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ABSTRACT

The hypothesis that the brain self-organizes around a critical point has been under in-
vestigation for nearly three decades. This notion posits that extensive neuronal populations
can be effectively examined as many-body systems, characterized by principles from statistical
physics. According to this analogy, a system near this critical point exhibits certain func-
tional advantages, and the brain already exhibits these characteristics, providing support for
the concept of brain criticality. In other contexts, critical point analysis typically explores the
transitions between various phases or states of a system, yet the application of this analysis
to the dynamics of the brain has remained relatively underexplored. In this study, we propose
the evaluation of three distinct signatures of criticality for different cortical states. We define
different cortical states based on the level of variability in neuronal population activity, which
is closely associated with the degree of synchrony among neurons. The criticality indicators
demonstrate greater significance during moments characterized by intermediate levels of syn-
chronization among the neuronal population, as recorded using silicon probes in the visual
cortex of anesthetized rats. These findings reinforce investigations into fundamental questions
such as the self-organization of brain dynamics around a critical point between assumed brain
states and also into the use of synchrony levels in neuronal population activity as an order
parameter for a transition associated with the critical point.

Keywords: Criticality. Neuronal avalhanches. Maximal Entropy models. Cortical states. Com-
plexity measures. Rat’s Primary Visual Cortex. Silicon Probe.



RESUMO

A hipótese de que o cérebro se autoorganiza em torno de um ponto crítico tem sido
objeto de investigação há quase três décadas. Essa ideia postula que grandes populações neu-
ronais podem ser efetivamente examinadas como sistemas de muitos corpos, caracterizados
por princípios da física estatística. De acordo com essa analogia, um sistema próximo a esse
ponto crítico apresenta certas vantagens funcionais, e o cérebro já exibe essas características,
oferecendo suporte ao conceito de criticalidade cerebral. Em outros contextos, a análise de
ponto crítico normalmente explora as transições entre várias fases ou estados de um sistema,
no entanto, a aplicação dessa análise à dinâmica do cérebro tem permanecido relativamente
pouco explorada. Neste estudo, propomos a avaliação de múltiplas assinaturas de criticidade
para diferentes estados corticais. Definimos diferentes estados corticais com base no nível de
variabilidade na atividade da população neuronal, que está intimamente associada ao grau de
sincronia entre os neurônios. Os indicadores de criticalidade demonstram maior significância
durante momentos caracterizados por níveis intermediários de sincronização entre a popu-
lação neuronal, conforme registrado por eletrodos de alta densidade no córtex visual de ratos
anestesiados. Essas descobertas reforçam investigações sobre questões fundamentais tais como
a autoorganização da dinâmica cerebral em torno de um ponto crítico entre supostos estados
do cérebro e também sobre o uso do nível de sincronia na atividade da população neuronal
como um parâmetro de ordem para uma transição associada ao ponto crítico.

Palavras-chaves:Criticalidade. Avalanches neuronais. Modelos de Máxima Entropia. Estados
corticais. Medidas de complexidade. Córtex visual primário de ratos. Silicon Probes.
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1 INTRODUCTION

In the natural world, systems, and objects typically exhibit a distinctive order that lies
somewhere between complete order and utter chaos (CRUTCHFIELD, 2011; WHEATLEY, 1992;
MADDOX, 1990; GIORBRAN, 2005). This balance between structured organization and random-
ness is a fundamental characteristic of the world. In the realm of biology, numerous systems
display intricate behaviors, which is crucial because it allows these systems the flexibility to
adapt, enhance their ability to comprehend new stimuli, incorporate new elements, and elimi-
nate unnecessary components (TOUSSAINT; SEELEN, 2007).

That concept of organization doesn’t appear to be the result of any discernible external
force or larger system, at least nothing that can be definitively demonstrated. It seems more
intellectually sound to consider that organization arises from within the system. Perhaps due to
evolutionary processes, biological systems exhibit a tendency to self-organize into an optimal
state of functionality, and the brain is no exception to this pattern (BAK, 2013).

The brain has been a subject of study for centuries, and even without prior knowledge,
it is evident that the brain’s components do not operate in a random, disconnected manner.
Conversely, it is also apparent that these components are not in a constant state of synchro-
nization. In such extreme scenarios, it is hard to believe that complex behaviors like speaking,
recalling past facts, and investigating the brain’s inner workings could emerge.

Physics has a well-established methodology for studying the emergence of complex out-
comes from multiple components. For instance, in thermodynamics, a straightforward example
illustrates how the positions and velocities of individual particles, along with their interactions,
lead to the emergence of collective properties like pressure and temperature. Similarly, in the
realm of magnetism, the angular momentum of each particle, or spin, can interact and become
organized, resulting in the magnetization of the entire material (GREINER; NEISE; STÖCKER,
2012).

That branch of Physics that deals with systems composed of many particles is called Statis-
tical Physics. It seeks to understand their behavior in terms of statistical laws and probabilities.
It provides a bridge between the microscopic world of individual particles and the macroscopic
world of everyday observations, helping explain phenomena in thermodynamics, fluid dynamics,
and condensed matter physics (TORQUATO; TORQUATO, 2002).

In a simplified perspective, the brain consists of numerous particles, namely neurons, which
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interact with each other, giving rise to complex outcomes. This allows for analogies to be drawn
between extensive neuronal populations and the many-body particle systems examined in the
field of physics.

The inaugural application of statistical physics to the analysis of extensive neuronal popula-
tions is frequently credited to John Hopfield’s pioneering research in 1982. His work established
the groundwork for approaching the study of neural networks through a statistical physics lens
and left a profound imprint on the field of neuroscience. Subsequently, the relationship between
neuroscience and statistical physics has been further investigated by employing various neu-
ronal datasets and statistical physics methodologies (BIALEK, 2012; HOPFIELD, 1982; KELSO,
1984; PARISI, 1993).

Neuronal data can be obtained through computational models or live recordings. Sim-
ulated neuronal network data can vary in form, such as representing individual neuron ac-
tivity (KASABOV, 2010), network connectivity (SPORNS, 2014), membrane potential traces
(HODGKIN; HUXLEY, 1939), or extracellular electrical potential (PARASURAM et al., 2016). These
simulations are crucial for testing hypotheses, understanding neural mechanisms, and gaining
insights into real neural circuit functioning.

Real-time recordings of neuronal circuits can be obtained through a range of methods.
For instance, the use of microelectrodes for extracellular measurements of voltage fluctuations
within brain tissue (HAI; SHAPPIR; SPIRA, 2010). Another approach involves employing fluo-
rescent calcium indicators to monitor intracellular calcium levels, which serve as a proxy for
neuronal activity (GRIENBERGER; KONNERTH, 2012). Non-invasive techniques, such as fMRI
for assessing blood flow and oxygenation (HEEGER; RESS, 2002), MEG for capturing magnetic
fields arising from neuronal activity (HALL et al., 2014), and EEG for detecting electrical poten-
tials generated by neurons (KIRSCHSTEIN; KÖHLING, 2009), provide high temporal resolution
and are well-suited for clinical neurology and cognitive neuroscience. In contrast, optogenetics,
a more recent innovation, integrates genetic engineering with light-sensitive proteins to both
control and record specific neuronal activity (YIZHAR et al., 2011). These methods exhibit vari-
ations in spatial and temporal resolution, invasiveness, and applicability to specific research
inquiries.

The techniques employed to record actual brain activity not only leverage fundamental
physics principles like electric circuits, magnetism, and optics, but the subsequent data analysis
can also incorporate various physics concepts. Irrespective of the recording method, the analysis
of extensive neuronal populations’ activity can benefit from the application of statistical physics



15

Figure 1 – Phase diagram of a fluid.

Source: YEOMANS (1992)

methods, as previously discussed.
Statistical Physics has devised techniques for investigating systems comprising numerous

microscopic components that manifest diverse types of macroscopic collective behaviors, often
referred to as phases, each characterized by distinct levels of internal order (MUNOZ, 2018).
Some biological systems may exhibit intermediate levels of organization, not always falling
into a state of complete order or complete disorder (HARRIS; THIELE, 2011). Living systems
can offer notable functional advantages by operating at critical points that represent delicate
balances between phase transitions (SHEW; PLENZ, 2013).

Critical phenomena have been the subject of extensive exploration across a diverse array
of systems, including fluid phase transitions (STANLEY, 1971), sandpile dynamics (BAK; TANG;

WIESENFELD, 1988b), seismic events (LOTFI; DAROONEH, 2012; REZAEI et al., 2017), bird flock
behavior (CAVAGNA et al., 2010), magnetism, condensed matter (SACHDEV; MA, 2011), and
beyond. For instance, the phase transition of a fluid can be visually represented in Figure 1,
where the lines demarcate the points at which phase transitions may occur. Among these
critical points, the specific characteristics of critical point C set it apart, and these distinct
attributes serve as key indicators of criticality. They enable us to gauge the system’s proximity
to this critical region within the phase diagram.

Utilizing theories such as the scaling hypothesis and renormalization group, it becomes
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possible to mathematically demonstrate that many characteristics of critical points remain
predominantly unaffected by small-scale intricacies. Consequently, one can strongly suggest
the existence of universality in large-scale behavior (KADANOFF, 1990).

Extensive investigations have delved into identifying signatures of criticality within living
systems (MUNOZ, 2018). The aim of this thesis was to quantitatively analyze these signatures
within a system composed of neurons recorded from the cortical region responsible for high-
order visual perception processes.

The notion of criticality holds particular allure, especially when applied to extensive neuronal
populations, as many of its inherent features, such as long-range spatiotemporal correlations,
heightened sensitivity to stimuli, and enhanced information decoding capabilities, align closely
with the organization of the brain (SHEW et al., 2011; SHEW et al., 2009).

Statistical physics concepts generally use the thermodynamic limit, wherein the number of
particles in the system approaches infinity. When applying statistical physics methods to real
neuronal networks, it is vital to consider experimental limitations. The number of neurons that
can be recorded depends on the chosen experimental technique, and even the most precise
technique will present effects of subsampling (recording fewer neurons than the total number
in the target region) (PRIESEMANN et al., 2013; PRIESEMANN et al., 2014).

Fortunately, the scaling hypothesis offers a promising solution to the subsampling predica-
ment. One of the implications of this hypothesis is that the system retains similar structures
regardless of the level of detail considered. In essence, if scale invariance can be detected in
one part of the system, it is reasonable to infer that other parts of the system exhibit analogous
signatures of criticality (HARDSTONE et al., 2012).

This thesis centers on the exploration of criticality signatures within extensive neuronal
populations obtained from the visual cortex of rats. The data and subsequent analysis were
performed collaboratively by me and colleagues. This collective endeavor aims to illuminate
the topic of brain criticality and has yielded noteworthy findings, which are expounded upon
in the following chapters.

From this point forward, the structure of this thesis will be as follows: The upcoming
chapter will elucidate fundamental neuroscience concepts essential for comprehending the
subsequent results. In Chapter Three, we delve into the foundations of the Critical Hypoth-
esis. Chapter Four provides an in-depth description of the methodologies employed to attain
our findings. Moving to Chapter Five, a detailed analysis of four published articles by our
group, which investigate various criticality signatures computed from electrophysiological data
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obtained from V1 rats, will be presented. The final chapter will engage in a discussion of the
results and explore potential avenues for future research.
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2 ESSENTIAL TOPICS OF FUNDAMENTAL NEUROSCIENCE

2.1 STRUCTURAL ORGANIZATION OF THE NERVOUS SYSTEM

The nervous system is a complex and intricate network of specialized cells, tissues, and
structures that coordinate and regulate the activities of the body. It is unanimous that this
system is not only responsible for motor behaviors and raw stimulus-response, but also for
all the complex cognitive and behavioral acts such as consciousness, speaking, art production,
dance, critical thinking, and so on (ARBER; COSTA, 2018; SACKS, 2007; KANDEL; SQUIRE, 2000)

In the animal kingdom, there is an enormous diversity of nervous system organization.
In mammals, the nervous system is organized into two main parts: the central nervous sys-
tem and the peripheral nervous system. All the perception, complex behavior, and stimuli
response are coordinated by the central nervous system (CNS) which can be divided into two
significant parts, the spinal cord, and the brain. The spinal cord conveys information between
the body and brain, both ways, of skin, joints, and muscles. The dorsal part is dedicated
to upstream information and The brain is subdivided into 7 main parts: the medulla oblon-
gata (autonomic functions), pons (transmit movement information from the cerebrum to the
cerebellum), cerebellum (motor skills), midbrain (eye movement, visual and auditory reflex
movements), diencephalon (composed by thalamus and hypothalamus), and cerebrum (com-
posed by cortex, basal ganglia, hippocampus, amygdaloid nuclei), such as illustrated in Figure
2

The cerebrum is the most significant part of the brain and is responsible for integrating and
computing high-order functions. This part is divided into 4 functional regions (connectional
approach): Frontal lobe (executive functions, decision-making), Pariental lobe (processing sen-
sory information), Temporal lobe (auditory processing, language), and Occipital lobe (visual
processing and perception). See figure 3.

The mapping of the brain relies on both its structure and function. Within vertebrates,
each region’s location is determined by a foundational body plan that outlines the spatial
arrangement of structures in three dimensions as depicted in Figure 4. The primary body axis,
known as the Rostrocaudal axis, spans from the rostrum to the cauda. The second axis, the
Dorsoventral axis, extends from the dorsum to the ventrum. The third axis, the Mediolateral
axis, runs from the midline to the animal’s lateral margin. These three axes collectively aid in
comparing the development of brains within the same species and comprehending the evolution
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Figure 2 – The Central Nervous System is divided into seven regions. The Spinal Cord(1), Brain Stem (group-
ing Medulla Oblongata (2), Pons (3) and Midbrain (5)), Cerebelum(4), Diencephalon (6) (com-
posed by thalamus and hypothalamus) and the cerebrum (7).

Source: ERIC; JAMES; THOMAS (2000)

of brains across different species (MAI; MAJTANIK; PAXINOS, 2015).
The cerebral cortex, the most superficial region of the cerebrum, is organized in layers in

order to increase the efficiency of the sensory information processing (WOOLSEY; LOOS, 1970).
The neocortex is what is called the evolutionary more recent part of the cortex encountered in
mammals (NORTHCUTT; KAAS, 1995). The neocortex receives inputs from the thalamus, and
other cortex regions and its outputs will be spread along the specific cortex regions, going back
to the thalamus, basal ganglia, spinal cord, and so on (MORGENSTERN; BOURG; PETREANU,
2016; HARRIS; SHEPHERD, 2015).
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Figure 3 – The four lobes of the cerebrum are named after the cranial bones that are located above them.
The Central sulcus ( furrows on the surface of the brain) delimits the Frontal and Parietal Lobes.
The lateral sulcus delimits the Frontal from the Temporal Lobe.

Source: ERIC; JAMES; THOMAS (2000)

Figure 4 – Any part of the central nervous system (CNS) can be accessed using three axes, rostral-caudal,
dorsal-ventral, and ventral-dorsal. This three-dimensional space is used for different species and for
all the extensions of the CNS.

