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Es impresionante que el rostro de una persona amada, el rostro de alguien con quien 

hemos vivido, a quien creemos conocer, tal vez el único rostro que seríamos capaces de 

describir, que hemos mirado durante años, desde una distancia mínima –es bello y en cierto 

modo terrible saber que incluso ese rostro puede liberar de pronto, imprevistamente, gestos 

nuevos. Gestos que nunca antes habíamos visto. Gestos que acaso nunca volveremos a ver. 

(Alejandro Zambra, Formas de volver a casa)  



 

 

 

ABSTRACT 

In Production Engineering, there is an area of research on reliability, maintenance, and risks in 

Production Systems. In this area, the objectives include maintenance policies aimed at predicting 

component failures and consequently minimizing unexpected downtimes of complex systems. 

Reliability engineering has successfully utilized machine learning to predict and categorize 

equipment and machine states. In this thesis, we aim to compare different machine learning 

algorithms and quantum machine learning in the context of reliability engineering. Specifically, 

we compare 8 models created with quantum machine learning, using three different bearing 

datasets: Case Western Reserve University, Machinery Failure Prevention Technology, and 

Paderborn University. These datasets mainly consist of accelerometer vibration data from the 

bearings, which must be processed to fit the different quantum machine learning algorithms. We 

focus on fault detection in rotating equipment, using quantum computing techniques to analyze 

sensor data installed on the equipment. Our approach considers the healthy state, inner ring 

faults, and outer ring faults of the bearings, with the aim of achieving fault detection. We 

compare established circuit designs, such as Real Amplitudes and Quantum Convolutional 

Circuits, as well as hybrid models that combine quantum circuits and neural networks using the 

library of TensorFlow with Cirq in python. We obtain results on classical computers using 

analytical calculations that simulate a quantum computer without experiencing the "quantum 

noise" delivered by the hardware. The most effective way to input data's key features is through 

a ZFeatureMap circuit, which assigns a qubit to each extracted feature from the data. Quantum 

convolutional circuits yield better results than other parameterized circuits, while hybrid models 

provide higher accuracy than their counterparts that do not utilize neural networks. The achieved 

accuracy rates on the training dataset are around 96%, suggesting that the parameterized 

quantum circuits used in this master's thesis yield stable results. 

Keywords: quantum machine learning; bearing datasets; prognostic and health management; 

fault diagnosis. 

  



 

 

 

RESUMO 

Na Engenharia de Produção, existe uma área de pesquisa sobre confiabilidade, manutenção e 

riscos em Sistemas de Produção. Nesta área, os objetivos incluem políticas de manutenção com 

o objetivo de prever falhas em componentes e, consequentemente, minimizar os tempos de 

inatividade inesperados de sistemas complexos. A engenharia tem utilizado com sucesso a 

aprendizagem de máquina para prever e categorizar estados de equipamentos e máquinas. Nesta 

dissertação, o objetivo é comparar diferentes algoritmos de aprendizagem de máquina e de 

aprendizado de máquina quântico no contexto da engenharia de confiabilidade. Especificamente, 

se comparam 8 modelos criadas com aprendizado de máquina quântico, usando três conjuntos 

de dados de rolamentos diferentes: Case Western Reserve University, Machinery Failure 

Prevention Technology e Paderborn University. Esses conjuntos de dados contêm 

principalmente dados de vibração de acelerômetros dos rolamentos, que devem ser processados 

para se adaptarem aos diferentes algoritmos de aprendizado de máquina quântico. O foco é a 

detecção de falhas em equipamentos rotativos, utilizando técnicas de computação quântica para 

analisar dados de sensores instalados no equipamento. A abordagem considera estado saudável, 

falhas no anel interno e falhas no anel externo dos rolamentos, com o objetivo de detecção de 

falhas. Foram comparados circuitos estabelecidos, como Real Amplitudes e Circuitos Quânticos 

Convolucionais, bem como modelos híbridos que combinam circuitos quânticos e redes neurais 

usando a biblioteca do TensorFlow com o Cirq em Python. Os resultados obtidos em 

computadores clássicos usando cálculos analíticos que simulam um computador quântico, sem 

experimentar o "ruído quântico" entregue pelo hardware. A melhor maneira de inserir dados das 

principais características é através de um circuito ZFeatureMap, que dedica um qubit para cada 

característica extraída dos dados. Circuitos quânticos convolucionais produzem melhores 

resultados em comparação com outros circuitos parametrizados, enquanto modelos híbridos 

fornecem maior precisão do que seus equivalentes que não utilizam redes neurais. As taxas de 

precisão alcançadas no conjunto de dados de treinamento são em torno de 96%, sugerindo que 

os circuitos quânticos parametrizados usados nesta tese de mestrado estão fornecendo resultados 

estáveis. 

Palavras-chave: aprendizado de máquina quântico; conjuntos de dados de rolamentos; 

gerenciamento de prognóstico e saúde; diagnóstico de falhas.  
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1 INTRODUCTION 

Quantum computing represents a new paradigm in computing that uses the fundamental 

principles of quantum mechanics to perform calculations. With quantum computing, it is 

possible to solve different optimization, machine learning, finance or chemistry-based problems 

that are difficult to solve with classical computing. Operations on quantum computers are 

performed on quantum bits (or qubits) that represent the state-of-the-art in quantum computing 

(NIELSEN and CHUANG, 2000). However, current quantum devices do not have the necessary 

qubits and are not fault-tolerant enough to achieve these goals (PERAL GARCÍA, 2022). For 

this same reason, quantum computing has shown to be an area with important advances recently, 

where companies like IBM have developed quantum computers in 2021 with 127 qubits such as 

the Eagle, and with future plans to build a quantum computer with 433 qubits in 2022 (Osprey) 

and a quantum computer with 1,121 qubits by the end of 2023 (Condor) (IBM, 2021). 

Different tools have also been built to perform simulations of quantum computers. In the 

case of IBM, Qiskit (QISKIT, 2020) is used with an integration with Pytorch, and for Google, 

Cirq is used combined to Tensorflow Quantum to perform quantum machine learning (CIRQ, 

2020). This growth in technological level has occurred in recent years and has shown the 

theoretical advantage that distinguishes quantum from classical computing, such as improved 

speed and accuracy. 

Prognostics and Health Management (PHM) is a cutting-edge integrated technology, which 

takes knowledge, information and data of system performance, control, operation and 

maintenance as input to detect the initiation of anomalies, isolate/diagnose the occurrence of 

failures, predict the health state of the system in the future and estimate its remaining useful life 

to dynamically support the maintenance decisions (HU and MIAO, 2022). Recently, machine 

learning, especially deep learning methods, have become popular in the PHM field and many 

review papers have considered how deep learning can enhance the PHM general performance 

(HU and MIAO, 2022). The launch of quantum computing gives rise to interesting areas of 

research that seek to leverage the principles of quantum mechanics to improve machine learning 

or vice versa. The aim is to boost classical Machine Learning (ML) algorithms by outsourcing 

difficult calculations to a quantum computer or optimizing quantum algorithms using classical 



15 

 

 

ML architectures – both fall under the diverse umbrella of quantum machine learning (QML) 

(QISKIT, 2021). 

That is why the aim of this master thesis is to compare some of the different ML and QML 

algorithms that have emerged to date. In other words, the aim is to make a comparison at the 

simulation level with the different neural networks that can be made with QML. The above-

mentioned datasets mainly contain vibration data (collected from accelerometers) of the 

bearings. Therefore, it will be necessary to preprocess the data to be able to adapt them to the 

different QML algorithms. 

In this master thesis, we present our research on fault detection in rotary equipment, 

specifically bearings. A bearing facilitates the low-friction relative motion between two machine 

elements while simultaneously transmitting the forces between them as well as guiding and 

positioning them relative to each other. The operating behavior of the bearings has a significant 

effect on the operating characteristics of the overall machine, and then the suitability of the 

selected bearings for the planned application case must be investigated carefully (BRECHER, 

2014). To perform this comparison in the field of reliability engineering, different sets of bearing 

data will be used, namely: 

• Case Western Reserve University bearing dataset (CWRU)(SMITH and RANDALL, 

2015). 

• Machinery Failure Prevention Technology bearing dataset (MFPT) (BECHHOEFER, 

2018). 

• Paderborn University bearing dataset (PU) (LESSMEIER, 2020). 

We focus on three different states of the bearings, namely healthy, inner ring fault, and outer 

ring fault. Our approach involves using quantum computing circuits, specifically the Real 

Amplitudes circuit and Quantum Convolutional Circuit (QCNN), to analyze data obtained from 

sensors installed in the bearings. Our methodology has the potential to explore new fault 

detection models in rotary equipment through the implementation and evaluation of proof-of-

concept tests, which can assess their efficiency and accuracy in this specific context. 
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We examine the effectiveness of established circuit designs such as Real Amplitudes 

comprising alternating Y rotations and CX entanglements. The rotation y (Ry) gate is a single-

qubit rotation through angle 𝜃 (radians) around the y-axis. The CX gate refers to a controlled-X 

gate. Real Amplitudes prepares quantum states comprising only Real Amplitudes, whereas the 

complex part is always 0 (SURYOTRISONGKO and MUSASHI, 2022) and QCNN model can 

be a solution in the field of physical and chemical classification not solved simply, and in 

addition to the existing Convolutional Neural Network (CNN) model, it can be a more effective 

and efficient learning model method (OH, 2020), as well as the effectiveness of hybrid models 

that combine quantum circuits and neural networks. In comparing the present work to that of 

PHM of Rotating Machinery via Quantum Machine Learning (SOUTO, MENDES, et al., 2023), 

who also uses set of rotating equipment data for fault detection (CWRU), they develop their own 

circuit designs for hybrid models, rather than using established designs. Additionally, they only 

test hybrid models that combine quantum circuits and neural networks, while we test both 

exclusively quantum circuits and hybrid models. While we both use the same dataset of rotating 

equipment data, these methodological differences are important to consider when comparing the 

results of our studies.  

