrated on a linear track experiment
in Figure and on the grid-world in Figure On these experiments the amplitude

parameters a, and a_ do not significantly influence the network's latency.
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Figure 24 — A comparison of the proposed network with PPO and DQN algorithms on a 20x20
grid-world
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The number of place cells can also have an impact on the network’s ability to learn.
This is because the number of neurons in this layers has to be large enough to encode
all the states that are necessary to solve a given task. As demonstrated in Figure 27], 50
place cells is enough to solve the 10x10 grid-world task, without noticeable benefit from
more neurons in this layer. Note that the proposed approach is currently not well suited
for tasks that would require encoding a large set of discrete states. A solution to this
limitation is left for future works, as discussed in Section

The eligibility discharge time 7, can modulate the learning speed. If 7, is decreased,
the eligibility trace will discharge faster, as described in Equation Consequently, this
decreases the impact of the states and actions that have occurred before the reward. On
the other hand, if the eligibility trace does not discharge quickly enough, the network will
commit to suboptimal paths that lead to a rewarded state. This trade-off is illustrated in
Figure [28 Since 7. discharge times are different between hidden-place and place-action
traces, we modulate the number of steps that this parameters take to increase to the

maximum value.



67

Figure 25 — The linear track experiment is used to evaluate the impact of the hidden layer size
(a) and sparsity of the input-hidden connectivity (b). Shaded region indicates the
standard deviation from 10 trials
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4.4.5 Discussion and summary

The results presented in the previous section demonstrate the competitiveness of the
proposed network, when compared to DRL algorithms. This section contains a summary
of the results, as well as a critical comparison to related works.

One aspect of the proposed approach is that the spiking network is able to learn
from image observations by using a pre-trained binary CNN (BinaryNet by |Courbariaux
et al.| (2016))). The BinaryNet is trained only once per trial on a small set of images.
Moreover, this training set is randomly pulled from a single class of images from the
Linnaeus 5 dataset and the observations presented by the grid-world environment are
randomly pulled from other four classes in the same dataset. This is akin to the well-
known transfer learning approach, where knowledge acquired from one task is used to
solve another related problem. A complementary experiment evaluating the scalability of
the feature extraction network in terms of input image size if provided in Section [A]

The most obvious advantage of separating feature extraction and policy learning is the
reduced computational cost, as the convolutional network is used only for inference. The
number of plastic synapses is also significantly reduced and is restricted to three layers of
the spiking network. It should be noted that a pre-trained feature extraction network is
not well suited to deal with a changing environment, as the learned filters may not extract
meaningful information. A hybrid approach could be explored to address this limitation,
where the feature extraction network is retrained if the spiking agent fails to improve over
a long time.

The reduction in the number plastic synapses allows the spiking agent to be trained

online, without use of a large memory bank or multiple weight adjustments through gradi-
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Figure 26 — A qualitative comparison of different input-hidden connectivity schemes
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ent descent. It is worth noting that most of related spiking models presented in Section [3.2]
are also trained online. However, differently from the actor-critic architectures presented
in [Frémaux, Sprekeler e Gerstner| (2013), Bellec et al.| (2020)), Chung e Kozma| (2020)), our

network does not perform continuous weight adjustments. Instead, synapses are updated

using eligibility traces only upon a discrete reward signal. In the current implementation,
this update rule also imposes some limitations: the reward signal is expected to be sparse
and the observations are discrete and finite. An actor-critic version of the proposed model

will be explored in future works, aiming to achieve rapid learning on a wider range of

applications.
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Figure 27 — Evaluation of the impact of the number of place neurons on a 10x10 grid-world
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Figure 28 — The parameter “7. increase time” can be used to modulate a trade-off between

learning speed and final latency
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45 CONCLUSION AND FINAL REMARKS

The results presented in this chapter aim to provide a foundation and open prospect for
broader applications of spiking networks in reinforcement learning. We combine a binary
CNN with a spiking model in order to leverage advantages of both architectures. An
automatic hyperparameter optimization strategy is used for the proposed network, as
well as the baseline DRL models. After optimization, a single temporal parameter can be
adjusted for faster learning, albeit with some stability cost, as illustrated in Figure

The present work advances the field by providing the following contributions:

1. A novel spiking architecture is proposed and demonstrated to learn from sparse and

delayed reward with RGB images as inputs.

2. The sparseness of synapses between input and hidden layers of the network is opti-

mized and shown to have a significant impact on learning speed and accuracy.

3. On the evaluated environment, the proposed network is shown to be competitive
with state-of-the-art DRL algorithms, both in terms of learning speed and final
latency of the learned policy.

4.5.1 Future work

The grid-world environment presented in this work is a versatile toy problem and is
shown to present a challenge for the DQN algorithm, assuming a limited time budget.
However, environments that are closer to real-world challenges should be explored in
future iterations.

One of the main limitations of the proposed network is that the place layer requires
a large number of neurons to encode discrete states in the environment. Future works
should focus on a better hidden-place plasticity model to allow the same place neuron to
encode similar states. Some other possible directions for future endeavors are presented

below:

o Improved exploration — a more sophisticated approach to exploration could allow to
learn policies from very sparse rewards. Traditional RL algorithms are improved by
hindsight experience replay (ANDRYCHOWICZ et al), 2017)), which could be a source

of inspiration for a novel spiking architecture.

e Learning of hidden representations — while the current work makes use of a hid-
den layer and STDP for state representation, this approach should be expanded to

continuous observations.

o Automatic regulation of temporal parameters — the synaptic discharge time and
other temporal parameters can significantly influence the performance of the net-

work. Instead of the offline optimization strategy presented in this chapter, these
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parameters could be adjusted online by a heuristic approach. For instance, the
synaptic discharge rate could be regulated by the rate at which the agent receives
a reward. Thus, a given policy could quickly revert to a more random search if the

environment changes or the policy fails in other ways.
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5 A NEUROMORPHIC ARCHITECTURE FOR REINFORCEMENT LEARNING
FROM REAL-VALUED OBSERVATIONS

This chapter was originally made available as pre-print on arXiv (CHEVTCHENKO et al.
2023).

5.1 INTRODUCTION

In our previous works (CHEVTCHENKO; LUDERMIR, [2020; CHEVTCHENKO; LUDERMIR)
2021)), we have demonstrated that an SNN trained through STDP can compete with
state-of-the-art RL algorithms to solve classical control and RL tasks involving distal
rewards and image observations. Additionally, we show that sparse connectivity becomes
increasingly important with larger state spaces. The proposed approach differs from recent
related ones (BELLEC et al., [2020; TANG; KUMAR; MICHMIZOS, [2020; (CHUNG; KOZMA, [2020;
KUMAR et al), 2021), as we use the STDP plasticity for two distinct tasks in the network:
i) state space reduction through hidden and place layers and ii) policy learning in the last
layer. Furthermore, the network architecture used in the present work does not require a
rate-coded approach, reducing the latency and learning speed when compared to related
models.

In this chapter, we introduce a novel neuromorphic architecture designed to tackle
reinforcement learning problems with real-valued observations. Drawing inspiration from
prior works (AFSHAR et al., 2020; BETHI et al., 2022), our network incorporates clustering
layers and introduces modulation by a global signal through eligibility traces. We assess
the effectiveness of the proposed model against a tabular actor-critic algorithm with el-
igibility traces and a state-of-the-art DRL model, Proximal Policy Optimization (PPO).
The results demonstrate that our network provides an appealing trade-off in terms of
computational efficiency and hardware implementation requirements when compared to
PPO on three classic RL control tasks.

This chapter is structured as follows. A review of related literature and comparison to
the present work is provided in Section[5.2] The proposed model is described in Section
and is experimentally compared to baseline models in Section 5.4 Concluding remarks and
discussion of possible future endeavors can be found in Section[5.5] Additional experiments

and a demo code are provided as supplementary materials.