Source: ERIC; JAMES; THOMAS (2000)

The cerebral cortex is composed of a dense sheet of nervous cells called neurons. In
addition to neurons, the neocortex is an arrangement of other supporting structures such as
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Figure 5 – The cell body or soma is where the nucleus and organelles cytoplasmic such as endoplasmic reticu-
lum and the Golgi apparatus are. The dendrites could be found close to the soma or at the end of
the axon. They are responsible for the connection between neurons. The axon transmits informa-
tion in the form of ion concentration, vesicles, proteins, and others. Specifically, the axons could
be involved in glial structures called Myelin Sheaths. The synapses are the last part of dendrites
responsible for expelling or phagocyte substances.

Source: ERIC; JAMES; THOMAS (2000)

glial cells (direct support to signaling), blood vessels (supply essential nutrients and oxygen),
endothelial cells (responsible for the blood-brain barrier) and perivascular cells (regulation of
cerebral blood flow) (SUR; RUBENSTEIN, 2005).

The neurons are basically composed of the soma, dendrites, and axons. The soma is the
metabolic center of the neuron, and it gives rise to several dendrites and one long axon. As
with any cell, the soma is composed of cytoplasmic organelles and the cell nucleus embedded
by the cytosol. The dendrites are the part of the cell that receives the information coming
from the other nerve cells. The axon carries the electrical signal to other cells and extends
some distance from the cell body. The extension could be between 0.1mm to 2m. They are
crucial for sustaining the function of remote regions. See figure 5 One of the most important
structures to signaling in the brain, besides the neurons, are the glial cells. They play diverse
roles in neural function. This cell forms the insulating sheaths for the axon, and this insulation is



22

different between the central nervous system and the peripheral nervous system. See in Figure
6 This type of cell constitutes nearly half the number of brain cells. They nourish neurons and
regulate the concentration of extracellular components. Some of them play an important role
in the immunological surveillance of the Central Nervous System, poised to react to foreign
invaders.

Figure 6 – The glial cell has important roles at the central nervous system’s functioning. One of them is the
myelinating of neuron which is depicted in this figure. The oligodendrocyte (OL), a type of glial
cell, projects myelin sheaths (M) to cover parts of axon segments in order to increase signaling
speed. The axon parts not covered it is called nodes of Ranvier (N), they are responsible for the
action potential "saltatory conduction". Without the myelin sheaths, the electrical signal would
travel continuously along the entire length of the axon, losing amplitude. With this mechanism, the
action potentials are renewed from node to node, maintaining the signal properties.

Source: SQUIRE et al. (2012)

2.2 SIGNALING IN THE BRAIN

Neurons serve as the fundamental signaling components of the brain. Understanding their
interconnections and information transmission is crucial. Awareness of the electrical properties
in certain nerve cells and muscles dates back to Galvani’s experiments with frogs in the
late 1700s. Physiologists in the late 19th century further demonstrated that the speed of
electrical activity conduction along neurons impacts neighboring neuron activity. To gain a
deeper understanding of the origin of the brain’s electrical signals, it is essential to grasp the
structure of the neural membrane.

The cell membrane, present in all cells, including neurons, consists of an insulated lipid
bilayer that separates the extracellular environment from the intracellular one. As a result,
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ions accumulate intracellularly and extracellularly, potentially creating an electric potential
difference due to differences in ion concentration.

Each type of ion contributes to the total electrical potential difference of the cell and the
Goldman Equation can quantify this and it is called membrane potential.

The Goldman Equation, as denoted in Equation 2.1, takes into account the permeability
(rate of solute movement) of the membrane for each ion, which is crucial for the electrical
signaling of neurons. Another essential factor in calculating membrane potential is the con-
centration of each ion both inside (e.g., [𝐾]𝑖𝑛) and outside (e.g., [𝐾]𝑜𝑢𝑡) the cell. P is the
permeability of the membrane to a specific ion.

𝑉𝑚 ≈ −60𝑚𝑉 log10
𝑃𝐾 [ K]in + 𝑃Na[Na]in + 𝑃Cl[Cl]out

𝑃𝐾 [ K]out + 𝑃Na[Na]out + 𝑃Cl[N]in
(2.1)

It is important to note that changes in the intra/extracellular ion concentrations are the
only factors that can alter the membrane potential. Integral membrane proteins called ion
channels, located between the phospholipids composing the cell membrane, are responsible
for regulating ion traffic based on specific physical and chemical stimuli. These ion channels
possess crucial properties, such as ion selectivity and the ability to open and close in response
to electrical, mechanical, or chemical cues, as depicted in Figure 7.

The electrical activity of neurons is related to the movement of ions across the ion channels.
There is an event called Action Potential which is an abrupt change in the membrane
potential detectable through properly calibrated electrodes.

Action potentials exhibit four critical features: a threshold, an all-or-none event, conduc-
tion without decrement, and a refractory period. The threshold must be surpassed to initiate
an action potential. The second feature ensures that regardless of how much the membrane
potential surpasses the threshold, the amplitude and duration of the action potential remain
consistent. The third feature guarantees that the action potential propagates over long dis-
tances while maintaining its amplitude and frequency. The final feature, the refractory period,
denotes the time during which a neuron cannot fire another action potential.

When a neuron is active, it is said to have ’fired,’ or a ’spike’ has occurred. This activity
primarily arises from the harmonious functioning of two ion channels: Sodium and Potassium,
whose permeability is directly regulated by the membrane potential. See in Figure 8.

The action potential is how signals are transmitted within a neuron, while the synaptic
process dictates communication between neurons. Synapses are specialized zones of contact
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Figure 7 – The orange part represents lipid bilayer insulated structure. The blue part represents the specialized
ion channels. They control the ion’s concentration inside and outside the cell. The rest membrane
potential is also controlled by the 𝑁𝑎+/𝐾+ ionic pump. The electrical potential for each ion is
represented in millivolt (mV).

Source: SQUIRE et al. (2012)
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Figure 8 – Study of the membrane potential compared with the number of open channels during an action
potential. The conductance is defined as the number of open channels per 𝜇𝑚2 located in the
neuron’s membrane. The figure is showing the conductance for 𝑁𝑎+ and 𝐾+ ions. The action
potential event depends on the combination of the two conductances.

Source: ERIC; JAMES; THOMAS (2000)

where neurons exchange signals and come in two main types: Electrical synapses and Chemical
synapses.

Figure 9 – Morphology of electrical synapse. A region rich in pores of presynaptic cytoplasm will connect with
a region also rich in pores of the postsynaptic cytoplasm. Ion channels will be formed by the pores
in each membrane.

Source: ERIC; JAMES; THOMAS (2000)

Electrical synapses are known for their rapid and specific depolarizing signals (Fig. 9).
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They feature a minimal synaptic cleft, approximately 4 nanometers, and a direct cytoplasmic
continuity between pre- and postsynaptic cells. These synapses rely on specialized ion chan-
nels called gap-junction channels. Signaling transmission at electrical synapses occurs almost
instantaneously compared to chemical synapses. Furthermore, changes in the potential of the
postsynaptic cell are directly correlated with those in the presynaptic cell. Electrical synapses
are typically found in cardiac tissues, muscle tissues, and certain types of glial cells.

Figure 10 – Process of chemical neurotransmission. First, the neurotransmitter is synthesized in the presynap-
tic neuron (phase 1, and 2). Then, the transmitters are stored in synaptic vesicles (phase 3). The
release of the neurotransmitter into the synaptic cleft happens because of external stimuli. After
that, neurotransmitters could interact with postsynaptic receptors (phase 4), bind with autore-
ceptors (phase 5) diffusion from active states (phase 7), or fagocite by glia (phase 8).

Source: SQUIRE et al. (2012)

Chemical synapses are more prevalent in the nervous system, offering greater response
variability and enabling the production of complex responses, which is pivotal for memory
and other higher brain functions (Fig. 10 ). In this type of synapse, neurons are separated
by the synapse cleft. An action potential in the presynaptic neuron triggers the release of
chemical transmitters, which diffuse across the synaptic cleft to interact with receptors on
the postsynaptic cell’s membrane. These transmitters affect the membrane potential in a non-
linear manner, and if it crosses the cell’s threshold, the postsynaptic cell will initiate an action
potential
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2.3 FUNCTIONAL ORGANIZATION OF NERVOUS SYSTEM

Despite significant advancements in the field of neuroscience over the last 70 years, numer-
ous questions remain unanswered regarding how the nervous system processes information from
the environment and how this information is internally communicated to generate responses.
Technological progress has enabled the measurement of neuronal-level electrical activity in
specific brain areas, allowing for detailed investigations into sensory information processing
(STEVENSON; KORDING, 2011; HONG; LIEBER, 2019).

Visual processing involves a large number of brain structures arranged in a hierarchical way.
Visual neurons respond selectively to patterns of light and dark, color, shapes, and orientation
according to the region in the visual field. In simplicity, the visual processing starts in the
retinae. Each one of them has retinal ganglion cells that are responsible for the transduction
of luminar stimuli into electrical stimuli. The electrical stimulus will travel around the whole
visual pathway until the high levels of the processing. The activity of the retinal cells will travel
through the optic nerves, which are axon projections of the ganglion cells, that extend to a
midline crossing point called optic chiasm. The axons, after the confluence in the middle point,
carry the input from both eyes to the lateral geniculate nucleus of the thalamus. The lateral
geniculate, in primates, has 6 layers and each layer receives a specific input from a different
part of the eyes. The thalamic neurons receive that mapped information and pass through the
primary visual cortex localized in the occipital lobe.

The primary visual cortex or any sensory area of the cerebral cortex is organized based
on layers. These layers play distinct roles, ranging from dendritic and axonal connections to
sensory input reception and output pathway generation (DOUGLAS; MARTIN, 2004; SAKATA;

HARRIS, 2009). Sensory areas of the cerebral cortex have 6 layers. From the most superficial to
the deepest layer, they are the molecular layer (Layer I - full of dendrites and axons that travel
from and to other areas of the cortex), external granule cell layer (Layer II - Contains small
spherical pyramidal neurons ), external pyramidal cell layer (Layer III - larger pyramidal cell
responsible for intracortical communication), internal granule cell layer (Layer IV - recipient
of sensory input, most prominent in sensory areas ), internal pyramidal cell layer (Layer V -
pyramidal cell which give rise to output pathways of the cortex), and multiform layer (Layer
VI - heterogeneous shaped neurons).

One curious feature about cells from Layer V is that these cells drive subcortical structures
involved in action, and decide the output of the cortical circuits. The same Layer V influences



28

Figure 11 – Visual Pathway from the visual field until the layers of Lateral Geniculate Nucleus.

Source: ERIC; JAMES; THOMAS (2000)

input information by the connection with layer VI that connects with thalamic input layers
(DOUGLAS; MARTIN, 2004). Also, Communication between layers is dynamic and may vary with
cortical states. It is affirmed in (SENZAI; FERNANDEZ-RUIZ; BUZSÁKI, 2019) spike transmission
strength between different layers can change during different states, such as waking and non-
REM sleep.

Visual processing could be described in many levels of processing. The first one is the
low-level visual processing responsible for detecting various types of contrast in complex and
dynamic images. The intermediate-level processing is responsible for the identification of con-
tours, fields of motion, and representation of surfaces. High-level visual processing integrates
information from a variety of sources and it is responsible for the conscious visual experience.

From the low-level of visual processing to the high-level of visual processing neurons have
increasingly larger receptive fields and higher selectivity. As the receptive fields enlarge and
the selectivity increases, neural responses depend less on the precise location of the pattern
and more on its features. Interestingly, the high levels of visual processing not only recognize
patterns, it could be also making inferences from partial information, poorly visible images or
occluded objects. In fact, recurrent models could predict which image of some occluded object
would be easier for humans to recognize and provide a strong argument of how important the
role of recurrent computations is to make visual inferences (TANG et al., 2018).

The sensory processing through which features of a stimulus are represented by neural
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Figure 12 – Representation of cell’s distribution for all layers of the neocortex. Different stain techniques reveal
different structures. Golgi stain shows a subset of neurons including their dendrites and axons.
The Nissl stain reveals the soma of neurons and closer dendrites and the Weigert stain displays
only myelinated fibers. Source: (ERIC; JAMES; THOMAS, 2000)

Source: ERIC; JAMES; THOMAS (2000)

activity is called encoding. The sequence of action potentials fired by a neuron in response to
a sensory stimulus represents how that stimulus changes over time. Decoding, on the other
hand, involves extracting information from neural activity and offers insights into memory,
planning, decision-making, and other cognitive functions, with a focus on sensory processing.
Neural coding aims to understand both the stimulus features that drive a neuron to respond
and the temporal structure of the response and its relationship to changes in the external
world.

There are other features used to encode sensory information such as rate code and popu-
lation code. The first one, the rate code, uses the variation of the number of action potentials
per second to communicate the strength of the stimulus and its duration. The second one, the
population code, represents the intensity of a stimulus by all active neurons in the receptor
population. Also, the patterning of spike trains plays an important role in encoding temporal
fluctuations of the stimulus. And another important principle of sensory coding would be the
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information conveyed not only when the neurons fire but also when they slow or stop firing.
The response produced by the sensory pathways to encode stimuli is not fixed, there is

variability and plasticity associated with it. Such plasticity of cortical maps requires some
time to be established and could result from the strengthening of already established lateral
connections or from the growth of new connections.

It could be said that the nervous system extracts only certain features of each stimulus
while ignoring others. Specific sensory perceptions such as color, tones, odors, and tastes are
mental creations constructed by the brain from the sensory experience. There is a process
where a specific stimulus energy is converted into an electrical signal and the amplitude and
duration of it are related to the intensity and time course of stimulation of the receptor.

One visual stimulus encode is the product of many neurons operating in a specific combi-
nation called population code. The number of neurons involved in the perception pathway is
important but the nervous system does not represent entire objects by the activity of single
neurons. Instead, there is a complex connectivity between cells aligned with signal information
coming from action potential patterns and groups of neurons involved.

The number of areas of the cortex involved in visual information processing varies with
species. However, it could be said that almost half of the cortex is involved with vision and
high processing levels related to visual inputs. In the early 1980s, it was discovered that the
sensory information arriving in the primary visual areas is divided into two parallel pathways, the
ventral pathway and the dorsal pathway. Both pathways contribute to high-level information
processing such as memory mechanisms: semantic memory (talk about objects or persons)
and procedural memory (interact about objects or persons)

The ventral pathway (or object recognition pathway) carries the information needed to
classify images and generate nouns useful to distinguish persons, places, and objects. The
features that identify the object are transmitted through this pathway leading to the temporal
lobe and hippocampus. The ventral or object-recognition pathway extends from the primary
visual cortex to the temporal lobe;

The other, the Dorsal pathway (or movement-guidance pathway) is responsible for trans-
mitting information essential for immediate actions. This pathway connects the primary visual
cortex with the parietal lobe and then with the frontal lobes. It mediates attentional control
and visually guided movements.

Interestingly, sensory information processing could be altered by many factors including
neurological disorders, aging, traumatic brain injury, chemicals, and so on. More specifically,
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Figure 13 – Representation of structures involved in the ventral pathway and dorsal pathway of visual process-
ing. From the primary visual cortex, the visual information flows into two pathways. The ventral
pathway carries the visual information about what the stimulus is into temporal lobe. The dorsal
pathway directs the visual information about where the stimulus is located into the parietal lobe.

