e~
e
e

=

L

UFPE

UNIVERSIDADE FEDERAL DE PERNAMBUCO
CENTRO DE INFORMATICA
PROGRAMA DE POS-GRADUACAO EM CIENCIA DA COMPUTACAO

Felipe Bezerra Martins

Exploring Multi-Agent Deep Reinforcement Learning In IEEE Very Small Size
Soccer

Recife
2023

Felipe Bezerra Martins

Exploring Multi-Agent Deep Reinforcement Learning In IEEE Very Small Size
Soccer

A M.Sc. Thesis presented to the Centro de Infor-
matica of Universidade Federal de Pernambuco in
partial fulfillment of the requirements for the degree
of Master of Science in Computer Science.

Concentration Area: Computer Intelligence

Advisor: Hansenclever de Franca Bassani

Recife
2023

Catalogacgao na fonte
Bibliotecaria Nataly Soares Leite Moro, CRB4-1722

M386e

Martins, Felipe Bezerra

Exploring multi-agent deep reinforcement learning in IEEE very small size
soccer | Felipe Bezerra Martins — 2023.

85 f..l, fig., tab.

Orientador: Hansenclever de Franga Bassani.

Dissertagdo (Mestrado) — Universidade Federal de Pernambuco. Cin,
Ciéncia da Computacgao, Recife, 2023.

Inclui referéncias.

1. Inteligéncia computacional. 2. Aprendizado por refor¢o. 3. Robética. 4.
Sistemas multiagentes. |. Bassani, Hansenclever de Franga (orientador). Il.
Titulo

006.31 CDD (23. ed.) UFPE - CCEN 2024 - 009

Felipe Bezerra Martins

“Exploring Multi-Agent Deep Reinforcement Learning In IEEE Very
Small Size Soccer”

Dissertacdo de Mestrado apresentada ao
Programa de Pds-Graduacdo em Ciéncia da
Computacdo da Universidade Federal de
Pernambuco, como requisito parcial para a
obteng¢ao do titulo de Mestre em Ciéncia da
Computagao. Area de Concentracio:
Inteligéncia Computacional.

Aprovado em: 27 de setembro de 2023.

BANCA EXAMINADORA

Prof. Dr. Tsang Ing Ren
Centro de Informatica/UFPE

Prof. Dr. Marcos Ricardo Omena de Albuquerque Maximo
Departamento de Engenharia Eletronica / ITA

Prof. Dr. Hansenclever de Franca Bassani
Centro de Informatica / UFPE
(Orientador)

ACKNOWLEDGEMENTS

| want to thank Edna for giving me the final push to motivate me to enroll in the pursuit
of my master's degree. Hans, you are an outstanding advisor from whom | learned so much;
thank you.

| am very grateful to RoboCln. There, | met some fantastic people who inspired me to
achieve great things; they taught me a lot and made me a better person. | want to apologize
to everyone | interrupted to babble about my problems, especially Gonga; circumstances made
us work together a lot. | am grateful to have been able to work with a friend.

There was no moment in which | doubted if my family would support me in whatever | set

out to do; | am very grateful for that.

ABSTRACT

Robot soccer is regarded as a prime example of a dynamic and cooperative multi-agent
environment, as it can demonstrate a variety of complexities. Reinforcement learning is a
promising technique for optimizing decision-making in these complex systems, as it has recently
achieved great success due to advances in deep neural networks, as shown in problems such as
autonomous driving, games, and robotics. In multi-agent systems reinforcement learning re-
search is tackling challenges such as cooperation, partial observability, decentralized execution,
communication, and complex dynamics. On difficult tasks, modeling the complete problem in
the learning environment can be too difficult for the algorithms to solve. We can simplify
the environment to enable learning, however, policies learned in simplified environments are
usually not optimal in the full environment. This study explores whether deep multi-agent re-
inforcement learning outperforms single-agent counterparts in an IEEE Very Small Size Soccer
setting, a task that presents a challenging problem of cooperation and competition with two
teams facing each other, each having three robots. We investigate diverse learning paradigms
efficacies in achieving the core objective of goal scoring, assessing cooperation by compar-
ing the results of multi-agent and single-agent paradigms. Results indicate that simplifications
made to the learning environment to facilitate learning may diminish cooperation’s importance
and also introduce biases, driving the learning process towards conflicting policies misaligned

with the original challenge.

Keywords: reinforcement learning; robotics; multi-agent systems.

RESUMO

O futebol de robos é considerado um excelente exemplo de ambiente multiagente dina-
mico e cooperativo, podendo demonstrar uma variedade de complexidades. A aprendizagem
por reforco é uma técnica promissora para otimizar a tomada de decisGes nestes sistemas
complexos, obtendo recentemente grande sucesso devido aos avancos nas redes neurais pro-
fundas, como mostrado em problemas de direcdo auténoma, jogos e robdtica. Em sistemas
multiagentes, a pesquisa de aprendizagem por reforco estad enfrentando desafios de coopera-
cdo, observabilidade parcial, execucdo descentralizada, comunicacao e dindmicas complexas.
Em tarefas dificeis, modelar o problema completo no ambiente de aprendizagem pode ser
muito desafiador para os algoritmos resolverem, podemos simplificar o ambiente para permitir
a aprendizagem, contudo, as politicas aprendidas em ambientes simplificados geralmente nao
sdo ideais no ambiente completo. Este estudo explora se a aprendizagem profunda por reforco
multiagente supera as contrapartes de agente Gnico em um ambiente de futebol de robds da
categoria IEEE Very Small Size Soccer, uma tarefa que apresenta um problema desafiador de
cooperacdo e competicdo com duas equipes frente a frente, cada uma com trés robos. In-
vestigamos a eficacia de diversos paradigmas de aprendizagem em alcancar o objetivo central
de realizar gols, avaliando a cooperacdo, comparando os resultados de paradigmas multiagen-
tes e de agente (nico. Os resultados indicam que as simplificacGes introduzidas no ambiente
para facilitar a aprendizagem podem diminuir a importancia da cooperacdo e introduzir vieses,
conduzindo o processo ao aprendizado de politicas conflitantes e desalinhadas com o desafio

original.

Palavras-chave: aprendizado por reforco; robdtica; sistemas multiagentes.

Figure 1 —

Figure 2 -
Figure 3 —

Figure 4 —

Figure 5 —

Figure 6 —

Figure 7 —

Figure 8 —

Figure 9 —
Figure 10 —

Figure 11 -

Figure 12 —

Figure 13 -

Figure 14 —

Figure 15 —

Figure 16 —

LIST OF FIGURES

IEEE Very Small Size Soccer match during the 2022 Latin American Robotics

Competition. 15
IEEE Very Small Size Soccer field dimensions. 16
Overview of a IEEE Very Small Size Soccer match system with camera,

external computer and radio. Lo 17
The agent—environment interaction in Markov Decision Processes. 19

lllustrations of some tasks from the Multi-Agent Particle Environment,
shown in left to right order: Cooperative Communication, Predator-Prey,
Cooperative Navigation, and Physical Deception. 29
A kickoff in Google Research Football environment. 30
rSoccer's IEEE Very Small Size Soccer (left) and RoboCup Small Size
League (right) environments.o 31
Rendering of the IEEE Very Small Size Soccer environment on the rSoccer
framework, with the X-axis (red) and Y-axis (green) shown. 36
Adaptation of the environment interface for three agents. 37
Overview of each paradigm interface with the environment during training
and evaluation. 43
Goal score (left) and episode length (right) during training in the IEEE Very
Small Size Soccer learning environment. 48
Total episode reward (left) and robot motion component (right) during
training in the IEEE Very Small Size Soccer learning environment. 49
Aggregate rating (left) and percentage of outcomes (right) from the eval-
uation procedure for the learning paradigms. 50
Proportion of each reward component from the episode reward at the end
of training in the IEEE Very Small Size Soccer learning environment. 51
Goal score during training in the IEEE Very Small Size Soccer learning
environment in the rSoccer framework with adjusted reward components
weights. L 53
Rendering of hundreds of parallel IEEE Very Small Size Soccer environments

on Isaac Gym platform, with the X-axis (red) and Y-axis (green) shown. . . 54

Figure 17 —

Figure 18 —

Figure 19 -

Figure 20 —

Figure 21 —

Figure 22 —

Figure 23 —

Figure 24 —

Figure 25 —

Figure 26 —

Figure 27 —

Figure 28 —

Goal score (left) and episode length (right) during training in the IEEE Very
Small Size Soccer learning environment with adjusted reward components
weights.
Episode reward during training in the IEEE Very Small Size Soccer learning
environment with adjusted reward components weights.
Proportion of each reward component from the episode reward at the end
of training of each paradigm in the IEEE Very Small Size Soccer learning
environment with adjusted reward components weights compared with the
aggregate reward components proportions at end of training with previous
weights.
Aggregate rating (left) and percentage of outcomes (right) from the evalua-
tion procedure for the learning paradigms with adjusted reward components
weights. L
Aggregate rating from the evaluation procedure for the learning paradigms
with adjusted reward components weights compared with previous weights .
Goal score (left) and episode length (right) during training in the IEEE Very
Small Size Soccer learning environment against intelligent opponents.
Aggregate rating (left) and percentage of outcomes (right) from the eval-
uation procedure for the learning paradigms trained against intelligent op-
ponents. L L e e e
Aggregate rating from the evaluation procedure for the learning paradigms

trained against intelligent opponents compared with random action oppo-

Goal score (left) and episode length (right) during training in the IEEE Very
Small Size Soccer learning environment with attacking fouls.
Aggregate rating (left) and percentage of outcomes (right) from the eval-
uation procedure for the learning paradigms trained with attacking fouls.
Aggregate rating from the evaluation procedure with attacking fouls com-
pared with the evaluation procedure without attacking fouls for the learning
paradigms trained with attacking fouls.
Aggregate rating from the evaluation procedure with attacking fouls for
the learning paradigms trained with attacking fouls compared to trained

without attacking fouls.

61

64

68

Figure 29 — Aggregate rating from the evaluation procedure with attacking fouls for
the learning paradigms trained with attacking fouls against intelligent op-

ponents compared to trained against random action opponents.

Table 1

Table 2
Table 3
Table 4
Table 5

Table 6

Table 7

Table 8
Table 9

LIST OF TABLES

Weights of the reward components of the IEEE Very Small Size Soccer
learning environment. L
Deep Deterministic Policy Gradient hyperparameters values used for training.
Architecture of the Deep Deterministic Policy Gradient actor neural network.
Architecture of the Deep Deterministic Policy Gradient actor neural network.
Adjusted weights of the reward components of the IEEE Very Small Size
Soccer learning environment to reduce robot motion component proportion.
Adjusted weights of the reward components of the IEEE Very Small Size
Soccer learning environment to reduce robot motion component proportion
with new robot motion component calculation.
Proximal Policy Optimization hyperparameters values used for training. . . .
Architecture of the Proximal Policy Optimization actor neural network. . . .

Architecture of the Proximal Policy Optimization critic neural network. . . .

45

55

57
58

LIST OF ABBREVIATIONS AND ACRONYMS

CPU Central Processing Unit

DDPG Deep Deterministic Policy Gradient
DQN Deep Q-Network

GPU Graphics Processing Unit

IL Independent Learners

QM Interquartile Mean

JAL Joint-Action Learners

MADDPG Multi-Agent Deep Deterministic Policy Gradient
MARL Multi-Agent Reinforcement Learning
MDP Markov Decision Process

ou Ornstein—Uhlenbeck Process

PPO Proximal Policy Optimization

RL Reinforcement Learning

RSA Replicated Single-Agent

SA Single-Agent

VSSS IEEE Very Small Size Soccer

1.1
1.2

2.1
2.2
2,21
2.3
2.3.1
2.3.2
2.4
241
2.4.2
2.4.3

31
3.2
3.3

4.1
4.1.1
4.1.2
4.1.3
4.1.4
4.2
4.2.1
4.2.1.1
4.2.1.2
4.2.2
4.2.2.1

CONTENTS

INTRODUCTION e e e e e e s 14
IEEE VERY SMALL SIZE SOCCER 16
OBJECTIVES 17
REINFORCEMENT LEARNING 19
MARKOV DECISION PROCESSES, 19
ACTION VALUE METHODS 21
Deep Q-Network 21
POLICY GRADIENT METHODS 22
Deep Deterministic Policy Gradient 23
Proximal Policy Optimization 23
MULTI-AGENT REINFORCEMENT LEARNING 24
Markov Games 25
Taxonomies of Multi-Agent Learning Problems 26
Multi-Agent Learning Paradigms 27
RELATED WORK e e e e e e e 29
MULTI-AGENT DEEP REINFORCEMENT LEARNING ENVIRONMENTS . 29
MULTI-AGENT DEEP REINFORCEMENT LEARNING METHODS 32
REINFORCEMENT LEARNING IN SOCCER TASKS 33
PROPOSED EXPERIMENTAL METHODOLOGY 36
IEEE VERY SMALL SIZE SOCCER LEARNING ENVIRONMENT 36
Actions 37
Observations 38
Rewards 38
Initial and Terminal States, 40
REINFORCEMENT LEARNING PARADIGMS 40
Single-Agent Learning Paradigms 41
Single-Agent Paradigm 41
Replicated Single-Agent Paradigm 41
Multi-Agent Learning Paradigms 42

Independent Learnerso 42

4222
4.3

5.1

5.2

5.3
5.3.1
5311
5312
5.3.2

6.1
6.1.1
6.1.2
6.2
6.2.1
6.2.2
6.2.2.1

6.2.2.2

7.1
7.1.1

7.1.2
7.1.3
7.2
7.3
7.4

Joint Action Learners 42
EVALUATION PROCEDURE, 44
COMPARING LEARNING PARADIGMS ON IEEE VERY SMALL

SIZE SOCCER ENVIRONMENT 45
EXPERIMENTAL SETUP 45
RESULTS a7
REDUCING ROBOT MOTION REWARD COMPONENT BIAS 51
Experimental Setup 52

Adapting The Very Small Size Soccer Environment to Isaac Gym Platform . 53

Adaptation to the Proximal Policy Optimization Algorithm 55
Results 57
INVESTIGATING ENVIRONMENT COMPLEXITY AND COOP-

ERATION e e e e 63
LEARNING AGAINST INTELLIGENT OPPONENT POLICIES 63
Experimental Setup 63
Results 64
LEARNING TO HANDLE ATTACKING FOULS 67
Experimental Setup 67
Results 67

Evaluating How The Attacking Foul Condition Affects Environment and

Learning Complexity 70
Training with Attacking Fouls Against Intelligent Opponents 71
FINAL CONSIDERATIONS o oo i 74
RESULTS CONCLUSIONS, 74

Learning Policies Using Single-Agent and Multi-Agent Deep Rein-
forcement Learning Paradigms in the IEEE Very Small Size Soccer
Environmento 74

Paradigms Performance on IEEE Very Small Size Soccer Environment 75

Cooperation in the IEEE Very Small Size Soccer Environment . . . 76
CONTRIBUTIONS TO SCIENCE 78
LIMITATIONS 79
FUTURE WORKS 79

REFERENCES e e e e 81

14

1 INTRODUCTION

The process of trial-and-error exploration is a common form of learning in nature. To
illustrate this, let us consider a driver who wants to complete a lap on a racing circuit in the
shortest possible time. While directions and instructions can be given to reduce lap time, the
driver can also learn through training. When performing laps on the circuit, the driver can
refine their actions by experimenting and honing in on behaviors that maximize their speed.

A driver attempting to reduce their lap time is an example of goal-directed learning. The
driver learns by interacting with its environment, exploring possible actions and their outcomes,
such as controlling the accelerator, brake, clutch, steering angle, and gear selection in different
ways. Racing is a complex task and requires knowledge of the vehicle dynamics, the circuit, and
the processing of the driver senses. Using a classic artificial intelligence approach of defining
a set of heuristics to tackle this decision-making task is challenging. For such problems, Rein-
forcement Learning (RL) has proved to be an exciting path. RL is a computational approach
to goal-directed learning through the interaction of an agent with its environment (SUTTON;
BARTO, 2018).

RL has succeeded in applications in several areas, such as in robotics, learning quadruped
locomotion (SMITH; KOSTRIKOV; LEVINE, 2022), autonomous driving (KIRAN et al., 2021), in
natural language processing, fine-tuning large-scale conversational models (TOUVRON et al.,
2023; OPENAI, 2023), and in electronic (MNIH et al., 2015) and board (SCHRITTWIESER et al.,
2020) games.

RL has interesting challenges when applied to multi-agent systems, known as Multi-Agent
Reinforcement Learning (MARL). MARL is when multiple agents interact with the environment
in a learning process (WEISS, 1999). To illustrate a multi-agent system, let us consider a driver
in a race. This time, the driver is not alone, other drivers are on the track, making the problem
more complex, as the driver must now consider the behavior of the other drivers and how their
actions affect each other, such as overtaking, blocking, and drafting, in addition to continuing
the need of taking actions to reduce his lap times.

The success of RL also extends to MARL in applications such as traffic signal manage-
ment (WU et al., 2020), hide-and-seek game (BAKER et al., 2019), and soccer (LIU et al., 2019;
BRANDAO et al., 2022).

We can attribute part of the recent advances that we observed in RL and MARL to the

15

extraordinary advances that have been obtained in the use of deep learning methods (LECUN;
BENGIO; HINTON, 2015) and the field of machine learning as a whole, which is a very active
field today. The use of MARL in dynamic and complex problems is an open problem, which
requires studies of MARL in these complex environments (NGUYEN; NGUYEN; NAHAVANDI,
2020), especially examining the most recent deep MARL approaches.

A soccer match in which two teams compete to see who can score the most goals is a
globally renowned team sport (CLEMENTE et al., 2014). Soccer is a classic example of a multi-
agent system, typically seen as challenging and intricate. Consequently, soccer is an intriguing
subject for the exploration of MARL. It involves robots coordinating with each other in a
dynamic setting while also controlling their movements.

The IEEE Very Small Size Soccer (VSSS) competition (Figure 1) presents an interesting
platform for researchers to experiment with RL techniques. Previous research has demonstrated
the effectiveness of using RL in VSSS to teach robots how to score goals (DELGADO, 2019;
BASSANI et al., 2020), learning a defensive behavior (MEDEIROS; MAXIMO; YONEYAMA, 2020),
transfer policies from simulations to real robots (BASSANI et al., 2020), coordinate a team
through the selection of behaviors (PENA et al., 2020), and even coordinate a team through

direct control over the robots (BRANDAO et al., 2022).

Figure 1 — IEEE Very Small Size Soccer match during the 2022 Latin American Robotics Competition.

Source: Author (2022).

This work focuses on the VSSS competition to explore MARL. This competition offers
the challenges of robot soccer while being more cost-effective and smaller in scale than other
competitions. Additionally, the considerable research conducted on the VSSS competition high-
lights its relevance. Section 1.1 introduces the VSSS competition and its rules. In Section 1.2,

we present the objectives of this work.

