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”The agreement of the results seems to show that light and magnetism are affections of

the same substance, and that light is an electromagnetic disturbance propagated through the

field according to electromagnetic laws.”

James Clerk Maxwell, (MAXWELL, 1865, p. 499).



ABSTRACT

In this work we present a series of results on four-wave mixing (FWM) processes induced
by structured light in atomic media. We start with a theoretical study focusing on a cascade
FWM process in rubidium vapor, generating a blue light field at 420 nm. In this setting,
we show that in the extended-medium regime the Hermite-Gaussian basis presents a unique
property of optical structure transfer. We then exploit this result to show that, by carefully
tailoring the structure of the pump beams, one can obtain desired spatial modes with cylindrical
and elliptical symmetries with high fidelity at the blue light output. Following that, we consider
an experimental configuration where two degenerate FWM signals are generated in different
directions of space by the same pump fields. In this setup, we present results in heated rubidium
vapor evidencing the simultaneous conservation of orbital angular momentum (OAM) in the
two FWM processes. We show that the two-channel setting allows to encode the OAM content
of the input beams onto the OAM carried by the two FWM signals. Next, we explore the
transverse mode dynamics in the context of optical modes contained in the so-called orbital
angular momentum Poincaré sphere (PS). Defined in analogy with a general polarization state,
this family of modes is parametrized in terms of polar and azimuthal angles. We show that
the two FWM signals can also be described as belonging to Poincaré spheres, and that the
angles on the output PS are related to those on the input PS by well-defined symmetries. The
predicted FWM intensity profiles, as well as the consequences of the symmetry properties, are
in good agreement with our experimental results. We also explore interesting scenarios, such
as combinations of different PS modes and the fulfillment of one of the symmetry relations in
each sphere independently, and restrictions that arise in the extended-medium regime. In the
last part, we study the correlations between the light fields participating in the two-channel
FWM configuration. Following our recent work on cold atoms, we investigate the correlations
originating from the conversion of phase-noise to amplitude-noise as a result of the light-atom
interaction, and discuss our attempts to discriminate transverse spatial dependencies on these
correlations. Finally, we outline the quantum theory of FWM, exploring the multi-spatial-mode
nature of the generated light state and the associated spatial correlations.

Keywords: structured light; nonlinear optics; atomic vapor; spatial correlations.



RESUMO

Neste trabalho, apresentamos uma série de resultados em mistura de quatro ondas (MQO)
induzida por feixes de luz estruturada em meios atômicos. Começamos com um estudo teórico
de um processo de MQO em cascata em vapor de rubídio gerando luz azul em 420 nm. Nessa
configuração, mostramos que no regime de meio extenso, a base de modos Hermite-Gauss
apresenta uma propriedade única de transferência de estrutura óptica. Nós então exploramos
esse resultado para mostrar que ao estruturarmos cuidadosamente os feixes de bombeio, pode-
mos obter modos espaciais desejados com simetrias cilíndrica e elíptica com alta fidelidade no
sinal de luz azul. Na sequência, passamos a considerar uma configuração experimental onde
dois sinais de MQO degenerada são gerados em direções diferentes do espaço, usando os mes-
mos feixes de bombeio. Nesse caso, apresentamos resultados em vapor aquecido de rubidio
que evidenciam a conservação de momento angular orbital (MAO) simultaneamente nos dois
processos de MQO. Mostramos que a configuração com dois canais de MQO nos permite
codificar o MAO dos feixes incidentes no MAO dos dois sinais de MQO. Na sequência, explo-
ramos a dinâmica de modos transversais no contexto de modos óticos contidos na chamada
esfera de Poincaré (EP) de momento angular orbital. Definida em analogia com um estado
arbitrário de polarização, essa família de modos é parametrizada em termos dos ângulos polar
e azimutal na esfera. Mostramos que os dois sinais de MQO também podem ser descritos
como pertencendo a esferas de Poincaré, e que os ângulos nas esferas de output e aqueles na
EP do modo incidente são relacionados por simetrias bem definidas. Os perfis de intensidade
dos feixes de MQO, assim como as consequências das simetrias, concordam bem com nossos
resultados experimentais. Além disso, exploramos situações interessantes, como combinações
de modos em EPs distintas e o cumprimento de uma das relações de simetria em cada esfera
independentemente, e também restrições no regime de meio extenso. Na parte final, estu-
damos as correlações entre os campos de luz que participam nos dois processos de MQO.
Dando sequência a um trabalho recente em átomos frios, investigamos as correlações oriundas
da conversão de ruído de fase para ruído de amplitude como resultado da interação luz-átomo
e discutimos nossas tentativas de identificar dependências espaciais nessas correlações. Final-
mente, apresentamos a teoria quântica de MQO, explorando a natureza multi-modos espaciais
do estado quântico da luz gerado no processo, e as correlações espaciais associadas.

Palavras-chave: luz estruturada; óptica não-linear; vapor atômico; correlações espaciais.



LIST OF FIGURES

Figure 1 – Dependence of (a) the index of refraction 𝑛 and (b) the absorption coeffi-
cient 𝛼 with the detuning from resonance. Γ/2𝜋 = 6 MHz, corresponding
to the closed transition of the D2 line of 87Rb. . . . . . . . . . . . . . . . 30

Figure 2 – Lorentzian and Voigt profiles considering a sample of atoms at 𝑇 ≈ 500

mK (𝑢 ≈ 10 m/s). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 3 – Phase fronts of (a) a plane wave, ℓ = 0, and LG beams with (b) ℓ = 1, (c)

ℓ = 2 and (d) ℓ = 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Figure 4 – Intensity profiles and phase distributions of LG modes of different orders

ℓ = −1, 0, 1, 3, 𝑝 = 0, 1, 2. . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Figure 5 – Schematic description of the tilted lens transformation for LG modes with

topological charges ℓ = −1, 0, 1, 2 (from top to bottom). The intensity
(Int.) and tilted lens (TL) profiles of each mode are shown. The number
of dark valleys and the orientation of the TL pattern indicate, respectively,
the magnitude |ℓ| and the relative helicity sgn(ℓ). On the right we show the
corresponding experimental profiles. . . . . . . . . . . . . . . . . . . . . . 42

Figure 6 – (a) Spatial orientation of the wave-vectors of three fields which interact in
a third-order nonlinear medium to generate a fourth field. (b) Schematic
representation of the FWM process in a two-level atom evidencing the
energy conservation, 𝜔𝑎 +𝜔𝑎′ = 𝜔𝑏 +𝜔𝑠. (c) Wave-vector of the generated
field resulting from the conservation of momentum in the interaction, and
the associated phase-mismatch vector Δk. In this example, 𝜔𝑏 > 𝜔𝑎 > 𝜔𝑎′ . 48

Figure 7 – (a) Spatial orientation of incident and FWM fields. (b) Depiction of the
parametric processes that generate signals 𝑆1 and 𝑆2 in a two-level atom. (c)
Wave-vectors of the incident and generated fields and the phase-mismatches
associated with the FWM processes. . . . . . . . . . . . . . . . . . . . . . 49

Figure 8 – Normalized FWM spectra calculated using the solution to the nonlinear
coherence given in (WILSON-GORDON; FRIEDMANN, 1988) (blue line) and
the one obtained with Eq. (2.125) (red dashed line) for different Rabi fre-
quencies. In all graphs 𝛿𝑎 = −10Γ = −20/𝑇2 (𝑇2 = 2/Γ), Ω𝑎 = Ω𝑏 and
𝛿 = 𝛿𝑏 − 𝛿𝑎. Also, 𝑉1 = Ω𝑎 and 𝑉2 = Ω𝑏. . . . . . . . . . . . . . . . . . . 52



Figure 9 – Normalized conversion efficiency factor |𝑇 |2 as a function of the separation
angle 𝜗. The medium extension is 𝐿 = 3 mm. . . . . . . . . . . . . . . . . 57

Figure 10 – Longitudinal integral ℐ𝑄(𝐿) over the medium extension 𝐿 for different
values of 𝑄. For an extended medium, 𝐿/𝑧𝑅 ≫ 1, ℐ0(𝐿) → 𝜋𝑧𝑅, and
ℐ𝑄(𝐿)→ 0, 𝑄 ̸= 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Figure 11 – Normalized mode weights (a) 𝜂0,𝑝 = |𝒜0000
𝑠𝑠0𝑝 |, in the co-rotating case, and

(b) 𝜂0,𝑝 = |𝒜2,−200
1𝑠0𝑝 |, in the counter-rotating case, for 𝑠 = 1, 2, 3. In each

situation, as the ratio 𝐿/𝑧𝑅 increases, the GPM condition imposes the
restrictions given by Eq. (4.9). Namely 𝜂0,𝑝 → 𝛿𝑝,2𝑠 for (a), and 𝜂0,𝑝 →

𝛿𝑝,3+𝑠 for (b). The calculations were performed in the degenerate FWM
setting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Figure 12 – Distribution of normalized output mode coefficients for 𝑧𝑅/𝐿 = 1, 0.2, 0.1

(from left to right columns) and 𝜉j = 1 (lower row) and 𝜉B =
√︁

780/420

(upper row), representing the degenerate and non-degenerate processes,
respectively. Incident fields are 𝑢780 = HG12 and 𝑢776 = HG01. In the
top right plot, which represents the result obtained for the non-degenerate
FWM process in an extended-medium, we see that the major contribution
is from the mode with 𝑚 = 𝑚′ +𝑚′′, 𝑛 = 𝑛′ +𝑛′′, corresponding to 𝑞 = 0.
This indicates the validity of the index-sum rule. Insets show the resulting
intensity profile of the FWM beam in each configuration. . . . . . . . . . . 71

Figure 13 – Hyperfine energy levels of the D2 lines of (a) 87Rb and (b) 85Rb. . . . . . 74
Figure 14 – Depiction of the saturated absorption process. (a) Off resonance, pump and

probe interact with atoms at different velocity groups. Exactly at resonance,
both beams interact with the velocity group 𝑣 = 0 and the probe is not
absorbed. This leads to a peak at a hyperfine resonance frequency in the
probe transmission (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Figure 15 – Cross-over (CO) resonances in the saturated absorption spectrum. (a) En-
ergy levels involved in the process and associated transition frequencies. (b)
Exactly when 𝜔 = 𝜔 the pump saturates the atoms in the velocity groups
±𝑣′. As a consequence, the probe cannot interact with these atoms and it
is transmitted through the medium. This leads to a peak halfway between
the two expected resonances at 𝜔1 and 𝜔2 in the probe transmission (c). . 75



Figure 16 – Basic setup of a saturation absorption experiment. OI is an optical isolator,
F represents filters, PD is a photodiode detector. . . . . . . . . . . . . . . 76

Figure 17 – Saturated absorption spectrum of Rb. The peak at 𝛿 = 0 represents the
𝐹𝑔 = 2→ 𝐹𝑒 = 3 hyperfine transition. The inset shows region inside dashed
box, highlighting the |52S1/2, 𝐹𝑔 = 2⟩ → |52P3/2⟩ transition. CO(𝑋, 𝑌 )

denotes the cross-over transition involving excited states with 𝐹 = 𝑋 and
𝐹 = 𝑌 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Figure 18 – Simplified scheme of our magneto-optical trap experimental setup. . . . . . 78
Figure 19 – Our magneto-optical trap in operation. . . . . . . . . . . . . . . . . . . . 79
Figure 20 – Simplified scheme of the preparation of the structured excitation beam in

the experiments with the MOT. . . . . . . . . . . . . . . . . . . . . . . . 80
Figure 21 – Setup for the experiments of FWM induced by structured light in Rb vapor.

The lenses L1, L2, L3, and L4 have focal distances 𝑓1 = 25.4 mm, 𝑓2 =

100 mm, 𝑓3 = 150 mm, 𝑓4 = 35 mm, giving a magnification factor of
𝑓2/𝑓1 ≈ 4 at the input and a similar reduction factor 𝑓3/𝑓4 at the output.
The pairs of lenses L5,L6 and L5,L7, together with the pinholes located in
between, form the spatial filters for the signals 𝑆1 and 𝑆2. For the imaging,
we may detect either the intensity or the tilted lens profiles of the FWM
signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Figure 22 – Alignment of the four beams participating in the FWM process with. Namely
the two incident beams, to the inner holes of the masks, and the guiding
beams for the two FWM signals, to the outer holes. The swapping of the
holes between the input and output masks ensures that the beams intersect
at the central position, where the vapor cell is located. The masks are
separated by a distance 𝐷 ≈ 68 cm, and the spacing between the holes is
𝑠 = 2 mm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83



Figure 23 – (a) Saturated absorption at room temperature and absorption spectra of
the D2 lines of 85Rb and 87Rb at different temperatures. (b) Absorption
spectrum at 𝑇 ≈ 72 ∘C in the region of the transitions with 𝐹𝑔 = 2 of 87Rb,
and 𝐹𝑔 = 3 of 85Rb. The blue curve shows a typical FWM spectrum, which
is stronger at the 85Rb transition. The shaded area indicates the frequency
region where we make our measurements. (c) Atomic density of the rubid-
ium vapor as a function of the temperature 𝑇 , calculated considering the
sample as an ideal gas. Vertical dashed lines correspond to 𝑇 = 50, 60, 70 ∘C, 84

Figure 24 – LCOS-SLM model X10468-02 from Hamamatsu Photonics with main parts
indicated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Figure 25 – (a) Elements of the LCOS-SLM chip from Hamamatsu Photonics and (b)
depiction of the uniaxial liquid crystal molecule with the indices of refraction
𝑛𝑜 and 𝑛𝑒 along the 𝑦 and 𝑥 directions, respectively. . . . . . . . . . . . . 87

Figure 26 – (a) Hologram enconding the azimuthal phase Φ(𝑥, 𝑦) = 𝜑 = tan−1(𝑦/𝑥)

(ℓ = 1) with no periodic grating. (b) Same encoded phase but with gratings
in the 𝑥 and 𝑦 directions with periods Λ𝑥 = Λ𝑦 = 10 pixels. The inset
shows a zoom of the central region where the dislocation can be seen. (c)
Estimate of the output beam fidelity ℱℓ for ℓ = −5, ...,+5. (d) Intensity
profiles of LG modes generated with holograms of the type shown in (b)
with ℓ = +1, ...,+5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Figure 27 – Holograms for generation of an optical mode given by the composition
𝑢+2,0 + 𝑢−2,0 with a phase-only method (top), and with the inverse sinc

amplitude modulation technique (bottom), and the corresponding output
optical modes obtained in each case. The inset on the intensity graph shows
the amplitude (∝

√
𝐼). In both cases we included linear gratings in both

directions with periods Λ𝑥 = Λ𝑦 = 10 pix. . . . . . . . . . . . . . . . . . 90
Figure 28 – Hologram Creator interface programmed in MATLAB® using the Graphical

User Interface Development Environment (GUIDE) to generate and upload
our holograms to the SLM chip. . . . . . . . . . . . . . . . . . . . . . . . 90



Figure 29 – Schematic illustration of the optical mode conversion under the FWM by
amplification of spontaneous emission in Rb vapor. (a) The input HG modes
with wave-lengths 780 nm and 776 nm, 𝑢780 = 0.899𝑢HG

1,0 − 0.437𝑢HG
0,1 ,

𝑢776 = 0.899𝑢HG
1,0 + 0.437𝑢HG

0,1 , interact to generate an up-converted blue
field at 420 nm, and an IR field at 5230 nm. The blue output in this example
case emerges as a highly pure Ince-Gaussian mode IG𝑒

2,2 with ellipticity
𝜀 = 2. (b) Energy-level diagram for the FWM process. . . . . . . . . . . . 92

Figure 30 – FWM processes using PDLG and HG modes. In the case of PDLG modes,
the input beams were taken in the form of (a) 𝑢780 = LG𝑜

1,2, 𝑢776 = LG𝑜
0,1.

In the case of HG modes, the input beams were taken in the form of (c)
𝑢780 = 𝑢HG

1,2 , 𝑢776 = 𝑢HG
0,1 . In both cases, (b,d) represent the histograms with

the optical mode weights for PDLG and HG superpositions, respectively. . . 94
Figure 31 – Optical mode conversion to PDLG modes (cylindrical symmetry). The inter-

acting modes are given by: (a) 𝑢780 = −0.316𝑢HG
2,0 +0.948𝑢HG

0,2 , 𝑢776 = 𝑢HG
1,0 ,

𝑢B = LG𝑒
0,3; (c) 𝑢780 = 0.707𝑢HG

2,0 + 0.707𝑢HG
0,2 , 𝑢776 = 𝑢HG

1,0 , 𝑢B = LG𝑜
1,1;

(e) 𝑢780 = −0.865𝑢HG
3,0 − 0.500𝑢HG

1,2 , 𝑢776 = 𝑢HG
0,1 , 𝑢B = LG𝑜

1,2. (b),(d),(f)
show the histograms with the mode weights shown in (a),(c),(e), respectively. 96

Figure 32 – Optical mode conversion to IG modes (elliptical symmetry). The interacting
modes were taken in the following form: (a) 𝑢780 = −0.471𝑢HG

2,0 −0.881𝑢HG
0,2 ,

𝑢776 = 𝑢HG
1,1 , 𝑢B = IG𝑜

4,2; (c) 𝑢780 = 0.899𝑢HG
1,0 − 0.437𝑢HG

0,1 , 𝑢776 =

0.899𝑢HG
1,0 + 0.437𝑢HG

0,1 , 𝑢B = IG𝑒
2,2; (e) 𝑢780 = −0.421𝑢HG

2,0 − 0.907𝑢HG
0,2 ,

𝑢776 = 𝑢HG
0,1 , 𝑢B = IG𝑜

3,1. (b),(d),(f) show the histograms with the mode
weights in (a),(c),(e), respectively. . . . . . . . . . . . . . . . . . . . . . . 97

Figure 33 – (a) Spatial orientation of incident and generated signals near the interac-
tion region. (b) Two pathways associated with the generation of the 𝜎±

components of the FWM signal E1 in a three-level atomic system. . . . . . 100
Figure 34 – Far-field intensity distributions (Int.) and tilted lens profiles (TL) for FWM

signals ℰ1 (a) and ℰ2 (b), when incident beams carry ℓ𝑏 = 0 and ℓ𝑎 =

−1, 0, 1. We normalized each image separately. . . . . . . . . . . . . . . . 103
Figure 35 – Far-field intensity distributions and tilted lens profiles for FWM signals ℰ1

(a) and ℰ2 (b), when incident beams carry ℓ𝑏 = 1 and ℓ𝑎 = −1, 0, 1, 2, 3. . 104



Figure 36 – Propagation of the FWM signal ℰ2 (2𝑏 − 𝑎) outside interaction region for
the case (ℓ𝑎, ℓ𝑏) = (2, 1), obtained from Eq. (4.21). The upper insets show
the calculated intensity profiles at positions 𝑧/𝑧𝑅 = 0, 0.25, 0.5, 0.75, 1.
The lower inset shows an experimental image taken at a position closer to
the medium exit (in comparison with Figs. 34 and 35), where an external
light ring can be seen around the central spot. . . . . . . . . . . . . . . . 105

Figure 37 – (a) Polarization Poincaré sphere, (b) OAM Poincaré sphere of first order,
𝒪(1, 0), (c) OAM Poincaré sphere 𝒪(3, 1). The insets show the intensity
profiles of the modes at specific points on the PS. . . . . . . . . . . . . . 109

Figure 38 – Representation of the angle symmetries for the FWM signals ℰ1 and ℰ2.
The inset shows the dependence of the output angle 𝜗1 with 𝜃. . . . . . . 111

Figure 39 – Closed path (𝜃, 𝜑) followed by an input PS mode, describing a solid an-
gle Ω, and resulting paths followed by ℰ1 and ℰ2, (𝜗1, 𝜙1), and (𝜗2, 𝜙2),
respectively. The inset shows the dependence of 𝜗1 and 𝜗̇1/𝜃 with 𝜃. The
transformed paths define solid angles Ω1 > Ω, and Ω2 = Ω. . . . . . . . . 112

Figure 40 – Four-wave mixing processes generating signals ℰ1 ∼ 𝑢2
𝑎𝑢

*
𝑏 and ℰ2 ∼ 𝑢2

𝑏𝑢
*
𝑎

seen as three-wave mixing processes driven by the effective fields 𝑈1 = 𝑢2
𝑎

and 𝑈2 = 𝑢2
𝑏 . In our specific case, 𝑈1 is the structured field, given by the

square of a PS mode, and 𝑈2 is the square of a Gaussian mode. A two-level
system was considered for this illustrative example. . . . . . . . . . . . . . 113

Figure 41 – (a) Calculated intensity profiles of modes 𝜓ℓ,0(𝜋/2, 0), for ℓ = 1, 2, 3, along-
side the corresponding beams prepared in the experiment near the interac-
tion region. Calculated and detected far-field intensity profiles of the FWM
signals (b) ℰ2 and (c) ℰ1, resulting from the mixing of 𝑢𝑎 given by the
modes shown in (a) and 𝑢𝑏 given by a Gaussian mode. (d) Calculated and
detected near-field intensity profiles of the FWM signal ℰ1 for the cases
ℓ = 1, 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Figure 42 – Coefficients of the mode superpositions of the output fields shown in figure
41 on the original and reduced waist bases. The radial spectrum is signifi-
cantly narrowed on the 𝑤0/

√
3 basis, and complies with the analytical mode

restriction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116



Figure 43 – Spectrum of radial modes of the FWM signals ℰ1 (top) and ℰ2 (bottom)
for an input PS mode of order (a),(f) 𝑙 = 1; (b),(g) 𝑙 = 2; (c),(h) 𝑙 = 3;
(d),(i) 𝑙 = 4 considering the input 𝑤0 and modified 𝑤̃ = 𝑤0/

√
3 waist

bases. In (a)-(d) the blue shaded region indicates the interval 0 ≤ 𝑝 ≤ |𝑙|,
representing the exact bound for the value 𝜉 =

√
3. In (e) and (j) we show

the width Δ𝑝(𝜉) of the radial spectra as a function of the ratio 𝜉. The
vertical lines indicate the value 𝜉 =

√
3. . . . . . . . . . . . . . . . . . . . 116

Figure 44 – (a) Incident field modes along a path described by points 1, 2, 3 on the
first order sphere 𝒪(1, 0). (b) Corresponding modes on the output sphere
𝒪(2, 0) for the FWM signal ℰ1, when 𝑢𝑏 = 𝑢0,0. Insets show the intensity
profiles of the sphere modes on the indicated positions. (c) Measured (top)
and calculated (bottom) FWM intensity profiles for signal ℰ1 on the points
1, 2, 3′. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Figure 45 – (a) Path followed by the input mode 𝑢𝑎 = 𝜓1,0(𝜃, 𝜑) passing through points
1, 2, 3, 4 on the sphere 𝒪(1, 0), and the corresponding path followed by the
FWM signal ℰ2 ∝ 𝜓1,0(𝜋− 𝜃, 𝜑), going through points 1′, 2, 3, 4′. The path
on the generated field sphere is a reflection of the path on the input sphere
with respect to the equatorial plane. (b) Sections 1, 1′ − 2, 2 − 3, and
3 − 4, 4′ and the variation of the mode vectors of 𝑢𝑎 and ℰ2 in each one.
(c) Detected far-field intensity profiles of the input and FWM signals at the
points 1, 1′, 2, 3, 4, 4′. For points 1, 1′ and 4, 4′ we also show in the insets
the tilted lens (TL) profiles, indicating opposite OAM between input and
FWM fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Figure 46 – Combination of optical modes on the Poincaré spheres of order 𝑁 = 3,
𝑢𝑎 = 𝜓3,0(𝜋/4, 𝜋/4) + 𝜓1,1(3𝜋/4, 𝜋/2). . . . . . . . . . . . . . . . . . . . 120

Figure 47 – Generalized Poincaré spheres for the Hermite-Laguerre-Gaussian modes. (a)
𝒪𝑔(3, 3) and (b) 𝒪𝑔(2, 4). Insets show the intensity profiles on specific
points of the spheres. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Figure 48 – Comparison between the FWM intensity profiles obtained in the extended-
medium regime, for the nondegenerate setting of Ref. (WALKER; ARNOLD;

FRANKE-ARNOLD, 2012), and those predicted for a degenerate situation. . . 127
Figure 49 – Simplified scheme for the detection of the intensity fluctuation time-series

of the transmision and FWM signals. . . . . . . . . . . . . . . . . . . . . 131



Figure 50 – (a) Measured time series of the intensity fluctuations of the two Gaussian
beams, 𝑎 and 𝑏, transmitted through the cold atom cloud. (b) Correspond-
ing cross-correlation between the intensity fluctuations. The two incident
beams were detuned by 𝛿 ≈ −5 MHz, and their power was 𝑃 ≈ 5 µW.
The correlation at zero delay is ≈ 0.87. . . . . . . . . . . . . . . . . . . . 132

Figure 51 – Intensity time-series of transmitted signals and cross-correlation curves (a)
without an interaction medium to promote the phase- to amplitude-noise
conversion; and (b) with a heated rubidium sample, but using a grating
stabilized diode laser, which does not present stochastic phase-fluctuations. 133

Figure 52 – (a) Depiction of the spatially resolved detection of the intensity fluctuation
time-series of the transmitted signals. The pinholes with a translation de-
gree of freedom in the horizontal direction select the regions of the beam
profile that impinge onto the detectors. (b) Representation of the resulting
correlation matrix 𝑔

(2)
𝑎,𝑏(𝑋𝑎, 𝑋𝑏; 𝜏). The different colors of the correlation

curves are meant to aid the visualization. . . . . . . . . . . . . . . . . . . 135
Figure 53 – Pearson coefficient 𝑔(2)(𝜏 = 0) (left) and mean frequency of the Fourier

spectrum ⟨𝑓⟩ (right) of the fluctuation correlation functions 𝑔(2) obtained
by detecting localized portions of the beams transmitted through the cold
atom cloud, as a function of the pinhole positions (𝑋𝑎, 𝑋𝑏). In all of the
measurements, the detuning was 𝛿 ≈ −5 MHz and the power in each beam
was 𝑃 ≈ 5 µW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

Figure 54 – Simplified scheme for obtaining the coincidence count map 𝑔(𝑋𝑏, 𝑋𝑠),
where (𝑋𝑏, 𝑋𝑠) are the horizontal positions of the pinholes with respect
to the center of the 𝑏 and 𝑠 fields. The separation angle 𝜃 is small such that
the distance from the exit of the interaction medium to the detectors is
approximately equal to that measured on the pump beam axis. C - photon
coincidence counting system. . . . . . . . . . . . . . . . . . . . . . . . . . 144

Figure 55 – Coincidence count profile on the (𝑋𝑏, 𝑋𝑠) plane (top) for a Gaussian pump
in a nonlinear medium of length 𝐿 = 3 mm, and diagonal and anti-diagonal
line profiles (bottom) as a function of the propagation distance outside the
interaction medium (from left to right). . . . . . . . . . . . . . . . . . . . 144



Figure 56 – (a) Normalized mode distribution |𝐶ℓ𝑏,ℓ𝑠
𝑝𝑏,𝑝𝑠
|2 of the two-photon state for

the configuration considered in Fig. 55. (b) Corresponding ℓ−distribution,
𝑃ℓ𝑏,−ℓ𝑏

, evidencing a finite spiral bandwidth Δℓ. . . . . . . . . . . . . . . . 144
Figure 57 – (a) Generation of a signal-conjugate pair due to the nonlinear interaction

in an atomic sample. The pump beam wave-vector is parallel to the 𝑧 di-
rection. (b) Coincidence profiles obtained by generating several realizations
of the random angle 𝜙. The angular uncertainty 𝜎𝜙 around the gross beam
direction 𝜃 gives rise to spatial correlations in a similar manner to those
obtained in the quantum picture. . . . . . . . . . . . . . . . . . . . . . . 146

Figure 58 – Trace distance 𝐷 =
√︁

1− |⟨Ψ̃|Ψ⟩|2 as a function of 𝐿 and 𝑤0. The dashed
lines represent the 𝐷 = 0.1 (upper) and 𝐷 = 0.5 (lower) contours, and
these correspond to curves of the form 𝑤0 ∝

√
𝐿. . . . . . . . . . . . . . . 149

Figure 59 – Transfer of the pump structure to the coincidence count profile for different
pump modes 𝑢𝑙𝑎,𝑝𝑎 . The upper, middle and lower rows show respectively
the pump intensity profile |𝒱(r⊥)|2, the corresponding coincidence profile
𝑔(𝑋𝑠, 𝑌𝑠), and the distribution of normalized amplitudes 𝐶ℓ𝑏,ℓ𝑠

𝑝𝑏,𝑝𝑠
for the sub-

space, ℓ𝑏,𝑠 = 𝑙𝑎−4, ..., 𝑙𝑎 +4, 𝑝𝑏,𝑠 = 0, ..., 3, with the inset showing in more
detail the subspace ℓ𝑏,𝑠 = 𝑙𝑎 − 1, 𝑙𝑎, 𝑙𝑎 + 1. . . . . . . . . . . . . . . . . . 152

Figure 60 – ℓ−distributions of the biphoton state for pump modes 𝑢𝑙𝑎,0 with 𝑙𝑎 =

0, 1, 2, 3 (top) and the dependence of the SBW Δℓ with the total pumped
OAM ℓT = 2𝑙𝑎 (bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . 153



LIST OF TABLES

Table 1 – Synthesis of the 𝑝 values constituting the radial spectrum of signal ℰ1 in
the thin- and extended-medium regimes, when the pump beams are given
by OAM PS modes 𝜓𝑙,0(𝜃, 𝜑), and the corresponding mode bases in which
these selection rules are verified. . . . . . . . . . . . . . . . . . . . . . . . 126

Table 2 – Comparison between the output mode superpositions obtained in the extended-
medium regime (𝐿/𝑧𝑅 → ∞) for the nondegenerate FWM scheme of Ref.
(WALKER; ARNOLD; FRANKE-ARNOLD, 2012) and in the degenerate FWM
configuration considered in our work. For #1, 5, where the pump is com-
posed of odd ±𝑙, the contribution from the radial mode 𝑢0,𝑙 to the FWM
field in the degenerate setting is exactly zero. . . . . . . . . . . . . . . . . 127



CONTENTS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 FUNDAMENTALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1 LIGHT-MATTER INTERACTION IN A TWO-LEVEL ATOM . . . . . . . . 25
2.2 PARAXIAL OPTICS AND WAVE PROPAGATION IN THE PARAXIAL

REGIME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2.1 The Laguerre-Gaussian mode . . . . . . . . . . . . . . . . . . . . . . . 36

2.2.2 Three families of paraxial solutions: LG, HG, and IG . . . . . . . . . 40

2.2.3 The tilted-lens technique . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.2.3.1 The tilted-lens as a misaligned ABCD system . . . . . . . . . . . . . . . . 42

2.2.3.2 The tilted lens operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.3 NONLINEAR OPTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.3.1 Four-wave mixing in a two-level atom . . . . . . . . . . . . . . . . . . 48

2.3.2 Structured FWM field . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.3.3 The LG overlap integral . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.3.3.1 Conservation of orbital angular momentum . . . . . . . . . . . . . . . . . 60

2.3.3.2 Radial integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.3.3.3 Longitudinal integral and Gouy phase-matching . . . . . . . . . . . . . . . 61

2.3.3.4 Angular-radial mode coupling . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.3.4 The HG overlap integral . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.3.4.1 Transverse overlap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.3.4.2 Longitudinal integral and Gouy phase-matching . . . . . . . . . . . . . . . 68

2.3.4.3 Gaussian IR field and effective selection rule - the index-sum rule . . . . . . 68

3 EXPERIMENTAL DETAILS . . . . . . . . . . . . . . . . . . . . . . 72

3.1 HYPERFINE STRUCTURE OF RUBIDIUM AND SATURATED ABSORP-
TION SPECTROSCOPY . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.2 MAGNETO-OPTICAL TRAP SETUP . . . . . . . . . . . . . . . . . . . . 76
3.3 HEATED RUBIDIUM VAPOR SETUP . . . . . . . . . . . . . . . . . . . . 80
3.4 GENERATING STRUCTURED LIGHT BEAMS IN THE LAB . . . . . . . . 85
3.4.1 Generation of optical vortices . . . . . . . . . . . . . . . . . . . . . . . 86

3.4.2 Amplitude modulation with a phase-only SLM . . . . . . . . . . . . . 88



4 TRANSFER OF OPTICAL STRUCTURE VIA FOUR-WAVE MIX-

ING IN RUBIDIUM VAPOR . . . . . . . . . . . . . . . . . . . . . . 91

4.1 OPTICAL MODE CONVERSION IN A NON-DEGENERATE FOUR-WAVE
MIXING PROCESS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.1.1 Distinct behavior for PDLG and HG modes . . . . . . . . . . . . . . 92

4.1.2 Tailored generation of PDLG and IG modes at the blue FWM output 95

4.2 ORBITAL ANGULAR MOMENTUM CONSERVATION IN A TWO-CHANNEL
FWM SETTING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.2.1 Wave-equations for the two-channel FWM setting . . . . . . . . . . 100

4.2.2 Simultaneous OAM transfer to two FWM signals . . . . . . . . . . . 102

4.3 POINCARÉ SPHERE SYMMETRIES IN FWM . . . . . . . . . . . . . . . 106
4.3.1 FWM driven by a single Poincaré sphere mode . . . . . . . . . . . . 109

4.3.2 Superposition of Poincaré spheres – Hermite-Laguerre-Gaussian modes

and the generalized Poincaré sphere . . . . . . . . . . . . . . . . . . . 120

4.3.3 Pump fields as independent Poincaré spheres . . . . . . . . . . . . . 123

4.3.4 Extended-medium regime – restrictions imposed by the Gouy phase-

matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5 SPATIAL CORRELATIONS IN FWM . . . . . . . . . . . . . . . . . 129

5.1 PHASE FLUCTUATIONS OF DIODE LASERS AND TEMPORAL COR-
RELATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.2 COUPLED SPATIAL AND TEMPORAL CORRELATIONS . . . . . . . . . 133
5.3 QUANTUM SPATIAL CORRELATIONS IN FWM . . . . . . . . . . . . . . 136
5.3.1 Quantization of the electromagnetic field in the paraxial regime . . 137

5.3.2 The nonlinear interaction Hamiltonian . . . . . . . . . . . . . . . . . 139

5.3.3 The biphoton state in position space . . . . . . . . . . . . . . . . . . 141

5.3.4 The coincidence count rate . . . . . . . . . . . . . . . . . . . . . . . . 142

5.3.5 The biphoton state in momentum space . . . . . . . . . . . . . . . . 147

5.3.6 Transfer of the pump angular spectrum to the coincidence profile . 150

5.3.7 Measures of spatial entanglement of the biphoton state . . . . . . . 151

6 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157



APPENDIX A – LIST OF JOURNAL PUBLICATIONS . . . . . . . 166

APPENDIX B – OVERLAP INTEGRALS ON THE REDUCED WAIST

BASIS - RADIAL MODE RESTRICTION . . . . . 167

APPENDIX C – COEFFICIENTS FOR CHANGING WAIST BASIS 169



21

1 INTRODUCTION

In recent years, the spatial structure of light has seen a significant increase in research
interest, both in fundamental studies, and in applications and technological developments
(RUBINSZTEIN-DUNLOP et al., 2016). The understanding of effects attributed to the trans-
verse structure of light in optical phenomena, and the ability to control the spatial degrees of
freedom of the light field have allowed numerous advances in the optical sciences (FORBES;

OLIVEIRA; DENNIS, 2021). We may highlight fundamental properties of electromagnetic radia-
tion, quantum optics, manipulation of matter, holography, information multiplexing, quantum
communication, metrology, and nonlinear light-matter interactions.

The starting point of these advances can be traced back to 1992, when the seminal work
of Allen et al. (ALLEN et al., 1992) established the connection between the orbital angular
momentum (OAM) of a Laguerre-Gaussian (LG) light beam and its spatial distribution, more
specifically, its helical phase structure. This breakthrough originated the field of light OAM,
which over the past three decades has grown immensely, and transformed in such a way as to
be recognized today as the more general field of structured light.

Shortly after the initial developments, the investigation of the role played by OAM in non-
linear optical processes started in second-harmonic generation (SHG) (DHOLAKIA et al., 1996;
COURTIAL et al., 1997; BERžANSKIS et al., 1998). Four-wave mixing (FWM), a third-order non-
linear optical process that can take place in a variety of systems, such as atomic vapors, cold
atoms, and optical fibers, soon started to be employed to study the interaction of OAM with
atomic systems (TABOSA; PETROV, 1999). In the past, FWM has allowed the investigation of
several optical phenomena, for instance, AC Stark shift, phase conjugation and electromag-
netically induced transparency (HARTER; BOYD, 1980; BOYD et al., 1981; YARIV; PEPPER, 1977;
ABRAMS; LIND, 1978; FLEISCHHAUER; IMAMOGLU; MARANGOS, 2005), and has become an im-
portant method for generating quantum correlated beams (BOYER et al., 2008; BOYER; MARINO;

LETT, 2008; MARINO et al., 2008). Today, SHG and other second-order optical phenomena, as
well as FWM in its many accessible configurations, offer highly versatile platforms to explore
the transverse degrees of freedom of light, both in the classical and quantum regimes.

The fundamental solution to the paraxial wave equation (PWE), the Gaussian beam, en-
compasses important properties of the actual output of laser sources, such as their characteris-
tic intensity profile and phase distribution, both of which evolve as the beam propagates. One
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exact higher-order solution to the PWE is the Hermite-Gaussian (HG) mode, which is given
in cartesian coordinates and is characterized by lobes of light disposed in a rectangular grid.
HG modes are important in the study of laser cavities, as they describe the spatial distribution
of the output beams from these light sources (KOGELNIK; LI, 1966). The Laguerre-Gaussian
mode is another exact solution to the PWE. It is given in cylindrical coordinates and carries
a ring-shaped intensity distribution. Most importantly, LG modes carry well-defined orbital
angular momentum in the propagation direction per photon (ALLEN et al., 1992). There are
many other higher-order solutions to the PWE that present vastly diverse characteristics and
interesting properties (FORBES; OLIVEIRA; DENNIS, 2021).

The above discussion considers the radiation field of light, in its many accessible spatial
distributions or modes, propagating in free space. In the present work, we are interested in
the nonlinear light-matter interactions taking place in third-order media and in understanding
how these interactions affect the structure of the light field. In particular, we will be concerned
with different configurations of four-wave mixing induced in atomic samples. One setting that
is commonly used to study the nonlinear interaction of structured light with matter is that
of FWM induced by amplified spontaneous emission (ASE) in a hot rubidium vapor, with
a 3-level cascade system (VERNIER et al., 2010). In this configuration, we may highlight the
transfer of OAM and intricate optical structures (WALKER; ARNOLD; FRANKE-ARNOLD, 2012;
AKULSHIN et al., 2015; AKULSHIN et al., 2016; CHOPINAUD et al., 2018), the investigation of the
number of modes involved in the entangled light state (OFFER et al., 2018), and the fulfillment
of the Gouy phase-matching condition in an extended medium (OFFER et al., 2021). In cold
atomic samples, FWM was employed to transfer OAM from incident to generated beams in
nondegenerate (TABOSA; PETROV, 1999) and degenerate (BARREIRO; TABOSA, 2003) systems,
to transfer more complicated phase structures obtained by superimposing LG modes of different
orders (BARREIRO et al., 2004), and to store the information carried by the spatial structure of
light in the ensemble of atoms, and later retrieve it (MORETTI; FELINTO; TABOSA, 2009; DING

et al., 2013).
In this Thesis we present results obtained in the last years from our efforts to understand

nonlinear optical phenomena driven by structured light in atomic media, and it is divided as
follows. In Chapter 2 we present fundamental concepts necessary for understanding our main
results. We outline the description of the light-matter interaction in the linear and nonlinear
regimes, and present topics related to paraxial optics. We calculate the so-called overlap
integrals in the LG and HG bases, and the associated selection rules that dictate the optical
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mode transfer in FWM. In Chapter 3 we describe the experimental apparatus used in this
work. Namely, we discuss the operation of our heated vapor setup and our magneto-optical
trap, as well as the spatial light modulator, the device used to generate the structured light
beams.

Chapter 4 is dedicated to results obtained in the rubidium vapor system. We start with
a theoretical study of the optical mode conversion in FWM induced by ASE driven by HG
modes. We first demonstrate that in the extended-medium regime the HG basis presents a
unique property that allows to generate a highly pure HG mode at the blue light output
from the wave-mixing of two input HG modes. By analyzing the combined transverse and
longitudinal selection rules that dictate the optical structure dynamics, we predict that the
indices characterizing the generated mode are given by the sums of the indices of the pump
modes. This is similar to what was verified in second-order nonlinear media (PIRES et al., 2020).
Next, we show that it is possible to use this effective selection rule to obtain desired modes
with cylindrical and elliptical symmetries at the output. This is done by carefully preparing the
input beams as superpositions of HG modes with the correct weights. This type of controlled
conversion has been demonstrated in second-harmonic generation (PIRES et al., 2019), and we
extend the approach to a higher order process.

Our most recent studies were concerned with a relatively unusual configuration, where
two degenerate (meaning that all participating fields have the same frequency) FWM signals
are generated simultaneously in different directions of space. The two processes are driven
by the same pump fields, which when carrying similar power, favor the generation of both
signals equally. This arrangement can be employed in both types of systems mentioned above:
cold and hot atoms, and we have already studied the spectral characteristics of the process
in hot Rb vapor (ALVAREZ; ALMEIDA; VIANNA, 2021), and the cross-correlation between the
pairs of transmitted beams and FWM signals in a cold Rb cloud (ALMEIDA; MOTTA; VIANNA,
2023). This two-channel configuration is the focus of the second and third parts of Chapter 4,
where we present results on the spatial mode dynamics of both generated light fields. We first
investigate the simultaneous transfer of OAM from the input beams to the generated signals,
evidencing the fulfillment of the OAM conservation selection rules in both processes (MOTTA;

ALMEIDA; VIANNA, 2023). We show that one can encode the information carried by the OAM
of the pump beams onto the topological charges of the generated fields.

Following that, we investigate the transverse mode dynamics in the context of the OAM
Poincaré sphere (PS) (MOTTA et al., 2024). In analogy with usual polarization Poincaré sphere
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(PADGETT; COURTIAL, 1999), an arbitrary mode on the OAM PS is parametrized by the polar
and azimuthal angles. Under usual assumptions, we show that both FWM fields can also be
represented by modes contained in Poincaré spheres, and that the angles on the output and
input spheres are related by well-defined symmetries. Drawing a parallel with three-wave mixing
processes in nonlinear crystals, we show that the results presented here are similar to what has
been verified in second-harmonic generation (PEREIRA et al., 2017) and in the down-conversion
process in parametric amplification (SANTOS et al., 2007; RODRIGUES et al., 2018; RODRIGUES et

al., 2022). More specifically, we verify the reflection symmetry of the mode vector on the PS in
one of the FWM signals, and the generation of a finite spectrum of radial modes in the other
one. This equivalent to what happens in down-conversion and SHG processes, respectively.
With this, we extend an approach extensively employed within second-order nonlinear systems
to a higher-order nonlinear medium.

A natural lead to these studies, aligned with the current tendency of exploring multi-channel
configurations in nonlinear and quantum optics (GUPTA et al., 2016), is the investigation of
correlations between the participating fields in the two FWM processes. This is the subject of
Chapter 5. We begin this Chapter with an investigation of the intensity fluctuation correlations
between the incident beams transmitted through a cold rubidium cloud. In particular, these
fluctuations originate from the conversion of the phase-noise inherent to diode lasers, to
amplitude-noise as a result of the light-matter interaction (ARIUNBOLD et al., 2010). In a recent
work (ALMEIDA; MOTTA; VIANNA, 2023), we attributed the verified oscillatory behaviour of the
second-order correlation curves to a signature of the generalized Rabi frequency. As a sequence,
here we attempt to identify spatial dependencies on these correlations, or even a cross-talk
between the transmitted beams inside the sample. To this end, we employed a spatially resolved
detection scheme, consisting on placing pinholes with a single translation degree of freedom
in front of the detectors, allowing us to look at the fluctuations of localized regions of the
transmitted beams. In the second part of Chapter 5, we outline the quantum description of
FWM. We first establish the interaction Hamiltonian that describes the FWM process, and
the corresponding time evolution operator in the first-order approximation. This leads to the
biphoton state, containing the full multi-spatial-mode distribution of the generated light fields.
We then calculate the spatial correlation function and discuss interesting results in different
settings, highlighting similarities with what has been verified in parametric-down conversion
(WALBORN et al., 2010).

Finally, concluding remarks and perspectives for future work are given in Chapter 6.
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2 FUNDAMENTALS

In this Chapter we discuss various topics that are relevant for the understanding of our main
results. We start with the semi-classical model of the light-matter interaction in the two-level
approximation, which we will use in a first moment to discuss general aspects of the atomic
response, such as absorption, variation of the index of refraction, and Doppler broadening.
We will then discuss topics related to paraxial optics, and establish important general results
that will be used throughout the Thesis. At the end, we discuss nonlinear optics and, more
specifically, four-wave mixing. We will consider a general description of the FWM process in
the semi-classical regime, making use of the equations for the light-atom interaction obtained
in the first Section. Finally, we discuss FWM in the context of structured light, taking fully
into account the spatial degrees of freedom of the participating light beams. We solve the
wave-equation for the FWM field and detail the calculation of the relevant overlap integrals
in the Laguerre-Gaussian and Hermite-Gaussian bases. In each case we outline the selection
rules that dictate the transverse mode dynamics.

2.1 LIGHT-MATTER INTERACTION IN A TWO-LEVEL ATOM

To describe the response of a sample of atoms to the interaction with the oscillating electric
field of laser light we employ the density matrix formalism. In many situations, including the
ones we are interested in, the interaction involves only two atomic states. This is the case
when, for example, the laser beam has a well-defined circular polarization. Thus, the individual
atoms may be modeled as simple two-level systems, where the two states are the ground and
excited states, |1⟩ and |2⟩, respectively. This problem is treated in many standard textbooks,
and here we follow closely Ref. (YARIV, 1989).

Consider a single atom located in a region where a monochromatic light field is present.
The Hamiltonian of the system is:

𝐻̂ = 𝐻̂0 + 𝑉 (𝑡), (2.1)

where 𝐻̂0 = E1 |1⟩ ⟨1|+E2 |2⟩ ⟨2| is the non-perturbed Hamiltonian for the internal degrees of
freedom of the atom and E𝑗 is the energy eigenvalue of state |𝑗⟩. The interaction Hamiltonian
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𝑉 is the electric dipole Hamiltonian:

𝑉 (𝑡) = −𝜇̂ · E(𝑡), (2.2)

where 𝜇̂ = 𝑒r̂ is the electric dipole operator. The electric field E(𝑡) is given by a monochromatic
plane-wave with frequency 𝜔 and wave-vector k, as:

E(𝑡) = 1
2𝜖ℰ𝑒−𝑖(k·r−𝜔𝑡) + c.c.,

= 𝜖𝐸(𝑡) + c.c., (2.3)

where 𝜖 is the polarization direction, ℰ is the amplitude, and c.c. means the complex conjugate.
In the rotating wave and electric dipole approximations, the matrix elements of the interaction
Hamiltonian are written as:

𝑉𝑗𝑘(𝑡) = ⟨𝑗|𝑉 (𝑡)|𝑘⟩ ,

= −1
2𝜇𝑗𝑘ℰ𝑒𝑖𝜔𝑡. (2.4)

where (𝑗, 𝑘) ∈ {1, 2} and 𝜇𝑗𝑘 = ⟨𝑗|𝜇̂ · 𝜖|𝑘⟩ is the transition dipole moment. Due to the parity
of the operator 𝜇̂, the dipole interaction only couples different states, i.e., 𝜇𝑗𝑗 = 0. The phases
of |1⟩ and |2⟩ can be chosen so that 𝜇12 = 𝜇*

21 = 𝜇 is a real number. We introduce the Rabi
frequency Ω ≡ 𝜇ℰ/2ℏ, to write:

𝑉12 = 𝑉 *
21 = −ℏΩ𝑒𝑖𝜔𝑡. (2.5)

In this manner, the Hamiltonian given by Eq. (2.1) can be rewritten as:

𝐻̂ = ℏ𝜔1 |1⟩ ⟨1|+ ℏ𝜔2 |2⟩ ⟨2| − ℏΩ𝑒𝑖𝜔𝑡 |1⟩ ⟨2| − ℏΩ*𝑒−𝑖𝜔𝑡 |2⟩ ⟨1| , (2.6)

where 𝜔1,2 ≡ E1,2/ℏ. We then see that the interaction with the laser field couples the ground
and excited states with a time-varying coupling of strength given by the Rabi frequency Ω.
The atom’s state at time 𝑡 can be written as the superposition:

|𝜓(𝑡)⟩ = 𝑐1(𝑡) |1⟩+ 𝑐2(𝑡) |2⟩ , (2.7)

where coefficients {𝑐1(𝑡), 𝑐2(𝑡)} ∈ C are related to the probabilities of finding the system in
the eigenstates |1⟩ , |2⟩ at time 𝑡 as 𝑃1,2(𝑡) = |𝑐1,2(𝑡)|2. Note that this imposes the constraint
|𝑐1(𝑡)|2 + |𝑐2(𝑡)|2 = 1. For any initial state of the atom |𝜓(𝑡 = 0)⟩, one may obtain |𝜓(𝑡)⟩ at
any 𝑡 using Schrödinger’s equation.
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However, we are not interested in the behavior of a single atom. When dealing with a
system of many atoms, an ensemble, where classical uncertainties forbids the knowledge of
the exact state of the system, the density operator formalism is the ideal framework. The
density operator of a pure system |𝜓⟩ can be defined as 𝜌 = |𝜓⟩ ⟨𝜓|, and with Eq. (2.7), we
may write:

𝜌 = |𝑐1|2 |1⟩ ⟨1|+ |𝑐2|2 |2⟩ ⟨2|+ 𝑐1𝑐
*
2 |1⟩ ⟨2|+ 𝑐*

1𝑐2 |2⟩ ⟨1| . (2.8)

More generally, the density operator can be written as:

𝜌 =
∑︁
𝑗,𝑘

𝜌𝑗𝑘 |𝑗⟩ ⟨𝑘| , (2.9)

where the diagonal elements 𝜌𝑗𝑗 are the populations and represent the probability of finding
an atom of the ensemble in the eigenstate |𝑗⟩. This imposes ∑︀𝑗 𝜌𝑗𝑗 = 1. The off-diagonal
elements 𝜌𝑗𝑘 are the coherences and in our case are related to the response of the system due
to the light-atom interaction. The density operator is Hermitian, and therefore it must satisfy
𝜌𝑗𝑘 = 𝜌*

𝑘𝑗. In our case, we have 𝜌11 = |𝑐1|2, 𝜌22 = |𝑐2|2, 𝜌12 = 𝜌*
21 = 𝑐*

1𝑐2. The time evolution
of 𝜌 is described by Liouville’s Equation:

𝜕𝜌

𝜕𝑡
= 𝑖

ℏ
[𝜌, 𝐻̂], (2.10)

where [𝐴, 𝐵̂] = 𝐴𝐵̂ − 𝐵̂𝐴 is the commutator of the operators 𝐴 and 𝐵̂. For the two-level
system, we can write the equations describing the time evolution of each element of 𝜌 as:

𝜌̇11 = 𝑖

ℏ
[𝜌12𝑉21 − 𝜌21𝑉12] , (2.11)

𝜌̇22 = 𝑖

ℏ
[𝜌21𝑉12 − 𝜌12𝑉21] , (2.12)

𝜌̇12 = 𝑖

ℏ
[𝑉12 (𝜌11 − 𝜌22) + 𝜌12 (E2 − E1)] , (2.13)

𝜌̇21 = 𝑖

ℏ
[𝑉21 (𝜌22 − 𝜌11) + 𝜌21 (E1 − E2)] . (2.14)

We rewrite the above system of coupled equations in the more convenient form:

(𝜌̇22 − 𝜌̇11) = −2𝑖
ℏ

[𝜌12𝑉21 − c.c.], (2.15)

𝜌̇12 = − 𝑖
ℏ

[𝑉12(𝜌22 − 𝜌11)− 𝜌12 (E2 − E1)] , (2.16)

where 𝜌11 + 𝜌22 = 1 and 𝜌12 = 𝜌*
21 must be satisfied. One aspect that our treatment so far

fails to capture is the spontaneous decay of the atoms in the excited state. Rigorously, to
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encompass this phenomenon, we must account for the coupling with the vacuum modes of
the radiation field within a second-quantized framework. Here, however, it suffices to add to
Eqs. (2.15) and (2.16) relaxation terms that account for the spontaneous decay process. Let
Γ/2𝜋 be the rate at which the atom decays from the excited state1. Then, populations and
coherences decay at (angular) rates Γ and Γ/2, respectively. We therefore modify Eqs. (2.15)
and (2.16) to read:

(Δ𝜌̇) =− 2𝑖
ℏ

[𝜌12𝑉21 − c.c.]− Γ
[︁
Δ𝜌− (Δ𝜌)0

]︁
, (2.17)

𝜌̇12 =− 𝑖

ℏ
[𝑉12Δ𝜌− 𝜌12 (E2 − E1)]−

Γ
2 𝜌12, (2.18)

where Δ𝜌 = (𝜌22 − 𝜌11) and (Δ𝜌)0 = −1 is the population difference far from the region
of interaction. These are the Optical Bloch’s Equations (OBEs) for our system. We will be
interested in a steady state solution, i.e., for 𝑡 much larger than the characteristic time scale
of the interaction dynamics. We begin by writing the coherence in the slowly varying form:

𝜌12 = 𝜎12𝑒
𝑖𝜔𝑡, (2.19)

and substitute 𝑉12 from (2.4) to arrive at:

(Δ𝜌̇) = 2𝑖(𝜎12Ω* − 𝜎21Ω)− Γ
[︁
Δ𝜌− (Δ𝜌)0

]︁
, (2.20)

𝜎̇12 = 𝑖ΩΔ𝜌− 𝜎12

(︃
𝑖𝛿 + Γ

2

)︃
, (2.21)

where 𝜔𝑜 = (E2−E1)/ℏ = 𝜔2−𝜔1 is the resonance frequency and 𝛿 = 𝜔−𝜔𝑜 is the detuning
from resonance. In the steady state, we have:

Δ𝜌 = (Δ𝜌)0 + 2𝑖
Γ [𝜎12Ω* − 𝜎21Ω], (2.22)

𝜎12 = 𝑖
ΩΔ𝜌

𝑖𝛿 + Γ/2 . (2.23)

Substituting the second equation into the first, we get the population difference:

Δ𝜌 = (Δ𝜌)0

1 + 2|Ω|2
𝛿2 + Γ2/4

. (2.24)

Then, the steady state solution to 𝜎12 is thus readily found as:

𝜎12 = − Ω (𝛿 + 𝑖Γ/2)
𝛿2 + Γ2/4 + 2|Ω|2 , (2.25)

1 For the D2 line of 87Rb, we have Γ/2𝜋 ≈ 6 MHz (STECK, 2001), for example.
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where the presence of |Ω|2 in the denominator is related to saturation effects and power
broadening.

