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ABSTRACT

The Wilson-Cowan model serves as a classic framework for comprehending the collective

neuronal dynamics within networks comprising both excitatory and inhibitory units. Extensively

employed in literature, it facilitates the analysis of collective phases in neural networks at a

mean-field level, i.e., when considering large fully connected networks. To study fluctuation-

induced phenomena, the dynamical model alone is insufficient; to address this issue, we need

to work with a stochastic rate model that is reduced to the Wilson-Cowan equations in a

mean-field approach. Throughout this thesis, we analyze the resulting phase diagram of the

stochastic Wilson-Cowan model near the active to quiescent phase transitions. We unveil eight

possible types of transitions that depend on the relative strengths of excitatory and inhibitory

couplings. Among these transitions are second-order and first-order types, as expected, as

well as three transitions with a surprising mixture of behaviors. The three bona fide second-

order phase transitions belong to the well-known directed percolation universality class, the

tricritical directed percolation universality class, and a novel universality class called “Hopf

tricritical directed percolation", which presents an unconventional behavior with the breakdown

of some scaling relations. The discontinuous transitions behave as expected and the hybrid

transitions have different anomalies in scaling across them. Our results broaden our knowledge

and characterize the types of critical behavior in excitatory and inhibitory networks and help us

understand avalanche dynamics in neuronal recordings. From a more general perspective, these

results contribute to extending the theory of non-equilibrium phase transitions into quiescent

or absorbing states.

Keywords: criticality; neuronal avalanches; Wilson-Cowan model; universality classes; directed

percolation; scaling relation breakdown.



RESUMO

O modelo Wilson-Cowan é um modelo clássico para a compreenção da dinâmica coletiva de

redes neurais com unidades excitatórias e inibitórias. Esse modelo foi extensivamente estu-

dado na literatura, especialmente na análise de fases de redes neurais em uma aproximação

de campo médio, ou seja, em grandes redes completamente conectada. Para estudar fenô-

menos induzidos por flutuações, o modelo dinâmico é insuficiente. Portanto, é importante

introduzirmos um modelo estocástico de taxas que se reduz às equações de Wilson-Cowan na

aproximação de campo médio. Nesta tese, analisamos o diagrama de fases do modelo esto-

cástico de Wilson-Cowan acerca das transições ativo-quiescente. Desvendamos oito possíveis

tipos de transições dependentes do valor relativo do acoplamento entre unidades excitatorias

e inibitórias. Entre essas transições estão transições de segunda e primeira ordem, e adicio-

nalmente encontramos três tipos de transições que possuem uma mistura de comportamento

ou hibridas. As três transições verdadeiramente críticas pertencem às classes de percolação

direcionada, percolação direcionada tricrítica e uma classe nova que chamamos de “percolação

direcionada Hopf tricrítica", que apresenta um comportamento não convencional com quebras

de relações de escala. As transições descontínuas se comportam como esperado e as híbridas

apresentam diferentes anomalias entres elas. Nossos resultados ampliam o conhecimento sobre

e caracterizam os tipos de comportamento crítico em redes excitatórias e inibitórias, alén de

ajudar a compreender a dinâmica de avalanches em registros neuronais experimentais. De uma

perspectiva mais geral, estes resultados contribuem para estender a teoria de transições de

fase de não-equilíbrio entre estados quiescentes e absorventes.

Palavras-chave: criticalidade; avalanches neuronais; modelo de Wilson-Cowan; classes de

universalidade; percolação direcionada; quebra de relações de escala.
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𝐸𝐸 for three values of constant external field

ℎ, in black ℎ = 0, in an orange dashed curve ℎ = 0.01, and in a magenta

dotted curve ℎ = 0.001. The blue dashed straight line represents the static

exponent 𝛽 = 1/2. (b) Numerically integrated steady-state solution as a

function of the external field ℎ at the transition Δ = 0 and red dashed

straight line represents static exponent 1/𝛿ℎ = 1/3. (c) Numerically inte-

grated time decay solution with a red straight line representing the dynamic

exponent 𝜃 = 1. (d) Survival probability of simulation with Gillespie’s algo-

rithm and a red straight line representing the spreading exponent associated

with the quantity 𝛿 = 1. The system is plot at parameters: 𝛼 = 1, 𝑤𝐼𝐼 = 0,

𝑤𝐸𝐼 = 3, 𝑤𝐼𝐸 = 0.1̄, and 𝑤𝐸𝐸 = 1.3̄. . . . . . . . . . . . . . . . . . . . . 82
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Figure 33 – Mean number of particles 𝑁(𝑡) in spreading experiments in bona fide

continuous phase transitions (i.e., 𝑇1, 𝑇2, and 𝑇5), at which one expects
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Figure 36 – Hybrid transition (𝑇7): discontinuity-induced bifurcation. (a) Steady-state
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orange dashed curve ℎ = 0.01, and in a lighter orange dash-dotted curve

ℎ = 0.1. In this transition, similar to 𝑇6 the introduction of an external field

turns the transition into discontinuous. The blue dashed straight line repre-

sents the static exponent 𝛽 = 1. (b) Steady-state solution as a function of
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Figure 39 – Avalanche analysis. Simulations using Gillespie’s algorithm for the same
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1 CRITICALITY IN NEUROSCIENCE

Over the course of human history, all societies showed a significant curiosity about compre-

hending the mechanisms influencing human and animal physiology and behavior. The evolution

of the central nervous system, which consists of the brain and spinal cord, has played a crucial

role in the development and adaptation of organisms over time. This complex structure provides

organisms with a range of adaptive advantages, such as sensory processing, i.e., detecting and

responding to stimuli from the environment; motor control, essential for survival; and cognitive

and social functions, allowing for the creation of societies and problem-solving depending on

the complexity of the organism. An increasingly complex nervous system enhances the chances

of survival and reproduction in dynamic ecological environments (GLICKSTEIN, 2017).

In this first chapter, we aim to motivate the reader to study the brain under the scope of

statistical physics and, above all, under the framework of criticality. The first section summa-

rizes the emergence of Neuroscience, followed by experimental results that support the critical

brain hypothesis (BEGGS, 2007).

1.1 A BRIEF HISTORY: NEUROSCIENCE

The Edwin Smith surgical papyrus (1700 BCE) has the first written mention of the cortex

or any part of the brain and is a copy of a much older document believed to be from Egypt’s old

kingdom and around 3000 BCE. Religion and spirituality were very prominent in prehistoric and

early historic societies, making the Edwin Smith papyrus more interesting. Since the papyrus

displays empirical descriptions of forty-eight patients starting at their heads down through their

bodies, it constitutes evidence of scientific studies, departing from the common practices of

the time. In ancient Egypt, as well as in other ancient civilizations, the heart was considered

the source of senses and intellect (GROSS, 1999). In the Book of the Dead, for example, “the

heart was the key to the afterlife" (see Fig. 1); when the subject reached the gates of the

afterlife, the weighing of the heart ritual would begin. Anubis would weigh the subject’s heart

against the feather of Maat and quantify its worthiness (CARELLI, 2011; CASTELLANO, 2019).

In Ancient China, medicine was not as focused on the heart, their healers had a more complex

system that involved the heart as part of but not at the center. The brain only appears in

Chinese scripts in the Jesuit Matteo Ricci’s treatise. Alcmaeon of Croton (Greece, 5th century
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Figure 1 – The weighing of the heart. Depicted in this figure is the Ani Papyrus, the most complete version
of the Book of the Dead (78 feet from 1275 BCE). Ani was the royal scribe of Thebes. It shows
the moment Anubis, the jackal god of mummification, weighs the Ani’s heart. The Ani Papyrus is
still held by the British Museum.

Source: (CASTELLANO, 2019)

BCE) pioneered in writing the idea that the brain is at the center of the senses, particularly

vision (GROSS, 1999).

In ancient Rome, the Romans had a rudimentary knowledge of anatomy, and their medi-

cal understanding was heavily influenced by Greek traditions. Galen of Pergamon, the Greek

physician who lived during the second century BCE, brought his medical knowledge to the Ro-

man Empire. Although, he conducted dissections of animals the Roman approach to medicine

was more theoretical and based on philosophical ideas rather than empirical observation and

experimentation. The Roman contributions to neuroscience were more rooted in recording

observations and descriptions rather than in-depth scientific inquiry. With the advent of the

Renaissance and the revival of scientific inquiry, that neuroscience and the understanding of

the brain began to evolve significantly (GROSS, 1999).

In illustrating the importance of research on the brain, let us explore some of the Nobel

prizes in the area in the 20th century. Golgi and Ramón y Cajal were jointly awarded the Nobel

Prize in 1906 for their complementary contributions revolutionizing our understanding of the

structure of the nervous system. Edgar Douglas Adrian’s works on single neurons and their

electrophysiological function along with the first recording in an electroencephalogram awarded

Sir Charles Scott Sherrington and him a Nobel prize in 1932 (GROSS, 1999). In 1944, Joseph

Erlanger and Herbert Spencer Gasser were awarded the Nobel Prize in Physiology or Medicine
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for their work on the functions of different types of nerve fibers, identifying and characterizing

sensory and motor nerve fibers. Following up the study of single neurons, Hodgkin and Huxley

impaled a giant axon of the squid, which has a cross-sectional area a hundred times bigger

than that of a mammalian. They won the Nobel prize in 1963 alongside John Eccles for

their analysis of the physical and chemical basis for electrical activity and the discovery of the

action potential (GLICKSTEIN, 2017). Haldan Keffer Hartline introduced the concept of a visual

receptive field sharing the Nobel prize with George Wald and Ragnar Granit in 1967. For the

Nobel prize in 1981, David Hubel, Torsten Wiesel, and Roger Sperry revealed the functional

architecture of the striate cortex, which promised a better understanding of perception and

became a model for visual neurons (GROSS, 1999). At the turn of the milenium (2000), Eric R.

Kandel, Arvid Carlsson, and Paul Greengard shared the Nobel Prize for discoveries concerning

signal transduction in the nervous system. Although, Kandel’s work had a focus on molecular

mechanisms underlying learning and memory. For completion, this century John O’Keefe, May-

Britt Moser and Edvard I. Moser were awarded the 2014 Nobel Prize because of their work on

neuronal cells that provide a complex representation of spatial location (GLICKSTEIN, 2017).

Advances in molecular biology and genetics revolutionized neuroscience. New experimental

techniques like optogenetics, functional magnetic resonance imaging (fMRI), and CRISPR

(“Clustered Regularly Interspaced Short Palindromic Repeats", which allows scientists to make

changes to the DNA of living beings) gene editing increase the ability to do research in animals

and humans also in vivo. This advance in technology helps observe molecular and cellular

mechanisms underlying neural function, synaptic transmission, and the genetic basis for the

purposes of understanding regular subjects and neurological disorders. Current neuroscience

research focuses on areas such as neuroplasticity, neuronal circuits, and the molecular basis

of cognition and behavior, aiming to create advances in medicine and psychology using tools

from many disciplines (GLICKSTEIN, 2017).

1.2 CRITICALITY IN THE BRAIN

A wide assortment of life phenomena emerge from big systems that consist of many

interacting elements. When we think about amino acids in a protein, nucleotides in the double

helix of the DNA, hepatic cells forming the liver, and neurons in the brain, there are two usual

approaches to them: researchers either look at individual elements or clump them together in

different sizes to see collective behavior and function. The latter type of approach is familiar to
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physicists and is treated under the lens of statistical physics. Considering that the stationary

states of a biological system are in between chaotic and well-ordered, it is postulated that

many of these systems operate around a critical point, which would be reached through what

came to be called self-organized criticality (BAK, 2013). The theory of self-organized criticality

originates from models of sand piles (BAK; TANG; WIESENFELD, 1987). These models show

periods of quiescence interrupted by avalanches, which follow a power law distribution of sizes

and durations (MORA; BIALEK, 2011).

An interesting feature across many natural systems is continuous phase transitions between

active and quiescent phases. Many experiments like crystal liquids, vortices in superconductors,

turbulent regimes in Coutte cells, and so on display this behavior. However, epidemics are

a great example of this feature: with the arrival of vaccines humanity was able to banish

diseases because if there are no infected subjects the disease cannot spread; however, in the

presence of one ill individual, the disease is able to travel to many vulnerable ones (MARRO;

DICKMAN, 1999a; HINRICHSEN, 2000). Often, systems with this nature exhibit critical behavior

belonging to the directed percolation universality class, as originally conjectured by Janssen

and Grassberger (JANSSEN, 1981; GRASSBERGER, 1981).

Directed percolation stands out as one of the most robust classes of universal critical

behavior operating beyond thermal equilibrium. This class describes many possible transi-

tions into a quiescent phase, even when considering multiple fields (GRINSTEIN; LAI; BROWNE,

1989a). Furthermore, models belonging to this class, the branching process and the contact

process (HARRIS, 2002; LIGGETT, 2004), were studied in a variety of contexts, standing in

as toy models in materials science, turbulence, epidemics, theoretical ecology, social sciences,

Figure 2 – Experimental setup and Spontaneous correlated neuronal activity in cultures. A) Organotypic coro-
nal cortex culture on an 8×8 multielectrode array, where WM represents white matter. B) Spon-
taneous LFP from 60 electrodes with periods of correlated activity.

Source: Adapted from (BEGGS; PLENZ, 2003)
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and neuroscience (BINNEY et al., 1993; OLAMI; FEDER; CHRISTENSEN, 1992; MARRO; DICKMAN,

1999a; HINRICHSEN, 2000; GRINSTEIN; MUÑOZ, 1996; HENKEL; HINRICHSEN; LÜBECK, 2008;

ÓDOR, 2008; COTA; FERREIRA; ÓDOR, 2016).

In the context of neuronal systems, BEGGS; PLENZ (2003) published the first experimental

evidence of the critical brain hypothesis (BEGGS, 2007) by studying organotypic cultures from

coronal slices of rat somatosensory cortex with multi-electrode matrices with 60 channels (see

Figure 3 – Avalanche analysis. The top shows the raster of spontaneous activity and in the middle and bottom,
this raster is separated into Δ𝑡 windows (Δ𝑡 = 4 ms). The duration of avalanches is counted from
one empty window to the next and the size is the number of spikes occurring throughout this
duration. The highlighted portion of the raster shows an avalanche of size 𝑆 = 39 and duration
𝑇 = 12 ms.

Source: Adapted from (BEGGS; PLENZ, 2003)
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Fig. 2A). The matrix recorded the local field potential (LFP) – i.e., the voltage on an elec-

trode relative to some other electrode taken as reference — and its deflections throughout

the 60 channels showed the collective activity of the neurons (see Fig. 2B). BEGGS; PLENZ

(2003) reported the existence of neuronal avalanches. These outbursts of neuronal activity

between quiescent periods were computed by firstly separating the time into Δ𝑡-sized win-

dows; an avalanche is defined by the sequence activity between two empty windows (silences).

Secondly, they count the amount of activity, i.e., a signal above the determined threshold, in

the associated electrode (see the top graph in Fig. 3).

The avalanches exhibited highly variable sizes (𝑆) and durations (𝑇 ), which were power-law

Figure 4 – Avalanche distribution for sizes and duration. A) Avalanche size distribution for different bin widths
Δ𝑡 with a cutoff at the maximal number of electrodes (𝑛 = 60). [inset] Dependence of the exponent
(𝛼 ≡ 𝜏) with the bin width Δ𝑡. B) Avalanche size distribution for different bin widths Δ𝑡 for the
summed LFP. (inset) Single culture distribution for Δ𝑡 = 1 for all seven cultures. C) Duration
distribution for different bin widths Δ𝑡. D) Normalized duration distribution (𝑡/Δ𝑡).

Source: (BEGGS; PLENZ, 2003)
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distributed, i.e,

𝑃 (𝑆) ∝ 𝑆−𝜏 , (1.1)

𝑃 (𝑇 ) ∝ 𝑇 −𝜏𝑡 . (1.2)

The size is defined as the number of electrodes active for the duration of the number of occu-

pied windows after the binning (i.e., separating the time in Δ𝑡 windows or bins). Concerning

the duration distribution (Fig. 4C), less than a decade of the distribution follows a power law

with 𝜏𝑡 ∼ 2, consistently with the mean-field directed percolation exponents. And the curves

in Fig. 4D represent the data in Fig. 4C with the normalization 𝑇 → 𝑇/Δ𝑡. The avalanche

sizes were distributed in a power law with exponent 𝜏 (in Fig. 4A represented by 𝛼), which

also follows a power law 𝜏(Δ𝑡) ∼ Δ−0.16±0.01. Additionally, in a different approach, they also

found power law behavior for the distribution of the summed LFPs in a window of Δ𝑡, which

also corresponds with the size of the avalanches (Fig. 4B). In order to test consistency, BEGGS;

PLENZ (2003) also calculated the branching ratio as the ratio of descendant (𝑡+Δ𝑡) electrodes

to ancestor (𝑡) electrodes. The branching ratio was plotted against the avalanche size distri-

bution exponent and they observed that there was an overlap of 𝜎 = 1 and 𝜏 = 1.5 (values

consistent with the mean-field DP universality class) at a bin size of Δ = 4 msec, which is

close to the averaged interevent interval (𝐼𝐸𝐼𝑎𝑣𝑔 = 4.2 msec), the optimal calculated bin for

their setup. These results suggest that brain dynamics is poised at a phase transition, i.e., it

supports the critical brain hypothesis (BEGGS, 2007), and that the phase transition belongs to

the well-known directed percolation universality class (BEGGS; PLENZ, 2003). Further research

on LFP found similar results, in particular with anesthetized rats in vivo and awake monkeys,

reinforcing the hypothesis (GIREESH; PLENZ, 2008; PETERMANN et al., 2009; CHIALVO, 2010;

FRIEDMAN et al., 2012; CHIALVO, 2018; PLENZ et al., 2021; O’BYRNE; JERBI, 2022).

1.3 DIVERGING FROM DIRECTED PERCOLATION

Though very robust in representing many quiescent to active transitions, the directed per-

colation universality class is not unique, the presence of anomalous dimensions or symmetries

changes the exponents. Other experimental setups have reported evidence of some scaling

exponents that deviate from directed percolation (FRIEDMAN et al., 2012; RIBEIRO; RIBEIRO;

COPELLI, 2016; PONCE-ALVAREZ et al., 2018a; FONTENELE et al., 2019). Therefore, the inter-

pretation of the scaling behavior and the universality classes remains an open question.
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An additional and important hallmark of criticality is the relationship between the scaling

behavior of the avalanche distributions, which we will go through in detail in the next chapter.