16

1.1 IEEE VERY SMALL SIZE SOCCER

The VSSS robot soccer category encourages the advancement of robotics and artificial
intelligence through a soccer game challenge. Using pre-programmed autonomous robots, two
teams compete to see who can score by moving a golf ball to the inside of the opposing team
goal (Figure 1). The robots play in a field surrounded by walls, measuring 150 centimeters
from one goal to the other and 130 centimeters between the sides (Figure 2). The robots are

limited to a maximum dimension of a cube size with sides of 7.5 centimeters.
Figure 2 — IEEE Very Small Size Soccer field dimensions.

I 150cm. I

V |
i-—’zﬂcm—-l-—zﬂcm—-l
(FB) (FB)
=1 —+ o e} + o]

B5cm

15cm
) (PK, FK) W(PK. FK) _T

70em + = 40cm 20em 40cm 130cm
J Scm«lﬂ ‘l
10cm (F8) {FB) 10cm
e + W o o + o
b a7.50m—) be——37.50m—
25cm 25cm
i
A A
— 9
FB - Free-Ball ball positions O Free-Ball robat posttions (gray in color)

FK - Free-Kick ball positions
PK - Penalty-Kick ball positions
All solid lines are 3mm thick

Side walls - 2.5(cm) thick, top view black in color, side view white in color

Source: (PINTO, 2023).

A VSSS match has two halves, each lasting five minutes with an eight-minute break
between the halves. Robots are not allowed to hold or cover the ball and due to size restrictions,
teams cannot fit a kicker device. Therefore, the dynamics of the match involve the robots
dragging the ball. To score goals, teams program the robots to take the ball into the opponent
goal. A camera is mounted above the field to capture the entire area, and teams use computer
vision techniques to identify the position of the robots and the ball (Figure 3). The robots
have a colored pattern on top to identify them, their position, angle, and team. With the
information extracted from the camera, an external computer processes the data and sends a
radio control signal to the robot.

During the match, if the ball does not move for 10 seconds, the referee pauses the game

17

Figure 3 — Overview of a IEEE Very Small Size Soccer match system with camera, external computer and
radio.

Source: (KIM et al., 1997).

and restarts it after repositioning the robots and the ball. The rules also define three types of
fouls: attacking fouls, which occur when a team in an attack move enters with more than one
robot in the opposing team goal area, and the team that commits is penalized with a goal
kick; defensive fouls, when a team in defensive play has more than one robot within its goal
area when the ball is also inside, and the team that commits is penalized with a penalty kick;
and personal fouls, which are fouls that affect the progress of the game. The rules mention
cases of collisions with the potential to damage the robot of the opposing team, collisions that
overturn the opponent robot, and a team taking more than 10 seconds to remove the ball
from its goal area, as long as the opposing team does not impede it, which is also a personal
foul and also the situation in which a robot holds the ball. The punishment for personal fouls

depends on the situation.

1.2 OBJECTIVES

Two researchers apply MARL in the context of VSSS; PENA et al. (2020) learn a policy to
manage a team by selecting a predefined behavior for each robot, not addressing the challenge
of end-to-end control. In more recent work, BRANDAO et al. (2022) successfully applies MARL
to achieve team coordination and end-to-end control, but not comparing the result to single-
agent approaches. We raise the question of how the MARL performance compares to single-
agent approaches such as the one used by BASSANI et al. (2020) in a VSSS competition, which
replicates a policy learned in a single-agent environment to control multiple robots.

Although MARL is a promising solution for the VSSS problem, its learning can present

a difficult challenge. This thesis studies the application of MARL in a VSSS robot soccer

18

environment with the following objectives:

a) to learn policies capable of scoring goals in the environment using single-agent and

multi-agent paradigms;

b) to compare the performance of different multi-agent and single-agent RL paradigms in

the environment;

c) to understand the role cooperation plays and its importance in the VSSS environment.

This thesis aims to deepen our understanding of the effectiveness and limitations of MARL
methods in the VSSS environment. Our findings demonstrate that applying MARL is challeng-
ing and not always the best solution, and we hope our findings about cooperation importance in
the VSSS environment motivate further research. Additionally, contributions include developing
the rSoccer framework (MARTINS et al., 2021), which facilitates the creation of VSSS learn-
ing environments, developing a VSSS game simulation that accelerates RL training through
Graphics Processing Unit (GPU) physics calculations, and publishing research in robotics.

We see as contributions of this thesis the following:

a) To the best of our knowledge, the first work to successfully find a policy capable of
scoring goals in a VSSS environment, using a multi-agent paradigm with a centralized

controller:

b) A comparison study of different multi-agent learning paradigm approaches and their

performance concerning single-agent paradigms;

c) A study of cooperation in the VSSS robot soccer environment, highlighting its delicate

balance between learning difficulty and motivation to cooperate;

d) VSSS RL environments, on both Central Processing Unit (CPU) and GPU physics

calculations.

This work is structured as follows: Chapter 2 provides the theoretical foundation of rein-
forcement learning, which is the basis of this work. Chapter 3 reviews related work. Chapter 4
introduces the proposed methodology. Chapter 5 presents experiments and results in the VSSS
environment. Chapter 6 examines the effects of changes in the environment on cooperation.
and Chapter 7 summarizes the conclusions, limitations, contributions, and potential future

work.

19

2 REINFORCEMENT LEARNING

RL is a type of machine learning that enables learning from interactions between an agent
and its environment. This approach uses computational techniques to understand and auto-
mate goal-oriented behavior and decision-making processes from experiences. It is essential to
differentiate between the problem and the solutions, as not doing so can lead to misunder-
standings.

RL is a separate machine learning paradigm alongside supervised and unsupervised learning.
It addresses the challenges of learning from interaction with the environment to achieve long-
term objectives by maximizing a reward signal using feedback from the environment to evaluate
the actions taken without explicit guidance or a complete understanding of the environment.

The learner must determine which actions will bring the greatest reward by attempting
them. In the most stimulating and challenging cases, the actions may influence not only the
immediate reward but also the following situation and, consequently, all future rewards. These
two features, trial-and-error exploration, and delayed rewards, are the two most significant

characteristics of RL (SUTTON; BARTO, 2018).

2.1 MARKOQOV DECISION PROCESSES

Markov Decision Processes (MDPs) are a formal framework that abstracts the problem
of goal-directed learning from interaction (PUTERMAN, 2014). RL uses it to define the agent-
environment interaction between the decision maker, called the agent, and the environment,
the thing with which it interacts, comprising everything outside of the agent. MDPs possess

the Markov property, which means that the current state determines future dynamics.

Figure 4 — The agent—environment interaction in Markov Decision Processes.

= —

state rreward action
S, ! a;

LTy f
' 5., | Environment]4—
>

.

Source: (SUTTON; BARTO, 2018).

The agent-environment interaction (Figure 4), occurs in a sequence of discrete time steps

20

in terms of actions chosen by the agent, states which are the basis for making a choice, and
rewards for evaluating the options. Four components define MDPs: a state space S, an action
space A, a State-transition function 7', and a reward function R (SUTTON; BARTO, 2018).

The State Space S is a set of all the possible states s; of an environment, and each state
represents the environment entirely for a given time step, s; € S.

The Action Space A is the set of all actions a; an agent can execute in an environment
for a given state, a; € A.

The State-Transition Function 7" models the environment dynamics. It outputs the en-
vironment state for the next timestep s;;1 given its current state s; and action taken ay,
T(s¢,a1) — Spi1-

The Reward Function R returns a scalar value representing the reward ;. for an action
a; taken in a given state s;, R(sy, ay) — 141.

The goal of RL is to find a policy 7 that maps actions the agent should execute a; for a given
environment state s;, maximizing the total reward the agent receives in the immediate and
following steps. This means that the agent should focus on something other than immediate
rewards but rather cumulative rewards in the long run. We view any approach suitable for
addressing such issues as the RL method. To achieve this, the expected return is maximized.

The return is a function of the reward sequence:

Gy =Ry +YRiya + V' Rigs + -+ = Z V" Ry g1, (2.1)
k=0

where 7y is a parameter, 0 < v < 1, called the discount rate.

The discount rate determines the current worth of future rewards: a reward received in the
future is only worth less than what it would be if received immediately. If v = 0, then the
agent ‘sees’ only immediate rewards. The agent becomes more concerned with future rewards
as the discount rate increases.

A common issue in decision-making learning is sparse rewards (SUTTON; BARTO, 2018),
when there is a large gap between rewards gained in the environment. This sparsity makes it
hard for the learning algorithm to link an action with rewards that are far away. To address
this problem, reward shaping (NG; HARADA; RUSSELL, 1999) is used. This approach involves
defining intermediate rewards that are more frequent and provide better feedback on the quality

of the actions taken in the environment.

21

2.2 ACTION VALUE METHODS

The concept of expected return leads to the concept of state value. We have a state-value
function, V(s;), which gives us the expected return from a given state. It is important to note
that this state value function is for a specific policy, as the expected return in a state depends
on the actions taken from that point onward. The V(s;) function can be recursively written

as:

Vi(se) = Er o, [Ge] = Ex g, [re1 + YVa(S141)]- (2.2)

We can use the V' function to determine a policy by picking actions that will lead us to
the state s; with the highest value. To do this, we must be aware of the dynamics of the
environment (7") to recognize which states are accessible from the current state and which
action will take us to the desired state. This environment dynamic is only sometimes known,
making it more advantageous to use the action-value function, @, (s, a), which returns the
expected return of rewards for an action taken in a given state, following a particular policy

in subsequent steps. The () function can also be recursively written as:

Qr(5t,a1) = Br .0, [Gt] = Er gy 001151 + 7Qr(Se41, T(5¢41))]- (2.3)

Reinforcement learning problems can be solved using action value methods, which involve
learning a () function. We can estimate these values by taking the average values observed
during multiple interactions between the agent and the environment. However, keeping track
of all the averages may be impossible when the environment has many states and actions. In
such cases, the agent can use a parameterized function that can be adjusted so that its return

is close to the observed values (SUTTON; BARTO, 2018).

2.2.1 Deep Q-Network

The Deep Q-Network (DQN) (MNIH et al., 2015) combines neural network approximation
with temporal difference learning, to effectively address complex reinforcement learning prob-
lems. It uses deep neural networks to approximate the () function. This technique is particularly
effective when dealing with complex and high-dimensional state spaces, including continuous

ones, commonly encountered in various real-world scenarios.

22

The core of the DQN method is to learn an optimal)y function, by minimizing a loss
function L£(6) given by the squared temporal difference error ¢;, using gradient descent to

adjust the parameters 6 from the neural network of the () function.

‘C(e) = ESt,at7T‘t+1,$t+1 [5152]7 where 6t = T¢t1 + 7 I[%%f(QG’(St-i-lv at-i-l) - Qe(sta at)' (24)

Transition tuples (sq, at, 711, S¢+1) are collected during interactions with the environment.
These tuples are subsequently stored in a memory buffer and sampled in batches for efficient
learning. The parameters 6" are periodically updated with the most recent values of 6, Qg
is called the target @ function. This target network is a solution of the DQN algorithm to
problems caused by changing targets during training, providing a consistent target to update
the parameters 6 (MNIH et al., 2015).

DQN stands out due to its off-policy nature, which allows it to update its action values using
transitions from policies that are different from the one being optimized, this characteristic
increases the stability of the algorithm and its ability to learn from a wide range of experiences.

It is important to note that the use of DQN is mainly restricted to problems with discrete
action spaces. This restriction is due to the policy's approach, which involves selecting the

action with the highest action value for a given state, usually through an argmax search.

2.3 POLICY GRADIENT METHODS

The policy gradient methods are distinct from the action value methods, as they learn the

7 policy directly by adjusting their parameters ¢ to optimize the objective function .J(¢):

J(¢) = Es~p(s|7r¢),a~7r¢ [G]u (25)

where p(s|my) is the distribution of states given the policy 7,. Parameters ¢ are adjusted in
the direction of the gradient of the objective function V,.J(¢). This gradient can be expressed
using the function ¢ (SUTTON et al., 1999):

Vo (9) = Esp(slny)anms [Vo 108 75 (a]5)Qry (5, a)]. (2.6)

Policy gradient algorithms vary in the way they estimate the () value. These algorithms

are suitable for problems with continuous action space.

23

2.3.1 Deep Deterministic Policy Gradient

Deep Deterministic Policy Gradient (DDPG) (LILLICRAP et al., 2015) is an off-policy rein-
forcement learning algorithm designed for environments with a continuous action space. It is
a variation of the actor-critic approach, which involves learning a policy 74 (the actor) and an
action-value function @y (the critic). DDPG utilizes deep neural networks for both the value
function and the policy, with the policy performing a deterministic mapping from state to
action.

It collects transition tuples (s, a;, 411, S¢41) from the interactions with the environment in
a memory buffer, these experiences are used in batches of samples for learning both the actor
and the critic. The critic QQg, through gradient descent to minimize the loss function £(#), the

squared temporal difference error §; of the batch, given by:

515 - ESt,at,THl,StH [Tt-i-l + 7Q9’<St+1> Ty (St-i-l) - Q9(8t7 at)]v (27)

where ¢’ and ¢’ are the target parameters for the critic and actor networks, they are adjusted
by soft updates towards 6 and ¢ (LILLICRAP et al., 2015). This is done to address the problem
of changing targets in the parameter update, similar to the DQN algorithm (MNIH et al., 2015).

As neural networks are continuous and differentiable, the critic is used as an objective
function J(¢) for the actor learning. The policy is learned by adjusting its parameters in a

direction of the gradient of the objective function V,J(¢):

Vi (¢) = B, [VsQo(st, Ts(50))]- (2.8)

2.3.2 Proximal Policy Optimization

Proximal Policy Optimization (PPO) is a policy optimization technique that prevents dras-
tic and unstable changes in the policy by limiting the update so that the new policy does not
deviate too much from the policy used to acquire the experiences. It is an on-policy algorithm,
as it collects new training data in each iteration rather than reusing old experiences (SCHULMAN
et al.,, 2017).

The algorithm determines the probability ratio r;(¢), which measures the difference be-

tween the policy before and after its update:

24

g (a|st)
Thota (atlst)

The objective of PPO is to discourage changes in the current parameters of the policy

(@) = (2.9)

neural network (¢) that are far from the parameters used to collect experiences (¢q). It does
this by penalizing any updates that cause the ratio between the two to move away from 1.
Rather than optimizing the expected return directly, PPO uses the probability ratio r;(¢)
as a surrogate objective. A clip is applied to the ratio to discourage divergent modifications,
limiting its value with a hyperparameter of the clip coefficient €. This clipping encourages

updates to remain within this limit. PPO optimizes the LELF () clipped surrogate objective:

ECLIP(Cb) = IA['Et {min (Tt(gb)/‘it? clip(ri(¢),1 —e1+¢) Atﬂ)

) (2.10)
where At = Q (St, CLt) -V (St) .

The Advantage, A,, is the difference between the estimated future rewards and the actual
rewards received for a given trajectory. It provides a more informative value for policy quality
than using the raw reward (SUTTON; BARTO, 2018).

PPO is an on-policy algorithm suitable for environments with continuous actions. However,
it is less sample efficient regarding the number of interactions with the environment, as it
requires considering the cost of obtaining these interactions. PPO is most advantageous in
environments where it can interact without a considerable time cost to obtain experiences in

large quantities.

2.4 MULTI-AGENT REINFORCEMENT LEARNING

Multi-Agent Reinforcement Learning (MARL) applies RL to systems with multiple agents
interacting. These problems can be simplified to traditional RL problems when the other agents
are considered part of the environment. However, when agents interact with other agents that
are also learning, the environment becomes non-stationary, breaking the Markovian property,
and making traditional RL methods inadequate (WEISS, 1999).

Several complexity factors characterize MARL, such as partial observations, ample state
and action spaces, credit attribution, cooperative and competitive environments, and reward

shaping. To categorize a problem as MARL, it does not need all of these factors to be present.

25

In Subsection 2.4.1, we discuss Markov Games, an extension of the MDP framework for
multi-agent processes. Subsection 2.4.2 introduces various taxonomies of multi-agent learning
problems, and Subsection 2.4.3 outlines the different learning paradigms available for multi-

agent learning.

2.4.1 Markov Games

The presence of multiple agents can result in a variety of interpretations and extensions
of the basic MDP structure. Whether the agents share the same state or each has its own,
whether a single policy produces actions for all the agents (Centralized Controller) or each
has its policy that produces its own actions (Decentralized Controllers), and whether there
is a single reward value for all agents or each has its individual reward value (WEISS, 1999).

These potential interpretations lead to multiple possible MDP formulations, as examples:

» (S,A,T,R): Shared system state s € S, with shared system reward r € R, where a

single policy maps the state s to a joint system action a € A.

= (S, A,, T, R): Shared system state s € S, with shared system reward r € R, where each

individual policy maps the state s to Agent,, action a,, € A,,.

= (S,,A,, T, R): Shared system reward r € R, where each individual policy maps the

Agent,, state s, € S, to the Agent,, action a, € A,,.

» (S,, An, T, R): Individual Agent,, reward r, € R, where each individual policy maps

the Agent,, state s, € S, to the Agent,, action a, € A,,.

Markov Games (LITTMAN, 1994) integrates the general case of interactions of multiple
agents into a generalized structure of an MDP. A Markov game is a tuple (N,S, A, T, R)
where:

N is the number of agents in the game;

S is the state space, a set of all possible states of the environment;

A is the joint action space for the agents, A is made up of the action spaces of each agent
A =[Ay, ..., Ax], where A, is the set of possible actions of Agent,;

T is the state-transition function, it models the environment dynamics, outputting the

probability of the possible next states given the state s € S and the joint action a € A;

26

R is the joint reward function, R is composed of the reward functions of each agent
R = [Ry, ..., Ry], where R, is the reward function of Agent,, which maps the environment

state s and the joint action a to Agent,, reward value r,,.

2.4.2 Taxonomies of Multi-Agent Learning Problems

There are multiple approaches to characterizing the objectives and purposes of Multi-
Agent Learning, leading to various taxonomies and classifications of techniques (TUYLS; WEISS,
2012). In the taxonomy of single-agent RL algorithms, since the problem is unambiguously
defined, the taxonomy is mainly determined by the type of solution. On the other hand, in the
multi-agent setting, the taxonomy is mainly determined by the type of problem rather than
the solution (YANG; WANG, 2020). Defining the challenges of a multi-agent system is itself a
research problem (SHOHAM; POWERS; GRENAGER, 2007).