5.2 RELATED WORKS

Deep learning has shown impressive results in the domain of Reinforcement learning and
has surpassed all other conventional methods to be the state-of-the-art architectures for

training autonomous agents on sparse reward structures. However, the training procedures
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for Artificial Neural Networks (ANNs) have always been expensive in terms of computa-
tion and memory consumption. Deploying ANNs at the edge with low-power constraints
and training them online still remains a challenge due to the same reason. Recent advances
in neuromorphic computing and training Spiking Neural Network (SNN) architectures of-
fer novel solutions to building low-power machine intelligence. SNN architectures that
use binary valued spikes (or events) for both computation and communication provide
excellent energy efficiency benefits. With the uptake in the adoption of neuromorphic sen-
sors like DVS (LICHTSTEINER; POSCH; DELBRUCK, 2008) and ATIS (POSCH; MATOLIN;
WOHLGENANNT, 2010)), event-driven machine learning algorithms are also being explored
to explore low-latency and low-power applications of neuromorphic computing (GALLEGO
et al., 2020).

Training SNN architectures is still an active area of research, and many attempts have
been made to approximate the error backpropagation and gradient descent techniques
used to train ANNs and train SNNs. For example, Bellec et al.| (2020) proposed a spiking
neural network learning rule called e-prop that can be applied to recurrent spiking net-
works. This rule is shown to approximate the performance of an LSTM network trained
via backpropagation through time on two discrete Atari games. Other methods use sur-
rogate gradients that use stand-in differentiable alternatives for non-differentiable parts
of SNN architectures (NEFTCI; MOSTAFA; ZENKE, 2019). For instance, Akl et al.| (2023)
propose a combination of DRL frameworks with a spiking architecture through the use of
surrogate gradients and the backpropagation through time (BPTT) algorithm. However,
these methods also face the same problem of requiring energy-intensive computational
resources. The error back-propagation approximations are also not bio-plausible as they
would require symmetric backward pathways that transfer precise continuous-valued gra-
dients and, in some cases, non-causal operations like Back-Propagation Through Time
(BPTT). Bio-plausible local learning rules that can train individual nodes in SNN ar-
chitectures using the only information available at each neuron can offer potential so-
lutions for exploiting in-memory computation in neuromorphic hardware. Spike-Timing-
Dependent Plasticity (STDP) has been the most commonly used local learning rule for
SNN architectures to perform unsupervised learning. STDP can train spiking neurons to
learn the spatio-temporal features that reflect the statistics of the input spiking data. The
Hebbian learning rule has primarily been used in unsupervised learning settings to learn
some useful features for tasks like pattern classification (DIEHL; COOK, 2015). However,
unsupervised learning rules like STDP neglect any information related to the “success”,
“failure”, or “novelty” of the inputs and outputs (FREMAUX; GERSTNER) 2016)).

R-STDP (Reward-modulated Spike Timing-Dependent Plasticity) is a Spiking Neural
Network (SNN) learning rule that governs the changes in the strength of connections
between neurons such that the plasticity of synapses is modulated by reward signals that

reinforce or weaken the connections between neurons based on the timing of their spikes.
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[zhikevich| (2007)), Florian| (2007) and |Legenstein, Pecevski e Maass| (2008) independently
laid the groundwork for R-STDP modulated spiking networks. In order to demonstrate the
computational and temporal capabilities of this approach, a fully connected multilayered
network of spiking neurons is shown by [Florian| (2007) to solve a temporally coded XOR
problem with a delayed reward. [Vasilaki et al.| (2009) used a reward-modulated STDP
learning rule on action layer in combination with an input place cell layer to perform
reinforcement learning on a Morris water maze puzzle. While theoretical models have used
reward-modulated STDP for over a decade, recent research has provided experimental
evidence of the role of eligibility traces in Reinforcement Learning (RL)(GERSTNER et al.,
2018). The R-STDP rule used in the present work is a simplified version of RMSTDPET
found in the work by [Florian| (2007). Potjans, Diesmann e Morrison| (2011), and later
Frémaux, Sprekeler e Gerstner| (2013) propose actor-critic models with temporal difference
(TD). A more general three-factor learning rule is later introduced by [Frémaux e Gerstner
(2016]).

A key component of reinforcement learning is to develop useful internal representations
of complex environments to evaluate and utilize the current state of the environment to
decide on actions that provide maximum future rewards (SUTTON; BARTO, 2018). Various
internal representations for inputs have been used by the SNN solutions for reinforcement
learning. One strategy is to use manually selected partitions of the input space to generate
spiking inputs for various states. Potjans, Morrison e Diesmann (2009)) and |Jitsev, Mor-
rison e Tittgemeyer| (2012) used a fixed cluster of neurons that represent the state space
and individually fire for each particular state. Frémaux, Sprekeler e Gerstner| (2013)) used
pre-determined place cells to act as input to their continuous time spiking actor-critic ar-
chitecture. Friedrich, Urbanczik e Senn| (2014) used population coding for the input layer
representation. These methods use a manually chosen method of partitioning the input
space or use a population that uniformly covers the entire input space of any given envi-
ronment. A drawback of these early models is that the implemented networks fully encode
the observed state in the input layer, functionally similar to classical tabular RL algo-
rithms. In other words, each neuron in the input layer is used to encode a specific state of
the environment. Also, this approach does not scale well with the dimensions of the input
space. This limitation in scalability is addressed in our previous paper (CHEVTCHENKO;
LUDERMIR|, 2020)) by a four-layered network with a hidden layer inspired by place cells.

Other approaches to represent the input space include using the reservoir computing
paradigm (Schrauwen, Verstraeten e Campenhout, (2007));Lukosevicius e Jaeger| (2009)).
Reservoir computing involves projecting the low dimensional inputs to a high dimensional
representational space by using a population of recurrently connected neurons, such that
states not linearly separable in the input space can be separated in the representational
space (MAASS; NATSCHLAGER; MARKRAM, 2002). Weidel, Duarte e Morrison, (2021 used

reservoir computing with unsupervised plasticity on the inputs and apply reward modu-
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lated learning on the output layer that generated actions. However, most of these SNN
architectures predominantly use rate coding, which does not offer the same level of energy
efficiency that sparse temporal coding provides.

Another promising avenue for potential low-power spike-based learning algorithms
is event-driven neuromorphic algorithms. Neuromorphic algorithms and hardware are
primarily targeted towards scalability through collocated processing and memory, and
low-latency computation (SCHUMAN et al., 2022). Neuromorphic event-driven algorithms
emulate spiking neuron architectures that are tailored for computational efficiency and
performance. HFirst algorithm (ORCHARD et al) [2015) is an example of a multi-layered
network architecture that is based on the HMAX algorithm (SERRE et al., [2007)) which
itself inspired by visual cortex to learn features from event-based data using an event-
driven approach of processing data. The Hierarchy of Event-based Time Surfaces (HOTS)
(LAGORCE et al., 2016) is another unsupervised multi-layered feature extraction algorithm
that uses the same neuron update rule based on the cosine distance of weights to the input
representation introduced in [Ballard e Jehee (2012)) to model sensory features in cortical
neurons. The HOTS algorithm uses multiple layers to extract spatio-temporal patterns
at multiple hierarchical levels with different time constants by performing clustering. Af-
shar et al.| (2020) introduced an unsupervised feature extraction algorithm called Feature
Extraction using Adaptive Selection Thresholds (FEAST), which is also capable of learn-
ing hierarchical spatio-temporal features by using adaptive thresholds for each neuron to
promote equal activation of neurons.