Finally, the research encompasses an economic aspect, wherein studying new methods for 

damage detection can lead to the discovery of more ways to prevent accidents that may involve 

harm to the environment, equipment costs, and accidents involving individuals. This requires 

investment in more efficient maintenance and prevention methods. On the social front, the goal 

is to automate data analysis so that operators can focus on their work without losing time in the 

detection of damage or leaks. It is important to act ethically in this aspect since the idea is to 

support the operator rather than replace them, as decisions during accidents must be made by 

humans. Lastly, the environmental aspect depends on the factory's location and the area in which 

it operates. A equipment breakdown can result in leaks that can harm both the environment and 

the area surrounding the factory. 
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1.1 Objectives 

1.1.1 General objectives 

The general objective of this study is to compare existing quantum circuits with and without 

the assistance of neural networks, utilizing PHM datasets. 

1.1.2 Specific objectives 

According to the general objective, the specific targets of this work are: 

• To analyze the CWRU, MFPT and PU bearing datasets that can be used for classification 

purposes. 

• To analyze the Real Amplitudes Circuit and QCNN used for vibration data.  

• To train the resulting data with the selected algorithms. 

• To evaluate and visualize the results for relevant comparison. 

• To compare the performance of quantum circuits and hybrid circuits.  

1.2 Dissertation structure 

The structure of the current investigation is as follows: 

• Chapter 2 presents the theoretical framework, into topics such as Bearing datasets, 

Vibration Signals, Quantum Computing and existing circuits, and QML. 

• Chapter 3 presents the methodological aspects of the study, providing explanations 

about the databases used for the analyses, the proposed QML models, and the training 

method. 

• Chapter 4 presents the results derived from the QML models. 

• Chapter 5 presents some concluding remarks of the study. 
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2 BACKGROUND 

Bearings enable both rotational and translational motion between two machine parts. In 

addition to transferring radial and axial forces (in rotary bearings) and forces and moments 

perpendicular to the direction of motion (in linear bearings), they establish the relative positions 

of the machine elements supported by the bearings. Bearings are crucial components in all 

production machines and often play a significant role in their performance. For instance, in a 

machine tool, various types of bearings are used for different purposes: linear guiding is used 

for feed axes, rotary bearings are used for rotary axes, threaded spindle drives for linear axes, 

and bearings for main spindle shafts system (BRECHER, 2014). The bearing system is the 

component with the greatest influence on the lifetime of a spindle. Most commonly the motor is 

arranged between the two bearing systems (ABELE, ALTINTAS and BRECHER, 2010). The 

load capacity, stiffness, and speed capabilities of the bearings in a machine tool impact the 

cutting performance, and the stiffness also affects the achievable machining precision. Friction 

in bearings adds to the machine's energy consumption, and the lifespan of the bearings can affect 

the downtimes of the entire system (BRECHER, 2014). 

Roller bearings are the most common type of bearing used. These use rolling elements 

placed between the machine parts being supported to create a rolling motion. Ideally, this results 

in low rolling friction, but in reality, there may be sliding-rolling friction due to factors such as 

the bearing design or operating conditions. Roller bearings (Figure 1) are widely used because 

of their relatively low cost, ease of use, standardization, and the range of properties that can be 

achieved with different designs. The main types of roller bearings used in machine tool main 

spindles are angular contact ball bearings, tapered roller bearings, and cylindrical roller bearings. 

Angular contact ball bearings, which have a contact angle of between 15 and 25 degrees, can 

carry radial and axial loads and have the highest speed capabilities of all roller bearings 

(BRECHER, 2014). 
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Figure 1 - Rolling bearing 

 

Source: Bearing (BRECHER, 2014). 

1.1 Bearing data sets 

The different data sets to be here used are CWRU, MFPT and PU. The common information 

of these three datasets is that they are experiments conducted on bearings. The data includes 

information about their healthy state, inner ring failure, and outer ring failure, which are clearly 

distinguishable as they are captured under different scenarios. Furthermore, all three datasets are 

based on accelerometers, with the only difference being the frequency at which their samples 

are collected: 

• CWRU bearing dataset (SMITH and RANDALL, 2015): The data were collected for 

normal bearings, single drive end point and fan end defects. The data were gathered at 

12,000 samples/second and 48,000 samples/second for drive end bearing experiments.  

• MFPT bearing dataset (BECHHOEFER, 2018): A set of bearing failure data is provided 

to facilitate research in bearing analysis. The data set includes data from a bearing test 

rig (nominal bearing data, outer race failure at various loads and inner race failure at 

various loads) and three real-world failures. 

• PU bearing dataset (LESSMEIER, 2020): This data set from the Chair of Drive and 

Powertrain Technology, University of Paderborn, Germany is provided to allow and 

encourage collaboration in the field of bearing condition monitoring. The rotational 

speed of the drive system, the radial force on the test bearing and the load torque on the 

drive train are the main operating parameters. 
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2.1 Quantum computing 

The bit is the fundamental concept of classical computing and classical information. 

Quantum computing and quantum information are built upon an analogous concept. In this 

section, the properties of single and multiple qubits will be introduced, comparing and 

contrasting their properties with those of classical bits (NIELSEN and CHUANG, 2000). 

Quantum computing and quantum information are a wonderful theoretical discovery, but 

their central concepts, such as superpositions and entanglement, go against the intuition we get 

from the everyday world around us (NIELSEN and CHUANG, 2000). In spite of this, 

entanglement is a major resource for quantum communication and computation (ASHER 

PERES, 2003) which are linked qubits together in such a way that their states cannot be 

described independently. When qubits are entangled, the state of one qubit is intimately 

connected to the state of the other qubit, even if the two qubits are separated by a large distance. 

This correlation is a result of the strong quantum mechanical interactions between the qubits 

(NIELSEN and CHUANG, 2000). 

Likewise, the quantum state of Schrödinger’s legendary cat, doomed to be killed by an 

automatic device triggered by the decay of a radioactive atom, evolves into a superposition of 

“live” and “dead” states. This is a manifestly absurd situation for a real cat. The only meaning 

of such a quantum state is that of a mathematical tool for statistical predictions on the fates of 

numerous cats subjected to the same cruel experiment (ASHER PERES, 2003). 

The quantum bit (qubit) is the basic information processing unit in quantum computing. The 

state of a qubit can be represented by a unit vector in a 2-dimensional Hilbert space spanned by 

the computational basis states |0⟩ and |1⟩ of the qubit. Specifically, the state ||𝜓⟩ of a qubit can 

be expressed by |𝜓⟩ = a|0⟩ +  b|1⟩where a, b ∈ C  (C: Complex number) and |𝑎|2 + |𝑏|2 = 1. 

Without ambiguity, |𝜓⟩ can be written in the vector form |𝜓⟩ = (𝑎, 𝑏)𝑇 which is known as the 

state vector. For a system with n qubits, its state space is the tensor product of all its qubits and 
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is a 2𝑛-dimensional Hilbert space. A state vector in this space is a vector with 2𝑛 elements |𝜓⟩ =

(𝑎0, … , 𝑎2𝑛−1)
𝑇. 

The sphere in Figure 2 is often called the Bloch sphere and provides a useful way to visualize 

the state of a single qubit and generally serves as an excellent test bed for ideas about quantum 

computing and quantum information. On the Bloch sphere, the states |0⟩ and |1⟩ form an 

orthonormal basis, it is part of the bra-ket notation, introduced by Dirac (QISKIT, 2020).  

We can represent any 3D vector as a combination of these two states as shown in equation 

(1): 

|𝜓⟩ = cos
𝜃

2
 |0⟩ + 𝑒𝑖𝜙 sin

𝜃

2
|1⟩       (1) 

where the values of 𝜃 and 𝜙 form a point on the unitary three-dimensional sphere. At this 

point, the state of |𝜓⟩ has an interpretation of the superposition of states, but measuring a qubit 

will only give a value of 0 or 1. So the measurement of the state |𝜓⟩ will collapse from its 

superposition of |0⟩ and |1⟩ to the specific state consistent with the measurement result.  

Figure 2 - Bloch sphere; representation of qubit 

 

Source: (NIELSEN and CHUANG, 2000). 

A Bloch sphere has 6 commonly known states that are assigned to the following symbols: 

|0⟩,  |1⟩,  | +⟩, | −⟩, | + i⟩ 𝑎𝑛𝑑 | − i⟩ (Equations (2)-(7)): 

|0⟩ = [
0
1
]       (2) 
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|1⟩ = [
1
0
]       (3) 

| +⟩ =  
1

√2
(|0⟩ + |1⟩) =  

1

√2
[
1
1
]     (4)  

| −⟩ =  
1

√2
(|0⟩ − |1⟩) =

1

√2
[
−1
1

]      (5) 

| + i⟩ =  
1

√2
(|0⟩ +  𝑖|1⟩)    (6) 

| − i⟩ =  
1

√2
(|0⟩ −  𝑖|1⟩)       (7) 

2.2 Single Qubit Gates 

Classical and quantum computation have many similarities in terms of how they are used to 

process and manipulate information. In classical computation, circuits consisting of wires and 

logic gates are used. The wires are used to carry information around the circuit, while the logic 

gates perform manipulations of the information, converting it from one form to another. 

