

UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE TECNOLOGIA E GEOCIÊNCIAS DEPARTAMENTO DE ENGENHARIA MECÂNICA

Hamurabi Pereira Paulino

Desenvolvimento de caixa de redução para veículo do tipo Baja SAE

Recife 2024

Hamurabi Pereira Paulino
Desenvolvimento de caixa de redução para veículo do tipo Baja SAE
Monografia submetida ao Departamento de Engenha ria Mecânica, da Universidade Federal de Pernambuco - UFPE, para conclusão do curso de Graduação em Engenharia Mecânica
Orientador: Ramiro Brito Willmersdorf
Recife

Ficha de identificação da obra elaborada pelo autor, através do programa de geração automática do SIB/UFPE

Paulino, Hamurabi Pereira.

Desenvolvimento de caixa de redução para veículo do tipo Baja SAE / Hamurabi Pereira Paulino. - Recife, 2024.

46p: il., tab.

Orientador(a): Ramiro Brito Willmersdorf

Trabalho de Conclusão de Curso (Graduação) - Universidade Federal de Pernambuco, Centro de Tecnologia e Geociências, Engenharia Mecânica - Bacharelado, 2024.

1. Transmissão. 2. baja SAE. 3. projeto. 4. trem de força. 5. engrenagem . I. Willmersdorf, Ramiro Brito . (Orientação). II. Título.

620 CDD (22.ed.)

Universidade Federal de Pernambuco Departamento de Engenharia Mecânica Centro de Tecnologia e Geociências- CTG/EEP

ATA DE SESSÃO DE DEFESA DE TRABALHO DE CONCLUSÃO DE CURSO – TCC2

Ao 22.° dia do mê	s de março do ano de dois mil e	vinte e quatro, à	às 08:00 horas, reuniu
se a banca exam	inadora composta por Prof. Ran	niro Brito Willi	mersdorf (orientador)
Prof. Justo Emílio	o Alvarez Jácobo (avaliador) e f	Prof. Flávio Jo s	sé da Silva (avaliador)
para a sessão pú	blica de defesa do Trabalho de	Conclusão de	Curso em Engenharia
Mecânica da Uni	versidade Federal de Pernamb	uco, intitulado	Desenvolvimento de
caixa de reduçã	o para veículo do tipo Baja S	AE , elaborado	pelo aluno Hamurab
	Após a exposição oral do trate banca que em seguida reur , atribuindo-lhe a mé	niram-se e de	liberaram pela sua
apto(x) / inapto()	————. à conclusão do curso de Engenh		
	ovada por todos os presentes, o		_
banca.			
Orientador:	Prof. Ramiro Brito Willmersdorf		Nota: 9.0
Assinatura	<u> </u>		
Avaliador Interno:	Prof. Justo Emílio Alvarez Jácobo		Nota: 9.0
Assinatura			
Avaliador Interno:	Prof. Flávio José da Silva		Nota: 9.0
Assinatura			

Recife, 22 de março de 2024.

Prof. Marcus Costa de Araújo Coordenador de Trabalho de Conclusão de curso - TCC Curso de Graduação em Engenharia Mecânica – CTG/EEP-UFPE

AGRADECIMENTOS

Primeiramente a Deus por ter me sustentado até aqui. Aos meus pais Rosivaldo Vieira Paulino e Gleice Kelly Pereira Paulino por nunca terem deixado de acreditar no poder da educação, por todo apoio e amor em diversos momentos da minha vida. Ao meu irmão Euller Pereira Paulino por estar do meu lado em todo momento.

Aos amigos que fiz durante esse período de graduação, desde a chegada sozinho a uma cidade nova, aos que estão próximos hoje e aos que se afastaram por motivos que só a vida saberia explicar, um muito obrigado por todos os momentos vividos juntos.

Um Agradecimento especial para aqueles que estiveram comigo durante aqueles longos dias trabalhosos na equipe Mangue Baja, e que hoje sinto saudade de viver. Muito obrigado pela companhia, pela força, pela compreensão e pelos conhecimentos compartilhados que me permitiram crescer pessoalmente e profissionalmente.

A todos os meus professores, que desde o início dos meus estudos tiveram papel importantíssimos no meu desenvolvimento, como profissional e como pessoa na sociedade, estes que tem nas mãos um poder de transformar vidas e abrir portar que nós nem sabíamos que existia. Quero fazer um agradecimento especial a dois professores que tiveram papel chave na minha jornada acadêmica. Ao Prof. Ramiro Brito Willmersdorf, meu orientador neste trabalho. E ao Prof. Maxime Montoya que com muita dedicação e paciência tem ajudado e guiado a equipe Mangue Baja para um caminho brilhante.

RESUMO

Uma caixa de redução é necessária no sistema de transmissão de um veículo do tipo Baja SAE, principalmente considerando as provas propostas pela SAE em suas competições. Com objetivo de aumentar o torque com a rotação adequada para que não se tenha deslizamento da roda com o chão, o projeto de uma caixa de redução leva em consideração as tensões atuantes nas engrenagens além dos torques e forças que agem sobre os eixos, para seus dimensionamentos. O projeto aqui apresentado prioriza o desempenho e bons resultados dinâmicos que serão refletidos em boa colocação nas competições oficiais, desenvolvendo uma caixa de redução a mais leve e compacta possível, considerando os custos, montagem e materiais de fabricação. Neste trabalho foram utilizados os métodos recomendados por normas internacionais como, AGMA e ASME, com o intuído de obter um projeto bem fundamentado. Foram determinados a relação de transmissão, o dimensionamento dos eixos, definição dos rolamentos, retentores e desenvolvimento de tampas para acomodar todo o sistema de forma compacta.

Palavras-chaves:Transmissão, baja SAE, projeto, trem de força, engrenagem.

ABSTRACT

A reduction box is necessary in the transmission system of a Baja SAE type vehicle, especially considering the tests proposed by SAE in its competitions. In order to increase the torque with the appropriate rotation so that the wheel does not slip with the ground, the design of a reduction box takes into account the tensions acting on the gears in addition to the torques and forces that act on the axles, for their sizing. The project presented here prioritizes performance and good dynamic results that will be reflected in good placement in official competitions, developing a reduction box that is as light and compact as possible, considering costs, assembly and manufacturing materials. In this work, the methods recommended by international standards such as AGMA and ASME were used, with the aim of obtaining a well-founded project. The transmission ratio, shaft sizing, definition of bearings, seals and development of covers were determined to accommodate the entire system in a compact way.

Key-words: Transmission, baja SAE, design, power train, gear.

LISTA DE FIGURAS

Figura 1 –	Esquema veículo motorizado.	
	Fonte: Adaptado de Lechner (1999)	14
Figura 2 –	Partes do sistema de transmissão.	
	Fonte: Equipe Mangue Baja	15
Figura 3 –	Terminologia do dente de engrenagem.	
	Fonte: Shigley (2011)	16
Figura 4 –	Tipos de trens de engrenagens.	
	Fonte: Adaptado de Norton (2013)	17
Figura 5 –	Esquema de partes de rolamento de esferas.	
	Fonte: Norton (2013)	18
Figura 6 -	Exemplo de trem de engrenagens com 3 eixos.	
	Fonte: Norton (2013)	20
Figura 7 –	Tabela com os valores de A, B e C.	
	Fonte: Shigley (2011)	23
Figura 8 -	Gráfico para obter-se o fator geométrico.	
	Fonte: Shigley (2011)	24
Figura 9 –	Gráfico para cálculo de tensão de flexão admissível.	
	Fonte: Shigley (2011)	24
Figura 10 -	- Fator de confiabilidade.	
	Fonte: Shigley (2011)	25
Figura 11 -	- Gráfico de tensão de contato admissível.	
	Fonte: Shigley (2011)	27
Figura 12 -	- Tabela para obter o fator de superfície.	
	Fonte: Shigley (2011)	28
Figura 13 -	- Valores de k_b para diferentes temperaturas.	
	Fonte: Shigley (2011)	29
Figura 14 -	- Valores de z_a para diversos níveis de confiabilidade.	
	Fonte: Shigley (2011)	30
Figura 15 -	- Disposição engrenagens no eixo intermediário.	
	Fonte: Autor (2024)	36
Figura 16 -	- Eixo com sistema de coordenadas utilizado.	
	Fonte: Autor (2024)	37
Figura 17 -	- Momento fletor plano xy.	
	Fonte: Autor (2024)	38
Figura 18 -	- Momento fletor plano xz.	
	Fonte: Autor (2024)	38

Figura 19 – Momento fletor resultante.	
Fonte: Autor (2024)	38
Figura 20 – Eixo intermediário com as seções críticas destadas.	
Fonte: Autor (2024)	39
Figura 21 – Tampa direita.	
Fonte: Autor (2024)	40
Figura 22 – Vista isométrica da caixa de redução montada.	
Fonte: Autor (2024)	41
Figura 23 – Disposição interna dos componentes.	
Fonte: Autor (2024)	42
Figura 24 – Esquema de teste de velocidade.	
Fonte: Equipe Mangue Baja.	42
Figura 25 – Resultado obtido no teste.	
Fonte: Autor (2024)	43

LISTA DE TABELAS

Tabela 1 – Metas de projeto	19
Tabela 2 – Fatores para tensão por flexão	33
Tabela 3 – Fatores para tensão admissível	34
Tabela 4 – Fatores para tensão de contato	34
Tabela 5 – Fatores para tensão de contato admissível	35
Tabela 6 – Parâmetros gerais das engrenagens	35
Tabela 7 – Forças atuantes no eixo.	37
Tabela 8 – Reações nos mancais	37
Tabela 9 – Seção A	39
Tabela 10 – Seção B	39