The majority of the neuromorphic feature extraction algorithms are primarily targeted
toward performing tasks on event-based data. The FEAST method has been used for a
range of applications such as event-based object tracking Ralph et al| (2022)), activity-
driven adaptation in SNNs Haessig et al.| (2020), and spoken digits recognition task Xu et
al.| (2022). Recently a generalization of the FEAST algorithm has been proposed in Bethi
et al.| (2022) to perform supervised learning on spiking data using reward and punishment
of neurons through threshold adaptation. We can utilize the same neuromorphic princi-
ples and apply these architectures to the reinforcement learning domain to partition the
input state space that can dynamically adapt to the reward structure and performance of
the agent. In this work, we modify the neuron layers proposed in the Bethi et al.| (2022) to
simultaneously perform unsupervised clustering of the input space and modulate it based
on the ongoing TD-error of an actor-critic agent that utilizes the learned representation.
We show that partitioning achieved by the neurons represents different parts of the input
space with varying degrees of density and resolution depending on the ongoing perfor-
mance of the actor-critic agent using the representation. We demonstrate the quality of
the input space representations by using a conventional tabular actor-critic algorithm and

applying it to various environments.
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5.3 THE PROPOSED ARCHITECTURE

The proposed network has two main components: i) an initial clustering layer(s) for di-
mensionality reduction and discretization of the input signal and ii) actor-critic neurons
for learning from the previously reduced and discretized state space representation. The
following sections provide a detailed description of each layer and corresponding plasticity

rules.

5.3.1 Input layer

The input signal is represented by a vector of real-valued observations 7 = [T1, To, vy T
These are provided by the environment in discrete time-steps at time ¢, along with the
reward signal r(t). Considering NN; input neurons, each neuron can be fully connected to
the input signal through an array of synaptic weights, as illustrated in Figure[29] Euclidean
distance is used as a distance metric to find the closest neuron i with weights @, matching
the input context 7. Each neuron i also contains a scalar threshold parameter 6; that is
used for the selection of the closest neuron. The value v; of a neuron in the input layer for

an input vector is calculated as the Euclidean distance between input and weight vectors:

uilt) = [l () = Z (0)l, (5.1)

where v;(t) is the value of the neuron i at time t, w, are the weights connecting the
neuron ¢ to the input vector 2. The value v; of every neuron is compared to its threshold
6; to check if the neuron is eligible to be activated. A winner-take-all (WTA) activation
is adopted for an entire layer or a group of neurons within the same layer. Thus, only the
neuron with the least euclidean distance within the eligible neurons will produce a spike
for the next layer. The winning neuron should have the least value among the neurons

with values within their corresponding thresholds.

Figure 29 — Illustration of the input layer of the proposed model

Source: The author, 2023
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The weight modulation used in this layer has two drivers: i) adaptation to the input
signal and ii) modulation by the feedback from the actor-critic layer. The first adapta-
tion rule is based on Feature Extraction with Adaptive Selection Thresholds (FEAST),
proposed by Afshar et al. (2020). To this end, each neuron’s threshold parameter 6; is
adaptable.

Consider a two-dimensional input vector 7 = [x1,x2], as illustrated in Figure
(a) The input vector 7 is outside the threshold regions of both neurons. The neurons
become more sensitive by increasing the thresholds. In Figure 30| (b), a new input vector
activates neuron 1. This results in adjustments of both weight and threshold of the active
neuron. The input signal 7 and the weights of two input neurons are represented by two-
dimensional vectors. The threshold of each neuron is a scalar and represents the receptive

field of a neuron in the shape of a circle around the weight vector.

Figure 30 — An illustration of synaptic plasticity rule based on FEAST (AFSHAR et al., 2020)
using Euclidean distance. A two-dimensional input is considered. (a) The input
vector @ is outside the threshold regions of both neurons. The neurons become
more sensitive by increasing the thresholds. (b) A new input vector activates neuron
1. This results in adjustments of both the weights and the threshold of the active

neuron.
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Source: The author, 2023

An initial input signal 7, depicted in Figure , falls outside the activation region
of both neurons (solid circles). Thus, the value obtained by Equation is higher than
61 and 6. When this occurs, all neurons in the layer have their thresholds increased by
the parameter 6,. This increases the sensitivity of the layer to any input signal, making
the activation within the threshold more likely in the future, as indicated by the dotted
circles.

On the other hand, Figure illustrates a new input vector ;’) that activates the
neuron 1. This is because the new value, i.e. the distance between input and weight

vectors, is within the threshold of the neuron. In order to increase the probability of
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activation of the same neuron in the future, when presented with similar inputs, both
threshold and weight are adjusted. The threshold is decreased and the weight vector
moves in the direction of ;’), illustrated by the dotted circle and arrow in Figure @
This makes the neuron more specialized and less likely to be activated by more distant

inputs. The above adaptation, applied to activated neurons, is described by:

AB; = vi(t) — 0;(t), (5.2)
AW, =T (1) — wi(1), (5.3)
O;(t + 1) = 0;(t) + nun * AG;, (5.4)
Wit +1) = Wi(t) +n* Au, (5.5)

where Af; and AW, are update values for the threshold and weights of neuron ¢ and the
respective update rates for each are n, and 7.

Figure [31] illustrates this adaptation process on a simulated dataset with three prob-
ability density functions (PDF). Three neurons are initialized with random weights and
thresholds, as illustrated in Figure [31al. The weight of each neuron is depicted as a colored
dot and the threshold region is delimited by same-colored arrows. The final configuration
is depicted in Figure , after 10% observations and using both 7, and 1 equal to 1072,

Figure 31 — Clustering of neurons in the input layer on a simulated dataset with three Gaussian
distributions and three input neurons. The weights of the three neurons are depicted
by the colored dots and the corresponding thresholds are represented by the same-
colored arrows
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Note that if more neurons are added to the clustering layer, the adaptation process
described by Equations[5.2)to 5.5 will result in lower threshold values and a more granular

representation of the observed state space. This is experimentally demonstrated in Figures
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and by using the same set of parameters as in the previous experiments, but

increasing the number of neurons from 3 to 10.

Figure 32 — Clustering of neurons in the input layer on a simulated dataset with three Gaussian
distributions and ten input neurons. The positions of the colored dots on the X-axis
represent the weights of the ten neurons used in the experiment. For better legibility,
thresholds are represented as vertical lines of the same color below the dots
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In addition to the weight and threshold modulation above, the proposed model imple-
ments modulation by feedback from the actor-critic layer. This is similar to the change
in Equations and but 7, and 7 are replaced by temporal difference error § and
neural trace ¢;. This modulation is described in more detail in Section [5.3.2]

The input layer neurons can encode the real-valued vector 7 in a number of ways. In
the present work we consider two possible configurations, as depicted in Figure [33]

Note that the configuration in Figure [33b] produces multiple active neurons at each
time-step, corresponding to the size of the input vector 7= (1, x2, ..., z,]. In this case, a
hidden clustering layer is used to provide a single winner neuron for the actor-critic layer.
The WTA activation allows for a single neuron from this second layer to produce a spike
at each time. The synapses between the first and second clustering layers are subject to
the same modulation, as described by Equations [5.2) to [5.5

5.3.2 Actor-critic layer

The actor-critic layer is a neuromorphic implementation of the tabular TD()) algorithm
(SUTTON}, [1988). The actor is composed of IV, neurons, each representing a single discrete
action. When a spike is produced by a single presynaptic neuron j, the resulting potential
of an action neuron ¢ is equal to the synaptic value w;;. The action is then selected based

on the highest potential, with the addition of random exploration:
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Figure 33 — Diagrams of evaluated configurations for encoding the input vector by the first layer.
(a) The input is fully connected to the neurons in the first layer with WTA activa-
tion. (b) A group of neurons if fully connected to a single input scalar and WTA is
applied to each group separately. Grouped neurons within a dotted rectangle indi-
cate winner-take-all (WTA) activation where the neuron with the highest potential
propagates a pulse to the next layer

T
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Source: The author, 2023
arg max w; j, with probability 1 —e
aty =1 i (5.6)

random, with probability e,

where € is the exploration probability. At the beginning of an episode ¢ is initialized at
a maximum value 1 and is then gradually decreased to a small final value €,,;,. The rate
of decrease and the final baseline value are hyperparameters used to balance exploration
and exploitation.

