
UNIVERSIDADE FEDERAL DE PERNAMBUCO PROGRAMA DE PÓS-

GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

FAGNER FERNANDES CANDIDO DA SILVA

FAROL: A Lightweight Framework for Decision-Making in Software Architecture

Recife

2023

FAGNER FERNANDES CANDIDO DA SILVA

FAROL: A Lightweight Framework for Decision-Making in Software Architecture

A M.Sc. Dissertation presented to the Center for

Informatics of Federal University of Pernambuco

in partial fulfillment of the requirements for the

degree of Master of Science in Computer Science.

Concentration Area: Software Engineering and

Programming Languages

Advisor: Vinícius Cardoso Garcia

Recife

2023

Catalogação na fonte
Bibliotecária Nataly Soares Leite Moro, CRB4-1722

S586f Silva, Fagner Fernandes Candido da
FAROL: a lightweight framework for decision-making in software

architecture / Fagner Fernandes Candido da Silva – 2023.
143 f.: il., fig., tab.

Orientador: Vinícius Cardoso Garcia.
Dissertação (Mestrado) – Universidade Federal de Pernambuco. CIn,

Ciência da Computação, Recife, 2023.
Inclui referências e apêndices.

1. Linguagens de programação e Engenharia de software. 2. Tomada de
decisão. 3. Framework de tomada de decisão. 4. Arquitetura de software. 5.
Design de software. 6. Decisões arquiteturais. I. Garcia, Vinícius Cardoso
(orientador). II. Título

005.1 CDD (23. ed.) UFPE - CCEN 2024 – 19

Fagner Fernandes Candido da Silva

“FAROL: A Lightweight Framework for Decision-Making In Software Architecture”

 Dissertação de Mestrado apresentada ao Programa de

Pós-Graduação em Ciência da Computação da

Universidade Federal de Pernambuco, como requisito

parcial para a obtenção do título de Mestre em Ciência

da Computação. Área de Concentração: Linguagens

de Programação e Engenharia de Software.

Aprovado em: 31/10/2023

BANCA EXAMINADORA

__

Prof. Dr. Kiev Santos da Gama

Centro de Informática / UFPE

Prof. Dr. Lincoln Souza Rocha

Departamento Computação/UFC

__

Prof. Dr. Vinicius Cardoso Garcia

Centro de Informática / UFPE

 (orientador)

I dedicate this dissertation to all my family, friends and professors who gave me the necessary

support to get here.

ACKNOWLEDGEMENTS

I have been blessed during my life so far. My family, especially my mother, Rosa,

ingrained in my core the importance of studying and working hard. Most of the things that I

conquered so far were possible due to this mindset.

I want to thank those not present in this sphere of existence but who carved their

importance in my life: my father Fernando and my uncle Ednaldo (who was like a father as

well) for supporting me during the early days of life.

My advisor, Professor Vinicius Garcia, helped a lot in the late phase of this work,

providing me guidance and highlighting aspects to increase the quality of the dissertation at

levels that I never knew were possible.

I am also grateful to Jackson Raniel for helping me define the methodology and conduct

my survey study. I was utterly lost, and you showed me the way.

My bosses at work, Rodrigo Pereira and Laureano Montarroyos, for supporting me in

conciliating working and studying to conclude this dissertation. With that comprehension, this

challenge was possible to be completed.

My colleagues at work, Lucas and Williams, for boasting my daily motivation during

this challenging pandemic. Alexandre, thank you for showing me that it is possible to conclude

your master’s degree with a little baby at home. Ana guided me on UX/UI practices and helped

me with some graphics for my research.

Despite living abroad, my friend Rafael Ribeiro always told me I needed to finish this

phase of my life. Sometimes, I even doubted that this kind of thing was possible, but with

maximum effort, this conclusion was possible.

My dear friend Bruno Wolf, for turning an idea into a concrete object. The FAROL

framework logo was beautifully conceived thanks to his capable hands.

To my dear friend Douglas Silva, for all support during the correction of this essay. You

saved me a lot of time and a lot of trouble. Thank you, my dear friend.

Finally, I want to thank my two kids, Isadora and Guilherme, for being my primary

motivation providers. Their energy is, at the same time, fantastic and very tiring. However,

through studying, I can show them how important it is to keep growing despite the odds.

“Tudo o que temos de decidir é o que fazer com o tempo que nos é dado”.

(TOLKIEN, 2000, p. 56)

ABSTRACT

Software development is a multifaceted activity. This makes architectural decision making a

challenging matter. In the early stages, professionals often navigate a complex maze of

considerations, leaving them on the brink of making critical decisions. These decisions have a

high potential to impact the life cycle of the system and may even make it unfeasible. Therefore,

how to choose a candidate software architecture proposal without losing critical aspects,

respecting the specificity and purpose of the software? A lightweight architectural decision

framework (FAROL) is proposed in this work to fill this knowledge gap. The motivation and

research problem highlight the complexity of this type of decision, the impact of the lack of

structured processes and the need for decision logic. The research questions in this work address

these questions and examine practitioners’ reasoning about decisions, influencing factors,

documentation practices, and principles considered. The literature review analyzes software

architecture concepts and their relationship with decision making. It differentiates architecture

and design, explains styles, and patterns, and covers theories of dual cognition. Decision

techniques and documentation methods, such as records of architectural decisions, are explored.

Nine principles for decision reasoning are described. The methodology surveys Brazilian IT

experts to gain insights into current decision practices. The questions address confidence in the

process, documentation, challenges, principles, factors that influence decision making. Threats

to validity are analyzed. Comparison with existing structures highlights the possibility of

customization in the use of the framework. Case studies demonstrate the application of FAROL

to select architectures. Limitations include the need for more empirical assessments across

contexts and the reliance on practitioner experience. However, FAROL provides a

comprehensive methodology to promote informed decisions and continuous improvement.

Ultimately, FAROL aims to bring systematic rigor to the ambiguous process of architectural

choice. It offers practical guidance anchored in multidisciplinary theories and adapted for real-

world projects. By elucidating the complex decision landscape, FAROL allows teams to

navigate architectural tradeoffs.

Keywords: decision-making; decision-making framework; software architecture; software

design; architectural decisions.

RESUMO

O desenvolvimento de software é uma atividade multifacetada. Isso faz com que a tomada de

decisão arquitetural seja uma questão desafiadora. Nas fases iniciais, os profissionais muitas

vezes navegam num complexo labirinto de considerações, ficando à beira da tomada de

decisões críticas. Essas decisões possuem um elevado potencial de impactar no ciclo de vida

do sistema, podendo até mesmo, inviabilizá-lo. Sendo assim, como escolher uma proposta

candidata de arquitetura de software sem perder aspectos críticos, respeitando a especificidade

e a finalidade do software? Um framework de decisão arquitetural leve (FAROL) é proposto

neste trabalho para preencher esta lacuna de conhecimento. A motivação e o problema de

pesquisa destacam a complexidade desse tipo de decisão, o impacto da falta de processos

estruturados e a necessidade de lógica de decisão. As perguntas de pesquisa desse trabalho

abordam essas questões e examinam o raciocínio dos praticantes sobre decisões, fatores de

influência, práticas de documentação e princípios considerados. A revisão de literatura analisa

conceitos de arquitetura de software e sua relação com a tomada de decisão. Ele diferencia

arquitetura e design, explica estilos e padrões e cobre teorias de cognição dual. Técnicas de

decisão e métodos de documentação, como registros de decisões arquitetônicas, são explorados.

Nove princípios para o raciocínio de decisão são descritos. A metodologia pesquisa

especialistas brasileiros em TI para obter insights sobre as práticas de decisão atuais. As

perguntas abordam a confiança no processo, documentação, desafios, princípios, fatores que

influenciam à tomada de decisão. Ameaças à validade são analisadas. A comparação com as

estruturas existentes destaca a possibilidade de personalização no uso do framework. Estudos

de caso demonstram a aplicação do FAROL para selecionar arquiteturas. As limitações incluem

a necessidade de mais avaliações empíricas em contextos e a dependência da experiência do

profissional. No entanto, FAROL fornece uma metodologia abrangente para promover decisões

informadas e melhoria contínua. Por fim, o FAROL visa trazer rigor sistemático ao processo

ambíguo de escolha arquitetônica. Ele oferece orientação prática ancorada em teorias

multidisciplinares e adaptada para projetos do mundo real. Ao elucidar o complexo cenário de

decisões, o FAROL permite que as equipes naveguem pelos tradeoffs arquiteturais.

Palavras-chave: tomada de decisão; framework de tomada de decisão; arquitetura de software;

design de software; decisões arquiteturais.

LIST OF FIGURES

Figure 1 - Software Architecture as bridge . 29

Figure 2 - Conceptual Model of Design. 31

Figure 3 - Y’s Statements Example . 44

Figure 4 - ADR Example . 45

Figure 5 - CBA Steps . 47

Figure 6 - Team Size . 65

Figure 7 - Project Phase . 66

Figure 8 - Decision-Making Process . 67

Figure 9 - Documenting Architectural Decisions . 68

Figure 10 - Influence factors as rated by experts . 71

Figure 11 - Challenges in Decision-Making rated by experts 73

Figure 12 - Decision-Making Principles rated by experts . 75

Figure 13 - FAROL - Theory Building Elements . 81

Figure 14 - FAROL Phases . 85

Figure 15 - FAROL Planning Phase . 85

Figure 16 - FAROL Execution Phase . 87

Figure 17 - FAROL Checking Phase . 88

Figure 18 - FAROL Feedback Phase . 90

Figure 19 - FAROL Phases - PDCA View . 91

Figure 20 - FAROL - Survey Evaluation Results . 105

LIST OF TABLES

Table 1 - Architectural Styles 33

Table 2 - List of architectural styles 34

Table 3 - List of architectural styles x patterns 36

Table 4 - Decision-Making Techniques, Application, and Authors 48

Table 5 - Decision-Making Frameworks . 49

Table 6 - Survey Questions . 55

Table 7 - Research Questions . 56

Table 8 - Survey and Research Questions . 57

Table 9 - Hypothesis and Survey Questions 61

Table 10 - Job Function distribution . 64

Table 11 - Description of age range, educational level, and years of experience in IT 64

Table 12 - Architectural decision 66

Table 13 - Confidence degree in making architectural decisions 67

Table 14 - Architectural Decision Options 68

Table 15 - Architectural Decision Revisit . 69

Table 16 - Architectural Decision Documentation Importance 69

Table 17 - Influence Factors 70

Table 18 - Challenges in Decision-Making . 73

Table 19 - DM Principles 75

Table 20 - FAROL Structure . 84

Table 21 - FAROL Steps and Theoretical Foundation Relationship. 97

Table 22 - FAROL and Existing Decision-Making Frameworks 98

Table 23 - Tang and Kazman Principles on Monolithic 100

Table 24 - Tang and Kazman Principles on MSA . 101

Table 25 - Tang and Kazman Principles on CQRS . 103

Table 26 - FAROL Architectural Shortcomings .

.

106

LIST OF ABBREVIATIONS AND ACRONYMS

AD
Architectural Decision . 25

ADLs Architectural Description Languages 26

ADR Architectural Decision Record . 44

Ads Architectural Decisions . 23

AEC Architecture Engineering and Construction 47

CBA Choosing By Advantages . 46

CQRS Command Query Responsibility Segregation 96

CRUD Create-Read-Update-Delete . 99

CSV Comma Separated Values . 60

DDDM Data-Driven Decision Making . 39

DM Decision-Making . 39

ESE Empirical Software Engineering . 76

FAROL FAROL . 61

IDE Integrated Development Environment 43

MADR Markdown Architectural Decision Records 43

MCDA Multi-Criteria Decision Analysis . 47

MSA Microservice Architecture . 96

MVP Minimum Viable Product . 74

NDM Naturalistic Decision Making . 41

NFR Non-Functional Requirements . 41

OODA Observe, Orient, Decide, Act . 81

PDCA Plan-Do-Check-Act . 82

QA Quality Attributes . 41

SEI Software Engineering Institute . 26

SNS Social Network Service . 59

SPADE Strategic Planning and Decision-Making Framework 81

SRQ1 Secondary Research Question 1 . 73

TTM Time To Market . 70

WRC Weighting Rating and Calculating . 47

CONTENTS

1 INTRODUCTION .. 17

1.1 MOTIVATION .. 17

1.2 PROBLEM STATEMENT .. 19

1.2.1 Research Questions .. 19

1.3 OUT OF SCOPE .. 20

1.4 STATEMENT OF THE CONTRIBUTIONS .. 21

1.5 OUTLINE ..21

2 SOFTWARE ARCHITECTURE: An Overview ... 22

2.1 INTRODUCTION .. 22

2.2 DEFINITIONS ... 23

2.3 SOFTWARE DESIGN ... 24

2.3.1 Software Architecture X Software Design ... 25

2.4 ARCHITECTURAL STYLES ... 26

2.4.1 List Of Architectural Styles ... 26

2.5 ARCHITECTURAL PATTERNS ... 28

2.5.1 Classification Of Architectural Patterns .. 28

2.6 ARCHITECTURAL STYLES X ARCHITECTURAL PATTERNS 30

2.7 SOFTWARE ARCHITECTURE AND DECISION-MAKING 31

2.8 ARCHITECTURAL EVOLUTION AND NEW CHALLENGES 31

2.9 SUMMARY OF THIS CHAPTER .. 32

3 D E C I S I O N - M A K I N G : I N T H E C O N T E X T O F S O F T W A R E

ARCHITECTURE ... 33

3.1 BACKGROUND ON DECISION-MAKING .. 33

3.2 SOFTWARE ARCHITECTURE AND DECISION MAKING 34

3.2.1 Intuitive Thinking... 35

3.2.2 Naturalistic Thinking ... 35

3.2.3 Intuitive and Naturalistic Thinking .. 36

3.2.4 Data-Driven Decision Making ... 37

3.3 DOCUMENTING ARCHITECTURAL DECISIONS .. 37

3.3.1 Y’s Statements .. 38

3.3.2 Architectural Decision Records .. 39

3.4 DECISION-MAKING PRINCIPLES OF SOFTWARE DESIGN 39

3.4.1 Decision-Making Techniques .. 41

3.4.2 Decision-Making Frameworks .. 44

3.4.3 Decision-Making Framework X Decision-Making Techniques 44

3.4.3.1 Limitations Of Decision-Making Framework And Decision-Making Techniques 45

3.5 SUMMARY OF THIS CHAPTER .. 46

4 METHODOLOGY ... 47

4.1 SURVEY METHOD .. 47

4.2 SURVEY INSTRUMENT: QUESTIONNAIRE ... 48

4.3 RESEARCH QUESTIONS .. 48

4.4 SURVEY AND RESEARCH QUESTIONS ALIGNMENT 48

4.4.1 Pre-Testing .. 50

4.4.1.1 Improvements Between Questionnaire Versions ... 51

4.4.2 Population And Sample ... 53

4.4.2.1 Sampling Method ... 53

4.5 DATA ANALYSIS .. 54

4.6 FAROL Survey Evaluation Based on Expert Opinion ... 54

4.6.1 Expert Opinion ... 55

4.6.2 Hypothesis Of Farol Value .. 55

4.7 SUMMARY OF THIS CHAPTER .. 56

5 DATA ANALYSIS AND EVALUATION .. 57

5.1 The survey sample characterization ... 57

5.1.1 Open Science Standard .. 57

5.2 DEMOGRAPHIC DATA ... 57

5.3 RESULTS…………… ... 59

5.3.1 Architectural Decision-Making ... 59

5.3.2 Influence Factors .. 63

5.3.2.1 Divergences Between Past Literature and Influence Factors Findings 65

5.3.3 Challenges In Decision-Making .. 66

5.3.4 Decision-Making Principles ... 67

5.3.5 Summary Of the Findings ... 69

5.4 THREATS TO VALIDITY AND RESULTS .. 70

5.4.1 Conclusion Validity .. 70

5.4.2 Internal Validity ... 71

5.4.3 Construct Validity .. 71

5.4.4 External Validity .. 72

5.5 SUMMARY OF THIS CHAPTER .. 73

6 F A R O L : A L I G H T W E I G H T A R C H I T E C T U R A L D E C I S I O N

FRAMEWORK …………………………………………………………...……….74

6.1 INTRODUCTION .. 74

6.2 PROBLEM STATEMENT .. 74

6.3 FRAMEWORK OBJECTIVES ... 74

6.4 THEO RY - BUI LDI NG A ND GENE RA LI ZATI O N I N SOF TWARE

ENGINEERING RESEARCH ... 75

6.5 FRAMEWORK ORIGINS ... 76

6.5.1 Framework Theoretical Grounding ... 77

6.5.1.1 Framework Decision-Making Theories .. 78

6.6 FRAMEWORK STRUCTURE .. 79

6.6.1 Farol Phases .. 80

6.6.1.1 Farol Planning Phase .. 81

6.6.1.2 Farol Execution Phase .. 82

6.6.1.3 Farol Checking Phase ... 84

6.6.1.4 Farol Feedback Phase ... 85

6.6.1.5 Farol Phases and Pdca Cycle .. 87

6.6.1.6 Farol Phases and Design Thinking Principles .. 88

6.6.2 Farol Steps ... 89

6.6.2.1 Architecture Documentation and Ad Documentation Step .. 91

6.6.2.2 Farol Steps and Theoretical Foundation ... 92

6.7 COMPARISON BETWEEN FAROL AND SOME DECISION-MAKING

FRAMEWORKS .. 94

6.8 EXAMPLES ... 95

6.8.1 Monolithic Example ... 95

6.8.2 Microservice Architecture Example ... 97

6.8.3 Command Query Responsibility Segregation Example.. 98

6.9 FAROL EVALUATION SURVEY RESULTS ... 100

6.9.1 Hypothesis of Completeness .. 101

6.9.2 Hypothesis of Relevance .. 101

6.9.3 Hypothesis of Utility ... 101

6.9.4 Challenges and Possible Improvements ... 102

6.10 LIMITATIONS .. 103

6.11 SUMMARY OF THIS CHAPTER .. 104

7 CONCLUSION………………………………………………………………….. . 106

7.1 FAROL: A Lightweight Architectural Decision Framework…………………….. . 106

7.2 ADAPTABILITY AND FUTURE ENHANCEMENTS106

7.3 CONTRIBUTIONS AND FUTURE PATHWAYS…………….............................106

 REFERENCES ... 108

 APPENDIX A - QUESTIONNAIRE INITIAL VERSION 120

 APPENDIX B - QUESTIONNAIRE FINAL VERSION 127

 APPENDIX C - QUESTIONNAIRE FAROL EVALUATION 135

17

1 INTRODUCTION

Software development is a multifaceted activity. In the early stages, practitioners often

navigate a complex maze of considerations, standing on the precipice of critical decision-

making. At the heart of this complexity lies software architecture—a domain teeming with

intricate decisions that, once made, can significantly shape a software’s lifespan. This centrality

of software architecture has spurred the design of solutions to grapple with the associated

complexities (VALIPOUR et al., 2009).

Software architecture touches our daily lives, from instant messaging and ordering food

to scheduling appointments and virtual meetings. Nevertheless, it is crucial to understand the

distinctions between software architecture and software design, even as the terms are often used

interchangeably.

However, embedded within software architecture is a pivotal process—the decision

making mechanism. Though still in the early stages of a comprehensive understanding of

software architecture, decision-making profoundly influences various design elements TANG

et al. (2017).

This complex process, with roots in disciplines like economics (KAHNEMAN, 2003),

often operates within the constraints of bounded rationality, considering decision-makers

cognitive limitations (SIMON, 1990).

1.1 MOTIVATION

"Which design is the best for software?" The answer often hovers around the ambiguity:

"It depends." The intricacies of software design require a balance of various competing interests

and constraints, particularly in catering to stakeholders’ and customers’ needs.

For instance, striking a harmonious chord between security, application performance,

and user experience in an enterprise setting is vital (JAYERATNAM, 2022). Such pivotal

choices in software development are termed as Architectural Decisions (ADs), which mandate

an overarching system perspective for their formulation (MALAN; BREDEMEYER, 2002).

How to choose a software architecture candidate proposal without missing critical

aspects, respecting software specificity and purpose? This question incites a profound

restlessness in IT experts. According to several studies available in the literature, many subjects

are part of software architecture, such as:

18

1. Architectural Style and Patterns (SHAW; GARLAN (1996); SHARMA; KUMAR;

AGARWAL (2015));

2. Constraints (BASS; KAZMAN; CLEMENTS (2012));

3. Components and Interfaces (TAYLOR; MEDVIDOVIC; DASHOFY (2008));

4. Decision Rationale (TYREE; AKERMAN (2005); KLEIN (2008); PRETORIUS et

al. (2018));

5. Documentation (HGRACA (2017); TANG; LIANG; VLIET (2011); JANSEN;

AVGERIOU; van der Ven (2009));

6. Data Architecture (INMON; LINSTEDT; LEVINS, 2019);

7. Integration with External Systems KAZMAN; WOODS; CARRIERE (1998);

8. Requirements (de Boer; van Vliet (2009); MEI (2000));

9. Scalability and Performance Considerations (SMITH; WILLIAMS (2002); LIU

(2011))

10. Technology Stack (FALATIUK; SHIROKOPETLEVA; DUDAR (2019));

Amidst this complexity, proper documentation and rationale retention are essential for

effective architecture decisions. Documentation (TANG et al., 2006) and rationale (TYREE;

AKERMAN, 2005) are vital to combat knowledge decay over time, enable governance and

system evolution, communicate decisions, promote reuse and avoid costly rework –

highlighting the need for lightweight yet systematic approaches.

Considering this outlook, ADs, due to their profound system-wide impact, demand

thorough consideration, ensuring alignment with user requirements and overarching business

goals.

Unfortunately, many architectural development processes overlook the explicit

documentation of these decisions, making them implicitly embedded within models (TYREE;

AKERMAN, 2005). This emphasizes the pivotal role of documentation in elucidating software

workings and the rationale behind certain ADs (HGRACA, 2019).

Therefore, software architecture comprises a system’s core structure and essential

design decisions (BABAR et al., 2009); (DUTOIT et al., 2006). Decision-Making frameworks

are powerful enablers in this process of selection of a software architecture candidate.

The complexity of architectural decision-making highlights the need for a clear and

structured methodology. Software practitioners require guidance in making these choices. This

thesis addresses this pressing issue by exploring how to choose a software architectural

candidate effectively.

19

1.2 PROBLEM STATEMENT

While extensive research has probed into frameworks that bolster decision-making in

software architecture (PRETORIUS et al., 2018), (FALESSI et al., 2011), a consensus remains

elusive. There is a pressing need for software architects to have robust, efficient processes to

sieve through architectural alternatives.

Another relevant aspect of Architectural Decision (AD) is technical debt. Namely, the

invisible result of past decisions about software that negatively affect its future KRUCHTEN;

NORD; OZKAYA, 2012). The impact of ever-increasing debt, maintenance costs during the

software lifetime, and reducing its scalability and user experience are other vital points that can

impair the software lifecycle.

Considering this scenario, several key questions must be investigated to tackle the

complexity problem in architectural choices. This research delves into one central question and

four auxiliary questions surrounding architecture decision practices and influencers as

explained in section 1.2.1.

1.2.1 Research Questions

Ensuring that knowledge of multiple architectural approaches minimizes biases in

decision-making. Evaluating non-functional requirements are primary drivers in architectural

decision-making (AMELLER; FRANCH, 2014). Against this backdrop, the main research

question guiding this thesis is:

Main Research Question How to choose a software architecture candidate proposal

without missing critical aspects, respecting software specificity and purpose?

To provide a comprehensive answer to this overarching question, the following

secondary research questions have been delineated:

Secondary Research Question 1 How do software practitioners reason when they

make software architectural decision-making?

Secondary Research Question 2 What are the potential influence factors for the

architectural decision-making process?

Secondary Research Question 3 Which principles do software architects take into

consideration when making architectural design decisions?

Secondary Research Question 4 How architectural design decisions are documented?

20

With these research questions framing the core issues, the objectives of this thesis

encompass proposing a comprehensive framework to address these challenges and gathering

empirical insights into current decision-making approaches.

Addressing these questions requires an intimate understanding of current methodologies

and the underlying principles that shape decision-making in software architecture. Hence, the

objectives of this thesis include:

Main Research Objective This work objective proposes a decision framework for

selecting/evaluating software architecture candidates.

Secondary Research Objective 1 This work objective is to understand which elements

influence reasoning on software practitioners.

Secondary Research Objective 2 This work objective is to identify which factors

influence the architectural decision-making process.

Secondary Research Objective 3 This work objective is to identify which principles

are involved in decision-making on software architecture.

Secondary Research Objective 4 This work objective is to understand how

architectural design decisions are documented.