The response of the atomic ensemble is governed by the macroscopic polarization, given
by P = 𝒩⟨𝜇̂⟩ = 𝒩 tr(𝜌𝜇̂), where 𝒩 is the atomic density. It is also related to the incident
field by the electric susceptibility 𝜒 via P = 𝜀0𝜒𝜖𝐸+ c.c., where 𝜀0 is the electric permittivity
of free space. Projecting both expressions for P onto the oscillation direction of the field 𝜖*,
one obtains:

𝜀0𝜒𝐸 = 𝒩 tr[𝜌(𝜇̂ · 𝜖*)]. (2.26)

It is interesting to note that in the above equation, the left-hand side comes from the classical
macroscopic response of the medium to a propagating field, while the right-hand side comes
from the quantum description of the atomic response to the interaction with the field. The trace
is the dipole moment per atom and can be readily found as tr[𝜌(𝜇̂ · 𝜖*)] = (𝜇𝜎12𝑒

𝑖𝜔𝑡 + c.c.).
Substituting (2.25), we find the effective electric susceptibility as:

𝜒 = −𝒩|𝜇|
2

ℏ𝜀0

𝛿 + 𝑖Γ/2
𝛿2 + Γ2/4 + 2|Ω|2 . (2.27)

For small field intensities we obtain (BOYD, 2020):

𝜒 ≈ −𝒩|𝜇|
2

ℏ𝜀0

(︃
1

𝛿 − 𝑖Γ/2 −
2(𝛿 + 𝑖Γ/2)
(𝛿2 + Γ2/4)2 |Ω|

2
)︃
,

= 𝜒(1) + 3𝜒(3)|𝐸|2, (2.28)

where:

𝜒(1)(𝛿) = −𝒩|𝜇|
2

ℏ𝜀0

1
𝛿 − 𝑖Γ/2 , (2.29)

𝜒(3)(𝛿) = 2𝒩|𝜇|4
3ℏ3𝜀0

𝛿 + 𝑖Γ/2
(𝛿2 + Γ2/4)2 (2.30)

are the first- and third-order electric susceptibilities. The first-order susceptibility is related to
the linear absorption and the variation of the refractive index. The third-order susceptibility is
related to nonlinear phenomena, such as the Kerr effect, also known as self-phase modulation.
The complex index of refraction in the medium is 𝑛̃ = (1 + 𝜒(1))1/2, which for 𝜒(1) ≪ 1 can
be approximated as 𝑛̃ ≃ 1 + 𝜒(1)/2. We then define:

𝑛̃ ≡ 𝑛+ 𝑖
𝑐

2𝜔𝛼, (2.31)
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where 𝑛 is the index of refraction in the medium and 𝛼 is the absorption coefficient. We can
therefore write:

𝑛 = 1− 𝒩|𝜇|
2

2ℏ𝜀0

𝛿

𝛿2 + Γ2/4 , (2.32)

𝛼 = −Γ𝑘𝒩|𝜇|2
2ℏ𝜀0

1
𝛿2 + Γ2/4 . (2.33)

Figure 1 shows 𝑛 and 𝛼 as functions of the detuning from resonance 𝛿.

Figure 1 – Dependence of (a) the index of refraction 𝑛 and (b) the absorption coefficient 𝛼 with the detuning
from resonance. Γ/2𝜋 = 6 MHz, corresponding to the closed transition of the D2 line of 87Rb.
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Source: The author (2024).

The intensity of the incident wave propagating inside the medium in the 𝑧 direction decays
with 𝑒−|𝛼|𝑧. Thus, with Eq. (2.33), we can estimate the density of atoms 𝒩 inside a dilute
cloud of cold atoms, for example. This can be done by measuring the transmission of a weak
probe passing through the sample as a function of the detuning, and fitting the detected
absorption profile to the curve:

𝐼(𝛿) = 𝐼0 exp
(︃
− OD

1 + (2𝛿/Γ)2

)︃
, (2.34)

where 𝐼0 is the intensity of the beam before passing through the sample, and OD is the optical
depth of the sample. The OD can then be found as:

OD = ln (2)
[︁
1 + (Δ/Γ)2

]︁
, (2.35)

where Δ is the full width at half maximum (FWHM). Then, for a sample of size 𝐿, we may
estimate 𝒩 via:

𝒩 = OD
2𝐿

Γℏ𝜀0

𝑘|𝜇|2
. (2.36)

Due to the Doppler effect and the atomic motion at room temperature, atoms see an
incoming light field with frequency 𝜔′ = 𝜔 − k · v, where k is the wave-vector of the photon
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and v is the velocity of the atom. Considering the movement in 1D, the linear response of
a large number of atoms in the velocity group 𝑣 is 𝜒(1)(𝛿 − 𝑘𝑣). To account for all velocity
groups, we average the susceptibility over all possible values of 𝑣:

𝜒
(1)
𝐷 (𝛿) =

∫︁ ∞

−∞
𝜒(1)(𝛿 − 𝑘𝑣)𝑓(𝑣)𝑑𝑣. (2.37)

The weighting factor is the Maxwell-Boltzmann distribution 𝑓(𝑣) = 1√
𝜋𝑢
𝑒−𝑣2/𝑢2 , where 𝑢 =√︁

2𝑘𝐵𝑇/𝑚 is the most probable velocity at a given temperature 𝑇 . The absorption profile
becomes:

𝛼𝐷(𝛿) = −Γ𝑘𝒩|𝜇|2
2ℏ𝜀0

𝑔(𝛿), (2.38)

where 𝑔(𝛿) is the lineshape function, with a Voigt profile, which is the convolution between
the Lorentzian and Gaussian lineshapes:

𝑔(𝛿) = 1√
𝜋𝑢

∫︁ ∞

−∞

𝑒−𝑣2/𝑢2

(𝛿 − 𝑘𝑣)2 + Γ2/4𝑑𝑣. (2.39)

Figure 2 shows a Lorentzian lineshape and the Voigt profile considering an atomic sample at
𝑇 ≈ 500 mK. We see that the motion of atoms at this relatively low temperature leads to a
significant broadening of the absorption lines. At room temperature, 𝑇 ≈ 300 K, the Doppler
broadening is much greater than many natural linewidths, and it forbids the observation of the
hyperfine transitions of an atom by looking at the absorption of a single probe beam. In this
situation, 𝑘𝑢≫ Γ, and the lineshape function can be approximated by a Gaussian distribution

𝑔(𝛿) ≃ 2
√
𝜋

Γ𝑘𝑢 𝑒
− 𝛿2

𝑘2𝑢2 . (2.40)

Figure 2 – Lorentzian and Voigt profiles considering a sample of atoms at 𝑇 ≈ 500 mK (𝑢 ≈ 10 m/s).
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2.2 PARAXIAL OPTICS AND WAVE PROPAGATION IN THE PARAXIAL REGIME

Most of our results revolve around operations with paraxial modes, which are exact solutions
to the paraxial wave-equation (PWE). The PWE is an approximate wave-equation that is
suitable to describe the propagation of electromagnetic fields in vacuum. The so-called paraxial
approximation is valid for most conditions encountered in real experimental scenarios. Within
this approximation, it is also possible to adequately describe the propagation of light inside
matter. To obtain the PWE, we start with Maxwell’s equations in vacuum with no sources
(JACKSON, 1999):

∇ · E = 0, (2.41)

∇ ·B = 0, (2.42)

∇× E = −𝜕B
𝜕𝑡
, (2.43)

∇×B = 𝜀0𝜇0
𝜕E
𝜕𝑡
, (2.44)

where E and B are the electric and magnetic fields, respectively, ∇ = ∑︀
𝑖 e𝑖

𝜕
𝜕𝑥𝑖

is the gradient
operator, and 𝜇0 is the vacuum magnetic permeability. It is a straightforward matter to de-
couple Eqs. (2.41)-(2.44) and arrive at the wave-equation for the electric field E of a traveling
light beam:

∇2E− 1
𝑐2
𝜕2E
𝜕𝑡2

= 0, (2.45)

where ∇2 = ∑︀
𝑖

𝜕2

𝜕𝑥2
𝑖

is the Laplacian, and 𝑐 = 1/√𝜀0𝜇0 is the speed of light in vacuum. As
we have done in Section 2.1, we suppose that E is a monochromatic beam propagating in the
𝑧 direction. However, as we are now interested in the spatial form of the light field, we make
explicit its position dependence as:

E(r, 𝑡) = 1
2𝜖ℰ(r)𝑒−𝑖(𝑘𝑧−𝜔𝑡) + c.c.,

= 𝜖𝐸(r, 𝑡) + c.c., (2.46)

where 𝜖 is the polarization direction, ℰ(r) = ℰ0𝑢(r), 𝑢(r) being a complex amplitude that
describes the transverse distribution of the field at each 𝑧 plane, 𝑘 is the wave-number, and
𝜔 = 𝑐𝑘 is the frequency. Projecting Eq. (2.45) onto the direction 𝜖*, we obtain the scalar
equation for the field amplitude 𝐸(r, 𝑡)

∇2
⊥𝐸 + 𝜕2𝐸

𝜕𝑧2 + 𝑘2𝐸 = 0, (2.47)
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where ∇2
⊥ = 𝜕2

𝜕𝑥2 + 𝜕2

𝜕𝑦2 is the transverse Laplacian. Performing the 𝑧 derivatives, we obtain
the equation satisfied by the envelope 𝑢(r):

∇2
⊥𝑢+ 𝜕2𝑢

𝜕𝑧2 − 2𝑖𝑘𝜕𝑢
𝜕𝑧

= 0. (2.48)

We now consider that the variation of 𝑢(r) with the longitudinal coordinate is slow, in such a
way that: ⃒⃒⃒⃒

⃒𝜕2𝑢

𝜕𝑧2

⃒⃒⃒⃒
⃒≪

⃒⃒⃒⃒
⃒𝑘𝜕𝑢𝜕𝑧

⃒⃒⃒⃒
⃒ , (2.49)

and neglect the second derivative in 𝑧. This is known as the slowly varying envelope approxi-
mation. We then arrive at the paraxial wave-equation (PWE):

∇2
⊥𝑢− 2𝑖𝑘𝜕𝑢

𝜕𝑧
= 0. (2.50)

The PWE describes the evolution of the transverse distribution of the radiation field of light
in vacuum. The lowest order solution to the PWE is the well-known Gaussian beam, and it
faithfully represents the characteristics of real laser beams. Numerous other solutions are known
and experimentally attainable, such as the already mentioned Hermite- and Laguerre-Gaussian
modes, the Bessel, Mathieu and Airy beams, to cite a few (FORBES; OLIVEIRA; DENNIS, 2021).

It is interesting to note that the PWE is mathematically equivalent to the 2D Schrödinger
equation for a free particle, and therefore similarities may be drawn between classical optics
and quantum mechanics. In fact, these similarities were noted since the early days of quantum
mechanics. Exact solutions to the PWE are named paraxial modes, and we shall denote a gen-
eral paraxial mode by 𝑢𝑚,𝑛(r⊥, 𝑧), where the pair of indices (𝑚,𝑛) determine their transverse
spatial distribution, r⊥ is the transverse position vector in a particular coordinate system, and
𝑧 is the longitudinal coordinate. The set of all modes {𝑢𝑚,𝑛} form complete orthonormal sets
of functions, bases, on the transverse plane. In upcoming sections, we will present different
families of modes and discuss their characteristics. Here we outline general properties shared
by these families. The orthogonality and completeness relations read:∫︁∫︁

𝑢𝑚,𝑛𝑢
*
𝑚′,𝑛′𝑑2r⊥ = 𝛿𝑚,𝑚′𝛿𝑛,𝑛′ , (2.51)∑︁

𝑚,𝑛

𝑢𝑚,𝑛(r⊥, 𝑧)𝑢*
𝑚,𝑛(r′

⊥, 𝑧) = 𝛿(r⊥ − r′
⊥). (2.52)

This allows to write any scalar optical field as a superposition of the form:

𝑈(r⊥, 𝑧) =
∑︁
𝑚,𝑛

𝑐𝑚,𝑛(𝑧)𝑢𝑚,𝑛(r⊥, 𝑧). (2.53)
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The expansion coefficients 𝑐𝑚,𝑛(𝑧) can be seen as power control parameters. If we call 𝑃𝑚,𝑛 =

|𝑐𝑚,𝑛|2 the power allocated to the mode 𝑢𝑚,𝑛, then the total power carried by the field 𝑈

is 𝑃 = ∑︀
𝑚,𝑛 𝑃𝑚,𝑛 = ∑︀

𝑚,𝑛 |𝑐𝑚,𝑛|2. We may define the normalized mode weight as 𝜂𝑚,𝑛 ≡

|𝑐𝑚,𝑛|2/𝑃 . It is important to note that 𝑐𝑚,𝑛(𝑧) can be complex.
If we multiply Eq. (2.50) by 𝑢*, where 𝑢 is any paraxial mode, and add to the resulting

equation its complex conjugate, we obtain the continuity equation:

𝜕|𝑢|2

𝜕𝑧
+ ∇⊥ · j = 0, (2.54)

where the current is j = 𝑖
2𝑘

(𝑢*∇⊥𝑢− 𝑢∇⊥𝑢
*). Now we integrate Eq. (2.54) over a surface S

on the transverse plane, and use 2D Gauss’ theorem on the divergence term, to obtain:

𝑑𝑃c

𝑑𝑧
+ Φb = 0, (2.55)

where 𝑃c =
∫︀∫︀

S |𝑢|2𝑑2r⊥ is the power contained in the surface S, and Φb =
∫︀

𝜕S(j · n)𝑑𝑙, with
n being a unit vector normal to the contour 𝜕S pointing outward, is the flux of the current j

through the boundary of the surface. If we extend the surface S to be the infinite transverse
plane, 𝑃c becomes the total power carried by the light beam, 𝑃 , and the flux term goes to 0.
We then obtain:

𝑑𝑃

𝑑𝑧
= 0, (2.56)

and conclude that the total power carried by a paraxial beam is conserved upon free-space
propagation.

The Fourier transform (FT) or the angular spectrum of a paraxial mode gives the field
amplitude as a function of the transverse wave-vector q, and can be useful for many compu-
tations. For an arbitrary paraxial mode 𝑢𝑚,𝑛, we may write the FT as:

𝒰𝑚,𝑛(q, 𝑧) = ℱ{𝑢𝑚,𝑛(r⊥, 𝑧)},

= 1
2𝜋

∫︁∫︁
𝑢𝑚,𝑛(r⊥, 𝑧)𝑒𝑖q·r⊥𝑑2r⊥, (2.57)

The angular spectrum satisfies the PWE in wave-vector space, obtained by applying the FT
to Eq. (2.50): (︃

−𝑖 |q|
2

2𝑘 + 𝜕

𝜕𝑧

)︃
𝒰𝑚,𝑛(q, 𝑧) = 0. (2.58)

From Eq. (2.58) the evolution of 𝒰𝑚,𝑛(q) with the longitudinal coordinate can be found as:

𝒰𝑚,𝑛(q, 𝑧) = 𝒰𝑚,𝑛(q, 0)𝑒𝑖𝑘𝜗2
k𝑧, (2.59)
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where we have defined the parameter 𝜗k ≡ |q|/
√

2𝑘, which can be seen as a measure of
the degree of paraxiality. In the paraxial limit, |q| ≪ 𝑘, and 𝜗k ≪ 1. It can be noted
that the 𝑧 dependence of the angular spectrum is much simpler than that of the mode in
position space. Also, the squared modulus of 𝒰 is invariant with the propagation distance
𝑧, |𝒰(q, 𝑧)|2 = |𝒰(q, 0)|2. Equation (2.59) gives a general recipe to propagate an arbitrary
paraxial field ℰ(r⊥, 𝑧0) up to a position 𝑧:

ℰ(r⊥, 𝑧) = ℱ−1
{︂
ℰ̃(q, 𝑧0)𝑒𝑖

|q|2
2𝑘

(𝑧−𝑧0)
}︂
, (2.60)

where we defined ℰ̃(q, 𝑧0) ≡ ℱ {ℰ(r⊥, 𝑧0)}.
Two important constructions in paraxial optics are the propagator and the Green’s function

(LANNING et al., 2017):

𝐾(r⊥, 𝑧; r′
⊥, 𝑧

′) =
∑︁
𝑚,𝑛

𝑢𝑚,𝑛(r⊥, 𝑧)𝑢*
𝑚,𝑛(r′

⊥, 𝑧
′), (2.61)

𝐺(r⊥, 𝑧; r′
⊥, 𝑧

′) = Θ(𝑧 − 𝑧′)𝐾(r⊥, 𝑧; r′
⊥, 𝑧

′), (2.62)

where Θ(·) is the Heaviside step function. The propagator 𝐾 receives this name because it
propagates a mode from an initial position 𝑧′ to a final position 𝑧 as:∫︁∫︁

𝐾(r⊥, 𝑧; r′
⊥, 𝑧

′)𝑢𝑚,𝑛(r′
⊥, 𝑧

′)𝑑2r′
⊥ = 𝑢𝑚,𝑛(r⊥, 𝑧), (2.63)

and the Green’s function 𝐺 is useful to solve non-homogeneous paraxial wave-equations of the
form:

𝒟̂𝑘ℰ(r) = ℘(r), (2.64)

where 𝒟̂𝑘 ≡ (𝑖∇2
⊥/2𝑘+ 𝜕/𝜕𝑧) is the PWE differential operator, and ℘(r) is the source term,

defined in a region V of space. It is straightforward to show that 𝐺 satisfies:

𝒟̂𝑘𝐺(r⊥, 𝑧; r′
⊥, 𝑧

′) = 𝛿(2)(r⊥ − r′
⊥)𝛿(𝑧 − 𝑧′), (2.65)

and given that the field at the initial position 𝑧0, ℰ(r⊥, 𝑧0) = ℰ0(r⊥), is known, the general
solution to the non-homogeneous PWE with source term ℘(r) can be found as (LANNING et

al., 2017):

ℰ(r⊥, 𝑧) =
∫︁∫︁ {︂

𝐾(r⊥, 𝑧; r′
⊥, 𝑧0)ℰ(r′

⊥, 𝑧0) +
∫︁
𝐺(r⊥, 𝑧; r′

⊥, 𝑧
′)℘(r′

⊥, 𝑧
′)𝑑𝑧′

}︂
𝑑2r′

⊥. (2.66)

The first term is associated with the free-propagation of the input field from 𝑧0 to 𝑧, while the
second term is related to effects due to the source. For a field that is generated as the result
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of some process taking place inside the region V, the initial condition is ℰ(r⊥, 𝑧0) = 0, and
the solution to ℰ at 𝑧 fully determined by the second term in Eq. (2.66). In general, the source
term is itself affected by the changing field distribution, ℰ(r⊥, 𝑧), but to take this into account
makes the situation very complicated. A good approximation is to consider that ℘(r⊥) is only
affected by the initial field distribution ℰ0(r⊥). Substituting expression (2.62) into Eq. (2.66),
we obtain:

ℰ(r⊥, 𝑧) =
∑︁
𝑚,𝑛

𝒜𝑚,𝑛(𝑧)𝑢𝑚,𝑛(r⊥, 𝑧), (2.67)

where:

𝒜𝑚,𝑛(𝑧) =
∫︁
R3

Θ(𝑧 − 𝑧′)℘(r′
⊥, 𝑧

′)𝑢*
𝑚,𝑛(r′

⊥, 𝑧
′)𝑑3r′,

=
∫︁ 𝑧

−∞

∫︁∫︁
R2
℘(r′

⊥, 𝑧
′)𝑢*

𝑚,𝑛(r′
⊥, 𝑧

′)𝑑2r′
⊥𝑑𝑧

′. (2.68)

Usually the source term is nonzero only in a limited region of space. In the 𝑧 direction, we
may consider that it exists between 𝑧 = −𝐿/2, and 𝑧 = 𝐿/2, and is zero everywhere else. We
may represent it as:

℘(r′
⊥, 𝑧

′) = 𝑆(r′
⊥, 𝑧

′)[Θ(𝑧′ + 𝐿/2)−Θ(𝑧′ − 𝐿/2)], (2.69)

where Θ(·) is the Heaviside function, and 𝑆 carries any other spatial distribution of the source
term. We may thus write:

𝒜𝑚,𝑛(𝑧) =
∫︁ 𝑧<

−𝐿/2

∫︁∫︁
𝑆(r′

⊥, 𝑧
′)𝑢*

𝑚,𝑛(r′
⊥, 𝑧

′)𝑑2r′
⊥𝑑𝑧

′, (2.70)

where 𝑧< = min[𝑧, 𝐿/2]. Note that this expression encompasses the solution for the field ℰ
both inside and outside the region where the source term is defined. As we shall see, assuming
an ansatz for ℰ in the form of an arbitrary superposition of paraxial modes, as in Eq. (2.53),
yields the same solution as obtained with the Green’s function introduced in (LANNING et al.,
2017).

2.2.1 The Laguerre-Gaussian mode

We will be interested in problems that involve the OAM of light, and for this reason
we consider the Laguerre-Gaussian (LG) basis, which is also convenient when dealing with
circularly symmetric light fields. LG modes are solutions to the PWE in cylindrical coordinates:

𝜕2𝑢

𝜕𝑟2 + 1
𝑟

𝜕𝑢

𝜕𝑟
+ 1
𝑟2
𝜕2𝑢

𝜕𝜑2 − 2𝑖𝑘𝜕𝑢
𝜕𝑧

= 0, (2.71)
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and are denoted as

𝑢ℓ,𝑝(r) = 𝐶ℓ,𝑝

𝑤(𝑧)

(︃√
2𝑟

𝑤(𝑧)

)︃|ℓ|

𝐿|ℓ|
𝑝

(︃
2𝑟2

𝑤2(𝑧)

)︃
𝑒−𝑟2/𝑤2(𝑧)

× 𝑒𝑖ℓ𝜑 exp
(︃
−𝑖 𝑘𝑟2

2𝑅(𝑧) + 𝑖ΨG(𝑧)
)︃
, (2.72)

where 𝐶ℓ,𝑝 =
√︁

2𝑝!/𝜋(𝑝+ |ℓ|)! is the normalization constant, 𝐿|ℓ|
𝑝 (·) is the associated Laguerre

polynomial, 𝑤(𝑧) = 𝑤0

√︁
1 + (𝑧/𝑧𝑅)2 is the beam width, 𝑅(𝑧) = 𝑧 [1 + (𝑧𝑅/𝑧)2] is the cur-

vature radius, ΨG(𝑧) = (𝑁ℓ,𝑝 + 1) tan−1(𝑧/𝑧𝑅) is the Gouy phase shift, with the total mode
order defined as 𝑁ℓ,𝑝 = 2𝑝+ |ℓ|, 𝑧𝑅 = 𝑘𝑤2

0/2 is the Rayleigh range and 𝑤0 is the beam waist.
The waist 𝑤0 and Rayleigh range 𝑧𝑅 are the transverse and longitudinal characteristic lengths
of the LG mode, respectively. Note that they are related by the wave-number, which is usually
a stronger constraint in the experimental setup. To determine the mode functions {𝑢ℓ,𝑝}, one
must specify either 𝑤0 or 𝑧𝑅, but generally it is more convenient to think about the beam
waist.

A light beam described by an LG mode carries well-defined OAM in the 𝑧-direction, which is
related to the azimuthal phase factor 𝑒𝑖ℓ𝜑, where integer ℓ ∈ (−∞,∞), called the topological
charge, defines the OAM per photon in the beam (ALLEN et al., 1992). This term introduces a
phase singularity, an optical vortex (OV), at the center of the beam, where the intensity is zero.
The phase-fronts of LG beams are twisted around the propagation axis (see Fig. 3), with the
number and handedness of the helices defined by the magnitude and sign of ℓ, respectively. The
Poynting vector, which is normal to the phase-fronts at all positions, spirals around the beam
axis (ALLEN et al., 1992). The linear momentum density thus possesses an off-axis azimuthal
component, that gives rise to the angular momentum of the beam (YAO; PADGETT, 2011).
The other index characterizing the mode, 𝑝 ∈ [0,∞), is called the radial index. It is related to
the number of dark rings in the intensity profile of 𝑢ℓ,𝑝, but does not have a straightforward
connection with a physical quantity as is the case for ℓ. In recent years, however, the radial
index has been the subject of theoretical works (KARIMI et al., 2014; PLICK; KRENN, 2015) that
have enlightened its significance. In Fig. 4 we show the intensity and phase distributions of LG
modes with different orders at the focal plane 𝑧 = 0.

One last remark is that the LG mode possesses the interesting property that its Fourier
transform at 𝑧 = 0, ℒℓ,𝑝(q, 0) ≡ ℱ{𝑢ℓ,𝑝(r⊥, 0)}, has the same form as the mode itself. In
cylindrical coordinates, we have:

ℒℓ,𝑝(𝜌, 𝜙, 0) = 1
2𝜋

∫︁∫︁
𝑢ℓ,𝑝(𝑟, 𝜑, 0)𝑒𝑖𝑟𝜌 cos(𝜙−𝜑)𝑟𝑑𝑟𝑑𝜑, (2.73)
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Figure 3 – Phase fronts of (a) a plane wave, ℓ = 0, and LG beams with (b) ℓ = 1, (c) ℓ = 2 and (d) ℓ = 3.

Source: Taken from reference (YAO; PADGETT, 2011).

where (𝜌 cos𝜙, 𝜌 sin𝜙) = (𝑞𝑥, 𝑞𝑦) = q is transverse wave-vector. We can then obtain:

ℒℓ,𝑝(q, 0) = 𝐶ℓ,𝑝
𝑤0

2

(︃
𝜌𝑤0√

2

)︃|ℓ|

𝐿|ℓ|
𝑝

(︃
𝜌2𝑤2

0
2

)︃
𝑒−𝜌2𝑤2

0/4𝑒𝑖ℓ𝜙 exp
[︂
𝑖
𝜋

2 (2𝑝+ |ℓ|)
]︂
. (2.74)

As we have already seen, the evolution of the LG angular spectrum with the longitudinal
coordinate 𝑧 is given by Eq. (2.59), ℒℓ,𝑝(q, 𝑧) = ℒℓ,𝑝(q, 0)𝑒𝑖𝑘𝜗2

k𝑧.
To show that the LG mode does indeed carry well-defined OAM in the propagation direc-

tion, we recur to the Lorenz gauge, in which the vector potential A satisfies the wave-equation.
We describe it as a linearly polarized wave traveling in the 𝑧 direction, with its positive fre-

Figure 4 – Intensity profiles and phase distributions of LG modes of different orders ℓ = −1, 0, 1, 3, 𝑝 =
0, 1, 2.

Source: The author (2024).
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quency component written as (ALLEN et al., 1992):

A(r, 𝑡) = e𝑥𝑢(r)𝑒−𝑖(𝑘𝑧−𝜔𝑡), (2.75)

where 𝑢(r) satisfies the PWE. The electric and magnetic fields in this case are written as
(ANDREWS; BABIKER, 2012; MOLINA-TERRIZA; TORRES; TORNER, 2007)

E = −𝜔
𝑘

(︃
e𝑥𝑖𝑘𝑢+ e𝑧

𝜕𝑢

𝜕𝑥

)︃
𝑒−𝑖(𝑘𝑧−𝜔𝑡), (2.76)

B = −
(︃

e𝑦𝑖𝑘𝑢+ e𝑧
𝜕𝑢

𝜕𝑦

)︃
𝑒−(𝑖𝑘𝑧−𝜔𝑡). (2.77)

To obtain these forms, we neglected 𝜕2𝑢/𝜕𝑦𝜕𝑥 and considered |𝜕𝑢/𝜕𝑧| ≪ |𝑘𝑢|, |𝜕2𝑢/𝜕𝑥2| ≪

|𝑘2𝑢|. We see that the electromagnetic wave described by Eq. (2.76) is not purely transverse.
The longitudinal components of E and B, although much smaller than the transverse compo-
nents, are essential to obtain the result we want. The time average of the linear momentum
density is (ALLEN et al., 1992):

⟨p⟩ = 𝜀0⟨E×B⟩,

= 𝜀0

2 Re{E×B*},

= 𝑖𝜔
𝜀0

2 (𝑢*∇⊥𝑢− 𝑢∇⊥𝑢
*) + 𝜔𝑘𝜀0|𝑢|2e𝑧. (2.78)

Specializing to cylindrical coordinates, the longitudinal component of the time averaged angular
momentum, 𝐽𝑧 =

∫︀∫︀
(r× ⟨p⟩)𝑧𝑑

2r⊥, can be found as:

𝐽𝑧 = −𝜔𝜀0

∫︁∫︁
Im {𝑢*𝜕𝜑𝑢} 𝑑2r⊥. (2.79)

Using the expression for the LG mode 𝑢 = 𝑢ℓ,𝑝, we can write 𝐽𝑧 as:

𝐽𝑧 = 𝜔𝜀0ℓ. (2.80)

Moreover, since the total energy per unit length carried by the radiation field is 𝑊 ≃ 𝜀0𝜔
2,

the ratio between the angular momentum along the beam axis and the field energy is found
as:

𝐽𝑧

𝑊
= ℓ

𝜔
. (2.81)

This result can be generalized to the case of a field with circular polarization (ALLEN et al.,
1992), where we obtain:

𝐽𝑧

𝑊
= ℓ+ 𝜎𝑧

𝜔
, (2.82)
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where 𝜎𝑧 = ±1 for left- or right-circular polarizations. It is known that a photon from a
circularly polarized light beam possesses an angular momentum given by:

𝑆𝑧 = 𝜎𝑧ℏ, (2.83)

which is regarded as the spin of the photon. Thus, Eq. (2.82) suggests that the orbital angular
momentum in the 𝑧 direction per photon in a Laguerre-Gaussian beam is

𝐿𝑧 = ℓℏ. (2.84)

Contrary to the spin component of the angular momentum of a photon, its OAM can assume
an infinite number of values. This high dimensionality represents a useful tool for information
multiplexing in optical communications exploring the transverse degrees of freedom of light,
and also for quantum optics and quantum information.

2.2.2 Three families of paraxial solutions: LG, HG, and IG

One can also work with the parity-defined LG (PDLG) modes, which do not carry well-
defined OAM, 𝑢𝜎

ℓ,𝑝, where 𝜎 = 𝑒, 𝑜 corresponds to the even and odd parity modes, respectively.
They are given by:

𝑢𝑒,𝑜
ℓ,𝑝(𝑟, 𝜑, 𝑧) =

√︃
2

(1 + 𝛿ℓ,0)
𝑉 |ℓ|

𝑝 (𝑟, 𝑧)

⎧⎪⎪⎨⎪⎪⎩
cos ℓ𝜑

sin ℓ𝜑

⎫⎪⎪⎬⎪⎪⎭ , (2.85)

where 𝑉 |ℓ|
𝑝 (𝑟, 𝑧) is defined via 𝑢ℓ,𝑝 = 𝑉 |ℓ|

𝑝 (𝑟, 𝑧)𝑒𝑖ℓ𝜑. Instead of the characteristic ring-shaped
profile carried by helical LG beams, PDLG modes present a flowerlike pattern with 2|ℓ| light
petals (GRYNBERG; MAÎTRE; PETROSSIAN, 1994).

The Hermite-Gaussian (HG) mode is another commonly used solution to the paraxial
wave-equation in numerous applications. HG modes are given in cartesian coordinates and are
denoted as:

𝑢HG
𝑛𝑥,𝑛𝑦

(𝑥, 𝑦, 𝑧) =
√︃

2
𝜋

𝐵𝑛𝑥,𝑛𝑦

𝑤(𝑧) 𝐻𝑛𝑥

(︃√
2𝑥

𝑤(𝑧)

)︃
𝐻𝑛𝑦

(︃√
2𝑦

𝑤(𝑧)

)︃

× 𝑒− 𝑥2+𝑦2

𝑤2(𝑧) exp
(︃
−𝑖𝑘𝑥

2 + 𝑦2

2𝑅(𝑧) + 𝑖ΨHG(𝑧)
)︃
, (2.86)

where 𝐵𝑛𝑥,𝑛𝑦 =
√︁

2−(𝑛𝑥+𝑛𝑦)/𝑛𝑥!𝑛𝑦! is a normalization constant, 𝐻𝑚(·) is the Hermite polyno-
mial of order 𝑚, ΨHG(𝑧) = (1+𝑁𝑛𝑥𝑛𝑦) tan−1(𝑧/𝑧𝑅), with 𝑁𝑛𝑥,𝑛𝑦 = 𝑛𝑥+𝑛𝑦, is the Gouy phase
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and 𝑤(𝑧) and 𝑅(𝑧) are the beam waist and radius of curvature. The indices 𝑛𝑥, 𝑛𝑦 = 0, 1, 2, ...

characterize the field distribution in the 𝑥 and 𝑦 directions, respectively. The intensity profile
of HG modes is composed of (𝑚 + 1)× (𝑛 + 1) lobes of light disposed in a rectangular grid
with (𝑛+ 1) rows and (𝑚+ 1) columns. The correspondence between the HG and LG families
of solutions is well established both in theory and in practice (ALLEN et al., 1992; KIMEL; ELIAS,
1993).

Ince-Gaussian (IG) modes, on the other hand, are not found so easily in text-books. They
possess elliptical symmetry, are parity defined and require an extra parameter to be fully
characterized: the ellipticity or eccentricity 𝜀. The IG mode transverse distribution is described
by Ince polynomials (BANDRES; GUTIéRREZ-VEGA, 2004). What is perhaps most interesting,
is that HG and LG modes are limiting cases of the IG mode when the ellipticity goes to ∞
and 0, respectively. We might represent these mode transitions symbolically as (BANDRES;

GUTIéRREZ-VEGA, 2004):

LG𝜎
(𝑞−𝑚)/2,𝑚 ←−(𝜀→0)

IG𝜎
𝑞,𝑚(𝜀) −→

(𝜀→∞)

⎧⎪⎪⎨⎪⎪⎩
HG𝑚,𝑞−𝑚 (𝜎 = 𝑒),

HG𝑚−1,𝑞−𝑚+1 (𝜎 = 𝑜).
(2.87)

Lastly, since all three families of solutions form bases of functions on the transverse plane, each
one can be decomposed in terms of the other (KIMEL; ELIAS, 1993; BANDRES; GUTIéRREZ-VEGA,
2004; BANDRES; GUIZAR-SICAIROS, 2009).

The interplay between the three families has been explored in second-order nonlinear optical
processes to demonstrate optical mode conversion in crystals (PIRES et al., 2019), and the HG
basis was shown to present an advantage in this kind of manipulation of optical structure, in
comparison with the LG basis (PIRES et al., 2020). More recently, we showed that the HG basis
also presents a unique property of spatial structure transfer in the context of a nondegenerate
cascade FWM process in Rb vapor generating blue light, and that this property allows for
optical mode conversion in a similar fashion (ROCHA et al., 2022). It was predicted that by
performing the wave-mixing of two HG modes 𝑢HG

𝑚,𝑛 and 𝑢HG
𝑚′,𝑛′ , a nearly pure2 𝑢HG

𝑚+𝑚′,𝑛+𝑛′

emerges at the FWM blue light output. This can be exploited to obtain at the output desired LG
and IG modes with high fidelity. It is numerically demonstrated that this is valid in an extended-
medium setting, i.e., if the interaction medium length is much larger than the Rayleigh range
of the participating beams, 𝐿/𝑧𝑅 ≫ 1. This subject is discussed in Chapter 4.
2 In contrast, the sum-frequency generation in a 𝜒(2) medium with HG modes only results in a dominant

contribution of the HG mode with summed indices, meaning that other modes may contribute sensibly to
the output superposition.
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2.2.3 The tilted-lens technique

The tilted lens (TL) technique (VAITY; BANERJI; SINGH, 2013) is a simple but extremely
useful method to measure the topological charge ℓ of a laser beam. It consists of a convex
lens tilted by a small angle with respect to the propagation axis of the beam. The effect of
such an arrangement is to perform an astigmatic transformation onto the optical mode. The
resulting intensity profile formed near the focal plane possesses an HG distribution with the
number of dark valleys equal to the topological charge magnitude |ℓ|, rotated by ∼ sgn(ℓ)45∘,
where sgn(·) is the sign function, as illustrated in Fig. 5. Therefore, with this method we can
identify both the magnitude and the helicity of an optical vortex.

This is not the only use for the method. Recently it has been applied within a machine
learning framework to successfully identify superpositions of LG modes (SILVA et al., 2021b),
and to investigate families of modes that are unaffected by the transformation (BUONO et

al., 2022). Another interesting aspect we are currently investigating is the fact that the TL
transformation is related to the Wigner distribution (CALVO, 2005) of the optical mode, and
therefore it allows to access information regarding the 4D optical phase-space in the (r⊥,q)

coordinates. In this section we discuss methods for calculating the tilted lens profiles.
Figure 5 – Schematic description of the tilted lens transformation for LG modes with topological charges ℓ =

−1, 0, 1, 2 (from top to bottom). The intensity (Int.) and tilted lens (TL) profiles of each mode are
shown. The number of dark valleys and the orientation of the TL pattern indicate, respectively,
the magnitude |ℓ| and the relative helicity sgn(ℓ). On the right we show the corresponding
experimental profiles.

Source: The author (2024).

2.2.3.1 The tilted-lens as a misaligned ABCD system

Here we briefly mention the basics of beam transformation via diffraction integrals. The
evolution of a paraxial optical field ℰ(r) through any effective ABCD optical system can be
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evaluated via the integral:

ℰ(r⊥, 𝑧) = 𝑖

𝜆B

∫︁∫︁
ℰ(r′

⊥, 𝑧0)𝑒−𝑖𝑘𝒮(r⊥,r′
⊥)𝑑2r′

⊥, (2.88)

where 𝒮 = 𝒮(r⊥, r′
⊥, 𝑧 − 𝑧0; M) is the optical path between the planes 𝑧 and 𝑧0 and M =

(A,B; C,D) is the appropriate ABCD matrix of the system. In cylindrical coordinates we have:

𝒮 = (𝑧 − 𝑧0) + 1
2B(A𝑟′2 − 2𝑟𝑟′ cos(𝜑′ − 𝜑) + D𝑟2). (2.89)

For a pure LG mode the integral given by Eq. (2.88) with 𝒮 given by Eq. (2.89) can be solved
exactly, and the usual ABCD law for Gaussian beams applies (TACHÉ, 1987). Consider the
ABCD matrices for a thin convex lens of focal length 𝑓 and for the free propagation over a
distance 𝐷:

Mlens =

⎛⎜⎜⎝ 1 0

−1/𝑓 1

⎞⎟⎟⎠ , M𝐷 =

⎛⎜⎜⎝1 𝐷

0 1

⎞⎟⎟⎠ . (2.90)

The total ABCD matrix accounting for the propagation distances of 𝑑0 before, and 𝑑 after
passing through the lens is:

Mtotal = M𝑑MlensM𝑑0 =

⎛⎜⎜⎝1− 𝑑/𝑓 𝑑0(1− 𝑑/𝑓) + 𝑑

−1/𝑓 1− 𝑑0/𝑓

⎞⎟⎟⎠ . (2.91)

For distances 𝑑0 and 𝑑 equal to the focal length 𝑑 = 𝑑0 = 𝑓 , A = D = 0, B = 𝑓 , and
C = −1/𝑓 . Given that the field at 𝑧 = 𝑧0, ℰ(r⊥, 𝑧0) is known, we can write the field at the
focal plane as:

ℰ(r⊥, 𝑧0 + 2𝑓) = 𝑖

𝑘𝑓
𝑒−𝑖𝑘𝑓

∫︁∫︁
ℰ(r′

⊥, 𝑧0)𝑒𝑖 𝑘
𝑓

𝑟𝑟′ cos(𝜑′−𝜑)𝑑2r′
⊥. (2.92)

The integral can be identified as the Fourier transform of the field ℰ . We conclude that the
intensity profile of a paraxial optical field at the focal plane of a lens is proportional to the
squared modulus of its Fourier transform at 𝑧 = 𝑧0:

|ℰ(𝑟, 𝜑, 𝑧0 + 2𝑓)|2 ∝ |ℰ̃(𝑟𝑘/𝑓, 𝜑, 𝑧0)|2, (2.93)

where ℰ̃ ≡ ℱ{ℰ} is the Fourier transform of ℰ .
In the case of a misaligned optical element, M is a 4 × 4 matrix, M = (A,B; C/𝑓,D),

where now each element is a 2× 2 matrix. We may rewrite the propagation integral as:

ℰ(r⊥, 𝑧) = 𝑖

𝜆
√

det B

∫︁∫︁
ℰ(r′

⊥, 𝑧0)𝑒−𝑖𝑘𝒮mis𝑑2r′
⊥, (2.94)
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where now the optical path is written as (VAITY; BANERJI; SINGH, 2013):

𝒮mis = (𝑧 − 𝑧0) + 1
2r′

⊥B−1Ar′
⊥ + 1

2r⊥DB−1r⊥ − r′
⊥B−1r⊥. (2.95)

For a convex lens tilted by an angle 𝜃 with respect to the axis perpendicular to the propagation
plane of the light beam, the matrices are:

A =

⎛⎜⎜⎝1− 𝑑 sec 𝜃/𝑓 0

0 1− 𝑑 cos 𝜃/𝑓

⎞⎟⎟⎠ , (2.96)

B =

⎛⎜⎜⎝𝑑0 + 𝑑(1− 𝑑0 sec 𝜃/𝑓) 0

0 𝑑0 + 𝑑(1− 𝑑0 cos 𝜃/𝑓)

⎞⎟⎟⎠ , (2.97)

C =

⎛⎜⎜⎝sec 𝜃 0

0 cos 𝜃

⎞⎟⎟⎠ , (2.98)

D =

⎛⎜⎜⎝1− 𝑑0 sec 𝜃/𝑓 0

0 1− 𝑑0 cos 𝜃/𝑓

⎞⎟⎟⎠ . (2.99)

By carrying the integration given by Eq. (2.94), with propagation distances 𝑑 and 𝑑0 equal
to the focal length 𝑓 , we can obtain the tilted lens intensity profile of the incoming field
ℰ . For more details on the propagation of optical fields through misaligned elements, see
Ref. (WEBER, 2006). An alternative method, which is based on group theory and bypasses
the direct evaluation of integrals of the form (2.88) and (2.94) is given in Ref. (BANDRES;

GUIZAR-SICAIROS, 2009).

2.2.3.2 The tilted lens operator

Here we borrow the ket notation and use it to represent paraxial modes and transformations
acting on these modes in a convenient form. We can define the astigmatic transformation
performed by the tilted lens (including the free propagation before and after the lens) as the
action of the operator (BUONO et al., 2022):

𝑂̂𝑇 𝐿 =
𝑁max∑︁
𝑘=0

𝑘∑︁
𝑠=0

𝑒𝑖(𝑘−2𝑠)𝜋/4 |HG𝑘−𝑠,𝑠⟩ ⟨HG𝑘−𝑠,𝑠| , (2.100)

where 𝑁max is the maximum mode order contained in the paraxial mode expansion of the
optical field being considered. Using an arbitrary basis of modes {𝑢𝑙,𝑞}, we can write |Ψ⟩ =
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∑︀
𝑙,𝑞 𝑐𝑙,𝑞 |𝑢𝑙,𝑞⟩, and the transformed field amplitude Ψ′(r⊥) = ⟨r⊥|Ψ′⟩ = ⟨r⊥| 𝑂̂𝑇 𝐿 |Ψ⟩ is:

Ψ′(r⊥) =
𝑁max∑︁
𝑘=0

𝑘∑︁
𝑠=0

𝑒𝑖(𝑘−2𝑠)𝜋/4𝒞𝑘,𝑠𝑢
HG
𝑘−𝑠,𝑠(r⊥), (2.101)

with the coefficients 𝒞𝑘,𝑠 given by:

𝒞𝑘,𝑠 =
∑︁
𝑙,𝑞

𝑐𝑙,𝑞 ⟨HG𝑘−𝑠,𝑠|𝑢𝑙,𝑞⟩ . (2.102)

The inner product ⟨HG𝑘−𝑠,𝑠|𝑢𝑙,𝑞⟩ ≡
∫︀∫︀

(𝑢HG
𝑘−𝑠,𝑠)*𝑢𝑙,𝑞𝑑

2r⊥ can be readily computed. This gives a
much more straightforward recipe to calculate the tilted lens complex field amplitude, Ψ′(r⊥),
and intensity profile, 𝐼𝑇 𝐿 = |Ψ′(r⊥)|2, near the lens focal position.

Remarkably, if the incident field is a pure HG mode, |Ψ⟩ = |HG𝑚′𝑛′⟩, then 𝒞𝑘,𝑠 =

𝛿𝑘−𝑠,𝑚′𝛿𝑠,𝑛′ , and we obtain:

𝑂̂𝑇 𝐿 |HG𝑚′,𝑛′⟩ = 𝑒𝑖(𝑚′−𝑛′)𝜋/4 |HG𝑚′,𝑛′⟩ . (2.103)

We then see that pure HG𝑚,𝑛 modes are eigenstates of the operator 𝑂̂𝑇 𝐿 with eigenvalues
𝜆𝑚,𝑛 = 𝑒𝑖(𝑚−𝑛)𝜋/4, and are therefore unaffected after passing by a tilted lens. More interestingly,
superpositions of HG modes carrying the same eigenvalue 𝜆𝑚,𝑛 (same value for 𝑚−𝑛) are also
eigenstates of 𝑂̂𝑇 𝐿, and families of such invariant optical modes were studied in Ref. (BUONO

et al., 2022).
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2.3 NONLINEAR OPTICS

Nonlinear optics studies the interaction of strong light fields with matter, such that the
medium response depends nonlinearly on the electric field of the incident light beam. Second
harmonic generation (SHG), where two photons with frequency 𝜔 interact nonlinearly inside
a crystal to create a photon with frequency 2𝜔, was the first nonlinear optical process to be
experimentally demonstrated (FRANKEN et al., 1961). It was achieved using a ruby laser and
a quartz crystal, only one year after the construction of the first laser by Maiman, in 1960
(MAIMAN, 1960).

Inside matter, Maxwell’s macroscopic equations (JACKSON, 1999) lead to the non homo-
geneous wave-equation for the electric field E of light

∇2E− 1
𝑐2
𝜕2E
𝜕𝑡2

= 𝜇0
𝜕2P
𝜕𝑡2

, (2.104)

where P is the macroscopic polarization vector, which describes the medium response to the
incident radiation field. It can be separated in a linear part and a nonlinear part, P = P𝐿+P𝑁𝐿,
where

P𝐿 = 𝜀0𝜒
(1) · E, (2.105)

P𝑁𝐿 = 𝜀0

(︂
𝜒(2) : EE + 𝜒(3) ... EEE + · · ·

)︂
. (2.106)

The linear susceptibility, 𝜒(1), is related to linear absorption and the variation of the index of
refraction, while the multiple nonlinear susceptibilities 𝜒(𝑛) in the expansion of P𝑁𝐿 are re-
sponsible for all nonlinear optical phenomena that occur in the medium. The 𝜒(𝑛) are tensors
of rank (𝑛 + 1) and the products of fields that go along with these quantities are tensorial
products. The leading term in the nonlinear polarization, described by the second-order sus-
ceptibility 𝜒(2), is associated with a multitude of optical phenomena such as second-harmonic
and sum-frequency generation, spontaneous and stimulated parametric down-conversion, and
parametric oscillation. Symmetries of the medium reduce the number of independent elements
of 𝜒(𝑛) one must account for. For instance, in centrosymmetric media, such as atomic samples,
all even order susceptibilities are null, 𝜒(2𝑛) = 0, and the nonlinearity of lowest order is given
by the third-order susceptibility 𝜒(3). This contribution is related to effects such as self-phase
modulation and four-wave mixing.

The nonhomogenous wave-equation (2.104) together with the source term given by the
total medium response including contributions from Eqs. (2.105) and (2.106), is an essential
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part of the description of nonlinear optical phenomena in various configurations and regimes.
Let us consider a general four-wave mixing (FWM) scheme, where three fields E𝑎, E𝑏 and E𝑎′

with frequencies 𝜔𝑎, 𝜔𝑏 and 𝜔𝑎′ , and propagation directions k𝑎, k𝑏 and k𝑎′ , interact with a
sample of atoms – which constitutes an isotropic and centrosymmetric nonlinear medium – to
generate the field E𝑠. For the moment we shall not concern ourselves with polarization, and we
assume that the FWM process is allowed by the selection rules imposed by the internal structure
of the atoms. Due to the requirement of the conservation of energy and conservation of linear
momentum in the interaction, the field E𝑠 emerges with frequency 𝜔𝑠 = 𝜔𝑎 + 𝜔𝑎′ − 𝜔𝑏, and
with propagation direction k𝑠 = k𝑎 + k𝑎′ −k𝑏. It can be shown that the scalar wave-equation
for the generated field complex amplitude 𝐸𝑠 = ℰ𝑠𝑒

−𝑖(k𝑠·r−𝜔𝑠𝑡) takes the form:

∇2𝐸𝑠 + 𝑘2
𝑠𝐸𝑠 = −𝜔

2
𝑠

𝑐2

(︁
𝑖Im{𝜒(1)(𝜔𝑠)}𝐸𝑠 + 𝜒(3)(𝜔𝑠)𝐸𝑎𝐸𝑎′𝐸*

𝑏

)︁
, (2.107)

where 𝑘𝑠 = 𝜔𝑠𝑛𝑠/𝑐, and 𝑛2
𝑠 = 1 + Re{𝜒(1)(𝜔𝑠)} is the index of refraction in the medium at

frequency 𝜔𝑠. Here 𝜒(1)(𝜔𝑠) and 𝜒(3)(𝜔𝑠 = 𝜔𝑎 + 𝜔𝑎′ − 𝜔𝑏) are both scalars and their detailed
forms, related to the type of the atomic system considered, can be obtained by solving the
adequate set of optical Bloch’s equations, as we have done in Section 2.1 for a two-level
system. Note that in Eq. (2.107) both terms on the right-hand side are associated with
macroscopic polarization vectors with the same direction and frequency of the generated field,
P ∼ 𝑒−𝑖(k𝑠·r−𝜔𝑠𝑡). The wave-equations that describe the evolution of the incident fields can
be found in a similar form. In Ref. (BOYD et al., 1981), where the field 𝐸𝑎 = 𝐸𝑎′ is the strong
(or pump) field, a solution is given for the coupled evolution of the weak (or probe) field 𝐸𝑏,
and the generated FWM field, 𝐸𝑠.

Let us consider the wave-equation for 𝐸𝑠 uncoupled from the equations for 𝐸𝑎, 𝐸𝑏, and,
for the moment, plane wave-fronts for all fields. The solution in this case is well known and
easily obtained. If we neglect the transverse derivatives of ℰ𝑠, we arrive at:

𝜕ℰ𝑠

𝜕𝑧
= −𝛼ℰ𝑠 + 𝜅ℰ𝑎ℰ𝑎′ℰ*

𝑏 𝑒
−𝑖Δk·r, (2.108)

where
𝛼 = − 𝜔𝑠

2𝑐𝑛𝑠

Im{𝜒(1)(𝜔𝑠)} (2.109)

is the absorption coefficient,
𝜅 = −𝑖 𝜔𝑠

2𝑐𝑛𝑠

𝜒(3)(𝜔𝑠) (2.110)

is the nonlinear coupling and, Δk = k𝑎 + k𝑎′ − k𝑏 − k𝑠 is the phase mismatch (see Fig. 6).
Making the substitution ℰ̃𝑠 = ℰ𝑠𝑒

𝛼𝑧, we get
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Figure 6 – (a) Spatial orientation of the wave-vectors of three fields which interact in a third-order nonlinear
medium to generate a fourth field. (b) Schematic representation of the FWM process in a two-level
atom evidencing the energy conservation, 𝜔𝑎 +𝜔𝑎′ = 𝜔𝑏 +𝜔𝑠. (c) Wave-vector of the generated
field resulting from the conservation of momentum in the interaction, and the associated phase-
mismatch vector Δk. In this example, 𝜔𝑏 > 𝜔𝑎 > 𝜔𝑎′ .

Source: The author (2024).