The mean size of an avalanche for a duration 𝑇 is related to the conditional probability,

𝑃 (𝑆|𝑇 ), a probability of an avalanche of size 𝑆 with duration 𝑇 . This quantity should scale

with the duration of said avalanche as ⟨𝑆⟩ ∼ 𝑇 𝛾, where 𝛾, in its turn, is related to the

exponents of the size and duration distributions as 𝛾 = (𝜏𝑡 −1)/(𝜏 −1) (the so-called crackling

noise scaling relation) (MUÑOZ et al., 1999; SETHNA; DAHMEN; MYERS, 2001). Considering

the aforementioned avalanche distribution exponents for the mean-field directed percolation

universality class, the crackling noise exponent is expected to be 𝛾 = (2 − 1)/(3/2 − 1) = 2.

FRIEDMAN et al. (2012) found 𝜏 ∼ 1.7, 𝜏𝑡 ∼ 1.9 and 𝛾 ∼ 1.3 in cultured cortical slices (in

vitro), whereas PONCE-ALVAREZ et al. (2018a) found 𝜏 ∼ 2.9, 𝜏𝑡 ∼ 2.0 and 𝛾 ∼ 1.9 in whole-

brain in vivo Zebrafish, confirming the signatures of criticality but with a different scaling

behavior.

Furthermore, BEGGS; PLENZ (2003) worked on in vitro setups, while RIBEIRO; RIBEIRO;

COPELLI (2016) found avalanche behavior in freely-behaving rats, which showed different pat-

terns of distribution for different states of neural processing. Recently, FONTENELE et al. (2019)

analyzed spike data from the primary visual cortex of urethane-anesthetized rats. In this pa-

per, the spiking activity oscillated between different levels of synchrony, characterized in terms

of the population rate coefficient of variation (CV), which was used as a proxy to represent

different cortical states. The CV is a measure of relative variability and is the ratio of the

standard deviation to the mean of a set of data, 𝐶𝑉 = std. deviation/mean. The coefficient

of variation compares the relative variability of different data sets, especially when the means

of the sets are different. A lower CV indicates lower relative variability, while a higher CV

indicates higher relative variability.

Those states showed scaling behavior throughout the range of CVs (see Fig. 5a); however, it

only fit the crackling noise scaling relation between 𝜏 , 𝜏𝑡, and 𝛾 at a range of intermediate values

of CV (see Fig. 5b). Though respecting the relationship between exponents, the exponents

themselves did not fall into the mean-field directed percolation universality class, FONTENELE

et al. (2019) found 𝜏 = 1.52 ± 0.09, 𝜏𝑡 = 1.7 ± 0.1, and 𝛾 = 1.28 ± 0.03 in the intermediate

CV range. Strikingly, when comparing to many other experimental results across the literature,

they observed that there is a tendency of 𝛾 ∼ 1.3 for different experimental setups, indicating

a different universality class. This apparent departure from directed percolation could be a

result of a myriad of processes since the brain is very complex. However, CARVALHO et al.
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(2021) showed a viable candidate for this reason is subsampling, in the paper the authors

compare the subsampling of a model belonging to the directed percolation universality class

to the experimental results in FONTENELE et al. (2019).

These indications of a different universality class from directed percolation associated

with the evidence of discontinuous transitions in the brain dynamics (MILLMAN et al., 2010;

CORTES et al., 2013; MARTINELLO et al., 2017) rekindle the search for alternative types of

critical behavior, including multicritical behavior. Observe that directed percolation behavior

is easily achieved by models presenting with only one relevant field; therefore, the role of

an extra population, as an example an inhibition population, on the overall critical behavior

Figure 5 – (a) Crackling noise relation of spike avalanches across different levels of CVs. In green is a high CV,
in red is an intermediate CV, and in purple is a low CV. (b) Representation of the mean values of the
fit exponents for different values of CV, in blue the crackling noise exponent and in grey the value
of the scaling relation with the avalanche distribution exponents (𝜏 and 𝜏𝑡). The shadow around
each curve is its standard deviation. The gray vertical stripe represents the range of CV values
where the crackling noise relationship is obeyed considering the standard deviations, i.e., around
⟨𝐶𝑉 ⟩* = 1.4 ± 0.2. (c) Linear tendency of critical exponents across animals and experimental
setups. In black, FONTENELE et al. (2019) marked their value for mean-field directed percolation.

Source: (FONTENELE et al., 2019)
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has actively been explored (BENAYOUN et al., 2010; ASSIS; COPELLI, 2009; KINOUCHI; COPELLI,

2006; GIRARDI-SCHAPPO et al., 2021; GIRARDI-SCHAPPO et al., 2020; APICELLA et al., 2022;

LÓPEZ; BUENDÍA; MUÑOZ, 2022).

Considering these questions, throughout this thesis, we will focus on the Wilson-Cowan

model in its dynamic and stochastic forms. The second chapter shows an overview of three

quiescent to active universality classes: directed percolation, tricritical directed percolation,

and asymmetrically coupled directed percolation. The third chapter introduces both forms of

the Wilson-Cowan model, the dynamic equations and the stochastic counterpart. The fourth

chapter scrutinizes the eight possible types of transitions we have found in the Wilson-Cowan

stochastic model. And, finally, the fifth chapter summarizes our conclusions and describes the

questions that remain open.
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2 UNIVERSALITY CLASSES: QUIESCENT TO ACTIVE

A universality class classifies different systems with similar behavior near a critical point or

phase transition, despite having diverse microscopic features.

Systems in the same universality class share common qualitative properties at critical

points, such as critical phenomena or emergent behaviors. These similarities are independent

of the specific details of the system, like its microscopic structure, the precise nature of

interactions, or the specific components involved.

The concept of universality classes is significant because it allows researchers to categorize

and understand a broad range of systems based on their collective behavior, rather than

focusing on the individual details of each system. It helps simplify the understanding of complex

physical phenomena and allows for applying shared principles or models to diverse systems that

exhibit similar behavior near critical points.

In this chapter, we are going to explore quiescent to active transitions that belong to

three known universality classes. The first section explains a bit the idea behind focussing on

a mean-field approach to the transitions. The second shows a generalized calculation of the

exponents depending on the Langevin equation. The third and forth sections dissect the direct

percolation and tricritical directed percolation universality classes. The last section elucidates

the asymmetrically coupled directed percolation and, as a special case, unidirectionally coupled

directed percolation.

2.1 MEAN-FIELD THEORY

In this chapter, and throughout the thesis, we will focus on a mean-field approach to the

transitions.

One of the reasons to work with mean-field exponents is the exponents found by BEGGS;

PLENZ (2003), which were consistent with mean-field directed percolation (the avalanche

exponents 𝜏 = 3/2 and 𝜏𝑡 = 2), as mentioned in Chapter 1. The proper dimensionality of

the brain will depend on the choice of the order parameter, however, a simple model with an

all-to-all connection is sufficient to describe the avalanche critical activity of a in-vitro slice of

cortical tissue.

Mean-field theory is useful when studying large populations, particularly for this thesis,
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of neurons. Mean-field theory simplifies the description of neural dynamics by considering

the mean activity of a population rather than individual neurons. If we think in terms of

thermodynamics and statistical physics, the mean-field theory brings us from a microscopic

to a macroscopic or phenomenological point of view. The many advantages of using mean-

field approaches include computational efficiency, reduced parameters, and analytical solutions,

which we are going to derive in the next section.

As follows, we can describe a model in terms of a Langevin equation, which can be divided

into mean-field terms, a noise term, and a spatial term. The mean-field term can be especially

interesting when we treat it as a dynamic equation.

Observe that in the case of directed percolation, the mean-field part of the equation is a

second-order equation (−𝑥2 + 𝑎𝑥). At the transition (𝑎 = 0), it becomes a well, which means

the only attractor is the origin. When the only solution is the origin, for any initial condition,

the system will relax to zero, this is true at the transition, and when 𝑎 < 0, the stable solution

keeps on being the only attractor. Macroscopically, we can say that the overall activity of

the system for 𝑎 ≤ 0 eventually dies out. Microscopically, the activity propagates for a bit of

time and eventually ceases, where the few active sites do not propagate it. Dynamically, at

the value 𝑎 = 0, there is a transcritical bifurcation, therefore, this bifurcation is correlated to

the transition. They share the characteristic of going from a configuration where the system

only finds one stable configuration in no “activity" to a configuration where a stable “activity"

arises.

Observe that the comparison is only possible at a mean-field approximation of the micro-

scopic system. However, it indicates that the study of bifurcations in the mean-field equation

might correlate to different types of transitions in the microscopic system.

Observe that we are not confirming that there is a one-to-one relationship with a bifurcation

to a specific transition. Our results (Chap. 4) show several examples of this relationship,

attributing some bifurcations to transitions, where a few of them are actually critical.

2.2 ANALYTICAL CALCULATIONS OF EXPONENTS

Whenever we think about universality classes as physicists, the first subject that comes

to mind is scale-invariance, i.e., the scaling exponents. Numerous observables linked to these

exponents are often challenging to compute analytically. Among these observables are the

spreading quantities that exhibit scale invariance at the critical point: the number of active
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sites at an instant (𝑡), 𝑁(𝑡) ∝ 𝑡𝜂; the mean-squared radius in surviving runs, 𝑅2(𝑡) ∝ 𝑡𝑧; and

the survival probability, 𝑃𝑠(𝑡) ∝ 𝑡−𝛿 (MARRO; DICKMAN, 1999a).

Systems featuring quiescent states exhibit a minimum of two phases: active and quiescent

phases. In the quiescent phase, any elicited activity relaxes to quiescence after a finite period

of time. Starting from a single active seed, the activity decays to zero unequivocally. The

probability of any activity persisting beyond zero at a given instant 𝑡 is the survival probability,

𝑃 (𝑡). In the quiescent phase, this probability decays exponentially, and in the active phase,

the system displays self-sustained activity, causing the probability to maintain a positive value.

Separating these phases is a critical point or a surface of critical points. At this point or surface,

the survival probability decays according to a power law. The associated exponent is known to

be exclusively calculated in a stochastic manner, 𝑃𝑠(𝑡) ∝ 𝑡𝛿. In this section, we are going to

follow the procedures in MUÑOZ; GRINSTEIN; TU (1997) from a generalized Langevin equation

and through scaling analysis find the exponents of active to quiescent critical behavior.

Generalizing a Langevin equation in terms of the field 𝜑(𝑥⃗, 𝑡) as the order parameter, which

depends on position vector 𝑥⃗ in ℛ𝑑 and time 𝑡,

𝜑̇(𝑥⃗, 𝑡) = 𝑎 𝜑(𝑥⃗, 𝑡) − 𝑏 𝜑(𝑥⃗, 𝑡)𝛼 + ℎ(𝑥⃗, 𝑡) + 𝜈 ∇2 𝜑(𝑥⃗, 𝑡) +
√︁

𝜑 𝜂(𝑥⃗, 𝑡) , (2.1)

where the field 𝜑 is the measurement; the parameters 𝑎 and 𝑏 are called control parameters, and

their values define the position of the system at a phase diagram. Connecting these quantities

to the experiments mentioned in Chapter 1, the spikes are the proposed order parameter since

they are the measured activity. The control parameter is a harder quantity to find, in many

experiments, the input current is chosen, however, in trying to “control" spontaneous activity

it is lacking. Therefore, FONTENELE et al. (2019) proposed the use of the CV as a control

parameter since it was already used in the literature to denote cortical states.

Equation 2.1 is divided into two parts: the mean-field dynamics,

𝜑̇(𝑥⃗, 𝑡) = 𝑎 𝜑(𝑥⃗, 𝑡) − 𝑏 𝜑(𝑥⃗, 𝑡)𝛼 + ℎ(𝑥⃗, 𝑡) , (2.2)

where the external field also depends on the space and time, ℎ(𝑥⃗, 𝑡), 𝑎 is the distance to the

critical point, 𝑏 > 0, and 𝛼 governs the decay to the quiescent state and it is generally 𝛼 > 1;

the diffusion term is 𝜈 ∇2 𝜑(𝑥⃗, 𝑡), where 𝜈 is constant and ∇2 is the Laplace operator; and

the noise term is
√

𝜑 𝜂(𝑥⃗, 𝑡), where 𝜂 is a Gaussian noise with the correlation

⟨𝜂(𝑥⃗1, 𝑡1)𝜂(𝑥⃗2, 𝑡2)⟩ = 𝒟𝛿(𝑥⃗1 − 𝑥⃗2)𝛿(𝑡1 − 𝑡2) . (2.3)
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The most straightforward scale-invariant observables to calculate come from the mean-

field equation. The stationary solution of the mean-field equation, Eq (2.2), yields static

exponents. The first one, 𝛽, governs the growth of the order parameter as a function of the

control parameter near criticality, 𝑎 → 0+, 𝜑(𝑥⃗, 𝑡; ℎ = 0) ∝ 𝑎1/(𝛼−1) ∝ 𝑎𝛽, yielding

𝛽 = 1
𝛼 − 1 . (2.4)

At the critical point, 𝑎 = 0, and introducing a small external field, ℎ → 0, the stationary

solution is scale-invariant and scales with exponent 𝛿ℎ. From Eq. (2.2), 𝜑(𝑥⃗, 𝑡) ∝ ℎ1/𝛼 ∝ ℎ1/𝛿ℎ ,

one obtains

𝛿ℎ = 𝛼 . (2.5)

Considering the entire Langevin equation, Eq. (2.1), the dimensions of each term have to

match. Therefore, [𝜑̇] = [𝜈 ∇2 𝜑] results on the spreading exponent 𝑧 (𝑅2(𝑡) ∝ 𝑡𝑧). Using

dimensional analysis, 𝑇 −1 ∝ 𝐿−2 ⇒ 𝑡 ∝ 𝑅2 ∝ 𝑡𝑧, we find the scaling relation

𝑧 = 1 , (2.6)

where 𝑇 is a generalized time dimension and 𝐿, a space dimension, consistently with the

known result for DP ⟨𝑅2⟩ = 2𝐷𝑡.

The primary objective of the study by MUÑOZ; GRINSTEIN; TU (1997) was to investigate

the survival probability. The initial approach involves examining the accumulation of the prob-

ability density around the absorbing state, i.e., the piling probability. Considering 𝑃 (𝑐, 𝑡) the

probability that
∫︀

𝑑𝑑𝑥 𝜑 > 𝑐, the piling probability scales with time as 𝑃 (𝑐, 𝑡) ∝ 𝑡−𝛿. Diverging

from the paper itself, here we will study the noise probability.

Considering the noise as independent and Gaussian, with random variable 𝜂 and standard

deviation 𝜎. The overall probability is, therefore, a product of their probability distribution[︁
𝑃 (𝜂) = exp

(︁
−𝜂2(𝑥⃗,𝑡)

2𝜎2

)︁]︁
over sites (𝑥⃗) and discrete time steps (𝑡), i.e., (∏︀𝑥⃗

∏︀
𝑡). When we

consider continuous space and time and the nature of the exponential function (product of

powers, where if we have a product of two powers with the same base we can sum them), is

represented by

𝑃 ({𝜂(𝑥⃗)}𝑡) = 𝒵
∏︁
𝑥⃗

∏︁
𝑡

exp
(︃

−𝜂2(𝑥⃗, 𝑡)
2𝜎2

)︃
(2.7)

= 𝒵 exp
(︃

−
∫︁

𝑑𝑡
∫︁

𝑑𝑑𝑥
𝜂2(𝑥⃗, 𝑡)

2𝜎2

)︃
, (2.8)

where 𝒵 represents a normalizing constant and 𝜎2 = 𝒟 is the variance.
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Rearranging Eq. (2.1), the noise term moves to the left-hand side of the equation and the

derivative moves to the right-hand side,√︁
𝜑 𝜂(𝑥⃗, 𝑡) = 𝜑̇(𝑥⃗, 𝑡) − 𝑎 𝜑(𝑥⃗, 𝑡) + 𝑏 𝜑(𝑥⃗, 𝑡)𝛼 − ℎ(𝑥⃗, 𝑡) − 𝜈 ∇2 𝜑(𝑥⃗, 𝑡) . (2.9)

Furthermore, we want to introduce a response field (Ψ) that accounts for the perturbation

around the initial condition, i.e., 𝑥⃗0 = 𝑥⃗(𝑡0). To accomplish that, we will do a reverse com-

pleting the binomial, we are going to open up the binomial to find consistent terms. As a

reminder, consider the transformation

𝒩 exp
{︂1

2𝐴𝑖𝑗𝑍𝑖𝑍𝑗

}︂
=
∫︁

𝐷𝑌 exp
{︂

−1
2𝐴𝑖𝑗𝑌𝑖𝑌𝑗 + 𝑍𝑖𝑌𝑖

}︂
, (2.10)

where 𝑍𝑖 = 𝜂(𝑥⃗, 𝑡), 𝑌𝑖 = Ψ, and 𝐴𝑖𝑗 = (𝒟/2) 𝜑 , which is the covariance matrix, describing the

covariance relationships between different stochastic variables. The square matrix summarizes

their variances and covariances. So the final expression for the probability, Eq. (2.8), is∫︁
𝐷𝜑

∫︁
𝐷Ψ 𝒵 exp

(︂
−
∫︁

𝑑𝑑𝑥
∫︁

𝑑𝑡
{︂(︁

𝜑̇ − 𝑎𝜑 + 𝑏𝜑𝛼 − ℎ − 𝜈∇2𝜑
)︁

Ψ + 𝒟
2 𝜑Ψ2𝜎2

}︂)︂
. (2.11)

The upper critical dimension is the value of 𝑑 above which the system displays mean-field

behavior. Observe that the argument of the exponent should be dimensionless. The argument

of the exponential is:

−
∫︁

𝑑𝑑𝑥
∫︁

𝑑𝑡
{︂(︁

𝜑̇ − 𝑎𝜑 + 𝑏𝜑𝛼 − ℎ − 𝜈∇2𝜑
)︁

Ψ + 𝒟
2 𝜑Ψ2𝜎2

}︂
. (2.12)

On one hand, we need the space dimension in the integral because of the term 𝜈∇2𝜑Ψ to

cancel out with [𝜑Ψ], i.e., 𝐿𝑑𝑐 [𝜑Ψ] = 1. On the other hand, the terms of the integral also

need to have the same dimension as one another and as 𝐿𝑑𝑐 . Considering now the relationship

between the dimension of [𝑏𝜑𝛼Ψ] and [𝒟𝜑Ψ2𝜎2], we find

[𝜑𝛼Ψ] = [Ψ2𝜑] ⇒ [Ψ𝜑] = [𝜑]𝛼 ⇒ [𝜑]𝛼 = 𝐿−𝑑𝑐 . (2.13)

To find the dimensions of [𝜑], we need to consider the terms 𝑎𝜑 and 𝜈∇2𝜑, which results in

[𝑎] = 𝐿−2. Thus, the dimension of [𝜑] is [𝜑] = [𝑎]𝛽 = 𝐿−2/(𝛼−1) (Substituting in 2.13), which

concludes with the relation,

𝑑𝑐 = 2𝛼

𝛼 − 1 . (2.14)

The exponent that governs the time decay The dynamic exponent 𝜃 as a function of 𝛼

can use the result of the upper critical dimension since we expect 𝜑 ∝ 𝑡−𝜃. Observe that

[𝜑] = 𝐿−𝑑𝑐/𝛼 = 𝑇 −𝑑𝑐/2𝛼 results in

𝜃 = 𝑑𝑐

2𝛼
= 1

𝛼 − 1 . (2.15)
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Finally, the spreading exponent for the survival probability 𝛿 is calculated considering the

relations we have drawn up to this point, [Ψ] = [𝜑]𝛼−1 and that the piling probability scales

like the response field we introduced before, i.e., [𝑃 (𝑐, 𝑡)] = [Ψ]; therefore,

𝛿 = 𝑑

2
𝛼 − 1

𝛼
= 𝛼

𝛼 − 1
𝛼 − 1

𝛼
= 1. (2.16)

The same approach allows us to derive additional exponents and their scaling relations.