1.3 OUT OF SCOPE

Once we contribute by identifying and analyzing software architecture principles and

factors that impair the decision-making process in this area, a set of related aspects will be left

out of its scope.

While this thesis focuses on developing a decision-making framework, some related

aspects of software architecture are outside its scope. In particular, this work does not directly

address the following two areas:

1. Software evaluation techniques. We believe that several software evaluation

techniques are more suitable for each context. However, trying to fit all constraints

on a single method seems precarious. For example, KIM et al. (2007) conceived a

lightweight value-based method. Software Engineering Institute (SEI) developed

and refined other techniques, such as Architecture Trade-off Analysis Method

(ATAM) and Cost Benefit Analysis Method (CBAM).

2. Architectural Description Languages (ADLs). The advent of software

architecture as a body of knowledge and a topic for research was accompanied by

the creation of numerous notations for attempting to capture software architectures.

21

The creation of formal notations for representing and analyzing architectural design

has been the object of study since (GARLAN; PERRY, 1995).

Within its core focus, however, this thesis provides multiple key contributions

surrounding architecture decision practices and the proposed framework itself, as demonstrated

in section 1.4.

1.4 STATEMENT OF THE CONTRIBUTIONS

As a result of the work presented in this thesis, the following contributions may be

enumerated:

a) The proposition of lightweight framework for AD.

b) An overview of software architecture definitions and related concepts;

c) An overview of the decision-making process and its relationship with software

architecture decisions;

d) A survey research to evaluate architectural decision-making in Brazil;

e) The identification of the principles that software practitioners use when making

architectural decisions;

f) The identification of the factors that exerts influence negatively/positively on

architectural decisions;

g) An empirical survey research evaluation in the context of IT experts in Brazil and

a questionnaire instrument designed for survey research studies;

h) A valid survey instrument that can be used in future studies;

1.5 OUTLINE

To present these contributions, the remainder of this thesis is structured into the

following chapters: Chapter 2 provides background on software architecture definitions,

architectural styles and patterns, and contrasts architecture vs. design. Chapter 3 reviews

decision-making theories and techniques for software architecture, including dual cognition

models, principles, and rationale documentation. Chapter 4 presents the methodology used to

ground this work and explains our research questions, the survey’s questions related to the

objectives, and the threats to the validity. Chapter 5 presents survey results on current practices

and pain points. Chapter 6 introduces the proposed lightweight architecture decision

framework, including its structure, theoretical grounding, and illustrative examples. Chapter 7

concludes with a summary and directions for future work.

22

2 SOFTWARE ARCHITECTURE: An Overview

2.1 INTRODUCTION

The role of software architecture in the engineering of software-intensive systems is

becoming increasingly important and widespread (BARAIS et al., 2008). Software architecture

has been a subject of discussion in academia and the software industry, but a consensus on its

definition and application has yet to be achieved.

The term architecture itself is commonly borrowed from another area of knowledge and,

according to FOWLER (2003) "... is a word we use when we want to talk about design but want

to puff it up to make it sound important". According to BASS; KAZMAN; CLEMENTS (2012)

"architecture is foremost an abstraction of a system that selects certain details and suppresses

others".

Nevertheless, as highlighted in Figure 1, we can perceive software architecture as a

bridge between requirements and code, and this bridge is deeply related to software project

success/failure (VALIPOUR et al., 2009). That is why knowing the core concepts around

software architecture is essential.

Figure 1 - Software Architecture as bridge

Source: Valipour (2009)

For example, software architecture and design terms are used interchangeably.

However, to prevent mistakes, we need to establish some boundaries between them and

differentiate each from another. Therefore, there is one section for each concept describing its

definitions. Further on, we need to reason about the differences.

23

Similarly, architectural styles and patterns are two other terms that must be clarified.

Understanding and defining these concepts are part of the complexity of being a software

architect. (HGRACA, 2017) reminds us that patterns and styles are not mutually exclusive, they

are complementary, and they all can teach us something, although, as usual, they should be used

only when needed.

2.2 DEFINITIONS

Software architecture definition as own software evolves through time. Several of these

definitions are made through analogies to existing disciplines like classical building

architectural discipline.

Since 1968, the term Software Crisis was coined (FELDHAUSEN, 2020), software

specialists and engineers have been studying software development state. In the 1970s, Brooks

wrote about the importance of architecture (BROOKS, 1986), which leveraged the search for

practitioners and researchers to look at this field of knowledge.

SEI compiled several of these definitions and classified them into three different

domains: modern, classical, and bibliographical (SEI, 2010). Each definition of Software

Architecture focuses on the software’s internal organization and external dependencies.

GACEK et al. (1995) and BASS; KAZMAN; CLEMENTS (2012) definitions are vastly quoted

on literature. These definitions can be seen below:

According to GACEK et al. (1995) a software system architecture comprises:

▪ A collection of software and system components, connections, and constraints.

▪ A collection of system stakeholders’ need statements.

▪ A rationale that demonstrates that the components, connections, and constraints

define a system that, if implemented, would satisfy the collection of system

stakeholders’ need statements.

BASS; KAZMAN; CLEMENTS (2012) defines software architecture as "The set of

structures needed to reason about the system, which comprises software elements, relations

among them, and properties of both.”. This definition also highlights software organization and

its interaction with other components.

Besides these two definitions, we would like to highlight another two that mention the

importance of rationale and abstractions in decision-making.

24

Ralph Johnson, quoted by FOWLER (2003), says that "architecture is the decisions that

you wish you could get right early in a project but that you are not necessarily more likely to

get them right than any other".

As elegantly defined by FIELDING (2000), software architecture provides high-level

abstractions in the form of coarse-grained processing, connecting, and data elements, their

interfaces, and their configurations.

2.3 SOFTWARE DESIGN

Software Design and Software Architecture are two terms that are used interchangeably.

Even in the literature, software design does not have an unambiguous definition. RALPH;

WAND (2009) suggests that the conceptual model of design should be categorized as seen in

figure 2.

Figure 2 - Conceptual Model of Design.

Source: Ralph; Wand (2009)

LEHMAN; STENNING; TURSKI (1984) depicts software design as "from ’topmost’

specification down to final implementation - is viewed as a chain of uniform steps, each step

being a transformation between two linguistic levels". This definition describes software design

as a set of actions enabling software practitioners to develop the software.

For EDEN; HIRSHFELD; KAZMAN (2006), the science of software design is

concerned with the description of programs. This definition seems elusive, but they describe

several classes of abstraction concerning software: strategic statements, tactical statements, and

implementation statements. Each of these statements describes constraints on the structure of

programs.

25

On the other hand, TAYLOR; MEDVIDOVIC; DASHOFY (2008) explains that

software design is concerned with both the external, functional aspects of a software product

and its internal constituents. This definition involves external and internal elements of the

software itself, and it needs to be clarified between the terms.

For CONTENT TEAM (2022):

“Software design is one of the initial phases of the software development life cycle.

In this phase, you analyze and identify the methods that your developers will use.

Additionally, server-side or client-side will be built according to stakeholder and

customer requirements.”

As we can see, software design definition shares several responsibilities with software

architecture. The system organization and how each component interacts are some examples of

how closely related these two areas are. In the next section, we will make distinctions between

each term. However, some elements differentiate one from another.

2.3.1 Software Architecture X Software Design

According to EDEN; HIRSHFELD; KAZMAN (2006), the terms ‘architecture’ and

’design’ are used in overlapping ways by the research and the industrial communities. This kind

of misunderstanding appears with design and architectural decisions, according to BOER et al.

(2007). However, comparing the overall aspect of previous definitions, we can consider both

concepts as generalizations on how software is organized and how its components work

together.

That means that depending on how elaborated the architect/software engineer’s

description is, the distinction between architecture and design becomes fuzzy.

We agree with CONTENT TEAM (2022) distinction between the terms where while

the software architecture identifies the components and elements that need to be included in the

software, the software design focuses on how the software will be built. This way, we can define

software architecture and software design as two separate parts of the software development

process, and they depend on each other for success.

In short, software architecture focuses on software elements (components, connectors,

configuration, constraints) and their organization (what will be built). Software design focuses

on software behavior, e.g., synchronous or asynchronous communication, relational or

nonrelational database, and oriented-object or functional paradigm (how things will be done).

26

2.4 ARCHITECTURAL STYLES

Architectural style and pattern definitions are other good examples of closely related

concepts used without proper characterization. According to PERRY; WOLF (1992), an

architectural style is less constrained and less complete than a specific architecture.

For GARLAN; SHAW (1993), an architectural style "... defines a family of such systems

in terms of a pattern of structural organization. More specifically, an architectural style

determines the vocabulary of components and connectors that can be used in instances of that

style, together with a set of constraints on how they can be combined".

ALLEN (1995) describes the architectural style as a collection of patterns and idioms

that are effective for the domain in which designers are working.

TAYLOR; MEDVIDOVIC; DASHOFY (2008) says that an architectural style can be

considered a set of constraints on the architectural elements and their interactions, thus defining

a set or family of architectures that satisfy them.

Despite being reasonably close to software architecture, an architectural style is not

architecture, but it conveys a helpful image of the system and imposes constraints on

architecture (SANTOS et al., 2020).

Architectural styles are named collections of constraints on configurations of

architectural elements and are believed to bring economies of scale in applying software

architecture techniques to software development (MEHTA; MEDVIDOVIC, 2003).

2.4.1 List Of Architectural Styles

During the history of software engineering, some attempts have been made to classify

architectural styles. Garlan and Shaw GARLAN; SHAW (1993) proposed the following

classification:

1. Pipes and Filters

2. Data Abstraction and Object-Oriented Organization

3. Event-based, Implicit Invocation

4. Layered Systems

5. Repositories

6. Table Driven Interpreters

7. Other Familiar Architectures

8. Heterogeneous Architectures

27

In a similar fashion ZHU (2005) described some architectural styles in table 2.1:

Table 1 - Architectural Styles

Architectural Styles

Data Flow
1. General Data Flow

2. Pipe-and-filter

3. Batch sequential processing

Independent Components
4. General Independent Components

5. Event-based implicit invocation systems

6. Communicating processes

Call and Return
7. General call and return

8. Layered systems

9. Data abstraction: the abstract data type and object-oriented

Data Centered

Virtual Machine

Source: Zhu (2005)

SHARMA; KUMAR; AGARWAL (2015) proposed a complete categorization of all

existing architectural styles, which is given in Table 2.2.

Table 2 - List of architectural styles

Application Type Architectural Style

Shared Memory

1. Black Board

2. Data centric

3. Rule Based

Distributed Systems

1. Client-Server

2. Space-based architecture

3. Peer to peer

4. Shared nothing architecture

5. Broker

6. Representational state transfer

7. Service-oriented

Messaging

1. Event-Driven

2. Asynchronous messaging

3. Publish-subscribe

Structure
1. Component-based

2. Pipes and filters

28

3. Monolithic application based

4. Layered

Adaptable System

1. Plug-ins

2. Reflection

3. Microkernel

Modern System

1. Architecture for Grid Computing

2. Multi-tenancy Architecture

3. Architecture for Big-Data

Source: Sharma; Kumar; Agarwal (2015)

2.5 ARCHITECTURAL PATTERNS

Usually, when we think about a pattern, we tend to reason about something that repeats

itself over time. As defined by GAMMA et al. (1994), a pattern addresses a recurring design

problem that arises in specific design situations and presents a solution to it.

According to BUSCHMANN et al. (1996), architectural pattern is defined as

"...expressing a fundamental structural organization schema for software systems. It provides

a set of predefined subsystems, specifies their responsibilities, and includes rules and guidelines

for organizing the relationships between them".

On the same note, for DHADUK (2020) an architectural pattern can be called

... an outline that allows you to express and define a structural schema for all kinds of

software systems. It’s a reusable solution that provides a predefined set of subsystems, roles,

and responsibilities, including the rules and roadmap for defining relationships among them. It

helps you address various software engineering concerns such as performance limitations, high

availability, minimizing business risk, etc.

2.5.1 Classification Of Architectural Patterns

In 2017, MALLAWAARACHCHI (2017) published a web article describing ten

common architectural patterns. He analyzed the pros and cons of each one of them and compiled

the following list.

1. Layered pattern

2. Client-server pattern

3. Master-slave pattern

29

4. Pipe-filter pattern

5. Broker pattern

6. Peer-to-peer pattern

7. Event-bus pattern

8. Model-view-controller pattern

9. Blackboard pattern

10. Interpreter pattern

The same list was discussed by TECH (2021), highlighting several reasons enterprises

are adopting these patterns nowadays.

Following a similar classification, WALKER (2022) described 14 architectural patterns

to increase efficiency, productivity, and speed, optimize development costs, improve planning,

and more.

11. Circuit Breaker

12. Client-Server

13. Command Query Responsibility Segregation (CQRS)

14. Controller Responder

15. Event Sourcing

16. Layered

17. Microservices

18. Model View Controller (MVC)

19. Publisher-Subscriber (Pub-Sub)

20. Saga

21. Sharding

22. Static Content Hosting

23. Strangler

24. Throttling

Architectural patterns share a similarity with design patterns since they are a solution to

a recurring problem. However, as said by WILLIAMS (2022), design patterns represent a way

to structure classes to build the best internal structure, while architectural patterns define a

solution for a variety of quality attributes and contemplate multiple components in a software

system in a broader scope.

30

2.6 ARCHITECTURAL STYLES X ARCHITECTURAL PATTERNS

XU et al. (2006) understood the relationship between architectural style and

architectural pattern as "... architecture style to refer to the types of constructs that are used in

the designed architecture, while the architectural pattern proposed here concentrates more on

modeling nonfunctional requirements in architecture level and linking them with the designed

architecture."

An essential part of an architecture pattern is to focus on the problem and context,

solving the problem in that context. An architecture style focuses on the architecture approach,

with more lightweight guidance on when a particular style may or may not be helpful (PAULA;

FALVOJR, 2016).

The table 3 shows a comparison table between architectural styles and patterns.

Table 3 - List of architectural styles x patterns

Category Architectural Patterns

(Shaw & Garlan, 1996)

Architectural Styles

(MALLAWAARACHCHI,

2017)

Dataflow Systems
Batch Sequential

Pipes and Filters Pipe-Filter Pattern

Call-and-Return Systems

Main Program and

Subroutine

OO Systems Hierarchical

Layers

Model-View-Controller

Layered

Independent Components
Communicating Processes

Event Systems Event-Bus

Virtual Machines Interpreters Interpreter

Repositories

Databases

Hypertext Systems

Blackboards Blackboard

Client-Server Client-Server

Master-Slave Master-Slave

Broker Broker

Peer-to-Peer Peer-to-Peer
Source: The author (2023)

In short, as summarized by MONROE et al. (1997) "... architectures, architectural

styles, objects, and design patterns capture complementary aspects of software design.

Although the issues and aspects of software design addressed by these four approaches overlap

somewhat, none completely subsumes the other".

31

2.7 SOFTWARE ARCHITECTURE AND DECISION-MAKING

Moving from the broader context of software architecture, it is essential to delve into

the specific process of decision-making, which plays a crucial role in this field. As explained

by TRAN et al. (2014), from the strategic view of making an AD, it is necessary to have a long-

term impact on these decisions, for example, future operations and maintenance efforts.

Considering that the next chapter will be about decision-making, we want to highlight

how this architectural decision process is crucial from the software’s lifetime. According to

ORLOV; VISHNYAKOV (2017), software architectural decisions significantly impact the

software development process and the quality of developed software systems.

There is the seminal case of Twitter’s early architecture, in which most of the

information was directly stored and queried from the database. This choice reflected poorly on

the quality of their service since failures happened frequently. It was necessary to segregate the

tweets timelines as explained by SAM (2022). This decision significantly decreased workload,

allowing their service to scale better.

2.8 ARCHITECTURAL EVOLUTION AND NEW CHALLENGES

Certain architectural styles and patterns have stood the test of time and continue to be

relevant nowadays, for example, layered architecture. The schematics of this kind of

architecture highlight the importance of organizing and isolating code components in each

layer, which reinforces the separation of concerns and loose coupling. Onion architecture is one

kind of layered architecture built on a domain model in which layers are connected through

interfaces (KAPOOR, 2022).

COCKBURN (2005) proposed hexagonal architecture that is based on layered patterns.

This architecture is structured in a way that all of these external systems can be separated from

the core app/business logic and made to communicate with it in a technology-agnostic way

(SENECKI; GOIK, 2023). Therefore, considering the mutual aspects of these architectures, we

can perceive some common characteristics, such as separation of concerns and modularity.

Due to the popularization of cloud computing and containerization, microservices

architecture is another popular approach for developing distributed systems. This adoption

become so aggressive that according to PLANTROU (2022), the microservices market is

predicted to triple between 2020 and 2026. However, growth leads to new issues like dealing

with the complexity of managing communication and data consistency.

32

Dealing with this complexity is no trivial matter. For instance, observability is one

attempt to understand the inner state of software through external outputs. Therefore, LI et al.

(2022) believes that observability is an essential requirement for microservices systems.

According to CUMMINGS (2023), software observability requires generating and

collecting actionable telemetry coupled with analysis and visualization for understanding. It is

necessary to prepare critical elements to achieve that degree of observability:

1. Software’s instrumentation to generate application telemetry;

2. Visibility of software infrastructure for supporting telemetry;

3. Collecting and processing the telemetry data;

4. Storage of telemetry data for efficiency, performance, and historical comparison;

5. Analysis and visualization of telemetry data for understanding.

Considering the patterns and styles presented in this study, we can perceive that

technical evolution leads to new problems and new patterns to solve these problems. Circuit

break, for example, can help maintain system stability by detecting failures and preventing the

failure from overwhelming the system. Throttling, on the other hand, can prevent services from

being overwhelmed by too many requests and ensure fair resource usage.

Each pattern offers unique benefits in microservices, addressing specific challenges

such as service decoupling, data consistency, fault tolerance, and scalability. Their practical

implementation can significantly enhance the efficiency, productivity, and speed of

development in a microservices-based system.

2.9 SUMMARY OF THIS CHAPTER

This chapter provided the necessary background to comprehend the overall aspect of

software architecture and its definition throughout history. Then, some concepts that are closely

related to it. Software design, architectural styles, and patterns are characterized to avoid

confusion.

After understanding how complex the very definition of software architecture is and its

importance, in the next chapter, we can study decision-making and its relationship with

software architecture, underlining how decisions are made, how documentation takes place, and

their weight on software’s lifecycle and maintenance.

33

3 DECISION-MAKING: IN THE CONTEXT OF SOFTWARE ARCHITECTURE

Software engineers and architects often falter when considering optimal software design

due to its inherent complexity. Making the right decisions upfront is a difficult task. There are

several requirements, constraints, and challenges to address simultaneously. Inappropriate

design decisions are often hard to reverse, leading to high costs and poor software product

quality.

Decision-Making (DM) theory has been studied for centuries by philosophers,

mathematicians, economists, and statisticians. The process of making a decision is the fruit of

several cognitive steps. One of the core steps is problem structuring. In this step, the decision-

maker specifies the possible actions, the state of the world relevant to the decision, and the

outcomes contingent on both the chosen action and the states of the world that can occur

(SLOVIC; LICHTENSTEIN; FISCHHOFF, 1988).

There are several attempts to understand decision-making decisions in software

development. Research in this area includes multi-criteria methods (VASSILEV; GENOVA;

VASSILEVA, 2005), surveys of current decision-making techniques (FALESSI et al., 2011),

studies on group decision-making (REKHAV; MUCCINI, 2014), and more.

TANG; KAZMAN (2021) proposed a more agnostic approach that involves nine

principles related to design reasoning. This method allows us to check if the design decision

was well made and if the findings are grounded on reasonable parameters, such as timetable,

design constraints, risks, etc.

This chapter presents an overview of the decision-making literature, describing various

related topics, mapping principles that IT experts should follow during the process of making a

decision, reasoning about this new field of decision-making called Data-Driven Decision

Making (DDDM), and proposes a state of art framework to achieve better architectural design

decisions.

3.1 BACKGROUND ON DECISION-MAKING

Decision-making literature is vast and has been studied for many decades. According to

VLIET; TANG (2016), decision-making studies range from four types of research: decision-

making and argumentation, design rationale, design decision-making, and group decision-

making.

34

Decision-making primarily involves the search for optimal solutions in various aspects

of our lives. However, as noted by PRETORIUS (2019), human factors underlying decision-

making are relatively complex and challenging to grasp.

As described by SIMON (1955), humans tend not to make perfectly rational decisions.

Therefore, each decision related to software architecture carries tremendous significance and

can impact the project’s success. Moreover, capturing design decisions during the project

lifecycle is a great challenge, according to (LEE; KRUCHTEN, 2007).

The architectural decision-making process is subjected to several influence factors

(GROHER; WEINREICH, 2015). Some elements are directly related to enterprise structures

(agile or traditional), and others are related to the people responsible for the decision. However,

we can benefit from another branch of study: the decision-making process in an uncertain

scenario.

In the early stages of software development, uncertainty is a common occurrence.

Requirements change, technical staff may be reallocated, and stakeholders’ needs shift. These

factors contribute to a fast-paced environment increasing uncertainty.

As defined by MARCHAU et al. (2019) “uncertainty refers to the gap between

available knowledge and the knowledge decision-makers would need in order to make the best

policy choice”.

While various research domains inform us about the complex factors affecting decision-

making, there is an essential gap concerning how these theories apply to software architecture.

The next chapter will bridge this gap by investigating the unique demands that architectural

decisions impose on the decision-making process. Specifically, we will delve into bounded

rationality and explore the role of intuitive and naturalistic decision-making in software

architecture. This examination is particularly pertinent given that software architecture involves

complexities and uncertainties, from rapidly changing requirements to the reallocation of

technical staff.

3.2 SOFTWARE ARCHITECTURE AND DECISION MAKING

Having discussed the general landscape of decision-making, we now shift our focus to

the role of decision-making within the context of software architecture. It is essential to

recognize that software architectural decisions are governed by their own rules, influenced by

specific constraints, and subjected to their kinds of uncertainties.

Within this framework, we will interrogate how bounded rationality and intuitive and

naturalistic decision-making manifest in architectural choices. By employing these theories, we

35

aim to elucidate how software practitioners successfully navigate the maze of software

development constraints and uncertainties.

Many argue that decision-making is not rational and that people stop reasoning as soon

as a satisfactory solution is found (VLIET; TANG, 2016). This behavior is referred to as

’bounded rationality’ by SIMON (1996). This means that individuals’ rationality is limited by

the information they have, the cognitive limitations of their minds, and the finite amount of

time they have to make a decision.

According to the literature, there are two types of decision-making: naturalistic and

intuitive (KLEIN, 2009). Each one of them is more suitable depending on the context.

KAHNEMAN (2011) uses the terms System 1 and System 2. System 1 (the intuitive) is fast,

instinctive, emotional, and evolutionary, very old. System 2 (the rational) is slower, more

deliberative, logical, evolutionary, and more recent.

3.2.1 Intuitive Thinking

Betsch and Roth, in the book INTERNATIONAL HANDBOOK OF THINKING AND

REASONING (2017), said that the concept of intuition is a risky endeavor. This happens

because psychologists agree that intuition is a phenomenon of paramount importance

characterized by distinct properties but disagree about what those properties are.

Using intuition or gut feeling is firmly rooted in human decision history. However,

intuition is not magic. According to MATZLER; BAILOM; MOORADIAN (2007):

“Intuition is a highly complex and highly developed form of reasoning that is

based on years of experience and learning and facts, patterns, concepts,

procedures, and abstractions stored in one’s head”.

Therefore, when using this form of cognition, software practitioners rely on various

elements, such as previous experiences, Quality Attributes (QA), or Non-Functional

Requirements (NFR), to achieve success in software development.

3.2.2 Naturalistic Thinking

On the other hand, naturalistic thinking is an approach where decisions are made using

rationality and principles of optimal performance. This approach resulted in the creation of

Naturalistic Decision Making (NDM) research subject. As described by KLEIN (2008), its

origins are around 1989, and at the beginning, researchers were not concerned with formal

decision-making models; they began by conducting field research to discover the strategies

people used.

36

Such statistical and mathematical strategies are done to ensure the decision-making

process is based on objective criteria instead of subjective ones. However, it is necessary to

structure the problem to work in such a way. According to ZANNIER; CHIASSON; MAURER

(2007), the naturalistic approach is more commonly used whenever a software design problem

is more structured. The NDM focus on field settings and its interest in complex conditions

provide insights for practitioners of human factors in improving performance (KLEIN, 2008).

3.2.3 Intuitive and Naturalistic Thinking

KAHNEMAN (2003) classified the architecture of cognition in two systems.