𝜕ℰ̃𝑠

𝜕𝑧
= 𝜅ℰ𝑎ℰ𝑎′ℰ*

𝑏 𝑒
𝛼𝑧−𝑖Δ𝑘𝑧. (2.111)

With the initial condition ℰ̃𝑠(0) = ℰ𝑠(0) = 0, the solution to the FWM field ℰ𝑠(𝑧) is

ℰ𝑠(𝑧) = 𝜅ℰ𝑎ℰ𝑎′ℰ*
𝑏

(︃
𝑒−𝑖Δ𝑘𝑧 − 𝑒−𝛼𝑧

𝛼− 𝑖Δ𝑘

)︃
. (2.112)

From this result one can infer many aspects of the nonlinear signal generation process. For
example, the nonlinear signal power output is proportional to the intensities of the driving
fields, and to the square of the nonlinear susceptibility 𝜒(3), and consequently to the square of
the density of atoms. Also, in a medium with extension 𝐿, in a case where the linear absorption
can be neglected (low atomic densities, or far off-resonant interaction, for example), we obtain
the well-known result:

𝑃𝑠 ∝ sinc2
(︃

Δ𝑘𝐿
2

)︃
, (2.113)

which tells us that for an efficient signal generation, a small phase-mismatch is desired. For
this reason, the angles between the driving laser beams are usually very small.

2.3.1 Four-wave mixing in a two-level atom

In this section we will obtain the third-order susceptibility 𝜒(3) associated with a degenerate
FWM process in a two-level atom, by solving an appropriate form of the optical Bloch’s
equations. The susceptibility describes the response of the atomic medium and the resulting
nonlinear signal generation. We will also discuss the role of this susceptibility when the optical
fields carry non uniform spatial structures.
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Figure 7 – (a) Spatial orientation of incident and FWM fields. (b) Depiction of the parametric processes that
generate signals 𝑆1 and 𝑆2 in a two-level atom. (c) Wave-vectors of the incident and generated
fields and the phase-mismatches associated with the FWM processes.

Source: The author (2024).

We will focus in two processes of degenerate four-wave mixing, driven by two fields, E𝑎

and E𝑏
3, with wave-vectors k𝑎 and k𝑏. The two signals, which we name 𝑆1 and 𝑆2 are

detected in the 2k𝑎 − k𝑏 and 2k𝑏 − k𝑎 directions, as represented in Fig. 7(a). We employ the
density operator formalism outlined in Section 2.1 to calculate the atomic medium response
related to the nonlinear processes represented in Fig. 7(b). As before, the total Hamiltonian is
𝐻̂ = 𝐻̂0 +𝑉 , where 𝐻̂0 is the free-atom Hamiltonian, and 𝑉 = −𝜇̂·E is the dipole interaction
Hamiltonian. Now E is the total electric field, given by E(r, 𝑡) = ∑︀

𝜐 E𝜐(r, 𝑡), 𝜐 ∈ {𝑎, 𝑏},

E𝜐 (r, 𝑡) = 1
2𝜖𝜐ℰ𝜐 (r) 𝑒−𝑖(k𝜐 ·r−𝜔𝜐𝑡) + c.c.,

= 𝜖𝜐𝐸𝜐(r, 𝑡) + c.c., (2.114)

where k𝜐 is the wave-vector, 𝜔𝜐 is the frequency, 𝜖𝜐 is the polarization direction, the amplitudes
ℰ𝜐(r) satisfy the paraxial wave-equation, and c.c. means the complex conjugate. We consider
a quasi co-propagating configuration, where the angle 𝜗 between k𝑎 and k𝑏 [Fig. 7(a)] is very
small, making k𝜐 · r ≃ 𝑘𝜐𝑧, where 𝑘𝜐 = |k𝜐| = 𝜔𝜐𝑛𝜐/𝑐 and 𝑛𝜐 is the index of refraction
at frequency 𝜔𝜐. This angle is important in the experimental configuration to allow us to
separate the beams, and since we consider a degenerate setting, there will be phase mismatches
inherently associated with both FWM processes, as indicated in Fig. 7(c).

The polarization directions 𝜖𝑎 and 𝜖𝑏 of input beams E𝑎 and E𝑏, respectively, determine
the number of atomic states involved in the nonlinear process. We are interested in the case
3 With respect to the general example treated in the previous Section, we made E𝑎′ → E𝑎.
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where 𝜖𝑎 and 𝜖𝑏 are parallel circular polarizations, and therefore only two Zeeman sublevels
are coupled by the external light field. Thus, the light-atom interaction can be described in
terms of a two-level system, and we can use the same density operator equations obtained in
Section 2.1. The difference will be the interaction Hamiltonian matrix elements, which now
read

𝑉12 = 𝑉 *
21 = −ℏ

∑︁
𝜐

Ω𝜐𝑒
−𝑖(𝑘𝜐𝑧−𝜔𝜐𝑡) + c.c., (2.115)

where Ω𝜐 = 𝜇ℰ𝜐(r)/2ℏ is the Rabi frequency associated with field E𝜐. The nonlinear interac-
tion leads to the generation of signal 𝑆1, due to the absorption of two photons from beam E𝑎

and the stimulated emission of one photon from beam E𝑏; and signal 𝑆2, due to the absorp-
tion of two photons from E𝑏 and the stimulated emission of one photon from E𝑎. Figure 7(b)
illustrates these processes schematically. The electric fields of the FWM fields 𝑆1 and 𝑆2 are
E1 and E2, respectively.

We may rewrite the optical Bloch’s equations (OBEs) for the two-level system as we have
already encountered previously [see Section 2.1, Eqs. (2.17) and (2.18)]

(Δ𝜌̇) =− 2𝑖
ℏ

[𝜌12𝑉21 − c.c.]− Γ
[︁
Δ𝜌− (Δ𝜌)0

]︁
, (2.116)

𝜌̇12 =− 𝑖

ℏ
[𝑉12Δ𝜌− 𝜌12 (E2 − E1)]−

Γ
2 𝜌12, (2.117)

where Δ𝜌 = (𝜌22 − 𝜌11) is the population difference and (Δ𝜌)0 is the population difference
far from the region of interaction with fields E𝑎 and E𝑏. The problem of a two-level system
interacting with two strong fields has been addressed in Refs. (AGARWAL; NAYAK, 1986; FRIED-

MANN; WILSON-GORDON, 1987; WILSON-GORDON; FRIEDMANN, 1988), and Eqs. (2.116) and
(2.117) are solved for arbitrary pump intensities assuming that the elements of the density
operator oscillate with an infinite number of frequencies. In these works, the nonlinear coher-
ence associated with the FWM process at frequency 2𝜔𝑎− 𝜔𝑏 is found in terms of a recursive
formula. Here, we employ a simpler solution method, similar to the treatment found in (BOYD

et al., 1981), to obtain a closed expression to the relevant nonlinear coherence. To establish the
validity of this approach, we will compare FWM spectra for different intensities obtained with
our solution and with that of Ref. (FRIEDMANN; WILSON-GORDON, 1987; WILSON-GORDON;

FRIEDMANN, 1988). Considering signal 𝑆1, we assume that the coherence 𝜌12 oscillates with
frequencies 𝜔𝑎, 𝜔𝑏 and 2𝜔𝑎 − 𝜔𝑏 (BOYD et al., 1981; HARTER; BOYD, 1980)

𝜌12 = 𝜎𝑎
12𝑒

𝑖𝜔𝑎𝑡 + 𝜎𝑏
12𝑒

𝑖𝜔𝑏𝑡 + 𝜎2𝑎−𝑏
12 𝑒𝑖(2𝜔𝑎−𝜔𝑏)𝑡, (2.118)
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where 𝜎𝑖𝑗 are the slowly varying coherences. The 2𝜔𝑎 − 𝜔𝑏 component is responsible for the
FWM process that generates the signal 𝑆1. The population difference Δ𝜌 has a stationary
component and one oscillating at |𝜔𝑎 − 𝜔𝑏| (HARTER; BOYD, 1980),

Δ𝜌 = (Δ𝜌)dc +
[︁
(Δ𝜌)𝑎−𝑏𝑒𝑖(𝜔𝑎−𝜔𝑏)𝑡 + c.c.

]︁
. (2.119)

We now substitute equations (2.115), (2.118) and (2.119) into Eqs. (2.116) and (2.117),
perform the rotating wave approximation and collect terms that oscillate with the same fre-
quency. Then, in the steady state regime we arrive at the set of algebraic equations for the
slowly varying coherences and population differences

(Δ𝜌)𝑎−𝑏 = 2𝑖̃︀Ω*
𝑎𝜎

2𝑎−𝑏
12 + 2𝑖̃︀Ω*

𝑏𝜎
𝑎
12 − 2𝑖̃︀Ω𝑎𝜎

𝑏*
12

(𝑖𝛿𝑎 − 𝑖𝛿𝑏 + Γ) , (2.120)

(Δ𝜌)dc = (Δ𝜌)0 − 4
Γ(Im[Ω*

𝑎𝜎
𝑎
12] + Im[Ω*

𝑏𝜎
𝑏
12]), (2.121)

𝜎𝑎
12 = 𝑖̃︀Ω𝑎(Δ𝜌)dc + 𝑖̃︀Ω𝑏(Δ𝜌)𝑎−𝑏

(𝑖𝛿𝑎 + Γ/2) , (2.122)

𝜎𝑏
12 =

𝑖̃︀Ω𝑏(Δ𝜌)dc + 𝑖̃︀Ω𝑎

[︁
(Δ𝜌)𝑎−𝑏

]︁*
(𝑖𝛿𝑏 + Γ/2) , (2.123)

𝜎2𝑎−𝑏
12 = 𝑖̃︀Ω𝑎(Δ𝜌)𝑎−𝑏

(2𝑖𝛿𝑎 − 𝑖𝛿𝑏 + Γ/2) . (2.124)

One could add to Eq. (2.118) the coherence 𝜌2𝑏−𝑎
12 = 𝜎2𝑏−𝑎

12 𝑒𝑖(2𝜔𝑏−𝜔𝑎)𝑡, related to the FWM
process at frequency 2𝜔𝑏−𝜔𝑎. This would lead to an additional equation for the slow coherence
𝜎2𝑏−𝑎

12 , and Eq. (2.120), for the population difference (Δ𝜌)𝑎−𝑏, would be modified. However,
terms which would appear in our final solution due to these changes are related to higher-order
nonlinear processes in the direction 2k𝑎 − k𝑏, and we do not keep them. In other words, we
assume that we can solve for the coherences related to the two nonlinear processes separately.

Defining ̃︀Ω𝜐 ≡ Ω𝜐𝑒
−𝑖𝑘𝜐𝑧, 𝛿𝜐 ≡ 𝜔𝜐 − 𝜔𝑜 as the detuning from resonance of field Ω𝜐 and

𝜔𝑜 ≡ (E2 − E1)/ℏ as the resonance frequency, with a direct substitution method we obtain
for the coherence 𝜎2𝑎−𝑏

12 , related to the generation of signal 𝑆1,

𝜎2𝑎−𝑏
12 = −2𝑖̃︀Ω2

𝑎
̃︀Ω*

𝑏(Δ𝜌)dc(1/Δ𝑎 + 1/Δ𝑏)
(Δ𝑎 + Δ𝑏) (2𝑖𝛿𝑎 − 𝑖𝛿𝑏 + Γ/2) + 2|Ω𝑎|2

, (2.125)

where Δ𝑎 = 𝑖𝛿𝑎 + Γ/2, Δ𝑏 = −𝑖𝛿𝑏 + Γ/2 and

(Δ𝜌)dc = (Δ𝜌)0

1 + 2|Ω𝑎|2

𝛿2
𝑎 + Γ2/4 + 2|Ω𝑏|2

𝛿2
𝑏 + Γ2/4

. (2.126)

A similar result is found for the coherence 𝜎2𝑏−𝑎
12 , related to the generation of signal 𝑆2 in the

direction (2k𝑏 − k𝑎). In fact, under the approximations considered, 𝜎2𝑏−𝑎
12 has the same form
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as 𝜎2𝑎−𝑏
12 with the exchange of labels 𝑎 ↔ 𝑏. For Rabi frequencies up to Ω𝑎,𝑏 = Γ, the FWM

spectra calculated with the coherence given by Eq. (2.125) are in good agreement with the
more general solution for a two-level system driven by two strong pumps. This is evidenced in
Fig. 8, which shows the spectra contained in Fig. 4 of Ref. (WILSON-GORDON; FRIEDMANN,
1988) calculated with the recursive formula and with Eq. (2.125). For Rabi frequencies up
to Ω = Γ, the FWM spectra calculated by the two methods are similar. For Ω = 4Γ, we
can see that the correspondence is not so good and that our solution does not reproduce
the finer details in the spectrum. For the higher Rabi frequency, Ω = 7Γ, the two solutions
differ considerably. In light of these results, we believe that our solution is suitable for lower
intensities, at least until Ω = Γ. For higher intensities, higher-order processes must be taken
into account, and a different solution becomes necessary.

Figure 8 – Normalized FWM spectra calculated using the solution to the nonlinear coherence given in
(WILSON-GORDON; FRIEDMANN, 1988) (blue line) and the one obtained with Eq. (2.125) (red
dashed line) for different Rabi frequencies. In all graphs 𝛿𝑎 = −10Γ = −20/𝑇2 (𝑇2 = 2/Γ),
Ω𝑎 = Ω𝑏 and 𝛿 = 𝛿𝑏 − 𝛿𝑎. Also, 𝑉1 = Ω𝑎 and 𝑉2 = Ω𝑏.
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We rewrite the coherence given by Eqs. (2.125) as

𝜎2𝑎−𝑏
12 = 𝑋2𝑎−𝑏 ̃︀Ω2

𝑎
̃︀Ω*

𝑏 , (2.127)

where 𝑋2𝑎−𝑏, is the coupling associated with the processes in directions (2k𝑎 − k𝑏), and it
carries the spectral response of the medium. This coupling factor also depends on the field
amplitudes |Ω𝑎,𝑏|2, and thus the corresponding susceptibilities contain information about power
broadening and saturation effects. We define the effective susceptibility

𝜒2𝑎−𝑏 = 𝒩|𝜇12|4

𝜀0ℏ3 𝑋2𝑎−𝑏,

= −2𝑖𝒩|𝜇12|4(Δ𝜌)dc(1/Δ𝑎 + 1/Δ𝑏)/𝜀0ℏ3

(Δ𝑎 + Δ𝑏) (2𝑖𝛿𝑎 − 𝑖𝛿𝑏 + Γ/2) + 2|Ω𝑎|2
, (2.128)

where 𝒩 is the atomic density. Our investigations were conducted in two types of atomic
systems: cold atoms and hot atomic vapors. When working with cold atom samples, where
the atoms can be considered stationary, we do not need to include the effect of Doppler
broadening. However, in order to accurately describe phenomena that occur in hot vapors,
rigorously one needs to account for the contributions of the multiple velocity groups. This
is paramount when dealing, for example, with the spectral response of the system, but, as
we hope to become clear throughout this work, when the focus lies in the spatial degrees of
freedom of the light field, the effects associated with the atomic coherence built inside the
medium can – to some extent – be looked-over.

2.3.2 Structured FWM field

In this Section we establish the common ground for most of our results: the solution to
the non homogeneous wave-equation describing the generation of the FWM field E𝑠, with
the source term determined by the macroscopic polarization P, taking fully into account the
non-trivial spatial structures of the participating light beams. Once again, we start with the
Maxwell’s wave-equation (JACKSON, 1999):

∇2E𝑠 −
1
𝑐2
𝜕2E𝑠

𝜕𝑡2
= 𝜇𝑜

𝜕2P
𝜕𝑡2

, (2.129)

where E𝑠 is written as in Eq. (2.114). What changes here is the fact that we cannot neglect the
transverse derivative terms. We will focus on signal 𝑆1, since the equations for 𝑆2 are obtained
and solved in the same way. The nonlinear macroscopic polarization P can be divided in two
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components: P2𝑎−𝑏, which describes the generation process of the FWM field E𝑠; and P𝑎𝑏,
associated with the propagation of the generated field inside the medium affected by the strong
fields E𝑎 and E𝑏. We can write the total polarization as P = P𝑎𝑏 + P2𝑎−𝑏, and its projection
onto the oscillation direction of the generated field is

(P · 𝜖*
𝑠) = 𝜀0𝜒

𝑎𝑏𝐸𝑠 + 𝜀0𝜒
2𝑎−𝑏𝐸2

𝑎𝐸
*
𝑏 , (2.130)

where the amplitudes are 𝐸𝑖(r, 𝑡) = ℰ𝑖(r)𝑒−𝑖(𝑘𝑖𝑧−𝜔𝑖𝑡). It is possible to carry the calculations
further with both terms in Eq. (2.130), but for simplicity, in what follows and throughout the
rest of this work, we neglect the first term on the right-hand side. We justify this approximation
based on the thin-medium assumption, such that effects associated with the propagation of
the generated field inside the sample are negligible. This seems reasonable in a cold atom
cloud, but in the case of a heated Rb vapor system, one may argue that effects such as the
absorption of the FWM field should not be neglected. This is certainly true when we look at
the spectral degrees of freedom, for example. In any case, we shall assume that the linear term
in 𝐸𝑠 does not significantly affect the spatial degrees of freedom of the generated light field.
Under the rotating wave and paraxial approximations, we obtain(︃

𝑖

2𝑘𝑠

∇2
⊥ + 𝜕

𝜕𝑧

)︃
ℰ𝑠 = 𝜅𝑢2

𝑎𝑢
*
𝑏𝑒

−𝑖Δ𝑘𝑧, (2.131)

where 𝑢𝑎(r) and 𝑢𝑏(r) are mode functions normalized to unity giving the spatial distributions
of the incident fields, such that Ω𝑎,𝑏(r) = Ω0

𝑎,𝑏𝑢𝑎,𝑏(r), ∇2
⊥ is the transverse Laplacian, the

phase mismatch can be written as (see Fig. 7):

Δ𝑘 = |2k𝑎 − k𝑏 − k𝑠|,

≃ (2𝑘𝑎 − 𝑘𝑏) cos 𝜗2 − 𝑘𝑠 cos 3𝜗
2 , (2.132)

and 𝜅 is the nonlinear coupling, given by

𝜅(r; 𝛿) = −𝑖 𝜔𝑠ℏ3Ω0

2𝑐𝜇12|𝜇12|2
𝜒2𝑎−𝑏(r; 𝛿), (2.133)

with Ω0 = (Ω0
𝑎)2(Ω0

𝑏)*. In Eq. (2.133), 𝛿 represents 𝛿𝑎 and 𝛿𝑏. We highlight that the de-
pendence of the nonlinear coupling 𝜅 with the position comes from the dependence of the
input field contributing with the square of the field amplitude [see the denominator in Eqs.
(2.125),(2.128)]. But there is an additional, implicit, dependence of 𝜅 with the 𝑧 coordinate:
it exists only inside the interaction region, between 𝑧 = −𝐿/2 and 𝑧 = 𝐿/2, and is zero every-
where else in the 𝑧-axis. Thus, Eq. (2.131) describes the nonlinear signal generation process
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inside the sample. There is no nonlinear signal at positions 𝑧 ≤ −𝐿/2, and so the boundary
condition is ℰ𝑠(r⊥,−𝐿/2) = 0. For 𝑧 > 𝐿/2, where the generated beam propagates in free
space, ℰ𝑠 must satisfy the homogeneous paraxial wave-equation, (𝑖∇2

⊥/2𝑘𝑠 + 𝜕/𝜕𝑧)ℰ𝑠 = 0,
with the boundary condition given by the solution of Eq. (2.131) at 𝑧 = 𝐿/2, ℰ𝑠(r⊥, 𝐿/2).

We write the generated field amplitude ℰ𝑠 as the superposition of paraxial modes:

ℰ𝑠(r) =
∑︁
𝑚,𝑛

𝒜𝑚,𝑛(𝑧)𝑢𝑚,𝑛(r). (2.134)

The specific basis of modes {𝑢𝑚,𝑛} shall be chosen according to the specific situation consid-
ered. For example, when working with light beams that present cylindrical symmetry, or OAM
carrying beams, a convenient choice is the LG basis. In any case, the problem becomes that of
finding the set of relevant coefficients {𝒜𝑚,𝑛}. Substituting Eq. (2.134) into Eq. (2.131) and
employing the orthogonality relation of 𝑢𝑚,𝑛 [Eq. (2.51)], we obtain an equation for 𝒜𝑚,𝑛(𝑧).

𝜕𝒜𝑚,𝑛(𝑧)
𝜕𝑧

= Λ𝑚,𝑛(𝑧)𝑒−𝑖Δ𝑘𝑧, (2.135)

where
Λ𝑚,𝑛(𝑧) =

∫︁∫︁
𝜅(r; 𝛿)𝑢2

𝑎𝑢
*
𝑏𝑢

*
𝑚,𝑛𝑑

2r⊥, (2.136)

is the projection of the spatially dependent nonlinear source term onto the chosen paraxial basis,
called the transverse overlap integral. It is important to note that the position dependence of
𝜅 couples the spatial and spectral degrees of freedom. In all cases we consider, Eq. (2.136)
is calculated assuming parallel transverse planes for all beams, which is reasonable for small
angles 𝜗 (LANNING et al., 2017). We then integrate Eq. (2.135) on the longitudinal coordinate
to find the FWM field expansion coefficients as

𝒜𝑚,𝑛(𝑧) =
∫︁ 𝑧<

−𝐿/2
Λ𝑚,𝑛(𝑧′)𝑒−𝑖Δ𝑘𝑧′

𝑑𝑧′, (2.137)

where 𝑧< = min[𝑧, 𝐿/2]. Equation (2.137) is called the full spatial overlap, which encompasses
all of the dynamics of the spatial degrees of freedom under the nonlinear interaction. This
solution is suitable for both regions of space: −𝐿/2 < 𝑧 ≤ 𝐿/2 and 𝑧 > 𝐿/2. We are most
interested in the FWM beam outside the medium, where it can be detected, and thus seek to
evaluate 𝒜𝑚,𝑛(𝐿/2).

This is a good moment to stop and discuss the role of the spatially dependent nonlinear
coupling 𝜅 inside the integral in Eq. (2.136). In a recent work, considering a degenerate
FWM process driven by Gaussian beams in a thin sample of cold atoms (MOTTA; ALMEIDA;
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VIANNA, 2022), we showed that by taking fully into account this position dependency, effects
of the structured atomic coherence on the FWM field structure arise. The first one is that
the total power of incident beams affects the transverse distribution and propagation of the
FWM signals, and the second is the influence of the spectral characteristics of the medium
on the longitudinal profile (measured by the so-called root mean square quantities (VALLONE

et al., 2016)) of both generated signals upon free propagation. We argue that the first effect
can be seen as a saturation of the medium in regions of higher intensity, while the second
can be understood as the result of a nonlinear contribution to the refractive index inside the
atomic sample. They can be symmetric between the two signals, with asymmetries induced by
different detunings from resonance of the incident fields. Also, when the driving beams carry
optical vortices, the transverse phase distributions of the FWM fields are twisted when the
detunings vary around resonance, and the phase discontinuities inherent to vortex beams are the
features that reveal this twisting effect (HAMEDI; RUSECKAS; JUZELIŪNAS, 2018; MALLICK; DEY,
2020; YU; WANG, 2021; ZHOU; WANG, 2023). However, these effects manifest most strongly
near the atomic resonance and for higher intensities. For lower Rabi frequencies (below Γ),
the contribution of the structured coupling 𝜅 in Eq. (2.136) becomes less relevant. We may
therefore rewrite the transverse overlap, given by Eq. (2.136), as:

Λ𝑚,𝑛(𝑧) ≃ 𝜅(𝛿)
∫︁∫︁

𝑢2
𝑎𝑢

*
𝑏𝑢

*
𝑚,𝑛𝑑

2r⊥, (2.138)

where 𝜅 is an effective nonlinear coupling. With this, we have decoupled the spatial and
spectral degrees of freedom. Also, since 𝜅 is a common factor to all the coefficients 𝒜𝑚,𝑛, we
don’t need to carry it further. Under these assumptions, the overlap integral, and consequently
the FWM mode superposition, are determined solely by the product of incident fields 𝑢2

𝑎𝑢
*
𝑏

(for 𝑆1). Indeed, this is usually assumed in the description of nonlinear processes involving
beams with arbitrary transverse structures. In many references that focus on second-order
nonlinearities (parametric oscillation, second-harmonic generation, sum-frequency generation)
(SCHWOB et al., 1998; PEREIRA et al., 2017; ALVES et al., 2018; BUONO et al., 2020), and in those
that treat FWM (WALKER; ARNOLD; FRANKE-ARNOLD, 2012; OFFER et al., 2018; OFFER et al.,
2021; ROCHA et al., 2022), the relevant mode weights are overlap integrals of three (𝜒(2)) and
four (𝜒(3)) paraxial modes.

The characteristic length of Λ𝑚,𝑛(𝑧) is given by the Rayleigh ranges of the beams that
participate in the FWM process, 𝑧𝑅. Most of the results presented in this thesis focus on a
thin-medium regime, characterized by a medium extension much smaller than the Rayleigh
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Figure 9 – Normalized conversion efficiency factor |𝑇 |2 as a function of the separation angle 𝜗. The medium
extension is 𝐿 = 3 mm.
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range of the participating optical fields, 𝐿≪ 𝑧𝑅. In this case, we can neglect the variation of
Λ𝑚,𝑛(𝑧) inside the interaction region and take its value at 𝑧 = 0. This allows to remove the
transverse overlap from the 𝑧 integral in Eq. (2.137) and write the approximate form

𝒜𝑚,𝑛(𝐿/2) ≃ Λ𝑚,𝑛(0)
∫︁ 𝐿/2

−𝐿/2
𝑒−𝑖Δ𝑘𝑧′

𝑑𝑧′,

= Λ𝑚,𝑛(0)𝑇 (𝐿), (2.139)

where

𝑇 (𝐿) = sin(Δ𝑘𝐿/2)
Δ𝑘/2 ,

= 𝐿 sinc
(︃

Δ𝑘𝐿
2

)︃
, (2.140)

can be regarded as an efficiency measure of the signal generation process inside the medium.
It takes into account the phase-mismatch and is a common factor to all 𝒜𝑚,𝑛. It can be used
to estimate the range of values of the angle 𝜗 for which one may expect to have a good
conversion efficiency. As an example, we show in Fig. 9 a plot of |𝑇 |2 as a function of 𝜗,
using Δ𝑘 given in Eq. (2.132). It can be seen that even for 𝜗 < 1∘, there is already a sensible
decrease in efficiency.

With this, we see that in the thin-medium regime, all the information of the nonlinear wave
mixing process is contained in the transverse overlap integral evaluated at 𝑧 = 0, Λ𝑚,𝑛(0), and
most of the intuition of the transverse phenomena can be built upon the physical overlap of the
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incident beams. In contrast, in an extended-medium regime, characterized by a ratio 𝐿/𝑧𝑅 ≫

1, the matching of the Gouy phases of the participating fields across the medium extension
plays an important role (WALKER; ARNOLD; FRANKE-ARNOLD, 2012; OFFER et al., 2021; ROCHA

et al., 2022). In this case, the factorization performed in Eq. (2.139) is not applicable, and the
longitudinal integral is performed including the 𝑧 dependence of the transverse overlap Λ(𝑧).
As we will see in upcoming sections, this condition results in a selection rule for the mode
structure transfer that involves the total mode order. These are two extreme configurations,
with distinct predicted outputs, both qualitatively and quantitatively. The thin-medium regime
is more easily accessible in the experiment, and we shall comment on the difficulties associated
with the achievability of an extended-medium regime in the next Chapter.

2.3.3 The LG overlap integral

We now specialize to the LG basis, and obtain an analytical expression for the full overlap
integral in a phase-matched setting, Δ𝑘 = 0. Here we consider a more general situation where
we have three possibly independent incident fields: the fields 𝑢𝑎, 𝑢𝑏, and also the field 𝑢𝑎′ ,
written as

𝑢𝑎 =
∑︁
𝑙,𝑞

𝛼𝑙,𝑞𝑢𝑙,𝑞, (2.141)

𝑢𝑎′ =
∑︁
𝑙′,𝑞′

𝛽𝑙′,𝑞′𝑢𝑙′,𝑞′ , (2.142)

𝑢𝑏 =
∑︁
𝑚,𝑛

𝛾𝑚,𝑛𝑢𝑚,𝑛. (2.143)

Consider the FWM process induced by the absorption of one photon from field 𝑎, one photon
from field 𝑎′, and the stimulated emission of a photon from field 𝑏4. The transverse overlap
integral in this case is:

Λℓ
𝑝(𝑧) =

∫︁∫︁
𝑢𝑎𝑢𝑎′𝑢*

𝑏𝑢
*
ℓ,𝑝𝑑

2r⊥, (2.144)

=
∑︁
𝑙,𝑞

∑︁
𝑙′,𝑞′

∑︁
𝑚,𝑛

𝐾 𝑙𝑙′𝑚
𝑞𝑞′𝑛Λ𝑙𝑙′𝑚ℓ

𝑞𝑞′𝑛𝑝(𝑧), (2.145)

where 𝐾 𝑙𝑙′𝑚
𝑞𝑞′𝑛 = 𝛼𝑙,𝑞𝛽𝑙′,𝑞′𝛾*

𝑚,𝑛, and the transverse overlap with additional indices is:

Λ𝑙𝑙′𝑚ℓ
𝑞𝑞′𝑛𝑝(𝑧) =

∫︁∫︁
𝑢𝑙,𝑞𝑢𝑙′,𝑞′𝑢*

𝑚,𝑛𝑢
*
ℓ,𝑝𝑑

2r⊥. (2.146)

4 Evidently, to treat signal 𝑆1, we simply make 𝑢𝑎′ → 𝑢𝑎.
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The full spatial overlap is thus

𝒜ℓ
𝑝 =

∑︁
𝐾 𝑙𝑙′𝑚

𝑞𝑞′𝑛𝒜𝑙𝑙′𝑚ℓ
𝑞𝑞′𝑛𝑝, (2.147)

where the sum is performed over all repeated indices, and

𝒜𝑙𝑙′𝑚ℓ
𝑞𝑞′𝑛𝑝 =

∫︁ 𝐿/2

−𝐿/2
Λ𝑙𝑙′𝑚ℓ

𝑞𝑞′𝑛𝑝(𝑧)𝑑𝑧. (2.148)

To calculate 𝒜𝑙𝑙′𝑚ℓ
𝑞𝑞′𝑛𝑝, we consider that all modes 𝑢 inside the integral have the same Rayleigh

range 𝑧𝑅. This assumption is referred to as the Boyd criterion, and it maximizes the conversion
efficiency (BOYD; KLEINMAN, 1968). As will become evident, it also greatly simplifies our
calculations. In general the light fields that participate in the FWM process possess different
wavelengths, 𝜆𝑗. Thus, to match their Rayleigh ranges, they must possess different waists 𝑤0,𝑗.
We write

𝒜𝑙𝑙′𝑚ℓ
𝑞𝑞′𝑛𝑝 = 𝒞𝑙𝑙′𝑚ℓ

𝑞𝑞′𝑛𝑝

∫︁
V

1
𝑤𝑎𝑤𝑎′𝑤𝑏𝑤𝑠

(
√

2𝑟)|𝑙|+|𝑙′|+|𝑚|+|ℓ|

𝑤
|𝑙|
𝑎 𝑤

|𝑙′|
𝑎′ 𝑤

|𝑚|
𝑏 𝑤

|ℓ|
𝑠

× 𝐿|𝑙|
𝑞

(︃
2𝑟2

𝑤2
𝑎

)︃
𝐿

|𝑙′|
𝑞′

(︃
2𝑟2

𝑤2
𝑎′

)︃
𝐿|𝑚|

𝑛

(︃
2𝑟2

𝑤2
𝑏

)︃
𝐿|ℓ|

𝑝

(︃
2𝑟2

𝑤2
𝑠

)︃

× 𝑒−𝑖(𝑙+𝑙′−𝑚−ℓ)𝜑𝑒−𝑟2(1/𝑤2
𝑎+1/𝑤2

𝑎′ +1/𝑤2
𝑏 +1/𝑤2

𝑠)

× exp [𝑖ΔΨ(𝑧)− 𝑖𝛿ΦC(𝑟, 𝑧)] 𝑑3r, (2.149)

where V is the interaction volume, 𝒞𝑙𝑙′𝑚ℓ
𝑞𝑞′𝑛𝑝 = 𝐶𝑙,𝑞𝐶𝑙′,𝑞′𝐶𝑚,𝑛𝐶ℓ,𝑝 is the product of LG nor-

malization constants, 𝑤𝑗 = 𝑤𝑗(𝑧) = 𝑤0,𝑗

√︁
1 + (𝑧/𝑧𝑅)2, the waists are 𝑤0,𝑗 =

√︁
2𝑧𝑅/𝑘𝑗 =√︁

𝜆𝑗𝑧𝑅/𝑛𝑗𝜋, with 𝑛𝑗 the index of refraction at frequency 𝜔𝑗,

ΔΨ(𝑧) = −2𝑄 tan−1(𝑧/𝑧𝑅), (2.150)

is the difference between the Gouy phases, with the factor 𝑄 defined as:

𝑄 ≡ 1
2(𝑁ℓ,𝑝 +𝑁𝑚,𝑛 −𝑁𝑙,𝑞 −𝑁𝑙′,𝑞′), (2.151)

and

𝛿ΦC(𝑟, 𝑧) = 𝑟2

2𝑅(𝑧)(𝑘𝑎 + 𝑘𝑎′ − 𝑘𝑏 − 𝑘𝑠),

= 𝜋𝑟2

𝑅(𝑧)

(︂ 1
𝜆𝑎

+ 1
𝜆𝑎′
− 1
𝜆𝑏

− 1
𝜆𝑠

)︂
(2.152)

is the difference between the phases related to curvature. Note that the expression (2.152)
is only valid because we considered the Boyd criterion. Otherwise, we would have different
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radii of curvature 𝑅𝑗(𝑧) multiplying each 𝜆𝑗 on the denominators inside the parentheses.
In the following lines, it will become apparent how this condition simplifies the evaluation
of the overlap integral. We also considered that the index of refraction at all frequencies is
approximately unity, 𝑛𝑗 ≈ 1. Due to the energy conservation in the nonlinear process, we must
have

1
𝜆𝑎

+ 1
𝜆𝑎′

= 1
𝜆𝑏

+ 1
𝜆𝑠

, (2.153)

and thus 𝛿ΦC(𝑟, 𝑧) = 0. If we had considered different Rayleigh ranges, this would in general
not be satisfied, and we would have to account for a phase factor that couples the integrals
in the transverse plane and in 𝑧. Moreover, 𝛿ΦC(𝑟, 𝑧) ∼ 𝑘𝑗, which are large numbers. A small
imbalance in equation (2.152) makes the phase factor exp (−𝑖𝛿ΦC(𝑟, 𝑧)) a highly oscillating
function of the coordinates 𝑟 and 𝑧. Thus, the presence of such a term would lead to a reduced
magnitude of 𝒜𝑙𝑙′𝑚ℓ

𝑞𝑞′𝑛𝑝 or, in other words, reduced conversion efficiency. Also, equation (2.153)
implies

1
𝑤2

0,𝑎

+ 1
𝑤2

0,𝑎′
= 1
𝑤2

0,𝑏

+ 1
𝑤2

0,𝑠

, (2.154)

which is allowed since we have not yet defined the waist of the modes in the superposition
ℰ𝑠. Defining 𝑊 (𝑧) = 𝑤0

√︁
1 + (𝑧/𝑧𝑅)2, where the waist 𝑤0 is a reference beam waist, that

we control, 𝜆0 as a reference wavelength, associated with 𝑤0, the ratios 𝜉𝑗 = 𝑊 (𝑧)/𝑤𝑗(𝑧) =

𝑤0/𝑤0,𝑗 =
√︁
𝜆0/𝜆𝑗 and 𝜌(𝑟, 𝑧) =

√
2𝑟/𝑊 (𝑧), the full overlap integral becomes:

𝒜𝑙𝑙′𝑚ℓ
𝑞𝑞′𝑛𝑝 =

𝒞𝑙𝑙′𝑚ℓ
𝑞𝑞′𝑛𝑝

2𝑤2
0
𝜉|𝑙|+1

𝑎 𝜉
|𝑙′|+1
𝑎′ 𝜉

|𝑚|+1
𝑏 𝜉|ℓ|+1

𝑠

×
∫︁ ∞

0
𝜌|𝑙|+|𝑙′|+|𝑚|+|ℓ|𝐿|𝑙|

𝑞 (𝜉2
𝑎𝜌

2)𝐿|𝑙′|
𝑞′ (𝜉2

𝑎′𝜌2)𝐿|𝑚|
𝑛 (𝜉2

𝑏𝜌
2)𝐿|ℓ|

𝑝 (𝜉2
𝑠𝜌

2)𝑒−𝜌2(𝜉2
𝑎+𝜉2

𝑎′ )𝜌𝑑𝜌

×
∫︁ 2𝜋

0
𝑒−𝑖(𝑙+𝑙′−𝑚−ℓ)𝜑𝑑𝜑

×
∫︁ 𝐿/2

−𝐿/2

𝑒−𝑖2𝑄 tan−1(𝑧/𝑧𝑅)

1 + (𝑧/𝑧𝑅)2 𝑑𝑧. (2.155)

2.3.3.1 Conservation of orbital angular momentum

The first selection rule that arises is the topological charge selection rule, imposed by the
azimuthal integral: ∫︁ 2𝜋

0
𝑒−𝑖(𝑙+𝑙′−𝑚−ℓ)𝜑𝑑𝜑 = 2𝜋𝛿ℓ,𝑙+𝑙′−𝑚. (2.156)

Thus, the only LG modes that can be generated are those that satisfy

ℓ = 𝑙 + 𝑙′ −𝑚. (2.157)
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This is a statement of the conservation of OAM in the FWM process and always holds. Note
that Eq. (2.157) ensures that 𝑄 is an integer. We can then write

𝒜𝑙𝑙′𝑚ℓ
𝑞𝑞′𝑛𝑝 = 𝜋

𝑤2
0
𝒞𝑙𝑙′𝑚ℓ

𝑞𝑞′𝑛𝑝 𝜉
|𝑙|+1
𝑎 𝜉

|𝑙′|+1
𝑎′ 𝜉

|𝑚|+1
𝑏 𝜉|ℓ|+1

𝑠 𝛿ℓ,𝑙+𝑙′−𝑚ℛ𝑙𝑙′𝑚ℓ
𝑞𝑞′𝑛𝑝ℐ𝑄(𝐿), (2.158)

where ℛ𝑙𝑙′𝑚ℓ
𝑞𝑞′𝑛𝑝 and ℐ𝑄(𝐿) are the radial and longitudinal integrals, respectively.

2.3.3.2 Radial integral

Using the series expansion of the associated Laguerre polynomials 𝐿|ℓ|
𝑝 (𝑥) = ∑︀𝑝

𝑘=0 𝑐
𝑝|ℓ|
𝑘 𝑥𝑘,

with coefficients given by 𝑐𝑝|ℓ|
𝑘 = (−1)𝑘

𝑘!
(𝑝+|ℓ|)!

(|ℓ|+𝑘)! (𝑝−𝑘)! , we get

ℛ𝑙𝑙′𝑚ℓ
𝑞𝑞′𝑛𝑝 =

𝑞,𝑞′∑︁
𝑘1,𝑘2

𝑛,𝑝∑︁
𝑘3,𝑘4

𝑐
𝑞|𝑙|
𝑘1 𝑐

𝑞′|𝑙′|
𝑘2 𝑐

𝑛|𝑚|
𝑘3 𝑐

𝑝|ℓ|
𝑘4 𝜉

2𝑘1
𝑎 𝜉2𝑘2

𝑎′ 𝜉
2𝑘3
𝑏 𝜉2𝑘4

𝑠

×
∫︁ ∞

0
𝜌|𝑙|+|𝑙′|+|𝑚|+|ℓ|+2(𝑘1+𝑘2+𝑘3+𝑘4)𝑒−𝜌2(𝜉2

𝑎+𝜉2
𝑎′ )𝜌𝑑𝜌. (2.159)

This leads to the general expression in terms of finite sums

ℛ𝑙𝑙′𝑚ℓ
𝑞𝑞′𝑛𝑝 = 1

2(𝜉2
𝑎 + 𝜉2

𝑎′)

𝑞,𝑞′∑︁
𝑘1,𝑘2

𝑛,𝑝∑︁
𝑘3,𝑘4

𝑐
𝑞|𝑙|
𝑘1 𝑐

𝑞′|𝑙′|
𝑘2 𝑐

𝑛|𝑚|
𝑘3 𝑐

𝑝|ℓ|
𝑘4

𝜉2𝑘1
𝑎 𝜉2𝑘2

𝑎′ 𝜉
2𝑘3
𝑏 𝜉2𝑘4

𝑠

(𝜉2
𝑎 + 𝜉2

𝑎′)𝐺
Γ(𝐺+ 1), (2.160)

where Γ(·) is the Gamma function and 𝐺 = (|𝑙|+ |𝑙′|+ |𝑚|+ |ℓ|)/2 + 𝑘1 + 𝑘2 + 𝑘3 + 𝑘4. In
the case of degenerate FWM, all wavelengths 𝜆𝑗 are equal to 𝜆0, making all waists 𝑤0,𝑗 also
equal to 𝑤0, and with this, 𝜉𝑗 → 1, ∀ 𝑗, and we get:

ℛ𝑙𝑙′𝑚ℓ
𝑞𝑞′𝑛𝑝 = 1

2

𝑞,𝑞′∑︁
𝑘1,𝑘2

𝑛,𝑝∑︁
𝑘3,𝑘4

𝑐
𝑞|𝑙|
𝑘1 𝑐

𝑞′|𝑙′|
𝑘2 𝑐

𝑛|𝑚|
𝑘3 𝑐

𝑝|ℓ|
𝑘4 2−𝐺Γ(𝐺+ 1), (2.161)

In upcoming sections we will look at particular cases where the radial integral can be evaluated
to give a closed form expression.

2.3.3.3 Longitudinal integral and Gouy phase-matching

The second selection rule comes from the longitudinal integral, ℐ𝑄(𝐿), when the extended-
medium condition is fulfilled, i.e., 𝐿/𝑧𝑅 ≫ 1. It is related to the matching of the Gouy phases
of the various modes inside the overlap integral and does not depend on the type of system
considered, if it is a degenerate or a non-degenerate configuration. It is also independent of
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the chosen paraxial basis. The longitudinal integral is:

ℐ𝑄(𝐿) =
∫︁ 𝐿/2

−𝐿/2

𝑒−𝑖2𝑄 tan−1(𝑧/𝑧𝑅)

1 + (𝑧/𝑧𝑅)2 𝑑𝑧,

=
∫︁ 𝐿/2

−𝐿/2

1
1 + (𝑧/𝑧𝑅)2

(︃
1− 𝑖𝑧/𝑧𝑅

1 + 𝑖𝑧/𝑧𝑅

)︃𝑄

𝑑𝑧,

=
∫︁ 𝐿/2

−𝐿/2
𝑓𝑄(𝑧)𝑑𝑧. (2.162)

It is easy to show that for integer 𝑄, the imaginary part of 𝑓𝑄(𝑧) is an odd function of 𝑧, and
therefore ℐ𝑄 ∈ R for 𝑄 ∈ Z. The integral can be solved to find:

ℐ𝑄(𝐿) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2𝑧𝑅 tan−1(𝐿/2𝑧𝑅) , 𝑄 = 0,
𝑖𝑧𝑅

2𝑄
(︁
𝑔𝑄

𝐿 − 𝑔
−𝑄
𝐿

)︁
, 𝑄 ̸= 0,

(2.163)

where 𝑔𝐿 = (𝑖+𝐿/2𝑧𝑅)(𝑖−𝐿/2𝑧𝑅)−1. In the extended medium limit, 𝐿/𝑧𝑅 →∞, we obtain

ℐ𝑄 −→
𝐿/𝑧𝑅→∞

⎧⎪⎪⎨⎪⎪⎩
𝜋𝑧𝑅 , 𝑄 = 0,

0 , 𝑄 ̸= 0.
(2.164)

We conclude that the only modes that survive the wave mixing process in an extended medium
are those that satisfy 𝑄 = 0, or equivalently:

𝑁ℓ,𝑝 +𝑁𝑚,𝑛 = 𝑁𝑙,𝑞 +𝑁𝑙′,𝑞′ , (2.165)

which is the Gouy phase-matching (GPM) condition (WALKER; ARNOLD; FRANKE-ARNOLD,
2012; CHOPINAUD et al., 2018; OFFER et al., 2021; ROCHA et al., 2022). We can also express
this requirement as:

2𝑝+ |ℓ| = 2(𝑞 + 𝑞′ − 𝑛) + (|𝑙|+ |𝑙′| − |𝑚|). (2.166)

This selection rule restricts the output radial spectrum, and further reduces the number of
modes we need to account for. Most importantly, it involves both indices ℓ and 𝑝, introducing a
controlled coupling between the angular and radial degrees of freedom that cannot be achieved
in a thin medium. It is interesting to note that the GPM condition does not depend on the
chosen basis of paraxial modes, neither on the type of process (degenerate or non-degenerate).
In Fig. 10 we show the behavior of ℐ𝑄(𝐿) for different values of 𝑄.

Experimentally, the restrictions imposed by the GPM condition were verified in situations
where the medium length was ∼ 10 times the Rayleigh range (OFFER et al., 2018; OFFER

et al., 2021). In these references, the FWM configuration was that of amplified spontaneous
emission, generating blue light.
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Figure 10 – Longitudinal integral ℐ𝑄(𝐿) over the medium extension 𝐿 for different values of 𝑄. For an
extended medium, 𝐿/𝑧𝑅 ≫ 1, ℐ0(𝐿)→ 𝜋𝑧𝑅, and ℐ𝑄(𝐿)→ 0, 𝑄 ̸= 0.
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Source: The author (2024).

2.3.3.4 Angular-radial mode coupling

One particularly interesting result in the GPM setting is the direct transfer of radial indices
and topological charges from incident fields to the radial index of the generated signal. This
was achieved in a non degenerate cascade FWM process generating blue light (OFFER et al.,
2021). The selection rule given by Eq. (2.166) imposes for the output modes:

𝑝 = 𝑞 + 𝑞′ − 𝑛+ 1
2(|𝑙|+ |𝑙′| − |𝑚| − |ℓ|),

= 𝑞 + 𝑞′ − 𝑛+ 1
2(|𝑙|+ |𝑙′| − |𝑚| − |𝑙 + 𝑙′ −𝑚|). (2.167)

Considering 𝑚 = 𝑛 = 0 (𝑢𝑏 Gaussian), the OAM conservation requires ℓ = 𝑙 + 𝑙′, and

𝑝 = 𝑞 + 𝑞′ + 1
2(|𝑙|+ |𝑙′| − |𝑙 + 𝑙′|). (2.168)

Here the relative helicities of the OAM of fields 𝑢𝑎 and 𝑢𝑎′ become important, i.e., whether we
have co-rotating (𝑙 · 𝑙′ ≥ 0) or counter-rotating (𝑙 · 𝑙′ < 0) vortices. We may therefore rewrite
Eq. (2.168) as:

𝑝 =

⎧⎪⎪⎨⎪⎪⎩
𝑞 + 𝑞′ , 𝑙 · 𝑙′ ≥ 0,

𝑞 + 𝑞′ + min(|𝑙|, |𝑙′|) , 𝑙 · 𝑙′ < 0,
(2.169)

and the only possible modes at the output are:

𝑢𝑙+𝑙′,𝑞+𝑞′ , 𝑙 · 𝑙′ ≥ 0,

𝑢𝑙+𝑙′,𝑞+𝑞′+min(|𝑙|,|𝑙′|), 𝑙 · 𝑙′ < 0.
(2.170)
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Figure 11 – Normalized mode weights (a) 𝜂0,𝑝 = |𝒜0000
𝑠𝑠0𝑝|, in the co-rotating case, and (b) 𝜂0,𝑝 = |𝒜2,−200

1𝑠0𝑝 |,
in the counter-rotating case, for 𝑠 = 1, 2, 3. In each situation, as the ratio 𝐿/𝑧𝑅 increases, the
GPM condition imposes the restrictions given by Eq. (4.9). Namely 𝜂0,𝑝 → 𝛿𝑝,2𝑠 for (a), and
𝜂0,𝑝 → 𝛿𝑝,3+𝑠 for (b). The calculations were performed in the degenerate FWM setting.

Source: The author (2024).

What Eq. (2.170) tells us is that under these assumptions, it is possible to transfer the radial
indices of the two input fields to the generated field radial index; and that when 𝑢𝑎, 𝑢𝑎′ possess
counter-rotating vorticities, it is possible to increase the generated radial index by the minimum
value among |𝑙|, |𝑙′|. Furthermore, when 𝑞 = 𝑞′ = 0, we see that one can generate radial modes
at the output, from incident modes that only carry topological charge, and if 𝑙 = −𝑙′, the
generated radial mode will carry no TC (complete transfer of angular to radial charge).

To exemplify these rules, and illustrate what one would get at the output, consider the
FWM process induced by the modes 𝑢𝑎 = 𝑢𝑎′ = 𝑢0,𝑠, and 𝑢𝑏 = 𝑢0,0, for the co-rotating
case; and by the modes 𝑢𝑎 = 𝑢2,1, 𝑢𝑎′ = 𝑢−2,𝑠, 𝑢𝑏 = 𝑢0,0, for the counter-rotating case.
The normalized mode weights are shown in Fig. 11 for different ratios 𝐿/𝑧𝑅, and values of 𝑠.
We see that as the ratio 𝐿/𝑧𝑅 increases, the GPM condition imposes the restriction on the 𝑝
orders, following Eq. (4.9). In (a) the output mode emerges with a radial index equal to the
sum of the input radial orders, 𝑝 = 2𝑠; and in (b) the output radial order is 𝑝 = 3 + 𝑠. This
result is valid both for the degenerate and non-degenerate configurations.

Let us now focus on the degenerate FWM process (𝜉𝑗 = 1). The radial integral, taking
into account the GPM condition, can be written:

ℛ𝑙𝑙′0(𝑙+𝑙′)
0000 =

∫︁ ∞

0
𝜌2(|𝑙|+|𝑙′|)𝐿

|𝑙|+|𝑙′|
0 (𝜌2)𝑒−2𝜌2

𝜌𝑑𝜌, 𝑙 · 𝑙′ ≥ 0, (2.171)

and

ℛ𝑙𝑙′0(𝑙+𝑙′)
000 min(|𝑙|,|𝑙′|) =

∫︁ ∞

0
𝜌|𝑙|+|𝑙′|+|𝑙+𝑙′|𝐿

|𝑙+𝑙′|
min(|𝑙|,|𝑙′|)(𝜌

2)𝑒−2𝜌2
𝜌𝑑𝜌, 𝑙 · 𝑙′ < 0. (2.172)
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For the co-rotating case, 𝑙 · 𝑙′ ≥ 0, we have simply:

ℛ𝑙𝑙′0(𝑙+𝑙′)
0000 =

∫︁ ∞

0
𝜌2(|𝑙|+|𝑙′|)𝑒−2𝜌2

𝜌𝑑𝜌,

= 1
4

(|𝑙|+ |𝑙′|)!
2|𝑙|+|𝑙′| ,

𝑙=−𝑙′−→ (2|𝑙|)!
4|𝑙|+1 . (2.173)

But something a little more interesting happens in the counter-rotating case with 𝑙 = −𝑙′: the
radial integral given by Eq. (2.172) is nonzero only if |𝑙| is even. To show this, we write:

ℛ𝑙−𝑙00
000|𝑙| =

∫︁ ∞

0
𝜌2|𝑙|𝐿0

|𝑙|(𝜌2)𝑒−2𝜌2
𝜌𝑑𝜌,

= |𝑙|!
|𝑙|∑︁

𝑘=0

(−1)𝑘

𝑘!
1

𝑘!(|𝑙| − 𝑘)!

∫︁ ∞

0
𝜌2(|𝑙|+𝑘)𝑒−2𝜌2

𝜌𝑑𝜌,

= 1
4
|𝑙|!
2|𝑙|

|𝑙|∑︁
𝑘=0

(−1)𝑘

2𝑘(𝑘!)2
(|𝑙|+ 𝑘)!
(|𝑙| − 𝑘)! . (2.174)

The above finite sum can be cast in terms of the Gamma function, as

ℛ𝑙−𝑙00
000|𝑙| = 1

4

Γ
(︃

1 + |𝑙|
2

)︃

Γ
(︃

1− |𝑙|
2

)︃ . (2.175)

Note that for odd 𝑙, |𝑙| = 2𝑛+ 1, with integer 𝑛 ≥ 0, we get

ℛ𝑙−𝑙00
000|𝑙| = 1

4
Γ(1 + 𝑛)
Γ(−𝑛) . (2.176)

The reciprocal of the Gamma function evaluated at zero and at negative integer values is equal
to zero (DENNERY; KRZYWICKI, 1996). Thus, for odd 𝑙, the radial integral is identically zero:

ℛ𝑙−𝑙00
000|𝑙|

odd 𝑙= 0. (2.177)

This result is not obtained in a non degenerate configuration, since the Gaussian exponential
𝑒−𝜌2(𝜉2

𝑎+𝜉2
𝑎′ ) inside the integral in (2.174) would carry a factor (𝜉2

𝑎 + 𝜉2
𝑎′) ̸= 2, and therefore

the exact expression for the radial integral would not be found. This indicates that some cases
reported in Ref. (OFFER et al., 2021) are not reproducible in a degenerate FWM scheme. Also,
when incident fields consist of a superposition of odd ±𝑙, one of the mode components of the
output field is suppressed in the limit 𝐿/𝑧𝑅 →∞, and one obtains results different from those
in Ref. (WALKER; ARNOLD; FRANKE-ARNOLD, 2012). We shall return to this point in Chapter
4.
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2.3.4 The HG overlap integral

When dealing with the Hermite-Gaussian basis, it will be necessary to calculate the overlap
integral of four HG modes

𝒜𝑛𝑛′𝑛′′𝑛′′′

𝑚𝑚′𝑚′′𝑚′′′ =
∫︁ 𝐿/2

−𝐿/2

∫︁ ∞

−∞

∫︁ ∞

−∞
𝑢HG

𝑚′,𝑛′𝑢HG
𝑚′′,𝑛′′𝑢HG*

𝑚′′′,𝑛′′′𝑢HG*
𝑚,𝑛 𝑑𝑥𝑑𝑦𝑑𝑧. (2.178)

As in the case with the LG basis, depending on the incident field superpositions, there may
be several integrals of this kind to be evaluated for a given FWM process, and the selection
rules that arise from Eq. (2.178) aid in the task of accounting for all possible combinations of
indices.

