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RESUMO

A Internet é uma rica fonte de informagao estruturada. De tabelas Hypertext Markup
Language (HTML) até colegoes de dados publicos, existe um enorme conjunto de dados
relacionais online. Estudos anteriores estimam que mais de 418 milhoes de tabelas, em
formato HTML, podem ser encontradas na Internet. Nao se limitando a estas, um grande
numero de repositorios de dados fornecem acesso a milhares de colegoes estruturadas.
Como resultado, nos tltimos anos, varios estudos exploram estes dados em diversas apli-
cagoes. Por exemplo, tabelas HT'ML sao geralmente utilizadas na tarefa de perguntas e
respostas: considerando uma pergunta e uma colecao de tabelas, o objetivo é encontrar
uma tabela, desta colecao, que possa ser utilizada como resposta para esta pergunta. No
contexto de dados publicos, a principal aplicagao é a busca por conjunto de dados, que
encontra uma colecao de dados para um usuario final. O ponto de interseccao destas tare-
fas é a correspondéncia de dados estruturados e nao estruturados, além de uma tarefa de
classificacdo. Ademais, o principal desafio é construir um modelo computacional robusto
para calcular a similaridade entre perguntas e tabelas. Nesse contexto, este trabalho de
tese esta dividido em trés partes. Na primeira, exploramos o problema de recuperacgao de
tabelas para perguntas e respostas, sumarizando as melhores solucoes para esta tarefa.
Em seguida, introduzimos uma nova tarefa para correlagdo de noticias e tabelas, apli-
cadas para expandir o contetido das noticias. Por fim, focamos na tarefa de busca por
conjuntos de dados. Especificamente, as principais contribuigoes desta tese sao: (I) nos
apresentamos uma nova taxonomia para a tarefa de recuperacao de tabelas que classifica
os métodos de recuperacao de tabelas em cinco grupos, desde abordagens probabilisticas
até redes neurais sofisticadas. Este estudo também aponta que os melhores resultados
para esta tarefa sdo alcancados por meio de modelos de redes neurais profundas, uti-
lizando redes recorrentes e arquiteturas convolucionais; (II) nés introduzimos um novo
modelo de atencao baseado em Bidirectional Encoder Representations from Transformers
(BERT) para calcular o grau de similaridade entre noticias e tabelas, além de comparar
seu desempenho com técnicas de recuperacao de informacao, codificadores de sentencas e
documentos, modelos de correspondéncia de textos e abordagens de redes neurais. Em re-
sumo, um teste de hipotese confirma que nossa abordagem supera todos os outros modelos
considerando uma métrica de classificacao média; e (I11) nés propomos Data Augmenta-
tion Pipeline for Dataset Retrieval (DAPDR), uma solugao que usa modelos de linguagens
para criar perguntas sintéticas para cole¢oes de dados, que sao aplicadas no treinamento
de modelos supervisionados. Por fim, DAPDR ¢ avaliado utilizando dados experimentais
para esta tarefa e modelos densos de recuperagao de informagao, cujos principais resulta-
dos mostram que os modelos ajustados em DAPDR superam estatisticamente os modelos

originais em diferentes niveis de Normalized Discounted Cumulative Gain (NDCG).



Palavras-chave: tabelas da internet; recuperacgao de tabelas; correspondéncia de noticias

e tabelas; busca por conjunto de dados; geragao de consultas; modelos de linguagem.



ABSTRACT

The Internet is a rich source of structured information. From Web Tables to public
datasets, there exists a huge corpus of relational data online. Previous studies estimate
that over 418M tables, in Hypertext Markup Language (HTML) format, can be found
on the Web. Not limited to them, a large number of data repositories also provide ac-
cess to thousands of datasets. As a result of that, over the last years, a growing body of
work has begun to explore this data for several downstream applications. For example,
Web Tables have been widely utilized for the task of Question Answering (QA), whose
goal is to retrieve a table that answers a query from a table collection. In the context
of datasets, their most popular application is the dataset retrieval task, which aims to
find structured datasets for an end-user. The point of intersection for table/dataset re-
trieval is that they need to match unstructured queries and relational data, in addition
to being a ranking task. Moreover, the core challenge of this task is how to construct
a robust matching model for computing this similarity degree. Towards this front, this
thesis work is divided into three parts. In the first one, we explore the problem of QA
Table Retrieval, in which our goal is to outline the best solutions for this task. In se-
quence, we focus on an unexplored news-table matching problem, whose Web Tables are
applied to augmenting news stories. Lastly, we concentrate on the dataset retrieval task.
Specifically, we summarize our main contributions as follows: (I) we present a novel tax-
onomy for table retrieval that classifies the table retrieval methods into five groups, from
probabilistic approaches to sophisticated neural networks. Our research also points out
that the best results for this task are achieved by using deep neural models, built on top
of recurrent networks and convolutional architectures; (II) we introduce a novel atten-
tion model based on Bidirectional Encoder Representations from Transformers (BERT)
for computing the similarity degree between news stories and Web Tables, in addition to
comparing its performance against Information Retrieval (IR) techniques, document /sen-
tence encoders, text-matching models, and neural IR approaches. In short, a hypothesis
test confirms that our approach outperforms all baselines in terms of the Mean Reciprocal
Ranking metric; and (IIT) we propose Data Augmentation Pipeline for Dataset Retrieval
(DAPDR), a solution that leverages Large Language Models (LLMs) to create synthetic
questions for dataset descriptions, which are then applied to training supervised retrievers.
Finally, we evaluate DAPDR on dataset search benchmarks using a set of dense retrievers,
whose main results show that the retrievers tuned in DAPDR statistically outperform the

original models at different Normalized Discounted Cumulative Gain (NDCG) levels.

Keywords: web tables; table retrieval; news table matching; dataset retrieval; query

generation; large language models.
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Figure 17 — DAPDR: our Data Augmentation Pipeline for Dataset Retrieval in two
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the corpus. By filtering query-dataset pairs, we apply them to fine-tune
dense retrievers for ranking. On the other branch, the top-k candidate
datasets are vectorized by applying the fine-tuned models, in addition
to measuring the relevance score between queries and datasets for ob-

taining the final dataset ranking. . . . . . . ... ... ...
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1 INTRODUCTION

This chapter outlines this thesis work. In this study, we focus on Information Retrieval (IR)
tasks for matching unstructured text and structured/semi-structured data. Specifically,
we target at the following tasks: (I) Web Table Retrieval; (IT) News-Table Matching; and
(III) Dataset Retrieval. The point of intersection for such tasks is that they need to match
relational data and unstructured information, in addition to being a ranking task.

At this direction, we begin this chapter by introducing the domain of Web Tables,
which has been used as motivation for our study (Section 1.1). In sequence, we focus on
an unexplored news-table matching problem (Section 1.1.1), whose Web Tables are utilized
for news augmentation. Then, we address the dataset retrieval task (Section 1.1.2).

Finally, we formalize each ranking problem we address in this thesis work (Section 1.2),
and the research questions, objectives, contributions and main results of our study are
also introduced (from Section 1.3 to Section 1.5). We conclude this chapter by presenting

the organization of this document (Section 1.6).

1.1 WEB TABLES: A VALUABLE SNAPSHOT OF DATA FROM THE WEB

HTML Tables, a.k.a. Web Tables, are a huge and rich corpus of relational data from the
Internet (SUN et al., 2019). In addition to representing complex data, they also enable a
quick understanding of entity relationships due to their well-organized structure. In this
thesis, we consider Web Tables as a set of relational HTML Tables (i.e., the <table>
tag from HTML), in which a single relational table contains relation instances and their
associated metadata in the form of column headers (BHAGAVATULA; NORASET; DOWNEY,
2015). Based on that, previous studies estimate that over 418 million tables, in HTML
format, can be found on the Web (EGGERT et al., 2023). From this total, many tables are
used to define page layouts, i.e., the organization of visual elements on a web page (e.g.,
its buttons, fields or menus). However, a vast number of them contains high-quality struc-
tured data about real-world entities and particular categories (CAFARELLA et al., 2008c;
MARZOCCHTI et al., 2022). For example, Wikipedia' alone includes a collection of nearly
2.8M relational tables,? which mostly describe entities and their attributes (MARZOC-
CHI et al., 2022). In summary, Web Tables are a valuable tool to categorize and publish
real-world information on the Internet (SHRAGA et al., 2020c).

As a result, over the last years, a growing body of work has begun to explore this
table corpus for several downstream applications (BALAKRISHNAN et al., 2015; FEDOROV;
MIRONOV; CHERNISHEV, 2023). We assume a table corpus to be a set of structured data
composed of tables in HTML format, which are typically extracted from HTML pages

https://en.wikipedia.org/wiki/Main_ Page

2 Extracted from over 21M Wikipedia pages
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Figure 1 — An example of the query-table match for a Question-Answering task. We suppose
that a user searches for Netherlands Towns, and the relational table lists a sample of
the largest cities of this country.

query: major cities of netherlands

Name Population
Amsterdam , North Holland 741,636
Rotterdam , South Holland 598,199
The Hague , South Holland 474,292

Source: Adapted from Sun et al. (2019)

using the <table> tag (CAFARELLA et al., 2008a). Based on that, such tables have been
widely utilized for the task of Question Answering (QA), where the goal is to retrieve
a table that answers a query from a table corpus (CHAKRABARTI et al., 2020; SUN et al.,
2019). QA is a specialized area in the field of IR, in which QA systems provide relevant
answers in response to a query proposed in natural language (ALLAM; HAGGAG, 2012).
Towards this front, table retrieval for QA is the most popular application for consuming
Web Tables, and the core challenge is how to construct a robust matching model for
computing the similarity degree between text queries and structured tables. We illustrate
a concrete sample of this query/table match in Figure 1, in which we suppose that a user
searches for Netherlands Towns. In this example, the content inside the table (Largest
cities of the Netherlands)® can be used as an answer to the query (Major Cities of the
Netherlands) because it contains the response for the user’s search intentions. Indeed,
some tables provide relevant results for specific queries and, as a result, search engines
have also applied them to respond to intent-queries. For example, by searching for the
query List of Brazilian Cities by Population,* Google returns a co-related Wikipedia table
in the first ranking position which answers the query.®

Not limited to table retrieval, a myriad of work has likewise used Web Tables in fur-
ther domains. For instance, Web Tables have also been applied to the task of Knowledge
Base (KB) Augmentation, in which the goal is to leverage tabular data for increasing
KBs (ZHANG; BALOG, 2020). Furthermore, the study Ten Years of Web Tables (CA-
FARELLA et al., 2018) has also discussed a flurry of tasks built around these tables in-
cluding but not restricted to Table Augmentation, which leverages additional data for
expanding an existing table corpus (ZHANG; BALOG, 2017), Table Interpretation, which

3

https://en.wikipedia.org/wiki/Template:Largest_ cities_of the_Netherlands
4 Search date: December 11, 2023
> https://en.wikipedia.org/wiki/List_of cities in_Brazil by population
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Figure 2 — Improving news understanding by matching a correlated Web Table. A concrete
sample of the news/table matching for data augmentation. In this example, we match
a news story about rare Da Vinci paintings with a Wikipedia table that lists the most
expensive paintings in the world.

i Rare Da Vinci painting smashes world } List of most expensive paintings ‘
i records with $450 million sale 3 ! The most famous paintings, especially old master works done before 1803, |
‘ i | are generally owned or held at museums, for viewing by patrons. This list is |

! ! ! ordered by consumer price index inflation-adjusted value (in bold) in ;
' Leonardo da Vinci's "Salvator Mundi" has become the i1 millions of United States dollars in 2021.

! most expensive artwork to ever sell at auction, going for P

| $450.3 million at Christie's in New York. Dating back to ! Price Painting Artist Year Date of Sale

! around 1500, the rare painting is one of fewer than 20 !

i authenticated works by the Italian in existence. Original i $450M Salvator Mundi Leonardo da Vinci 1500 November 2017

» estimates had predicted bids of over $100 million for the ; $300M Interchange Willem de Kooning | 1955 September 2015

! piece. But the new record was set after approximately 20 |

' minutes of telephone bidding, far surpassing the $250M The Card Players Paul Cézanne 1892 April 2011

! previous auction record held by Picasso's "Les Femmes ; . .

3 d'Alger," which sold for $179.4 million in 2015. $210M Nafea Faa Ipoipo Paul Gauguin 1892 September 2014

: $200M Number 17A Jackson Pollock 1948 September 2015
(a) CNN News (b) Wikipedia Table

Source: Adapted from the original web pages

aims to extract semantic knowledge from the table collection, making the tabular data
processable by machines (ZHANG; BALOG, 2020), and Table Annotation, which focuses on
annotating tables by using an external source (LIMAYE; SARAWAGI; CHAKRABARTTI, 2010).
For example, in an entity linking domain, the table text can be mapped to a real-world
entity by utilizing a KB (BHAGAVATULA; NORASET; DOWNEY, 2015). In summary, Web
Tables can be effectively utilized for many downstream scenarios, since they are useful for

collecting and organizing real-world information on the Web.

1.1.1 News-Table Matching

With the popularity of Web Tables, several studies have explored this corpus for many
specific scenarios (ZHANG; BALOG, 2020). In this context, an unexplored application is to
use Web Tables for data augmentation in the news-table matching task, whose tabular
data is applied to expanding the content of a news story. Therefore, one of our contribu-
tions in this thesis work is a solution towards this goal.

Nowadays, digital news has gained popularity (AKASH et al., 2023; GU et al., 2020). News
reading habits have progressively moved from conventional media such as newspapers
or Television (TV) to the Internet, where millions of articles are published every day (ATRI;
GOYAL; CHAKRABORTY, 2023; SANTOSH; SAHA; GANGULY, 2020). However, given today’s
news deluge, online readers can be overwhelmed to fully understanding the content of a
news story (LEES et al., 2021). One approach to cover this gap is to outline the news by
highlighting the most important facts. For example, recent studies sum up news articles
by adopting representative headlines for their text (CAI et al., 2023; GAVRILOV; KALAIDIN;



24

MALYKH, 2019; GU et al., 2020; OMIDVAR; AN, 2023). Likewise, other papers also utilize
sentence summarization strategies for creating text document representations (AGARWAL;
SINGH; MEEL, 2018; ATRI; GOYAL; CHAKRABORTY, 2023; NALLAPATI et al., 2016; RUSH;
CHOPRA; WESTON, 2015). In resume, for both fronts of text summary methods, the goal
is just to capture relevant data of the text story.

In this thesis, we argue news understanding can also be enhanced by uncovering contex-
tual data relevant to the article, as structured Web Tables. For instance, popular services
such as Google News® or Microsoft News’ could benefit from this News-Table Matching
by providing associated content to the news articles for their readers. Specifically, we aim
to automatically find tables related to news articles. Figure 2 shows a concrete example
of this news/table match: Figure 2(a)® presents an article about a rare world painting and
Figure 2(b)? depicts a Wikipedia table that lists the most expensive arts in the world.
In this example, the table provides additional information about the central topic of the
story, i.e, rare Da Vinci painting. Moreover, by looking at the table, a reader could answer
potential questions related to the topic, e.g., what is the second most expensive painting
in the world? By looking at the table, the answer is Interchange by Willem de Kooning.
Lastly, we can also confirm the selling price of this art by connecting the news and the
table ($450 million for these two sources).

Furthermore, from a fake news perspective, this linking can also improve the credibility
of articles and help in preventing rumor spread, since we can verify their facts across two
different sources of information. For example, by matching the table in Figure 1(b) with
the related news article, Most Ezpensive Paintings: A Look at the World’s Most Valuable
Paintings,'® we can verify that they diverge with respect to the price of the Nafea Faa
Ipoipo? painting by Paul Gauguin, since the article informs that it was sold for around
$259 million, while its value in the Wikipedia table is $210 million.

In fact, similar research has shown the news consumption experience enhancement
by linking sentences in the article with table cells (KIM et al., 2018). In addition, peo-
ple can achieve higher recall by jointly reading text and tables than by consuming text
alone (GOVINDARAJU; ZHANG; RE, 2013). Lastly, web traffic from recent studies has
demonstrated that online readers also explore tables inside Wikipedia pages after looking
at news articles (LEES et al., 2021).

Towards this front, the task of matching news articles and Web Tables is quite similar
to table retrieval for Question Answering. Indeed, its core challenge is also to construct an
adapted News-Table matching model for computing this similarity degree. However, this

task brings novel challenges to the domain of table retrieval. For example, news stories

https://news.google.com

https://news.microsoft.com
https://edition.cnn.com/style/article/da-vinci-salvator-mundi-sale-christies
https://en.wikipedia.org/wiki/List__of most_expensive paintings

10" https://artincontext.org/most-expensive-paintings
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Figure 3 — A snapshot of the Google Dataset Search Framework. We suppose that an end-user
searches for the query: New York City Airbnb Data 2019, and the engine finds the
most correlated datasets for what the user needs (left side of the image). Note that
the framework also includes the dataset metadata for the selected dataset in the
ranking (yellow mark).

Search Query: New York City Airbnb Data 2019

‘ - - - Ranking Results - - - ‘ Dataset Metadata
(1) New York City Airbnb Open Data
Source: kaggle.com (1) New York City Airbnb Open Data
Format: zip Airbnb listings or metrics in NYC, NY, USA (2019)

Date: Aug 12, 2019

- - Coverage Area
(2) New York City Airbnb Clear Data United States, New York, New York

Source: siematologia-fad.it

Format: zip Description

Date: Nov 4, 2019 Since 2008, guests and hosts have employed Airbnb to expand on itinerant features and present see
special, customizable pattern out undergo the world. This dataset describes and listing activity and

(3) Airbnb - Listings product in NYC, NY for 2019.

Source: userclub.opendatasoft.com
Format: csv, excel, geojson
Date: Aug 25, 2020

Content
This data document includes all needed information to seek out more about hosts, geographical
availability, necessary metrics to perform predictions and draw conclusions.

(4) Airbnb New York City Data

- ) Acknowledgements
Source: kaggle.com This public dataset is part of Airbnb, and the novel source can be found on this website.
Format: zip
Date: Jun 16, 2023 Inspiration
What can we learn about different hosts and areas?
(5) New York City Taxi Trip Duration What can we learn upon previsions? (ex: locations, prices, reviews, etc)
Source: kaggle.com Which hosts are the busiest or why?
Format: zip

Date: Nov 19, 2020

Source: Adapted from Google Dataset Search Framework

can include different entities, categories and objects in the same article. Furthermore,
articles are a mixture of unstructured text represented by several aspects, e.g., title,
full content, main passage, keywords and so on. In contrast, table retrieval for Question
Answering focus on specific intent queries, usually single queries defined by a sequence of
few words (SUN et al., 2019; ZHANG; BALOG, 2018), which limits the application of previous
solutions for QA table retrieval to our problem since they need to handle distinct news
features at the same time for news-table matching.

Given this gap, in this thesis work, we investigate the development of neural-based ap-
proaches for the news-table matching task. In addition, we also evaluate the performance

of adapted methodologies for QA table retrieval in the context of this task.

1.1.2 Dataset Retrieval

Similar to the problem of table retrieval for QA, dataset retrieval is the task of retrieving
structured datasets to an end-user, in which a dataset is a collection of tabular data
classified for a particular demand (CHAPMAN et al., 2020). Indeed, both tasks use relational
tables to represent data, and one difference is that Web Tables are mostly entity focused,

while datasets contain a lot of statistical information (CHEN et al., 2020a). Moreover, Web
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Tables and datasets also include contextual data around their corpus, i.e., their table
metadata. As a result, retrieval methods designed for table retrieval can be adapted for
the dataset retrieval task.

We illustrate an instance of this task by using Google Dataset Search framework!!, as
shown in Figure 3. In this example, we assume that an end-user needs to discover Airbnb
data for the year 2019 in New York City, and the framework finds the most correlated
datasets for this query, in addition to including the dataset metadata for each rank result.
Note that queries for dataset search also require the granularity of the data (as e.g.,
for the year 2019), in addition to focusing on geospatial attributes like cities, regions
or countries (as e.g., for the New York data), which differs from a table retrieval task
that mostly addresses question-answering queries as, e.g., What are the Major Cities of
Netherlands? (KACPRZAK et al., 2019).

Finding suitable datasets or tables is a key task for data analysis or exploration. Google
Dataset Search have tried to facilitate this data discovery process. By indexing over 30M
of structured data, it delivers search tools that let users find datasets on the Web, also
providing easier access to the data and its provenance (BENJELLOUN; CHEN; NOY, 2020).
Comprehensive Knowledge Archive Network (CKAN)!'? is another well-known backend
for managing and sharing open-government data, which makes this data accessible and
usable for diverse applications. For example, developers need data to train, validate or
enhance machine learning algorithms. Besides, data is also applied to create public policies
or identify customer needs (CHAPMAN et al., 2020). Not limited to such tools, Auctus'®
is a different search engine for data discovery and augmentation, in which users can
also explore search results through dataset descriptions, geographical information and
summary statistics (CASTELO et al., 2021).

With the popularity of the Google Dataset Search framework, the task of searching
for datasets has received more attention (CHEN et al., 2020a). Indeed, a shared event
for dataset retrieval at the NTCIR-16 conference has attracted researchers from all over
the world (KATO et al., 2022). In short, its core tasks include dataset retrieval, QA for
structured datasets and data discovery interfaces.'* Not limited to that, Chapman et al.
(2020) also survey a list of open problems for this task including but not restricted to: (I)
the development of search paradigms for improving ranking results; (II) the creation of
alternative types of queries for specialized accesses (i.e., moving beyond keywords queries
in the search); and (III) the construction of intuitive search interfaces for user navigation
and exploration (CHAPMAN et al., 2020). Also, other studies have focused on the task of
Query Comprehension, whose goal is to analyze the structure of queries issued on this
open data portals (KACPRZAK et al., 2017; KACPRZAK et al., 2018; KACPRZAK et al., 2019).

https://datasetsearch.research.google.com
https://ckan.org/government
https://auctus.vida-nyu.org
https://ntcir.datasearch.jp



27

In addition, there is, however, a lack of available labeled queries mapped to datasets
for this task. For example, in NTCIR benchmark, a public corpus for this task derived
from open-data portals, just around 200 questions are available (KATO et al., 2021).1
ACORDAR is another popular test set for dataset retrieval, but it has only 493 ground
truth queries (LIN et al., 2022a). Given this gap, developing accurate retrieval models for
dataset search becomes challenging since the number of annotated queries is very scarce
in each benchmark. In addition, both collections have used human annotators or crowd-
sourcing workers to produce questions for datasets, which demands manual efforts and
relevance supervision.

One approach to cover this gap is to utilize Large Language Models (LLMs) for text
query augmentation. In fact, text data augmentation has emerged as a practical strategy
for many Natural Language Processing (NLP) tasks. Inspired by the popularity of LLMs,
many studies have used them for producing task-specific training data (SAAD-FALCON et
al., 2023). For example, Dai et al. (2022) use LLMs as a few-shot query generator, and
retrievers are tuned on this data for improving retrieval accuracy. At the same direc-
tion, Bonifacio et al. (2022) create matching queries for text documents, later used for
training supervised models. Not limited to that, Nogueira et al. (2019) also target LLMs
for data augmentation, in which synthetic queries are used for document expansion. Such
approaches are promising since labeled data is limited to some tasks.

Based on that, in this thesis work, we also evaluate the application of LLMs for
producing synthetic queries in the dataset retrieval task. The query-dataset pairs are

then used for fine-tuning dense retrieval approaches at the target task for ranking.

1.2 PROBLEM STATEMENT

In this thesis, we discuss three correlated tasks for structured/semi-structured data re-
trieval: QA Table Retrieval, News-Table Matching, and Dataset Retrieval. Since each task
utilizes relational tables to represent information, we formalize them as follows.

Given a query ¢; and a set of structured tables T = {t1, 19,13, ...,t,}, our goal is to
find relevant tables t; to ¢;. Note that the notion of relevance is very broad, since web
tables or structured datasets can summarize the search or bring contextual data to the
query. In addition, for each task, we suppose that the structured tables are formed by a
set of lines and rows (similar to a relational database). However, as tables/datasets also
include contextual information around their data (as e.g., their title or short description),
we further assume them as a semi-structured corpus.

Specifically for the queries, in the context of news-table matching task, we consider
that they are composed of the news aspects, such as its title or short description (i.e., the

unstructured information). For QA table retrieval or dataset retrieval, queries are usually

15 This corpus is part of a shared event for dataset retrieval in NTCIR Conference that has attracted
researchers from all over the world (KATO et al., 2022)
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defined by a sequence of a few words proposed in natural language. Given that, we also
suppose that each task is a ranking problem, i. e., their objective is to learn a scoring

function f : ¢; x t; = R that scores the structured data in 7" for a given query g;.

1.3 RESEARCH QUESTIONS

This thesis work concentrates on tasks for structured/semi-structured data retrieval. To-
ward this front, we have discussed the problems of news-table matching and dataset
retrieval, in addition to introducing the domain of Web Tables, which has been used as
motivation for our study, specifically for the context of table retrieval approaches.

The point of intersection for such tasks is that they need to match unstructured infor-
mation and structured/semi-structured data, also being a ranking task. As a result, the
methods designed for Web Table retrieval can also be adapted to the dataset retrieval task,
since they use tabular data to describe real-world information, in addition to containing
the surrounding text as their corpus metadata. Besides, we also pointed out that there is
a very limited labeled corpus of training data for the dataset retrieval task. In this front,
our goal is to investigate the use of LLMs for text data augmentation. Based on that, in
this thesis, we investigate the following research questions, which we classify according to
each task domain (Web Tables, News-Table Matching and Dataset Retrieval):

e Web Tables

— RQ1: How can we retrieve contextual tables for a query from a table corpus?

— RQ2: How to calculate the similarity between unstructured queries and semi-
structured /structured Web Tables?