Source: ERIC; JAMES; THOMAS (2000)

drugs such as psychedelics have the capacity to induce states of altered perception, thought,
and feelings.

The effects of psychedelics are complex and still not totally understood. It is believed that
these compounds altered the dynamic of neurotransmitters and as a consequence the activity
of neuronal populations. Over the past few years, the interest in psychedelics increased because
many results showed that these drugs could be effective in treatments for depression, drug
addiction, post-traumatic stress disorder, and other conditions. Recent studies found more
about what changes in the brain activity during psychedelics effects (TAGLIAZUCCHI et al.,
2014)(DEARNLEY et al., 2021), the relation between psychedelics and neural plasticity (LY et al.,
2018), and using different experimental data (CARHART-HARRIS et al., 2016)(VOLLENWEIDER;

KOMETER, 2010).
The constructive nature of visual perception agrees that visual perception is not only an

additive combination of color, shape, and brightness coming directly from thalamic output.
There is still variability in response per stimulus, and the study of sensory information process-
ing is more complex than expected. It is an active and creative process involving the context
and other features in the visual field.
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2.4 CORTICAL STATES

Cortical states play a crucial role in shaping neural activity patterns, encompassing pop-
ulation spiking, neuronal correlations, and intracellular potential. These states represent the
degree of shared fluctuations in population activity, influencing how information is processed
within neuronal populations. These dynamic network activities occur on a timescale of seconds
or more.(HARRIS; THIELE, 2011)

Over a specific duration, one can quantify the extent of slow fluctuations in the summed
activity of local neurons. Each time window yields a quantitative measure of activity fluctuation
amplitude. High fluctuations around the average activity signal highly synchronized moments,
while low variability suggests desynchronized activity periods.

Synchronized states exhibit oscillations between up phases, marked by widespread neu-
ronal firing, and down phases, characterized by network quietness. This leads to dramatic
fluctuations in the average population firing rate over seconds.

In contrast, desynchronized states, also referred to as active or asynchronous states,
feature weaker spontaneous fluctuations. It’s worth noting that an "active state" doesn’t
necessarily mean increased firing rates; some neuron subgroups may exhibit decreased activity
during these moments.

Rather than being strictly bimodal, cortical states form a spectrum characterized by varying
levels of spontaneous activity fluctuations, correlating partially with ongoing behaviors like
whisking and locomotion.

Speaking about the relation between the neurons involved in the population, it is trivial to
conclude that if a group of neurons share fluctuation in firing rate, their activity will probably
be positive correlated. This idea could be proved mathematically.

Mean pairwise correlations indicate significant population rate variance and coordinated
global fluctuations, typifying synchronized states. Conversely, desynchronized states show small
population activity variance and no pairwise correlations between neurons.

Notably, a mean correlation of zero doesn’t imply that every neuron pair is uncorrelated;
it suggests a balance between positively and negatively correlated pairs. Correlations were
previously thought to arise from shared inputs, but recent findings indicate that asynchronous
states can emerge despite shared input.

Fluctuations in spontaneous neuronal activity can vary significantly under different con-
ditions, such as attention (HARRIS; THIELE, 2011), pharmacological effects (MUKAMEL et al.,
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Figure 14 – Hypothesis of mechanisms underlying the asynchronous activity and synchronous activity. Figure
Ab shows an example of a population asynchronous firing. Figure Ac shows in red the probability
distribution of the pairwise correlation for the neurons shown in Ab. Figure Bb displays a raster
plot (dot plot of neuron’s activity: Xcoordinate = time, Ycoordinate = specific neuron ) of a time
window with a high level of variability. Figure Bc shows in blue the probability distribution of
pairwise correlation in that state and in yellow the probability distribution of pairwise correlation
from the concatenate upstate.

Source: HARRIS; THIELE (2011)

2014), and various brain states (POULET; CROCHET, 2019). However, there must be underlying
mechanisms governing the control and maintenance of cortical states (POULET et al., 2012).
It is a well-established fact that there exists a relationship between the level of fluctuation
in neuronal population activity and the correlation structure, particularly in the asynchronous
state. In feedforward network models, it is evident that a substantial quantity of uncorrelated
inputs can lead to synchronous spiking activity between pairs of neurons. This finding implies
that the correlation between outputs cannot be solely attributed to correlated inputs. Remark-
ably, experimental datasets have demonstrated that even noise exhibits a non-zero correlation.
Taking all this information into account, it raises the possibility that a truly desynchronized
state, characterized by a mean correlation of zero, may not exist.

However, recent studies have provided evidence of mean correlations close to zero in the
primate visual cortex and in areas S1 (somatosensory cortex) and A1 (auditory cortex) of
rats under anesthesia (please include references for these studies). These findings strongly
suggest that the cortex possesses mechanisms capable of achieving desynchronized states. One
hypothesis is that inhibitory inputs are correlated with excitatory inputs in pairs of neurons.
This hypothesis also implies that when the mean correlation is distributed around zero, a
substantial number of pairwise correlations deviate from zero, but the balance between positive
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and negative pairwise correlations is maintained.
One thought to take into consideration is since there is a relation between correlation struc-

ture and variability in the population activity, in moments of highly synchrony, the correlation
between pairs will be extremely positive, so how is possible to see fluctuations in population
rate of the neural population?

Spontaneous cortical activity persists in isolated cortical slices, implicating intracortical
mechanisms in its generation. The mechanism responsible for the down phase is not synaptic
inhibition but disfacilitation the temporary absence of synaptic drive. Up phases originate in
layer V and propagate to the surface as traveling waves.

In summary, during the up phase, spiking is maintained through recurrent synaptic activity.
However, following an extended period of firing, a series of adaptive processes ensue, gradually
diminishing the network’s excitability. Once sufficient adaptation has taken place, the network’s
capacity to sustain firing diminishes, resulting in a period of network silence. Subsequently,
following an adequate period of rest, the synapses and cells recover, allowing the network to
once again support recurrent activity.

(MOCHOL et al., 2015) investigates whether correlations primarily result from neuronal co-
activation during brief silent periods when all local network neurons cease firing. Changes in
correlation, occurring gradually with brain state variations or abruptly with sensory stimulation,
reflect the microcircuit’s propensity to transiently stop firing.
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3 CRITICALITY

Brain dynamics can be explored from two distinct points, each offering valuable insights.
The first approach involves forming hypotheses about the macroscopic level based on micro-
scopic dynamics, while the second approach seeks to decipher microscopic intricacies through
macroscopic observations. A theory known as criticality aims to bridge the gap between these
scales, drawing parallels from physics where criticality manifests as a specific set of features
occurring when a system hovers between phases (HESSE; GROSS, 2014).

In the realm of criticality theory, defining phases relies on measured quantities termed order
parameters. Additionally, the control parameter is employed to gauge external influences on
system behavior. Ordinarily, gradual adjustments in the control parameter result in smooth
shifts in the order parameter. However, certain shifts in the control parameter can trigger
abrupt changes in the order parameter, signifying a transition from one phase to another.
These changes may manifest as discontinuities or divergences within the phase diagram. Dis-
continuities indicate a first-order phase transition, while continuous phase transitions with
sharp divergences signify a second-order transition.

In cases of second-order phase transitions, systems may find themselves at a point within
the phase diagram, positioned between two phases. This delicate point is referred to as the
critical state.

Researchers are particularly intrigued by systems existing in this critical state, as they
possess the potential for optimal information processing capabilities. This phenomenon has
sparked investigations into the concept of criticality within the human brain, exploring how
the brain’s state might deviate from this critical point due to various pathologies or the presence
of chemical substances.

Theoretically, if a system is in the critical state, a set of parameters is tuned to hold at this
exact point of the phase diagram. But how can a complex system such as the brain remain at
this point? The theory of phase transition in physics is used for infinite elements and in the
brain, the system is finite. That way, the critical point is not a point but a region in the phase
diagram. There is one hypothesis called self-organized criticality (SOC) which says the brain
must organize itself in order to remain in that region, feeding mechanisms to always show
signatures of criticality.

To assess self-organized criticality (SOC), certain critical system features are essential.
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These include a wide dynamic range of input signals, allowing organisms to interact effectively
with their environment, information capacity quantified by the diversity of cortical activity
patterns, and the ability to encode stimuli with multidimensional differences.

Signatures of criticality are quantifiable features that could suggest if the system is at
the critical point (or region) or how close it is to it. Here, it will be explored four of them.
Detrended Fluctuation Analysis, Dynamical Criticality (Neuronal Avalanches), Statistical Crit-
icality (Maximum Entropy Models), and Complexity Measures. Each one of them will be
described below.

3.1 DETRENDED FLUCTUATION ANALYSIS

In meteorology, DFA has found application in studying statistics related to stratus cloud
liquid water content aiming to enhance meteorological predictability by leveraging the insights
gained from DFA (IVANOVA; AUSLOOS, 1999). DFA has been instrumental in characterizing
fluctuations in cerebral microvascular hemoglobin concentrations, particularly in studies related
to cerebral malaria (SMITH et al., 2023). Also, DFA has been employed in genetic studies to
investigate the contributions to long-range correlations in ongoing oscillations observed in EEG
signals (LINKENKAER-HANSEN et al., 2007).

To gain insight into the characteristics of scale-free systems and their relationship to
criticality, it is crucial to first establish a clear understanding of phenomena associated with
characteristic scales and scale-free systems. Phenomena or systems characterized by a specific
scale are typically defined through statistical measures such as mean and standard deviation.
Examples of such phenomena include the size of specific fruits, the height distribution of young
women, or time series data exhibiting white noise 15. In these cases, the characteristic scale
presents itself at the expense of rich variability.

In contrast, scale-free phenomena defy simple descriptions through average values and
are better elucidated by scale-free probability distributions, often represented by power-law
functions with adjustable exponents and constants. These power-law functions serve to capture
relationships that span various scales within the system

The absence of a typical or characteristic scale is prevalent in many physiological sys-
tems, and it plays a crucial role in enabling a wide range of functional states. For instance,
synchronous brain activity has been a subject of investigation, revealing that a population of
neurons can spontaneously organize itself around a critical point. This idea has been success-
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Figure 15 – Decomposition of a time series into sine waves with different frequencies and amplitudes. The
power density is almost uniform for different frequencies. That is an example of the frequency
decomposition of white noise.

Source: SCHUSTER (2014)

fully tested both in theoretical models and real neuronal data, demonstrating that systems
operating at criticality exhibit scale-free probability distributions.

Three key features essential for any critical system are identified. First, having a broad
dynamic range of input signals is crucial, as it enhances an organism’s ability to interact
effectively with its environment. Second, information capacity, which quantifies the diversity
of cortical activity patterns available for responding to stimuli, can be measured using the
Shannon Entropy equation. Lastly, information capacity also quantifies a network’s capability
to encode a variety of stimuli with multidimensional differences (SHEW; PLENZ, 2013).

Figure 16 – Decomposition of a time series into sine waves with different frequencies and amplitudes for a
scale-free system. In a scale-free system, time series could be decomposed into sine waves with
different amplitudes and frequencies. The interdependence of those two characteristics would
express a power-law function.

Source: SCHUSTER (2014)

To quantify scaling behaviors in neuronal time series, Detrended fluctuation analysis (DFA)
is a commonly used method to quantify scaling behaviors in neuronal time series, grounding
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itself in the principles of self-affinity and stationarity.
Self-affinity is a characteristic of fractal time series, where a fractal can exhibit either exact

self-affinity, where a small part of the series is identical to the whole series, or statistical self-
affinity, where the mean and standard deviation of smaller parts scale with those of larger parts,
indicating anisotropic scaling with different dimensions. Self-affine processes result in power-
law distributions of measured quantities, defining scale-free systems. For instance, broccoli
can be considered a scale-free structure because it lacks a typical size, and the frequency of
a specific size is inversely proportional to the size of its flowers, exemplifying the concept of
self-affinity in real-world structures.

A stationary process, as defined in the context of the book "The Fractal Geometry
of Nature" (pg 383 - Degrees of Stationarity), is characterized by the independence of the
distribution of X(t) from time (t). This means that the joint distribution of 𝑋(𝑡1 + 𝜏) and
𝑋(𝑡2 + 𝜏) is also independent of the time difference 𝜏 , and this independence holds for all k
variables in the joint distribution of 𝑋(𝑡1 + 𝜏), 𝑋(𝑡2 + 𝜏)...𝑋(𝑡𝑘 + 𝜏). It’s important to note
that a common misconception is that stationary processes involve samples fluctuating around
a fixed average while maintaining statistical consistency. In reality, what remains constant is
the underlying generating rule, not the specific data points. To analyze scale-free properties
or determine the type of process generating a time series, it’s crucial to establish whether the
process is stationary or nonstationary. Self-affinity, for instance, only applies to nonstationary
processes. To convert a time series generated by a stationary process into one generated by a
nonstationary process, a signal profile can be defined as

𝑥(𝑡) =
𝑡∑︁

𝑘=1
𝑦(𝑘) − ⟨𝑦⟩

where ⟨𝑦⟩ represents the mean of the time series y(t). This subtraction step removes any
global trend from the signal, allowing for scale-free analysis without assuming stationarity.

It is possible to quantify the scale-free nature of a time series, by calculating the fluctua-
tion of a non-stationary signal in windows of different sizes. However, the calculation of the
fluctuation could be biased by some steady trend on longer timescales. So, before any analysis
based on fluctuations, it is advised to "detrend" the signal. The detrended fluctuation analysis
(DFA) can be synthesized as follows (Figure 17):

• Calculate the cumulative sum of the original signal.

• Subtract the mean of the original signal, having the signal profile.
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• Define a list of possible window sizes that will be used to separate the time series.

• For one possible window size, the signal profile is segmented into separate "mini" signal
profiles which have 50% overlap, w.

• Subtract the linear trend of each mini-signal profile,𝑤𝑑𝑒𝑡𝑟𝑒𝑛𝑑, and calculated the standard
deviation of the detrended signal,𝜎(𝑤𝑑𝑒𝑡𝑟𝑒𝑛𝑑).

• Compute the mean of all standard deviations coming from the detrended signal which
have the same size, ⟨𝐹 (𝑡)⟩ = ⟨𝜎(𝑤𝑑𝑒𝑡𝑟𝑒𝑛𝑑)⟩

• Plot the fluctuation function for all window’s size, T, on a logarithmic scale.

• The exponent fitted is the DFA exponent 𝛼 and from this scaling exponent, it is possible
to make some assumptions about the system.

The fluctuation scale could be interpreted by its value as follows:

• If 0 < 𝛼 < 0.5, the process could have memory and exhibits anticorrelations.

• If 0.5 < 𝛼 < 1 the process also has a memory but exhibits positive correlations.

• If 𝛼 = 0.5 the process can be distinguishable from a random process (white- noise).

• If 2 < 𝛼 < 1 the process can be seen as non-stationary.