As in the case with LG modes, we consider that all beams are given by modes with the
same Rayleigh range 𝑧𝑅. Then, we can write explicitly the integral of four HG modes (to
avoid the repetition of lengthy sub- and superscripts, we define 𝑚 ≡ {𝑚,𝑚′,𝑚′′,𝑚′′′} and
𝑛 ≡ {𝑛, 𝑛′, 𝑛′′, 𝑛′′′}), to write:

𝒜𝑛
𝑚 = 4

𝜋2ℳ
𝑛
𝑚

∫︁
V

1
𝑤𝑎𝑤𝑎′𝑤𝑏𝑤𝑠

𝑒−𝑟2(1/𝑤2
𝑎+1/𝑤2

𝑎′ +1/𝑤2
𝑏 +1/𝑤2

𝑠)

×𝐻𝑚′

(︃√
2𝑥
𝑤𝑎

)︃
𝐻𝑚′′

(︃√
2𝑥
𝑤𝑎′

)︃
𝐻𝑚′′′

(︃√
2𝑥
𝑤𝑏

)︃
𝐻𝑚

(︃√
2𝑥
𝑤𝑠

)︃

×𝐻𝑛′

(︃√
2𝑦
𝑤𝑎

)︃
𝐻𝑛′′

(︃√
2𝑦
𝑤𝑎′

)︃
𝐻𝑛′′′

(︃√
2𝑦
𝑤𝑏

)︃
𝐻𝑛

(︃√
2𝑦
𝑤𝑠

)︃

× exp
[︁
−𝑖2𝑄 tan−1(𝑧/𝑧𝑅) + 𝑖𝛿ΦC(𝑟, 𝑧)

]︁
𝑑3r, (2.179)

where ℳ𝑛
𝑚 = 𝑀𝑚,𝑛𝑀𝑚′,𝑛′𝑀𝑚′′,𝑛′′𝑀𝑚′′′,𝑛′′′ is the product of HG normalization constants,

𝑤𝑗 = 𝑤𝑗(𝑧) = 𝑤0,𝑗

√︁
1 + (𝑧/𝑧𝑅)2 is the waist of each beam, 2𝑄 is now the difference in

total mode orders 𝑁𝑚,𝑛 = 𝑚 + 𝑛, and 𝛿ΦC(𝑟, 𝑧) = 0, since we assume the Boyd criterion to
be fulfilled. Defining the ratios as before 𝜉𝑗 ≡ 𝑤0/𝑤0,𝑗 with 𝑤0 being a reference waist, and
𝜌𝑥(𝑧) =

√
2𝑥/𝑊 (𝑧), 𝜌𝑦(𝑧) =

√
2𝑦/𝑊 (𝑧), with 𝑊 (𝑧) = 𝑤0

√︁
1 + (𝑧/𝑧𝑅)2, we can rewrite the

integral as

𝒜𝑛
𝑚 = 4

𝜋2
ℳ𝑛

𝑚

2𝑤2
0
𝜉𝑎𝜉𝑎′𝜉𝑏𝜉𝑠

×
∫︁ ∞

−∞
𝐻𝑚′(𝜉𝑎𝜌𝑥)𝐻𝑚′′(𝜉𝑎′𝜌𝑥)𝐻𝑚′′′(𝜉𝑏𝜌𝑥)𝐻𝑚(𝜉𝑠𝜌𝑥)𝑒−𝜌2

𝑥(𝜉2
𝑎+𝜉2

𝑎′ )𝑑𝜌𝑥

×
∫︁ ∞

−∞
𝐻𝑛′(𝜉𝑎𝜌𝑦)𝐻𝑛′′(𝜉𝑎′𝜌𝑦)𝐻𝑛′′′(𝜉𝑏𝜌𝑦)𝐻𝑛(𝜉𝑠𝜌𝑦)𝑒−𝜌2

𝑦(𝜉2
𝑎+𝜉2

𝑎′ )𝑑𝜌𝑦

×
∫︁ 𝐿/2

−𝐿/2

𝑒−𝑖2𝑄 tan−1(𝑧/𝑧𝑅)

1 + (𝑧/𝑧𝑅)2 𝑑𝑧, (2.180)
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or
𝒜𝑛

𝑚 = 2
𝜋2𝑤2

0
𝜉𝑎𝜉𝑎′𝜉𝑏𝜉𝑠ℳ𝑛

𝑚𝒳𝑚𝒴𝑛ℐ𝑄(𝐿), (2.181)

where 𝒳𝑚 and 𝒴𝑛 are the integrals in 𝜌𝑥 and 𝜌𝑦, respectively, and ℐ𝑄(𝐿) is the longitudinal
integral.

2.3.4.1 Transverse overlap

The transverse integrals are

𝒳𝑚 =
∫︁ ∞

−∞
𝐻𝑚′(𝜉𝑎𝜌𝑥)𝐻𝑚′′(𝜉𝑎′𝜌𝑥)𝐻𝑚′′′(𝜉𝑏𝜌𝑥)𝐻𝑚(𝜉𝑠𝜌𝑥)𝑒−𝜌2

𝑥(𝜉2
𝑎+𝜉2

𝑎′ )𝑑𝜌𝑥, (2.182)

𝒴𝑛 =
∫︁ ∞

−∞
𝐻𝑛′(𝜉𝑎𝜌𝑦)𝐻𝑛′′(𝜉𝑎′𝜌𝑦)𝐻𝑛′′′(𝜉𝑏𝜌𝑦)𝐻𝑛(𝜉𝑠𝜌𝑦)𝑒−𝜌2

𝑦(𝜉2
𝑎+𝜉2

𝑎′ )𝑑𝜌𝑦. (2.183)

We see that for the full transverse integral to be nonzero, both products of Hermite polynomials
in the 𝒳 and 𝒴 integrals must be even. Since 𝐻𝑚(·) is even if 𝑚 is even, and odd if 𝑚 is
odd, it can be verified that a sufficient general requirement to produce nonzero transverse
overlap is that the sum of the indices characterizing the Hermite polynomials associated with
each direction must be even. This constitutes the first selection rule contained in 𝒜𝑛

𝑚, which
is associated with the transverse spatial degrees of freedom: the only modes 𝑢HG

𝑚𝑛 that are
generated in the FWM process are those that, considering all combinations, satisfy

mod(𝑁𝑥, 2) = 0, (2.184)

mod(𝑁𝑦, 2) = 0, (2.185)

where 𝑁𝑥 = 𝑚′ + 𝑚′′ + 𝑚′′′ + 𝑚 and 𝑁𝑦 = 𝑛′ + 𝑛′′ + 𝑛′′′ + 𝑛 are the total mode numbers
associated with the 𝑥 and 𝑦 distributions, respectively, and are strictly positive. We emphasize
that, due to the separability of the transverse integral into two integrals, the selection rules in
𝑥 and 𝑦 are independent. Note that Eq. (2.184) does not determine the values of 𝑚 and 𝑛,
rather, it reduces the number of nonzero coefficients we have to worry about. If 𝑚′ +𝑚′′ +𝑚′′′

is even (odd), 𝑚 will assume only even (odd) values. The same can be said about the sum
𝑛′ + 𝑛′′ + 𝑛′′′ and 𝑛. Furthermore, the integrals 𝒳𝑚 and 𝒴𝑛 are almost identical, the only
difference being the set of indices that determine the orders of the Hermite polynomials. Using
the series expansion of the Hermite polynomials, 𝐻𝑚(𝑥) = ∑︀⌊𝑚/2⌋

𝑘=0 𝑐𝑚
𝑘 𝑥

𝑚−2𝑘, where ⌊·⌋ is the
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floor function, and the coefficients are 𝑐𝑚
𝑘 = (−1)𝑘 𝑚!

𝑘!
2𝑚−2𝑘

(𝑚−2𝑘)! , we get

𝒳𝑚 =
⌊𝑚′/2⌋∑︁
𝑘1=0

⌊𝑚′′/2⌋∑︁
𝑘2=0

⌊𝑚′′′/2⌋∑︁
𝑘3=0

⌊𝑚/2⌋∑︁
𝑘4=0

𝑐𝑚′

𝑘1 𝑐
𝑚′′

𝑘2 𝑐
𝑚′′′

𝑘3 𝑐𝑚
𝑘4𝜉

𝑚′−2𝑘1
𝑎 𝜉𝑚′′−2𝑘2

𝑎′ 𝜉𝑚′′′−2𝑘3
𝑏 𝜉𝑚−2𝑘4

𝑠

×
∫︁ ∞

−∞
𝜌𝑚′+𝑚′′+𝑚′′′+𝑚−2(𝑘1+𝑘2+𝑘3+𝑘4)

𝑥 𝑒−𝜌2
𝑥(𝜉2

𝑎+𝜉2
𝑎′ )𝑑𝜌𝑥. (2.186)

Note that 𝐺 = 𝑚′ +𝑚′′ +𝑚′′′ +𝑚−2(𝑘1 +𝑘2 +𝑘3 +𝑘4) ≥ 0 is always even. Using a standard
Gaussian integral result, we arrive at the expression

𝒳𝑚 =
√
𝜋
𝜉𝑚′

𝑎 𝜉𝑚′′
𝑎′ 𝜉𝑚′′′

𝑏 𝜉𝑚
𝑠√︁

𝜉2
𝑎 + 𝜉2

𝑎′

∑︁
𝑘1,𝑘2

∑︁
𝑘3,𝑘4

𝑐𝑚′
𝑘1 𝑐

𝑚′′
𝑘2 𝑐

𝑚′′′
𝑘3 𝑐𝑚

𝑘4

𝜉2𝑘1
𝑎 𝜉2𝑘2

𝑎′ 𝜉
2𝑘3
𝑏 𝜉2𝑘4

𝑠

2−𝐺/2(𝐺− 1)!!
(𝜉2

𝑎 + 𝜉2
𝑎′)𝐺/2 , (2.187)

where (·)!! is the double factorial. The integral 𝒴𝑛 can be calculated using the same formula,
with the change of indices 𝑚→ 𝑛.

2.3.4.2 Longitudinal integral and Gouy phase-matching

The second selection rule comes from the longitudinal integral, ℐ𝑄(𝐿), when the extended-
medium condition is fulfilled, i.e., 𝐿/𝑧𝑅 ≫ 1, imposing the GPM condition. We obtain the same
result as in Eq. (2.163), and in the extended-medium limit, 𝐿/𝑧𝑅 → ∞, ℐ𝑄(𝐿) → 𝜋𝑧𝑅𝛿𝑄,0.
The only modes that survive the mixing process in an extended medium are those that satisfy

𝑁𝑚′𝑛′ +𝑁𝑚′′𝑛′′ = 𝑁𝑚′′′𝑛′′′ +𝑁𝑚𝑛, (2.188)

or, alternatively,

𝑚+ 𝑛 = (𝑚′ +𝑚′′ −𝑚′′′) + (𝑛′ + 𝑛′ − 𝑛′′′). (2.189)

2.3.4.3 Gaussian IR field and effective selection rule - the index-sum rule

In a degenerate FWM process, where all fields possess the same wavelength, we have
𝜉𝑗 = 1. However, we consider here a cascade FWM process induced by amplified spontaneous
emission (ASE). In this setting, two fields at 780 nm and 776 nm interact in a heated sample
of 85Rb atoms to generate a signal at 𝜆B = 420 nm, with an emission also at 𝜆IR = 5.23

µm. In this situation, making the reference wavelength 𝜆0 = 780 nm, we have 𝜉𝑎 = 𝜉780 = 1,
𝜉𝑎′ = 𝜉776 =

√︁
780/776 ≈ 1. The other ratios 𝜉 are also determined based on this value,

𝜉𝑏 = 𝜉IR =
√︁

780/5230, 𝜉𝑠 = 𝜉B =
√︁

780/420. It is well known that, when the ASE FWM is
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induced by transversely structured beams, the spontaneously emitted IR beam is predominantly
Gaussian. This ensures maximum efficiency in the process. We can write 𝑢IR = 𝑢HG

00 , and in
all of the expressions we make 𝑚′′′ = 𝑛′′′ = 0. The full overlap is thus characterized by the six
remaining possibly nonzero indices:

𝒜𝑛𝑛′𝑛′′𝑛′′′

𝑚𝑚′𝑚′′𝑚′′′ → 𝒜𝑛𝑛′𝑛′′0
𝑚𝑚′𝑚′′0 = 𝒜𝑛𝑛′𝑛′′

𝑚𝑚′𝑚′′ . (2.190)

Furthermore, the transverse integrals, given by Eq. (2.187), can now be written in the approx-
imate form

𝒳𝑚 ≃
√︂
𝜋

2 𝜉
𝑚
B
∑︁

𝑘1,𝑘2

∑︁
𝑘4

𝑐𝑚′
𝑘1 𝑐

𝑚′′
𝑘2 𝑐

𝑚
𝑘4

𝜉2𝑘4
B

2−𝐺(𝐺− 1)!!, (2.191)

and we see that the ratio 𝜉B, between the waists of the incident beams and the generated
blue light beam, is the only one with a significant contribution to the results. Now, considering
a extended-medium regime (which is well suited for the situations we are interested in), the
generated 𝑚 and 𝑛 must simultaneously satisfy the transverse (2.184) and longitudinal (2.189)
selection rules,

mod(𝑚+𝑚′ +𝑚′′, 2) = 0, (2.192)

mod(𝑛+ 𝑛′ + 𝑛′′, 2) = 0, (2.193)

(𝑚′ +𝑚′′) + (𝑛′ + 𝑛′′) = 𝑚+ 𝑛. (2.194)

Now, consider the indices given by:

𝑚(𝑞) = 𝑚′ +𝑚′′ ± 𝑞,

𝑛(𝑞) = 𝑛′ + 𝑛′′ ∓ 𝑞, (2.195)

where 𝑞 is an even positive integer. Although these are not the only allowed values, it is clear
that they comply with all of the conditions (2.192)-(2.194). Without further restrictions to 𝑞,
equations (2.195) can give negative 𝑚 or 𝑛, which is not allowed. Evidently, these possibilities
must be ruled out if encountered. In any case, it is possible to establish the total number of
modes 𝑢HG

𝑚,𝑛 that can, in principle, be generated. Here we highlight that in the ASE FWM
process in a extended-medium, it can be shown that 𝒜𝑛(𝑞),𝑛′𝑛′′

𝑚(𝑞),𝑚′𝑚′′ possesses negligible values for
𝑞 ̸= 0. In fact, in all cases we consider, we may assume that

𝒜𝑛𝑛′𝑛′′

𝑚𝑚′𝑚′′ = 𝛿𝑚,𝑚′+𝑚′′𝛿𝑛,𝑛′+𝑛′′𝒜𝑛′+𝑛′′,𝑛′𝑛′′

𝑚′+𝑚′′,𝑚′𝑚′′ (2.196)

are the only relevant coefficients in the generated field mode expansion. We name this effective
selection rule the "index-sum rule", and it is the key property that allowed to demonstrate the
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optical mode conversion explored in Ref. (ROCHA et al., 2022). We will come back to this in
Chapter 4.

To illustrate the index-sum rule, we show in Fig. 12 how the distribution of normalized
expansion coefficients changes as a function of the ratio 𝑧𝑅/𝐿, which characterizes a thin-
or extended-medium regime, and how it differs between the degenerate and non-degenerate
cases, determined by 𝜉𝑗 = 1 and 𝜉B =

√︁
780/420, respectively. We consider the situation

𝑢780 = 𝑢HG
12 and 𝑢776 = 𝑢HG

01 . For larger 𝑧𝑅/𝐿 (or conversely, smaller 𝐿/𝑧𝑅), closer to a thin-
medium regime, many modes can be generated both in the degenerate and non-degenerate
situations. It can be noted that there is a strong influence of the ratio 𝜉B on the distributions. In
the non-degenerate setting (𝜉B =

√︁
780/420) there is a smaller number of modes generated

with relevant amplitudes. This can be seen as a selection performed by the parameter 𝜉B.
As we move to an extended-medium regime, for decreasing 𝑧𝑅/𝐿, the Gouy phase-matching
condition restricts the modes that can be generated, according to Eq. (2.166). In the non-
degenerate configuration, due to the restriction imposed by 𝜉B, the mode that carries the sum
of indices, 𝑚 = 𝑚′ +𝑚′′ and 𝑛 = 𝑛′ +𝑛′′, dominates. As a final remark, note that the nonzero
coefficients on the 𝑚× 𝑛 plane are disposed in diagonal lines corresponding to constant total
order 𝑁𝑚,𝑛, and that no neighboring modes are populated, i.e., they are always spaced by at
least 1 square both in the 𝑚 and 𝑛 directions.
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Figure 12 – Distribution of normalized output mode coefficients for 𝑧𝑅/𝐿 = 1, 0.2, 0.1 (from left to right
columns) and 𝜉j = 1 (lower row) and 𝜉B =

√︀
780/420 (upper row), representing the degenerate

and non-degenerate processes, respectively. Incident fields are 𝑢780 = HG12 and 𝑢776 = HG01.
In the top right plot, which represents the result obtained for the non-degenerate FWM process
in an extended-medium, we see that the major contribution is from the mode with 𝑚 = 𝑚′+𝑚′′,
𝑛 = 𝑛′ + 𝑛′′, corresponding to 𝑞 = 0. This indicates the validity of the index-sum rule. Insets
show the resulting intensity profile of the FWM beam in each configuration.

Source: Taken from Ref. (ROCHA et al., 2022).
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3 EXPERIMENTAL DETAILS

In this Chapter we describe the experimental apparatus used in our studies. We worked
with two types of atomic systems: cold atoms obtained with our magneto-optical trap, and
heated rubidium vapor. We discuss the components and operation of both systems, and also
how we used the spatial light modulator (SLM) to generate the structured light beams.

3.1 HYPERFINE STRUCTURE OF RUBIDIUM AND SATURATED ABSORPTION SPEC-
TROSCOPY

Alkali atoms possess a single valence electron orbiting a core composed of the nucleus and
the electrons of the closed subshells, which shield the nuclear charge. Due to the shielding
effect, an excited outermost electron experiences the potential of a nuclear charge of +𝑒. In
this case, its energy is essentially hydrogenic, Ealk

𝑛 ≃ EH
1 /𝑛

2, where EH
1 is the ground state

energy of hydrogen and 𝑛 is the principal quantum number. For an s valence electron (an
electron with an orbital angular momentum quantum number 𝐿 = 0), however, the shielding
is not as effective, and it sees a greater nuclear charge. Because of this, s electrons have lower
energies than d electrons (𝐿 = 2) with the same principal quantum number. The quantum
defect 𝛿𝐿 is a quantity subtracted from the principal quantum number 𝑛 of the alkalis to
account for this effect. The subscript 𝐿 indicates the dependence of the quantum deffect on
the orbital angular momentum quantum number. The effective principal quantum number is
𝑛* = 𝑛−𝛿𝐿, and the energies of alkali atoms are well described by the modified form of Bohr’s
formula Ealk

𝑛* = EH
1 /(𝑛*)2.

The fine structure of atoms is a result of the spin-orbit coupling. The total angular mo-
mentum of the outer electron is given by Ĵ = L̂ + Ŝ, where L̂ and Ŝ are the orbital and spin
angular momentum operators, respectively. From the quantum mechanical theory of addition
of angular momenta, the corresponding quantum number 𝐽 is such that |𝐿−𝑆| ≤ 𝐽 ≤ 𝐿+𝑆.
Further, the associated magnetic quantum number 𝑚𝐽 assumes all integer or half-integer
values in the range −𝐽 ≤ 𝑚𝐽 ≤ 𝐽 .

The hyperfine structure is a result of the coupling between Ĵ and the nuclear angular
momentum Î. The total atomic angular momentum is given by F̂ = Ĵ + Î and likewise, the
quantum numbers 𝐹 and 𝑚𝐹 must satisfy |𝐽 − 𝐼| ≤ 𝐹 ≤ 𝐽 + 𝐼 and −𝐹 ≤ 𝑚𝐹 ≤ 𝐹 ,
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respectively. The total energy shift due to these effects can be written as

Δ𝐸 = Δ𝐸s−o + Δ𝐸hfs,

= 𝐴s−o⟨L̂ · Ŝ⟩+ 𝐴hfs⟨Ĵ · Î⟩, (3.1)

where 𝐴s−o, 𝐴hfs are the spin-orbit and hyperfine structure coupling factors, which can be
calculated following standard atomic physics text books (FOOT, 2005; BRANSDEN; JOACHAIN,
2003), and the expectation values are:

⟨L̂ · Ŝ⟩ = ℏ2

2 [𝐽(𝐽 + 1)− 𝐿(𝐿+ 1)− 𝑆(𝑆 + 1)] , (3.2)

⟨Ĵ · Î⟩ = ℏ2

2 [𝐹 (𝐹 + 1)− 𝐽(𝐽 + 1)− 𝐼(𝐼 + 1)] . (3.3)

The energy shift due to the spin orbit interaction is of the order 𝛼2E𝑛* , where 𝛼 = 𝑒2/4𝜋𝜀0ℏ𝑐 ≃

1/137 is the fine structure constant. The second term on the right-hand side of Eq. (3.1) leads
to smaller corrections because the magnetic moment of the nucleus is much smaller than the
magnetic moment of the electron (BRANSDEN; JOACHAIN, 2003).

Rubidium has two stable isotopes, 85Rb and 87Rb, that are found with abundances of
72.2% and 27.8%, respectively. For its ground state, 𝑛 = 5, 𝐿 = 0, 𝑆 = 1/2 and 𝐽 = 1/2.
In the first excited, 𝐿 = 1, 𝑆 = 1/2 and 𝐽 can assume the values 𝐽 = 1/2, 3/2. The
spin-orbit interaction thus splits the energy levels of p electrons into two. The transitions
|𝐿 = 0, 𝐽 = 1/2⟩ → |𝐿 = 1, 𝐽 = 1/2⟩ and |𝐿 = 0, 𝐽 = 1/2⟩ → |𝐿 = 1, 𝐽 = 3/2⟩ are referred
to as the D1 and D2 lines, respectively. The D2 lines of both isotopes contain cycling transitions
that are of uttermost importance to the trapping and cooling of these atoms. The nuclear spin
of 87Rb is 𝐼 = 3/2. The ground state (𝐽 = 1/2, 𝐼 = 3/2) is split into two, 𝐹 = 1, 2, while
the first excited state (𝐽 = 3/2, 𝐼 = 3/2) is split into four hyperfine levels, 𝐹 = 0, 1, 2, 3. The
cyclic transition of the D2 line is |𝐽 = 1/2, 𝐹 = 2⟩ → |𝐽 = 3/2, 𝐹 = 3⟩. A similar analysis
can be made for 85Rb, which has a nuclear spin of 𝐼 = 5/2. Figure 13 shows the hyperfine
energy levels of the D2 lines of 87Rb and 85Rb.

As we have seen in Chapter 2, the motion of atoms at room temperature leads to a
significant broadening of the absorption lines due to the Doppler effect. For this reason, the
hyperfine transitions of Rb cannot be resolved by ordinary absorption. In order to eliminate
the Doppler broadening and reveal the hyperfine structure, one must perform a saturated
absorption (SA) experiment. The setup is as follows. Two counter-propagating beams, a strong
pump and a weak probe, that originate from a single laser (and thus have the same frequency
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Figure 13 – Hyperfine energy levels of the D2 lines of (a) 87Rb and (b) 85Rb.

Source: Modified from (STECK, 2001).

at all times) are superimposed in a region where the atoms are located. The frequency is made
to vary around a hyperfine transition. Off resonance, pump and probe interact with different
velocity groups and both beams are absorbed. Precisely at resonance, both beams interact
with atoms in the velocity group 𝑣 = 0. The intense pump saturates the medium and thus the
probe beam cannot be absorbed, leading to a peak on the probe transmission at resonance.
Figure 14 illustrates the process.

Figure 14 – Depiction of the saturated absorption process. (a) Off resonance, pump and probe interact with
atoms at different velocity groups. Exactly at resonance, both beams interact with the velocity
group 𝑣 = 0 and the probe is not absorbed. This leads to a peak at a hyperfine resonance
frequency in the probe transmission (b).

Source: The author (2024).
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Figure 15 – Cross-over (CO) resonances in the saturated absorption spectrum. (a) Energy levels involved in
the process and associated transition frequencies. (b) Exactly when 𝜔 = 𝜔 the pump saturates
the atoms in the velocity groups ±𝑣′. As a consequence, the probe cannot interact with these
atoms and it is transmitted through the medium. This leads to a peak halfway between the two
expected resonances at 𝜔1 and 𝜔2 in the probe transmission (c).

Source: The author (2024).

When we have two hyperfine transitions with a common ground state, an additional peak
will appear halfway between the two expected peaks in the SA spectrum. These are called cross-
over resonances, and arise because when the frequency of the beams is 𝜔 = 𝜔 = (𝜔1 +𝜔2)/2,
where 𝜔1 < 𝜔2 are the frequencies corresponding to the two transitions, pump and probe
interact with the same velocity groups ±𝑣′ = ±(𝜔2−𝜔1)/2𝑘, where 𝑘 is the wave-number. In
the reference frame considered [figure 15(b)], atoms with positive (negative) velocity will be
promoted to states |1⟩ (|2⟩) by the pump, and become saturated. At the same time the probe
would also interact with these velocity groups, but atoms with positive (negative) velocity
would be promoted to |2⟩ (|1⟩) in an unsaturated medium. This leads to a peak on the probe
transmission at 𝜔. Figure 15 illustrates the process.

A saturated absorption spectrum can be used as a reference signal to lock the frequency
of a tunable diode laser at desired hyperfine transitions using a control system. The setup to
obtain the SA signal can be implemented using only a fraction of the total output power of
conventional diode lasers and a few optical components, as illustrated in Fig. 16. Figure 17
shows the saturated absorption spectrum of Rb obtained with such an arrangement. In the close
up, showing the transitions from 𝐹𝑔 = 2 of 87Rb, we see three well defined peaks, corresponding
to the cyclic transition 𝐹𝑔 = 2 → 𝐹𝑒 = 3, centered at zero, and two cross-over resonances.
There are three other peaks that cannot be seen, corresponding to 𝐹𝑔 = 2 → 𝐹𝑒 = 1, 2 and
a third cross-over.
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Figure 16 – Basic setup of a saturation absorption experiment. OI is an optical isolator, F represents filters,
PD is a photodiode detector.

Source: The author (2024).

Figure 17 – Saturated absorption spectrum of Rb. The peak at 𝛿 = 0 represents the 𝐹𝑔 = 2→ 𝐹𝑒 = 3 hy-
perfine transition. The inset shows region inside dashed box, highlighting the |52S1/2, 𝐹𝑔 = 2⟩ →
|52P3/2⟩ transition. CO(𝑋,𝑌 ) denotes the cross-over transition involving excited states with
𝐹 = 𝑋 and 𝐹 = 𝑌 .
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Source: The author (2024).

3.2 MAGNETO-OPTICAL TRAP SETUP

In this Section we describe the basic aspects of our Rb magneto-optical trap. Figure
18 shows the complete setup of the MOT. The cooling laser is a DL Pro, a grating stabi-
lized tunable single-mode diode laser, from Toptica; and the repump laser is a tunable diode
laser from Sanyo, model DL7140-201S, with homemade electronics for current and temper-
ature control. The DL Pro, with a power output of about 100 mW, is set to excite the
|5S1/2;𝐹𝑔 = 2⟩ → |5P3/2;𝐹𝑒 = 3⟩ hyperfine cyclic transition of 87Rb. With its dedicated con-
troller, the DLC Pro, also from Toptica, we lock its frequency to the cross-over transition
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between |𝐹𝑒 = 1⟩ and |𝐹𝑒 = 3⟩, 212 MHz below resonance. A single-pass acousto-optic mod-
ulator (AOM) then introduces a frequency shift of 200 MHz, leaving it approximately 12 MHz

below the desired resonance frequency. The AOM is also important because it allows to switch
the lasers on and off at the rate necessary for our temporal control scheme. The zeroth order
diffracted from the AOM is used as a guide beam for other parts of the experiment. The first
order is sent into a Toptica Boosta amplifier. The amplified beam is coupled to an optical fiber
using a Fiber Dock and the output beam is divided in two. One of the beams goes directly
to the main Rb cell via an optical fiber and becomes the 𝑧 (vertical) arm of the MOT. The
other beam is mixed with the repump beam via a fused fiber coupler (FFC). The FFC has two
outputs, containing light from cooling and repump lasers, that become the 𝑥 and 𝑦 arms of
the MOT.

The cooling laser may promote atoms to |5P3/2;𝐹𝑒 = 2⟩, instead of 𝐹𝑒 = 3, and these
atoms can decay to |5S1/2;𝐹𝑔 = 1⟩. At this point, they can no longer interact with the cooling
laser. For this reason, the repump laser is tuned to the |5S1/2;𝐹𝑔 = 1⟩ → |5P3/2;𝐹𝑒 = 2⟩

transition and it is responsible for emptying the population of the state |5S1/2;𝐹𝑔 = 1⟩, so
that atoms can interact with the cooling laser again. Its frequency is locked with a homemade
locking system based on Arduino, using a saturated absorption signal obtained with a CoSy
(compact saturation spectroscopy) module. On the upper region of Fig. 18 we show the setup
of the cooling (blue box) and repump (green box) lasers.

The quadrupole magnetic field necessary for the trapping of the atoms at the region where
the light beams intersect is attained with a pair of circular coils in an anti-Helmholtz setting.
To shield the experiment from Earth’s spurious magnetic field and possibly other fields, we
use a set of three pairs of square coils which generate magnetic fields along three orthogonal
directions. The atoms are provided by a rubidium alkali metal dispenser (AMD), through which
a high electric current is imposed to release the atoms. The released atoms are contained inside
the main Rb cell, which is connected to an ionic vacuum pump (VP) from Varian. The pump
maintains a very low pressure inside the cell, ∼ 10−9 Torr, necessary to reduce collisions and
increase the lifetime of the cooled atom cloud. At the output end of all fibers of the MOT
arms, a telescope is used to increase the beam size and a quarter-wave plate makes them
circularly polarized. Inside the cell, the beams intersect far from the glass walls. They are
then reflected by a mirror and another 𝜆/4 plate switches the handedness of their circular
polarizations, 𝜎± → 𝜎∓, thus creating the configuration needed for the trapping of atoms
near the intersection. At the center of Fig. 18 we show the main Rb cell and the 𝑥 and 𝑦 MOT
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Figure 18 – Simplified scheme of our magneto-optical trap experimental setup.

Source: The author (2024).

arms (gray box). With the system setup as described so far, we obtain cold atom clouds with
an estimated optical depth of OD ≈ 8, approximately 109 atoms, and a diameter of 𝐷 ≈ 3−4

mm. In Fig. 19 we show a picture of our MOT.
The excitation laser, a homemade diode laser of the same type as the repump, is also tuned

to the |5S1/2, 𝐹𝑔 = 2⟩ → |5P3/2, 𝐹𝑒 = 3⟩ cycling transition, the same as the cooling laser. For
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Figure 19 – Our magneto-optical trap in operation.

Source: The author (2024).

this reason we employ a temporal control scheme that switches off the cooling laser and the
trapping magnetic field for 2 ms, and waits a small time interval, of ∼ 100 µ𝑠, before switching
on the acquisition time window, when the excitation laser is turned on using the AOM. The
time delay before the acquisition time window ensures that the repump laser, which is not
turned off, prepares the atoms in the |𝐹𝑔 = 2⟩ state, and is small enough so that the cloud
does not move sensibly from the beam intersection position. The excitation laser frequency is
locked with the same type of homemade locking system used in the repump laser, and we can
vary its frequency by changing the AOM DC voltage. At the bottom left corner of Fig. 18 we
show a diagram illustrating the transitions excited by each laser in the experiment.

For the preparation of the excitation beams, we first pass the laser beam through an AOM
in a double-pass configuration, allowing for a frequency shift and temporal control. We then
divide it into two beams, producing the beams E𝑎 and E𝑏. The beam E𝑏 goes directly to the
MOT, and the beam E𝑎 is sent to the spatial light modulator (SLM). In the upcoming sections
we will detail the operation of the SLM. We then align the two beams so that they intersect
at the center of the MOT, with a small angle of about 10 mrad between their wave-vectors.
This is done with the aid of alignment masks (AM1 and AM2). In the next Section we will
comment more in detail on how this alignment is done. The preparation of the excitation
beams is represented in Fig. 20. Depending on the desired configuration of polarizations of
the driving fields, some changes must be made to the setup. To excite the atomic cloud with
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parallel circular polarizations, we send the two beams with parallel linear polarizations through
a 50/50 beam-splitter (BS), and place quarter-wave plates (QWP) at the input and output
sides. This is the situation depicted in Figs. 18 and 20. Alternatively, for orthogonal linear
polarizations, instead of a BS, we use a PBS and remove the QWPs.

Figure 20 – Simplified scheme of the preparation of the structured excitation beam in the experiments with
the MOT.

Source: The author (2024).

The experiments with the MOT were mainly focused on the correlations between the
intensity fluctuations of the participating light fields. In the detection part, we use avalanche
photodiodes (APD) from Thorlabs to acquire the intensity fluctuation time-series of the four
output signals, the two transmitted beams 𝑎 and 𝑏, and the two FWM signals, 2𝑎 − 𝑏 and
2𝑏− 𝑎.

3.3 HEATED RUBIDIUM VAPOR SETUP

The setup for the experiments on the rubidium vapor cell is relatively simple, in comparison
with the MOT setup. A simplified scheme of the experimental arrangement is shown in Fig. 21.
We use a homemade tunable diode laser from Sanyo, model DL7140− 201S, with homemade
electronics for current and temperature control. A small portion of the laser power goes to
a saturated absorption (SA) setup to allow for frequency reference, and then it is coupled to
a single-mode fiber to correct the initial transverse profile, which is fairly non-Gaussian. At
the fiber exit, the beam is split in two by a polarizing beam splitter (PBS). Here, E𝑎 and E𝑏
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are the transmitted and reflected beams, respectively. Beam E𝑎 is modulated by the spatial
light modulator (SLM), and it can carry any topological charge value or any desired transverse
structure. We may pass E𝑏 through a printed forked grating (FG) mask of order |ℓ| = 1,
allowing us to explore scenarios with structured modes on both incident fields. At the grating
output we have the zeroth and first orders, carrying ℓ𝑏 = 0,±1. The desired diffracted order
is selected with a pinhole and sent to the Rb vapor cell. Before impinging onto the SLM
chip, the beam E𝑎 goes through a telescope (formed by lenses L1 and L2) to increase its
size for better modulation. After being diffracted by the SLM, the beam E𝑎 goes through a
reducing telescope (formed by lenses L3 and L4) in which a pinhole is placed at the focal
region to select the first diffracted order, the one that carries the desired phase and amplitude
modulation. Beam E𝑎 is then sent to the vapor cell to intersect with beam E𝑏.

To clean the images of the FWM beams, we use spatial filters to select only the generated
signals, blocking the scattered light coming from the incident beams. The spatial filter works
as spatial frequency selector. In our setup, the spatial filters are formed by the pairs of lenses
L5,L6 and L5,L7, with pinholes in between. The first lens projects the 2D Fourier transform
of the beam onto the focal plane. As we have seen, the Fourier transform is the transverse
wave-vector distribution of a paraxial beam. The pinhole is used to select only the region
of the Fourier plane we wish to maintain. In our case, this is the central region, where the
smaller spatial frequency components are located. This region represents the profile of the
desired beam, which is distributed around |q| = 0, with a characteristic length of ∼ 𝑤−1

0 in
wave-vector space. In the physical plane, the overall size of the focused beam is of the order
of 𝑤𝑓 = 2𝑓/𝑘𝑤0, where 𝑓 is the lens focal length. The regions blocked are those with the
higher frequencies, |q| ≫ 𝑤−1

0 , representing noise, interference, and light from the neighboring
beams, which possess larger transverse wave-vector components, as compared to the beam
we wish to filter. The second lens, at a symmetric position with respect to the pinhole, brings
back the beam to position space.

The two structured beams E𝑎 and E𝑏, with wave-vectors k𝑎 and k𝑏, respectively, and
orthogonal and linear polarization, co-propagate with a small angle of about 6 mrad inside
a 5 cm long cell containing a natural concentration of rubidium atoms. This angle and the
intersection of the beams inside the cell is ensured by a pair of masks we use to aid in the
alignment. These masks are placed symmetrically with respect to the cell, and contain 4
equally spaced holes disposed horizontally. We align the transmitted beams, E𝑎,E𝑏, to the
two central holes, and two guiding beams for the FWM signals to the two outer holes. There
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are two options to ensure the crossing at the center: (1) align all the beams parallel to each
other, i.e., to the same holes at the input and output masks, and use lenses to focus them at
the cell; (2) align the pairs of beams swapping holes at the input and output masks. We use
the second method with the two masks separated by a distance 𝐷 ≈ 68 cm, and the holes
spaced by 𝑠 = 2 mm, giving the angle 𝜃 = 2 tan−1(2𝑠/𝐷) ≈ 6 mrad between beams E𝑎 and
E𝑏. Figure 22 illustrates the situation.

We detect two four-wave mixing signals generated in the 2k𝑎−k𝑏 and 2k𝑏−k𝑎 directions,
denominated as 𝑆1 and 𝑆2, respectively. Since E𝑎 and E𝑏 possess orthogonal polarizations,
so do E1 and E2. Moreover, E1 (E2) is orthogonally polarized with respect to E𝑎 (E𝑏). This
results in an arrangement at the output where the four signals possess alternating polarizations,
and we separate the pairs of beams (transmission + FWM) using a polarizing beam splitter
at the output (see Fig. 21).

Figure 21 – Setup for the experiments of FWM induced by structured light in Rb vapor. The lenses L1,
L2, L3, and L4 have focal distances 𝑓1 = 25.4 mm, 𝑓2 = 100 mm, 𝑓3 = 150 mm, 𝑓4 = 35 mm,
giving a magnification factor of 𝑓2/𝑓1 ≈ 4 at the input and a similar reduction factor 𝑓3/𝑓4 at
the output. The pairs of lenses L5,L6 and L5,L7, together with the pinholes located in between,
form the spatial filters for the signals 𝑆1 and 𝑆2. For the imaging, we may detect either the
intensity or the tilted lens profiles of the FWM signals.

Source: The author (2024).

For the results regarding conservation of OAM, we considered the cases ℓ𝑏 = 0,+1, and
varied ℓ𝑎 from −1 to 3. In the experiments involving the Poincaré sphere symmetries, we
restricted ourselves to the case ℓ𝑏 = 0, and introduced the nontrivial structure onto the beam
𝑢𝑎. For more complex scenarios, one can achieve arbitrary transverse structures for both input
beams by modulating them simultaneously with the SLM. However, this results in a greater
power loss. To measure the OAM content of the generated signals, we employed the tilted
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Figure 22 – Alignment of the four beams participating in the FWM process with. Namely the two incident
beams, to the inner holes of the masks, and the guiding beams for the two FWM signals, to
the outer holes. The swapping of the holes between the input and output masks ensures that
the beams intersect at the central position, where the vapor cell is located. The masks are
separated by a distance 𝐷 ≈ 68 cm, and the spacing between the holes is 𝑠 = 2 mm.

Source: The author (2024).

lens technique (VAITY; BANERJI; SINGH, 2013).
In a configuration where both incident beams possess the same power, 𝑃𝑎/𝑃𝑏 = 1, the two

FWM signals can be generated with equal probabilities, and one may detect both 𝑆1 and 𝑆2

simultaneously. However, the power conversion from incident to generated beams is very low,
and we are limited by the total power of the diode laser (𝑃 ≈ 27 mW). Taking into account
that for our first studies regarding the transfer of spatial structure we were not concerned with
temporal correlations between the two signals, we detected 𝑆1 and 𝑆2 separately. This allows
us to control the power ratio between the two fields, which helps to reduce scattered light, and
to obtain better structured fields in general. In our setup, a strong and well-structured output
was obtained when 𝑃𝑎/𝑃𝑏 ≈ 2 for 𝑆1 and 𝑃𝑏/𝑃𝑎 ≈ 2 for 𝑆2, and a beam power of the order
of 160 µW for the incident field that has two-photon contribution to the process rendered a
good compromise between output power and generated signal structure.

We arrange the setup in such a way that the waists of both incident beams are 𝑤0 ≈

0.5 mm, and located inside the vapor cell, where they intercept. This gives a Rayleigh range
of 𝑧𝑅 = 𝜋𝑤2

𝑜/𝜆 ≈ 1 m. For a cell of length 𝐿 = 5 cm, we have 𝐿/𝑧𝑅 ≈ 0.05, and we assume
that the thin-medium regime (𝐿/𝑧𝑅 ≪ 1) is always satisfied. The rubidium cell, containing
both 87Rb and 85Rb in natural abundances, is heated to about 70 ∘C to increase atomic
density. The atomic density at a temperature 𝑇 can be estimated by modeling the vapor as
an ideal gas, 𝑛at = 𝑃/𝑘𝐵𝑇 , and using the vapor pressure expression from Ref. (STECK, 2001)



84

𝑃v = 107.193−4040𝑇 −1 . With this, for 𝑇 = 70 ∘C, we estimate a density of 𝑛at ≈ 109 atoms/cm3

[see Fig. 23(c)]. Figure 23(a) shows the absorption lines of rubidium obtained by passing an
attenuated beam through the sample at different temperatures 𝑇 , as well as the saturated
absorption spectrum for reference.

For the experiments, we considered the |52S1/2, 𝐹𝑔 = 3⟩ → |52P3/2⟩ transition of 85Rb.
We do not lock the laser frequency, instead we continuously sweep the frequency around the
desired resonance, and capture short videos of the FWM signals with 10 − 50 frames using
a CMOS camera. Due to absorption, there is an interchange between scattered light from
transmitted beams and nonlinear output arriving at the detection position, and therefore most
of the residual scattered light fades away as the frequency approaches the resonance, giving
way to the FWM beam. Even so, in all images we performed a background subtraction and
applied filters to smooth out interferences. Figure 23(b) shows a typical FWM spectrum and
the shaded region represents roughly the detection window.

The problem with scattered light in our system was particularly difficult to deal with,

Figure 23 – (a) Saturated absorption at room temperature and absorption spectra of the D2 lines of 85Rb
and 87Rb at different temperatures. (b) Absorption spectrum at 𝑇 ≈ 72 ∘C in the region of the
transitions with 𝐹𝑔 = 2 of 87Rb, and 𝐹𝑔 = 3 of 85Rb. The blue curve shows a typical FWM
spectrum, which is stronger at the 85Rb transition. The shaded area indicates the frequency
region where we make our measurements. (c) Atomic density of the rubidium vapor as a function
of the temperature 𝑇 , calculated considering the sample as an ideal gas. Vertical dashed lines
correspond to 𝑇 = 50, 60, 70 ∘C,

Source: The author (2024).
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especially because we are dealing with non trivial modes of light. We believe that, among the
possible reasons for this, such as multiple reflections and scattering on the cell wall interfaces,
propagation inside the vapor, a diffuse sample, and natural diffraction of the input beams, which
are much stronger than the generated signals, there is also a matter related to polarization. In a
𝜒(3) medium, the polarization of a propagating laser field can be rotated due to the presence of
a magnetic field (Faraday rotation), and also by polarization self-rotation, in the absence of a
magnetic field (HORROM et al., 2011). Therefore, since we rely solely on the angular separation
between the light beams and on their polarizations to filter undesired light at the detection
positions, polarization rotation of any nature makes this task more difficult.

3.4 GENERATING STRUCTURED LIGHT BEAMS IN THE LAB

We have talked a great deal about different structured light modes and their characteristics,
but not so much about how to obtain these beams in the first place. This Section is dedicated
to a brief description of the methods we employed to generate structured light modes using a
phase-only spatial light modulator.

Allen et al. discussed the conversion of Hermite-Gaussian beams to LG beams, which is
accomplished by employing mode converters composed of astigmatic optical elements (BEI-

JERSBERGEN et al., 1993). LG modes can also be generated from fundamental Gaussian beams
using a spiral phase plate (BEIJERSBERGEN et al., 1994) or a computer generated hologram
mask (HECKENBERG et al., 1992). This mask is a diffraction grating with a forked structure
at the center that has as many dislocations as the order of the desired singularity, ℓ. The
first order diffracted beam is shown to possess the approximate intensity distribution of an
LG beam with topological charge ℓ and radial index 𝑝 = 0. It is, in fact, a superposition of
modes with the same topological charge and different radial indices. Both spiral phase plates
and computer generated holograms can also be used to efficiently generate LG beams with
higher radial orders 𝑝 ̸= 0 (ARLT et al., 1998; RUFFATO; MASSARI; ROMANATO, 2014). The
combination of computer generated holograms and spatial light modulators (SLM) offers a
versatile method for the generation of various structured light modes and is vastly employed
in many research areas (FORBES; DUDLEY; MCLAREN, 2016).

An SLM is a device used to introduce a spatially dependent phase-modulation to a light
beam. Modern SLMs are controlled with computers and the device response is practically
immediate, allowing to automatize the wave-front modulation procedure in many ways. Fur-



86

thermore, the hologram is a gray scale image file that can be easily prepared with any desired
transverse phase information and readily uploaded to the SLM chip. There is no need to print
the phase mask in any physical form. The intensity of each pixel in the image is translated
into voltage in the corresponding pixel of the array, effectively changing the refractive index in
that region. With this, the image is "printed" onto the chip and, consequently, onto the phase
distribution of the incident beam.

In this work we use the LCOS-SLM (liquid crystal on silicon spatial light modulator) model
X10468-02 from Hamamatsu Photonics, shown in Fig. 24 with its main components indicated.
The chip dimension of this model is 600 × 800 pixels with 20µm sides. In the LCOS-SLM

Figure 24 – LCOS-SLM model X10468-02 from Hamamatsu Photonics with main parts indicated.

Source: Modified from (MOTTA, 2021).

chip, a nematic liquid crystal (LC) is layered on top of an array of pixels and enclosed by
a glass plate [Fig. 25(a)]. The LC molecules are uniaxial, i.e., possess an ordinary and an
extraordinary index of refraction, 𝑛𝑜 and 𝑛𝑒, respectively, in orthogonal directions [Fig. 25(b)].
Their orientation is locally controlled by applying a specific voltage to each pixel. This results
in a local change of the index of refraction, that leads to the phase modulation of the incoming
light, which is then reflected by a dielectric mirror for the desired wavelengths. Note that due
to the geometry of the LC molecules, the phase modulation will only occur if the direction of
oscillation of the incoming electric field is parallel to the plane that contains both the ordinary
and extraordinary axes, the 𝑥-𝑦 plane (CARVALHO, 2020).

3.4.1 Generation of optical vortices

In this section we outline the calculation of the field pattern diffracted from a spatial light
modulator (SLM), with emphasis on the generation of OAM carrying LG modes with zero
radial orders.
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Figure 25 – (a) Elements of the LCOS-SLM chip from Hamamatsu Photonics and (b) depiction of the
uniaxial liquid crystal molecule with the indices of refraction 𝑛𝑜 and 𝑛𝑒 along the 𝑦 and 𝑥
directions, respectively.

Source: Adapted from (CARVALHO, 2020).

Consider an SLM displaying a mask, or a hologram, represented by the 2D function
𝐻(𝑥, 𝑦) = Φ(𝑥, 𝑦), where Φ is the phase distribution of the desired field (𝑥, 𝑦 are discrete
coordinates of the SLM pixel sites). We assume that the effect of the SLM on the incident
field ℰin(r⊥) is the application of the phase factor:

𝑇 (𝑥, 𝑦) = exp [𝑖𝐻(𝑥, 𝑦)] . (3.4)

We can write the field immediately after leaving the chip as ℰout(r⊥) = ℰin(r⊥)𝑇 (𝑥, 𝑦), and
the far-field diffracted pattern can be obtained by propagating the amplitude ℰout from the
plane of the chip to a plane at a large distance 𝑧.

We consider that the SLM chip is located at 𝑧 = 0, where the minimum waist of the
modulated field occurs. To generate an LG mode with topological charge ℓ, the transmission
function can be written in cylindrical coordinates as:

𝑇ℓ(𝑟, 𝜑) = exp
(︂
𝑖ℓ𝜑− 𝑖2𝜋Λ 𝑟 cos𝜑

)︂
, (3.5)

where Λ is the diffraction grating spacing in the 𝑥 direction. The phase modulation performed
by the SLM is not 100% efficient, and therefore the diffraction grating is superimposed to
the desired phase pattern to spatially separate the portion of the beam which is successfully
modulated, and thus carries the desired OAM content. Defining the period 𝜅 = 2𝜋/Λ, for an
incident Gaussian beam, ℰin = 𝑢0,0, we may expand the 𝑚-th diffracted order as (ARLT et al.,
1998):

ℰ (𝑚)
out (r⊥) =

∑︁
𝑙,𝑞

𝑐
(𝑚)
𝑙,𝑞 𝑢𝑙,𝑞(r⊥)𝑒−𝑖𝑚𝜅𝑟 cos 𝜑, (3.6)
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where the coefficients are:

𝑐
(𝑚)
𝑙,𝑞 =

∫︁∫︁
𝑢0,0𝑇ℓ𝑢

*
𝑙,𝑞 𝑒

𝑖𝑚𝜅𝑟 cos 𝜑𝑟𝑑𝑟𝑑𝜑,

=
∫︁ ∞

0
𝑟𝑑𝑟𝑉 0

0 (𝑟)𝑉 |𝑙|
𝑞 (𝑟)

{︂∫︁ 2𝜋

0
𝑒𝑖(ℓ−𝑙)𝜑−𝑖(1−𝑚)𝜅𝑟 cos 𝜑𝑑𝜑

}︂
. (3.7)

We expect most of the incident power to be converted to the first diffracted order. Then, for
𝑚 = 1 we obtain:

𝑐
(1)
𝑙,𝑞 = 2𝜋𝛿𝑙,ℓ

∫︁ ∞

0
𝑉 0

0 (𝑟)𝑉 |𝑙|
𝑞 (𝑟)𝑟𝑑𝑟, (3.8)

and we see that the first diffracted order is a superposition of multiple radial modes with the
same topological charge 𝑙 = ℓ. Furthermore, the fidelity with respect to the desired 𝑢ℓ,0 mode
can be estimated via1:

ℱℓ =
𝑐

(1)
ℓ,0√︁∑︀

𝑞 |𝑐
(1)
ℓ,𝑞 |2

. (3.9)

Figures 26(a),(b) show the holograms encoding the azimuthal phase ℓ𝜑, with and without the
periodic grating for the spatial separation of the diffracted orders, respectively. Figure 26(c)
shows the estimate fidelity ℱℓ calculated using Eq. (3.9) for different values of ℓ. In Fig. 26(d)
we show the intensity profiles of LG modes generated with holograms of the type presented in
Fig. 26(b). Although we obtain the characteristic ring-shaped distribution that increases with
|ℓ|, additional outer rings can be seen, and this can be attributed to nonzero 𝑝 orders present
on the output mode, which forbids the mode fidelity to reach the value 1. In the next section
we discuss a method to improve the structure of our generated light modes.

3.4.2 Amplitude modulation with a phase-only SLM

Here we briefly present an amplitude modulation method using a phase-only SLM. This
allows to increase the fidelity of the output mode with respect to the desired field, at the cost
of decreasing the power converted to the first diffracted order.

To obtain a better-structured (higher fidelity) desired output field ℰ(r⊥) = 𝒜(r⊥)𝑒𝑖Φ(r⊥),
the general idea is to include the information from the amplitude 𝒜 into the mask encoding the
phase Φ. This is especially important when the desired field carries a more intricate transverse
1 This is a rough estimate for our simplified calculation. Rigorously, it would be necessary to propagate the

field from a position immediately after leaving the chip, to the far field.
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Figure 26 – (a) Hologram enconding the azimuthal phase Φ(𝑥, 𝑦) = 𝜑 = tan−1(𝑦/𝑥) (ℓ = 1) with no
periodic grating. (b) Same encoded phase but with gratings in the 𝑥 and 𝑦 directions with
periods Λ𝑥 = Λ𝑦 = 10 pixels. The inset shows a zoom of the central region where the dislocation
can be seen. (c) Estimate of the output beam fidelity ℱℓ for ℓ = −5, ...,+5. (d) Intensity profiles
of LG modes generated with holograms of the type shown in (b) with ℓ = +1, ...,+5.

Source: The author (2024).

profile. To this end, a number of techniques can be employed (CLARK et al., 2016). Here, our
method of choice consists on constructing the modified hologram 𝐻̃:

𝐻̃ = (1 + 1
𝜋
𝒮)(Φ− 𝒮), (3.10)

where 𝒮 = sinc−1(𝒜). For a detailed description of this method, including the motivation
behind it, and the numerical calculation of the inverse of the sinc(·) function (which can be
problematic) please refer to Ref. (AMARAL, 2016). Figure 27 shows the difference between
the holograms with and without the amplitude modulation, for a desired field given by the
composition of opposite topological charges of the form 𝑢+2,0 + 𝑢−2,0.