— RQ3: Which table aspects such as headers, caption or body are more relevant

to the match in the context of table retrieval?

o« News-Table Matching

— RQ4: How to compute the matching degree between News Stories and Web
Tables for the news-table matching task?

e« Dataset Retrieval

— RQ5: Can we improve the efficacy of supervised retrievers by fine-tuning them

on LLMs augmented queries for the dataset retrieval task?

1.4 OBJECTIVES

This thesis work has the following goals: (I) propose a novel taxonomy for the task of QA

table retrieval; (II) develop an end-to-end solution for the news-table matching task; and
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(III) create a new pipeline for the dataset retrieval task. Towards this front, we list the

following specific objectives:

o Investigate previous solutions for the task of Web Table retrieval in the literature;

« Propose a novel news-table matching model to compute the similarity degree be-

tween unstructured news stories and structured Web Tables;

o Collect a set of news articles and Wikipedia tables to construct an experimental

training corpus for the news-table matching task;
» Generate supervised training data for the dataset retrieval task by using LLMs;

« Evaluate the performance of IR methods, sentence encoders, neural matching models

and dense retrievers in the domains of table/dataset retrieval;

« Compare our solutions against the literature baselines.

1.5 CONTRIBUTIONS

This thesis work addresses IR tasks for structured data retrieval, which we summarize
in Figure 4. By assuming the domain of Web Tables, we target at the tasks of Table
Retrieval, News-Table Matching, and Dataset Retrieval. For the first task, we focus on
table retrieval for question-answering. In the other ones, our goals include table retrieval
for news augmentation, and text data augmentation for dataset retrieval. In addition,
since news-table matching and dataset retrieval are novel matching problems, in which
the number of related work is very scarce, we begin by surveying QA table retrieval
approaches from literature, in order to adapt their best methodologies for our tasks,
as both of our domains use tabular data to represent information, similar to QA table
retrieval. Besides, in the context of dataset retrieval, there also is a very limited labeled
matching corpus, which limits the development of supervised approaches to such task.
We cover this gap by using LLMs for text data augmentation.

At this direction, in order to answer the research questions (from RQ1 to RQ5), we

classify our thesis contributions into the three following parts.

Part I - Web Tables. The first part of our thesis focuses on the questions RQ1, RQ2
and RQ3, and our contribution is an extensive survey on table retrieval solutions for
question-answering based on 16 core studies. For that, we consider publications up to the
year 2020, in addition to adopting a snowballing methodology for the literature review,
in which our start set is the work presented by Zhang and Balog (2018).16 Specifically, we
propose a new table retrieval taxonomy that classifies the table retrieval methods into five
groups: Probabilistic-Based, IR-Based, Entity-Based, Feature-Based and Network-Based.

16 This is a relevant study for table retrieval published at a CSRanking conference
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Figure 4 — An overview of this thesis scope. By using the domain of Web Tables, we classify
our contributions into three parts: Table Retrieval for QA, Table Retrieval for News
Augmentation and Text Data Augmentation for Dataset Retrieval.

Matching Unstructured Information and Structured Data

4 N
______ > Table Retrieval L] Table Retrieval for
e Question-Answering
II \
~
Web Tables -~ News-Table Matching -~ Table Retrieval f.or
News Augmentation
A
\ i ~
\‘\-_____) Dataset Retrieval | __,| Text Data Augmentation
for Dataset Retrieval
A

Source: Created by the author

In our survey, we cover studies for QA table retrieval from probabilistic approaches to
novel sophisticated deep learning network architectures.

Furthermore, beyond introducing open research challenges for table retrieval including
more evaluation datasets and ablation studies on table-features, we also present a com-
parative analysis concerning table retrieval methodologies, evaluation benchmarks and
common table aspects (we classify them into query dependent and query independent
features, as well as document fields and document measures). Our research overall points
out that the best results for this task are achieved by using deep neural models, build on
the top of recurrent networks, convolutional architectures and gated units, which outper-

form the traditional information retrieval methods.!”

Part II - News-Table Matching. The second part of this thesis handles the news-table
matching tasks, i.e., our research question RQ4. In the context of this task, this thesis
work presents the following contributions. We first introduce the problem of collocating
news articles with structured web tables as a novel ranking task, in addition to formal-
izing the most used matching features for this task. Moreover, since the experimental
benchmarks for this task are restricted, we present the first news-table corpus from liter-
ature. By crawling Wikipedia pages, we collected 275,352 news articles and 298,792 web
tables. In addition, our experimental ground truth contains over 93k news-table match-
ing pairs created by distant supervision strategies (SMIRNOVA; CUDRE-MAUROUX, 2019).

This corpus is publicly available.!®

17" Since our survey dates from 2020, we do not consider transformer models in our investigation. However,
such models need to be considered for further analysis in the context of this task, as transformer
networks have achieved greater results in different natural language processing tasks.

18 https://github.com/levysouza/News-Table-Matching
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Not limited to that, our core contribution for this task is an end-to-end solution
for matching news articles and web tables. Based on that, we propose a novel BERT-
based attention model for computing this similarity degree. Our work goes beyond the
previous studies that apply BERT for retrieval, in addition to fine-tuning it to the target
task (SUN et al., 2019; LEES et al., 2021; NOGUEIRA; CHO, 2019), since we also consider
matching information from attention matrices over the inputs. In resume, our solution
has two cascaded steps. First, similar to previous work (SHRAGA et al., 2020a; SHRAGA
et al., 2020c; SHRAGA et al., 2020b; SUN et al., 2019), we retrieve a set of candidate tables
by using a standard Information Retrieval (IR) approach, whose goal is to efficiently find
the highest number of relevant tables for the matching model. Next, we use the proposed
model to re-rank the candidates in order to obtain the best matching tables.

Another contribution to this task is that we perform an extensive experimental eval-
uation. Specifically, we compare the performance of our solution with standard IR tech-
niques, document/sentence encoders, text matching models, neural IR approaches and
dense retrievers for this task, also assessing both single and multi-field (document) rank-
ing methodologies in the experimental setup. Overall, a statistical hypothesis test confirms
our method statistically outperforms all baselines in terms of Mean Reciprocal Ranking
(M RR@50). Concerning accuracy, our model achieves near 55% accuracy@1 as opposed
to the best baselines varying between 13% and 48%. Such results demonstrate our model

re-ranks the best matching table for a news story at the first ranking positions.

Part III - Dataset Retrieval. The third part of this thesis concentrates on using
LLMs for Dataset Retrieval, in order to answer the research question RQ5. For this task,
the contribution of this thesis is a Data Augmentation Pipeline for Dataset Retrieval
(DAPDR), a solution that leverages LLMs to generate synthetic questions for dataset
descriptions. These question-description pairs are then employed to fine-tune dense re-
trievers for dataset ranking. Similar to previous work (BONIFACIO et al., 2022; DAI et al.,
2022; JERONYMO et al., 2023), we also focus on LLMs for text data augmentation and
assume the query-description pairs as soft-matches to our task. To the best of our knowl-
edge, we are the first study to apply LLMs in the context of dataset retrieval.

In addition to that, another contribution for this task is that we evaluate DAPDR on
the dataset search benchmarks using a set of dense retrievers for semantic search. In our
experiments, we have assessed the performance of BERT, SBERT, MPNET and DPR,?
which have shown strong results for tasks like Web Search and Question Answering (GAO et
al., 2022; KARPUKHIN et al., 2020; LEE; CHANG; TOUTANOVA, 2019). Our goal is to compare
whether the retrievers tuned on the augmented data utilizing DAPDR outperform the
original models. For that, we fine-tune the retrievers on DAPDR and compare them
with the original models. We also assess the performance of IR methods for comparison

purposes. Our results show that the tuned retrievers statistically outperform the original

19 https://www.sbert.net/docs/pretrainedmodels.html#
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models at different NDCG levels. Their efficacy improves from 6% to 69% for NDCG@5
and, in some cases, three times better than the pre-trained approach. Compared to IR

techniques, the models tuned on DAPDR surpass them from over 6% to 34% for NDCG@5.

1.6 DOCUMENT ORGANIZATION
The remainder of this document is organized as follows.

o Chapter 2 - Background. This chapter covers the IR background for this thesis
work. We formalize the tasks of question-answering and ad-hoc document search,
in addition to defining IR methods for text retrieval. Furthermore, we also describe
the IR workflow that we consider in this thesis work for our experimental setup. In
sequence, we present neural IR models for text representation and for text matching,
also introducing dense retrieves for this task. We conclude this chapter by focusing
on text data augmentation, in which Large Language Models (LLMs) are utilized

for text query generation.

e Chapter 3 - Table Retrieval. This chapter formalizes the table retrieval task
for the domain of question-answering, in addition to depicting some background
about Web tables. Furthermore, we present our table retrieval taxonomy, and rep-
resentative solutions for this task are also detailed. In sequence, we compare current
methodologies, query /tables features and evaluation benchmarks for table retrieval.

We conclude this chapter by covering a set of open challenges for this task.

o Chapter 4 - News-Table Matching. This chapter introduces the task of table
retrieval for news argumentation, in which our goal is to match news articles and
Web Tables. Moreover, we further describe our BERT-based attention model for
news-table matching, also detailing each block of our neural network. In sequence,
we also define our experimental setup for this task. We conclude this chapter by

presenting our main retrieval results for the news-table matching task.

o Chapter 5 - Dataset Retrieval. This chapter focuses on our data augmentation
task for dataset retrieval. Besides, we also present DAPDR (Data Augmentation
Pipeline for Dataset Retrieval), a solution that uses LLMs for producing query-
dataset samples for fine-tuning dense retrievers at the target task. We conclude this

chapter by depicting the experimental setup and our results for dataset retrieval.

o Chapter 6 - Concluding Remarks. This chapter summarizes the contributions
of our study according to each task domain: Table Retrieval, News-Table Matching
and Dataset Retrieval. In addition, the research questions are also answered. Lastly,

we further point out limitations and future work of this thesis work.
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2 BACKGROUND

This chapter covers the IR background in the perspective of our study: text match and text
retrieval for structured/semi-structured data. Towards this direction, we start this chapter
by defining traditional IR tasks for text retrieval such as Ad-hoc Document Retrieval and
Question-Answering (Section 2.1). In addition, we also explain IR methods for this task
including TF-IDF and BM25 (Section 2.2). In sequence, we introduce neural IR techniques
for text representation (Section 2.3.1), neural IR models for text matching (Section 2.3.2)
and dense neural models for text retrieval (Section 2.3.3). Not limited to that, we also
point out evaluation measures in IR that we use in this thesis work (Section 2.4). Lastly,
we focus on text data augmentation, in which a Large Language Model (LLM) is utilized
for synthetic query generation in a target task (Section 2.5), and the concluding remarks

of this chapter are also presented (Section 2.6).

2.1 IR TASKS

Information Retrieval is a field of computer science focused on identifying and retrieving
resources that are relevant to an information need (such as documents or images). Based
on that, the core of an IR system is usually formed by a set of IR components includ-
ing crawling, indexing, searching, ranking, and so on (SCHUTZE; MANNING; RAGHAVAN,
2008). In this thesis work, we target IR for text match and text retrieval, which we for-
malize as follows. Given a text query, usually a sequence of few words proposed in natural
language describing real-world entities, particular categories or statistical data, a system

needs to return a ranked list of search results according to the relevance for this query

Figure 5 — A two cascade workflow for the IR tasks that we consider in this thesis work. First,
a search engine efficiently retrieves a set of candidate documents from the corpus for
each query. Then, a sophisticated reranker model extracts relevant matching signals
from this subset for re-ranking. Note that DOCY4, DOC8 and DOCI have shifted
their position after the re-ranking step.
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(from highest to smallest based on a similarity metric). Note that the notion of relevancy
is very restricted to the task domain, since this ranked list can respond to the query,
bring contextual information, or summarize the user’s intentions. In addition, the search
results can be either long text documents, which stands for the task of Ad-hoc Document
Retrieval, aiming to retrieve the whole text document, or short text passages from them,
i.e., the task of Question-Answering, whose goal is to produce a brief answer to a query
by combining multiple text passages from distinct sources or by summarizing complete
text documents (MITRA; CRASWELL, 2018).

Hence, we also assume the task of document retrieval as a two-cascade workflow, as
shown in Figure 5. First, a search engine efficiently finds candidate documents for the
query by using a traditional IR methods such as the algorithm BM25, whose goal is
to quickly retrieve documents to the query. This subset of the index is then applied to
sophisticated reranker models, which aims to extract more suitable matching features from
the query and the document terms in order to produce the final ranking. In the scope
of our tasks (news-table matching and dataset retrieval), we consider that the documents
are represented by Web Tables or structure datasets.

Therefore, regardless of the IR task we assume, any text match/retrieval model needs
to cover an important set of challenges including but not restricted to: (I) the seman-
tic understanding, to consider inexact matching between query and documents or text

passages; (II) the robustness to corpus variance, to treat those cases where the distri-

Figure 6 — The core of text retrieval/match for IR tasks. Mitra and Craswell formalize this
task based on two main points: Query/Document Representation, which produces
query/document vectors for the inputs; and Query/Document match, which measures
their similarity degree.
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Source: Adapted from Mitra and Craswell (2018)
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butions of the train/test corpus are different; (III) the sensitivity to contest, to leverage
implicit and explicit context information for each term in the corpus; (IV) the robustness
to rare inputs, to handle with less frequently queries in the test; and (V) the efficiency,
to efficiently search for the queries over a larger document index.

In addition, the task of text retrieval or text match generally comprises two basic steps,
which we illustrate in Figure 6: (1) point of representation; and (II) point of match. The
first one focuses on query/document text representation, aiming to produce a fixed-size
vector for each side of the input. In contrast, the point of match analyzes the correlation
between query/document terms by employing a similarity measure. The cosine distance
is generally applied for computing this matching degree. As follows, we introduce the IR

methods that we consider in this thesis work for text representation and text match.

2.2 TRADITIONAL IR METHODS FOR TEXT RETRIEVAL

There exist a lot of methods for the task of text retrieval including statistical algo-
rithms (SALTON; YANG, 1973), language models (PONTE; CROFT, 1998), translation ap-
proaches (BERGER; LAFFERTY, 1999) and dependence strategies (METZLER; CROFT, 2005).
Term Frequency — Inverse Document Frequency (TF-IDF) (SALTON; YANG, 1973) and the
ranking algorithm BM25 (SALTON; YANG, 1973) are widely used for this task, and they
serve as important baselines for experimental comparison (MITRA; CRASWELL, 2018).
TF-IDF is a basic IR method that represents query/documents terms by using a
sparse vector based on Term Frequency (TF), which expresses the number of times that
a term occurs in a document, and Inverse Document Frequency (IDF), which denotes the
frequency of a term for the whole corpus. The IDF score is an adjusted weight for some
terms that appear more frequently in the corpus. As a result, their IDFs are lower because
they are less representative terms for the document. In contrast, rare terms that provide
much information for the document attain higher scores for their IDFs. In short, TF-IDF
is an IR methodology to represent queries and documents using sparse vectors, which is
usually combined with a similarity metric in the target retrieval task, as cosine distance.
At this direction, for each query or document term in the corpus, its TF-IDF is com-

puted according to Equation 2.1:

TFIDF(t,d,D) = TF(t,d) « IDF(t, D) (2.1)

where T'F(t,d) is the term frequency for a term t in a document d, and IDF(t, D)
denotes the inverse document frequency of the term t for the whole corpus D. Note that
there are many methods for calculating the TF and the IDF scores, such as the raw count
itself, boolean frequencies or logarithmically scaled frequency. Furthermore, in a document
retrieval task, documents are usually ranked by computing their cosine distance over the

TF-IDF vector for the query, according to Equation 2.2, in which ¢ represents the vector
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for the query, d is the vector for the document, n denotes the dimension of the vector,

and the symbol (-) is the dot product between ¢ and d.

A 5 Q'CZ ?:1@'*621'
0s(q,d) = =
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In addition to the TF-IDF representation, another relevant method for text retrieval

(2.2)

is the algorithm BM25: a raking algorithm based on the probabilistic relevance framework
that uses term-frequency weighting and document length for ranking documents. Given
a query (@), containing keywords gy, ..., ¢,, the BM25 score of a document D is computed

according to Equation 2.3:

- TF(g;, D 1
BM25(Q,D) = Y IDF(g,) * (g, D) * (k1 + 1) .
%=1 TF(QZvD)+k1*(1—b+b* )

avgdl

(2.3)

where I DF(q;) represents the IDF of the term ¢;, TF(gq;, D) is the frequency of the term g;
for a document D, k; and b are weight parameters for term-frequency and document-length
generally tuned on the validation dataset (as e.g., for the common values k; € [1.2,2.0]
and b = 0.75), |D| is the length of the document D in words, and avgdl is the average
document length in the text collection. Based on that, there is no need to compute the
cosine distance when the BM25 algorithm is used for retrieval, since this score is also
utilized to rank documents across the queries. In summary, both methods Cos(TF-IDF)
and BM25 are term-overlap IR approaches, which focus on the lexical correlation between
the query and the document terms. We also evaluate their ranking performance in the

context of our table retrieval tasks.

2.3 NEURAL INFORMATION RETRIEVAL

In this section, we cover the background for neural IR approaches, which are built on top
of neural network architectures (HAYKIN, 1998) and deep learning models (GOODFELLOW;
BENGIO; COURVILLE, 2016).

With the popularity of neural networks, many studies have been utilizing them for
text retrieval tasks. According to Mitra and Craswell (2018), neural IR models can be
employed for several sub-tasks of text match/retrieval including the task of: (I) learn-
ing query/document term representations (HUANG et al., 2013); (II) learning to rank by
using manually designed features (LIU, 2009); (III) estimating relevance from patterns
of exact matches (GUO et al., 2016); and (IV) augmenting the queries employing neural
embeddings (DIAZ; MITRA; CRASWELL, 2016).

In this thesis work, we focus on the neural IR tasks I (query/document representation)
and III (query/document relevancy) as shown in Figure 7: (a) we use neural models for
creating word embedding representations for the text data, in which the cosine similarity

estimates the correlation between query and document; and (b) we apply neural models
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Figure 7 — Neural IR models for text retrieval and text matching: (a) neural models are applied
for learning query and document representation; and (b) neural models are utilized
for estimating relevant match patterns from the inputs.
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Source: Adapted from Mitra and Craswell (2018)

for getting matching patterns from the input, whose matching vectors can also be used
for text match/classification in any machine learning algorithm, i.e., they are employed in
the domain of representation learning. As follows, we introduce neural networks for text

representation and present a set of neural IR models and dense retrievers for this task.

2.3.1 Neural IR Models for Text Representation

The most popular neural model for text representation is Word2Vec: a shallow network
for learning word embedding vectors according to Skip-Gram and Common Bag Of Words
(CBOW) architectures (MIKOLOV et al., 2013a). In addition to capturing the context of
a word in a sequence, they also learn its relation with other words (i.e., their seman-
tic and syntactic similarity). We illustrate their methodologies in Figure 8: (a) CBOW
architecture and (b) Skip-Gram architecture.

Both networks include an input/output layer, in which each word is represented by a
vector based on an one-hot-encoder approach (i.e., words are mapped to binary vectors),
and a hidden layer, aiming to represent the neural embeddings (i.e., the word projection).
The goal of CBOW is to predict a context word w(t) based on its neighbors (i.e., w(t —
2),w(t — 1), w(t + 1), w(t + 2)), and Skip-Gram infers C' context words for w(t). Note
that the CBOW architecture also includes a merging function for combining the input

words as, e.g., for the sum or average of them. Lastly, in a training task for predicting the
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target word, such networks learn its vector representation by using the back-propagation
algorithm, in which the hidden layer is the embedding vector to the target (RONG, 2014).

While Word2Vec encodes words or tokens to fixed-size dense vectors, other neural
IR models focus on embed sentences, paragraphs or full text documents as, e.g., the
models Doc2Vec (LE; MIKOLOV, 2014), Universal Sentence Encoder (USE) (CER et al.,
2018) and Bidirectional Encoder Representations from Transformers (BERT) (DEVLIN et
al., 2019). We detail such approaches as follows.

Doc2Vec is similar to Word2Vec but it can also be used for representing variable-
length pieces of text, such as sentences or entire documents. We illustrate its network
architecture in Figure 9. In contrast to Word2Vec, its goal is to jointly embed paragraphs
and context words in a single neural network architecture for predicting a target word.
For that, it uses text paragraphs that are usually chosen by considering a sliding window
over the whole text, and the context words sampled from them. Note that Doc2Vec maps
every part of the input to a unique vector, which are then aggregated to predict the next
word in a sequence. In this example, the context words are represented by <the>, <cat>
and <sat>, while the target word is the token <on>. The key idea for this approach
is that the paragraphs can also contribute to the target prediction. After being trained,
such vectors can be employed as dense embeddings for sentences or documents.

In addition to Doc2Vec (LE; MIKOLOV, 2014), other popular models for text represen-
tations include USE (CER et al., 2018) and BERT (DEVLIN et al., 2019). USE is an encoder
model for general-purpose NLP tasks, which utilizes transformer blocks to create dense

embeddings for text input sentences. In this network architecture, the attention mecha-

Figure 8 — The two most popular Word2Vec architectures for text representation: (a) CBOW,
which predicts a target word w(t) based on its neighbors; and (b) Skip-Gram, which
infers C' context words for an input w(t).
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Figure 9 — The core of the Doc2Vec architecture. Similar to Word2Vec, it encodes paragraphs
and context words in a unique neural network for predicting the target word, in which
the paragraphs are chosen by considering a sliding window over the whole text, and
context words are sampled from them.
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nism is applied to learn the context-aware word representations, which assume both word
ordering and word relationship. In addition, each word is mapped to a fixed-length vector
by computing the element-wise sum for their context vectors. Based on that, given an
input text sentence, USE outputs a 512-dimensional vector as the sentence embedding.
This model was originally pre-trained on a set of similarity-related tasks such as Textual
Entailment and Question-Answering.

Likewise, BERT is another sentence encoder that uses bidirectional transformer net-
works for language representations, pre-trained on a large corpus on the Web (DEVLIN et
al., 2019). A transformer is a sequence-to-sequence model formed by an encoder and a de-
coder network (VASWANI et al., 2017), in which each one is a stack of L identical blocks. In
this architecture, each encoder block is composed of multi-head self-attention components
and a position-wise Feed-Forward Network (FFN). Regarding the decoder blocks, they
further insert cross-attention approaches between multi-head self-attention and position-
wise FFN (LIN et al., 2022b). Based on that, the BERT architecture comprises a set of
multi-layer transformer blocks (L), a hidden size (H), and several self-attention heads (A),
in which on the BERT-base model L = 12, H = 768, and A = 12. The core idea of BERT
is to stack various transformer blocks in a single neural network in sequence. Moreover,
it also uses WordPiece embeddings as the token vocabulary (WU et al., 2016), whose last
hidden state, the [C'LS] vector, stands for the sentence embedding. BERT was originally
pre-trained on two distinct tasks: (a) Masked Language Modeling, where the goal is to
predict the masked token in a sentence; and (b) Next Sentence Prediction, whose aims to

infer sentence relationships. However, it can easily be adapted for many NLP domains.
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Figure 10 — The core of the transformer architecture in two fronts: (a) a transformer block com-
posed of a multi-head attention component, normalization layers and feed-forward
networks; and (b) a multi-head attention block based on scaled dot-product or self-
attention mechanism.
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Finally, since BERT and USE are built on top of the transformer network (VASWANT et
al., 2017), we illustrate its core architecture in Figure 10: (a) the transformer network and
(b) the multi-head attention component. The main idea of the transformer is the multi-
head attention component (green block), which contains a set of scaled dot-product at-
tention or self-attention mechanisms over the same input for producing the context-aware
sentence representation. Moreover, positional encoding is also included in this network-
branch, which maps the word position for the text input. In contrast to Recurrent Neural
Networks (RNNs) (ELMAN, 1990), Long Short Term Memorys (LSTMs) (HOCHREITER;
SCHMIDHUBER, 1997) and Gated Recurrent Units (GRUs) (CHO et al., 2014a), which only
capture token relationships for closely words, attention architectures can also learn long
text dependencies in a text sentence. Based on that, the multi-head attention mechanism
is calculated according to Equation 4.1:

T

Attention(Q, K, V) = softmax(?/—;(_)v (2.4)
K

where () corresponds to the query, K is the key, V' is the value and softmax is a normal-
ization function. Given the input embedding, which symbolize the sentence, its goal is to

understand the importance of a word based on its context, i.e., how much attention to
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place in each part of the input as we encode a word for a specific sentence position. @, K
and V' are matrices that the model learns during the training process, aiming to represent
multiple sub-spaces for the same text, i.e., the ability to focus on different positions of

the sentence input at the same time.

2.3.2 Neural IR Models for Text Matching

Neural models have been used for several downstream applications in the context of text
match, including Question Answering (WAN et al., 2016), Paraphrase Identification (PANG
et al., 2016), Ad-hoc Search (XIONG et al., 2017) and Document Retrieval (GUO et al.,
2016). Built on the top of convolutional layers, siamese approaches or recurrent network
architectures, they capture the correlation between query and document terms based on
an interaction step (i.e., a matching matrix extracts relevant similarities from both sides
of the input). As follows, we describe the models used in this thesis work. We chose such
neural IR approaches since they have been proposed for text-matching problems (GUO et
al., 2019), similar to our table/dataset retrieval tasks, which also consider text matching

from the metadata information.

e DSSM (HUANG et al., 2013). This model maps query and document terms to a low-
dimensional space by using a Deep Neural Network (DNN). Its input layers (i.e., the
raw text) are represented by a high-dimensional word vector as, e.g., the TF-IDF
or the N-Grams for the text inputs, and a set of non-linear layers embeds query
and document terms to a dense semantic space, which can be used for semantic
similarity in a retrieval task. The relevance score is then calculated by applying the

cosine distance over query/document vectors in that semantic space.