Furthermore, the definition of each one of them is depicted as follows:

The operations of System 1 are fast, automatic, effortless, associative, and

often emotionally charged; they are also governed by habit and are therefore

difficult to control or modify. The operations of System 2 are slower, serial,

effortful, and deliberately controlled; they are also relatively flexible and

potentially rule-governed.

Using this same classification PHILLIPS et al. (2016) wrote about thinking styles and

their relationship with decision making. The characterization of the cognitive process using a

dual process theory can be seen as follows:

Dual-process theories of cognition attribute certain variations in decision-

making behavior to the relative involvement of two distinct types of information

processing: (a) intuitive processing that is automatic, fast, preconscious,

associative, autonomous and does not require working memory, and (b)

reflective processing that is relatively slow, effortful, conscious, analytical,

rule-based, and requires working memory.

When we relate this theory with software architecture, according to PRETORIUS et al.

(2018), naturalistic decision-making is used to select a satisfactory design solution rather than

an optimal one.

In conformity with the literature, both systems of cognitive thinking are part of the

human decision-making process. Some researchers, such as SCHRIEK et al. (2016), claim that

37

the naturalistic approach is more suitable for software architecture design, although both

systems are used in practice.

3.2.4 Data-Driven Decision Making

A type of naturalistic decision-making is gaining much traction due to the nature of

complex environments and data availability. It is called Data-Driven Decision Making

(DDDM). It can be defined as:

... the process of using data to inform your decision-making process and validate a

course of action before committing to it (STOBIERSKI, 2019).

Data lakes, data warehouses, and business intelligence are good examples of how data

is processed to provide more insights to decision-makers. The need to look to the past before

deciding something for the future can provide many benefits, such as cost-saving, proactive,

and grounded decisions, which highlights the importance of this approach.

Despite the importance of reflecting on these decision-making systems, another

essential element in AD is the act of recording these decisions. We will discuss more about this

topic in section 3.3.

3.3 DOCUMENTING ARCHITECTURAL DECISIONS

In the first chapter of the study, we explored the concept of software architecture and

how it is represented. This section will briefly discuss architectural decision documentation and

how to document architectural decisions.

The recognition of the need for documenting as described by TANG et al. (2006)

highlights how necessary software documentation is. Failing to record the design rationale

during architectural decisions can lead to design erosion or knowledge vaporization, as noted

by (GROHER; WEINREICH, 2015). Moreover, as described by HGRACA (2019), when we

need to explain to someone how the application works, documentation is needed.

KOPP; ARMBRUSTER; ZIMMERMANN (2018) research revealed that developers

perceive architectural decision-capturing practices and tools as chronophages (time wasters).

With no integration with their toolchain, Integrated Development Environment (IDE), such

devices have a negative impact on productivity, quality, and motivation.

Therefore, several attempts have been made to document architectural decisions more

organically. One of them is the Markdown Architectural Decision Records (MADR).

38

Markdown, a text format, enables standard version control systems like Git. Another popular

alternative for recording architectural decisions is the Y’s statements.

3.3.1 Y’s Statements

Y’s Statements are a light template for architectural decision capturing. It was created

by ZIMMERMANN (2020), who worked as a consulting IT architect at IBM, following the

ARC 100 template.

As appointed by SOC (2020) ADs, answer "why?" questions about the design and

justify why an option is chosen. In its essence, it is a representation of an architectural record

composed of six sections:

▪ context: functional requirement (story, use case) or arch. component,

▪ facing: non-functional requirement, for instance, a desired quality,

▪ we decided: decision outcome (arguably the most important part),

▪ and neglected alternatives not chosen (not to be forgotten!),

▪ to achieve: benefits, the full or partial satisfaction of requirement(s),

▪ accepting that: drawbacks and other consequences, for instance, impact on

different properties/context and effort/cost (both short term and long term).

Y’s Statements are visualized with the letter ’Y,’ pronounced like the English word

’why.’ This naming convention is depicted in Figure 3.1.

Figure 3 - Y’s Statements Example

Source: SOC (2020)

39

3.3.2 Architectural Decision Records

An Architectural Decision Record (ADR) is a document describing a team’s choice

about a significant aspect of the software architecture they are planning to build (AWS, 2022).

They were first introduced by Michael Nygard’s blog post NYGARD (2011).

An ADR usually consists of a short text file describing a specific architecture decision.

It can be written in plain text, AsciiDoc/Markdown format, or a wiki page template. In figure

3.2, we can see an example of ADR template proposed by Michael Nygard.

Having explained these possibilities of documenting AD, it is necessary to explore some

intricacies in making decisions. TANG; KAZMAN (2021) proposed a systematic approach to

software design decision-making, and in section 3.4, we will unveil the relationship between

these principles and software architecture.

3.4 DECISION-MAKING PRINCIPLES OF SOFTWARE DESIGN

TANG; KAZMAN (2021) outlined nine principles that should be used in order to avoid

flawed decisions. He called it the nine principles of DM. They are:

(P1) Use Facts: Instead of relying on assumptions and half-guessed solutions, keep in

mind that facts and evidence are the foundations of logical decisions.

(P2) Check Assumptions: Sometimes, we cannot have all the facts, and assumptions

have to be made. However, checking and validating those assumptions can create

solid evidence to support our decisions.

Figure 4 - ADR Example

Source: Nygard (2011)

40

(P3) Explore Contexts: Contexts are conditions that influence software decisions. For

example, project budget, development resources, legal obligations, industry norms, user

expectations, and past decisions. Exploring contextual factors can broaden our design

considerations.

(P4) Anticipate Risks: Despite being a challenging task, estimating and planning for

risks allow software designers to have an alternative plan if something goes wrong.

(P5) Assign Priorities: Prioritization allows the most important things to be done in the

correct order without a hitch.

(P6) Define the Time Horizon: The decisions taken during the project must be

contextualized in a time horizon that allows for their reassessment, considering the pros

and cons at the time of each decision. In addition, it guides the time window in which

decisions need to be made.

(P7) Generate Multiple Solution Options: Generating multiple solution options allows

practitioners to avoid a common pitfall called anchoring bias. It helps a designer broaden

choices and stimulate creativity.

(P8) Design Around Constraints: Constraints are limitations that set the boundaries of

what a solution cannot do and have to abide by. Sometimes, it leads to novel solutions,

relaxing parameters, and manipulating the context.

(P9) Weigh Pros and Cons: Trade-off evaluation is a way to help the designers to reason

about the relative benefits and drawbacks of adopting a solution.

Each of these principles highlights concerns underlying the decision-making process in

the context of software architecture. All these principles can improve the probability of success

when making these decisions. In the literature, several decision-making techniques are available

for selecting architectural alternatives (FALESSI et al., 2011).

In the literature, decision-making pathways can be classified into two forms. The first

is more coarse-grained and generic, providing a systematic and organized way to make

decisions (decision-making frameworks). The second is more fine-grained, oriented to specific

41

methods and approaches used to analyze, evaluate, and make decisions (decision-making

techniques).

The following section will provide more explanation about these alternatives and how

they can be related to software architecture.

3.4.1 Decision-Making Techniques

Methods for selecting software architecture alternatives usually are born from

functional and quality attributes, a.k.a. NFR according to FALESSI et al. (2011). This author

affirms that software architects need a reliable and rigorous process for selecting these

alternatives and ensuring that decisions mitigate risks and maximize profit. While this statement

has a good point, there are several concerns to address that experts tend to rely on familiar

places or gut feelings.

However, attempts to reach a better balance between rational and naturalistic

approaches have been made. SUHR (2000) describes one of the most popular methods of

decision-making called Choosing By Advantages (CBA). This method is prevalent in software

engineering, emphasizing the positive aspects of adopting a specific approach. In figure 5, we

can see the common steps of using this method.

CBA is composed by the following stages according to SUHR (2000):

1. Identifying Alternatives: Begins with identifying different alternatives for a decision.

2. Listing Attributes: Lists the attributes of each alternative, representing the

characteristics or features that will be compared.

3. Determining Advantages: Identifies the advantages of each attribute, defined as any

aspect of an attribute that makes it preferable to the other attributes.

4. Assigning Importance Weights: Importance weights are assigned to each advantage

to reflect its significance in decision-making.

42

Figure 5 - CBA Steps

Source: Suhr (2000)

5. Calculating Decision Scores: The decision scores for each alternative are calculated

by summing the importance weights of that alternative’s advantages.

6. Selecting the Best Alternative: The alternative with the highest decision score is

selected.

This method has been widely used in industries such as Architecture Engineering and

Construction (AEC) (ARROYO; TOMMELEIN; BALLARD, 2012) and construction

(KARAKHAN; GAMBATESE; RAJENDRAN, 2016), and it has been shown to be more

effective than other methods such as the Analytic Hierarchy Process (AHP) or Weighting

Rating and Calculating (WRC) (ARROYO; TOMMELEIN; BALLARD, 2014).

Another method accomplished method for decision-making is Multi-Criteria Decision

Analysis (MCDA). This method is used when conflicting criteria need to be considered

simultaneously, and it provides a structured and systematic way to analyze complex decision

problems (TRIANTAPHYLLOU; BAIG, 2005). There are still several decision-making

techniques for improving assertiveness in architectural decisions. Table 4 describes several

existing methods.

These techniques are relevant to AD since most of these techniques utilize heuristic

methods that provide an especially powerful problem-solving and decision-making tool for

humans who are unassisted by any computer other than their minds, hence must make radical

simplifications to find even approximate solutions (SIMON, 1996).

43

Considering the discussion about DM techniques, it is crucial to understand more about

DM frameworks. In the next section, we will discuss more about this topic.

Table 4 - Decision-Making Techniques, Application, and Authors

Decision-Making

Technique

Application Author(s)

ANP (Analytic Network

Process)

Evaluating complex decision

networks with interdependent

elements.

Thomas Saaty (1980)

ATAM1 Evaluating software architecture

tradeoffs.

Bass et al. (2003)

Business Process

Modeling (BPM)

Evaluating workflow options to

improve efficiency in a

manufacturing process.

Frederick Taylor (1991)

CBAM2 Evaluating adaptive systems

with changing contexts.

Kazman (2001)

CBAM3 Incorporating cognitive biases in

decision-making processes.

Moore (2003)

Choosing By Advantages

(CBA)

Identifying the best solution

based on a list of advantages and

disadvantages.

SUHR (2000)

Cost-Benefit Analysis

(CBA)

Project evaluation, public policy

analysis, and investment

decisions.

Jules Dupuit (1884), Alfred

Marshall (1890)

Decision Trees Evaluating the best option for a

marketing campaign based on

possible outcomes.

Abraham Wald (1945),

Stuart and Hubert Dreyfus

(1980)

Delphi Method Forecasting future trends based

on expert opinions and iterative

rounds of feedback.

Norman Dalkey and Olaf

Helmer (1950)

Game Theory Analyzing competitive strategies

in business negotiations.

VON NEUMANN;

MORGENSTERN (2007)

Pareto Analysis Identifying the most significant

factors contributing to a

problem.

Vilfredo Pareto (1896)

Real Options Analysis

(ROA)

Evaluating the value of

investment options with

flexibility in decision timing.

MYERS (1977)

Six Thinking Hats Exploring different

perspectives when choosing a

vacation destination.

BONO (1999)

SWOT Analysis Assessing Strengths,

weaknesses, opportunities, and

Threats for Decisionmaking

STEWART; BENEPE;

MITCHELL (1965)

TOPSIS4 Ranking alternatives based on

their similarity to the ideal

solution

HWANG; YOON (1981)

Source: The author (2023)

44

3.4.2 Decision-Making Frameworks

A structured decision-making framework involves identifying and evaluating

alternatives based on criteria or factors. When we say the term framework, we would like to

highlight the definition of JABAREEN (2009) that says that conceptual framework as a

network, or "a plane," of interlinked concepts that together provide a comprehensive

understanding of a phenomenon or phenomena.

The framework typically includes a process for gathering information, analyzing

options, and selecting the best course of action based on the available data and the decision-

makers’ goals and values. Decision-making frameworks are used in various contexts, including

business, government, and personal decision-making. They are designed to help individuals and

organizations make more informed and effective decisions by providing a systematic and

transparent approach to the decision-making process.

Table 5 - Decision-Making Frameworks

Decision-Making Framework Author Date

Analytic Hierarchy Process (AHP) Thomas L. Saaty 1971

Attribute-Driven Design (ADD) Ralph E. Johnson 1994

Architecture-Level Modifiability

Analysis (ALMA)

Len Bass, Paul C. Clements, Rick Kazman 2012

Architecture Tradeoff Analysis

Method (ATAM)

SEI 2000

Cost-Benefit Analysis Method

(CBAM)

SEI 2003

Knowledge Architecture (KA) Richard Gronback 2009

Systematic Decision-making

Framework

Nitin Upadhyay 2016

Source: The author (2023)

Considering all decision-making frameworks, some clarification is due to highlight the

differences between DM frameworks and techniques.

3.4.3 Decision-Making Framework X Decision-Making Techniques

Decision-making techniques and frameworks are tools used to facilitate the

decisionmaking process, but they serve slightly different purposes and have distinct

characteristics. Decision-making techniques refer to specific methods, strategies, or approaches

that individuals or groups use to analyze options, evaluate alternatives, and choose the best

course of action (TEAM, 2022).

45

These techniques are valuable when addressing specific decision-making challenges,

such as comparing alternatives, evaluating risks, or assessing pros and cons. They help break

down complex decisions into manageable steps.

Decision-making frameworks are broader structures or models that guide decision-

makers in thinking systematically and holistically about their decisions. These frameworks

provide a high-level approach to making decisions and help ensure that important aspects are

considered.

Decision-making frameworks often integrate multiple techniques and principles.

Frameworks are more appropriate than techniques when dealing with more significant, complex

decisions requiring a systematic approach and considering multiple factors. They help decision-

makers think broadly and strategically about their choices.

3.4.3.1 Limitations Of Decision-Making Framework And Decision-Making Techniques

To reach a better degree of understanding is necessary to provide more information

about limitations of each approach.

Limitations of Decision-Making Techniques:

1. Limited Scope: Many decision-making techniques are designed for specific types of

decisions and may not be applicable or effective in different contexts. For instance, a cost-

benefit analysis might be less useful in decisions where qualitative factors are more important

than quantitative ones.

2. Dependence on Quality of Data: Techniques like statistical analysis rely heavily on

the quality and completeness of data. Poor data can lead to inaccurate or misleading results.

3. Over-Simplification: Some techniques might oversimplify complex decisions,

ignoring nuanced factors that don’t fit neatly into the chosen method.

4. Cognitive Biases: Techniques are often applied subjectively, and the decision-

makers’ biases can influence the outcome, especially in techniques that involve significant

human judgment.

5. Time and Resource Constraints: Certain techniques can be resource-intensive and

time-consuming, making them impractical for quick or low-stakes decisions.

Limitations of Decision-Making Frameworks:

1. Rigidity: Some frameworks can be too rigid or prescriptive, not allowing enough

flexibility for unique or unforeseen circumstances in decision-making.

46

2. Complexity: While aiming for comprehensiveness, some frameworks can become

overly complex, making them difficult to understand and apply, especially for those without

extensive experience or expertise.

3. Underestimation of Human Factors: Frameworks may not adequately account for

human emotions, cultural differences, or ethical considerations, which can be critical in certain

decision-making scenarios.

4. Implementation Challenges: The successful application of a framework often requires

significant organizational change, buy-in from multiple stakeholders, and consistent

application, which can be challenging to achieve.

5. One-Size-Fits-All Approach: Frameworks may adopt a generalized approach that

may not suit all decision-making contexts, particularly those that are highly specialized or

idiosyncratic.

3.5 SUMMARY OF THIS CHAPTER

In this chapter, we discussed the decision-making process, its background, and its

importance in the context of software architecture. We briefly talked about intuitive and

naturalistic thinking and its role in reasoning. Further, we discussed the importance of

documenting architectural decisions and two popular forms of doing that: Y’s statements and

ADR. At last, we explored some decision-making principles regarding software architecture,

decision-making techniques definitions providing some examples, and decision-making

frameworks. The next chapter will provide more information about the methodology used to

ground this research.

47

4 METHODOLOGY

4.1 SURVEY METHOD

According to WOHLIN et al. (2012), two types of research paradigms have different

approaches to empirical studies: exploratory research, where the research design is flexible

(qualitative research), and explanatory research, where the procedure is fixed (quantitative

analysis).

In this study, we chose the exploratory approach to interpret the decision-making

phenomena in software architecture. The empirical strategy used to conduct this study is the

survey, and the primary means of gathering data is the questionnaire (web-based questionnaire).

As explained by MERRIAM; TISDELL (2015) "the overall purposes of qualitative

research are to achieve an understanding of how people make sense out of their lives, delineate

the process (rather than the outcome or product) of meaning-making, and describe how people

interpret what they experience."

The survey method is an instrument for collecting and analyzing data that served as a

subsidy to verify the validity and pertinence of the research questions. The choice of the survey

was grounded on the necessity to describe certain aspects or characteristics of the population.

The specific characteristic we would like to unveil is the decision-making process used

by software practitioners. What elements are used by software practitioners, and how do they

reason through them to make sound architectural design decisions? When we say good, we

mean how these decisions contribute positively to project/software success.

We selected survey research because, as described by GROVES et al. (2009), this

method is "... a systematic method for gathering information from (a sample of) entities for the

purposes of constructing quantitative descriptors of the attributes of the larger population of

which the entities are members".

To reinforce the appropriateness of using this approach, we quote the definition of the

survey by PFLEEGER; KITCHENHAM (2001) "a comprehensive system for collecting

information to describe, compare or explain knowledge, attitudes, and behavior."

Another reason for using this method is explained by REA; PARKER (2014) when they

explain that "... the foremost advantage of the sample survey technique is the ability to

generalize about an entire population by drawing inferences based on data drawn from a small

portion of that population".

Therefore, survey research is a good and valid process to understand attitudes and

behaviors concerning architectural decisions made by software practitioners.

48

4.2 SURVEY INSTRUMENT: QUESTIONNAIRE

As appointed by BOYNTON; GREENHALGH (2004), questionnaires offer an

objective means of collecting information about people’s knowledge, beliefs, attitudes, and

behavior. There are other valid instruments to collect data on survey research (interviews, phone

calls, focus groups, face-to-face surveys, etc.).

We adopted the web questionnaire format to collect data because, according to BHAT

(2018) "it is less time-consuming than the traditional way of gathering information through one-

to-one interaction and is less expensive".

The questionnaire was elaborated based on the studies of TANG et al. (2006),

GROHER; WEINREICH (2015) and WEINREICH; GROHER; MIESBAUER (2015). Survey

questions can be divided into two segments: one related to demographic data (questions 1 to 5)

and another to architectural DM (questions 6 to 19) as depicted in table 6.

The first version A had more open questions about influencing factors and hardships in

making architectural design decisions. However, after running pretesting, in order to provide

more accurate data, instrument B had to be refined to include more closed questions.

4.3 RESEARCH QUESTIONS

The research questions in this study are presented in table 7. These questions explore

several topics related to the architectural decision-making process (reasoning process, influence

factors, challenges, and principles), and these decisions are documented according to the

literature.

After describing the research questions that motivate this study, we will explore the

relationship between survey and research questions in section 4.4 and how these constructs

interweave.

4.4 SURVEY AND RESEARCH QUESTIONS ALIGNMENT

The survey questions aim to assess a range of constructs that provide insights into these

aspects of architectural decision-making. The choice of specific question formats and scales is

driven by their suitability for measuring the intended constructs.

For example, a 5-point Likert scale is used to evaluate confidence in making decisions,

with scale anchors ranging from "not confident at all" to "completely confident." This scale

intends to assess the self-efficacy and experience construct, which relates to SRQ1 on how

practitioners reason through decisions. Responses indicating higher confidence levels represent

greater comfort and familiarity in making architectural decisions based on experience.

49

Table 6 - Survey Questions

Survey Questions

1 How old are you?

2 How long do you work with IT?

3 What is your job function?

4 What is your team size?

5 What is your formal degree of education?

6 Are you responsible for making AD at your workplace?

7 How long do you have been taking/documenting AD?

8 At what stage of the project are architectural decisions made?

9 How are architectural decisions made?

10 Describe how AD are decided in your workplace.

11 How confident are you when making an architectural decision?

12 When making an architectural decision, do you try to elect one more solution in your

mind?

13 Do you use any tools to support architectural decision-making?

14 How are the architectural decisions that have been made documented?

15 How important do you consider documenting the architectural decisions that have been

made?

16 Are the architectural decisions made revisited during the lifetime of the project?

17 Indicate how important the factors listed below are for the architectural decisionmaking

process.

18 Indicate how impactful the challenges listed are during the architectural decisionmaking

process.

19 Indicate how important the principles listed below are for the architectural

decisionmaking process.
Source: The author (2023)

The question regarding when architectural decisions are made is presented in a multiple

choice format, with options covering typical project stages. The aim is to understand existing

practices on decision timing and cycles, which provides context for SRQ1 on reasoning

approaches. Options like "during each sprint" and "no specific point" indicate more continuous

iterative decision-making.

Regarding influence factors, a 5-point Likert scale question asks participants to rate the

impact of factors like business priorities, technical constraints, team experience, etc. This scale

format allows measuring the relative effect of each potential influence on decisions, aligning

with SRQ2 on influential factors. Higher ratings suggest a more significant perceived influence

for that factor.

The question on challenges uses a similar 5-point impact scale to gauge different issues

practitioners face during decision-making. The Likert scale helps assess the severity of each

challenge consistently, supporting the investigation of SRQ2. Participants also had the option

to enter other challenges as free text to cover factors not listed.

50

Table 7 - Research Questions

Research Question

SRQ1 How do software practitioners reason when making software architectural decision-

making?

SRQ2 What are the potential influence factors for the architectural decision-making

process?

SRQ3 Which principles do software architects take into consideration when making

architectural design decisions?

SRQ4 How architectural design decisions are documented?
Source: The author (2023)

To identify principles for decision-making in SRQ3, respondents rated a list of

principles from "not important" to "very important" on a 5-point scale. The critical principles

were interpreted as actively influencing the respondents’ reasoning process. An open-ended

question also allowed entering additional principles.

Lastly, for SRQ4 on documentation, a multiple choice question asked participants to

select which methods they use to document architectural decisions. The options covered typical

documentation approaches identified through background research on architecture decision

practices and tools. Table 8 correlates each question used in our questionnaire with the research

questions.

These question formats and scales were designed to provide measurable constructs,

eliciting valuable data to investigate the four research questions related to architectural decision

practices and influences. The chosen response options reflect literature-backed tools and

techniques for architecture decisions to strengthen content validity. The combination of closed

and open-ended questions also gathered participants’ quantitative ratings and qualitative

insights.

4.4.1 Pre-Testing

The instrument (web questionnaire) used to collect data was created by the author taking

into consideration previous studies (GROHER; WEINREICH, 2015) (WEINREICH;

GROHER; MIESBAUER, 2015). However, before using an instrument, it is essential to

evaluate it KITCHENHAM; PFLEEGER (2002a). This evaluation is called pretesting, and

there are several reasons for doing it, as described by the same author: 1) To check that the

questions are understandable; 2) To evaluate the reliability and validity; 3) To assess the

response rate and effectiveness of the follow-up procedures; 4) To ensure that our data analysis

techniques match our expected responses.

51

REA; PARKER (2014) emphasizes three critical factors when conducting the pretest:

clarity, comprehensiveness, and acceptance. During the design process of this instrument, we

submitted it for peer review to ensure the clarity and conciseness of each question.

Table 8 - Survey and Research Questions

Survey Questions RQ’s

At what stage of the project are architectural decisions made? SRQ1

How are architectural decisions made? SRQ1

How confident are you when making an architectural decision? SRQ1

When making an architectural decision, do you try to elect one more solution

in your mind?

SRQ1

Do you use any tools to support architectural decision-making? SRQ1

How are architectural decisions made documented? SRQ4

How important do you consider documenting architectural decisions made? SRQ4

Are the architectural decisions made revisited during the lifetime of the project? SRQ1

What are the potential factors that influence the architectural decision-making

process?

SRQ1,

SRQ2

What are the challenges encountered during the architectural decision-making

process?

SRQ2

Which of the principles below do you consider fundamental to the architectural

decision-making process?

SRQ3

Source: The author (2023)

The pretesting was conducted during the latter part of November until the first week of

December 2022 with respondents of the same profile (software practitioners) on private

entrepreneurs and other public companies aside from Federal Justice in Brazil.

Therefore, the survey was pretested over one week from 25/11/2022 to 02/12/2022. The

mode used for pretesting was an online survey using Google Forms. The first version of the

questionnaire is available in the appendix A.

Twelve professionals with software architecture experience participated in the pretest,

providing valuable answers. After reviewing the answers collected in this pretesting phase, we

refined our questionnaire, including more questions related to our research objectives, including

adopting a Likert scale and multiple-choice answers to avoid further misunderstandings.