In Fig. 28 we show the graphical interface we programmed in MATLAB® to generate the
holograms used in this work. With this interface, we can work with five different families of
modes: HG, LG, IG, as well as the Poincaré sphere and Hermite-Laguerre-Gaussian modes.
The latter two will be defined in Chapter 4. We can also introduce gratings both in the 𝑥 and
𝑦 directions, and apply the amplitude modulation technique described above.
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Figure 27 – Holograms for generation of an optical mode given by the composition 𝑢+2,0 + 𝑢−2,0 with a
phase-only method (top), and with the inverse sinc amplitude modulation technique (bottom),
and the corresponding output optical modes obtained in each case. The inset on the intensity
graph shows the amplitude (∝

√
𝐼). In both cases we included linear gratings in both directions

with periods Λ𝑥 = Λ𝑦 = 10 pix.

Source: The author (2024).

Figure 28 – Hologram Creator interface programmed in MATLAB® using the Graphical User Interface
Development Environment (GUIDE) to generate and upload our holograms to the SLM chip.

Source: The author (2024).
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4 TRANSFER OF OPTICAL STRUCTURE VIA FOUR-WAVE MIXING IN RU-

BIDIUM VAPOR

In this Chapter we present a series of results on manipulations of optical spatial structure
via FWM in Rb vapor. We divide the Chapter in three Sections. First, we discuss the tailored
conversion of optical modes in a non-degenerate cascade FWM process taking advantage of a
unique property of the Hermite-Gaussian basis. We then look at the conservation of OAM in
the two-channel degenerate FWM configuration. Finally, we explore the transverse structure
dynamics within the context of the OAM Poincaré sphere modes.

4.1 OPTICAL MODE CONVERSION IN A NON-DEGENERATE FOUR-WAVE MIXING
PROCESS

In this Section we explore the already mentioned connection between the families of HG, LG
and IG paraxial modes, beyond a purely mathematical point of view. Despite many similarities
between these families of solutions of the paraxial wave-equation (PWE) and the possibility
of expressing them in terms of one another (KIMEL; ELIAS, 1993; BANDRES; GUTIéRREZ-VEGA,
2004), they behave differently upon propagation in nonlinear media. Previously, a compari-
son between HG and parity-defined LG (PDLG) modes propagating in second-order nonlinear
medium and undergoing the process of sum-frequency generation was realized (PIRES et al.,
2020). It was demonstrated that the HG modes generates an up-converted field with a domi-
nant mode carrying indices 𝑚 = 𝑚′ +𝑚′′ and 𝑛 = 𝑛′ +𝑛′′, where 𝑚′, 𝑛′ and 𝑚′′, 𝑛′′ stand for
the indices of the input beams. While the index summation rule cannot be generalized to the
PDLG modes, one can use multiple HG modes for the up-conversion into a well-predictable
dominant mode to form an LG or an IG mode at the output. This property was found use-
ful to optical mode conversion protocols (PIRES et al., 2019). Importantly, the up-converted
field will form a single, pure, mode with indices 𝑚 = 𝑚′ + 𝑚′′ and 𝑛 = 𝑛′ + 𝑛′′ only in the
extended-medium regime, such that 𝑧𝑅/𝐿 ≪ 1. Here 𝑧𝑅 is the Rayleigh length of the input
modes and 𝐿 the length of the nonlinear medium (OFFER et al., 2021).

However, the extended-medium regime necessary for achieving high mode purity is not
ideal for the 𝜒(2) processes such as sum-frequency generation (SFG) because efficient phase
matching is rather difficult to obtain over the long propagation length (CANKAYA et al., 2014).
Since the phase-matching condition across a significant extension is easier to satisfy in a 𝜒(3)
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nonlinear medium, here we investigate HG mode interactions and the possibility of the mode
symmetry conversion in third-order nonlinear media.

Here we theoretically predict a unique property of the HG basis that allows to generate
a highly pure HG mode using a cascade three-level system in 85Rb vapor. Furthermore, we
demonstrate the possibility exploiting this property to obtain at the FWM output, modes that
carry cylindrical and elliptical symmetries, corresponding to the PDLG and IG modes.

4.1.1 Distinct behavior for PDLG and HG modes

Let us consider a frequency up-conversion system consisting of rubidium vapor (85Rb),
similar to previous four-wave mixing experiments reported in Refs. (OFFER et al., 2021; WALKER;

ARNOLD; FRANKE-ARNOLD, 2012) and depicted in Fig. 29. This process is also named FWM
induced by amplified spontaneous emission (ASE) (CHOPINAUD et al., 2018). The input beams
consist as two near-infrared fields at 780 and 776 nm, leading to 5S1/2−5P3/2 and 5P3/2−5D5/2

transitions, respectively. Through the cascade decay via 6P3/2, the atomic system can generate
IR (5.23 µm) and blue (420 nm) coherent light.

Figure 29 – Schematic illustration of the optical mode conversion under the FWM by amplification of
spontaneous emission in Rb vapor. (a) The input HG modes with wave-lengths 780 nm and
776 nm, 𝑢780 = 0.899𝑢HG

1,0 − 0.437𝑢HG
0,1 , 𝑢776 = 0.899𝑢HG

1,0 + 0.437𝑢HG
0,1 , interact to generate an

up-converted blue field at 420 nm, and an IR field at 5230 nm. The blue output in this example
case emerges as a highly pure Ince-Gaussian mode IG𝑒

2,2 with ellipticity 𝜀 = 2. (b) Energy-level
diagram for the FWM process.

Source: Taken from Ref. (ROCHA et al., 2022).

Consider the monochromatic optical field of the generated blue light in the form:

EB(r) = 𝜖𝑢B(r)𝑒−𝑖(𝑘B𝑧−𝜔B𝑡) + c.c., (4.1)



93

where 𝑘B is the wave-number, 𝜔B is the frequency, 𝜖 is the polarization direction, and 𝑢B(r) is
the slowly varying complex field amplitude. In the paraxial approximation, considering a phase-
matched setting, we can write the wave-equation describing the generation and propagation
of the blue light mode as: (︃

𝑖

2𝑘B
∇2

⊥ + 𝜕

𝜕𝑧

)︃
𝑢B = 𝑖𝑘B

2𝜀0
𝑃 (3)(𝜔B), (4.2)

where 𝜀0 is the vacuum permittivity, ∇2
⊥ is the transverse Laplacian and 𝑃 (3)(𝜔B) is the

projected medium polarization at the blue FWM field frequency. For the non degenerate FWM
process we are studying, where the pump beams spontaneously generate signal and conjugate
beams (in our case, blue and infrared beams, respectively), we may write for the macroscopic
polarization:

𝑃 (3)(𝜔B) = 𝜀0𝜒
(3)(𝜔B)𝑢780𝑢776𝑢

*
IR. (4.3)

The overall efficiency of the FWM is determined by the resonances of the medium described
by 𝜒(3) along with the spatial overlap integral. For reasons already discussed, we shall regard
the interaction medium simply as a channel for the nonlinear interaction, and therefore we
consider the nonlinear susceptibility 𝜒(3) a uniform quantity. We know that the solution to Eq.
(4.2) can be found in terms of a superposition of paraxial modes, in this case, HG modes. We
then write:

𝑢B(r) ∝
∑︁
𝑚,𝑛

𝒜𝑛
𝑚𝑢

HG
𝑚,𝑛(r), (4.4)

where 𝒜𝑛
𝑚 is the full overlap integral on the HG basis, which is responsible for selecting the

optical modes that emerge in the superposition of the nonlinear output. The overlap integral
in rectangular coordinates as

𝒜𝑛
𝑚 =

∫︁ +∞

−∞

∫︁ +∞

−∞

∫︁ 𝐿/2

−𝐿/2
𝑢780𝑢776𝑢

*
IR𝑢

*
𝑚,𝑛𝑑𝑥𝑑𝑦𝑑𝑧, (4.5)

where 𝐿 is the vapor cell length. We will assume that the IR field 𝑢IR can be considered as a
fundamental Gaussian mode, 𝑢IR → 𝑢HG

0,0 . For arbitrary pump structures, 𝑢780, 𝑢776, we have
already seen that the full overlap integrals becomes a weighted sum of multiple integrals of
four HG modes of the form:

𝒜𝑛𝑛′𝑛′′

𝑚𝑚′𝑚′′ =
∫︁ 𝐿/2

−𝐿/2

∫︁ ∞

−∞

∫︁ ∞

−∞
𝑢HG

𝑚′,𝑛′𝑢HG
𝑚′′,𝑛′′𝑢HG*

0,0 𝑢HG*
𝑚,𝑛 𝑑𝑥𝑑𝑦𝑑𝑧. (4.6)

In Chapter 2 we have detailed the calculation of this kind of integral, and studied the asso-
ciated selection rules in the particular configuration of FWM induced by ASE in an extended
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interaction medium. Here we shall explore the effective selection rule, resulting from restric-
tions imposed by the transverse and longitudinal overlaps, the so-named index-sum rule, and
show how it can be used to tailor the spatial structure of the blue light output.

To make evident that the HG basis indeed presents a more convenient property of optical
mode transfer, let us first compare the nonlinear wave-mixing using as input beams both PDLG
and HG modes. The size of the Rb cell considered for the calculations is 𝐿 = 7 cm, which
is a common length in experimental setups (OFFER et al., 2021; WALKER; ARNOLD; FRANKE-

ARNOLD, 2012). The ratio between the Rayleigh range of the reference beam (either of the
pump beams at 780 or 776 nm) and the cell length is 𝑧𝑅/𝐿 ≈ 0.098 (𝐿/𝑧𝑅 ≈ 10). Since PDLG
modes can be seen as superposition of helical LG modes, we can use the same expressions
obtained for the LG basis in Chapter 2. Figure 30(a),(b) shows the intensity distribution for
the input beams 𝑢780 = LG𝑜

1,2, 𝑢776 = LG𝑜
0,1, as well as that of the generated beam 𝑢B,

and the respective histograms for the probabilities of each mode being excited, or the mode
weights. The indices 𝑙780, 𝑙776, 𝑙B and 𝑝780, 𝑝776, 𝑝B refer to the azimuthal and radial indices for
the PDLG superpositions, while 𝑚780,𝑚776,𝑚B and 𝑛780, 𝑛776, 𝑛B are the indices for the HG
case. We see that the index-sum rule is fulfilled.
Figure 30 – FWM processes using PDLG and HG modes. In the case of PDLG modes, the input beams

were taken in the form of (a) 𝑢780 = LG𝑜
1,2, 𝑢776 = LG𝑜

0,1. In the case of HG modes, the input
beams were taken in the form of (c) 𝑢780 = 𝑢HG

1,2 , 𝑢776 = 𝑢HG
0,1 . In both cases, (b,d) represent

the histograms with the optical mode weights for PDLG and HG superpositions, respectively.
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Source: Taken from Ref. (ROCHA et al., 2022).

We see that the FWM of LG beams creates a superposition with relevant contributions of
two LG modes in the up-converted beam (OFFER et al., 2021; LANNING et al., 2017). In our case,
the generated beam carries a superposition of LG𝑜

1,2 and LG𝑜
2,0. In general, mixing PDLG beams

in a third-order nonlinear medium through the process of FWM results in multiple LG modes.



95

On the other hand, when HG modes are considered as input beams, the behavior is different.
In Figure 30 (c),(d) the input beams were taken in the form of 𝑢780 = 𝑢HG

1,2 , 𝑢776 = 𝑢HG
0,1

together with the histograms for the mode weights. In this case, the FWM field is composed
of 𝑢B = −0.9991𝑢HG

1,3 + 0.0413𝑢HG
3,1 . Therefore, we conclude that for HG beams taken as

input modes, the output field emerges as a nearly pure mode with indices 𝑚 = 𝑚′ +𝑚′′ and
𝑛 = 𝑛′ + 𝑛′′, where 𝑚′, 𝑛′ and 𝑚′′, 𝑛′′ are the indices for each input beam. Interestingly, even
though both LG and HG modes are solutions of the PWE in different coordinate frames, the
response under nonlinear interactions are distinct (PIRES et al., 2020).

4.1.2 Tailored generation of PDLG and IG modes at the blue FWM output

Now that we now it is possible generate a highly pure HG mode carrying indices 𝑚 =

𝑚′ + 𝑚′′ and 𝑛 = 𝑛′ + 𝑛′′, we can tailor the structure of the pump beams to obtain desired
optical modes at the FWM output. This is done by preparing the input modes as superpositions
of the form:

𝑢780 =
∑︁
𝑚,𝑛

𝛼𝑚,𝑛𝑢
HG
𝑚,𝑛, (4.7)

𝑢776 =
∑︁

𝑚′,𝑛′
𝛽𝑚′,𝑛′𝑢HG

𝑚′,𝑛′ , (4.8)

with the weights 𝛼𝑚,𝑛, 𝛽𝑚,𝑛 carefully set in order to attain a desired spatial mode at the blue
light output. Note that the FWM process we study here one of the participating fields is
Gaussian, and therefore regarding spatial structure we essentially have a situation analogous
to a three-wave interaction. Schematically, we can represent the process as:

𝑢780 = ∑︀
𝑚,𝑛 𝛼𝑚,𝑛𝑢

HG
𝑚,𝑛

𝑢776 = ∑︀
𝑚′,𝑛′ 𝛽𝑚′,𝑛′𝑢HG

𝑚′,𝑛′

⎫⎪⎪⎬⎪⎪⎭ =⇒

⎧⎪⎪⎨⎪⎪⎩
𝑢IR = 𝑢HG

0,0

𝑢B = ∑︀
𝑚B,𝑛B 𝒜

𝑛B
𝑚B
𝑢HG

𝑚B,𝑛B
.

(4.9)

The procedure to determine the values for these coefficients, as well as limitations of the
method, are discussed in Ref. (PIRES et al., 2019) for the optical mode conversion in SFG.

Figure 31 shows the optical mode conversion to PDLG modes, consisting of cylindrically
symmetric beams. The left column shows the intensities of the input modes 𝑢780, 𝑢776 together
with the up-converted field 𝑢B, while the histograms in the right column are associated to the
weight of each HG mode for all three interacting fields 𝑢780, 𝑢776, 𝑢B. Here, 𝑚780,𝑚776,𝑚B and
𝑛780, 𝑛776, 𝑛B stand for the indices of the HG modes composing the optical fields 𝑢780, 𝑢776, 𝑢B
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respectively. We show the generation of the optical modes 𝑢B = 0.908𝑢HG
1,2 −0.418𝑢HG

3,0 ≃ LG𝑒
0,3

in Fig. 31(a),(b); 𝑢B = 0.500𝑢HG
1,2 +0.866𝑢HG

3,0 ≃ LG𝑒
1,1 in Fig. 31(c),(d); and 𝑢B = 0.708𝑢HG

1,3 +

0.707𝑢HG
3,1 ≃ LG𝑜

1,2 in Fig. 31(e),(f).
The conversion to elliptical beams (IG modes) is displayed in Fig. 32, presented in the

same way as the case for PDLG modes. We show the generation of the elliptical modes
𝑢B = 0.893𝑢HG

1,3 + 0.450𝑢HG
3,1 ≃ IG𝑜

4,2 in Fig. 32(a),(b); 𝑢B = 0.265𝑢HG
0,2 − 0.964𝑢HG

2,0 ≃ IG𝑒
2,2

in Fig. 32(c),(d); and 𝑢B = 0.968𝑢HG
0,3 − 0.253𝑢HG

2,1 ≃ IG𝑜
3,1 in Fig. 32(e),(f). All weights 𝛼𝑚,𝑛

and 𝛽𝑚,𝑛 are normalized such that ∑︀𝑚,𝑛 |𝛼𝑚,𝑛|2 = ∑︀
𝑚,𝑛 |𝛽𝑚,𝑛|2 = 1, and the eccentricity

parameter for all IG modes is 𝜀 = 2.

Figure 31 – Optical mode conversion to PDLG modes (cylindrical symmetry). The interacting modes are
given by: (a) 𝑢780 = −0.316𝑢HG

2,0 +0.948𝑢HG
0,2 , 𝑢776 = 𝑢HG

1,0 , 𝑢B = LG𝑒
0,3; (c) 𝑢780 = 0.707𝑢HG

2,0 +
0.707𝑢HG

0,2 , 𝑢776 = 𝑢HG
1,0 , 𝑢B = LG𝑜

1,1; (e) 𝑢780 = −0.865𝑢HG
3,0 − 0.500𝑢HG

1,2 , 𝑢776 = 𝑢HG
0,1 ,

𝑢B = LG𝑜
1,2. (b),(d),(f) show the histograms with the mode weights shown in (a),(c),(e),

respectively.
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Source: Taken from Ref. (ROCHA et al., 2022).

To summarize this Section, we theoretically studied the optical mode up-conversion through
the process of the FWM induced by ASE. Using the PDLG and HG modes as input beams,
the generated modal superposition was analyzed using analytical and numerical approaches.
We found that in the case of PDLG modes, the up-converted beam carries a superposition of
modes with different indices. In contrast, when the HG basis is considered, the nonlinear wave-
mixing results in the generation of a strongly dominant, almost pure HG mode with indices
given by the sums of the input indices, 𝑚 = 𝑚′ +𝑚′′ and 𝑛 = 𝑛′ + 𝑛′′. From a fundamental
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Figure 32 – Optical mode conversion to IG modes (elliptical symmetry). The interacting modes were taken
in the following form: (a) 𝑢780 = −0.471𝑢HG

2,0 −0.881𝑢HG
0,2 , 𝑢776 = 𝑢HG

1,1 , 𝑢B = IG𝑜
4,2; (c) 𝑢780 =

0.899𝑢HG
1,0 − 0.437𝑢HG

0,1 , 𝑢776 = 0.899𝑢HG
1,0 + 0.437𝑢HG

0,1 , 𝑢B = IG𝑒
2,2; (e) 𝑢780 = −0.421𝑢HG

2,0 −
0.907𝑢HG

0,2 , 𝑢776 = 𝑢HG
0,1 , 𝑢B = IG𝑜

3,1. (b),(d),(f) show the histograms with the mode weights
in (a),(c),(e), respectively.
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viewpoint, this property highlights important differences between the solutions for the PWE
that are revealed in the nonlinear regime of wave propagation. We demonstrated that this
property can be exploited to obtain a target mode with high fidelity at the blue light output
by precisely adjusting the weights of the input HG mode superpositions. These results may
find applications in designing new optical communication protocols, and in the generation of
entangled qubits and qudits, where a precise manipulation of optical modes is required (ZHANG

et al., 2016; KRENN et al., 2014).
It is important to highlight that our analysis relies on the approximation that the sponta-

neously generated IR field is purely Gaussian. This has been assumed in other works (WALKER;

ARNOLD; FRANKE-ARNOLD, 2012; CHOPINAUD et al., 2018; OFFER et al., 2021), due to the com-
plications associated with the detection of this signal. For the regime we were interested in
and the results we sought, we believe that this approximation is appropriate. In reality, the IR
and blue light fields are entangled in their OAM degrees of freedom, as was demonstrated in
(OFFER et al., 2018). In fact, they are entangled in the transverse spatial degrees of freedom,
more generally (BOYER et al., 2008; NIRALA et al., 2023). This means that not only the blue
signal, but both fields, which in the quantum level can be seen as a photon-pair generated
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in the process, occupy several transverse spatial states. This has been taken into account in
(LANNING et al., 2017), and subtle differences were noted with respect to the results from
(WALKER; ARNOLD; FRANKE-ARNOLD, 2012). In the fully quantum regime, this multi-spatial-
mode nature of the photon-pair generated in FWM must be taken into account, just like in
the process of PDC, which has been thoroughly investigated over the years.

4.2 ORBITAL ANGULAR MOMENTUM CONSERVATION IN A TWO-CHANNEL FWM
SETTING

The interaction between light and matter is accompanied by the transfer of linear and
angular momentum. The transfer of linear momentum is associated with the radiation pressure
on atoms and small particles, which is the key mechanism in the laser cooling of atoms (CHU

et al., 1985). The transfer of spin angular momentum from circularly polarized light was first
demonstrated almost a century ago by Beth (BETH, 1936). Only after 1992 the transfer of
OAM from LG beams to small particles was demonstrated (HE et al., 1995; FRIESE et al., 1996).
In both of these works the particles were trapped at the dark focus of an LG beam by the dipole
force and set into rotating motion due to the beam’s helical phase structure. The quantized
nature of the OAM of light has been explored (LEACH et al., 2002) and the transfer of OAM
in units of ℓℏ to atoms was demonstrated in a sodium Bose-Einstein condensate (ANDERSEN

et al., 2006). Also, after the first proposals, new possibilities were opened in communications
technology, due to the capability of information multiplexing with an additional degree of
freedom of light, and the infinite dimensionality of the OAM space (PAN et al., 2019).

Manipulation of light carrying OAM has been performed in the linear and nonlinear regimes.
In the nonlinear regime, these beams have been applied to investigate second harmonic gen-
eration (SHG) in crystals (DHOLAKIA et al., 1996; COURTIAL et al., 1997), where the beam at
the fundamental frequency 𝜔 carries topological charge (TC) ℓ and, due to the conservation
of OAM, the frequency doubled beam emerges with 2ℓ. This is one key idea when employing
OAM beams in nonlinear optics: the transfer of topological charge and transverse structure
from incident to generated fields. Today, SHG and other second-order processes offer a highly
versatile platform for exploring the transverse degrees of freedom of light.

Another nonlinear optical process that also allowed important studies on light-matter in-
teractions involving the spatial structure of light is the four-wave mixing process, a third-order
phenomenon. In this context, a widely explored configuration is FWM induced by ASE in a
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cascade system in rubidium vapor (VERNIER et al., 2010). As described in Section 4.1, in this
process, two incident photons at 776 nm and 780 nm interact to generate blue light at 420 nm

with an emission also at 5.23 µm. This setting has been used to achieve the transfer of OAM
(CHOPINAUD et al., 2018) and intricate beam structures (WALKER; ARNOLD; FRANKE-ARNOLD,
2012) from the incident infrared pumps to the generated blue light beam; to perform opera-
tions with the OAM content of the incident beams (AKULSHIN et al., 2016); to evidence the
OAM entanglement between the generated blue and infrared beams (OFFER et al., 2018); and
the Gouy phase-matching requirement in an extended-medium regime (OFFER et al., 2021).
Another atomic level configuration, a double–Λ system was used in Ref. (PRAJAPATI et al.,
2019) to combine and perform operations with the topological charges of pump and probe
beams under a FWM process in hot Rb vapor.

In this Section, we explore the degenerate FWM in an experimental condition where two
nonlinear signals are excited by the same incident fields in a heated sample of Rb atoms.
We employed this setting in previous experiments to investigate a spectral shift of the two
FWM signals, also in Rb vapor (ALVAREZ; ALMEIDA; VIANNA, 2021), and the cross-correlation
between the pairs of transmitted beams and FWM signals in a cold Rb cloud (ALMEIDA;

MOTTA; VIANNA, 2023). We also conducted a theoretical study of the spatial shape of the
FWM signals and the effects caused by the resonances of the medium (MOTTA; ALMEIDA;

VIANNA, 2022).
Here we use this multi-channel FWM setting to combine pairs of OAM values (ℓ𝑎, ℓ𝑏)

carried by the two driving beams, and encode this information onto the TCs of the two output
beams, (ℓ1, ℓ2). In this context, the incident OAM values can be revealed by measuring the
output TCs. We experimentally verify these combinations and discuss scenarios where different
pairs of output topological charges are achieved. We first consider a situation where only one
of the incident beams carries OAM, while the other one is set as a Gaussian beam. In this
case, we verify the transfer of topological charge from the incident to generated signals. Next,
we introduce non-zero topological charges in both incident beams and verify the fulfillment of
the selection rules dictating the FWM processes. In particular, as the two nonlinear signals are
driven by the same fields, the relation between the difference in the incident and outgoing TC
is preserved to less than one factor, which in the case of an FWM process is a factor of three.
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4.2.1 Wave-equations for the two-channel FWM setting

In Chapter 2 we have established the semi-classical modeling of the two simultaneous
FWM signals in a two-level atom. This is the case when one has the two pump beams, E𝑎

and E𝑏, with parallel circular polarizations. On the other hand, for linearly polarized incident
beams with orthogonal polarizations, the interaction can be seen as taking place in a three-
level atomic system, constituted of two degenerate ground states |1⟩ , |3⟩, and an excited state
|2⟩. Of course, to fully describe the atomic response in the temporal and spectral domains,
the optical Bloch’s equations of the three-level system should be solved with the appropriate
considerations. However, as we have repeatedly discussed, the optical modes of the driving
fields dominate the transverse structure dynamics, and we may neglect any spatial dependence
of the atomic coherence. This allows us to treat the nonlinear susceptibility 𝜒(3) as a uniform
factor that does not affect our overlap integrals. Figure 33(a) shows the spatial orientation
of the incident and generated light beams in the two-channel configuration. Each generated
signal can be seen as a contribution from two pathways starting from different ground states,
as illustrated in Fig. 33(b) for the field E1.

Figure 33 – (a) Spatial orientation of incident and generated signals near the interaction region. (b) Two
pathways associated with the generation of the 𝜎± components of the FWM signal E1 in a
three-level atomic system.

Source: The author (2024).

The electric fields of the light beams participating in the FWM processes are written as:

E𝑖(r, 𝑡) = 1
2𝜖𝑖ℰ𝑖(r)𝑒−𝑖(k𝑖·r−𝜔𝑖𝑡) + c.c., (4.10)

𝑖 ∈ {𝑎, 𝑏, 1, 2}, where 𝜖𝑖 is the polarization direction, ℰ𝑖 is the slowly varying field amplitude,
k𝑖 is the wave-vector, and 𝜔𝑖 = 𝑐|k𝑖| is the frequency. As we have seen in Chapter 2, the slowly
varying amplitudes of the FWM signals, ℰ1 and ℰ2, generated in the directions (2k𝑎−k𝑏) and
(2k𝑏−k𝑎), are calculated by solving the non homogeneous wave equations with source terms
given by the corresponding third-order nonlinear polarizations. In the paraxial regime, they
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read (MOTTA; ALMEIDA; VIANNA, 2022):(︃
𝑖

2𝑘1
∇2

⊥ + 𝜕

𝜕𝑧

)︃
ℰ1 = 𝜅1ℰ2

𝑎ℰ*
𝑏 𝑒

−𝑖Δ𝑘1𝑧, (4.11)(︃
𝑖

2𝑘2
∇2

⊥ + 𝜕

𝜕𝑧

)︃
ℰ2 = 𝜅2ℰ2

𝑏 ℰ*
𝑎𝑒

−𝑖Δ𝑘2𝑧, (4.12)

where the couplings 𝜅1 and 𝜅2 are proportional to the nonlinear susceptibilities associated with
the two nonlinear processes, 𝜒1 and 𝜒2, Δ𝑘1 = |2k𝑎 − k𝑏 − k1| and Δ𝑘2 = |2k𝑏 − k𝑎 − k2|

are the phase mismatches. Owing to the orthogonality and completeness of paraxial modes,
we can write the solutions to Eqs. (4.11) and (4.12) as general superpositions of the form:

ℰ1(r) =
∑︁
ℓ,𝑝

𝛼ℓ,𝑝𝑢ℓ,𝑝(r), (4.13)

ℰ2(r) =
∑︁
ℓ,𝑝

𝛽ℓ,𝑝𝑢ℓ,𝑝(r). (4.14)

We consider that the incident fields can be written as ℰ𝑎(r) = ℰ0
𝑎𝑢𝑎(r) and ℰ𝑏(r) = ℰ0

𝑏 𝑢𝑏(r),
where ℰ0

𝑎,𝑏 gives the total power content of each field, 𝑃𝑎,𝑏 = 1
2𝑐𝜀0|ℰ0

𝑎,𝑏|2, and 𝑢𝑎,𝑏(r) carries
their spatial structure. Taking into account that the paraxial basis modes {𝑢ℓ,𝑝} carry the
information from the transverse structure of the generated fields ℰ1,2, the problem becomes
that of finding the expansion coefficients 𝛼ℓ,𝑝 and 𝛽ℓ,𝑝. They are called the full spatial overlap
integrals, and can be expressed as (LANNING et al., 2017):

𝛼ℓ,𝑝 = 𝜅1ℰ0
1

∫︁ 𝐿/2

−𝐿/2
𝒜ℓ,𝑝(𝑧)𝑒−𝑖Δ𝑘1𝑧𝑑𝑧, (4.15)

𝛽ℓ,𝑝 = 𝜅2ℰ0
2

∫︁ 𝐿/2

−𝐿/2
ℬℓ,𝑝(𝑧)𝑒−𝑖Δ𝑘2𝑧𝑑𝑧, (4.16)

where ℰ0
1 = (ℰ0

𝑎)2(ℰ0
𝑏 )*, ℰ0

2 = (ℰ0
𝑏 )2(ℰ0

𝑎)* and

𝒜ℓ,𝑝(𝑧) =
∫︁∫︁

𝑢2
𝑎𝑢

*
𝑏𝑢

*
ℓ,𝑝𝑑

2r⊥, (4.17)

ℬℓ,𝑝(𝑧) =
∫︁∫︁

𝑢2
𝑏𝑢

*
𝑎𝑢

*
ℓ,𝑝𝑑

2r⊥, (4.18)

are the transverse overlap integrals of the product of incident beams on the mode basis with
waist 𝑤0. Since we consider the thin-medium, we can approximate 𝛼ℓ,𝑝 ≃ 𝜅1𝑇1(𝐿)Λℓ

𝑝(0),
where 𝑇1(𝐿) =

∫︀ 𝐿/2
−𝐿/2 𝑒

−𝑖Δ𝑘1𝑧𝑑𝑧 = 𝐿 sinc(Δ𝑘1𝐿/2) is the efficiency measure associated with
the phase-matching. Note that the factors 𝜅1𝑇1(𝐿) is common for all (ℓ, 𝑝), and therefore
they do not affect the mode superpositions of the generated fields. For this reason we do not
carry them further. The same is true for 𝛽ℓ,𝑝. The same equations will be used in Section 4.3.
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4.2.2 Simultaneous OAM transfer to two FWM signals

For incident fields described as pure LG modes with topological charges ℓ𝑎, ℓ𝑏, 𝑢𝑎 = 𝑢ℓ𝑎,0

and 𝑢𝑏 = 𝑢ℓ𝑏,0, the azimuthal integrals in the transverse overlaps impose the conditions:

ℓ1 = 2ℓ𝑎 − ℓ𝑏, (4.19)

ℓ2 = 2ℓ𝑏 − ℓ𝑎, (4.20)

over the allowed topological charge values of signals ℰ1 and ℰ2, respectively. These are the OAM
conservation selections rules in both FWM processes. The generated fields at the detection
position, 𝑧𝑑 > 𝐿/2, can be expressed as:

ℰ1(r⊥, 𝑧𝑑) = 𝑒𝑖(2ℓ𝑎−ℓ𝑏)𝜑𝐴1(𝑟, 𝑧𝑑), (4.21)

ℰ2(r⊥, 𝑧𝑑) = 𝑒𝑖(2ℓ𝑏−ℓ𝑎)𝜑𝐴2(𝑟, 𝑧𝑑), (4.22)

where the functions 𝐴1,2(𝑟, 𝑧) describe the radial amplitude distributions and phase profiles:

𝐴1(𝑟, 𝑧) =
∑︁

𝑝

𝛼ℓ1,𝑝𝑉
|ℓ1|

𝑝 (𝑟, 𝑧), (4.23)

where we write the LG mode function as 𝑢ℓ,𝑝(r) = 𝑉 |ℓ|
𝑝 (𝑟, 𝑧)𝑒𝑖ℓ𝜑, and similarly for 𝐴2.

In a first moment, we performed the experiments setting the topological charge of E𝑏 as
zero, ℓ𝑏 = 0, and varied ℓ𝑎. The selection rules thus require that:

ℓ1 = 2ℓ𝑎, (4.24)

ℓ2 = −ℓ𝑎. (4.25)

We show in Fig. 34 the intensity profiles of both FWM signals, as well as their tilted lens profiles
when ℓ𝑎 = −1, 0,+1. When ℓ𝑎 = 0, both generated beams are Gaussian, as expected, and for
ℓ𝑎 = ±1, they carry a ring-shaped profile, characteristic of OAM carrying beams. However,
only with the information from the intensity distribution, it is hard to distinguish topological
charge values, and there is no way to identify the helicity of the vortex. To this end, we employ
the tilted lens technique (VAITY; BANERJI; SINGH, 2013). The measured OAM (magnitude and
helicity) agrees with that predicted by the conservation rules (4.24) and (4.25) in all cases.
These results show that when one of the beams is Gaussian, the generated beams will have
topological charges with opposite helicities, and a factor of 2 between their magnitudes.



103

Figure 34 – Far-field intensity distributions (Int.) and tilted lens profiles (TL) for FWM signals ℰ1 (a) and ℰ2
(b), when incident beams carry ℓ𝑏 = 0 and ℓ𝑎 = −1, 0, 1. We normalized each image separately.

Source: The author (2024).

Next, we made ℓ𝑏 = 1 and varied ℓ𝑎 across the same values. The topological charges of
signals ℰ1 and ℰ2 must therefore satisfy the conditions:

ℓ1 = 2ℓ𝑎 − 1, (4.26)

ℓ2 = 2− ℓ𝑎. (4.27)

In Fig. 35, we show the intensity and tilted lens profiles of both generated signals for this case.
Even though the ring-shaped intensity profile may not be fully developed in some cases, the
measured OAM agrees with the requirements (4.26) and (4.27) in all cases. Note that in this
case, when the topological charge of the field 𝑎 is shifted by one unit, the OAM of signals
2𝑎− 𝑏 and 2𝑏−𝑎 shift by two units and one unit, respectively. Since ℓ𝑏 = 1, signal 2𝑎− 𝑏 only
emerges with odd-valued TCs. If we make ℓ𝑏 = 2, then it only emerges with even-valued TCs.
Thus, we can produce FWM signals that only carry even- or odd-valued topological charges,
depending on the OAM content of the beam that contributes to the nonlinear process with a
single photon.

We can highlight some interesting cases regarding the topological charge pairs of the
generated beams. When ℓ𝑎 = ℓ𝑏 = ℓ, then the two nonlinear signals also emerge with a
TC equal to ℓ. This situation is represented in Fig. 35 when ℓ𝑎 = ℓ𝑏 = 1. However, if the
incident beams have TCs with equal magnitude and opposite helicities, ℓ𝑎 = −ℓ𝑏 = ℓ, then
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Figure 35 – Far-field intensity distributions and tilted lens profiles for FWM signals ℰ1 (a) and ℰ2 (b), when
incident beams carry ℓ𝑏 = 1 and ℓ𝑎 = −1, 0, 1, 2, 3.

Source: The author (2024).

the nonlinear signals are generated with TCs of opposite helicities, but with a three-fold
increase in magnitude, ℓ1 = −ℓ2 = 3ℓ, and this case is shown in Fig. 35 (first column), when
ℓ𝑏 = −ℓ𝑎 = 1.

Another interesting case is the one where (ℓ𝑎, ℓ𝑏) = (2ℓ, ℓ), for which we have at the output
one beam with a three-fold increase in OAM, and the other with zero TC, (ℓ1, ℓ2) = (3ℓ, 0).
This situation is also contained in Fig. 35, when ℓ𝑎 = 2 and ℓ𝑏 = 1. Even though signal ℰ2

carries no topological charge, it emerges with a ring-shaped intensity profile because near the
medium exit, the intensity distribution is dictated by the overlap of incident fields, which is
dark at the center. This was observed in a cascade system when the incident beams carry
opposite OAM (AKULSHIN et al., 2016). However, this distribution is not stable for non-vortex
beams, and it will transition into a nearly Gaussian profile under free-propagation outside the
interaction medium. This type of transition has been reported in (PEREIRA et al., 2017). Using
Eq. (4.21), we can see in Fig. 36 that, with propagation distances of the order of the Rayleigh
range, the ring structure fades away. More interestingly, for intermediate positions, where this
transition is not yet complete, the beam presents a bright center with an outer light ring. In
the lower inset of Fig. 36 we show an experimental image in this situation.

The difference between the input Δℓi and output Δℓo topological charges in all cases are
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Figure 36 – Propagation of the FWM signal ℰ2 (2𝑏 − 𝑎) outside interaction region for the case (ℓ𝑎, ℓ𝑏) =
(2, 1), obtained from Eq. (4.21). The upper insets show the calculated intensity profiles at
positions 𝑧/𝑧𝑅 = 0, 0.25, 0.5, 0.75, 1. The lower inset shows an experimental image taken at
a position closer to the medium exit (in comparison with Figs. 34 and 35), where an external
light ring can be seen around the central spot.

Source: The author (2024).

related via

Δℓo = ℓ1 − ℓ2 = 3(ℓ𝑎 − ℓ𝑏) = 3Δℓi. (4.28)

The factor of 3 appears because we are dealing with a third-order process. Considering a fifth-
order interaction generating two signals with directions 3k𝑎 − 2k𝑏 and 3k𝑏 − 2k𝑎, the OAM
conservation would impose ℓ(5)

1 = 3ℓ𝑎 − 2ℓ𝑏 and ℓ
(5)
2 = 3ℓ𝑏 − 2ℓ𝑎, and we would then have

Δℓo = 5Δℓi. It is interesting to note that, with the knowledge of the TC of any two among
the four participating signals, the remaining two unknown topological charges can be readily
obtained using simple relations. As an example, with the knowledge of the output pair (ℓ1, ℓ2),
by inverting Eqs. (4.19), one can determine the incident topological charges (ℓ𝑎, ℓ𝑏) via

ℓ𝑎 = 1
3(2ℓ1 + ℓ2), (4.29)

ℓ𝑏 = 1
3(ℓ1 + 2ℓ2). (4.30)

To conclude this Section, we explored the process of degenerate FWM induced in a heated
sample of Rb atoms, in a configuration where two nonlinear signals can be detected, and
showed that the expected topological charge selection rules are fulfilled. We presented situa-
tions where the generated beams can emerge with the same topological charge as the input
beams or with a three-fold increase in topological charge magnitude and opposite helicity. We
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also showed that we can obtain one of the outputs with zero OAM by mixing beams carrying
topological charges related by a factor of two.

These results reveal that the proposed experimental setup can be used to control the
relations between the OAM content (magnitude and helicity) of two FWM signals by changing
the topological charges of the incident beams. Furthermore, this experimental configuration
allows us to generate pairs of beams with differences in topological charge coupled to the
difference in OAM between the incident beams. The coupling factor between these OAM
differences is determined by the nonlinear process that characterizes the interaction with the
atomic medium. It is noteworthy that the experimental scheme designed to generate two or
more FWM signals, together with the OAM control, is compatible with recent works that
explore multiple degrees of freedom, in particular, the spatial degrees of freedom (GUPTA et

al., 2016; VERNAZ-GRIS et al., 2018; ZHANG et al., 2020) and those of OAM (PAN et al., 2019;
HU et al., 2023).

4.3 POINCARÉ SPHERE SYMMETRIES IN FWM

Within the seemingly endless sea of structured light (FORBES; OLIVEIRA; DENNIS, 2021),
one finds the optical modes belonging to the so-called OAM Poincaré sphere (PS) (PADGETT;

COURTIAL, 1999), named in analogy with the polarization Poincaré sphere. They are given by
combinations of Laguerre-Gaussian (LG) modes with topological charges of equal magnitude
and opposite handedness, and can be parameterized in terms of polar and azimuthal angles
on the sphere. OAM PS modes have been widely employed in three-wave mixing in nonlinear
crystals (ROGER et al., 2013; PEREIRA et al., 2017; BUONO et al., 2018; SILVA et al., 2021a).
Our aim was to drive higher-order nonlinear optical processes with this family of modes, and
investigate the underlying spatial structure dynamics.

This Section can be seen as a generalization of the Section 4.2. When dealing with OAM
carrying beams (pure LG modes, in our case), one may think of PS modes restricted to the poles
(𝜃 = 0, 𝜋). With the approach we will present here, it is possible to explore the wave-mixing
dynamics driven by any mode on the surface of the Poincaré sphere, significantly expanding
the possibilities of spatial structure transfer. In this direction, we experimentally investigate
the nonlinear wave mixing induced by OAM PS beams in a heated sample of rubidium atoms,
and the underlying rules that dictate the transfer of optical spatial structure. In particular,
we consider a forward four-wave mixing (FWM) process in a configuration where two distinct
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signals are generated, and extend previous studies by analyzing the nonlinear response when
the input beams can be described as a combination of LG modes, and going beyond the OAM
conservation selection rules. Moreover, we theoretically describe both generated beams and
show that, under the usual set of assumptions, they can also be represented as optical modes
contained in Poincaré spheres. An interesting point is that, as we shall demonstrate, the PS
components of both four-wave mixing outputs satisfy selection rules similar to those verified in
three-wave mixing processes, namely, (i) a specular reflection symmetry in the Poincaré sphere,
which is observed in the down conversion process (SANTOS et al., 2007; RODRIGUES et al., 2018;
RODRIGUES et al., 2022); and (ii) the generation of a radial mode spectrum which has been
demonstrated in second harmonic generation (PEREIRA et al., 2017; BUONO et al., 2020). These
results indicate that most applications that make use of the OAM degree of freedom of a
light beam can be extended to a higher-order nonlinear process. Furthermore, our two-channel
FWM configuration allows us to simultaneously detect two nonlinear signals, each exhibiting
a characteristic: the reflection symmetry in the Poincaré sphere and the appearance of a radial
mode spectrum in the spatial structure, both already explored independently in three-wave
mixing processes. The predicted FWM intensity profiles, as well as the consequences of the
symmetry properties, are in good agreement with those detected in our experiment.

An arbitrary polarization state, as in any two-level system, can be represented as:

|𝑃 ⟩ = 𝑐+ |+⟩+ 𝑐− |−⟩ , (4.31)

where |+⟩ and |−⟩ refer to the positive and negative circular polarization states, and 𝑐+,−

are complex coefficients satisfying |𝑐+|2 + |𝑐−|2 = 1. We may parameterize this state by two
angles, as:

|𝑃 ⟩ = cos 𝜃2 |+⟩+ 𝑒𝑖𝜑 sin 𝜃2 |−⟩ . (4.32)

In this manner we construct the Poincaré sphere for polarization: any polarization state can
be represented by the position vector on the surface of the unit sphere defined by the polar
and azimuthal angles given by 𝜃 and 𝜑, respectively. At the poles, there are the positive and
negative circular polarization states, and at the equator, the horizontal, vertical, diagonal and
anti-diagonal polarizations, as illustrated in Fig. 37(a). At any other point on the surface of
the sphere, one finds all the other realizable polarization states.

In analogy with the Poincaré sphere for polarization states of light, we can define an
equivalent sphere for OAM modes with topological charge magnitude |𝑙| and radial index 𝑝
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(PADGETT; COURTIAL, 1999). In the OAM sphere 𝒪(𝑙, 𝑝), of total order 𝑁ℓ,𝑝 = 2𝑝 + |𝑙|, we
have an arbitrary state |𝜃, 𝜑⟩𝑙,𝑝 characterized by the mode superposition

𝜓𝑙,𝑝(𝜃, 𝜑) = cos 𝜃2 𝑢𝑙,𝑝 + 𝑒𝑖𝜑 sin 𝜃2 𝑢−𝑙,𝑝. (4.33)

In Fig. 37(b) we represent the OAM Poincaré sphere of first order modes, 𝒪(1, 0). For this
sphere, the combinations of LG modes at the equator result exactly in HG modes rotated
by different angles, passing through positions aligned horizontally, vertically, diagonally, and
anti-diagonally. Therefore, the sphere of first order modes bears a direct analogy with the
polarization PS. The same is not true for the spheres with 𝑙 > 1, as one can see in Fig. 37(c),
where we show modes belonging to the PS sphere 𝒪(3, 1). The Poincaré sphere construction
applies to two-dimensional complex vector spaces, but there is not a special restriction to the
modes used in either input fields ℰ𝑎 or ℰ𝑏. This is because even when several modes participate
in either three- or four-wave parametric interactions, the interacting modes can be grouped
in pairs with opposite OAM, plus the zero OAM modes, when they are present. Each pair of
opposite OAM modes builds an independent Poincaré sphere. The geometrical representation
of the nonlinear interaction that we will establish, and the associated symmetries, apply to
each sphere independently (RODRIGUES et al., 2022). Of course, there is no room for these
symmetries in the zero OAM manifold.

We will be interested in the transverse structure dynamics under FWM processes induced
by modes belonging to the OAM Poincaré sphere. As will be shown, the effect of the nonlin-
ear light-matter interaction driven by a light field described by Eq. (4.33) can be seen as a
transformation of the state vector on the sphere. In fact, the FWM process induced by a field
contained in a PS can result in an output mode contained in a different sphere.

In the upcoming Sections, we will explore different scenarios, and try to highlight interesting
aspects of the transverse mode dynamics of FWM processes driven by PS modes. Before
moving on, we note that for the azimuthal angle on the Poincaré sphere, 𝜑, we use the same
letter we have used for the azimuthal angle on the transverse plane throughout this work.
Thus, to avoid confusion, in this Chapter we shall rename the transverse azimuthal coordinate
as 𝛾.
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Figure 37 – (a) Polarization Poincaré sphere, (b) OAM Poincaré sphere of first order, 𝒪(1, 0), (c) OAM
Poincaré sphere 𝒪(3, 1). The insets show the intensity profiles of the modes at specific points
on the PS.

Source: The author (2024).

4.3.1 FWM driven by a single Poincaré sphere mode

The starting point for the description of the transverse beam structure dynamics is, once
again, the pair of wave-equations describing evolution of the slowly varying FWM field en-
velopes ℰ1 and ℰ2, Eqs. (4.11) and (4.12). We write their solutions as general superpositions
of LG modes with waist 𝑤0:

ℰ1(r) =
∑︁
ℓ,𝑝

𝛼ℓ,𝑝𝑢ℓ,𝑝(r), (4.34)

ℰ2(r) =
∑︁
ℓ,𝑝

𝛽ℓ,𝑝𝑢ℓ,𝑝(r). (4.35)

As already discussed, with the thin-medium assumption, the coefficients 𝛼ℓ,𝑝 and 𝛽ℓ,𝑝 are
proportional to the transverse overlap integrals

𝛼ℓ,𝑝 ∝ 𝒜ℓ,𝑝 =
∫︁∫︁

𝑢2
𝑎𝑢

*
𝑏𝑢

*
ℓ,𝑝𝑑

2r⊥, (4.36)

𝛽ℓ,𝑝 ∝ ℬℓ,𝑝 =
∫︁∫︁

𝑢2
𝑏𝑢

*
𝑎𝑢

*
ℓ,𝑝𝑑

2r⊥. (4.37)

Now we can explore scenarios where the incident beams 𝑢𝑎 and 𝑢𝑏 carry different structures.
We will focus on the situation where field 𝑢𝑎 is given by the composition of LG modes contained
in the OAM Poincaré sphere 𝒪(𝑙, 0), and 𝑢𝑏 is given by a pure Gaussian mode:

𝑢𝑎 = 𝜓𝑙,0(𝜃, 𝜑) = cos 𝜃2 𝑢𝑙,0 + 𝑒𝑖𝜑 sin 𝜃2 𝑢−𝑙,0, (4.38)

𝑢𝑏 = 𝑢0,0. (4.39)
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Upon substitution in Eqs. (4.36) and (4.37), we can write the transverse overlap integrals at
𝑧 = 0 as:

𝒜ℓ,𝑝 = 𝑒𝑖𝜑 sin 𝜃Λ𝑙,−𝑙0ℓ
000𝑝 + cos2 𝜃

2Λ𝑙𝑙0ℓ
000𝑝 + 𝑒2𝑖𝜑 sin2 𝜃

2Λ−𝑙,−𝑙0ℓ
000𝑝 , (4.40)

ℬℓ,𝑝 = cos 𝜃2Λ00𝑙ℓ
000𝑝 + 𝑒−𝑖𝜑 sin 𝜃2Λ00,−𝑙ℓ

000𝑝 , (4.41)

where

Λ𝑙𝑙′𝑚ℓ
𝑞𝑞′𝑛𝑝 =

∫︁∫︁
𝑢𝑙,𝑞𝑢𝑙′,𝑞′𝑢*

𝑚,𝑛𝑢
*
ℓ,𝑝

⃒⃒⃒
𝑧=0

𝑑2r⊥ (4.42)

is the transverse overlap integral of four LG modes with the same waist 𝑤0. The conservation
of OAM naturally emerges from the azimuthal integral:

∫︁ 2𝜋

0
𝑒𝑖(𝑙+𝑙′−𝑚−ℓ)𝛾𝑑𝛾 = 2𝜋𝛿ℓ,𝑙+𝑙′−𝑚, (4.43)

restricting the possible values for the topological charges contained in the superpositions for
ℰ1 and ℰ2. For signal ℰ1, we will have modes with ℓ = ±2𝑙 (first and second terms of Eq.
(4.40)), yielding the contribution from a PS of order 𝑁 = 2𝑙, and also from ℓ = 0; while for
signal ℰ2, we only have the ℓ = ±𝑙 components (Eq. (4.41)), associated with a PS of the
same order 𝑁 = 𝑙 as the input. In principle, there is no such restriction on the radial orders,
and an infinite number of 𝑝 modes can contribute to the superpositions of the fields ℰ1 and
ℰ2. It is important to note that for the third-order process studied here, the possible values
for the topological charges imposed by the azimuthal integral, Eq. (4.43), are the same as
those found in second-order processes. In particular, in SHG, where the process is driven by a
structured pump, from which two photons are absorbed to generate the up-converted field, as
in the case of signal ℰ1; and in the down-conversion process, where the medium is excited by
a Gaussian pump, and the down-converted fields are the ones carrying the spatial structure, a
situation analogous to that of signal ℰ2.

By substituting Eqs. (4.40) and (4.41) into Eqs. (4.34) and (4.35), we can express both
generated fields on the 𝑤0 mode basis as:

ℰ1 =
∑︁

𝑝

(︂
𝑎𝑝𝜓2𝑙,𝑝(𝜗1, 𝜙1) + 𝑒𝑖𝜑 sin 𝜃 𝑐𝑝𝑢0,𝑝

)︂
, (4.44)

ℰ2 =
∑︁

𝑝

𝑏𝑝𝜓𝑙,𝑝(𝜗2, 𝜙2), (4.45)
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where 𝑎𝑝 = Λ𝑙𝑙0,2𝑙
000𝑝 = Λ−𝑙,−𝑙0,−2𝑙

000𝑝 , 𝑏𝑝 = Λ00,−𝑙𝑙
000𝑝 = Λ00,𝑙,−𝑙

000𝑝 , 𝑐𝑝 = Λ𝑙,−𝑙00
000𝑝 = Λ−𝑙𝑙00

000𝑝 , and the output
sphere angles are related to the input angles via:

𝜗1 = 2 tan−1(tan2(𝜃/2)), 𝜙1 = 2𝜑, (4.46)

𝜗2 = 𝜋 − 𝜃, 𝜙2 = 𝜑. (4.47)

The relations given by Eqs. (4.46) and (4.47) are similar to those satisfied in parametric
amplification, a second-order nonlinear process (SANTOS et al., 2007; RODRIGUES et al., 2018;
RODRIGUES et al., 2022). We note that similar results could be obtained for a zero OAM
field with a nonzero radial index 𝑢𝑏 = 𝑢0,𝑛. However, for the simpler situation we study
here, regarding the spatial degrees of freedom, the Gaussian field 𝑢𝑏 has a passive role in the
wave-mixing process, and we essentially have a single field, 𝑢𝑎, dictating the transverse mode
dynamics. The transformation represented by Eq. (4.47) is more intuitive, and can be seen as a
reflection of the input vector on the sphere with respect to the equatorial plane. On the other
hand, the visualization and interpretation of Eq. (4.46) is a bit less straightforward. In Fig. 38
we illustrate how the mode vectors are transformed in both FWM processes, according to the
rules given by Eqs. (4.46) and (4.47). The inset shows the variation of 𝜗1(𝜃), making evident
that 𝜗1 < 𝜃 (𝜗1 > 𝜃) for 𝜃 < 𝜋/2 (𝜃 > 𝜋/2), and 𝜗1 = 𝜃 at 𝜃 = 0, 𝜋/2, 𝜋. Therefore, when
the mode vector on the input PS describes a path starting from the north pole and ending on
the south pole, the polar angle of the mode vector on the output PS is delayed in the section
0→ 𝜋/2, and advanced in the section 𝜋/2→ 𝜋. The magnitude of the rate of change of the
vector position (𝜌) on the input and output spheres is the same for signal ℰ2, |𝜌̇2| = |𝜌̇in|,

Figure 38 – Representation of the angle symmetries for the FWM signals ℰ1 and ℰ2. The inset shows the
dependence of the output angle 𝜗1 with 𝜃.

Source: The author (2024).
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but not for signal ℰ1, |𝜌̇1| ≠ |𝜌̇in|, where the dot indicates the derivative with respect to a
parameter 𝑡. Namely, we have 𝜗̇𝑗 = 𝜕𝜗𝑗

𝜕𝜃
𝜃, 𝜙̇𝑗 = 𝜕𝜙𝑗

𝜕𝜑
𝜑̇, and using Eqs. (4.46), (4.47), we get:

𝜗̇1 = 2 sin(𝜃)
1 + cos2(𝜃)𝜃, 𝜙̇1 = 2𝜑̇, (4.48)

𝜗̇2 = −𝜃, 𝜙̇2 = 𝜑̇. (4.49)

We show in Fig. 39 the paths followed by the PS components of the fields ℰ1 and ℰ2 as a result
of the FWM processes driven by an input mode that follows a closed path on the PS. In the
inset we show the dependence of 𝜗1 and 𝜗̇1/𝜃 with 𝜃. One interesting possibility is to consider
fluctuations of the position vector 𝜌(𝑡) on the input PS (𝜃, 𝜑), and how they are transferred
to the output spheres (SANTOS; DECHOUM; KHOURY, 2009).