An important set of exponents that are not explicitly worked out in this analysis is the set of

correlation exponents. The correlation between units measures how synchronous their activity

is in relation to time and space, the strength and direction of this observable is the correlation

coefficient. In the supercritical regime (Δ > 0), one expected the spatial and time correlations

to decay exponentially as 𝐶(𝑥⃗) ∝ 𝑒−|𝑥⃗|/𝜉 and 𝐶𝑠(𝑡) ∝ 𝑒−𝑡/𝜏 , respectively. Furthermore, the

correlation length 𝜉 and relaxation time 𝜏 diverge for Δ = 0 according to 𝜉 ∼ |Δ|−𝜈⊥ and

𝜏 ∼ |Δ|−𝜈‖ . Particularly, MARRO; DICKMAN (1999a) used a more analytical approach from the

Langevin equation for the contact process but neglected the higher orders in 𝜑 to conclude

that the correlation length exponent 𝜈⊥ = 1/2 and 𝜈‖ = 1, which should be valid for the

generalized Langevin we wrote here since it is independent of 𝛼. As an extra scaling relation,

GRASSBERGER (1981) calculates

𝑧 = 2𝜈⊥

𝜈‖
= 1 , (2.17)

which agrees with the values for these exponents perfectly.

In what follows, we apply these methods in the context of three different universality

classes.

2.3 DIRECTED PERCOLATION

2.3.1 Contact Process

The contact process is a Markovian branching process that belongs to the directed per-

colation universality class (DP) and serves as a continuous toy model of an epidemic, widely

applied in epidemic studies disregarding immunization. Known for its accurately identified crit-

ical values and essential attributes, it is often regarded as the Ising model equivalent for the

DP universality class (MARRO; DICKMAN, 1999a).

In the contact process, the network is made out of individual sites, which are active or

inactive. Each active site can either die out with probability 1/(𝜆 + 1) or propagate its activity
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Figure 6 – Schematics of rates for the Contact Process model. Observe that these schematics are considering
the system in a mean-field approach, i.e., the network is completely connected.

Source: The author (2023)

to a neighbor with probability 𝜆/(𝜆 + 1), i.e.,

𝐴 → 0 with probability 1/(𝜆 + 1)

𝐴 → 𝐴𝐴 with probability 𝜆/(𝜆 + 1).

Therefore, the transition rates are 1 for decay and 𝜆 for activation (see Fig. 6). As we evaluate

the network’s overall activity as 𝑡 → ∞, it is poised at a quiescent phase if the sum of activity

converges to zero, or at an active phase if the sum of activity converges to a positive value,

indicative of self-sustained activity. The transition between these phases is a bona fide critical

point, meaning it is a second-order phase transition.

Considering a continuous time Markov model, we are able to build the dynamics of each

site and gain some intuition on the behavior of the system through a mean-field analysis. In

constructing the model, let us consider:

𝜎𝑥(𝑡) =

⎧⎪⎪⎨⎪⎪⎩
1 if 𝑥 is occupied

0 if 𝑥 is vacant,
(2.18)

and Prob(𝜎𝑥(𝑡) = 1) ≡ 𝑃 (𝑥, 𝑡). The dynamics of 𝑃 (𝑥, 𝑡) takes the form

𝑑

𝑑𝑡
𝑃 (𝑥, 𝑡) = −𝑃 (𝑥, 𝑡) + 𝜆

𝑞

∑︁
𝑦

Prob(𝜎𝑥(𝑡) = 0, 𝜎𝑦(𝑡) = 1), (2.19)

where the first term on the right side is a negative term for annihilation; 𝑦 is one of the

neighbors of 𝑥; the activation term scales with the infecting rate, 𝜆/𝑞; and 𝑞 is the lattice

number or coordination number, i.e., the number of neighbors (MARRO; DICKMAN, 1999a).
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2.3.2 Mean-field Equation

In the mean-field approximation, the states of activity are independent at each site, i.e.,

Prob(𝜎𝑥(𝑡) = 0, 𝜎𝑦(𝑡) = 1) = Prob(𝜎𝑥(𝑡) = 0)Prob(𝜎𝑦(𝑡) = 1); all sites are connected to

one another, a fully-connected and uncorrelated network; and the space is homogeneous, i.e,

𝑃 (𝑥, 𝑡) = 𝑃 (𝑦, 𝑡). From Eq. (2.19),

𝑑

𝑑𝑡
𝑃 (𝑥, 𝑡) = −𝑃 (𝑥, 𝑡) + 𝜆

𝑞

∑︁
𝑦

[(1 − 𝑃 (𝑥, 𝑡))𝑃 (𝑦, 𝑡)] , (2.20)

= −𝑃 (𝑥, 𝑡) + 𝜆 [(1 − 𝑃 (𝑥, 𝑡))𝑃 (𝑥, 𝑡)] . (2.21)

When we sum over all possible 𝑥, we find that, for a homogeneous fully-connected network,

𝜌(𝑡) ≡ (1/𝑁)∑︀𝑥 𝑃 (𝑥, 𝑡) — where 𝑁 is the size of the network and 𝜌(𝑡) is the instantaneous

density of active sites. And, by summing over the terms in Eq. (2.21),

𝑑

𝑑𝑡
𝜌(𝑡) = −𝜌(𝑡) + 𝜆 [(1 − 𝜌(𝑡))𝜌(𝑡)] , (2.22)

one can write the most commonly known mean-field equation for the contact process,

𝑑

𝑑𝑡
𝜌 = (𝜆 − 1)𝜌 − 𝜆𝜌2 . (2.23)

From Eq. (2.23), the quiescent state, 𝜌 = 0, is always a solution. However, an active state,

i.e., 𝜌* ̸= 0, emerges depending on the control parameter, 𝜆. Observe that the equation has

Figure 7 – Spread of the Contact Process in one dimension starting from a single active particle. From left
to right: 𝜆 = 3.0 (subcritical regime), 𝜆 = 3.2978 (very close to the critical point), and 𝜆 = 3.5
(supercritical regime). The time evolves in a straight vertical downwards line.

Source: (MARRO; DICKMAN, 1999a)
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two possible fixed points:

𝜌1 = 0 (2.24)

𝜌2 = 𝜆 − 1
𝜆

= 1 − 1
𝜆

. (2.25)

For 𝜆 < 1, the second solution is negative and, therefore, cannot represent a density and is

an invalid solution to our system. However, for 𝜆 > 1, both solutions are valid. The system

goes through a transcritical bifurcation, where the quiescent state retains the status of fixed

point and it loses stability to an active state, which becomes the only attractor. These two

phases are separated at the critical value of the control parameter, 𝜆𝑐 = 1, above which the

mean-field equation allows a nontrivial stationary solution (MARRO; DICKMAN, 1999a).

2.3.3 Directed Percolation Universality Class

At the critical point, the anticipated scale-free behavior in the order parameter is char-

acterized by power-law dynamics. Moreover, the specific exponents dictating such behavior

are thoroughly documented for Directed Percolation (MUÑOZ; GRINSTEIN; TU, 1997; MARRO;

DICKMAN, 1999a; MUÑOZ et al., 1999; MUÑOZ, 2018; FERREIRA; FERREIRA; PASTOR-SATORRAS,

2011).

The expansion of Eq. (2.25) yields the exponent that drives the static solution for 𝜆 ≥ 𝜆𝑐

as a function of Δ = |𝜆 − 𝜆𝑐|, 𝜌(Δ; ℎ = 0) ∝ Δ𝛽. Expanding 𝜌, we find

𝑓(𝜆 = 𝜆𝑐) = 1 − 1
𝜆𝑐

= 0 ,

𝑓 ′(𝜆 = 𝜆𝑐) = 1
𝜆2

𝑐

= 1 ,

𝑓 ′′(𝜆 = 𝜆𝑐) = − 2
𝜆3

𝑐

= −2 ,

𝜌 (Δ; ℎ = 0) ≈ 𝑓(𝜆𝑐) + (𝜆 − 𝜆𝑐) 𝑓 ′(𝜆𝑐) + (𝜆 − 𝜆𝑐)2

2 𝑓 ′′(𝜆𝑐) + 𝒪(𝜆3) (2.26)

≈ Δ + 𝒪(Δ2) , (2.27)

resulting in 𝛽 = 1.

Including a spontaneous infection term, the absorbing state is no longer a fixed point. The

mean-field equation becomes

𝑑

𝑑𝑡
𝜌 = (𝜆 − 1)𝜌 − 𝜆𝜌2 + ℎ(1 − 𝜌) , (2.28)
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where the static solution is

𝜌 (Δ; ℎ) =
Δ − ℎ ±

√︁
(Δ − ℎ)2 + 4(Δ + 𝜆𝑐)ℎ
2(Δ + 𝜆𝑐)

(2.29)

𝜌 (Δ = 0; ℎ) = −ℎ ±
√

ℎ2 + 4ℎ

2 (2.30)

=
√

ℎ

[︃
−

√
ℎ ±

√
ℎ + 4

2

]︃
. (2.31)

Around ℎ = 0, the solution approximates to

𝜌 (Δ = 0; ℎ) ≈
√

ℎ − ℎ

2 + 𝒪(ℎ3/2) , (2.32)

at the critical point. Thus, the second static solution scales as 𝜌 ∝ ℎ1/2, as ℎ → 0, and the

external field exponent, 𝛿ℎ, defined by 𝜌(0; ℎ) ∝ ℎ1/𝛿ℎ , is 2.

Another hallmark of critical systems is a prolonged relaxation time, i.e., the time taken

for the system to return to equilibrium after a disturbance, called critical slowing down. Crit-

ical slowing down occurs in physical systems near critical points or phase transitions. As a

physical system approaches a critical point, such as a phase transition, the system becomes

more sensitive to changes. This heightened sensitivity manifests in the system’s response to

perturbations, indicating an increase in relaxation times or the time needed for fluctuations

to die out, which increases significantly as the system approaches criticality. Critical slowing

down is often an indicator or precursor of an imminent phase transition. In the contact process,

when 𝜆 ̸= 𝜆𝑐 and ℎ = 0, we expand Eq. (2.25) around 𝜌 = 𝜌,

𝑑

𝑑𝑡
𝜌 ≈ [(𝜆 − 1) − 2𝜆𝜌] (𝜌 − 𝜌) + 𝒪

[︁
(𝜌 − 𝜌)2

]︁
(2.33)

≈ − (1 + 𝜆) (𝜌 − 𝜌) + 𝒪
[︁
(𝜌 − 𝜌)2

]︁
. (2.34)

Considering a change of variable 𝜌 → 𝜌 + 𝜌, where 𝜌 is constant and 𝑑
𝑑𝑡

𝜌 = 𝑑
𝑑𝑡

(𝜌 − 𝜌), the

equations solves to:

𝑑

𝑑𝑡
(𝜌 − 𝜌) ≈ − (1 + 𝜆) (𝜌 − 𝜌) + 𝒪

[︁
(𝜌 − 𝜌)2

]︁
, (2.35)

𝜌 − 𝜌 ∝ exp {− |1 − 𝜆| 𝑡} . (2.36)

The previous analysis yields two conclusions: near the critical point, the relaxation time (𝜏)

scales with 1/ |1 − 𝜆|, showing critical slowing down; and, at the critical point,

𝑑

𝑑𝑡
𝜌 = −𝜌2 , (2.37)

𝜌(Δ = 0, ℎ = 0; 𝑡) ∝ 𝑡−1 , (2.38)
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defining 𝜃 = 1 as the dynamical exponent (𝜌 ∝ 𝑡−𝜃).

Only three of the exponents are actually independent, the others follow well-known scaling

relations, which are summarized in MUÑOZ et al. (1999). Apart from the static and dynamic

exponents mentioned above, critical systems display scale-free behavior for the spreading quan-

tities 𝑁(𝑡), 𝑅2(𝑡), and 𝑃𝑠(𝑡) — respectively: average total active sites, squared linear spread

of active sites, and survival probability. At the critical point, these quantities decay with time

driven by the exponents 𝜂, 𝑧, and 𝛿, respectively.

Due to the diffusive nature of the system, correlations should behave like 𝐶(𝑥⃗; Δ = 0) ∝

𝑒−|𝑥|/𝜉⊥ and 𝐶𝑠(𝑡; Δ = 0) ∝ 𝑒−𝑡/𝜉‖ , where 𝜉⊥ is the correlation length and 𝜉‖, the relaxation

time. The quantities 𝜉⊥ and 𝜉‖ diverge as Δ approaches zero with exponents 𝜈⊥ and 𝜈‖,

respectively.

Considering that, for this system, 𝛼 = 2, when its configuration is above the upper critical

dimension — i.e., 𝑑𝑐 = 4 — we have already calculated 𝛽, 𝛿ℎ, and 𝜃. Additionally, from the

calculations in Sec. 2.2, we also find 𝜂 = 0, 𝑧 = 1, 𝛿 = 1, 𝜈⊥ = 1/2, and 𝜈‖ = 1.

Figure 8 – Avalanche mean-temporal profile from two experimental results in the most left and right panels
and simulation of a DP model in the center panels. These shapes are produced by averaging the
temporal profiles of all avalanches of a particular duration. Observe that for sample 6 (far right
panels) there is neither collapse nor parabolic shapes, indicating that not all the experimental
samples were critical.

Source: (FRIEDMAN et al., 2012)
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2.3.4 Avalanche Dynamics

Considering scaling relations, for MF-DP, the predicted exponents for the avalanches,

𝑃 (𝑆) ∝ 𝑆−𝜏 and 𝑃 (𝑇 ) ∝ 𝑇 −𝜏𝑡 , are:

𝜏 = 1 + 𝜂 + 2𝛿

1 + 𝜂 + 𝛿
= 3

2 (2.39)

𝜏𝑡 = 1 + 𝛿 = 2. (2.40)

Additionally, scaling in the context of avalanches dictates that the average size of avalanches

(𝑆) scales with the duration (𝑇 ) to the power of 𝛾 ≡ 1/(𝜎𝜈𝑧), i.e.,

⟨𝑆⟩ ∝ 𝑇 𝛾 . (2.41)

This theory also predicts a shape collapse onto a universal curve (𝑠(𝑡; 𝑇 ); see Fig. 8), the mean

temporal profile of the avalanches (FRIEDMAN et al., 2012):

𝑠(𝑡; 𝑇 ) ∼ 𝑇 𝛾−1ℱ(𝑡/𝑇 ). (2.42)

Furthermore, the scaling relation that predicts this exponent is (KUNTZ; SETHNA, 2000;

SETHNA; DAHMEN; MYERS, 2001; TOUBOUL; DESTEXHE, 2017; PONCE-ALVAREZ et al., 2018b):

𝛾 = 𝜏𝑡 − 1
𝜏 − 1 = 2. (2.43)

2.4 TRICRITICAL DIRECTED PERCOLATION

2.4.1 Higher-order Contact Process Model

The modified version of the contact process introduces a higher-order interaction with

a second parameter, such that two active sites have a probability 𝑞 of activating a third

site (OHTSUKI; KEYES, 1987),

𝐴 → 0 with probability (1 − 𝑞) (1 − 𝑝)

0𝐴 → 00 with probability 𝑞 (1 − 𝑝)

0𝐴 → 𝐴𝐴 with probability 𝑝 (1 − 𝑞)

𝐴𝐴 → 0𝐴 with probability (1 − 𝑞) (1 − 𝑝)

0𝐴𝐴 → 𝐴𝐴𝐴 with probability 𝑞.
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Observe that the rates 𝜏 , 𝑔, and 𝑐 are written as a function of these probabilities: 𝜏 = 2𝑝 − 1,

𝑔 = 𝑝 − (2 − 𝑝) 𝑞, and 𝑐 = 𝑞. This process is represented by the Langevin equation with a

similar format to that of Eq. (2.1),

1
𝛼

𝜕

𝜕𝑡
𝜌 = 𝜏𝜌 − 𝑔𝜌2 − 𝑐𝜌3 + Γ∇2𝜌 + ℎ + 𝜂 , (2.44)

where ℎ represents the external field, 𝜌 is the activity density, and 𝜂 is a Gaussian noise.

2.4.2 Tricritical Directed Percolation Universality Class

In the mean-field approach, the noise and spatial terms disappear and the mean-field

equation becomes,
1
𝛼

𝑑

𝑑𝑡
𝜌 = 𝜏𝜌 − 𝑔𝜌2 − 𝑐𝜌3 + ℎ . (2.45)

Considering ℎ = 0, the quiescent state is always a fixed point and a linear analysis shows that,

for 𝜏 < 0, it is unstable and, for 𝜏 > 0, it is stable (see Fig. 9). The other static solutions are

𝜌 = − 𝑔

2𝑐
±
√︃

𝜏

𝑐
+
(︂

𝑔

2𝑐

)︂2
, (2.46)

Observe that the negative sign yields a nonphysical solution since 𝜌 is a density. So the positive

sign solution shows how the system’s density scales with the control parameter 𝜏 .

Figure 9 – Mean-field phase diagrams of tricritical directed percolation. On the left, the phase diagram is
sketched as a function of the coarse-grained parameters 𝜏 and 𝑔. On the right, the same phase
diagram is sketched as a function of the probabilities 𝑝 and 𝑞. The thick curve along 𝜏 = 0 and
𝑔 > 0 (left), or conversely below the tricritical point at 𝑝 = 0.5, are second-order phase transitions
belonging to DP. The shadowed areas represent bistability. And the thin dashed lines illustrate the
cross-over to tricritical behavior.

Source: (LÜBECK, 2006)
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LÜBECK (2006) studied the model and the tricritical directed percolation in some detail.

The tricritical point is a point in the phase diagram of a system where three different phases

meet, for this section, this point separates a For the purposes of the search of the tricritical

directed percolation, we will focus on 𝑔 = 0, where the system displays tricritical behavior (see

left panel of Fig. 9). The 𝛽 exponent for this solution, 𝜌 =
√︁

𝜏/𝑐, is 1/2. One can easily observe

that at 𝜏 → 0+, with 𝑔 > 0 and 𝜏 ≪ 𝑔2/4𝑐, results in a DP transition as 𝜌 = 𝜏/𝑔 + 𝒪(𝜏 2).