LISTA DE SÍMBOLOS

Notação	Descrição	Unidade
b	Largura de face	mm
C_e	Fator para ajuste	_
C_f	Fator de condição de superfície	_
c_g	Coeficiente de Poisson da coroa	_
C_H	Fator de razão de dureza	_
C_{ma}	Fator de alinhamento de engrenagem	_
C_{mc}	Fator de correção de carga	_
c_p	Coeficiente de Poisson do pinhão	_
C_{pf}	Modificador da proporção do pinhão	_
C_{pm}	Modificador de proporção do pinhão	_
C_{pneu}	Comprimento da circunferência do pneu	mm
d	Diâmetro do eixo	_
d_p	Diâmetro primitivo do pinhão	mm
E_g	Módulo de elasticidade da coroa	GPa
E_p	Módulo de elasticidade do pinhão	GPa
F	Largura de face	in
F_r	Força radial	N
H_B	Dureza Brinell	_
K_0	Fator de sobrecarga	_
k_a	Fator de superfície para eixo	_
K_B	Fator de espessura de borda	_
k_b	Fator de tamanho para eixo	_
k_c	Fator de carga para eixo	_

k_d	Fator de temperatura para eixo	_	
k_e	Fator de confiabilidade para eixo	_	
k_f	Fator de efeitos diversos para eixo	_	
K_f	Fator de concentração de tensão para tensões normais	_	
K_{fs}	Fator de concentração de tensão para cisalhamento	_	
K_H	Fator de distribuição de carga	_	
K_s	Fator de tamanho	_	
K_t	Fator de concentração de tensão para entalhe	_	
K_v	Fator dinâmico	_	
$m \ m_t$	Módulo da engrenagem	mm	
n_f	Coeficiente de segurança para eixo	_	
N_p	Rotação do pinhão	_	
$P P_d$	Passo da engrenagem	mm	
r	Relação de transmissão	_	
r_p	Raio primitivo do pinhão	_	
$r_{teorico}$	Relação de transmissão teórico	_	
S_c	Tensão de contato admissível	MPa	
S_e	Limite de resistência a fadiga	MPa	
S'_e	Torque no pinhão	_	
S_F	Coeficiente de segurança para tensão por flexão	_	
S_H	Coeficiente de segurança para tensão de contato	_	
S_t	Tensão de flexão admissível	MPa	
S_{ut}	Tensão última do material	MPa	
$V_{f_{teorico}}$	Velocidade final teórica	Km/h	
Y_J	Fator geométrico	_	
K_v	Fator dinâmico	_	

m_G	Razão entre número de dentes da coroa sobre o pinhão	_
q	Sensibilidade a entalhe	_
Q_v	Número de qualidade	_
T_p	Torque no pinhão	_
V_t	Velocidade tangencial máxima	m/s
$W_t F_t$	Força tangente no dente da engrenagem	N
$Y_N Z_N$	Fator de ciclagem	_
$Y_{ heta}$	Fator de temperatura	_
Y_Z	Fator de confiabilidade	_
Z_E	Coeficiente elástico	_
Z_I	Fator geométrico de resistência superficial	_
Z_R	Fator de condição superficial	_
Z_W	Fator de razão de dureza para resistência ao desgaste por cor	ntato –
σ	Tensão de flexão	MPa
σ_a	Tensão para momento alternada	MPa
σ_a'	Tensão alternada de Von-Misses	MPa
σ_{all}	Tensão admissível de flexão	MPa
σ_c	Tensão de contato	MPa
$\sigma_{c,all}$	Tensão admissível de contato	MPa
σ_m	Tensão para o momento médio	MPa
σ_m'	Tensão média de Von-Misses	MPa
$ au_a$	Tensão para o toque alternado	MPa
$ au_m$	Tensão para o toque médio	MPa

SUMÁRIO

1	INTRODUÇÃO	12
1.1	Organização do presente trabalho	13
2	FUNDAMENTAÇÃO TEÓRICA	14
2.1	Engrenagens	15
2.1.1	Trens de engrenagens	16
2.2	Eixos	17
2.3	Rolamentos	17
3	METODOLOGIA	19
3.1	Dimensionamento trem de engrenagens	19
3.1.1	Relação de transmissão	19
3.2	Dimensionamento das engrenagens	20
3.2.1	Tensão por Flexão	21
3.2.1.1	Força Tangencial W_t	21
3.2.1.2	Fator de Sobrecarga K_0	21
3.2.1.3	Fator Dinâmico K_v	21
3.2.1.4	Fator de tamanho K_s	22
3.2.1.5	Fator de distribuição de carga K_H	22
3.2.1.6	Fator de espessura de borda K_B	23
3.2.1.7	Fator Geométrico Y_J	23
3.2.1.8	Tensão de flexão admissível S_t	24
3.2.1.9	Fator de ciclagem de tensão Y_N e Z_N	25
3.2.1.10	Fator de temperatura Y_{θ}	25
3.2.1.11	Fator de confiabilidade Y_Z	25
3.2.2	Tensão de Contato	25
3.2.2.1	Coeficiente Elástico Z_E	26
3.2.2.2	Fator de condição superficial Z_R	26
3.2.2.3	Fator geométrico de resistência superficial Z_I	26
3.2.2.4	Tensão de contato admissível S_c	26
3.2.2.5	Fator de razão de dureza para resistência o desgaste por contato Z_{W}	27
3.3	Dimensionamento dos eixos	27
3.3.1	Limite de resistência a fadiga S_e	28
3.3.2	Fator de superfície K_a	28

3.3.3	Fator de tamanho k_b
3.3.4	Fator de carga k_c
3.3.5	Fator de temperatura k_d
3.3.6	Fator de confiabilidade k_e
3.3.7	Fator de efeitos diversos k_f
3.3.8	Limite de resistência a fadiga em serviço S_e'
3.3.9	Momento fletor máximo
3.3.10	Fatores de concentração de tensão
3.3.11	Tensões nominais dos eixos
3.4	Estria dos eixos
3.5	Escolha de rolamentos
4	RESULTADOS E DISCUSSÕES
4.1	Engrenagens
4.2	Eixos
4.3	Rolamentos e retentores
4.4	Tampas
4.5	Resultados dinâmicos
5	CONCLUSÃO
	REFERÊNCIAS BIBLIOGRÁFICAS

1 INTRODUÇÃO

A competição Baja SAE(Society of Automotive Engineers) representa um desafio empolgante para estudantes de engenharia em todo o mundo, convidando-os a projetar e construir veículos off-road do tipo Baja. Organizada pela SAE, essa competição não apenas testa as habilidades de engenharia, mas também promove inovação, trabalho em equipe e conhecimento prático na área de engenharia veicular. A equipe Mangue Baja, representando a Universidade Federal de Pernambuco, é um exemplo notável dessa dedicação e paixão pela competição. Fundada em 1999, a equipe não apenas alcançou reconhecimento nacional, mas também trouxe consigo uma forte influência da cultura do Movimento Mangue Beat de Pernambuco, combinando criatividade e engenhosidade em seu trabalho.

Em 2022, a equipe Mangue Baja atingiu um marco ao conquistar um lugar entre as três melhores equipes na competição nacional. Essa realização não apenas solidificou sua reputação no cenário automotivo estudantil, mas também abriu portas para uma oportunidade empolgante: uma vaga assegurada na competição mundial programada para 2023, (SAE, 2023). No entanto, esse sucesso não veio sem desafios e mudanças substanciais no horizonte regulatório. (INTERNACIONAL, 2023) Uma das transformações mais notáveis foi a revisão do regulamento da competição mundial, que trouxe consigo uma mudança crucial no sistema de transmissão. A partir de então, tornou-se obrigatória a adoção de um sistema com tração nas quatro rodas. Essa nova exigência demandou uma abordagem estratégica e engenhosa para remodelar e otimizar o projeto prévio da equipe Mangue Baja, a fim de cumprir com as novas diretrizes e, ao mesmo tempo, elevar seu desempenho e competitividade.

Coincidentemente, a SAE Brasil também promoveu ajustes no regulamento nacional, visando encorajar equipes a se aventurar tanto em sistemas de tração 4x2 quanto 4x4(BRASIL, 2023). Essa adaptação visava não apenas ampliar as opções dos participantes, mas também estimular o desenvolvimento e exploração de novas soluções veiculares. Como resposta a essa mudança, a equipe Mangue Baja percebeu a necessidade de avaliar e ajustar seu projeto para abraçar essa trajetória em direção à tração integral.

Este trabalho propõe-se a projetar uma caixa de redução para veículo do tipo baja SAE, passando por todas as etapas de um projeto de transmissão até a sua concepção, serão levadas em consideração melhorias baseadas no projeto do último veículo. Dentro dessa proposta, busca-se aumentar a redução em relação a caixa

anterior, diminuir o entre-eixo de entrada e saída conforme limitação do espaço no veículo, melhorar a velocidade final e bom desempenho em aceleração.

Para alcançar esse objetivo, serão conduzidos estudos detalhados de tensões nos eixos e dimensionamento dos mesmos, análises de cargas nos mancais para a escolha adequada dos rolamentos e dimensionamento das engrenagens conforme normas da AGMA (*American Gear Manufacturers Association*). Espera-se que no final deste trabalho, obtenha-se uma caixa de redução robusta e eficiente, pronto para enfrentar os desafios das competições Baja SAE e manter a equipe Mangue Baja na vanguarda do cenário automotivo estudantil.