In the proposed system an action can be the result of a single or multiple neurons
in the action layer spiking by using WTA activation. For instance, a movement in two
dimensions can be encoded by two independent groups of neurons, each representing a
one-dimensional action.

The value of a hidden state is represented by the weight connecting the value neuron
to the hidden layer. Two separate synaptic eligibility traces are implemented for the actor
and critic connections. The update is described by Equations and [5.8}

at+1)=7cl(t) - _i(t), (5.7)
i+ 1) = @) — i), (5.8)
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where 7, and 7, are time constants for the actor and critic traces respectively. Corre-
spondingly, actor and critic trace vectors are denoted as c_gz and ?g Note that c_gz relates
to the action neuron ¢ and c,;; is set to one when an action neuron ¢ and hidden neuron
j fire at the same discrete time step.

After an action is selected, the environment provides the next observation 7(75 +1)
and reward signal (¢ + 1). Based on this feedback, the temporal difference (TD) error is
calculated as follows (SUTTON; BARTO, 2018)):

§=r(t+1)+4V(t+1)— V(1) (5.9)

where V (t) is the value of the hidden state at time ¢ and v is a discount value. Based on

the TD error, value and action weights are updated:

wo(t+1) = wy(t) + o (t) % ne * 6, (5.10)
Wai(t 4+ 1) = Wei(t) + Cos(t) * na 6, (5.11)

where 175 is a vector of values, 1,75, are weights arriving at the action neuron 7. Constants

n. and 7, are update rates for the critic and actor respectively. Finally, weights and

thresholds of clustering layers are also modulated by the TD error:

Wi(t+ 1) = W(t) + nug * AW, = 8] * (1), (5.13)

where 74 is the update rate and ¢;(t) is the activation trace of the postsynaptic neuron
i. Following Equation [5.8] this trace is set to one each time neuron i produces a spike
and decays exponentially with time constant 7;. This update occurs concurrently with
unsupervised clustering described by Equations and [5.5]

With the above update rule lower absolute TD error causes the neuron to follow the
unsupervised clustering rule from Equations [5.4] and and illustrated in Figure |30]
Conversely, higher positive or negative TD errors make the model more likely to retain
the current feature representation.

An overview of the proposed network is illustrated in Figure [34] In this example, the
first clustering layer is divided in groups of tree neurons, each with a WTA activation.
Each of these groups is connected to a pair of input values and thus can be viewed as
two-dimensional clustering. The activation trace from this first layer is usually a higher
dimensional vector than the input which is then converted to a one-hot vector by the
hidden layer. Both the first and second layers implement the FEAST clustering rule
proposed by |Afshar et al.| (2020)), as well as additional modulation by TD error, described

by Equations and
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Figure 34 — An overview of the presented network. In this example, each input scalar xz; is
connected to a group of three neurons in the first clustering layer. A WTA activation
is applied independently on each group and a resulting multi-hot vector is processed
further by the hidden clustering layer. Another WTA activation function, this time
applied to the entire layer, results in a single active neuron which represents a
distinct hidden state. Orthogonal actions are independently encoded by subsequent
groups of neurons and the value corresponding to the hidden state is computed based
on sum of the synaptic weights. Eligibility traces are attached to both neurons and
synapses for weight and threshold modulation
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A linear track experiment is used to illustrate the role of TD-modulated clustering. In
this environment, the agent travels through a fixed track from position 0 to 100 and each
time-step moves the agent to the right by one unit. A single reward of +1 is provided
at position 90 and once the end of the track is reached, the environment restarts at 0.
Considering a discount v = 0.9, the value corresponding to each position is represented
by a solid blue line in Figure [35 Since in the proposed architecture, the state values are
estimated from a hidden layer, a discrete approximation of a real valued curve is formed
by the ten hidden neurons. This approximation is represented by a dotted orange line and
the solid dots correspond to the weights of these hidden neurons after 500 episodes. Note
that if no TD-modulation is used, the weights would converge to a uniform representation
of the observed states, as in Figure[35a] On the other hand, by adding modulation through
TD-error, the weights will be skewed towards the states that produce the highest TD-
error, which is illustrated by a more accurate approximation of the value curve in Figure
35Dl
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Figure 35 — An illustration of the role of TD-modulated clustering for a more accurate value
representation. Position of the colored dots on the X-axis represent the weights of
the ten neurons used in the experiment. Thresholds are omitted for legibility
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5.4 EXPERIMENTAL EVALUATION

The proposed network is experimentally compared to a classical tabular actor-critic al-
gorithm with eligibility traces (TAC), as well as a state-of-the-art deep reinforcement
learning (DRL) algorithm PPO. Three simulated RL environments from OpenAI Gym
(BROCKMAN et al, 2016) are used for this evaluation: mountain car, Cart-pole and ac-
robot. The sections below provide a more detailed description of these environments and

baseline algorithms.

5.4.1 RL environments
5.4.1.1 Mountain car

The Mountain car is a classic RL control problem, illustrated in Figure [36] The environ-
ment consists of a car that is stuck in a valley between two hills. The car has limited
power and is unable to climb the hills directly. The goal of the agent is to learn how to

control the car so that it can reach the top of the hill on the right.

Figure 36 — The mountain car environment

Source: Adapted from Brockman et al.| (2016])

This environment has a two-dimensional state space, consisting of the position and
velocity of the car. The position is a continuous value that ranges from -1.2 to 0.6, while
the velocity ranges from -0.07 to 0.07. The action space is discrete, consisting of three
possible actions: push the car to the left, push the car to the right, or do nothing.

The reward function in the Mountain car environment is designed to encourage the
agent to reach the top of the hill on the right. The agent receives a reward of -1 at each
time step until it reaches the goal. This penalization is added to encourage the agent to
reach the goal as quickly as possible. Once the agent reaches the goal, the episode ends
and the agent receives a reward of 0.

This is a non-trivial problem because of the long-term dependencies involved. The

agent must learn to build up momentum by moving back and forth in the valley before it
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can climb the hill on the right. This requires the agent to balance short-term rewards with
long-term goals. Importantly, the goal state is highly unlikely to be reached by chance,

i.e. random exploration, within the time limit of 200 steps.

5.4.1.2 Cart-pole

The Cart-pole environment in OpenAl Gym (BROCKMAN et al) 2016)) is another classic
RL problem, illustrated in Figure [37] The environment consists of a cart and a pole that
is attached to the cart by a free-moving joint. The goal of the agent is to balance the pole

on top of the cart for as long as possible.

Figure 37 — The Cart-pole environment

Source: Adapted from Brockman et al.| (2016])

The state space of the Cart-pole environment is four-dimensional, consisting of the
position and velocity of the cart, and the angle and angular velocity of the pole. The cart
position and pole angle are continuous values, as well as the respective velocities. The
action space is discrete, consisting of two possible actions: move the cart to the left or
move the cart to the right.

The reward function in the Cart-pole environment is designed to encourage the agent
to balance the pole on top of the cart for as long as possible, limited to 500 steps. The
agent receives a reward of +1 at each time step while the pole remains upright. The
episode ends when the pole falls over or when the cart moves too far to the left or right.
Once the episode ends, the agent receives a reward of 0.

The Cart-pole is a challenging RL problem because of its instability. The agent must

learn to balance the pole while also avoiding moving the cart too far to either side.

5.4.1.3 Acrobot

The setup is illustrated in Figure and the goal is to lift the tip of the robot to a
certain level. The environment provides sine and cosine of both joint angles, as well as the
respective angular velocities. The second joint is weakly actuated and the system includes
gravitational pull. To solve this task, the agent has to consistently swing the actuated

joint, building up the energy.
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Figure 38 — The acrobot environment

Episode termination

Source: Adapted from Brockman et al.| (2016)

The reward function in the Acrobot environment is designed to encourage the agent
to swing the pendulum up to a vertical position. The agent receives a reward of -1 at each
time step, as with the other environments, this encourages the agent to reach the goal as
quickly as possible. When pendulum reaches the goal position the episode ends and the

environment provides a reward of 0.