The system’s behavior with respect to an external field is also extrapolated for 𝜏 = 0 and

𝑔 = 0. From Eq. (2.45), the static solution, 𝜌 = (ℎ/𝑐)1/3, scales with exponent 1/3, yielding

𝛿ℎ = 3.

Similarly to what we did with the DP, considering that for this system (𝛼 = 3), we

calculate, above the upper critical dimension (𝑑𝑐 = 3): 𝑧 = 1, 𝛿 = 1, 𝜈⊥ = 1/2, and 𝜈‖ = 1.

Observe that the overall exponents are not the same as the directed percolation ones, which

is reflected in the expected values for the avalanche distribution exponents, we are going to

detail in Chapter 4.

In conclusion, though the tricritical directed percolation universality class has many expo-

nents in common with the directed percolation one, each displays unique features.

2.5 ASYMMETRICALLY COUPLED DIRECTED PERCOLATION

The previous transitions consider one relevant field. However, to represent a broader range

of phenomena, one must consider one or more fields coupled. Diving into the systems involving

multiple significant fields, we uncover two universality classes that emerge from the coupling

of two fields, leading to an absorbing phase: Unidirectionally Coupled Directed Percolation

(UCDP) and Asymmetrically Coupled Directed Percolation (ACDP).

2.5.1 Model

NOH; PARK (2005a) uses a model that mimics an epidemic with immunization agents,

introducing an “inhibitory" species to the contact process. This model features two coupled

species, A and B, both falling within the Directed Percolation (DP) universality class. Species

A and B deactivate spontaneously with probabilities 𝑝𝐴 and 𝑝𝐵, respectively. Additionally,

species A activates species B with probability (1 − 𝑝𝐴)𝜆, while it activates another A site with

the complementary probability. Species B activates other instances of itself with a probability
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of (1−𝑝𝐵) and deactivates species A with probability 𝜇 (See Fig 10). Notably, when 𝜇 = 0, the

“inhibitory” species B, loses its inhibitory abilities and the system falls into the Unidirectionally

Coupled Directed Percolation (UCDP) universality class. These transitions are summarized as

follows,

𝐴/𝐵 → 0 with probability 𝑝𝐴/𝐵

𝐴 → 𝐴𝐴 with probability (1 − 𝑝𝐴)(1 − 𝜆)

𝐵 → 𝐵𝐵 with probability 1 − 𝑝𝐵

𝐴 → 𝐴𝐵 with probability (1 − 𝑝𝐴)𝜆

𝐴𝐵 → 𝐵 with probability 𝜇 .

Figure 10 – Schematics of rates of the ACDP model. The circles represent species A and are filled in when
active and empty when inactive. The squares represent the B species.

Source: The author (2023)

2.5.2 Mean-Field equations

For this model, one needs to build two mean-field equations, where the two species closely

resemble the contact process with added terms to represent the coupling. The mean-field
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equations are easily written as:

𝑑

𝑑𝑡
𝜌𝐴 = −𝑝𝐴𝜌𝐴 − 𝜇𝜌𝐴𝜌𝐵 + (1 − 𝑝𝐴)(1 − 𝜆)𝜌𝐴(1 − 𝜌𝐴)

= −𝑝𝐴𝜌𝐴 − 𝜇𝜌𝐴𝜌𝐵 + (1 − 𝑝𝐴)(1 − 𝜆)(𝜌𝐴 − 𝜌2
𝐴)

= [(1 − 𝑝𝐴)(1 − 𝜆) − 𝑝𝐴] 𝜌𝐴 − (1 − 𝑝𝐴)(1 − 𝜆)𝜌2
𝐴 − 𝜇𝜌𝐴𝜌𝐵 , (2.47)

𝑑

𝑑𝑡
𝜌𝐵 = −𝑝𝐵𝜌𝐵 + 𝜆(1 − 𝑝𝐴)(1 − 𝜌𝐵)𝜌𝐴 + (1 − 𝑝𝐵)𝜌𝐵(1 − 𝜌𝐵)

= (1 − 2𝑝𝐵)𝜌𝐵 − (1 − 𝑝𝐵)𝜌2
𝐵 + 𝜆(1 − 𝑝𝐴)𝜌𝐴 , (2.48)

where 𝜌𝑖 is the density of active sites of the species 𝑖. To make these equations more palatable,

we can rename the parameters: the first equation can be rewritten only in terms of 𝛼𝐴 =

(1 − 𝑝𝐴)(1 − 𝜆) and the second in terms of 𝛼𝐵 = 1 − 𝑝𝐵. The behavior of the system must

remain unchanged, and the equations become:

𝑑

𝑑(𝛼𝐴𝑡)𝜌𝐴 = 𝑎𝐴𝜌𝐴 − 𝜌2
𝐴 − 𝜇̃𝜌𝐴𝜌𝐵 , (2.49)

𝑑

𝑑(𝛼𝐵𝑡)𝜌𝐵 = 𝑎𝐵𝜌𝐵 − 𝜌2
𝐵 + 𝜆̃𝜌𝐴 , (2.50)

where 𝑎𝐴 = [(1 − 𝑝𝐴)(1 − 𝜆) − 𝑝𝐴] /𝛼𝐴, 𝜇̃ = 𝜇/𝛼𝐴, 𝑎𝐵 = (1 − 2𝑝𝐵)/𝛼𝐵, and 𝜆̃ = 𝜆(1 −

𝑝𝐴)/𝛼𝐵. It is noteworthy that, for 𝜇 = 0, the UCDP universality class, the only visible coupling

is excitatory to species B.

2.5.3 Phase Space and Transitions

Similarly to the previous models, the quiescent state is always a fixed point of the mean-field

equation. In this case, we can write the static solutions as:

𝜌𝐴 = 1
𝜆̃

(︁
𝜌2

𝐵 − 𝑎𝐵𝜌𝐵

)︁
, (2.51)

1
𝜆̃𝜇̃

𝜌2
𝐵 +

(︃
1 − 𝑎𝐵

𝜆̃𝜇̃

)︃
𝜌𝐵 − 𝑎𝐴

𝜇̃
= 0 , (2.52)

resulting in the same structure we have seen for DP and TDP. This indicates that, for a unique

set of parameters, each species goes through a quiescent to active transition.

NOH; PARK (2005a) defined three phases: the I label represents a complete quiescent phase,

where both species relax to quiescence; the II label represents a hybrid phase, where species A

is quiescent and species B is active; and the III label represents a complete active phase, where

both species are active. The transitions are shown in Fig. 11 in the form of line segments.
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Figure 11 – Schematic phase diagram of the asymmetrically coupled directed percolation for fixed 𝜆 and 𝜇.

Source: (NOH; PARK, 2005a)

The segment 𝑀𝑅 shows a transition from phase I to II, a quiescent to active phase transition

for species B (belonging to DP); 𝑀𝑄 shows a transition from phase I to III, both species

go through a quiescent to active transition (belonging to DP); 𝑀𝑃 shows a transition from

phase II to III, species A goes through a quiescent to active transition (belonging to DP); and

𝑀 is a multicritical Point.

2.5.4 Multicritical Point

The mean-field equations clearly indicate a shift in behavior when both 𝑎𝐴 = 0 and 𝑎𝐵 = 0.

Now let us approach the multicritical point, considering Δ a distance to the critical point for

A, we can write the condition to approach the tricritical point as (𝑎𝐴, 𝑎𝐵) = (Δ, 𝑟Δ). In the

limit Δ → 0, the equations

(Δ − 𝜌𝐴)𝜌𝑎 − 𝜇̃𝜌𝐴𝜌𝐵 = 0 (2.53)

(𝑟Δ − 𝜌𝐵)𝜌𝐵 + 𝜆̃𝜌𝐴 = 0 (2.54)

[𝜌𝐴] ∝ [𝜌𝐵]2 ∝ Δ2 , if 𝜇̃ ̸= 0 (2.55)

[𝜌𝐴] ∝ [𝜌𝐵]2 ∝ Δ , otherwise; (2.56)

yield the exponents for the two species, 𝛽𝐴 = 2 and 𝛽𝐵 = 1; therefore, for the ACDP

universality class, and 𝛽𝐴 = 1 and 𝛽𝐵 = 1/2, for the UCDP universality class.

Introducing spatial fluctuation in terms of ∇2𝜌𝐴/𝐵 (like in Sec 2.2), they also behave as

powerlaws, with exponents 𝜈𝐴⊥ = 𝜈𝐵⊥ = 1/2 and the spreading exponents, 𝛿 = 0 and 𝑧 = 1.

The interesting feature of this universality class is the time decay. On the multicritical
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Table 1 – Summary of mean-field exponents

𝛽 𝛿ℎ 𝜃 𝛿 𝜈‖ 𝜈⊥ 𝜏 𝜏 𝑡 𝛾

DP 1 2 1 1 1 1/2 3/2 2 2
TDP 1/2 3 1/2 1 1 1/2 - - -
ACDP 1 2 max{2, 𝜇̃} 1 1 1/2 - - -

Source: Compiled by the author (2023) from referenced data in (MUÑOZ et al., 1999), (LÜBECK, 2006), and
(NOH; PARK, 2005a)

point, species B falls into the same scaling as DP with 𝜃𝐵 = 1. However, the time decay

scaling for species A depends on 𝜇̃. In order to calculate the time exponents, we use the

ansatz, 𝜌𝐴(𝑡) = 𝐴𝑡𝜃𝐴 and 𝜌𝐵(𝑡) = 𝐵𝑡𝜃𝐵 , and obtain

−𝜃𝐴𝐴𝑡−𝜃𝐴−1 = −𝐴2𝑡−2𝜃𝐴 − 𝜇̃𝐴𝐵𝑡−𝜃𝐴−𝜃𝐵 , (2.57)

−𝜃𝐵𝐵𝑡−𝜃𝐵−1 = −𝐵2𝑡−2𝜃𝐵 + 𝜆̃𝐴𝑡−𝜃𝐴 . (2.58)

Isolating 𝜃𝐴 and 𝜃𝐵 on the left-hand side of the equations, respectively, and considering 𝜃𝐴 > 2

yields 𝜃𝐵 = 𝐵 = 1; thus,

𝜃𝐴 = 𝐴𝑡−𝜃𝐴+1 + 𝜇̃ , (2.59)

𝜃𝐴|𝑡→∞ = 𝜇̃ . (2.60)

Conversely, when 𝜇̃ < 2, so that 𝜃𝐴 ≤ 2, 𝜃𝐵 remains unchanged and 𝜃𝐴 = 2. In conclusion,

𝜃𝐴 = max{2, 𝜇̃}, (2.61)

albeit at 𝜇̃, we need logarithm corrections to better explain the behavior. These mean-field

exponents are summarized in table 1.
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3 WILSON-COWAN MODEL

The Wilson-Cowan model has been able to reproduce many phenomena observed in sponta-

neous brain activity including complex spatial-temporal patterns and avalanche dynamics (WAL-

LACE et al., 2011; MARUYAMA; KAKIMOTO; ARAKI, 2014; COWAN; NEUMAN; DRONGELEN, 2016;

CANDIA et al., 2021). Several papers and books describe the Wilson-Cowan equations, including

a thorough analysis of the possible bifurcations. These equations are used in computational

neuroscience to study how large groups of neurons interact and generate patterns of activity.

Jack Cowan himself has produced a long list of papers studying the model in its “mean-field"

dynamic form (WILSON; COWAN, 1972; WILSON; COWAN, 1973) and in its stochastic counter-

part (BUICE; COWAN, 2007; BENAYOUN et al., 2010).

The analysis of avalanche distribution and their dynamics have gained growing popularity

as a means of comparison with experimental data, where the distributions of avalanche size

and duration follow power laws and are consistent with the branching process. In what follows,

we will summarize the origin of the model, the possible bifurcations and phase plane analysis,

and two interpretations of the mechanism underlining the avalanche behavior of its stochastic

version.

3.1 WILSON-COWAN DYNAMICS (1972)

Wilson and Cowan introduced dynamical equations that, rather than modeling individual

neurons, model a localized neural population composed of excitatory and inhibitory subpopula-

tions (WILSON; COWAN, 1972; WILSON; COWAN, 1973). They readdressed the work on excitatory

populations of neurons (BEURLE, 1956; HOOPEN, 1966) adding an inhibitory subpopulation.

The model considered excitatory and inhibitory firing proportions in an instant 𝑡, 𝐸(𝑡), and

𝐼(𝑡), respectively.

Considering a set of 𝑁 McCulloch-Pitts neurons (MCCULLOCH; PITTS, 1943) – a neural

network model with a single layer – and a Poisson input (the timing and frequency of action

potentials or spikes are described by a Poisson distribution), the authors formulate a dynamical

process in the form of two differential equations. Pitts neurons take a weighted sum of binary

inputs and produce binary outputs: when the sum of inputs is equal to or larger than a threshold

(𝜃), the output is 1; otherwise, it is 0. Therefore, WILSON; COWAN (1972) now solve a first
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Figure 12 – Typical sigmoid response function. (a) logistic function. (b) In principle, the response function
could also stem from a bimodal distribution of threshold, which would take the following format.
However, observe that the function keeps being monotonic and bounded by 0 and 1.

Source: Adapted from (WILSON; COWAN, 1972)

passage problem: how long, on average, does it take for each neuron to fire with a Poisson

input?

The function that indicates the expected proportion of excitation given the state of the

network is a response function. The authors considered two ways of studying this proportion

function in a large-scale network that is well-connected: (1) First, all cells have a distribution

of thresholds with the same number of afferent synapses; and (2) all cells have a distribution

of afferent synapses with same threshold. To accommodate both assumptions, the response

function was deemed monotonic with a lower bound of zero and an upper bound of 1. There-

fore, the step function becomes an integral of the probability density function, which will look

like a logistic function (COWAN, 1968) (see Fig 12a),

𝒮(𝑥) = {1 + exp[−𝑎𝑥]}−1. (3.1)

In 1972, Wilson and Cowan published the dynamics of these populations considering the

activity of each subpopulation at time (𝑡+𝜏) and time coarse-graining it. The authors proposed

that the proportion of active neurons after a time step 𝜏 can be expressed by:

𝐸(𝑡 + 𝜏) =
[︂
1 −

∫︁ 𝑡

𝑡−𝜏
𝐸(𝑡′)𝑑𝑡′

]︂
𝒮
{︂∫︁ 𝑡

−∞
𝛼(𝑡 − 𝑡′)[𝑤′

𝐸𝐸𝐸(𝑡′) − 𝑤′
𝐸𝐼𝐼(𝑡′) + ℎ𝐸(𝑡′)]𝑑𝑡′

}︂
, (3.2)

𝐼(𝑡 + 𝜏) =
[︂
1 −

∫︁ 𝑡

𝑡−𝜏
𝐼(𝑡′)𝑑𝑡′

]︂
𝒮
{︂∫︁ 𝑡

−∞
𝛼(𝑡 − 𝑡′)[𝑤′

𝐼𝐸𝐸(𝑡′) − 𝑤′
𝐼𝐼𝐼(𝑡′) + ℎ𝐼(𝑡′)]𝑑𝑡′

}︂
, (3.3)

where 𝐸(𝑡) and 𝐼(𝑡) are the proportion of active excitatory and inhibitory cells per unit time

at instant 𝑡, respectively; 𝜏 is the membrane time constant; ℎ𝑥, where 𝑥 ∈ {𝐸, 𝐼}, represents
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the sum of external input; 𝑤𝑥𝑦 are the synaptic weights; and 𝛼(𝑡) is the stimulation effect

decay for a period of time. The first term of the multiplication represents the proportion

of quiescent neurons in the subpopulation and, inside the response function on the second

term, the average instantaneous excitation generated in a cell of each subpopulation. Observe

that a portion of the quiescent neurons could be considered to be refractory and, therefore,

not sensitive to firing. For the purposes of the article, the network is considered a richly

interconnected population of cells (WILSON; COWAN, 1972).

Nonlinearities are expected in biological systems. And to sidestep the time integrals, WIL-

SON; COWAN (1972) use an average variable to disregard rapid temporal variations. Further-

more, considering that 𝛼(𝑡) ≈ 1 for 0 ≥ 𝑡 ≥ 𝑟, the integral
∫︀

𝛼(𝑡 − 𝑡′)𝐸(𝑡′)𝑑𝑡′ is proportional

to an average of 𝐸(𝑡). Thus, the dynamics for a spatially homogenous population of excitatory

and inhibitory neurons is (WILSON; COWAN, 1972):

𝜏
𝑑

𝑑𝑡
𝐸̄(𝑡) = −𝐸̄(𝑡) + [1 − 𝑟 𝐸̄(𝑡)] 𝑆 [𝑤𝐸𝐸 𝐸̄(𝑡) − 𝑤𝐸𝐼 𝐼(𝑡) + ℎ𝐸(𝑡)] , (3.4)

𝜏
𝑑

𝑑𝑡
𝐼(𝑡) = −𝐼(𝑡) + [1 − 𝑟 𝐼(𝑡)] 𝑆 [𝑤𝐼𝐸 𝐸̄(𝑡) − 𝑤𝐼𝐼 𝐼(𝑡) + ℎ𝐼(𝑡)] , (3.5)

where 𝑟 is the mean refractory period and 𝐸̄(𝑡) and 𝐼(𝑡) represent the average of each quantity.

The Wilson-Cowan model is a simplified representation of neural dynamics and provides

insights into phenomena such as neural oscillations and the emergence of complex patterns of

neural activity. The equations capture the balance between excitation and inhibition within the

population and can exhibit various patterns of neural activity, including stable fixed points, limit

cycles (oscillations), and chaotic behavior, depending on the parameters and initial conditions.

3.1.1 Bifurcations

The seminal work of Hoppensteadt and Izhikevich summarized the bifurcations using as

parameters the value of the external fields – i.e., in Eq. 3.4, ℎ𝐸 and, in Eq. 3.5, ℎ𝐼 (IZHIKEVICH,

2007; HOPPENSTEADT; IZHIKEVICH, 1997). IZHIKEVICH (2007) considers the Wilson-Cowan

dynamics in the case where the refractory period is zero (𝑟 = 0), i.e.,

𝜏
𝑑

𝑑𝑡
𝐸(𝑡) = −𝐸(𝑡) + 𝑆 [𝑤𝐸𝐸 𝐸(𝑡) − 𝑤𝐸𝐼 𝐼(𝑡) + ℎ𝐸(𝑡)] , (3.6)

𝜏
𝑑

𝑑𝑡
𝐼(𝑡) = −𝐼(𝑡) + 𝑆 [𝑤𝐼𝐸 𝐸(𝑡) − 𝑤𝐼𝐼 𝐼(𝑡) + ℎ𝐼(𝑡)] . (3.7)

Observe that from here on we will be suppressing the bar for the average quantities for

simplicity.
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The analysis of the equilibria should, at first, consider the existence of the inverse of 𝒮(𝑥).