A possible way to classify a MARL problem is concerning the type of activity, which can
be cooperative, competitive, or a combination of both. Cooperative activities involve agents
with the same goal, whereas competitive activities involve agents with antagonistic objectives.
An example of a mixed activity is a soccer game, where each team has a shared goal that
conflicts with the goal of the opponent team. Alternatively, we can base the classification on
how the system defines the agents rewards. Agents who receive a single shared reward value are
classified as cooperative, while agents who receive individual values are considered competitive.
A single problem can define different rewards, and a mixed cooperative-competitive problem
is possible when part of the reward value is shared and part is individual (HOEN et al., 2006).

The homogeneity of the agents can characterize a problem, agents can be homogeneous by
their capabilities and decision procedures. Agents can be homogeneous by sharing the exact
structure of observations of the environment, sharing the observation space, and they can
also be homogeneous by having the same capacity of actions, sharing the same action space,
or having the same physical capacities. Problems with heterogeneous agents can study the
learning of distinct policies that best take benefit of the characteristic of each agent and its
interactions or the learning of a robust policy for different types of agents (STONE; VELOSO,
2000).

We can classify MARL systems by communication mechanisms, communication enables
agents to share information with other agents in the decision process. Problems that have

these mechanisms may have them as an additional tool to enable better performance, or it may

27

even be mandatory to use communication to solve the problem, this information that an agent
communicates may contain state information not available to an agent, can indicate the actions
that an agent will take, and can be used for agents to carry out planning together (STONE;
VELOSO, 2000).

We can also classify problems by the agent awareness concerning the other agents, if it is
aware of the other agents policies, knowing what actions they will take. Observability is also an
environment characteristic. In a fully observable environment, the observations of an agent have
complete information about the state, if the observations does not have complete information
about the state, it is partially observable, a problem can have the complete information about
the environment distributed among the agents, that is, the environment is partially observable
for an agent, but gathering the observations from multiple agents it has complete information

about the environment (BERNSTEIN et al., 2002).

2.4.3 Multi-Agent Learning Paradigms

There are multiple paradigms for multi-agent learning, as there are different interpretations
of systems and also because of the multiple complexities that can arise when dealing with
multi-agent problems, as shown in the various taxonomies (YANG; WANG, 2020). Some types
of paradigm may be necessary due to the type of problem, and some seek to address specific
problems. It is a matter of understanding the environment studied and selecting an adequate
paradigm to avoid adding complexities to the training without being necessary. Some common
paradigms are:

Joint-Action Learners (JAL): This paradigm uses a centralized controller, using a single
policy that controls all agents, mapping the observations of the environment to the set of
actions of all agents. This paradigm simplifies the challenges of multi-agent systems but suffers
from high-dimensionality problems and does not apply to activities that do not allow central
control;

Independent Learners (IL): In this paradigm, each agent learns its policy independently
as decentralized controllers. This policy maps the observations of the agent to its actions;

IL with Shared Policies: We can use this paradigm when agents are homogeneous in their
decision procedures, sharing the same space of states and space of actions, and objectives. It
learns a single policy that maps the observations of each agent to its actions;

IL with Centralized Training: This paradigm uses additional information during training

28

that is not accessible to the agent at the time of execution. The execution occurs in the same
way as the IL paradigms. The additional information can address significant problems, such as
the non-stationarity of the environment;

IL with Communication: It is also a form of an IL paradigm, but with communication
mechanisms, this paradigm allows agents to exchange information with each other during
execution to approach the activity, learning to use this communication system is part of the
problem.

VSSS is a decision-making problem that RL methods can tackle. The goal is to optimize
the number of goals scored by providing speed commands to the robot. VSSS falls under the
category of continuous control problems, which makes it suitable for policy gradient methods.
Additionally, there is freedom to utilize various learning paradigms since the overhead camera
and the central external computer provide a complete view of the field without any limitations

of decentralized control.

29

3 RELATED WORK

The type of problem that a MARL method addresses primarily determines its taxonomy.
Consequently, it is essential to thoroughly understand the characteristics of the environment
we are studying to know which types of methods we can use to address the proposed problem.

In Section 3.1, we will present the environments commonly used for MARL research. In
Section 3.2, we will discuss the state-of-the-art MARL methods. In Section 3.3, we will examine

the RL studies that address soccer challenges.

3.1 MULTI-AGENT DEEP REINFORCEMENT LEARNING ENVIRONMENTS

The Multi-Agent Particle Environment (Figure 5) was first introduced by MORDATCH;
ABBEEL (2018) and released as part of LOWE et al. (2017) work. It is a popular environment
in MARL due to its variety of tasks presenting multiple challenges, including cooperative,
competitive, and mixed tasks, as well as partially or entirely observable environments, commu-
nication challenges, and homogeneous or heterogeneous agents. Each agent must interact with
the environment and other agents to complete the objective of the task. Agents have contin-
uous observations and discrete actions, with support for continuous actions. The Multi-Agent

Particle Environment covers multiple challenges presented by MARL.

Figure 5 — lllustrations of some tasks from the Multi-Agent Particle Environment, shown in left to right order:
Cooperative Communication, Predator-Prey, Cooperative Navigation, and Physical Deception.

agent 1 agent 1 agent 2
speaker predator 1 predator 2 agent 2
gooony listener O O
X
predator 3
O X adversary
re ()
prey X agent 3 ? O
X

Source: (LOWE et al., 2017).

RL research has yielded impressive results in learning policies that can play the StarCraft
video game with significant efficiency (VINYALS et al., 2019), StarCraft is a real-time strategy
video game requiring players to manage their resources and control units through battles.
SAMVELYAN et al. (2019) developed the StarCraft Multi-Agent Challenge, a Starcraft-

based multi-agent challenge that does not model the standard game, but instead focuses on

30

MARL for decentralized control in multiple scenarios where each game unit is controlled by an
individial agent. This environment has partial observations, as an agent observation is limited
to its field of view, and scenarios with homogeneous and heterogeneous agents. The StarCraft
Multi-Agent Challenge focus on solutions for decentralized control and is limited to discrete
actions.

KURACH et al. (2020) proposed Google Research Football (Figure 6), a soccer simulation
environment with continuous observations and discrete actions. The observations of an agent
describe the complete state, homogeneous players, and cooperative task. It rewards the agent
for scoring and approaching the enemy goal in a controlled manner. They initially proposed
the single-agent environment, where an agent controls only one player at a time. However, it
is extendable, and multiple studies use the multi-agent problem. It does not provide a path to
transfer learned policies to the real world. It presents a video game challenge, and is limited

to discrete control.

Figure 6 — A kickoff in Google Research Football environment.

Gameplay Football

Source: (KURACH et al., 2020).

LIU et al. (2019) proposed the MuJoCo Soccer Environment, a simulated soccer envi-
ronment with two agents on each team, continuous observations with a fully observable state
and continuous low-level actions. They noted the difficulty of reward shaping in this environ-
ment and proposed using population-based training to optimize reward weights. In addition to
the soccer match task, there are tasks in which the goal is to learn skills, such as agent move-
ment and ball dribbling. This environment models a fictitious robot, which limits the ability to

transfer learning to real robots. This environment uses the MuJoCo physics engine (TODOROV;

31

EREZ; TASSA, 2012).

RoboCup 2D Simulation (ITSUKI, 1995) is a two-dimensional soccer match simulation
that deals with various multi-agent learning issues, such as partial observations, heterogeneous
agents, decentralized execution, and communication. To be able to use the RL methods, it
needs to be adapted. Although the complexity of the environment makes it difficult to develop
end-to-end solutions, there are still open challenges that we can tackle in simplified settings.
This is a challenging environment, being a interesting platform for studying decentralized
control and communication in soccer tasks, it also models fictious players.

MARTINS et al. (2021) proposed the rSoccer (Figure 7), a robot soccer simulation environ-
ment framework, which has VSSS and RoboCup Small Size League (BURKHARD et al., 2002)
environments, uses an adapted version of grSim (MONAJJEMI; KOOCHAKZADEH; GHIDARY,
2012) for physics simulations. rSoccer has two VSSS environments, a single-agent, IEEE V5SS
Single-Agent and IEEE VSSS Multi-Agent environments, the second is a multi-agent environ-
ment with decentralized control. The agents are homogeneous, and their observations are
continuous having the complete state of the environment, the actions are continuous and low-
level values of the robot wheels desired speed, the environment has scoring and ball movement

rewards shared between agents and individual rewards of robot movement and spent energy.

Figure 7 — rSoccer's IEEE Very Small Size Soccer (left) and RoboCup Small Size League (right) environments.

Source: (MARTINS et al., 2021).

rSoccer (MARTINS et al., 2021) is an adequate framework to use as a base, as it has VSSS
environments. VSSS presents an exciting challenge due to the dynamicity of matches, state
space, and continuous actions, since the competition uses a global view and centralized control.

Additionally, as it simulates a real competition, it provides a viable path for RL research with

32

real world applicability (BASSANI et al., 2020). We can add a centralized control environment

to the ones proposed in rSoccer, allowing the study of methods of a different paradigm.

3.2 MULTI-AGENT DEEP REINFORCEMENT LEARNING METHODS

SUKHBAATAR; FERGUS et al. (2016) proposed CommNet, a network architecture for prob-
lems where agents have partial observations and can communicate with each other. This
method learns a policy and a communication model, allowing agents to cooperate. The au-
thors demonstrated its effectiveness in problems with these characteristics, such as traffic
management. They designed CommNet for tasks with discrete actions, but we can apply its
ideas to those with continuous actions. In VSSS, we do not have the issues addressed by
methods that deal with partial observations or the need for communication. However, an in-
teresting factor of this architecture is its communication model, which has a dynamic size and
is invariant to permutation. It is a practical method for future studies aiming to create robust
solutions for environments with various robots in the field.

LOWE et al. (2017) Multi-Agent Deep Deterministic Policy Gradient (MADDPG)
is an adaptation of DDPG (LILLICRAP et al., 2015) designed to address the issues of MARL
in continuous control tasks. It uses the Centralized Training with Decentralized Execution
paradigm, allowing additional information to be used during training that will not be available
during execution. In training, the critic () has access to the policies and observations of other
agents. The centralized training allows it to address the problem of partial observations, and
by knowing the actions taken by other agents, it can address the non-stationary environment
problem, even if learning modifies the policies of other agents during training. Although MAD-
DPG theoretically works with continuous actions, its performance was evaluated only in the
Multi-Agent Particle Environment with discrete actions.

FOERSTER et al. (2018) proposed the counterfactual multi-agent policy gradients, COMA,
a method that uses the paradigm of Centralized Training with Decentralized Execution. It
seeks to address the problem of credit assignment. When multiple agents are cooperating to
maximize a reward, the problem of credit assignment is about measuring how much the action
of an agent contributed to the result obtained. It uses the concept of counterfactual baselines,
using the centralized critic learned, it evaluates the effect of the different actions that an
agent could take while fixing the action of the other agents, thus measuring how much an

action taken contributed to the return obtained. They demonstrated COMA in StarCraft unit

33

micromanagement, which predates StarCraft Multi-Agent Challenge but contains the problems
of partial observations and decentralized execution. Credit assignment is a relevant problem in
robot soccer, as agents need to know the contribution of their actions to the reward. However,
it is not the topic of this study, and using COMA in a VSSS environment would require us to
adapt the method to spaces of continuous actions.

RASHID et al. (2020) proposed QMIX, a value decomposition approach that combines
individual value functions of agents into a global one using a mixing network. This approach
deepens the studies in the Centralized Training with Decentralized Execution paradigm, which
seeks to find decentralized policies in partially observable environments. They demonstrated the
performance of this method in the StarCraft Multi-Agent Challenge and highlighted its good
performance in environments with heterogeneous agents. However, QMIX, as an action-value
function method, is limited to use in environments with discrete action spaces.

PPO (SCHULMAN et al., 2017) is an on-policy policy gradient method which is known to
be inefficient in number of experiences and conceptually unstable. Moreover there is limited
research on its application for MARL. However, it has yielded impressive results in single-agent
RL. Two works have demonstrated promising results with similar training times, advocating
using PPO in multi-agent environments. YU et al. (2022) work presents Multi-Agent Proximal
Policy Optimization (MAPPQO), which uses PPO in a Centralized Training with Decentralized
Execution paradigm. In this method, the learned value function utilizes information from the
entire environment state, which may not be available to the agent. They tested the method in
the Multi-Agent Particle Environments, Google Research Football, and StarCraft Multi-Agent
Challenge. They yielded results comparable to state-of-the-art off-policy methods. WITT et
al. (2020) work studies Independent Proximal Policy Optimization (IPPQO), arguing for the
efficiency of PPO when used in a decentralized learning paradigm, even when the environment
is partially observable. They hypothesize that policy clipping mitigates non-stationarity effects.
Both methods make use of parameter sharing whenever possible. It should be noted that when
the agent has complete information about the environment in its state, /PPO works similarly

as MAPPO. As they are based on PPO, they support continuous action spaces.

3.3 REINFORCEMENT LEARNING IN SOCCER TASKS

HAUSKNECHT (2016) investigated cooperation from deep MARL in soccer tasks, he intro-
duced the Half Field Offense task, based on RoboCup 2D Simulation (KITANO et al., 1997),

34

the task involves learning to play an offensive situation in a reduced field size and reduced
number of players, with partial observations and parameterized actions. The environment itself
does not provide rewards, only the end-of-episode conditions, but reward shaping is necessary
to learn it. In the single-agent case, the author rewards the agent for moving towards the
ball, reaching it, kicking it towards the goal, and scoring it. He does not think that reward
engineering is ideal, but it is necessary for the current methods. In the multi-agent case, he
added credit assignment, modifying the reward depending on whether the agent has possession
of the ball or the other has possession of the ball. He studied four conditions: independent
learning, centralized controller, parameter sharing, and memory sharing. In an environment of
two attackers, independent and centralized learning could not learn to use both players, while
parameter sharing and memory sharing could. The difficulty increased in the task featuring a
goalkeeper, where he observed some cooperation when using parameter sharing and memory
sharing, but the obtained policy was not considered optimal.

HAUSKNECHT (2016) work found that a simple cooperation strategy can already achieve
80% of the goals. He hypothesizes that although joint work can improve the result, it is
difficult to learn and remains an open question. His work shows learning difficulties in a
football environment and has various findings. He points out that, despite being cooperative,
the environment benefits the agent for “monopolizing” the reward, by being the one who
scores the goal. Cooperation can improve the result, but learning to cooperate is much more
challenging than learning a simpler policy that already gives partially good results.

OCANA et al. (2019) conducted a study on MARL in a RoboCup Standard Platform
League (KITANO et al., 1997) robot soccer environment. They employed two paradigms, JAL
and IL, and gave each agent an individual reward that took into account scoring, their own
and their teammate’s movement towards the ball, and the ball's movement towards the goal.
They studied a case where they matched two robots against a goalkeeper and a defender with
fixed policies. The observations were complete, and the environment had parametrized actions,
being a mix of discrete and continuous. A high-level action selector existed between walking
and kicking, paired with the walking speed value. They observed better results using JAL. An
interesting result is that when removing the defender, the agent did not learn well and could
only score without cooperation. This could be due to difficulty reduction, which removes the
requirement for cooperation.

DELGADO (2019) investigated the use of reinforcement learning in VSSS, and achieved

a learned policy that could score goals by rewarding scoring, robot movement towards ball,

35

ball movement towards goal and energy expenditure. He successfully learned policies for both
discrete and continuous actions, with continuous actions yielding better results than discrete
actions. This study only focused on the single-agent challenge, even though the environment
contained six robots. The policy controlled one robot during the learning process, treating the
other robots as part of the environment.

MARTINS et al. (2021) achieved success in learning in the rSoccer single-agent VSSS envi-
ronment. However, when they attempted to learn in the multi-agent environment with param-
eter sharing, the outcome was not as good as the single-agent approach, even though they
were controlling more robots. Additionally, they were unable to obtain successful results when
using PPO in the rSoccer multi-agent environment.

BRANDAO et al. (2022) investigated MARL in a VSSS environment, using independent
learning and parameter sharing. Their VSSS environment had continuous observations and
actions and simulated the game, including faults. They studied two forms of training, one of
self-play and one against a predetermined heuristic. The agents could not learn against the
predetermined heuristic but were successful with self-play. The authors divided the rewards into
universal and specific. Universal rewards were for the ball motion toward the goal and the robot
motion toward the ball, only considering the closest robot. Specific rewards were for defensive
and offensive positioning, considering the angles between the robot, ball, and goals. Their study
showed exciting advancements, such as using PPO (SCHULMAN et al., 2017), which other works
could not, cooperative learning, self-play, and complete game modeling with opponents and
rules. Their experiments used an evaluation process where they observed winning rates of the
trained policy versus the heuristics and random opponents. We believe that training against
the predetermined heuristic caused a complex task in learning initial behaviors, and they did
not evaluate their results against learning with a single-agent approach.

Robot soccer is an exciting opportunity to explore MARL, and the VSSS category is a
great setting, with previous work showing success in learning using reinforcement learning
methods, including transferring the learned policies to real robots. It provides a stimulating
environment, presenting various challenges in the field, being a dynamic environment with low-
level continuous action and continuous states. This research will use the VSSS environment

to assess cooperation learning through MARL.

36

4 PROPOSED EXPERIMENTAL METHODOLOGY

In this chapter, we present our experimental methodology to continue the research of the
VSSS environment introduced in MARTINS et al. (2021). We use an environment based on the
one they proposed to compare the performance of multi-agent and single-agent paradigms in a
VSSS environment. Furthermore, we extend the evaluation by measuring performance against
intelligent teams. In Section 4.1, we explain the learning environment used, in Section 4.2, we
describe the learning paradigms used, and in Section 4.3, we outline the evaluation procedure

for the learned policies.

4.1 |EEE VERY SMALL SIZE SOCCER LEARNING ENVIRONMENT

The environment is a fundamental part of RL, it defines the task the agent is learning
to solve. The learning environment (Figure 8) subject to this study is an VSSS environment
based on MARTINS et al. (2021) work, noting that, since RL algorithms require an enormous
amount of interaction steps to learn, this is a simulated environment. The rSoccer framework

uses rSim for physics simulations through the Open Dynamics Engine.

Figure 8 — Rendering of the IEEE Very Small Size Soccer environment on the rSoccer framework, with the
X-axis (red) and Y-axis (green) shown.

Source: Author (2023).

37

The environment implements an interface derived from the OpenAl Gym (BROCKMAN et

al., 2016) interface, a standard interface for RL environments, with adaptations to handle

the multi-agent properties of the environment. Figure 9 shows a diagram of the adapted

environment interface for the VSSS environment with three robots. a”, o

action, observation, and reward of the robot with id n, respectively.

'

Figure 9 — Adaptation of the environment interface for three agents.

<
0

-

IEEE Very Small
Size Soccer
Environment

\

A

/

Source: Author (2023).

<

. and " are the

The main characteristics that define an RL environment are the actions it receives, the

observations it returns, the rewards it provides, and the initial and terminal states. The following

subsections describe these characteristics for the studied environment.