DFA serves as a valuable tool for uncovering scaling behaviors in many complex systems
allowing us to explore their scale-free properties effectively, enabling effective exploration of
their scale-free properties across a wide range of applications. In the field of neuroscience, DFA
has been employed to analyze neuronal time series activity (RIBEIRO et al., 2010), particularly
in EEG signals during anesthesia (JOSPIN et al., 2007), providing insights into the measurement
of consciousness levels. DFA has been utilized in the analysis of power spectra and frequency
distributions in temperature data spanning from the 20th century to the present day (TALKNER;

WEBER, 2000). This application aids in resolving controversies related to the low-frequency
behavior of power spectral densities.
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Figure 17 – Detrended fluctuation analysis step by step. Figure A shows the original time series and right below
Figure B displays the cumulative sum subtracted by the time series mean. For each segmented
part of the signal profile (Figure C), the linear trend is extracted (Figure D) and the standard
deviation is calculated. Each dot of Figure E is calculated by averaging all the standard deviations
computed from different window sizes with the same size.

Source: SCHUSTER (2014)

3.2 NEURONAL AVALANCHE

Neuronal avalanches are moments in the activity of some neuronal population in which
the beginning is defined when the activity is above the threshold and it finishes when it is
below some predefined threshold. The size of this activity and the time between the two
threshold-crossing moments vary immensely. These two measures lack characteristic values,
making power-law distribution an excellent candidate for modeling the probability distributions
of avalanche size and duration.

Systems that exhibit power-law distributions may exhibit a connection with criticality,
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although not necessarily a strong one. It’s important to note that while power-law distributions
can emerge in stochastic dynamics, they alone do not conclusively indicate self-organized
criticality (CLAUSET; SHALIZI; NEWMAN, 2009).

Neuronal avalanches could potentially provide compelling evidence supporting the concept
of criticality. Nevertheless, certain considerations are essential. Prior to investigating neuronal
avalanches, it is crucial to define a specific time window and subsequently binarize the entire
time series. Each bin will be characterized by the amplitude of activity within that interval. For
instance, if there were 6 spikes from a neuronal population recorded between 0ms and 10ms
(using a 10 ms time window), the first bin would be assigned a value of 6, and so forth. It’s
important to note that altering the bin size will influence the amplitude of activity within each
bin. (PRIESEMANN et al., 2014).

Consider a sequence of 10 bins denoted as 3, 2, 6, 18, 3, 6, 0, 1, 13, 0. In this scenario,
a threshold is set at 3, and an avalanche is initiated or concluded when a bin registers 3
spikes or fewer. It’s important to note that the choice of threshold is arbitrary and can be set
to values like 3, 6, or 0. Each threshold selection results in varying numbers of avalanches,
different avalanche sizes, and durations, consequently altering the probability distributions and
their respective fitted exponents. Any conclusions drawn from these exponents are entirely
contingent on the chosen threshold, rendering any statement reliant on this choice somewhat
delicate (SHEW et al., 2015),(MUNOZ, 2018).

When using 0 as the threshold, a bin represented by 0 implies an absence of activity during
that time window. However, it’s unrealistic to expect the entire brain to be completely devoid of
activity. Choosing 0 as the threshold for an avalanche implicitly assumes subsampling. In other
words, it’s impossible to have a moment of absolute silence if the recording encompasses the
activity of all neurons in a given region. In experimental data, subsampling is an unavoidable
constraint. Each experimental technique has its inherent limitations, and this factor impacts
the study of neuronal avalanches. To address this limitation, neuronal networks are often
simulated to approximate a fully sampled network as closely as possible (CARVALHO et al.,
2021).

The hypothesis of a critical brain using neuronal avalanches is based on the scale invariance
seen in descriptive probability distributions (KHALUF et al., 2017). The property of scale invari-
ance describes situations where the essential structural (space) or dynamical (time) properties
remain unchanged when considering the system at different scales.

If it is used f(x) to describe the structure or dynamics of any system as a function of the
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variable x, a scale-invariant system f(x) must satisfy the condition

𝑓(𝜆𝑥) = 𝐶(𝜆)𝑓(𝑥)

There are two types of scale invariance, a continuous scale invariance in which 𝜆 can take
any real value and a discrete scale invariance in which it takes only discrete values. The discrete
case corresponds to fractal-like, self-similar systems. Some apparently discrete scale-invariant
systems can actually correspond to specific statistical samplings of a continuous scale-invariant
probability distribution.

Scale-invariant systems typically have no characteristic scale, since any specific scale that
defines them would have to appear in the function f(x), making the transformation described in
the equation above impossible. Such scale-invariant systems are referred to as being scale-free.

Systems with scale-invariant dynamics can be defined as having either local activity that
displays scale-invariant correlations in space or global activity that displays scale-invariant
correlations in time.

Critical systems require scale invariance and one of the measures for it is to find probability
distributions fitted by power-laws. The power-law distribution has two variables open for fitting,
The constant C and the exponent 𝛼. The exponent cluster systems according to their values,
and other characteristics define the universality classes. Each class has some features that it
is expected for the system to follow.

Scaling theory predicts the functional forms of the histograms of avalanche sizes and
durations from experiments near a critical point.

𝑃 (𝑆) ∼ 𝑆−𝜏

𝑃 (𝑇 ) ∼ 𝑇 −𝜏𝑡

⟨𝑆⟩(𝑇 ) ∼ 𝑇 1/𝜎𝜈𝑧,

where P is the probability distribution for avalanche sizes (P(S)) and durations (P(T)).
⟨𝑆⟩(𝑇 ) is the average size conditioned on a given duration. 𝜏 , 𝜏𝑡 and 𝜎𝜈𝑧 are the critical
exponents and it is also expected that they follow a specific equation among them, according
to the scaling theory (FRIEDMAN et al., 2012) .

𝜏𝑡 − 1
𝜏 − 1 = 1

𝜎𝜈𝑧
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The first result for critical exponents in neuronal avalanches was encountered by Beggs
and Plenz and the critical exponents documented were 𝜏 = 3/2 and 𝜏𝑡 = 2. These values
match with a specific universality class called mean field-direct percolation (MF-DP).

In mean-field direct percolation, the term "mean-field" indicates that the interactions be-
tween nodes are approximated by assuming that each node interacts independently with some
average or mean properties of the entire system. This simplification allows for mathematical
tractability and analytical solutions, which might not be achievable in more complex, realistic
scenarios where interactions are more intricate.

Due to its simplicity, the critical branching process has become a canonical model for
understanding criticality in the brain.

Beggs and Plenz (2003) found in cultured slices of cortex power-law distributions for the
size and duration of avalanches and used these findings to advocate the hypothesis of signatures
of criticality in the brain.

Understanding criticality in neural networks involves exploring power-law distributions, scale
invariance, and the dynamics of neuronal avalanches. While power laws offer insights, scale
invariance, and critical exponents provide a deeper understanding of the brain’s behavior near
critical points. Studying criticality in neural networks is a complex endeavor, but it holds the
potential to uncover fundamental principles of brain function.

3.3 MAXIMUM ENTROPY MODELS

There is a growing interest in applying the principles of thermodynamics criticality to
understand the dynamics of the brain. This intriguing application draws its foundations from
commonalities shared between large groups of neurons and complex systems. These shared
features include the immense number of neurons found in the cortex, their relatively uniform
basic operations, weak correlations among individual neurons in a probabilistic manner, and
the presence of functional characteristics resembling critical systems. These critical system
features encompass extreme sensitivity to external stimuli, highly complex activity patterns
even in the absence of stimuli, and transitions between distinct macroscopic states.

To establish a precise analogy, it is essential to introduce key concepts. The primary concept
in this context is that of spin models. In general, each element in such models is characterized
by two states: 1 when active (spin "up") and -1 when deactivated (spin "down"). The state
of one element can influence nearby or functionally connected elements, and the extent of
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this influence can be quantified. These interactions, along with the overall system’s state,
collectively define the energy of each state. States with higher energy are less likely to occur
because thermodynamic systems tend to minimize their energy (theoretically true only for
insulated systems.

𝐸(𝜎) = −

⎛⎝∑︁
𝑖

𝜃𝑖𝜎𝑖 +
∑︁

(𝑖<𝑗)
𝜃𝑖𝑗𝜎𝑖𝜎𝑗 +

∑︁
(𝑖<𝑗<𝑘)

𝜃𝑖𝑗𝑘
𝜎𝑖𝜎𝑗𝜎𝑘 + · · ·

⎞⎠
𝜃𝑖, 𝜃𝑖𝑗 and 𝜃𝑖𝑗𝑘

are the interaction terms between each element’s pairs, triplets, and so on. 𝜃’s
sign dictates which configuration has the lower energy and as a consequence bigger probability.

The likelihood of a particular state can be calculated using the Gibbs-Boltzmann distribu-
tion.

𝑝(𝜎) = 1
𝑍

𝑒
−𝐸(𝜎)

𝑇

This distribution provides a description of the probability of various configurations based
on the interactions between elements. In a system with N elements, each having two possible
states, the number of possible configurations is 2𝑁 .

In the context of the Gibbs-Boltzmann distribution, the parameter T can represent either
temperature or the significance of internal constraints in describing the collective behavior of
the system. A lower T signifies a stronger influence of these constraints, resulting in greater
heterogeneity in the Gibbs-Boltzmann probability distribution. T, in a sense, quantifies the
degree of randomness in the system. As T increases, system randomness also increases, and
the probability distribution approaches uniformity.

At this point, the discussion shifts to three critical quantities that serve as indicators of a
system’s proximity to a critical state:

Magnetization: This quantity measures the ensemble average of the element’s state and
reflects the overall activity level. The collective behavior of individual elements determines the
system’s overall magnetization.

𝑀 = 1
𝑁

2𝑛∑︁
𝑖=1

𝑝𝑖

𝑛∑︁
𝑗=1

𝜎𝑖
𝑗

Where 𝑝𝑖 is the probability of the i system’s state and 𝜎𝑖
𝑗 is the j element’s state of the i

system’s state. A critical point occurs when temperature induces a transition in magnetization
from ±1 to 0.
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𝑀 ∼ |𝑡|𝛽

where t is the reduced temperature based on the critical temperature defined by

𝑡 = (𝑇 − 𝑇c)
𝑇c

Susceptibility: Susceptibility measures the system’s sensitivity to external perturbations.

𝜒 = 𝜕𝑀

𝜕𝐻

⃒⃒⃒⃒
⃒
𝐻=0

At the critical point, susceptibility diverges because input sensitivity is maximized.

𝜒 ∼ |𝑡|−𝛾

The 𝛾 exponent expresses how the changes in the susceptibility are related to the reduced
temperature. In the thermodynamic limit, when the number of elements tends to infinite when
the temperature T tends to the critical temperature 𝑇𝐶 , the susceptibility diverges meaning
that in these conditions the input sensibility is maximized.

Specific Heat: Specific heat measures the internal complexity or diversity of system
configurations. It is calculated based on the variation in internal energy with temperature
changes. This derivative can be expressed in terms of the mean of all possible energies.

𝐶 = 1
𝑁

𝜕𝑈

𝜕𝑇
= ⟨𝐸2

𝑖 ⟩ − ⟨𝐸𝑖⟩2

𝑛𝑇 2

The specific heat is related to the diversity of system configurations because the variance
of the logarithm of a probability distribution signifies a system’s capacity to represent and
store information. Near the critical temperature, specific heat exhibits a unique relationship
with the reduced temperature.

𝐶 ∼ |𝑡|−𝛼

Exactly in 𝑇 = 𝑇𝐶 , the specific heat diverges for infinitely large systems. And this exponent
𝛼 is different from the one defined on the detrended fluctuation analysis

Notably, at 𝑇 = 𝑇𝐶 (the critical temperature), specific heat diverges for infinitely large
systems. However, when the system has a finite size, determining a precise value for T that
exhibits a discontinuity in magnetization (M), divergence in susceptibility (chi), and specific
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heat (C), along with their respective exponents, is not straightforward. These quantities ap-
proximate power-law relations with reduced temperature only when the system contains an
infinite number of elements. Nonetheless, valuable insights into 𝑇𝐶 and the critical exponents
can still be derived from finite-size systems.

It is evident that properties like C(T) systematically change with the number of elements
involved, and the T value that maximizes C(T) approaches 𝑇𝐶 as the number of elements
increases. Extrapolating this behavior to an infinite number of elements (N ) enables the
prediction of the critical temperature (𝑇𝐶).

In the context of statistical physics, this process of finding 𝑇𝐶 and critical exponents for
finite-size systems is referred to as "finite-size scaling" (FSS).

However, when it comes to the practical application of manipulating the "temperature"
(T) in the brain to observe changes in thermodynamic properties, the methodology remains
unclear. In this regard, a method known as the "single-histogram method" has been employed.

To conclude, complex systems, whether the brain or other systems, are characterized by nu-
merous elements that interact weakly. Consequently, it is often challenging to isolate individual
elements to understand the collective behavior of the entire system

3.4 COMPLEXITY

There is no universal definition of complexity. Over the years different measures have
been proposed based on different definitions. However, in general, statistical complexity must
describe somehow intricate patterns hidden in the dynamics, emerging from a system that itself
is much simpler than its dynamics. Complexity could be seen as a measure of off-equilibrium
"regularity" and "order", not associated with very regular structures.

The possible definitions of complexity are categorized into three options. The first class
the complexity grows with increasing disorder, the second class is small for high levels of order
and disorder. The last one grows with increasing order. The complexity measure highlighted
in here, the Martín-Platino-Rosso (MPR) statistical complexity, belongs to the second class
(MARTIN; PLASTINO; ROSSO, 2006).

Any information measure can be seen as a characterization of a given probability distri-
bution. For example, the Shannon entropy can be explained as a measure of the uncertainty
associated with some probability distribution. If it is certain all the outcomes from the system,
the knowledge about the system is maximal. However, ignorance about the system will achieve
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its maximum when the probability distribution is uniform.
The quantity calculated to represent complexity must not indicate only the level of disorder

or information quantity. It could be more useful to define a measure to quantify how far
the probability distribution that describes the system is from the uniform distribution. The
statistical complexity will be then the combination of the disequilibrium Q (reflecting the
system’s architecture) and the entropy H (information stored in the system) (TIMME et al.,
2016).

The entropy is given by

𝐻[𝑃 ] = 𝑆[𝑃 ]
𝑆[𝑃𝑒]

where 𝑃𝑒 represents the system’s uniform probability distribution. MPR complexity measure
is defined as follows

𝐶[𝑃 ] = 𝑄𝐽 [𝑃, 𝑃𝑒] · 𝐻[𝑃 ].

The 𝑄𝐽 [𝑃, 𝑃𝑒] is defined in terms of the Jensen-Shannon divergence as

𝑄𝐽 [𝑃, 𝑃𝑒] = 𝑄0𝐽 [𝑃, 𝑃𝑒] ,

where
𝐽 [𝑃, 𝑃𝑒] = 𝑆

[︃
(𝑃 + 𝑃𝑒)

2

]︃
− 𝑆[𝑃 ]

2 − 𝑆 [𝑃𝑒]
2 ,

and 𝑄0 is the inverse of the maximum value of 𝐽 [𝑃, 𝑃𝑒].
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4 EXPERIMENTAL PROCEDURES IN DATA ANALYSIS

This chapter not only discusses the methodology employed to obtain the results but also
the evolution of our group’s journey in acquiring the necessary resources to conduct these
experiments. Personally, I had the privilege of contributing to the laboratory’s development,
which involved procuring materials, establishing a rat vivarium, and mastering the creation
and implementation of experimental protocols.