4.4.1.1 Improvements Between Questionnaire Versions

Adoption of Likert Scale response format: The initial open-ended questions were

converted to a Likert scale and multiple choice formats based on suggestions to improve

analyzability. One example of this scenario is present in the question about how long experts

are responsible for making AD. Utilizing the Likert scale provides several benefits, such as:

52

1. Standardization for better analysis: Likert scales provide standardized response

options that can be easily quantified and statistically analyzed as interval data,

allowing for better analysis JOSHI et al. (2015).

2. Reduces response burden: Likert scales require less time and effort from

respondents than open-ended questions (REVILLA et al., 2016). This scale

improves data quality by reducing incomplete responses.

3. Mitigates social desirability bias: Studies show Likert scales elicit more honest

responses on sensitive topics than open-ended formats where respondents may filter

their answers (NEDERHOF, 1985).

4. Enables comparisons: Close-ended Likert scale questions allow for easy

comparative analysis between respondents and across survey iterations (ALLEN;

SEAMAN, 2007). Open-ended questions make comparisons more difficult.

5. Provides benchmarking: Familiar scale formats like 5- or 7-point Likert scales allow

benchmarking against established norms and standards derived from previous

research DAWES (2007).

Inclusion of neutral selection in survey: Including a "Not applicable" option in

surveys, as supported by academic research, improves data quality and user experience by

providing participants with an ethical way to avoid irrelevant questions.

1. Reduces response bias: According to a study in the Journal of Official Statistics,

forcing respondents to provide an answer even when the question seems

inappropriate can introduce response bias. The "Not applicable" option reduces

acquiescence bias or social desirability bias in responses (SMYTH et al., 2006).

2. Provides a way to avoid questions: HOTTOIS (1985) indicates that some

respondents may perceive sensitive questions as an invasion of privacy. The "Not

applicable" option offers an ethical escape to avoid answering intrusive questions.

3. Increases completion rates: DILLMAN; SMYTH; CHRISTIAN (2014) recommend

including a "Not applicable" option to improve survey completion rates when

respondents know they will not be forced to answer irrelevant questions.

4. Reduces satisficing: Some respondents engage in satisficing, or providing minimal

effort in responding, to speed through surveys, which can reduce data quality

(KROSNICK, 1991). The "Not applicable" option reduces satisfaction since

respondents can quickly opt out of irrelevant questions.

53

Increase perception of relevant aspects: Three questions were added in the final

version of the questionnaire. The first question was related to demographic information,

specifically, the degree of formal education. The second and third questions were related to

Documentation AD. One was about the importance of documenting AD, and the other was

about the frequency of revisiting AD during the project’s lifecycle.

4.4.2 Population And Sample

This study’s target population comprises software engineers, experienced developers,

software architects, team leaders, project managers, and IT managers responsible for making

architectural design decisions in Brazil. In particular, we targeted individuals involved in the

decision-making process. Initially, we invited public government professionals, particularly

those in the Judiciary, by e-mail and contacted IT managers by phone. Nevertheless, the

response rate in pretesting was lacking, so we pivoted to use Social Network Service (SNS)

platforms such as Linkedin and Twitter to reach a more significant amount of the population.

The exclusion criteria used by this study were that the target population must be

responsible or should participate in the process of making architectural design decisions. Those

responsible for the teams but who do not participate in those kinds of decisions are not

considered.

4.4.2.1 Sampling Method

According to KITCHENHAM; PFLEEGER (2002b), the sampling method must be

rigorous to make strong inferences about the target population. This study used a non-

probabilistic sampling method known as convenience sampling. This method was chosen due

to the ease of access to the primary researcher, and as indicated by KITCHENHAM;

PFLEEGER (2002b), it involves obtaining responses from those who are available and willing

to participate.

However, it is necessary to address some limitations of this non-probabilistic sampling

method.

Generalizability: The findings from a non-probabilistic sample may not apply to the

broader population. Without randomization, it is impossible to definitively assess the likelihood

of the sample being representative, thus weakening the external validity of the research

(BRYMAN, 2015).

Sampling Bias: The subjective nature of non-probabilistic sampling may introduce bias

into the selection process. For example, if the researcher selects readily available subjects or

54

aligns with their expectations, it could skew the results. This bias can lead to over- or under-

representation of particular groups, undermining the study’s validity (LAVRAKAS, 2008).

Potential Confounding Variables: Without randomization, hidden biases or

confounding variables may not be controlled for, affecting the study’s conclusions. This lack

of control over extraneous variables can confound the results, making it challenging to establish

causal relationships (BHATTACHERJEE, 2012).

Ethical Considerations: In some cases, non-probabilistic sampling can lead to ethical

concerns, notably if certain groups are systematically excluded from the sample. This can lead

to an inequitable representation and potential misinterpretation of the phenomenon under study

(MERTERNS; WILSON, 2018).

In conclusion, while non-probabilistic sampling offers practical advantages in specific

research contexts, these must be weighed against the limitations related to generalizability,

potential biases, control of confounding variables, and ethical considerations. Proper

acknowledgment and mitigation of these limitations within the research design and analysis can

enhance the credibility and integrity of the study.

4.5 DATA ANALYSIS

In order to work efficiently with the data created by this study, we used the RStudio

framework. All data available in Google Forms was exported in Comma Separated Values

(CSV) format. Thanks to this tool, it was possible to create R scripts to manage data

parsing/transformation and analysis. The most intensive libraries used were: dplyr for data

manipulation, such as omitting columns and converting values, and ggplot2 to generate

graphics in a better format. All plots generated were validated using Adobe Color Wheel tool1.

4.6 FAROL SURVEY EVALUATION BASED ON EXPERT OPINION

The evaluation of the FAROL framework, a comprehensive tool for architecture

decisionmaking, necessitates a methodological approach that effectively captures the nuanced

perceptions and insights of experts in the field.

The chosen method for this evaluation is a survey of expert opinions. This choice is

grounded in several methodological considerations, aligning with established social research

methods, survey design, and evaluation theory practices.

1 The use of this tool allows us to check if there is a color conflict in graphics or if the color scheme is

friendly for colorblind people.

55

The rationale for focusing on expert opinions lies in the specialized nature of the

FAROL framework. Architecture decision-making is a complex process often involving

intricate technical knowledge and practical experience.

Experts in this field can provide deep and contextually rich insights stemming from their

professional experiences and understanding of architectural frameworks (MERTERNS;

WILSON, 2018). Their responses are likely to yield valuable information on FAROL’s

practicality, strengths, and potential areas of improvement, which need to be more readily

apparent to non-expert users.

4.6.1 Expert Opinion

Expert opinion can be defined as a series of scientific endeavors which are employed to

interpret data, predict a system’s behavior, and assess uncertainties (COOKE, 1991). It is about

"the speculations, guesses, and estimates of people who are considered experts in so far as these

serve as "cognitive input" in some decision process" (COOKE, 1991); (LI; SMIDTS, 2003).

The widespread use of expert opinion stems from the fact that knowledge in many fields

involved in probabilistic analysis and decision-making processes is generally rare and

incomplete.

Likewise, the experimental or statistical information based on which predictions or

decisions can be made is not easily available (LI; SMIDTS, 2003).

In the next section, we will elaborate on three hypotheses that describe how FAROL is

adequate for its purpose and how survey questions were designed to show its correspondence.

Further examination of survey evaluation is available in the appendix C.

4.6.2 Hypothesis Of Farol Value

This survey design includes three hypotheses about FAROL: H1) completeness (it

includes several aspects to make an AD); H2) relevance (it helps significantly during the

process of making AD); and H3) utility (it helps make AD).

From those three hypotheses, a survey was designed to check the alignment between

FAROL (FAROL) structure and a practical example of analytical use in the microservices

scenario. Table 9 relates each hypothesis with the survey’s questions. Two more open questions

were added to check FAROL ’s shortcomings and difficulties in using this framework.

56

Table 9 - Hypothesis and Survey Questions

No. Survey Questions Hypothesis

Q1 The architectural decision framework (FAROL) assisted in the

decision-making process.

H1, H3

Q2 Significant architectural decisions (those that have the potential to

make the project unviable or too costly) were observed during the

architectural analysis.

H2

Q3 Several distinct relevant aspects for architectural decision-making

were explored by FAROL.

H2

Q4 This example of using FAROL does not provide sufficient elements

for a good architectural analysis.

H1, H2, H3

Source: The author (2023)

In conclusion, using a survey to gather expert opinions to evaluate the FAROL

framework is methodologically sound. It leverages the strengths of survey research to gather

comprehensive, nuanced, and practical insights from knowledgeable professionals, ensuring a

thorough and user-centered evaluation of the framework.

4.7 SUMMARY OF THIS CHAPTER

In this chapter, we characterized the methodology used to ground this work. We

reasoned about why choosing survey research and how this method is the most appropriate for

this study. Further, we described the correlation between the research questions and the

questionnaire, its theoretical ground, and other essential aspects of survey research, such as

population, sample, and sample method.

57

5 DATA ANALYSIS AND EVALUATION

This chapter will discuss data collected in this survey, and the results are presented.

First, we will represent the population’s demographic data. Second, we will discuss

architectural decision data, including how software architecture decisions are made, how these

decisions are documented, and influence factors, hardships, and principles used in decision-

making. Third, we will evaluate the descriptive results of survey data and their relationship with

the literature.

5.1 THE SURVEY SAMPLE CHARACTERIZATION

From January to March of 2023, the online Google survey service, Google Forms, was

used to design and host the web questionnaire for this survey. There were 50 participants, with

33 individuals being responsible for architectural decisions. The questionnaire comprised 19

questions, including five demographic questions and 14 questions pertaining to decision-

making in software architecture. In the next section we will discuss briefly about open science

standard and how this study intends to comply it.

5.1.1 Open Science Standard

Open science, an approach that emphasizes transparency and accessibility in scientific

research, is increasingly recognized as essential for advancing knowledge. By promoting open

access to research data, methods, and publications, open science facilitates collaboration and

reproducibility, ensuring that scientific insights are verifiable and broadly available

(MCKIERNAN et al., 2016).

This practice not only accelerates scientific discovery but also enhances public trust in

research findings (WOELFLE; OLLIARO; TODD, 2011), making it a critical component of

modern scientific methodology. The repository to this study will be available on GitHub2.

5.2 DEMOGRAPHIC DATA

This section presents the characterization of the sample’s demographic data. Table 10

shows the job function. We targeted professionals who work with software architecture, and

they are directly related to decision-making. We identified several roles in our survey, varying

2 GitHub is a source code and file hosting platform with version control using Git.

https://github.com/fagnerffcs/msc-dissertation

58

from technical (developers, engineers, and architects) to management (team lead, director,

project managers, and others).

Table 10 - Job Function distribution

Role Number of Experts

Architect 6

Consultant 1

Director 2

Other 3

Project Manager 3

Senior Developer 5

Software Engineer 7

Team Lead 6
Source: The author (2023)

The survey participants’ job distribution adheres to WEINREICH; GROHER;

MIESBAUER (2015) and GROHER; WEINREICH (2015) studies. Senior developers,

architects, and team leads are the most prominent roles responsible for decision-making. From

a team size perspective, as shown in Figure 6, most of the survey’s participants’ teams comprise

1-10 members.

Table 11 displays information about age, education level, and years of experience in IT.

From the age data, we can perceive that 75% of the participants are in the age range of 31 years

or more. From education level, 60% of participants have access to a higher degree of education

(MBA or higher). 90% of the participants’ professional experience in IT has been more than

five years.

Table 11 - Description of age range, educational level, and years of experience in IT

Age

20 to 30 years 31 to 40 years 41 to 40 years More than 50 years

8 14 8 3

Education Level

Undergraduate Student Undergraduate MBA Master’s Degree PhD

2 11 10 7 3

Years of Experience in IT

1 to 5 years 6 to 10 years 11 to 15 years More than 15

3 13 5 12
Source: The author (2023)

59

Figure 6 - Team Size

Source: The author (2023)

5.3 RESULTS

This section will present the data related to reasoning, confidence degree, architectural

principles, influence factors that impair/aid the decision-making process, and how these

decisions are documented. Next, we present our considerations regarding the data collected in

the survey and cross-referencing it with the research questions.

5.3.1 Architectural Decision-Making

Table 12 the architectural decision experience of participants, including their experience

documenting them. From architectural decision experience, 72% of participants have ten or

fewer years in this area.

In the literature, there must be a clear correspondence between the experts’ experience

level and successful architectural choices. Nonetheless, a lot of implicit and explicit knowledge

is required to make appropriate architectural design decisions (FARENHORST; LAGO;

VLIET, 2007).

Table 12 - Architectural decision

Architectural Decision Experience

1 to 2 years 3 to 4 years 5 to 10 years 10 to 20 years More than 20 years

8 7 9 7 2
Source: The author (2023)

60

From the project phase, as depicted in Figure 7, nine out of 33 experts reported that

architectural decisions are made at the project’s beginning. Seven out of 33 explain that these

decisions are made at each sprint/project iteration. However, 17 out of 33 remaining experts

reported that these decisions are made with no specific point or could be done anytime.

Of the remaining experts, 2 of them reported that decisions are mixed. It can be done at

a specific time but revisited later on, or these decisions are made according to each challenge

they face. The last one mentioned that these decisions are made at technical refinement.

Figure 7 - Project Phase

Source: The author (2023)

From the decision-making process, as depicted in Figure 8, thirty-one out of 33 experts

(93%) reported that the team decides together on architectural decisions. This finding is

consistent with (GROHER; WEINREICH, 2015) work, albeit with a smaller percentile (63%).

Figure 8 - Decision-Making Process

Source: The author (2023)

61

From the degree of confidence when making architectural decisions, illustrated in Table

13, 72,7% of respondents have a relatively high degree of confidence.

Table 13 - Confidence degree in making architectural decisions

 Not confident at

all

Slightly

confident

Somewhat

confident

Fairly

confident

Completely

confident

 1 2 3 4 5

No. of respondents 1 1 7 19 5

Percentages 3 3 21.3 57.6 15.1
Source: The author (2023)

From the viewpoint of the number of architectural decision options, we can see in Table

14 that 81,9% of respondents tend to think of more than one option when making architectural

decisions. This finding is consistent with TANG et al. (2006) study about design rationale in

design justification.

Regarding the documentation process of decision-making, 75% of the participants did

not use any tool to aid their decision. Text Documents, Issue Management Systems, Code, and

Wiki are popular options to document their design decisions, as shown in Figure 9.

Table 14 - Architectural Decision Options

 Never Almost Never Sometimes Often Always

 1 2 3 4 5

No. of respondents 0 1 5 10 17

Percentages 0 3 15.1 30.4 51.5
Source: The author (2023)

Figure 9: Documenting Architectural Decisions

Source: The author (2023)

62

The survey results revealed that an overwhelming majority of participants (97%)

considered documenting architectural decisions necessary or critical, as seen in table 16. This

finding aligns closely with previous studies that identified comprehensive documentation as a

critical architecture design and development practice.

The increased documentation in larger teams resonates with studies on coordination

challenges in large software projects (HERBSLEB; MOCKUS, 2003). For example, TYREE;

AKERMAN (2005) study highlights how an important AD has numerous implications on a

system, and it can reverberate on other ADs as well.

TANG et al. (2006) emphasized the risks of undocumented design rationale, warning

that lack of written records leads to "design erosion" over time as rationale becomes forgotten

and context is lost. They advocated lightweight but systematic documentation to capture key

decision details and tradeoffs. Our finding reinforces the continued imperative of

documentation despite shifts towards agile development.

ZIMMERMANN; MIKSOVIC; KuSTER (2012) established architectural knowledge

management and retention of design justifications as fundamental for system governance and

maintenance. Practitioners in that study unanimously agreed that documentation was critical

consistent with our findings. The consensus on the importance of documentation spans previous

research and current practice.

This percentile is coherent with the need to revisit architectural decisions according to

participants (64%) of this study, as shown in Table 15.

Table 15 - Architectural Decision Revisit

 Never Almost Never Sometimes Often Always

 1 2 3 4 5

No. of respondents 0 6 6 10 11

Percentages 0 18 18 30 51.5
Source: The author (2023)

Table 16 - Architectural Decision Documentation Importance

 Not

important

at all

Somewhat

important

Moderately

important

Very

important

Extremely

important

 1 2 3 4 5

No. of respondents 0 6 6 10 11

Percentages 0 18 18 30 51.5
Source: The author (2023)

63

5.3.2 Influence Factors

This section will list the influence factors that might impact AD. Table 17 presents all

these factors following a mixed characterization derived from TANG et al. (2006), GROHER;

WEINREICH (2015) and WEINREICH; GROHER; MIESBAUER (2015) studies.

We want to learn more about the factors that influence the decision-making process in

software architecture since experts should be aware of multiple concerns and challenges when

making these decisions, as shown in Figure 10.

Table 17 - Influence Factors

Factors

Company size

Business

Business domain

Business model

Risk / Cost / Time

Business Strategy

Organizational

Team Size

Team organization

Processes and Practices

Standards and constraints

Technical
Principles

Standards and constraints

Cultural

Individual

Project
Kind of project

Duration

Others

Decision Scope

Quality Attributes

User requirements

Existing Literature

tool and technology available
Source: The author (2023)

The first factor, Company Size, is less influential than expected. However, according to

GROHER; WEINREICH (2015), this factor can influence AD since larger organizations

typically have a more complex structural organization and rely on standardized processes. Our

results show that this finding seems inconclusive since only 51% of participants believe that

company size has a degree of importance in AD is Important or higher.

On the other hand, the second one, the Business factor, is evaluated very highly by

participants. 90% of study participants stated that the business significantly impacts AD. 63%

even claim that this impact is very significant. Some of these aspects, for example, Time To

64

Market (TTM), are already considered crucial to software architecture because, as explained by

CARTER (2023), this business factor provides several perks such as competitive advantage,

improvement of customer satisfaction, revenue growth.

The third factor, Organizational, comprises four aspects of team organization: Team

Size, Team Organization, Processes and Practices, and Standards and Constraints (GROHER;

WEINREICH, 2015). 75% of the survey participants believe this factor’s degree of importance

is Important or Very Important. Since these aspects are related to how teams are organized and

interact with each other, this finding is consistent with current literature.

Figure 10 - Influence factors as rated by experts

Source: The author (2023)

The influence of organizational standards and constraints was expected to be very high

based on previous studies emphasizing their potent effects on architectural decisions (TANG et

al. (2006); GROHER; WEINREICH (2015)). However, our results found that most participants

rated this factor’s importance moderately rather than very high.

The fourth factor, Technical, is very highly rated by experts. During the development

process, experts must address NFR and user requirements without missing the time frame.

When a company utilizes a framework to develop its products, this pattern reinforces and guides

the decision-making process. This finding is consistent with literature since principles and

standards, and constraints influence decision-making (GROHER; WEINREICH, 2015).

According to 51% of experts, the fifth factor, Cultural, is rated as Important or higher.

This percentile of the population shows that this factor does not have a significant impact on

65

decision-making. The sixth factor, Individual, seems to have an even lesser degree of

importance since only 27% experts evaluated this factor as Important or higher. Let us consider

personal experiences as an individual factor. This finding might indicate that when responding

to the survey, the topic Individual was more complex than intended since WEINREICH;

GROHER; MIESBAUER (2015) study affirms that personal experience is one of the most

mentioned factors in making architectural decisions.

However, according to the experts, the seventh factor, Project, was one of the most

critical factors. 87% of the participants highlighted that this factor is significant when making

architectural decisions. Compared to WEINREICH; GROHER; MIESBAUER (2015) study,

the main drivers for architectural decisions vary depending on the system being developed and

the organizational structure.

Decision scope, Quality Attributes, and User Requirements are rated as Very Important

by 42% of survey participants. This fact confirms that these factors are very significant for the

experts.

Quality Attributes are deemed necessary according to HEESCH; AVGERIOU;

HILLIARD (2012) since quality goals primarily drive architectural decisions. User

Requirements were also rated very highly. Software engineering models like the Twin Peaks

emphasize requirements and architecture development in parallel rather than linear sequence

(NUSEIBEH, 2001). This discovery reinforces user needs as a critical architecture input,

aligning with participants’ ratings.

Existing Literature received this very same percentile as the Moderately Important

factor. Lastly, the Tools and Technology Available factor is one of the most important to

decision-making since 45% of experts believe this factor is evaluated as the highest degree of

importance.

5.3.2.1 Divergences Between Past Literature and Influence Factors Findings

One survey result that contrasts with some previous studies is the rating of individual

experience as a less significant influence factor in architectural decision-making. In an

interview study, WEINREICH; GROHER; MIESBAUER (2015) found that practitioners

frequently cited personal experience as affecting decisions. However, our study found

individual experience ranked low, with only 27% of participants rating it as essential.

This divergence from the literature highlighting experience merits further examination.

Some potential explanations can be considered: Firstly, WEINREICH; GROHER;

MIESBAUER (2015) ’s findings emphasized individual experience, whereas our question

66

framed it more narrowly as just ’personal’ experience. Architects may rely substantially on their

technical knowledge but put little weight on other personal aspects like background or innate

preferences.

5.3.3 Challenges In Decision-Making

As explained previously, architects face several challenges while making architectural

decisions. This topic will explore what experts thought about some of these issues as presented

in Table 18. Several of these problems have been studied in the literature (MOE; AURUM;

DYBA, 2012); (REKHAV; MUCCINI, 2014).

For example, DASANAYAKE et al. (2015) highlights that software development

methods incur challenges such as balancing upfront design and continuous design, flexibility

and progress, and knowledge management.

Among the challenges presented in the survey shown in Figure 11, we can highlight

four main drivers impairing architectural decisions: 1) lack of clarity, 2) insufficient deadline,

3) lack of business domain, and 4) conflicting NFR. The percentile of experts that find the

challenges’ impact very high is above 50%.

72% of experts believe the first challenge’s impact is very high. 66% of experts also

find the second challenge’s impact very high. 54% of experts find the third challenge’s impact

very high. At last, 51% of experts found the fourth one. Stakeholder conflict and legal

contractual obligation challenges seem to have mixed results, indicating the need for further

studies.

Table 18 - Challenges in Decision-Making

Challenges

Lack of clarity in Requirements

Conflicting NFR

Insufficient Deadline

Conflict between Stakeholders

Legal Contractual Obligations

Lack of familiarity in Business Domain
Source: The author (2023)

67

Figure 11 - Challenges in Decision-Making rated by experts

Source: The author (2023)

5.3.4 Decision-Making Principles

TANG; KAZMAN (2021) proposed principles for making better software design

decisions as shown in Table 19. In this survey, we investigated the relevancy of these principles

for software experts in Brazil. These principles are closely related to Secondary Research

Question 1 (SRQ1) since they impact how experts reason when making architectural decisions.

Most of these principles can be converted into reflective questions to check how complaint their

design reasoning is. Since most of the principles listed by Figure 12 actively determine the best

course of action experts should take to fulfill user requirements and project needs, the results

confirmed that all principles are relevant when making AD.

The first principle vouches those facts and evidences are the foundation of logical

decisions (TANG; KAZMAN, 2021). 22 out of 33 of our respondents believe this statement is

Very Important to AD, and 10 out of 33 rated it as Important, leading us to a percentile of 96%

of experts with an evaluation of importance Important or higher.

The second principle warns us about the dangers of making assumptions without

checking their veracity and the benefits of exploring contexts to broaden the number of

possibilities of our design. 23 out of 33 experts rated it as Very Important, and 10 out of 33

considered it Important.

The third principle professes the importance of weighing pros and cons because they

represent the arguments for and against each selection choice. This tradeoff evaluation allows

68

us to decide why some features are more important than others and the dangers of choosing a

particular approach. About 60% of the participants rated this principle as Very Important.

The fourth principle states that constraints are limitations that set the boundaries of what

a solution can not do. Since boundaries are sometimes somewhat fuzzy, only 45% of the

participants rated it as Very Important.

On the other hand, the fifth principle adheres to the idea that the first solution is not

necessarily the best, especially when all user requirements and software features are unclear.

66% of experts agree with this statement, classifying it as Very Important.

The sixth principle defines the time relevant to a decision, and according to 66% of

participants in this study, this aspect is rated as Very Important. That is understandable since,

as explained before, TTM is a sensitive topic for most stakeholders.

The seventh principle alerts us to quantify the importance of choices. This urgency takes

a more concrete form when defining a Minimum Viable Product (MVP) of a system. Focusing

on the software’s most essential parts is crucial because these elements give our clients more

value. DUC; ABRAHAMSSON (2016) highlights how MVPs are used in the early stages of

software startups and their role in supporting the design process, bridging communication gaps,

and facilitating cost-saving activities, for example. 93% of participants classify this principle

as Important or higher.