Figure 39 – Closed path (𝜃, 𝜑) followed by an input PS mode, describing a solid angle Ω, and resulting paths
followed by ℰ1 and ℰ2, (𝜗1, 𝜙1), and (𝜗2, 𝜙2), respectively. The inset shows the dependence of
𝜗1 and 𝜗̇1/𝜃 with 𝜃. The transformed paths define solid angles Ω1 > Ω, and Ω2 = Ω.

Source: The author (2024).

If we rewrite the products of incident fields as:

ℰ1 : (𝑢2
𝑎)𝑢*

𝑏 → 𝑈1𝑢
*
𝑏 , (4.50)

ℰ2 : (𝑢2
𝑏)𝑢*

𝑎 → 𝑈2𝑢
*
𝑎, (4.51)

we see that the FWM processes driven by fields 𝑢𝑎, 𝑢𝑏 can, indeed, be seen as three-wave
mixing processes driven by the effective fields 𝑈1 = 𝑢2

𝑎 (ℰ1), and 𝑈2 = 𝑢2
𝑏 (ℰ2), as illustrated

in Fig. 40. The difference between the two cases is that for ℰ1 the pump carries the non-trivial
mode, and its structure is completely transferred to the generated signal, and for ℰ2, the pump
is Gaussian, and the structured field acts to stimulate an emission in its mode, generating the
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Figure 40 – Four-wave mixing processes generating signals ℰ1 ∼ 𝑢2
𝑎𝑢

*
𝑏 and ℰ2 ∼ 𝑢2

𝑏𝑢
*
𝑎 seen as three-wave

mixing processes driven by the effective fields 𝑈1 = 𝑢2
𝑎 and 𝑈2 = 𝑢2

𝑏 . In our specific case, 𝑈1
is the structured field, given by the square of a PS mode, and 𝑈2 is the square of a Gaussian
mode. A two-level system was considered for this illustrative example.

Source: The author (2024).

FWM field. We can therefore associate these two situations with SHG and down-conversion,
respectively.

The FWM fields are generated with a smaller overall size as compared with the input
beams, since the generated field amplitudes are dictated by the spatial overlap of the incident
modes. This can be understood intuitively in the case of Gaussian inputs, when we make:

ℰ1,2 ∼ 𝑢2
0,0𝑢

*
0,0 ∼ exp

(︃
− 𝑟2

𝑤2
0/3

)︃
. (4.52)

When dealing with a thin-medium, only the transverse degrees of freedom play an important
role, and we don’t need to account for the longitudinal propagation of the beams inside the
interaction region. In other words, the Boyd criterion is relaxed. As a consequence, we gain
the freedom to set the beam waist parameter of our basis modes. By choosing a basis with
the appropriate (reduced) waist 𝑤̃ = 𝑤0/𝜉, the number of modes required to represent the
FWM fields is reduced (OLIVEIRA et al., 2023). In fact, for 𝜉 =

√
3, the following restriction on

the 𝑝 orders is established: the sphere modes in ℰ1 and ℰ2 are limited to 𝑝 = 0 only, while the
contribution from the non-vortex modes in ℰ1 is bound to 0 ≤ 𝑝 ≤ |𝑙|. We may then write the
output fields in the final form:

ℰ1 = 𝑎̃0𝜓2𝑙,0(𝜗1(𝜃), 2𝜑) + 𝑒𝑖𝜑 sin 𝜃
|𝑙|∑︁

𝑝=0
𝑐𝑝𝑢̃0,𝑝, (4.53)

ℰ2 = 𝑏̃0𝜓𝑙,0(𝜋 − 𝜃, 𝜑), (4.54)

where 𝑢̃ and 𝜓 are the LG and OAM PS modes with the modified waist 𝑤̃ = 𝑤/
√

3,
𝑎̃0 = Λ̃𝑙𝑙0,2𝑙

0000 (
√

3), 𝑏̃0 = Λ̃00,−𝑙𝑙
0000 (

√
3), 𝑐𝑝 = Λ̃𝑙,−𝑙00

000𝑝 (
√

3). The transverse overlap integral on
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the modified waist basis is

Λ̃𝑙𝑙′𝑚ℓ
𝑞𝑞′𝑛𝑝(𝜉) =

∫︁∫︁
𝑢𝑙,𝑞𝑢𝑙′,𝑞′𝑢*

𝑚,𝑛𝑢̃
*
ℓ,𝑝

⃒⃒⃒
𝑧=0

𝑑2r⊥,

=
∑︁

𝑠

Λ𝑙𝑙′𝑚ℓ
𝑞𝑞′𝑛𝑠𝜆

ℓ
𝑠,𝑝(𝜉), (4.55)

and 𝜆ℓ
𝑠,𝑝(𝜉) are the coefficients for the change of basis {𝑢(𝑤0)} → {𝑢(𝑤0/𝜉)} (OLIVEIRA et

al., 2023):

𝜆ℓ
𝑠,𝑝(𝜉) =

∫︁∫︁
𝑢ℓ,𝑠𝑢̃

*
ℓ,𝑝

⃒⃒⃒
𝑧=0

𝑑2r⊥. (4.56)

We then see that, to represent the output fields on the reduced waist basis, we can either
calculate directly Λ̃ on the 𝑤̃ basis, or calculate Λ on the 𝑤0 basis and perform the trans-
formation using the coefficients 𝜆. In the Appendix B we give analytical expressions for the
relevant overlap integrals on the reduced waist basis, given by the first line of Eq. (4.55),
making explicit the radial mode restriction, and in Appendix C we calculate the change of
basis coefficients.

First, we performed experiments by setting field ℰ𝑎 as a mode on the equator (𝜃 = 𝜋/2) of
the PS 𝒪(ℓ, 0), 𝜓(𝑎)

ℓ,0 (𝜋/2, 0) with ℓ = 1, 2, 3 [see Fig. 41(a)], and field ℰ𝑏 as a pure Gaussian
beam. Figures 41(b) and 41(c) show the calculated and measured far-field intensity profiles
of the generated signals, ℰ1 and ℰ2, respectively. We see that for signal 2𝑎 − 𝑏 [Fig. 41(b)]
we obtain more intricate figures, while the structure of signal 2𝑏 − 𝑎 [Fig. 41(c)] seems to
be dominated by that of the pump in each case. This is due to the fact that signal ℰ1 has
two contributions from the structured pump, and the nonlinear polarization associated with its
generation is proportional to (𝜓(𝑎)

ℓ,0 )2. On the other hand, for ℰ2, which has only one contribution
from ℰ𝑎, the macroscopic polarization is proportional to (𝜓(𝑎)

ℓ,0 )*. The central spots present in
signal ℰ1 are due to the contribution from the ℓ = 0 modes arising from the crossed term in the
product (𝜓(𝑎)

ℓ,0 )2. They only develop in the far-field because of the different Gouy phases carried
by the 2ℓ PS mode and the radial modes. The Gouy phase of the PS mode is proportional
to (1 + 2|ℓ|) tan−1(𝑧/𝑧𝑅), while those of the radial modes with 0 < 𝑝 < |ℓ| are proportional
to (1 + 2𝑝) tan−1(𝑧/𝑧𝑅). This becomes evident when one looks at the near-field intensity
distributions of the FWM signal ℰ1 for ℓ = 1, 2, shown in Fig. 41(d). This type of transition of
the transverse structure has been verified in other situations (PEREIRA et al., 2017; AKULSHIN et

al., 2016; ZHANG et al., 2022). This behavior is not verified for signal ℰ2, since it only contains
the PS mode with total order 𝑁 = |𝑙|, and therefore its shape is stable under propagation.
Finally, it is worth commenting on the distortions seen in the experimental images. This is due
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Figure 41 – (a) Calculated intensity profiles of modes 𝜓ℓ,0(𝜋/2, 0), for ℓ = 1, 2, 3, alongside the correspond-
ing beams prepared in the experiment near the interaction region. Calculated and detected
far-field intensity profiles of the FWM signals (b) ℰ2 and (c) ℰ1, resulting from the mixing of
𝑢𝑎 given by the modes shown in (a) and 𝑢𝑏 given by a Gaussian mode. (d) Calculated and
detected near-field intensity profiles of the FWM signal ℰ1 for the cases ℓ = 1, 2.

Source: The author (2024).

to the degenerate configuration we are working with, which makes it difficult to completely
filter the scattered light superimposed to the spatial profiles of the generated signals.

In Fig. 42 we show the coefficient distributions of the calculated output mode superpositions
on the original (𝑤0) and reduced (𝑤̃ = 𝑤0/𝜉) waist bases, to evidence the constraint on the
radial spectrum of the generated fields ℰ1 and ℰ2 that is derived in the Appendix B. Let us
look at the modification of the mode distribution with the chosen waist basis a little more in
detail. For an arbitrary basis with 𝑤̃ = 𝑤0/𝜉, we may write the radial spectrum as 𝑃𝑝 of the
generated fields ℰ𝑖, 𝑖 = 1, 2:

𝑃𝑝(𝜉) =
∑︁

ℓ

|⟨ℰ𝑖(𝑤0)|𝑢̃ℓ,𝑝(𝜉)⟩|2 =

⎧⎪⎪⎨⎪⎪⎩
|𝑎̃𝑝|2 + sin2 𝜃|𝑐𝑝|2, for ℰ1,

|𝑏̃𝑝|2, for ℰ2,

(4.57)

where the sum runs over all values of ℓ present in ℰ𝑖, i.e., {−2𝑙, 0, 2𝑙} for ℰ1, and {−𝑙, 𝑙} for
ℰ2. We may define the width of the radial spectrum as:

Δ𝑝(𝜉) =
√︃∑︁

𝑝
𝑃𝑝(𝜉)𝑝2 −

(︂∑︁
𝑝
𝑃𝑝(𝜉)𝑝

)︂2
. (4.58)

In Fig. 43 we show the spectrum of radial modes 𝑃𝑝 of the generated fields ℰ1 and ℰ2 for the
input waist 𝑤0 and the modified waist 𝑤̃ = 𝑤/

√
3, and for increasing value of the input PS

order 𝑙, as well as the width of the radial spectrum as a function of the waist ratio 𝜉. Looking
at the graphs for the widths Δ𝑝, we see that for signal ℰ1 the radial spectrum is narrower
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Figure 42 – Coefficients of the mode superpositions of the output fields shown in figure 41 on the original
and reduced waist bases. The radial spectrum is significantly narrowed on the 𝑤0/

√
3 basis,

and complies with the analytical mode restriction.

Source: The author (2024).

Figure 43 – Spectrum of radial modes of the FWM signals ℰ1 (top) and ℰ2 (bottom) for an input PS mode
of order (a),(f) 𝑙 = 1; (b),(g) 𝑙 = 2; (c),(h) 𝑙 = 3; (d),(i) 𝑙 = 4 considering the input 𝑤0
and modified 𝑤̃ = 𝑤0/

√
3 waist bases. In (a)-(d) the blue shaded region indicates the interval

0 ≤ 𝑝 ≤ |𝑙|, representing the exact bound for the value 𝜉 =
√

3. In (e) and (j) we show the
width Δ𝑝(𝜉) of the radial spectra as a function of the ratio 𝜉. The vertical lines indicate the
value 𝜉 =

√
3.

Source: The author (2024).

around 𝜉 =
√

3 as compared to 𝜉 = 1, while for signal ℰ2 its radial spectrum collapses at the
value 𝜉 =

√
3.

We also made the pump field 𝑢𝑎 occupy different positions on the PS. First we consider
𝑢𝑎 following a path starting on the positive pole, (𝜃, 𝜑) = (0, 0), going to (𝜋/2, 0) on the
equator, and then to (𝜋/2, 𝜋/2). We call these points 1, 2, and 3, respectively [see Fig. 44(a)].
The incident modes in these positions are 𝜓1,0(0, 0) = 𝑢1,0, 𝜓1,0(𝜋/2) = (𝑢1,0 + 𝑢−1,0)/

√
2,

and 𝜓1,0(𝜋/2, 𝜋/2) = (𝑢1,0 + 𝑖𝑢−1,0)/
√

2. Figure 44(b) shows the corresponding path followed
by the PS component of the FWM field ℰ1 on the output sphere 𝒪(2, 0). In Fig. 44(c), we
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Figure 44 – (a) Incident field modes along a path described by points 1, 2, 3 on the first order sphere 𝒪(1, 0).
(b) Corresponding modes on the output sphere 𝒪(2, 0) for the FWM signal ℰ1, when 𝑢𝑏 = 𝑢0,0.
Insets show the intensity profiles of the sphere modes on the indicated positions. (c) Measured
(top) and calculated (bottom) FWM intensity profiles for signal ℰ1 on the points 1, 2, 3′.

Source: The author (2024).

show the experimental and theoretical far-field intensity profiles of signal ℰ1 in this case. For
the point 1, where 𝑢𝑎 is a pure 𝑢1,0 mode, the field ℰ1 emerges as a pure 𝑢2,0 mode, and
we are essentially performing OAM addition (MOTTA; ALMEIDA; VIANNA, 2023). As we leave
the pole, we can employ the PS geometric representation to interpret the behavior of the
FWM output field structure. We see that the actual FWM intensity profiles differ from those
expected solely from a PS mode 𝜓2,0 on the points 2 and 3, corresponding to the first term
on the right-hand-side (r.h.s.) of Eq. (4.53). This is due to the contribution from the radial
modes in the superposition ℰ1, which becomes maximum when 𝜃 = 𝜋/2, as seen from the
second term on the r.h.s. of Eq. (4.53).

What is remarkable from these results is that the variation of the azimuthal angle 𝜑 on
the input sphere results in a rigid rotation of the FWM intensity profile that is equal to the
rotation of the intensity profile of 𝑢𝑎. This is not obvious since, as already mentioned, (i) the
azimuthal angle on the output sphere is doubled, 𝜙1 = 2𝜑, and (ii) there are radial modes
contributing to the FWM field mode structure. In fact, this net effect is precisely a result of
the combination of these two aspects. To explain this, we first look at the rotation of the
intensity profile of the input PS mode 𝜓𝑙,0(𝜃, 𝜑), ℐ𝑙(r⊥; 𝜃, 𝜑) = |𝜓𝑙,0(𝜃, 𝜑)|2, which can be
understood when we write

ℐ𝑙(r⊥; 𝜃, 𝜑) = |𝑢𝑙,0|2
{︃

1 + sin 𝜃 cos
[︃
2𝑙
(︃
𝛾 − 𝜑

2𝑙

)︃]︃}︃
. (4.59)

We see that the PS azimuthal angle 𝜑 shifts the origin of the transverse azimuthal coordinate
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𝛾 as:

ℐ𝑙(r⊥; 𝜃, 𝜑) = ℐ𝑙(𝑟, 𝛾 − 𝜑/2𝑙; 𝜃, 0), (4.60)

thus rotating the intensity profile by +𝜑/2𝑙. This can be verified by looking at figures 44(a)
and 44(b), where we see the intensity profiles of the modes on the spheres 𝒪(1, 0) and 𝒪(2, 0)

rotate by 45 degrees when the azimuthal angles vary by 90 and 180 degrees, respectively. The
intensity profile of the FWM field ℰ1, 𝐼1 = |ℰ1|2, can be found as:

𝐼1(r⊥; 𝜃, 𝜑) = |𝑈𝑙|2 sin2 𝜃 + |𝑎̃0|2|𝑢̃2𝑙,0|2
{︃

1 + sin𝜗1 cos
[︃
4𝑙
(︃
𝛾 − 𝜑

2𝑙

)︃]︃}︃
+

+ 2
√

2𝑎̃0𝑉
|2𝑙|

0 𝑈𝑙 sin 𝜃 sin
(︃
𝜗1

2 + 𝜋

4

)︃
cos

[︃
2𝑙
(︃
𝛾 − 𝜑

2𝑙

)︃]︃
, (4.61)

where the LG radial amplitude 𝑉 |ℓ|
𝑝 (𝑟) is defined via 𝑢̃ℓ,𝑝(𝑟, 𝛾) = 𝑉 |ℓ|

𝑝 (𝑟)𝑒𝑖ℓ𝛾, and 𝑈𝑙 =∑︀|𝑙|
𝑝=0 𝑐𝑝𝑢̃0,𝑝 is the term from Eq. (4.53) containing the superposition of radial modes. Thus,

we see that just like in Eq. (4.59), 𝐼1 presents a shift of the transverse azimuthal coordinate
by the amount 𝜑/2𝑙, equal to that of the input PS mode 𝜓𝑙,0:

𝐼1(𝑟, 𝛾; 𝜃, 𝜑) = 𝐼1(𝑟, 𝛾 − 𝜑/2𝑙; 𝜃, 0). (4.62)

Next we analyze the FWM signal ℰ2 for a similar path on the input sphere 𝒪(1, 0), going
through points 1, 2, 3 and ending at point 4, the negative pole, (𝜃, 𝜑) = (𝜋, 𝜋/2). On this
position, the incident mode is 𝜓1,0(𝜋, 𝜋/2) = 𝑢−1,0. In Fig. 45(a) we show the paths followed
by the 𝑢𝑎 = 𝜓1,0(𝜃, 𝜑) (left), and by the generated field ℰ2 ∝ 𝜓1,0(𝜋− 𝜃, 𝜑) (right). We divide
the complete path 1− 4 into three sections, and in Fig. 45(b) we illustrate how the incident
and generated mode vectors change on the sphere in each section. In Fig. 45(c) we show
the detected images of the intensity profiles of the incident field 𝑢𝑎 at each position 1, ..., 4

(top) and the resulting FWM signal ℰ2 in each case (bottom). For the points 1 and 4 the
insets show the tilted lens (TL) profiles, indicating that in these positions the input and FWM
fields possess opposite OAM. Along the arc 2 − 3 the input and generated field modes are
degenerate in the sense that the position vector on the first order sphere is the same. These
results indicate the fulfilment of the reflection symmetry for signal ℰ2.

In conclusion, we investigated the transfer of spatial structures from the input pump fields
to the converted fields in a FWM degenerated process in a Rb vapor cell. We showed that
the whole interaction can be seen as a two-channel three-wave mixing process, whose spatial
structures for the converted fields are independently driven by the square of one input field
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Figure 45 – (a) Path followed by the input mode 𝑢𝑎 = 𝜓1,0(𝜃, 𝜑) passing through points 1, 2, 3, 4 on the
sphere 𝒪(1, 0), and the corresponding path followed by the FWM signal ℰ2 ∝ 𝜓1,0(𝜋 − 𝜃, 𝜑),
going through points 1′, 2, 3, 4′. The path on the generated field sphere is a reflection of the
path on the input sphere with respect to the equatorial plane. (b) Sections 1, 1′ − 2, 2 − 3,
and 3 − 4, 4′ and the variation of the mode vectors of 𝑢𝑎 and ℰ2 in each one. (c) Detected
far-field intensity profiles of the input and FWM signals at the points 1, 1′, 2, 3, 4, 4′. For points
1, 1′ and 4, 4′ we also show in the insets the tilted lens (TL) profiles, indicating opposite OAM
between input and FWM fields.

Source: The author (2024).

times the conjugate of the other field. By setting one of the input fields in a fundamental
Gaussian mode, we have shown that the spatial structure of each conversion channel, in a thin
medium, will be equivalent to what takes place in a second harmonic generation (SHG) and
in a parametric down-conversion (PDC) for the fields ℰ1 and ℰ2, respectively.

This allowed us to simultaneously explore the symmetries previously reported for these
nonlinear processes (RODRIGUES et al., 2018; RODRIGUES et al., 2022), by structuring the other
input field in an OAM Poincaré sphere 𝒪(𝑙, 0). In particular, it was possible to observe the
specular reflection symmetry for the field ℰ2 with respect to the equatorial plane in the OAM
sphere. We have also shown that the spatial structure of the other channel (ℰ1) is a combination
of two effects: the generation of radial order modes, and an inner symmetry for the OAM
components, similar to what was predicted for a three-wave mixing process (RODRIGUES et al.,
2022). This simultaneous two-channel symmetry of spatial modes can be useful for parallel
generation and transmission of correlated fields for quantum information.
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4.3.2 Superposition of Poincaré spheres – Hermite-Laguerre-Gaussian modes and

the generalized Poincaré sphere

Another interesting path to follow is to investigate what happens when we combine two
or more spheres in the superposition of the structured field 𝑢𝑎 = 𝑢𝑎′ . We can, for example,
restrict ourselves the subspace of 𝑁 = 3 spheres, 𝒮3, composed of the modes {𝜓3,0, 𝜓1,1}

(RODRIGUES et al., 2022), to write:

𝑢𝑎 = 𝑐3,0𝜓3,0(Ω3,0) + 𝑐1,1𝜓1,1(Ω1,1), (4.63)

where 𝑐3,0, 𝑐1,1 are complex coefficients, and we use Ω𝑙,𝑞 ≡ (𝜃, 𝜑)𝑙,𝑞 to denote the angular
coordinates in each sphere. Figure 46 shows an example of a combination of this kind. We
may define subspaces of PS modes with definite order 𝑁 as:

𝒮𝑁 = {𝜓𝑁,0} ⊕ {𝜓𝑁−2,1} ⊕ ...⊕ mod(𝑁, 2){𝜓1,(𝑁−1)/2} ⊕ 𝜀𝑁{𝑢0,𝑁/2}, (4.64)

where 𝜀𝑁 = 1 − mod(𝑁, 2). For example, for the subspaces 𝑁 = 1, 2, 3, 4, we have (RO-

DRIGUES et al., 2022):

𝑁 = 1 : 𝒮1 = {𝜓1,0},

𝑁 = 2 : 𝒮2 = {𝜓2,0} ⊕ {𝑢0,1},

𝑁 = 3 : 𝒮3 = {𝜓3,0} ⊕ {𝜓1,1},

𝑁 = 4 : 𝒮4 = {𝜓4,0} ⊕ {𝜓2,1} ⊕ {𝑢0,2}.

(4.65)

It is interesting to work in these subspaces because, apart from an overall scaling of the beams
due to diffraction, the optical modes are unchanged upon propagation.

Figure 46 – Combination of optical modes on the Poincaré spheres of order 𝑁 = 3, 𝑢𝑎 = 𝜓3,0(𝜋/4, 𝜋/4) +
𝜓1,1(3𝜋/4, 𝜋/2).

Source: The author (2024).
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Let us treat the general case where 𝑢𝑎 is given by an arbitrary composition of PS modes with
independent position vectors, and possibly radial modes, not necessarily with a well-defined
mode order 𝑁 :

𝑢𝑎 =
∑︁
𝑛≥0

𝑑𝑛𝑢0,𝑛 +
𝑀∑︁

𝑖=1
𝑐𝑖𝜓𝑙𝑖,𝑞𝑖

(𝜃𝑖, 𝜑𝑖), (4.66)

where 𝑀 is total number of spheres, and 𝑐𝑖, 𝑑𝑛 are complex coefficients. In this case, the
analytical treatment for the calculation of signal ℰ1 becomes a bit cumbersome, since we must
account for all of the combinations that arise from the product 𝑢2

𝑎; but for ℰ2, which only has
one contribution from 𝑢𝑎, the problem is still tractable. For 𝑢𝑏 = 𝑢0,0

1, we may obtain for the
generated field:

ℰ2 =
∞∑︁

𝑝=0

(︃∑︁
𝑛≥0

𝑑𝑛,𝑝𝑢0,𝑝 +
𝑀∑︁

𝑖=1
𝑐𝑖,𝑝𝜓𝑙𝑖,𝑝(𝜗𝑖, 𝜙𝑖)

)︃
, (4.67)

where 𝑑𝑛,𝑝 = 𝑑𝑛Λ0000
00𝑛𝑝, 𝑐𝑖,𝑝 = 𝑐𝑖Λ00−𝑙𝑖𝑙𝑖

00𝑞𝑖𝑝 = 𝑐𝑖Λ00𝑙𝑖,−𝑙𝑖
00𝑞𝑖𝑝 , and the transformed angles are given by

relations (4.46) and (4.47), but for each sphere 𝒪(𝑙𝑖, 𝑝) separately:

𝜗𝑖 = 𝜋 − 𝜃𝑖, (4.68)

𝜙𝑖 = 𝜑𝑖. (4.69)

In other words, the specular reflection symmetry holds in each individual sphere (RODRIGUES et

al., 2022). In what follows we will apply this treatment for the particular case of the so-called
generalized Hermite-Laguerre-Gaussian modes, which are stable solutions to the PWE, and
can be understood as belonging to the generalized Poincaré sphere (CALVO; PICÓN; BAGAN,
2006; DENNIS; ALONSO, 2017). It is easy to see that for the signal ℰ1, the associated symmetry
should not hold valid in each sphere separately, since the vector angles on the various spheres
(𝜃𝑖, 𝜑𝑖) get mixed due to the square of 𝑢𝑎.

The definition for a Poincaré sphere in the context of structured light presented in Eq.
(4.33) is not the only one. In fact, there are many different definitions (DENNIS; ALONSO,
2017; SHEN et al., 2020; SHEN, 2021; HE; SHEN; FORBES, 2022), even mixing the amplitude,
polarization, and other degrees of freedom (SHEN; ROSALES-GUZMÁN, 2022). One interest-
ing definition is the Poincaré sphere associated with the so-called Hermite-Laguerre-Gaussian
(HLG) modes, which can be seen as a generalization of the OAM PS. The HLG mode of
order 𝑁 belongs to the subspace 𝒮𝑁 , and it is given by (CALVO; PICÓN; BAGAN, 2006; DENNIS;
1 The discussion follows in the same manner for 𝑢𝑏 with nonzero radial order.
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ALONSO, 2017; SHEN et al., 2020; SHEN, 2021):

Ψℓ,𝑁(𝜃, 𝜑) = 𝑖
ℓ−𝑁

2

𝑁∑︁
𝜇=−𝑁

𝐶𝜇
ℓ,𝑁(𝜃, 𝜑)𝑢𝜇,(𝑁−|𝜇|)/2, (4.70)

where 𝑁 is the mode order, index 𝜇 runs in steps of 2, the coefficients 𝐶𝜇
ℓ,𝑁(𝜃, 𝜑) are:

𝐶𝜇
ℓ,𝑁(𝜃, 𝜑) = (−1)

𝜇−|𝜇|
2 𝑑

𝑁
2
ℓ
2 , 𝜇

2
(𝜃)𝑒−𝑖 𝜇

2 𝜑, (4.71)

and 𝑑𝑗
𝑚,𝑛(𝜃) is the Wigner 𝑑-function, denoted as:

𝑑𝑗
𝑚,𝑛(𝜃) =

√︁
(𝑗 +𝑚)! (𝑗 −𝑚)! (𝑗 + 𝑛)! (𝑗 − 𝑛)!×

×
𝑠max∑︁

𝑠=𝑠min

(−1)𝑚−𝑛+𝑠
(︁
cos 𝜃

2

)︁2𝑗+𝑛−𝑚−2𝑠 (︁
sin 𝜃

2

)︁𝑚−𝑛+2𝑠

(𝑗 + 𝑛− 𝑠)! 𝑠! (𝑚− 𝑛+ 𝑠)! (𝑗 −𝑚− 𝑠)! , (4.72)

where 𝑠min = max(0, 𝑛−𝑚) and 𝑠max = min(𝑗 + 𝑛, 𝑗 −𝑚). At the poles of the generalized
PS (𝜃 = 0, 𝜋) we also have pure LG modes, but at the equator (𝜃 = 𝜋/2) we always have
HG modes, for any order 𝑁 . At intermediate 𝜃 angles, they present more exotic distributions
(see Fig. 47). Among many interesting properties, the HLG modes have an exact Wigner
distribution function (CALVO, 2005; CALVO; PICÓN; BAGAN, 2006).

Note that the HLG mode, defined on the generalized Poincaré sphere, 𝒪𝑔(ℓ,𝑁), is a
superposition of multiple LG modes with the same order 𝑁 , but it can also be seen as a
superposition of modes belonging to different OAM Poincaré spheres with order 𝑁 , 𝒪(𝜇, (𝑁−

|𝜇|)/2). In terms of the modes 𝜓𝑙,𝑝, we can write:

Ψℓ,𝑁(𝜃, 𝜑) = 𝑖
ℓ−𝑁

2

⎛⎝𝜀𝑁𝐶
0
ℓ,𝑁(𝜃, 𝜑)𝑢0,𝑁/2 +

𝑁∑︁
𝜇=1−𝜀𝑁

𝑒𝑖 𝜇
2 𝜑𝛼𝜇𝜓𝜇,(𝑁−𝜇)/2(𝜃𝜇, 𝜑)

⎞⎠ , (4.73)

Figure 47 – Generalized Poincaré spheres for the Hermite-Laguerre-Gaussian modes. (a) 𝒪𝑔(3, 3) and (b)
𝒪𝑔(2, 4). Insets show the intensity profiles on specific points of the spheres.

Source: The author (2024).
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where 𝜀𝑁 = [1 − mod(𝑁, 2)], 𝛼𝜇 = (|𝐶𝜇
ℓ,𝑁(𝜃, 0)|2 + |𝐶−𝜇

ℓ,𝑁(𝜃, 0)|2) 1
2 , and the modified po-

lar angle is 𝜃𝜇 = 2 tan−1[𝐶−𝜇
ℓ,𝑁(𝜃, 0)/𝐶𝜇

ℓ,𝑁(𝜃, 0)]. The lowest order modes on the OAM and
generalized spheres coincide, Ψ1,1 = 𝜓1,0.

Note that Eq. (4.73 has the same form as Eq. (4.66), and thus the FWM signal ℰ2 induced
as a result of the interaction between 𝑢𝑎 = Ψℓ,𝑁(𝜃, 𝜑) and 𝑢𝑏 = 𝑢0,0 can be expressed as in
Eq. (4.67):

ℰ2 =
∑︁

𝑝

⎛⎝𝑑𝑝𝑢0,𝑝 +
𝑁∑︁

𝜇=1−𝜀𝑁

𝑐𝜇,𝑝𝜓𝜇,𝑝(𝜋 − 𝜃𝜇, 𝜑)
⎞⎠ , (4.74)

where we neglected the global factor 𝑖 ℓ−𝑁
2 , and the coefficients are:

𝑑𝑝 = 𝜀𝑁𝐶
0
ℓ,𝑁(𝜃, 𝜑)Λ0000

00𝑁/2,𝑝, (4.75)

𝑐𝜇,𝑝 = 𝑒𝑖 𝜇
2 𝜑𝛼𝜇Λ00−𝜇𝜇

00(𝑁−𝜇)/2,𝑝. (4.76)

Therefore, by separating the different OAM PS contributions of the generalized HLG mode,
the geometrical interpretation of the FWM process generating the field ℰ2 can be applied, and
the reflection symmetry holds valid in each individual sphere.

4.3.3 Pump fields as independent Poincaré spheres

Let us now investigate a FWM process driven by the product 𝑢𝑎𝑢𝑎′𝑢*
𝑏 , where we have two

independent Poincaré spheres, 𝑢𝑎 = 𝜓𝑙,𝑞(𝜃, 𝜑), 𝑢𝑎′ = 𝜓𝑙′,𝑞′(𝜃′, 𝜑′), and the stimulated field is
an arbitrary LG mode 𝑢𝑏 = 𝑢𝑚,𝑛. The product 𝑢𝑎𝑢𝑎′ can be written as:

𝑢𝑎𝑢𝑎′ = 𝜓𝑙,𝑞(𝜃, 𝜑)𝜓𝑙′,𝑞′(𝜃′, 𝜑′),

= cos 𝜃2 cos 𝜃
′

2 𝑢𝑙,𝑞𝑢𝑙′,𝑞′ + 𝑒𝑖𝜑′ cos 𝜃2 sin 𝜃
′

2 𝑢𝑙,𝑞𝑢−𝑙′,𝑞′+

+ 𝑒𝑖𝜑 sin 𝜃2 cos 𝜃
′

2 𝑢−𝑙,𝑞𝑢𝑙′,𝑞′ + 𝑒𝑖(𝜑+𝜑′) sin 𝜃2 sin 𝜃
′

2 𝑢−𝑙,𝑞𝑢−𝑙′,𝑞′ . (4.77)

The full overlap integral (including the longitudinal integration) in this case is:

𝒜ℓ
𝑝 = cos 𝜃2 cos 𝜃

′

2 𝒜
𝑙𝑙′𝑚ℓ
𝑞𝑞′𝑛𝑝 + 𝑒𝑖𝜑′ cos 𝜃2 sin 𝜃

′

2 𝒜
𝑙,−𝑙′𝑚ℓ
𝑞𝑞′𝑛𝑝 +

+ 𝑒𝑖𝜑 sin 𝜃2 cos 𝜃
′

2 𝒜
−𝑙𝑙′𝑚ℓ
𝑞𝑞′𝑛𝑝 + 𝑒𝑖(𝜑+𝜑′) sin 𝜃2 sin 𝜃

′

2 𝒜
−𝑙,−𝑙′𝑚ℓ
𝑞𝑞′𝑛𝑝 . (4.78)

We recall that, in principle, the radial spectrum is unrestricted, and thus multiple 𝑝 orders can
be generated. To proceed, let us consider 𝑚 = 0, i.e., 𝑢𝑏 given by a pure radial mode. In this
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case, it is straightforward to identify the Poincaré sphere modes at the output. We may write:

𝒜ℓ
𝑝 = 𝐴𝒜𝑙𝑙′0ℓ

𝑞𝑞′𝑛𝑝 +𝐵𝒜𝑙,−𝑙′0ℓ
𝑞𝑞′𝑛𝑝 + 𝐶𝒜−𝑙𝑙′0ℓ

𝑞𝑞′𝑛𝑝 +𝐷𝒜−𝑙,−𝑙′0ℓ
𝑞𝑞′𝑛𝑝 , (4.79)

with the coefficients

𝐴 = cos(𝜃/2) cos(𝜃′/2), (4.80)

𝐵 = 𝑒𝑖𝜑′ cos(𝜃/2) sin(𝜃′/2), (4.81)

𝐶 = 𝑒𝑖𝜑 sin(𝜃/2) cos(𝜃′/2), (4.82)

𝐷 = 𝑒𝑖(𝜑+𝜑′) sin(𝜃/2) sin(𝜃′/2). (4.83)

The first and fourth terms in Eq. (4.79) are associated with the generation of modes belonging
to Poincaré spheres 𝒪(|𝑙 + 𝑙′|, 𝑝), while the middle terms are related with the generation of
modes belonging to Poincaré spheres 𝒪(|𝑙 − 𝑙′|, 𝑝), and we may write:

ℰ𝑎+𝑎′+𝑏 =
∑︁

𝑝

{︁
𝐴𝑝𝜓𝑙+𝑙′,𝑝(𝜗3, 𝜙3) + 𝑒𝑖𝜑′

𝐵𝑝𝜓𝑙−𝑙′,𝑝(𝜗4, 𝜙4)
}︁
, (4.84)

where 𝐴𝑝 = 𝒜𝑙𝑙′0,𝑙+𝑙′

𝑞𝑞′𝑛𝑝 = 𝒜−𝑙,−𝑙′0,−𝑙−𝑙′

𝑞𝑞′𝑛𝑝 , 𝐵𝑝 = 𝒜𝑙,−𝑙′0,𝑙−𝑙′

𝑞𝑞′𝑛𝑝 = 𝒜−𝑙,𝑙′0,𝑙′−𝑙
𝑞𝑞′𝑛𝑝 , and the angles (𝜗3, 𝜙3),

(𝜗4, 𝜙4) are:

𝜗3 = 2 tan−1 (tan(𝜃/2) tan(𝜃′/2)) , 𝜙3 = 𝜑+ 𝜑′, (4.85)

𝜗4 = 2 tan−1 (tan(𝜃/2) cot(𝜃′/2)) , 𝜙4 = 𝜑− 𝜑′. (4.86)

It can be readily verified that when (𝜃′, 𝜑′)→ (𝜃, 𝜑), the relations (4.85) become those shown
in Eq. (4.46), but we still have the possibility of working with two independent spheres (𝑙 ̸= 𝑙′,
𝑞 ̸= 𝑞′). For relations (4.86), in this case we obtain (𝜗4, 𝜙4)→ (𝜋/2, 0), i.e., the second term
of the sum in Eq. (4.84) becomes 1√

2𝑒
𝑖𝜑𝐵𝑝(𝑢𝑙−𝑙′,𝑝 + 𝑢−(𝑙−𝑙′),𝑝). On the other hand, if 𝑙 = 𝑙′,

the sphere associated with the OAM difference (𝑙 − 𝑙′) is not well-defined anymore, and we
may rewrite the FWM field (4.84) as:

ℰ𝑎+𝑎′+𝑏 =
∑︁

𝑝

{𝐴𝑝𝜓2𝑙,𝑝(𝜗3, 𝜙3) + 𝐶𝑝(𝜃, 𝜑; 𝜃′, 𝜑′)𝑢0,𝑝} , (4.87)

where now

𝐶𝑝(𝜃, 𝜑; 𝜃′, 𝜑′) = 𝒜𝑙,−𝑙00
𝑞𝑞′𝑛𝑝

[︁
𝑒𝑖𝜑′ cos(𝜃/2) sin(𝜃′/2) + 𝑒𝑖𝜑 sin(𝜃/2) cos(𝜃′/2)

]︁
, (4.88)

and for (𝜃′, 𝜑′)→ (𝜃, 𝜑), the term inside square brackets becomes 𝑒𝑖𝜑 sin 𝜃, equivalent to the
case in Eq. (4.53). Thus, we see that the analysis we applied in the previous Section can be
easily extended to more complicated scenarios.
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4.3.4 Extended-medium regime – restrictions imposed by the Gouy phase-matching

In this section we explore a few outcomes predicted in the extended-medium regime. It
is not an easy task to achieve this condition in the experiment, especially in the degenerate
setting, where we can only count on the directions of the wave-vectors, and the polarizations
of the fields, to filter the generated light output. We will revisit some of the scenarios we
considered up to this point. Recalling what we saw in Chapter 2, when 𝐿/𝑧𝑅 → ∞, for the
full overlap integral 𝒜𝑙𝑙′𝑚ℓ

𝑞𝑞′𝑛𝑝 to be nonzero, it must satisfy simultaneously the OAM conservation
and the Gouy phase-matching (GPM) conditions:

ℓ = 𝑙 + 𝑙′ −𝑚, (4.89)

𝑝 = 𝑞 + 𝑞′ − 𝑛+ 1
2(|𝑙|+ |𝑙′| − |𝑚| − |ℓ|). (4.90)

The GPM condition automatically narrows the radial spectrum of the FWM signal to a single
possible value. However, this may not be so easily satisfied in some cases. Let us consider
the situation studied in Section 4.3.1, where we looked at the two FWM signals ℰ1 and ℰ2,
driven by 𝑢𝑎 = 𝜓𝑙,0(𝜃, 𝜑), and 𝑢𝑏 = 𝑢0,0. Taking into account now the fact that we need to
integrate on the longitudinal coordinate over the medium extension 𝐿, we rewrite Eqs. (4.44)
and (4.45) as:

ℰ1 =
∑︁

𝑝

{︁
𝑎𝑝𝜓2𝑙,𝑝(𝜗1, 𝜙1) + 𝑒𝑖𝜑 sin 𝜃 𝑐𝑝𝑢0,𝑝

}︁
, (4.91)

ℰ2 =
∑︁

𝑝

𝑏𝑝𝜓𝑙,𝑝(𝜗2, 𝜙2), (4.92)

where the transformed angles are not affected, and now the coefficients are given by the full
overlap integrals:

{𝑎𝑝, 𝑏𝑝, 𝑐𝑝} =
{︁
𝒜𝑙𝑙0,2𝑙

000𝑝 ,𝒜
00,−𝑙𝑙
000𝑝 ,𝒜𝑙,−𝑙00

000𝑝

}︁
. (4.93)

We emphasize that since we are not in a thin-medium setting, we cannot change between
bases with different beam waists. Now, for 𝐿/𝑧𝑅 →∞, we must have:

{𝑎𝑝, 𝑏𝑝, 𝑐𝑝} → {𝑎0, 𝑏0, 𝑐𝑙}, (4.94)

since these are the only coefficients that comply with the GPM requirement, according to Eq.
(4.90), and we rewrite the FWM fields as

ℰ1 = 𝑎0𝜓2𝑙,0(𝜗1, 𝜙1) + 𝑒𝑖𝜑 sin 𝜃 𝑐𝑙𝑢0,𝑙, (4.95)

ℰ2 = 𝑏0𝜓𝑙,0(𝜗2, 𝜙2). (4.96)
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We then see the main difference with respect to the result obtained previously [Eqs. (4.53)
and (4.54)]: the radial spectrum is automatically restricted on the basis of modes with waist
𝑤0 to 𝑝 = 0 for the PS components of both fields ℰ1 and ℰ2, and to 𝑝 = 𝑙 for the zero TC
component of ℰ1. The Table 1 shows the bounds to the radial index 𝑝 contributing to the field
ℰ1 in the thin- and extended-medium regimes.
Table 1 – Synthesis of the 𝑝 values constituting the radial spectrum of signal ℰ1 in the thin- and extended-

medium regimes, when the pump beams are given by OAM PS modes 𝜓𝑙,0(𝜃, 𝜑), and the corre-
sponding mode bases in which these selection rules are verified.

Medium length ℰ1 radial spectrum Comment
Thin, 𝐿/𝑧𝑅 ≪ 1 0 ≤ 𝑝 ≤ |𝑙| Only on the reduced waist basis, 𝑤̃ = 𝑤0/

√
3

Extended, 𝐿/𝑧𝑅 ≫ 1 𝑝 = |𝑙| Automatically on the input waist basis, 𝑤0
Source: The author (2024).

Note that the radial integral in the coefficient 𝑐𝑙 falls onto the case we detailed in Section
2.3.3.4, and it is therefore equal to zero for odd 𝑙 values [see Eq. (2.177)]:

𝑐𝑙 ∝ ℛ𝑙,−𝑙00
000𝑙

odd 𝑙= 0. (4.97)

With this, we obtain a peculiar dependence of the non-vortex component of ℰ1 with the parity
of the pump Poincaré sphere order 𝑁 = 𝑙. If 𝑁 is even, we will have a contribution from
the 𝑢0,𝑙 radial mode; but if 𝑁 is odd, we obtain a pure OAM PS mode 𝜓2𝑙,0 at the output.
We must emphasize that this is only true in a degenerate configuration. This is the reason
why, in our configuration, we expect to obtain qualitatively different results with respect to
those obtained in Ref. (WALKER; ARNOLD; FRANKE-ARNOLD, 2012), where the nondegenerate
FWM by amplified spontaneous emission scheme was used. More specifically, the zero OAM
component of the output superposition is completely suppressed when the incident pumps are
given by combinations of odd valued ±𝑙. The Table 2 presents the combinations of LG modes
contributing to the total FWM field driven by the pumps shown in Fig. 4 of Ref. (WALKER;

ARNOLD; FRANKE-ARNOLD, 2012), and the corresponding results considering a degenerate
setting. In Fig. 48 we show the FWM intensity profiles obtained in both settings for all cases
#1 − 5 of Table 2. We highlight that all images are up to scale, and this evidences the
fact that in the cascade configuration, the generated blue light field emerges with a smaller
overall size with respect to the pump beam size, as compared to the degenerate case. Namely,
𝑤0,B = 𝑤0/𝜉B, with 𝜉B =

√︁
780/420 ≈ 1.36, and 𝑤0,deg = 𝑤0.

Let us now take a closer look at signal ℰ2. It is interesting to note that in this case, the
generation of signal ℰ2 is suppressed, 𝑏0 → 0, since the only radial index for the coefficient
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Table 2 – Comparison between the output mode superpositions obtained in the extended-medium regime
(𝐿/𝑧𝑅 →∞) for the nondegenerate FWM scheme of Ref. (WALKER; ARNOLD; FRANKE-ARNOLD,
2012) and in the degenerate FWM configuration considered in our work. For #1, 5, where the
pump is composed of odd ±𝑙, the contribution from the radial mode 𝑢0,𝑙 to the FWM field in the
degenerate setting is exactly zero.

# Pump mode Nondegenerate (Walker, 2012) Degenerate
1 1√

2(𝑢1,0 + 𝑢−1,0) 0.52(𝑢2,0 + 𝑢−2,0)− 0.68𝑢0,1
1√
2(𝑢2,0 + 𝑢−2,0)

2 1√
2(𝑢1,0 + 𝑢−2,0) 0.66𝑢2,0 + 0.53𝑢−4,0 − 0.53𝑢−1,1 0.77𝑢2,0 + 0.33𝑢−4,0 + 0.54𝑢−1,1

3 1√
2(𝑢2,0 + 𝑢−2,0) 0.66(𝑢4,0 + 𝑢−4,0) + 0.37𝑢0,2 0.46(𝑢4,0 + 𝑢−4,0)− 0.76𝑢0,2

4 1√
2(𝑢2,0 + 𝑢−3,0) 0.74𝑢4,0 + 0.63𝑢−6,0 + 0.22𝑢−1,2 0.73𝑢4,0 + 0.33𝑢−6,0 − 0.60𝑢−1,2

5 1√
2(𝑢3,0 + 𝑢−3,0) 0.70(𝑢6,0 + 𝑢−6,0)− 0.11𝑢0,3

1√
2(𝑢6,0 + 𝑢−6,0)

Source: The author (2024).

Figure 48 – Comparison between the FWM intensity profiles obtained in the extended-medium regime,
for the nondegenerate setting of Ref. (WALKER; ARNOLD; FRANKE-ARNOLD, 2012), and those
predicted for a degenerate situation.

Source: The author (2024).

𝒜00,−𝑙𝑙
000𝑝 that complies with Eq. (4.90) is negative: 𝑝 = −|𝑙|, which is not allowed. To obtain

an output in the direction (2k𝑏−k𝑎), the GPM condition for this overlap integral must result
in positive 𝑝 values. To this end, we must resort to a non-Gaussian 𝑢𝑏 field. Let us consider
𝑢𝑏 = 𝑢0,𝑛

2, and that the PS for 𝑢𝑎 may carry a nonzero radial index, 𝜓𝑙,𝑞. In this manner, we
may rewrite the FWM fields as:

ℰ1 = 𝒜𝑙𝑙0,2𝑙
𝑞𝑞𝑛𝑃𝜓2𝑙,𝑃 (𝜗1, 𝜙1) + 𝑒𝑖𝜑 sin 𝜃𝒜𝑙−𝑙00

𝑞𝑞𝑛𝑃 ′𝑢0,𝑃 ′ , (4.98)

ℰ2 = 𝒜00,−𝑙,𝑙
𝑛𝑛𝑞𝑃 ′′𝜓𝑙,𝑃 ′′(𝜗2, 𝜙2), (4.99)

where 𝑃 = 2𝑞 − 𝑛, 𝑃 ′ = 2𝑞 − 𝑛+ |𝑙|, 𝑃 ′′ = 2𝑛− 𝑞 − |𝑙|. Another curious selection rule arises
2 If 𝑢𝑏 carries topological charge, the analysis is still possible, but the definition of the output PS may not

be as straightforward.



128

here. The radial integral

ℛ00±𝑙∓𝑙
𝑛𝑛𝑞𝑃 ′′ =

∫︁ ∞

0
𝜌2|𝑙|

[︁
𝐿0

𝑛(𝜌2)
]︁2
𝐿|𝑙|

𝑞 (𝜌2)𝐿|𝑙|
𝑃 ′′(𝜌2)𝑒−2𝜌2

𝜌𝑑𝜌, (4.100)

is null for certain combinations of the indices (𝑛, 𝑞, 𝑙), even if the resulting 𝑃 ′′ = 2𝑛− 𝑞 − |𝑙|

has an allowed (positive) value. The FWM field ℰ2 is therefore completely suppressed. This
restriction is not as clear as the selection rule obtained for the case with structured pumps with
odd topological charges with opposite handedness [Eq. (2.176)], that we used previously. By
analyzing the calculated values of the normalized overlap integral 𝒜00±𝑙∓𝑙

𝑛𝑛𝑞𝑃 ′′ = 𝒜00±𝑙∓𝑙
𝑛𝑛𝑞𝑃 ′′ /𝒜0000

0000

for several cases, we verify that it is null for odd 𝑙, which also makes 𝑁𝑙,𝑞 odd.
Restrictions of this kind are not exclusive to situations involving PS modes. Much simpler

scenarios, even ones involving pure LG modes, may result in the complete suppression of one of
the signals ℰ1 or ℰ2. As a simple example, consider the FWM induced by 𝑢𝑎 = 𝑢𝑙,0, 𝑢𝑏 = 𝑢0,0.
For signal ℰ2 the OAM conservation imposes the output TC to be ℓ = −𝑙, and the GPM
condition restricts the output radial index to be 𝑝 = −|𝑙|, which is not possible. If 𝑢𝑏 has a
possibly nonzero radial index, 𝑢𝑏 = 𝑢0,𝑛, then 𝑝 = 2𝑛− |𝑙|, and the ℰ2 output is expected to
be generated for 2𝑛 ≥ |𝑙|.

It must be noted that in our experiment it is extremely difficult to access the extended-
medium regime. This is because the degenerate frequency configuration only leaves the prop-
agation direction and polarization degrees of freedom to work with in order to filter the FWM
signals. Regarding polarization, we know that with input orthogonal linear polarizations, we
can use polarizing beam splitters to separate the signal pairs at the output. But these compo-
nents have their success rate, measured by the extinction ratio. Since the pumps are orders of
magnitude stronger than the FWM signals, in practice it is not possible to completely elimi-
nate the scattered light arriving at the detection positions. This is why we always work with
non co-linear input beams. The small angle between their wave-vectors allows to separate the
four output signals. At a significant propagation distance, it becomes easier to detect the two
FWM signals. This works well for the thin-medium regime, but it becomes troublesome when
we try to achieve the extended-medium regime, as the necessary separation angle makes it im-
possible to maintain the physical overlap of the pump beams inside the cell across a significant
extension.
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5 SPATIAL CORRELATIONS IN FWM

A multitude of processes take place when two driving laser beams intersect inside an
atomic sample and generate the two FWM outputs. To track and account for all of them is
a tough task. To this day in our lab we looked at phenomena associated with the spectral,
temporal, and more recently, the spatial degrees of freedom of light. In general, and in the
most fundamental aspects of the light-matter interaction, all of these degrees of freedom are
coupled to one another. What we usually do is to perform approximations that allow us to
decouple the degrees of freedom we want to focus on, from all the others.

So far in this Thesis we explored the two-channel FWM configuration looking at the outputs
independently. This allowed to establish and verify well-defined rules dictating the transfer of
spatial structure of the input to the output light fields. A natural sequence to our studies, and
one that aligns with the current advances in the area, is to investigate the correlations between
the participating fields. In particular, the spatial correlations associated with the multi-mode
structure of the light fields.

The study of correlations, in a general sense, has been of paramount importance in the
development of modern physics. Spatial correlations of the photon pairs generated in para-
metric down-conversion have been exhaustively investigated in the last decades (WALBORN

et al., 2010). In four-wave mixing, it has been shown that the entanglement, measured by
the level of multi-mode squeezing, between the generated signal pair presents a transverse
position dependence (BOYER et al., 2008). The squeezing measured when the entirety of the
output signals were detected can be seen as an overall measure of the localized squeezing
between the smaller regions of the beams. This can only be achieved in the presence of a
spatially multi-mode light state (KOLOBOV, 2007). The idea of studying the dependence of
squeezing on the different regions of the generated beams was also employed in other work
from this same group (BOYER; MARINO; LETT, 2008; MARINO et al., 2008). In a 2018 work, the
spiral bandwidth of cascade FWM generating blue light in Rb vapor was studied (OFFER et al.,
2018), and it was shown that the OAM states of the output light fields are entangled. More
recently, in Ref. (NIRALA et al., 2023), it was shown that the spatial information carried by the
driving pump field can be transferred to the spatial cross-correlation between the generated
twin beams. In this manner, to successfully access the information carried by the pump field,
one must simultaneously detect the probe and conjugate signals.
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It is well-known that in a single FWM process, it is expected that the spontaneously
generated probe and conjugate signals are spatially correlated. The description in terms of the
biphoton state, well-established in PDC within the context of structured light (WALBORN et al.,
2010), encompasses these spatial correlations in FWM as well (NIRALA et al., 2023). In a two
FWM channel setting, such as ours, where we have four light fields in total, it is reasonable
to expect correlations between the possible pairs of signals. However, the detection of such
correlations can be challenging, and we don’t have experience in this area.

What we present in this Chapter, as the last bit of this Thesis, is our attempt to comprehend
fundamental aspects concerning spatial correlations in FWM, and to establish guiding lines for
what we believe may be interesting to explore in the future.