4.1.1 Actions

The actions that this environment receives are the desired wheel speed for the left and

right wheels of the robot, the environment receives a normalized pair of floats for each robot

ranging from -1.0 to 1.0. We will use ay and a; to refer to these actions. The environment

converts this normalized value to the maximum linear speed of the wheels, ranging between

-1.2 and 1.2 m/s.

Robots that the learning policy is not controlling receive random action values sampled from

an Ornstein—Uhlenbeck Process (OU) (UHLENBECK; ORNSTEIN, 1930), this provides temporally

correlated values, which increases exploration efficiency for physical control (LILLICRAP et al.,

2015).

38

4.1.2 OQObservations

The agent perceives the state of the environment through the observations, as VSSS has a
centralized controller which gathers the global state, we do not tackle partial observability, the
observation has information of the whole state of the environment. The observations returned
by the environment are 52 continuous values in an allocentric reference frame centered on
the field center, presented in the following order: ball state, robot state, teammates state,
and opponents state. The observations are homogeneous between robots, they share the same
structure, however, each robot receives its perception of the observations, as the robot state
refers to itself.

The ball state is its position (x,y) and linear velocity values (vx,vy). The agent state is
comprised of its position (x,y), linear velocities (vz, vy), angle, represented by (cos(#), sin(6)),
angular velocity (w), and the previous actions (ag, a;). The state of its teammates and oppo-
nents consists of the same information as the agent state for each teammate concatenated,
with the exception that the opponents information do not include the last actions values.

The position information is in meters, linear velocity is in meters per second, and angular

velocity is in radians per second.

4.1.3 Rewards

Rewarding only goals, the main objective of a soccer match, would be an optimal reward
function, as it would be unbiased, however, this reward is too sparse, especially in the initial
learning episodes, making the environment very challenging for current RL methods. Reward
shaping can reduce the sparsity by providing intermediate rewards (NG; HARADA; RUSSELL,
1999). Therefore, the environments of this work will use the same reward components defined
in MARTINS et al. (2021). In addition to the reward for scoring a goal, they use three additional
reward components: the ball motion toward the enemy goal and away from its own goal, the
robot motion toward the ball, and the robot energy usage. The complete environment reward

function is:

RW = GS % wys + BM * Wy, + RM * Wy, + RE % W, (4.1)

39

where RW is the reward for a step in the environment, GS is the goal score component,
BM is the ball motion component, RM is the robot motion component and RFE is the robot
energy component. Wy, Wy, Wrm and w,. are the scaling weights for the GS, BM, RM and
RE components, respectively.

The goal score component, GS, and the ball motion component, BM, values are the same
for every robot in the team, the robot motion, RM, and the robot energy component, RF,
are individual for each robot.

The goal score component, GS, is the main component, its value is 1 if the agent team
scores a goal, and -1 if a goal is scored against its team.

The ball motion component, BM, is positive when the ball moves closer to the opponent’s
goal post and away from the team's goal post, the value is negative when the contrary occurs.
Its value is the difference in the potential value of the ball position on the field, this potential
is the ball distance to the team’s own goal post subtracted by the distance to the enemy's

goal post:

BM = (BP, — BP,_,),

BP = dist; — dist,,
(4.2)

disty = \/(xteamGoal + Toau)* + 2 * Ypau®,

diSta = \/(xopponentGoal - xball)2 + 2% yball27

where BP is the ball potential, dist, is the distance from the ball to the back of the team goal,
with the y-axis component doubled, dist, is the distance from the ball to the opponent team
goal, with the y-axis component doubled. Zicamacoar and Topponentcoar refer to the x-axis value
of the position of the back of the goal, for its own and the opponent team goal, respectively,
Figure 8 illustrate the axis, the back of the goal is used to reduce the bias of scoring in the
center of the goal. The distance calculation doubles the weight of the y-axis component to
discourage moving the ball to the field sides.

The robot motion component, RM, has a positive value when the robot moves toward
the ball and a negative value when it moves away from the ball. We use the magnitude of
the robot movement and if it moves in the ball direction. We calculate using the dot product
of a unit vector pointing from the robot position to the ball position with the robot velocity

vector:

40

RM = (rb - Tropor) * AL,

ball,,s = [Tbatt, Yoatt], (4.3)

I’ObOtpoS = [fﬂrobot; yrobot]a

Urobot = [vxrobota Uyrobot]a

where At is the environment physics time-step. rb is the vector from the robot position robot,,
to the ball position ball,,s, and T, is the vector of the robot velocity.

The robot energy component, RE, penalizes the robot for energy usage. The idea is to
stimulate the policy to use actions of a smaller magnitude to achieve the same results. This
component is restrictive to the robot movement, conflicting with the core objective, however,
this reward has been shown to make the training more stable and is adequate if we want to
transfer the policy to real robots. Its value is the sum of the absolute values of the desired

wheel speeds set for the robot:

RE = _(|wdesiredLeftWheel| + |wdesiredRightWheel|) * At, (44)

where Wyesiredre ftiwheet aNd WaesiredRrightwheer 1S the desired wheel speed for the left and right

wheels, respectively, set by the actions sent to the environment in radians per second.

4.1.4 Initial and Terminal States

For the initial state of the environment, we randomize the positions of the robots and the
ball in the field, we also randomize the robots angle and the ball velocity, however, the initial
speed of the robots is always zero as initializing the robots with speeds can cause abnormal
behaviors in the simulator.

The environment terminal states occur when a team scores a goal or reaches the maximum

number of steps for an episode.

4.2 REINFORCEMENT LEARNING PARADIGMS

The learning paradigms define the number of robots acting on a learning policy and whether
it is a centralized or decentralized controller. We define single-agent learning paradigms if only

one robot policy learns during training, we will use two single-agent paradigms: Single-Agent

41

(SA) and Replicated Single-Agent (RSA). The multi-agent paradigms have the three robots
of the team acting with a learning policy, we will use two multi-agent paradigms: IL, and JAL.

The following subsections describe their characteristics.

4.2.1 Single-Agent Learning Paradigms

In single-agent paradigms, the learning policy controls a single robot and random actions
sampled from a OU (UHLENBECK; ORNSTEIN, 1930) control the remaining robots of its team

during training.

4.2.1.1 Single-Agent Paradigm

The SA paradigm is equivalent to the one used by MARTINS et al. (2021), which used
this approch in its /EEE VSSS Single-Agent environment. It can be classified as single-agent,
considering that the other robots in the field are seen as part of the environment and not
learning. The distinction between a centralized and decentralized controller cannot be made
for this paradigm, as it controls only one robot.

It should be able to learn to interact with robots in the environment but not leverage on

teammates who have competent policies.

4.2.1.2 Replicated Single-Agent Paradigm

The RSA paradigm is equivalent to SA during training, and we will use the same policy
learned from training SA. During the evaluation, it will control the three robots of a team,
inferring an action from the policy for each robot's observations, a decentralized controller.
This paradigm is equal to the solution BASSANI et al. (2020) used for running their learned
policy for evaluation during a VSSS tournament.

This paradigm is possible since the robots are homogeneous, their observations have the
same structure, changing only the perspective. We added this paradigm because SA only
controls a single robot, adding a different perspective that controls the entire team, but with
a simplified single agent training. We still classify it as a single-agent paradigm since it is

learning to control only one robot.

42

4.2.2 Multi-Agent Learning Paradigms

In multi-agent learning paradigms, learning policies control the entire team during training.

4.2.2.1 Independent Learners

The IL paradigm is a decentralized controller, inferring an action from the policy for each
robot's observations, in the same way as RSA. However, it also controls the entire team during
training. This paradigm presents the non-stationarity problem of multi-agent learning as the
policy of the teammates is evolving throughout the training.

MARTINS et al. (2021) used this paradigm in its experiment with the IEEE VSSS Multi-
Agent environment. As robots are homogeneous, we utilize parameter and memory shar-
ing (HAUSKNECHT, 2016), this improves training speed as we effectively train a single policy,

and each environment step amounts to three experience tuples.

4.2.2.2 Joint Action Learners

The JAL training paradigm uses a centralized controller, the learning policy simultaneously
outputs the action for all team robots, tackling the non-stationarity problem. As the centralized
controller controls all learning robots as one agent, this paradigm parallels a single-agent RL
problem as the environment is stationary for the controller. As there is no extra information that
it is not already using during training, the centralized control makes the training centralized
by default.

The increase in the size of the policy inputs (observations) and outputs (actions) contrasts
this paradigm’s benefits as it increases the learning complexity. We minimize this by using
just the observation of the id 0 robots as our robot's observations are allocentric and have
complete observability. However, the number of robots the policy now controls multiplies its
output size.

To handle rewards, we use the mean value from all robots on the team, as the GS and BM
components are global, they are unchanged, but the RM and RE components are average
values as those are individual components.

Figure 10 illustrates the interaction between the paradigms and the environment during

the training and evaluation procedures. moy is a policy that takes random actions sampled

43

from an OU process, while 7y is a policy with trained parameters 6.

Figure 10 — Overview of each paradigm interface with the environment during training and evaluation.

Training

IEEE Very Small
Size Soccer
Environment

|IEEE Very Small
Size Soccer
Environment

IEEE Very Small
Size Soccer
Environment

JAL

IEEE Very Small
Size Soccer
Environment

t

Evaluation

IEEE Very Small
Size Soccer
Environment

IEEE Very Small
Size Soccer

Environment

~~
2
2 a
[
1 al
[0 T,
0
0

IEEE Very Small
Size Soccer

Environment

|

IEEE Very Small
Size Soccer 4 5
Environment

Source: Author (2023).

44

4.3 EVALUATION PROCEDURE

This research will evaluate the effectiveness of multi-agent paradigms by comparing them
to single-agent paradigms in a VSSS environment. We evaluate their performance on the main
underlying challenge in a soccer match, scoring goals.

We train agents against enemies whose actions are random and with different reward
components. However, what matters is the ability to score goals and the ability of the policy
to extrapolate its learnings to different opponents with intelligent behaviors, behaviors not
observed during training. This situation best represents a competition setting, where we want
the policy to be superior to the various approaches brought by other teams.

The evaluation environment is initialized with random positions the same way as the
learning environment. We only use the GS component of the reward during evaluation.

We engage in hundreds of matches to evaluate our policy, playing against a variety of op-
ponents. These opponents include trained policies of all paradigms, random action opponents,
a policy that samples actions from an OU, and stationary opponents that always send actions
with zero value. We record the episode outcome, the policy either wins if it scores a goal,
losses if it concedes a goal, or draws if it reaches the maximum number of steps. Additionally,

we calculate a rating based on the number of each outcome:

Wins — Losses

rating =
& Matches

(4.5)

where Wins is the number of matches won in the evaluation procedure, Losses is the number
of matches lost, ad Matches is the total number of matches played.

Given the environment presented in this chapter, we study the ability of the different
observed paradigms to learn policies capable of winning VSSS games. We will use the evaluation
procedure to rank the different paradigms and compare their performances. We especially want
to study the ability of multi-agent paradigms to use multiple robots in the team to get better

results.

45

5 COMPARING LEARNING PARADIGMS ON IEEE VERY SMALL SIZE
SOCCER ENVIRONMENT

This chapter presents experiments to compare the performance of different paradigms in
a VSSS environment. Section 5.1 outlines the experimental setup, and Section 5.2 discusses

the results.

5.1 EXPERIMENTAL SETUP

We conducted the experiments with the same environment settings and implementation
of the DDPG algorithm as those used by MARTINS et al. (2021), this environment has simplifi-
cations relative to a complete VSSS match, the opponent team moves with random policies,
and we do not implement the personal, attacking, and defensive foul game rules and the free
ball condition (PINTO, 2023). We limited the number of steps in an episode to 1200 with a
physics timestep At of 25 milliseconds, resulting in a maximum episode duration of 30 sec-
onds, where we expect that trained policies to take around 5 seconds to score a goal against
random policies. Table 1 shows the reward components weights, these values are equivalent

to the one used in MARTINS et al. (2021) work.

Table 1 — Weights of the reward components of the IEEE Very Small Size Soccer learning environment.

Weight Value
wWas 10
WBM 48
WRM 20
WRE 0.008

Source: Author (2023).

We made the following modifications to the DDPG base algorithm to improve training
performance: to increase the diversity of collected data, we added an experience collection to
gradient ratio, EGR, hyperparameter to control the ratio of the number of steps performed in
the environment for each gradient step, and we collect interactions from multiple environments
running in parallel, a number of rollout processes, NRP, hyperparameter defines the quantity
of environments running in parallel; to provide better state value estimates we implement
n-step bootstraping (SUTTON; BARTO, 2018), with the number of steps specified by the N-

STEPS hyperparameter; To improve the initial exploration, we implement a decaying action

46

noise, initializing the noise with an initial noise sigma, 0;niiiai, hyperparameter value, and at
each number of gradient steps per noise sigma decay, Ogecaysteps: gradient steps, the noise
value is reduced by the noise sigma decay, 0 jccqy, value until a minimum value of noise sigma
minimum, Gin:

We used the same hyperparameters as MARTINS et al. (2021) work. Table 2 lists the hy-
perparameters used for DDPG training, Table 3 specifies the actor network architecture, and

Table 4 sets the critic network architecture.

Table 2 — Deep Deterministic Policy Gradient hyperparameters values used for training.

Hyperparameter Value
LEARNING RATE 0.0001
BATCH SIZE 256
GAMMA () 0.95
TARGET NETWORKS TAU (7) 0.999
INITIAL EXPERIENCE REPLAY SIZE 100000
EXPERIENCE REPLAY SIZE 5000000
TOTAL ENVIRONMENT STEPS 100000000
EGR 10
NRP 10
N-STEPS 3
Oinitial 0.8
O min 0.15
O decaySteps 3000
Odecay 0.99

Source: Author (2023).

Table 3 — Architecture of the Deep Deterministic Policy Gradient actor neural network.

Layer Type Input Output

Fully Connected

0 - Observations 400
(ReLU Activation)

1 Fully Con{wect.ed 400 300
(ReLU Activation)

) Fully Connected 300 Actions

(Tanh Activation)
Source: Author (2023).

We trained each paradigm using the DDPG algorithm, with three different random seeds

against random action opponents. For the IL paradigm, we trained it with the algorithms

47

Table 4 — Architecture of the Deep Deterministic Policy Gradient actor neural network.

Layer Type Input Output
Fully Connected Observations 400
(ReLU Activation)
Full
ully Connected 50 Actions 300
(ReLU Activation)
2 Fully Connected 300 Action Value

Source: Author (2023).

DDPG and MADDPG, respectively referred to as I Lpppe and I Ly apppc;

The MADDPG algorithm uses extra information to ease training, as the robot observation
in our environment has complete observability of the state, leveraging the teammates obser-
vations does not provide extra information, so we do not use it when learning a policy for this
paradigm. However, we do use the information of the actions taken by the teammates and
the access of its policy for training with a centralized critic which is a function of the robot's
observation, its actions and its teammates’ actions, tackling the problem of non-stationarity.

For evaluation, we reduced the maximum number of steps in an episode to 800, equiv-
alent to game time of 20 seconds. This reduction accelerated the procedure and enabled
us to run more matches. We tested 17 matchups: three random seeds for each of the five
paradigms, random action opponents, and stationary opponents. We played 500 episodes for

each matchup.

5.2 RESULTS

This section presents the results of the experiments for each paradigm, including perfor-
mance during training and evaluation. We then compare the performance of the multi-agent
paradigms, I Lpppa, ILyapppg and JAL, to that of the single-agent ones, SA and RSA.

The experiments were executed using the Centro de Informatica (Cln) computing cluster,
Apuana, using an Nvidia RTX 3090 GPU and 32 CPU cores. For the 100 million steps, each
execution took around 17 hours to complete.

We begin by examining the graphs in Figure 11 that illustrate the value of the G'S compo-
nent of the reward and the duration of the episode throughout the training. The colored lines

represent the mean value for the three training seeds and the shaded area around is the stan-

48

Figure 11 — Goal score (left) and episode length (right) during training in the IEEE Very Small Size Soccer
learning environment.

I sA [AL I IL-MADDPG M IL-DDPG I sA [l JAL [l 1L-MADDPG [l 1L-DDPG
1 1200
v ’V?
e & 1000
0 05 b
N
) = 500
o £
E 0 2 600
2 3 . s
— © 400
g 05 g ¥
O @ 200
o
1 w 0
0 20M 40M 60M 80M 100M 0 20M 40M 60M 80M 100M
Environment Steps Environment Steps

Source: Author (2023).

dard deviation. These graphs demonstrate the outcome of what we are attempting to learn,
namely, scoring goals and doing so efficiently. When we isolate the SA and [Lpppg results,
we can observe that we replicated the result obtained in the work by MARTINS et al. (2021).
The single-agent approach quickly learns to maximize the score component and reduce the
episode time. At the same time, the I Lpppa, even controlling three robots, converges to a
smaller score component value. This performance, not matching the single agent policy, and
even being worse, leads us to believe that they are blocking each other. Watching the training
recordings®, we see situations in which this behavior occurs.

Observing the performance of ILy apppc in the same graph, we noticed an improve-
ment compared to I Lpppg, which confirms the hypothesis of MARTINS et al. (2021) that this
approach would yield better results for multi-agent systems with decentralized execution. Nev-
ertheless, its performance is still lower than that of SA, so we can draw the same conclusion
as we did for I Lpppg.

The JAL has an exciting outcome, as it converges in GS value and episode duration to
values similar to those obtained by the SA, reaching the highest possible score. JAL requires
more interactions to converge to optimal results than SA, which is expected since it is a
more complex policy that returns three times more actions to control the three agents. This
is actually a single-agent scenario, which provides greater assurance of convergence, and it
observes the environment as stationary, contributing to better results than the decentralized
execution paradigms.

The graphs in Figure 12 illustrate the total reward per episode and the value of the RM

component during the training process. Although JAL converged to the same results as SA

1 experiment recordings available at: <https://github.com/FelipeMartins96/

exploring-deep-marl-in-ieee-vsss-recordings/tree/main /5-2>

https://github.com/FelipeMartins96/exploring-deep-marl-in-ieee-vsss-recordings/tree/main/5-2/IL-DDPG#il-ddpg-blocking-each-other
https://github.com/FelipeMartins96/exploring-deep-marl-in-ieee-vsss-recordings/tree/main/5-2/IL-DDPG#il-ddpg-blocking-each-other
https://github.com/FelipeMartins96/exploring-deep-marl-in-ieee-vsss-recordings/blob/main/5-2/IL-MADDPG/README.md#il-maddpg-blocking-each-other
https://github.com/FelipeMartins96/exploring-deep-marl-in-ieee-vsss-recordings/blob/main/5-2/IL-MADDPG/README.md#il-maddpg-blocking-each-other
https://github.com/FelipeMartins96/exploring-deep-marl-in-ieee-vsss-recordings/tree/main/5-2
https://github.com/FelipeMartins96/exploring-deep-marl-in-ieee-vsss-recordings/tree/main/5-2

49

Figure 12 — Total episode reward (left) and robot motion component (right) during training in the IEEE Very
Small Size Soccer learning environment.