Table 19 - DM Principles

Decision-Making Principles

P1 Use facts

P2 Check Assumptions and Explore Contexts

P3 Weigh pros and cons

P4 Design around Constraints

P5 Generate Multiple Solution Options

P6 Define the Time Horizon

P7 Assign Priorities

P8 Anticipate Risk

Source: The author (2023)

The eighth principle, Anticipate Risks, according to 81% of participants, is rated as

Important or higher. Furthermore, as defined by TANG; KAZMAN (2021), a risk is the

possibility of an undesirable outcome. Considering that, since 1968’s, when the term software

69

crisis was coined at NATO Software Engineering Conference, several projects did not end as

well as expected because they were "always over budget, behind schedule, and unreliable"

(GLASS, 1994). Risks are anecdotal evidence for experts and practitioners that hidden menaces

can significantly impair software success.

Figure 12 - Decision-Making Principles rated by experts

Source: The author (2023)

5.3.5 Summary Of the Findings

Regarding architectural decision-making, we found that most participants rely on group

decisions, and these decisions are made at more than just the beginning of the project, being

necessary to revisit later on. Nearly all participants consider documenting architectural

decisions important, but no specific tool for registering these decisions exists. Text documents

and issue management systems are popular options for those who document their decisions.

When we look at the Challenges in Decision-Making, Lack of clarity in Requirements,

Insufficient Deadline, Lack of familiarity in the Business Domain, and Conflicting NFR are the

main drivers impairing AD.

Concerning Decision-Making principles, all principles have a significant degree of

importance, but we can highlight principles P1, P2, P3, and P6. However, further investigation

is necessary to aid the weight of these elements when making architectural decisions.

70

5.4 THREATS TO VALIDITY AND RESULTS

In every research study, there are threats to validity that researchers need to address.

Validity refers to the degree to which a survey instrument assesses what it purports to measure

FINK (2010). A critical element of any empirical research study is to analyze and mitigate

threats to the validity of the results (FELDT; MAGAZINIUS, 2010) since these threats affect

the possibility of generalization and replication of the study.

Following the systematic mapping on category threats to validity in Empirical Software

Engineering (ESE) made by AMPATZOGLOU et al. (2019) we are going to discuss these

validity threats: conclusion, internal, construct, and external.

5.4.1 Conclusion Validity

Originally called "statistical conclusion validity," this aspect deals with the degree to

which conclusions reached (e.g., about relationships between factors) are reasonable within the

data collected (AMPATZOGLOU et al., 2019). Threats to conclusion validity pertain to issues

that affect the ability to draw accurate conclusions about relationships between the treatment

and the outcome in an experiment.

In this study, we followed some procedures in order to mitigate conclusion threat: (1)

search in important libraries in Computer Science (ACM, Springer, IEEE Xplore, and Science

Direct) about the relationship between Decision Making and Software Architecture; (2) exclude

out of context articles or articles that focus on a specific architecture approach, and (3)

conducted a survey to confront experts opinion with literature review.

The sample size of software engineer studies is relatively small compared to other areas,

such as Biology and Medicine. However, using our modest sample, we can perceive that those

findings are accurate and appropriate due to methodological proceedings taken during the

construction and application of this survey, i.e., Kitchenham and Pfleeger’s series of

publications about Principles of survey research (PFLEEGER; KITCHENHAM, 2001);

(KITCHENHAM; PFLEEGER, 2002c); (KITCHENHAM; PFLEEGER, 2002d);

(KITCHENHAM; PFLEEGER, 2002a); KITCHENHAM; PFLEEGER (2002b);

(KITCHENHAM; PFLEEGER, 2003).

Some aspects are very relevant in decision-making. For example, when choosing an

architectural solution attempt, the number of possibilities considered during the experts’

discussion was always more than one. This number indicates that choosing just one solution is

ill-advised, and revisiting is considered a good practice.

71

Further studies can be done to evaluate the relationship between the architectural

choices made by experts and software acceptance by users. Considering the time constraint to

conclude this work and the uniqueness of this kind of survey in the area in Brazil, we had to

make some adjustments to conduct our research. We increased the sample diversity by using

SNS such as Linkedin and Twitter instead of professionals who work for the Judiciary in Brazil.

However, we acknowledge that convenience sampling reduces the study’s generalization power

and conveys potential biases.

5.4.2 Internal Validity

Confounding factors represent a major threat to the internal validity in empirical studies

(WRIGHT; KIM; PERRY, 2010). Threats to internal validity influence the ability of

researchers to draw accurate conclusions without errors due to bias or overlooking other

elements, such as variables in an experimental study. For surveys, internal validity refers to the

rigor of measurement: that the concepts one sets out to measure are actually measured (and

completely) (WIERSMA, 2013).

We used a Likert scale score to measure each factor to ensure that factors experienced

by experts when decision-making are relevant in this study. Using a quantitative metric scale,

we will provide a way to measure these factors’ relevancy and decision-making.

Randomization of the sample is a common technique to minimize selection bias and

enhance internal validity. Since we had a limited sample size during this research, we used all

respondent’s data to conduct our analysis. In future work, we can use a randomization process

or a control group to evaluate experts’ perceptions of architectural decisions. Another possible

approach is to conduct longitudinal research to check the consistency between the original and

newer studies.

5.4.3 Construct Validity

According to FINK (2010) construct validity "... is established experimentally to

demonstrate that a survey distinguishes between people who do and do not have certain

characteristics".

This way, we want to distinguish practitioners according to their experience level in

making architectural decisions. However, as a single researcher, efforts to mitigate subjectivity

may be inherently limited (NORRIS, 1997).

In this study, the survey was designed to distinguish respondents according to their

degree of experience in making architectural decisions. Those more confident in making these

72

decisions correlate with the number of architectural solutions devised and the possibility of

architectural revision. Therefore, we intend to demonstrate that similar items resonate,

improving the convergent validity between research questions and the questionnaire.

The instrument used for this study was built through a literature review and a good

survey design. Construct validity was strengthened by pilot testing survey questions to confirm

they measured the intended constructs (RUEL; WAGNER; GILLESPIE, 2016). The survey

fulfilled his purpose. Nevertheless, we perceived during the analysis that some demographic

questions could enrich the discussion, such as the development process or the company’s

business domain. Since agile enterprises have an iterative and incremental process, architectural

decisions and documentation should occur anytime during the project lifespan.

Another critical point to highlight is when we used the Likert scale to assess

participants’ responses to several topics in the survey. This method may have some caveats

since it is vulnerable to acquiescence or social desirability bias. Still, it can provide a rational

and systematic method to express the acceptance or agreement degree of the respondents.

5.4.4 External Validity

Threats to external validity are conditions that limit our ability to generalize the results

of our experiment to industrial practice. According to WIERSMA (2013), external validity

refers to the validity of the survey beyond the study: its generalizability, both to the population

and across contexts. Another issue pointed out by SHENTON (2004) is that the restricted

geographic region and organization types surveyed constrain transferability.

The sample may not represent the population since we used a non-probabilistic

sampling method in this study. The non-random sampling method limits the generalizability of

findings beyond the respondents (PRICE; MURNAN, 2004). To mitigate this problem, we

selected a sample of the population who deals directly with architectural decisions, excluding

those who do not.

The generalizability of this study was impacted due to the sample size and the lack of

determination of background of the respondents which it can generate a sampling bias.

However, the selection of the characteristics related to the decision-making process and

appropriateness of these characteristics with AD is consistent with the findings from previous

works from WEINREICH; GROHER; MIESBAUER (2015) and TANG et al. (2006).

Nevertheless, no solid categorization of influence factors impairing the decision-making

process exists. The first attempt was made by Tang et al. (2006), followed by Weinreich (2015),

73

and since there is a relationship between these works, a general and summarized classification

can be refined in later studies.

5.5 SUMMARY OF THIS CHAPTER

This chapter presented the results obtained in the survey through tables and graphics,

dividing data according to two main subjects: demographic and architectural decisions. The

summary of the findings of this work and threats to results were analyzed, highlighting

mitigation strategies to avoid bias and to provide transparency and a clear understanding of

what has to be done to ensure a higher degree of validity and reliability.

As an alternative to guide IT’s experts in choosing a suitable software architecture, the

next chapter will present a framework to aid the architectural decision process called FAROL.

74

6 FAROL: A LIGHTWEIGHT ARCHITECTURAL DECISION FRAMEWORK

This chapter presents a novel approach for supporting decision-making in software

architecture called FAROL. When presenting a framework proposal, it is important to cover

several key topics to provide a comprehensive understanding of the framework.

6.1 INTRODUCTION

This framework was conceived from the need to support IT experts when making AD.

In Portuguese, the word FAROL means lighthouse, which seems adequate for its purpose.

Anecdotal evidence indicates that a successful reasoning process to achieve an accurate system

architecture comes from arduous experience and adequate technical knowledge.

With a clear understanding of the framework’s purpose, it is essential to examine the

complexities of architectural decision-making that FAROL seeks to mitigate. Using a

housework analogy, this proposal of framework works like a game plan for home cleaning:

which areas need to be cleaned, how this process is going to be, which aspects you should be

aware of, and what lessons can be learned from all of this?

6.2 PROBLEM STATEMENT

Choosing a suitable software architecture in the early stages of a software project is

considered daunting. Some experts even say that software architecture is overrated and clear

and simple design is enough to achieve customers’ needs (OROSZ, 2019).

Direction, when making those architectural choices, is often necessary. Some pitfalls

are more evident than others. That is how this framework can be helpful. Shedding some light

on those topics can provide valuable insights, reveal possible threats, and bring positive results

beforehand.

Therefore, the problem lies in selecting a resilient architecture confidently. FAROL can

provide a comprehensive understanding of this process. Recognizing the daunting nature of

early-stage software architecture choices, FAROL sets out to achieve several key objectives

that shed light on this intricate process.

6.3 FRAMEWORK OBJECTIVES

These are the objectives that guide this framework:

▪ Comprehend the relevance of Decision Rationale in Decision-Making;

75

▪ Understand the critical aspects in choosing an architecture candidate;

▪ Pinpoint possible risks in selecting an unwanted architectural choice early on;

▪ Emphasize the importance of documentation and the rationale behind AD;

▪ Reason critically about influence factors and challenges involved in architectural

decisions;

6.4 THEORY-BUILDING AND GENERALIZATION IN SOFTWARE ENGINEERING

RESEARCH

Building theory is a proven process mature sciences use to accumulate and increase

general knowledge. In software engineering research, some effort has been made to propose

and test theories based on empirical evidence in software engineering (HANNAY; SJoBERG;

DYBa, 2007).

One of the greatest arguments in favor of using theories is that they offer common

conceptual frameworks that allow the organization and structuring of facts and knowledge in a

concise and precise manner, thus facilitating the communication of ideas and knowledge.

According to SJoBERG et al. (2008) theory can be defined as:

... the means through which one may generalize analytically (Shadish et al., 2002;

Yin, 2003), thus enabling generalization from situations in which statistical

generalization is not desirable or possible, such as from case studies (Yin, 2003),

across populations (Lucas, 2003), and indeed, from experiments in the social and

behavioural sciences (Shadish et al., 2002), with which experiments in empirical

SE often share essential features.

The most common process of generalization in science lies through statistical

hypothesis testing, according to (JORGENSEN, 2004). This type of testing was particularly

famous in empirical software engineering studies from 1996 to 2003 and reinforces the claim

that statistical hypothesis testing is a frequently used ingredient in empirical software

engineering studies.

However, JORGENSEN (2004) study highlights the need for more focus on research

questions derived from theory and generalization across populations from sample, as opposed

to isolated hypotheses and generalizations from sample to population through statistical

hypothesis testing.

76

Therefore, FAROL’s conception is well-grounded and theoretically sound since its

structure is based on other theoretical constructs such as decision-making theories, systems of

thinking, knowledge management, continuous improvement and learning theories, agile

development methodology, and decision-making frameworks as depicted in Figure 13.

Figure 13 - FAROL - Theory Building Elements

Source: The author (2023)

After understanding the empirical glue that ties this framework conception to empirical

software engineering studies, we need to delve deeper into this framework’s origins as

explained in section 6.5.

6.5 FRAMEWORK ORIGINS

While developing a novel approach in the field of decision-making framework, it is

necessary to gaze upon certain elements to build a resilient theoretical construct. Therefore, the

following sections will describe the building blocks (aka, elements) to represent this framework.

When conceiving Strategic Planning and Decision-Making Framework (SPADE),

RAJARAM (2020) delimited that its use was restricted for hard decisions. According to that

author, this framework is not meant for every situation but for hard decisions that would have

77

real consequences for a company or group since not all decisions are paramount. However,

urgency and importance parameters can sometimes be perceived differently, impairing or even

tipping the scales of evaluating these aspects.

On the other hand, Observe, Orient, Decide, Act (OODA) loop was created by US Air

Force Colonel John Boyd. Initially, it was designed for tactical engagement, but later expanded

the idea to incorporate broad strategic action (CHUN, 2019). When evaluating this framework,

ENCK (2012) states that decision-making is filtered through culture, genetics, previous

experience, new information, and the ability to analyze and synthesize. This highlights the

importance of identifying influence factors and the external environment before making

terminal decisions.

Both approaches offer valuable insights into effective decision-making, customizing

their application in complex environments. SPADEs five elements, OODA steps, Plan-Do-

Check-Act (PDCA) cycle (aka. Deming Cycle) were valuable concepts in creating FAROL

composition. This scenario, along with studies of TANG; KAZMAN (2021), VLIET; TANG

(2016), GROHER; WEINREICH (2015), and WEINREICH; GROHER; MIESBAUER (2015)

provided the necessary environment to come up with this approach.

Armed with a comprehensive set of objectives, FAROL takes shape by weaving

together concepts from established decision-making methodologies, giving birth to a unique

framework. Still, to leverage FAROL adherence to scientific knowledge, section 6.5.1 will

explain its relationships with the evidence-based approach and its integration with existing

knowledge.

6.5.1 Framework Theoretical Grounding

The FAROL aims to provide software architects with a robust yet flexible process for

making complex design decisions. Grounding it in diverse theoretical foundations demonstrates

that it is not an arbitrary methodology but systematically integrates relevant research and

models into an evidence-based framework.

Building upon this groundwork, it is relevant to elaborate more about the decision-

making theories that provide the intellectual foundation for FAROL ’s innovative approach.

These explicit linkages show that FAROL does not propose steps in a vacuum but purposefully

interweaves knowledge across pertinent disciplines. It aims to contextualize and customize

generalized concepts to the architectural decision realm. The integrated framework distills and

tailors research ideas for practical usage by software teams.

78

Scholars emphasize the importance of grounding new models in previous theories to

motivate their rationale and design (JABAREEN, 2009); (IMENDA, 2014). FAROL ’s

foundations provide initial credibility based on the track records of established decision-

making, design, and learning theories. This credibility sets a direction for subsequent empirical

testing and refinement of the untested new framework.

To leverage this framework’s theoretical foundation, we will explain more about

decisionmaking theories that strengthened its basis. The journey of constructing FAROL

continues by grounding it in various theoretical frameworks, underscoring its systematic

integration of diverse perspectives.

6.5.1.1 Framework Decision-Making Theories

FAROL draws inspiration from crucial decision-making theories to incorporate rational,

naturalistic, intuitive, and data-driven thinking elements. Simon’s theory of bounded rationality

recognizes the inherent cognitive limitations that constrain human decision-making. Rather

than pursuing theoretically optimal solutions, individuals employ heuristics and satisfying

strategies (SIMON, 1955). FAROL acknowledges rationality limits by providing practical

guidelines and encouraging consideration of multiple options.

NDM examines how experts make decisions in real-world contexts (KLEIN, 2008).

Unlike normative models, NDM recognizes the role of experience, intuition, and rational

calculations. FAROL incorporates NDM aspects through its flexible documentation of rationale

using simple templates rather than formal notations.

Dual-process theory differentiates two cognitive systems: fast, instinctive intuition and

slower, conscious analytical reasoning (KAHNEMAN, 2011). System 1 intuition is rapid,

automatic, and high-capacity, exploiting judgmental heuristics and shortcuts. System 2 thinking

is deliberate, rule-governed, and requires effortful focus (THOMPSON; TURNER;

PENNYCOOK, 2011), rather than strictly rational or naturalistic, FAROL combines intuitive

and analytical processing. Its Execution phase applies an intuitive system of thinking to gather

options and assumptions quickly. The Checking phase shifts to the analytical system two

evaluation of alternatives against criteria.

DDDM advocates basing choices on empirical evidence, metrics, and statistical analysis

(PROVOST; FAWCETT, 2013). Enabled by growing data volume and analytics capabilities,

DDDM moves beyond intuition. FAROL incorporates data-driven aspects through steps to

gather relevant architectural data points, establish measurable success metrics, and weigh

79

factual information in evaluating options. However, it avoids over-reliance on data, using it to

supplement (not supplant) expert judgment.

The mapping also identifies gaps between existing research and architectural needs that

FAROL aims to address through synthesis. For instance, traditional stage-gated development

may over-rely on early binding to defined requirements (RAMESH; CAO; BASKERVILLE,

2010). Lean methods provide greater flexibility but can undermine structured evaluations

(BOEHM, 2002). FAROL balances these aspects in a tailored model for architecture decisions.

Transparently citing theoretical sources allows scholars and practitioners to inspect how

FAROL was constructed from prior concepts. These sources enable critique about whether the

right foundations have been integrated appropriately or if particular perspectives are

underrepresented. Feedback can guide the strengthening of theoretical grounding in future

framework iterations.

Overall, the diligent linkage of FAROL steps to precedents in decision-making, design,

organizational science, and other relevant literature aims to demonstrate that it is not a

speculative model. The framework distills, extends, and combines theories to address the

distinct needs of architectural decisions. Tracing these evidentiary origins signals rigor and

depth of research underlying FAROL ’s development. This foundation better equips the new

framework to elicit confidence from adopters for usage and refinement.

Building upon its theoretical foundation, FAROL draws inspiration from various

decisionmaking theories, each contributing a unique facet to its comprehensive methodology.

After elucidating more about FAROL decision-making theories, it is possible to explore the

core tenets of this framework: its structure.

6.6 FRAMEWORK STRUCTURE

This lightweight framework is composed of two parts: four phases and thirteen steps.

Each phase is based on the PDCA cycle, defined as Planning, Execution, Checking, and

Feedback. This approach allows facing decision-making as a continuous improvement process,

as shown in Figure 14. Each phase has several steps, as demonstrated in table 20. A more

detailed explanation will be provided in section 6.6.1 about each of these phases.

80

Table 20 - FAROL Structure

FAROL - Phases and Steps

Planning

Define Decision Context

Reasoning Process

Moment of Architectural

Decision Architectural Decision Options

Execution

Architectural Decision Lifetime

AD Documentation

Influence Factors in AD

Challenges Affecting AD

Checking
Tang and Kazman’s Principles

Decision Evaluation and Selection

Feedback

Communication and Collaboration

Decision Governance

Continuous Learning and Improvement
Source: The author (2023)

6.6.1 Farol Phases

FAROL leverages these strengths of PDCA in its four-phase structure. As illustrated in

figure 14, The Planning phase encompasses problem definition, context analysis, requirements

gathering, and alternative solution identification - similar to the Plan stage. The Execution phase

involves prototyping potential architectures, testing assumptions, and assessing the feasibility

of options - thereby enacting proposed plans. The Checking phase focuses on evaluating

outcomes and results, benefiting from the objective analysis emphasis of Check. Finally, the

Feedback phase consolidates learning, improves documentation, and updates the decision

process through stakeholder communication. These channels key aspects of Act.

Figure 14 - FAROL Phases

Source: The author (2023)

81

6.6.1.1 Farol Planning Phase

The Planning phase in the FAROL aligns with early stages in design theory focused on

problem framing, divergent solution ideation, and initial design synthesis. Using PDCA as

references, this phase aligns with the "Plan" stage, where decision context is established,

alternatives identified, and actions designed. Its composition is illustrated in figure 15.

Figure 15 - FAROL Planning Phase

Source: The author (2023)

Problem scoping and structuring a complex challenge into definable issues is recognized

as a critical first step in design theories (CROSS, 1982). The Planning phase similarly

emphasizes framing the architectural decision context and boundaries through activities likes

takeholder needs analysis, gathering requirements, and scope constraints. This phase parallels

the problem definition stage in the design thinking process (PLATTNER; MEINEL; LEIFER,

2016), establishing the starting point before ideating solutions.

Research shows problem scoping directly influences downstream solution development

(CROSS, 2004). Defining architecture decision scope focuses on generating relevant options

and prevents straying into unnecessary tangents. Scholars argue that problem framing is a

creative act shaping solutions (KOLKO, 2010). In Planning, architects apply creativity in

boundary setting just as in later design.

With the decision context defined, the planning phase focuses on activities like

brainstorming, market scanning, and research to generate multiple architectural solution ideas.

This aligns with the divergent thinking stage in design theories, where the broadest solution set

82

is explored before funneling down selections (TIM, 2009). Open ideation defers evaluation to

stimulate creative associations and possibilities (KELLEY; LITTMAN, 2001).

As a transition from broad ideation, the Planning phase also involves synthesizing

promising options based on the decision drivers. This initial clustering and conceptualization

of alternatives maps to the design synthesis phase where schemes are developed by combining

ideas (CROSS, 2004). Early synthesis channels designers’ attention towards more refined

possibilities even as ideation continues.

By integrating problem scoping, solution ideation, and preliminary synthesis activities,

the Planning phase aims to provide a smooth flow between divergent and convergent design

thinking modes. This fluidity allows architectural knowledge to emerge gradually rather than

suddenly synthesize after extensive ideation. Planning gives structure but encourages flexibility

and reassessment of framing assumptions (DORST; CROSS, 2001).

Grounding the FAROL Planning phase in design theory foundations on problem

framing, ideation, and synthesis provides rigor and evidence-based principles. By mapping

design process elements into architecture decision contexts, FAROL leverages the extensive

creativity research in design disciplines. This aims to stimulate expansive architectural thinking

and prevent preconceived constraints from limiting options prematurely. At the same time,

lightweight synthesis ties ideation back to the concrete problem, directing creative inquiry.

6.6.1.2 Farol Execution Phase

The Execution phase maps to prototyping, testing, and iteration in lean/agile principles.

This phase incorporates concepts of rapid prototyping, empirical testing, and iterative delivery

from agile and lean software development movements.

A core lean principle is deciding as late as possible based on learning (REINERTSEN,

2009). Traditional stage-gated processes need more early commitment to assumed solutions

rather than evidence-based selections. The Execution phase enables architects to defer concrete

decisions by first prototyping multiple architectures quickly (TIM, 2009). This parallels the

lean startup’s focus on minimum viable products to test assumptions (RIES, 2011).

83

Figure 16 - FAROL Execution Phase

Source: The author (2023)

Rapid prototyping avoids over-investment in architectural options before evaluating

their effectiveness. Prototypes may range from low-fidelity sketches or simulations to working

small-scale implementations. The intent validates or refutes architecture decisions through user

feedback over polished productions (PLATTNER; MEINEL; LEIFER, 2016).

Short iterative cycles incorporate learning that informs subsequent solution refinement.

Several scholars note that rapid iteration and feedback are instrumental for complexity

management in software projects involving ambiguous user needs or technology uncertainty

(MACCORMACK; VERGANTI; IANSITI (2001); RAMESH; CAO; BASKERVILLE

(2010)). The Execution phase provides mechanisms to fail fast and incorporate lessons

(DENNE; CLELANDHUANG, 2003). This adaptive capability contrasts stage-gate processes

optimized for predictable domains.

Testing assumptions behind architectural decisions is another agile-inspired aspect of

the Execution phase. Literature highlights the risk of cognitive biases and flawed assumptions

undermining decisions (JUDGMENT UNDER UNCERTAINTY: HEURISTICS AND

BIASES, 1982). Explicitly testing assumptions helps prevent architecture choices from being

built on sand. Early failure spotlights vulnerable areas to address rather than accruing issues

downstream.

In line with agile values, FAROL emphasizes responding to evidence over rigidly

following plans (BECK et al., 2001). The iterative cycles create touchpoints to reevaluate

previous architecture choices regularly. This contrasts with making all decisions in a single

84

upfront sequence isolated from validation feedback. Through empirical learning, teams can

match the evolving architecture to users’ needs rather than initial assumptions.

Some scholars warn of pitfalls in agile adoption, like abandoning essential Planning or

skimping on non-functional requirements (BOEHM, 2002). FAROL incorporates agile aspects

while providing structured decision guidelines to prevent such issues. Overall, the Execution

phase leverages prototyping, testing, and iterative principles from agile models tailored for

architectural decisions. This promotes evidence-based assessments and flexibility in

architecture choices throughout a system’s lifecycle.