« ARCI (HU et al., 2015). This model is a siamese-based network that uses 1D con-
volutional layers to learn semantic representations from text sentences. It takes the
word embedding of each part of the input and summarizes it by employing layers of
convolution and pooling, in which each vector representation is learned by using an
individual branch of the network. The fixed vector for each sentence is then utilized

to compute their matching degree over a Multi-Layer Perceptron (MLP) network.

o ARCII (HU et al., 2015). This model is an evolution of ARCI and utilizes 1D convolu-
tions to construct an interaction step for the sentences in the input (i.e., a matching
matrix), which represents their possible combinations in a low level representation
space. However, it further includes 2D convolution layers, over the previous matrix,
to encode high-level text similarities. At the top of the architecture, pooling layers

and MLP networks are used to compute the matching degree for the text input pair.

« MVLSTM (WAN et al., 2016). This model utilizes a Bidirectional Long Short-Term
Memory (Bi-LSTM) to learn long and short-term dependencies from both sides
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of the input sentences, which are represented by word embedding approaches. In
sequence, relevant text matches are captured by using an interaction step over the
Bi-LSTM vectors, in which their similarity functions include cosine distance, bilinear
operations or a tensor layer. At the top of MVLSTM architecture, pooling layers
and a multilayer perceptron network aggregate the interaction matrices to produce

the final matching score for the input.

DRMM (GUO et al., 2016). This model is a deep-based network that captures lo-
cal interaction from the query/document terms based on their neural embeddings,
which are then mapped to a fixed-length matching histogram. Similar to the previ-
ous approaches, this model also utilizes cosine distance for measuring the semantic
similarity from the input. In sequence, the matching histogram, which represents
the text similarities according to a discretized set of bins for the local interactions,
feeds a forward matching network in order to learn hierarchical matching for query
and document. At the top of the architecture, a term gating network aggregates the

overall matching to produce the final similarity scores for a query-document pair.

MATCH PYRAMID (PANG et al.,, 2016). This model is an image recognition-
based approach for modeling text matching. Its core idea is to use a matching matrix,
which represents the text similarity for words, phrases or sentences, to obtain the
semantic correlation from text inputs. This network is similar to the neural models
for image detection, which capture patterns from visual elements using distinct
image representations as, e.g., 1D and 2D pixel grids. Based on that, the matching
degree for text words is calculated by utilizing cosine distance or the dot product
function over their word embedding vectors. In addition, a set of convolutional layers
is also utilized for producing hierarchical matching patterns from the input. At the
top of the network, a set of pooling layers and an MLP architecture produce the

final matching score for the text input.

KNRM (XIONG et al., 2017). This model utilizes a kernel-based network for extract-
ing matching features from query and document terms. For that, given the word
embedding representations for the input, a translation layer calculates the text cor-
relation based on the cosine distance across their vector embeddings, also producing
a translation matrix that defines the word similarities. In sequence, a kernel-polling
approach is also utilized to convert word-word interaction to query-document rank-
ing features, whose maps the matching degree for query and document. At the top of
this network-architecture, a ranking layer combines the ranking features, obtained

from the kernel-polling layers, for producing the final ranking score.

CONV-KNRM (DAIet al., 2018). Similar to KNRM, this model also applies kernel-

pooling layers to match queries and documents in a ranking task. However, a dif-
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Table 1 — An overview of the neural IR models for text matching that we have explored in this
thesis work. We summarize their core architecture in terms of input/output, hidden
layers, training strategy and cross-match methodologies.

Traini C
Model Input Layer Hidden Layers Last Layer aining ross
Strategy Match
TF-1
DSSM F-IDF Non-Linear Softmax Triplet Loss No
Huang et al. (2013) Word Hashing
ARC I 1D C luti
‘Word Embedding onvotution MLP Triplet Loss Yes
Hu et al. (2015) Max Pooling
A IT 2D luti
RC Word Embedding Convolution MLP Triplet Loss Yes
Hu et al. (2015) Max Pooling
i-LST
MVLSTM Word Embedding Bi-LSTM MLP Triplet Loss Yes
Wan et al. (2016) Max Pooling
Histogram Mapping
DRMM X Feed-Forward Feed-Forward X
Word Embedding . Triplet Loss Yes
Guo et al. (2016) IDF Term Gating Network
TCLL - -
MATCH-PYRAMID Word Embedding 2D Convolution MLP Bl.nary Yes
Pang et al. (2016) Max Pooling Classification
KNRM Translation L
. ‘Word Embedding anstation .ayer Tangent Rank Triplet Loss Yes
Xiong et al. (2017) Kernel Pooling
CONV-KNRM 1D Convolution
. B ‘Word Embedding Cross Matching Tangent Rank Triplet Loss Yes
Dai et al. (2018) .
Kernel Pooling
X Fully Connected . .
DUET One-Hot-Encoding X Hyperbolic Posterior
2D Convolution Yes
Mitra, Diaz and Craswell (2017) Character N-Graph Tangent Probability

Max Pooling

Source: Created by the author

ference is that the word embeddings from the text inputs are first mapped to dis-
tributed representations of n-gram embeddings by using convolutional layers (i.e.,
unigrams and bigrams of the text). In addition, a cross-match architecture is also
applied to match query/document n-grams, which represents the similarity degree
for them. At the top of the network, a kernel-pooling approach utilizes Gaussian
kernels to count the soft matches for n-gram pairs, which are then combined into a

ranking layer to produce the final matching score for the document.

« DUET (MITRA; DIAZ; CRASWELL, 2017). This model uses local and distributed
representations of the inputs for matching queries and documents, in which its ar-
chitecture is composed of two distinct sub-networks, whose parameters are jointly
optimized during the training phase. Based on that, the local network estimates
the matching degree for query and document terms based on their exact matches.
In contrast, the distributed network first learns dense representation for query and
document terms by employing layers of convolution and pooling, which are then ag-
gregated into a matching matrix according to an element-wise or Hadamard product.
At the top of this dual model, both local and distributed similarities feed a fully

connected layer to produce a single score.

We conclude this section by summarizing the models for text match or text retrieval

that we previously discussed in Table 1, which we categorize according to input/output
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approaches, hidden layers, training strategy and cross-match methodologies. In relation to
their input method, several approaches for this task have used word embedding techniques
for text representation, which construct dense vectors for query/document terms based
on neural networks (ARCI, ARCII, MVLSTM, DRMM, M-PYRAMID, KNRM, CONV-
KNRM). Regarding their hidden layers, convolution and max-pooling architectures are
most common for them, whose goal is to capture relevant matching signals from both
sides of the input (ARCI, ARCII, M-PYRAMID, DUET). Besides, note that a cross-
match strategy is also applied to various models, in which an interaction step learns the
similarity degree between query and document terms (except for DSSM model). At this
front, cosine distance or dot-product is widely utilized for this matching matrix. Lastly,
at the top of the networks, MLP architectures have been generally applied to produce
the final matching score (ARCI, ARCII, MVLSTM, M-PYRAMID) and, concerning their
training strategy, matching models for text retrieval have usually explored a triplet loss
method, in which the objective is to minimize the distance from the positive example
and its anchor (i.e., a reference input), in addition to maximizing the distance from the

negative ones (DSSM, ARCI, ARCII, MVLSTM, DRMM, KNRM, CONV-KNRM).

2.3.3 Neural IR Models for Dense Retrieval

With the popularity of the transformer network, many studies have used this network-
architecture as a dense retrieval approach, in which dense vectors, built on the top of
the transformer block, encode both query and document terms for ranking. In general,
dense retrievers are applied according to two distinct methodologies, which we illustrate in
Figure 11: (a) bi-encoder models; and (b) cross-encoder models. Bi-encoder models embed
query and document terms by utilizing distinct transformer networks, whose similarity
degree is usually computed over their dense vectors at the top of the architecture, and the
cosine distance is widely utilized for this task. An example of a bi-encoder is SBERT, which
uses siamese and triplet networks to derive semantic embeddings (REIMERS; GUREVYCH,
2019). In contrast, cross-encoder approaches, perform full attention to the query-document
input pair by employing a single transformer network, in which a dense representation
feeds a classification layer, on the top of architecture, to generate the final matching
label. An instance of a cross-encoder is BERT, a sentence encoder that uses bidirectional
transformer networks for language representations (DEVLIN et al., 2019).

At this direction, in this thesis work, we have evaluated the models: Dense Pas-
sage Retrieval (DPR) (KARPUKHIN et al., 2020) and Sentence-BERT (SBERT') (REIMERS;
GUREVYCH, 2019). DPR is a two-independent neural network for open-domain Question
Answering. It first maps text passages to dense vectors by employing a passage encoder
based on the BERT architecture, also building an index for retrieval. In addition, at infer-
ence time, a query encoder is also utilized for embedding the input query, similar to the

passage encoder. As a result, queries and text passages are then aggregated by using the
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Figure 11 — Neural-based networks for dense retrievers in two architectures: (a) bi-encoder mod-
els, in which queries and documents are individually mapped to dense vectors by
using distinct transformer networks; and (b) cross-encoder models, whose a single
transformer network jointly encodes query and document terms to a unique vector
representation, which feeds a classification layer.

Score

!

Cosine Similarity

T T 0.1
«w | [ T

T T Classifier
\ f
Pooling Layers Pooling Layers <dense vector>
G T J J N T. J
Transformer Transformer
Network Network Transformer Network
Query ’ Document ’ Query ’ Document ’

(a) Bi - Encoder Models (b) Cross - Encoder Models

Source: Adapted from SBERT (REIMERS; GUREVYCH, 2019)

dot-product similarity as a ranking function for passage retrieval. In our setup, we use a
pre-trained DRP model that was fine-tuned in Google’s Natural Questions dataset.
Similar to DRP, SBERT is another BERT-based model for generating fixed-sized vec-
tors from input text sentences, which can also be compared by using cosine distance in
a retrieval task. One difference is that SBERT uses two distinct network architectures
to derive semantically embeddings: (a) siamese networks, which compute the element-
wise difference for query and document terms employing cosine similarity; and (b) triplet
networks, whose goal is to approximate an anchor sentence to a positive sentence by em-
ploying a triplet loss function. SBERT was fine-tuned on 1B training pairs using multiple

datasets for semantic search tasks.

2.4 EVALUATION MEASURES IN INFORMATION RETRIEVAL

Several evaluation measures have been used in IR to assess the performance of the text
retrieval approaches including Precision, Recall and F-Measure, which usually compute
the fraction of relevant documents retrieved for a query, in addition to evaluating the

search accuracy (MITRA; CRASWELL, 2018). Besides, there also exist more specific ranking

1

https://ai.google.com/research/NaturalQuestions
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metrics such as: Mean Reciprocal Rank (MRR) (CRASWELL, 2018), which measures
the inverse rank position for the first correct answer over a sample of queries; Mean
Average Precision (MAP) (zHU, 2004), whose represents the average precision for a ranked
list of documents; and Normalized Discounted Cumulative Gain (NDCG) (JARVELIN;
KEKALAINEN, 2002), which assesses the effectiveness of a ranking algorithm based on
relevance judgment for a query-document pair.

In the context of this thesis work, we measure Recall to evaluate the quality of our
retrieval approach (i.e., the Elasticsearch retriever for the top@100 candidate tables/-
datasets), which we calculate according to Equation 2.5:

TP
Recall = TP+ FN (2.5)
where True Positive (TP) represents the matching tables/datasets that were recovered by
the retriever and False Negative (FN) is the ones that are not in the retrieval set. Moreover,

we evaluate our News-Table matching model by using MRR, according to Equation 2.6:

Lol
MRR = — %Y _

_ 2.
Q| = rank; (2:6)

where |@| represents the total of queries for the test set and rank; refers to the rank
position of the first relevant document for the ¢ — th query. For the news-table matching
task, we also use accuracy@Fk (a.k.a. top-k accuracy), which measures the percentage
of news articles in the test set correctly matched to at least one of the top-k ranked
tables. Accuracy@k is a metric widely used in the evaluation of Question Answering
tasks (SANTOS et al., 2015) and recommendation systems (MAITY et al., 2019), for which,
like for our problem, there are one or few relevant results for each query. Lastly, regarding
NDCG, which measures the quality of the ranking based on relevance judgments, we
compute it according to Equation 2.7:
DCG,

p

where Discounted Cumulative Gain (DCG) is a penalized score for a relevant document
based on its ranking position, Ideal Discounted Cumulative Gain (IDCG) defines the
perfect document ranking for a query and p means the ranking cut-off for evaluation. The

core idea of NDCG is that relevant documents should occur in the first-ranking positions.

2.5 LLMS FOR TEXT DATA AUGMENTATION

With the popularity of the Large Language Models (LLMs), many studies have utilized
them to a couple of downstream problems. From zero-shot approaches to few-shot learn-
ers (SANH et al., 2022; OUYANG et al., 2022), LLMs have been achieving the best perfor-
mance for a set of tasks including Machine Translation (BROWN et al., 2020), Passage
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Retrieval (GAO et al., 2022), Question-Answering (SANTOS et al., 2020), or Text Summa-
rization (ZHANG et al., 2023). In addition, a novel research area has emerged on applying
LLMs for text data augmentation, since there exists a limited number of labeled data in
several NLP tasks. In the context of this thesis work, we also focus on LLMs for text query
generation, similar to previous studies (BONIFACIO et al., 2022; DAT et al., 2022; JERONYMO
et al., 2023; SAAD-FALCON et al., 2023; SACHAN et al., 2022). For example, Bonifacio et al.
(2022) propose Inquisitive Parrots for Search (InPars), which is a few-shot method that
creates relevant matching queries for text documents by using GPT-3, later used to fine-
tune retrieval models in a target task. Another work is presented by Nogueira et al. (2019),
in which a Doc2Query approach is applied to generate synthetic queries for text docu-
ments, and its goal is to expand the document corpus by incorporating a text query. The
core of the Doc2Query strategy is to utilize a transformer-based sequence-to-sequence
models for constructing a query given a text document.

Besides, Dai et al. (2022) introduce PROMPTAGATOR: Prompt-base Query Gener-
ation for Retriever, which also leverages LLMs as a few-shot query generator, in addition
to creating task-specific retrievers based on the generated data for ranking. The key idea
of PROMPTAGATOR is to produce training samples by prompting a LLM, whose LLM
data is then used for fine-tuning text retrieval approaches. At the same front, Sachan et
al. (2022) also apply a LLM, T5 or GPT-neo, for question generation in a zero-shot way,
in which documents are ranked by computing the likelihood of artificial questions condi-
tioned on the target passages, allowing for dataset-independent re-ranking. In summary,
there is an increasing tendency to apply LLMs for text data augmentation. Towards this
front, in this thesis work we use them for the dataset retrieval task. As follows, we provide
some background about LLMs (Section 2.5.1), in addition to detailing DocTTTT Tquery,
which has been used in this study for query generation (Section 2.5.2).

2.5.1 Large Language Models

Since the announcement of the paper Attention is All You Need by Google, transformer
networks have gained huge popularity (VASWANTI et al., 2017). Inspired by this architec-
ture, LLMs are transformer-based models for language understanding, which are usually
composed of an encoder and a decoder block, trained on a massive corpus of data. LLMs
are also considered a particular category of sequence-to-sequence models for text genera-
tion /representation, and one advantage is that they can also be utilized in an unsupervised
manner, in which prompting strategies teach the model output. A prompting strategy is
an input instruction for the LLM prediction. For example, we can ask the LLM to sum-
marize a text document or to translate from one language to another.

At this direction, LLMs are mostly applied according to the three following unsuper-
vised methodologies, which we illustrate in Figure 12 (BROWN et al., 2020): (a) zero-shot,
in which the LLM predicts the output given a description of the target task; (b) one-shot,
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Figure 12 — Prompting strategies for Large Language Models by using three different method-
ologies: (a) zero-shot; (b) one-shot; and (c) few-shot.

(a) Zero-Shot

| Task Description: Translate English to French
! Prompt: Cheese =>

——————————————————————————————————————————————————————————————

! Task Description: Translate English to French
i Example: Sea Otter => Loutre de Mer
i Prompt: Cheese =>

i Task Description: Translate English to French
i Example 1: Sea Otter => Loutre de Mer
Example 2: Peppermint => Menthe Poivrée

i Example 3: Plush Giraffe => Girafe en Peluche
i Prompt: Cheese =>

Source: Adapted from Brown et al. (2020)

whose input for the LLM is an example of the task, in addition to its description; and (c)
few-shot, which feeds the LLM by employing few samples of the problem and the task
description. In summary, zero, one or few-short methods are prompting strategies for the

LLM prompting output, whose goal is to guide the text generation in a target task.

2.5.2 DocTTTTTquery Model

In this thesis work, we have used DocTTTTTquery for synthetic query generation, which
is an extension of the Doc2Query model (NOGUEIRA et al., 2019).2 Tt is a T5-based net-
work architecture for producing artificial questions from text documents. Given an input
document, it creates synthetic queries for which the document might respond or even be
relevant. DocTTTTTquery was fine-tuned on the MSMARCO Passage Dataset, which
contains over 500k search queries for passage documents collected from Bing,® and its
original motivation was to expand the text document corpus by appending the LLM
predicted queries to them, which are indexed for passage retrieval in the target task.
The name DocTTTTTquery stands for a T5-based model. T5 is an encoder-decoder
model for language modeling (RAFFEL et al., 2020). Built on top of the Transformer net-
work, its core idea is to convert each task domain to a text-to-text format, where an input

text feeds the model, which is then asked to produce some text output. In addition, a

2 https://github.com/castorini/doc TTTTTquery
3 https://www.bing.com
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task-specific (text) prefix is also included in the input sentence, which specifies the target
task for the text prediction. For instance, an example of a task prefix is: translate English
to German: That is good. T5 is inspired by a transfer learning methodology and has been
pre-trained on the Colossal Clean Crawled Corpus,* which is an English text collection
crawled from HTML web pages (about 750 GB of data). This model can also be used
for a set of downstream tasks including Machine Translation, Question Answering, Text

Summarization, and Text Classification.

2.6 CONCLUDING REMARKS

In this chapter, we presented the IR background in the context of this thesis work: text
retrieval and text match. Based on that, we began by defining IR tasks for ad-hoc doc-
ument retrieval and question-answering, also explaining IR methods for text retrieval as
TF-IDF and BM25. In sequence, we focused in Neural Information Retrieval, in which
we introduced the neural IR models for text representation ( Word2Vec, Doc2Vect, USE,
BERT). Moreover, we also defined a set of neural matching models for QA (DSSM, ARCI,
ARCII, MVLSMT, DRMM, MATCH-PYRAMID, KNRM, CONV-KNRM and DUET),
and dense retrievers, DPR and SBERT, were also demonstrated. Besides, we described
the IR evaluation metrics that we apply in our experiments. Lastly, we concentrated on
text data augmentation, whose goal was to use LLMs for query generation.

At this direction, the core of our study is to use this background to cover both points of
query/document representation and query/document match in our table/dataset retrieval
tasks. Furthermore, we also focus on neural models for learning matching patterns from the
query-table pair, beyond considering word embedding techniques for their representation.
Lastly, our matching solutions are build on the top of the relevant finds from the text

matching models we presented in this chapter.

4 https://www.tensorflow.org/datasets/catalog/c4
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3 A SURVEY ON INTELLIGENT SOLUTIONS FOR TABLE RETRIEVAL

Web tables comprise a vast corpus of online relational information. In addition to rep-
resenting complex data, they also allow a quick understanding of entity relationships.
As a result of that, a growing body of work has begun to explore web tables for sev-
eral downstream applications. For instance, web tables are widely used for the task of
Question-Answering (QA), whose goal is to retrieve a table that answers a query from a
table collection. Towards this front, a plethora of strategies for table retrieval have been
proposed including basic IR methods, entity-based models and neural networks archi-
tectures. However, to the best of our knowledge, no previous study has summarized the
state-of-the-art or outlined representative solutions for this task. An early survey covers
challenges regarding web table extraction, interpretation and augmentation, but presents
a limited number of approaches for table retrieval as, e.g., novel deep learning models
are not contemplated in the paper (ZHANG; BALOG, 2020). In this chapter, we cover this
gap by introducing a survey on table retrieval techniques for QA based on 16 core stud-
ies. Specifically, our main contribution is a new table retrieval taxonomy that classifies
the table retrieval solutions into five groups, from probabilistic approaches to novel deep
learning models. Furthermore, since the tasks of news-table matching and dataset re-
trieval have a restricted number of studies, we also consider this survey as our related
work for this thesis, since both domains use relational tables to represent information.
As follows, we start this chapter by providing some background about table retrieval for

Question-Answering and Web Tables.

3.1 BACKGROUND

This section covers the table retrieval background. We first formalize the table retrieval
problem. In sequence, we present the anatomy of tables on the Web.

Problem Statement. In this chapter, we formalize the QA table retrieval task as follows:
given a query ¢; and a set of web tables T = {t1, s, 13, ..., t, }, our goal is to find the most
relevant table t; to ¢;. The notion of relevance is broad, since a table can summarize the
query, bring contextual data or even answer upcoming questions. Formally, we assume
the task of table retrieval for QA as a ranking task, i. e., the objective is to learn a scoring
function f : ¢; x t; — R that scores tables in T for a given text query ¢; to rank them
based on the table aspects.

Table Anatomy. Web tables are contained in web pages and defined by a set of fea-
tures as follows (ZHANG; BALOG, 2020): (a) page title (HTML title), (b) surrounding text
(page’s short description), (c) table headers, (d) table body and (e) table caption. The first

two ones describe information around the table (i.e., reference text) and have been widely
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Figure 13 — An example of a web table with its five aspects and a core-column: (a) page title,
(b) surrounding text, (c) headers, (d) body and (e) caption. The 2nd column shows
the core-column.

List of Most Expensive Paintings (a) Page Title

This is a list of the highest known prices paid for paintings. The current record price is
approximately US$450.3 million paid for da Vinci's Salvator Mundi. (b) Surround Text

Price | Painting (Core Column) Artist Year | Date of Sale (c) Headers
$450M Salvator Mundi Leonardo da Vinci | 1500 11/2017

$300M Interchange Willem de Kooning | 1955 09/2015 (d) Body
$250M The Card Players Paul Cézanne 1892 04/2011

List of Highest Prices Paid - (e) Caption

Source: Adapted from the original web page

used in table retrieval approaches for this task (CHEN et al., 2020b; LIU et al., 2007b; PIM-
PLIKAR; SARAWAGI, 2012; VENETIS et al., 2011; ZHANG; BALOG, 2018; ZHANG; ZHANG;
BALOG, 2019). The header indicates the properties of the column and helps to describe
their meaning. The body (i.e., cells) contains all the table content, and the caption de-
scribes the subject of the table data. In addition, some tables often include a core column,
which depicts real-world entities or particular categories, while the remaining ones repre-
sent specific proprieties about them. Lastly, these table’s cells contain natural language
sentences or numerical values. We demonstrate a concrete example of the table anatomy

in Figure 13: a Wikipedia table that lists the most expensive paintings in the world.!

3.2 A TABLE RETRIEVAL TAXONOMY

This section presents our table retrieval taxonomy for the task of question-answering. Note
that our survey includes studies for this task published up to the year 2020. Moreover, we
adopt a snowballing methodology for the literature review, in which our start set is the
work presented by Zhang and Balog (2018). We select those studies that deeply describe
their table retrieval methodology. At this front, the proposed classification is shown in
Figure 14. In order to summarize the best solutions for this task as well as to investigate
representative methods for calculating the correspondence between unstructured queries
and structured tables, we categorize the state-of-the-art in at least five fronts according to
the type of methodology: (1) Probabilistic-Based (GAO; CALLAN, 2017; PYREDDY; CROFT,
1997; SHRAGA et al., 2020b), which utilize prior and posterior probabilities to estimate the
query /table similarity; (2) IR-Based (CAFARELLA et al., 2008b; LIU et al., 2007a; LIU et al.,

1

https://en.wikipedia.org/wiki/List_of _most_expensive_ paintings
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Figure 14 — Our taxonomy for QA table retrieval. We categorize the proposed solutions in five
fronts: (1) probabilistic-based, (2) IR-based, (3) entity-based, (4) feature-based and
(5) networks-based.

1: Probabilistic-Based

Document Search
2: IR-Based f TF-IDF
X Passage Retrieval

Knowledge Bases

_ 3: Entity-Based
Table Retrieval Entity matching

Query-Independent Aspects

4: Feature-Based f Query-Dependent Features
\ Document Quality Measures
Table Embeddings

Advanced Neural Models

5: Network-Based

Source: Created by the author

2007b; PIMPLIKAR; SARAWAGI, 2012; SHRAGA et al., 2020a), whose goal is to apply basic
methods for document search to retrieve the tables; (3) Entity-Based (SUN et al., 2016;
VENETIS et al., 2011; ZHANG; BALOG, 2018), which find co-related tables based on entity
matches over the table data; (4) Feature-Based (BHAGAVATULA; NORASET; DOWNEY,
2013; CAFARELLA et al., 2008b; CHAKRABARTT et al., 2020), where the objective is to use
query-dependent and query-independent features for training regression models; and (5)
Network-Based (CHEN et al., 2020b; GLASS et al., 2021; SHRAGA et al., 2020c; SUN et al.,
2019; TRABELSI; DAVISON; HEFLIN, 2019; ZHANG; ZHANG; BALOG, 2019), which learn
query-table context vectors by adopting neural networks architectures. We should note
that each article belongs to only one front, except for Cafarella et al., (2008), which
cover both IR methods and feature-based approaches in the same article. As follows, we

overview these solutions according to the devised taxonomy.