When true, we can express the external fields at the solutions (𝐸*, 𝐼*) for 𝑑𝐸/𝑑𝑡 = 0 and

𝑑𝐼/𝑑𝑡 = 0 as

ℎ𝐸 = 𝑤𝐸𝐼𝐼* − 𝑤𝐸𝐸𝐸* + 𝒮−1 (𝐸*) , (3.8)

ℎ𝐼 = 𝑤𝐼𝐼𝐼* − 𝑤𝐼𝐸𝐸* + 𝒮−1 (𝐼*) , (3.9)

and the derivative of the response function follows 𝑑𝑆(𝑥)/𝑑𝑥 = 𝑆(1 − 𝑆). The Eq. (3.1) fits

these conditions and is the choice of response function throughout this section. Therefore, the

Jacobian matrix takes the form:

𝐽 =

⎛⎜⎜⎝ −1 + 𝑤𝐸𝐸 𝐸* (1 − 𝐸*) −𝑤𝐸𝐼 𝐸* (1 − 𝐸*)

−𝑤𝐼𝐸 𝐼* (1 − 𝐼*) −1 − 𝑤𝐼𝐼 𝐼* (1 − 𝐼*)

⎞⎟⎟⎠ . (3.10)

For the linear stability analysis, the eigenvalues can be expressed as

2𝜆 = 𝑇𝑟(𝐽) ±
√︁

[𝑇𝑟(𝐽)]2 − 2𝐷𝑒𝑡(𝐽) , (3.11)

where 𝑇𝑟(𝐽) is the trace of 𝐽 and 𝐷𝑒𝑡(𝐽) is the determinant of 𝐽 . The equilibria are foci

when the eigenvalues are complex, which are stable when the real part of the eigenvalue is

Figure 13 – Set of bifurcations of Wilson-Cowan neuron oscillator model for 𝑤𝐸𝐸 = 𝑤𝐼𝐸 = 𝑤𝐸𝐼 = 10 and
𝑤𝐼𝐼 = −2. The Hopf bifurcations, Cusp, and Bogdanov-Takens are indicated; and the saddle-node
bifurcation curves are represented by the thickest lines.

Source: (IZHIKEVICH, 2007)
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negative and unstable when it is positive. The supercritical Hopf bifurcation, where the stable

focus loses its stability to a limit cycle, occurs at 𝑇𝑟(𝐽) = 0 and 𝐷𝑒𝑡(𝐽) > 0 (see indicated

lines in Fig. 13).

Figure 14 – Detailed visualization of the bifurcations in Fig. 13. The bifurcations are: Cusp (C), supercritical
Hopf (AH), Bogdanov-Takens (BT), fold limit cycle (double limit cycle), Homoclinic bifurcation
(SSL), subcritical Hopf (SAH), saddle-node (SN), saddle-node on a limit cycle (SNLC), and
saddle-node separatrix loop (SNSL). Observe that the homoclinic and fold limit cycle bifurcations
are distorted for clarity.

Source: (IZHIKEVICH, 2007)
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The other codimension-1 local bifurcation is the saddle-node (see thicker lines in Fig. 13).

The saddle-node, as the name suggests, is a bifurcation where a stable node becomes a saddle.

The condition for this bifurcation is 𝐷𝑒𝑡(𝐽) = 0. The Hopf and saddle-node bifurcations collide

in a Bogdanov-Takens (BT), which is a codimension-2 bifurcation. At the BT bifurcation, both

eigenvalues are zero and the normal form of the Jacobian has only one non-zero off-diagonal

entry. The second codimension-2 bifurcation is the Cusp (or Cusp-catastrophe) and it occurs

in the vicinity of saddle-node bifurcations forming a singularity. Both types of codimension-2

bifurcations are indicated by name in Fig. 13.

Global behaviors fail to appear in the linear analysis. For these equations, the saddle sep-

aratrix loop (dashed line in Fig. 14) is also known as a homoclinic bifurcation, where a saddle

collides with a homoclinic cycle. The indicated double-limit cycle bifurcation in Fig. 14 is also

called a fold limit cycle bifurcation. It represents when two limit cycles, one stable and one

unstable, coalesce. A detailed visualization of the set of bifurcations is shown in Fig. 14.

3.2 STOCHASTIC MODEL

Expanding upon the deterministic Wilson-Cowan equations, BENAYOUN et al. (2010) derived

from the more general stochastic rate (microscopic) model (BUICE; COWAN, 2007) the so-

called Stochastic Wilson-Cowan model (SWC). The SWC model was built to be a stochastic

perturbation of the Wilson-Cowan equations and takes the form of a Markovian process for a

population of coupled excitatory and inhibitory individual binary neurons.

Each neuron can be either active or quiescent and its state at a given instant 𝑡 depends on

the transition rates: (1) 𝛼, spontaneous decay– i.e., transitioning from active to quiescent; and

Figure 15 – a) A diagram of the transition of the 𝑖 − 𝑡ℎ neuron, where 𝑠𝑖 is the total synaptic input. b)
Response function: Φ(𝑠) = tanh(𝑠)𝐻(𝑠), where 𝐻(𝑠) is the Heaviside, or step, function.

Source: Adapted from (BENAYOUN et al., 2010)
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(2) Φ(𝑠𝑖(𝑡)), driven activation – i.e., transition from quiescent to active. Note that, for this

model, the refractory period is absent, the neuron is either not sensitive to the input (active)

or sensitive to it (inactive), and the decay rate 𝛼 serves as a time constant to regulate this

built-in refractory period.

The response function takes a different shape from the one introduced in the original

model (see Sec. 3.1). However, it remains bound by [0, 1) because of the introduction of the

Heaviside function, which ensures non-negativity. Furthermore, this response function does

not allow any negative values of E and I, that were considered when developing the dynamical

equations as being activity below the low-level background activity. Considering that the state

of each neuron ℓ, regardless of type, is given by 𝜎
𝐸/𝐼
ℓ (𝑡) = 1 when active and 𝜎

𝐸/𝐼
ℓ (𝑡) = 0

when inactive, we write the response function as

Φ(𝑠ℓ) =

⎧⎪⎪⎨⎪⎪⎩
tanh(𝑠ℓ), if 𝑠ℓ > 0

0, otherwise,
(3.12)

where the input 𝑠ℓ to neuron, ℓ is

𝑠ℓ =
∑︁
𝑚

𝑤ℓ𝑚𝜎𝑚 + ℎ, (3.13)

𝑤ℓ𝑚 is the synaptic weight from neuron 𝑚 to neuron ℓ, and ℎ is a constant external input.

The network has all-to-all homogeneous connectivity, whose synaptic weights depend only

on the type (excitatory or inhibitory) of both the pre-synaptic and the post-synaptic neuron

Figure 16 – A) Schematic of connection strengths between excitatory, 𝐸, and inhibitory, 𝐼, populations. B)
Schematic of functionally feedforward connectivity, observe that the connecting arrow is unidirec-
tional from Δ to Σ.

Source: Adapted from (BENAYOUN et al., 2010)
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(see Fig. 16A). The evolution of a network of size 𝑁 can be regarded as a random walk

between the states with 𝑘 excitatory and 𝑙 inhibitory active neurons. Considering a Gaussian

approximation, where the neurons are assumed to fire independently, the overall dynamics can

be segmented into two terms: a deterministic and stochastic perturbation (OHIRA; COWAN,

1997; KAMPEN, 2007; BENAYOUN et al., 2010; CANDIA et al., 2021). The perturbation takes the

form
√

𝑁𝜉𝐸/𝐼 and the deterministic part is proportional to the size of the system; therefore,

the stochastic variables are reduced to 𝑘 = 𝑁𝐸 +
√

𝑁𝜉𝐸 and 𝑙 = 𝑁𝐼 +
√

𝑁𝜉𝐼 . The temporal

evolution of these stochastic variables is depicted by the Langevin equations:

𝑘̇ = −𝛼𝑘 + (𝑁 − 𝑘) Φ (𝑤𝐸𝐸𝐸 − 𝑤𝐸𝐼𝐼 + ℎ) +

+
√︁

𝛼𝑘 + (𝑁 − 𝑘) Φ (𝑤𝐸𝐸𝐸 − 𝑤𝐸𝐼𝐼 + ℎ) 𝜂𝐸(𝑡), (3.14)

𝑙 = −𝛼𝑙 + (𝑁 − 𝑙) Φ (𝑤𝐸𝐸𝐸 − 𝑤𝐸𝐼𝐼 + ℎ) +

+
√︁

𝛼𝑙 + (𝑁 − 𝑙) Φ (𝑤𝐼𝐸𝐸 − 𝑤𝐼𝐼𝐼 + ℎ) 𝜂𝐼(𝑡) , (3.15)

where 𝐸(𝑡) and 𝐼(𝑡) are the densities of active excitatory and inhibitory neurons, respectively,

and follow the Wilson-Cowan equations (Eq. (3.4) and Eq. (3.5)); and the noises are Gaussian,

⟨𝜂𝑖(𝑡)⟩ = 0 and ⟨𝜂𝑖(𝑡)𝜂𝑗(𝑡′)⟩ = 𝛿𝑖𝑗𝛿(𝑡 − 𝑡′).

To reduce the dimensionality of the phase diagram, the model has the same external field,

ℎ ≡ ℎ𝐸 = ℎ𝐼 , and symmetric weights – i.e., common excitatory (𝑤𝐸 ≡ 𝑤𝐸𝐸 = 𝑤𝐼𝐸) and

inhibitory (𝑤𝐼 ≡ 𝑤𝐼𝐼 = 𝑤𝐸𝐼) inputs – a relative routine practice in the literature (BRUNEL,

2000a; BENAYOUN et al., 2010; CANDIA et al., 2021). This dimensionality reduction results

in a symmetric input, which means the argument of Φ(𝑠) is the same for both equations,

𝑠 = 𝑤𝐸𝐸 − 𝑤𝐼𝐼 + ℎ. Therefore, a new set of variables is introduced to describe this model:

Σ = (𝐸+𝐼)/2 and Δ = (𝐸−𝐼)/2, which leads to 𝑠 = 𝑤0Σ+𝑤+Δ+ℎ — where 𝑤0 = 𝑤𝐸−𝑤𝐼

and 𝑤+ = 𝑤𝐸 + 𝑤𝐼 . The feedforward dynamics also display deterministic and stochastic time

evolution terms, the deterministic ones are

Σ̇ = −𝛼 Σ + (1 − Σ) Φ(𝑠) , (3.16)

Δ̇ = −[ 𝛼 + Φ(𝑠) ] Δ , (3.17)

with static solution (Σ0, 0). The difference field (Δ) relaxes quickly to zero and the sum field

(Σ) relaxes to 𝛼Σ0 = (1 − Σ0) Φ(𝑤0Σ0 + ℎ).

Now, analyzing the dynamics of the perturbation, the terms that are proportional to
√

𝑁
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follow linearized Langevin equations

𝑑

𝑑𝑡

⎛⎜⎜⎝ 𝜉Σ

𝜉Δ

⎞⎟⎟⎠ =

⎛⎜⎜⎝ −𝜆1 𝑤𝑓𝑓

0 −𝜆2

⎞⎟⎟⎠
⎛⎜⎜⎝ 𝜉Σ

𝜉Δ

⎞⎟⎟⎠+
√︁

𝛼Σ0

⎛⎜⎜⎝ 𝜂Σ(𝑡)

𝜂Δ(𝑡)

⎞⎟⎟⎠ , (3.18)

where 𝜂ℓ are independent white-noise variables, the eigenvalues 𝜆1 ≡ 1/𝜏1 = 𝛼 + Φ(𝑤0Σ0 +

ℎ) − (1 − Σ0) 𝑤0 Φ′(𝑤0Σ0 + ℎ) and 𝜆2 ≡ 1/𝜏2 = 𝛼 + Φ(𝑤0Σ0 + ℎ) represent the inverse

of the relaxation times (𝜏1, 𝜏2), and the off-diagonal element 𝑤𝑓𝑓 is called a feedforward term

(see Fig. 16B), because the dynamics of Δ affects the dynamics of Σ but not the other way

around (BENAYOUN et al., 2010; CANDIA et al., 2021).

3.2.1 Directed Percolation

Considering Eq. (3.16) and Eq. (3.17) in the absence of an external field, ℎ = 0, the

quiescent state, (0, 0), becomes the stable solution of the dynamic system. Expanding the

solution 𝛼Σ0 = (1 − Σ0) Φ(𝑤0Σ0 + ℎ) around Σ0 = 0, one obtains the critical value of the

effective coupling, 𝑤0𝑐 = 𝛼. In the supercritical regime — i.e., at 𝑤0 > 𝑤0𝑐 (where excitation

dominates) – a positive stable fixed point Σ0 ∝ (𝑊0 −𝑊0𝑐)/𝑊0 arises continuously, classifying

the transition as a second-order phase transition.

Instead of using the variable Σ0 as the order parameter, CANDIA et al. (2021) chose to focus

on the instantaneous firing rate,

𝑅 =
(︃

1 − 𝑘 + 𝑙

2𝑁

)︃
Φ(𝑠). (3.19)

The firing rate at the stable state (Σ0, 0) has the value 𝑅0 = (1 − Σ0)Φ(𝑤0Σ0 + ℎ), which

grows linearly with the control parameter (𝑤0) close to the transition, i.e., for 𝑤0 → 𝑤0𝑐 (see

Fig. 17A).

For a large network (𝑁 → ∞), the variance of the firing rate decays as ⟨(𝑅 − 𝑅0)2⟩ =

𝑁−1⟨𝜉𝑅(0)2⟩ and, thus, the normalized variance 𝜎𝑅𝑅 = 𝑁⟨(𝑅 − 𝑅0)2⟩ is independent of the

size of the system. Due to the type of transition, the variance should diverge, which it does

not, as seen in Fig. 17B. CANDIA et al. (2021) attribute such behavior to the choice of the

activation function, where the stable state Σ0 is zero leading to vanishing noise amplitude

at the transition. However, both the Fano factor, 𝜎𝑅𝑅/𝑅0, and the squared coefficient of

variation, 𝜎𝑅𝑅/𝑅2
0, diverge (see Fig. 17C,D). These phenomena separate the system from a

Poissonian variable and confirm that the fluctuations are much larger than the average firing

rate, at 𝑤0 = 𝑤0𝑐 in the parameter space.
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Figure 17 – Different observable quantities as a function of the control parameter 𝑤0: A) order parameter
𝑅0, for different values of the external field; B) normalized variance, 𝜎𝑅𝑅 = 𝑁⟨(𝑅 − 𝑅0)2⟩; C)
Fano factor, 𝜎𝑅𝑅/𝑅0; and, D) square coefficient of variation 𝜎𝑅𝑅/𝑅2

0. The fixed parameters are
𝛼 = 0.1 and 𝑤𝐸 + 𝑤𝐼 = 13.8.

Source: (CANDIA et al., 2021)

The behavior of the system, thus far, provides some indication that the system has a

bonafide critical point at 𝑤0 = 𝑤0𝑐. For a second-order phase transition, the avalanche anal-

ysis of the system yields a power-law distribution of sizes and durations. To confirm this

phenomenon in the present model, the temporal signal was divided into bins of width 𝛿, the

avalanche began at a time bin with at least one spike and was over at a subsequent empty bin.

The exponents in the large avalanche regime are robust with bin width, independent of the

value of 𝛿. For sizes, they found 𝑃 (𝑆) ∼ 𝑆−3/2 (Fig. 18A) and, for durations, 𝑃 (𝑇 ) ∼ 𝑇 −2

(Fig. 18B).

Figure 18 – A) Distribution of avalanche sizes at an area of robust power-law behavior. B) Distribution of
avalanche durations in relation to time. Observe that the analysis shows different values of the
time bins. The parameters for this analysis were 𝑤0 = 0.1, ℎ = 10−6, and 𝑁 = 106.

Source: Adapted from (CANDIA et al., 2021)
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Another characteristic of critical systems is that the mean temporal profile of the avalanches

(avalanche shapes) is universal across all scales and follows

𝑠(𝑡, 𝑇 ) ∝ 𝑇 𝛾−1ℱ(𝑡/𝑇 ) , (3.20)

where 𝛾 is the crackling noise exponent, which governs the mean avalanche size as a function

of its duration. As calculated in Sec. 2.2, these exponent relates to the avalanche distribution

as

𝛾 = 2 − 1
3/2 − 1 = 2. (3.21)

CANDIA et al. (2021) calculates 𝛾 ∼ 2.02 ± 0.05 over the interval 𝑇 ∈ [80, 200] and observes

an asymmetrical shape collapse (see Fig. 19), contrary to what was expected from the work

of FRIEDMAN et al. (2012) with a model belonging to the mean-field directed percolation

universality class and experimental data. This odd behavior is not fully explored in this paper.

Further clarification comes from our analysis in the following chapter, and some are provided

in LÓPEZ; BUENDÍA; MUÑOZ (2022).

Figure 19 – A) Scaling of the mean size of avalanches S for a duration T. B) Collapse of the mean temporal
profile for different durations. The network had 20% inhibitory neurons with the parameters 𝑤0 =
0.1, ℎ = 10−6, and 𝑁 = 107.

Source: Adapted from (CANDIA et al., 2021)

Therefore, the Wilson-Cowan model is able to reproduce not only oscillations and limit

cycles seen in neuronal activity but also critical behavior at a tunable parameter for vanishing

external fields belonging to the mean-field directed percolation universality class.

3.2.2 Noncritical Avalanches

As a counterpoint to the avalanche distribution due to a second-order phase transition,

BENAYOUN et al. (2010) showed that in a smaller-sized system, the stochastic Wilson-Cowan
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model produced avalanches as a consequence of a balanced network of excitatory and inhibitory

neurons and small random fluctuations.

Starting at all-to-all connectivity, they show that the network transitions from having asyn-

chronous firing to showing avalanche behavior. Not only does this transition from asynchrony

yields to the emergence of avalanches but the sizes of these avalanches are distributed as a

power-law with exponent 𝛽 = 1.62 (see Fig. 20). These avalanches are a direct result of the

feedforward dynamics coupled with the stochastic behavior of the network.

The avalanche behavior shown in BENAYOUN et al. (2010) disappears for larger systems,

while the behavior at the bona fide critical point in CANDIA et al. (2021) holds, theoretically

for infinite-sized networks as it is scale independent.