In the case of quantum computation, it is very similar. Wires are represented by qubits that 

store information, while gates are used to execute computational operations. Take, for example, 

classical single bit logic gates. The only non-trivial member of this class is the NOT gate (Figure 

3), whose operation is defined by its truth table, where 0 → 1 and 1 → 0. In quantum 

computation, the Pauli X gate (Figure 4, in the next section we are going define this gate with 

more details) serves a similar function, having an analogous truth table and being used to invert 

the state of a qubit. However, unlike the classical NOT gate, the Pauli X gate also has a geometric 

interpretation in terms of the state space of a qubit (NIELSEN and CHUANG, 2000). 

Figure 3 - Classical NOT gate. 

 

Source: The author (2023) 
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Figure 4 - X Pauli Gate 

 

Source: The author (2023) 

In this section, we will talk about the most well-known and commonly used qubit gates, 

which are typically represented by a letter. 

2.2.1 X Gate 

The X gate, also known as the Pauli-X gate, is equivalent to flipping the state of a qubit, 

with |0⟩ becoming |1⟩ and vice versa (|1⟩ →  |0⟩). It is represented by the matrix (NIELSEN 

and CHUANG, 2000): 

𝑋 = [
0 1
1 0

]       (8) 

In the Dirac notation, if the quantum state of a qubit is α|0⟩ + β|1⟩, it is written with [
𝛼
𝛽] in 

a vector notation. Then, the corresponding output from the quantum gate is 𝑋 [
𝛼
𝛽] = [

𝛽
𝛼
] 

(NIELSEN and CHUANG, 2000). 

2.2.2 Y Gate 

Y gate, also known as the Pauli-Y Gate, is the equivalent of |0⟩ →  i|1⟩ and |1⟩ →  i|0⟩. It 

is represented by the matrix (NIELSEN and CHUANG, 2000): 

𝑌 = [
0 −𝑖
𝑖 0

]      (9) 

So, if the quantum state of a qubit is α|0⟩ + β|1⟩, it is written with [
𝛼
𝛽] in a vector notation. 

Then, the corresponding output from the quantum gate is 𝑌 [
𝛼
𝛽] = [

𝑖𝛽
𝑖𝛼

] (NIELSEN and 

CHUANG, 2000). 
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2.2.3 Z Gate  

Z gate, also known as the Pauli-Z Gate, is the equivalent of |0⟩ →  |0⟩ and |1⟩ →  −|1⟩. It 

is represented by the matrix (NIELSEN and CHUANG, 2000): 

𝑍 = [
1 0
0 −1

]      (10) 

If the quantum state of a qubits is α|0⟩ + β|1⟩, then it is written with [
𝛼
𝛽] in a vector notation. 

Thus, the corresponding output from the quantum gate is 𝑍 [
𝛼
𝛽] = [

𝛼
−𝛽]. It is possible to use the 

Z gate in conjunction with measurement, but this will depend on the context and the specific 

purpose of the measurement (NIELSEN and CHUANG, 2000). 

2.2.4 H Gate 

H-gate is the equivalent of H|0⟩ →  | +⟩  and H|1⟩ →  | −⟩  gate (Hadamard Gate): 

𝐻 =
1

√2
[
1 1
1 −1

]     (11) 

This can be thought of as a rotation around the Bloch vector [1,0,1] (the line between the x 

and z-axis), or as transforming the state of the qubit between X and Z bases (NIELSEN and 

CHUANG, 2000). 

2.2.5 U Gate 

The U gate is a single qubit quantum gate used to apply a unitary transformation to a qubit. 

This gate is very useful in the construction of quantum algorithms, as it allows a wide range of 

transformations to be applied to a qubit. Some of the most common operations that can be 

performed with the U gate are rotating a qubit around the Z axis, rotating around the X axis, and 

applying a phase. Overall, the U gate is a very versatile and essential tool in the implementation 

of quantum algorithms. 

This is a diagonal gate, where: 
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𝑈1(𝜆) = [
1 0
0 𝑒𝑖𝜆]     (12) 

As additional information, when 𝜆 = 𝜋 in 𝑈1 it’s transform to Z gate. As shown in the next 

equation:  

𝑈1(𝜋) = [
1 0
0 𝑒𝑖𝜋] = [

1 0
0 −1

] = 𝑍    (13) 

2.3 Multiple qubits 

Multiple qubits are a fundamental concept in quantum computing. They refer to the use of 

multiple quantum bits, or qubits, to store and process quantum information. However, unlike 

classical bits, qubits can exist in a superposition of states, meaning they can represent multiple 

values simultaneously. This property allows qubits to store and process information in ways that 

are not possible with classical bits (QISKIT, 2020). 

Using multiple qubits allows for the creation of more complex quantum systems and enables 

the implementation of more powerful quantum algorithms. For example, multiple qubits can be 

entangled, which means they are correlated in a way that allows them to affect each other's state 

even when they are separated by large distances (NIELSEN and CHUANG, 2000). This property 

is a key aspect of quantum computing and enables the creation of quantum computers that are 

capable of solving certain problems much faster than classical computers. 

Overall, multiple qubits are an essential part of quantum computing and hold great potential 

for revolutionizing many fields, including cryptography, drug discovery, and machine learning 

(ASHER PERES, 2003).  

In general, multiple qubit gates are quantum operations involving more than one qubit and 

used to perform logical operations or unitary transformations on multiple qubit systems. Some 

of the most well-known multiple qubit gates include the CNOT gate, the Toffoli gate, and the 

SWAP gate. 

2.3.1 CNOT gate 
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The CNOT (Control-NOT) gate is a two-qubit quantum gate used to perform logical 

operations on multi-qubit systems. It is called this because one of the qubits acts as a control and 

the other as the target bit to which the NOT operation is applied. The CNOT gate has the 

following instructions: if the state of the control qubit is |0⟩, then the state of the target qubit is 

not modified; if the state of the control qubit is |1⟩, then the state of the target qubit is inverted. 

And acting on our 4D-state vector, it has the next matrix representation: 

𝐶𝑁𝑂𝑇 = [

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

]      (14) 

The CNOT gate, shown in Figure 5, is very important in quantum computing because it is 

one of the most basic and versatile gates that can be used to build more complex quantum 

algorithms. In addition, the CNOT gate is the basis for more complex gates, such as the Toffoli 

gate. In general, the CNOT gate is essential for the implementation of quantum algorithms, and 

it is a fundamental tool in quantum computing (QISKIT, 2020). 

Figure 5 - CNOT circuit representation. 

 

Source: Quantum Computing and quantum information, Page 21 (NIELSEN and CHUANG, 2000) 

2.3.2 Toffoli gate 

The Toffoli gate is a reversible gate that takes three qubits as input and has a truth table 

similar to that of the classical NOT gate. In general, the Toffoli gate is used to invert the state of 

a qubit based on the state of two control qubits. This allows the Toffoli gate to perform complex 

logical operations on multiple-qubit systems, making it very useful in the construction of 

quantum algorithms (Nielsen and Chuang, 2000). 
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Figure 6 - Truth table for the Toffoli gate, and its circuit representation. 

 

Source: Quantum Computing and quantum information, Page 29 (Nielsen & Chuang, 2000) 

The matrix representation of Toffoli of three qubits (same circuits as shown in Figure 6): 

𝑇𝑜𝑓𝑓𝑜𝑙𝑖 =

[
 
 
 
 
 
1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

0 0
0 0
0 0
0 0

0 0
0 0

0 0
0 0

0 1
1 0]

 
 
 
 
 

      (15) 

2.3.3 SWAP gate 

The SWAP gate is a multi-qubit quantum gate that is used to swap the states of two qubits. 

This gate is useful in the construction of quantum algorithms and can be used to manipulate and 

control the state of two qubits precisely. The SWAP gate action can be described by the 

following matrix: 

𝑆𝑊𝐴𝑃 = [

1 0
0 0

0 0
1 0

0 1
0 0

0 0
0 1

]     (16) 

The SWAP gate is applied to two qubits, and its action is to swap the states of the two qubits. 

For example, if there are two qubits in the states |0⟩ and |1⟩, the SWAP gate would swap them 

so that they are in the states |1⟩ and |0⟩ respectively. The SWAP gate is reversible, which means 

it can be applied again to return to the original states (QISKIT, 2020). 
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2.4 Quantum circuits 

The quantum circuit is composed of wires and gates, and it should be read from left to right. 

Each line in the circuit represents a wire in the quantum circuit, which does not necessarily 

correspond to a physical wire; it may instead represent the passage of time, or perhaps a physical 

particle such as a photon, moving from one place to another through space. It is conventional to 

assume that the input state to the circuit is a computational basis state, typically the state formed 

by |0⟩ (NIELSEN and CHUANG, 2000). 