5.4.2 Baseline algorithms
5421 TAC

The tabular actor-critic algorithm is based on a classical TD(A) reinforcement learning
algorithm used to estimate the optimal value function of an MDP, given a set of states,
actions, and rewards (SUTTON, |1988)). It is a variant of the TD-learning algorithm that
incorporates eligibility traces, which allow for the accumulation of TD-errors over multiple
time steps.

At each time step, the algorithm updates the value function estimate of the current
state s using the TD-error, defined in Equation [5.9) This update is weighted by the
eligibility trace, which is a measure of the importance of the state s in the current episode.

The eligibility trace is updated using the decay parameter A and the discount factor
v at each time step, so that states that occur closer to the current time step are given
more weight in the update. This allows the algorithm to incorporate information from
previous time steps into the current update and improve the accuracy of the value function
estimate.

The algorithm repeats this process for a fixed number of episodes, updating the value
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function estimate and eligibility traces at each time step. The epsilon-greedy exploration

strategy is used to balance exploration and exploitation.

5422 PPO

Proposed by [Schulman et al.| (2017)), Proximal Policy Optimization (PPO) is a RL algo-
rithm used for training policy-based models, which directly optimize the policy function
that maps states to actions. It is a variant of the policy gradient methods, which aim
to maximize the expected reward of an agent by adjusting the parameters of the policy
function.

PPO uses a surrogate objective function that constrains the change in the policy
parameters to be small, so that the agent does not deviate too far from the previous
policy. This makes the training process less brittle and prevent the agent from making
too large policy changes. The PPO algorithm uses a clipping technique to enforce this
constraint on the policy updates. At each iteration, the algorithm computes the ratio
between the new and old policy probabilities for the observed state-action pairs, and uses
this ratio to compute a surrogate objective function. The surrogate objective function is
then optimized using a gradient descent algorithm, subject to a constraint that limits the
size of the policy update.

The size of the policy update is controlled by a hyperparameter e, which represents
the maximum amount that the policy parameters can change in a single update. If the
ratio of the new and old policy probabilities exceeds 1 + €, then the update is clipped to
a maximum value of 1 + e. Similarly, if the ratio is less than 1 — ¢, then the update is
clipped to a minimum value of 1 — €. This helps to prevent the policy from changing too
much and ensures that the updates are consistent with the previous policy.

Analogously to the actor-critic model in the proposed network, PPO also uses a value

function to estimate the expected reward of each state.

5.4.3 Hyperparameters

This section presents the main hyperparameters that were found to have an impact on each
algorithm’s performance during exploratory trials. A widely used optimization framework
Optuna (AKIBA et al., 2019) is employed to iteratively search for a good set of hyperparam-
eters for the proposed network and both of the baseline algorithms. More specifically, the
Tree of Parzen estimators (TPE) (BERGSTRA et al,|2011)) algorithm is used for sequential
optimization. After an initial random exploration for 10 trial, TPE aims at choosing a
set of parameters that maximize an objective function. If a model with the same set of
parameters is evaluated more than once, the final score is an average of all the trials for
this set.
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Table 8 — Hyperparameter search space for the TAC baseline

Hyperparameter Search space

# of bins per dimension [5, 10(b,c), 20(a)]
Emin [0.01(a), 0.05(b,c), 0.1]
¢ decay time (# of episodes)  [100, 200(b,c), 500(a)]
Discount factor [0.9(c), 0.95(a,b), 0.99]
Actor learning rate (1073, 10~2(b,c), 10~ (a)]
Critic learning rate (1073, 107%(b,c), 107! (a)]
Ta [1(a,b,c), 10, 20]

7. [1, 10, 20(a,b,c)]

Source: The author, 2023

Table 9 — Hyperparameter search space for the PPO baseline

Hyperparameter Search space
# of neurons in each hidden layer [64(b,c), 128, 256]
# of hidden layers [1(b), 2(c), 3]
Buffer size [1k, 2k(b,c), 4K]
Learning rate (1073, 10~*(b,c), 107°]
Batch size (32, 64(b,c), 128]
Discount factor [0.9(c), 0.95, 0.99(b)]
# of surrogate loss optimization epochs [5, 10(b,c), 20]
Clipping parameter e (0.1, 0.2(b,c), 0.4]

Source: The author, 2023

5431 TAC

The tabular actor-critic baseline is optimized for 500 trials on each of the three benchmark
problems: mountain car, cart-pole and acrobot. Each trial is composed of 1000 epochs and
the optimizer aims at achieving the best average latency at the last 500 epochs. The best
performing parameters for each of these environments are indicated on Table[§ with letters

a, b and c, respectively.

5432 PPO

Table 9] presents the list of hyperparameters for the PPO algorithm, described in Section
5.4.2.2| The optimization process is identical to the TAC algorithm. Due to sparse rewards

of the mountain car problem, the PPO algorithm was not used on this environment.
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Table 10 — Hyperparameter search space for the proposed netowork

Hyperparameter Search space
0 [10-%(a), 104, 10~3(b,c,d), 10~2]
n decay factor [1073(b), 107%(d), 10~ (a,c), 1]
n decay time (# of episodes) [100(b,d), 500(c), 1000(a)]
Bopen [1073(b), 10~%(a,c), 1071(d)]
Oopen decay factor [1073(b), 1072, 10! (a,c,d), 1]
open decay time (# of episodes) [100(b,d), 500, 1000(a,c)]
# of neurons in the first clustering layer [10, 20(c), 50, 100(a,b,d)]
# of neurons in the second clustering layer [10, 20(c), 50]
Mta [1073(a), 1072(c,d), 10~ (b)]
Emin 0.01(a,b,c,d), 0.05, 0.1]
¢ decay time (# of episodes) [100, 200, 500(a,b,c,d)]
Discount factor [0.9, 0.95(b,c), 0.99(a,d)]
Actor learning rate (1073, 1072, 10~ (a b,c,d)]
Critic learning rate (10~ 3, 10~ ( ), 107 *(a,b,d)]
Ta 1, 5(a), 10(c, d) 20, 50(b)]
T 1, 5(a), 10(b,c,d), 20, 50]

Source: The author, 2023

5.4.3.3 Proposed model

The proposed model shares hyperparameters with the TAC algorithm, as the Actor-
Critic part of the network is a neuromorphic implementation of this algorithm. However,
a different search space is selected because the proposed Actor-Critic model does not
evaluate the entire state space of a given environment. Rather, a hidden layer of the
clustering network is used to group a number of individual discrete states.

Differently to the baseline algorithms above and due to the large number of adjustable
parameters in the proposed model, a hybrid optimization strategy was adopted. The TPE
algorithm was used alternatively with manual tuning, typically adjusting a few parameters
at a time. The full set of optimized parameters is presented in Table [I0] with letters a,
b and c indicating the hyperparameters set for mountain cat, cart-pole and acrobot
environments. Note that only the acrobot environment required a second clustering layer.

An additional optimized configuration with a single clustering layer is indicated by letter

d, as described in Section [5.4.5

5.4.4 Results

The following experimental results are obtained from ten independent runs from each

combination of RL algorithms, including a random agent, and benchmark environments.
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The results are presented as average of the ten trials, with respect to each episode. Ad-
ditionally, the trial with the best latency is shown separately as a dotted line and the

shaded region indicates standard deviation, also relative to the episode.

5.4.4.1 Mountain car

The Mountain car environment has two input dimensions and a sparse reward. The PPO
algorithm did not obtain good results on this benchmark, unless the reward signal is mod-
ified to include proximity to the goal state. Otherwise, each episode terminates without
positive reward. Because of this, the PPO algorithm is not included in the results pre-
sented in Figure 39 Dotted lines correspond to the best out of ten trials. Also due to the
sparse reward, a random agent is unable to terminate the episode before the maximum

time of 200 steps.