Probabilistic-Based. To the best of our knowledge, the earliest studies of table retrieval
target this problem by utilizing probabilistic models (GAO; CALLAN, 2017; PYREDDY;
CROFT, 1997), and popular applications for this task include INQUERY System (CALLAN;
CROFT; HARDING, 1992) and Indri Seach Engine (METZLER; CROFT, 2004) (common
frameworks for document search). In this front, single queries are represented in a struc-
tured way by identifying the most important query concepts such as entities or noun
phrases. In addition, tables are indexed as documents by using distinct index fields (e.g.,
table caption, headers and body), and each of them can also receive different weights in the
retrieval score based on user knowledge (PYREDDY; CROFT, 1997). Lastly, these solutions
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estimate the similarity between queries and tables by employing adapted mathematical

functions composed of prior and posterior probabilities (GAO; CALLAN, 2017).

IR-Based. Some studies propose to query existing web search engines to retrieve tables
from the best-ranked documents (CAFARELLA et al., 2008b). In another direction, some
approaches search for tables directly into a table corpus (LIU et al., 2007a; LIU et al., 2007b;
PIMPLIKAR; SARAWAGI, 2012; SHRAGA et al., 2020a). For this front, tables are generally
interpreted as single or multi-field (text) documents. Beyond that, in a table multi-field
approach, these studies also use the table-structure to consider different meanings. For
example, the table caption is a more descriptive aspect as it outlines the whole table
data and therefore can receive more weight at the score function. Overall, such class of
work focuses on the lexical matching between queries and tables (i.e., query/table terms
overlap), and basic IR methods for document search such as TF-IDF are widely used
for this task (LIU et al., 2007a). Finally, tables are ranked by using cosine similarity over
TF-IDF or by applying BM25 algorithm (SHRAGA et al., 2020a).

Entity-Based. Beyond lexical matching, other studies have used knowledge bases to
extract semantic features for this task (GAO; CALLAN, 2017; ZHANG; BALOG, 2018), aiming
to compute the semantic correlation between the queries and the table data. Towards this
direction, a semantic solution for table retrieval is to find those tables that match entity-
related terms on the query over a table core column, which represents the main column of
the table (CHAKRABARTI et al., 2020; SUN et al., 2016; VENETIS et al., 2011). Besides, other
papers propose robust models in which the query and the table are represented by distinct
semantic spaces (e.g., bag-of-concepts or embeddings), and the similarity between them
is calculated according to novel early and late fusion strategies (ZHANG; BALOG, 2018).
Feature-Based. When human-curated data is available, several studies have been ap-
plying linear regression models to produce a similarity score between queries and ta-
bles (BHAGAVATULA; NORASET; DOWNEY, 2013; CAFARELLA et al., 2008b; CHAKRABARTI
et al., 2020). To train such approaches, the literature presents a set of query-dependent and
query-independent features, which mostly include query/table terms overlap and docu-
ment measures. For instance, there exist papers that consider the number of times that a
query-term occurs in the most-left table columns (CAFARELLA et al., 2008b; CHAKRABARTI
et al., 2020). Moreover, other authors have argued that the table retrieval results improve
when using external document aspects into these models, such as page rank, page views
or in/out reference links for the page, i.e., document quality measures (BHAGAVATULA;
NORASET; DOWNEY, 2013).

Network-Based. As neural networks have been applied for a range of tasks, some articles
also adopt those strategies for table retrieval (CHEN et al., 2020b; GLASS et al., 2021;
SHRAGA et al., 2020c; SUN et al., 2019; TRABELST; DAVISON; HEFLIN, 2019; ZHANG; ZHANG;
BALOG, 2019). For instance, previous studies apply word-embedding techniques to embed
query-table terms (TRABELSI; DAVISON; HEFLIN, 2019; ZHANG; ZHANG; BALOG, 2019).
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In another direction, recurrent networks have also been used to generate query/table
context vectors (SUN et al., 2019). In addition to that, other papers also represent queries
and tables as multimodal objects by employing sophisticated deep neural architectures
based on gated units (SHRAGA et al., 2020c), and recent studies have also utilized novel
bidirectional sentence encoders for this task such as BERT and ALBERT (CHEN et al.,
2020b; GLASS et al., 2021).

On the whole, this flurry of research points out several alternatives for the problem
of table retrieval in the context of QA, ranging from probabilistic approaches to novel

sophisticated deep neural-network architectures.

3.3 REPRESENTATIVE METHODS FOR TABLE RETRIEVAL

In this section, we detail representative methods for the task of table retrieval in which

fall under one of the categories of our taxonomy.

3.3.1 Probabilistic Approaches

The early study of table retrieval we found is presented by (PYREDDY; CROFT, 1997),
where the authors introduce TINTIN: a retrieval system for tables in text documents.
TINTIN has three main components: table extraction, annotation and retrieval. Specifi-
cally for table retrieval, the authors use the INQUERY System (CALLAN; CROFT; HARD-
ING, 1992), and tables are indexed based on their caption, headers and cells. INQUERY is
a probabilistic retrieval engine based on Bayesian Inference Networks: a Directed Acyclic
Graph (DAG) whose nodes are propositional variables and arcs are dependencies. For
this task, both tables and queries are nodes, and arcs represent the probability of a table
responding to a query.

At the same direction, Gao and Callan (2017) propose MaitreD: a probabilistic ranking
framework for scientific table retrieval. Unlike TINTIN, which only uses basic table aspects
as indices (i.e., caption, headers and cells), MaitreD brings out novel features for this
task including the table-quality, the query-concepts and the quantity-terms. The first one
evaluates the quality of the table-data by counting the total of numerical cells inside the
table body. Another aspect is the query representation, MaitreD transforms unstructured
queries into structured queries by analyzing the type of query concepts (e.g., entities, noun
phrases and quantity expansion). Entities are annotated by TagMe (CARMEL et al., 2014),
a popular system for annotating short texts with Wikipedia entities, and noun phrases
are identified by applying Monty Lingua.? In addition, quantity features map query terms
to quantity descriptions and standard units (e.g., electron volt and joule) by employing
QUDT: a data type ontology.?

2
3

http://alumni.media.mit.edu/ hugo/montylingua
http://www.qudt.org
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3.3.2 Traditional IR Methods

This section details the IR methods for table retrieval. We classify them into Document

Search, TF-IDF and Passage Retrieval approaches.
Document Search. Cafarella et al. (2008b) introduce two basic methods for QA table

retrieval: NaiveRank and FilterRank. The first one searches for the queries on the top of
an existing web search engine, and tables are extracted from the top-k ranked documents.
If there is more than one table per web page, it ranks the tables in the order where
they appear in the document (top-down). FilterRank is slightly different compared to

NaiveRank as it scans down the search engine’s results until obtains £ tables.

TF-IDF. Another study in this front is presented by Liu et al. (2007a), Liu et al. (2007b),
where the authors introduce TableRank: an algorithm adapted from TF-IDF which weighs
terms by using three levels: Table Term Frequency - Inverse Table Term Frequency (TTF-
ITTF), Table Level Boosting (TLB) and Document Level Boosting (DLB). TTF-ITTF
measures term frequency over a table metadata instead of the whole corpus for preventing
false-positive hits. TLB goes over two table-level features: table-frequency, which denotes
the total number of tables that contains a term in the entire document; and table document
position, which weights table terms when they appear over sections specified by the user
(e.g., “Experiment”, “Evaluation” and “Result Analysis"). Concerning DLB, it addresses
query-independent features such as the overall importance of a document where a table
occurs. The authors claim that the tables present in important documents are also inclined
to be relevant. Lastly, the final vector is computed by aggregating the query/table terms
in TTF-ITTF, TLB and DLB levels, and the matching score between queries and tables

is calculated by the cosine similarity.

Passage Retrieval. Whereas Cafarella et al. (2008) and Liu et al. (2007) use tradi-
tional methods for document search to retrieve tables, Shraga et al. (2020a) introduce
two novel measures for this task: Intrinsic and Eztrinsic query /table similarities. In this
work the authors assume there is a pool of candidate tables obtained by some tradi-
tional IR model, which they re-rank according to the proposed similarities. The Intrinsic
score for a query-table pair is based on techniques for passage-retrieval (ROITMAN; MASS,
2019) and is computed according to the following steps: (i) tables are represented as the
concatenation of all textual aspects (i.e., page title, table caption, headers and body);
(ii) the whole text is divided into k passages by using a sliding window over characters;
(iii) a score is calculated for each of them by combining query-dependent and query-
independent measures built on BM25 and a modified TF-IDF cosine similarity; and (iv)
the maximum score from all passages is the intrinsic similarity of a table. Another pro-
posal is the Eztrinsic score, which assumes the cluster hypothesis in Information Retrieval,
i.e., similar documents tend to behave similarly for a given information need (KURLAND,

2013). Based on that, the authors argue that the table-table correlation goes analogous
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and compute the inter-table similarity for a pair of tables by adopting the Bhattacharyya
coefficient (BHATTACHARYYA, 1946). Lastly, the authors re-ranking the set of candidate
tables by multiplying the scores from the IR model, intrinsic and extrinsic similarities to

create the final score of each table.

3.3.3 Entity-Based Models

This section presents the entity-based models for table retrieval, which we classify into
Knowledge Bases and Entity Matching approaches.

Knowledge Bases. Zhang and Balog (2018) introduce a semantic similarity model in
which the query and the table aspects are represented by distinct semantic spaces (i.e.,
bag-of-concepts and word embeddings). Specifically, the proposed model contains three
cascade steps: (i) content extraction, (ii) semantic modeling and (iii) table matching.
The first one represents the query/table terms as words or entities. The entities are
extracted from DBpedia* knowledge base, whose features include name, attributes and
similar /related entity names. The second step goes over two kinds of semantic represen-
tations: bag-of-concepts (Wikipedia entities or categories); and embeddings, which map
each table/query term to a dense vector using Word2Vec (MIKOLOV et al., 2013b) and
RDF2Vec (RISTOSKI; PAULHEIM, 2016). The final step of the model measures the simi-
larity between queries and tables according to two strategies: early fusion, which encodes
query and table as a single representation based on the centroid vector; and late fusion,
which computes the pairwise similarity between all query and table terms, and an aggre-
gation function consolidates the similarity (e.g, sum, maz or avg).

Entity Matching. In the same direction, other studies have also been using entity-based
approaches for matching queries and structured Web Tables (SUN et al., 2016; VENETIS et
al., 2011). However, such solutions are quite simpler compared to Zhang and Balog (2018)
because they only focus on entity matches over the table features (generally table cells).
For example, Venetis et al. (2011) target this problem by annotating table-columns as
entities or categories. The queries are represented as a tuple of (class name, property),
which denotes query entities and their relationships. To retrieve the co-related tables for
a user query, their retrieval solution finds the tables that match the query class name
over the table data. Another work is presented by Sun et al. (2016), which also fetches

the tables according to query entity matches inside the table columns.

3.3.4 Feature-Based Techniques

Cafarella et al. (2008b) introduce two table retrieval approaches in which they train a
linear regression estimator to produce a query-table score by applying query-independent

and query-dependent features: FeatureRank and SchemaRank. The first one uses the fol-

4 https://www.dbpedia.org/
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lowing aspects for training the model: (i) Table Data, (#rows, #columns, #nullvalues);
(ii) Document Quality Measures, (page rank); and (iii) Query/Table Terms Overlap, #hits
on table (headers, columns, cells). SchemaRank is similar to FeatureRank but also includes
the ACSDb-based coherency score as a novel retrieval aspect. A coherent schema is one
where the attributes are tightly related to one another, i.e., how well the attributes fit
together. For this task, the coherence level among table columns is computed by using
Point-wise Mutual Information (PMI) (CHURCH; HANKS, 1989).

In the same direction, Bhagavatula, Noraset and Downey (2013) propose to train
regression models to retrieve tables for a query but with some main differences compared
to Cafarella et al. (2008). First, the solution extracts tables from the top-30 web pages
returned by a traditional engine for a given query. They also propose novel features as
input for the models including: the total of in/out links to the page; table importance;
and the number of query tokens found in page title or table caption.

Another study towards this front is presented by Chakrabarti et al. (2020), which
utilizes similar features as in Bhagavatula, Noraset and Downey (2013) and Cafarella et
al. (2008b). In addition, they propose a set of novel statistical aspects based on entity
matches and pre/post query modifier terms for this task, and a gradient boosted decision
tree is used for training instead of a linear regressor. The authors argue that each table
has a subject column, which typically contains entity names, and therefore the proposed
features include the total of query entity matches over the subject column name or subject
column values, and the number of matches between query entities and document headings
(i.e., h2, h3, and h4). Lastly, this study also claims that for some type of queries there
is a premodifier or postmodifier term. For instance, the query (2017 tom cruise movies)
has a premodifier term, i.e., the token 2017, which limits the search to this year. Based
on that, the authors argue that such tokens generally do not occur in the page features
or subject columns and therefore they devised another statistical metric for counting the
frequency in which this terms appear over non-subject columns of the tables.

We conclude this section by categorizing the most common query/table features ap-
plied to regression models for this task in these studies: query dependent and query
independent aspects; and document quality measures, summarized in Table 2. We depict

feature names, short description and article source.

3.3.5 Neural Networks

This section details neural models for table retrieval. We present Table Embeddings ap-
proaches and Advanced Neural Models.

Table Embeddings. Zhang, Zhang and Balog (2019) propose Table2Vec: a neural lan-
guage modeling for embedding tabular data into distinct vector spaces. Specifically, they
introduce four types of table embedding: Table2VecW, Table2VecH, Table2VecE and Ta-
ble2VecE*. Table2VecW considers words over the page title, section title and table ele-
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Table 2 — Common features for training regression models. We classify them into three groups:
Query Independent, Query Dependent and Document Measures.

Feature Description Bhagavatula (2013) Cafarella (2008a) Chakrabarti (2020)
(1) - Query Independent

#Rows Total of Rows b'd X
#Columns Total of Columns X X X
#NullValues Ratio of Empty Cells b'd b'e
Has-header? If Headers Present X

SectionNumber Wikipedia Section
TableImportance  Total of Tables by Page

TablePageFraction Table Size Ratio X X
ColumnName If Column Names Present

(2) - Query Dependent

#Hits on header = Query Hits on Headers e

#Hits on Columns Query Hits on Columns X X
#Hits on Body Query Hits on Cells

qlnPgTitle Query Hits on PgTitle X
qInTableCaption  Query Hits on Caption X X
qInColumnNames Query Hits on Col-Name X
gInSurrText Query Hits on SurrText X
(3) - Document Measures

Page Rank Document Search Rank X X
ACSDb Schema Headings Coherency

YRank Yahoo Rank X

inLinks Total of In-Links to Page X

outLinks Total of Out-Links From X

PageViews Total of Page Views X

Source: Created by the author

ments (i.e., caption, headers and cells), while Table2VecH only encodes table header terms.
Table2VecE looks at all entities that appear inside the table cells, and Table2VecE* cre-
ates embeddings based on entities names over a table core column. Although Table2Vec
also examines entity-based methods for table retrieval similar to those studies presented
in Section 3.3.3, the main goal is to encode tabular data built on top of neural networks.
For this task, the embeddings are created by using an adapted skip-gran model based
on Word2Vec (MIKOLOV et al., 2013b), and the cosine distance is applied to compute the
similarity of a query-table pair.

Similarly, Trabelsi, Davison and Heflin (2019) propose a solution that focuses on table
embeddings considering three stages. First, it builds an embedding model where token
embeddings are calculated by using the contextual information from each table (table
metadata such as title or caption; table headers; and table body). By doing this, a token
that appears over a table metadata has a different meaning from the same token when it
is inside the table. The second stage augments the table tokens by adding their similar
top-k words, which are computed by the built embedding model. Lastly, a cosine-based

similarity measures the level of matching between query and table tokens.

Advanced Neural Models. Sun et al. (2019) introduce a table retrieval model based on

two cascaded steps. First, it finds a small set of candidate tables by using traditional IR
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approaches such as BM25 (i.e., 50 or 100 candidate tables). Afterward, the model employs
a neural network to automatically extract features from the initial set as well to produce
the similarity score. The main contribution is a set of both manually designed charac-
teristics and neural network features for this task. The designed characteristics include:
word-level, the total of query terms that overlap inside the table aspects (i.e., header, cells
and caption); phrase-level, which uses a Statistical Machine Translation (SMT) (KOEHN;
OCH; MARCU, 2003) to extract a phrase table from a bilingual corpus and deals with
those cases where queries and tables use different expressions but have the same meaning;
and sentence-level, which applies the CLSM model (SHEN et al., 2014) to compute sentence
vectors from sub-word embedding by utilizing convolutional neural networks. Beyond that
designed characteristics, the authors also propose network-based features created by re-
current networks for encoding queries and tables. A bidirectional Gated Recurrent Unit
(GRU) (CHO et al., 2014b) encodes the queries from both directions, and the last two
hidden states of the model architecture are used as the final embedding vector. In addi-
tion, because tables are composed of many aspects as headers and cells, their approach
represents table features as external embedding memories, which associates an embedding
for each table token.

Chen et al. (2020b) propose a deep contextualized language model based on BERT (DE-
VLIN et al., 2019). The retrieval framework contains four components as follows. First, a
content selector extracts potentially informative items from each table by slicing table
aspects into a list of rows, columns and headers. The second component selects relevant
items based on a salience score, which measures the similarity between query and table
terms by applying cosine distance. In addition, Chen et al. (2020b) introduce a set of three
content selectors to encode table items into a fixed-width BERT representation based on
mean, sum and max metrics. Next, the solution uses BERT to encode queries and those
table items with higher salience scores (third component). The last component concate-
nates BERT features with curated aspects into a single vector. The authors argue that
curated-based methods have shown impressive performance, and the proposed framework
can also include human-curated features when they are available (such aspects are similar
to that we show in Section 3.3.4). Lastly, a final regression layer predicts the similarity
score for a query-table input pair.

Another work, by Shraga et al. (2020c), introduces a novel deep learning model for
table retrieval. The tables are represented as multimodal objects, i.e., each table T; =
(description, schema, records, facets). The description is the text that accompanies the
table such as page title or caption, while the schema is the table column names. Records
consist of the table rows, and facets vertically divide the table data and correspond to a
specific table column. The proposed approach encodes each of those table modalities by
applying different types of neural networks. Specifically, the solution uses a bidirectional

Long Short-Term Memory (LSTM), followed by a max-pooling layer, to represent both
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Table 3 — Table retrieval solutions classified by year of publication. We show common method-
ologies by reference and table aspects for this task. The symbol (*) indicates the
techniques or the type of features chosen by each approach.

Single Multi Entity Surrounding External

Reference Methodology

Field Field Modeling Features Aspects
Pyreddy and Croft (1997) Probabilistic-Based =~ * *
Gao and Callan (2017) Probabilistic-Based * * *
Liu et al. (2007a) IR-Based * * *
Pimplikar and Sarawagi (2012) IR-Based * *
Shraga et al. (2020a) IR-Based * *
Venetis et al. (2011) Entity-Based * * * *
Sun et al. (2016) Entity-Based * *
Zhang and Balog (2018) Entity-Based * * *
Cafarella et al. (2008b) Feature-Based * * *
Bhagavatula, Noraset and Downey (2013) Feature-Based * * *
Chakrabarti et al. (2020) Feature-Based * * * *
Sun et al. (2019) Neural Networks *
Zhang, Zhang and Balog (2019) Neural Networks * * *
Trabelsi, Davison and Heflin (2019) Neural Networks * *
Chen et al. (2020b) Neural Networks * *
Shraga et al. (2020c) Neural Networks * *

Source: Created by the author

query and table description. For the table schema, a Multi-Layer Perceptron (MLP) block
generates a representation for each table header. Regarding table records and facets, the
authors propose a 3D Convolutional Neural Network (CNN), followed by max-pooling
layers. Another main contribution is how to obtain a joint representation from all these
table modalities. For that, the authors apply a Gated Multimodal Unit (GMU) (OVALLE et

al., 2017): a gating scheme for learning a single representation of distinct table modalities.

3.4 SUMMARY AND DISCUSSION

In this section, we summarize the methods previously discussed based on our taxonomy.
We briefly compare them in terms of the current methodologies for table retrieval, fea-
tures used for this task, experimental datasets for evaluation and relevant approaches for
literature benchmarks, which we summarize in Tables 3, 4, 5 and 6.

Table 3 outlines our survey on the core studies for table retrieval (note we sort the
articles by methodology). In summary, there is an increasing tendency to utilizing neural
models for this task in the last years (CHEN et al., 2020b; SHRAGA et al., 2020c; SUN et al.,
2019; TRABELSIE; DAVISON; HEFLIN, 2019; ZHANG; ZHANG; BALOG, 2019). Another obser-
vation is that the surrounding table context is used in almost all table retrieval work, i.e.,
document fields such as page title or page abstract (column Surround Features in Table 3).

In addition, by comparing the single and multi-field methodologies, we note that the re-
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cent approaches mostly encode tables as a multi-field (text) document (studies published
between 2017 and 2020). Lastly, we observe that several studies apply a combination of
distinct techniques for this task in a similar way. For instance, Chakrabarti et al. (2020)
consider surrounding table features, external document aspects and entity modeling at
once, similar to Venetis et al. (2011). Based on that, we argue that downstream appli-
cations for table retrieval can benefit from the combination of relevant findings from the
ongoing studies to create a high-quality solution for this task.

We also compare the studies in terms of the query and table features for this task. We
go beyond those features as shown in Table 2 (i.e., popular features for regression models
in table retrieval) and cover common retrieval aspects for the whole survey, summarized
in Table 4. In this direction, we make the following observations. There is a huge set of
query, table and document aspects used to the problem of table retrieval. We divide them
in two groups: internal aspects and external aspects. The internal aspects cover table
features such as table caption, header or body, and other ones come from the matching
between query text and table data, i.e., query-dependent features. For instance, some
approaches consider the number of times a query term appears over the table data (e.g.,
#hits on table headings or table-cells) (CAFARELLA et al., 2008b; CHAKRABARTT et al.,
2020). The second group of features is related to document quality measures, i.e., those
aspects that do not depend on the query. In addition, other studies have also been used
surrounding table features like document title or abstract (i.e., document fields) Gao and
Callan (2017). We argue that the content around the table also provides high-quality
contextual data to the query/table match.

Besides, we also note that the table caption, headers and body are the most com-
mon features for table retrieval. In addition, when we consider human-curated data,
the approaches mainly employ external document measures such as page ranking, doc-
ument citation and page views, beyond query-table term overlaps (BHAGAVATULA; NO-
RASET; DOWNEY, 2013; CAFARELLA et al., 2008b; CHAKRABARTI et al., 2020; PIMPLIKAR;
SARAWAGI, 2012; VENETIS et al., 2011). Some solutions also apply non-semantic features
into the models including #rows and #columns (e.g., (CAFARELLA et al., 2008b)). Lastly,
the document title is widely used both in older and recent models (LIU et al., 2007a;
SHRAGA et al., 2020a), and the table section title also appears for some work, i.e., sur-
rounding table features (CHEN et al., 2020b; SHRAGA et al., 2020c; ZHANG; BALOG, 2018;
ZHANG; ZHANG; BALOG, 2019).

Benchmarks. We also analyze the most common experimental benchmarks for this task.
One of the main challenges for the table retrieval task is to construct representative
datasets to assess the performance of the devised solutions. WikiTables is one of the
the most popular benchmarks in the literature: a set of 60 ad-hoc queries and 1.6M
tables extracted from Wikipedia created by human relevance judgment (ZHANG; BALOG,
2018). Other public experimental sets include: WebQueryTable (SUN et al., 2019), an open-
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Table 4 — An overview of the most common table features used by the approaches in the whole
survey for table retrieval. We classify the studies in query/table features, document
fields as well as document measures for this task.

Reference Query/Table Features Doc. Fields Doc. Measures
2] & ) -
g £ w 5 a9 % 2 e o % Z 11
2E22 225528 ocEB=dsaz5ed
2 g 2 M3 8 T Ble HE Sz ¢ 3 = 3 =
SEfR 0> §38l£EEs58sgcg 8% 852
o O = E o = o @ = = ,8 = RS = =1 % e 0 o n
2 2L "D a2 ZTCBEREFI 2
S EEERZ EE8 S S8R L 585
i
Pyreddy and Croft (1997) KooK K
Liu et al. (2007a) Xk ok * ok * *
Cafarella et al. (2008b) * % k% % -
Venetis et al. (2011) * ok * * *
Pimplikar and Sarawagi (2012) * ok %k x ok k .
Bhagavatula, Noraset and Downey (2013) * ok % * * * ok ok %k
Sun et al. (2016) ok %
Gao and Callan (2017) * ok ® | k%
Zhang and Balog (2018) ook K * *
Sun et al. (2019) ok %
Zhang, Zhang and Balog (2019) * k% * *
Trabelsi, Davison and Heflin (2019) oKX *
Chakrabarti et al. (2020) * % % % % x - "
Chen et al. (2020b) ook X * *
Shraga et al. (2020a) * ok ok *
Shraga et al. (2020c) * k% * *

Source: Created by the author

Table 5 — The most popular table retrieval experimental benchmarks for this task. Seven studies
have been used WikiTables for evaluation setups.

Corpus Reference

Bing Logs Chakrabarti et al. (2020)

Google Documents Cafarella et al. (2008Db)

GNQtables Shraga et al. (2020c)

Marketplaces Pimplikar and Sarawagi (2012), Sun et al. (2019)

Scientific Documents ~ Gao and Callan (2017), Liu et al. (2007a), Liu et al. (2007b)
Wall Street Database Pyreddy and Croft (1997)
Chen et al. (2020), Shraga et al. (2020a), Shraga et al. (2020c),
WikiTables Shraga et al. (2020b), Trabelsi et al. (2019),
Zhang et al. (2019), Zhang et al. (2018)
Source: Created by the author

domain dataset consisting of query-table pairs based on search logs from marketplaces; and
GNQtables (SHRAGA et al., 2020c), a google natural question dataset build on Wikipedia
articles. In addition, some studies have evaluated their approaches in particular table
domains as scientific documents (LIU et al., 2007a). Table 5 outlines popular experimental

datasets for table retrieval in literature.
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Table 6 — The best table retrieval results reported by representative methods for this task. We
compare the approaches in terms of the NDCG. The symbol (*) means not described
in the paper, and bold values are the highest NDCG results (note that we sort the
values by NDCG@5).