Overall, the Execution phase leverages prototyping, testing, and iterative delivery

strategies that emerged from lean and agile movements. This provides a mechanism to probe

architectural decisions using empirical evidence over purely anticipation-based selection

familiar to conventional process models. Avoiding big designs up-front reduces exposure from

incorrect assumptions or outdated user needs (DYBa; DINGSoYR, 2008).

6.6.1.3 Farol Checking Phase

The Checking phase aligns with the evaluation and analysis steps in decision-making

models. This phase incorporates objective evaluation and analysis concepts from established

decision-making theories and process models.

Figure 17 - FAROL Checking Phase

Source: The author (2023)

Simon’s theory of bounded rationality asserts that human judgment is limited when

assessing complex architectures. People employ heuristics that may introduce bias or logical

85

flaws (SIMON, 1955). The Checking phase aims to support sound evaluations using systematic

analysis of alternatives against criteria.

This aligns with prescriptive decision models that structure evaluation to reduce

subjective cognitive traps (HAMMOND; KEENEY; RAIFFA, 1998). Checklists prompt

consideration of critical issues that architects may overlook under time pressure. Weighting

techniques help prevent undue influence from personal preferences.

By delaying in-depth evaluation until this phase, FAROL avoids anchoring and

confirmation bias that premature analysis can introduce in upfront planning (KAHNEMAN,

2011). The Execution phase develops multiple options in parallel to mitigate preconceptions.

Checking evaluates these competing solutions neutrally using evidence-based selection criteria.

Value-focused thinking techniques are incorporated to assess whether options address

stakeholder needs and align with organizational objectives KEENEY (1996).

The Checking phase may apply modeling, simulations, proofs-of-concept, or

experiments to evaluate options for complex architectural decisions under realistic conditions.

Literature highlights the value of empirical testing over untested assumptions (KLEIN;

MECKLING, 1958).

These analytical evaluations aim to mitigate cognitive biases in human decision-

making. The Checking phase provides architects with a systematic decision-selection approach

by supplementing intuitive judgment with structured, rational analysis methods. This reflects

literature advocating integrated thinking leveraging the benefits of intuitive and analytical

cognition (HAMMOND; KEENEY; RAIFFA, 1998). Checklists, weighting criteria, and

experiments inject greater objectivity into architecture choices.

Overall, incorporating evaluation concepts and techniques from decision theory aims to

reduce subjective limitations in assessing architecture options. The Checking phase deploys

empirical and analytical methods to counterbalance bounded rationality constraints. This

provides a rigorous yet flexible evaluation foundation for architecture decision-making before

final selection.

6.6.1.4 Farol Feedback Phase

The Feedback phase reflects learning, improvement, and adaptation research. This

phase aims to enable continuous improvement by integrating architectural learning into the

decision process. This maps to research on organizational learning and adaptive management.

Becoming a learning organization revolves around modifying behaviors based on new

knowledge and insights (GARVIN, 1993). Senge’s work highlights the role of "feedback loops"

86

in surfacing deficiencies and strengthening systems thinking (SENGE, 2014). The Feedback

phase provides mechanisms for architectural feedback through stakeholder reviews and

decision audits.

Evidence-based adaptation is another key concept from learning literature manifest in

this phase. Findings on architecture effectiveness are translated into process changes rather than

discarded after project completion (HEVNER; CHATTERJEE, 2010). Feedback channels help

codify experiences into guidelines, checklists, and templates for reuse in future decisions.

The importance of feedback integration in managing uncertainty is underscored in the

literature. Complex software projects require flexible adaptation as new issues emerge

(THOMKE; REINERTSEN, 2012). The Feedback phase facilitates incremental adjustments in

architecture planning and execution practices based on lessons from completed cycles.

Figure 18 - FAROL Feedback Phase

Source: The author (2023)

Regular architecture decision reviews, as undertaken in this phase, reflect principles of

continuous improvement models like PDCA that emphasize iteration MOEN; NORMAN

(2009). Feedback flows enable incremental enhancement over time rather than disjointed

upgrades. Review meetings provide touchpoints for stakeholders to discuss issues and improve

mutual understanding.

Tracing the origins of each FAROL phase and activity to established theories lends

credibility to its conceptual basis. For instance, the Planning phase is tied to design thinking

research on problem framing, solution ideation, and initial synthesis (KOLKO, 2010); (TIM,

2009). The Execution phase maps to lean startup principles of rapid prototyping, empirical

87

testing, and iteration (RIES, 2011). Checking incorporates structured decision-making

techniques to reduce cognitive limitations (HAMMOND; KEENEY; RAIFFA, 1998).

Feedback channels leverage organizational learning models focused on continual improvement

(SENGE, 2014).

6.6.1.5 Farol Phases and Pdca Cycle

FAROL takes inspiration from the widely adopted PDCA continuous improvement

cycle to inform its phased structure and iterative approach as illustrated in figure 19. First,

conceptualized by management theorist W. Edwards Deming in the 1950s, the PDCA cycle is

a systematic process for controlling and continuously improving processes, products, or

services (MOEN; NORMAN, 2010). It has been applied across manufacturing, business,

education, and healthcare sectors.

At its core, PDCA consists of four repetitive stages: Plan, Do, Check, and Act

(PIETRZAK; PALISZKIEWICZ, 2015). In the Plan phase, objectives are established,

processes are analyzed, and success metrics are defined. Potential solutions and courses of

action are developed. Next, in the Do phase, proposed solutions are implemented on a small or

experimental scale.

Figure 19 - FAROL Phases - PDCA View

Source: The author (2023)

88

The Check phase involves measuring outcomes and results and then comparing these to

expected goals. Gaps and deviations are identified and investigated. In the Act phase, learnings

from the previous iterations are analyzed to determine necessary improvements and adjustments

to objectives, plans, or implementation strategies. The revised plan kicks off another cycle of

PDCA.

6.6.1.6 Farol Phases and Design Thinking Principles

The FAROL aims to leverage key concepts from design thinking to promote human-

centered, creative, and experimental perspectives in architectural decision-making.

Design thinking applies designer workflows and mindsets to problem-solving beyond

traditional design domains (BROWN, 2008). It provides a theoretical grounding on creative

ideation, rapid prototyping, bias mitigation, and evidence-based iteration. As LIEDTKA (2014)

summarizes, core tenets of design thinking include focusing on human needs, "flipping"

questions to reframe problems, ideating without judgment, seeking inspiration, rapid concept

prototyping, and iteratively evolving solutions.

Several scholars have synthesized models to encapsulate the design thinking process.

For instance, the Hasso-Plattner model outlines six nonlinear steps: empathize, define, ideate,

prototype, test, and implement (PLATTNER; MEINEL; LEIFER, 2016). Stanford’s d.school

promotes a similar five-stage framework: empathize, define, ideate, prototype, and test

(DSCHOOL, 2023). Such models move from initial divergent exploration to convergent

refinement.

FAROL incorporates aspects of these design thinking innovations customized for

architectural decisions. The Planning phase draws on human-centered principles to define

decision context and emphasize understanding stakeholders’ needs that architecture must

satisfy (PLATTNER; MEINEL; LEIFER, 2016). The Execution phase leverages design

thinking’s focus on rapid ideation and low-fidelity prototyping of multiple solutions before

selection rather than deciding prematurely (BROWN, 2008). Lightweight ADR documentation

templates enable this experimentation. The Checking and Feedback phases enact iterative

refinement of options based on empirical testing and user feedback, mirroring design thinking

test-and-learn loops (LIEDTKA, 2014).

FAROL counterbalances its creative aspects with systematic idea evaluation during the

Checking phase. Others critique it lacks methodological rigor and consistency in application

(CARLGREN; RAUTH; ELMQUIST, 2016). FAROL provides lightweight, customizable

89

guidelines to promote rigor without over-engineering the human-centered process. Hence, it

preserves design thinking’s adaptability to context.

Overall, FAROL leverages design thinking concepts, including human centricity,

suspension of initial judgment, ideation velocity, early experimentation, and iterative evolution.

It aims to infuse architectural decision practices with designer perspectives on problem framing,

abductive reasoning, tolerance of ambiguity, creative expression, inquiry, and user empathy.

As BROWN (2008) notes, design thinking "taps into capacities we all have but that are

overlooked by more conventional problem-solving practices." FAROL aims to activate these

capacities to enhance architectural decisions.

Integrating design thinking within FAROL ’s broad theoretical grounding illustrates its

applicability in addressing ambiguous, open-ended, and multivariate architecture challenges.

FAROL incorporates related design perspectives like patterns of divergence and convergence

(TIM, 2009), double diamond process models (COUNCIL, 2023), and focus on decision

journey over solutions (KOLKO, 2010). However, it tailors these to the unique context of

architecture, where technical and creativity requirements co-intersect. As FAROL is

empirically tested and refined, design thinking elements enable human-centered, creative, yet

analytically rigorous architectural decisions.

In the next section, we will dive into another essential construct for this framework

called FAROL Steps.

6.6.2 Farol Steps

FAROL steps are conceived to be a practical guide to experts during their process of

choosing appropriate AD as defined in table 20. Using this table as a basis, we will explain how

each step is designed and what concerns should be addressed.

Define Decision Context: This step allows experts to focus on the context. What is

trying to be solved? What is trying to be built? Exploring project goals and objectives is

mandatory to achieve success and manage stakeholders’ requirements and expectations. This

step is relevant to identifying key stakeholders and defining an appropriate communication

channel.

Reasoning Process: Reflects on the reasoning process (intuitive or naturalistic). What

form of rationale allows practitioners to feel more confident in their choices? Based on previous

experiences or following a set of practices and standards defined by the enterprise? Individual

or Group Decision?

90

Moment of Architectural Decision: Suggests an iterative approach. Instead of making

all decisions at a single point, promote a continuous decision-making process throughout the

project lifecycle.

Architectural Decision Options: Enables exploration, comparison, and evaluation of

AD alternatives, leading to better-informed decisions. However, it is necessary to avoid

selecting an excessive number of options.

Architectural Decision Lifetime: Involves revisiting architectural decisions at

predefined intervals to assess their effectiveness, relevance, and alignment with evolving

project needs. Consider major milestones, project phases, or significant changes as triggers for

decision reevaluation. Adapting decisions when necessary ensures their ongoing value.

AD Documentation: Suggests adopting a documentation framework that supports

capturing essential information about architectural decisions without excessive bureaucracy.

Concise templates or structured formats that capture decision context, rationale, alternatives

considered, trade-offs, and implications are good examples of achieving this.

This documentation should be easily accessible, searchable, and maintainable. Experts

argue that whiteboard meetings can effectively document AD (ALMEIDA; AHMED; HOEK,

2022). To increase the understanding of how architecture documentation methods influence

FAROL framework’s documentation step, section 6.6.2.1 will provide more information.

Influence factors in AD: Warn us about the influence factors across multiple

dimensions, such as business, organizational, cultural, individual, technical, project-related, and

other factors. Create awareness among decision-makers about these factors and their potential

impact on architectural decisions. Encourage collaboration with relevant stakeholders who

possess domain expertise.

Challenges Affecting in AD: Raise the awareness of the team and can be helpful to

mitigate challenges such as lack of clarity, i.e., establishing precise requirements engineering

practices to address lack of clarity in requirements. Identify and resolve conflicts in

nonfunctional requirements through negotiation, prioritization, or trade-off analysis. Ensure

realistic scheduling and resource allocation to address insufficient deadlines.

Facilitate effective stakeholder communication and conflict resolution mechanisms to

tackle conflicts between stakeholders. Consider legal and contractual obligations during

decisionmaking to avoid violations or conflicts. Promote knowledge-sharing and learning

initiatives to address the need for more familiarity in the business domain.

Tang and Kazman’s Principles: It is a holistic way to confirm that good practices for

software architecture decisions have been used. The incorporation of these principles in the

91

decision-making process can be helpful. For example, base decisions on factual information,

empirical evidence, and data whenever possible.

Decision Evaluation and Selection: It helps us to establish decision evaluation criteria

aligned with project goals, stakeholders’ requirements, and quality attributes. Besides, decision

evaluation techniques can be used to check the relationship between the results and the defined

criteria.

Communication and Collaboration: It has two primary responsibilities. Facilitate

effective communication channels: Establish channels for communication and collaboration

among decision-makers and stakeholders. Utilize tools like online collaboration platforms,

discussion forums, and regular meetings to share information, discuss decisions, address

concerns, and gather feedback.

Encourage cross-disciplinary collaboration: Foster collaboration between architects,

developers, business analysts, and other stakeholders to ensure a comprehensive understanding

of the decision context and to leverage diverse perspectives.

Decision Governance: It is composed of two activities. Definition of decision

governance structure and Implementing decision review and approval process. First, it is

necessary to establish a clear decision-making authority and accountability structure. Second,

it is necessary to evaluate, review, approve, and document architectural decisions objectively.

Continuous Learning and Improvement: It has two stages. Promotion of a learning

culture and Auto-Evolutionary form. The first stage has the role of encouraging continuous

learning and improvement in architectural decision-making. The second stage is necessary to

assess the effectiveness of the approach. By seeking feedback, the lightweight approach can be

adapted based on lessons learned and emerging best practices in the field.

6.6.2.1 Architecture Documentation and Ad Documentation Step

Adequate architecture decision documentation enables teams to capture design rationale

and learnings for future reference. Lightweight, incremental documentation balanced with

sufficient rigor is a critical enabler for continuous architectural improvement. As such,

FAROL’s documentation steps build on concepts from seminal architecture documentation

methods while customizing them for conciseness and flexibility.

Prominent among predecessors is TYREE; AKERMAN (2005) template comprising

sections like Status, Context, Solutions, Assumptions, Implications, and Notes. It emphasizes

succinctly documenting decision outcomes rather than a comprehensive analysis. This template

inspired later methods prioritizing architecture knowledge retention over detailed

92

documentation ceremony (ZIMMERMANN; LORENZ; OPPERMANN, 2007). For instance,

the Architectural Decision (AD) model defines core elements like Decision, Status, Context,

Solution, Rationale, and Implications (JANSEN; BOSCH, 2005).

A highly influential documentation method is the ADR introduced by Michael Nygard.

ADRs capture architecture decisions using a lightweight template covering Context, Decision,

Status, Consequences, and Compliance. Nygard positioned ADRs as an agile-friendly practice

for open documentation favored over exhaustive models. ADRs spawned initiatives like

MADR that provided developer-friendly Markdown versions (KOPP; ARMBRUSTER, 2019).

In FAROL, the Execution phase’s AD Documentation step suggests adaptable templates

for capturing architecture decisions, leveraging the concepts developed in prior methods

(NYGARD, 2011) (JANSEN; BOSCH, 2005). FAROL promotes succinct documentation

formats focusing on what architects need to know rather than formal specifications. Simple

contextual descriptions are favored over comprehensive analytical models that can overburden

stakeholders (TYREE; AKERMAN, 2005).

It also incorporates contextual documentation guidance, such as documenting

architecture significant enough to cost at least one week of rework if changed (BOER et al.,

2007). Usability research indicates architects favor simple templates that quickly create and

annotate (LETHBRIDGE; SINGER; FORWARD, 2003). FAROL aims for minimal overhead,

so benefits exceed the costs of documentation effort.

Overall, FAROL ’s agile and lightweight philosophy towards architecture

documentation balances conciseness and utility. It leverages previous research on architecture

decision templates and rationale capture while customizing for flexibility over prescriptiveness.

The focus is on pragmatic and outcome-oriented principles for documentation. FAROL aims to

place outcomes before documenting the ceremony. It encourages teams to adapt documentation

practices to their needs rather than be constrained by conventions.

The following section will explain FAROL steps and theoretical foundation.

6.6.2.2 Farol Steps and Theoretical Foundation

The theoretical background provides the intellectual foundation for a novel

decisionmaking framework. It helps establish the framework’s validity, practicality, and

potential for impacting both theory and practice in decision-making. Considering the layout

provided by section 6.5.1, the table 21 outlines the FAROL steps, their descriptions, and related

theoretical sources.

93

Table 21 - FAROL Steps and Theoretical Foundation Relationship

FAROL Step Description Theoretical Foundations

Define Decision

Context

Frame architectural

challenge, requirements,

constraints

Problem scoping (Cross,

2004), Problem framing

(Kolko, 2010)

Reasoning Process Select intuitive vs analytical

thinking approach

Dual process theory

(Kahneman, 2011)

Moment of Decision Determine continuous vs

point-based decision cadence

Agile iterative development

(Beck et al., 2001)

AD Options Explore architecture patterns

and alternatives

Design ideation (Brown,

2009), Conceptual solution

generation (Hey et al., 2008)

Lifetime Definition Establish intervals for

decision revisit

Iterative reflective practice

(Schon, 1983)

Document Decisions Create lightweight templates

to capture rationale

Agile documentation

(Prenner, 2019), Design

rationale capture (Chen et

al., 2014)

Identify Influences Recognize factors impacting

architecture decisions

Architecture decision-

making factors (Tang et al.,

2006; Weinreich et al.,

2015)

Mitigate Challenges Develop strategies to address

decision obstacles

Architecture decision-

making; Ali Babar et al.,

2006) challenges (Tang et

al., 2006

Apply Principles Leverage guidelines to

improve reasoning

Software architecture

decision principles (Tang &

Kazman 2021)

Evaluate Options Assess architecture

alternatives against criteria

Structured decision analysis

(Hammond et al., 1998),

Cost-benefit analysis (Nord

et al., 2007)

Communication Facilitate stakeholder

discussions and feedback

Collaborative rationality

(Engelhardt & Edwards,

2019), PDCA (Deming,

2000)

Governance Establish decision review and

approval mechanisms

Architecture governance

(Isozaki & Nakamura,

2005), Value-based

governance (Lee & Miller,

2004)

Continuous

Improvement

Incorporate learnings into

future decisions

Organizational learning

(Senge, 2014), Evidence

based practice (Hevner &

Chatterjee, 2010)
Source: The author (2023)

94

6.7 COMPARISON BETWEEN FAROL AND SOME DECISION-MAKING

FRAMEWORKS

Table 22 briefly compares FAROL with existing decision-making frameworks,

highlighting some key attributes. These attributes capture scope, methodology, usability,

flexibility, resources needed, and knowledge retention capability. This comparison will display

this novel approach’s key attributes with some known frameworks.

We analyzed several existing decision-making frameworks in the context of software

architecture. Each framework comes with its own set of key attributes that define its approach

to guiding architectural decisions. This comparison aims to shed light on the unique

characteristics of each framework and provide insights into its strengths and limitations.

In the next section, we will explore the use of this proposal through three famous

architectures: Monolithic, Microservice Architecture (MSA), and Command Query

Responsibility Segregation (CQRS).

Table 22 - FAROL and Existing Decision-Making Frameworks

Comparison

Framework Key Attributes

AHP

Pairwise comparisons and hierarchical weighting

Subjective assessments

Prone to inconsistencies

Tedious pairwise comparisons

Focused on ranking/prioritization

ADD

Formal quantitative approach

Models quality attributes

Not easily scalable

Requires expertise in modeling

Limited documentation features

ALMA

Analyzes modifiability by scenario profiling

Limited tool support

Does not cover all decisions

Text-based scenarios

Retrospective analysis

ATAM

Focuses on trade-off analysis and risk identification

Rigorous but complex process

Uses multiple evaluation methods

Resource intensive

Limited tool support

CBAM

Cost-benefit analysis of architecture candidates

Quantitative financial models

No guidelines for decision making

Narrow focus on cost-benefit

Difficult dependency modelling

95

Knowledge Architect

Knowledge-based using ontologies

Automated reasoning and recommendations

Requires extensive upfront knowledge capture

Comprehensive ontology development

Tight coupling to tools

FAROL

Lightweight and incremental

Covers end-to-end decision process

Practical guidelines based on theory

Flexible documentation

Facilitates stakeholder communication

Customizable checklists Low tool overhead
Source: The author (2023)

6.8 EXAMPLES

6.8.1 Monolithic Example

Context: A simple Create-Read-Update-Delete (CRUD) application to manage assets

of company. The software must control where each asset is, who detains the property, and its

current state.

Define Decision Context: Considering the system’s simplicity, the requirements are

easily perceived, and it is possible to use a monolithic approach.

Reasoning Process: Rational. Monolithic architecture is a tried and tested standard

method; it is also considered more trustworthy than anything newer and, therefore, more

untested.

Moment of Architectural Decision: Beginning of the project with PO, team members,

and stakeholders to decide the project’s scope and timeline.

Architectural Decision Options: Since requirements are relatively simple, it is possible

to use a monolithic approach.

Architectural Decision Lifetime: The nature of the project allows us to use upfront

decisions with a possible revaluation during later stages using stakeholders’ feedback.

AD Documentation: UML diagrams and Word documents using the arc42 template

can be used since these options provide a general view of what should be

documented/communicated and how your architecture can be documented/communicated.

Influence Factors in AD: Project characteristics allow the use of a monolithic

approach. Development speed, simplicity, and straightforwardness of creating an application

based on one code are positive signals of its utilization.

Challenges Affecting AD: Scalability and maintainability are recognized as potential

challenges of a Monolithic Architecture.

96

Tang and Kazman’s Principles: As described in Table 23.

Decision Evaluation and Selection: Considering evaluating project progress with

objective criteria. Like rapid development, faster time-to-market, and simplicity of deployment.

Communication and Collaboration: Emphasize clear communication among team

members and stakeholders regarding the chosen Monolithic Architecture. Share the decision

rationale and maintain open channels for discussions.

Decision Governance: Establish a clear decision-making structure for the Monolithic

Architecture. This structure could involve project leads or team leaders who have the authority

to ensure the architectural decision aligns with the project’s goals.

Continuous Learning and Improvement: Encourage a culture of continuous

improvement. Regularly assess the effectiveness of the Monolithic Architecture in meeting the

immediate project goals and identify areas for improvement.

Table 23 - Tang and Kazman Principles on Monolithic

Principles

Use facts Monolithic Architecture is optimal for small

applications because of rapid development,

simplicity of testing and debugging, and cost.

However, when the system grows, it can become

an obstacle for business and should evolve into

another form.

Check Assumptions and Explore Contexts CRUD applications are easy to build, but

validating their usability with users is necessary

to avoid possible rework.

Weigh pros and cons Simplicity (development, debugging, testing,

and deployment) of monolithic are enticing. On

the other hand, high coupling, testing, and

performance issues are well-known

disadvantages.

Design around Constraints Considering the nature of the project, it is

possible to use scaffolding techniques to

accelerate the generation of the application’s

skeleton.

Generate Multiple Solution Options Consider using more than one UI option for your

CRUD if the app can be used on mobile or web.

Define the Time Horizon Since the project size is small and requirements

are straightforward, it is possible to define a

safer timeline.

Assign Priorities Focus on key aspects of the system and present

an MVP to solve possible design doubts.

Anticipate Risk Ensure active user participation and testing in

the development phase to avoid late changes.
Source: The author (2023)

97

6.8.2 Microservice Architecture Example

Context: A small startup of 5 members is being hired to develop a data mining and

procedural data evaluation solution for a Court. Given the nature of the business, the

microservices architecture was chosen, as the task segmentation could be done through two

services: data extraction and processing and evaluation.

Define Decision Context: The analysis of procedural data involves mapping relevant

aspects of this data. What classes will be needed? What relationships are relevant?

Reasoning Process: Intuitive. Considering that the team already has previous

experience with MSA, it seems a reasonable choice.

Moment of Architectural Decision: Beginning of the project with Whiteboard

Meetings at each iteration.

Architectural Decision Options: Considering a service-oriented approach, MSA,

SOA, or Serverless could be used.

Architectural Decision Lifetime: Considering the usage of agile methodology,

architectural decisions can be reevaluated at the start of each sprint.

AD Documentation: Whiteboards during meetings with Wiki.

Influence Factors in AD: Considering organizational aspects, company size, team

expertise, and previous experiences, we can identify these factors that vouch for MSA choice.

Challenges Affecting AD: Here are some examples of these challenges:

▪ Lack of familiarity with procedural data can bring undesired results;

▪ Scalability and Cost can be conflicting NFRs;

▪ Legal Contractual Obligations, such as LGPD, can impair the viability of the

solution;

▪ Hosting solution on-premise or on the cloud can incur conflict between

Stakeholders;

Tang and Kazman’s Principles: As described in Table 24.

Table 24 - Tang and Kazman Principles on MSA

Principles

Use facts Since the team has already used MSA, they

know good prospects for this solution.

Check Assumptions and Explore Contexts During the process of data analysis, it is

essential to check data consistency and

relationships.

98

Weigh pros and cons Complexity, latency, and points of failure are

examples of problems with using MSA. On the

other hand, flexibility, scalability, and fault

isolation are advantages of MSA.

Design around Constraints Some of the procedural data comes from PDFs

and multimedia. Specialized services can be

designed to handle this type of data.