[SA I JAL [IL.-MADDPG [l IL-DDPG I SA I JAL I 1L-MADDPG [l IL-DDPG
12(
60
100 — =
° = 5
3 x”’
80 ~
g 60 g 30 /\\\‘
2 g
EL 40 '8 20
24

0 20M 40M 60M 80M 100M 0 20M 40M 60M 80M 100M
Environment Steps Environment Steps

Source: Author (2023).

regarding G.S and episode time, it achieved a lower total reward per episode due to a lower
value of the RM component, as shown in the second graph. We also observed that I Lpppc
and I Ly apppc achieved values of the RM component similar to SA despite their poorer
performance in terms of G.S. Possible explanations for the lowest values obtained by JAL could
be how its reward is calculated as the average of the three robots, leading to lower values.
Still, we also hypothesize that the policy sacrificed the RM component for cooperation to be
possible. JAL could also have learned to control only one robot, an outcome we have seen in
previous experiments. Watching the training recordings, we found that the policy is handling
all three robots. However, we still found some situations where the approach does not control
optimally one or more robots.

Since the paradigms with the best results, SA and JAL, converged to the maximum possible
G'S values, the evaluation will provide more information to compare their performance in a
more challenging environment against intelligent opponents.

Figure 13 presents the evaluation results, including each paradigm’s aggregated rating and
match outcomes. The rating chart displays the Interquartile Mean (IQM) with a bootstrapped
confidence interval, calculated as an aggregate metric over the paradigms of the opponent
team played against during the evaluation procedure. We used the rliable python module to
calculate these metrics (AGARWAL et al., 2021).

RSA is only present now and not in previous charts because it shares training with SA
(it is the same agent replicated to control the other teammates). The multi-agent decentral-
ized execution paradigms [Lpppe and I Ly apppc had the lowest ratings, even lower than
SA, which controls only one robot. Still, we observe an improvement in the performance of

I Ly apppa, as expected from the training results. JAL received a higher rating than SA, which

https://github.com/FelipeMartins96/exploring-deep-marl-in-ieee-vsss-recordings/tree/main/5-2/JAL#jal-controlling-all-robots
https://github.com/FelipeMartins96/exploring-deep-marl-in-ieee-vsss-recordings/tree/main/5-2/JAL#jal-controlling-all-robots
https://github.com/FelipeMartins96/exploring-deep-marl-in-ieee-vsss-recordings/tree/main/5-2/JAL#jal-non-optimal-control
https://github.com/FelipeMartins96/exploring-deep-marl-in-ieee-vsss-recordings/tree/main/5-2/JAL#jal-non-optimal-control

50

Figure 13 — Aggregate rating (left) and percentage of outcomes (right) from the evaluation procedure for the
learning paradigms.

= WIN [DRAW I LOSS

0.353
SA

0.706
RSA

0.425
JAL
-0.073

IL-MADDPG

-0.210
IL-DDPG I

-0.2 0.0 0.2 0.4 0.6 0% 25% 50% 75% 100%
Rating (IQM) Outcomes

Source: Author (2023).

may indicate cooperation learning by JAL. Still, it is impossible to say, as the higher number of
robots it controls could also explain the results. It is also likely that a better-positioned robot
is under control at the start of the episode.

RS A had the highest rating, with a considerable margin, thus being a single-agent paradigm
the best result among the experiments performed. We observe that it is improbable for RS A
to learn to cooperate since we trained it with random-action teammates, yet it presents the
best results. We investigated whether robots in RSA were blocking each other, similar to the
IL paradigm. As both paradigms maximize their individual RM component, we analyzed the
match recordings and observed instances of blocking, albeit less frequently than IL. The RSA
policy also shows more dexterity. The difference is due to the SA training, where a stuck robot
cannot rely on another robot to score.

These results are intriguing, making us question why the multi-agent paradigms obtained
worse results since, in addition to controlling more robots, we expected them to learn to coop-
erate as they train with more information available with “intelligent” teammates. A hypothesis
to explain the lower results is the more complex nature of multi-agent learning, preventing
learning, but all paradigms converged to positive reward values during training.

We also hypothesized that the simplifications of the modeling of the environment when
using random opponents and not including all game rules could have made cooperation less
important. A shred of evidence is that both the JAL and the SA manage converged to the

maximum value of the G.S component. Even controlling only one robot in this environment,

https://github.com/FelipeMartins96/exploring-deep-marl-in-ieee-vsss-recordings/tree/main/5-2/RSA#rsa-blocking-each-other
https://github.com/FelipeMartins96/exploring-deep-marl-in-ieee-vsss-recordings/tree/main/5-2/RSA#rsa-dexterity

51

it is possible to obtain results close to the optimum during training, without observing dif-
ficult situations and not encouraging the agents to learn more advanced behaviors such as

cooperation.

Figure 14 — Proportion of each reward component from the episode reward at the end of training in the IEEE
Very Small Size Soccer learning environment.

B GS BM = RM N RE
SA 9% 46% 41% 2<I
JAL | 11% 54% 31% 2I
IL-MADDPG | 7% 37% 46% .
IL-DDPG | 7% 28% 51% -
0% 25% 50% 75% 100%

Reward Component Ratio From Episode Total

Source: Author (2023).

Another hypothesis is that reward shaping, a simplification performed on the environment
to enable training, may affect multi-agent paradigms ability, especially the RM component.
Figure 14 shows that at the end of SA training, the RM component amounts to an average
of around 42% over the trained paradigms and the hypothesis is that this reward can disturb
cooperation since the robots will all tend to move as close as possible to the ball, blocking each
other. This problem has additional implications in the I Lpppg and Ly apppc paradigms,
where each agent maximizes its own reward. As the RM and RE components are individual,
we can consider their maximization as competitive behavior, even when the agents are on the

same team. This issue is addressed in the next section.

5.3 REDUCING ROBOT MOTION REWARD COMPONENT BIAS

We investigate the hypothesis that reward shaping used in the VSSS environment with
multiple agents leads to maximization of the reward components by RL that reduces the
performance of the primary desired objective, scoring goals. Specifically, the hypothesis is that
the RM component, which encourages the robot to move towards the ball, is detrimental
when controlling multiple robots, as they all move closer to the ball and get in each other’s
way. As this component has a considerable weight in the total reward, it is not beneficial to the

agent to renounce this component, even when it would result in gains in other components.

52

The scale of the RM component value compared to the other components and the discount
factor, v, used in the experiment affect its importance. The v of 0.95 and a timestep, At,
of 25 milliseconds make rewards obtained two seconds in the future less than 2% of their
original value, thus increasing the influence of RM, which is received continuously, over the
score received at a single moment. Although removing the RM component would be ideal, it
is essential for learning in this VSSS environment (DELGADO, 2019).

BRANDAO et al. (2022) also used a reward component to incentivize movement toward the
ball. Their work only gave this reward to the robot closest to the ball. We tested this approach
and others, such as transforming it into a reward component shared by the team and other
forms of calculating it, such as displacement of the centroid of the robots positions towards
the ball. Although we found the different approaches to this component attractive, we focused
on reducing the influence of the RM as a whole rather than adapting it to the conditions of
multiple agents.

We will then experiment with changing the values of the components weights to reduce the
ratio of the RM component to the total and boost the . Both modifications make training
more challenging. We will then compare single-agent and multi-agent paradigms again and
investigate how the alterations influence the outcome.

In Subsection 5.3.1, we outline the changes made relative to the previous experiments, and

in Subsection 5.3.2, we present and examine the results.

5.3.1 Experimental Setup

We conducted extensive tests to reduce the RM component proportion. Unfortunately,
the results were not successful, particularly for the multi-agent paradigms. Figure 15 displays
the training performance of one of these tests, which only achieved limited success with the
single-agent paradigm. Table 5 shows the changes in the reward components, with the RM
and RE components halved and the G'S component increased by a factor of 10. We increased
the decay factor v to 0.99 and did not test the I Lpppe paradigm, as the MADDPG showed
to be superior in previous results.

Since only SA could learn, it was impossible to compare the paradigms. Therefore, to con-
tinue our study of the reward proportions, we changed the training environment and algorithm
to make them more robust, allowing learning in such a difficult scenario. We implemented

the VSSS environment with the Isaac Gym platform (MAKOVIYCHUK et al., 2021) to cap-

53

Figure 15 — Goal score during training in the IEEE Very Small Size Soccer learning environment in the rSoccer
framework with adjusted reward components weights.

I SsA I JAL I 1L-MADDPG

Goal Score (GS)
o

0 20M 40M 60M 80M 100M
Environment Steps

Source: Author (2023).

Table 5 — Adjusted weights of the reward components of the IEEE Very Small Size Soccer learning environment
to reduce robot motion component proportion.

Weight Previous Value New Value

was 10 100
WpM 48 24
WRM 20 10
WRE 0.008 0.004

Source: Author (2023)

ture observations from multiple environments in parallel and we changed the RL algorithm
to PPO (SCHULMAN et al., 2017). Subsubsection 5.3.1.1 outlines the modifications to the

environment and Subsubsection 5.3.1.2 the changes to the training algorithm.

5.3.1.1 Adapting The Very Small Size Soccer Environment to Isaac Gym Platform

We adapted our environment to the Isaac Gym platform. Isaac Gym performs physical
simulation computations on the GPU, this is beneficial for RL training, as it enables running
a significant number of environments in parallel and also accelerates training by eliminating
the bottleneck of memory transfer from the CPU to the GPU between environment interac-
tions and neural network optimization procedures (MAKOVIYCHUK et al., 2021). Gathering data
from multiple environments simultaneously increases data diversification, boosts exploration
effectiveness, and enhances training stability (MNIH et al., 2016).

We used Rob6Cln's real robot physical parameters to define the simulation robot. However,

54

we did not validate the simulated robot's performance compared to the real robot. In this
work, we did not intend to approach real-world problems, such as communication delays and

observation noise.

Figure 16 — Rendering of hundreds of parallel IEEE Very Small Size Soccer environments on Isaac Gym plat-
form, with the X-axis (red) and Y-axis (green) shown.

Source: Author (2023).

We maintained the same actions and observations of the rSoccer framework environment.
However, we increased the timestep At to 50 milliseconds to accelerate training time, reduce
the correlation of observations between steps, and have the same effect as increasing the
gamma. We also decreased the maximum number of steps per episode to 600 to balance the
timestep At increase. The calculation of the RM component was modified to be a function
of the potential differences given by the distance between the robot and the ball, which is a

more suitable format for reinforcement learning (NG; HARADA; RUSSELL, 1999).

RM = distRB,_; — distRB,. (5.1)

Equation 5.1 shows the new calculation of the RM component, distRB is the distance of
the robot to the ball.

Table 6 shows the adjusted weights of the reward components for the experiments on the
Isaac Gym platform environment. We decreased the magnitude of the rewards as it yielded
better results in the new setup and adapted the wgy, to the new formulation. Although we
reduced the scale, the most significant adjustment was in the proportions to make the G'S

component the most significant by a large margin.

55

Table 6 — Adjusted weights of the reward components of the IEEE Very Small Size Soccer learning environment
to reduce robot motion component proportion with new robot motion component calculation.

Weight Value

was 10
wpMm 2
WRM 3
WRE 0.001

Source: Author (2023)

5.3.1.2 Adaptation to the Proximal Policy Optimization Algorithm

We used the PPO algorithm to conduct our experiments. PPO has been effective in various
continuous control tasks and has also demonstrated satisfactory performance in multi-agent
learning, as shown recently in the works of WITT et al. (2020) and YU et al. (2022). We chose
PPO because it is compatible with the highly parallelized Isaac Gym platform, which aligns
well with the requirement for on-policy algorithms for more environmental interactions.

We based our PPO implementation on that made by HUANG et al. (2022b), adapting it to
our environment. Various implementation details can affect the performance of PPO (HUANG et
al., 2022a). We included the implementation improvements detailed in ENGSTROM et al. (2020)
and ANDRYCHOWICZ et al. (2021), which studied the influence of various factors on the per-
formance of the algorithm. We only list below the improvements applied here and refer the

reader to the original papers for the details:
a) vectorized architecture;
b) orthogonal initialization of neural networks weights;

c) initialization of policy’s neural network with a centered distribution with mean 0 and

low standard deviation;
d) generalized advantage estimation (GAE);
mini-batch updates;
normalization of advantages;

)
)
g) clipped surrogate objective;
) overall loss and entropy bonus;
)

global gradient clipping;

56

j) separate networks for policy and value functions;

k) continuous actions via normal distributions;

m) independent action component;

)
)
|) state-independent log standard deviation;
)
n)

handling of action clipping to valid range and storage;
o) handling environment dones by timeout.

Additionally, we have included a parameter called the speed factor SF'. This parameter
controls the maximum speed of the robots that are not managed by the learning policy and
the initial speed of the ball. During training, SF' starts at 0 and increases to 1 linearly,
the point in training in which SF' reaches 1, given as a percentage of environment steps,
is set by a speed factor end, SF.,;, hyperparameter. SF' helps the policy learn an initial
behavior in a less dynamic environment, gradually increasing the difficulty during training, and
acting as a curriculum learning (BENGIO et al., 2009). We performed a simple trial-and-error
hyperparameter search to reduce training time and increase the validation score. We list the

PPO hyperparameters used in Table 7.

Table 7 — Proximal Policy Optimization hyperparameters values used for training.

Hyperparameter Value
TOTAL ENVIRONMENT STEPS 1000000000

NUMBER OF ENVIRONMENTS 3600
NUMBER OF STEPS 400
BATCH SIZE 1440000
NUMBER OF MINI-BATCHES 4
MINIBATCH SIZE 360000
UPDATE EPOCHS 7
LEARNING RATE 0.001
GAMMA () 0.99
GAE LAMBDA ()) 0.95
CLIP COEFFICIENT 0.2
ENTROPY COEFFICIENT 0.005
VALUE COEFFICIENT 4
MAX GRAD NORM 1.5
ADAM EPSILON 0.00001
SFong 0.5

Source: Author (2023).

57

Table 8 displays the architecture of the actor's neural network, while Table 9 outlines
the architecture of the critic's neural network. Previously, when using DDPG, we had two
approaches for the IL paradigm, I Lpppg and I Ly apppa, as decentralized and centralized
training. As our environment observations provide a full view of the environment and the
PPO critic does not use actions, there is no distinction between centralized and decentralized

training for the IL paradigms (YU et al., 2022).

Table 8 — Architecture of the Proximal Policy Optimization actor neural network.

Layer Type Input Output

Fully Connected
(Tanh Activation)
Fully Connected

Observations 256

1 256 512
(Tanh Activation)
Full

5 ully Connected 510 510
(Tanh Activation)
Full

3 ully Con-nec‘.ced 510 510
(Tanh Activation)

A Fully Connected 519 512

(Tanh Activation)

5 Fully Con-nec’.ced 510 256
(Tanh Activation)

()]

Fully Connected 256 Actions

Source: Author (2023).

5.3.2 Results

In this section, we present the results of our experiments with the different training
paradigms in the new setup. We trained agents with five different seeds for each paradigm and
then we plot the mean results (colored lines) and the standard deviation (shaded area).

The experiments were executed on Apuana with the same machine configuration of the
previous experiments. For the 1 billion steps, each execution took around 4 hours to complete.

Figure 17 illustrates the performance of the three paradigms in training concerning the
G'S component and the episode’s duration. All three paradigms converged to approximately
the maximum possible value of the G.S component, this shows an improvement of the IL

paradigm, a relevant result to our hypothesis that the RM was conflicting. Furthermore, we

58

Table 9 — Architecture of the Proximal Policy Optimization critic neural network.

Layer Type Input Output

Fully Connected
(Tanh Activation)
Fully Connected
(Tanh Activation)
Fully Connected
(Tanh Activation)
3 Fully Connected 519 519
(Tanh Activation)
Fully Connected
(Tanh Activation)
Fully Connected

5 o 512 256
(Tanh Activation)

Observations 256

256 512

512 512

512 512

(@)

Fully Connected 256 Value

Source: Author (2023)

Figure 17 — Goal score (left) and episode length (right) during training in the IEEE Very Small Size Soccer
learning environment with adjusted reward components weights.

I sA N JAL I 1L N sA N JAL I 1L

10 600
500
5
400

0

Goal Score (GS)
Episode Length (Steps)

-10 0
0 200M 400M 600M 800M 1G 0 200M 400M 600M 800M 1G

Environment Steps Environment Steps

Source: Author (2023).

noticed that the episode time converged to similar values for all paradigms, and we continued
to observe the training delay in JAL training to converge, as expected, as its policy has more
actions.

Figure 18 illustrates the total reward per episode, and it is evident that the three approaches
have converged to similar values, unlike the prior experiment, in which the multi-agent ap-
proaches converged to lower values.

Figure 19 illustrates the percentage of each component of the total reward for the trained
paradigms, and also includes the mean proportion of rewards for the previous experiments

without the weights adjustments, tagged as Previous Mean. The new weights of the com-

59

Figure 18 — Episode reward during training in the IEEE Very Small Size Soccer learning environment with
adjusted reward components weights.

I sA B AL I 1L

—
w

Episode Reward
= o S

0 200M 400M 600M 800M 1G

Environment Steps

Source: Author (2023).

Figure 19 — Proportion of each reward component from the episode reward at the end of training of each
paradigm in the IEEE Very Small Size Soccer learning environment with adjusted reward com-
ponents weights compared with the aggregate reward components proportions at end of training
with previous weights.

| Gs [BM [RM I RE

JAL

IL

Previous
Mean

0% 25% 50% 75% 100%
Reward Component Ratio From Episode Total

Source: Author (2023).

ponents have significantly decreased the RM component relevance, while also increasing the
proportion of GS. Achieving working policies with these new proportions of reward compo-
nents is remarkable, as G\S is the underlying goal of the environment. Furthermore, with a
discount factor v of 0.99 and a mean episode time of around 3 seconds, the G.S component
retains more than 50% of its value. We also see that the component proportions are more
uniform across paradigms when compared with the weights used in the previous experiments.

As GG S reaches its highest value, the evaluation gives us more understanding of the policies
learned, we question if the decreased RM component will improve the multi-agent paradigms
performances. We changed the evaluation due to the faster speed that this version of the

environment offers. Each matchup runs for 5,000 episodes, and we keep the same episode step

60

limit of 600 steps as during training. Since we only have one IL paradigm type, we now have 12
different matchups, three seeds from each of the four paradigms, random action opponents,
and stationary opponents. Since we train five seeds, we select the best three seeds for evaluation

matchup opponents, ranked by the episode reward value achieved during training.

Figure 20 — Aggregate rating (left) and percentage of outcomes (right) from the evaluation procedure for the
learning paradigms with adjusted reward components weights.