Reference NDCG@5 NDCG@10 NDCG@20
(TRABELSL; DAVISON; HEFLIN, 2019) 0.5088 0.5117 0.5587
(ZHANG; ZHANG; BALOG, 2019) * 0.6096 0.6505
(ZHANG; BALOG, 2018) 0.5951 0.6293 0.6825
(CHEN et al., 2020b) 0.6361 0.6519 0.6564
(SHRAGA et al., 2020a) 0.6498 0.6479 0.6935
(SHRAGA et al., 2020c) 0.6631 0.6813 0.7370
(SHRAGA et al., 2020Db) 0.6654 0.6657 0.7054

Source: Created by the author

Relevant Solutions. We conclude our analysis by comparing representative solutions
for this task according to our taxonomy in terms of NDCG at cutoffs k € {5,10,20}.
As aforementioned, seven studies have been using WikiTables benchmark for evaluation.
Based on that, we outline the best table retrieval results for this dataset reported by such
studies in Table 6. In summary, the proposed approaches are highly relevant to the task
because most of the NDCG scores are very close to each other (as e.g., for the values
ranging from 0.5951 to 0.6654 in terms of NDCG@b5, an improvement of 0.07 for the best
model). Furthermore, the solutions presented by Shraga et al. (2020c) and Shraga et al.
(2020b) stand for the best approaches in this dataset, since they outperform the other

ones for all evaluated metrics.

3.5 OPEN CHALLENGES

There exist several open challenges and future work that need to be covered in order to

produce more representative solutions for this task. We discus some of them as follows.

Evaluation Datasets. Although there are several studies for this task, a small number
of evaluation datasets are available. WikiTables is the most common benchmark for table
retrieval analysis, but such set only covers a very small amount of query-table matches,
i.e., only 60 queries are human labeled. Given this gap, few articles have also been shared
their experimental datasets for additional evaluations (SHRAGA et al., 2020c; SUN et al.,
2019). Towards this front, we argue that further public sets are necessary to assess the
performance of the proposed approaches for this task, and therefore downstream studies
can also focus on tasks related to the crawler of query-table pairs as well as to the label
of representative matches for this task.

Comprehensive Experimental Analyses. As we show in the proposed taxonomy,
many solutions are devised for evaluating the matching of unstructured queries and struc-

tured web tables. However, to the best of our knowledge, no previous study has evaluated
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this pool of approaches for table retrieval over the same experimental environment, i.e.,

by considering identical configurations of parameter tuning or evaluation benchmarks.

Feature Ablation and Mismatch of Query/Table Terms. Some of the suggested
strategies for this task have been using regression models to produce a similarity score for
a query-table pair (BHAGAVATULA; NORASET; DOWNEY, 2013; CAFARELLA et al., 2008b;
CHAKRABARTT et al., 2020) and non-semantic features including #rows, #collumns and
#nullvalues. None of these studies has proposed an ablation study over the efficacy of
such table retrieval features for this task. Further analysis are needed in this scenario.
In addition, these studies are mostly based on features that compute the number of
overlapping terms between query and table data, e.g., the total of times that a query
term appears over the table body. For some type of intent queries, however, there might
be a large portion of mismatching information between query and table, which limits the

efficacy of these solutions for this task.

Table Cell for Question-Answering. For specific queries, a single row of the table
might answer the question. However, only a small number of studies has targeted the task
of table cells for QA (CHAKRABARTT et al., 2020; SUN et al., 2016), i.e., beyond retrieving
the related tables for a query, also discovering which particular table-row answers it.

Further analysis are required in this co-related domain problem.

3.6 CONCLUDING REMARKS

This chapter presented a survey on 16 representative studies for table retrieval in the con-
text of QA. We used a snowballing methodology for the literature review by considering
the study of Zhang and Balog (2018) as the start set. Also, we summarize approaches pub-
lished up to the year 2020. Specifically, our contribution in this chapter was a novel table
retrieval taxonomy where the devised solutions for this task were classified into five fronts:
probabilistic approaches, traditional IR methods, entity-based models, feature-based tech-
niques and advanced neural networks architectures. Since our survey dates from 2020, we
do not include, for instance, transformer-based models in our taxonomy. However, such
approaches can also be considered in further investigations. For example, Trabelsi et al.
(2022a) propose StruBERT: a model that combines textual and structural information of
a table using BERT, also producing context-aware representations for both textual and
tabular data. On the same front, other recent studies also include the structured informa-
tion of the tables for table-matching. Liu et al. (2023) leverage the semantic interaction
between table cells and their contexts, in which a dual graph is constructed for row-view
and column-view, later aggregated for extracting row and column-oriented features.
Moreover, in this chapter, in addition to covering a set of open challenges for this
task including evaluation datasets, ablation studies on table features and more experi-

mental analysis, we also introduced a comparative study in which we analyze the current
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methodologies for table retrieval, reported results for evaluation benchmarks and the
most common query/tables features for this task (we organized the tables features in
query dependent and query independent aspects as well as document fields and document
measures). In this thesis work, we address some open challenges correlated to the public
evaluation datasets, comprehensive experimental analyses and ablation studies on table
retrieval features. First, we present a novel news-table matching corpus for experimenta-
tion. By crawling Wikipedia pages, we collected 275,352 news articles and 298,792 web
tables for the news-table matching task. Moreover, we perform an extensive experimental
evaluation using a set of IR models, in addition to examining which table features are
more relevant to the table matching task. Finally, our taxonomy summarizes the most

relevant publications for the task of table retrieval in the context of question-answering.



Part 11

News Table Matching
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4 MATCHING NEWS ARTICLES AND WIKIPEDIA TABLES FOR NEWS AUG-
MENTATION

Nowadays, digital-news understanding is often overwhelmed by the deluge of online infor-
mation. One approach to cover this gap is to outline the news story by highlighting the
most relevant facts. For example, recent studies summarize news articles by generating
representative headlines. In this chapter, we go beyond and argue news understanding
can also be enhanced by surfacing contextual data relevant to the article, such as struc-
tured Web Tables. Specifically, our goal is to match news articles and web tables for
news augmentation. For that, we introduce a novel BERT-based attention model to com-
pute this matching degree. In addition, through an extensive experimental evaluation over
Wikipedia tables, we compare the performance of our model with standard IR techniques,
document/sentence encoders and neural IR models for this task. In summary, the overall
results point out our model outperforms all baselines at different levels of accuracy and
in the mean reciprocal ranking measure. As follows, we start this chapter by presenting

the news-table matching background.

41 BACKGROUND

This section covers the news-table matching background. We first formalize this task as

a novel rank task. Then, we detail the news-table aspects.

Problem Statement. In this chapter we target the task of matching news articles
(A) and web tables (T') as follows: given an article a; and a set of web tables T =
{t1,ta,13,...,t,}, the goal is to find relevant tables t; to a;. Note that the notion of rel-
evance is broad, since a web table can overview news stories, bring contextual data to
the topic or answer upcoming questions. Formally, we assume News-Table matching as a
ranking task, i. e., our goal is to learn a scoring function f : a; x t; = R that scores tables

in T for a given article a; to rank them based on news-table aspects.

News-Table Aspects. We represent a news article by three aspects: title, main passage
and keywords. The title expresses the central topic of the story. Instead of using the entire
news content, we consider the main passage as it compiles the story in a few sentences. For
this feature, we collect the meta-description tag from HTML page. Moreover, the keywords
represent the most frequent words from the article. Regarding the web tables, which are
contained in web pages, we consider the following aspects: page title (HTML title), page
main passage (article’s short description), page keywords (most frequent words in the
article), table caption, table headers, table body. The first three ones describe information
around the table (i.e., surrounding text) and have been widely used in table retrieval
approaches (SUN et al., 2019; LIU et al., 2007b; PIMPLIKAR; SARAWAGI, 2012; VENETIS et
al., 2011; ZHANG; BALOG, 2018; DENG; ZHANG; BALOG, 2019). The header indicates the



69

Figure 15 — News-table matching pipeline. Given a news target and a web table index, we use
BM25 to retrieve a set of candidate tables from the table corpus. In sequence, the
proposed matching model is applied to this subset to produce the final ranking for
the news. Note that Table4, Table3 and Table6 have shifted their position after the
re-ranking step.

Matching Model

Candidate . .
Tables ) - Final Ranking
<News, Table1>

1. Tablel <News, Table2> ; iaz:eg

2. Table2 <News, Table3> : clolls
Web Tables <Elastic | 3. Table3 <News, Table4> 3. Tablel
Index Search 4. Table4 <News, Tables> 4. Table2
(BM25)> 5 Table5 <News, Table6> 5. Table6
6. Tableé6 6. Table5

Source: Created by the author

properties of the column and helps to describe its meaning. The body (i.e., cells) contains
all the table content, and the caption describes the subject of the table. In summary, our
matching solution is linked to both the HTML pages and HTML tables, since we also
consider the surrounding text of the tables, i.e., the HTML page sections, in addition to
extracting the HTML table from the Wikipedia pages. Besides, both article and table
aspects are represented by words in natural language, and some table cells can contain
numerical values. Lastly, like previous studies (BHAGAVATULA; NORASET; DOWNEY, 2013;
SUN et al., 2016; TRABELST; DAVISON; HEFLIN, 2019; SHRAGA et al., 2020a), we also focus

on Wikipedia tables since they are rich corpus of relational information.

4.2 NEWS-TABLE MATCHING PIPELINE

This section presents our end-to-end solution for matching news articles and web tables,
which we illustrate in Figure 15. Our solution has two cascaded steps. First, similar to
previous work (SHRAGA et al., 2020a; SHRAGA et al., 2020c; SHRAGA et al., 2020b; SUN et
al., 2019), we retrieve a set of candidate tables by using a standard Information Retrieval
approach, whose goal is to efficiently find the highest number of relevant tables for the
matching model. Next, we use the proposed model to re-rank the candidates in order to

obtain the best matching tables.

4.3 NEWS-TABLE MATCHING MODEL

In this section, we introduce the News-Table matching model. The core of our contribution
is a novel cross-encoder model for this task that performs full attention over the input pair

by combining RNN, attention layers and BERT architecture. As a result, we introduce
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Figure 16 — An overview of the News-Table Matching Model. Our model learns a joint-
representation for a (news, table) tuple by applying three network blocks: Bi-
Context, Attention and Transformer, in which embedding vector is the FastText
representation from a pre-trained corpus, bi-context vector is the contextual vectors
learned from the input data, attention matriz is the matching degree between news
and table aspects and attention vectors is the final matching signals for each pair
of inputs. Moreover, An MLP architecture captures relevant matches and produces
the similarity score on its top layer.
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a new way of applying existing neural blocks in the context of news-table matching. In
contrast to Lees et al. (2021), which uses BERT as a bi-encoder method, our model
learns a joint-representation from a (news, table) tuple and predicts a similarity score to
rank the tables. Our ablation study demonstrates that we obtain better results for table
retrieval by merging these blocks in a single network (see results in Table 14). We present
the proposed model in Figure 16. It produces two types of representations of the (news,
table) input: one based on cross-attention and another based on BERT. Our goal is to
capture relevant matching signals from both sides of the input by using different attention
mechanisms. For the attention branch, the input is the embeddings of the words present

in the news and table aspects. The network then applies a bidirectional recurrent network
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(bi-context block) on them to produce contextual vectors. These vectors are passed to
the attention block that combines the aspects of the news article and the table, and
outputs an attention vector for each one of them. In the other network’s branch, we
utilize BERT to obtain another type of contextual representation based on self-attention
from the (news, table) input. The outputs of two branches are concatenated and passed
to an MLP, which computes the matching score on its top layer. The whole network
is trained using backpropagation and a binary cross-entropy loss function. We provide

details of the model in the remaining of this section.

4.3.1 Input Data Representation

As aforementioned, the model’s input is a (news, table) tuple. From the news side, we
consider the aspects: article title, article_main_passage and article keywords. Re-
garding the table, unlike traditional table retrieval where the answer is inside the table
(i.e., headers, caption and body), the most relevant information for News-Table match-
ing are those aspects around the table (i.e., its surrounding text): table page title,
table page main_passage and table page keywords. We verify this by running pre-
vious experiments using a standard retrieval approach whose table content obtained the
worst results for this task (see results in Table 9). Lastly, we represent each of those as-
pects as a sequence of words and utilize a word embedding approach to get word vectors,
similar to previous studies (DAI et al., 2018; HU et al., 2015; PANG et al., 2016). The goal

here is to generate a dense representation for each news/table token (Embedding Vector).

4.3.2 Bidirectional Context

In the context of our task, Recurrent Neural Networks (RNN) have been applied both in IR
tasks as well as in table retrieval approaches (SUN et al., 2019; WAN et al., 2016). Overall,
these neural models learn contextual information from the sequential data. Since both
sides of our input contain consecutive tokens (i.e., article and table aspects are defined
by a sequence of words in natural language), we apply RNN to both to get their semantic
connections. The goal here is to produce a new representation for the initial embeddings
based on the context of the words. In our network, we apply a Gated Recurrent Unit
(GRU) (CHUNG et al., 2014) to map each word to a fixed-length vector.! As a result, our
model learns long text dependencies from each news/table input. Lastly, we also consider
a bidirectional GRU to obtain the representation of each word from both directions, and
use the concatenation of each hidden state as the final word representation, i.e., the fixed-
length vector = [m , ;E] By doing this, our network learns bidirectional contextual
information of each news/table aspect (Bi-Context Vector), in order to be sensitive to

word order such as reversing or shuffling.

1 We also try Long Short Term Memory (LSTM) for this step but GRUs achieved better results



72

4.3.3 Attention

The core challenge of this task is how to compute the similarity degree between distinct
news/table features. Overall, news stories are described by several aspects including title,
main passage, headlines, keywords and so on. Our intuition is that we can get relevant
matching signals from both sides of the inputs by using different attention mechanisms in
our network architecture. Based on that, inspired by previous approaches that try to cap-
ture relevant association between query/document (HU et al., 2015; LI et al., 2020; MITRA;
DIAZ; CRASWELL, 2017; PANG et al., 2016), our model applies attention networks to learn
interaction features between article and table, i.e., we use a cross-attention methodology
for this network block. Attention mechanisms have been applied in many similar tasks
including Question Answering and Text Matching (XIONG; ZHONG; SOCHER, 2017; ZHU et
al., 2019). In the context of our task, a matching model needs to identify significant corre-
lation between table aspects and news features such as title, main passage and keywords,
in order to capture the best matching information. For that, we use the scaled dot-product
attention to weigh news aspects based on table aspects (VASWANT et al., 2017). Specifi-
cally, we compute the attention between each co-related aspect: title, main passage and

keywords, according to Equation 4.1.

T

Attention(Q, K, V') = softmax( ?/d_
K

where QQ corresponds to the query, K is the key, V the value and softmax is a normaliza-

W (4.1)

tion function. For the title aspect, for instance, we consider article_title as Q and V, and
table_page_ title as K. By doing this, we create a novel representation for article title
weighted by table_ page_title (Attention Matriz). The other aspects go similarly. In sum-
mary, for each pair of them, we generate one attention matrix which represents the match-
ing degree between article and table features. Lastly, the attention matrices fed a Bi-GRU,

whose output is flattened, producing the final bi-vectors (Attention Vectors).

4.3.4 Transformer

In addition to the attention block, which computes relevant matching for correlated at-
tributes (e.g., article title and table title), we also employ BERT to capture significant
interactions between them.? BERT is a novel bidirectional sentence encoder based on
transformer blocks and multi-head attention mechanisms (SUN et al., 2019). It contains
multiple attention heads attending to distinct parts of the sequence at the same time (e.g.
longer-term dependencies versus shorter ones). As a result, BERT produces a different
representation for each word according to the text sequence where it appears. For example,

if we consider the news story in Figure 2 that lists rare Da Vinci paintings (Chapter 1),

2 Our ablation study shows we can improve the model performance by joining such two attention

methodologies (see results in Table 14)
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the word Vinci has a vector representation when it appears in the news title and another
one when it is in the news description since its neighboring words are distinct. Based on
that, similar to a previous study that employs BERT for the table retrieval (SUN et al.,
2019), we apply it to create a contextual vector representation of the (news, table) pair.
To fine-tune BERT in our experimental setup, we use the task of sentence pair classifica-
tion, i.e., a pair of text sentences is classified as match or non-match. For that, we assume
the news-table aspects as a single-field (text) document and apply BERT tokenizer to
generate input_ids, attention_masks and token_types for them. In addition, the token
[SEP] separates news-segments from table-segments. Lastly, we adopt the final hidden
state h of the first token [C'LS] as the whole (news, table) vector representation, similar
to Sun et al. (2019) (BERT Vector).

4.3.5 MLP

On the top of our network, the attention vectors produced by the attention block are con-
catenated with the BERT vector and fed a Multi-Layer Perceptron Architecture (MLP)
to learn matching features and predict a similarity score. The goal here is to capture rel-
evant match signals from both learned vectors. Moreover, the News-Table matching score
is generated by a sigmoid function over the last MLP neuron. We use this score to rank
the matching tables. Lastly, we use the binary cross-entropy loss function for training the

whole neural network according to Equation 4.2.

1 n
Loss = — >_yi - log §i + (1 = yi) - log(1 = ;) (4.2)

=1

where g; is the ¢ — th value in the model output, y; is the corresponding target value, and

n is the number of values in the model output.

4.4 EXPERIMENTAL SETUP

In this section, we cover the experimental setup of our evaluation. We present baselines,

datasets, methodology, evaluation measures and implementations details.

4.4.1 Baselines

As suggested in previous studies for table retrieval (LEES et al., 2021; SHRAGA et al., 2020c;
TRABELSI et al., 2022b), we compare our solution to several state-of-the-art baselines
including traditional IR methods, document/sentence encoders, neural IR models and
dense passage retrieval strategies.

Traditional IR methods. One can think of the news article as a (long) keyword query
and therefore apply traditional IR techniques or QA solutions. We use two different strate-

gies to represent the inputs: news article and Web table. In the multi-field approach,
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similar to Zhang and Balog (2018), we compute the similarity score over each aspect

separately (e.g., news title and table page title). Then, we rank the tables based on the

mean of similarity/score from all aspects. In the single-field strategy, following Cafarella

et al. (2018), we represent both news and table aspects as a single-field (text) document

by concatenating their aspects.

« Cos(TF-IDF) (SALTON; YANG, 1973). It is a basic IR method that represents query

and document terms based on term-frequency and inverse document frequency. It

ranks the tables according to the cosine similarity over the TF-IDF vector.

BM25 (ROBERTSON; ZARAGOZA, 2009). It is an traditional IR algorithm based
on the probabilistic relevance framework that uses term-frequency weighting and

document length for ranking documents in a retrieval task.

Document/Sentence Encoders. We evaluate pre-trained sentence/document encoders

to represent the news-table aspects. We consider both single and multi-field document

approaches, and the cosine similarity is used to score and rank the tables.

Doc2Vec (LE; MIKOLOV, 2014). It is an unsupervised approach that encodes sen-

tences, paragraphs or documents by using neural networks, similar to Word2Vec.

USE (CER et al., 2018). It is a transformer-based network that learns sentence em-
beddings by using attention. The model was pre-trained on similarity-related tasks

such as textual entailment and question/answering.

Public-BERT (DEVLIN et al., 2019). It is a sentence encoder that uses bidirectional
transformer networks for language representations. This model was pre-trained on

a large corpus from the Internet.

Fine-tuned BERT. We fine-tune BERT to the task of sentence pair classification.

For that, we concatenate both news and table aspects as a single-field text document.

Lees et al. (2021). Given its reproducibility issues, as both NewsBERT and their
training data are not publicly available, we implement their network architecture
over our news-table corpus. More specifically, we fine-tune BERT by using a pairwise
hing loss function over cosine distance, whose goal is to learn that negative (article,
table) pairs should have lower similarity than positive pairs.®> The input for the
model is a triple composed of a news article, a positive table and a negative table.

They share the same set of parameters for the BERT-encoder.*

3
4

https://tinyurl.com/ranking-loss
We try the following similarity thresholds for the cosine distance over positive and negative pairs: 0.3,
0.4, 0.5, 0.6, and 0.7, in which 0.3 achieves the best results in our validation dataset
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Neural IR Approaches. We also evaluate a set of widely used text matching neural

models for IR, which have been applied for downstream tasks including Question Answer-
ing (WAN et al., 2016), Paraphrase Identification (PANG et al., 2016), Ad-hoc Search (XIONG
et al., 2017) and Document Retrieval (GUO et al., 2016). We use the public Matchzoo Toolkit
to train each approach (GUO et al., 2019). In addition, we represent the news-table aspects

as a single-field (text) document. In sequence, we use the matching score produced by the

respective neural model to rank the tables.

DSSM (HUANG et al., 2013). It maps query and document terms to a low-dimensional
space by using TF-IDF, N-Grams and non-linear network layers, and the cosine dis-

tance is the query/document score relevance.

ARCI (HU et al., 2015). It is a siamese model that learns semantic representations

by using 1D-convolution and max-pooling layers.

ARCII (HU et al., 2015). Unlike previous model, it first builds an interaction space
between the two sentences. In sequence, it applies 2D-convolution and max-pooling

layers to encode high-level representations.

MVLSTM (WAN et al., 2016). It applies LSTM layers to learn sentence representa-
tions for the text input, and a max-pooling interaction step extracts relevant match

features from both sentences.

DRMM (GUO et al., 2016). It extracts matches from sentences by word histogram,

feed-forward and term gating networks.

MATCH PYRAMID (PANG et al.,, 2016). It is network-architecture based on
image recognition models which learns sentence similarities by using a matching

matrix, convolutions and dynamic pooling layers.

KNRM (XIONG et al., 2017). It uses an RBF kernel pooling to learn query-document

features from a translation matrix.

CONV-KNRM (DAI et al., 2018). Unlike previous model, it generates a continuous
vector for query/document terms by using word embeddings. In sequence, convolu-
tional layers construct n-gram representations of the text. Last, a K-Gaussian kernel

pooling counts soft-matches and generates the match score.

DUET (MITRA; DIAZ; CRASWELL, 2017). It is a deep learning model for matching

queries and documents by using local and distributed representations of text.

Dense Passage Retrieval Strategies. We complete our baselines by considering novel

dense passage retrieval methods. We generate dense representations for both news-table
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aspects (as a single-field (text) document). Then, we compute their similarity by applying
cosine distance for SBERT and DistilBERT or dot-product for DPR.

« Dense Passage Retrieval (DPR) (KARPUKHIN et al., 2020). It is a two indepen-
dent BERT-based encoder for embedding text sentences, in which the dot-product

similarity is used as a ranking function for retrieval.

« Sentence BERT (SBERT) (REIMERS; GUREVYCH, 2019). It is a BERT-based
model that uses siamese and triplet networks to derive semantically embeddings
that can be compared by utilizing cosine-similarity. We also evaluate SBERT by
using DistilBERT: a smaller, faster and lighter version of BERT (SANH et al., 2019).

4.4.2 Datasets

This section presents the experimental datasets. We first detail the train/validation cor-

pus. Then, we describe the test data.

Train-Validation Data. Since we are not aware of any public labeled data for this task,
we implemented a distant supervision strategy to build a news-table matching dataset.
For that, we leverage the links in the reference section on the Wikipedia page that contains
the tables. Specifically, we selected only reference links belonging to news web sites. Here,
we assume that those news articles are likely related to the table content as they are
collocated in the same Wikipedia page. For this evaluation, we gathered 275,352 news
articles and 298,792 web tables by adopting Newspaper API.?> To generate the matching
pairs, we index the tables by using a multi-field approach using the Elastic Search (ES)
APLS Then, for each article, we search over the index by considering its aspects as a single-
field query. Lastly, we consider the table with the highest cosine similarity over TF-IDF as
the match. By doing this, we collected 93,818 news-table matching pairs that we use for
evaluating the proposed model as well as the neural IR approaches. We split this corpus
into 84,436 (90%) examples for training and 9,382 (10%) for validating. To the best of
our knowledge, this is the first public dataset for the task of matching news articles and
web tables in literature.” Finally, to demonstrate the reliability of our data, we manually
check 100 random samples of matching and non-matching pairs in our train/validation
datasets. This evaluation showed that over 92% of them contain correct matching labels.
We illustrate a set of them in Table 7.

Test Data. Unlike a common table retrieval task for QA, there is no many public test-
sets for matching news articles and web tables. Based on that, since we are not aware of
any public labeled test data for this task, we use as a test set a dataset released by Lees

et al. (2021). This study is an introductory work to address this task. The authors use an

5
6

https://newspaper.readthedocs.io/en/latest
https://www.elastic.co
T https://github.com/levysouza/News-Table-Matching
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Table 7 — A sample of news-table matching pairs in our training and validating corpus. We show
the news-title, the Wikipedia page title for the table and the labels for each one, in
which 1 means a matching pair and 0 is a non-match one.