Figure 39 — Average latency results on the Mountain car environment. Dotted lines correspond
to the best out of ten trials and the shaded regions represent the standard deviation

—— Proposed model

----- Proposed model- best trial
— TAC

----- TAC- best trial

180 A .
----- Random agent- best trial

160 4

Latency

140 A

120 A

100 4

0 250 500 750 1000 1250 1500 1750 2000
Episode #

Source: The author, 2023

The proposed model and the TAC baseline present similar final latency and learning
speed on average. However, a comparison of the best trials (dotted lines) suggest that
the proposed network can surpass the tabular algorithm. It is also worth noting that
the observation space of the actor-critic TAC in this environment consists of the entire
state space, discretized using 20 bins, giving a total of 400 discrete states. Meanwhile, the
proposed network employs 100 neurons for clustering the real-valued 2D input from the
environment, resulting in 100 discrete states for the subsequent actor-critic component.
This reduction in the state space becomes more significant in the next benchmark envi-
ronments with higher state dimensions. It can also contribute to the faster learning rate

observed when comparing both average and best latency curves.
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5.4.42 Cart-pole

The proposed model is also compared to baselines on the Cart-pole environment, as
illustrated in Figure [0} Dotted lines correspond to the best out of ten trials. Differently
from the Mountain car problem, the reward is not sparse and is proportional to the time
the agent is able to keep the pole in balance. While all three of the evaluated models are
able to significantly improve the balancing time after 250 epochs, PPO provides the most
stable control over the ten independent runs. The proposed model obtains a comparable
performance to PPO on the best run and, as in the previous experiment, is better than

TAC in terms of both average and the best runs.

Figure 40 — Average latency results on the Cart-pole environment. Dotted lines correspond to
the best out of ten trials and the shaded regions represent the standard deviation

—— Proposed model

----- Proposed model- best trial
PPO
PPO- best trial

—— TAC

----- TAC- best trial

----- Random agent- best trial

500 A

400 1

100 4

0 250 500 750 1000 1250 1500 1750 2000
Episode #

Source: The author, 2023

As described in Section [5.4.3.3] the proposed network uses a single clustering layer
with 100 neurons, providing a reduced discrete state space for the actor-critic network.
On the other hand, the TAC algorithm uses 10 bins for each input dimension, giving a
total of 10* discrete states. While increasing the number of bins can result in an improved
performance over time, this has a drawback of slower learning speed. Thus, the proposed
clustering layer is able to provide enough resolution in the state space for solving the

Cart-pole without requiring a very large number of neurons.

5.4.4.3 Acrobot

The Acrobot environment combines a sparse reward with additional input dimensions,
making it the most challenging of the thee considered benchmarks. On this task, the pro-
posed network is able to achieve significantly better performance by using two clustering
layers. This is illustrated in Figure {1} Dotted lines correspond to the best out of ten
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trials. The first layer contains 20 neurons per dimension, or a total of 120 neurons with 6
active at any given time-step. The second layer reduces this state space to just 20 neurons

in total, a substantial reduction compared to 10° states observed by the TAC algorithm.

Figure 41 — Average latency results on the Acrobot environment. Dotted lines correspond to the
best out of ten trials and the shaded regions represent the standard deviation
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Source: The author, 2023

While the PPO algorithm is significantly better than the proposed one in terms of
learning speed and control precision, the proposed model is still able to find a stable control
strategy for the Acrobot problem. Moreover, the neuromorphic approach is fundamentally
different in both memory usage and amount of changes that are applied to the network
during learning. Firstly, while PPO and similar deep RL algorithms use a large memory
buffer for storing previous transitions in the environment, the current approach relies
on synaptic traces. Secondly, the backpropagation algorithm requires global information
about the network, while in the proposed model only local computations are applied for
synaptic plasticity. Thirdly, during training the synapses of the actor-critic network used
by PPO are modified several times over a batch of data retrieved from the memory buffer.
On the other hand, the synaptic updates on the proposed model are performed once at

each time-step by using a broadcasted TD-error signal and eligibility traces.

5.4.5 Discussion and summary

An obvious advantage of the proposed network over a tabular RL algorithm is that the
state space observed by the actor is drastically reduced. Table [11| provides a comparison
of the proposed model and the tabular actor-critic (TAC) in terms of state space require-
ments. The difference becomes more significant when the number of input dimensions is

increased.
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Table 11 — Comparison between the proposed model and the tabular actor-critic (TAC) in terms
of state space requirements

Environment Algorithm State space

Mountain car Proposed le2
TAC 4e2
Cart-pole Proposed le2
TAC led
Acrobot Proposed 2el
TAC le6

Source: The author, 2023

We consider the Cart-pole and Acrobot environments for an additional ablation study
with the aim to evaluate the impact on performance of the individual components of
the proposed network. Each experiment consists of 30 independent runs using a specific
configuration of the algorithm. Average latency and standard deviation are presented and
an unpaired t-test with 95% significance is used to evaluate each change in parameters.

The proposed network has two synaptic plasticity models for clustering layers: passive
clustering that drives neurons to evenly represent the observed state space and TD-error
modulation that encourages a denser distribution near states with higher absolute TD-
error. Each of this components is individually disabled from the proposed model and
evaluated on the cart-pole environment. The average latency and standard deviation are
calculated from the last 1000 episodes of each run, once the a more stable control is
reached. A qualitative comparison is presented in Figure [42] while the statistical signifi-
cance analysis is based on data from Table [I3]

The comparison of average latencies on Table [13| suggest that TD-error modulation
plays a significant role on the performance of the network. Meanwhile, there is no statis-
tically significant difference between a configuration with and without passive clustering
enabled.

Table 12 — Average and standard deviation of the latency curve for the ablation study on the
cart-pole environment

Configuration Average latency (std) Significant change?
Proposed 460 (52)

Proposed, w/o TD-modulated clustering 332 (134) v
Proposed, w/o unsupervised clustering 456 (56)

Proposed, static clusters 367 (132) v’

Source: The author, 2023
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Figure 42 — An ablation study of the proposed model on the cart-pole environment. The shaded
regions represent the standard deviation
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A similar ablation study on the acrobot environment is presented in Figure 43| and
Table [I3] However, since the best configuration of the proposed network for this envi-
ronment has a second clustering layer, another configuration is optimized with a single
clustering layer in order to evaluate the impact of this feature. Simply removing a layer
from the proposed configuration would not result in a fair comparison, since the other
hyperparameters also have to be adjusted to better fit the new configuration. An ad-
ditional optimization run with 500 trials is performed, considering the same range of
hyperparameters presented in Table [I0]

Overall, each of the considered changes to the proposed architecture results in a sta-
tistically significant drop in performance, when compared to the initial configuration. In
contrast to the previous experiment with the cart-pole environment, the unsupervised
clustering plays a more significant role than the TD-modulated one. When static clusters
are used, the latency increases significantly, suggesting that the dynamic nature of the

clusters in the originally proposed model plays a vital role in its performance.
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Figure 43 — An ablation study of the proposed model on the acrobot environment. The shaded
regions represent the standard deviation.
—— Proposed model

W/o TD-modulated clustering
W/o unsupervised clustering

500

400 A

Latency
w
o
o

200 1

100 A

0 250 500 750 1000 1250 1500 1750 2000
Episode #

(a)

—— Proposed model
—— Static clusters
—— Single layer clustering

500 +

400 A

Latency

200 +

100 A

0 250 500 750 1000 1250 1500 1750 2000
Episode #

(b)
Source: The author, 2023

Table 13 — Average and standard deviation of the latency curve for the ablation study on the
acrobot environment

Configuration Average latency (std) Significant change?
Proposed 128 (14)

Proposed, static clusters 475 (78) v’
Proposed, single clustering layer 183 (29) v’
Proposed, w/o TD-modulated clustering 163 (54) v’
Proposed, w/o unsupervised clustering 488 (29) v

Source: The author, 2023
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5.5 CONCLUSION AND FINAL REMARKS

This work provides a novel neuromorphic architecture aimed at solving reinforcement
learning problems with real-valued observations. The proposed network contains cluster-
ing layers, based on an earlier work by (AFSHAR et al., 2020)) and (BETHI et al., [2022)), with
an introduction of TD-error modulation and eligibility traces. The impact of the main
components introduced in this architecture are evaluated in an ablation study and shown
to have a significant impact on performance.