Initially, our experiments entailed electrophysiological recordings within the primary visual
cortex. We utilized multi-electrodes for this purpose, a technology funded by Hubel (HUBEL,
1957) used over the decades to study single neurons and receptive fields. They were manu-
factured in our laboratory and consisted of 32 tungsten electrodes arranged in an 8x4 matrix
(Fig.18). These electrodes were connected to a PCB board via Omnetics ™connectors, en-
abling us to conduct tests involving visual stimuli, including assessments of contrast and
gratings, in anesthetized rats.

Figure 18 – A) Stereotaxic used to position the animal and have access to accurate coordinates axis. B)
Long Evans, animal model used for all experiments. C) Skull exposed. The bregma (intersection
between digital and coronal sutures) is used as the coordinate origin. The primary visual cortex
of the rat can be found using stereotaxic coordinates coming from the rat atlas (D) that provide
the three coordinates. E) Manufactured multielectrode matrix used to record electrical activity
in the visual cortex of rats. F) TDT system of acquisition. The left equipment is the head stage
responsible for transforming the analog signal into a digital signal. The zip clip compared with a
coin connects the multielectrode with the TDT system. The right equipment is responsible for
synchronizing possible stimuli with the digital signal acquired and sent to the computer. G) Spike
sorting interface integrated into the TDT system.

Source: The author (2023)
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After a couple of years, the lab adopted a novel technique that incorporated high-density
multi-electrode silicon probes, the Neuronexus ™. The primary objective of this technique was
to enable the simultaneous recording of a larger number of neurons closely positioned to one
another. The initial silicon probe employed featured 32 electrodes distributed across 4 shanks,
with 8 electrodes on each shank (Fig. 19). Subsequently, a more advanced silicon probe was
acquired, boasting 6 shanks, each equipped with 10 electrodes, and an additional 4 channels
for enhanced recording capabilities.

Under this innovative approach, the lab conducted a series of recordings. Rats were anes-
thetized using urethane, and the recordings were extended for a duration of 3 hours within the
primary visual cortex, conducted in the absence of external stimulation. These datasets were
subsequently utilized in the formulation of four published articles (LOTFI et al., 2020; LOTFI et

al., 2021; FONTENELE et al., 2019; CARVALHO et al., 2021). The following section will provide
a comprehensive account of the experimental protocol that was consistently applied across all
the aforementioned publications.

4.1 DETAILED EXPERIMENTAL PROTOCOL

The recordings were conducted in anesthetized Long-Evans male rats, which were typically
3-4 months old. To prepare for surgery, the rats underwent a 24-hour food restriction period.
urethane was chosen as the anesthetic agent due to its capacity to induce a broad range of
spike variability. Anesthesia was administered using a dosage of 1.58 grams of urethane (HARA;

HARRIS, 2002) per kilogram of the animal’s body weight, diluted to a concentration of 20%

in saline. Once the animals reached the desired level of anesthesia and local anesthesia was
applied, the process of skull exposure commenced. Using the cranial suture lines as reference
points, the coordinates of the visual cortex were marked.

The craniotomy, which involves creating an opening in the skull, and the durotomy, which
entails exposing the brain by withdrawing the dura, were both carried out within a designated
1mm x 1mm square region (Figure 18c,d). The center of this square had coordinates of [AP
(anteroposterior) = 7.2, ML (mesolateral) = 3.5] (PAXINOS; WATSON, 2006). Electrophysio-
logical recordings were conducted using Neuronexus equipment equipped with 64 channels,
distributed across 6 silicon shanks. Each shank contained 10 channels, with an additional 4
channels evenly spaced in height within one of the shanks (Fig.19b). The surface area of each
channel measured 160 square micrometers, and they were arranged in a staggered configuration
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Figure 19 – A) Sketch of the Open Ephys system for acquisition of electrophysiology data. The Intan chip is
connected to the silicon probe and it is responsible for transforming the analog signal into digital
signal. The acquisition system is responsible for taking the digital signal, synchronizing it with
possible stimuli devices, and load in the computer. The open ephys has an online interface that
makes it possible to see the "live" raw data, change the sample acquisition, modify the bandpass
filter, build a different channel map, and so on. The output data files will be saved for posterior
analysis. B) Real picture of a 64-channel silicon probe. C) Sketch of dimension specifications of
the silicon probe. D) Real picture of a silicon probe acute implant in the rat’s primary visual cortex.
E) Example of two clusters detected by the klusta software. The top one is considered SUA cluster
and the down is considered a MUA cluster.

Source: SIEGLE et al. (2017)

with 20-micrometer spacing between them. The shanks themselves were positioned at inter-
vals of 200 micrometers from one another (Fig.19c). The Neuronexus probe was introduced
1-1.2 mm cortex deep, aiming at visual cortex layer V (Fig.19d). The surgical and recording
procedures were approved by the Federal University of Pernambuco (UFPE) Committee for
Ethics in Animal Experimentation (23076.030111/2013-95 and 12/2015).

The acquisition system employed was Open Ephys, which consists of several components.
This system includes a single acquisition board, designed as an open-source interface for
capturing up to 512 channels of extracellular electrophysiology data through a USB connection.
It also incorporates a headstage, responsible for detecting and acquiring weak electrical signals
from living tissue, utilizing an Intan amplifier chip. The Graphical User Interface (GUI) serves
as the open-source software interface (Fig.19a). The acquisition sample rate is set at 30 kHz,
and signal quantization is based on 16-bit precision (Fig. 20).

During the recording sessions, measures were taken to isolate the animal from extraneous
noise and light to the greatest extent possible. Subsequently, the acquired raw data underwent
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Figure 20 – Analog-to-digital conversion. The signals the channels capture are amplified and the data sample
is quantized. The example of the figure shows the quantization process with 3 bits. 3 bits allow
the system to generate 8 codes to translate the analog signal to digital information. Each code, for
instance 001, represents a voltage interval and if the analog value is in this interval, this sample
will be represented by 001. The system used in this project is 16 bits, so it will have 216 possible
levels to represent the input signal.

Source: DRONGELEN (2018)

filtering into two distinct frequency bands: the Low-Frequency Potential (LFP) band, ranging
from 0 to 300 Hz, and the Action Potential (AP) band, covering frequencies from 500 to
3000 Hz. The AP band facilitated the detection of action potentials. This was achieved by
establishing a threshold value, and when the filtered signal crossed this threshold, both the
timing and the waveform of the action potential (spike) were recorded (Fig.21). This initial
step was carried out by an open-source software tool known as Klusta.

Figure 21 – Illustration of action potential detection. Raw data is filtered, excluding low-frequency components
from the frequency spectrum. The filtered data will easily show when the action potential happens.
In order to mark the spike time, a linear threshold, represented by the red line, is applied and the
time sample that crosses the threshold is saved.

Source: REY; PEDREIRA; QUIROGA (2015)
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Due to the placement of the channels, it’s common for a single action potential to be
detected by multiple channels. This overlap is visibly evident even in the raw data (Fig. 22).
To handle these multi-channel detections, spikes are treated as spatiotemporally connected
components. For signals to be considered part of the same spike, they must meet specific
criteria. Namely, the filtered signals involved in a single spike must collectively exceed a rel-
atively weak threshold (set at 2 standard deviation units), and at least one signal from the
nearest channel must surpass a stronger threshold (equivalent to 4 standard deviation units).
This approach enables the retention of vital information, including the spike’s timing, which
channels detected the same spike, and the waveforms displayed on each channel at that precise
moment for each spike.

Figure 22 – Action Potential felt in adjacent channels. A) Layout of 32 channels organized in a silicon probe
used to collect the data displayed in B. B) Segment of the recorded data explained in (ROSSANT
et al., 2016). The rectangles highlighted the spike moments felt by more than one channel.

Source: ROSSANT et al. (2016)

The second step of spike sorting is unsupervised clustering. In this part, the detected spikes
will be judged and grouped into similar neuronal sources according to the features saved for
each spike.(Fig.23).

Following this, the next step involved using Klustaviewa, a graphical interface, for the
supervised phase of spike sorting. During this stage, the clusters formed automatically were
subjected to analysis to determine whether they represented Single Unit Activity (SUA) or
Multi-Unit Activity (MUA).
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Figure 23 – Process illustrated of clustering detected spikes. Each spike has a set of features responsible for
characterizing the spike such as waveform, amplitude ratio, spike duration, refractory period, etc.
Plotting a dot for each spike and the dot’s coordinates as the set of features, it is possible to see
cluster clouds forming and they could be called the activity of a putative neuron.

Source: REY; PEDREIRA; QUIROGA (2015)

A Single Unit Activity cluster signifies that the unsupervised spike sorting process success-
fully grouped a collection of spikes with similar characteristics, indicating that these spikes
originated from the same neuron. In contrast, Multi-Unit Activity clusters encompass a com-
bination of neuronal activities, but it remains uncertain whether these activities derive from a
single, unique neuron. To differentiate between SUA and MUA clusters, specific features must
be identified.

Single Unit Activity (SUA) clusters are characterized by distinct waveforms, with mini-
mal variations among the 100 randomly selected spikes displayed in the WaveformView tab
(Fig.24A). In these clusters, one channel typically exhibits the highest spike amplitude, while
adjacent channels display lower spike amplitudes.

The FeatureView tab (Fig.24B) offers a visualization of an n-dimensional space, where
each dot represents an individual spike. The ’n’ denotes the number of features used in the
Principal Component Analysis (PCA) to create the clusters. This tab provides insight into the
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proximity of spikes in this space. The closer the dots are, the more alike they are, supporting
the notion that these dots represent the activity of a single neuron.

The CorrelogramView tab (Fig.24C) exhibits an auto-correlogram density distribution of
spikes. It operates by selecting one spike as a central time reference and then creating 25ms
bins (with a bin size of 0.2ms) before and after this reference point. The count of spikes
occurring in each bin relative to the central spike is calculated for all spikes. For SUA clusters,
it is essential that the bins surrounding the central point remain empty or exhibit counts below
the average. This criterion is necessary to classify a cluster as SUA, primarily due to the
refractory period. In the case of spikes from the same neuron, no spike should occur before
the refractory period, thus ensuring a clear distinction.

Figure 24 – Example of cluster considered Single Unity Activity. Print screen of KlustaViewa software inter-
face. This data was collected in our laboratory. A) WaveformView tab. B) FeatureView tab. C)
CorrelogramView tab.

Source: The author (2023)

Multi-Unit Activity (MUA) clusters exhibit distinct characteristics as well. In the Wavefor-
mView tab (Fig. 25a), it’s typical to observe all the channels detecting nearly identical spike
amplitudes, indicating the likelihood of multiple neuron activities originating farther from the
silicon probe.

The FeatureView tab (Fig. 25b) tends to reveal dispersed clusters that are further from the
center. These more diffuse clusters suggest a greater diversity in the characteristics of spikes
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within the MUA group.
The CorrelogramView tab (Fig. 25c) often displays an auto-correlogram that doesn’t con-

form to the refractory period. This deviation from the refractory period is a key indicator of
MUA, reflecting the simultaneous firing of spikes from multiple neurons.

Figure 25 – Example of cluster considered Multi-Unit Activity. Print screen of KlustaViewa software interface.
This data was collected in our laboratory. A) WaveformView tab. B) FeatureView tab. C) Correl-
ogramView tab.

Source: The author (2023)

In addition to categorizing each cluster as SUA, MUA, or noise, the supervised spike sorting
process provides the flexibility to merge clusters when they appear to originate from the same
neuron or to split a cluster when there are spikes that deviate significantly from the majority,
allowing for the potential removal of such outliers (Fig. 26).

The initial analysis of electrophysiological data recorded with silicon probes begins with
unsupervised spike sorting, a process that identifies spikes in the raw data and groups them
into clusters representing potential neuronal activity. These clusters are subsequently classified
as either single-unit or multi-unit activity based on a set of distinct features. Finally, the
accumulated information can be condensed into a time series, as illustrated in the figure
27. Subsequently, this time series data will be employed in various ways, depending on the
subsequent phases of analysis.
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Figure 26 – Example of two clusters shown together. The manual decision is made based on waveform sim-
ilarities, auto-correlations, and cross-correlations. The Featureview could also be used to help in
the decision to merge clusters.

Source: ROSSANT et al. (2016)

Figure 27 – Possible format for the final data after the spike sorting. Four columns could be created. The first
one (time(s)) is composed of the time in seconds of each spike for all clusters and shanks. The
second column (cluID) gives the information about to which cluster that spike belongs. The third
column says which shank that cluster was detected. The fourth column says for each cluster which
channel the putative neuron is closer judged by the maximum amplitude.

Source: The author (2023)
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5 RESULTS

5.1 PUBLISHED ARTICLES

5.1.1 Criticality between Cortical States, PRL, 2019

Criticality in the brain and its manifestations have been investigated across various contexts
(LIU et al., 2014),(WORRELL et al., 2002), (VYŠATA et al., 2014), (MAREŠ et al., 2013),(TINKER;

VELAZQUEZ, 2014). , involving diverse species (GIREESH; PLENZ, 2008; PETERMANN et al., 2009;
ZIMMERN, 2020) and models (CHALLET; MARSILI, 2003; KINOUCHI; COPELLI, 2006; LEVINA;

PRIESEMANN, 2017). In this particular study of ours (FONTENELE et al., 2019), a specific facet
of criticality, namely neuronal avalanches, was thoroughly examined. According to the critical
brain hypothesis, systems operating at a critical point exhibit scale-invariant characteristics
(BAK; TANG; WIESENFELD, 1988b; BAK; TANG; WIESENFELD, 1988a).

One of the seminal findings that reinforced the critical brain hypothesis was the 2003
study by Beggs and Plenz published in the Journal of Neuroscience. Their research emphasized
the significance of the concept of self-organized criticality and the extensive examination of
this theory in various contexts (BEGGS; PLENZ, 2003). According to Beggs and Plenz, this
theory asserts that systems consisting of numerous interconnected and nonlinear elements
can naturally self-organize into a critical state, where avalanches exhibit scale invariance and
adhere to a power-law probability distribution.

The spike data analyzed in our paper were intentionally diverse to underscore the robustness
of the results. The data sources included ex vivo cortex of turtles (SHEW et al., 2015), cortical
slices of the rat brain (FRIEDMAN et al., 2012), freely moving mice (SENZAI; FERNANDEZ-RUIZ;

BUZSÁKI, 2019), an anesthetized monkey (KOHN; SMITH, 2016), and anesthetized rats admin-
istered with urethane. The experimental protocol I was involved in pertained to anesthetized
rats treated with urethane. The electrophysiological recordings were acquired using Neuronexus
with 32 channels, 8 channels in each of 4 silicon shanks according to the methodology presented
in Chapter 3 (Fig. 28a).

Our study examined the criticality signature within segments of spike data separated based
on the variability levels associated with cortical states. The separation was achieved by cal-
culating the coefficient of variation (CV) for each 10-second interval of neuronal population
activity (HARRIS; THIELE, 2011). Figure 28b depicts the temporal series of CV, revealing a no-
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tably wide dynamic range for this metric according to the density distributions for CV values.
In Figure 28c, we can observe three 10-second raster plots that illustrate three distinct levels of
variability. The purple window corresponds to a 10-second interval with the lowest coefficient
of variation (CV) in the dataset. The red window represents an intermediate level of CV, while
the green window signifies a period characterized by the highest level of synchrony.