In Figure 7, we can see the composition of the circuit with its inputs on the left side, and a 

single-qubit gate that only affects one wire, as well as the possibility of two-qubit gates that 

affect more than one wire. 

Figure 7 - Example of a quantum circuit 

 

Source: (SOUTO, MENDES, et al., 2023) 

In quantum computing, a variational quantum circuit (VQC) is a type of algorithm that is 

used to find the optimal value of a function over a set of variables. These algorithms are based 

on optimization theory and are commonly used to find approximate solutions to problems that 

are difficult to solve exactly (CIRQ, 2020). 

Variational quantum algorithms that are used for quantum machine learning rely on the 

ability to automatically differentiate parametrized quantum circuits with respect to underlying 

parameters (KYRIIENKO and ELFVING, 2021). Variational or parameterized quantum circuits 

are quantum algorithms that depend on free parameters. Like standard quantum circuits, they 

consist of three ingredients: 
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• Preparation of a fixed initial state (e.g., the vacuum state or the zero state). 

• A quantum circuit U(θ) parameterized by a set of free parameters θ. 

• Measurement of an observable 𝐵̂ at the output. This observable may be made up from 

local observables for each wire in the circuit, or just a subset of wires. 

A VQC consists of a series of quantum gates and qubits that are used to implement a specific 

mathematical function. The function is evaluated for different values of the variables, and an 

optimization method is used to find the optimal value of the function. VQC is often used for 

solving quantum optimization problems, such as finding the optimal solution to a linear 

programming problem or minimizing a cost function (PENNYLANE, 2022). 

VQC is trained using a classical optimization algorithm that sends requests to the quantum 

device. The optimization process typically involves iteratively improving the values of the 

parameters θ at each step (PENNYLANE, 2022). 

Figure 8 - Simplified diagram of a Variational Quantum Circuit 

 

Source: Adapted from PennyLane (2022) 

The output of a VQC is the expectation value of an observable measurement, which can be 

formally written as a parameterized “quantum function” f(θ) in the tunable parameters θ =

θ1, θ2, … As with any other function, partial derivatives of f(θ) can be defined with respect to its 

parameters. 

2.4.1 Quantum gradient 

A quantum gradient is the vector of partial derivatives of a quantum function f(θ): 



30 

 

 

𝑓(𝜃) =  (

𝛿𝜃1
𝑓

𝛿𝜃2
𝑓

𝛿𝜃3
𝑓

)            (17) 

Figure 9 - Simplified diagram of a Quantum Gradient Descent 

 

Source: Adapted from PennyLane (2022) 

It turns out that the gradient of a quantum function f(θ) can in many cases be expressed as 

a linear combination of other quantum functions via parameter-shift rules. This means that 

quantum gradients can be calculated with quantum computers, enabling the use of quantum 

computing in gradient-based optimization such as gradient descent, which is widely used in 

machine learning (PENNYLANE, 2022).  

The parameter-shift rule is an approach to measuring gradients of quantum circuits with 

respect to their parameters, which does not require ancilla qubits or controlled operations. The 

parameter-shift rule is a promising approach to evaluating gradients of parameterized quantum 

circuits on quantum hardware (CROOKS, 2019). The advantage (BANCHI and CROOKS, 

2021) of this gradient is that parameter shift is exact, the formula for the gradient doesn’t involve 

any approximations (PENNYLANE, 2022) (BANCHI and CROOKS, 2021). The shift does not 

have to be small or infinitesimal like in finite differences. Whereas finite differences can be 

applied to any function f(θ), the parameter-shift rule can only be used to determine 
df(θ)

dθ   
 if the 

function satisfies certain constraints. Suppose the next function f(θ): 

f(θ) =  ⟨𝜙|𝑈𝐺
𝑡(𝜃) 𝐴 𝑈𝐺(𝜃)|𝜙⟩,    (18) 

Where 𝑈𝐺(𝜃) is the parameterized gate and 𝜙 is the initial state of the observable operator 

A. The parameter-shift rule states that if the generator of the gate G has only two unique 

eigenvalues, 𝑒0 and 𝑒1, then 
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d

dθ
f(θ) = r [f (θ +

𝜋

4𝑟
) − f (θ −

𝜋

4𝑟
)],    (19) 

Where the shift constant is 𝑟 =  
𝛼

2
(𝑒1 − 𝑒0). Compared to other approaches for evaluating 

circuit gradients, the parameter-shift rule has the advantage that it requires the performance of 

two circuits each of which being the same number of gates as the original circuit and does not 

require ancilla qubits (JORDAN, 2004). 

2.4.2 Variational circuit  

An ansatz is a proposed starting point for addressing a mathematical or physical problem, 

typically in the form of an equation, theorem, or value. It serves as a foundation for further 

investigation and potentially finding a solution to the problem at hand. In the context of quantum 

computing, an ansatz is a quantum circuit used to represent or model a quantum function 

(PENNYLANE, 2022).  

2.4.2.1 Data encoding circuits (Data Embedding) 

A data encoding circuit is a quantum circuit that is used to encode classical data into the 

quantum state of a quantum computer. This process, known as quantum state preparation, is an 

important step in many quantum algorithms and protocols (PENNYLANE, 2022). 

Quantum feature maps provide a way to harness the computational power of quantum 

mechanics in machine learning problems. In machine learning, pattern recognition and image 

processing, a feature map starts from an initial set of measured data and builds derived values 

(also known as features) intended to be informative and non-redundant, facilitating the 

subsequent learning and generalization steps, and in some cases leading to better human 

interpretations (QISKIT, 2020). This idea leads to a simple quantum machine learning algorithm 

that makes no additional assumptions on data access and has rigorous and robust performance 

guarantees (LIU, 2020).  

In the investigation conducted by SURYOTRISONGKO and MUSASHI (2022), four 

feature mapping circuits were utilized (PauliFeatureMap, RawFeatureVector, ZFeatureMap, and 

ZZFeatureMap). In terms of performance, the order from best to worst was RawFeatureVector, 
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ZFeatureMap, ZZFeatureMap, and PauliFeatureMap. However, in this thesis, a comparison with 

minimal changes in the number of qubits is desired. Therefore, RawFeatureVector cannot be 

used since this circuit acts as parameterized initialization for state vectors with 

"feature_dimension" dimensions, thus requiring "log2(feature_dimension)" qubits (QISKIT, 

2020). In other words, the number of qubits is not directly proportional to the number of inputs 

provided. To make a fairer comparison in terms of the number of qubits, ZFeatureMap and 

ZZFeatureMap will be used. It is worth mentioning that, in the same investigation, Angle 

Encoding and IQP embedding are also utilized, but only for hybrid circuits. Additionally, there 

is a desire to compare the hybrid circuit against the parameterized quantum circuit; therefore, 

the use of ZFeatureMap and ZZFeatureMap will be maintained. 

• ZFeatureMap: This circuit consists of a Hadamard gate for each qubit and then the 

parameter is multiplied and added within a U1 gate, as shown in Figure 10; the resulting 

circuit contains no interactions between features of the encoded data, and therefore no 

entanglement (QISKIT, 2020). 

Figure 10 - ZFeatureMap with 3 qubits. 

 

Source: (QISKIT, 2020) 

• ZZFeatureMap: This circuit starts the same as a ZFeatureMap, but then CNOT gates are 

linked either in a Circular, Linear, or Inversely Linear manner, followed by U1 gates 

containing the function Φ(𝑥, 𝑦) = (𝜋 − 𝑥)(𝜋 − 𝑦), where x and y are related to the 

qubits of each input data, as shown in Figure 11. The ZZFeatureMap allows interactions 

in the data to be encoded in the feature map according to the connectivity graph and the 

classical data map. ZZFeatureMap with default parameters is equivalent to the feature 

map described in Figure 11 and can take additional inputs (QISKIT, 2020). 
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Figure 11 - ZZFeatureMap with 3 qubits 

 

Source: (QISKIT, 2020) 

2.4.2.2 Data processing circuits 

In this type of circuits, free parameters are used that vary when training the quantum circuit. 

In this thesis we use two PQC the Real Amplitudes and Quantum Convolutional Circuit. 

The Real Amplitudes circuit is a heuristic trial wave function used as Ansatz in chemistry 

applications or classification circuits in machine learning. The circuit consists of alternating 

layers of Y rotations and CX entanglements (QISKIT, 2020). 

Figure 12 - Real Amplitudes Circuit with 2 repetitions and 3 qubits. 

 

Source: (QISKIT, 2020) 

Quantum Convolutional Circuit is a type of quantum circuit that is inspired by the 

convolutional layers in classical deep neural networks and is used to process input data in signal 

or image classification problems, as shown in Figure 13.  
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Figure 13 - Quantum Convolutional Circuits Concept 

 

Source: (OH, 2020) 

The concept proceeds as follows (OH, 2020): 

1) The convolution circuit finds the hidden state by applying multiple qubit gates between 

adjacent qubits. 

2) The pooling circuit reduces the size of the quantum system by observing the fraction of 

qubits or applying 2-qubit gates such as CNOT gates. 

3) Repeat the convolution circuit and pooling circuit defined in 1)-2). 

4) When the size of the system is sufficiently small, the fully connected circuit predicts the 

classification results. 

2.5 Literature Review 

Quantum computing promises to be the next disruptive technology, with numerous possible 

applications and implications for organizations and markets. A recently published report by 

McKinsey estimates the global market value of quantum computing to be at USD 1 trillion by 

2035, mainly in the financial, chemical, pharmaceutical, and automotive sectors (RIETSCHE, 

DREMEL, et al., 2022). 