1.1 Organização do presente trabalho

No capítulo 1 deste trabalho foi apresentada uma breve explicação do que é o projeto Baja SAE e a equipe Mangue Baja, e por fim a motivação para o desenvolvimento do projeto em questão.

O segundo capítulo trás uma revisão bibliográfica e um apanhado geral sobre transmissões veiculares e em particular o tipo de transmissão utilizado em veículo do tipo baja SAE. Aprofundando no assunto de transmissão vão ser vistos elementos de uma transmissão, com foco na caixa de redução e termos importantes a respeito dos elementos de transmissão para entendimento de seções subsequentes.

No capítulo 3, será apresentado o método a ser seguido no dimensionamento da caixa de redução, desde as metas iniciais que vão nortear o desenvolvimento do projeto até o dimensionamento de cada componentes.

Após feia apresentação da metodologia utilizada, o Capítulo 4 trás os resultado obtidos com base na metodologia apresentada no capítulo anterior, detalhando materiais utilizados, escolhas de componentes e tabela de resultados.

Por fim, no capítulo 5 será feita a conclusão do trabalho, um apanhado geral do que foi desenvolvido e comparar com as metas e objetivos definidos no início da monografia.

2 FUNDAMENTAÇÃO TEÓRICA

Os sistemas de transmissão são componentes essenciais em veículos automotores, responsáveis por transmitir a potência do motor para as rodas de forma eficiente e adequada. Isso é alcançado por meio de uma série de componentes, incluindo embreagem, câmbio, diferencial e eixos de transmissão, conforme apresentado por (LECHNER; NAUNHEIMER, 1999) na figura 1.

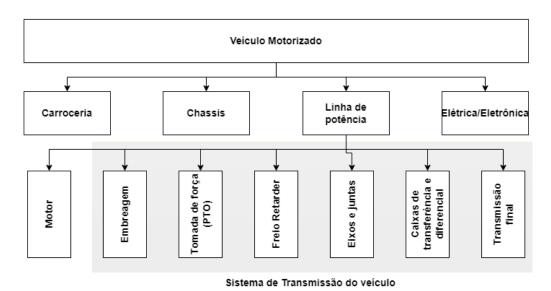


Figura 1 – Esquema veículo motorizado. Fonte: Adaptado de Lechner (1999).

Existem vários tipos de transmissão de veículos, sendo os mais comuns, transmissão manual, automática, CVT(*Continuously Variable Transmission*) e Automatizada. Segundo regulamento (BRASIL, 2023) o sistema de transmissão para veículos do tipo Baja SAE deve possuir o sistema de transmissão CVT. A figura 2 mostra todos os componentes do sistema de transmissão do veículo da equipe Mangue Baja.

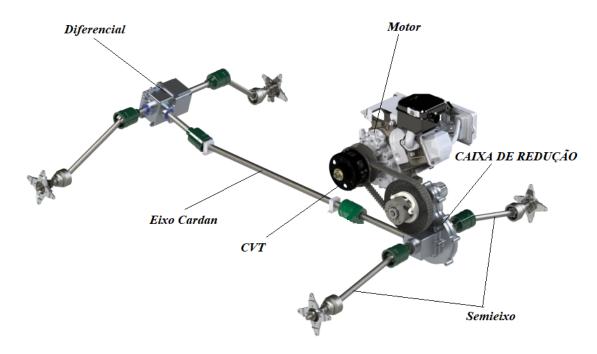


Figura 2 – Partes do sistema de transmissão. Fonte: Equipe Mangue Baja.

2.1 Engrenagens

Para fazer a transferência de potência do motor para as rodas, diversos componentes são utilizados dentre ele a caixa de redução, que pode ser por correia, corrente ou engrenagens. O presente trabalho trata de uma caixa de redução por engrenagens.

O tipo mais simples é a engrenagem cilíndrica reta, projetada para operar com eixos paralelos e dentes também paralelos ao eixo de coordenadas, é facilmente encontrada comercialmente por seu baixo nível de complexidade de fabricação e por consequência, baixo custo. Existem outros tipos, como helicoidais, cônicas e sem-fim, que acomodam eixos não paralelos. As engrenagens são altamente padronizadas e a *American Gear Manufacturers Association* (AGMA) define padrões para seu projeto e manufatura. Com uma longa história, as engrenagens evoluíram de materiais rudimentares para dentes especialmente moldados em discos metálicos.

A figura 3 trás a terminologia de uma engrenagem de dentes retos. É importante ressaltar que a engrenagem com menor número de dentes sempre é chamada de pinhão e a de maior número de coroa.

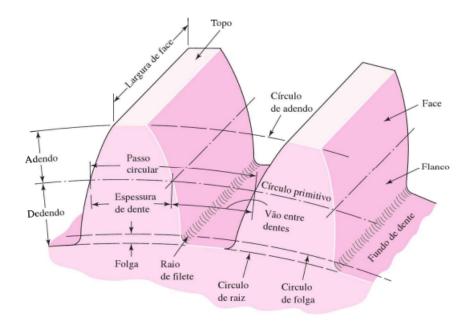


Figura 3 – Terminologia do dente de engrenagem. Fonte: Shigley (2011).

Uma importante grandeza geométrica para engrenagens é o módulo m, que é a razão entre o diâmetro primitivo e o passo circular, o tamanho da engrenagem está diretamente ligado a seu módulo que é determinado pela equação (2.1) conforme apresentado por (SHIGLEY *et al.*, 2011).

$$m = \frac{d}{P} \tag{2.1}$$

2.1.1 Trens de engrenagens

Uma caixa de redução fixa trata-se de um trem de engrenagens, (NORTON, 2013) trás a definição de trem de engrenagens como qualquer conjunto de duas ou mais engrenagens acopladas. Um trem de engrenagem pode ser do tipo, simples, composto ou epicicloidal apresentados na figura 4.

Um trem de engrenagens composto tem no mínimo três eixos, quatro engrenagens, e em um dos eixos haverá duas engrenagens. Para encontrar a relação de redução do trem é utilizada a equação (2.2).

$$r = \frac{\text{Produto do número de dentes das engrenagens motoras}}{\text{Produto do número de dentes das engrenagens movidas}}$$
 (2.2)

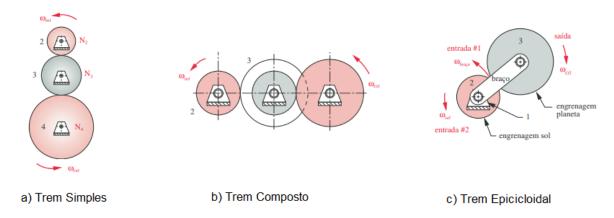


Figura 4 – Tipos de trens de engrenagens. Fonte: Adaptado de Norton (2013).

2.2 Eixos

Eixos são elementos rotativos indispensáveis para transmissão de potência, (SHI-GLEY *et al.*, 2011) afirma que um eixo usualmente possui seção circular, e este permite a transmissão de potência através de rotação ou oscilação, comumente encontrado com elementos de transmissão acoplados a ele, como engrenagens, polias, rodas dentadas e volantes.

As cargas nos eixos de transmissão de movimento rotativo são de dois tipos, torção ou flexão, torção por conta dos torques transmitidos e flexão pelas cargas transversais que agem no eixo. Essas cargas frequentemente ocorrem de forma conjunta, segundo (NORTON, 2013), pois no caso de uma transmissão de potência por engrenagem ou roda dentada tem-se o torque transmitido e uma componente que gera flexão no eixo.

São utilizadas diversas estratégias para fixação de elementos de transmissão aos eixos, podendo ser chavetas, estrias ou até mesmo alta interferência conforme a necessidade de aplicação e as cargas a serem aplicada. (JUVINALL; MARSHEK, 2008) chama a atenção paras os cuidados com esse elementos, pois atuam elevando a concentração de tensão e por isso devem ser levados em consideração no dimensionamento dos eixos.

2.3 Rolamentos

Os rolamentos são componentes mecânicos cruciais em uma variedade de aplicações industriais, desempenhando um papel essencial na redução do atrito e no suporte de cargas em máquinas rotativas. Esses elementos são fundamentais para o funcionamento eficiente de motores, transmissões, equipamentos elétricos e uma ampla gama de maquinários.

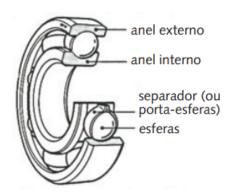


Figura 5 – Esquema de partes de rolamento de esferas. Fonte: Norton (2013).

Como observado por (NORTON, 2013) mancais planos são projetados especificamente para uma aplicação, enquanto os mancais de elementos rolantes são selecionados de catálogos de fabricantes para atender às cargas, velocidades e vida útil especificadas para a aplicação.

3 METODOLOGIA

Inicialmente precisa-se definir as condições iniciais de projeto, a fim de obtermos os melhores resultados em provas de aceleração e velocidade. Tendo isso em vista foram definidas metas de velocidade final e aceleração que está diretamente associada ao torque transmitido pelo sistema de transmissão. De acordo com o regulamento (BRASIL, 2023) o motor é padronizado, sendo ele o modelo (série 19) Briggs Straton com potência de 10Hp. No veículo é utilizado um câmbio CVT(*Continuously Variable Transmission*) entre o eixo de saída do motor e o eixo de entrada da caixa de redução, esse sistema que funciona trocando de marcha automaticamente de acordo com a rotação do motor.