Generate Multiple Solution Options parallel processing or data streaming are

possible options for data handling.

Define the Time Horizon A parameter of three weeks for each sprint can

be used to assess architectural decisions.

Assign Priorities Large Language Models (LLMs) can accelerate

visualizing data relationships since data

mapping is critical.

Anticipate Risk Hosting on the cloud can be helpful, but latency

and data protection (LGPD) could impact this

process.
Source: The author (2023)

Decision Evaluation and Selection: During each iteration of architectural decisions, is

the MSA adoption reevaluated? This architecture overall has better performance than others.

Communication and Collaboration: For internal communication and collaboration,

presential or online meetings can discuss hardships and share project evolution. The project

repository can be used for this purpose as well. For external, e-mails and collaborative

environments such as Microsoft Teams can be used.

Decision Governance: Are the segmentation of the designed solution in three different

services informed to the client? Will the agreement for this model be done using formal

documents, or is the team leader or project owner responsible?

Continuous Learning and Improvement: MSA’s adoption can be reviewed at the end

of the project. Which AD’s were more important, and how were they managed?

6.8.3 Command Query Responsibility Segregation Example

Define Decision Context: The system requirements analysis indicates the need for a

scalable and high-performance architecture that separates write operations from read

operations.

Reasoning Process: Rational. Based on industry best practices and existing knowledge,

CQRS is a reasonable choice considering the project’s specific requirements.

Moment of Architectural Decision: Beginning of the project during the initial

architectural design phase.

99

Architectural Decision Options: CQRS or a traditional monolithic architecture could

be considered considering the need for separating write and read operations.

Architectural Decision Lifetime: Since CQRS introduces a significant change in the

system’s architecture, it is essential to consider its long-term viability. Regular evaluations and

reevaluations should be conducted as the project progresses.

AD Documentation: UML diagrams or C4 Models can help convey CQRS complexity

and isolate iterations between datastore and information systems.

Influence Factors in AD: Consider scalability requirements, complex domain model,

high concurrency, and the need for improved performance. Evaluate how CQRS aligns with

these factors and its potential impact on the project.

Challenges Affecting AD: Here are some examples of these challenges:

▪ Lack of familiarity with using CQRS can be an issue. It is necessary to check

the familiarity of the team;

▪ The Complexity of maintaining Separate Read and Write Models can be

conflicting NFRs;

Tang and Kazman’s Principles: As described in Table 25.

Decision Evaluation and Selection: Regularly evaluate the adoption of CQRS by

assessing its impact on performance, scalability, maintainability, and development productivity.

Compare the actual benefits achieved with the expected advantages of CQRS.

Table 25 - Tang and Kazman Principles on CQRS

Principles

Use facts Consider empirical evidence, case studies, and

success stories of organizations adopting CQRS

to validate its benefits.

Check Assumptions and Explore Contexts Analyze the system’s requirements, data flows,

and performance considerations to ensure that

CQRS fits suitably.

Weigh pros and cons Evaluate the advantages of improved

performance, scalability, and separation of

concerns against the potential Complexity and

increased development effort.

Design around Constraints Consider constraints such as existing system

components, integration requirements, and the

team’s technical capabilities.

Generate Multiple Solution Options Explore alternatives to CQRS, such as a

monolithic architecture with performance

optimizations.

100

Define the Time Horizon Consider the project timeline and iterations to

assess the feasibility and impact of

implementing CQRS.

Assign Priorities Determine the critical areas where CQRS can

provide the most significant benefits, such as

high frequency write operations or complex

reporting needs.

Anticipate Risk Identify potential risks such as data

synchronization issues, increased operational

Complexity, and the learning curve for the

development team.
Source: The author (2023)

Communication and Collaboration: Facilitate communication channels between

developers, architects, and stakeholders to discuss the challenges, progress, and benefits of

adopting CQRS. Utilize collaborative tools and platforms for efficient communication and

knowledge sharing.

Decision Governance: Establish clear decision-making authority and accountability for

selecting and implementing CQRS. Define a decision review and approval process to ensure

that architectural decisions align with project goals and standards.

Continuous Learning and Improvement: Encourage a learning culture within the

team to improve the implementation and utilization of CQRS continuously. Share lessons

learned, identify areas for improvement, and adjust the approach based on feedback and

emerging best practices.

6.9 FAROL EVALUATION SURVEY RESULTS

The evaluation of the FAROL architectural decision framework, conducted through a

detailed survey, offers valuable insights into the framework’s effectiveness in assisting

architectural decision-making. This comprehensive analysis, based on participant responses,

explores user demographics, perceived usefulness of FAROL, difficulties faced, and potential

areas for improvement.

From the end of the third to the fourth week of January 2024, the survey was hosted on

Google Forms with 12 participants. 66,7% of participants came from the public or government

sector and 33,3% from industry (private).

91,7% of them are part of a company whose size is greater than 100 employees. The

nature of the companies’ activities varies, ranging from limited companies to multinationals.

The most predominant type of solution among companies is the web sector (91.7%), with the

mobile sector (58.3%) being the second most common.

101

In the next section, we will reason about three hypotheses (completeness, relevance, and

utility).

6.9.1 Hypothesis of Completeness

The definition of completeness according to OXFORD (2024) is the fact of including

all the parts, etc., that are necessary; the fact of being whole. Using the first sentence as a

reference, the completeness hypothesis argues that FAROL composition includes several

relevant aspects to make an architectural decision. From data collected, more than 91% of

participants considered that FAROL aids positively to architectural decisions. The figure 20

illustrates the results of each question.

6.9.2 Hypothesis of Relevance

According to OXFORD (2024), relevance is a close connection with the subject you are

discussing or the situation you are in. Furthermore, this hypothesis of relevance reasons the

connection between FAROL and its objective of aiding the process of making AD.

For 75% of participants considered the example used to ground FAROL relevance

highlighted critical aspects of AD. 83,6% of respondents agree that FAROL analysis considered

several distinct relevant aspects of AD.

6.9.3 Hypothesis of Utility

According to OXFORD (2024), the utility can be understood as a synonym of

usefulness, and it is defined as the fact of being useful or possible to use and for 75% of

participants provided enough arguments to make a sound architectural evaluation.

102

Figure 20 - FAROL - Survey Evaluation Results

Source: The author (2023)

The following section will explore more information about FAROL shortcomings and

future enhancements.

6.9.4 Challenges and Possible Improvements

After collecting experts’ opinions about FAROL application and composition, it is clear

that there is still room for improvement and some challenges that need to be addressed to better

use this framework.

One significant concern raised by participants is the complexity and timetable to

implement FAROL in their workplace. Therefore, it would be necessary to refactor FAROL

composition to become more customized and well-rounded using agile frameworks like Scrum

and Kanban. The complete shortcomings are in table 26.

Experts proposed several future enhancements. The list below was compiled from their

feedback:

1. Improve risk management and risk mapping to improve team awareness of cost

implications;

2. Include multiple levels of evaluation in each phase (strategic, tactical, and

operational);

3. Improve the description of each phase and step, providing more examples and

describing inputs and outputs along FAROL structure;

4. Introduce adaptability/flexibility in the framework’s core to enable fast changes to

dynamic environments;

103

5. Create a guideline for each architecture and related technologies;

6. Include more graphic information using BYTEBYTEGO (2023) methodology.

Table 26 - FAROL Architectural Shortcomings

FAROL’s List of Architectural Decision Debt

Reason Description

Complexity and Extension Some participants considered the framework extensive and

potentially more suitable for large corporations than startups,

indicating that the complexity and extent of the process may

be challenging for smaller organizations or those with limited

resources.

Time and Resources The need for time and resources to apply all framework steps

was a concern, especially in projects with tight deadlinesor

smaller teams.

Lack of Flexibility The rigidity of the framework and the limited ability to adapt

to unexpected changes in the project were highlighted as

difficulties.

Documentation Overhead The emphasis on complete documentation can be

burdensome, especially for smaller teams.

Lack of Contextualization Some participants felt a lack of applicability of the framework

in different contexts and the need to adapt to different areas

of architecture (solutions, software, infrastructure).

Lack of Specific Phases The absence of phases such as risk mapping and cost

assessment were mentioned, suggesting that these aspects are

important for a complete architectural analysis.

Insufficient Details There was a lack of details about each stage’s duration and

specific activities, the artifacts produced, and examples of

application in contexts where the team did not know the

available options.
Source: The author (2023)

6.10 LIMITATIONS

The limitations of FAROL can be summarized as follows:

Limited empirical evaluation: While the framework has been developed with input

from experts in software architecture, it has not undergone extensive peer evaluation from the

broader research community. Peer evaluation is essential to ensure the framework’s rigor and

quality and identify potential biases or shortcomings.

Limited scalability: The framework may face challenges when applied to large-scale

and complex software projects. As the Complexity and size of the project increase, it may

become more challenging to apply all the phases and steps of the framework effectively. Further

research and refinement are needed to address scalability concerns.

104

Subjectivity in decision-making: The decision-making process in software

architecture is inherently subjective, influenced by individual experiences, preferences, and

organizational contexts. While FAROL provides a structured approach, it does not eliminate

the inherent subjectivity of decision-making. The framework should be used as a guide and

complemented with expert judgment and critical thinking.

Limited coverage of specific architectural styles: The framework focuses on general

decision-making aspects in software architecture and does not provide in-depth guidance for

specific architectural styles or paradigms. Adapting and extending the framework to address

the unique challenges and considerations of specific architectural styles may be necessary.

Dependence on practitioner expertise: The effectiveness of FAROL relies on the

expertise and knowledge of the practitioners using the framework. It assumes that practitioners

have a particular understanding and experience in software architecture. Novice practitioners

may require additional support and training to apply the framework effectively.

Potential resistance to change: Introducing a new decision-making framework within

an organization may face resistance from stakeholders accustomed to existing practices. The

successful adoption of FAROL may require change management strategies and efforts to

promote its benefits and gain organizational buy-in.

Addressing these limitations through further research, empirical evaluation, and

refinement of the framework will strengthen the applicability and effectiveness of FAROL in

supporting decision-making in software architecture.

6.11 SUMMARY OF THIS CHAPTER

This chapter introduced the Lightweight Architectural Decision Framework (FAROL),

a novel approach for supporting decision-making in software architecture. The framework was

developed to address IT experts’ challenges in making architectural decisions and provide a

comprehensive understanding of the decision-making process.

The chapter highlighted the importance of decision rationale and technical knowledge

in achieving accurate system architectures. It then presented the problem statement,

emphasizing the need for a resilient and well-informed architectural decision-making process.

The objectives of FAROL were outlined, including comprehending decision rationale,

understanding critical aspects in architecture choices, pinpointing risks, emphasizing

documentation, and reasoning about influence factors and challenges.

The structure of FAROL consisted of four phases: Planning, Execution, Checking, and

Feedback. Each phase was further divided into specific steps, forming a continuous

105

improvement cycle. The chapter provided an overview of the steps and their significance in

decision-making.

Two examples, Microservices Architecture (MSA) and Command Query Responsibility

Segregation (CQRS), were presented to demonstrate the practical application of FAROL. These

examples illustrated how the framework could be used to make informed architectural

decisions, considering factors such as decision context, reasoning process, decision evaluation,

communication, and continuous improvement.

Finally, the chapter discussed the limitations of FAROL, including the need for

empirical evaluation, limited peer review, scalability challenges, subjectivity in decision-

making, coverage of specific architectural styles, dependence on practitioner expertise, and

potential resistance to change. These limitations highlighted the areas for further research and

refinement of the framework.

In conclusion, the Lightweight Architectural Decision Framework (FAROL) offers a

structured and comprehensive approach to support decision-making in software architecture.

While it provides valuable guidance, further evaluation and refinement are necessary to address

its limitations and enhance its effectiveness in real-world projects.

106

7 CONCLUSION

Making architectural decisions in software development is a multifaceted challenge that

requires careful consideration of various factors, from technical requirements to team

capabilities. Architects, software engineers, and other experts are pivotal in ensuring these

decisions are well-informed, rational, and aligned with project goals. This chapter concludes

our exploration by merging the insights from both perspectives into a comprehensive closing.

7.1 FAROL: A LIGHTWEIGHT ARCHITECTURAL DECISION FRAMEWORK

The FAROL is a milestone in the evolution of software architecture. It provides a

structured approach to making architectural decisions, offering a systematic methodology for

evaluating options, assessing risks, and effectively communicating findings. In the face of the

inherent complexities and uncertainties of architectural decision-making, FAROL is a guiding

light for architects and development teams.

Throughout this work, we’ve dissected the intricacies architects encounter during

decision-making. The core objectives of FAROL—ensuring clear decision rationale,

understanding architectural nuances, risk identification, documentation emphasis, and fostering

continuous improvement—have been underscored. By unveiling its four-phase structure—

Planning, Execution, Checking, and Feedback—, we’ve demonstrated how FAROL can be

pragmatically employed in real-world scenarios through illustrative case studies.

7.2 ADAPTABILITY AND FUTURE ENHANCEMENTS

Acknowledging that FAROL is not a rigid formula is crucial. Instead, it’s a versatile

framework that necessitates adaptability to suit specific project contexts. Each project has

unique requirements, constraints, and variables, demanding tailored application of FAROL’s

principles and phases.

As we embrace the evolving landscape of software architecture, FAROL offers a

valuable asset to seasoned architects and newcomers alike. Promoting a culture of thoughtful

decision-making empowers teams to navigate the intricate landscape of architectural choices

with confidence and clarity.

7.3 CONTRIBUTIONS AND FUTURE PATHWAYS

This research has contributed significantly to advancing the understanding and

application of architectural decision-making. The creation of FAROL, with its structured

107

approach and emphasis on rationale and documentation, is a testament to the commitment to

enhancing software architecture practices.

However, every framework has limitations. FAROL acknowledges its boundaries while

harnessing its strengths. In recognizing these aspects, this work lays the foundation for future

research and refinement. Some avenues for further exploration include:

Empirical Validation: Empirical studies and real-world case applications are essential

to validate FAROL’s effectiveness and applicability in diverse contexts.

Peer Review: Engaging the broader research community through extensive peer review

will enhance the framework’s robustness and identify potential improvements.

Scalability Enhancement: Addressing concerns related to the scalability of FAROL

for complex projects would expand its utility across a broader spectrum of scenarios.

Domain-Specific Guidance: Exploring the adaptation of FAROL to specific

architectural styles or paradigms will provide targeted guidance for unique challenges.

Novice Practitioner Support: Developing resources and training for novice

practitioners will enable them to utilize FAROL effectively.

Change Management Strategies: Strategies for managing resistance to adopting

FAROL within organizations will facilitate smoother integration.

Web questionnaire enhancement: The web questionnaire needs to be evolved to

validate this instrument through more robust statistical methods, such as exploratory factor

analysis. The lack of proper mechanisms to evaluate decision-making in software architecture

poses a considerable challenge to improving studies in this area.

Influence factors weight scale: Another area that requires further investigation, it’s the

weight of the influence factors in architectural decisions. A more robust classification of these

factors can provide a better guideline for future researchers.

In conclusion, the Lightweight Architectural Decision Framework (FAROL) is a

compass guiding architects through the intricate journey of software architecture. Its principles,

phases, and steps pave the way for making informed, reasoned, and documented architectural

decisions. As software architecture evolves, FAROL remains a cornerstone of effective

decision-making. Through ongoing refinement, application, and future research, FAROL has

the potential to shape the software landscape, fostering robust and resilient systems that stand

the test of time.

108

REFERENCES

ALLEN, I.; SEAMAN, C. Likert scales and data analyses. Quality Progress, [S.l.], v.40, p.64–

65, 07 2007.

ALLEN, R. Formalism and informalism in software architectural style: a case study. In: FIRST

INTERNATIONAL WORKSHOP ON ARCHITECTURES FOR SOFTWARE SYSTEMS.

Proceedings. . . [S.l.: s.n.], 1995.

ALMEIDA, E. S. de; AHMED, I.; HOEK, A. van der. Lets Go to the Whiteboard (Again):

perceptions from software architects on whiteboard architecture meetings. 2022.

AMELLER, D.; FRANCH, X. Assisting software architects in architectural decision-making

using Quark. CLEI Electronic Journal, [S.l.], v.17, n.3, 2014.

AMPATZOGLOU, A. et al. Identifying, categorizing and mitigating threats to validity in

software engineering secondary studies. Information and software technology, [S.l.], v.106,

p.201–230, 2019.

ARROYO, P.; TOMMELEIN, I.; BALLARD, G. Deciding a sustainable alternative by

‘choosing by advantages’ in the AEC industry. In: CONF. OF THE INTERNATIONAL

GROUP FOR LEAN CONSTRUCTION (IGLC), SAN DIEGO, CA, 20. Proceedings. . . [S.l.:

s.n.], 2012.p.41–50.

ARROYO, P.; TOMMELEIN, I.; BALLARD, G. Comparing AHP and CBA as Decision

Methods to Resolve the Choosing Problem in Detailed Design. Journal of Construction

Engineering and Management, [S.l.], v.141, p.04014063, 10 2014.

AWS. Using architectural decision records to streamline technical decision-making for a

software development project. 2022.

BABAR, M. A. et al. Software Architecture Knowledge Management: theory and practice.

1st.ed. [S.l.]: Springer Publishing Company, Incorporated, 2009.

BARAIS, O. et al. Software Architecture Evolution. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2008. 233–262p.

BASS, L.; KAZMAN, R.; CLEMENTS, P. Software Architecture in Practice. 3.ed. Boston,

MA: Addison-Wesley Educational, 2012.

BECK, K. et al. Manifesto for Agile Software Development. 2001.

BHAT, A. Surveys: what they are, characteristics & examples. 2018.

BHATTACHERJEE, A. Social science research: principles, methods, and practices. North

Charleston, SC: Createspace Independent Publishing Platform, 2012.

BOEHM, B. Get ready for agile methods, with care. Computer, [S.l.], v.35, n.1, p.64–69, 2002.

BOER, R. C. de et al. Architectural Knowledge: getting to the core. In: SOFTWARE

ARCHITECTURES, COMPONENTS, AND APPLICATIONS, Berlin, Heidelberg. Anais. . .

Springer Berlin Heidelberg, 2007. p.197–214.

109

BONO, E. de. Six thinking hats: an essential approach to business management. New York,

NY: Little, Brown Company, 1999.

BOYNTON, P. M.; GREENHALGH, T. Selecting, designing, and developing your

questionnaire. BMJ (Clinical research ed.), [S.l.], v.328, n.7451, p.1312–1315, 2004.

BROOKS, F. P. No Silver Bullet -Essence and Accident in Software Engineering. 1986.

BROWN, T. Design Thinking. Harvard business review, [S.l.], v.86, p.84–92, 141, 07 2008.

BRYMAN, A. Social Research Methods. 5.ed. London, England: Oxford University Press,

2015.

BUSCHMANN, F. et al. Pattern-oriented software architecture: a system of patterns. Nashville,

TN: John Wiley & Sons, 1996.

BYTEBYTEGO. EP91: rest api authentication methods. 2023.

CARLGREN, L.; RAUTH, I.; ELMQUIST, M. Framing Design Thinking: the concept in idea

and enactment. Creativity and Innovation Management, [S.l.], v.25, p.38–57, 03 2016.

CARTER, J. Time to market (TTM): 5 ways to reduce it and market quickly. 2023.

CHUN, C. John Boyd and the “ooda” Loop (great strategists). [S.l.]: US Army War College,

2019.

COCKBURN, A. Hexagonal architecture. 2005.

CONTENT TEAM, L. Software design vs. software architecture. 2022.

COOKE, R. M. Experts in uncertainty: opinion and subjective probability in science.

environmental ethics and science policy series. Cary, NC: Oxford University Press, 1991.

COUNCIL, D. Framework for innovation. 2023.

CROSS, N. Designerly ways of knowing. Design Studies, [S.l.], v.3, n.4, p.221–227, 1982.

Special Issue Design Education.

CROSS, N. Expertise in design: an overview. Design Studies, [S.l.], v.25, p.427–441, 09 2004.

CUMMINGS, D. B. Reference Architecture Brief: software observability. 2023.

DASANAYAKE, S. et al. Software Architecture Decision-Making Practices and Challenges:

an industrial case study. In: AUSTRALASIAN SOFTWARE ENGINEERING

CONFERENCE,2015. Anais. . . [S.l.: s.n.], 2015. p.88–97.

DAWES, J. "Do data characteristics change according to the number of scale points used?". Int.

J. Mark. Res., [S.l.], v.50, p.61–77, 01 2007.

de Boer, R. C.; van Vliet, H. On the similarity between requirements and architecture. Journal

of Systems and Software, [S.l.], v.82, n.3, p.544–550, 2009.

110

DENNE, M.; CLELAND-HUANG, J. Business of Software Development. Old Tappan, NJ:

Prentice Hall, 2003.

DHADUK, H. 10 best software architecture patterns you must know about. [S.l.]: Simform,

2020.

DILLMAN, D. A.; SMYTH, J. D.; CHRISTIAN, L. M. Internet, phone, mail, and mixed mode

surveys: the tailored design method, 4th ed. [S.l.]: Somerset: Wiley, 2014. v.4.

DORST, K.; CROSS, N. Creativity in the design process: co-evolution of problem–solution.

Design Studies, [S.l.], v.22, n.5, p.425–437, 2001.

DSCHOOL. [S.l.]: Hasso Plattner Institute of Design, 2023.

DUC, A. N.; ABRAHAMSSON, P. Minimum Viable Product or Multiple Facet Product? The

Role of MVP in Software Startups. In: AGILE PROCESSES, IN SOFTWARE

ENGINEERING, AND EXTREME PROGRAMMING, Cham. Anais. . . Springer International

Publishing, 2016. p.118–130.

DUTOIT, A. H. et al. Rationale Management in Software Engineering. Berlin, Heidelberg:

Springer-Verlag, 2006.

DYBa, T.; DINGSoYR, T. Empirical studies of agile software development: a systematic

review. Information and software technology, [S.l.], v.50, n.9–10, p.833–859, 2008.

EDEN, A. H.; HIRSHFELD, Y.; KAZMAN, R. Abstraction classes in software design. IEE

proceedings, [S.l.], v.153, n.4, p.163, 2006.

ENCK, R. E. The OODA loop. Home health care management & practice, [S.l.], v.24, n.3,

p.123–124, 2012.

FALATIUK, H.; SHIROKOPETLEVA, M.; DUDAR, Z. Investigation of Architecture and

Technology Stack for e-Archive System. In: IEEE INTERNATIONAL

SCIENTIFIC-PRACTICAL CONFERENCE PROBLEMS OF INFOCOMMUNICATIONS,

SCIENCE AND TECHNOLOGY (PIC S&T), 2019. Anais. . . [S.l.: s.n.], 2019. p.229–235.

FALESSI, D. et al. Decision-making techniques for software architecture design: a comparative

survey. ACM computing surveys, [S.l.], v.43, n.4, p.1–28, 2011.

FARENHORST, R.; LAGO, P.; VLIET, H. van. Prerequisites for successful architectural

knowledge sharing. In: AUSTRALIAN SOFTWARE ENGINEERING CONFERENCE

(ASWEC’07), 2007. Anais. . . IEEE, 2007.

FELDHAUSEN, R. THE SOFTWARE CRISIS. 2020.

FELDT, R.; MAGAZINIUS, A. Validity threats in empirical software engineering research-an

initial survey. In: SEKE. Anais. . . [S.l.: s.n.], 2010. p.374–379.

FIELDING, R. T. Architectural Styles and the Design of Network-based Software

Architectures. 2000. Tese (Doutorado em Ciencia da Computacao) — UNIVERSITY OF

CALIFORNIA, IRVINE.

111

FINK, A. Survey Research Methods. [S.l.: s.n.], 2010. p.152–160.

FOWLER, M. Who needs an architect. 2003.

GACEK, C. et al. On the definition of software system architecture. In: FIRST

INTERNATIONAL WORKSHOP ON ARCHITECTURES FOR SOFTWARE SYSTEMS.

Proceedings. . . [S.l.: s.n.], 1995. p.85–94.

GAMMA, E. et al. Design patterns: elements of reusable object-oriented software. Boston, MA:

Addison Wesley, 1994.

GARLAN, D.; PERRY, D. E. Introduction to the special issue on software architecture. IEEE

transactions on software engineering, [S.l.], v.21, n.4, p.269–274, 1995.

GARLAN, D.; SHAW, M. AN INTRODUCTION TO SOFTWARE ARCHITECTURE. [S.l.:

s.n.], 1993. 1-39p.

GARVIN, D. A. Building a Learning Organization. Harvard business review, [S.l.], Jul 1993.

GLASS, R. L. The Software Research Crisis. 1994.