Many industrial systems demand equipment with high levels of reliability. Over the years, 

companies and academia have been developing mathematical methods and advancing 

engineering techniques to assist in the maintenance of active and reliable systems (MENDES, 
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LINS, et al., 2022). Reliability engineering studies are often conducted to minimize the 

probability of failure in complex systems, for instance, the redundancy allocation problem, The 

focus is to assign several parallel components to achieve the best possible overall system 

reliability within budget constraints (MENDES, LINS, et al., 2022). 

Despite the current limitations of hardware, quantum computing has been explored to 

improve the speed and efficiency of ML models. This master thesis focuses on the application 

of Quantum Machine Learning to diagnose rolling bearings which are essential components in 

rotating machinery, based on vibration signals (SOUTO, MENDES, et al., 2023). 

In the investigation conducted by SURYOTRISONGKO and MUSASHI (2022), it shows 

how different 4 Feature Maps and 4 different parameterized quantum circuits are used for 

different datasets, but these configurations have not been tested for damage prognosis. 

In the investigation conducted by SAN MARTÍN SILVA and LÓPEZ DROGUETT (2022), 

they use a Hybrid quantum circuit to perform the classification of damage states for the MFPT 

dataset, so, it is a study dedicated to PHM. They do not use entanglement in their circuits and 

only focus on studying a single circuit. It utilizes Angle Encoding, and the quantum circuit only 

maintains three parameters to train.  

It is crucial to emphasize the importance of being able to investigate and analyze quantum 

circuits in the field of PHM, as addressed in previous studies conducted by SOUTO and 

MENDES (2023) and SAN MARTÍN SILVA and LÓPEZ DROGUETT (2022). These studies 

provide a solid framework for understanding how quantum circuits can play a fundamental role 

in PHM. Furthermore, it is relevant to closely examine the effectiveness of quantum circuits both 

with the support of neural networks and in their standalone implementation, as investigated in 

the work carried out by SURYOTRISONGKO and MUSASHI (2022), however, it is important 

to note that doesn’t focus on a PHM dataset. Therefore, there is a pressing need to conduct a 

comparative study in the context of PHM, which allows for analyzing and comparing the 

performance of PQC with and without the assistance of quantum circuits.  
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This study, presented in this thesis aims to fill this knowledge gap and provide a more 

comprehensive and in-depth understanding of the potential applications of quantum circuits in 

the field of PHM. 
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3 METHODOLOGY 

This study follows a quantitative methodology, where real datasets and models are used for 

analysis and comparison. The quantitative approach allows for obtaining objective and 

measurable results through the application of specific metrics, which are used to evaluate the 

performance of the models, as well as to make comparisons between them. Through this process, 

the aim is to identify patterns, relationships, and trends in the data, and to determine which 

models are more effective in terms of accuracy and efficiency. The results obtained from this 

quantitative study are essential for generating knowledge and supporting robust conclusions in 

the research area under investigation. 

3.1 Datasets 

In this thesis, a set of famous bearing data in the reliability and maintenance area is used. A 

bearing consists of 4 parts: inner ring, outer ring, a rolling element (balls, rollers, or cones, 

depending on the shape of the bearing), and a cage that is responsible for keeping the rolling 

bodies separated.  

The 3 sets of data work with vibration, measured with an accelerometer. What is special 

about these 3 sets of data is that there is information about bearing with 2 types of damage: 

damage to the inner ring and damage to the outer ring. And information from a bearing working 

without damage.  

Standard vibration-based metrics like mean, variance, RMS, kurtosis, as well as higher order 

statistics, are frequently employed for machinery diagnostics (Souto, Mendes, Lins, Moura, & 

López, 2023). This thesis employs 5 features that are directly processed from the raw vibration 

signal data, namely peak-to-peak, average, variance, maximum amplitude, and RMS. 

A feature extraction is related to dimensionality reduction; it involves reducing the resources 

required to describe a large data set. When performing analysis of complex data, one of the major 

problems stems from the number of variables involved. Analysis with many variables generally 

requires a considerable amount of memory and computation power and may even cause a 

classification algorithm to overfit training samples and generalize poorly to new samples 
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(QISKIT, 2020). When the input data to an algorithm is too large to be processed and is suspected 

to be redundant (for example, the same measurement is provided in both pounds and kilograms), 

then it can be transformed into a reduced set of features, named a feature vector. The process of 

determining a subset of the initial features is called feature selection. The selected features are 

expected to contain the relevant information from the input data, so the desired task can be 

performed using the reduced representation instead of the complete initial data (QISKIT, 2020).  

In summary, the treatment of each set of data was performed similarly. In fact, the data is 

downloaded directly from their official sources, the vibration data is obtained and classified 

according to its damage, after each vibration data a dimensionality reduction, with the mean, 

variance, maximum amplitude, root mean square (RMS) and peak-to-peak value of each signal 

is obtained.  

A repository was created on github (https://github.com/diegoaichele/MasterThesisDiegoA), 

which automates this process, allowing you to choose the length of each signal to be analyzed 

and the overlap that the signals may have with each other. 

3.1.1 MFPT  

The MFPT database has 20 .mat files, of which 3 are undamaged bearings, 10 are bearings 

with damage to the outer ring and 7 are bearings with damage to the inner ring (Bechhoefer, 

2018).  

The data is plotted visually, for each corresponding dimension, as shown in Figure 30 in 

Appendix A. For this case study we join them and consider three classes: Undamaged (U), inner 

ring fault (IR) and outer ring fault (OR). 

In the following graph in Figure 14, when we analyze the density distribution of each 

extracted feature, we can observe how the average of a time series can provide more information 

than the others in this dataset, for example, it can be stated that the Inner Ring is easily 

comparable as all its average values are around 1.5 or below, while for Undamaged, they are 

found to be above 1.5. An undamaged bearing exhibits tightly clustered values for each feature, 
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suggesting that its vibrations are stable. Conversely, for a bearing with inner ring damage, its 

data is scattered across all the features. 

Figure 14 - Summary 5 Feature Plot of MFPT

 

 

3.1.2 CWRU 

Vibration signals were collected using a 16-channel digital audio tape (DAT).  

Then, we extract 5 features. The data is plotted visually, for each corresponding dimension, 

as shown in Figure 31 in Appendix A. For this case study we join them and consider three 

classes: Undamaged (U), inner ring fault (IR) and outer ring fault (OR).  

In the following graph in Figure 15, when we analyze the density distribution of each 

extracted feature, we can observe how the average of a time series can provide more information 

than the others in this dataset. An undamaged bearing exhibits tightly clustered values for each 

feature, suggesting that its vibrations are stable. Conversely, for a bearing with inner ring damage 

and outer ring damage, its data is scattered across all the features. 
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Figure 15 - Summary 5 Feature Plot of CWRU

 

3.1.3 PU 

This experiment use 32 different bearing damages in ball bearings of type were performed: 

Undamaged (healthy) bearings (6 experiments), artificially damaged bearings (12 experiment) 

and bearings with real damages caused by accelerated lifetime tests (14 experiment).  

Then, we extract 5 features as mentioned before. The data is plotted visually, for each 

corresponding dimension, as shown in Figure 32 (Appendix); for this case study, we join them 

and consider three classes: Undamaged (U), inner ring fault (IR) and outer ring fault (OR). 

In the following graph in Figure 16, when we analyze the density distribution of each 

extracted feature. For all bearing types the data is scattered across all the features. It can be 

difficult to provide an easy-to-compare description. 

Figure 16 - Summary 5 Feature Plot of PU

 

3.2 Ansatz Circuits  

After transforming the vibration data of each bearing database into important features such 

as average, variance, maximum amplitude, RMS, and peak to peak, we transformed the 'classical' 
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data into quantum data and, next, we must input the latter through parameterizable circuits that 

can vary their values to learn and classify. 

 

3.2.1 Transform Data Circuits  

Two methods are used to transform the data, as specified in the Theoretical Background 

chapter, namely ZFeatureMap and ZZFeatureMap. In this thesis, the ZfeatureMap and 

ZZfeaturemap were utilized due to their prevalent usage in the existing literature and these were 

the ones that, with the same number of qubits for comparison, achieved better performance. 

(SURYOTRISONGKO and MUSASHI, 2022). However, it is important to note that these 

feature maps had not been extensively tested in the context of maintenance. Hence, they were 

chosen to explore their applicability in other types of models. By using these feature maps, the 

work aimed to contribute to the literature by evaluating their effectiveness and potentially 

revealing new insights for maintenance-related tasks. The codes to write these circuits in Cirq 

are respectively shown in Figure 17 and Figure 18.  

In the function shown in Figure 17, since there is no entanglement, only the Repetition 

option is available, which specifies how many times the input will be repeated in the quantum 

circuit.  

In the function shown in Figure 18, you can input the data inputs and then select the type of 

entanglement you want, such as Linear or Full. This determines the order in which each qubit is 

connected and with whom it is entangled.  

In the utilized circuits, a repetition of 3 was used since no significant improvement was 

observed by increasing the repetition. 
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Figure 17 - Code of ZFeatureMap 

Source: The author (2023) 

 

Figure 18 - Code of ZZFeatureMap 

Source: The author (2023) 

If we input the same input values, array with values [1,2,3], in both functions, with one 

repetition parameter, the circuits shown in Figure 19 and Figure 20 are generated, respectively.  
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Figure 19 - ZFeatureMap with values. 