The network’s effectiveness is assessed against a tabular actor-critic algorithm with
eligibility traces, as well as a state-of-the-art deep learning model, Proximal Policy Op-
timization (PPO). The proposed model outperforms the tabular algorithm in terms of
learning speed and accuracy consistently, demonstrating its capability to discover stable
control policies for three control problems involving 2, 4 and 6 input dimensions. Apart
from latency, other metrics can be used in future works to provide a more holistic view of
the model’s effectiveness. For instance, sample efficiency and memory usage are expected
to further underscore the advantages of our model. Additionally, some RL problems are
better described in terms of other metrics, such as cumulative reward.

While it does not surpass the PPO-based controller in terms of optimal performance,
our network offers an appealing trade-off in terms of memory and hardware implemen-
tation requirements. This is because the proposed model does not require an external
memory buffer and the synaptic plasticity occurs online, driven solely by local learning
rules and a broadcasted TD-error signal. This aspects provide a more biologically plau-
sible learning model, which in future may lead to more efficient algorithms in terms of
computational and memory requirements. An efficient FPGA implementation of a related
neuromorphic architecture, aimed at online supervised training, has been demonstrated in
Mehrabi et al.| (2023)). This advantages in terms of hardware implementation requirements
are especially relevant in edge computing or environments with limited computational re-
sources. Finally, spiking networks are generally perceived to be more robust to loss of
individual components, noise and adversarial attacks (SHARMIN et al., 2019). This char-
acteristic is expected to be present in the proposed model and could be further evaluated

in future works.
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6 CONCLUSION

The goal of this thesis is to bridge the performance gap between spiking models and
Deep Reinforcement Learning (DRL) algorithms on specific reinforcement learning tasks.
To this end, three stages of research were undertaken, each building upon the last and
improving capabilities of Spiking Neural Networks (SNNs) in the field of Reinforcement
Learning (RL).

The first stage introduced a novel SNN architecture that addressed the scalability
issues regarding the state space in related models. Our findings showed that this spiking
model performs comparably with DRL algorithms on simple RL control tasks while of-
fering less complexity in terms of memory and computation requirements. This research
sets the stage for the two subsequent endeavors, each exploring the potential applications
of SNNs in RL.

The second stage further evaluates and improves the previously proposed model, com-
bining it with a binary feature extraction network. This binary convolutional neural net-
work (CNN) was pre-trained on a set of naturalistic RGB images and then applied to a
modified grid-world task. Improvements in architecture and dynamics are implemented
to address this more challenging task with image observations. The proposed network
demonstrated competitive performance with DRL algorithms, albeit in an environment
with a finite set of observations. However, the use of a pretrained network for feature
extraction is expected to be a limiting factor for dynamic environments, as the depen-
dency on a pre-trained network might make the spiking actor less adaptive to changing
conditions in an environment.

Given limitations in state space observations of the first two models, the third and
final stage presents a neuromorphic architecture for tackling RL problems with real-valued
observations. This model incorporated clustering layers, Temporal Difference (TD)-error
modulation and eligibility traces. While the proposed model did not outperform PPO in
optimal performance, it presented an appealing alternative in terms of computational and
hardware implementation requirements without the need for an external memory buffer
or global error gradient computation.

Compared to existing literature, our approach differs from most of the commonly found
methods that combine spiking networks and RL. Firstly, we use a more compact state
space representation than approaches involving liquid state machines (WEIDEL; DUARTE;
MORRISON, 2021; TANG et all, |2021)). Secondly, the proposed model does not rely on
approximation of the backpropagation error and gradient descent techniques used to train
traditional ANNs (BELLEC et al., [2020; AKL et al., |2023)).

Although the proposed models have shown promise, they are still sensitive to parame-

ter choices and are yet to be tested on real-world hardware implementations. Thus, future
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research can focus on the following directions:

o Automatic parameter and architecture tuning — the experiments suggest that the
model’s performance is sensitive to the choice of several parameters. Future work
could discover how best to apply evolutionary algorithms to find an architecture
and a parameter set for a given problem. Automated machine learning (AutoML)
is widely used for deep learning architecture search. On a smaller scale, Qiu et
al| (2018) apply an evolutionary algorithm to spiking architectures for nonlinear
control problems. Additionally, evolutionary algorithms such as NEAT (STANLEY;
MIIKKULAINEN, [2002) have been shown to generate efficient spiking controllers for
simple tasks (QIU et al) 2018]). An evolutionary algorithm could be complementary

to the online synaptic plasticity presented here.

o Scalability to more complex problems — the proposed model was effective in solving
control problems with 2, 4 and 6 input dimensions. However, the most interest-
ing problems involve larger state and action spaces. Future work could investigate
the model’s scalability to problems with even larger input dimensions. To this end,
works in representation learning (OTA et al., 2020; TSLAM et al., |2022; |STOOKE et al.,
2021)) could be studied and used as inspiration for a neuromorphic approach. Re-
garding action space scalability, hierarchical organization (RASMUSSEN; VOELKER;
ELIASMITH, [2017)) and MAP-Elites (CULLY et al., |2015)) are two promising methods
for learning in complex action spaces and could be combined with the proposed

spiking network.

o Hardware implementation — the study highlighted the potential hardware efficiency
of the proposed model. Future work could focus on the actual implementation of this

architecture in hardware and investigate its performance in real-world applications.

» Population coding — the current method does not rely on population coding, which
can increase the number of parameters within the network and lead to slower learn-
ing speeds. However, a more robust learning and better scalability are potential
benefits of this encoding method (TANG et al., 2021). Future work could explore a
hybrid approach that combines the current method with elements of population cod-
ing to potentially improve performance without significantly increasing the number

of parameters.

» Spatio-temporal processing — in the current implementation, the agent is provided
with enough sensory information at any time to perform the task. For example, an
acrobot agent receives both the angles and the angular velocities of the joints at
each time step. In future work, we plan to use additional synaptic traces and delays

to learn the necessary spatio-temporal filters from raw sensory data. Processing of
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temporally encoded information has been demonstrated on a related neuromorphic

architecture for supervised learning (BETHI et al., 2022).
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APPENDIX A - SUPPLEMENTARY MATERIAL

A demo code with the spiking agent is provided at <https://github.com /sergio-chevtchenko/

snn-binary-sample-main>. Other materials are available upon request.

INPUT-HIDDEN CONNECTIVITY

This section presents additional experiments in order to evaluate the role of the hidden
layer. The evaluated network contains only input and hidden layers, with 100 neurons
each. The connectivity between these layers is encoded using the parameter set described
in Section [£.3.3} [5%, 10%, 1.0, 0.25]. A random and unique pattern of 200 input signals
is presented to the network, and activations of the hidden layer are recorded.

The following experiment evaluates the impact of the density of the input pattern. The
density is expressed in percentage and indicates the number of randomly active inputs
at any time. Sample activations of input and hidden signals are presented in Figures [44al
and for a 10% and 50% input density, respectively. Jaccard distance is a common
measure of dissimilarity and is used here to evaluate separation within binary patterns
produced by each layer. An average of pairwise distances is computed within the recorded
patterns of either input or hidden layers. This average Jaccard distance is presented in
Figure 45| as a function of input density.