By looking at the phase plane in Fig. 20C, the nullclines start to approach one another

close to the fixed point (represented as an empty circle). This behavior is common at, or

close to, Bogdanov-Takens-like bifurcations. Considering the Jacobian shown in Eq. (3.18)

with small and positive 𝜆1/2 → 0+, which is the condition proposed in their analysis, showing

the proximity to a Bogdanov-Takens bifurcation. In the next chapter, we analyze the system

at a transition with a Jacobian that takes the normal form of the Bogdanov-Takens:

𝐽𝐵𝑇 =

⎛⎜⎜⎝ 0 1

0 0

⎞⎟⎟⎠ . (3.22)

At this transition, we find a second-order phase transition with all the hallmarks of criticality.

Figure 20 – Avalanche dynamics for parameter values ℎ = 10−3, 𝑤0 = 0.2, 𝑤+ = 13.8. A) Mean network
firing rate over a raster plot of spikes. B) Burst distribution of spikes with a geometric distribution
(𝑃 (𝑘) = (1 − 𝑝)𝑘−1𝑝) fit in red and a power-law in blue. The quantities Δ𝑡 is the inter-spike
interval and 𝛽 is the power-law fit. The inset shows the inter-spike interval distribution for a
sample of 50 neurons with an exponential fit in green. C) Phase plane plot. The nullclines are in
red and blue, the stochastic trajectory in bright green, the deterministic trajectory in a dashed
black line, and the flow in black arrows.

Source: Adapted from (BENAYOUN et al., 2010)
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In order to systematically explore the full set of possible phase transitions, in the next

chapter, we remove the constraints of symmetrical weights from the aforementioned works

and the change of variables in Eq. (3.16) and Eq. (3.17) is no longer interesting, considering

the arguments of the response functions (or the inputs) are different. The model could be

implemented on different types of networks, as specified by the connectivity matrix 𝜔ℓ𝑚 in

Eq. (3.13). Thus, we will tackle the four synaptic weights represented in Fig. 16A, which, in

a mean-field approach, follow:

𝐸̇ = −𝛼𝐸 + (1 − 𝐸) Φ (𝑤𝐸𝐸𝐸 − 𝑤𝐸𝐼𝐼 + ℎ) , (3.23)

𝐼 = −𝛼𝐼 + (1 − 𝐼) Φ (𝑤𝐼𝐸𝐸 − 𝑤𝐼𝐼 𝐼 + ℎ) . (3.24)

We will also assume a large population of neurons, of size 𝑁 , in a fully connected network,

since the analytical solutions are exact for 𝑁 → ∞ (MARRO; DICKMAN, 1999a; KAMPEN, 2007;

GARDINER, 2004).



63

4 RESULTS AND DISCUSSION

This chapter starts with a description of the five possible phases that arise when the model

lacks the symmetric constraints: 𝑤𝐸𝐸 = 𝑤𝐼𝐸 and 𝑤𝐼𝐼 = 𝑤𝐸𝐼 ; and follows with descriptions

of the phase transitions between them. Observe that, for the purposes of this chapter, phase

transitions are indistinct from bifurcations since our descriptions refer to fully-connected large-

sized networks (i.e., mean-field systems). Illustratively, Fig. 23 shows the numerically simulated

behavior of the dynamical system (Eq. 3.23 and Eq. 3.24), while Fig. 24 shows the stochastic

counterpart.

The transitions that take the system from one phase to the other are either continuous

(second-order), discontinuous (first-order), or a hybrid of both. The continuous transitions

described in this chapter define bonafide critical points following the well-known universality

classes: Mean-Field Directed Percolation (DP) and Mean-Field Tricritical Directed Percolation

(TDP); and a new one, the Mean-field Hopf Tricritical Directed Percolation (HTDP). The

discontinuous transition marked by a phase of coexistence corresponds to a curve of saddle-

node bifurcations. And, finally, the transitions that display a mixture of both characteristics

stem from the piecewise-smooth nature of the response function.

4.1 MEAN-FIELD PHASE DIAGRAMS

Let us take a second look at the Wilson-Cowan dynamic equations (Eq. 3.23 and Eq. 3.24),

in the absence of any external driving force (ℎ = 0),

𝐸̇ = −𝛼 𝐸 + (1 − 𝐸) Φ (𝑤𝐸𝐸 𝐸 − 𝑤𝐸𝐼 𝐼) , (4.1)

𝐼 = −𝛼 𝐼 + (1 − 𝐼) Φ (𝑤𝐼𝐸 𝐸 − 𝑤𝐼𝐼 𝐼) . (4.2)

Since, Φ(0) = 0, the trivial solution (𝐸*, 𝐼*) = (0, 0) is always a steady-state solution for

Eq. (4.1) and Eq.(4.2), defining the quiescent state.

Considering the response function as a piecewise-smooth curve, the state-space of the

system acquires three distinct regions that depend on the sign of the total input (𝑠𝐸 or 𝑠𝐼).

Inside each region, the system displays a different dynamic profile. Limiting these regions are
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the switching manifolds

𝑠𝐸 = 𝑤𝐸𝐸 𝐸 − 𝑤𝐸𝐼 𝐼 = 0 , (4.3)

𝑠𝐼 = 𝑤𝐼𝐸 𝐸 − 𝑤𝐼𝐼 𝐼 = 0 , (4.4)

on which the trajectories may cross or slide (GLENDINNING; JEFFREY, 2019) depending on the

flow around it, see Fig. 21 and Appendix C.

Figure 21 – Regions in the state space for two sets of parameters: a) 𝛼 = 1, 𝑤𝐸𝐸 = 2.7, 𝑤𝐸𝐼 = 1.5,
𝑤𝐼𝐸 = 1.5, and 𝑤𝐼𝐼 = 0.5; and b) 𝛼 = 1, 𝑤𝐸𝐸 = 2.7, 𝑤𝐸𝐼 = 1.0, 𝑤𝐼𝐸 = 1.5, and 𝑤𝐼𝐼 = 0.64.
Observed in different shades of blue are the switching manifolds described in Eq. (4.3) and Eq. (4.4)
and, as well as a few trajectories, in pink dashed arrow lines.

Source: Adapted from (PIUVEZAM et al., 2023)

Region III is defined by 𝑠𝐸 < 0 and 𝑠𝐼 < 0, which means that in both Eq (4.1) and Eq (4.2),

Φ(𝑠ℓ) = 0. Inside said region, both populations are uncoupled and have an exponential decay.

Along the switching manifold, whichever it may be, 𝑠𝐸 = 0 or 𝑠𝐼 = 0, there is sliding.

Therefore, the trajectories are trapped inside the region, and, for initial conditions sufficiently

close to the switching manifold, the trajectories slowly decay onto the switching manifold

towards the quiescent state (See Appendix C).

Region II is located in between the two switching manifolds and the order of the switching

manifolds counter-clockwise will specify which population decays exponentially inside of it. On

one hand, when 𝑤𝐸𝐸/𝑤𝐸𝐼 < 𝑤𝐼𝐸/𝑤𝐼𝐼 (See Fig. 21a), the switching manifold between regions

I and II is 𝑠𝐸 = 0 and is the case most explored in the course of this study. For this condition,

in region II, 𝐼 displays nonlinear dynamics coupled with an exponential decay in 𝐸. On the

switching manifolds and for initial conditions sufficiently close to 𝑠𝐸 = 0, trajectories cross

from region I to region II and are trapped. On the other hand, when 𝑤𝐸𝐸/𝑤𝐸𝐼 > 𝑤𝐼𝐸/𝑤𝐼𝐼

(Fig. 21b), 𝑠𝐼 = 0 is between region I and II and the dynamics in region II is nonlinear for
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𝐸 coupled with an exponential decay for 𝐼. For this particular case, though the trajectories

also cross at the switching manifolds, the flow points from region II to region I. Therefore,

trajectories that start at region I never cross to region II but the ones that start inside of region

II and begin sufficiently close to 𝑠𝐼 = 0 cross to region I and are trapped (See Fig. 21 and

calculations in Appendix C).

Finally, region I is defined by two coupled nonlinear equations, i.e., 𝑠𝐸 > 0 and 𝑠𝐼 > 0.

Observe that for this region, the response function has a well-defined inverse. Therefore, the

non-trivial solutions (𝐸* > 0 and 𝐼* > 0) are

𝐸* = 1
𝑤𝐼𝐸

[︂
𝑤𝐼𝐼𝐼* + Φ−1

(︂
𝛼𝐼*

1 − 𝐼*

)︂]︂
, (4.5)

𝐼* = 1
𝑤𝐸𝐼

[︂
𝑤𝐸𝐸𝐸* − Φ−1

(︂
𝛼𝐸*

1 − 𝐸*

)︂]︂
, (4.6)

and characterize the active state. For the purposes of scaling calculations, region I is the most

relevant region.

In what follows, we describe the phases and their stability as a function of the parameters.

Observe that there are some constraints on the parameters: the weights are nonnegative, i.e.,

𝑤𝑖𝑗 ≥ 0, and the activity decay is positive, i.e., 𝛼 > 0. Furthermore, the phase diagrams may

take one of three forms (see Fig. 22), which are unraveled at the end of the section.

Figure 22 – Phase diagrams for all cases with parameter values: 𝛼 = 1, 𝑤𝐼𝐼 = 0, and 𝑤𝐼𝐸 ∈ [3.0, 1.0, 0.8].
The cases are labeled by letters A, B, and C, respectively.

Source: Adapted from (PIUVEZAM et al., 2023)

4.1.1 Quiescent phase types and stability limits

The nature of the quiescent states depends on the regions, the quiescent state is always

stable inside the regions that are trapping, i.e., the initial conditions inside the regions decay to
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zero. If our system finds itself inside of region III, the only stable state is the quiescent one. The

same logic applies to region II, which means that the trajectories that fall inside these two re-

gions necessarily decay to quiescence. The introduction of inhibition-dominated perturbations

– i.e., initial conditions where 𝐸(0) < 𝐼(0) – may drive the system to a perpetually quiescent

regime, depending on the choice of parameters. As an example, when 𝑤𝐸𝐸/𝑤𝐸𝐼 < 𝑤𝐼𝐸/𝑤𝐼𝐼

(Fig. 21a), inhibition-dominated perturbations drive the systems inside region II and III; how-

ever, when 𝑤𝐸𝐸/𝑤𝐸𝐼 > 𝑤𝐼𝐸/𝑤𝐼𝐼 (Fig. 21b), there is a possibility that the system evolves

to be trapped inside region I. To avoid these situations, the calculations on linear stability

consider only excitation-dominated perturbations and regard the dynamics in region I.

Considering the nonlinear differential equations for the excitatory and inhibitory popu-

lations, we can calculate the eigenvalues associated with the linear stability matrix at the

quiescent state as:

𝜆± =
𝑤𝐸𝐸 − 2𝛼 − 𝑤𝐼𝐼 ±

√︁
(𝑤𝐸𝐸 + 𝑤𝐼𝐼)2 − 4𝑤𝐸𝐼𝑤𝐼𝐸

2 . (4.7)

The state is linearly (or locally) stable when the eigenvalue has a negative real part. We

emphasize the word locally because the trajectories that are repelled by the linearly unstable

quiescent state have the possibility of falling into region II or III, where the dynamics follow

an exponential decay in one or both fields and the quiescent phase is the only attractor, still

defining a quiescent or a bistable phase.

When the eigenvalues have a positive real part and an imaginary component, one expects

Figure 23 – Comparative of quiescent and active phases. The fixed parameters: 𝛼 = 1.0, 𝑤𝐼𝐼 = 0.2, and
𝑤𝐸𝐼 = 2.0. The standard quiescent simulated for parameters (𝑤𝐸𝐸 = 1.2 and 𝑤𝐼𝐸 = 0.2). The
excitable quiescent for (𝑤𝐸𝐸 = 2.2 and 𝑤𝐼𝐸 = 1.0). And active for (𝑤𝐸𝐸 = 1.8 and 𝑤𝐼𝐸 = 0.2).
Observe that there are five different initial conditions marked as filled circles at the tip of the
trajectories – i.e., the magenta dashed lines in the insets.

Source: Adapted from (PIUVEZAM et al., 2023)
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the emergency of oscillations away from the quiescent state. However, these elicited oscillations

are interrupted as the trajectories reach the switching manifolds, inside which the quiescent

state is the only attractor. In this regime, small excitatory perturbations to the quiescent phase

may give rise to larger trajectories in state space before falling into the exponential decay region

(see Fig. 23b and Fig. 24b). The phase is then called excitable quiescent due to this so-called

“excitability” or “reactivity" (ASSIS; COPELLI, 2009; BENAYOUN et al., 2010; ASSIS; COPELLI,

2012; SANTO et al., 2018; PINTO; COPELLI, 2019; LÓPEZ; BUENDÍA; MUÑOZ, 2022).

The standard quiescent phase is the regime where the quiescent state is locally stable for

excitation-dominated perturbations (see Fig. 23a and Fig. 24a). The eigenvalue can be either

real or complex, which changes the nature of the fixed point. So the quiescent state inside the

phase can be a stable node or a stable focus. There is a curve separating the focus and the

node nature of the quiescent state when the eigenvalue becomes real,

𝑤†
𝐸𝐸 = 2

√
𝑤𝐸𝐼𝑤𝐼𝐸 − 𝑤𝐼𝐼 . (4.8)

Observe that this curve is not present in Fig 22, since this change in nature does not constitute

a bifurcation or a transition because its stability remains the same.

The standard quiescent state loses its linear stability in two ways. On the interface between

the two quiescent phases, the eigenvalue is complex, i.e., (𝑤𝐸𝐸 + 𝑤𝐼𝐼)2 − 4𝑤𝐸𝐼𝑤𝐼𝐸 < 0.

Therefore, the standard quiescent state loses its stability on a curve of supercritical Hopf

bifurcations, magenta dashed-line in Fig 22, conditioned by

𝑤𝐻
𝐸𝐸 = 2𝛼 + 𝑤𝐼𝐼 , (4.9)

and the only globally stable state is the excitable quiescent one, defining the excitable quiescent

phase.

Conversely, when the eigenvalue is real – i.e., (𝑤𝐸𝐸 +𝑤𝐼𝐼)2 −4𝑤𝐸𝐼𝑤𝐼𝐸 > 0 – the quiescent

state is a stable node and the largest eigenvalue becomes positive at

𝑤𝑇
𝐸𝐸 = 𝛼 + 𝑤𝐸𝐼𝑤𝐼𝐸

𝛼 + 𝑤𝐼𝐼

. (4.10)

Observe that at this condition the quiescent state is still a solution, however, it becomes

unstable. So dynamically, this condition marks a curve of transcritical bifurcations that in the

phase portrait separates the standard quiescent and the active phases and is illustrated as a

blue dashed line in Fig 22.
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Figure 24 – Raster plot of the different Quiescent Phases and Active. The fixed parameters: 𝛼 = 1.0, 𝑤𝐼𝐼 =
0.2, and 𝑤𝐸𝐼 = 2.0. The standard quiescent simulated for parameters (𝑤𝐸𝐸 = 1.2 and 𝑤𝐼𝐸 =
0.2). The excitable quiescent for (𝑤𝐸𝐸 = 2.2 and 𝑤𝐼𝐸 = 1.0). And active for (𝑤𝐸𝐸 = 1.8 and
𝑤𝐼𝐸 = 0.2). The system was simulated for 𝑁 = 5000 and initial condition 𝑁𝐸(0) = 𝑁 * 0.25 and
𝑁𝐼(0) = 0.

Source: The author (2023)

4.1.2 Active phase and its stability limits

After a transcritical bifurcation, a stable active state emerges continuously from the quies-

cent state, which, as we will show subsequently, corresponds to a directed percolation transi-

tion between the standard quiescent and active phases. However, the transition between these

phases may also go through a coexistence (bistable) phase, when the active state becomes

stable in a saddle-node bifurcation emerging discontinuously from the quiescent state. The

condition for the curve of saddle-node bifurcations, orange continuous line in Fig 22, is

𝑤𝑆𝑁
𝐸𝐸 = min

𝐸*

[︃
𝑤𝐸𝐼𝐼*(𝐸*)

𝐸* + 1
𝐸* Φ−1

(︂
𝛼𝐸*

1 − 𝐸*

)︂]︃
, (4.11)

where 𝐸* and 𝐼* are numerical solutions of Eq. (4.5) and Eq.(4.6).

Joining these two types of transitions, there is a tricritical point that corresponds to a

“saddle-node-transcritical" (SNT) bifurcation, black-filled circle in Fig. 22. The mathematical

condition for this point comes from a standard linear-stability analysis of the stationary solution

around zero. A linear approximation of Eq. (4.5) around the quiescent solution yields a value

of 𝐼* proportional to the density of active excitatory neurons 𝐸*

𝐸* = 1
𝑤𝐼𝐸

[︂
𝑤𝐼𝐼𝐼* + Φ−1

(︂
𝛼𝐼*

1 − 𝐼*

)︂]︂
(4.12)

= 1
𝑤𝐼𝐸

(𝑤𝐼𝐼 + 𝛼) 𝐼* + 𝒪(𝐼*2) . (4.13)

Therefore, either 𝐸* or a weighed sum of both can be regarded indistinctively as an order

parameter. From Eq. (4.5) and Eq. (4.6), 𝑤*
𝐸𝐸 may be expressed as a function of the fixed-
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point solution (𝐸*, 𝐼*):

𝑤*
𝐸𝐸 = 1

𝐸*

[︂
𝑤𝐸𝐼𝐼* + Φ−1

(︂
𝛼𝐸*

1 − 𝐸*

)︂]︂
. (4.14)

Expanding it in a power series around the quiescent state, we observe the emergence of a

stable active state solution at the transcritical bifurcation [𝑤𝑇
𝐸𝐸, see Eq. (4.10)]. Furthermore,

we define the distance to the transition – i.e., the distance to the critical value of the control

parameter, Δ = 𝑤𝐸𝐸 − 𝑤𝑇
𝐸𝐸, and observe that this non-trivial solution scales linearly with Δ

as

𝐸* ∼ 𝐼* ∼ [(𝛼 + 𝑤𝐼𝐼)3 − 𝑤𝐸𝐼𝑤2
𝐼𝐸]−1Δ , (4.15)

as long as (𝛼 + 𝑤𝐼𝐼)3 − 𝑤𝐸𝐼𝑤2
𝐼𝐸 ̸= 0. For (𝛼 + 𝑤𝐼𝐼)3 − 𝑤𝐸𝐼𝑤2

𝐼𝐸 = 0, Eq. (4.15) di-

verges and, therefore, marks a collision between the saddle-node and transcritical curves into

a codimension-2 bifurcation called saddle-node transcritical (SNT) bifurcation (VEEN; HOTI,

2019; LAI; ZHU; CHEN, 2020), which occurs at

𝑤𝑆𝑁𝑇
𝐸𝐼 = (𝛼 + 𝑤𝐼𝐼)3

𝑤2
𝐼𝐸

, (4.16)

𝑤𝑆𝑁𝑇
𝐸𝐸 = 𝛼 + (𝛼 + 𝑤𝐼𝐼)2

𝑤𝐼𝐸

. (4.17)

The transition between the excitable quiescent and active phases is always mediated by

a regime of coexistence – called the bistable excitable phase. Therefore, the saddle-node

bifurcation extends into the excitable quiescent phase enclosing the new bistable regime. The

transcritical bifurcation, however, loses its meaning considering that the excitable quiescent

state is linearly unstable, and the discontinuity-induced bifurcation replaces it, although they

may appear to be a continuation of the curve of transcritical bifurcations in Fig. 22, the

mathematical condition for each is different.