The article by Harris et al. (2011) elucidates the mathematical connection between fluc-
tuation and correlation. Consequently, one can anticipate distinct pairwise spiking correlation
density functions for each of the three levels of variability, as depicted in figure 28d. The mean
and standard deviation of these density functions exhibit a direct proportionality to the level
of variability, as one would naturally anticipate.

Figure 28 – Study of signatures of criticality in V1 cortex. Figure A sketches the experimental and acquisition
setup. Figure B shows the CV time series with 10 seconds of window per sample. The plot on
the right shows the density distribution of CVs. Figure C is a representation of how the raster
plot of 10 seconds of population activity looks like for three different values of CV. In Figure D,
the data was segregated into three CV levels, and their correlation structure was calculated. The
plot displays the density distribution over the structure correlation values. Figure E is graphically
explaining how the avalanche is defined, and how its size and its duration are calculated. Figures
F and G show the probability distribution of specific sizes and durations respectively for three
different levels of CV. Figure H represents the AIC criterion to test if the fit corresponds more to
a log-normal function or a power-law function depending on CV levels.

Source: FONTENELE et al. (2019)

Neuronal avalanches are defined as population spikes that are preceded and followed by
periods of silence. The population spike is partitioned into non-overlapping time bins. The
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duration of these time bins is determined by the average inter-spike interval, denoted as ⟨𝐼𝑆𝐼⟩

(approximately 2-4 ms). Figure 28e provides a graphical explanation of how to quantify the
size (number of spikes) and duration (number of bins between two empty bins) of a neuronal
avalanche. Our study demonstrated that the probability distributions of both size (Fig. 28f)
and duration (Fig. 28g) of neuronal avalanches can follow a power-law distribution when
considering only the segments of spiking activity with CV values falling within the intermediate
range. The fitting of this supposedly power-law distribution yields a fitted exponent.

At the critical point, another critical exponent that could be calculated is the fitted function
of average size conditioned on a given duration. For example, given an avalanche duration of
0.03s, the avalanche could have a size of 3 spikes, or 100 spikes, depending on how many
neurons are involved in that specific avalanche. Then the size of avalanches could be averaged
for every specific avalanche duration. Figure 29c shows that for different levels of variability,
the fitted exponents are different.

Relations involving exponents derived from size and duration distributions can provide
insights into the criticality signatures investigated in the brain (SETHNA; DAHMEN; MYERS,
2001).

Another noteworthy outcome pertains to the scaling relations. The exponents for both
size and duration align with the exponent obtained from the relationship between the average
avalanche size and the average avalanche duration. That equality is only theoretically satisfied
at the critical point.

𝜏𝑡 − 1
𝜏 − 1 = 1

𝜎𝜈𝑧

In our findings, the degree of this alignment depends on the level of variability in spike activ-
ity, as characterized by the coefficient of variation (CV). Figure 29a shows that the scaling
relations hold true for anesthetized rats when the coefficient of variation (CV) falls within
the intermediate range, as displayed. In Figure 29b, the dashed line illustrates the CV density
distribution, indicating that a majority of the spike activity time series exhibits intermediate
CV values. Notably, the median of the CV distribution coincides with the point at which the
scaling relations equate. Figure 29e and figure 29f show the same plot as in figure 29a but for
freely moving mice and anesthetized monkeys respectively.

It is conceivable to classify systems based on their fitted exponents and their interrelations.
Systems sharing identical exponents may be regarded as belonging to the same universality
class, and there has been considerable debate regarding which universality class the brain might
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Figure 29 – Signatures of criticality for different experimental and artificial data. Figure A, B, E, and F
represent the relation between the scaling relation and CV for (A)anesthetized rats, (E) freely
moving mice, and (F)anesthetized macaque monkey. Figure B is the same as A, but an average of
all the datasets of anesthetized rats. The dashed range of CV represents where the curves crossed
taking into account the standard deviation. The dotted curves in Figures B and E are the density
distribution of CV. Figure C is the plot between the avalanche’s duration and its average size for
different levels of CV. Figure D shows the relation between the DFA exponents and the difference
between the scaling relations. Figure G combines all datasets used in this article to show that
regardless of the nature of the data, the parametric relation between 𝜏 and 𝜏𝑡 remains and it is
different from what one expects from MF-DP university class, for example.

Source: ?? (??)

belong to (FRIEDMAN et al., 2012).
Another feature explored was the detrended fluctuation analysis. The fluctuation measured

F(w) is also different for different levels of variability as shown in the inset of the figure 29d.
That figure also shows the DFA exponent average in the function of the scaling relation equality
distance and the equality happens when the DFA exponent 𝛼 converges to one.

According to the findings of our paper, it is not a singular pair of exponents (size and
duration) that stands out, but rather a consistent relationship between them, as shown in Figure
29g. Upon thorough data analysis, it becomes apparent that the scaling relations are only
upheld when the coefficient of variation (CV) is situated at an intermediate level. This suggests
that CV levels may serve as a proxy for an order parameter responsible for the transition from
a less synchronized state to a more synchronized one. The critical point manifests itself when
CV reaches an intermediate level, thereby signifying the presence of criticality signatures.

In this article, clear signatures of criticality were identified in the spike activity of the V1
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cortex in urethane-treated rats. The critical point appears to be inaccessible when the neuronal
population is highly synchronized or highly asynchronous. However, at intermediate levels of
synchrony, it is robustly observed across different animals, anesthesia conditions, and brain
regions.

These findings also challenge the notion that the critical point solely marks the transition
between the absorbing (zero activity) and active phases (non-zero activity), as predicted by
the direct percolation universality class. Instead, it is more precise to describe the transition
as occurring between the active and oscillatory phases, especially since the CROS model
successfully mimicked the results derived from spike data, and its structural basis is rooted in
collective oscillations. The CROS model has both excitatory and inhibitory stochastic spiking
neurons arranged in an L × L square lattice, each neuron interacting with a controlled random
fraction of its neighbors within a small l × l region.

An additional noteworthy result is the discovery of a linear relationship between the fitted
exponents from the size and duration distributions. This relationship holds true only for inter-
mediate levels of the coefficient of variation (CV), and this phenomenon was consistent across
all datasets analyzed, including the CROS model.

All of these findings give rise to more questions than they resolve. For instance, consid-
ering that the CROS model respects the relationship between the exponents, can this model
predict additional features of the data? Can both anesthetized and unanesthetized animals
be effectively described by the same model? And if so, does this model represent the most
parsimonious explanation for the observed data?

5.1.2 Signatures of brain criticality unveiled by maximum entropy analysis across

cortical states, PRE, 2020

The pioneering article that applied maximum entropy models to neuronal data was pub-
lished in 2006 in Nature by E. Schneidman and colleagues. In this study, they demonstrated
that despite the relatively weak pairwise correlations between neurons, a model using only these
correlations could account for over 90% of the information within the system (SCHNEIDMAN

et al., 2006).
These models belong to the class of maximum entropy models, which are probabilistic

models designed to adhere to specific constraints while describing the system without making
assumptions about any unknown features. An insightful analogy was drawn between a group
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of neurons and a lattice of spins.
The maximum entropy model employed in this analogy was the Ising Model, where each

spin represented a neuron, and the state of each neuron was described as either active (+1)
or non-active (-1 or 0), akin to the quantum state of spins.

The Hamiltonian for this model incorporated interaction strengths between pairs of neu-
rons and the "external field" strength of each neuron, both of which were adjusted based on
data until the model accurately reflected the data. This adjustment process was guided by
Monte Carlo algorithms, resulting in a probability distribution of states from the data closely
resembling the probability distribution from the simulated model data.

The project I engaged in for my master’s degree leveraged these tools to detect signatures of
criticality in the Ising model derived from neuronal data. Once the model was fitted, it became
possible to calculate the specific heat from the Hamiltonian, with this quantity diverging as
the system approached the critical point.

Following the groundbreaking work in 2006, a new field emerged, with numerous articles
adopting various approaches and slightly different models within the maximum entropy model
class (TKAČIK et al., 2013; GARDELLA; MARRE; MORA, 2016; TKAČIK et al., 2014).

The article discussed below seeks to identify signatures of criticality in a maximum entropy
model that accounts for the relationship between past and present firing rates. Building on
the idea presented by Fontenele et al. in 2019, this article explores the hypothesis of detecting
criticality, now including specific heat divergence, among different cortical states.

This article utilized two types of electrophysiological recordings from the ongoing activity of
the V1 cortex, employing Neuronexus probes as the electrodes. A total of eight datasets were
analyzed in this study. Five of these datasets were collected at the Life and Health Institute,
University of Minho, while the remaining three were recorded in our laboratory. Notably, the
data from Recife and Portugal exhibit similarities, albeit one set employed 32-channel silicon
probes and the other 64-channel silicon probes. The 64-channel probes enable the simultaneous
recording of more neurons, while maintaining consistent recording quality and data processing
protocols.

As previously mentioned, following the groundbreaking work in 2006, numerous researchers
drew inspiration from it, leading to the exploration of a variety of maximum entropy models for
analyzing neuronal data. In 2016, Tierry Mora and Oliver Mare published a paper identifying
signatures of criticality using a model distinct from the original Ising Model, yet still belonging
to the maximum entropy models class. The probability distribution in this alternative model
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takes the form of a Boltzmann distribution (MORA; DENY; MARRE, 2015).

𝑃𝛽 ({𝜎𝑖,𝑡}) = 1
𝑍(𝛽)𝑒−𝛽𝐸({𝜎𝑖,𝑡})

This new system’s energy still relies on two components: ’h’ and ’J.’ These components
are respectively associated with the probability of ’K’ neurons being active simultaneously,
denoted as 𝑃 (𝐾), and the joint probability of ’K’ neurons being active at time ’t’ and ’K”
neurons being active at time ’t+u,’ expressed as 𝑃 (𝐾𝑡, 𝐾𝑡+𝑢).

𝐸 = −
∑︁

𝑡

ℎ(𝐾𝑡) −
∑︁

𝑡

𝜈∑︁
𝑢=1

𝐽𝑢(𝑘𝑡, 𝐾𝑡+𝑢)

The concept is to adjust ’h’ and ’J’ until the probability distribution 𝑃 (𝜎𝑖,𝑡) derived from
the model aligns with the one obtained from the data. Once the algorithm converges to the
optimal probability distribution that accurately represents the data, the specific heat can be
calculated. Specific heat is defined as

𝑐(𝛽) = 𝛽2

𝑁𝐿

(︂⟨
𝐸2

⟩
𝛽

−
⟨
𝐸2

𝛽

⟩)︂
Specific heat is anticipated to exhibit divergence when 𝛽 equals one and as the number of

elements increases.
All calculations related to specific heat, as well as the generation of probability distributions

from the model and data, were executed using a code compilation provided by the authors of
the paper, Thierry Mora and Olivier Mare.

To validate the code’s functionality, specific heat was computed for all full recordings. As
depicted in Figure 30 on the left, it is evident that the peak in specific heat becomes more
prominent and approaches the critical beta as the number of neurons increases. This behavior
is a well-known characteristic in spin systems and has been previously examined in neuronal
data.

A similar analysis was carried out on shuffled data, and the unique feature of specific heat,
its divergence near T equals one, is visible in Figure 30 on the right.

The primary objective of this study was to investigate the concept proposed by Fontenele
et al. in 2019, which suggested that signatures of criticality, specifically features related to
neuronal avalanches, might be more pronounced at intermediate levels of variability. In this
context, the chosen signature of criticality was the divergence of the specific heat, and this
metric was computed across a range of cortical states, spanning from the most asynchronous
to the most synchronized.
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Figure 30 – Specific heat calculated for subgroups of neurons. Left: Specific heat measured in 5 different size
subgroups of neurons. Right: The same subgroups were analyzed however the spike trains were
shuffled.

Source: LOTFI et al. (2020)

Figure 31 – Specific heat of the whole neuron population for different levels of variability. 𝑇 * is the value of
T when the specific heat is maximum. Remembering that the "real value of c is for T equals 1,
the rest of the values come from the model.

Source: LOTFI et al. (2020)
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In Figure ??a, it is evident that for lower levels of CV, the specific heat values are lower, the
curve shape is less pronounced, and the parameter 𝑇 * is below T=1, indicating a subcritical
state. As the CV values increase, the specific heat curves become more distinct, with their
peaks approaching T=1.

Upon reaching a certain point, corresponding to a higher level of variability indicative of
a more synchronized state, the specific heat curve peaks when the parameter T is greater
than one, implying that for this level of synchrony, the observed group of neurons would have
self-organized into a supercritical state.

The most remarkable finding is that the level of CV at which 𝑇 * = 1 is approximately
𝐶𝑉 ≃ 1.48, a value closely resembling what Fontenele et al. discovered as the threshold for
identifying signatures of criticality using neuronal avalanches.

The specific heat was calculated for the same datasets as in Fontenele et al.’s work. Figure
??b depicts the values of 𝑇 * for each range of CV. In comparison to Figure ??a, each point in
Figure ??b corresponds to the value of T where the specific heat attains its maximum value.

Within the same figure, all the datasets are presented, and it’s evident that 𝑇 * converges
towards one as the mean CV value approaches 1.48. This outcome underscores the consistency
across various animal samples and different laboratory settings.

Figure 32 – Relation of new quantity 𝜏 with levels of variability of spiking activity quantified by coefficient of
variation, CV. Right: 𝜏 value in function of CV for the animals. Left: Same measure but the data
was shuffled before.

Source: LOTFI et al. (2020)

Another innovative concept introduced in this paper was the development of a novel mea-
sure that connects two key values: the temperature associated with the maximum specific
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heat and the temperature that aligns with half of the maximum specific heat. The proposed
equation was

𝜏 ≡ 𝑇 * − 1
𝑇 * − 𝑇 1

2

where 𝑇 1
2

is defined as 𝑐(𝑇 1
2
) = 𝑐(𝑇 *)

2 .
Once again, it is evident that all the animals in Figure 32 exhibit a consistent pattern. It’s

worth noting that three of these rat datasets were recorded and analyzed in our laboratory,
while the other five were shared data from Portugal.

This new measure illustrates that the manner in which specific heat changes with CV is
consistent across all datasets, and the critical 𝜏 (which equals zero) is achieved for all datasets
when the average CV is approximately 1.48.

The findings of this paper were particularly intriguing because they not only confirm the
results of Fontenele et al. but also reignite a significant debate about whether measures of
cortical states can effectively serve as a control parameter for phase transitions.

In general, the use of specific heat curves strengthens the argument that the system
approaches criticality as the number of elements involved increases, as previously observed in
Figure 30.

However, the unique aspect is how the system’s proximity to criticality for a specific CV
range is unprecedented and supports the relationship between variability levels and criticality.
Furthermore, this relationship is consistent across all datasets, whether from Recife or Portugal.

Another significant result is how the relationship between 𝑇 * and the average CV appears to
collapse into a single, distinct curve when a new parameter, 𝜏 , is introduced. This parameter
is a function of 𝑇 * and accounts for how close the specific heat peak is to T=1 and the
sharpness of the curve. Once again, all datasets seem to follow a well-defined pattern, and this
phenomenon is not observed in shuffled data.