 

Source: The author (2023) 

Figure 20- ZZFeatureMap with values. 

 

Source: The author (2023) 

3.2.2 Parametrized Quantum Circuits  

Two parameterized quantum circuits are proposed, also specified in Theoretical 

Background, which are Real Amplitudes and Quantum Convolutional Network. The codes to 

write these circuits in Cirq are respectively shown in Figure 21 and Figure 22. 

Figure 21 - Code of Real Amplitudes 

 

Source: The author (2023) 
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Figure 22 - Code of Quantum Convolutional Neural Network 

 

Source: The author (2023) 

If we use both functions, with one repetition parameter, the circuits shown in Figure 21and 

Figure 24 are generated, respectively.  

Figure 23 – Real Amplitudes circuits in Cirq 

 

Source: The author (2023) 
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Figure 24 - Quantum Convolutional Neural Network circuits in Cirq 

 

Source: The author (2023) 

Finally, for the hybrid circuits, a layer of a neural network is attached to the output of the 

parameterized quantum circuits, as shown as Figure 25. The neural network used consists of one 

hidden layer with 15 neurons and ReLU activation function. The output layer has 3 neurons with 

SoftMax activation function.  

Figure 25 - Diagram of hybrid circuits. 

 

Source: The author (2023) 

3.2.3 Training an only quantum circuit 

When working with TensorFlow Quantum (TFQ) to train a quantum circuit, a technique 

called hybrid quantum learning can be utilized. In this approach, a quantum circuit is combined 

with a classical neural network to perform classification or regression tasks using quantum data. 

We will explain how to introduce a quantum circuit into TensorFlow Quantum (TFQ) using only 

an untrained quantum circuit. 

To train the quantum circuit in TFQ, a customized neural network acting as a quantum 

classifier or regressor must be constructed. This neural network is configured to have only 

constant non-trainable parameters at its output. This means that parameter values will not be 

adjusted during the training process and will remain fixed. 

The customized neural network is designed according to the specific requirements of the 

problem and the number of available labels or classes. In the mentioned case, where there are 3 

labels and 5 qubits, a matrix can be built that takes the first 3 qubits of the quantum circuit as 
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shown in Figure 26. This matrix is used as the output of the neural network, with the non-

trainable constant parameters defining how the qubits relate to the labels.  

Once the structure of the quantum neural network has been defined, the training process can 

proceed. During training, the parameters of the quantum circuits will be adjusted, while the non-

trainable constant parameters of the neural network will remain unchanged. This allows for 

training exclusively the quantum circuit. To perform the necessary calculations at the output of 

the quantum circuit, a SoftMax activation function is applied, which takes the output values and 

normalizes them to obtain a probability distribution representing the probability of belonging to 

each of the available labels. To sum up, when training a quantum circuit in TFQ, a customized 

neural network with non-trainable constant parameters is constructed to define the relationship 

between the qubits and the labels. 

Figure 26 - Constant Layer 

 

Source: The author (2023) 

3.2.4 Proposed models and training 

For the proposed models, a circuit to transform classical data to quantum data, a 

parameterized circuit, and to connect to neural network selected. In summary, the initial set of 
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four models comprises quantum circuits operating independently of neural networks. 

Subsequently, we replicate the same set of models, incorporating neural networks after the 

circuits. For every model, we conduct three iterations, followed by the calculation of their 

respective metrics. This enables us to make meaningful comparisons between the models. 

The above-mentioned information is visualized in Figure 27, which presents a schematic 

demonstrating the utilization of the first three wires of the quantum circuits for prediction in the 

initial four models. Conversely, in the last four models, a neural network is employed, leveraging 

the output from all the circuits to make predictions. Adam is used for training in the sessions. 

Figure 27 - Schematic diagram of the utilized models 

 

Source: The author (2023)  
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4 RESULTS 

As previously mentioned, 8 models were used for the analysis. However, due to time 

constraints and the computational resources available, it was only feasible to run each model 3 

times. Despite the limited number of runs, it was observed that the results exhibited a consistent 

trend, suggesting a degree of stability. While running the models multiple times would have 

provided more statistical robustness, the 3 runs conducted were sufficient to identify and assess 

the general performance patterns of each model. It is important to note that a larger number of 

runs would have provided a more comprehensive analysis, but within the given constraints, the 

3 runs still yielded meaningful insights and reliable indications of model performance. The Loss 

and Accuracy plots, as well as the Confusion Matrix of the models, are displayed in APPENDIX 

B and the results of all the used models will be shown in APPENDIX C. Now, a summary of all 

the models used in this thesis will be presented. 

Table 1- Summary of results of models 

 

Models 
MFPT CWRU PU 

Acc.  
(%) 

F1 
(%) 

Pres. 
(%) 

Recall 
(%) 

Acc. 
(%) 

F1 
(%) 

Pres. 
(%) 

Recall 
(%) 

Acc. 
(%) 

F1 
(%) 

Pres. 
(%) 

Recall 
(%) 

Model 1 73.97 73.04 75.00 74.27 83.22 82.47 86.47 82.94 66.38 63.92 71.76 68.05 

Model 2 79.53 79.17 79.35 79.82 83.75 83.12 86.53 83.46 78.42 78.47 78.61 79.08 

Model 3 77.58 77.17 78.38 77.88 85.31 84.56 89.51 85.07 69.81 68.24 74.83 71.51 

Model 4 86.45 86.69 87.37 86.58 98.22 98.22 98.34 98.20 82.22 82.28 82.62 82.80 

Model 5 92.20 92.22 92.42 92.21 99.68 99.68 99.68 99.68 91.94 91.97 91.97 92.09 

Model 6 92.78 92.74 92.81 92.87 99.79 99.78 99.78 99.78 91.20 91.38 91.44 91.44 

Model 7 92.49 92.49 92.60 92.50 99.79 99.78 99.78 99.78 93.88 93.99 93.96 94.05 

Model 8 91.52 91.55 91.75 91.59 100.0 100.0 100.0 100.0 90.64 90.70 90.98 90.90 

 

As a result, the best way to enter the data of the main features is through a ZZFeatureMap 

circuit, which explains that one qubit must be dedicated to each feature extracted from the data. 

The use of ZZFeatureMap gives us a better precision of approximately 6% compared to the 

ZFeatureMap (Compared Models without using neural networks). Regarding selecting 

parameterized circuits, it can be observed that quantum convolutional circuits yield better results, 

which can be attributed to their larger number of parameters available for training. Nevertheless, 

hybrid models deliver better precision than their counterparts that does not use neural networks, 
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which can say that neural networks are still a powerful tool to use to classify data, even after 

they have been processed in quantum circuits. Hybrid models give us a 10% improvement in 

precision. 

It's important to remember that the percentage results shown are based on a test dataset, so 

the small errors observed in CWRU are errors that stem from a limited amount of data used for 

testing as is shown in Figure 28. 

Figure 28 - Confusion Matrix Model 6 of CWRU 

 

As can be seen in several MFPT results, as shown in the Figure 29, it's easy to classify the 

undamaged bearings, as observed in the methodology and the graphs. This indicates that in both 

hybrid and non-hybrid models, it's possible to distinguish the undamaged category. 

Figure 29 - Confusion Matrix Model 4 and 6 of MFPT 
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In the bibliography, Zhao also used the same datasets, from which we will extract only the 

best results of the MLP. This allows us to observe that by using neural networks alone, we 

achieve better performance than a hybrid model. This comparison may be due to the differences 

in parameters used in the models, but it can be said that currently, better results can be achieved 

without high quantum complexity. 

Table 2 - Summary results MLP models of Zhao (ZHAO, LI, et al., 2020). 

 

Models 
MFPT CWRU PU 

Mean  
(%) 

Max 
(%) 

Mean 
(%) 

Max 
(%) 

Mean 
(%) 

Max 
(%) 

A 2 96.23 96.5 100 100 98.53 99.23 

B 2 94.52 94.95 100 100 97.97 98.46 

C 2 95.88 97.28 100 100 98.22 98.92 

 

A factor that cannot be omitted in the comparison of models is the quantity of parameters 

demanded by neural networks. Even with small neural networks (3 layers), there can be 906 

trainable parameters, of which a quantum network only utilizes 408 in the QCNN. The contrast 

in trainable parameters observed in the Table 3 could potentially explain the variation in 

accuracy results shown earlier. 

Table 3 - Number of parameters per model. 

 

Models 
#Parameters 

Parameters in 
quantum circuits 

Parameters in 
neural nets 

Model 1 55 0 

Model 2 55 0 

Model 3 408 0 

Model 4 408 0 

Model 5 55 903 

Model 6 55 903 

Model 7 408 903 

Model 8 408 903 
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5 CONCLUSIONS 

The three bearing databases were used for this thesis and were utilized satisfactorily. Eight 

models were created, to be compared both in terms of their data processing methods and the 

parametrization of their data for training and learning. Neural networks are also used to see how 

much they contribute to the precision of each model. 