GROHER, I.; WEINREICH, R. A study on architectural decision-making in context. In:

WORKING IEEE/IFIP CONFERENCE ON SOFTWARE ARCHITECTURE, 2015. Anais. . .

IEEE, 2015.

GROVES, R. M. et al. Survey Methodology. 2.ed. Hoboken, NJ: Wiley-Blackwell, 2009.

HAMMOND, J.; KEENEY, R.; RAIFFA, H. The Hidden Traps in Decision Making. Clinical

laboratory management review: official publication of the Clinical Laboratory Management

Association / CLMA, [S.l.], v.13, p.39–47, 11 1998.

HANNAY, J.; SJoBERG, D.; DYBa, T. A Systematic Review of Theory Use in Software

Engineering Experiments. Software Engineering, IEEE Transactions on, [S.l.], v.33, p.87 – 107,

03 2007.

HEESCH, U. van; AVGERIOU, P.; HILLIARD, R. A Documentation Framework for

Architecture Decisions. J. Syst. Softw., USA, v.85, n.4, p.795–820, apr 2012.

HERBSLEB, J.; MOCKUS, A. An empirical study of speed and communication in globally

distributed software development. IEEE Transactions on Software Engineering, [S.l.], v.29, n.6,

p.481–494, 2003.

HEVNER, A.; CHATTERJEE, S. Design Research in Information Systems: theory and

practice. 1st.ed. [S.l.]: Springer Publishing Company, Incorporated, 2010.

HGRACA, P. b. Architectural styles vs. Architectural patterns vs. Design patterns. 2017.

HGRACA, P. b. Documenting software architecture. 2019.

HOTTOIS, J. W. The Spiral of Silence: public opinion—our social skin. by Elisabeth noelle-

neumann. (chicago: university of chicago press, 1984. pp. xi 184. $20.00.). American Political

Science Review, [S.l.], v.79, n.3, p.919–920, 1985.

112

HWANG, C.-L.; YOON, K. Multiple attribute decision making: methods and applications a

state-of-the-art survey. Berlin, Germany: Springer, 1981.

IMENDA, S. Is There a Conceptual Difference between Theoretical and Conceptual

Frameworks? Journal of Social Sciences, [S.l.], v.38, p.185–195, 01 2014.

INMON, W. H.; LINSTEDT, D.; LEVINS, M. Data architecture: a primer for the data scientist:

a primer for the data scientist. 2.ed. San Diego, CA: Academic Press, 2019.

International handbook of thinking and reasoning. 1.ed. London, England: Routledge, 2017.

JABAREEN, Y. Building a Conceptual Framework: philosophy, definitions, and procedure.

International Journal of Qualitative Methods, [S.l.], v.8, n.4, p.49–62, 2009.

JANSEN, A.; AVGERIOU, P.; van der Ven, J. S. Enriching software architecture

documentation. Journal of Systems and Software, [S.l.], v.82, n.8, p.1232–1248, 2009. SI:

Architectural Decisions and Rationale.

JANSEN, A.; BOSCH, J. Software Architecture as a Set of Architectural Design Decisions. In:

WORKING IEEE/IFIP CONFERENCE ON SOFTWARE ARCHITECTURE (WICSA’05), 5.

Anais. . . IEEE, 2005.

JAYERATNAM, S. The delicate balance of network security and performance. 2022.

JORGENSEN, M. Generalization and theory-building in software engineering research. In:

INTERNATION CONFERENCE ON EMPIRICAL ASSESSMENT IN SOFTWARE

ENGINEERING (EASE 2004)” WORKSHOP - 26TH INTERNATIONAL CONFERENCE

ON SOFTWARE ENGINEERING, 8. Anais. . . IEE, 2004.

JOSHI, A. et al. Likert Scale: explored and explained. British Journal of Applied Science and

Technology, [S.l.], v.7, p.396–403, 01 2015.

Judgment under uncertainty: heuristics and biases. Cambridge, England: Cambridge University

Press, 1982.

KAHNEMAN, D. Maps of bounded rationality: psychology for behavioral economics.

American Economic Review, [S.l.], v.93, n.5, p.1449–1475, 2003.

KAHNEMAN, D. Thinking, fast and slow. [S.l.]: Farrar Straus Giroux, 2011.

KAPOOR, R. Onion architecture - expedia group technology - medium. 2022.

KARAKHAN, A.; GAMBATESE, J.; RAJENDRAN, S. Application of choosing by

advantages decision-making system to select fall-protection measures. In: ANNUAL

CONFERENCE OF THE INTERNATIONAL GROUP FOR LEAN CONSTRUCTION, 24.

Anais. . . [S.l.: s.n.], 2016.

KAZMAN, R.; WOODS, S.; CARRIERE, S. Requirements for integrating software

architecture and reengineering models: corum ii. In: FIFTH WORKING CONFERENCE ON

REVERSE ENGINEERING (CAT. NO.98TB100261). Proceedings. . . [S.l.: s.n.], 1998. p.154–

163.

113

KEENEY, R. L. Value-focused thinking: a path to creative decisionmaking. London, England:

Harvard University Press, 1996.

KELLEY, T.; LITTMAN, J. The art of innovation: lessons in creativity from ideo, america’s

leading design firm. New York, NY: Bantam Doubleday Dell Publishing Group, 2001.

KIM, C.-K. et al. A lightweight value-based software architecture evaluation. In: EIGHTH

ACIS INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, ARTIFICIAL

INTELLIGENCE, NETWORKING, AND PARALLEL/DISTRIBUTED COMPUTING

(SNPD 2007). Anais. . . IEEE, 2007. v.2, p.646–649.

KITCHENHAM, B. A.; PFLEEGER, S. L. Principles of Survey Research Part 2: designing a

survey. SIGSOFT Softw. Eng. Notes, New York, NY, USA, v.27, n.1, p.18–20, jan 2002.

KITCHENHAM, B. A.; PFLEEGER, S. L. Principles of Survey Research: part 3: constructing

a survey instrument. SIGSOFT Softw. Eng. Notes, New York, NY, USA, v.27, n.2, p.20–24,

mar 2002.

KITCHENHAM, B.; PFLEEGER, S. L. Principles of survey research part 4: questionnaire

evaluation. ACM SIGSOFT Software Engineering Notes, [S.l.], v.27, n.3, p.20–23, 2002.

KITCHENHAM, B.; PFLEEGER, S. L. Principles of Survey Research: part 5: populations and

samples. SIGSOFT Softw. Eng. Notes, New York, NY, USA, v.27, n.5, p.17–20, sep 2002.

KITCHENHAM, B.; PFLEEGER, S. L. Principles of Survey Research Part 6: data analysis.

SIGSOFT Softw. Eng. Notes, New York, NY, USA, v.28, n.2, p.24–27, mar 2003.

KLEIN, B.; MECKLING, W. Application of operations research to development decisions.

Operations research, [S.l.], v.6, n.3, p.352–363, 1958.

KLEIN, G. Naturalistic decision making. Human factors, [S.l.], v.50, n.3, p.456–460, 2008.

KLEIN, G. Streetlights and shadows: searching for the keys to adaptive decision making. [S.l.]:

Mit Press, 2009.

KOLKO, J. Abductive Thinking and Sensemaking: the drivers of design synthesis. Design

Issues, [S.l.], v.26, p.15–28, 12 2010.

KOPP, O.; ARMBRUSTER, A. Generalized Markdown Architectural Decision Records:

capturing the essence of decisions (short paper). In: CENTRAL-EUROPEAN WORKSHOP

ON SERVICES AND THEIR COMPOSITION. Anais. . . [S.l.: s.n.], 2019.

KOPP, O.; ARMBRUSTER, A.; ZIMMERMANN, O. Markdown Architectural Decision

Records: format and tool support. [S.l.: s.n.], 2018.

KROSNICK, J. A. Response strategies for coping with the cognitive demands of attitude

measures in surveys. Applied Cognitive Psychology, [S.l.], v.5, p.213–236, 1991.

KRUCHTEN, P.; NORD, R. L.; OZKAYA, I. Technical debt: from metaphor to theory and

practice, software. IEEE Computer Society, [S.l.], v.29, n.6, p.18–21, 2012.

114

LAVRAKAS, P. Encyclopedia of survey research methods. 2455 Teller Road, Thousand Oaks

California 91320 United States of America: Sage Publications, Inc., 2008.

LEE, L.; KRUCHTEN, P. Capturing Software Architectural Design Decisions. In:

CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING, 2007.

Anais. . . [S.l.: s.n.], 2007. p.686–689.

LEHMAN, M. M.; STENNING, V.; TURSKI, W. M. Another look at software design

methodology. Software engineering notes, [S.l.], v.9, n.2, p.38–53, 1984.

LETHBRIDGE, T.; SINGER, J.; FORWARD, A. How software engineers use documentation:

the state of the practice. IEEE Software, [S.l.], v.20, n.6, p.35–39, 2003.

LI, B. et al. Enjoy your observability: an industrial survey of microservice tracing and analysis.

Empirical Software Engineer, [S.l.], v.27, n.1, 2022.

LI, M.; SMIDTS, C. S. A ranking of software engineering measures based on expert opinion.

IEEE transactions on software engineering, [S.l.], v.29, n.9, p.811–824, 2003.

LIEDTKA, J. Innovative ways companies are using design thinking. Strategy and leadership,

[S.l.], v.42, n.2, p.40–45, 2014.

LIU, H. H. Software performance and scalability: a quantitative approach. [S.l.]: John Wiley &

Sons, 2011.

MACCORMACK, A.; VERGANTI, R.; IANSITI, M. Developing products on “Internet time”:

the anatomy of a flexible development process. Management science, [S.l.], v.47, n.1, p.133–

150, 2001.

MALAN, R.; BREDEMEYER, D. Less is More with Minimalist Architecture. 2002.

MALLAWAARACHCHI, V. 10 Common Software Architectural Patterns in a nutshell. 2017.

MARCHAU, V. A. W. J. et al. Decision making under deep uncertainty: from theory to

practice. 1.ed. Cham, Switzerland: Springer Nature, 2019.

MATZLER, K.; BAILOM, F.; MOORADIAN, T. A. Intuitive decision making. MIT Sloan

Management Review, [S.l.], v.49, n.1, p.13, 2007.

MCKIERNAN, E. C. et al. How open science helps researchers succeed. eLife, [S.l.], v.5, 2016.

MEHTA, N. R.; MEDVIDOVIC, N. Composing architectural styles from architectural

primitives. Software engineering notes, [S.l.], v.28, n.5, p.347, 2003.

MEI, H. A Complementary Approach to Requirements Engineering—software Architecture

Orientation. SIGSOFT Softw. Eng. Notes, New York, NY, USA, v.25, n.2, p.40–45, mar 2000.

MERRIAM, S. B.; TISDELL, E. J. Qualitative research: a guide to design and implementation.

4.ed. [S.l.]: Standards Information Network, 2015.

MERTERNS, D. M.; WILSON, A. T. Program evaluation theory and practice, second edition:

a comprehensive guide. 2.ed. New York, NY: Guilford Publications, 2018.

115

MOE, N. B.; AURUM, A.; DYBA, T. Challenges of shared decision-making: a multiple case

study of agile software development. Information and software technology, [S.l.], v.54, n.8,

p.853–865, 2012.

MOEN, R. D.; NORMAN, C. Clearing up myths about the Deming cycle and seeing how it

keeps evolving. Quality Progress, [S.l.], v.43, p.22–28, 2010.

MOEN, R.; NORMAN, C. Evolution of the PDCA cycle. 2009.

MONROE, R. T. et al. Architectural styles, design patterns, and objects. IEEE software, [S.l.],

v.14, n.1, p.43–52, 1997.

MYERS, S. C. Determinants of corporate borrowing. Journal of Financial Economics, [S.l.],

v.5, n.2, p.147–175, 1977.

NEDERHOF, A. J. Methods of coping with social desirability bias: a review. European journal

of social psychology, [S.l.], v.15, n.3, p.263–280, 1985.

NORRIS, N. Error, Bias and Validity in Qualitative Research. Educational Action Research,

[S.l.], v.5, p.172–176, 03 1997.

NUSEIBEH, B. Weaving together requirements and architectures. Computer, [S.l.], v.34, n.3,

p.115–119, 2001.

NYGARD, M. Documenting architecture decisions. 2011.

ORLOV, S.; VISHNYAKOV, A. Decision Making for the Software Architecture Structure

Based on the Criteria Importance Theory. Procedia Computer Science, [S.l.], v.104, p.27–34,

2017.

ICTE 2016, Riga Technical University, Latvia.

OROSZ, G. Software Architecture is Overrated, Clear and Simple Design is Underrated. 2019.

OXFORD. 2024.

PAULA, R. J. d.; FALVOJR, V. Architectural Patterns and Styles. 2016.

PERRY, D. E.; WOLF, A. L. Foundations for the study of software architecture. Software

engineering notes, [S.l.], v.17, n.4, p.40–52, 1992.

PFLEEGER, S.; KITCHENHAM, B. Principles of survey research: part 1: turning lemons into

lemonade. ACM SIGSOFT Software Engineering Notes, [S.l.], v.26, p.16–18, 01 2001.

PHILLIPS, W. J. et al. Thinking styles and decision making: a meta-analysis. Psychological

bulletin, [S.l.], v.142, n.3, p.260–290, 2016.

PIETRZAK, M.; PALISZKIEWICZ, J. Framework of Strategic Learning: pdca cycle.

Management, [S.l.], v.10, p.149–161, 01 2015.

PLANTROU, G. Microservices are becoming the default application. 2022.

116

PLATTNER, H.; MEINEL, C.; LEIFER, L. Design thinking research: making design thinking

foundational. 1.ed. [S.l.]: Springer International Publishing, 2016.

PRETORIUS, C. Beyond Reason: uniting intuition and rationality in software architecture

decision making. In: IEEE INTERNATIONAL CONFERENCE ON SOFTWARE

ARCHITECTURE COMPANION (ICSA-C), 2019. Anais. . . [S.l.: s.n.], 2019. p.275–282.

PRETORIUS, C. et al. Towards a dual processing perspective of software architecture decision

making. In: IEEE INTERNATIONAL CONFERENCE ON SOFTWARE ARCHITECTURE

COMPANION (ICSA-C), 2018. Anais. . . IEEE, 2018. p.48–51.

PRICE, J.; MURNAN, J. Research Limitations and the Necessity of Reporting Them. American

Journal of Health Education, [S.l.], v.35, p.66–67, 04 2004.

PROVOST, F.; FAWCETT, T. Data Science and Its Relationship to Big Data and Data-Driven

Decision Making. Big Data, [S.l.], v.1, 03 2013.

RAJARAM, G. Gokul’s S.p.a.d.e. toolkit. 2020.

RALPH, P.; WAND, Y. A Proposal for a Formal Definition of the Design Concept. In:

DESIGN REQUIREMENTS ENGINEERING: A TEN-YEAR PERSPECTIVE, Berlin,

Heidelberg. Anais. . . Springer Berlin Heidelberg, 2009. p.103–136.

RAMESH, B.; CAO, L.; BASKERVILLE, R. Agile requirements engineering practices and

challenges: an empirical study. Inf. Syst. J., [S.l.], v.20, p.449–480, 09 2010.

REA, L. M.; PARKER, R. A. Designing and conducting survey research: a comprehensive

guide. 4.ed. London, England: Jossey-Bass, 2014.

REINERTSEN, D. G. The principles of product development flow: second generation lean

product development. [S.l.]: Celeritas Publishing, 2009.

REKHAV, V. S.; MUCCINI, H. A study on group decision-making in software architecture.

In: IEEE/IFIP CONFERENCE ON SOFTWARE ARCHITECTURE, 2014. Anais. . . [S.l.:

s.n.], 2014. p.185–194.

REVILLA, M. et al. Do online access panels need to adapt surveys for mobile devices? Internet

Research, [S.l.], v.26, p.1209–1227, 10 2016.

RIES, E. (Ed.). The Lean Startup: how today’s entrepreneurs use continuous innovation to

create radically successful businesses. [S.l.]: Crown Currency, 2011.

RUEL, E.; WAGNER, W.; GILLESPIE, B. The Practice of Survey Research: theory and

applications. [S.l.: s.n.], 2016.

SAM, D. Twitter’s tough architectural decision. 2022.

SANTOS, L. et al. An architectural style for internet of things systems. In: ANNUAL ACM

SYMPOSIUM ON APPLIED COMPUTING, 35., New York, NY, USA. Proceedings. . . ACM,

2020.

117

SCHRIEK, C. et al. Software Architecture Design Reasoning: a card game to help novice

designers. In: SOFTWARE ARCHITECTURE, Cham. Anais. . . Springer International

Publishing, 2016. p.22–38.

SEI. What is your definition of software architecture. [S.l.]: Software Engineering Institute,

2010.

SENECKI, A.; GOIK, R. Hexagonal architecture – is it for me? A no-nonsense overview. 2023.

SENGE, P. M. The fifth discipline fieldbook: strategies and tools for building a learning

organization. [S.l.]: Crown Business, 2014.

SHARMA, A.; KUMAR, M.; AGARWAL, S. A complete survey on software architectural

styles and patterns. Procedia computer science, [S.l.], v.70, p.16–28, 2015.

SHAW, M.; GARLAN, D. Software Architecture: perspectives on an emerging discipline.

Upper Saddle River, NJ: Pearson, 1996.

SHENTON, A. Strategies for Ensuring Trustworthiness in Qualitative Research Projects.

Education for Information, [S.l.], v.22, p.63–75, 07 2004.

SIMON, H. A. A Behavioral Model of Rational Choice. The Quarterly Journal of Economics,

[S.l.], v.69, n.1, p.99–118, 1955.

EATWELL, J.; MILGATE, M.; NEWMAN, P. (Ed.). Bounded Rationality. London: Palgrave

Macmillan UK, 1990. 15–18p.

SIMON, H. The Sciences of the Artificial. [S.l.]: The MIT Press, 1996.

SJoBERG, D. I. K. et al. Building Theories in Software Engineering. London: Springer London,

2008. 312–336p.

SLOVIC, P.; LICHTENSTEIN, S.; FISCHHOFF, B. Decision making. In: Steven’s Handbook

of Experimental Psychology. [S.l.]: Wiley, 1988.

SMITH, C. U.; WILLIAMS, L. G. Performance and scalability of distributed software

architectures: a spe approach. Parallel and Distributed Computing Practices, [S.l.], v.3, n.4,

p.74106–0700, 2002.

SMYTH, J. et al. Comparing Check-All and Forced-Choice Question Formats in Web Surveys.

Public Opinion Quarterly, [S.l.], v.70, 03 2006.

SOC, D. Y-statements. 2020.

STEWART, R.; BENEPE, O.; MITCHELL, A. Formal Planning: the staff planner’s role at start

up (no. 250). California: Stanford Research Institute, [S.l.], 1965.

STOBIERSKI, T. The advantages of data-driven decision-making. 2019.

SUHR, J. Basic principles of sound decisionmaking. BIOGRAPHY, [S.l.], v.801, p.782–6168,

2000.

118

TANG, A. et al. A survey of architecture design rationale. The Journal of systems and software,

[S.l.], v.79, n.12, p.1792–1804, 2006.

TANG, A. et al. Human aspects in software architecture decision making: a literature review.

In: IEEE INTERNATIONAL CONFERENCE ON SOFTWARE ARCHITECTURE (ICSA),

2017. Anais. . . IEEE, 2017. p.107–116.

TANG, A.; KAZMAN, R. Decision-Making Principles for Better Software Design Decisions.

IEEE Software, [S.l.], v.38, n.6, p.98–102, 2021.

TANG, A.; LIANG, P.; VLIET, H. v. Software Architecture Documentation: the road ahead.

In: NINTH WORKING IEEE/IFIP CONFERENCE ON SOFTWARE ARCHITECTURE,

2011. Anais. . . [S.l.: s.n.], 2011. p.252–255.

TAYLOR, R. N.; MEDVIDOVIC, N.; DASHOFY, E. Software architecture: foundations,

theory, and practice. Chichester, England: John Wiley & Sons, 2008.

TEAM, I. E. What are decision-making techniques and how do they work? 2022.

TECH, C. 10 Architecture Patterns Used In Enterprise Software Development Today. 2021.

THOMKE, S.; REINERTSEN, D. Six myths of product development. Harvard business review,

[S.l.], May 2012.

THOMPSON, V. A.; TURNER, J. A. P.; PENNYCOOK, G. Intuition, reason, and

metacognition. Cognitive Psychology, [S.l.], v.63, p.107–140, 2011.

TIM, B. Change by Design: how design thinking transforms organizations and

inspires innovation. [S.l.]: HarperBusiness, 2009.

TOLKIEN, J.R.R. A Sociedade do Anel. HarperCollins Brasil, 2019.

TRAN, H. et al. Sustainable architectural design decisions. 2014.

TRIANTAPHYLLOU, E.; BAIG, K. The impact of aggregating benefit and cost criteria in four

MCDA methods. IEEE Transactions on Engineering Management, [S.l.], v.52, n.2, p.213–226,

2005.

TYREE, J.; AKERMAN, A. Architecture decisions: demystifying architecture. IEEE

software, [S.l.], v.22, n.2, p.19–27, 2005.

VALIPOUR, M. H. et al. A brief survey of software architecture concepts and service-oriented

architecture. In: IEEE INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND

INFORMATION TECHNOLOGY, 2009. Anais. . . IEEE, 2009.

VASSILEV, V.; GENOVA, K.; VASSILEVA, M. A brief survey of multicriteria decision

making methods and software systems. Cybernetics and information technologies, [S.l.], v.5,

n.1, p.3–13, 2005.

VLIET, H. van; TANG, A. Decision making in software architecture. The Journal of

systems and software, [S.l.], v.117, p.638–644, 2016.

119

VON NEUMANN, J.; MORGENSTERN, O. Theory of games and economic behavior: 60th

anniversary commemorative edition. Princeton, NJ: Princeton University Press, 2007.

WALKER, V. 14 software architecture design patterns to know. [S.l.]: Red Hat, Inc., 2022.

WEINREICH, R.; GROHER, I.; MIESBAUER, C. An expert survey on kinds, influence factors

and documentation of design decisions in practice. Future generations computer systems:

FGCS, [S.l.], v.47, p.145–160, 2015.

WIERSMA, W. The validity of surveys: online and offline. Oxf. Internet Inst, [S.l.], v.18, n.3,

p.321–340, 2013.

WILLIAMS, O. Fundamental software architectural patterns. 2022.

WOELFLE, M.; OLLIARO, P.; TODD, M. H. Open science is a research accelerator. Nature

chemistry, [S.l.], v.3, n.10, p.745–748, 2011.

WOHLIN, C. et al. Experimentation in software engineering. 2012.ed. Berlin, Germany:

Springer, 2012.

WRIGHT, H. K.; KIM, M.; PERRY, D. E. Validity concerns in software engineering research.

In: FSE/SDP WORKSHOP ON FUTURE OF SOFTWARE ENGINEERING RESEARCH -

FOSER ’10, New York, New York, USA. Proceedings. . . ACM Press, 2010.

XU, L. et al. An architectural pattern for non-functional dependability requirements. The

Journal of systems and software, [S.l.], v.79, n.10, p.1370–1378, 2006.

ZANNIER, C.; CHIASSON, M.; MAURER, F. A model of design decision making based on

empirical results of interviews with software designers. Information and software technology,

[S.l.], v.49, n.6, p.637–653, 2007.

ZHU, H. Software design methodology: from principles to architectural styles. Oxford,

England: Butterworth-Heinemann, 2005.

ZIMMERMANN, A.; LORENZ, A.; OPPERMANN, R. An Operational Definition of Context.

In: MODELING AND USING CONTEXT. Anais. . . [S.l.: s.n.], 2007. v.4635, p.558–571.

ZIMMERMANN, O. Architectural Decisions— The Making Of. 2020.

ZIMMERMANN, O.; MIKSOVIC, C.; KuSTER, J. Reference architecture, metamodel, and

modeling principles for architectural knowledge management in information technology

services. [S.l.: s.n.], 2012. v.85, p.2014–2033.

120

APPENDIX A - QUESTIONNAIRE INITIAL VERSION

121

122

123

124

125

126

127

APPENDIX B - QUESTIONNAIRE FINAL VERSION

128

129

130

131

132

133

134

135

APPENDIX C - QUESTIONNAIRE FAROL EVALUATION

136

137

138

139

140

141

142

143

	788a11f25e104a3fe60b058132c31d7c4e57c6a8429dcb8f6050e7ea1ff84b01.pdf
	01948d4cc6b0d8fd46a2ff8414ad842c8c71c4df823b3b4002a0671793743589.pdf
	788a11f25e104a3fe60b058132c31d7c4e57c6a8429dcb8f6050e7ea1ff84b01.pdf