The discontinuity-induced bifurcation is a direct consequence of the piecewise smooth dy-

namics of the system (HARRIS; ERMENTROUT, 2015) and its curve of bifurcations (numerically

determined) delimits the excitable quiescent loss of global stability. In a piecewise smooth

system, bifurcations inside the regions behave as they would in regular systems; however, the

switching manifolds introduce new possibilities. If the dynamics in region I drive the system

inside region II or/and III, the dynamics change and the nature of the switching manifold

forces the stability of the quiescent state. The change in stability of a fixed point on top of

the switching manifolds forced by this behavior is called a discontinuity-induced bifurcation. In

summary, between the line of saddle-nodes and the line of discontinuity-induced bifurcations,
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in a period of coexistence, the quiescent state is globally stable and there is an active locally

stable fixed point. To the left of the discontinuity-induced bifurcations, the quiescent state

loses global stability.

Observe that the discontinuity-induced bifurcations emerge from the transcritical bifurca-

tions curve where the curve of Hopf bifurcations collides with the transcritical bifurcations at

a point named Hopf-transcritical (HT), magenta unfilled circle in Fig 22. And from Eq. (4.10)

and Eq. (4.9), we derive the conditions for the HT point:

𝑤𝐻𝑇
𝐸𝐼 = (𝛼 + 𝑤𝐼𝐼)2

𝑤𝐼𝐸

, (4.18)

𝑤𝐻𝑇
𝐸𝐸 = 2𝛼 + 𝑤𝐼𝐼 . (4.19)

Thus far, these conditions are fairly general, however, if one considers an extra fine-tuning

of the parameters: 𝑤𝐼𝐸 = 𝛼 + 𝑤𝐼𝐼 , the codimension-2 bifurcations HT and SNT merge into

a codimension-3 bifurcation, black filled magenta circle in Fig. 22, defined by the choice of

parameters:

𝑤𝐻+𝑆𝑁𝑇
𝐸𝐼 = 𝑤𝐻+𝑆𝑁𝑇

𝐼𝐸 = 𝛼 + 𝑤𝐼𝐼 (4.20)

𝑤𝐻+𝑆𝑁𝑇
𝐸𝐸 = 2𝛼 + 𝑤𝐼𝐼 . (4.21)

This bifurcation also related to a tricritical point and is called a Hopf saddle-node-transcritical

(H+SNT) bifurcation.

4.1.3 Qualitative Different Phase Diagrams: Cases A, B, and C

The relative position of the HT in relation to the SNT qualitatively changes the landscape

of the phase diagram. Hence, in what follows, we analyze the possible phase diagrams fixing

the activity-decay rate 𝛼 ̸= 0 and the self-inhibition weight 𝑤𝐼𝐼 ≥ 0 and choosing 𝑤𝐸𝐸 and

𝑤𝐸𝐼 as control parameters. The system displays three different types of phase diagrams in the

(𝑤𝐸𝐸, 𝑤𝐸𝐼) plane depending on the value of the remaining free parameter, 𝑤𝐼𝐸, without any

loss of generality. Choosing another set of order parameters also describes these three topolo-

gies of phase diagrams, since the equations that shape them depend on all the parameters.

In case A, the HT point (unfilled magenta circle) lies to the right of the tricritical point

(filled black circle) in Fig. 25. This case comprises all possible phase diagrams where 𝑤𝑆𝑁𝑇
𝐸𝐸 <

𝑤𝐻𝑇
𝐸𝐸 . From Eq. (4.17) and Eq. (4.19), we use the free parameter 𝑤𝐼𝐸 as a function of the

two fixed ones to parameterize the cases: 𝑤𝐸𝐼 > 𝑤𝐼𝐼 + 𝛼.
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Figure 25 – Phase diagram for case A with parameter values: 𝛼 = 1, 𝑤𝐼𝐼 = 0, and 𝑤𝐼𝐸 = 3. For this case,
the phase diagram shows four types of transitions 𝑇1, . . . , 𝑇4 in horizontal black segments.

Source: (PIUVEZAM et al., 2023)

The four possible transitions from a quiescent to the active phase are marked by black

horizontal segments in Fig. 25. The first transition from the bottom in Fig. 25, 𝑇1, is a con-

tinuous transition from the standard quiescent to active phases, going through a transcritical

bifurcation (dashed blue curve); as we will see bellow, this transition corresponds to the well-

known mean-field directed percolation universality class. The second transition, 𝑇2, is also

continuous; however, this transition goes through a tricritical point, which represents an SNT

bifurcation (filled black circle). The third transition, 𝑇3, is discontinuous and it crosses curves

twice: first, the saddle-node curve (continuous orange curve) into a standard bistable regime

where there is a coexistence of quiescent and active stable states; and, second, the transcritical

curve, into the active phase. The uppermost transition, 𝑇4, is also discontinuous with bista-

bility; although, in this case, the system crosses curves three times: first, the curve of Hopf

bifurcations (dot-dashed magenta straight line) from the standard quiescent to the excitable

phase; second, the saddle-node curve into the bistable excitable phase; and, third, the curve

of discontinuity-induced bifurcations (dashed black curve) delimiting the active phase.

In case B, the HT point lies exactly on top of the SNT one, which reduces the amount of



72

Figure 26 – Phase diagram for case B with parameter values: 𝛼 = 1, 𝑤𝐼𝐼 = 0, and 𝑤𝐼𝐸 = 1. For case B, 𝑇1
and 𝑇4 remain the same from case A in two black straight segments. However, where the HT and
SNT bifurcations collide into the H+SNT bifurcation, the transition is 𝑇5, also in a labeled black
straight segment.

Source: (PIUVEZAM et al., 2023)

transitions to three (see Fig. 26). It requires a higher level of fine-tuning than the other two

cases. Since 𝑤𝑆𝑁𝑇
𝐸𝐸 = 𝑤𝐻𝑇

𝐸𝐸 and from Eq. (4.17) and Eq. (4.19), we need to also fix the value of

𝑤𝐼𝐸 to 𝑤𝐼𝐼 +𝛼. The first, 𝑇1, and last, 𝑇4, transitions remain unchanged. The new transition,

𝑇5, is continuous and a tricritical point, going through a codimension-3 bifurcation, the Hopf

saddle-node transcritical (H+SNT). Observe that the discontinuity-induced bifurcations curve

seems to coincide with the saddle-node curve, however, there is a bistable excitable phase

between them that gets progressively larger when the system moves away from the tricritical

point in Fig. 26.

In this last case, case C, the HT point lies to the left of the SNT point. This cases

comprises all possible phase diagrams where 𝑤𝑆𝑁𝑇
𝐸𝐸 > 𝑤𝐻𝑇

𝐸𝐸 . Similarly to what we did for case

A, we calculate the condition for the free parameter 𝑤𝐼𝐸 to 𝑤𝐼𝐸 < 𝑤𝐼𝐼 + 𝛼.

For this case, there are five types of transitions, including the first, 𝑇1, and last, 𝑇4,

transitions marked as black straight segments in Fig. 27, which remain the same. The new

transitions are all a mixture of continuous and discontinuous transitions, which we are going to

better characterize further in this chapter. The second transition from the bottom in Fig. 27,
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Figure 27 – Phase diagram for case C with parameter values: 𝛼 = 1, 𝑤𝐼𝐼 = 0, and 𝑤𝐼𝐸 = 0.8. For case C,
we observe 𝑇1 and 𝑇4 once again, alongside the emergence of three new transitions labeled 𝑇6,
𝑇7, and 𝑇8, represented by black continuous segments.

Source: (PIUVEZAM et al., 2023)

𝑇6, is a transition from standard quiescent to active that goes through the codimension-2 HT

point (unfilled magenta circle). The third transition, 𝑇7, goes through a discontinuity-induced

bifurcation from the excitable quiescent to the active phase. And, finally, the fourth labeled

transition, 𝑇8, is a tricritical point, which goes through the codimension-2 collision of the

saddle-node and discontinuity-induced bifurcations.

In the next sections, we analyze the generalized conditions for criticality and scrutinize

each of the eight types of phase transitions (or bifurcations) —from 𝑇1 to 𝑇8.

4.2 GENERAL SCALING PROPERTIES

The linear stability and linear behavior analysis of the dynamical equations close to the

quiescent states, Eq. (3.23) and Eq. (3.24), allows analytical predictions of the scaling behavior

of the stochastic counterpart (MARRO; DICKMAN, 1999a; HENKEL; HINRICHSEN; LÜBECK, 2008).

Equipped with the conditions calculated in the previous section and the relationships cal-

culated in Sec. 2.2, we compute the well-defined, if any, scaling exponents for all types of

transitions. It is noteworthy that quantities related to transitions that are discontinuous or hy-
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brid are not expected to exhibit universal behavior. The hybrid transitions may be associated

with some exponents and have power law behavior but not across all expected aspects of its

dynamics if they were bona fide critical points.

The quantities commonly measured for quiescent-active phase transitions may be divided

into five categories: static exponents, correlation exponents, dynamic exponents, spreading

exponents, and avalanche exponents. Generally, computing three independent exponents suf-

fice to fully determine a universality class (MARRO; DICKMAN, 1999b); however, for the sake

of completeness and to check consistency, when possible, we calculate more than three. In

particular, we put a spotlight on the avalanche analysis, which helps with the comparison with

experimental data.

The static exponents concern the behavior of the fixed point undergoing perturbations

away from the critical point. The first exponent, 𝛽, pertains to the relationship between the

zero-field (ℎ = 0) fixed point and the control parameter

𝐸* ∝ Δ𝛽 , (4.22)

where Δ = 𝑤𝐸𝐸 − 𝑤*
𝐸𝐸 is the distance to the critical value and 𝑤*

𝐸𝐸 stands for the value of

the control parameter 𝑤𝐸𝐸 at the transition. The second one, 𝛿ℎ, represents the response to

an external field ℎ at the transition (Δ = 0), i.e.,

𝐸* ∝ ℎ1/𝛿ℎ . (4.23)

As explained in Sec. 2.2, the correlation exponents (𝜈) concern the correlation length, 𝜉⊥, and

the time correlation through the relaxation time, 𝜉‖, which follow

𝜉⊥ ∝ Δ𝜈⊥ , (4.24)

𝜉‖ ∝ Δ𝜈‖ , (4.25)

respectively. The dynamic exponent, 𝜃, governs the time decay of the order parameter

𝐸(𝑡) ∝ 𝑡−𝜃 . (4.26)

The spreading exponents govern the basic evolution features of a system with self-similar

dynamics: the number of active sites, the mean-squared radius in surviving runs, and the

survival probability (MARRO; DICKMAN, 1999a), respectively:

𝑁(𝑡) ∝ 𝑡𝜂 , (4.27)

𝑅2(𝑡) ∝ 𝑡𝑧 , (4.28)

𝑃𝑠(𝑡) ∝ 𝑡−𝛿 . (4.29)
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The avalanche exponents concern the distribution of avalanche sizes, 𝑆; durations, 𝑇 ; and,

linking durations and averaged sizes, 𝑆(𝑇 ):

𝑃 (𝑆) ∼ 𝑆−𝜏 , (4.30)

𝑃 (𝑇 ) ∼ 𝑇 −𝜏𝑡 , (4.31)

⟨𝑆⟩ ∼ 𝑇 𝛾 . (4.32)

The relationships calculated in Sec. 2.2 show that these exponents are related through

scaling relations. In particular, the avalanche and spreading exponents follow

𝜏 = 1 + 𝜂 + 2𝛿

1 + 𝜂 + 𝛿
, (4.33)

𝜏𝑡 = 1 + 𝛿 , (4.34)

𝛾 = 𝜏𝑡 − 1
𝜏 − 1 = 1 + 𝛿 + 𝜂 , (4.35)

where the relationship between the avalanche distribution exponents, Eq. (4.35), describes the

so-called crackling noise scaling relation (SETHNA; DAHMEN; MYERS, 2001). Furthermore, the

static, dynamic, and correlation exponents (𝛽, 𝜃, and 𝜈‖, respectively) should obey the scaling

relation

𝜃 = 𝛽/𝜈‖ . (4.36)

However, as discussed in Sec. 2.5, there are exceptions to this rule in the literature (NOH;

PARK, 2005b).

Considering that we are studying the system in the mean-field approximation, the transi-

tions are expected to share a set of exponents (MARRO; DICKMAN, 1999a; MARSHALL et al.,

2016). For the 𝑇1, 𝑇2, 𝑇5 (the continuous transitions), and 𝑇6 (a hybrid transition), the dif-

fusive nature of the stochastic system elicits divergent correlations at the critical point with

shared exponents: the correlation length diverges with 𝜈⊥ = 1/2, and the relaxation time

diverges with 𝜈‖ = 1.

Moreover, from Eq. (2.6) and the relation Eq. (2.17), we also observe that 𝑧 = 1 remains

constant across said transitions. The behavior of the survival probability, as discussed lengthly

in Sec. 2.2 following the approach in (MUÑOZ; GRINSTEIN; TU, 1997), is a power law with

exponent 𝛿 = 1 at all quiescent to active continuous transitions, which implies, from Eq. 4.34,

that 𝜏𝑡 = 2. Lastly, the spreading exponent that governs the number of instantaneous active

sites, 𝜂, is expected to vanish for mean-field continuous transitions (GRINSTEIN; MUÑOZ, 1996).

However, we found an exception to that rule in the novel transition, 𝑇5, where this spreading

exponent is found to be 𝜂 = 2, as discussed in the next sections.
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4.3 DIRECTED PERCOLATION (TRANSCRITICAL BIFURCATION)

We start our analysis with 𝑇1, which is a continuous transition from the standard quies-

cent to active phase and corresponds to a transcritical bifurcation in the dynamical system

(Eqs.(3.23) and (3.24)). Considering the absence of additional symmetries or conservation

laws in this quiescent-active continuous transition, we should expect it to belong to the mean-

field directed percolation universality class (JANSSEN, 1981; GRASSBERGER, 1981; MARRO;

DICKMAN, 1999a; HENKEL; HINRICHSEN; LÜBECK, 2008; GRINSTEIN; LAI; BROWNE, 1989b).

Figure 28 – Mean-Field Directed Percolation phase transition (𝑇1). (a) Steady-state solution of the dynamic
equation as a function of the distance to transition value Δ = 𝑤𝐸𝐸 − 𝑤𝑇

𝐸𝐸 for three values of
constant external field ℎ, in black ℎ = 0, in an orange dashed curve ℎ = 0.01, and in a magenta
dotted curve ℎ = 0.001. The blue dashed straight line represents the static exponent 𝛽 = 1. (b)
Numerically integrated steady-state solution as a function of the external field ℎ at the transition
Δ = 0 in black and green dashed line to represent the static exponent 1/𝛿ℎ = 1/2. (c) Numerically
integrated time decay solution with a green straight line representing the dynamic exponent 𝜃 = 1.
(d) Survival probability of simulation with Gillespie’s algorithm and, as a guide to the eye, a green
straight line that represents the spreading exponent 𝛿 = 1. The system is plot at parameters:
𝛼 = 1, 𝑤𝐼𝐼 = 0, 𝑤𝐸𝐼 = 3, 𝑤𝐼𝐸 = 0.05, and 𝑤𝐸𝐸 = 1.15.

Source: The author (2023)

The condition for this bifurcation is 𝑤𝑇
𝐸𝐸 = 𝛼 + 𝑤𝐸𝐼𝑤𝐼𝐸/(𝛼 + 𝑤𝐼𝐼) independently of the
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case (see Eq. (4.10)). Expanding the stationary solutions of Eq. (3.23) and Eq. (3.24)

−𝛼𝐸* + (1 − 𝐸*)Φ (𝑤𝐸𝐸𝐸* − 𝑤𝐸𝐼𝐼*) = 0, (4.37)

−𝛼𝐼* + (1 − 𝐼*)Φ (𝑤𝐼𝐸𝐸* − 𝑤𝐼𝐼𝐼*) = 0, (4.38)

in power series of 𝐸* and 𝐼* around the quiescent state yields, as mentioned before, 𝐼*

proportional 𝐸*, 𝐼* ∼ 𝑤𝐼𝐸/(𝛼 + 𝑤𝐼𝐼) 𝐸*. The order parameter follows

𝐸*(Δ; ℎ = 0) = (𝛼 + 𝑤𝐼𝐼)3

(𝛼 + 𝑤𝐼𝐼)3 − 𝑤𝐸𝐼𝑤2
𝐼𝐸

Δ + 𝒪(Δ2) , (4.39)

from which we find 𝛽 = 1 (see Fig. 28a). Observe that introducing an external field ℎ smooths

out the transition (see dashed lines in Fig. 28a), one of the key aspects of bona fide critical

points. To compute the second static exponent, we insert a small external field perturbation

(ℎ → 0) and expand the stationary solutions, at Δ = 0:

𝐸*(ℎ; Δ = 0) =

⎯⎸⎸⎷ (𝛼 + 𝑤𝐼𝐼)2(𝑤𝐸𝐼 − 𝛼)ℎ
𝛼 [𝑤𝐼𝐸𝑤2

𝐸𝐼 − (𝑤𝐼𝐼 + 𝛼)3] + 𝒪(ℎ) , (4.40)

providing 𝛿ℎ = 2 (see Fig. 28b).

Since the solutions are proportional, we generalize a solution close to the quiescent state

to 𝐼(𝑡) ≈ [𝑤𝐼𝐸/(𝑤𝐼𝐼 + 𝛼)]𝐸(𝑡) and it is convenient to define two new variables: Σ and Λ, as

the weighted linear combination of the two The author (2023) variables:

2Σ = 𝑤𝐼𝐸 𝐸 + (𝑤𝐼𝐼 + 𝛼)𝐼 , (4.41)

2Λ = 𝑤𝐼𝐸 𝐸 − (𝑤𝐼𝐼 + 𝛼)𝐼 . (4.42)

The mean-field dynamical equations [Eq.(3.23) and Eq. (3.24)] become:

2Σ̇ ≈ ΔΣ + (2𝑤𝐸𝐸 + 2𝑤𝐼𝐼 + Δ)Λ + 𝒪(Σ2, Λ2, ΣΛ, ...) , (4.43)

2Λ̇ ≈ ΔΣ − [2(𝑤𝐸𝐸 + 𝑤𝐼𝐼 − 2𝛼) + Δ] Λ + 𝒪(Σ2, Λ2, ΣΛ, ...) , (4.44)

where 𝒪(Σ2, Λ2, ΣΛ, ...) stands for higher-order terms. Right at the transition (Δ = 0), the

dynamics for Λ is homogeneous and linear, i.e., the trajectories decay exponentially. Therefore,

Λ is an irrelevant field for scaling and the only slow mode or relevant field is Σ.