N WIN [DRAW W LOSS

-0.082

SA
0.588
il
0.260
JAL
0.562
. [
0.0 0.2 0.4 0.6 0% 25% 50% 75% 100%
RATING (IQM) Outcomes

Source: Author (2023).

Figure 20 illustrates the calculated rating and the outcomes of the matches from the
evaluation procedure.

The JAL, which treats the rewards jointly, has not improved its relative rating over the
RSA paradigm. It is still unexpected that JAL has a result far from the best, even without
cooperation, we anticipated that the result of multi-agent paradigms would be at least similar
to RSA. SA is now, in fact, the paradigm with the worst rating, as expected, since it controls
only one robot.

Regarding the evaluation matches outcomes, they reflect the results seen in the rating.
RSA and IL have the highest win percentages and lowest loss percentages. An interesting
point is a general decrease in the percentage of draws, we think differences in the simulator
or the longer duration of the evaluation episode are possible causes for that.

Figure 21 compares the evaluation results of this experiment with adjusted reward weights
relative to the previous experiment. It is impossible to compare the two experiments in absolute
values, as we conducted them on different platforms with different opponent policies. However,
we can observe the change in distribution within each experiment. From this graph, we make

two observations, the first is that the paradigms that control three robots during the evaluation

61

Figure 21 — Aggregate rating from the evaluation procedure for the learning paradigms with adjusted reward
components weights compared with previous weights

I Adjusted Weights Previous Weights

sa W |
RSA | .
m
w 1

-0.1 00 01 02 03 04 05 06 0.7
RATING(IQM)

Source: Author (2023).

are now closer together in the lead, and the SA is now isolated the worst, as expected.
Additionally, we observe significant improvement of IL.

Checking recordings?, we verified that JAL learned to control all three robots, and we
verified cases of cooperation, such as positioning. Notably, it does not have the behavior of
always moving all robots to the ball, including cases of moving away of the ball to get into
position. However, it has the worst result of those controlling three robots, even with more
cooperation cases.

IL and RSA have similar behavior, where everyone constantly moves the robots closer to
the ball, but they do not get in the way as much as in the previous experiment. It is more
similar to the RSA of the previous one. However, the RSA has more dexterity in general. We
even observed cases of cooperation in the IL, as robots positioned themselves, not moving
directly to the ball and passing it. However, we must determine if it is by chance due to a
lack of dexterity. Even in the case of having cooperation, RSA has better results due to its
dexterity.

The results of this chapter support the hypothesis that the RM component conflicts
with the underlying objective of this environment, observed mainly in the IL paradigm. How-
ever, the multi-agent paradigms still need to demonstrate an advantage over the single-agent

approaches, we believe in the hypothesis that this environment model does not necessitate

2 experiment recordings available at: <https://github.com/FelipeMartins96/

exploring-deep-marl-in-ieee-vsss-recordings/tree/main /5-3>

https://github.com/FelipeMartins96/exploring-deep-marl-in-ieee-vsss-recordings/tree/main/5-3/JAL#jal-controlling-all-robots
https://github.com/FelipeMartins96/exploring-deep-marl-in-ieee-vsss-recordings/tree/main/5-3/JAL#jal-cooperating
https://github.com/FelipeMartins96/exploring-deep-marl-in-ieee-vsss-recordings/tree/main/5-3/JAL#jal-cooperating
https://github.com/FelipeMartins96/exploring-deep-marl-in-ieee-vsss-recordings/tree/main/5-3/RSA#rsa-moving-all-robots-towards-the-ball
https://github.com/FelipeMartins96/exploring-deep-marl-in-ieee-vsss-recordings/tree/main/5-3/IL#possible-il-cooperation-positioning
https://github.com/FelipeMartins96/exploring-deep-marl-in-ieee-vsss-recordings/tree/main/5-3/IL#possible-il-cooperation-positioning
https://github.com/FelipeMartins96/exploring-deep-marl-in-ieee-vsss-recordings/tree/main/5-3/IL#possible-il-cooperation-positioning
https://github.com/FelipeMartins96/exploring-deep-marl-in-ieee-vsss-recordings/tree/main/5-3
https://github.com/FelipeMartins96/exploring-deep-marl-in-ieee-vsss-recordings/tree/main/5-3

62

learning cooperation since random opponents do not present much difficulty once the agent
learns to move the ball.

With the improvements in training performance obtained after adapting the environment
to the Isaac Gym platform (MAKOVIYCHUK et al., 2021) and using the PPO (SCHULMAN et al.,
2017) RL algorithm, we expect now to be able to model the environment closer to the real

problem and still have the policies learning. This will be investigated in the next chapter.

63

6 INVESTIGATING ENVIRONMENT COMPLEXITY AND COOPERATION

Although cooperative behaviors were observed in our previous experiment when the re-
ward weights were adjusted, they needed to be more robust to outperform the single-agent
paradigm. This chapter investigates the hypothesis that the training environment is too simple
for cooperation to be essential. The simplified training environment against random action
opponents does not incentivize the policy to utilize the three robots effectively. An intricate
policy with cooperation does not amount to proportional rewards for its complexity compared
to initial solutions.

We looked into two approaches that modify the complexity of the learning environment with
changes that model it closer to the complete problem. We hope that it will encourage learning
cooperative behaviors, improving the multi-agent paradigm performance. In Section 6.1, we
experiment with changing the opponents policy which we train against, from random action
opponents to intelligent opponents. In Section 6.2, we introduce the attacking foul condition

into the environment.

6.1 LEARNING AGAINST INTELLIGENT OPPONENT POLICIES

In this section, we investigate the complexity of the environment and the cooperation in it
when learning against intelligent adversary policies. Subsection 6.1.1 outlines the experimental

setup, while Subsection 6.1.2 presents and examines the results of the experiments.

6.1.1 Experimental Setup

We kept the changes made for the Section 5.3 experiments, which altered the environment
to use the Isaac Gym platform, as it led to more reliable learning, including the ratios of
reward components that reduced the impact of RM . Additionally, in experiments we conducted
outside of this work using the rSoccer framework environment, we were not able to learn policies
when we trained against intelligent opponents. We expect that the modifications that enabled
us to learn using the new reward component ratios will also make it possible to learn against
intelligent policies.

We used the RSA paradigm as the opposing team policy, selecting one of the trained

64

policies from the experiments described in Section 5.3. The choice to use RSA was because
it had the highest rating in the evaluation. The only hyperparameter of the algorithm that
we changed was the total environment steps, which we increased from 1 billion to 2.5 billion
steps, as we wanted more training time for this more complex environment, thus, although the
value of the hyperparameter SF,,; remained the same at 0.5, since this value implies that the
SF value will reach its peak at the midpoint of the training, the SF' value will now reach its
maximum value at 1.25 billion steps.

For the evaluation process, since we did not change the environment platform, we kept the
same trained policies for the SA, RSA, IL, and JAL paradigms that we used in the Section 5.3
evaluation process, they are the policies with the best training results from the Section 5.3
experiments. Since matchups are against the same opponents, we can compare the evaluation

process ratings of this section with the evaluation process results of Section 5.3.

6.1.2 Results

Figure 22 — Goal score (left) and episode length (right) during training in the IEEE Very Small Size Soccer
learning environment against intelligent opponents.

I sA N JAL N 1L N sA N JAL I 1L
10 600
8 500
o ~ 400
[“M <
g 0 —— 2 300
® et
= @ 200 — el
o ©
0] o
2 100
o
i)
10 0
0 500M 1G 1.5G 2G 2.5G 0 500M 1G 1.5G 2G 2.5G
Environment Steps Environment Steps

Source: Author (2023).

Figure 22 illustrates the GS component and the duration of the episode during training.
In these experiments, the paradigms did not reach the maximum GS value, indicating that
the environment had become more complex and the agent could no longer win all matches.
This complexity increase allowed us to compare the performance of the single and multi-agent
paradigms. The multi-agent paradigms achieved a higher G.S value than the SA, which we
expect since the single-agent paradigm only trains with one robot. The decrease in the result
until the middle of the training is due to the speed factor, which causes the environment to

reach its peak complexity at the midpoint of training.

65

Figure 23 — Aggregate rating (left) and percentage of outcomes (right) from the evaluation procedure for the
learning paradigms trained against intelligent opponents.

= WIN [DRAW I LOSS

0.434

o il

RSA
0.747
JAL
0.735
IL
0.5 0.6 0.7 0.8 0% 25% 50% 75% 100%
RATING (IQM) Outcomes

Source: Author (2023).

Figure 23 displays the calculated rating and matches outcomes from the evaluation process.
The RSA paradigm achieved the best overall result, and the JAL and IL multi-agent paradigms
had similar results, trailing the RSA rating and with a significant advantage to SA, which had

the expected worst result as it controls only one robot.

Figure 24 — Aggregate rating from the evaluation procedure for the learning paradigms trained against intel-
ligent opponents compared with random action opponents.

I Intelligent Opponents Training [7271 Random Action Opponents Training

o 10 i
mo
JAL H

B

0.0 0.2 0.4 0.6 0.8
RATING (IQM)

Source: Author (2023).

Figure 24 displays the evaluation rating of this experiment and the previous experiment
(from Section 5.3), in which we trained against random action opponents. All paradigms

achieved a higher rating when trained against intelligent opponents. However, contrary to our

66

expectations, the RSA increased its edge against the IL. The fact that all paradigms, when
trained against intelligent policies, improved their results relative to policies trained against
random action opponents shows that the previous environment does not encourage learning
more complex policies due to the limited challenge it proposes.

We highlight that the performance of JAL has improved, now matching that of IL, which
illustrates the problem: in the environment against random opponents, it has no incentives
to learn the optimal use of the robots it controls, as observed in the evaluation, while the IL
paradigm does not suffer from this problem, as it shares the policy, learning of one robot or
all is effectively the same thing.

In an analysis of the recordings!, all paradigms move all robots close to the ball. JAL is
the most cautious about getting too close. In it, we observe cooperative behaviors where one
of the robots moves significantly away from the ball to position itself. In IL, we verified three
cooperative behaviors: one of the robots blocks the opponent robot in a movement contrary
to the direction of the ball, they seem to use a technique of pushing the ball side by side,
and they seem to coordinate a movement where they send one robot at a time towards the
ball. This last behavior seems to avoid hitting the wall and produce momentum, pushing the
ball against opponents. We did not observe any cooperative behavior with RSA, and agents
sometimes get stuck blocking each other. Although we observe some level of cooperation in
the multi-agent paradigms, RSA still achieves the best result, possibly due to more dexterous
control.

The JAL and IL approaches have yet to surpass the performance of RSA, even when we
model the environment more closely to the actual problem with intelligent opponents. We
hypothesize that we could not train optimal multi-agent policies due to limitations in the
methods, the multi-agent paradigms should be capable of matching the RSA performance.
Following these experiment results, although the training environment is now more complex,
it still needs to present a clear advantage to using cooperating policies. We investigate other

approaches to make the environment more conducive to cooperation.

1 experiment recordings available at: <https://github.com/FelipeMartins96/

exploring-deep-marl-in-ieee-vsss-recordings/tree/main /6-1>

https://github.com/FelipeMartins96/exploring-deep-marl-in-ieee-vsss-recordings/tree/main/6-1/JAL#jal-cooperating
https://github.com/FelipeMartins96/exploring-deep-marl-in-ieee-vsss-recordings/tree/main/6-1/JAL#jal-cooperating
https://github.com/FelipeMartins96/exploring-deep-marl-in-ieee-vsss-recordings/tree/main/6-1/IL#il-pushing-opponent-away-from-ball
https://github.com/FelipeMartins96/exploring-deep-marl-in-ieee-vsss-recordings/tree/main/6-1/IL#il-pushing-opponent-away-from-ball
https://github.com/FelipeMartins96/exploring-deep-marl-in-ieee-vsss-recordings/tree/main/6-1/IL#il-pushing-ball-side-by-side
https://github.com/FelipeMartins96/exploring-deep-marl-in-ieee-vsss-recordings/tree/main/6-1/IL#il-going-towards-ball-one-at-a-time
https://github.com/FelipeMartins96/exploring-deep-marl-in-ieee-vsss-recordings/tree/main/6-1/IL#il-going-towards-ball-one-at-a-time
https://github.com/FelipeMartins96/exploring-deep-marl-in-ieee-vsss-recordings/tree/main/6-1/RSA#rsa-blocking-each-other
https://github.com/FelipeMartins96/exploring-deep-marl-in-ieee-vsss-recordings/tree/main/6-1/RSA#rsa-blocking-each-other
https://github.com/FelipeMartins96/exploring-deep-marl-in-ieee-vsss-recordings/tree/main/6-1
https://github.com/FelipeMartins96/exploring-deep-marl-in-ieee-vsss-recordings/tree/main/6-1

67

6.2 LEARNING TO HANDLE ATTACKING FOULS

Despite being trained against intelligent opponents, the multi-agent paradigms failed to
outperform RSA in previous experiments. Therefore, we hypothesize that the learning en-
vironment, with the increased complexity of intelligent opponents, is also not conducive to
cooperation. In this section, we delve deeper into the complexity of the environment and
cooperation when learning with VSSS attacking foul conditions (PINTO, 2023). We present
the experimental setup in Subsection 6.2.1, and analyze the results of these experiments in

Subsection 6.2.2.

6.2.1 Experimental Setup

The attacking foul rule requires coordination among the players so that no more than one
robot enters the opposing team'’s goal area when the ball is also there. The team is penalized
when this coordination does not occur, as the referee halts its attacking play. The rules indicate
that following an attacking foul, the referee should resume the game with a goal kick for the
opposing team (PINTO, 2023). In our training environment, we decided to end the episode
when an attacking foul occurs, we added the Attacking Foul reward component, AF, with a
value of -1 when an attacking foul occurs.

Apart from the environment now checking for attacking fouls, we maintain the same
experimental configuration used on Section 6.1, with the increased number of training steps,
but we revert to using random action opponents. We only check for attacking fouls caused by
the team we are training.

We maintain the opponent policies used in evaluating the previous experiments on the
Isaac Gym platform. However, for the evaluation procedure of this experiment, we will check
for attacking fouls caused by the team we are evaluating, ending the match, affecting the

rating and outcomes results.

6.2.2 Results

Figure 25 shows GG\S and AF' components throughout training, all paradigms quickly con-
verged to the maximum value of GS and kept AF' close to zero. We observe a high AF

penalization for the multi-agent paradigms at the beginning of the training that then de-

68

Figure 25 — Goal score (left) and episode length (right) during training in the IEEE Very Small Size Soccer
learning environment with attacking fouls.

I sA I AL Il L I sA Il AL Il
10
0.1
@ s 2
5
1) = 0
~ =]
g g —
8 0 o -0.1 %\,—M—'\
% £
= 4
@ 5}
8 ° 8 02
<
-10 -0.3
0 500M 1G 1.5G 2G 2.5G 0 500M 1G 1.5G 2G 2.5G
Environment Steps Environment Steps

Source: Author (2023).

creases. This is because when learning the initial behavior of moving the ball towards the
enemy goal, the multi-agent paradigms start to commit attacking fouls, so being penalized, it
learns to avoid them. We do not see the same increase in AF' in SA training, as it controls
only one robot, it cannot cause attacking fouls, except when a teammate randomly enters
the opponent’s goal area. The SA teammates entering the opponent goal area do not occur
frequently, hence the low AF' penalization, but when it does, the SA has no control to remove

them, explaining the higher AF" value compared to the multi-agent paradigms, which control

all robots.

Figure 26 — Aggregate rating (left) and percentage of outcomes (right) from the evaluation procedure for the
learning paradigms trained with attacking fouls.

@@ WIN @ DRAW W LOSS [FOuL

-0.091
SA
RSA

0.254

JAL
IL

-0.1 0.0 0.1 0.2 0.3 0.4 0.5 0% 25% 50% 75% 100%

RATING (IQM) Outcomes

Source: Author (2023).

As the training of all paradigms converges to optimal values, the evaluation procedure gives
us more information about their respective performances. Figure 26 shows the aggregated

rating result and the outcome of the matches for the paradigms in the evaluation procedure,

69

we see that IL was the paradigm with the best result, the first experiment where a multi-agent
paradigm is the best. This result shows that cooperation is advantageous in this environment.
The JAL paradigm, however, presented a lower result than RSA.

Observing the outcomes of the evaluation games shown in Figure 26, we noticed that RSA
commits more fouls than the multi-agent paradigms by a significant amount, as it could not
learn to coordinate to avoid fouls. Despite its lower rating result than RSA, JAL had a higher
percentage of wins but is penalized by a higher proportion of losses. Despite not learning to
cooperate, we assume that RSA has a more optimized control, if we consider matches in which
the outcome was an attacking foul as situations of probable victory, RSA would have the best
result, as seen in previous experiments.

Analyzing the recordings® of the evaluation procedure matches, we found that JAL does
not learn to use all three robots to score goals, in one of the seeds, we see the policy always
using the same robot to score. This non-optimal usage of the resources may explain its inferior
performance to other paradigms. Although JAL does not use all robots to score goals, it
controls all three to move close to the ball and coordinates so that other robots do not enter
the opponent’s goal area to avoid attacking fouls.

We also observed that RSA learned to “kick” the ball from outside the goal area. The agent
pushes the ball and stops moving before reaching the goal area, letting it continue with its
inertia, thus avoiding the foul. It learned this behavior as a way not to commit attacking fouls
when a teammate is in the opponent’s goal area, as it cannot control the teammates, however,
we still see RSA causing attacking fouls. We do not consider this behavior as cooperation as
this is an individual behavior learned due to the impossibility of cooperation. In the IL paradigm,
we can observe that the robots avoid entering the opponent’s goal area when a teammate is
inside.

We performed additional experiments to understand better the effect of attacking fouls.
In Subsubsection 6.2.2.1, we analyze how adding the attacking foul condition changes the
environment and training complexity, and in Subsubsection 6.2.2.2, we evaluate the paradigms

training them both with attacking fouls and against intelligent opponents.