5.1 PHASE FLUCTUATIONS OF DIODE LASERS AND TEMPORAL CORRELATIONS

Our investigations of correlations in FWM actually started with the study of temporal
correlations between the light beams participating in the process. These correlations can be
explained semi-classically, and they originate from the conversion of the phase-noise inherent
to diode lasers, to amplitude-noise, as a result of the interaction with the atomic medium
(ARIUNBOLD et al., 2010). In this context, in a recent work (ALMEIDA; MOTTA; VIANNA, 2023)
we showed that the intensity correlations between transmitted signals, and between FWM
signals, oscillate with a frequency dictated by the generalized Rabi frequency. We verified this
experimentally by varying the detuning of the incident fields and looking at the dominant
oscillation frequency of the intensity fluctuation cross-correlation curves 𝑔(2)(𝜏). We were
able to reproduce this behavior in the calculations by numerically solving the optical Bloch’s
equations taking into account the fluctuating phase 𝜑(𝑡) of the driving fields:

E𝑖(r, 𝑡) = 1
2𝜖𝑖ℰ𝑖𝑒

−𝑖[k𝑖·r−𝜔𝑖𝑡+𝜑𝑖(𝑡)] + c.c., (5.1)

where the subscript 𝑖 = 𝑎, 𝑏 labels the pump fields. For the calculations we considered beams
with uniform spatial profiles. The random phase 𝜑𝑖(𝑡) is described by a Wiener-Levy diffusion
process, and satisfies

⟨𝜑̇𝑖(𝑡)𝜑̇𝑗(𝑡′)⟩ = 2𝐷𝛿𝑖,𝑗𝛿(𝑡− 𝑡′), (5.2)

where 𝐷 is the diffusion coefficient, and the bar indicates stochastic averaging. It is important
to note that we only expect correlations between the outgoing signals since we consider a
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single driving field, which is split into two beams, and therefore carry the same fluctuating
phase, 𝜑𝑎(𝑡) = 𝜑𝑏(𝑡) = 𝜑(𝑡). If the two beams originated from two different laser sources, the
fluctuations would be uncorrelated. The numerical solution to the OBEs with the stochastic
phase fluctuation of the pump beams yields the time varying elements of the atomic density
matrix 𝜌(𝑡). It can be said that the fluctuating phase acts as a driving term in the highly
coupled set of equations that describes the atomic response associated with the absorption
of transmitted signals and the generation of the FWM fields (and possibly other processes).
This can be seen as an explanation to the mechanism that converts the phase fluctuations to
intensity fluctuations as a result of the light-atom interaction. We can then use the coherences
associated with the generation of the FWM signal or the absorption of the pump beams, to
calculate the theoretical intensity correlation curves (ARIUNBOLD et al., 2010; ALMEIDA; MOTTA;

VIANNA, 2023).
The experiment consisted in passing the Gaussian laser beams 𝑎 and 𝑏 through the cold

atom cloud and detecting intensity time series of the transmitted and generated signals with
avalanche photo detectors (APD). Figure 49 illustrates the idea. To detect the fluctuations of
the transmitted beams, we need to work in a low intensity regime (too much power saturates
the medium, and the medium-driven amplitude fluctuations are not seen); while to generate
and detect the FWM signals we need high intensities. Due to this conflict between the intensity
regimes necessary to observe the fluctuations of the transmitted and FWM signals, it is not
possible to detect all of them simultaneously. Therefore, we cannot compute transmission-
FWM correlations. In Fig. 50(a) we show a 1µs interval of a 150µs time series of the intensity
fluctuations of the transmitted signals 𝑎 and 𝑏, while in Fig. 50(b) we show the corresponding
cross-correlation 𝑔(2)

𝑎,𝑏(𝜏), calculated taking into account the full time-series.
The intensity fluctuation correlation curves for both the experimental and numerical data

Figure 49 – Simplified scheme for the detection of the intensity fluctuation time-series of the transmision
and FWM signals.

Source: The author (2024).
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Figure 50 – (a) Measured time series of the intensity fluctuations of the two Gaussian beams, 𝑎 and 𝑏,
transmitted through the cold atom cloud. (b) Corresponding cross-correlation between the
intensity fluctuations. The two incident beams were detuned by 𝛿 ≈ −5 MHz, and their power
was 𝑃 ≈ 5 µW. The correlation at zero delay is ≈ 0.87.

Source: The author (2024).

are calculated via:

𝑔
(2)
𝑖,𝑗 (𝜏) = ⟨𝑓𝑖(𝑡)𝑓𝑗(𝑡+ 𝜏)⟩

[⟨𝑓 2
𝑖 (𝑡)⟩⟨𝑓 2

𝑗 (𝑡)⟩] 1
2
, (5.3)

where in our case 𝑓𝑖(𝑡) = 𝐼𝑖(𝑡)− ⟨𝐼𝑖⟩ denotes the intensity fluctuation of the signal 𝑖 around
the mean (DC) value ⟨𝐼𝑖⟩. In fact we can also subtract slow temporal envelopes to study only
the fast intensity fluctuations. Therefore, the correlation functions presented here satisfy the
bound −1 ≤ 𝑔(2)(0) ≤ 1, where positive, negative and null values indicate correlated, anti-
correlated, and uncorrelated signals, respectively. For the experimental results, 𝐼𝑖(𝑡) is given
by the measured intensity time-series, and for the theoretical results, 𝐼𝑖(𝑡) is connected to the
calculated atomic coherences. The time averaging of the product of two real functions of time
is defined as ⟨𝑓𝑖(𝑡)𝑓𝑗(𝑡 + 𝜏)⟩ ≡ 1

𝑇

∫︀ 𝑡+𝑇/2
𝑡−𝑇/2 𝑓𝑖(𝑡′)𝑓𝑗(𝑡′ + 𝜏)𝑑𝑡′, which for large sample times 𝑇 ,

with respect to the dominant frequencies of the signals 𝑓𝑖,𝑗, can be calculated by means of
their Fourier transforms, 𝑓𝑖,𝑗, as:

⟨𝑓𝑖(𝑡)𝑓𝑗(𝑡+ 𝜏)⟩ = 𝜋

𝑇
ℱ−1{𝑓𝑖(𝜔)𝑓 *

𝑗 (𝜔)}(𝜏) = 𝜋

𝑇
𝐺𝑖,𝑗(𝜏). (5.4)
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With this, we may write:

𝑔
(2)
𝑖,𝑗 (𝜏) = 𝐺𝑖,𝑗(𝜏)√︁

𝐺𝑖,𝑖(0)𝐺𝑗,𝑗(0)
. (5.5)

We can perform the same measurements using hot rubidium vapor as the interaction
medium. In this case, there are multiple velocity groups contributing to the interaction dy-
namics, contrary to the cold atom cloud where we essentially have atoms with zero velocity.
We are currently conducting a study on the influence of the non-negligible velocity distribution
on the behavior of the correlation curves. To demonstrate that the intensity fluctuations only
become correlated as a result of the light-atom interaction, we show in Fig. 51(a) the time
series and correlation curves obtained with no interaction medium. Furthermore, we show in
Fig. 51(b) the results obtained with a heated Rb sample as the nonlinear medium but using
a laser source that does not present the stochastic phase fluctuations. The fluctuations are
completely uncorrelated in both cases.

Figure 51 – Intensity time-series of transmitted signals and cross-correlation curves (a) without an inter-
action medium to promote the phase- to amplitude-noise conversion; and (b) with a heated
rubidium sample, but using a grating stabilized diode laser, which does not present stochastic
phase-fluctuations.

Source: The author (2024).

5.2 COUPLED SPATIAL AND TEMPORAL CORRELATIONS

One follow-up path was to explore possible spatial dependencies in these correlations. The
correlations between transmitted beams are much stronger and easier to detect in comparison
with the correlations between FWM signals. For this reason we started with the transmissions.
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The idea was to measure intensity time series, just like the ones we did originally, but with a
spatially resolved detection scheme. The spatial resolution is introduced by placing pinholes
with translation degrees of freedom in front of the detectors. Figure 52(a) illustrates this
detection scheme. In this manner, we can select the regions of the beam profile that will
impinge onto the detectors, and possibly distinguish between areas that carry stronger or
weaker correlations. This idea was taken from detection schemes that were employed to study
spatial correlations in the photon-pair generated in PDC (WALBORN et al., 2010). What we get
as a result is a the matrix 𝑔(2)

𝑎,𝑏(𝑋𝑎, 𝑋𝑏; 𝜏), that contains all of the correlation curves between
the signals measured when the pinholes were positioned at (𝑋𝑎, 𝑋𝑏), as represented in Fig.
52(b). The dimension of this correlation matrix is 𝑁𝑎×𝑁𝑏×𝑁𝜏 , where 𝑁𝑎, 𝑁𝑏 are the number
of positions where the pinholes are placed during the measurements, determining the spatial
resolution, and 𝑁𝜏 is the number of points on the time axis. Visualizing all of the information
in such a quantity is not simple. We are usually interested in some parameters that encompass
the behavior of the correlation curves, such as the Pearson coefficient, the width (or correlation
time) and the characteristic oscillation frequency. We can then define more convenient 𝑁𝑎×𝑁𝑏

matrices carrying these parameters at each position (𝑋𝑎, 𝑋𝑏). In Fig. 53 we show a result from
such a measurement performed in our cold atom setup. On the left we present the 𝑔(2) values
at 𝜏 = 0, and on the right we show the mean frequency ⟨𝑓⟩ of the Fourier distribution, as
functions of the pinhole positions in front of the transmitted beams 𝑎 and 𝑏. The diameters
of the beams near the detection position was ∼ 2 mm, and the diameter of the pinholes was
500 µm.

We must highlight, however, that the spatial correlations studied in PDC originate essen-
tially from the conservation of transverse linear momentum, and not from the stochastic phase
fluctuations of the input light source. Another important distinction that must be made is that
the correlations in PDC and FWM are expected between conjugate signal pairs, i.e., light fields
that are emitted in a single parametric process. This is not the case of the transmission signals
we are studying, and neither of the two FWM signals. Nonetheless, we wondered if a coupling
between spatial and temporal correlations could be verified in our experiment. We believe that
a signature of spatial dependencies in the correlations we measure would give us information
about the spatial dependence of the phase fluctuation itself. For example, if instead of being
a uniform quantity over the transverse beam profile, it may be expressed as 𝜑(r, 𝑡), indicating
a coupling between the spatial and temporal degrees of freedom. Or even, if there is any kind
of cross-talk between the two incident light beams mediated by the atomic sample that can



135

Figure 52 – (a) Depiction of the spatially resolved detection of the intensity fluctuation time-series of the
transmitted signals. The pinholes with a translation degree of freedom in the horizontal direction
select the regions of the beam profile that impinge onto the detectors. (b) Representation of
the resulting correlation matrix 𝑔(2)

𝑎,𝑏(𝑋𝑎, 𝑋𝑏; 𝜏). The different colors of the correlation curves
are meant to aid the visualization.

Source: The author (2024).

Figure 53 – Pearson coefficient 𝑔(2)(𝜏 = 0) (left) and mean frequency of the Fourier spectrum ⟨𝑓⟩ (right) of
the fluctuation correlation functions 𝑔(2) obtained by detecting localized portions of the beams
transmitted through the cold atom cloud, as a function of the pinhole positions (𝑋𝑎, 𝑋𝑏). In all
of the measurements, the detuning was 𝛿 ≈ −5 MHz and the power in each beam was 𝑃 ≈ 5
µW.

Source: The author (2024).

be revealed by the correlations between the localized portions of the beam profiles.
From our experience with this arrangement both in hot and cold samples, we know that

depending on the pump intensities, the two light fields may influence one-another. One example
is the absorption spectra of the transmitted signals when we have a single beam passing
through the sample, compared to when we make the two beams intersect inside the medium.
Modifications can be verified when we compare the two cases, and they become more evident
for higher intensities. Also, small differences can be noted in the aforementioned correlation
curves when we compare these two cases. We believe these modifications may be caused by
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linear and nonlinear effects. The strong beams influence the effective index of refraction in
an intricate way, and this influence may be position-dependent by itself. When we have a
spatial overlap between the two beams, we can argue that some of their power is allocated to
participate in the four-wave mixing processes. The discussion so far only considered Gaussian
beams, but we can also reason considering any other structure of the pump beams, which was
our initial objective.

5.3 QUANTUM SPATIAL CORRELATIONS IN FWM

The quantum theory for spatial correlations in FWM in the regime of a classical pump
bears great similarity with the theory for parametric-down conversion (PDC), which is already
well-established (WALBORN et al., 2010). In very simple terms, in both processes a pump beam
excites the nonlinear medium and a pair of correlated photons is generated. The difference
is that in PDC, a single photon is absorbed from the pump, while in FWM two photons are
absorbed. Of course, this is a general comparison from a fundamental point of view, and more
specific aspects must be considered when studying each process in their many configurations.
Nonetheless, many concepts and calculations translate almost effortlessly to FWM. An inter-
esting capability thoroughly explored in PDC is to engineer the spatial correlations between
the photon-pair by modifying the pump structure. Despite that, to the best of our knowledge,
only recently this approach was employed to encode information in the spatial correlations
between the FWM twin-beams with a high degree of control (NIRALA et al., 2023).

In this section, we explore the quantum-mechanical picture of FWM induced by structured
light, evidencing the multi-spatial mode nature of the generated light state, and the associated
spatial correlations. We start with a simplified quantization procedure of a paraxial optical
field, which so far has only been treated a classical quantity. We then proceed to establish the
nonlinear interaction Hamiltonian describing the FWM process. The solution to Schrödinger’s
equation with the interaction Hamiltonian leads to the biphoton state, which can be cast in the
position and momentum (wave-vector) spaces. We discuss both descriptions. We calculate the
spatial coincidence count rate with respect to the biphoton state, and show that the transfer
of the pump angular spectrum to the coincidence count profile, a well-known result in PDC
(MONKEN; RIBEIRO; PÁDUA, 1998), is also verified in FWM. This is an expected result, due to
the similarity in the description of the two processes. Lastly, we briefly discuss concepts such
as the spiral bandwidth of the biphoton state and other measures of entanglement.
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5.3.1 Quantization of the electromagnetic field in the paraxial regime

To establish a quantum description of the FWM process that contemplates the spatial de-
grees of freedom of light, we must represent the paraxial light fields within a second-quantized
framework. Therefore, here we outline the quantization of a paraxial electromagnetic field. For
a more rigorous procedure, one may consult Refs. (AIELLO; WOERDMAN, 2005; CALVO; PICÓN;

BAGAN, 2006). We start with the electric field in free-space expanded in terms of plane-waves1:

E(r, 𝑡) = −𝑖
∑︁
𝜎,k

√︃
𝜔k

2𝜀0𝑉

(︂
𝜖𝜎,ka𝜎,k𝑒

−𝑖(k·r−𝜔k𝑡) − 𝜖*
𝜎,ka

*
𝜎,k𝑒

𝑖(k·r−𝜔k𝑡)
)︂
, (5.6)

where 𝑉 is the volume of the region in space, 𝜖𝜎,k, with 𝜎 = 1, 2, denotes a particular
polarization basis orthogonal to the wave-vector k, a𝜎,k is the complex amplitude of the
field component with polarization 𝜎 and wave-vector k, and 𝜔k = 𝑐|k| is the frequency.
We separate the electric field into positive and negative frequency components, E(r, 𝑡) =

E(+)(r, 𝑡) + E(−)(r, 𝑡), where:

E(+)(r, 𝑡) = −𝑖
∑︁
𝜎,k

√︃
𝜔k

2𝜀0𝑉
𝜖𝜎,ka𝜎,k𝑒

−𝑖(k·r−𝜔k𝑡), (5.7)

and E(−) = [E(+)]*. Now we write the wave-vector as k = 𝑘e𝑧 + q, where q is the transverse
wave-vector (q · e𝑧 = 0). In this manner, we obtain:

E(+)(r, 𝑡) = −𝑖√
2𝜀0𝑉

∑︁
𝜎,k

√
𝜔k𝜖𝜎,ka𝜎,k𝑒

−𝑖(𝑘𝑧+q·r⊥−𝜔k𝑡). (5.8)

Now, the transverse position-momentum exponential 𝑒𝑖q·r⊥ can be expressed in terms of the
following closure relation between the LG mode and its angular spectrum:

𝑒𝑖q·r⊥ =
∫︁∫︁

𝑒𝑖q·r′
⊥𝛿(2)(r⊥ − r′

⊥)𝑑2r′
⊥,

=
∑︁
ℓ,𝑝

∫︁∫︁
𝑒𝑖q·r′

⊥𝑢ℓ,𝑝(r′
⊥, 𝑧)𝑢*

ℓ,𝑝(r⊥, 𝑧)𝑑2r′
⊥,

= 2𝜋
∑︁
ℓ,𝑝

ℒℓ,𝑝(q, 𝑧; 𝑘)𝑢*
ℓ,𝑝(r⊥, 𝑧; 𝑘), (5.9)

where the completeness relation of the LG modes (Eq. (2.52)) was used. Equation (5.9) is
useful to us because it allows to change from a momentum representation on the continuous
variable q, to a paraxial mode representation on the discrete indices (ℓ, 𝑝). Substituting into
1 More generally, we can perform the described procedure to quantize the vector potential A in a completely

analogous manner.



138

Eq. (5.8), we get:

E(+)(r, 𝑡) = −2𝜋𝑖√
2𝜀0𝑉

∑︁
k

∑︁
𝜎,ℓ,𝑝

√
𝜔k𝜖𝜎,ka𝜎,kℒ*

ℓ,𝑝(q, 𝑧; 𝑘)𝑢ℓ,𝑝(r; 𝑘)𝑒−𝑖(𝑘𝑧−𝜔k𝑡). (5.10)

Now, considering a continuous spectrum of wave-vectors, the summation becomes an integral
as: ∑︁

k
→ 𝑉

(2𝜋)3

∫︁
𝑑3k, (5.11)

and separating the transverse and longitudinal integrals as ∫︀ 𝑑3k =
∫︀∫︀
𝑑2q

∫︀+∞
−∞ 𝑑𝑘, we can

write:

E(+)(r, 𝑡) = −𝑖
√︃
𝑉

2𝜀0

1
(2𝜋)2

∑︁
𝜎=1,2

∑︁
ℓ,𝑝

∫︁∫︁
𝑑2q

∫︁ ∞

−∞
𝑑𝑘

×
√
𝜔k𝜖𝜎,ka𝜎(q, 𝑘)ℒ*

ℓ,𝑝(q, 0)𝑢ℓ,𝑝(r⊥, 𝑧; 𝑘)𝑒−𝑖[𝑘(1+𝜗2
k)𝑧−𝑐|k|𝑡], (5.12)

where 𝜗k ≡ |q|/
√

2𝑘. In the paraxial limit, 𝜗k ≪ 1, and 𝜖𝜎,k ≃ 𝜖𝜎 (𝜖(*)
𝜎 · e𝑧 = 0), 𝜔k ≃ 𝑐𝑘 =

𝜔𝑘. We then define (CALVO; PICÓN; BAGAN, 2006)

a𝜎,ℓ,𝑝(𝑘) ≡ 1
(2𝜋)2

∫︁∫︁
a𝜎(q, 𝑘)ℒ*

ℓ,𝑝(q)𝑑2q, (5.13)

as the amplitude of a field component with polarization 𝜎 and wave-number 𝑘 that is described
by an LG mode with indices ℓ and 𝑝. Then, defining the re-scaled amplitudes 𝑎𝜎,ℓ,𝑝(𝑘) ≡
√
𝜔𝑘a𝜎,ℓ,𝑝(𝑘) we can write:

E(+)(r, 𝑡) = −𝑖
√︃
𝑉

2𝜀0

∑︁
𝜎,ℓ,𝑝

∫︁
𝑑𝑘 𝜖𝜎𝑎𝜎,ℓ,𝑝(𝑘)𝑢ℓ,𝑝(r; 𝑘)𝑒−𝑖(𝑘𝑧−𝜔𝑘𝑡). (5.14)

Starting with a general plane-wave expansion, Eq. (5.6), which satisfies the Helmholtz equa-
tion, we arrived at a superposition of field components propagating in the 𝑧 direction charac-
terized by polarization (𝜎), transverse mode satisfying the PWE (ℓ, 𝑝), and wave-number (𝑘).
The amplitudes 𝑎𝜎,ℓ,𝑝(𝑘), that give the weight of each component, in general couple all of the
mentioned degrees of freedom.

The electric field given by Eq. (5.14) is now suitable to become a quantum-mechanical
operator. To this end, we promote the complex amplitudes 𝑎(*) to bosonic annihilation and
creation operators as:

𝑎(*) →
√
ℏ 𝑎̂(†), (5.15)

which satisfy the commutation relations:

[𝑎̂𝜎,ℓ,𝑝(𝑘), 𝑎̂†
𝜎′,ℓ′,𝑝′(𝑘′)] = 𝛿𝜎,𝜎′𝛿ℓ,ℓ′𝛿𝑝,𝑝′𝛿(𝑘 − 𝑘′). (5.16)
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The electric field amplitude thus becomes an operator:

E(+) → Ê, (5.17)

E(−) → Ê†, (5.18)

and the photon number states can be represented as:

|{𝑛𝜎,ℓ,𝑝(𝑘)}⟩ ≡ |𝑛1, 𝑛2, ...⟩ ,

=
∏︁

𝑖

(𝑎̂†
𝑔𝑖

)𝑛𝑖

√
𝑛𝑖!
|0, 0, ...⟩ , (5.19)

where 𝑔𝑖 = {𝜎, ℓ, 𝑝; 𝑘}𝑖 labels a particular combination of polarization, paraxial mode indices,
and wave-number value, and 𝑛𝑖 is the number of photons in the mode 𝑔𝑖. The results are
analogous if one considers another paraxial basis {𝑢𝑚,𝑛}.

5.3.2 The nonlinear interaction Hamiltonian

We write the Hamiltonian of our system as 𝐻̂ = 𝐻̂0 + 𝐻̂𝐼 , where 𝐻̂0 = 𝐻̂A + 𝐻̂F is the
unperturbed Hamiltonian, taking into account the atomic, 𝐻̂A, and light field, 𝐻̂F = 𝜀0

2
∫︀
V(Ê† ·

Ê + h.c.)𝑑3r, contributions. Here Ê (Ê†) is the positive (negative) frequency component of
the total electric field operator of light. The interaction Hamiltonian can be written as:

𝐻̂𝐼 = 1
2

∫︁
V

(︁
Ê† · P̂ + h.c.

)︁
𝑑3r, (5.20)

where P̂ is the macroscopic polarization, composed of the linear and nonlinear polarizations,
P̂ = P̂𝐿 + P̂𝑁𝐿. In our configuration, where we have two incident fields, 𝑎 and 𝑏, interacting
to generate a four-wave mixing field, 𝑠, we have:

P̂𝐿 = 𝜖𝑠𝜀0𝜒
(1)𝐸̂𝑠, (5.21)

P̂𝑁𝐿 = 𝜖𝑠𝜀0𝜒
(3)𝐸̂2

𝑎𝐸̂
†
𝑏 . (5.22)

The linear and nonlinear polarizations lead to the linear and nonlinear contributions to the
Hamiltonian, 𝐻̂𝐼 = 𝐻̂𝐿 + 𝐻̂𝑁𝐿. The nonlinear term is the one we are interested in, and thus
we write:

𝐻̂𝐼 = 𝜀0

2

∫︁
V
𝑑3r

(︁
𝜒(3) · 𝐸̂†

𝑠𝐸̂𝑎𝐸̂
†
𝑏 𝐸̂𝑎 + h.c.

)︁
. (5.23)
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We consider that field 𝑎 is a strong pump with wave-vector k𝑎 parallel to the e𝑧 direction,
such that it can be written as a classical monochromatic wave of the form

𝐸̂𝑎(r, 𝑡)→ 𝐸𝑎(r, 𝑡) = ℰ0
𝑎𝒱(r)𝑒−𝑖(𝑘𝑎𝑧−𝜔𝑎𝑡), (5.24)

with 𝒱(r) = ∑︀
𝑙,𝑞 𝑐𝑙,𝑞𝑢𝑙,𝑞(r), ∑︀𝑙,𝑞 |𝑐𝑙,𝑞|2 = 1, and, for simplicity, ℰ0

𝑎 = 1. The stimulated and
generated fields, 𝑏 and 𝑠, are in turn regarded as operators, and we write them in the general
form:

𝐸̂(r, 𝑡) = −𝑖
∑︁

k

√︃
ℏ𝜔k

2𝜀0𝑉
âk𝑒

−𝑖(k·r−𝜔k𝑡), (5.25)

where â
(†)
k is the annihilation (creation) operator for a photon with wave-vector k, satisfying

[âk, â
†
k′ ] = 𝛿(3)(k − k′), and 𝜔k = 𝑐|k|. We write the wave-vectors as k = 𝑘 cos 𝜃e𝑧 + q,

with 𝜃 being the separation angle between the pump 𝑎 and seed 𝑏 fields in the experimental
configuration2. Note that no polarization labels are present, since we consider a well-defined
polarization for all fields: circular polarization, 𝜖𝑖 = 𝜎+, in a way that we may think of a
two-level atom. We can then write the Hamiltonian as:

𝐻̂𝐼 = − ℏ
4𝑉

∑︁
k1,k2

(︃
√
𝜔k1𝜔k2 â

†
k1
â†

k2
𝑒𝑖𝛿𝜔𝑡

∫︁
V
𝑑3r𝜒(3)𝒱2(r)𝑒−𝑖(2k𝑎−k1−k2)·r + h.c.

)︃
, (5.26)

where 𝛿𝜔 = 2𝜔𝑎 − 𝜔1 − 𝜔2. For simplicity, we define the re-scaled operators 𝑎̂†
k ≡
√
𝜔kâ

†
k, to

write:

𝐻̂𝐼 = − ℏ
4𝑉

∑︁
k1,k2

(︃
𝑎̂†

k1
𝑎̂†

k2
𝑒𝑖𝛿𝜔𝑡

∫︁ 𝐿/2

−𝐿/2
𝑑𝑧
∫︁∫︁

𝑑2r⊥𝜒
(3)V𝑒−𝑖Δ𝑘𝑧𝑒𝑖(q1+q2)·r⊥ + h.c.

)︃
, (5.27)

where V(r) = 𝒱2(r) is the pump function, and Δ𝑘 = 2𝑘𝑎 − (𝑘1 + 𝑘2) cos 𝜃 is the longitu-
dinal phase mismatch. Now we use the closure relation between LG modes and their angular
spectrum, Eq. (5.9), to rewrite the exponential 𝑒𝑖(q1+q2)·r⊥ . This is the first step to switch
from the continuous space of transverse momentum variables (q1,q2) to the discrete space of
paraxial mode indices. In this manner, we can write:

𝐻̂𝐼 = −ℏ𝜋2

𝑉

∑︁
k1,k2

∑︁
ℓ𝑏,𝑝𝑏

∑︁
ℓ𝑠,𝑝𝑠

(︃
𝑎̂†

k1
𝑎̂†

k2
ℒℓ𝑏,𝑝𝑏

(q1)ℒℓ𝑠,𝑝𝑠(q2)𝑒𝑖𝛿𝜔𝑡𝒜ℓ𝑏,ℓ𝑠
𝑝𝑏,𝑝𝑠

(k1,k2) + h.c.
)︃
, (5.28)

where

𝒜ℓ,𝑙
𝑝,𝑞(k1,k2) =

∫︁ 𝐿/2

−𝐿/2
𝑑𝑧 𝑒−𝑖Δ𝑘𝑧𝑒

𝑖(𝑘1𝜗2
k1

+𝑘2𝜗2
k2

)𝑧
∫︁∫︁

𝑑2r⊥𝜒
(3)(r;𝜔)V(r)𝑢*

ℓ,𝑝(r)𝑢*
𝑙,𝑞(r), (5.29)

2 We consider that the wave-vectors of the plane-wave modes of fields 𝑏 and 𝑠 are described in reference
frames rotated by the small angles ±𝜃 around the 𝑥-axis of the reference frame of field 𝑎.
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is the full spatial overlap integral. In what follows, we shall assume the paraxial condition
(|𝜗2

k𝑖
| = |q𝑖|2/2𝑘2

𝑖 ≪ 1) to be valid. Next, taking the discrete summations on the wave-
vectors into integrals, ∑︀k𝑖

→ 𝑉
(2𝜋)3

∫︀∫︀
𝑑2q𝑖

∫︀
𝑑𝑘𝑖, and restricting ourselves to the thin-medium

approximation, we arrive at:

𝐻̂𝐼 = 𝐴
∫︁
𝑑𝑘2𝑑𝑘1𝑒

𝑖𝛿𝜔𝑡sinc
(︃

Δ𝑘𝐿
2

)︃ ∑︁
ℓ𝑏,𝑝𝑏

∑︁
ℓ𝑠,𝑝𝑠

𝐶ℓ𝑏,ℓ𝑠
𝑝𝑏,𝑝𝑠

(𝜔) 𝑎̂†
ℓ𝑠,𝑝𝑠

(𝑘2) 𝑎̂†
ℓ𝑏,𝑝𝑏

(𝑘1) + h.c., (5.30)

where 𝐴 = −2𝜋3ℏ𝐿𝑉 , 𝜔 represents {𝜔𝑎, 𝜔1, 𝜔2}, the creation operator of a photon in the
mode (ℓ, 𝑝) with longitudinal wave-number 𝑘𝑗 is 𝑎̂†

ℓ,𝑝(𝑘𝑗) = 1
(2𝜋)2

∫︀∫︀
𝑎̂†(q, 𝑘𝑗)ℒℓ,𝑝(q)𝑑2q, sat-

isfying [𝑎̂ℓ,𝑝(𝑘), 𝑎̂†
ℓ′,𝑝′(𝑘′)] = 𝛿ℓ,ℓ′𝛿𝑝,𝑝′𝛿(𝑘 − 𝑘′), and:

𝐶ℓ𝑏,ℓ𝑠
𝑝𝑏,𝑝𝑠

(𝜔) =
∫︁∫︁

𝜒(3)(r⊥, 𝜔)𝒱2(r⊥)𝑢*
ℓ𝑏,𝑝𝑏

𝑢*
ℓ𝑠,𝑝𝑠

⃒⃒⃒
𝑧=0

𝑑2r⊥,

=
∑︁
𝑙,𝑞

∑︁
𝑙′,𝑞′

𝑐𝑙,𝑞𝑐𝑙′,𝑞′𝐶 𝑙,𝑙′,ℓ𝑏,ℓ𝑠

𝑞,𝑞′,𝑝𝑏,𝑝𝑠
(𝜔), (5.31)

is the transverse overlap integral, where:

𝐶 𝑙,𝑙′,ℓ𝑏,ℓ𝑠

𝑞,𝑞′,𝑝𝑏,𝑝𝑠
(𝜔) =

∫︁∫︁
𝜒(3)(𝜔)𝑢𝑙,𝑞𝑢𝑙′,𝑞′𝑢*

ℓ𝑏,𝑝𝑏
𝑢*

ℓ𝑠,𝑝𝑠

⃒⃒⃒
𝑧=0

𝑑2r⊥. (5.32)

We then see that the spatial overlap integral of four paraxial modes also appears in the quan-
tized treatment of FWM. Here, besides containing the selection rules that dictate the allowed
modes in the generated fields, it has an important role in quantifying their squeezing and
entanglement properties (LANNING et al., 2018; OFFER et al., 2018). Furthermore, the spatial
dependence of the nonlinear susceptibility 𝜒(3) couples the spatial and spectral degrees of
freedom. This dependence may come from the fields themselves, as we have already discussed
(MOTTA; ALMEIDA; VIANNA, 2022), and also from the shape of the sample, such as the distri-
bution of atoms in a cloud of cold atoms (OSORIO et al., 2008). For simplicity, we shall consider
a spatially uniform susceptibility over the interaction volume, and in this manner, it factors
out of the integral in Eq. (5.32):

𝐶 𝑙,𝑙′,ℓ𝑏,ℓ𝑠

𝑞,𝑞′,𝑝𝑏,𝑝𝑠
(𝜔) = 𝜒(3)(𝜔)Λ𝑙,𝑙′,ℓ𝑏,ℓ𝑠

𝑞,𝑞′,𝑝𝑏,𝑝𝑠
, (5.33)

and we may use the same expression for the transverse overlap we obtained in Chapter 2.

5.3.3 The biphoton state in position space

In what follows we consider a quasi phase-matched configuration, Δ𝑘 ≈ 0. The state |𝜓⟩,
describing the generated light state at time 𝑡 can be written as:

|𝜓(𝑡)⟩ = 𝑈̂(𝑡) |𝜓(0)⟩ , (5.34)
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where the quantum mechanical evolution operator is:

𝑈̂(𝑡) = exp
(︂
− 𝑖
ℏ

∫︁ 𝑡

0
𝐻̂𝐼(𝜏)𝑑𝜏

)︂
,

≃ 1− 𝑖

ℏ

∫︁ 𝑡

0
𝐻̂𝐼(𝜏)𝑑𝜏. (5.35)

If we suppose that the interaction lasts for a time interval much longer than any relevant time
scale of the system, we can extend the integration limits to ±∞, to get ∫︀∞

−∞ 𝑒𝑖(2𝜔𝑎−𝜔1−𝜔2)𝜏𝑑𝜏 =

2𝜋𝛿(2𝜔𝑎 − 𝜔1 − 𝜔2). With the initial state as the vacuum, |𝜓(0)⟩ = |0⟩, the first-order
approximation to the state at time 𝑡, |𝜓(𝑡)⟩, can be written as:

|𝜓(𝑡)⟩ = |0⟩+𝒜
∫︁
𝑑𝜔1

∑︁
ℓ𝑏,𝑝𝑏

∑︁
ℓ𝑠,𝑝𝑠

𝐶ℓ𝑏,ℓ𝑠
𝑝𝑏,𝑝𝑠

(𝜔1) |ℓ𝑏, 𝑝𝑏;𝜔1⟩ |ℓ𝑠, 𝑝𝑠;𝜔′
1⟩ , (5.36)

where 𝒜 is a constant and 𝜔′
1 = 2𝜔𝑎 − 𝜔1. With the substitution 𝜔1 = 𝜔𝑏 + Ω, we can write:

|𝜓(𝑡)⟩ = |0⟩+𝒜
∫︁
𝑑Ω

∑︁
ℓ𝑏,𝑝𝑏

∑︁
ℓ𝑠,𝑝𝑠

𝐶ℓ𝑏,ℓ𝑠
𝑝𝑏,𝑝𝑠

(Ω) |ℓ𝑏, 𝑝𝑏;𝜔𝑏 + Ω⟩ |ℓ𝑠, 𝑝𝑠;𝜔𝑠 − Ω⟩ , (5.37)

where 𝜔𝑠 = 2𝜔𝑎 − 𝜔𝑏. We now assume that the nonlinear process is spectrally narrow around
𝜔𝑏, or Ω = 0, to write |𝜓⟩ = |0⟩+𝒜′ |Ψ⟩, where |Ψ⟩ is the biphoton state:

|Ψ⟩ =
∑︁
ℓ𝑏,𝑝𝑏

∑︁
ℓ𝑠,𝑝𝑠

𝐶ℓ𝑏,ℓ𝑠
𝑝𝑏,𝑝𝑠
|ℓ𝑏, 𝑝𝑏;𝜔𝑏⟩𝑏 |ℓ𝑠, 𝑝𝑠;𝜔𝑠⟩𝑠 . (5.38)

We can now evaluate operator averages with respect to the state |𝜓⟩.

5.3.4 The coincidence count rate

The intensity correlation function, or coincidence count rate, between the fields 𝑏 and 𝑠 is:

𝐶(r𝑏, r𝑠) = ⟨𝜓|𝐸̂†
𝑏(r𝑏)𝐸̂†

𝑠(r𝑠)𝐸̂𝑠(r𝑠)𝐸̂𝑏(r𝑏)|𝜓⟩,

= | ⟨0|𝐸̂𝑠(r𝑠)𝐸̂𝑏(r𝑏)|Ψ⟩ |2,

∝ |Ψ(r𝑏, r𝑠)|2, (5.39)

where the spatial mode function is:

Ψ(r𝑏, r𝑠) = ⟨r𝑏, r𝑠|Ψ⟩ ,

=
∑︁
ℓ𝑏,𝑝𝑏

∑︁
ℓ𝑠,𝑝𝑠

𝐶ℓ𝑏,ℓ𝑠
𝑝𝑏,𝑝𝑠

𝑢ℓ𝑝,𝑝𝑏
(r𝑏)𝑢ℓ𝑠,𝑝𝑠(r𝑠). (5.40)
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Suppose that we detect signal 𝑏 in its entirety, then the measured coincidence rate can be
written as:

𝑔(r𝑠) =
∫︁
𝐶(r𝑏, r𝑠)𝑑2r𝑏,

∝
∑︁
ℓ𝑏,𝑝𝑏

∑︁
ℓ𝑠,𝑝𝑠

∑︁
ℓ′

𝑠,𝑝′
𝑠

𝐶ℓ𝑏,ℓ𝑠
𝑝𝑏,𝑝𝑠

(𝐶ℓ𝑏,ℓ′
𝑠

𝑝𝑏,𝑝′
𝑠
)*𝑢ℓ𝑠,𝑝𝑠(r𝑠)𝑢*

ℓ′
𝑠,𝑝′

𝑠
(r𝑠),

=
∑︁
ℓ𝑠,𝑝𝑠

∑︁
ℓ′

𝑠,𝑝′
𝑠

𝐷
ℓ𝑠,ℓ′

𝑠
𝑝𝑠,𝑝′

𝑠
𝑢ℓ𝑠,𝑝𝑠(r𝑠)𝑢*

ℓ′
𝑠,𝑝′

𝑠
(r𝑠), (5.41)

where 𝐷
ℓ𝑠,ℓ′

𝑠
𝑝𝑠,𝑝′

𝑠
= ∑︀

ℓ𝑏,𝑝𝑏
𝐶ℓ𝑏,ℓ𝑠

𝑝𝑏,𝑝𝑠
(𝐶ℓ𝑏,ℓ′

𝑠
𝑝𝑏,𝑝′

𝑠
)*. It is interesting to note that, although not explicit,

the transfer of the pump distribution to the coincidence rate profile, a known result in PDC
(MONKEN; RIBEIRO; PÁDUA, 1998; WALBORN et al., 2010), also occurs here. This can be demon-
strated by analyzing the biphoton state in momentum space. More generally, for arbitrary
aperture functions for the detection of the fields 𝑏 and 𝑠, A𝑏,A𝑠, we can write:

𝑔(u𝑏,u𝑠) =
∫︁

A𝑏(r𝑏; u𝑏)A𝑠(r𝑠; u𝑠)𝐶(r𝑏, r𝑠)𝑑2r𝑏𝑑
2r𝑠, (5.42)

where u𝑏,𝑠 are the set of parameters characterizing the detection scheme of each output.
Consider now that we wish to detect only the circular region of radius 𝑟𝑐 centered at R. For
a really small aperture size (𝑟𝑐 ≪ 𝑤0) at R = (𝑋, 0), representing a situation where we place
a tight pinhole in front of the beam with a translational degree of freedom in the 𝑥–direction
(see Fig. 54), we may write:

A𝑏(r𝑏;𝑋𝑏) = 𝛿(𝑥𝑏 −𝑋𝑏)𝛿(𝑦𝑏), (5.43)

A𝑠(r𝑠;𝑋𝑠) = 𝛿(𝑥𝑠 −𝑋𝑠)𝛿(𝑦𝑠), (5.44)

and the coincidence rate becomes:

𝑔(𝑋𝑏, 𝑋𝑠) = 𝐶(𝑋𝑏, 0;𝑋𝑠, 0). (5.45)

In these steps, it was assumed that both signals are detected at the same longitudinal position
𝑧 ≥ 𝐿/2. It is interesting to note that the coincidence profile evolves with the propagation
distance outside the interaction medium, as we show in Fig. 55. At the medium exit, we see a
positive inclination of the correlation profile. This is because the two photons are generated at
the same transverse position. As we move the detection position to larger distances, allowing
the fields to propagate in free-space, the inclination of the coincidence profile becomes negative.
This is a signature of the conservation of transverse of linear momentum. Figure 56 shows the
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Figure 54 – Simplified scheme for obtaining the coincidence count map 𝑔(𝑋𝑏, 𝑋𝑠), where (𝑋𝑏, 𝑋𝑠) are
the horizontal positions of the pinholes with respect to the center of the 𝑏 and 𝑠 fields. The
separation angle 𝜃 is small such that the distance from the exit of the interaction medium to
the detectors is approximately equal to that measured on the pump beam axis. C - photon
coincidence counting system.

Source: The author (2024).

Figure 55 – Coincidence count profile on the (𝑋𝑏, 𝑋𝑠) plane (top) for a Gaussian pump in a nonlinear
medium of length 𝐿 = 3 mm, and diagonal and anti-diagonal line profiles (bottom) as a function
of the propagation distance outside the interaction medium (from left to right).

Source: The author (2024).

Figure 56 – (a) Normalized mode distribution |𝐶ℓ𝑏,ℓ𝑠
𝑝𝑏,𝑝𝑠
|2 of the two-photon state for the configuration consid-

ered in Fig. 55. (b) Corresponding ℓ−distribution, 𝑃ℓ𝑏,−ℓ𝑏
, evidencing a finite spiral bandwidth

Δℓ.

Source: The author (2024).
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spatial mode distribution of the biphoton state and the corresponding ℓ−distribution, defined
as:

𝑃ℓ𝑏,ℓT−ℓ𝑏
≡
∑︁
𝑝𝑏,𝑝𝑠

|𝐶ℓ𝑏,ℓT−ℓ𝑏
𝑝𝑏,𝑝𝑠

|2, (5.46)

where ℓT is the total OAM pumped into the system.
We may employ a classical model for the intensity correlation function, to serve as a proof

of concept, and see if we can reproduce the behavior of the correlation profiles we obtained in
the quantum picture. Suppose we want to calculate the classical intensity correlation function,
at zero time delay, between signal and conjugate beams generated in a FWM process:

𝑔(2)
𝑠,𝑐 (r𝑠, r𝑐; 𝑧) ∝ ⟨𝐼𝑠(r𝑠, 𝑧; 𝑡)𝐼𝑐(r𝑐, 𝑧; 𝑡)⟩, (5.47)

where 𝑧 is the longitudinal position at which the fields are detected. To calculate the intensity
distributions, 𝐼𝑗 = |𝐸𝑗|2, 𝑗 ∈ {𝑠, 𝑐}, we must first propagate the field amplitudes 𝐸𝑗 from
the source position, 𝑧 = 0, to 𝑧. The conservation of linear momentum dictates that the two
fields be generated with the wave-vectors:

k𝑗 ≃ 𝑘𝑗(e𝑧 ± e𝑥𝜃),

= k𝑧
𝑗 + k⊥

𝑗 , (5.48)

where the small angle approximation was employed, and k𝑧
𝑗 ,k⊥

𝑗 are the longitudinal and trans-
verse components of the wave-vectors k𝑗, respectively. We can then write the field propagated
to 𝑧 as

𝐸𝑗(r⊥, 𝑧; 𝑡) = ℱ−1
{︂
𝒜𝑗(q, 0)𝑒𝑖

|q|2
2𝑘𝑗

𝑧
}︂
𝑒−𝑖(𝑘𝑗𝑧−𝜔𝑗𝑡), (5.49)

where 𝒜𝑗(q, 0) is the Fourier transform of the field amplitude at 𝑧 = 0

𝒜𝑗(r⊥, 0) = ℰ𝑗(r⊥, 0)𝑒−𝑖k⊥
𝑗 ·r⊥ . (5.50)

Equation (5.50) takes into account that the propagation directions of the beams 𝑠 and 𝑐 are
not parallel to the 𝑧 direction. We highlight that k⊥

𝑗 , being the transverse component of the
physical wave-vector k𝑗, must not to be confused with the Fourier space coordinate q. In
order to encompass the statistical nature of the signal pair generation process, we modify the
transverse component of the wave-vectors to read:

k⊥
𝑗 = ±e𝑥𝑘𝑗(𝜃 + 𝜙), (5.51)
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where 𝜙 is a deviation from the gross beam direction, and it is a statistical quantity that obeys
a Gaussian probability distribution:

𝑝(𝜙) = 1√
𝜋𝜎𝜙

𝑒−𝜙2/𝜎2
𝜙 , (5.52)

with 𝜎𝜙 being a measure of the angular uncertainty, or spread, of the signal emission around
𝜃. With this, the averages ⟨·⟩ in Eq. (5.47) can be approximated as:

⟨𝑜(r𝑠, r𝑐, 𝑧; 𝑡)⟩ ≃
1
𝑁

∑︁
𝑖

𝑜𝑖(r𝑠, r𝑐, 𝑧), (5.53)

where the index 𝑖 labels the 𝑁 different realizations of the random angle deviation 𝜙. Then, in
a configuration where we have a 1D translational degree of freedom on the detectors of both
signals, which are point-like, we can estimate the correlation function as:

⟨𝐼𝑠(𝑋𝑠, 0, 𝑧; 𝑡)𝐼𝑐(𝑋𝑐, 0, 𝑧; 𝑡)⟩ ≃
1
𝑁

∑︁
𝑖

{𝐼𝑠(𝑋𝑠, 0, 𝑧)𝐼𝑐(𝑋𝑐, 0, 𝑧)}𝑖. (5.54)

Figure 57(a) illustrates the situation and Fig. 57(b) shows the correlation profiles calculated
with Eq. (5.54) for different 𝜎𝜙 and propagation distances. For larger spread widths 𝜎𝜙 and
propagation distances we see the formation of a pattern rotated in the same direction as that
seen in the far-field quantum-mechanical coincidence profile shown in Fig. 55, indicating the
expected spatial correlation due to transverse momentum conservation. But at the near-field,
we don’t see an inclination to the opposite direction.

Figure 57 – (a) Generation of a signal-conjugate pair due to the nonlinear interaction in an atomic sample.
The pump beam wave-vector is parallel to the 𝑧 direction. (b) Coincidence profiles obtained by
generating several realizations of the random angle 𝜙. The angular uncertainty 𝜎𝜙 around the
gross beam direction 𝜃 gives rise to spatial correlations in a similar manner to those obtained
in the quantum picture.

Source: The author (2024).
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5.3.5 The biphoton state in momentum space

Now, let us go back to Eq. (5.27), and outline a treatment in momentum space. We define
the pump angular spectrum via V(r) ≡ 𝒱2(r) =

∫︀∫︀ ̃︀V(q, 𝑧)𝑒−𝑖q·r⊥𝑑2q. Then, we may write:

𝐻̂𝐼 = −𝐵
∑︁

k1,k2

(︂
𝑎̂†

k1
𝑎̂†

k2
𝑒𝑖𝛿𝜔𝑡

∫︁
𝑑𝑧𝑑2r⊥𝑑

2q′ ̃︀V(q′, 𝑧)𝑒−𝑖Δ𝑘𝑧𝑒−𝑖(q′−q1−q2)·r⊥ + h.c.
)︂
, (5.55)

where 𝐵 = ℏ𝜒(3)/4𝑉 and 𝜒(3) was considered spatially uniform. Performing the integration
on the transverse position vector, we obtain:

𝐻̂𝐼 ∝
∑︁

k1,k2

(︂
𝑎̂†

k1
𝑎̂†

k2
𝑒𝑖𝛿𝜔𝑡

∫︁
𝑑𝑧𝑑2q′ ̃︀V(q′, 𝑧)𝑒−𝑖Δ𝑘𝑧𝛿(q′ − q1 − q2) + h.c.

)︂
. (5.56)

Upon integrating in the q′ coordinate, we are imposing the transverse linear momentum con-
servation in the parametric process. Neglecting the slow longitudinal variation of ̃︀V, we get:

𝐻̂𝐼 ∝
∑︁

k1,k2

(︃
𝑎̂†

k1
𝑎̂†

k2
𝑒𝑖𝛿𝜔𝑡 ̃︀V(q1 + q2) sinc

(︃
Δ𝑘𝐿

2

)︃
+ h.c.

)︃
,

∝
∫︁
𝑑3k1𝑑

3k2
{︁
𝑎̂†(k1)𝑎̂†(k2)Φ(q1,q2; 𝑘1, 𝑘2)𝑒𝑖𝛿𝜔𝑡 + h.c.

}︁
, (5.57)

where the biphoton amplitude:

Φ(q1,q2; 𝑘1, 𝑘2) = ̃︀V(q1 + q2)sinc
(︃

Δ𝑘𝐿
2

)︃
, (5.58)

carries the information from the pump structure and the phase mismatch (LAW; EBERLY, 2004;
SCHNEELOCH; HOWELL, 2016). The quantum mechanical state at time 𝑡, |𝜓(𝑡)⟩ = 𝑈̂(𝑡) |0⟩, in
the first order approximation, can be expressed as:

|𝜓(𝑡)⟩ = |0⟩+ ℬ
∫︁
𝑑𝜔1

∫︁∫︁
𝑑2q1𝑑

2q2Φ(q1,q2;𝜔1) |q1, 𝜔1⟩𝑏 |q2, 𝜔
′⟩𝑠 , (5.59)

where 𝜔′ = 2𝜔𝑎− 𝜔1 and ℬ is a constant. We may now use |q, 𝑘𝑐⟩ = 𝑎̂†(q, 𝑘) |0⟩, along with
the inverse of relation (5.13) in its quantum version, which on the LG basis reads:

𝑎̂†(q, 𝑘) = (2𝜋)2∑︁
ℓ,𝑝

𝑎̂†
ℓ,𝑝(𝑘)ℒ*

ℓ,𝑝(q), (5.60)

to write:

|𝜓(𝑡)⟩ = |0⟩+ ℬ′
∫︁
𝑑𝜔1

∑︁
ℓ𝑏,𝑝𝑏

∑︁
ℓ𝑠,𝑝𝑠

̃︀𝐶ℓ𝑏,ℓ𝑠
𝑝𝑏,𝑝𝑠

(𝜔1) |ℓ𝑏, 𝑝𝑏;𝜔1⟩𝑏 |ℓ𝑠, 𝑝𝑠;𝜔′⟩𝑠 . (5.61)
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Note that with expression (5.60) we have changed from the momentum to the LG representa-
tion. Considering the nonlinear process narrow around 𝜔1 = 𝜔𝑏 (making 𝜔′ = 2𝜔𝑎−𝜔𝑏 = 𝜔𝑠),
as we have done in position space, we identify the momentum space biphoton state as:

|Ψ̃⟩ =
∑︁
ℓ𝑏,𝑝𝑏

∑︁
ℓ𝑠,𝑝𝑠

̃︀𝐶ℓ𝑏,ℓ𝑠
𝑝𝑏,𝑝𝑠
|ℓ𝑏, 𝑝𝑏;𝜔𝑏⟩𝑏 |ℓ𝑠, 𝑝𝑠;𝜔𝑠⟩𝑠 , (5.62)

where the momentum transverse overlap is:

̃︀𝐶ℓ𝑏,ℓ𝑠
𝑝𝑏,𝑝𝑠

=
∫︁∫︁

𝑑2q1𝑑
2q2Φ(q1,q2)ℒ*

ℓ𝑏,𝑝𝑏
(q1)ℒ*

ℓ𝑠,𝑝𝑠
(q2), (5.63)

with 𝑘′ = 𝜔′/𝑐. Note that the integration is in two transverse momentum vectors. Also,
considering the argument of the sinc(·) function negligible, Φ(q1,q2) ≃ ̃︀V(q1 + q2) =

ℱ{𝒱2}(q1 +q2), ̃︀𝐶ℓ𝑏,ℓ𝑠
𝑝𝑏,𝑝𝑠

does not become the overlap integral of four LG modes in momentum
variables, or sums of such integrals, as is the case in position space. The Fourier transform of
the squared Gaussian distribution can be obtained as ℱ{𝑢2

0,0} = 1
2𝜋
𝑒−𝜌2𝑤2

0/8, and thus:

̃︀V(q1 + q2) = 1
2𝜋 exp

(︃
−𝑤

2
0

8 |q1 + q2|2
)︃
. (5.64)

With the small angle approximation, we may write the longitudinal phase mismatch as (SCHNEE-

LOCH; HOWELL, 2016):

Δ𝑘 = 𝑘𝑎

4𝑘2
𝑏

|q1 − q2|2, (5.65)

and thus in the degenerate setting (𝑘𝑎 = 𝑘𝑏), we get:

Φ(q1,q2) = 1
2𝜋 exp

(︃
−𝑤

2
0

8 |q1 + q2|2
)︃

sinc
(︂
𝐿

8𝑘 |q1 − q2|2
)︂
. (5.66)

The sinc(·) function can be troublesome if used directly, and we can take a step back and
write it alternatively as:

sinc
(︂
𝐿

8𝑘 |q1 − q2|2
)︂

= 1
𝐿

∫︁ 𝐿/2

−𝐿/2
𝑒−𝑖 𝑠

4𝑘
|q1−q2|2𝑑𝑠. (5.67)

Now, using |q1 ± q2|2 = 𝜌2
1 + 𝜌2

2 ± 2𝜌1𝜌2 cos(𝜑1 − 𝜑2), we can write:

̃︀𝐶ℓ𝑏,ℓ𝑠
𝑝𝑏,𝑝𝑠
∝
∫︁ 𝐿/2

−𝐿/2
𝑇 ℓ𝑏,ℓ𝑠

𝑝𝑏,𝑝𝑠
(𝑠)𝑑𝑠, (5.68)

where, with 𝛼2
±(𝑠) ≡ (𝑤2

0/8± 𝑖𝑠/4𝑘), we have:

𝑇 ℓ𝑏,ℓ𝑠
𝑝𝑏,𝑝𝑠

(𝑠) =
∫︁∫︁

𝑒−(𝜌2
1+𝜌2

2)𝛼2
+(𝑠)−2𝜌1𝜌2𝛼2

−(𝑠) cos(𝜙1−𝜙2)ℒ*
ℓ𝑏,𝑝𝑏

(q1)ℒ*
ℓ𝑠,𝑝𝑠

(q2)𝑑2q1𝑑
2q2. (5.69)
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With this we can numerically calculate the coefficients of the biphoton state in momenutm
space. Note that here, even though we only have integrals on the transverse momentum
coordinates, the information regarding the extension of the interaction medium is included in
the calculations. We can use a measure of distance between the biphoton states in position
and in momentum space via (BAGHDASARYAN; STEINLECHNER; FRITZSCHE, 2021):

𝐷(|Ψ̃⟩ , |Ψ⟩) =
√︁

1− |⟨Ψ̃|Ψ⟩|2, (5.70)

to probe the influence of the medium length 𝐿 or the beam waist 𝑤0 on the biphoton state
mode distribution. We identify in Eq. (5.70) the fidelity 𝐹 (|Ψ̃⟩ , |Ψ⟩) ≡ | ⟨Ψ̃|Ψ⟩ |2. In fact,
in the thin-medium limit, 𝐿/𝑧𝑅 → 0, it is expected that |Ψ̃⟩ → |Ψ⟩, and therefore 𝐷 → 0.
This also means that the overlap integrals in position and in momentum space should become
the same, ̃︀𝐶ℓ𝑏,ℓ𝑠

𝑝𝑏,𝑝𝑠
→ 𝐶ℓ𝑏,ℓ𝑠

𝑝𝑏,𝑝𝑠
(BAGHDASARYAN; STEINLECHNER; FRITZSCHE, 2021). In Fig. 58 we

show the dependence of the distance 𝐷 with the medium extension 𝐿 and the beam waist 𝑤0.
This computation was performed by calculating ̃︀𝐶 numerically using Eqs. (5.68) and (5.69),
and using the expression for the overlap integral in position space for 𝐶 given in Chapter 2.
With this result we can determine the configurations where the phase-matching function is
relevant for the calculations.