Baseando-se no projeto anterior e em resultados de provas em competição foram traçadas algumas metas de projeto para o sistema de transmissão do novo veículo, que são apresentadas na tabela 1 a seguir:

, ,	
Metas	Valor
Entre-eixo (entrada-saída) [mm]	<183
Tempo em 30 metros no asfalto [s]	4,2
Tempo em 30 metros em terra batida [s]	4,4
Velocidade em 100 metros no asfalto [Km/h]	40
Velocidade em 100 metros em terra batida [Km/h]	37

Tabela 1 – Metas de projeto

É importante ressaltar que esses resultados não dependem totalmente da caixa de redução, o ajuste de rotação do motor e do câmbio CVT interferem diretamente nesses números.

3.1 Dimensionamento trem de engrenagens

3.1.1 Relação de transmissão

Tendo a velocidade final como entrada, pretende-se obter a redução da caixa como saída. Como a relação de transmissão do câmbio CVT modelo GX9 é de 3,90:1 inicial e 0,90:1 final e com a rotação máxima do motor definida para 4200 rpm, a velocidade final teórica definida para 40 km/h, calcula-se a redução necessária para 10,406 através da equação (2.2) conforme apresentado por (SHIGLEY *et al.*, 2011) e feitas algumas manipulações para o caso em questão. É importante ressaltar que o pneu utilizado no

veículo é o modelo Carlisle com 23 polegadas de diâmetro.

$$r_{teorico} = \frac{V_{f_{teorica}}.10^6.4200}{C_{pneu}.60}$$
 (3.1)

No entanto, outras metas precisam ser alcançadas e com uma redução tão alta o tempo de aceleração fica muito distante da meta buscada, a partir de experiência prévia da equipe, devemos buscar uma redução entre 9,3 a 9,7 que permite boa velocidade final e torque elevado, permitindo obter-se bom tempo de aceleração em 30 metros. Desta forma chegou-se a uma relação de transmissão com redução de 9,488 com a seguinte configuração para o número de dentes de cada engrenagem, conforme esquema da figura 6: Z_1 = 15, Z_2 = 35, Z_3 = 15, Z_4 = 61.

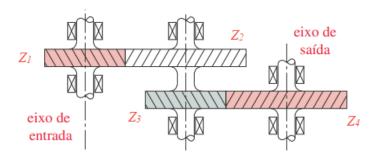


Figura 6 – Exemplo de trem de engrenagens com 3 eixos. Fonte: Norton (2013).

Foi utilizado o projeto anterior como base (MANGUE, 2016), para a definição do número de dentes do pinhão de entrada \mathbb{Z}_1 . Com a velocidade final teórica e o torque final definidos se torna possível fazer o dimensionamento dos componentes da caixa de redução.

3.2 Dimensionamento das engrenagens

Para o dimensionamento de engrenagem, não existe um roteiro especifico, mas existem passos a serem seguidos e que serão utilizados aqui, baseados em normas. Ainda para o dimensionamento das engrenagens, será utilizado a largura de face b e módulo m_t utilizados no projeto anterior (MANGUE, 2016), pois se trata de um projeto validado e funcional, desta forma já se tem um ponto inicial para o projeto.

Seguindo o metodologia AGMA para dimensionamento de engrenagens cilíndricas de dentes retos, são introduzidas por (SHIGLEY *et al.*, 2011) as seguintes equações para tensões flexionais (3.2) e para desgaste por crateramento (3.3).

$$\sigma = W_t.K_0.K_v.K_s.\frac{1}{b.m_t}.\frac{K_H.K_B}{Y_J}$$
(3.2)

$$\sigma_c = Z_E \sqrt{(W_t.K_0.K_v.K_s).\frac{K_H}{d_p.b} \frac{Z_R}{Z_I}}$$
(3.3)

Após determinadas as tensões de flexão e de contado, utiliza-se as equações de tensões admissível para os dois casos para determinar o coeficiente de segurança das engrenagens.

$$\sigma_{all} = \frac{S_t}{S_F} \frac{Y_N}{Y_\theta, Y_Z} \tag{3.4}$$

$$\sigma_{c,all} = \frac{S_c}{S_H} \frac{Z_N . Z_W}{Y_\theta . Y_Z} \tag{3.5}$$

3.2.1 Tensão por Flexão

Para obter-se os valores das tensões por flexão utilizando a equação (3.2), é necessário calcular todos os fatores apresentados na equação. As seções a seguir trazem detalhes para determinação de cada termo das equações.

3.2.1.1 Força Tangencial W_t

Para o cálculo das forças tangenciais transmitida nos pinhões Z_1 e Z_3 utiliza-se a equação (3.6) apresentada por (NORTON, 2013).

$$W_t = \frac{T_p}{r_p} = \frac{2.T_p}{d_p} = \frac{2.P_d.T_p}{N_p}$$
 (3.6)

3.2.1.2 Fator de Sobrecarga K_0

Este fator leva em consideração forças externas, qualquer tipo de desalinhamento axial e desvios na forma do dente que podem gerar sobrecargas nos dentes da engrenagem que sejam superiores à força tangencial calculada, conforme citado por Norton. Considerando a largura de face das engrenagens, foi considerado $K_0 = 1$.

3.2.1.3 Fator Dinâmico K_v

O fator dinâmico leva em consideração o nível de precisão e qualidade da transmissão entre engrenagens, pensando nisso a (AGMA, 2003) criou equação para o cálculo deste fator K_v (3.7). Dentro da equação encontra-se o número de qualidade Q_v que está definido da seguinte forma, a grande maioria das engrenagens encontradas a nível comercial o número de qualidade está entre 3 e 7, para engrenagens com fabricação precisa de 8 a 12. Neste caso será utilizado o valor de 11. Com isto calcula-se o valor de K_v :

$$K_v = \left(\frac{A + \sqrt{200.V_t}}{A}\right)^B \tag{3.7}$$

Onde os termos A e B são obtidos pelas equações 3.8 e 3.9.

$$A = 50 + 56(1 - Q_v) \tag{3.8}$$

$$B = 0.25(12 - Q_v)^{2/3} (3.9)$$

E a equação 3.10 para obter V_t .

$$V_t = \frac{[A + (Q_v - 3)]^2}{200} \tag{3.10}$$

3.2.1.4 Fator de tamanho K_s

O próximo fator a ser determinado é o fator de tamanho, é um fator que trata da não uniformidade do material e suas propriedades, que são resultantes diretas do tamanho da engrenagem, dos dentes e demais características. A AGMA sugere por convenção valor 1, até que se tenham dados de testes em diversas engrenagens e de tamanhos variados.

3.2.1.5 Fator de distribuição de carga K_H

Este fator leva em consideração como as cargas são distribuídas na engrenagem, levando em consideração sua posição no eixo, alinhamento, largura de face e conforme demonstrado por Shigley. Para chegar ao valor do fator K_H a equação (3.11) foi utilizada, onde cada fator da equação foi analisado conforme norma da AGMA.

$$K_H = 1 + C_{mc}(C_{pf}C_{pm} + C_{ma}C_e) (3.11)$$

Cada termo da equação acima é detalhado a seguir, conforme apresentados por (SHIGLEY et al., 2011):

$$C_{mc} = \left\{ \begin{array}{cc} 1 & \text{para dentes sem coroamento} \\ 0,8 & \text{para dentes com coroamento} \end{array} \right. \tag{3.12}$$

$$C_{pf} = \begin{cases} \frac{F}{10d} - 0,025 & F \le 1 \text{ in} \\ \frac{F}{10d} - 0,0375 + 0,0125F & 1 < F \le 17 \text{ in} \\ \frac{F}{10d} - 0,1109 + 0,0207F - 0,000228F^2 & 17 < F \le 40 \text{ in} \end{cases}$$
(3.13)

Em caso da expressão F/10d < 0.05, (SHIGLEY *et al.*, 2011) orienta utilizar 0.05.

$$C_{pm} = \left\{ \begin{array}{cc} 1 & \text{para pinhões montado no intervalo entre mancais } S_1/S < 0,175 \text{ in} \\ 1,1 & \text{para pinhões montado no intervalo entre mancais } S_1/S \ge 0,175 \text{ in} \\ & (3.14) \end{array} \right.$$

Onde S é a distância entre os centros dos mancais em que a engrenagem está montada e S_1 é a distancia do centro da engrenagem para o centro da distância entre mancais.

$$C_{ma} = A + B.F + C.F^2 (3.15)$$

As constantes empíricas A, B e C são retirados da tabela apresentada por (SHIGLEY et al., 2011) que é mostrada na figura 7.

Condição	Α	В	С
Engrenamento aberto	0,247	0,0167	-0,765(10 ⁻⁴)
Unidades fechadas, comerciais	0,127	0,0158	$-0,930(10^{-4})$
Unidades fechadas, de precisão	0,0675	0,0128	-0,926(10 ⁻⁴)
Unidades de engrenagens fechadas, extraprecisas.	0,00360	0,0102	-0,822(10 ⁻⁴)

^{*}Ver ANSI/AGMA 2101-D04, p. 20-22, para formulação SI.