2 experiment recordings available at: <https://github.com/FelipeMartins96/

exploring-deep-marl-in-ieee-vsss-recordings/tree/main /6-2>

https://github.com/FelipeMartins96/exploring-deep-marl-in-ieee-vsss-recordings/tree/main/6-2/JAL#jal-using-only-the-purple-robot-to-score
https://github.com/FelipeMartins96/exploring-deep-marl-in-ieee-vsss-recordings/tree/main/6-2/JAL#jal-using-only-the-purple-robot-to-score
https://github.com/FelipeMartins96/exploring-deep-marl-in-ieee-vsss-recordings/tree/main/6-2/JAL#jal-with-bad-control-of-red-robot
https://github.com/FelipeMartins96/exploring-deep-marl-in-ieee-vsss-recordings/tree/main/6-2/JAL#jal-avoiding-attacking-fouls
https://github.com/FelipeMartins96/exploring-deep-marl-in-ieee-vsss-recordings/tree/main/6-2/JAL#jal-avoiding-attacking-fouls
https://github.com/FelipeMartins96/exploring-deep-marl-in-ieee-vsss-recordings/tree/main/6-2/RSA#rsa-avoiding-attacking-foul-by-kicking-the-ball-from-outside-the-goal-area
https://github.com/FelipeMartins96/exploring-deep-marl-in-ieee-vsss-recordings/tree/main/6-2/RSA#rsa-commiting-attacking-fouls
https://github.com/FelipeMartins96/exploring-deep-marl-in-ieee-vsss-recordings/tree/main/6-2/IL#il-avoiding-attacking-fouls
https://github.com/FelipeMartins96/exploring-deep-marl-in-ieee-vsss-recordings/tree/main/6-2/IL#il-avoiding-attacking-fouls
https://github.com/FelipeMartins96/exploring-deep-marl-in-ieee-vsss-recordings/tree/main/6-2
https://github.com/FelipeMartins96/exploring-deep-marl-in-ieee-vsss-recordings/tree/main/6-2

70

6.2.2.1 Evaluating How The Attacking Foul Condition Affects Environment and Learning

Complexity

Figure 27 — Aggregate rating from the evaluation procedure with attacking fouls compared with the evaluation
procedure without attacking fouls for the learning paradigms trained with attacking fouls.

I Evaluation With Fouls Evaluation Without Fouls

s« [
RSA - |
AL Bl

L N

-0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6
RATING (IQM)

Source: Author (2023).

To compare how the attacking foul condition increases the environment complexity, we
also evaluate the paradigms in an environment without the attacking foul condition. Figure 27
compares the evaluation rating with and without the attacking foul condition. We observe the
reduction in rating of all the paradigms when evaluating the foul condition as indicative of
its increase in complexity. Furthermore, compared to other paradigms, the more considerable
rating reduction from the RSA indicates that cooperating is advantageous when we add the
attacking foul condition to the environment.

To study the learning performance in this more complex environment, we ran the policies
trained in the Section 5.3 experiment, in which we trained in an environment without attacking
fouls, in the evaluation procedure checking for attacking fouls. Figure 28 compares its result
with the paradigms trained in an environment with attacking fouls. We see that SA and RSA
improved when training with fouls, an unexpected improvement since we initially expected
cooperation to be necessary. This improvement of the single-agent paradigms indicates that
they lean to avoid committing attacking fouls, as observed in the recordings that it learns
the kicking behavior. However, we observe a more significant improvement in the multi-agent
paradigms than in the single-agent, as avoiding attacking fouls through cooperation to obtain

better results.

71

Figure 28 — Aggregate rating from the evaluation procedure with attacking fouls for the learning paradigms
trained with attacking fouls compared to trained without attacking fouls.

I Trained With Fouls Trained Without Fouls

s NI
W
ol i

. | E

-0.1 0.0 0.1 0.2 0.3 0.4 0.5
RATING (IQM)

Source: Author (2023).

6.2.2.2 Training with Attacking Fouls Against Intelligent Opponents

When we add the attacking foul condition, cooperation becomes more critical, as the JAL
paradigm can learn to cooperate, we hypothesize that it can topple the result of the RSA
paradigm. However, the rating achieved by the JAL paradigm was lower than that of RSA.

As observed in previous match recordings, the JAL paradigm, which we trained in an envi-
ronment where attacking fouls were not allowed, did not learn to take advantage of controlling
three robots. This non-optimal learned policy may be due to learning methods’ limitations.
Although optimizing the methods is a possible solution, we focus on investigating the envi-
ronment.

In the following experiment, we test increasing the difficulty of scoring a goal during training
in an environment that penalizes attacking fouls using an intelligent opponent policy. We check
if we can replicate the performance gains we obtained in the JAL paradigm trained against
an intelligent opponent policy compared to training against random opponent actions in the
environment without attacking fouls, as shown in Figure 24.

We used the same opponent policy as in the previous experiment, training against intelligent
opponent policies of Section 6.1, an RSA policy trained in the Section 5.3 experiment. Although
the opponent policy does not avoid committing attacking fouls, the environment does not
penalize the opponent for causing them.

Figure 29 shows the evaluation rating obtained when training to avoid attacking fouls

72

Figure 29 — Aggregate rating from the evaluation procedure with attacking fouls for the learning paradigms
trained with attacking fouls against intelligent opponents compared to trained against random
action opponents.

Intelligent Opponents Training With Fouls I Random Action Opponents Training With Fouls

sa [|
T
m 0

. o

-0.1 0.0 0.1 0.2 0.3 0.4 0.5
RATING (IQM)

Source: Author (2023).

against random action opponents compared to training to avoid attacking fouls against in-
telligent opponents. As expected, we observed an improvement in the performance of JAL,
which is the best result compared to other paradigms trained to avoid attacking fouls against
intelligent policies. However, its performance is not superior to RSA and IL paradigms trained
to avoid fouls against random action opponents.

We see an unexpected degradation of the IL performance. This degradation may have
happened because the environment has become too complex for this paradigm, harming its
learning, especially considering that, in IL, the environment is non-stationary. Returning to
the learning challenge hypothesis, where the complete environment becomes too difficult for
learning and simplifications limit the exploration for optimal policies.

SA was the paradigm that had the most significant performance gains in the modified
environment, as it is less affected by the attacking foul rule, it can better take advantage of
the more complex environment to find a more optimized policy. We expected that JAL and IL
paradigms would be able to achieve the same gains as SA, but they did not.

Finally, it is interesting that despite the significant improvement of SA, RSA worsened,
highlighting the cooperation requirement of this environment.

The experiments show the challenges of using MARL in the VSSS robot soccer environ-
ment. Learning policies using multi-agent paradigms does not necessarily result in a better

approach than single-agent paradigms. When we model the environment closer to the real

73

one, the multi-agent paradigms have the advantage of being able to cooperate. However, the
increase in training complexity also amplifies the advantages of the single-agent paradigms for

its more efficient learning.

74

7 FINAL CONSIDERATIONS

This thesis focused on applying deep MARL to cooperative learning in the VSSS robot
soccer environment. On different environment configurations, we employed four paradigms: SA
and RSA single-agent paradigms, IL and JAL multi-agent paradigms. We evaluated and com-
pared the performance of the multi-agent and single-agent paradigms through an evaluation
methodology proposed, and analyze the results to understand the importance of cooperation
in the environment.

In Section 7.1, we discuss conclusions taken from the experiment results. In Section 7.2,
we discuss our work contributions to science. In Section 7.3, we list the limitations of our work.

In Section 7.4, we discuss future works.

7.1 RESULTS CONCLUSIONS

Here we organize our conclusions based on the goals set out in this research. In Sub-
section 7.1.1, we will discuss our findings on the use of deep MARL for learning policies in
the VSSS environment. In Subsection 7.1.2, we will present our conclusion on the different
paradigms employed. In Subsection 7.1.3 we will discuss our conclusions on the role of coop-

eration in the environment.

7.1.1 Learning Policies Using Single-Agent and Multi-Agent Deep Reinforcement

Learning Paradigms in the IEEE Very Small Size Soccer Environment

Our research builds upon previous studies that trained agents to score goals in a VSSS
environment using the SA and IL paradigms. However, we took a step further by applying the
JAL paradigm in the same environment and achieved successful results.

A previous study by MARTINS et al. (2021) utilized the SA and IL paradigms to train
agents in the VSSS environment. We replicated their results using the DDPG algorithm and
also implemented the MADDPG algorithm, which improved the IL performance as they had
proposed. Furthermore, we addressed issues that MARTINS et al. (2021) encountered, such as
the reward function being biased towards keeping the robot close to the ball and the lack of

success using PPO. We did this by adapting the environment to the Isaac Gym platform, which

75

enabled massively parallel environment interactions. We show an increase in IL performance
after learning with modified reward component weights.

BRANDAO et al. (2022) successfully trained agents to score goals using PPO in the IL
paradigm using self-play and noted cooperative behaviors, their environment included all the
game rules. Although we did not experiment with self-play or the environment with all game
rules, we experimented with the attacking foul rule and successfully trained agents in the IL
paradigm.

Our research trained agents to score goals and observed cooperative behaviors on policies
learned using the IL and JAL paradigms. By successfully training agents using single-agent
and multi-agent paradigms in the same environment, we could draw comparative conclusions

on their performance.

7.1.2 Paradigms Performance on IEEE Very Small Size Soccer Environment

The IL paradigm leverages the homogeneity of the agents in this environment, allowing
the sharing of experiences and policy parameters between agents. This paradigm presented
increased learning speed compared to JAL due to the sharing of experiences and because its
policy also has the same number of actions as the single agent. Also notable in this comparison,
is its joint learning of the control of the three robots due to the sharing of policy among agents.
We observed as downsides of this paradigm its lower guarantee of convergence due to the non-
stationarity caused by each robot being effectively an individual agent, and being more sensitive
to increases in the complexity of the environment. This paradigm was also the most affected
by the individual reward components that conflicted with scoring goals.

The experiments with the attacking foul condition exemplify the performance of the IL
paradigm well. It presented the best results controlling the three robots and learning to co-
ordinate so that only one enters the area. However, in the tests carried out which increased
complexity by training it with attacking foul against intelligent opponents, this paradigm had
a loss of performance. The environment proved to be too complex for learning, showing that
advances with this paradigm require further improvements to MARL methods.

We observed a lower convergence speed during training for the JAL due to its increased
action space dimensionality. However, JAL has a better guarantee of convergence and is less
affected by the non-stationarity of the environment since it controls the three robots as if

it were a single agent. However, the convergence towards non-optimal policies was observed,

76

being especially more prevalent in simpler environments, such as the environment with random
action opponents, in which learning to control a single robot is sufficient to score consistently,
and, when training with attacking fouls, the paradigm can learn to use only one robot with
moderately effective results due to the advantage of being able to attack with only one agent
to prevent attacking fouls.

JAL learning to control only a single robot was not the prevalent outcome, in most cases
we can see it moving the three robots and even cooperative behaviors such positioning, but in
the same policies, we see situations where it does not control a robot in a favorable situation
or we can identify it having a preferred robot used to score, since this behavior of controlling a
single agent does not work well against intelligent opponents during evaluation, JAL produced
poor results in this situation. In the experiments in the environment with the RM component
with significant weight, JAL was encouraged to control the three robots towards the ball, thus
reducing the tendency to control only one robot.

Both SA and RSA, presented surprisingly positive outcomes, showing good results in all
environment configurations, being the best in almost all environments with the exception of
the environment with the attacking foul condition. The fact that single-agent paradigms learn
so much even though they are controlling only one robot during training is an unexpected result
of this research. We conclude, in addition to the single-agent better guarantees of convergence,
that happens due to training benefitting from not having to divide learning between control and
coordination, while at the same time, the learning environment is intrinsically more challenging
since it has fewer resources controlling only one robot, and as it cannot rely on teammates

during training, so the focus is placed on learning a more robust policy.

7.1.3 Cooperation in the IEEE Very Small Size Soccer Environment

As simplifications must be made from the complete VSSS match to enable learning policies,
our study initially focused on learning cooperation on those environment configurations with
the simplifications.

We based our initial environment configuration on the environment proposed by the rSoccer
framework (MARTINS et al., 2021). In this environment, the RSA paradigm outperformed the
multi-agent paradigms and we discovered that the RM component was a heavy-weighted
component of the total reward for the environment. When controlling multiple robots, the

RM component conditions them to flock around the ball, hindering the performance as they

77

get in each other's way. This behavior is more prevalent in the IL paradigm, as each robot
aimed to maximize its individual RM component during training.

In our second environment configuration, we adjusted the proportions of the reward com-
ponents to reduce the impact of the RM component, expecting to observe cooperative be-
haviors, resulting in better performance of the multi-agent paradigms. While we did observe
cooperative behaviors in the multi-agent paradigms, their performance was inferior to that of
the single-agent method, RSA, indicating that, in this environment configuration, cooperation
may not yield a performance advantage.

To increase the complexity of the environment and align it more closely with real VSSS
matches and the evaluation procedure, we studied a third environment configuration. We
modified the opponent team to employ intelligent policies. We expected that the ability to
cooperate among the multi-agent paradigms would lead to learning policies with superior
performance in this more challenging environment. However, although we observed cooperative
behaviors and performance of all the multi-agent paradigms improved when compared with the
policies trained against random action opponents, the multi-agent paradigms’ results remained
similar to those of the RSA paradigm. Therefore, cooperation did not prove necessary for
optimal performance in this environment. However, we did observe an improved performance
of all the paradigms compared to the previous experiment, which trained against random action
opponents.

In our final environment configuration, we added the condition of an attacking foul, which
required coordination between agents to ensure that only one robot at a time enters the
opponent goal area to score. In this configuration, we observed that the multi-agent paradigms
learned to cooperate to avoid making attacking fouls, and the multi-agent evaluation result
finally outperformed RSA. Interestingly, we observed that single-agent paradigms also adapted
by learning to score goals without entering the area, as they cannot coordinate. Still, the
worse results obtained with RSA showcase the advantage of cooperating on this environment
configuration.

From our experiments, we deduced that simply training a cooperative policy does not
guarantee the best performance in the environment. In most cases, a single-agent paradigm
proved to be more capable. The possibility of training to control a single robot and using
that policy to control all three robots, as shown in the RSA paradigm, makes the single-
agent approach especially powerful in this environment. This characteristic also enables us to

compare cooperating and non-cooperating policies on equal footing.

78

From our experiments, we outline the following dilemma of learning cooperating policies
for the VSSS problem: simplifications to enable learning can make cooperation unnecessary
for optimal control, and adding elements that can make cooperation more advantageous can
cause the environment to be too challenging to learn an optimal policy. Additionally, the multi-
agent paradigms that can learn cooperation in challenging environments have their learning

even more impacted by the increased complexity than the single-agent paradigms.

7.2 CONTRIBUTIONS TO SCIENCE

We list as contributions of this work:

a) Showing that it is possible learning policies that cooperate and score goals in a VSSS

environment using the JAL paradigm;

b) A comparison of different RL policy learning paradigms in the VSSS, showing that
there is no clear better multi-agent paradigm, JAL and IL performance can vary with
the environment characteristics, their capability of learning to cooperate can be advan-
tegeous as we model the environment closer to the full problem, but they should be

compared against the single-agent approach;

c) The study of cooperation in the VSSS environment, showing that environment simpli-
fications made to enable learning to score goals can have a negative impact on learning

cooperative behaviors.

During the development of this dissertation, we introduced the rSoccer framework for the
development of RL environments in tasks of the VSSS and Small Size League categories of

robot soccer:

= MARTINS, F. B.; MACHADO, M. G.; BASSANI, H. F.; BRAGA, P. H.; BARROS, E.
S. rsoccer: A framework for studying reinforcement learning in small and very small size

robot soccer. In: Robot World Cup. [S.l.]: Springer, 2021. p. 165-176.

The rSoccer environment also served as a basis for this work and others. Below we list
publications using the rSoccer framework until September of 2023:
a) SILVA, J. d. N. D. d. Evaluation of time limits in reinforcement learning applied to

robot soccer simulation. B.S. thesis — Universidade Federal de Pernambuco, 2021.

79

b) MACHADO, M. G. DyLam: a dynamic reward weighting method for reinforcement

learning policy gradient algorithms. Master’'s Thesi — Universidade Federal de Per-

nambuco, 2022

c) CRUZ, J. V. S. Exploring reinforcement learning in path planning for omnidirectional
robot soccer. B.S. thesis — Universidade Federal de Pernambuco, 2023.
The rSoccer environment was also used by RobdCln to learn an VSSS attacker policy,
which won the Latin American Robotics Competition multiple times.
Other works in robotics published during the development of this dissertation:
a) ARAUJO, V.; MARTINS, F.; FERNANDES, R.; BARROS, E. A telemetry-based pi
tuning strategy for low-level control of an omnidirectional mobile robot. In: Robot

World Cup. [S.I.]: Springer, 2021. p. 189-201.

b) MELO, J. G.; MARTINS, F.; CAVALCANTI, L.; FERNANDES, R.; ARAUJO, V;
JOAQUIM, R.; MONTEIRO, J. G.; BARROS, E. Towards an autonomous robocup
small size league robot. In: IEEE. 2022 Latin American Robotics Symposium (LARS),
2022 Brazilian Symposium on Robotics (SBR), and 2022 Workshop on Robotics in
Education (WRE). [S.l.], 2022. p. 1-6.

7.3 LIMITATIONS

The following limitations of this work are important to mention:

a) does not approach a complete modeling of the VSSS environment;

b) does not study how training through self-play can affect the learning paradigms;

c) does not outline the possible cooperative behaviors and their benefits;

d) does not compare the performance of this work paradigms to the results of the work

of BRANDAO et al. (2022).

7.4 FUTURE WORKS

We believe that an exciting path for future work is to study ways to add the strengths of
the paradigms studied in this work:
a) permutations on the experiences obtained by the JAL paradigm so that they are agnostic

to the id of the controlled robots, performing a mixture of sharing experiences with data

80

augmentation (DYK; MENG, 2001), hoping to observe the advantages of IL in terms of

efficiency of experiences and joint learning of the control of the three robots in JAL;

randomize the number of robots controlled during training, both aiming at the con-
trol advantages of the single-agent paradigms and preventing the JAL paradigm from

controlling only part of the robots;

performance gains when using a massively parallel environment make us believe that
we can benefit from the symmetries of our environment and permutations to perform a
data augmentation to multiply the obtained experiences and thus achieve performance
gains;

study different approaches to representing observations, such as images and egocentric

frame of reference (KLATZKY, 1998);

study how the performance of cooperative policies learned in simulation transfer to real

robots;

creating a set of pre-defined scenarios to isolate the study of specific cooperative be-

haviors;

self-play as a possible solution to the problem of training instability due to the difficulty
of the environment, having an environment with opponent complexity adapting to

learning.

81

REFERENCES

AGARWAL, R.; SCHWARZER, M.; CASTRO, P. S.; COURVILLE, A. C.; BELLEMARE,
M. Deep reinforcement learning at the edge of the statistical precipice. Advances in Neural
Information Processing Systems, v. 34, 2021.

ANDRYCHOWICZ, M.; RAICHUK, A.; STANCZYK, P.; ORSINI, M.; GIRGIN, S.;
MARINIER, R.; HUSSENOT, L.; GEIST, M.; PIETQUIN, O.; MICHALSKI, M.; GELLY,
S.; BACHEM, O. What matters for on-policy deep actor-critic methods? a large-scale
study. In: International Conference on Learning Representations. Virtual Event, Austria:
OpenReview.net, 2021. Available at: <https://openreview.net/forum?id=nlAxjsniDzg>.