News Title Wikipedia Page Label
Folk Music Awards Nominees Announced Canadian Folk Music Awards 1
Patty Andrews, Leader Of The Andrews Sisters, Dies | Andrews Sisters 1
Facts About Mexico’s Education System Education in Mexico 1
One Love by David Guetta Reviews ('l Never Be) Maria Magdalena 0
The Prime Minister’s Official Hub Megan Hilty 0
Fire Interviews Fraser Filmfare Award for Best Actress 0

Source: Created by the author

internal production crowd evaluation platform to construct a public dataset comprising
148 news-table pairs created by human labelers. Each pair is labeled by 3 to 5 labelers,
and labels are obtained from the majority of ratings. The relevance judgment determines
the quality of tables paired to news articles and whether the table provides additional
context for, or insight into, the article. In addition to answer whether the table is relevant
to the article (“Yes”, “So-so”, “No”), a question about the table’s level of clarity is used
to ensure high enough table quality to enable assessment of relevance. Finally, to simulate
a real scenario of table retrieval, the authors also released a table corpus containing 53K
Wikipedia tables. We use both the table corpus and the ground-truth news-table pairs in
our experimental evaluation.

Data Preprocessing. We removed pages with empty values for title, main passage or
keywords, and also special characters and stopwords from the text. In addition, we padded
long/short sentences based on the average of tokens for each aspect. Table 8 shows a
statistical analysis of them on the training, validation and test datasets. As one can
see, the aspects have at least 37 tokens on average from the news side (i.e., by jointing
news title, description and keywords), which limits the application of QA table retrieval

solutions for this task since they usually assume few words in the query.

4.4.3 Methodology

Following previous work (SUN et al., 2019; SHRAGA et al., 2020a; SHRAGA et al., 2020c;
SHRAGA et al., 2020b), we assume there is a pool of initial candidate tables for re-raking.
Hence, similar to Shraga et al. (2020c), we index the table corpus on Elastic Search API
by using a multi-field document approach. Moreover, for each news article, we use ES
to obtain the top k& = 100 candidates tables with the highest BM25 score (by using its
default parameter setup). The recall at £ = 100 using this strategy is 0.9122, which means
that for 8.78% of the articles, the match table is not present in the 100 table candidates.

Finally, we re-rank them by applying each baseline as well as our proposed model.
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Table 8 — A statistical overview for each news-table aspect over the train, validation and test
dataset. We point out the minimum and maximum values of the tokens, average of
words and standard deviation for each of them.

Aspects Train/Validation Data Test Data

Min Max Mean STD | Min Max Mean STD
News Title 20 280 6.6 2.7 20 230 6.6 2.9
News Main Passage | 2.0 931.0 18.0 22.0 2.0 3270 18.8 18.4
News Keywords 1.0 220 13.0 2.0 6.0 200 134 2.1
Table Title 1.0 13.0 2.9 1.3 1.0 13.0 3.7 1.4
Table Main Passage | 1.0 674.0 78.4  40.7 1.0 756.0 68.1 63.9
Table Keywords 1.0 180 10.4 1.5 1.0 200 11.3 2.3

Source: Created by the author

4.4.4 Evaluation Measures

We evaluate our model and baselines by considering a table retrieval re-ranking task.
Like previous IR work (WAN et al., 2016; DAI et al., 2018), we employ Mean Reciprocal
Rank (MRR) at cutoff £ = 50 to assess the average position in which a correctly table-
answer appears in the ranking, where the first positions are preferred and, therefore,
receive higher scores. In addition, we use accuracy@k (a.k.a. top-k accuracy) at cutoffs
k € {1,5,10,20,50} to measure the percentage of news articles in the test set correctly
matched to at least one of the top-k ranked tables. Accuracy@k is a metric widely used
in the evaluation of Question Answering tasks (SANTOS et al., 2015) and recommendation
systems (MAITY et al., 2019), for which, like for our problem, there are one or few relevant
results for each query. We also run a paired Wilcoxon test at 95% confidence level to
measure the results’ significance. Finally, regarding prediction/latency time of each model,
we measure the runtime to retrieve the top-100 candidate tables, produce the similarity
scores and obtain the top-20 matching tables for each article. Based on that, we compute
the average runtime per article in the test set. We replicate this experiment ten times for

each baseline as well as for the proposed model and report the mean for this result.

4.4.5 Implementations Details

We implement the proposed model by using Python 3.6 and TensorFlow 2.2.0. To encode
the news-table aspects, we use a FastText corpus with 1 million word vectors trained on
English Wikipedia pages.® Regarding the IR methods, we use TfidfVectorizer from Sklearn
for TF-IDF,? and Rank-BM25 API for BM25.1° In relation to the document/sentence

encoders, we consider a pre-trained Gensim model for DOC2VEC.!! Moreover, we import

8  https://fasttext.cc/

9 https://scikit-learn.org

10" https://pypi.org/project /rank-bm25

1 https://radimrehurek.com/gensim/auto_examples/tutorials/run__doc2vec_lee.html
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the 4th version of Universal Sentence Encoder (USE) from TensorFlowHUB.'? For public
BERT, we adopt a online version of Bert-as-Service,'® and consider TFBertModel from
Hugging Face to the fine-turning task.'* Concerning the neural IR models, we use the
Matchzoo Toolkit to train each of them.'® For dense passage retrieval methods, we use

Sentence Transformer APL.'® Finally, we perform the experiments by using a Titan XP

GPU and Ubuntu 16.04 LTS.

45 RESULTS AND DISCUSSIONS

In this section, we present the news-table matching results in terms of retrieval and
ranking. We first discuss the approaches for obtaining candidate tables, i.e., the top-k
algorithm. Then, we focus on the models for the ranking step. Moreover, we also introduce

an ablation study for prediction time, matching analysis and main components of the
proposed BERT-based model.

Top-k Algorithm. The objective of the top-k algorithm is to retrieve the highest number
of relevant tables for the matching model (re-ranking). Based on that, we ran a set of
distinct index settings to investigate which table aspects obtain the best candidate set,
and also evaluate different news features as input queries.'” We then apply Elastic Search
API and BM25 algorithm for retrieval. Such approach has been widely used as a strong
baseline for several open-domain retrieval tasks (KARPUKHIN et al., 2020). Table 9 shows
the results for each index field and news aspects in terms of Acc@100.

Unlike table retrieval for QA, in which the table-content can improve the similarity
degree since most answers are inside the table, for news-table matching, the most relevant
tables are found by matching the text around the table instead of its content. For example,
by combining all news aspects as the input query and the surrounding text of the table as
indexes - page title, page main passage and page keywords - the pool of candidates contains
over 90% of the ground-truth tables in the set (Acc@100 = 0.9122). In contrast, when we
use table aspects as indexes like headers or caption, it achieves the lowest results for the
same metric. Table caption and table headers achieve the worst values for Acc@100 (only
30% of the matching tables are in the candidate set). Therefore, we do not include these
aspects as inputs for the proposed news-table matching model.

Finally, we adopt the best combination of them as the top-k algorithm (line 20) and
retrieve a pool of candidate tables by querying the index at cutoff £k = 100. We use this

subset to evaluate the baselines and the proposed method over the ranking step as follows.

12
13
14

https://tfhub.dev/google/universal-sentence-encoder /4

https://github.com/hanxiao/bert-as-service

https://huggingface.co/transformers/model doc/bert.html

15 https://github.com/NTMC-Community /MatchZoo

16 https://www.sbert.net/docs/pretrained-models/dpr.html

7 We do not combine the table-content and its surrounding text since the table-aspects achieve the
worst results for the evaluated metric in our experiments
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Table 9 — Searching over the index by using Elastic Search API and BM25 algorithm (Top-
k Algorithm). We evaluate distinct approaches for news-table aspects. Bold values
represent the best combination for the candidate set in terms of Acc@100, and the
symbol () points out the worst results for the same metric (when we use table aspects

as indexes).

## News Aspects (Query) Table Aspects (Indexes) Acc@100
1 | Title Title 0.6959
2 | Title Main Passage 0.6622
3 | Title Keywords 0.7279
4 | Title Table Caption* 0.0680
5 | Title Table Headers* 0.1216
6 | Title Table Body* 0.3176
7 | Main Passage Title 0.5682
8 | Main Passage Main Passage 0.5000
9 | Main Passage Keywords 0.5676
10 | Main Passage Table Caption* 0.0621
11 | Main Passage Table Headers* 0.1284
12 | Main Passage Table Body* 0.3041
13 | Keywords Title 0.7343
14 | Keywords Main Passage 0.6892
15 | Keywords Keywords 0.7162
16 | Keywords Table Caption* 0.0816
17 | Keywords Table Headers* 0.2905
18 | Keywords Table Body* 0.5608
19 | Title, Main Passage Title, Main Passage 0.7838
20 | Title, Main Passage, Keywords | Title, Main Passage, Keywords 0.9122

Source: Created by the author

Ranking Results. We now discuss the core results of our study, i.e., the ranking step,
which we present in Table 10. We first examine the ranking accuracy of the approaches
then we focus on their average prediction time. Given the pool of candidate tables, we
re-rank them by applying each baseline as well as our proposed model. Overall, our model
outperforms all baselines for all evaluation metrics. In fact, we run a paired Wilcoxon Test
at 95% confidence level between the MRR score of our model and each baseline which
showed that its MRR value is statistically different than all baselines (See Table 11 for the
p-values comparisons). In terms of ACC@1, our model correctly ranks over 55% of the
ground-truth tables, and at the top-five ranking positions (ACC@5), it achieves accuracy
of 77%. Comparing its results, for instance, with multi-field USE (a pre-trained matching
encoder), our model is at least 36% more effective in the re-ranking step. Regarding the
Fine-tuned BERT (the strongest baseline), our model surpass it by over 13%. In contrast
to Lees et al. (2021), our model surpasses their network architecture by a large margin for

all evaluated metrics. In fact, previous studies have demonstrated that BERT bi-encoders,
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Table 10 — Ranking results for the proposed model and each baseline. We consider the following
attributes for matching. News aspects: Title, MainPassage, Keywords. Table aspects:
Page Title, Page MainPassage, Page Keywords. The symbol (*) means a statistically
significant better result compared to all baselines, (SF) is a Single-Field approach
and (MF) is a Multi-Field approach. We also show the average prediction time in
seconds for each news article in the test set.

APPROACH MRR@50 | Acc@k=1 5 10 20 Avg. time(s)
Cos(TF-IDF) - (SF) 0.4414 0.3176 0.5946 | 0.7297 | 0.7973 0.2777
BM25 - (SF) 0.4269 0.2973 0.5946 | 0.6959 | 0.7432 0.0456
DOC2VEC - (SF) 0.2734 0.1892 0.3649 | 0.4662 | 0.6284 1.2770
USE - (SF) 0.3837 0.2838 0.4932 | 0.5811 | 0.6622 0.4078
PUBLIC-BERT - (SF) 0.3313 0.2230 0.4459 | 0.5541 | 0.6824 3.1564
Cos(TF-IDF) - (MF) 0.4513 0.3649 0.5405 | 0.6081 | 0.7365 0.7624
BM25 - (MF) 0.4069 0.3041 0.5405 | 0.6351 | 0.6824 0.0594
DOC2VEC - (MF) 0.4248 0.3041 0.5203 | 0.6622 | 0.7500 1.3787
USE - (MF) 0.5166 0.4054 0.6419 | 0.7297 | 0.8108 0.4634
PUBLIC-BERT - (MF) 0.3373 0.2432 0.4459 | 0.5068 | 0.5811 8.4924
Fine-tuned BERT 0.5949 0.4865 0.7500 | 0.7905 | 0.8514 1.9803
Lees et al. (2021) 0.1510 0.0743 0.1824 | 0.2905 | 0.5203 1.5733
DSSM 0.0348 0.0068 0.0338 | 0.0878 | 0.1959 0.2937
ARCI 0.0768 0.0270 0.0878 | 0.1554 | 0.3378 0.3044
ARCII 0.0667 0.0135 0.0946 | 0.1486 | 0.3311 0.6722
MVLSTM 0.0765 0.0068 0.1216 0.2432 0.4122 0.3518
DRMM 0.0486 0.0270 0.0473 | 0.1081 | 0.2365 6.5425
MATCH PYRAMID 0.0545 0.0068 0.0676 | 0.0878 | 0.1689 0.4956
KNRM 0.1285 0.0608 0.1689 | 0.2703 | 0.4392 0.4032
CONV-KNRM 0.1103 0.0608 0.1486 | 0.1959 | 0.2703 0.5717
DUET 0.1560 0.0608 0.2365 | 0.3784 | 0.5405 0.5013
DPR 0.4550 0.3311 0.6419 0.7568 0.8243 1.1242
SBERT 0.5135 0.3851 0.6824 | 0.7770 | 0.8514 0.3054
DistilBERT 0.5045 0.3986 0.6216 | 0.6824 | 0.8041 0.5081
OUR-METHOD 0.6369* 0.5541 0.7703 | 0.8176 | 0.8514 2.2760

Source: Created by the author

used by Lees et al. (2021), usually have lower performance in comparison with BERT
cross-encoders (THAKUR et al., 2021), which we apply in our solution. Another possible
reason for their poor performance is that in their results NewsBERT attains over 45%
of the matching tables for ACC'@1. But, since NewsBERT is a private Google resource,
we implemented their approach using a public BERT in our experimental setup. Lastly,
concerning the dense passage retrieval methods such as SBERT and DPR, our solution
outperforms them by over 20% in terms of M RRQ50.

We next analyze the performance of the single and multi-field baselines, neural IR
models as well as the DPR approaches. Similar to traditional table retrieval strategies,

news-table ranking results are improved by adopting a multi-field methodology. For exam-

ple, ACC@1 improves from 0.1892 to 0.3041 (DOC2VEC), 0.2838 to 0.4054 (USE) and
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Table 11 — P-values results for Wilcoxon Test. We compare our model against each baseline in
terms of M RRQ@50. Our approach statistically outperforms all baselines.

RANKING METHOD P-Value
Cos(TF-IDF) - single-field 1.5329 % 10798

BM25 - single-field 1.8467 1078
DOC2VEC - single-field 6.7410 * 10~%°
USE - single-field 1.0348 % 1079

PUBLIC-BERT - single-field 3.5424 % 10713
Cos(TF-IDF) - multi-field 1.0992 % 10797

BM25 - multi-field 2.2055 % 10799
DOC2VEC - multi-field 5.0557 % 10708
USE - multi-field 0.0001

PUBLIC-BERT - multi-field 3.0637 % 10~
Fine-tuned BERT 0.0077

Lees et al. (2021) 1.4215 % 10719
DSSM 1.2386 % 10723
ARCI 2.2968 * 10721
ARCII 1.8398 % 10722
MVLSTM 4.9307 % 1022
DRMM 4.8761 % 10722
MATCH PYRAMID 1.0299 % 1022
KNRM 8.2976 % 10~20
CONV-KNRM 1.4310 % 10720
DUET 1.1611 % 10719
DPR 9.5979 % 1077
SBERT 0.0002

DistilBERT 4.0489 % 1079

Source: Created by the author

0.2230 to 0.2432 (PUBLIC-BERT) when a multi-field approach is used. Indeed, each news
or table aspect individually contributes to the ranking score. The neural IR models achieve
the worst results: their ACC@1 is close to zero. Even when combining other news-table
aspects, the neural IR models do not outperform any other ranking method. A possi-
ble reason for the poor performance of these models is they were devised to answer short
queries and, in the context of our task, most of the queries are long, i.e., the concatenation
of the news aspects. Among the neural IR models, DUET obtains the best performance:
ACCQ5 = 0.2365. Finally, concerning dense passage retrieval models, SBERT and Distil-
BERT surpass DPR in terms of Acc@1 and M RR@Q50. Moreover, our study also confirms
that these approaches attain better results for table retrieval than traditional IR methods
like Cos(TF-IDF) and BM25. For example, SBERT supasses Cos(TF-IDF) - (MF) by
over 12% in terms of M RRQ50.
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Table 12 — News-table matching results by adopting a maximum recall scenario in the retrieval
set. The symbol (*) means a statistically significant better result compared to the
other baselines.

Top-K Algorithm | RE-RANK MRR@50 || Acc@k=1 5 10

BM25 Cos(TF-IDF) - (MF) 0.4530 0.3649 0.5473 | 0.6149
Cos(TF-IDF) Cos(TF-IDF) - (MF) 0.4778 0.3919 0.5541 | 0.6351
BM25 USE - (MF) 0.5345 0.4122 0.6757 | 0.7703
Cos(TF-IDF) USE - (MF) 0.4416 0.3176 0.5676 | 0.6892
BM25 OUR METHOD 0.6488* 0.5608 | 0.7838 | 0.8514
Cos(TF-IDF) OUR METHOD 0.6959* 0.6216 | 0.8176 | 0.8649

Source: Created by the author

On the whole, USE and Fine-tuned BERT are the strongest baseline as they achieve
better results than the traditional IR methods, neural models and sentence encoders in
terms of ACC@1 and MRR. In fact, dense retrieval approaches, which apply BERT as en-
coder, have shown comprehensive efficacy at several open-domain IR tasks (KARPUKHIN
et al., 2020). Our results also confirm such hypothesizes for news-table matching. In ad-
dition, the IR methods, although simpler, achieve good results and are strong baselines.
For example, in ACC@1, Cos(TF-IDF) multi-field surpasses both all neural IR models
and sentence encoders such as DOC2VEC and PUBLIC-BERT.

Lastly, similar to previous work (SHRAGA et al., 2020b), we assume there is a pool
of candidate tables in which our model applies re-ranking. As aforementioned, in this
evaluation, this candidate pool with £ = 100 has recall of 0.9122. To evaluate our approach
in a 100% recall scenario, we added the correct table to the pools that do not contain it
(8.78% of the news articles). Table 12 shows such results. Also in this scenario, our method
outperforms the strongest baselines in terms of ACC@1 and MRR. In addition, even when
we change the the top-k retrieval algorithm to collect the candidate pool (i.e., BM25 to
classic TF-IDF), the proposed model outperforms the baselines. That result confirms our
method correctly re-ranking the web tables regardless of the retrieval approach. Finally,
over a maximum recall scenario, our method ranks 62.16% of the ground-truth tables at

the first ranking position using Cos(TF-IDF) as the top-k algorithm.

Prediction Time. We now discuss the query prediction time of each ranking model. We
measure the average runtime per news article in the test dataset as shown in Table 10
(over the last column). Overall, the algorithm BM25 for both single and multi-field ap-
proaches has the smallest time, 0.0456 and 0.0594 seconds per query respectively, while
the models DRMM and PUBLIC-BERT - (MF) have the longest ones (6.5425 and 8.4924
seconds respectively). In contrast, PUBLIC-BERT uses external web services which leads
to higher latency. For DRMM, the model combines several components including matching
histogram mapping, feed forward networks, terms gatting networks and term vector fre-
quencies. As a result, it has a high runtime. Regarding single and multi-field approaches,

the time per query is very similar. For example, BM25, DOC2VEC and USFE have sim-
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ilar runtimes. In relation to the neural IR models such as DUET and CONV-KNRM,
their execution time per query is close to 0.5 seconds, but they have poor performance in
terms of accuracy. For the novel dense passage retrieval techniques, DPR is the slowest
algorithm (1.1242 seconds). SBERT is over three times faster than DPR.

Lastly, our cross-encoder model has a prediction time of 2.2760 seconds per news arti-
cle. Comparing its results, for instance, with Fine-tuned BERT (the strongest baseline),
our model is over 0.2 seconds slower but over 13% more effective in terms of ACCQ1.
Such results also indicate that the combination of blocks, used in our network, does not
put high latency on query prediction. Bi-GRUs and attention layers increase over (.2
seconds in the final time compared to the Fine-tuned BERT, which only uses the BERT
architecture. In contrast to Lees et al. (2021), bi-encoder models are faster than ours but
have lower accuracy '®. Finally, a possible alternative to decrease the runtime of our model
is to use a distilled version of BERT instead the original one in the Transformer Block

since it shows a much smaller runtime.

Matching Analysis. We now present three matching examples for the test set. For each
news story, we collect the top — 5 tables produced by our model, which we illustrate in
Table 13 (note we also show their similarity degree). This results demonstrate our model
re-ranks correlated tables for each of them in the first ranking positions. For example,
regarding Article 1, which contains facts about Cars, America, Chrysler and Ford, our
model points out tables such as Chrysler Vehicles and Ford Vehicles. In fact, a reader
of this news article may be interested in knowing which cars are manufactured by the
Chrysler /Ford automakers. In addition, our approach also finds matching tables in which
there is no term-overlap for the news-table titles, i.e., exacting matching (e.g., Automo-
biles Manufactured in United States). Such linking provides further information about
the central topic of the story - cars made in America - beyond exploring specific places
for this news as the United States and Ontario. Regarding the second article, NASA’s
Moonwalking Apollo Astronauts, the results are similar since our model finds tables like
Apollo Missions or Astronauts, Spacewalks and Moonwalks (very relevant tables to this
news story). As a result, any reader can further explore the list of all Apollo missions or
astronauts which landed on the Moon. Lastly, for Article 3, which relates to Best-Selling
Video Games, our approach retrieves matching tables such as Nintendo and Gamecube
Video Games, i.e., specific brands for games.

Ablation Study. We conclude this section by presenting an ablation study of our model.
As we show in Figure 16, our network combines three main components: Bi-Context Block,
which uses recurrent networks to learn contextual vectors from the input; Attention Block,
whose goal is to compute the matching degree between article and table features; and

Transformer Block, which applies multi-head attention layers based on BERT architecture.

18 The training time for cross and bi-encoder BERT-based models are similar as both of them are
composed of the BERT architecture. Their fine-tuning time is over 20min per epoch in our experiments
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Table 13 — A sample of news-table matching in the test set. We present the top — 5 tables for

three evaluated news articles, beyond pointing out their similarity degree.

Article 1 - Title: Cars made in America? Chrysler, Ford no longer qualify.

# Table Title Similarity
1 Chrysler Vehicles 0.9861

2 Ford Vehicles 0.9104

3  Toyota Vehicles 0.8727

4 Automobiles Manufactured in United States 0.8223

5  Automobiles Manufactured in Ontario 0.8023
Article 2 - Title: NASA’s Moonwalking Apollo Astronauts.

# Table Title Similarity
1 Apollo Astronauts 0.9976

2 Apollo Missions 0.9910

3  Missions of the Moon 0.8966

4  Spacewalks and Moonwalks 0.8891

5  Spacewalkers 0.8875
Article 3 - Title: The Best-Selling Video Games.

# Table Title Similarity
1 Best Selling Video Games 0.9476

2 Best Selling Nintendo Video Games 0.9130

3 Best Selling Gamecube Video Games 0.9106

4  Games Gold Games 0.9068

5  The Simpsons Couch Gags 0.9022

Source: Created by the author

Table 14 — Ablation study on the proposed model for its network-blocks. We evaluate the follow-
ing components and their combinations: Bi-Context Block, Attention Block, Trans-

former Block and Full Model.

# | Network Block MRR@50 || Acc@k=1 5 10

1 Bi-Context 0.0913 0.0270 0.1419 | 0.2568
2 | Attention 0.1647 0.0811 0.1959 | 0.3176
3 Transformer 0.5949 0.4865 0.7500 0.7905
4 | Bi-Context + Attention 0.3768 0.3108 0.4324 | 0.5405
5 Bi-Context + Transformer 0.6236 0.5270 0.7432 0.8108
6 Attention + Transformer 0.6193 0.5135 0.7703 | 0.8311
7 | Full Model 0.6369 0.5541 0.7703 | 0.8176

Source: Created by the author

We evaluate each block individually as well as their combinations. Table 14 shows the
results for each of them in terms of Acc@k and M RR@50. Overall, if we only use Bi-
Context Block (line 1) or Attention Block (line 2) for matching, the model achieves the
worst results for this task (its Acc@l is equal to 0.0270 and 0.0811 respectively). In

contrast, by combining recurrent networks and attention layers (line 4 ), the model finds

over 30% of the matching tables at the first rank position (almost four times better than

these isolated blocks). Specifically, the Transformer Block achieves the best results for
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M RR@50 and Acc@k compared to the other network components (line 3). Moreover, if
we concatenate it with both recurrent networks or attention layers (lines 5 and 6), the
results also increase for the same metric. For example, its results improve from 0.4865
to 0.5270 for Acc@l (line 5). The results are similar to the combination of Attention
and Transformer. Finally, by analyzing all blocks and their combinations, the Full Model
attains the highest results for news-table matching (over 55% for Acc@1).

Such results indicate our approach increases the performance by over 13% in terms of
Acc@1 compared to the Transformer Block (the most isolated baseline). In addition, we
also confirm that recurrent neural networks and cross-attention layers can also capture

relevant match signals from the input in a news-table matching task.

4.6 CONCLUDING REMARKS

The task of matching news articles and web tables is a recent table retrieval problem.
In this chapter, we claimed news understanding can be enhanced by joining associated
content from structured web tables. In fact, previous studies have demonstrated that
online readers also explore tables inside Wikipedia pages after looking at news articles.
Based on that, we focused on the task of the news-table matching. Our solution for that
is a hybrid neural network that combines different encoders to better represent articles
and tables for this task. Our intuition was that we can improve the similarity degree by
using distinct attention approaches in the same network architecture.

We performed an extensive evaluation that assessed the performance of our approach,
comparing it with standard IR methods, document/sentence encoders, neural IR mod-
els and dense retrievers. Furthermore, we also included an ablation study on the main
components of our neural network, in addition to analyzing a set of news-table matching
examples produced by our model. In comparison to Lees et al. (2021), the most related
baseline, our study provides further directions in the context of News-Table matching.
Finally, over a set of wikipedia tables, the overall results point out our model outperforms

the baselines for all evaluated metrics.