Figura 7 – Tabela com os valores de A, B e C. Fonte: Shigley (2011).

$$C_e = \left\{ \begin{array}{ll} 0,8 & \text{para engrenagem ajustada na montagem, lapidada, ou ambos} \\ 1 & \text{para todas as outras condições} \end{array} \right. \tag{3.16}$$

3.2.1.6 Fator de espessura de borda K_B

Introduzido pela AGMA, este fator leva em consideração o caso em que engrenagens possuem alívios na parte interior da engrenagem, não sendo totalmente preenchida por material. A partir de uma relação entre a altura do dente e a espessura da borda é definida a razão de recuo m_b , e por recomendação AGMA, o fator K_B deve ser considerado 1 no caso da razão m_b ser menor que 1,2, que é o caso do projeto do presente trabalho.

3.2.1.7 Fator Geométrico Y_J

Para obter-se o fator geométrico a (AGMA, 2003) apresenta uma equação que utiliza um fator de concentração de tensão por fadiga K_f e uma razão de partilhamento de carga entre dentes m_N , no entanto, o (SHIGLEY *et al.*, 2011) trás um gráfico dos valores desse fator calculados para engrenagem cilíndrica de dentes retos com ângulo de pressão de 20° e que pode ser utilizada sem problemas para fins de projetos. O gráfico que foi utilizado é apresentado a seguir na figura 8.

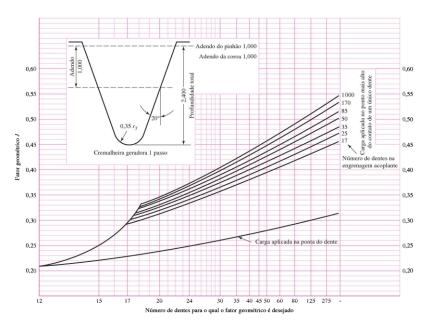


Figura 8 – Gráfico para obter-se o fator geométrico. Fonte: Shigley (2011).

3.2.1.8 Tensão de flexão admissível S_t

Também chamada de resistência flexional de engrenagens, não é idêntica a tensão ultima(S_{ut}) do material utilizado na engrenagem, ele deve ser calculado através das equações 3.17 e 3.18 a seguir, com base no material e tratamento térmico utilizado para o endurecimento, de acordo com (SHIGLEY *et al.*, 2011). No presente trabalho, foi considerado aço endurecido por completo sem nitretação.

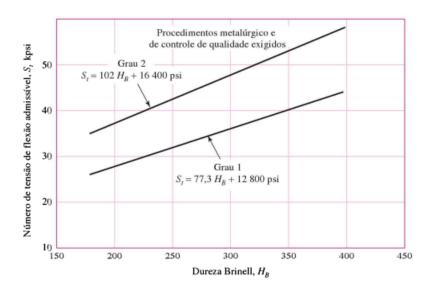


Figura 9 – Gráfico para cálculo de tensão de flexão admissível. Fonte: Shigley (2011).

$$S_t = 77.3H_B + 12800 \tag{3.17}$$

$$S_t = 102H_B + 16400 \tag{3.18}$$

3.2.1.9 Fator de ciclagem de tensão Y_N e Z_N

Esses fatores de ciclo de cargas são utilizados para modificar a resistência da engrenagem em caso de dimensionamento com ciclos diferentes de 10⁷ ciclos. para estes casos, devem ser utilizadas os gráficos apresentados na (AGMA, 2003) e as equações correspondentes. No dimensionamento deste trabalho, utilizou-se 10⁵, considerando o baixo uso, apenas em testes na universidade e 2 competições por ano, desta forma, o valor desses fatores, devem ser considerados 1,72.

3.2.1.10 Fator de temperatura Y_{θ}

Este fator leva em consideração a temperatura de trabalho onde a engrenagem vai ser utilizado, e para temperaturas abaixo de 120 °C, Y_{θ} =1.

3.2.1.11 Fator de confiabilidade Y_Z

Conforme mencionado por (SHIGLEY *et al.*, 2011) o fator de confiabilidade leva em consideração a distribuição estatísticas das falhas por fadiga do material e para tal, utiliza-se a tabela apresentada na figura 10. Onde se leva em consideração o nível de confiabilidade desejado, para se obter o valor do fator.

Confiabilidade	$K_R(Y_z)$
0,9999	1,50
0,999	1,25
0,99	1,00
0,90	0,85
0,50	0,70

Figura 10 – Fator de confiabilidade. Fonte: Shigley (2011).

3.2.2 Tensão de Contato

Para o cálculo da tensão de desgaste, alguns fatores são os mesmos do cálculo de tensão por flexão e serão reutilizados aqui, de posse desse fatores é necessário obter os demais, que são vistos a seguir.

3.2.2.1 Coeficiente Elástico Z_E

O coeficiente elástico leva em consideração as diferenças entre os materiais do pinhão e da coroa que estão em contato. Desta forma, baseado na norma AGMA para dimensionamento de engrenagens, (NORTON, 2013) apresenta a equação (3.19) que determina esse valor.

$$Z_E = \sqrt{\frac{1}{\pi \left[\left(\frac{1 - v_p^2}{E_p} \right) + \left(\frac{1 - v_g^2}{E_g} \right) \right]}} \tag{3.19}$$

Onde E_p e E_g são o módulo de elasticidade para o pinhão e para a coroa respectivamente, e os termos v_p e v_g são coeficiente de Poisson, também para o pinhão e coroa.

3.2.2.2 Fator de condição superficial Z_R

Este fator leva em consideração as condições de acabamento superficial dos dentes da engrenagem, a AGMA não determina uma normas para a definição desse fator, mas recomenda que seja utilizado o valor de 1 para os métodos mais tradicionais de fabricação de engrenagem.

3.2.2.3 Fator geométrico de resistência superficial Z_I

O Fator Z_I também chamado pela AGMA como fator geométrico de resistência a crateramento, avalia como os pares dentes adjacentes compartilham as cargas durante o engrenamento, o (SHIGLEY *et al.*, 2011) trás a seguinte equação (3.20) para determinação do valor desse fator.

$$Z_I = \frac{\sin\phi\cos\phi}{2} \cdot \frac{m_G}{m_G + 1} \tag{3.20}$$

Onde m_G é a razão entre o número de dentes da coroa sobre o número de dentes do pinhão, e ϕ é o ângulo de pressão do dente da engrenagem.

3.2.2.4 Tensão de contato admissível S_c

Semelhante ao procedimento feito para cálculo da resistência flexional de engrenagens, a tensão de contato admissível segue o mesmo procedimento conforme apresentado por (SHIGLEY *et al.*, 2011) e será considerado aço endurecido por completo sem nitretação. Utilizando-se do gráfico da figura 11 e equações 3.21 e 3.22 que são apresentadas na sequencia.

$$S_c = 322H_B + 29100 \tag{3.21}$$

$$S_c = 349H_B + 34300 \tag{3.22}$$

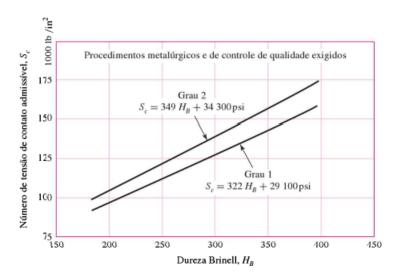


Figura 11 – Gráfico de tensão de contato admissível. Fonte: Shigley (2011).

3.2.2.5 Fator de razão de dureza para resistência o desgaste por contato Z_W

Este fator é apenas utilizado no dimensionamento da coroa, considerando que o pinhão é menor e passa por mais ciclos que a coroa e o seu propósito é ajustar a resistência da coroa em relação a isso. Para o cálculo deste fator (SHIGLEY *et al.*, 2011) apresenta a equação 3.23 e comenta que para o caso de dureza entre o pinhão e a coroa ser menor que 1, o termo A' deve ser considerado 0, e por consequência Z_W =1.

$$Z_W = 1 + A'(m_G - 1) (3.23)$$

3.3 Dimensionamento dos eixos

Tendo definido a relação de transmissão do trem de engrenagens e o número de dentes de cada uma delas, se torna possível fazer o dimensionamento dos eixos. Para tal, é importante notar que as engrenagens exercem forças no eixo por suas componentes tangencial e radial, que podem ser calculadas através das equações 3.24 e 3.25 apresentadas por (NORTON, 2013).

$$F_t = \frac{2.\tau}{d_n} \tag{3.24}$$

$$F_r = F_t \cdot \tan \phi \tag{3.25}$$

Para determinação do diâmetro é feito a partir do critério ASME-Elíptico apresentado por (SHIGLEY *et al.*, 2011) através da equação 3.26.

$$d = \sqrt[3]{\frac{16.n_f}{\pi} \left[\frac{\sqrt{4(K_f M_a)^2 + 3(K_{fs} T_a)^2}}{S_e} + \frac{\sqrt{4(K_f M_m)^2 + 3(K_{fs} T_m)^2}}{S_{ut}} \right]}$$
(3.26)

3.3.1 Limite de resistência a fadiga S_e

Para determinar o valor da tensão limite de resistência a fadiga, (SHIGLEY *et al.*, 2011) apresenta a equação 3.27 que terá seus fatores detalhados nas seções seguintes.

$$S_e = k_a.k_b.k_c.k_d.k_e.k_f.S_e' (3.27)$$

3.3.2 Fator de superfície K_a

O fator de superfície leva em consideração a qualidade do acabamento superficial do eixo, e é obtido a partir da equação 3.28 e os valores de a e b devem ser utilizados conforme tabela apresentada na figura 12.

$$k_a = aS_{ut}^b (3.28)$$

Acabamento superficial	Fator a S _{ut} , MPa	Expoente b
Retificado	1,58	-0,085
Usinado ou laminado a frio	4,51	-0,265
Laminado a quente	57,7	-0,718
Forjado	272	-0,995

Extraído de C. J. Noll e C. Lipson, "Allowable Working Stresses", Society for Experimental Stress Analysis, vol. 3, n. 2, 1946, p. 29. Reproduzido por O. J. Horger (ed.) in Metals Engineering Design ASME Handbook,
Nova York: McGraw-Hill. Copyright ⊚ 1953 by The McGraw-Hill Companies, Inc. Reimpresso com autorização.