It is worth noting that while this experiment illustrates the role of the hidden layer,
the connectivity optimization presented in Section does not use Jaccard distance
as a cost function. This is because an error rate computed from the action layer is a more

direct measure of the network performance.
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Figure 44 — Sample patterns produced by the input and hidden layers
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Figure 45 — Evaluation of patterns produced by the input and hidden layers as a function of
input density
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PLACE NEURONS

In the following experiment we consider the proposed spiking network with feature extrac-
tion, input, hidden and place layers. The feature extraction network receives a sequence
of 500 images on each episode. Consequently, the input layer receives a sequence of 500
dense binary signals, similar to illustrated in Figure [{4b] At the end of an episode, a
reward signal is broadcasted to the network. The network configuration is based on the
optimized configuration b from Table [7], except for the following adjustments due to the
constant length of the episode: 7, and 7, are kept constant at 100 and 1000, respectively.
The number of place cells is also set to 500 (the length of an episode).

Considering that the reward is consistently delivered after the same sequence of obser-
vations, we expect the place cells to also start spiking consistently after some time. The

place cell spiking consistency is measured after 100 episodes for each of 500 positions at

__ # of place neurons that have fired at the position
total # of place neurons .

A consistency value close to 1 means that the corresponding position is represented by

the linear track. This consistency is defined as 1

a single or very few place neurons. On the other hand, a consistency close to 0 indicates
that a random place neuron has fired at the given position in the last 100 episodes. The
result is presented in Figure [46] Note that the consistency is highest when closer to the
last position. This is due to the eligibility trace decay parameter 7., described in Equation
0.2l
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Figure 46 — Evaluation of place cell firing consistency after 100 episodes of a linear track exper-

iment
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CONNECTIVITY OPTIMIZATION

This section provides additional results from the connectivity optimization experiments
described in Section Table [14] lists the ten best connectivity configurations in

terms of error rate, defined in Equation [4.2]

Table 14 — Ten best connectivity configurations

Configuration

Error rate (std)

5%, 10%, 1.0, 0.25]
5%, 10%, 0.1, 0.25]
5%, 10%, 1.0, 0.5]
5%, 10%, 0.1, 1.0]
10%, 20%, 1.0, 1.0]
5%, 10%, 0.25, 0.1]
5%, 10%, 1.0, 0.1]
5%, 5%, 0.1, 0.1]
25%, 20%, 0.25, 0.25]

[
[
[
[
[
[
[
[
[
[25%, 20%, 0.5, 0.1]

0.50% (0.24%)
0.58% (0.23%)
0.62% (0.21%)
0.64% (0.23%)
0.66% (0.25%)
0.68% (0.31%)
0.70% (0.30%)
0.70% (0.16%)
0.70% (0.22%)
0.72% (0.32%)
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Figures [7a] and provide sample activations from the input and hidden layers
during observations from the linear track experiment. Input activations are provided by
the feature extraction network. Figures [A7D] and [A7d] illustrate the spike count per neuron

of each layer during the experiment.

Figure 47 — A sample of activation patterns from the linear track experiment
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PPO WITH BINARYNET

Note that the baseline algorithms use a CNN followed by a fully connected layer as a
policy network. Thus, it is reasonable to suppose that the use of a pre-trained BinaryNet
instead of a CNN as a feature extractor may provide a biased advantage to the proposed
spiking network.

In order to test this, the PPO algorithm is optimized with observations from the Bina-
ryNet, in the same manner as the spiking model. The optimization is the same as described
in Section The list of optimized hyperparameters is based on Table [9] except for
the convolutional layer, which is replaced by an MLP. The new set of hyperparameters is

provided in Table [15] and the highlighted parameters are used in this experiment.
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Table 15 — Optimized hyperparameters of PPO

Hyperparameter Search space
# of hidden layers 1, 2]
# of neurons in the hidden layers (32, 64, 128]
Buffer size [1k, 2k, 4K]
Learning rate (1073, 1074, 107°]
Batch size (32, 64, 128]
Discount factor [0.9, 0.99, 0.999]
# of surrogate loss optimization epochs [5, 10, 20]
Clipping parameter (0.1, 0.2, 0.4]

A comparison of optimized versions of PPO with CNN and BinaryNet is presented
in Figure A8 The results suggest that the BynaryNet does not provide an advantage in
performance for the PPO algorithm. An investigation of whether the use of a spiking CNN

with online training would improve performance of our network is left for future works.

Figure 48 — Comparison of optimized version of the PPO algorithm with CNN and BinaryNet
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GRID-WORLD WITH POSITIONAL OBSERVATIONS

The grid-world environment evaluated in the present work provides observations in form
of naturalistic RGB images, as described in Section [£.4.1} The dimensionality of this input
is reduced by a BinaryNet feature extractor and the spiking network receives a dense 128-
bit signal, as illustrated in Figure [19 On the other hand, positional observations can be
encoded with a sparse binary vector. In the case of a 20x20 grid-world, the observations
would consist of a 40-bit vector with two active bits at each time.

In this experiment we compare the two environment observations by using the network
configuration b from Table[7] Note that this network is only optimized for image observa-
tions but is used to illustrate that very sparse positional observations are less challenging.

The latency curve from the experiment is presented in Figure [49]

Figure 49 — The network configuration b from Table is used to compare two 20x 20 grid-world
environments with positional and RGB observations
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SCALABILITY IN TERMS OF IMAGE SIZE

This experiment evaluates the scalability of the feature extraction network (BinaryNet)
in terms of input image size. We use a 10x10 grid-world with observations expanded to
128x128 and 256x256 pixels. The latency curves are provided in Figure [50] As in all
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three configurations, the spiking agent receives the same 128 bit feature vector and its

performance is not affected by the input image size.

Figure 50 — Evaluation of the scalability of the feature extraction network (BinaryNet) in terms

of input image size

—— SNN (64x64 RGB input)
1009 —— SNN (128x128 RGB input)
—— SNN (256x256 RGB input)

80 1
& 60
c
@
8
40 1
20 1
0 T T T T T T
0 200 400 600 800 1000
Episode #

Source: The author, 2023



	Title page
	Acknowledgements
	Abstract
	Resumo
	List of Figures
	List of symbols
	List of Tables
	Contents
	Introduction
	Research problem
	Research goals
	Specific goals

	Research contributions
	Thesis outline

	Background
	Reinforcement Learning
	Problem Formulation
	Markov decision process
	Temporal Difference Learning
	Eligibility Traces

	Spiking Neural Networks
	Neural Models
	Integrate and Fire
	Leaky Integrate and Fire
	Izhikevich

	Spike/timing/dependent Plasticity
	Addressing RL Problems by Using SNNs and STDP


	Learning from Sparse and Delayed Rewards with a Multilayer Spiking Neural Network
	Introduction
	Related Work
	Proposed Spiking Network
	Neural Model
	Synaptic Plasticity
	Hidden Layer
	Place Neurons
	Output Layer

	Experiments
	Setup
	Maze task
	Acrobot

	Baseline Models
	Q-learning
	DQN

	Hyperparameters
	Results

	Conclusion

	Combining STDP and Binary Networks for Reinforcement Learning from Images and Sparse Rewards
	Introduction
	Related works
	The proposed network
	Neural model
	Feature extraction network
	Input and hidden layers
	Place neurons
	Output layer

	Experimental evaluation
	Environment
	Baseline models
	Deep Q network
	Proximal policy optimization

	Hyperparameter optimization
	Baseline algorithms
	The proposed network

	Results
	Connectivity optimization
	Comparison with baseline models
	Impact of hyperparameters

	Discussion and summary

	Conclusion and final remarks
	Future work


	A Neuromorphic Architecture for Reinforcement Learning from Real-Valued Observations
	Introduction
	Related works
	The proposed architecture
	Input layer
	Actor-critic layer

	Experimental evaluation
	RL environments
	Mountain car
	Cart-pole
	Acrobot

	Baseline algorithms
	TAC
	PPO

	Hyperparameters
	TAC
	PPO
	Proposed model

	Results
	Mountain car
	Cart-pole
	Acrobot

	Discussion and summary

	Conclusion and final remarks

	Conclusion
	References
	Supplementary material