BAKER, B.; KANITSCHEIDER, I.; MARKOV, T.; WU, Y.; POWELL, G.; MCGREW,
B.; MORDATCH, I. Emergent tool use from multi-agent autocurricula. arXiv preprint
arXiv:1909.07528, 2019.

BASSANI, H. F.; DELGADO, R. A.; JUNIOR, J. N. d. O. L.; MEDEIROQOS, H. R.; BRAGA,
P. H.; MACHADO, M. G.; SANTOS, L. H.; TAPP, A. A framework for studying reinforcement
learning and sim-to-real in robot soccer. arXiv preprint arXiv:2008.12624, 2020.

BENGIO, Y.; LOURADOUR, J.; COLLOBERT, R.; WESTON, J. Curriculum learning.
In: Proceedings of the 26th Annual International Conference on Machine Learning. New
York, NY, USA: Association for Computing Machinery, 2009. (ICML '09), p. 41-48. ISBN
9781605585161. Available at: <https://doi.org/10.1145/1553374.1553380>.

BERNSTEIN, D. S.; GIVAN, R.; IMMERMAN, N.; ZILBERSTEIN, S. The complexity of
decentralized control of markov decision processes. Mathematics of operations research,
INFORMS, v. 27, n. 4, p. 819-840, 2002.

BRANDAO, B.; LIMA, T. W. D.; SOARES, A.; MELO, L.; MAXIMO, M. R. Multiagent
reinforcement learning for strategic decision making and control in robotic soccer through
self-play. IEEE Access, IEEE, v. 10, p. 72628-72642, 2022.

BROCKMAN, G.; CHEUNG, V.; PETTERSSON, L.; SCHNEIDER, J.; SCHULMAN, J;
TANG, J.; ZAREMBA, W. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

BURKHARD, H.-D.; DUHAUT, D.; FUJITA, M.: LIMA, P.; MURPHY, R.; ROJAS, R. The
road to robocup 2050. /IEEE Robotics & Automation Magazine, |IEEE, v. 9, n. 2, p. 31-38,
2002.

CLEMENTE, F. M.; MARTINS, F. M. L.; MENDES, R. S.; FIGUEIREDO, A. J. A systemic
overview of football game: the principles behind the game. Journal of Human Sport and
Exercise, Universidad de Alicante, v. 9, n. 2, p. 656667, 2014.

DELGADO, R. d. A. Aprendizagem de comportamentos em robds através de aprendizagem
por reforco. Master’s Thesis (Master's Thesis) — Universidade Federal de Pernambuco, 2019.

DYK, D. A. V.; MENG, X.-L. The art of data augmentation. Journal of Computational and
Graphical Statistics, Taylor & Francis, v. 10, n. 1, p. 1-50, 2001.

ENGSTROM, L.; ILYAS, A.; SANTURKAR, S.; TSIPRAS, D.; JANOQS, F.; RUDOLPH,
L.; MADRY, A. Implementation matters in deep RL: A case study on PPO and

https://openreview.net/forum?id=nIAxjsniDzg
https://doi.org/10.1145/1553374.1553380

82

TRPO. In: 8th International Conference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. Available at:
<https://openreview.net /forum?id=rletN1rtPB>.

FOERSTER, J. N.; FARQUHAR, G.; AFOURAS, T.; NARDELLI, N.; WHITESON, S.
Counterfactual multi-agent policy gradients. In: Proceedings of the Thirty-Second AAAI
Conference on Artificial Intelligence and Thirtieth Innovative Applications of Artificial
Intelligence Conference and Eighth AAAI Symposium on Educational Advances in Artificial
Intelligence. New Orleans, Louisiana, USA: AAAI Press, 2018. (AAAI'18/IAAI'18/EAAI'18).
ISBN 978-1-57735-800-8.

HAUSKNECHT, M. J. Cooperation and communication in multiagent deep reinforcement
learning. Phd Thesis (PhD Thesis) — The University of Texas at Austin, 2016.

HOEN, P. J. t.: TUYLS, K.; PANAIT, L.: LUKE, S.: POUTRE, J. A. L. An overview of
cooperative and competitive multiagent learning. In: TUYLS, K.; HOEN, P. J.; VERBEECK,
K.; SEN, S. (Ed.). Learning and Adaption in Multi-Agent Systems. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2006. p. 1-46. ISBN 978-3-540-33059-2.

HUANG, S.; DOSSA, R. F. J.; RAFFIN, A.; KANERVISTO, A.; WANG, W. The 37
implementation details of proximal policy optimization. The ICLR Blog Track 2023, 2022.

HUANG, S.; DOSSA, R. F. J.; YE, C.; BRAGA, J.; CHAKRABORTY, D.; MEHTA, K
ARAUJO, J. G. Cleanrl: High-quality single-file implementations of deep reinforcement
learning algorithms. The Journal of Machine Learning Research, JMLRORG, v. 23, n. 1, p.
12585-12602, 2022.

ITSUKI, N. Soccer server: a simulator for robocup. In: CITESEER. JSAI Al-Symposium 95:
Special Session on RoboCup. [S.1.], 1995.

KIM, J.-H.; SHIM, H.-S.; JUNG, M.-J.; KIM, H.-S.; VADAKKEPAT, P. Cooperative
multi-agent robotic systems: from the robot-soccer perspective. In: 1997 Micro-Robot World
Cup Soccer Tournament Proceedings. [S.l.: s.n.], 1997. p. 3-14.

KIRAN, B. R.; SOBH, I.; TALPAERT, V.; MANNION, P.; SALLAB, A. A. A.; YOGAMANI,

S.: PEREZ, P. Deep reinforcement learning for autonomous driving: A survey. IEEE
Transactions on Intelligent Transportation Systems, |IEEE, v. 23, n. 6, p. 4909-4926, 2021.

KITANO, H.; ASADA, M.; KUNIYOSHI, Y.; NODA, I.; OSAWA, E.; MATSUBARA, H.
Robocup: A challenge problem for ai. Al magazine, v. 18, n. 1, p. 73-73, 1997.

KLATZKY, R. L. Allocentric and egocentric spatial representations: Definitions, distinctions,
and interconnections. In: Spatial cognition: An interdisciplinary approach to representing and
processing spatial knowledge. [S.l.]: Springer, 1998. p. 1-17.

KURACH, K.; RAICHUK, A.; STANCZYK, P.; ZAJAC, M.; BACHEM, O.; ESPEHOLT, L
RIQUELME, C.; VINCENT, D.; MICHALSKI, M.; BOUSQUET, O. et al. Google research
football: A novel reinforcement learning environment. In: Proceedings of the AAAI conference
on artificial intelligence. [S.l.: s.n.], 2020. v. 34, n. 04, p. 4501-4510.

LECUN, Y.; BENGIO, Y.; HINTON, G. Deep learning. nature, Nature Publishing Group UK
London, v. 521, n. 7553, p. 436—444, 2015.

https://openreview.net/forum?id=r1etN1rtPB

83

LILLICRAP, T. P.; HUNT, J. J.; PRITZEL, A.; HEESS, N.; EREZ, T.; TASSA, Y.; SILVER,
D.; WIERSTRA, D. Continuous control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

LITTMAN, M. L. Markov games as a framework for multi-agent reinforcement learning. In:
Machine learning proceedings 1994. [S.l.]: Elsevier, 1994. p. 157-163.

LIU, S.; LEVER, G.; MEREL, J.; TUNYASUVUNAKOOL, S.; HEESS, N.; GRAEPEL, T.
Emergent coordination through competition. arXiv preprint arXiv:1902.07151, 2019.

LOWE, R.; WU, Y. I.; TAMAR, A.; HARB, J.; ABBEEL, O. P.; MORDATCH, |. Multi-agent
actor-critic for mixed cooperative-competitive environments. Advances in neural information
processing systems, v. 30, 2017.

MAKOVIYCHUK, V.; WAWRZYNIAK, L.; GUO, Y.; LU, M.; STOREY, K.; MACKLIN, M;
HOELLER, D.; RUDIN, N.; ALLSHIRE, A.; HANDA, A. et al. Isaac gym: High performance
gpu-based physics simulation for robot learning. arXiv preprint arXiv:2108.10470, 2021.

MARTINS, F. B.,; MACHADO, M. G.; BASSANI, H. F.; BRAGA, P. H.; BARROS, E. S.
rsoccer: A framework for studying reinforcement learning in small and very small size robot

soccer. In: Robot World Cup. [S.l.]: Springer, 2021. p. 165-176.

MEDEIROS, T. F. de: MAXIMO, M. R. O. de A.: YONEYAMA, T. Deep reinforcement
learning applied to ieee very small size soccer strategy. In: 2020 Latin American Robotics
Symposium (LARS), 2020 Brazilian Symposium on Robotics (SBR) and 2020 Workshop on
Robotics in Education (WRE). [S.l.: s.n.], 2020. p. 1-6.

MNIH, V.; BADIA, A. P.; MIRZA, M.; GRAVES, A,; LILLICRAP, T.; HARLEY, T.; SILVER,
D.; KAVUKCUOGLU, K. Asynchronous methods for deep reinforcement learning. In: PMLR.
International conference on machine learning. [S.l.], 2016. p. 1928-1937.

MNIH, V.; KAVUKCUOGLU, K.; SILVER, D.; RUSU, A. A.; VENESS, J.; BELLEMARE,
M. G.; GRAVES, A.; RIEDMILLER, M.; FIDJELAND, A. K.; OSTROVSKI, G. et al.
Human-level control through deep reinforcement learning. nature, Nature Publishing Group,
v. 518, n. 7540, p. 529-533, 2015.

MONAJJEMI, V.; KOOCHAKZADEH, A.; GHIDARY, S. S. grsim-robocup small size robot
soccer simulator. In: SPRINGER. RoboCup 2011: Robot Soccer World Cup XV 15. [S.1],
2012. p. 450-460.

MORDATCH, I.; ABBEEL, P. Emergence of grounded compositional language in multi-agent
populations. In: Proceedings of the AAAI conference on artificial intelligence. [S.l.: s.n],
2018. v. 32, n. 1.

NG, A. Y.; HARADA, D.; RUSSELL, S. Policy invariance under reward transformations:
Theory and application to reward shaping. In: CITESEER. Icml. [S.l.], 1999. v. 99, p.
278-287.

NGUYEN, T. T.; NGUYEN, N. D.; NAHAVANDI, S. Deep reinforcement learning for
multiagent systems: A review of challenges, solutions, and applications. IEEE transactions on
cybernetics, |IEEE, v. 50, n. 9, p. 3826-3839, 2020.

84

OCANA, J. M. C; RICCIO, F.; CAPOBIANCO, R.; NARDI, D. Cooperative multi-agent deep
reinforcement learning in a 2 versus 2 free-kick task. In: SPRINGER. RoboCup 2019: Robot
World Cup XXIII 23. [S.1.], 2019. p. 44-57.

OPENAI. GPT-4 Technical Report. 2023.

PENA, C. H.; MACHADO, M. G.; BARRQOS, M. S.; SILVA, J. D.; MACIEL, L. D.; REN,
T. 1.; BARRQOS, E. N.; BRAGA, P. H.; BASSANI, H. F. An analysis of reinforcement learning
applied to coach task in ieee very small size soccer. In: IEEE. 2020 Latin American Robotics
Symposium (LARS), 2020 Brazilian Symposium on Robotics (SBR) and 2020 Workshop on
Robotics in Education (WRE). [S.1.], 2020. p. 1-6.

PINTO, A. H. M. Regras IEEE Very Small Size Soccer (VSSS) - Série A. 2023. Available at:
<https://www.cbrobotica.org/wp-content/uploads/2023/04 /regrasVSS23.pdf>.

PUTERMAN, M. L. Markov decision processes: discrete stochastic dynamic programming.
[S.l.]: John Wiley & Sons, 2014.

RASHID, T.; SAMVELYAN, M.; WITT, C. S. D.; FARQUHAR, G.; FOERSTER, J;
WHITESON, S. Monotonic value function factorisation for deep multi-agent reinforcement
learning. The Journal of Machine Learning Research, JMLRORG, v. 21, n. 1, p. 7234-7284,
2020.

SAMVELYAN, M.; RASHID, T.; WITT, C. S. D.; FARQUHAR, G.; NARDELLI, N
RUDNER, T. G.; HUNG, C.-M.; TORR, P. H.; FOERSTER, J.; WHITESON, S. The starcraft
multi-agent challenge. arXiv preprint arXiv:1902.04043, 2019.

SCHRITTWIESER, J.; ANTONOGLOU, I.; HUBERT, T.; SIMONYAN, K.; SIFRE, L.;
SCHMITT, S.; GUEZ, A.; LOCKHART, E.; HASSABIS, D.; GRAEPEL, T. et al. Mastering
atari, go, chess and shogi by planning with a learned model. Nature, Nature Publishing Group
UK London, v. 588, n. 7839, p. 604-609, 2020.

SCHULMAN, J.; WOLSKI, F.; DHARIWAL, P.; RADFORD, A.; KLIMOV, O. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

SHOHAM, Y.; POWERS, R.; GRENAGER, T. If multi-agent learning is the answer, what is
the question? Artificial intelligence, Elsevier, v. 171, n. 7, p. 365-377, 2007.

SMITH, L.; KOSTRIKQV, I.; LEVINE, S. A walk in the park: Learning to walk in 20 minutes
with model-free reinforcement learning. arXiv preprint arXiv:2208.07860, 2022.

STONE, P.; VELOSO, M. Multiagent systems: A survey from a machine learning perspective.
Autonomous Robots, Springer, v. 8, p. 345-383, 2000.

SUKHBAATAR, S.; FERGUS, R. et al. Learning multiagent communication with
backpropagation. Advances in neural information processing systems, v. 29, 2016.

SUTTON, R. S.; BARTO, A. G. Reinforcement learning: An introduction. [S.l.]: MIT press,
2018.

SUTTON, R. S.; MCALLESTER, D.; SINGH, S.; MANSOUR, Y. Policy gradient methods
for reinforcement learning with function approximation. In: SOLLA, S.; LEEN, T;
MULLER, K. (Ed.). Advances in Neural Information Processing Systems. MIT Press,
1999. v. 12. Available at: <https://proceedings.neurips.cc/paper_files/paper/1999 /file/
464d828b85b0bed98e80ade0abc43b0f-Paper.pdf>.

https://www.cbrobotica.org/wp-content/uploads/2023/04/regrasVSS23.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf

85

TODOROV, E.; EREZ, T.; TASSA, Y. Mujoco: A physics engine for model-based control.
In: IEEE. 2012 IEEE/RSJ international conference on intelligent robots and systems. [S.1],
2012. p. 5026-5033.

TOUVRON, H.; MARTIN, L.; STONE, K.; ALBERT, P.; ALMAHAIRI, A.; BABAEI, Y.
BASHLYKOV, N.; BATRA, S.; BHARGAVA, P.; BHOSALE, S. et al. Llama 2: Open
foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

TUYLS, K.; WEISS, G. Multiagent learning: Basics, challenges, and prospects. Ai Magazine,
v. 33, n. 3, p. 41-41, 2012.

UHLENBECK, G. E.; ORNSTEIN, L. S. On the theory of the brownian motion. Physical
review, APS, v. 36, n. 5, p. 823, 1930.

VINYALS, O.; BABUSCHKIN, I|.; CZARNECKI, W. M.; MATHIEU, M.; DUDZIK, A.;
CHUNG, J.; CHOI, D. H.; POWELL, R.; EWALDS, T.; GEORGIEV, P. et al. Grandmaster
level in starcraft ii using multi-agent reinforcement learning. Nature, Nature Publishing Group
UK London, v. 575, n. 7782, p. 350-354, 2019.

WEISS, G. Multiagent systems: a modern approach to distributed artificial intelligence. [S.1.]:
MIT press, 1999.

WITT, C. S. de; GUPTA, T.; MAKOVIICHUK, D.; MAKOVIYCHUK, V.; TORR, P. H;;
SUN, M.; WHITESON, S. Is independent learning all you need in the starcraft multi-agent
challenge? arXiv preprint arXiv:2011.09533, 2020.

WU, T.; ZHOU, P,; LIU, K.; YUAN, Y.; WANG, X.; HUANG, H.; WU, D. O. Multi-agent
deep reinforcement learning for urban traffic light control in vehicular networks. IEEE
Transactions on Vehicular Technology, IEEE, v. 69, n. 8, p. 8243-8256, 2020.

YANG, Y.; WANG, J. An overview of multi-agent reinforcement learning from game
theoretical perspective. arXiv preprint arXiv:2011.00583, 2020.

YU, C.; VELU, A.; VINITSKY, E.; GAO, J.; WANG, Y.; BAYEN, A.; WU, Y. The surprising
effectiveness of ppo in cooperative multi-agent games. Advances in Neural Information
Processing Systems, v. 35, p. 24611-24624, 2022.

	Title page
	Acknowledgements
	Abstract
	Resumo
	List of Figures
	List of Tables
	Contents
	Introduction
	IEEE Very Small Size Soccer
	Objectives

	Reinforcement Learning
	Markov Decision Processes
	Action Value Methods
	Deep Q-Network

	Policy Gradient Methods
	Deep Deterministic Policy Gradient
	Proximal Policy Optimization

	Multi-Agent Reinforcement Learning
	Markov Games
	Taxonomies of Multi-Agent Learning Problems
	Multi-Agent Learning Paradigms

	Related Work
	Multi-Agent Deep Reinforcement Learning Environments
	Multi-Agent Deep Reinforcement Learning Methods
	Reinforcement Learning in Soccer Tasks

	Proposed Experimental Methodology
	IEEE Very Small Size Soccer Learning Environment
	Actions
	Observations
	Rewards
	Initial and Terminal States

	Reinforcement Learning Paradigms
	Single-Agent Learning Paradigms
	Single-Agent Paradigm
	Replicated Single-Agent Paradigm

	Multi-Agent Learning Paradigms
	Independent Learners
	Joint Action Learners

	Evaluation Procedure

	Comparing Learning Paradigms on IEEE Very Small Size Soccer Environment
	Experimental Setup
	Results
	Reducing Robot Motion Reward Component Bias
	Experimental Setup
	Adapting The Very Small Size Soccer Environment to Isaac Gym Platform
	Adaptation to the Proximal Policy Optimization Algorithm

	Results

	Investigating Environment Complexity and Cooperation
	Learning Against Intelligent Opponent Policies
	Experimental Setup
	Results

	Learning to Handle Attacking Fouls
	Experimental Setup
	Results
	Evaluating How The Attacking Foul Condition Affects Environment and Learning Complexity
	Training with Attacking Fouls Against Intelligent Opponents

	Final Considerations
	Results Conclusions
	Learning Policies Using Single-Agent and Multi-Agent Deep Reinforcement Learning Paradigms in the IEEE Very Small Size Soccer Environment
	Paradigms Performance on IEEE Very Small Size Soccer Environment
	Cooperation in the IEEE Very Small Size Soccer Environment

	Contributions to Science
	Limitations
	Future Works

	References