Figura 12 – Tabela para obter o fator de superfície. Fonte: Shigley (2011).

3.3.3 Fator de tamanho k_b

Levando em consideração o diâmetro do eixo o fator de tamanho pode ser obtido a partir da equação 3.29 de acordo com o diâmetro do eixo em questão. Caso o diâmetro do eixo ainda não esteja determinado, é arbitrado um valor para d e feita a iteração para dimensionamento até chegar a seu valor final.

$$K_b = \begin{cases} 1,24d^{-0,107} & 2,74 \le d \le 51 \text{ mm} \\ 1,51d^{-0,157} & 51 < d \le 254 \text{ mm} \end{cases}$$
 (3.29)

3.3.4 Fator de carga k_c

(SHIGLEY et al., 2011) em seu trabalho apresenta valores para o fator de carga, que foram obtido a partir de ensaios realizados com flexão rotativa, carregamento axial

e torcional que são vistos a seguir:

$$k_c = \begin{cases} 1 & \text{flexão} \\ 0.85 & \text{axial} \\ 0.59 & \text{torção} \end{cases}$$
 (3.30)

3.3.5 Fator de temperatura k_d

Este causará modificação em caso de trabalho em temperatura acima de 50 °C. No presente trabalho será considerado trabalho abaixo de 50 °C, no entanto, outros valores para o fator de temperatura podem ser observador na tabela fornecida por (SHIGLEY et al., 2011) em seu trabalho e aqui apresentada na figura 13.

$$k_d = \frac{S_T}{S_{RT}} \tag{3.31}$$

Temperatura, °C	S _T /S _{RT}
20	1,000
50	1,010
100	1,020
150	1,025
200	1,020
250	1,000
300	0,975
350	0,943
400	0,900
450	0,843
500	0,768
550	0,672
600	0,549

Figura 13 – Valores de k_b para diferentes temperaturas. Fonte: Shigley (2011).

3.3.6 Fator de confiabilidade k_e

O fator de confiabilidade pode ser obtido utilizando a equação 3.32 de acordo com (SHIGLEY *et al.*, 2011) e os valores do termo z_a podem ser obtidos a partir da tabela apresentada na figura 14 de acordo com o nível de confiabilidade desejado.

$$k_e = 1 - 0.08z_a \tag{3.32}$$

Confiabilidade, %	Variante de transformação z_a	Fator de confiabilidade $oldsymbol{k_e}$
50	0	1,000
90	1,288	0,897
95	1,645	0,868
99	2,326	0,814
99,9	3,091	0,753
99,99	3,719	0,702
99,999	4,265	0,659
99,9999	4,753	0,620

Figura 14 – Valores de z_a para diversos níveis de confiabilidade. Fonte: Shigley (2011).

3.3.7 Fator de efeitos diversos k_f

Este fator leva em consideração fatores diversos que podem influenciar no limite de resistência a fadiga, de acordo com (SHIGLEY *et al.*, 2011). No presente trabalho não é possível fazer uma analise mais aprofundada em relação a esse tipo de influência e por isso será considerado valor 1.

3.3.8 Limite de resistência a fadiga em serviço S'_e

Para determinação do limite de resistência a fadiga para aços, (SHIGLEY *et al.*, 2011)apresenta um estudo onde foi possível observar um padrão e com isso determinar a seguinte equação:

$$S'_e = \begin{cases} 0.5S_{ut} & S_{ut} \le 1400 \text{ MPa} \\ 700 \text{ MPa} & S_{ut} > 1400 \text{ MPa} \end{cases}$$
 (3.33)

Onde a S_{ut} é a resistência a tração mínima.

3.3.9 Momento fletor máximo

Os eixos serão considerados da seguinte forma, estão submetidos a esforços de flexão enquanto estão rotacionando. Sob esse tipo de carregamento, os esforços assumem um perfil senoidal, resultando em momentos fletor alternados iguais ao momento fletor máximo, com um momento médio nulo. Os resultados obtidos na determinação desses momentos serão apresentados na seção de resultados e discussões.

3.3.10 Fatores de concentração de tensão

(NORTON, 2013) apresenta em seu trabalho, a equação 3.34 que permite calcular os fatores de concentração de tensão tanto para tensões normais quanto para cisalhamento, K_f e K_{fs} , respectivamente.

$$K_f = 1 + q(K_t - 1) (3.34)$$

Onde q é sensibilidade a entalhe, e K_t pode ser obtido através de gráficos, conforme característica de cada ponto de concentração.

3.3.11 Tensões nominais dos eixos

Para as tensões nominais dos eixos (NORTON, 2013) instrui a fazer a utilização das equações 3.35 e 3.36 para determinar as tensões de fadiga por flexão. Para determinar as tensões de fadiga por cisalhamento serão utilizadas as equações 3.37 e 3.38. É importante ressaltar que deve-se determinar essas tensões em cada ponto crítico do eixo, aqui considerados onde se tem pontos de momento fletor máximo, estria, e rasgo para anel elástico.

$$\sigma_a = K_f \frac{32M_a}{\pi \cdot d^3} \tag{3.35}$$

$$\sigma_m = K_f \frac{32M_m}{\pi . d^3} \tag{3.36}$$

$$\tau_a = K_{fs} \frac{16T_a}{\pi . d^3} \tag{3.37}$$

$$\tau_m = K_{fs} \frac{16T_m}{\pi . d^3} \tag{3.38}$$

E por ação das tensões combinada no eixo, flexão e cisalhamento, é necessário calcular as tensões equivalente de alternada e média de von Misses, conforme equações 3.39 e 3.40, respectivamente.

$$\sigma_a' = \sqrt{\sigma_a^2 + 3.\tau_a^2} \tag{3.39}$$

$$\sigma'_{m} = \sqrt{(\sigma_{m} + \sigma_{m_{axial}})^{2} + 3.\tau_{m}^{2}}$$
 (3.40)

E então é possível calcular o coeficiente de segurança n_f pela equação 3.41.

$$\frac{1}{n_f} = \frac{\sigma_a'}{S_e} + \frac{\sigma_m'}{S_{ut}} \tag{3.41}$$

3.4 Estria dos eixos

Como definido por (COLLINS, 2010) em seu trabalho, estrias são chavetas integrais uniformemente espaçadas ao redor do exterior dos eixos ou dentro de cubos, e com perfis de dentes involutos definidos por normas, possibilitam uma redução de concentração de tensão.

Os eixos foram dimensionados para utilizar estrias como elementos de fixação para as engrenagens. Foi utilizado o padrão de estria apresentado pela DIN (*Deutsches Institut für Normung*) na norma DIN-5482 (DIN, 1991). De acordo com o diâmetro do eixo foi determinado o número de estrias e o módulo da estria.

É importante ressaltar que no eixo de entrada, há uma chaveta que não faz parte do dimensionamento deste trabalho e não pode ser alterado, pois se trata da chaveta da CVT e não pode ser alterada.

3.5 Escolha de rolamentos

Definidos as engrenagens e as forças exercidas por elas nos eixo, é possível agora escolher qual rolamento utilizar na caixa de redução. Foi utilizado o catálogo da (SKF, 2024) para escolha desses rolamentos. Considerando o tipo de carregamento, que é puramente radial, foi escolhido rolamento rígido de esfera com uma carreira, que segundo o fabricante, acomodam cargas radiais e pequenas cargas axiais em ambas as direções, são fáceis de montar e precisam de menos manutenção. Quanto ao tipo de vedação não foi um problema já que serão utilizados retentores na parte externa da caixa e na parte interna o rolamento está exposto a óleo, que permite sua lubrificação constante.

Baseado no diâmetro mínimo dos eixos e as cargas obtidas no diagrama de esforços nos eixos foram definidos a vida nominal e as carga dinâmicas de acordo com o catálogo, a fim de utilizar diâmetros padronizados nos eixos.

4 RESULTADOS E DISCUSSÕES

4.1 Engrenagens

Conforme apresentado no capítulo anterior, foi utilizado o método (AGMA, 2003) para o dimensionamento das engrenagens. O material utilizado para a construção das engrenagens foi o SAE 8620, que é um material que possui boa propriedades mecânicas é amplamente usado na fabricação de engrenagens. A tabela 2 apresenta os valores dos fatores utilizados na obtenção da tensão de flexão para as engrenagens.