It can be concluded that neural network models achieve accuracy results above 90%, while 

accuracy is around 65% without the use of neural networks. However, with these results, a 

comparison can only be made for the quantum circuit to determine which suggests that the 

parameterized quantum circuits used in this thesis, such as the Real Amplitudes circuits in Qiskit 

and the quantum convolutional circuit. are delivering stable results. However, as mentioned 

earlier, it is important to ensure that the testing dataset also achieves similar accuracy rates to 

avoid overfitting or underfitting issues. 

If only parameterized circuits are used for classification, there is still time to move away 

from depending solely on neural networks. Research is needed to avoid underfitting results, as 

is the case with PU datasets. Moreover, advances in regularization techniques, such as dropout 

in neural networks, will need to be developed in the same way for quantum circuits, as it is often 

observed that the training dataset and testing dataset tend to diverge and do not converge to a 

similar value. 

We must consider that this work is run on classical computers, so the calculations performed 

by the models are analytical and simulate a quantum computer. Therefore, the results obtained 

are as clean as possible since they do not experience the "quantum noise" that is currently 

delivered by the hardware. The execution times in this master thesis are not meant to be 

compared against a classical neural network, as the results obtained using Cirq are analytical 

results of the circuits, and as mentioned earlier, are not run on a quantum computer. 

As future work, we can perform testing of the same models using Qiskit, which, like Cirq, 

allows us to run quantum circuits on real quantum machines rather than just performing 

simulations. Considering this, it will be necessary to delve further into addressing issues related 

to noise correction, as well as exploring the matrices of quantum computers. The digitization of 
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quantum errors means it is possible to reuse certain techniques from classical coding theory in 

quantum error correction. However, there remains a number of complications that prevent the 

straightforward translation of classical codes to quantum codes (JOSCHKA, 2019). The 

interconnections between qubits can impact the positioning of qubits within a quantum circuit, 

which holds significant importance since the quantum state of a qubit can be influenced by its 

neighboring qubits. This can cause a phenomenon known as quantum interference, which can 

affect the accuracy of calculations in the circuit. Therefore, it is important to carefully design the 

location of qubits in the circuit to minimize interference and maximize the accuracy of results 

(NIELSEN and CHUANG, 2000). 

The code library is available at: https://github.com/diegoaichele/MasterThesisDiegoA 
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APPENDIX A – 5 FEATURE PLOT OF THE DATASETS 

Figure 30 - MFPT Dataset 

Source: The author (2023) 
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Figure 31 - CWRU Dataset 

Source: The author (2023) 
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Figure 32 - PU Dataset 

Source: The author (2023) 
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APPENDIX B – CONFUSION MATRIX, ACCURACY AND LOSS OF TRAINED MODELS 

MFPT Results 
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CWRU Results 
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CWRU 10 Class Results 
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PU Results 
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APPENDIX  C – RESULTS OF TRAINED MODELS 

Model 1 

In model 1, a ZFeatureMap input is used followed by RealAmplitude without using neural 

networks. 

Table 4 - Results of Model 1 

 MFPT CWRU PU 

 Acc. F1 Pres. Recall Acc. F1 Pres. Recall Acc. F1 Pres. Recall 

 (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) 

Run 1 73.09 71.99 74.25 73.45 84.06 83.34 87.44 83.79 64,16 60.21 70.58 66.16 

Run 2 75.73 75.08 76.55 75.94 83.43 82.67 86.77 83.15 64.44 61.79 70.38 66.20 

Run 3 73.09 72.04 74.20 73.43 82.18 81.39 85.19 81.87 70.55 69.77 74.32 71.79 

Mean 73.97 73.04 75.00 74.27 83.22 82.47 86.47 82.94 66.38 63.92 71.76 68.05 

Source: The author (2023) 

In general, the CWRU provides superior performance compared to the other two categories 

(MFPT and PU). It exhibits the highest average accuracy (83.22%), F1 score (82.47%), precision 

(86.47%), and recall (82.94%). This indicates that the model or approach used for the CWRU is 

effective in accurately classifying samples and has a higher generalization capability compared 

to the other categories. According to the figures observed in the annexes, the CWRU database 

appears to be more differentiable compared to the rest of the databases. This suggests that the 

CWRU dataset may be considered easier for classification purposes.  

On the other hand, the MFPT category shows intermediate performance, with an average 

accuracy of 73.97%, F1 score of 73.04%, precision of 75.00%, and recall of 74.27%. While it 

does not reach the level of performance observed for the CWRU, it still outperforms the PU 

overall. 

The PU exhibits the lowest performance among the three categories, with an average 

accuracy of 66.38%, F1 score of 63.92%, precision of 71.76%, and recall of 68.05%. These 

results suggest that the model or approach used for PU struggles to accurately classify samples 

and generalize to new instances. 
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Model 2 

In model 2, a ZZFeatureMap input is used followed by RealAmplitude without using neural 

networks. 

Table 5 - Results of Model 2 

 MFPT CWRU PU 

 Acc. F1 Pres. Recall Acc. F1 Pres. Recall Acc. F1 Pres. Recall 

 (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) 

Run 1 79.52 79.11 79.22 79.83 83.75 83.13 86.44 83.46 80.00 80.07 80.25 80.59 

Run 2 79.82 79.61 79.54 80.08 83.75 83.09 86.69 83.46 77.77 77.84 77.90 78.40 

Run 3 79.23 78.78 78.93 79.55 83.75 83.13 86.44 83.46 77.50 77.50 77.66 78.25 

Mean 79.53 79.17 79.35 79.82 83.75 83.12 86.53 83.46 78.42 78.47 78.61 79.08 

Source: The author (2023) 

In terms of overall performance, the CWRU consistently demonstrates the highest results 

compared to the MFPT and PU. It has the highest average accuracy (83.75%), F1 score 

(83.12%), precision (86.53%), and recall (83.46%). 

The MFPT category shows relatively strong performance, with an average accuracy of 

79.53%, F1 score of 79.17%, precision of 79.35%, and recall of 79.82%. Although slightly lower 

than the CWRU category, it outperforms the PU category across all metrics. 

On the other hand, the PU category exhibits the lowest performance among the three 

categories, with an average accuracy of 78.42%, F1 score of 78.47%, precision of 78.61%, and 

recall of 79.08%. While still competitive, it falls behind the CWRU and MFPT categories in 

terms of overall performance. 

Model 3 

In model 3, a ZFeatureMap input is used followed by Quantum Convolutional Network 

without using neural networks. 
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Table 6 - Results of model 3 

 MFPT CWRU PU 

 Acc. F1 Pres. Recall Acc. F1 Pres. Recall Acc. F1 Pres. Recall 

 (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) 

Run 1 78.07 77.43 78.69 78.30 85.62 84.87 90.06 85.39 65.83 64.35 71.89 67.66 

Run 2 77.48 76.79 78.18 77.74 85.00 84.26 88.96 84.75 73.88 72.71 77.71 75.42 

Run 3 77.19 77.29 78.26 77.31 85.31 84.56 89.50 85.07 69.72 67.65 74.88 71.45 

Mean 77.58 77.17 78.38 77.88 85.31 84.56 89.51 85.07 69.81 68.24 74.83 71.51 

Source: The author (2023) 

In terms of overall performance, the CWRU category consistently demonstrates the highest 

results compared to the MFPT and PU categories. It has the highest average accuracy (85.31%), 

F1 score (84.56%), precision (89.51%), and recall (85.07%). 

The MFPT category shows relatively strong performance, with an average accuracy of 

77.58%, F1 score of 77.17%, precision of 78.38%, and recall of 77.88%. Although lower than 

the CWRU category, it outperforms the PU category across all metrics. 

On the other hand, the PU category exhibits the lowest performance among the three 

categories, with an average accuracy of 69.81%, F1 score of 68.24%, precision of 74.83%, and 

recall of 71.51%. While still competitive, it falls behind the CWRU and MFPT categories in 

terms of overall performance. 

Model 4 

In model 4, a ZZFeatureMap input is used followed by Quantum Convolutional Network 

without using neural networks. The CWRU category consistently demonstrates the highest 

performance compared to the MFPT and PU categories. It has the highest average accuracy 

(98.22%), F1 score (98.22%), precision (98.34%), and recall (98.20%). 

Table 7 - Results of Model 4 

 MFPT CWRU PU 

 Acc. F1 Pres. Recall Acc. F1 Pres. Recall Acc. F1 Pres. Recall 

 (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) 



77 

 

 

Run 1 85.96 86.23 87.14 86.08 98.12 98.12 98.24 98.09 83.05 83.05 83.29 83.76 

Run 2 86.84 87.09 87.63 86.94 97.50 97.50 97.70 97.46 81.94 82.11 82.37 82.28 

Run 3 86.54 86.76 87.33 86.72 99.06 99.05 99.09 99.04 81.66 81.68 82.20 82.36 

Mean 86.45 86.69 87.37 86.58 98.22 98.22 98.34 98.20 82.22 82.28 82.62 82.80 

Source: The author (2023) 

The MFPT category shows strong performance, with an average accuracy of 86.45%, F1 

score of 86.69%, precision of 87.37%, and recall of 86.58%. While lower than the CWRU 

category, it still outperforms the PU category across all metrics. 

The PU category exhibits the lowest performance among the three categories, with an 

average accuracy of 82.22%, F1 score of 82.28%, precision of 82.62%, and recall of 82.80%. 

Although competitive, it falls behind the CWRU and MFPT categories in terms of overall 

performance.  

Model 5 

In model 5, a ZFeatureMap input is used followed by RealAmplitude using neural networks. 