As a last remark, we note that the major difference in the calculations for FWM with
respect to PDC lies in the fact that the pump contributes twice to the process. In this man-

Figure 58 – Trace distance 𝐷 =
√︁

1− |⟨Ψ̃|Ψ⟩|2 as a function of 𝐿 and 𝑤0. The dashed lines represent the
𝐷 = 0.1 (upper) and 𝐷 = 0.5 (lower) contours, and these correspond to curves of the form
𝑤0 ∝

√
𝐿.
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ner, we have two main changes: the width of the phase-matching function is modified; and
the pump function is equal to the square of the pump mode, V(r⊥) = 𝒱2(r⊥), effectively
changing the width of the pump function both in position and in momentum space. We could
therefore adapt the calculations from Refs. (MIATTO; YAO; BARNETT, 2011; BAGHDASARYAN et

al., 2022) to obtain an (almost) analytical expression for ̃︀𝐶ℓ𝑏,ℓ𝑠
𝑝𝑏,𝑝𝑠

, and even extend the treatment
to accommodate an arbitrary pump structure.

5.3.6 Transfer of the pump angular spectrum to the coincidence profile

To show that the pump structure is transferred to the coincidence rate profile of the
generated photon-pair, a known result in PDC (MONKEN; RIBEIRO; PÁDUA, 1998; WALBORN

et al., 2010), we will work with the biphoton state in momentum space:

|Ψ⟩ =
∫︁∫︁

𝑑2q1𝑑
2q2Φ(q1,q2) |q1, 𝑘𝑏⟩𝑏 |q2, 𝑘𝑠⟩𝑠 , (5.71)

where Φ(q1,q2) = ̃︀V(q1 +q2)Δ(q1−q2), with Δ(·) being the phase-matching function. The
coincidence count can be written as:

𝐶(r𝑏, r𝑠; 𝑧𝑏, 𝑧𝑠) = | ⟨0| 𝐸̂𝑠(r𝑠, 𝑧𝑠)𝐸̂𝑏(r𝑏, 𝑧𝑏) |Ψ⟩ |2,

= |Ψ(r𝑏, r𝑠; 𝑧𝑏, 𝑧𝑠)|2, (5.72)

where we can write the spatial mode function Ψ explicitly as:

Ψ(r𝑏, r𝑠; 𝑧𝑏, 𝑧𝑠)

∝
∫︁
𝑑2q1𝑑

2q2Φ(q1,q2)
∑︁
k,k′
⟨0| ⟨0| 𝑎̂k𝑎̂k′ |q1, 𝑘𝑏⟩ |q2, 𝑘𝑠⟩⏟  ⏞  
=𝛿(q−q1)𝛿(q′−q2)𝛿(𝑘−𝑘𝑏)𝛿(𝑘′−𝑘𝑠)

𝑒−𝑖(q·r𝑏+q′·r𝑠)𝑒𝑖( 𝑧𝑏
2𝑘

|q|2+ 𝑧𝑠
2𝑘′ |q′|2),

→
∫︁
𝑑2q1𝑑

2q2
̃︀V(q1 + q2)Δ(q1 − q2)𝑒−𝑖(q1·r𝑏+q2·r𝑠)𝑒

𝑖

(︁
𝑧𝑏

2𝑘𝑏
|q1|2+ 𝑧𝑠

2𝑘𝑠
|q2|2

)︁
,

∝
∫︁
𝑑2q+𝑑

2q−
̃︀V(q+)Δ(q−)𝑒−𝑖q+·(r𝑏+r𝑠)−𝑖q−·(r𝑏−r𝑠)𝑒

𝑖

(︁
𝑧𝑏

2𝑘𝑏
|q++q−|2+ 𝑧𝑠

2𝑘𝑠
|q+−q−|2

)︁
, (5.73)

with q± = (q1 ± q2)/2. For 𝑧𝑏 = 𝑧𝑠 = 𝑧, 𝑘𝑏 = 𝑘𝑠 = 𝑘, and using |q+ ± q−|2 = 𝑞2
+ + 𝑞2

− ±

2𝑞+𝑞− cos(𝜙+ − 𝜙−), the last exponential in the last line of Eq. (5.73) becomes 𝑒𝑖 𝑧
𝑘 (𝑞2

++𝑞2
−),

and therefore:

Ψ(r𝑏, r𝑠; 𝑧) ∝
∫︁ ̃︀V(q+)𝑒𝑖 𝑧

𝑘
𝑞2

+𝑒−𝑖q+·(r𝑏+r𝑠)𝑑2q+

∫︁
Δ(q−)𝑒𝑖 𝑧

𝑘
𝑞2

−𝑒−𝑖q−·(r𝑏−r𝑠)𝑑2q−. (5.74)
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Note that ̃︀V(q+)𝑒𝑖 𝑧
𝑘

𝑞2
+ = ̃︀V(q+, 2𝑧), and Δ(q−)𝑒𝑖 𝑧

𝑘
𝑞2

− = Δ(q−, 2𝑧) are the pump angular
spectrum and the phase-matching function propagated to 2𝑧. Thus,

Ψ(𝜉+, 𝜉−, 𝑧) ∝ V(𝜉+, 2𝑧)𝑀(𝜉−, 2𝑧), (5.75)

where 𝜉± ≡ (r𝑏 ± r𝑠)/2, and 𝑀(R, 𝑧) ≡
∫︀∫︀

Δ(q, 𝑧)𝑒−𝑖q·R𝑑2q. Considering the thin-medium
limit, Δ(q) may be approximated by unity, and at 𝑧 = 0, 𝑀(r𝑏 − r𝑠, 0) → 𝛿(r𝑏 − r𝑠). With
this, we arrive at

𝐶(r𝑏, r𝑠, 0) ∝ |V(r𝑏 + r𝑠, 0)|2𝛿(r𝑏 − r𝑠), (5.76)

and the coincidence count profile obtained when the signal 𝑏 is detected entirely, Eq. (5.41),
becomes:

𝑔(r𝑠, 0) =
∫︁
𝐶(r𝑏, r𝑠, 0)𝑑2r𝑏,

∝ |V(2r𝑠, 0)|2. (5.77)

Recall that V(r⊥) = 𝒱2(r⊥). In Fig. 59 we show the transfer of the pump structure to the
coincidence count for different pump modes, and also the biphoton amplitudes in each case.
The coincidence profiles were calculated using Eq. (5.41) considering the subspace ℓ𝑏,𝑠 =

𝑙𝑎 − 4, ..., 𝑙𝑎 + 4, 𝑝𝑏,𝑠 = 0, ..., 3. We see that the mode distribution is sensibly affected when
we vary the pump structure. One effect that can be noted is the broadening of the spiral
bandwidth Δℓ with increasing 𝑙𝑎. This is a signature of the increase in spatial entanglement
of the bipartite light state, and we will discuss this more in detail shortly.

We highlight that performing these calculations on a discrete basis of paraxial modes is
convenient because it circumvents the need to evaluate multidimensional integrals. However,
this convenience is rapidly out-weighted by the number of modes that must be taken into
account when we increase the order of the pump field. This can be verified from Fig. 59,
where the matrices showing the mode weights get highly populated, as compared to the
Gaussian pump case.

5.3.7 Measures of spatial entanglement of the biphoton state

The spiral bandwidth (SBW), or the ℓ–distribution standard deviation, of the two-photon
state is associated with the amount of entanglement between the two conjugate signals, in our
case, 𝑏 and 𝑠, and it is directly related to the number of modes contributing to the entangled
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Figure 59 – Transfer of the pump structure to the coincidence count profile for different pump modes
𝑢𝑙𝑎,𝑝𝑎

. The upper, middle and lower rows show respectively the pump intensity profile |𝒱(r⊥)|2,
the corresponding coincidence profile 𝑔(𝑋𝑠, 𝑌𝑠), and the distribution of normalized amplitudes
𝐶ℓ𝑏,ℓ𝑠

𝑝𝑏,𝑝𝑠
for the subspace, ℓ𝑏,𝑠 = 𝑙𝑎 − 4, ..., 𝑙𝑎 + 4, 𝑝𝑏,𝑠 = 0, ..., 3, with the inset showing in more

detail the subspace ℓ𝑏,𝑠 = 𝑙𝑎 − 1, 𝑙𝑎, 𝑙𝑎 + 1.

Source: The author (2024).

photon state. The SBW of the photon-pair generated in parametric down-conversion has been
extensively studied (TORRES; ALEXANDRESCU; TORNER, 2003; MIATTO; YAO; BARNETT, 2011;
YAO, 2011), while in FWM it was investigated in Ref. (OFFER et al., 2018). The SBW can be
expressed as:

Δℓ(ℓT) =
√︃∑︁

ℓ𝑠
ℓ2

𝑠𝑃ℓT−ℓ𝑠,ℓ𝑠 −
(︂∑︁

ℓ𝑠
ℓ𝑠𝑃ℓT−ℓ𝑠,ℓ𝑠

)︂2
, (5.78)

where 𝑃𝑙,𝑙′ = ∑︀
𝑝𝑏,𝑝𝑠
|𝐶 𝑙,𝑙′

𝑝𝑏,𝑝𝑠
|2 and ℓT = ℓ𝑏 + ℓ𝑠 is the total OAM pumped into the system,

which in the case of a pure LG mode for the pump ℰ𝑎, is ℓT = 2ℓ𝑎, and for a Gaussian pump,
ℓT = 0. One may study the dependence of the SBW with any system parameter, such as
phase-mismatch, medium length, beam waist, etc. In Fig. 60 we show the variation of Δℓ with
the total pumped OAM, ℓT.

We can also examine the entanglement between the two generated photons by evaluating
the purity of the partially traced biphoton state:

𝒫 = tr𝑏(𝜌2
𝑏),

=
∑︁

𝐶ℓ𝑏,ℓ𝑠
𝑝𝑏,𝑝𝑠

(𝐶ℓ′
𝑏,ℓ𝑠

𝑝′
𝑏
,𝑝𝑠

)*𝐶
ℓ′

𝑏,ℓ′
𝑠

𝑝′
𝑏
,𝑝′

𝑠
(𝐶ℓ𝑏,ℓ′

𝑠
𝑝𝑏,𝑝′

𝑠
)*, (5.79)
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Figure 60 – ℓ−distributions of the biphoton state for pump modes 𝑢𝑙𝑎,0 with 𝑙𝑎 = 0, 1, 2, 3 (top) and the
dependence of the SBW Δℓ with the total pumped OAM ℓT = 2𝑙𝑎 (bottom).

Source: The author (2024).

where the summation is performed over all indices on the right-hand side, 𝜌𝑏 = tr𝑠(𝜌), with
𝜌 = |Ψ⟩ ⟨Ψ| being the biphoton density operator. The less pure (or more mixed) the partial
state, the more entangled is the full state. The purity 𝒫 is in turn related to the Schmidt
number 𝐾 via:

𝒫 = 1/𝐾. (5.80)

The Schmidt number is the number nonzero coefficients of the Schmidt decomposition of the
quantum state (LAW; EBERLY, 2004; WALBORN et al., 2010; SCHNEELOCH; HOWELL, 2016), and
it quantifies the degree of entanglement between the system parts (NIELSEN; CHUANG, 2010).
In Ref. (LAW; EBERLY, 2004) the Schmidt number of the biphoton state generated in PDC
was estimated by approximating the sinc(·) phase-matching function as a Gaussian. In doing
so, the following analytical form for 𝐾 can be found:

𝐾𝐺 = 1
4

(︂
𝑏𝜎⊥ + 1

𝑏𝜎⊥

)︂2
, (5.81)

where 𝜎⊥ and 𝑏−1 are the widths of the Gaussian pump function in wave-vector space ̃︀V(q),
and of the approximate Gaussian phase-matching function, respectively. The entanglement in
this Gaussian approximation serves as a lower bound (WALBORN et al., 2010).

As we have seen throughout the last Sections, the calculations for the biphoton state
generated in the FWM process are very similar, with some differences arising mainly due to the
fact that the pump and phase-matching functions are dictated by a squared contribution of the
pump field. These differences manifest precisely on the widths of the pump angular spectrum
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(𝜎⊥), and phase-matching function (𝑏). For this reason, here we utilize the expressions obtained
for the 𝐾𝐺 in PDC, taking into account the relevant modifications on the widths, to estimate
𝐾𝐺 for the FWM process. In the case of PDC, 𝜎⊥ = 4/𝑤0 =

√︁
8𝑘/𝑧𝑅, 𝑏 ≃ 𝛾

√︁
𝐿/4𝑘, where

the factor 𝛾 ≈ 0.257 ensures that the sinc(·) and Gaussian functions have the same width at
half maximum (WALBORN; PIMENTEL, 2012). In our case, of a degenerate FWM process, we
have 𝜎⊥ =

√
8/𝑤0 =

√︁
4𝑘/𝑧𝑅, 𝑏 ≃ 𝛾

√︁
𝐿/8𝑘. We may encompass both cases by writing the

widths (𝜎⊥, 𝑏) as:

𝜎⊥ =
√︃

16
𝑛

1
𝑤0

=
√︃

8𝑘
𝑛𝑧𝑅

, (5.82)

𝑏 = 𝛾

√︃
𝐿

4𝑛𝑘 , (5.83)

with 𝑛 = 1 for PDC, and 𝑛 = 2 for FWM. Thus, the Schmidt number, given by Eq. (5.81),
can be expressed as:

𝐾𝐺 = 𝛾2

4𝑛2

(︃√︃
𝐿

𝑧𝑅

+ 𝑛2

𝛾2

√︂
𝑧𝑅

𝐿

)︃2

. (5.84)

We then see that the ratio 𝐿/𝑧𝑅, which was important for us in the classical picture to establish
different regimes of restriction on the FWM mode components, is also connected with the
entanglement properties of the photon pair generated in the quantum description. In fact,
there is an equivalence here. Larger medium extensions, in comparison with the characteristic
longitudinal lengths, accommodate less transverse momentum modes of light. The uncertainty
on the direction of the wave-vectors of the accepted modes is reduced, as compared with the
situation in a thin-medium. The Gouy phase matching can be seen an interpretation of this
restriction within the discrete basis of paraxial modes.

In our studies of the quantum-mechanical theory of FWM we also delved into the squeezing
properties of the generated light state and examined the two-channel setting. The possibilities
in multi-channel configurations, in particular regarding quantum spatial correlations, are inter-
esting routes to follow in future work. While we have laid the foundation and provided initial
insights in this Chapter, there is room for deeper discussions and the careful development of
these ideas. Therefore, we shall not go into further detail. We believe that what has been
exposed here was sufficient to initiate exploration into this promising subject.
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6 CONCLUSIONS

In this work, we have investigated several aspects of four-wave mixing processes driven by
structured light in atomic media. We focused on two main themes: the dynamics of optical
modes and the correlations between the participating light fields.

Regarding the first one, we considered two different configurations in rubidium vapor.
We initially explored the possibility to perform a controlled conversion of optical modes in
a nondegenerate FWM process, taking advantage of the selection rules associated with the
Hermite-Gaussian basis in the extended-medium regime. Next, we switched to a configuration
where two degenerate FWM signals are generated by the same pump beams. In this system
we verified the simultaneous transfer of orbital angular momentum to both generated FWM
fields, which allows to encode the pair of input topological charges onto the two wave-mixing
channels. This served as a simple demonstration of what may be achieved in multi-channel
configurations. We then introduced more intricate field structures to one of the pump beams, in
the form of modes contained in the orbital angular momentum Poincaré sphere. This allowed to
interpret the transverse mode dynamics in light of a geometrical representation, and establish
the rules that dictate the transformations of the state vectors in the sphere. We showed that
the two FWM signals present characteristics already verified in parametric amplification and
second-harmonic generation, drawing a clear parallel between second- and third-order nonlinear
processes. We also explored interesting scenarios, such as the combination of multiple Poincaré
spheres, and the additional restrictions that appear in the extended-medium regime.

In the last part of the Thesis we dealt with the subject of correlations in four-wave mixing.
We started with a study on correlations between the intensity fluctuations of the pump beams
transmitted through the atomic sample. Considering a sample of cold atoms as the interaction
medium, we sought to identify spatial dependencies on these correlations. We argue that
these dependencies may originate from the fluctuations themselves, or even from cross-talk
processes between the intersecting light fields. Finally, we explored many aspects of the theory
of quantum spatial correlations between the photon-pair generated in four-wave mixing. In
particular, we calculated the spatial intensity correlation and showed that the transfer of the
pump structure to the coincident count, a known result in PDC, also occurs in FWM. At
the end, we looked at measures of spatial entanglement of the generated light state. We
highlighted the role of the ratio between the medium extension and the Rayleigh range in the
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estimate of the number of spatial modes contributing to the biphoton state. This ratio was
important for us in the classical picture to distinguish between different regimes of optical
mode transfer.

An interesting route to follow from this point is to further investigate the spatial correlations
in FWM, even exploring effects related to the Poincaré sphere symmetries studied here, for
example. The spatial correlations between the two FWM channels can also be a very promising
subject to study in greater detail.
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HAMEDI, H. R.; RUSECKAS, J.; JUZELIŪNAS, G. Exchange of optical vortices using an
electromagnetically-induced-transparency–based four-wave-mixing setup. Physical Review A,
APS, v. 98, n. 1, p. 013840, 2018.

HARTER, D.; BOYD, R. Nearly degenerate four-wave mixing enhanced by the ac stark
effect. IEEE Journal of Quantum Electronics, IEEE, v. 16, n. 10, p. 1126–1131, 1980.

HE, C.; SHEN, Y.; FORBES, A. Towards higher-dimensional structured light. Light: Science
& Applications, Nature Publishing Group UK London, v. 11, n. 1, p. 205, 2022.

HE, H.; FRIESE, M.; HECKENBERG, N.; RUBINSZTEIN-DUNLOP, H. Direct observation
of transfer of angular momentum to absorptive particles from a laser beam with a phase
singularity. Physical Review Letters, APS, v. 75, n. 5, p. 826, 1995.

HECKENBERG, N.; MCDUFF, R.; SMITH, C.; WHITE, A. Generation of optical phase
singularities by computer-generated holograms. Optics Letters, Optica Publishing Group,
v. 17, n. 3, p. 221–223, 1992.



161

HORROM, T.; LEZAMA, A.; BALIK, S.; HAVEY, M. D.; MIKHAILOV, E. E. Quadrature
noise in light propagating through a cold 87Rb atomic gas. Journal of Modern Optics, Taylor
& Francis, v. 58, n. 21, p. 1936–1941, 2011.

HU, Q.; WANG, X.; ZHANG, R.; REN, Y.; LIU, S.; JING, J. Enhancing and flattening
multiplexed quantum entanglement by utilizing perfect vortex modes. Optics Letters, Optica
Publishing Group, v. 48, n. 7, p. 1782–1785, 2023.

JACKSON, J. D. Classical electrodynamics. [S.l.]: American Association of Physics Teachers,
1999.

KARIMI, E.; BOYD, R.; HOZ, P. D. L.; GUISE, H. D.; ŘEHÁČEK, J.; HRADIL, Z.; AIELLO,
A.; LEUCHS, G.; SÁNCHEZ-SOTO, L. L. Radial quantum number of Laguerre-Gauss modes.
Physical Review A, APS, v. 89, n. 6, p. 063813, 2014.

KIMEL, I.; ELIAS, L. R. Relations between Hermite and Laguerre Gaussian modes. IEEE
Journal of Quantum Electronics, IEEE, v. 29, n. 9, p. 2562–2567, 1993.

KOGELNIK, H.; LI, T. Laser beams and resonators. Applied Optics, Optica Publishing Group,
v. 5, n. 10, p. 1550–1567, 1966.

KOLOBOV, M. I. Quantum Imaging. [S.l.]: Springer Science & Business Media, 2007.

KRENN, M.; HUBER, M.; FICKLER, R.; LAPKIEWICZ, R.; RAMELOW, S.; ZEILINGER,
A. Generation and confirmation of a (100×100)-dimensional entangled quantum system.
Proceedings of the National Academy of Sciences, National Academy of Sciences, v. 111,
n. 17, p. 6243–6247, 2014.

LANNING, R. N.; XIAO, Z.; ZHANG, M.; NOVIKOVA, I.; MIKHAILOV, E. E.; DOWLING,
J. P. Gaussian-beam-propagation theory for nonlinear optics involving an analytical treatment
of orbital-angular-momentum transfer. Physical Review A, APS, v. 96, n. 1, p. 013830, 2017.

LANNING, R. N.; XIAO, Z.; ZHANG, M.; NOVIKOVA, I.; MIKHAILOV, E. E.; DOWLING,
J. P. Quantized nonlinear Gaussian-beam dynamics: Tailoring multimode squeezed-light
generation. Physical Review A, APS, v. 98, n. 4, p. 043824, 2018.

LAW, C.; EBERLY, J. Analysis and interpretation of high transverse entanglement in optical
parametric down conversion. Physical Review Letters, APS, v. 92, n. 12, p. 127903, 2004.

LEACH, J.; PADGETT, M. J.; BARNETT, S. M.; FRANKE-ARNOLD, S.; COURTIAL, J.
Measuring the orbital angular momentum of a single photon. Physical Review Letters, APS,
v. 88, n. 25, p. 257901, 2002.

MAIMAN, T. H. Stimulated optical radiation in ruby. Nature, v. 187, p. 493–494, 1960.

MALLICK, N. S.; DEY, T. N. Four-wave mixing-based orbital angular momentum translation.
Journal of the Optical Society of America B, Optica Publishing Group, v. 37, n. 6, p.
1857–1864, 2020.

MARINO, A. M.; BOYER, V.; POOSER, R. C.; LETT, P. D.; LEMONS, K.; JONES, K.
Delocalized correlations in twin light beams with orbital angular momentum. Physical Review
Letters, APS, v. 101, n. 9, p. 093602, 2008.



162

MAXWELL, J. C. A dynamical theory of the electromagnetic field. Philosophical transactions
of the Royal Society of London, The Royal Society London, n. 155, p. 459–512, 1865.

MIATTO, F. M.; YAO, A. M.; BARNETT, S. M. Full characterization of the quantum spiral
bandwidth of entangled biphotons. Physical Review A, APS, v. 83, n. 3, p. 033816, 2011.

MOLINA-TERRIZA, G.; TORRES, J. P.; TORNER, L. Twisted photons. Nature Physics,
Nature Publishing Group, v. 3, n. 5, p. 305–310, 2007.

MONKEN, C. H.; RIBEIRO, P. S.; PÁDUA, S. Transfer of angular spectrum and image
formation in spontaneous parametric down-conversion. Physical Review A, APS, v. 57, n. 4,
p. 3123, 1998.

MORETTI, D.; FELINTO, D.; TABOSA, J. W. R. Collapses and revivals of stored orbital
angular momentum of light in a cold-atom ensemble. Physical Review A, APS, v. 79, n. 2, p.
023825, 2009.

MOTTA, M. da; ALMEIDA, A. de; VIANNA, S. Combinations of orbital angular momentum
in two degenerate four-wave mixing processes in Rb vapor. Journal of Optics, IOP Publishing,
v. 25, n. 9, p. 095501, 2023.

MOTTA, M. R. da; ALMEIDA, A. A. de; VIANNA, S. S. Spatial distribution of two symmetric
four-wave-mixing signals induced by Gaussian beams. Physical Review A, APS, v. 106, n. 5,
p. 053502, 2022.

MOTTA, M. R. L. Two symmetric four-wave mixing signals induced by beams with
nonuniform distributions. Master’s Thesis (Master’s Thesis) — Universidade Federal de
Pernambuco, 2021.

MOTTA, M. R. L. da; ALVES, G. B.; KHOURY, A. Z.; VIANNA, S. S. Poincaré-sphere
symmetries in four-wave mixing with orbital angular momentum. Physical Review A, APS,
v. 109, n. 1, p. 013506, 2024.

NIELSEN, M. A.; CHUANG, I. L. Quantum computation and quantum information. [S.l.]:
Cambridge university press, 2010.

NIRALA, G.; PRADYUMNA, S. T.; KUMAR, A.; MARINO, A. M. Information encoding in
the spatial correlations of entangled twin beams. Science Advances, American Association for
the Advancement of Science, v. 9, n. 22, p. eadf9161, 2023.

OFFER, R. F.; DAFFURN, A.; RIIS, E.; GRIFFIN, P. F.; ARNOLD, A. S.; FRANKE-ARNOLD,
S. Gouy phase-matched angular and radial mode conversion in four-wave mixing. Physical
Review A, APS, v. 103, p. L021502, 2021.

OFFER, R. F.; STULGA, D.; RIIS, E.; FRANKE-ARNOLD, S.; ARNOLD, A. S. Spiral
bandwidth of four-wave mixing in Rb vapour. Communications Physics, Nature Publishing
Group, v. 1, n. 1, p. 1–8, 2018.

OLIVEIRA, M. G. de; PEREIRA, L.; SANTOS, A.; DECHOUM, K.; BRAMATI, A.; KHOURY,
A. Radial-angular coupling in self-phase-modulation with structured light. Physical Review A,
APS, v. 108, n. 1, p. 013503, 2023.



163

OSORIO, C. I.; BARREIRO, S.; MITCHELL, M. W.; TORRES, J. P. Spatial entanglement
of paired photons generated in cold atomic ensembles. Physical Review A, APS, v. 78, n. 5,
p. 052301, 2008.

PADGETT, M. J.; COURTIAL, J. Poincaré-sphere equivalent for light beams containing
orbital angular momentum. Optics Letters, Optica Publishing Group, v. 24, n. 7, p. 430–432,
1999.

PAN, X.; YU, S.; ZHOU, Y.; ZHANG, K.; ZHANG, K.; LV, S.; LI, S.; WANG, W.; JING,
J. Orbital-angular-momentum multiplexed continuous-variable entanglement from four-wave
mixing in hot atomic vapor. Physical Review Letters, APS, v. 123, p. 070506, 2019.

PEREIRA, L. J.; BUONO, W. T.; TASCA, D. S.; DECHOUM, K.; KHOURY, A. Z.
Orbital-angular-momentum mixing in type-ii second-harmonic generation. Physical Review A,
APS, v. 96, p. 053856, 2017.

PIRES, D.; ROCHA, J.; JESUS-SILVA, A.; FONSECA, E. Optical mode conversion through
nonlinear two-wave mixing. Physical Review A, APS, v. 100, n. 4, p. 043819, 2019.

PIRES, D.; ROCHA, J.; JESUS-SILVA, A.; FONSECA, E. Suitable state bases for nonlinear
optical mode conversion protocols. Optics Letters, Optica Publishing Group, v. 45, n. 14, p.
4064–4067, 2020.

PLICK, W. N.; KRENN, M. Physical meaning of the radial index of Laguerre-Gauss beams.
Physical Review A, APS, v. 92, n. 6, p. 063841, 2015.

PRAJAPATI, N.; SUPER, N.; LANNING, N. R.; DOWLING, J. P.; NOVIKOVA, I. Optical
angular momentum manipulations in a four-wave mixing process. Optics Letters, Optica
Publishing Group, v. 44, n. 4, p. 739–742, 2019.

ROCHA, J.; PIRES, D.; MOTTA, M.; LITCHINITSER, N.; VIANNA, S.; FONSECA, E.;
FERRAZ, J. Controlled conversion of transverse symmetries in a four-wave mixing process.
Journal of Optics, IOP Publishing, v. 24, n. 4, p. 045505, 2022.

RODRIGUES, R.; ALVES, G.; BARROS, R.; SOUZA, C.; KHOURY, A. Generalized orbital
angular momentum symmetry in parametric amplification. Physical Review A, APS, v. 105,
n. 1, p. 013510, 2022.

RODRIGUES, R.; GONZALES, J.; SILVA, B. P. da; HUGUENIN, J.; MARTINELLI, M.;
ARAÚJO, R. M. de; SOUZA, C.; KHOURY, A. Orbital angular momentum symmetry in a
driven optical parametric oscillator. Optics Letters, Optica Publishing Group, v. 43, n. 11, p.
2486–2489, 2018.

ROGER, T.; HEITZ, J. J. F.; WRIGHT, E. M.; FACCIO, D. Non-collinear interaction of
photons with orbital angular momentum. Scientific Reports, Nature, v. 3, p. 3491, 2013.

RUBINSZTEIN-DUNLOP, H.; FORBES, A.; BERRY, M. V.; DENNIS, M. R.; ANDREWS,
D. L.; MANSURIPUR, M.; DENZ, C.; ALPMANN, C.; BANZER, P.; BAUER, T. et al.
Roadmap on structured light. Journal of Optics, IOP Publishing, v. 19, n. 1, p. 013001, 2016.

RUFFATO, G.; MASSARI, M.; ROMANATO, F. Generation of high-order Laguerre–Gaussian
modes by means of spiral phase plates. Optics Letters, Optica Publishing Group, v. 39, n. 17,
p. 5094–5097, 2014.



164

SANTOS, B. C. D.; DECHOUM, K.; KHOURY, A. Continuous-variable hyperentanglement
in a parametric oscillator with orbital angular momentum. Physical Review Letters, APS,
v. 103, n. 23, p. 230503, 2009.

SANTOS, B. C. dos; SOUZA, C. E. R.; DECHOUM, K.; KHOURY, A. Z. Phase conjugation
and adiabatic mode conversion in a driven optical parametric oscillator with orbital angular
momentum. Physical Review A, APS, v. 76, n. 5, p. 053821, 2007.

SCHNEELOCH, J.; HOWELL, J. C. Introduction to the transverse spatial correlations in
spontaneous parametric down-conversion through the biphoton birth zone. Journal of Optics,
IOP Publishing, v. 18, n. 5, p. 053501, 2016.

SCHWOB, C.; COHADON, P. F.; FABRE, C.; MARTE, M.; RITSCH, H.; GATTI, A.;
LUGIATO, L. Transverse effects and mode couplings in opos. Applied Physics B, Springer,
v. 66, n. 6, p. 685–699, 1998.

SHEN, Y. Rays, waves, SU(2) symmetry and geometry: toolkits for structured light. Journal
of Optics, IOP Publishing, v. 23, n. 12, p. 124004, 2021.

SHEN, Y.; ROSALES-GUZMÁN, C. Nonseparable states of light: from quantum to classical.
Laser & Photonics Reviews, Wiley Online Library, v. 16, n. 7, p. 2100533, 2022.

SHEN, Y.; WANG, Z.; FU, X.; NAIDOO, D.; FORBES, A. SU(2) Poincaré sphere: A
generalized representation for multidimensional structured light. Physical Review A, APS,
v. 102, n. 3, p. 031501, 2020.

SILVA, B. P. da; BUONO, W. T.; PEREIRA, L. J.; TASCA, D. S.; DECHOUM, K.; KHOURY,
A. Z. Spin to orbital angular momentum transfer in frequency up-conversion. Nanophotonics,
De Gruyter, v. 11, n. 4, p. 771–778, 2021.

SILVA, B. P. da; MARQUES, B.; RODRIGUES, R.; RIBEIRO, P. S.; KHOURY, A.
Machine-learning recognition of light orbital-angular-momentum superpositions. Physical
Review A, APS, v. 103, n. 6, p. 063704, 2021.

STECK, D. A. Rubidium 87 d line data. 2001.

TABOSA, J. W. R.; PETROV, D. V. Optical pumping of orbital angular momentum of light
in cold cesium atoms. Physical Review Letters, APS, v. 83, n. 24, p. 4967, 1999.

TACHÉ, J. Derivation of abcd law for Laguerre-Gaussian beams. Applied Optics, Optica
Publishing Group, v. 26, n. 14, p. 2698–2700, 1987.

TORRES, J.; ALEXANDRESCU, A.; TORNER, L. Quantum spiral bandwidth of entangled
two-photon states. Physical Review A, APS, v. 68, n. 5, p. 050301, 2003.

VAITY, P.; BANERJI, J.; SINGH, R. Measuring the topological charge of an optical vortex
by using a tilted convex lens. Physics Letters A, Elsevier, v. 377, n. 15, p. 1154–1156, 2013.

VALLONE, G.; PARISI, G.; SPINELLO, F.; MARI, E.; TAMBURINI, F.; VILLORESI, P.
General theorem on the divergence of vortex beams. Physical Review A, APS, v. 94, n. 2, p.
023802, 2016.

VERNAZ-GRIS, P.; HUANG, K.; CAO, M.; SHEREMET, A. S.; LAURAT, J. Highly-efficient
quantum memory for polarization qubits in a spatially-multiplexed cold atomic ensemble.
Nature Communications, Nature Publishing Group UK London, v. 9, n. 1, p. 363, 2018.



165

VERNIER, A.; FRANKE-ARNOLD, S.; RIIS, E.; ARNOLD, A. Enhanced frequency
up-conversion in Rb vapor. Optics Express, Optica Publishing Group, v. 18, n. 16, p.
17020–17026, 2010.

WALBORN, S.; PIMENTEL, A. Generalized Hermite–Gauss decomposition of the two-photon
state produced by spontaneous parametric down conversion. Journal of Physics B: Atomic,
Molecular and Optical Physics, IOP Publishing, v. 45, n. 16, p. 165502, 2012.

WALBORN, S. P.; MONKEN, C.; PÁDUA, S.; RIBEIRO, P. S. Spatial correlations in
parametric down-conversion. Physics Reports, Elsevier, v. 495, n. 4-5, p. 87–139, 2010.

WALKER, G.; ARNOLD, A. S.; FRANKE-ARNOLD, S. Trans-spectral orbital angular
momentum transfer via four-wave mixing in Rb vapor. Physical Review Letters, APS, v. 108,
n. 24, p. 243601, 2012.

WEBER, H. Collins’ integral for misaligned optical elements. Journal of Modern Optics,
Taylor & Francis, v. 53, n. 18, p. 2793–2801, 2006.

WILSON-GORDON, A.; FRIEDMANN, H. Saturation-induced distortion of four-wave-mixing
spectra in a two-level system. Physical Review A, APS, v. 38, n. 8, p. 4087, 1988.

YAO, A. M. Angular momentum decomposition of entangled photons with an arbitrary pump.
New Journal of Physics, IOP Publishing, v. 13, n. 5, p. 053048, 2011.

YAO, A. M.; PADGETT, M. J. Orbital angular momentum: origins, behavior and applications.
Advances in Optics and Photonics, Optica Publishing Group, v. 3, n. 2, p. 161–204, 2011.

YARIV, A. Quantum Electronics. [S.l.]: John Wiley & Sons, 1989.

YARIV, A.; PEPPER, D. M. Amplified reflection, phase conjugation, and oscillation in
degenerate four-wave mixing. Optics Letters, Optica Publishing Group, v. 1, n. 1, p. 16–18,
1977.

YU, C.; WANG, Z. Engineering helical phase via four-wave mixing in the ultraslow propagation
regime. Physical Review A, APS, v. 103, n. 1, p. 013518, 2021.

ZHANG, K.; WANG, W.; LIU, S.; PAN, X.; DU, J.; LOU, Y.; YU, S.; LV, S.; TREPS, N.;
FABRE, C. et al. Reconfigurable hexapartite entanglement by spatially multiplexed four-wave
mixing processes. Physical Review Letters, APS, v. 124, n. 9, p. 090501, 2020.

ZHANG, Y.; PRABHAKAR, S.; ROSALES-GUZMÁN, C.; ROUX, F. S.; KARIMI, E.;
FORBES, A. Hong-ou-mandel interference of entangled Hermite-Gauss modes. Physical
Review A, APS, v. 94, n. 3, p. 033855, 2016.

ZHANG, Z.; GAO, Y.; LI, X.; WANG, X.; ZHAO, S.; LIU, Q.; ZHAO, C. Second harmonic
generation of laser beams in transverse mode locking states. Advanced Photonics, Society of
Photo-Optical Instrumentation Engineers, v. 4, n. 2, p. 026002–026002, 2022.

ZHOU, Y.; WANG, Z. Helical phase steering via four-wave mixing in a closely cycled
double-ladder atomic system. Journal of Applied Physics, AIP Publishing, v. 133, n. 17, 2023.



166

APPENDIX A – LIST OF JOURNAL PUBLICATIONS

1. J. C. A. Rocha, D. G. Pires, M. R. L. Motta, N. M. Litchinitser, S. S. Vianna, E.
J. S. Fonseca, J. Ferraz. Controlled conversion of transverse symmetries in a four-wave
mixing process. Journal of Optics, 24(4), 045505 (2022).

2. M. R. L. Motta, A. A. C. Almeida, S. S. Vianna. Spatial distribution of two symmetric
four-wave-mixing signals induced by Gaussian beams. Physical Review A, 106(5), 053502
(2022).

3. A. A. C. Almeida, M. R. L. Motta, S. S. Vianna. Intensity correlations in the forward
four-wave mixing driven by a single pump. Physical Review A, 107(2), 023515 (2023).

4. M. R. L. Motta, A. A. C. Almeida, S. S. Vianna. Combinations of orbital angular
momentum in two degenerate four-wave mixing processes in Rb vapor. Journal of Optics,
25(9), 095501 (2023).

5. M. R. L. Motta, G. B. Alves, A. Z. Khoury, S. S. Vianna. Poincaré-sphere symmetries
in four-wave mixing with orbital angular momentum. Physical Review A, 109(1), 013506
(2024).



167

APPENDIX B – OVERLAP INTEGRALS ON THE REDUCED WAIST BASIS -

RADIAL MODE RESTRICTION

As mentioned in the last Section of Chapter 4, with the appropriate choice of the beam
waist of the LG mode basis, it is possible to restrict the number of radial orders contained
in the output mode superpositions. In this Appendix we outline the calculation of the overlap
integrals on the reduced beam waist basis, and make this restriction explicit. The transverse
overlap integral on the 𝑤̃ = 𝑤/𝜉 mode basis is

Λ̃𝑙𝑙′𝑚ℓ
𝑞𝑞′𝑛𝑝(𝜉) =

∫︁∫︁
𝑢𝑙,𝑞𝑢𝑙′,𝑞′𝑢*

𝑚,𝑛𝑢̃
*
ℓ,𝑝

⃒⃒⃒
𝑧=0

𝑑2r⊥. (B.1)

We now look at three different cases, corresponding to the coefficients 𝑎̃0, 𝑏̃0 and 𝑐𝑝 in Eqs.
(4.53) and (4.54).

Let us focus first on the case 𝑞 = 𝑞′ = 𝑚 = 𝑛 = 0:

Λ̃𝑙𝑙′0ℓ
000𝑝(𝜉) =

∫︁∫︁
𝑢𝑙,0𝑢𝑙′,0𝑢

*
0,0𝑢̃

*
ℓ,𝑝

⃒⃒⃒
𝑧=0

𝑑2r⊥,

= 2𝜋𝛿ℓ,𝑙+𝑙′𝐶𝑙,0𝐶𝑙′,0𝐶0,0𝐶ℓ,𝑝𝜉
|ℓ|+1 1

𝑤4

×
∫︁ ∞

0
(𝑟𝑤)|𝑙|+|𝑙′|+|ℓ|𝐿|ℓ|

𝑝 (𝜉2𝑟2
𝑤)𝑒−𝑟2

𝑤(3+𝜉2)/2𝑟𝑑𝑟, (B.2)

where 𝑟𝑤 =
√

2𝑟/𝑤. The choice 𝜉 =
√

3 will be most interesting for us because it allows to
establish a maximum value for the possibly coupled 𝑝 orders. The only nonzero coefficients
are those with ℓ = 𝑙 + 𝑙′,

Λ̃𝑙𝑙′0,𝑙+𝑙′

000𝑝 (
√

3) = 8
𝜋𝑤4

⎯⎸⎸⎷ 𝑝! 31−|𝑙|−|𝑙′|

|𝑙|! |𝑙′|! (𝑝+ |𝑙 + 𝑙′|)!

×
∫︁ ∞

0
(3𝑟2

𝑤)|𝑙+𝑙′|(3𝑟2
𝑤)𝑃𝐿|𝑙+𝑙′|

𝑝 (3𝑟2
𝑤)𝑒−3𝑟2

𝑤𝑟𝑑𝑟, (B.3)

where 𝑃 = (|𝑙|+ |𝑙′| − |𝑙 + 𝑙′|)/2. Then

Λ̃𝑙𝑙′0,𝑙+𝑙′

000𝑝 (
√

3) = 4
𝜋𝑤2

⎯⎸⎸⎷ 𝑝! 3−1−|𝑙|−|𝑙′|

|𝑙|! |𝑙′|! (𝑝+ |𝑙 + 𝑙′|)!

∫︁ ∞

0
𝑥|𝑙+𝑙′|𝑥𝑃𝐿|𝑙+𝑙′|

𝑝 (𝑥)𝑒−𝑥𝑑𝑥. (B.4)

B.1 COEFFICIENTS 𝑎̃0 FOR THE SPHERE MODES CONTAINED IN ℰ1

For 𝑙 · 𝑙′ ≥ 0, 𝑃 = 0, and we can substitute 𝑥𝑃 by 𝐿|𝑙+𝑙′|
0 (𝑥) = 1. Using the orthogonality

relation of the associated Laguerre polynomials, ∫︀∞
0 𝑥𝛼𝐿𝛼

𝑝 (𝑥)𝐿𝛼
𝑞 (𝑥)𝑒−𝑥𝑑𝑥 = Γ(𝑝+𝛼+1)

𝑝! 𝛿𝑝,𝑞, we
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can write

Λ̃𝑙𝑙′0,𝑙+𝑙′

000𝑝 (
√

3) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
4√

3𝜋𝑤2

√︂
|𝑙+𝑙′|!

|𝑙|! |𝑙′|! 3|𝑙|+|𝑙′| , for 𝑝 = 0,

0, for 𝑝 > 0.
(B.5)

We then see that no radial order 𝑝 > 0 is generated.

B.2 COEFFICIENTS 𝑐𝑝 FOR THE RADIAL MODES CONTAINED IN ℰ1

Now, for 𝑙 · 𝑙′ < 0, 𝑃 = min(|𝑙|, |𝑙′|), and we expand the monomial 𝑥𝑃 in terms of Laguerre
polynomials as 𝑥𝑛 = 𝑛!∑︀𝑛

𝑗=0(−1)𝑗
(︁

𝑛+𝛼
𝑛−𝑗

)︁
𝐿𝛼

𝑗 (𝑥) = 𝑛!∑︀𝑛
𝑗=0 𝑏

𝛼
𝑗,𝑛𝐿

𝛼
𝑗 (𝑥), with 𝛼 = |𝑙 + 𝑙′|, to

write

Λ̃𝑙𝑙′0,𝑙+𝑙′

000𝑝 (
√

3) = 4
𝜋𝑤2

⎯⎸⎸⎷ 𝑝! 3−1−|𝑙|−|𝑙′|

|𝑙|! |𝑙′|! (𝑝+ |𝑙 + 𝑙′|)!𝑃 !

×
𝑃∑︁

𝑗=0
𝑏

|𝑙+𝑙′|
𝑗,𝑃

∫︁ ∞

0
𝑥|𝑙+𝑙′|𝐿

|𝑙+𝑙′|
𝑗 (𝑥)𝐿|𝑙+𝑙′|

𝑝 (𝑥)𝑒−𝑥𝑑𝑥. (B.6)

The 𝑥 integral is once again the orthogonality relation of the associated Laguerre polynomials.
Finally, we obtain

Λ̃𝑙𝑙′0,𝑙+𝑙′

000𝑝 (
√

3) = 4
𝜋𝑤2

(−1)𝑝

(𝑃 − 𝑝)!

⎯⎸⎸⎷ 3−1−|𝑙|−|𝑙′|

|𝑙|! |𝑙′|! 𝑝!(𝑝+ |𝑙 + 𝑙′|)!𝑃 !(𝑃 + |𝑙 + 𝑙′|)!, (B.7)

for 𝑝 ≤ 𝑃 , and Λ̃𝑙𝑙′0,𝑙+𝑙′

000𝑝 (
√

3) = 0, for 𝑝 > 𝑃 . This result is simplified in the case 𝑙′ = −𝑙,
which makes 𝑃 = |𝑙|, and we get

Λ̃𝑙,−𝑙00
000𝑝 (

√
3) =

⎧⎪⎪⎨⎪⎪⎩
4√

3𝜋𝑤2
(−1)𝑝

(|𝑙|−𝑝)!
|𝑙|!

𝑝! 3|𝑙| , for 𝑝 ≤ |𝑙|,

0, for 𝑝 > |𝑙|.
(B.8)

B.3 COEFFICIENTS 𝑏̃0 FOR THE SPHERE MODES CONTAINED IN ℰ2

Next, for 𝑙 = 𝑙′ = 𝑞 = 𝑞′ = 𝑛 = 0, we have

Λ̃00𝑚ℓ
000𝑝 (𝜉) =

∫︁∫︁
𝑢2

0,0𝑢
*
𝑚,0𝑢̃

*
ℓ,𝑝

⃒⃒⃒
𝑧=0

𝑑2r⊥ = 2𝜋𝛿ℓ,−𝑚𝐶
2
0,0𝐶𝑚,0𝐶ℓ,𝑝𝜉

|ℓ|+1 1
𝑤4

×
∫︁ ∞

0
(𝑟𝑤)|𝑚|+|ℓ|𝐿|ℓ|

𝑝 (𝜉2𝑟2
𝑤)𝑒−𝑟2

𝑤(3+𝜉2)/2𝑟𝑑𝑟. (B.9)

The OAM conservation dictates ℓ = −𝑚, and thus for 𝜉 =
√

3, we can arrive at the expression

Λ̃00𝑚,−𝑚
000𝑝 (

√
3) = 4

𝜋𝑤2

√
3−1−|𝑚| (2|𝑚|)!

(|𝑚|!)2 𝛿𝑝,0. (B.10)
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APPENDIX C – COEFFICIENTS FOR CHANGING WAIST BASIS

We may expand the mode 𝑢ℓ,𝑝, with waist 𝑤, on the basis of modes 𝑢̃𝑙,𝑞, with waist
𝑤̃ = 𝑤/𝜉 as:

𝑢ℓ,𝑝 =
∑︁
𝑙,𝑞

𝜆ℓ,𝑙
𝑝,𝑞(𝜉)𝑢̃𝑙,𝑞, (C.1)

where the expansion coefficients are:

𝜆ℓ,𝑙
𝑝,𝑞(𝜉) =

∫︁∫︁
𝑢ℓ,𝑝𝑢̃

*
𝑙,𝑞

⃒⃒⃒
𝑧=0

𝑑2r⊥. (C.2)

Since we must have ℓ = 𝑙, we drop one of the upper indices, to write:

𝜆ℓ
𝑝,𝑞(𝜉) = 𝜋

2𝐶ℓ,𝑝𝐶ℓ,𝑞𝜉
|ℓ|+1

∫︁ ∞

0
𝑥|ℓ|𝐿|ℓ|

𝑝 (𝑥)𝐿|ℓ|
𝑞 (𝜉2𝑥)𝑒−𝑥(1+𝜉2)/2𝑑𝑥, (C.3)

where we made the change of variable 𝑥 = 2𝑟2/𝑤2. For 𝜉 = 1, we obtain 𝜆ℓ
𝑝,𝑞(1) = 𝛿𝑝,𝑞,

which is expected. To obtain an analytical expression, we can employ the generating function
for the Laguerre polynomials ∑︀∞

𝑛=0 𝑡
𝑛𝐿𝛼

𝑛(𝑥) = (1− 𝑡)−(𝛼+1)𝑒−𝑡𝑥/(1−𝑡). Differentiating 𝑝 times
with respect to 𝑡, and making 𝑡 = 0, we get:

𝐿𝛼
𝑝 (𝑥) = 1

𝑝!
𝜕𝑝

𝜕𝑡𝑝

[︃
𝑒−𝑡𝑥/(1−𝑡)

(1− 𝑡)𝛼+1

]︃ ⃒⃒⃒⃒
⃒
𝑡=0
, (C.4)

and we can rewrite the integral in (C.3) as:

1
𝑝!𝑞!

𝜕𝑝

𝜕𝑡𝑝
𝜕𝑞

𝜕𝑡′𝑞
1

[(1− 𝑡)(1− 𝑡′)]|ℓ|+1

∫︁ ∞

0
𝑥|ℓ|𝑒−𝑏(𝑡,𝑡′)𝑥𝑑𝑥 =

= |ℓ|!
𝑝!𝑞!

𝜕𝑝

𝜕𝑡𝑝
𝜕𝑞

𝜕𝑡′𝑞
1

[𝑏(𝑡, 𝑡′)(1− 𝑡)(1− 𝑡′)]|ℓ|+1

⃒⃒⃒⃒
⃒⃒
𝑡,𝑡′=0

, (C.5)

with 𝑏(𝑡, 𝑡′) = 1+𝜉2

2 + 𝑡/(1− 𝑡) + 𝜉2𝑡′/(1− 𝑡′). For ℓ = 𝑝 = 𝑞 = 0, we obtain simply:

𝜆0
0,0(𝜉) = 2𝜉

1 + 𝜉2 . (C.6)

Let us call 𝑆 = 𝑏(1− 𝑡)(1− 𝑡′) = 1+𝜉2

2 (1− 𝑡)(1− 𝑡′) + 𝑡(1− 𝑡′) + 𝜉2𝑡′(1− 𝑡). For ℓ, 𝑝, 𝑞 ̸= 0,
noting that 𝜕𝑛

𝑡 𝑆 = 𝜕𝑛
𝑡′𝑆 = 0 for 𝑛 > 1, we have:

𝜕𝑝

𝜕𝑡𝑝
1
𝑆𝑐

= (−1)𝑝 (𝑐+ 𝑝− 1)!
(𝑐− 1)!

1
𝑆𝑐+𝑝

(︃
𝜕𝑆

𝜕𝑡

)︃𝑝

. (C.7)



170

Also, with 𝜕𝑡𝜕𝑡′𝑆 = − (1+𝜉2)
2 = 𝐽 , we can write1:

𝜕𝑝

𝜕𝑡𝑝
𝜕𝑞

𝜕𝑡′𝑞
1

𝑆|ℓ|+1 = 𝜕𝑝

𝜕𝑡𝑝

[︃
(−1)𝑞 (|ℓ|+ 𝑞)!

|ℓ|!
1

𝑆|ℓ|+𝑞+1

(︃
𝜕𝑆

𝜕𝑡′

)︃𝑞]︃
,

= (−1)𝑞 (|ℓ|+ 𝑞)!
|ℓ|!

⎡⎣ 𝑝∑︁
𝑛=0

𝑞!
(︁

𝑝
𝑛

)︁
𝐽𝑝−𝑛

(𝑞 − 𝑝+ 𝑛)!
𝜕𝑛

𝜕𝑡𝑛

(︂ 1
𝑆|ℓ|+𝑞+1

)︂(︃
𝜕𝑆

𝜕𝑡′

)︃𝑞−𝑝+𝑛
⎤⎦ ,

= (−1)𝑞𝑞!
|ℓ|!

[︃ 𝑝∑︁
𝑛=0

(−1)𝑛𝐽𝑝−𝑛

(︃
𝑝

𝑛

)︃
(|ℓ|+ 𝑞 + 𝑛)!
(𝑞 − 𝑝+ 𝑛)!

(𝜕𝑡𝑆)𝑛 (𝜕𝑡′𝑆)𝑞−𝑝+𝑛

𝑆|ℓ|+𝑞+𝑛+1

]︃
. (C.8)

Finally, making 𝑡, 𝑡′ → 0, 𝑆 → 1+𝜉2

2 , 𝜕𝑡𝑆 → 1−𝜉2

2 , 𝜕𝑡′𝑆 → −1−𝜉2

2 , and we obtain:

𝜆ℓ
𝑝,𝑞(𝜉) =

√︃
𝑝!𝑞!

(|ℓ|+ 𝑝)!(|ℓ|+ 𝑞)!

(︃
2𝜉

1 + 𝜉2

)︃|ℓ|+1

×
𝑝∑︁

𝑛=0

(−1)𝑛(|ℓ|+ 𝑞 + 𝑛)!
𝑛!(𝑝− 𝑛)!(𝑞 − 𝑝+ 𝑛)!

(︃
1− 𝜉2

1 + 𝜉2

)︃𝑞−𝑝+2𝑛

. (C.9)

1 Note that the expression given here for the basis conversion factor 𝜆ℓ
𝑝,𝑞(𝜉) is applicable when 𝑞 ≥ 𝑝 only.
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