The results from Fontenele et al. in 2019 and Lotfi et al. in 2020 may lead one to consider
that CV levels could serve as a plausible control parameter for identifying a critical point.
This hypothesis aligns with biological reasoning, as the brain might not be able to achieve its
maximum information processing potential under either extreme level of synchrony.

It is essential to acknowledge the existence of a level of complexity and non-linearity in
how a group of neurons interacts. Not all neurons will be fully synchronized or entirely asyn-
chronous. Thus, an intermediate level of synchrony, quantified by the coefficient of variation,
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may intuitively be sensible for expanding the dynamic range of stimulus responses, enhancing
information capacity, and optimizing information transmission.

The next question posed by our research group was: is there a model capable of replicating
the results from the data? Moreover, could this model enhance our understanding of criticality
signatures and cortical states? The following section will delve into another project that seeks
to address these questions.

5.1.3 Subsampled directed-percolation models explain scaling relations experimen-

tally observed in the brain, Frontiers in neural circuits 2021

Tawan Carvalho was a PhD student in our research group from 2019 to 2021 and played a
pivotal role in an intriguing and groundbreaking project. Leveraging his background in compu-
tational Statistical Physics, he applied a modeling approach to explore the critical relationship
between cortical states and real neuronal data.

This pioneering project exclusively utilized datasets collected in our laboratory, led by
me and Dr. Leandro Alcantara, along with the valuable contributions of Bh. Thais Priscila. A
total of five datasets were meticulously analyzed in this study, following the same experimental
protocol as in Fontenele et al. 2019.

The focal point of this research was a spiking neuronal network model that incorporated
both excitation and inhibition (GIRARDI-SCHAPPO et al., 2020). Each neuron in this model
adhered to a stochastic leaky integrate-and-fire equation, a well-known model that plays a
significant role in the mean-field direct percolation (MF-DP) university class (TEETER et al.,
2018).

Within each universality class that exhibits criticality, it is anticipated that certain common
features will emerge. One such example is the exponents derived from probability distributions
based on neuronal avalanches (YAGHOUBI et al., 2018).

The specific model used in this study was parameterized to enable the resulting artificial
neuronal activity to exhibit criticality signatures. While criticality signatures from the MF-DP
class were discernible in this model, they were notably absent in the real data (RIBEIRO et al.,
2010). This discrepancy suggests that the real neuronal data may not align with this specific
universality class, or that the model does not accurately replicate the behavior of neurons in
the visual cortex.

These intriguing findings will be the focus of further investigation in this work, offering
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impressive insights that challenge assumptions implied by our two previous studies.
To generate the artificial data, we employed a spiking neuronal network with an excitation

and inhibition network, as described in (GIRARDI-SCHAPPO et al., 2020). Each neuron within
the network, consisting of N neurons, had its membrane voltage denoted as 𝑉𝑡, and it was
governed by the following equation:

𝑉
E/I

𝑡 (𝑡 + 1) =
⎡⎣𝜇𝑉

E/𝑙
1 (𝑓) + 𝐼𝜀 + 𝐽

𝑁
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𝑓 (𝑡)

−𝑔𝐽

𝑁

𝑁I∑︁
𝑗=1

𝑋 I
𝑗(𝑡)

⎤⎦ (︁
1 − 𝑋

E/I
1 (𝑡)

)︁
,

Time is discretized in a 1 ms window, where 𝜇 represents the leak time constant, 𝐼𝑒 signifies
the external current, J stands for the synaptic coupling strength, and g denotes the inhibition-
to-excitation coupling ratio. The variable X(t) reflects the current state of the neuron, taking
a value of 0 when it’s inactive and 1 otherwise. The ratio between the populations of inhibitory
(𝑁𝑖) and excitatory (𝑁𝑒) neurons is established at 0.2 and 0.8, respectively, in accordance with
the findings outlined in (SOMOGYI et al., 1998)

The voltage membrane, in turn, plays a pivotal role in determining whether neurons will
become active in the subsequent millisecond, utilizing a piecewise linear sigmoidal probability
function.

Φ(𝑉 ) ≡ 𝑃 (𝑋 = 1 | 𝑉 ) = Γ(𝑉 − 𝜃)Θ(𝑉 − 𝜃)Θ (𝑉𝑆 − 𝑉 ) + Θ (𝑉 − 𝑉𝑆)

where 𝜃 is 1 and it is defined as a firing threshold, Γ is the firing gain constant, Θ is the
Heaviside step function and 𝑉𝑆 = 1

Γ+𝜃
is the saturation potential.

The model exhibits a direct percolation critical point at a specific inhibition-to-excitation
coupling ratio, denoted as 𝑔. The critical value of 𝑔, represented as 𝑔𝑐, is determined to be 1.5
(for 𝐽 = 10 and Γ = 2). When 𝑔 falls below 1.5, it signifies an active excitation dominance,
while values above 𝑔𝑐 indicate a phase dominated by inhibition in the model. We employed two
distinct methods to obtain two types of data: one derived from a stochastic model, extensively
investigated by Giradirno, and the other obtained from electrophysiological data. Both datasets
were subjected to an analysis that focused on the levels of variability in neuronal population
activity. The coefficient of variation (CV) was computed at 10-second intervals within the time
series of neuronal population activity.

This CV value allowed us to track changes in variability over time for both real and
simulated data. Within each 10-second window, we performed neuronal avalanche analysis.
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To accomplish this, the large 10-second time window was divided into smaller bins, where the
bin size was determined based on the average inter-spike interval. A neuronal avalanche was
defined as the population activity occurring between two bins with zero activity. We quantified
the number of spikes within each avalanche (referred to as the "size of avalanche") and the
number of bins separating the empty bins (referred to as the "duration of avalanches").

Consequently, for each 10-second interval, we obtained a unique CV value, a size vector,
and a duration vector encompassing all avalanches that occurred within that interval. These
size vectors were combined with other vectors that shared similar CV values, thereby creating
a larger vector containing all avalanche sizes within a comparable range of CV. This same
process was repeated for avalanche durations.

With these concatenated vectors organized by CV values, we could calculate the probability
of an avalanche involving, for example, 5 spikes, by tallying the occurrences of such avalanches
and dividing by the total number of avalanches.

Subsequently, we scrutinized the shape of the probability distribution for these avalanche
characteristics. The exponent yielding the best fit for these probability distributions was com-
puted using the Maximum Likelihood Estimator (MLE) procedure (MYUNG, 2003). Once the
most suitable exponent was identified, we conducted a test to determine whether the fit re-
sembled a power-law distribution or a log-normal distribution. This test, known as the Akaike
Information Criterion (HU, 2007), guided our selection. All further analyses only considered
probability distributions that exhibited a superior fit to a power-law distribution.

The Girardini model we’ve discussed is primarily characterized by its parameter, g, which
signifies the inhibition-to-excitation coupling ratio. Notably, the stationary firing density within
the artificial population undergoes changes as g varies, as illustrated in Figure 33a. Intriguingly,
even small fluctuations in g can lead to a rapid transition of the system from an active
state (non-zero activity) to an absorbing state (zero activity). This phase transition can be
precisely quantified and analyzed by examining the exponent obtained from the power-law fit
of probability distributions (Fig. 33b,c,d).

Here, 𝜏 represents the exponent derived from the probability distribution of avalanche sizes,
while 𝜏𝑡 corresponds to the exponent associated with avalanche durations. For this model, when
g equals 1.5, it is a well-established fact that 𝜏 equals 1.5 and 𝜏𝑡 equals 2. With these specific
exponent values, it is reasonable to conclude that this model belongs to the MF-DP university
class.

The model can effectively replicate the level of variability observed in real data by reducing



70

Figure 33 – Spiking neuronal network with excitation and inhibition with 105 neurons for different values of
g. Figure A shows the stationary density of firing, ̃︀𝜌, in function of the inhibition to the excitation
coupling ratio, g. Figure B displays the probability distribution of all possible sizes for avalanches
for three different values of g. In Figure C, the same calculation is made as in B but now for
avalanche duration. Figure D shows the average size of avalanches related to their respective
duration. In Figure E, it is possible to see the time series of instant density firing for each of the
three values of g.

Source: CARVALHO et al. (2021)

the number of neurons to 100. With this constraint, it becomes possible to achieve three
distinct states of low, intermediate, and high coefficient of variation (CV) by making minor
adjustments to the values of g around 1.5, as illustrated in Figure 34a and 34d, left panel.
The model’s resemblance to real data can also be confirmed by examining the probability
distributions of avalanches (Fig. 34c,f).

Values of g below 1.5 result in artificial spike trains that exhibit characteristics akin to
concatenated segments of real spike trains with a low CV. Conversely, when g exceeds 1.5
in the artificial data, it closely resembles high CV real spike trains. These characteristics
mentioned are indicative of the criticality signatures investigated by Fontanelle et al. in 2019.

Both the model and the real data exhibit identical criticality signatures, including the scaling
relation dependent on the coefficient of variation (CV) and the linear correspondence between
𝜏 and 𝜏𝑡 (Fig. 35). These findings strongly imply that this spiking neuronal network, featuring
both excitation and inhibition, stands as a promising candidate for accurately replicating results
obtained from real neuronal data.

The article also delved into the impact of the sampling fraction and time bin size on the
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Figure 34 – Two panels to show the similarity between the real data acquired in our lab and the data the
model simulated for 100 neurons. Figure A show the time series of CV for almost 3 hours of
recording. Each point is the CV value for 10s of neuronal population activity. On the same figure
on the left, there is a density distribution of CV. Three CV extremes values were highlighted and
used to exemplify how these three levels behave. Figure B shows the raster plots for 10 seconds
of population activity for two different states. On the left, this window has a low value for CV,
and clearly, this group of neurons has a low level of synchrony. On the right side, it was chosen a
high value of CV that shows how deeply synchronized the neurons are. In Figure C, blocks of 10
seconds with similar values of CV were concatenated, and the avalanche analysis was calculated
displaying a distinction between the probability distributions of the three different ranges of CV.
Figures D, E, and F are the same analysis as A, B, and C in the data generated by the model.

Source: CARVALHO et al. (2021)

observed criticality signatures. When the time bin is set equal to the inter-spike interval (ISI),
an intriguing pattern emerges as the population size N increases. The relationship between
𝜏 and 𝜏𝑡 becomes progressively more akin to that observed in real data (Fig. 36a). However,
employing ISI as the time bin width has its limitations. Specifically, a minimum of 30 artificial
neurons is necessary, or else the power-law fits fail to meet the Akaike Information Criterion
(AIC) criterion. Furthermore, a significant subgroup of neurons experiences ISIs of less than 1
ms, which is unsuitable for avalanche calculations given the model’s time scale of 1 ms.

Conversely, when a fixed bin size of 1 ms is employed across all subgroup sizes, an intriguing
phenomenon surfaces in Figure 36c. The scaling relation holds with consistent accuracy for
both a small fraction of neurons (1.3) and the entire neuron population (MF-DP=2), albeit
with differing values. Nevertheless, as the fraction of artificial neurons increases from the
minimum value, the scaling relation diminishes (Fig. 36b).

Figure 36d provides further insight, indicating that as the fraction of neurons utilized for
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Figure 35 – Signatures of criticality measured for real data and artificial data. Figures A (real data) and
C (artificial data) show two features depending on CV. One feature is a single value relating 𝜏
and 𝜏𝑡 by the equation 𝜏𝑡−1

𝜏−1 . The second feature is the exponent fitted by the relation between
the average size of avalanches and their duration. Figures B (real data) and D (artificial data)
show that 𝜏 and 𝜏𝑡 obey a linear relation of 1.3 for CV values around 1.5. The same behavior is
encountered in the artificial data except for values of g slightly bigger than 𝑔 = 1.5.

Source: CARVALHO et al. (2021)

calculating 𝜏 and 𝜏𝑡 expands, these exponents progressively tend toward the values associated
with the MF-DP class.

One of the greatest highlights of this paper was finding a model and its specific parameters
that could reproduce the real data, its cortical state density distribution, and also the avalanche
dynamics. The key parameters responsible for adjusting the model to the real data were the
inhibition to the excitation coupling ratio, g, and the number of neurons N involved in the
calculations.

With this adjusted E/I spiking neuronal network, it is possible to investigate deeply the
central question of this field: "If the brain is critical, what is the phase transition? ". Fontanele
et al, 2019, suggested that the level of variability of the neuronal population activity could
have an effect on how close the system will be from the critical point.

Tawan’s article effectively challenged a previously held notion when it demonstrated that
a well-established model could reproduce a broad spectrum of changes in CV by slightly
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Figure 36 – Dependence of the number of neurons and time bin width on signatures of criticality for artificial
data. Figure A and C calculate the scaling relation for any CV in function of the fraction of neurons
involved in the sub-network with (A) time bin equal to the ISI and (B) time bin equal to 1 ms.
Figures B and D show the parametric relation between 𝜏 and 𝜏𝑡 for different numbers of neurons
and with (B) time bin equal to the ISI and (D) time bin equal to 1 ms.

Source: CARVALHO et al. (2021)

adjusting the model’s control parameter, denoted as ’g,’ responsible for characterizing the
model’s criticality.

It is evident, from an electrophysiological perspective, that data obtained through neuronal
recordings with electrodes inherently represents a subsample of the entire neuronal popula-
tion. In other words, when utilizing available techniques for recording neuronal activity, it is
practically impossible to ensure the recording of every single neuron within a specific area.

The subsampled data generated by the model remarkably mimics the criticality signatures
observed in real data. However, the complete artificial dataset exhibits characteristics in line
with expectations from models associated with the MF-DP university class. This paper played
a pivotal role in enhancing our research group’s comprehension of how to approach criticality
and its relationship with cortical states.
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5.1.4 Statistical complexity is maximized close to criticality in cortical dynamics,

PRE, 2021

Complexity lacks a universally precise definition; however, various complexity measures
have been proposed and employed, including Kolmogorov complexity (MING; VITÁNYI, 1990),
Crutchfield’s complexity, and Young’s complexity (CRUTCHFIELD; YOUNG, 1989). The sta-
tistical complexity employed in this study was the Martín-Platino-Rosso (MPR) complexity
(MARTIN; PLASTINO; ROSSO, 2006). To conduct the calculations, it was necessary to represent
the time series as a probability distribution, achieved in this case using the Bandt-Pompe recipe
(BANDT; POMPE, 2002).

With this probability distribution, complexity and entropy could be charted in a phase plane,
based on the variability of time series segments. For highly desynchronized or synchronized
data segments, the complexity takes on a value of zero. In contrast, Shannon entropy assumes
values between 0 and 1, reflecting the degree of synchrony, ranging from most desynchronized
to most synchronized.

The complexity-entropy phase plane proved to be a valuable tool for studying the rela-
tionship between these two measures and criticality. An investigation revealed a connection
between criticality and complexity, indicating that complexity peaks when the system is poised
near criticality (TIMME et al., 2016).

To explore this relationship, a symbolic information-theoretical approach was applied to
time series of neuronal population activity, enabling the calculation of permutation entropy
and MPR complexity across a range of cortical state values.