Tensão por Flexão						
Parâmetros		Engrenagens				
		Z_1	Z_2	Z_3	Z_4	
Força tangencial transmitida [N]	W_t	3224	3224	7522,667	7522,667	
Fator de sobrecarga	K_0	1	1	1	1	
Fator dinâmico	K_v	1,185	1,185	1,185	1,185	
Fator de tamanho	K_s	1	1	1	1	
Fator de distribuição de carga	K_H	1,098	1,098	1,103	1,103	
Fator de espessura de aro	K_b	1	1	1	1	
Fator geométrico	Y_J	0,25	0,35	0,27	0,4	
Tensão Flexão [Mpa]	σ	558,947	399,248	606,550	409,421	

Tabela 2 – Fatores para tensão por flexão

Para encontrar o fator de segurança S_F para as engrenagens, foi feita uma manipulação matemática com as equações 3.2 e 3.35 e a partir disso, obter o fator de segurança com a equação 4.1.

$$S_F = \frac{S_t \cdot Y_N}{\sigma \cdot Y_\theta \cdot Y_Z} \tag{4.1}$$

Os valores dos fatores pra determinar a tensão admissível de flexão são apresentados na tabela 3, Assim como o valores dos coeficientes de segurança AGMA para cada engrenagem.

Tensão admissível							
		Engrenagens					
Parâmetros		Z_1	Z_2	Z_3	Z_4		
Tensão de flexão admissível [Mpa]	S_t	573,008	573,008	573,008	573,008		
Fator de ciclagem	Y_N	1,720	1,720	1,720	1,720		
Fator de temperatura	Y_{θ}	1	1	1	1		
Fator de confiabilidade	Y_Z	1	1	1	1		
Fator de segurança AGMA	S_f	1,763	2,468	1,625	2,407		
Tensão de flexão [MPa]	σ	558,947	399,248	606,550	409,421		

Tabela 3 – Fatores para tensão admissível.

Definido o fator de segurança para a tensão por flexão, foram feitos os cálculos para determinar o fator de segurança AGMA para tensão de contato. De forma semelhante foram obtidos os fatores da equação 3.3, para tensão de contato, que são apresentados a seguir na tabela 4.

Tensão de contato no dente						
Parâmetros		Engrenagens				
		Z_1	Z_2	Z_3	Z_4	
Coeficiente elástico $[\sqrt{N/mm^2}]$	Z_E	5,877	5,877	5,877	5,877	
Força tangencial transmitida [N]	W_t	3224	3224	7522,667	7522,667	
Fator de sobrecarga	K_0	1	1	1	1	
Fator dinâmico	K_v	1,185	1,185	1,185	1,185	
Fator de tamanho	K_S	1	1	1	1	
Fator de distribuição de carga	K_H	1,098	1,098	1,103	1,103	
Coeficiente de condição superficial	Z_R	1	1	1	1	
Diametro primitivo pinhão	d_p	45	45	45	45	

Tabela 4 – Fatores para tensão de contato.

De forma análoga a obtenção do fator de segurança para tensão por flexão, o fator de segurança AGMA para tensão de contato S_H , foi calculado a partir da equação 4.2.

0,112

53,482

0,112

53,482

 Z_I

 σ_c

Fator geométrico para resistencia

Tensão de Contato [MPa]

$$S_H = \frac{S_c.Z_N.Z_W}{\sigma_c.Y_\theta.Y_Z} \tag{4.2}$$

0,129

54,071

0,129

54,071

A seguir, foram determinados os fatores para a tensão admissível e o fator de segurança, que pode-se observar na tabela 5.

Fator de temperatura

Fator de confiabilidade

Fator de segurança AGMA

Tensão de contato [MPa]

1

1

57,581

54,071

•				
Tensão d	e contato admi	ssível		
		Engre	nagens	
Parâmetros	Z_1	Z_2	Z_3	Z_{\cdot}

1

58,214

53,482

1

58,214

53,482

1

57,581

54,071

Tabela 5 – Fatores para tensão de contato admissível.

Tensão de contato admissível [Mpa] 1810,188 1810,188 1810,188 1810,188 S_c 1,720 1,720 1,720 1,720 Fator de ciclagem Z_N 1 1 1 1 Fator de dureza para resistencia Z_W

 Y_{θ}

 Y_Z

 S_H

 σ_c

foram obtidos após definido que os fatores de segurança obtidos são aceitáveis.

A seguir são apresentados os parâmetros gerais das engrenagens (tabela 6), que

Tabela 6 – Parâmetros gerais das engrenagens

		Engrenagens			
Terminologia		Z_1	Z_2	Z_3	Z_4
Números de dentes	Z	15	35	15	61
Ângulo de pressão [graus]	ϕ	20	20	20	20
Módulo [mm]	m	3	3	3	3
Passo [mm]	p	9,425	9,425	9,425	9,425
Largura engrenagens [mm]	b	10	10	20	20
Diâmetro primitivo [mm]	d	45	105	45	183
Diâmetro de base [mm]	d_b	42,286	98,668	42,286	171,964
Diâmetro de cabeça [mm]	d_a	51	111	51	189
Raio primitivo [mm]	r	22,5	52,5	22,5	91,5
Raio de base [mm]	r_b	21,143	49,334	21,143	85,982
Raio de cabeça [mm]	r_a	25,5	55,5	25,5	94,5
Altura de cabeça [mm]	h_a	3	3	3	3
Altura do dente [mm]	h	5,4	5,4	5,4	5,4
Altura do pé [mm]	h_f	2,4	2,4	2,4	2,4
Distancia entre centro [mm]	C	7	5	1	14
Distancia entre centro ajustada [mm]	C_{ajust}	75	5,5	11	4,6

É importante ressaltar que, após definidas as engrenagens, foi observado que haveria interferência entre os pares de pinhão e coroa, dado que o número de dentes dos pinhões são menores do que o mínimo, para engrenagens ângulo de pressão de 20°, desta forma, foi feito um afastamento nas distância entre centros, para evitar esse problema.

4.2 Eixos

Utilizando o método apresentado na seção *Dimensionamento dos eixos*, foi considerado o aço SAE 4340 para a fabricação dos eixos, por suas boas propriedades mecânicas e sua ampla utilização na industria na fabricação de eixos.

Aqui será mostrado a obtenção do eixo intermediário, onde estão as engrenagens \mathbb{Z}_2 e \mathbb{Z}_3 , no entanto, o mesmo procedimento foi aplicado no dimensionamento dos demais eixos. A seguir é apresentado o esquema de disposição das engrenagens no eixo e pontos de apoio. Com base no torque do motor e a relação de transmissão dos pares

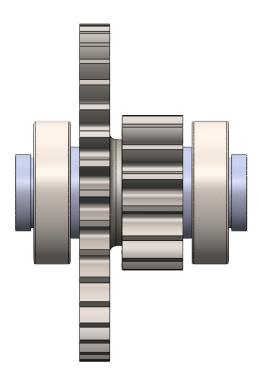


Figura 15 – Disposição engrenagens no eixo intermediário. Fonte: Autor (2024).

de engrenagens, foi obtido o torque em cada engrenagem e com isso determinada as reações nos mancais.

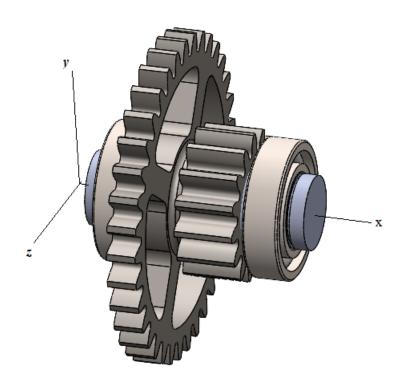


Figura 16 – Eixo com sistema de coordenadas utilizado. Fonte: Autor (2024).

Tabela 7 – Forças atuantes no eixo.

Dados iniciais				
Força tangente na engrenagem \mathbb{Z}_2 [N]	W_{12}^{t}	3224		
Força tangente na engrenagem \mathbb{Z}_3 [N]	W_{34}^{t}	-7522,667		
Força radial na engrenagem \mathbb{Z}_2 [N]	W_{12}^{r}	-1173,440		
Força radial na engrenagem Z_3 [N]	W_{34}^r	-2738,027		

Tabela 8 – Reações nos mancais.

Reações					
Reação mancal A plano xy [N]	R_{AY}	1481,844			
Reação mancal B plano xy [N]	R_{BY}	2429,623			
Reação mancal A plano xz [N]	R_{AZ}	20,667			
Reação mancal B plano xz [N]	R_{BZ}	-4319,334			

A partir disso, foram gerados os gráficos de esforço cortante e momento fletor para cada plano onde as forças atuam respectivamente, e então somados os dois gráficos de momento fletor foi gerado o gráfico de momento fletor resultante (figura 19), que será utilizado para determinar cada ponto crítico no eixo.

Figura 17 – Momento fletor plano xy. Fonte: Autor (2024).

Figura 18 – Momento fletor plano xz. Fonte: Autor (2024).

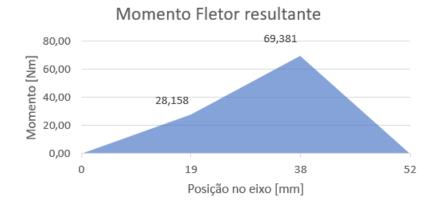


Figura 19 – Momento fletor resultante. Fonte: Autor (2024).

Após obtido e analisado o gráfico de momento fletor resultante, foi possível observar seções críticas, na posição até 19mm e de 19 a 38mm do eixo. Desta forma, a seguir

são apresentados na tabela 9 e 10 os momentos e torque atuantes, nas seções A e B.

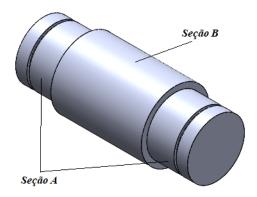


Figura 20 – Eixo intermediário com as seções críticas destadas. Fonte: Autor (2024).