Part 11l

Dataset Search
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5 IMPROVING DENSE RETRIEVAL MODELS WITH LLM AUGMENTED
DATA FOR DATASET SEARCH

Data augmentation for training supervised models has achieved great results in different
areas. With the popularity of Large Language Models (LLMs), a research area has emerged
focused on applying LLMs for text data augmentation. This approach is particularly
beneficial for low-resource tasks, whereby the availability of labeled data is very scarce.
At this front, dataset search is an information retrieval task that aims to retrieve relevant
datasets based on user queries. However, due to the lack of labeled data tailored explicitly
for this task, developing accurate retrieval models becomes challenging. In this chapter,
we cover this gap by targeting LLMs to create training examples for retrieval models in
the dataset search task. Specifically, we propose a new pipeline that generates synthetic
queries from dataset descriptions using LLMs. The query-description pairs are utilized
to fine-tune dense retrieval approaches for re-ranking, which we assume as soft matches
to our task. We evaluate our pipeline using fine-tuned embedding models for semantic
search over dataset search benchmarks (NTCIR and ACORDAR). We fine-tune these
models in the dataset search task using the synthetic data generated by our solution and
compared their performance with the original models. In summary, the overall results
show that the models tuned on the synthetic data statistically outperform the baselines
at different normalized discounted cumulative gain levels. As follows, we begin this chapter

by covering the dataset retrieval background we consider in this thesis work.

5.1 PROBLEM STATEMENT

This section formalizes the dataset retrieval task. In addition, we detail the data augmen-

tation task for query generation.

Dataset Retrieval Task. In this chapter, we formalize our dataset retrieval task as
follows: given a query ¢ and a collection of datasets D = {d;, ds, ds, ..., d, }, our goal is to
learn a scoring function f : ¢ x D — R that scores datasets in D for ¢q. Similar to previous
work (CHEN et al., 2020a), we assume d is the dataset’s metadata that comprises its title,
description, and keywords: d = (title, description, keywords). The title summarizes the
core information about the data, the description contains short details regarding its lines
and rows, and the keywords represent the main topics of the dataset. Moreover, we also
consider that queries for this task are generally short, having between one and three
words (KACPRZAK et al., 2017; KACPRZAK et al., 2018; KACPRZAK et al., 2019).

Data Augmentation Task. Given a collection of datasets D and a pre-trained LLM, we
aim to generate a set of matching pairs M = {(d7, sq1), (5, sqa), ..., (dP, sqy)} for each
d; € D, such that sq, = LLM(d;) and represents the augmented text query created by
the large language model for the dataset d;.
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Figure 17 — DAPDR: our Data Augmentation Pipeline for Dataset Retrieval in two branches:
(1) query generation and fine-tuning; (2) retrieval and ranking. We utilize LLMs to
produce synthetic queries for each dataset in the corpus. By filtering query-dataset
pairs, we apply them to fine-tune dense retrievers for ranking. On the other branch,
the top-k candidate datasets are vectorized by applying the fine-tuned models, in
addition to measuring the relevance score between queries and datasets for obtaining
the final dataset ranking.
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Source: Created by the author

5.2 THE DATASET RETRIEVAL PIPELINE

The core of our solution, DAPDR (Dataset Retrieval Pipeline), is to generate synthetic
queries of dataset descriptions using pre-trained LLMs to train ranking models for the
dataset retrieval task. DAPDR has two branches, which we illustrate in Figure 17: (1)
query generation and fine-tuning; and (2) retrieval and ranking. In the first
one, DAPDR leverages docTTTTTquery to create augmented queries for each dataset,
optimizing its hyperparameters over the gold data. DAPDR filters query-dataset pairs by
removing mismatching questions using a similarity-based strategy. The filtered corpus is
the input to fine-tune dense retrieval models.

For the retrieval and ranking pipeline, DAPDR uses IR methods to retrieve the top—k
candidate datasets for each query. It then applies a fine-tuned model to vectorize the
datasets’ metadata and the query. Finally, DAPDR ranks the datasets based on their
cosine similarity to the query.

In contrast to the previous work (CHEN et al., 2020a), our major difference is that
we use LLMs to produce soft-matching queries for datasets, later utilized for fine-tuning
dense retrievers. We also apply the tuned retrievers on the target task for re-rank. Besides,
we are the first study to employ LLMs for the dataset retrieval task. We provide further

details for each step of our pipeline in the remainder of this section.
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5.2.1 Query Generation and Fine-Tuning

This branch of DAPDR creates query-dataset pairs for fine-tuning dense retrieval models.
It includes the following components: hyperparameter optimization; query generation;

data filtering; and fine-tuning. We detail each of them in the remainder of this section.

Hyperparameter Optimization. Similar to previous work (BONIFACIO et al., 2022;
JERONYMO et al., 2023; NOGUEIRA et al., 2019; SACHAN et al., 2022), we target LLMs in the
context of query generation for data augmentation. Instead of using prompting strategies
such as one-shot or few-shot learning (BROWN et al., 2020), we consider doc TTTTTquery:!
an adapted T5-based model for this task trained on MS MARCO Passage Dataset.? T5 is
an encoder-decoder model for language modeling (RAFFEL et al., 2020). Built on top of the
Transformer network, its core idea is to convert each task domain to a text-to-text format,
where an input text feeds the model, which is then asked to produce some text output.
In addition, a task-specific (text) prefix is also included in the input sentence, which
specifies the target task for the text prediction. For instance, an example of a task prefix is:
translate English to German: That is good. One motivation for choosing docTTTTTquery
is that it is an open-source model. Given a text document, it produces relevant queries
for the document in a zero-shot way. Furthermore, in contrast to previous approaches
that use default values for the LLM’s decoder hyperparameters (as, e.g., for top-k and
top-p) (BONIFACIO et al., 2022; NOGUEIRA et al., 2019), we perform a search for their best
values for our task (HOLTZMAN et al., 2020). Specifically, for each query-dataset pair in
the gold data,® we ask docTTTTTquery to create k* artificial queries. The concatenation
of the dataset title and description is the input to docTTTTTquery. Moreover, DAPDR
uses two different strategies to optimize its hyperparameters. For a given dataset, the first
one calculates the mean similarity between the k synthetic queries and a human-curated
query for this dataset. The second one selects the max similarity among the k queries.

Equation 5.1 and 5.2 describe our similarity strategies for hyperparameter optimization.

k
S = ;ZCos(q, 8¢;) (5.1)

i=1
S = max(Cos(q,sq),- -+ ,Cos(s, sqx)) (5.2)

where ¢ represents the vector of the human-curated query for the dataset, sg; is the ith
vector for the synthetic one, and k is the number of artificial queries. The goal of the
optimization is to maximize the similarity between the gold query and the augmented
ones. As a result, we aim that the tuned docTTTTTquery produces synthetic queries

similar to the human-curated ones. We utilize SBERT as the embedding model for this

L http://huggingface.co/BelR /query-gen-msmarco-t5-large-v1
2 http://microsoft.github.io/ MSMARCO-Passage-Ranking

3 NTCIR has 141 relevant pairs, and ACODAR has 692

4 We ask the LLM to create five queries in our experiments
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Table 15 — Hyperparameter optimization for docTTTTTquery. We evaluate top-p, top-k, tem-
perature and beams in this setup. The best values for each one are presented for
NTCIR and ACORDAR benchmarks (see Appendix A for more details).

Hyperparameter Search NTCIR ACORDAR

Top-P 0,1] 0.9881 0.9775
Top-K 1,50] 22 25
Temperature 0,1] 0.9989 0.9829
Beams [1,3] 1 1

Source: Created by the author

Table 16 — A sample of the augmented queries created by docTTTTTquery. We present the
dataset title and the augmented query for NTCIR and ACORDAR benchmarks. We
summarize distinct types of queries.

NTCIR Dataset

Dataset Title Augmented Query
medicaid financial management data what states participate in medicaid
oil rig weather observations where are oil rigs located

hatchie national wildlife refuge land status map  who owns hatchie national wildlife refuge

oasdi beneficiaries state county 2005 oasdi beneficiary population

a state art review effects fire wetland ecosystems effects of fire in an ecosystem
ACORDAR Dataset

Dataset Title Augmented Query

electronic waste generated recycled what is recycled electronic waste

2014 rain gage stations location where are the rain gage stations located
historical occupational business licenses 2013 who required history of occupational license
2015 solar survey responses u.s. solar energy survey response

poverty estimates washington counties age washington state poverty population

Source: Created by the author

step (REIMERS; GUREVYCH, 2019), and Optuna to perform bayesian optimization with
20 trials.” Table 15 shows our setup for the optimization step and the best values for each
hyperparameter in both benchmarks. As in previous studies (HOLTZMAN et al., 2020), we
also achieve the best results in our experiments by using values close to 1.0 for top-p and
top-k, which tends to decrease text repetition. Also, we do not notice any changes by
increasing the range for the total of beams.

Query Generation. In this step, DAPDR asks docTTTTTquery tuned in the previous
step to generate a set of synthetic queries for each dataset in the corpus. We assume
them as soft matches for our task, which we use to fine-tune the dense retrieval mod-
els for ranking, similar to previous work (BONIFACIO et al., 2022). Specificallyy, DAPDR
creates five queries for each dataset. As human-curated queries for this task are usually
short (KACPRZAK et al., 2019), it generates queries from 3 to 10 tokens. Our final match-

> https://optuna.org
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ing corpus contains over 171k query-dataset pairs for NTCIR and 117k for ACORDAR.
Besides, since we adjust docTTTTTquery hyperparameters on NTCIR and ACORAR
gold data, we also double-check whether some of the synthetic queries produced by the
LLM overlap the original queries on ground truth (as such corpus are also used for exper-
imental evaluation). According to this analysis, we confirm that there is no overlapping
between the original queries and the artificial queries produced by docTTTTTquery, i.e.,
all augmented queries for this task are different from those on NTCIR and ACORAR
gold data. Table 16 shows a sample of the augmented queries for both benchmarks. We
observe that DocTTTTTquery produces queries related to their respective datasets. For
example, the query Where are Oil Rigs Located in NTCIR, which searches for oil plat-
forms, maps to the dataset Oil Rig Weather Observations, since it includes oil sites in
addition to weather. The same applies to the augmented query U.S. solar energy survey
response in ACORDAR, which matches the data 2015 Solar Survey Responses.

Data Filtering. The Query Generation step can eventually generate mismatching queries.
For instance, the augmented question What is the Mized Methods Process Evaluation? is
not a good match for the dataset Cabo Verde Water Sanitation Hygiene, neither the query
When was Division Realty? is for 1954 Annual Lands Report. Such query examples have
been created by the LLM. To deal with that, DAPDR filters the query-dataset pairs by
employing a distance supervision approach similar to previous studies (BONIFACIO et al.,
2022; JERONYMO et al., 2023). Specifically, it computes a relevance score for each pair by
calculating the average similarity between the vector embedding of the generated query
and the dataset metadata (title and description). Pairs with similarity below a given
threshold are excluded. We empirically selected the best similarity cut-off, as we report
in our experimental evaluation. We utilize SBERT as the embedding model for this step,
and cosine as the similarity score. After this step, the filtered pairs are used for fine-tuning
the ranking models. Table 17 presents the total of training samples for each benchmark
according to the similarity threshold.

Fine Tuning. In the context of LLMs for data augmentation, previous studies have
applied them for fine-tuning tasks (BONIFACIO et al., 2022; DAI et al., 2022; JERONYMO et
al., 2023). On the same front, DAPDR uses the augmented query-dataset pair for fine-
tuning retrieval models. Note that docTTTTTquery only creates matching pairs. For the
negative ones, DAPDR randomly samples datasets from the corpus for each synthetic
query, similar to previous work (BONIFACIO et al., 2022). It includes negative pairs in the
same proportion as the matching ones. The model outputs a score for the matching or
non-matching example by considering the cosine similarity loss (Equation 5.3), in which
label represents the pair’s matching score (0 or 1), cosine_sim stands for the cosine

similarity, and v and v is the embedding vector for query and dataset metadata.

loss = (label — cosine_ sim(u,v))? (5.3)
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Table 17 — Total of matching pairs for each dataset in our experimental setup. We show the
values according to the threshold cut-offs (from 0.1 to 0.6). We also point out the
number of instances for the whole corpus.

Threshold NTCIR ACORDAR

0.1 117k 51k
0.2 69k 37k
0.3 29k 23k
0.4 9k 11k
0.5 2k 4k
0.6 767 1k
Whole Corpus 171k 117k

Source: Created by the author

5.2.2 Retrieval and Ranking

We index the datasets’ metadata by applying Elasticsearch.® Similar to previous work (BONI-
FACIO et al., 2022; DAI et al., 2022; JERONYMO et al., 2023), DAPDR retrieves the top-k
candidate datasets for each query in the test set using the BM25 similarity function. It
then applies a fine-tuned dense retrieval model, built previously in the pipeline, to gen-
erate a vector representation for each dataset in the top-k based on its title, description,
and keywords, and for the query. DAPDR produces the final ranking for a given text
query by sorting the candidate datasets based on the cosine similarity between the query

vector and the candidates’ vector.

5.3 EXPERIMENTAL SETUP

In this section, we detail our experimental setup for the dataset retrieval task. We de-
scribe the datasets (Section 5.3.1), ranking approaches (Section 5.3.2) and the evaluation
methodology that we consider (Section 5.3.3).

5.3.1 Datasets

We evaluate DAPDR on NTCIR (KATO et al., 2021) and ACODAR (LIN et al., 2022a),
two popular test collections for dataset retrieval. We selected such benchmarks since they
have been widely used in other dataset retrieval studies for experimental evaluation. In
addition, NTCIR is a famous corpus adopted on the NTCIR-16 Data Search competi-
tion, which is a shared task for ad-hoc dataset retrieval.” NTCIR contains an English and

Japanese corpus crawled from government portals (as e.g., data.gov).> We focus on the

6
7
8

https://www.elastic.co
https://ntcir.datasearch.jp
https://www.data.gov
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English datasets by using the 2nd edition of the Data Search Task for NTCIR-16, whose
corpus contains 46,615 datasets and their metadata and 192 questions. The datasets
are available in multiple data formats, including Excel, CSV, XML, JSON and RDF,
and the queries are derived from crowd-sourcing workers and question-answering services.
ACORDAR includes 31, 589 RDF datasets collected from popular open data portals (e.g.,
data.medicaid.gov and opendata.utah.gov) and 493 queries. We also consider only its En-
glish datasets in our experiments. Similar to the data on NTCIR, human annotators create
the queries for ACORDAR, in addition to reusing queries in TREC’s Test Collections,®

since they have great potential for finding relevant data.

5.3.2 Ranking Approaches

Since we target the task of dataset retrieval by using the dataset metadata, which contains
text descriptions about its content, we consider IR methods as relevant baselines for our
task. In addition, we evaluate a set of general-purpose sentence-embedding models as
dense retrieval approaches. Dense retrieval models have shown strong performance for
many ranking tasks (CHEN et al., 2020a). We obtain them from Sentence-Transformer

API'', which we summarize as follows:

o Cos(TD-IDF) (SALTON; YANG, 1973) It is a basic IR method that represents query
and document terms based on term-frequency and inverse document frequency. It
ranks the datasets based on cosine distance over the TF-IDF vector. We use Tfid-

fVectorizer from Sklearn for this approach.!?

« BM25 (ROBERTSON; ZARAGOZA, 2009) It is an IR algorithm based on the prob-
abilistic relevance framework that uses term-frequency weighting and document
length for ranking. We use Rank-BM25 API for the score.!3

« DPR (KARPUKHIN et al., 2020) It is a dense passage retriever based on the BERT
architecture. Queries and documents are indexed in a low-dimensional and continu-
ous space using an adapted loss function for positive and negative samples, aiming
to produce dense representations such that matching pairs have smaller distances.

DPR was originally fine-tuned on Google’s Natural Questions dataset.'*

« BERT (DEVLIN et al., 2019) It is a sentence encoder that uses bidirectional trans-
former networks for language representations, pre-trained on a large corpus. We use

a pre-trained BERT from Hugging Face.!®

https://ntcir.datasearch.jp

10" https://trec.nist.gov/data/test_ coll.html

1 https://www.sbert.net/docs/pretrained__models.html

12 https://scikit-learn.org

13 https://pypi.org/project /rank-bm25

14 https://ai.google.com /research /NaturalQuestions

15 https://huggingface.co/docs/transformers/model__doc/bert
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« SBERT (REIMERS; GUREVYCH, 2019) It is an adapted BERT architecture that uses
siamese and triplet networks to derive semantic embeddings for ranking. Using a
pooling operation over the BERT output, SBERT produces fixed-sized dense vectors,
which can be compared using cosine-similarity. This model was fine-tuned on 1B

training pairs using multiple datasets for semantic search.

« MPNET (SONG et al., 2020) It is a novel pre-training method that leverages the
dependency among predicted tokens through permuted language modeling, in ad-
dition to considering the full position information of a sentence during pre-training.
Similar to SBERT, MPNET was originally fine-tuned on a 1B sentence pairs dataset.

We train all these models over the augmented data using the fine-tuning strategy
described in Section 5.2. The models in Sentence-Transformer API are bi-encoders (DPR,
SBERT and MPNET), and we use a cross-encoder approach for BERT. Given a query-
dataset pair, the bi-encoders map each side of the input independently to a dense vector,

and the cross-encoders perform full attention to the pair (THAKUR et al., 2021).

5.3.3 Retrieval and Ranking Setup

Top-k retrieval. Similar to previous studies (SACHAN et al., 2022), we assume there is
an initial pool of datasets for re-ranking. Using BM25 on Elasticsearch, DAPDR retrieves
the top-k candidate datasets for each query in the test set. In this setup, we evaluate
the cut-offs of £ = 100 and k£ = 1000. Section 5.4 summarizes the NDCG levels for each
retriever using k = 100 since it achieves the best retrieval results in our experiments.
Data filtering. We report results with different similarity cut-offs for the data filtering
step of DAPDR (0.1, 0.2, 0.3, 0.4, 0.5, and 0.6), in which Section 5.4 outlines the best
NDCG levels for each retriever according to their best cut-off setup for NDCG@5.
Evaluation metric. We use NDCG@k at cut-offs k£ € {5,10,15,20} to measure the
quality of the dataset ranking (BONIFACIO et al., 2022). Moreover, we also ran a paired
Wilcoxon test to measure the results’ significance.

Setup & Implementation. We implement the models using Python 3.6 and TensorFlow
2.2.0, and the experiments are performed on a Titan XP GPU and Ubuntu 16.04 LTS.

5.4 RESULTS AND DISCUSSIONS

In this section, we cover the core results of this chapter. Section 5.4.1 presents the re-
sults for dataset retrieval. An ablation study on the dataset metadata is detailed in Sec-
tion 5.4.2, and Section 5.4.3 explores the filtering strategy of our pipeline. Finally, in
Section 5.4.4, we summarize the type of queries created by the LLMs.
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5.4.1 Results for Dataset Retrieval

Table 18 depicts the NDCG@k for NTCIR and ACORDAR benchmarks. The numbers
show that the fine-tuned models surpass the other original models for both corpora. The
fine-tuned MPNET (F__M PN ET) obtains the best NDCG@k for all cut-offs on NTCIR,
and the fine-tuned BERT (F_BERT) attains the best values on ACORDAR.

Furthermore, comparing the original and fine-tuned strategies, the fine-tuned DPR,
SBERT, MPNET, and BERT outperform their original model for both benchmarks in all
NDCG@k values. For example, on the NTCIR corpus, the fine-tuned DPR, SBERT, and
MPNET enhance by over 69%, 21%, and 6% of NDCG@5 respectively, when compared
to the original approach. The fined-tuned BERT achieves the highest margin, being three
times better compared to its original one. The results go similarly on the ACORDAR
dataset, in which the fine-tuned DPR, SBERT, MPNET and BERT improve by over 37%,
10%, 9% and 325% respectively for NDCG@5 in contrast to their pre-trained models. It is
worth noting that even highly tuned models for similarity, such as SBERT and MPNET,
originally trained on 1B similarity pairs, improve their performance by fine-tuning on
DAPDR’s generated instances.

To validate the results, we perform a Paired-Wilcoxon Test for NDCG@Q@5. Specifi-
cally, we compare each fine-tuned model against its original approaches, in which our
alternative hypothesis is the fine-tuned strategies have greater NDCG@5 values than the
original ones. Table 19 shows the p-values for each comparison in both benchmarks. The
overall results show that most fined-tuned models statistically outperform their origi-
nal approaches regarding NDCG@5 (i.e., bold values for p-values < 0.05). For example,
F_DPR, F_SBERT and F_BERT statistically surpass their original models on both
NTCIR and ACORDAR datasets. The same is true for F MPNET in the ACORDAR

Table 18 — Our core results for NTCIR and ACORDAR benchmarks. We point out the NDCG@k
for each original model (O) and fine-tuned (F) approach and the IR baselines. Bold
values stand for the best results of each metric.

Approach NTCIR Dataset - Recall@100 ACORDAR Dataset - Recall@100

NDCG@5 10 15 20 NDCG@5 10 15 20
BM25 0.1725 0.1739  0.1757  0.1861 0.4026 0.4094  0.4209 0.4354
Cos(TF-IDF) 0.2105 0.2058  0.2129  0.2255 0.4206 0.4269  0.4391  0.4531
O_DPR 0.1423 0.1435  0.1543  0.1643 0.2723 0.2885  0.3089  0.3246
O_SBERT 0.1991 0.1995  0.2091  0.2221 0.3548 0.3598  0.3730  0.3908
O_MPNET 0.2659 0.2581  0.2686  0.2825 0.3875 0.3958  0.4133  0.4317
O_BERT 0.0620 0.0688  0.0735  0.0832 0.1048 0.1153  0.1308  0.1449
F_DPR 0.2415 0.2460  0.2530  0.2661 0.3736 0.3806  0.3972  0.4182
F_SBERT 0.2411 0.2338  0.2396  0.2507 0.3935 0.3996  0.4136  0.4302
F_MPNET 0.2827 0.2763 0.2784 0.2897 0.4239 0.4265  0.4434  0.4600
F_BERT 0.2561 0.2558  0.2664  0.2779 0.4460 0.4461 0.4590 0.4745

Source: Created by the author
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Table 19 — Paired Wilcoxon Test for NDCG@5. We compare each fine-tuned model (F) against
the original ones (O). Our alternative hypothesis is that they have greater perfor-
mance them the original models (¥ > O). Bold values stand for those comparisons
in which we can reject the null hypothesis, p-value < 0.05.

NTCIR Dataset
Vs. O_DPR O_SBERT O_MPNET O_BERT
F_DPR 8.38e-07 0.002717 0.993851 2.91e-16
F_SBERT 1.73e-06 0.002192 0.958568 6.09e-15
F_MPNET 5.32e-12  8.09e-08 0.069817 1.33e-18
F_BERT 2.83e-09 1.26e-05 0.795181 1.33e-18

ACORDAR Dataset
Vs. O_DPR O_SBERT O_MPNET O_BERT
F_DPR 4.19e-13 0.153745 0.842155 1.97e-39
F_SBERT 1.46e-16 1.73e-05 0.332389 4.94e-44
F_MPNET 4.28e-25 6.30e-08 1.87e-08 2.13e-51
F_BERT 1.46e-29 6.41e-12 8.57e-06 1.46e-52
Source: Created by the author

benchmark. The only exception is F__ MPNET on the NTCIR dataset, in which we can not
reject the null hypothesis since their p-value is 0.069817. In summary, the results confirm
that most dense retrieval models improve their NDCG@5 performance using DAPDR.

Comparing the best model for each benchmark against BM25 and Cos(TF-IDF),
F_MPNET statistically outperforms both BM25 and Cos(TF-IDF) on NTCIR, whose
p-values are 2.50e-07 and 1.64e-05, respectively. The FBERT goes analogous on ACOR-
DAR, whose p-values are 5.66e-05 for BM25 and 0.00850 for Cos(TF-IDF).

5.4.2 Ablation Study on the Dataset Metadata

Since we target dataset retrieval by using the dataset metadata, which typically includes
title, description, and keywords, we first evaluate distinct combinations in the context of
ranking. Table 20 shows the NDCG@5 values for each setup on both evaluation datasets
and retrieval models. Except for SBERT in NTCIR dataset, whose combination of <ti-
tle> and <tags> achieves the highest results, the concatenation of the dataset <title>,
<description> and <keywords> obtains the best NDCG@5 values for all other models.
The <tags> achieves the worst for the same metric. Lastly, it is worth mentioning that
the combination of <title> and <description> attains relevant results for this task when
compared to the other ones. On average, the NDCG@5 results improve by up 1% to 4%
when we combine all the metadata as retrieval features, in contrast to combining two of

them (i.e., <title> and <description>).
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Table 20 — Ablation study for the dataset metadata. We evaluate distinct combinations for the
fine-tuning strategy. The NDCG@5 is presented for each retrieval approach and meta-
data setup. Bold values point out the best results for each model. The concatenation
of the metadata title, description and keywords attains the best results for most re-
trieval models.

NTCIR Dataset ACORDAR Dataset

Dataset Metadata NDCG@5 NDCG@5

DPR SBERT MPNET BERT DPR SBERT MPNET BERT
Title 0.2342 0.2308 0.2572 0.2141 0.3487 0.3659 0.3869 0.3864
Description 0.2188 0.1947 0.2573 0.2410 0.3260 0.3306 0.3851 0.3832
Tags 0.2007 0.1802 0.2144 0.1819 0.2735 0.2728 0.2923 0.2783
Title, Descritpion 0.2310 0.2235 0.2744 0.2467 0.3657 0.3920 0.4152 0.4402
Title, Tags 0.2320 0.2411 0.2679 0.2289 0.3612 0.3736 0.3900 0.4113
Description, Tags 0.2191 0.2104 0.2550 0.2506 0.3355 0.3452 0.4004 0.3996
Title, Description, Tags | 0.2415 0.2264 0.2827 0.2561 | 0.3736 0.3935 0.4239 0.4460

Source: Created by the author

5.4.3 Ablation Study on the Data Filtering Step

Not limited to the dataset metadata evaluation, we also analyze the data filtering step
from our pipeline. Specifically, we also fine-tune each retrieval model by applying a distinct
training corpus according to each similarity cut-offs (0.1, 0.2, 0.3, 0.4, 0.5, and 0.6). At this
front, our goal is to evaluate the retrievers tuned on the filtered data and compare their
performance against the models tuned into the whole corpus. Table 21 shows the NDCG@5
results for each training data and for each retrieval approach in both benchmarks.