Table 8 - Results of Model 5 

 MFPT CWRU PU 

 Acc. F1 Pres. Recall Acc. F1 Pres. Recall Acc. F1 Pres. Recall 

 (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) 

Run 1 91.81 91.87 92.07 92.00 99.06 99.05 99.04 99.06 90.83 90.82 90.80 91.09 

Run 2 91.81 91.81 92.29 91.69 100.0 100.0 100.0 100.0 93.05 93.07 93.07 92.95 

Run 3 92.98 92.90 92.90 92.93 100.0 100.0 100.0 100.0 91.94 92.01 92.01 92.22 

Mean 92.20 92.22 92.42 92.21 99.68 99.68 99.68 99.68 91.94 91.97 91.97 92.09 

Source: The author (2023) 

The CWRU category consistently demonstrates the highest performance compared to the 

MFPT and PU categories. It has the highest average accuracy (99.68%), F1 score (99.68%), 

precision (99.68%), and recall (99.68%). 



78 

 

 

The MFPT category shows strong performance, with an average accuracy of 92.20%, F1 

score of 92.22%, precision of 92.42%, and recall of 92.21%. While lower than the CWRU 

category, it still outperforms the PU category across all metrics. 

The PU category exhibits the lowest performance among the three categories, with an 

average accuracy of 91.94%, F1 score of 91.97%, precision of 91.97%, and recall of 92.09%. 

Although competitive, it falls behind the CWRU and MFPT categories in terms of overall 

performance. 

Model 6 

In model 6, a ZZFeatureMap input is used followed by RealAmplitude using neural 

networks. 
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Table 9 - Results of Model 6 

 MFPT CWRU PU 

 Acc. F1 Pres. Recall Acc. F1 Pres. Recall Acc. F1 Pres. Recall 

 (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) 

Run 1 92.39 92.31 92.57 92.57 99.68 99.68 99.68 99.68 91.38 91.54 91.67 91.48 

Run 2 92.98 92.97 92.95 93.02 100.0 100.0 100.0 100.0 90.83 90.97 91.11 91.35 

Run 3 92.98 92.93 92.90 93.02 99.68 99.68 99.68 99.68 91.38 91.62 91.85 91.48 

Mean 92.78 92.74 92.81 92.87 99.79 99.78 99.78 99.78 91.20 91.38 91.44 91.44 

Source: The author (2023) 

The CWRU category consistently demonstrates the highest performance compared to the 

MFPT and PU categories. It has the highest average accuracy (99.79%), F1 score (99.78%), 

precision (99.78%), and recall (99.78%). 

The MFPT category shows strong performance, with an average accuracy of 92.78%, F1 

score of 92.74%, precision of 92.81%, and recall of 92.87%. While lower than the CWRU 

category, it still outperforms the PU category across all metrics. 

The PU category exhibits the lowest performance among the three categories, with an 

average accuracy of 91.20%, F1 score of 91.38%, precision of 91.44%, and recall of 91.44%. 

Although competitive, it falls behind the CWRU and MFPT categories in terms of overall 

performance. 

Model 7 

In model 7, a ZFeatureMap input is used followed by Quantum Convolutional Network 

using neural networks. The CWRU category consistently demonstrates the highest performance 

across all metrics compared to the MFPT and PU categories. It has the highest average accuracy 

(99.79%), F1 score (99.78%), precision (99.78%), and recall (99.78%). 

  



80 

 

 

Table 10 - Results of Model 7 

 MFPT CWRU PU 

 Acc. F1 Pres. Recall Acc. F1 Pres. Recall Acc. F1 Pres. Recall 

 (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) 

Run 1 91.81 91.75 91.72 91.83 99.68 99.68 99.68 99.68 94.16 94.22 94.16 94.32 

Run 2 92.39 92.85 92.80 92.33 99.68 99.68 99.68 99.68 93.05 93.20 93.15 93.31 

Run 3 93.27 93.23 93.28 93.35 100.0 100.0 100.0 100.0 94.44 94.54 94.56 94.52 

 92.49 92.49 92.60 92.50 99.79 99.78 99.78 99.78 93.88 93.99 93.96 94.05 

Source: The author (2023) 

The MFPT category shows competitive performance, with an average accuracy of 92.49%, 

F1 score of 92.49%, precision of 92.60%, and recall of 92.50%. Although lower than the CWRU 

category, it outperforms the PU category across all metrics. 

The PU category exhibits the lowest performance among the three categories, with an 

average accuracy of 93.88%, F1 score of 93.99%, precision of 93.96%, and recall of 94.05%. 

While still strong, it falls behind the CWRU category in terms of overall performance. 

Model 8 

In model 8, a ZZFeatureMap input is used followed by Quantum Convolutional Network 

using neural networks. 

Table 11 - Results of Model 8 

 MFPT CWRU PU 

 Acc. F1 Pres. Recall Acc. F1 Pres. Recall Acc. F1 Pres. Recall 

 (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) 

Run 1 90.35 90.43 90.83 90.58 100.0 100.0 100.0 100.0 90.55 90.65 91.01 90.77 

Run 2 91.52 91.52 91.69 91.43 100.0 100.0 100.0 100.0 94.16 94.22 94.30 94.20 

Run 3 92.69 92.69 92.72 92.76 100.0 100.0 100.0 100.0 87.22 87.22 87.62 87.72 

Mean 91.52 91.55 91.75 91.59 100.0 100.0 100.0 100.0 90.64 90.70 90.98 90.90 

Source: The author (2023) 
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The CWRU category consistently demonstrates perfect performance across all metrics 

compared to the MFPT and PU categories. It has an average accuracy, F1 score, precision, and 

recall of 100.0%. 

The MFPT category shows strong performance, with an average accuracy of 91.52%, F1 

score of 91.55%, precision of 91.75%, and recall of 91.59%. It performs well but falls slightly 

behind the CWRU category in terms of overall performance. 

The PU category exhibits lower performance compared to the other categories, with an 

average accuracy of 90.64%, F1 score of 90.70%, precision of 90.98%, and recall of 90.90%. 

While still reasonably good, it lags behind the CWRU and MFPT categories. 

Results of CWRU 10 Classes 

In the following method, we employ the cream-of-the-crop models that exhibited superior 

performance over the ones previously showcased, in order to carry out a head-to-head 

comparison with (SOUTO et al., 2023). 

Table 12 - Results of CWRU with 10 Classes on best models performance 

 CWRU 10 Classes 

 Model 5 Model 7 Model 8 

 Acc. F1 Pres. Recall Acc. F1 Pres. Recall Acc. F1 Pres. Recall 

 (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) 

Run 1 97.70 97.27 97.29 97.37 97.70 97.21 97.21 97.44 93.36 92.46 92.73 92.84 

Run 2 97.44 96.92 97.08 96.91 94.89 94.08 94.70 94.29 97.93 97.19 97.00 97.72 

Run 3 97.70 97.26 97.16 97.44 96.93 96.31 96.30 96.50 96.93 96.45 96.61 96.52 

Mean 97.61 97.15 97.17 97.24 96.51 95.87 96.07 96.80 95.83 95.35 95.45 95.69 

Source: The author (2023) 

Among the three models (Model 5, Model 7, Model 8), Model 5 demonstrates the highest 

overall performance. It achieves an average accuracy of 97.61%, an F1 score of 97.15%, a 

precision of 97.17%, and a recall of 97.24%. Model 7 exhibits slightly lower performance, with 

an average accuracy of 96.51%, an F1 score of 95.87%, a precision of 96.07%, and a recall of 

96.80%. Model 8 performs the poorest among the three models, with an average accuracy of 
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95.83%, an F1 score of 95.35%, a precision of 95.45%, and a recall of 95.69%. In conclusion, 

based on the provided results, Model 5 surpasses Model 7 and Model 8 in terms of accuracy, F1 

score, precision, and recall.  

In (SOUTO et al., 2023), different configurations of machine learning circuits were 

compared on the CWRU 10 Classes dataset with 5 features. According to the provided results, 

no significant differences in performance were observed among the configurations with 1, 5, and 

10 layers of circuits. Overall, all configurations achieved comparable results, with an average 

accuracy around 96% and F1-score and recall also close to 96%. 

Table 13 – Best models selection CWRU in Souto research 

 CWRU 10 Classes with 5 features 

 Ry, Rx, Rz VQE: Ry, Rx, Rz+Cz VQE: Ry, Rx, Rz+iSwap 

#Circuit Acc. F1 Pres. Recall Acc. F1 Pres. Recall Acc. F1 Pres. Recall 

Layer (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) 

1 98.08 98.08 98.23 98.08 98.08 98.02 98.21 98.08 96.55 96.54 96.65 96.55 

5 96.93 96.84 97.38 96.93 98.08 98.08 98.26 98.08 96.55 96.49 96.61 96.55 

10 96.17 96.08 96.49 96.17 96.17 96.20 96.70 96.17 96.17 96.13 96.65 96.17 

Source: Adaptation of “CWRU: ML and QML Accuracy, Precision, Recall and F1-Score results.” (SOUTO, 

et al., 2023) 

In conclusion of both works, based on these results, it is true that one cannot confidently 

claim that one model is better than another in terms of performance. It is possible that both 

models are already in their optimal states, and further comparisons could be made by considering 

the running time. However, it should be noted that this thesis does not include such a comparison 

of running time. 
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