Tabela 9 – Seção A.

Seção A				
Momento alternato [Nm]	M_a	28,158		
Momento médio [Nm]	M_m	14,079		
Torque alternado [Nm]	T_a	0		
Torque médio [Nm]	T_m	31,089		

Tabela 10 – Seção B.

Seção B		
Momento alternato [Nm]	M_a	69,381
Momento médio [Nm]	M_m	34,690
Torque alternado [Nm]	T_a	0
Torque médio [Nm]	T_m	31,089

A partir desses dados, foram calculados os fatores e aplicados na equação 3.26 e obtido os diâmetros mínimos para cada seção do eixo, 17,94mm e 25,32mm, respectivamente. A fim de padronizar os rolamentos utilizados na caixa de redução foi utilizado o diâmetro de 25mm na seção onde então os mancais e 30mm na seção onde as engrenagens são montadas.

4.3 Rolamentos e retentores

Utilizando o catálogo (SKF, 2024) para a escolha dos rolamentos, com base nos diâmetros internos padrões, foi escolhido o rolamento 6005 com diâmetro interno de 25 mm e diâmetro externo de 47 mm, com largura de 12 mm, e que foi utilizado em todos os eixos, para facilitar e padronizar a montagem.

Além dos rolamentos, foram escolhidos retentores para vedação da caixa na área dos rolamentos. De acordo com o catálogo (SABO, 2024) foi escolhido o retentor NBR 02010 BRO.

4.4 Tampas

A fim de atender a necessidade de desenvolver uma caixa mais compacta e de diminuir a distância entre os eixos de entrada e saída, a tampa foi desenvolvida com um ângulo de 125,6° entre os eixos, ao invés de ser em linha, ou seja, 180° como é comum se ver em trens de engrenagem e com essa mudança foi possível ter uma distancia de 170mm entre o eixo de entrada e saída.

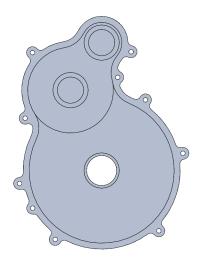


Figura 21 – Tampa direita. Fonte: Autor (2024)

Em paralelo com esse projeto havia o projeto do sistema 4x4 sendo desenvolvido, e

para acomodar esse novo componente na caixa de redução foi projetado uma caixa menor e acoplada as tampas maiores para acomodar as engrenagens cônicas, que transmitem o torque para as rodas dianteira do veículo através do eixo cardan.

Pensada para ser leve e resistente, foi utilizado alumínio 7075 T6 no projeto da estrutura da caixa e com paredes de 4mm de espessura, utilizando as mesmas espessuras da tampa da última caixa de redução desenvolvida pela equipe (MANGUE, 2016), exceto na região onde são parafusadas e nas bordas. Com o intuito de aumentar a área de contato entre as tampas para melhorar a vedação da mesma, foi deixada uma espessura de 8mm.

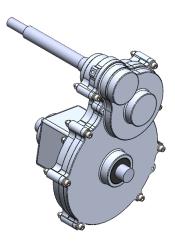


Figura 22 – Vista isométrica da caixa de redução montada. Fonte: Autor (2024).

A seguir, é apresentado o projeto final da caixa de redução com a disposição de todos seus componentes. Em azul são os rolamentos, em preto os retentores e em marrom as engrenagens e em vermelho a engrenagem cônica do sistema 4x4.

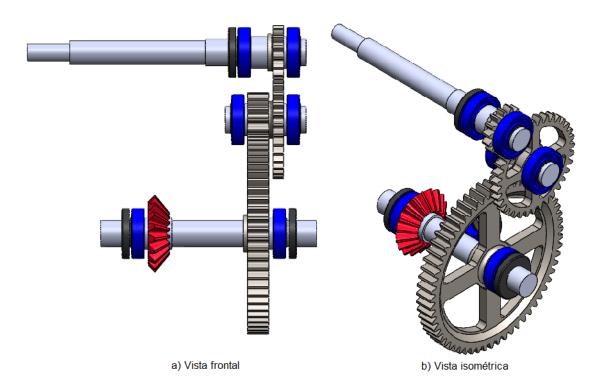


Figura 23 – Disposição interna dos componentes. Fonte: Autor (2024).

4.5 Resultados dinâmicos

O caixa de redução apresentada e dimensionada no presente trabalho foi fabricada e testada no veículo da equipe Mangue Baja. Inicialmente, foi montada e testada manualmente para verificação de interferência e validação de montagem. Em teste internos de aceleração e velocidade, feitos de acordo com o esquema apresentado na figura 24,

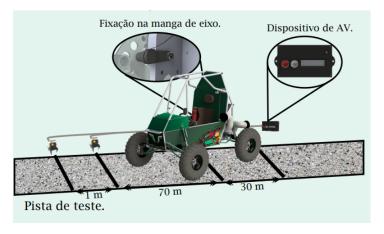


Figura 24 – Esquema de teste de velocidade. Fonte: Equipe Mangue Baja.

A partir dos testes foram obtidos resultados muito satisfatórios, com velocidade em 100 metros de 45 Km/h e tempo em 30 metros de 4,1 segundos. Todos os testes forma feitos no asfalto, figura 25.

Figura 25 – Resultado obtido no teste. Fonte: Autor (2024).

5 CONCLUSÃO

Os objetivos estabelecidos no início deste projeto foram integralmente alcançados, conforme evidenciado pelos resultados obtidos e apresentados na seção anterior.

A distância entre eixo foi diminuída significativamente, de 183mm no projeto anterior para 170mm, uma redução de 7%, possibilitando um posicionamento melhor do motor, contribuindo com a descida do centro de gravidade do veículo e otimização do uso do espaço na parte traseira do veículo.

Em relação aos resultados dinâmicos, foi-se atingido claramente as metas e até mesmo ultrapassado os valores esperados. Após ajustes no câmbio CVT foi possível observar uma melhora significativa na velocidade final do veículo chegando a 45km/h que é uma resultado 11% melhor que o esperado e o tempo em 30 metros de 4,1s superando em 4,7% a meta de projeto. Agora, resta confirmar essa melhora com bons resultados em competições oficiais.

A caixa de redução aqui desenvolvida já foi fabricada, testada e tem se apresentado com um projeto confiável e robusto. Utilizada no protótipo da equipe Mangue Baja em 4 competições oficiais nos anos de 2023 e 2024 e não apresentou falhas até o momento.

O desfecho deste trabalho culminou na concepção de uma caixa de redução que se destaca pela sua robustez, resistência e compacidade. Essa solução representa um marco significativo, visto que será implementada no novo protótipo da equipe Mangue Baja, pertencente à Universidade Federal de Pernambuco, para competições em âmbito regional, nacional e internacional.

Para trabalhos futuros, é sugerido o estudo de viabilidade de mudança das engrenagens de dentes retos para engrenagens de dentes helicoidais, que possibilitaria a redução das tensões permitindo diminui o módulo das engrenagem e por consequência diminuir as engrenagens, com isso seria possível diminui a massa do conjunto e torna a caixa de redução ainda mais compacta.

REFERÊNCIAS BIBLIOGRÁFICAS

AGMA, A. G. M. A. Rating the Pitting Resistance and Bending Strength of Generated Straight Bevel, Zerol Bevel and Spiral Bevel Gear Teeth. A86. [S.I.]: AGMA Standard, 2003.

BRASIL, S. *REGULAMENTO ADMINISTRATIVO E TÉCNICO BAJA SAE BRASIL*. Emenda 4. [S.I.: s.n.], 2023.

COLLINS, H. R. B. . G. H. S. J. A. *MECHANICAL DESIGN OF MACHINE ELEMENTS AND MACHINES*. 2a. ed. [S.I.]: John Wiley Sons, 2010.

DIN, D. I. f. N. *Splined connections with involute splines based on reference diameters.* Din 5480. [S.I.]: DIN, 1991.

INTERNACIONAL, S. Collegiate Design Series Baja SAE® Rules. Revision a. [S.l.: s.n.], 2023.

JUVINALL, R. C.; MARSHEK, K. M. Fundamentos do Projeto de Componentes de Máquina. 4a. ed. [S.I.]: LTC, 2008.

LECHNER, G.; NAUNHEIMER, H. *Automotive Transmissions*. 1a. ed. [S.I.]: Springer, 1999.

MANGUE. Relatório de Projeto Equipe Mangue Baja 1 - Baja SAE Brasil. *SAE Brasil*, v. 17, p. 6–8, Mar 2016.

NORTON, R. L. *Projeto de Máquinas Uma abordagem integrada.* 4a. ed. [S.I.]: BOOK-MAN EDITORA LTDA, 2013.

SABO. *Retentores Sabó*. 2024. Disponível em: https://catalogo.sabo.com.br. Acesso em: 10/03/2024.

SAE, B. *Baja SAE BRASIL - 2022 - Geral.* 2023. Disponível em: https://resultados.bajasaebrasil.online/22BR/prova.php?id=22BR GER>. Acesso em: 25/09/2023.

SHIGLEY; BUDYNAS, R. G.; NISBETT, J. K. *Elementos de Máquinas de Shigley*. 8a. ed. [S.I.]: AMGH Editora Ltda, 2011.

SKF. *Rolamentos rígidos de esferas*. 2024. Disponível em: https://www.skf.com/br/products/rolling-bearings/ball-bearings/deep-groove-ball-bearings. Acesso em: 06/03/2024.