In summary, the ranking results of this task are improved when we fine-tune the models
on the filtered data as, e.g., for the training data using the similarity thresholds 0.1, 0.2,
0.3 and 0.4 in both NTCIR and ACORDAR datasets. In fact, the retrievers attain their
best NDCG@5 levels by using this training corpus. In contrast, the NDCG@5 decreases
for several of them when we apply the highest cut-off (i.e., 0.6).

Finally, such results also confirm the efficacy of our filtering step since the best values
for NDCG@5 are obtained by tuning the retrievers on the clean data for low similarity
cut-offs. On average, compared to the whole corpus, the models tuned into our filtered
data improved their results from 6% to 17% in terms of NDCG@Q5.

5.4.4 Analysis of the Synthetic Queries

Similar to previous work (KACPRZAK et al., 2017; KACPRZAK et al., 2018; KACPRZAK et
al., 2019), we also investigate the most common types of queries produced by docTTTT-
Tquery in our data augmentation task. Table 22 summarizes the rate of queries by each
type/format in the utilized benchmarks.

For both datasets, direct questions are the most frequent, i.e., queries for the <what>
format as, e.g., what causes oregon murres die, which focuses on data about classes of

deaths for seabirds. <location> questions are also present in both corpora, over 13% for
NTCIR and 16% for ACORDAR. The study of Kacprzak et al. (2019) shows that intent-
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Table 21 — Ablation study on the training corpus. We evaluate different similarity cut-offs for
the data filtering step in our pipeline. We present the NDCG®@5 for each training
data as well as for each retrieval model. Bold values mean the best results for each
approach. Note that we also include the " Whole Corpus" training data for comparison

purposes.
NTCIR Dataset ACORDAR Dataset

Training Corpus NDCG@5 NDCG@5

DPR SBERT MPNET BERT | DPR SBERT MPNET BERT
Whole Corpus 0.2061 0.2179 0.2461 0.2410 | 0.3493 0.3677 0.3775 0.4163
Similarity > 0.1 0.2132 0.2411 0.2392 0.2531 0.3611 0.3794 0.3864 0.4252
Similarity > 0.2 0.2329 0.2407 0.2522 0.2561 | 0.3606 0.3873 0.3987 0.4208
Similarity > 0.3 0.2415 0.2275 0.2678 0.2398 | 0.3736  0.3906 0.3973 0.4387
Similarity > 0.4 0.2141 0.2217 0.2827 0.2247 0.3729 0.3935 0.4179 0.4460
Similarity > 0.5 0.1648 0.2151 0.2635 0.2058 0.3287 0.3704 0.4239 0.3965
Similarity > 0.6 0.1439 0.2048 0.2654 0.2107 | 0.2777 0.3546 0.3959 0.3917

Source: Created by the author

Table 22 — Analysis of the synthetic queries. We evaluate the types of queries produced by
docTTTTTquery. We summarize their most common formats including what, where,
location and so on. We sort the rates by NTCIR corpus.

Queries Types NTCIR (%) ACORDAR (%)

What 42.47 30.37
Location 13.39 16.01
When 10.54 6.23
Which 2.67 1.77
Who 1.71 1.90
How 1.68 3.07
Why 1.38 0.24
Numerical 1.04 3.70
How Many 0.36 1.49

Source: Created by the author

queries for geospatial attributes are quite common on open-data portals. They contain
information about countries, cities, and regions. We use the Location Tagger API to detect

6 or queries that include the token <where> as, e.g., where is

locations in the queries.!
trans alaska gas terminals, which covers data about oil transportation systems in Alaska.

In addition, questions using <when> are most predominant in the NTCIR dataset.
One example is the query: when was nos hydrographic survey conducted, which contains
data for the NOS survey. Lastly, the other kinds of queries, such as <which>, <who>,
or <how many>, have the lowest rates in the corpus (over 1% to 3%). The same is
true for the <numerical> questions, which can contain time queries such as, e.g., IEC
election 2014, which covers data for election results. Such analysis also confirms that the
model docTTTTTquery can produce diverse types of queries for data augmentation in

the context of dataset retrieval task.

16 https://pypi.org/project/locationtagger
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5.5 CONCLUDING REMARKS

In this chapter, we employed LLMs for query augmentation in the dataset search task
since queries mapped to datasets are very limited in most evaluation benchmarks. Dataset
search is an information retrieval task that aims to find relevant datasets to a user query.
Specifically, we introduced DAPDR (Data Augmentation Pipeline for Dataset Retrieval):
a solution that uses LLMs to create training samples for dense retrievers. The core of
our approach was to use the augmented query-dataset pairs for fine-tuning the dense
retrievers for ranking. DAPDR was also assessed using a set of sentence-embedding ap-
proaches for semantic search over NTCIR and ACORDAR benchmarks, and our goal was
to evaluate whether the models tuned into DAPDR outperform the original models. In
our experiments, we evaluated the retrievers DPR, BERT, SBERT and MPNET, which
have been utilized for many ranking tasks.

The overall results pointed out that the retrievers tuned on DAPDR statistically out-
perform the original models by a large margin, also surpassing the IR baselines BM25 and
Cos(TF-IDF). On average, our results for this task are improved from 6% to 69% in terms
of NDCG@5 by tuning the retrievers on our pipeline. Furthermore, in order to validate
our approach, we also presented an ablation study on the dataset metadata and on the
data filtering step of DAPDR, in addition to evaluating the type of queries created by the
docTTTTTquery. The models tuned into the filtered corpus attained the best results for
NDCG@5 compared to those trained in the whole data. Regarding the dataset metadata,
the concatenation of <title>, <description> and <keyword> achieved the best results
for this task in contrast to the other metadata setups. Finally, we also confirmed that
docTTTTTquery produced distinct types of queries for our task, including searches for
geospatial queries. Such evaluations also proved that LLMs can generate relevant training

samples in the context of dataset retrieval.
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6 CONCLUSION

In this thesis work, we have addressed IR problems for structured/semi-structured data
retrieval. By considering the domain of Web Tables, which comprises a huge and rich
corpus of relational data from the Internet, we focused on the following tasks: QA Ta-
ble Retrieval, News-Table Matching, and Dataset Retrieval. At this direction, we also
discussed that one of the main challenges for such tasks is that they need to match
unstructured queries and structured /semi-structured tables, since each task utilizes rela-
tional data to represent information. Furthermore, another point examined in this work
was the development of adapted matching models, whose goal was to compute the similar-
ity degree between queries and tables. Given this gap, we also formalized these problems
as an adjusted ranking task, where we aimed to find a set of relevant tables or datasets
for user queries and news stories.

Towards this front, in Chapter 3 of this thesis, we have introduced a novel taxonomy for
QA table retrieval, which surveyed 16 core studies for this task. As a result, we classified
the solutions for table retrieval into five groups: probabilistic-based, IR-based, entity-
based, feature-based, and network-based. Our work also pointed out a precise ablation
study on popular table features for retrieval approaches, which was organized into query-
dependent and query-independent attributes, document fields and document measures.
Moreover, this chapter also presented the anatomy of the tables on the Web, in addition to
suggesting a set of open challenges for this task and popular benchmarks for experimental
evaluations. Lastly, in order to fill the research questions concerning this query-table
match, we make the following conclusions. Regarding RQ1 (How can we retrieve contextual
tables for a query from a table corpus?), we argue that the designed methods for this task
apply a table retrieval solution according to two cascade steps: (I) they first efficiently find
a pool of candidate tables by applying traditional IR algorithms such as BM25; and (II)
they re-rank this table subset by adopting sophisticated approaches build on top of neural
networks. For RQ2 (How to calculate the similarity between unstructured queries and semi-
structured /structured Web Tables?), we claim that the relevant alternatives for this task
extract a set of query-table features based on neural network components (such as Long
Short-Term Memory (LSTM) layers, Gated Recurrent Units (GRUs) and Transformer-
Based Architectures). Concerning RQ3 ( Which table aspects such as headers, caption or
body are more relevant to the match in the context of table retrieval?), we show that
popular features for this task include table caption, headers and body, in addition to the
surrounding table features (as e.g., page title and reference text).

In sequence, Chapter 4 addressed the news-table matching problem. This task was
first introduced as a novel table retrieval application, whose Web Tables are employed

to expand the content of a news story for news augmentation. Towards this goal, our
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core contribution was a BERT-based model that combines recurrent networks, attention
mechanisms and transformer layers in a single neural network. In addition, we have also
assessed the efficacy of traditional IR methods, document/sentence encoders, neural IR
models and dense retrievers in the context of this task. In resume, a hypothesis test has
demonstrated that our solution statistically outperforms all the other baselines in terms
of the mean reciprocal rank metric. Besides, in this chapter, we also presented the first
news-table corpus from literature. By crawling Wikipedia pages, we collected 275,352 news
articles and 298,792 web tables, whose ground truth contains 93,818 matching pairs cre-
ated by distant supervision strategies. Lastly, regarding the research question RQ4 (How
to compute the matching degree between News Stories and Web Tables for the news-table
matching task?), we argue that the news-table similarity can be calculated by matching
the contextual information of the tables against the news title or short description.

Finally, in Chapter 5 of this thesis, we concentrated on the dataset retrieval task.
Similar to table retrieval, the goal of this task was to rank structure datasets for a text
query, in which a dataset is defined as a collection of relational data classified for a par-
ticular intent. Besides, queries for this task are generally formed by geographical places
or temporal data. Specifically for this domain, our goal was to utilize LLMs to generate
supervised training data for fine-tuning dense retrievers, as labeled queries for this task
are very scarce in most benchmarks, such as ACORDAR and NTCIR. For that, we intro-
duced DAPDR (Dataset Retrieval Pipeline), which generates synthetic queries of dataset
descriptions, later utilized in a fine-tuning task. DAPDR was evaluated by using a set of
dense retrievers for semantic search over popular dataset retrieval benchmarks, and we
aimed to evaluate whether the models tuned into DAPDR outperform the other base-
lines. In summary, we confirmed that the retrievers tuned in DAPDR have surpassed the
original models at different NDCG levels.

Based on that, in order to fill the research question RQ5 (Can we improve the efficacy
of supervised retrievers by fine-tuning them on LLMs augmented queries for the dataset
retrieval task?), we claim that the models tuned into LLM data, specifically for this task,
have better efficacy in contrast to the original approaches. In addition, we also point
out that even highly tuned models for similarity tasks, such as SBERT and MPNET,
which were originally trained on a huge corpus of similarity pairs, improve their ranking
performance by fine-tuning on DAPDR’s generated queries. Lastly, we also argue that no
retriever reduces its ranking accuracy compared to the original model when tuned on the
LLM synthetic data. Towards this front, popular open-data portals, such as dados.gov.br
from Brazil,! can benefit from our dataset retrieval pipeline by applying dense retrievers
to their search methodology, also using LLMs for producing synthetic queries for training
purposes. Besides, using DAPDR, such platforms could expand their methodology from

lexical matching to semantic matching to obtain the best datasets for a user query.

L https://dados.gov.br
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As follows, we outline this thesis contributions and publications, also presenting its

limitations and future work.

6.1 SUMMARY OF CONTRIBUTIONS

We summarize the contributions of this thesis as follows, which we categorize according
to each task domain: QA Table Retrieval, News-Table Matching and Dataset Retrieval.

« QA Table Retrieval

— We present a novel taxonomy for the task of QA table retrieval that classifies
the proposed methods into five groups, from probabilistic approaches to novel
sophisticated deep learning architectures: probabilistic-based, IR-based, entity-

based, feature-based, and network-based;

— We present a detailed ablation study on popular table features for retrieval,
which we classify into query-dependent and query-independent aspects, as well

as document fields and document measures.
o« News-Table Matching

— We introduce the problem of collocating news articles with structured Web
Tables as a novel ranking task. Furthermore, we also formalize the most used

matching features for news-table matching;

— We present the first news-table corpus from literature. By crawling Wikipedia
pages, we collected 275,352 news articles and 298,792 web tables, whose ground
truth contains 93,818 matching pairs;

— We evaluate previous approaches for table retrieval and table matching in the
context of this task, also assessing both single and multi-field (document) rank-

ing methodologies in the experiments;

— We propose a novel BERT-based attention model for computing the similarity

degree between news stories and structured tables;

— We compare the performance of our solution with IR techniques, sentence

encoders, text matching models and neural approaches for this task;
« Dataset Retrieval

— We introduce DAPDR, a dataset retrieval pipeline that uses LLMs to generate
labeled queries for dataset descriptions, which are then utilized for fine-tuning

dense retrievers at the target task.

— We evaluate DAPDR on a set of popular retrievers for semantic search over
dataset search benchmarks, in addition to assessing the performance of tradi-
tional IR methods in the context of this task.
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6.2 NTCIR-16 CHALLENGE

Another contribution of this thesis work is our participation in a dataset retrieval chal-
lenge, which was organized by NTCIR Conference (NTCIR-16).? This edition included
a shared task on ad-hoc dataset retrieval for governmental data, which contained collec-
tions gathered from data published by the US government (data.gov) and the Japanese
government (e-Stat). Our team (NYUCIN) was a joint effort of members from the Centro
de Informética (CIn) at Universidade Federal de Pernambuco (UFPE), and the Tandon
School of Engineering at New York University (NYU). We addressed the dataset retrieval
task for English datasets.

In summary, the official results of the competition showed that our approach achieved
the highest score among all submitted runs for all evaluation metrics (KATO et al., 2022).
NTCIR-16 has received 37 submissions for the English datasets, separated into 6 groups.
In particular, our results represent a 30% improvement compared to the second-best one
in the competition. For our submission, we used the proposed news-table matching model
(introduced in Chapter 4), adapted to the dataset retrieval task (SILVA et al., 2022).

6.3 LIST OF PUBLICATIONS

This section summarizes the publications of this thesis work. We have been submitting
the core results of this thesis to international/national journals and conferences in the
computer science field. As follows, we list accepted papers as well as those studies that

are still under review.
1. Accepted Papers:

« SILVA, LEVY; BARBOSA, LUCIANO. Matching News Articles and
Wikipedia Tables for News Augmentation. Knowledge and Information
Systems, v. 65, p. 1713-1734, 2023.

« LEES, A.; BARBOSA, L.; KORN, F.; SILVA, L. S.; WU, Y.; YU, C. Collo-
cating News Articles with Structured Web Tables. In: 1st International
Workshop on News Recommendation and Intelligence, 2021, Ljubljana, Slove-
nia. Companion Proceedings of the Web Conference 2021. New York: ACM,
2021. p. 393-401.

o SILVA, L.; BARBOSA, L.; CASTELO, S.; ZHANG, H.; SANTOS, A.; FREIRE,
J. NYUCIN at the NTCIR-16 Dataset Search 2 Task. In: The 16th NT-
CIR Conference Evaluation of Information Access Technologies, 2022, Tokyo,
Japan. Proceedings of the 16th NTCIR Conference on Evaluation of Informa-
tion Access Technologies, 2022. p. 38-45.

2 https://ntcir.datasearch.jp/subtasks/ir
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2. Under Review:

o SILVA, LEVY; BARBOSA, LUCIANO. A Survey on Intelligent Solu-
tions for Table Retrieval. Submitted to Journal of the Brazilian Computer

Society.

« SILVA, LEVY; BARBOSA, LUCIANO. Improving Dense Retrieval Mod-
els with LLM Augmented Data for Dataset Search. Submitted to Jour-
nal of Knowledge-Based Systems.

6.4 LIMITATIONS
In this section, we point out some limitations of this study, as follows.

o Retrieval Corpus. In this thesis work, we have utilized the Elasticsearch frame-
work to retrieve an initial pool of the top — 100 candidate tables or datasets for
re-ranking. However, in our experimental setup, this subset does not contain all
matching tables/datasets according to our labeled data (i.e., the maximum recall

scenario), which limits the results for our re-ranking models and baselines.

o Prediction Time. According to our experimental setup, our BERT-based attention
model has the most elevated prediction time compared to the other methodologies
for the news-table matching task. In fact, cross-encoder models, similar to our so-
lution, have elevated inference time since they need to perform full attention to the
input pair. One alternative for that is to use a distilled version of BERT instead of

the original one, which has 40% fewer parameters than the BERT model.

« Wikipedia Matching Tables. In this study, we fine-tuned our BERT-based so-
lution as well as the other baselines by using a set of matching tables created by
a distant supervision strategy, since we do not have any labeled corpus for the
news-table matching task. Based on that, one limitation of this approach is that
our matching tables are chosen according to a similarity threshold, and our manual
analysis showed that about 8% of this data is a non-matching sample. As a result,

the training dataset can also contain false positive examples.

o« Metadata Information. For both of our solutions, the DAPDR pipeline as well
as the BERT-based attention model, we only include the surrounding text of the
structured corpus as the matching features for retrieval as, e.g., the title, short
description and keywords for tables or datasets. As a result that, the table body
(i.e., its lines and rows) are not incorporated into our retrieval approaches, which

restricts our solutions for retrieving data-driven intent queries for this task.
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e DocTTTTTquery Model. One limitation of docTTTTTquery is that it mostly
produces questions for the "what" format, which limits the training of the supervised
retrievers for other types of queries as, e.g., for temporal or numerical questions in
the context of dataset retrieval. Such types of queries are also present in the dataset

retrieval domain, but docTTTTTquery creates a limited sample of them.

« DAPDR Filtering Step. One restriction of the DAPDR pipeline is that we need to
manually select a similarity threshold for pruning the query-dataset pairs for produc-
ing the final fine-tuning corpus. However, our experimental setup has demonstrated
that various similarity cut-offs have achieved relevant results for distinct retrievers
and benchmarks (NTCIR and ACORDAR). As a result, more ablation studies on

this step of our pipeline are necessary to improve the DAPDR accuracy.

« Dataset Search. In this thesis work, we have only focused on a query augmentation
topic for the dataset retrieval task, since labeled data is very scarce for this task.
Based on that, we do not explore other core challenges for this task including: (I) a
deep analysis of the dataset queries issued on open data portals; (II) the development
of adapted matching models for this task; and (IIT) a profound investigation of the

types and formats in which datasets are published on the web.

6.5 FUTURE WORK

In this section, we suggest future studies for complementing this thesis work, as follows.

« Retrieval Approach. For both table/dataset retrieval approaches we proposed in
this thesis, we employed the BM25 algorithm as the default Elasticsearch method.
Based on that, in order to enhance the set of retrieval candidates (usually the top-
100 matching tables or datasets), further retrieval solutions can also utilize dense

retrievers at this step of our pipeline.

o Table Body. In our experimental setup, we have used the surrounding text of
tables/datasets as the retrieval attributes (for both BERT-based model and DAPDR
pipeline), i.e., the corpus metadata such as its title, description, or keywords. Based
on that, a point of improvement towards this goal is to include the table body in the

ranking approaches, by extracting and including its lines and rows in the solutions.

o Semantic Features. In order to enhance the performance of the BERT-based ap-
proach, future work can also add more semantic features to the network architecture,

in addition to the news title, description and keyword, such as entities or categories.

o Mismatch Articles. In this work, we only focused on matching tables for news
articles. However, we do not estimate the number of news articles that may not be

able to match web tables. Future studies are necessary for this perspective.
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e News Improvement. In this thesis work, we have argued that structured Web

Tables can enhance the content of a news story. However, in our experimental eval-
uation, we do not explore the improvement of the news understanding brought by

the top-ranked Web Tables. Further analysis is also necessary on this front.

Query Generation. The model docTTTTTquery is a zero-shot query generation
approach for text data augmentation. However, in our experimental analysis, this
model mostly produced direct questions for the dataset descriptions. Given this gap,
a point of advancement is to explore prompting strategies in the LLM for creating

specific types of queries as, e.g., for geographical or temporal queries.

Large Language Models. In order to compare docTTTTTquery against different
LLMs, future work can explore other LLMs in the query generation step of DAPDR,
such as Falcon® or OpenLLaMA* models, which are also open-source approaches.
In addition, since LLMs can increase task performance when using large amounts of
data, future studies could also explore the LLM’s performance characteristics, since

latency is problematic for real-time applications.

Dataset Snapshots. In DAPDR pipeline, the statistical data from the dataset is
not used in their ranking approach, which limits the search for some types of queries.
Based on that, other studies can also apply LLMs for generating text snapshots from

the dataset body to also cover data-driven questions.

BERT-Based Model. In the context of the dataset retrieval task, we do not
develop adapted matching models for queries and datasets. Based on that, future
work can also explore this gap. An alternative is to fine-tune our BERT-based

attention model by using the augmented LLM data for the dataset retrieval task.

3
4

https://huggingface.co/tiiuae/falcon-7b
https://github.com/openlm-research/open_ llama
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APPENDIX A - HYPERPARAMETER OPTIMIZATION

A.1 NTCIR DATASET

Table 23 — Hyperparameter optimization for docTTTTTquery model in NTCIR dataset. We
evaluate Top-P, Top-K, Temperature, Beams and #Tokens. Bold values represent
the best ones for each hyperparameter according to the similarity metric (Trial 13).
We perform 20 trials in this setup.

Trial Top-P Top-K Temperature Beams #Tokens Similarity
0 0.99753571532049 19 0.73199394181140 2 49 0.25060728192329
1 0.95290418060841 8 0.86617614577493 2 83 0.24193036556243
2 0.99849549260809 2 0.83244264080042 1 51 0.29403916001319
3 0.96521211214797 10 0.52475643163223 2 57 0.23190517723560
4 0.95697469303260 31 0.29214464853521 2 67 0.22500579059123
5 0.95998368910791 40 0.51423443841361 2 42 0.22221367061138
6 0.95852620618436 31 0.06505159298527 3 98 0.22191141545772
7 0.96523068845866 41 0.09767211400638 3 66 0.22303807735443
8 0.97475884550556 7 0.03438852111521 3 55 0.21411322057247
9 0.96558555380447 34 0.52006802117781 2 51 0.23090267181396
10 0.99663576416884 20 0.96953711078786 1 79 0.32165956497192
11 0.99922201645123 20 0.97981011002056 1 79 0.31123277544975
12 0.98878591856443 20 0.9735908581868 1 81 0.32813856005668
13 0.98814616851281 22 0.99893261251177 1 86 0.33506843447685
14 0.98690579810967 25 0.69395651837033 1 92 0.30019602179527
15 0.98696281077438 49 0.67873966640578 1 87 0.32012477517127
16 0.98619553658070 17 0.84137966566886 1 75 0.31570756435394
17 0.98065788011792 13 0.31095030817347 1 100 0.26966729760169
18 0.99236676046105 25 0.98291786698820 1 90 0.32392159104347
19 0.97808467058280 14 0.77157688751253 1 73 0.31495064496994

Source: Created by the author
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A.2 ACORDAR DATASET

Table 24 — Hyperparameter optimization for docTTTTTquery model in ACORDAR dataset.
We evaluate Top-P, Top-K, Temperature, Beams and #Tokens. Bold values represent
the best ones for each hyperparameter according to the similarity metric (Trial 18).
We perform 20 trials in this setup.

Trial Top-P Top-K Temperature Beans #Tokens Similarity
0 0.99753571532049 19 0.73199394181140 2 49 0.43005654215812
1 0.95290418060841 8 0.86617614577493 2 83 0.42939409613609
2 0.99849549260809 2 0.83244264080042 1 51 0.48153457045555
3 0.96521211214797 10 0.52475643163223 2 57 0.40309613943099
4 0.95697469303260 31 0.29214464853521 2 67 0.38631853461265
5 0.9599836891079 40 0.51423443841361 2 42 0.40591791272163
6 0.95852620618436 31 0.06505159298527 3 98 0.37815451622009
7 0.96523068845866 41 0.09767211400638 3 66 0.39163118600845
8 0.97475884550556 7 0.03438852111521 3 55 0.34661749005317
9 0.96558555380447 34 0.52006802117781 2 51 0.40511742234230
10 0.99663576416884 20 0.96953711078786 1 79 0.50866651535034
11 0.99922201645123 20 0.97981011002056 1 79 0.51018273830413
12 0.98878591856443 20 0.9735908581868 1 81 0.50398689508438
13 0.98449452116748 22 0.99895442980611 1 81 0.51071953773498
14 0.98447683005603 25 0.69296014565948 1 92 0.49473536014556
15 0.98519207641372 49 0.67875158357884 1 72 0.49922794103622
16 0.97704234573880 17 0.84105152761915 1 89 0.50174766778945
17 0.99113201378887 13 0.30823095141294 1 75 0.45109614729881
18 0.97758419308396 25 0.98291900905561 1 90 0.51310926675796
19 0.97786530572585 24 0.75994976985145 1 98 0.50148248672485

Source: Created by the author
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B.1 RECALL SETUPS FOR DATASET RETRIEVAL

Table 25 — Distinct indexing setups for dataset retrieval. Bold values represent the best indexing
configuration for NTCIR and ACORDAR benchmarks in terms of Recall@100, which
we use as candidate datasets for re-ranking.

NTCIR Dataset

# Indexing Attributes Recall@100
1 <Title, Description, Tags> 0.4907
2 <Title, Description> 0.4846
3 <Title, Tags> 0.3336
4 <Description, Tags> 0.4887
5  <Title> 0.2858
6 <Description> 0.5250
7  <Tags> 0.2435
ACORDAR Dataset
# Indexing Attributes Recall@100
1 <Title, Description, Tags> 0.7779
2 <Title, Description> 0.7409
3 <Title, Tags> 0.7009
4 <Description, Tags> 0.7205
5  <Title> 0.5988
6 <Description> 0.6526
7  <Tags> 0.4576

Source: Created by the author
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