To compute any information-theoretical metric, like Shannon’s entropy or the MPR com-
plexity measure, it is imperative to derive a probability distribution function for the system.
Let X(t) denote the time series that characterizes the system. We can segment the time series
into symbols, each of which can then have its frequentist probability calculated. This, in turn,
enables the use of Shannon’s entropy, expressed as follows:

𝑆[𝑃 ] = −
𝑁∑︁

𝑗=1
𝑝𝑗𝑙𝑛(𝑝𝑗)

When a system is entirely predictable, its entropy equals zero. Conversely, when a system
is entirely unpredictable, its entropy assumes the maximum possible value. We can define the
normalized Shannon’s entropy, which is
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𝐻[𝑃 ] = 𝑆[𝑃 ]
𝑆[𝑃𝑒]

where 𝑃𝑒 represents the system’s uniform probability distribution. Another information-
theoretical metric that can be employed to characterize the system is the MPR complexity
measure. It is defined as follows

𝐶[𝑃 ] = 𝑄𝐽 [𝑃, 𝑃𝑒] · 𝐻[𝑃 ].

The 𝑄𝐽 [𝑃, 𝑃𝑒] is defined in terms of the Jensen-Shannon divergence as

𝑄𝐽 [𝑃, 𝑃𝑒] = 𝑄0𝐽 [𝑃, 𝑃𝑒] ,

where
𝐽 [𝑃, 𝑃𝑒] = 𝑆

[︃
(𝑃 + 𝑃𝑒)

2

]︃
− 𝑆[𝑃 ]

2 − 𝑆 [𝑃𝑒]
2 ,

and 𝑄0 is the inverse of the maximum value of 𝐽 [𝑃, 𝑃𝑒].
To assess the probability distribution function, the Bandt-Pompe symbolization technique

was applied to the system’s time series. This technique involves extracting patterns of length
D associated with each observable in the system. For instance, when D=3, a set of 6 symbols
can be generated, such as (012), (021), (102), (120), (201), (210). The figure 37 displays an
example. Consider a system’s time series approximately given by X(t)=5,10,8,4,5,3,8,2,10,7.

The initial symbol corresponds to the sequence (5,10,8), represented as (0,2,1). Subse-
quently, the next sequence, (10,8,4), is symbolized as (1,2,0), and so forth. The domain size
of the probability distribution function is 6, and each symbol’s frequency is counted. The
probability distribution is then computed based on these counts. Although the symbolic rep-
resentation discards the amplitude information from the time series, it effectively retains the
temporal structure and temporal correlations.

The exploration of the hypothesis of criticality in the brain has spanned almost three
decades, necessitating the identification of quantitative signatures for this hypothesis. Com-
plexity measures have been proposed as potential signatures of criticality (TIMME et al., 2016).
Previous studies from our research group have investigated the impact of different cortical
states on criticality signatures, such as the scale invariance observed in neuronal avalanches
(FONTENELE et al., 2019) and the divergence in thermodynamic quantities (LOTFI et al., 2020).
In this work, we aimed to characterize cortical states using the Martín-Platino-Rosso statistical
complexity.
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Figure 37 – Construction process of the probability distribution function used to calculate the complexity and
entropy measure. A) Possible symbols to represent the time series. B) Segment of time series
representation. C) Probability distribution of symbols used to describe the time series.

Source: LOTFI et al. (2021)

Figure 38 – Three segments of the time series with different levels of variability. The first line of plots a shows
the population firing rate of 274 recorded clusters and the second line is the raster plots for the
same three specific time windows. The green column represents a time window with high spiking
variability (CV=2.60). The red column presents a time window with an example of intermediate
value of CV (CV=1.30) and the blue represents a moment of low variability, a desynchronized
state with CV=0.484.

Source: LOTFI et al. (2021)

Initially, cortical states were characterized using datasets from anesthetized rats. At 10-
second intervals, we calculated the coefficient of variation (CV) to quantify the level of vari-
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ability, allowing us to observe the temporal evolution of CV ( Fig. 38). Using the same time
window, we also computed entropy (H) and complexity (C) over time (refer to Fig. 39).

Figure 39 – Three quantities were calculated along the recording session at each non-overlapping 10 seconds.
The first plot shows CV time series. The second plot shows Shannon’s entropy at each non-
overlapping 10 seconds window. The third column presents the complexity measure at each non-
overlapping 10 seconds. And the density distribution of each time series is on the side. The time
windows presented in figure 38 are pointed with the corresponding color dots.

Source: LOTFI et al. (2021)

A visual inspection of the temporal series of CV, H, and C may suggest correlations between
these measures. In the f igure 40a (top), a clear relationship is observed between entropy and
the level of variability, where entropy decreases with higher spiking variability. Remarkably, all
experiments exhibit the same trend (Fig. 40a down). Additionally, Fig. 40b demonstrates that
statistical complexity is maximized between synchronized and desynchronized cortical states,
a pattern consistently observed in all experiment datasets. The relationship between entropy
and complexity is non-trivial, and all experiments adhere to this relationship within theoretical
upper and lower boundaries (Fig. 40c).

To enhance the robustness of the complexity measure, we computed it for surrogate data,
revealing that the dependence between complexity and cortical states diminishes (Fig. 41).

Our investigation into complexity as a measure of criticality suggests that statistical com-
plexity is maximized in proximity to the phase transition in a probabilistic cellular automata
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Figure 40 – Information-theory measures for different levels of CV calculated for different recording sessions.
The first column displays the relation between Shannon’s entropy and the mean values of CV. The
second column shows the relation between the MPR complexity measure and the mean values of
CV. The third column shows the relation between the MPR complexity measure and Shannon’s
entropy. The first line of plots corresponds to one recording session. The second line of plots shows
the group’s result for 7 different rats.

Source: LOTFI et al. (2021)

Figure 41 – Information-theory quantifiers calculated for the surrogate data. The gray line is the mean of all
experiments displayed in the figure 40 and the gray shadow represents the standard deviation.
The blue dashed line is the mean over all the surrogated datasets and the blue shadow is the
correspondent standard deviation. The left plot shows the relation between Complexity and CV.
The right plot shows the relation between complexity and entropy for the data and the surrogated
data.

Source: LOTFI et al. (2021)

network (KINOUCHI; COPELLI, 2006) (Fig. 42).
The study demonstrated a non-trivial relationship between cortical states and the information-

theory quantifiers computed in this work. Both quantifiers utilize the probability distribution
function derived from the symbolic characterization of neural population activity, which is
based on the Bandt-Pompe recipe.
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Figure 42 – Comparison between experimental data and simulated data. The probabilistic cellular automata
network model was simulated with 105 neurons and the control parameter 𝜎 is varied from 0.996
to 1.010 as depicted in the figure.

Source: LOTFI et al. (2021)

The findings revealed that complexity reaches its peak at intermediate levels of coefficient
of variation (CV), coinciding with the levels associated with neuronal avalanches and maximum
entropy models exhibiting criticality signatures. The same pattern was observed in simulated
data generated by a probabilistic cellular automata network model. These results lend support
to the hypothesis of criticality in the brain, introducing complexity as a significant signature
of criticality in this context.
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6 FINAL CONSIDERATIONS

The central objective of this thesis was to investigate the brain criticality hypothesis by
employing diverse signatures of criticality (SCHUSTER, 2014) within datasets collected in our
laboratory. These datasets were obtained from the visual cortex of anesthetized rats using
highly dense electrode arrays (BUZSÁKI, 2004) and from that investigation four articles were
published.

The initial study, published in the Physical Review Letters in 2019, yielded a pivotal result.
It revealed a significant relationship between cortical states and neuronal avalanches, showing
a distinct signature of criticality. Neuronal avalanches were studied based on brain states
however, the scale invariance was not verified for awaken rats exploring novel objects (RIBEIRO

et al., 2010). Neuronal avalanches were analyzed based on the level of variability in neuronal
population activity. Notably, it was observed that higher levels of synchrony and asynchrony
lacked scale invariance properties in the detected neuronal avalanches. In contrast, intermediate
levels of variability exhibited scale invariance, as evidenced by power-law fits in the probability
distributions of avalanche size and duration.

Another crucial discovery from this work was the scaling relation between the exponents
calculated in the power-law fits for avalanche duration and size. From previous works, the
scaling relation obtained over the neuronal activity of acute slices of rat cortex indicated
scaling relations compatible with the direct percolation university class, but they were not
seen in our data (BEGGS; PLENZ, 2003). However, the relationship encountered in our data held
consistently across various datasets, encompassing experimental data from different animals
and brain regions, as well as computational data from distinct models. This study suggested
that the critical point may be linked to the transition between order (synchronized neurons)
and disorder (asynchronous neurons), with the signatures of criticality being most prominent
at intermediate levels of variability.

The subsequent article, published in the Physical Review E in 2020, explored another sig-
nature of criticality from the perspective of statistical criticality. The neuronal population was
treated as a regular lattice of spins, analogous to the Ising model, where "spin-up" represented
an active neuron and "spin-down" an inactive one. This approach led to the calculation of
the energy function and the specific heat, with the expectation of a specific heat divergence
at the critical point. The results demonstrated that the divergence of the specific heat was
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more pronounced not only for larger groups of neurons (TKAČIK et al., 2015; MORA; DENY;

MARRE, 2015) but for data segments with intermediate levels of variability in the neuronal
population activity, and that was validated across seven datasets analyzed. The datasets used
were the cortical spiking data of urethene-anesthetized rats and the recordings were made
using 64-channels silicon probes inserted in the primary visual cortex.

The third study was focused on complexity measures applied in data segments with dif-
ferent cortical states. More specifically, the measure chosen was the Martín-Platino-Rosso
(MPR) measure which is a combination of Jensen-Shannon divergence and Shannon entropy.
The relationship between complexity and criticality has been investigated and the complexity
is maximized for systems poised at critical points (TIMME et al., 2016). Impressively, the com-
plexity measure was maximized for intermediate levels of variability in the neuronal population
activity across all datasets analyzed.

The most intriguing aspect of the combined results from these three studies is that they
converge around the same level of variability. This poses a fundamental question: if criticality
signatures emerge, does the system operate near a critical point? (CHIALVO, 2010).This critical
point is typically defined as the transition point between at least two phases. In this context, the
hypothesis suggests that the order parameter governing this transition is the level of variability
quantified by CV, with the extreme phases being highly synchronized and highly asynchronous
states.

To explore this hypothesis further, a fourth project compared the results from the first
project with artificial data generated by a spiking neuronal network model, manipulated by
the control parameter g, the inhibition-to-excitation coupling ratio. Remarkably, the model
could replicate the variability levels seen in the real data with slight variations in g. This
could lead to the conclusion that neuronal self-organization around a critical point might
occur independently of the cortical state. However, the challenge of detecting signatures of
criticality for all variability levels remained due to inherent subsampling limitations in real
neuronal data.

The experimental datasets were derived from the spiking activity of neurons in the primary
visual cortex of anesthetized rats. The silicon probes used for recording featured high-density
electrode arrays. Nevertheless, the methodology had spatial limitations, resulting in subsam-
pling constraints that must be acknowledged in the interpretation of scientific questions and
results.

Despite these technical constraints, the results obtained were significant, offering insights



82

into a wide range of research inquiries. The combined impact of the four articles is reflected
in their more than 200 citations, underscoring their contribution to our understanding of the
Brain Criticality hypothesis.
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APPENDIX A – RECORDED DATA

A.1 CV TEMPORAL SERIES

The coefficient of variability, CV, is a measure of how a spike temporal series is variable
concerning its mean. It is expected, for this specific experiment protocol that the CV calculated
at every 10 seconds presents a great variability itself. This could be seen in 43.
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Figure 43 – CV calculated during 9000s of the recording at every 10 seconds for the 5 datasets. On the right
of each CV plot, there is a CV value distribution. The y-axis is shared between the CV temporal
series and the histogram.

Source: The author (2023)

A.2 NUMBER OF NEURONS, RECORDING DURATION, NUMBER OF SPIKES



94

Table 1 – Table displaying the number of Single Unit Activity clusters and the Multi Unit Activity clusters for
each dataset. It is shown in minutes the duration of each recording.

Experiment SUA MUA Spikes Duration (min)

2020Jan14 76.0 147.0 10176745.0 190.085404
2020Jan21 88.0 84.0 7716918.0 195.014969
2020Jan29 76.0 291.0 27270750.0 243.558400
2020Mar4 73.0 211.0 12908127.0 186.954667
2020Mar10 144.0 168.0 5637017.0 180.286720
Source: The author (2023)
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Figure 44 – Neurons Firing rate distribution for each recording.

Source: The author (2023)
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A.3 WAVEFORMS EXAMPLES

Figure 45 – More active cluster waveform example for each shank. The experiment was performed on January
14th 2020.

Source: The author (2023)
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Figure 46 – More active cluster waveform example for each shank. The experiment was performed on January
21st 2020.

Source: The author (2023)

Figure 47 – More active cluster waveform example for each shank. The experiment was performed on January
29th 2020.

Source: The author (2023)
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Figure 48 – More active cluster waveform example for each shank. The experiment was performed on March
4th 2020.

Source: The author (2023)

Figure 49 – More active cluster waveform example for each shank. The experiment was performed on March
10th 2020.

Source: The author (2023)
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A.4 IN RASTER PLOT, WE TRUST

Figure 50 – 4 seconds of spike activity displayed as a raster plot for three different levels of variability. Each
color is a different shank. This experiment was performed on January 14th 2020

Source: The author (2023)

Figure 51 – 4 seconds of spike activity displayed as a raster plot for three different levels of variability. Each
color is a different shank. This experiment was performed on January 21st 2020

Source: The author (2023)
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Figure 52 – 4 seconds of spike activity displayed as a raster plot for three different levels of variability. Each
color is a different shank. This experiment was performed on January 29th 2020

Source: The author (2023)

Figure 53 – 4 seconds of spike activity displayed as a raster plot for three different levels of variability. Each
color is a different shank. This experiment was performed on March 4th 2020

Source: The author (2023)
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Figure 54 – 4 seconds of spike activity displayed as a raster plot for three different levels of variability. Each
color is a different shank. This experiment was performed on March 10th 2020

Source: The author (2023)
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A.5 RAW DATA

Figure 55 – 4 seconds of raw data acquired. Each color represents 10 channels of a different shank. Each
column represents 4 seconds of different levels of CV. The experiment was performed on January
14th 2020.

Source: The author (2023)
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Figure 56 – 4 seconds of raw data acquired. Each color represents 10 channels of a different shank. Each
column represents 4 seconds of different levels of CV. The experiment was performed on January
21st 2020.

Source: The author (2023)
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Figure 57 – 4 seconds of raw data acquired. Each color represents 10 channels of a different shank. Each
column represents 4 seconds of different levels of CV. The experiment was performed on January
29th 2020.

Source: The author (2023)
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Figure 58 – 4 seconds of raw data acquired. Each color represents 10 channels of a different shank. Each
column represents 4 seconds of different levels of CV. The experiment was performed on March
4th 2020.

Source: The author (2023)
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Figure 59 – 4 seconds of raw data acquired. Each color represents 10 channels of a different shank. Each
column represents 4 seconds of different levels of CV. The experiment was performed on March
10th 2020.

Source: The author (2023)
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