At the transition, Δ = 0, the linear term of Eq. (4.43) vanishes and the quadratic term

dominates. Thus, when integrated, Σ(𝑡) ∝ 𝑡−1, which yields the dynamic exponent 𝜃 = 1

(see Fig. 28c). Since 𝛽, 𝛿ℎ, and 𝜃 are three independent exponents, it is already sufficient

to conclude that the 𝑇1 transition belongs in the directed percolation universality class (see
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Table 2). Nevertheless, to round up this analysis, we simulate the system to verify the spreading

quantities: survival probability, 𝛿 = 1 (Fig. 28d); and the total number of particles, 𝜂 = 0

(Fig. 33a). And summarize these exponents at Tab. 2.

In summary, the stochastic Wilson-Cowan model exhibits a genuine critical point in the

directed percolation class related to a curve of transcritical bifurcations (𝑇1) between the

standard quiescent and active phases. Our results are consistent with recent results from

CANDIA et al. (2021) with the symmetric set of parameters shown in Sec. 3.2. When considering

𝑤𝐸 ≡ 𝑤𝐸𝐸 = 𝑤𝐼𝐸 and 𝑤𝐼 ≡ 𝑤𝐼𝐼 = 𝑤𝐸𝐼 , Eq. (4.10) becomes 𝑤𝐸 − 𝑤𝐼 = 𝛼, which is their

condition for the directed percolation.

4.4 STANDARD DISCONTINUOUS TRANSITION (SADDLE-NODE BIFURCATION)

The first discontinuous transition in case A, 𝑇3, takes the system from the standard quies-

cent to the active phase through a coexistence phase. This phase of coexistence, or bistability,

is limited by curves of saddle-node and transcritical bifurcations (see Figs. 25). After the

saddle-node bifurcation, this transition displays a discontinuous jump in the order parameter

and includes an intermediate regime of bistability, with stable active and standard quiescent

states (see Fig. 29a). At the transcritical bifurcation, the quiescent phase loses its local stability,

effectively ending the bistable regime.

Observe that, given the definition of the static exponents and the discontinuous nature

of the transition, the exponents 𝛽 and 𝛿ℎ are not well-defined and are not expected to be

so (Fig 29a,b). The same logic applies to the dynamic exponent, i.e., the average activity is

not expected to decay to quiescence and, in fact, is dependent on the initial conditions (see

Fig 29c). For completeness, we observe that, in the stochastic system, small perturbations drive

the system into the active phase and lead to a positive survival probability (see Fig 29d). Thus,

none of the exponents calculated previously are well-defined and the 𝑇3 transition constitutes

a standard first-order or discontinuous transition into a quiescent or absorbing phase (LÜBECK,

2006; ÓDOR, 2008).
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Figure 29 – Standard discontinuous transition (𝑇3). (a) Steady-state solution as a function of the distance to
the transcritical Δ = 𝑤𝐸𝐸 − 𝑤𝑇

𝐸𝐸 for three values of constant external field ℎ, in black ℎ = 0, in
an orange dashed curve ℎ = 0.01, and in a magenta dotted curve ℎ = 0.001. The plot displays
an area of coexistence (shaded) for ℎ = 0. Observe that for ℎ = 0.001 the transition remains
discontinuous. (b) Steady-state solution as a function of the external field ℎ right before the
transcritical bifurcation at Δ = −0.001 in black with the shaded area describing coexistence. (c)
Time decay solution with different initial conditions to show the stable steady states. (d) Survival
probability of simulation with Gillespie’s algorithm showing a positive survival probability, as the
system may fall to an active state depending on the run. The system is plot at parameters: 𝛼 = 1,
𝑤𝐼𝐼 = 0, 𝑤𝐸𝐼 = 3, 𝑤𝐼𝐸 = 0.5, and 𝑤𝐸𝐸 = 1.9.

Source: The author (2023)

4.5 DISCONTINUOUS TRANSITION FROM AN EXCITABLE QUIESCENT STATE

(SADDLE-NODE BIFURCATION)

The other transition common to all cases in the topologically different phase diagrams

(see Fig. 25- 27), 𝑇4, behaves very similarly to 𝑇3. This transition is also discontinuous with

bistability and it connects, in principle, the standard quiescent with the active phase. However,

in this transition, the system visits four phases: the standard quiescent, the excitable quiescent,

the bistable excitable, and the active one.

The coexistence phase, in 𝑇4, comprises a globally stable quiescent state with a locally

stable active state. On one side, the bistable phase is limited by the saddle-node bifurcation,
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where the active phase emerges discontinuously. On the other side, the excitable quiescent state

loses its global stability at a discontinuity-induced transition (black-dashed line in Fig. 22),

from where the active state is the only stable attractor. For the same reasons as in 𝑇3, i.e.,

discontinuous jump and phase of bistability, the critical exponents are ill-defined, as explicitly

shown in Fig. 30a-d.

In summary, 𝑇4 is also a discontinuous transition with bistability, with the caveat that

instead of the coexistence between the standard quiescent and active phase, seen in 𝑇3, here,

the coexistence is between the excitable quiescent and active phases.

Figure 30 – Discontinuous transition (𝑇4). (a) Steady-state solution as a function of the distance to the
discontinuity-induced Δ = 𝑤𝐸𝐸 −𝑤*

𝐸𝐸 for three values of constant external field ℎ, in black ℎ = 0,
in a darker orange dashed curve ℎ = 0.01, and in a lighter orange dash-dotted curve ℎ = 0.1.
Observe that at the Hopf, Δ = 0.5, a green shaded area emerges, representing the excitable
quiescent state and at the saddle-node, around Δ ∼ 0.4, a pink shaded area represents the
coexistence of the excitable quiescent and active states. (b) Steady-state solution as a function of
the external field ℎ right before the discontinuity-induced bifurcation at Δ = −0.001 in black with
the shaded area describing coexistence. (c) Time decay solution with different initial conditions to
show the steady states, though the quiescent state is not locally stable it retains global stability. (d)
Survival probability of simulation with Gillespie’s algorithm showing a positive survival probability,
as the system may fall to an active state depending on the run. The system is plot at parameters:
𝛼 = 1, 𝑤𝐼𝐼 = 0, 𝑤𝐸𝐼 = 3, 𝑤𝐼𝐸 = 0.5, and 𝑤𝐸𝐸 = 2.5.

Source: The author (2023)
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4.6 TRICRITICAL DIRECTED PERCOLATION

(SADDLE-NODE-TRANSCRITICAL BIFURCATION)

In case A, 𝑇2 goes through a tricritical point (see Fig. 25), which corresponds to a saddle-

node transcritical bifurcation. This codimension-2 bifurcation marks where the curves of tran-

scritical and saddle-node bifurcations intersect (VEEN; HOTI, 2019; LAI; ZHU; CHEN, 2020).

Because of the higher co-dimension of this transition, we need to tune two parameters to find

this point in the phase diagram (𝑤𝐸𝐸, 𝑤𝐸𝐼). In Sec. 4.1, we computed the conditions for this

tricritical point as 𝑤𝑆𝑁𝑇
𝐸𝐸 and 𝑤𝑆𝑁𝑇

𝐸𝐼 (see Eq. (4.17) and Eq. (4.16)). Considering that 𝑇2 is

a continuous transition through a tricritical point, we expect it to belong to the mean-field

tricritical directed percolation universality class (LÜBECK, 2006).

Similarly to the previous section, we study the expansion in a power series of the static

solutions (𝐸*, 𝐼*). At the tricritical point, Eq. 4.39 diverges and we need to consider higher

terms of the series. Considering the leading-order terms in a power expansion in both Δ and

ℎ, we obtain:

𝐸*(Δ, ℎ = 0) ≈
√︃

Δ
𝑤𝐼𝐸

+ 𝒪(Δ), (4.45)

𝐸*(ℎ, Δ = 0) ≈
[︃

3 [𝑤2
𝐼𝐸 − (𝛼 + 𝑤𝐼𝐼)2] ℎ

𝑤2
𝐼𝐸 [(𝛼2 − 3)𝑤𝐼𝐸 − (𝛼2 + 3)𝛼]

]︃ 1
3

+ 𝒪
(︁
ℎ

1
2
)︁

; (4.46)

and the static exponents are 𝛽 = 1/2 (Fig. 31a) and 𝛿ℎ = 3 (Fig. 31b).

Considering the changed variables Σ and Λ (Eq. (4.41) and Eq. (4.42)), at Δ = 0, the

lowest order correction of Eq. (4.43) in Σ is 𝒪(Σ3). Therefore, we integrate it asymptotically,

Σ ∝ 𝑡−1/2, which provides the dynamical exponent, 𝜃 = 1/2 (see Fig. 31c). Once again,

considering the linear relationship between 𝐸(𝑡) and 𝐼(𝑡), both densities share this scaling.

The spreading exponents, 𝛿 and 𝜂, agree with the scaling of 𝑇1, i.e., 𝛿 = 1 (see Fig. 31d) and

𝜂 = 0 (see Fig. 33a).

In conclusion, the stochastic Wilson-Cowan model also displays a transition, 𝑇2, that be-

longs to the tricritical directed percolation universality class (LÜBECK, 2006).
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Figure 31 – Mean-Field Tricritical Directed Percolation phase transition (𝑇2). (a) Numerically integrated
steady-state solution as a function of the distance to transition value Δ = 𝑤𝐸𝐸 − 𝑤𝑆𝑁𝑇

𝐸𝐸 for three
values of constant external field ℎ, in black ℎ = 0, in an orange dashed curve ℎ = 0.01, and in
a magenta dotted curve ℎ = 0.001. The blue dashed straight line represents the static exponent
𝛽 = 1/2. (b) Numerically integrated steady-state solution as a function of the external field ℎ
at the transition Δ = 0 and red dashed straight line represents static exponent 1/𝛿ℎ = 1/3.
(c) Numerically integrated time decay solution with a red straight line representing the dynamic
exponent 𝜃 = 1. (d) Survival probability of simulation with Gillespie’s algorithm and a red straight
line representing the spreading exponent associated with the quantity 𝛿 = 1. The system is plot
at parameters: 𝛼 = 1, 𝑤𝐼𝐼 = 0, 𝑤𝐸𝐼 = 3, 𝑤𝐼𝐸 = 0.1̄, and 𝑤𝐸𝐸 = 1.3̄.

Source: The author (2023)

4.7 HOPF TRICRITICAL DIRECTED PERCOLATION

(HOPF SADDLE-NODE-TRANSCRITICAL BIFURCATION)

In a co-dimension 3 bifurcation called Hopf saddle-node transcritical bifurcation, case B

exhibits a novel type of transition. As the free parameter 𝑤𝐸𝐼 in Fig. 22 changes, the SNT

(co-dimension 2) approaches the HT (co-dimension 2) point, colliding with it in a further fine-

tuned tricritical point, which shows the collision of the curves of saddle-node, transcritical,

and Hopf bifurcations (see Fig. 26). Since this case is an interface between two collections of

phase diagrams (case A and case C), it requires the fixing of 𝑤𝐸𝐼 = 𝛼 + 𝑤𝐼𝐼 . For this value
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of 𝑤𝐸𝐼 , the conditions for the transition 𝑇5, as calculated in Eq. (4.20) and Eq. (4.21), are

𝑤𝐻+𝑆𝑁𝑇
𝐸𝐸 = 2𝛼 + 𝑤𝐼𝐼 and 𝑤𝐻+𝑆𝑁𝑇

𝐼𝐸 = 𝑤𝐶𝑎𝑠𝑒 𝐵
𝐸𝐼 = 𝛼 + 𝑤𝐼𝐼 .

Following the procedure for continuous transitions in previous sections and expanding the

stationary solutions in a power series of Δ and ℎ (control parameter distance to its transition

value and external field, respectively), we compute the static exponents. First, the stationary

solution with ℎ = 0 expanded around the quiescent state,

𝐸*(Δ; ℎ = 0) ≈
√︃

Δ
𝛼 + 𝑤𝐼𝐼

+ 𝒪(Δ) , (4.47)

yields 𝛽 = 1/2 (see Fig. 32a). And second, the stationary solution at the transtion (Δ = 0)

and with the introduction of ℎ – which, similarly to 𝑇1 and 𝑇2, smooths out the curve 𝐸*×𝑤𝐸𝐸

(dashed curves in Fig. 32a),

𝐸*(ℎ; Δ = 0) ≈
√︃

ℎ

3(𝛼 + 𝑤𝐼𝐼)2 + 𝒪(ℎ) (4.48)

yields 𝛿ℎ = 2 (see Fig. 32b). Observe that, although 𝛽 = 1/2 coincides with the corresponding

value in the tricritical directed percolation universality class (Sec. 4.6), 𝛿ℎ = 2 fits into the

exponents of the directed percolation universality class (Sec. 4.3), implying that 𝑇5 does not

belong to either well-known class.

The dynamic exponent requires us to change variables to the ones introduced in Sec. 4.6,

Σ and Λ (Eq. (4.43) and Eq. (4.44)). Considering the new set of parameters, the dynamical

equations [Eq.(3.23) and Eq. (3.24)] further simplify to

2Σ̇(𝑡) = Δ(Σ + Λ) + 4(𝑤𝐼𝐼 + 𝛼)Λ − 2𝛼

𝑤𝐼𝐼 + 𝛼
Σ2 − 4ΣΛ − 2𝛼

𝑤𝐼𝐼 + 𝛼
Λ2

+𝒪(Σ3, Σ2Λ, ΣΛ2, Λ3, ΔΣ2...) , (4.49)

2Λ̇(𝑡) = Δ(Σ + Λ) − 4Λ2 − 4𝛼

𝑤𝐼𝐼 + 𝛼
ΣΛ + 𝒪(Σ3, Σ2Λ, ΣΛ2, Λ3, ΔΣ2...) , (4.50)

where 𝒪(Σ3, Σ2Λ, ΣΛ2, Λ3, ΔΣ2...) stands-in for higher-order terms. At the transition, Δ = 0,

and the ODEs are

Σ̇(𝑡) = 2(𝑤𝐼𝐼 + 𝛼)Λ − 𝛼

(𝑤𝐼𝐼 + 𝛼)Σ2 + 𝒪(Σ3, Σ2Λ, ΣΛ2, Λ3, ΔΣ2...) , (4.51)

Λ̇(𝑡) = −2Λ2 − 2𝛼

𝑤𝐼𝐼 + 𝛼
ΛΣ + 𝒪(Σ3, Σ2Λ, ΣΛ2, Λ3, ΔΣ2...) . (4.52)

The Jacobian matrix of this expansion, at the transition, produces

𝐴 ∝

⎛⎜⎜⎝ 0 𝑤𝐼𝐼 + 𝛼

0 0

⎞⎟⎟⎠ , (4.53)
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Figure 32 – Mean-Field Hopf Tricritical Directed Percolation transition (𝑇5). (a) Steady-state solution as a
function of the distance to transition value Δ = 𝑤𝐸𝐸 − 𝑤𝐻+𝑆𝑁𝑇

𝐸𝐸 for three values of constant
external field ℎ, in black ℎ = 0, in a darker orange dashed curve ℎ = 0.01, and in a lighter orange
dash-dotted curve ℎ = 0.1. It is noteworthy that, for an observable difference in the plot, the
system needs to be excited by a larger external field. The blue dashed straight line represents
the static exponent 𝛽 = 1. (b) Steady-state solution as a function of the external field ℎ at the
transition Δ = 0 in black and green dashed line to represent the static exponent 1/𝛿ℎ = 1/2.
(c) Time decay solution with a green straight line representing the dynamic exponent 𝜃 = 1. (d)
Survival probability of simulation with Gillespie’s algorithm for two system sizes, 𝑁 = 108 in black
and 𝑁 = 1010 in gray, and a helping purple straight line that represents the spreading exponent
𝛿 = 1. The system is plot at parameters: 𝛼 = 1, 𝑤𝐼𝐼 = 0, 𝑤𝐸𝐼 = 1, 𝑤𝐼𝐸 = 1, and 𝑤𝐸𝐸 = 2.

Source: The author (2023)

which is the normal form of a Bogdanov-Takens bifurcation (IZHIKEVICH, 2007). The Bogdanov-

Takens bifurcation has been widely studied in the context of the Wilson-Cowan equations. In

particular, we go through some of these analyses in Sec. 3.1.1.

The only non-zero element in the matrix (Eq. 4.53) is positive, which means that in,

Eq. (4.51), Λ has a positive coefficient. In order to avoid any growth, Λ(𝑡) needs to decay

faster than Σ(𝑡). Since Σ(𝑡) decays slower than Λ, the leading term of Eq. (4.51) is porportional

to −Σ2. Therefore, to find the time decay, we integrate

Σ̇ ∝ − 𝛼

𝑤𝐼𝐼 + 𝛼
Σ2, (4.54)
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finding Σ(𝑡) ∼ 𝑡−1 and the dynamic exponent 𝜃 = 1 (see Fig. 32c). The faster decay of

Λ(𝑡) is found by using this solution in Eq. (4.52) and comparing constants and exponents.

Observe that, considering Eq. (4.51) and Eq. (4.52), there are two possible behaviors close to

the the static solutions of variables Σ and Λ: Eq. (4.51) yields Λ ∝ Σ2 and Eq. (4.52) yields

Λ ∝ −Σ. The latter assumes that the inhibition activity is always larger than the excitation

one, a regime which we are not interested in at this moment. Thus, combining Λ ∝ Σ2 and

Σ ∼ 𝑡−2 results in Λ ∼ 𝑡−2. Observe that at the 𝑇5 transition, the exponent associated with

the time decay is consistent, once again, with the directed percolation universality class even

if we are dealing with a tricritical point. If we go back to the tricritical point, in the tricritical

directed percolation universality class, we would expect that the decay in Σ is dominated by

a cubic term (see Sec. 4.6). However, in this choice of parameters, this tricritical point has a

different behavior and its decay is dominated by the quadratic term, yielding Σ ∝ 𝑡−1.

In the supercritical regime, Δ > 0, we turn our attention to Eq. (4.50) and analyze Λ̇. For

the stationary solution, the leading linear term, either ΔΣ or ΔΛ (depending on the dimensions

of Λ and Σ), should be equal to the leading non-linear one 4Λ2 or 4𝛼/(𝑤𝐼𝐼 + 𝛼)ΛΣ, because

in continuous transitions the solution for the emerging supercritical side should join with the

quiescent state at the transition. If Λ has a lower dimension than Σ, the leading terms are

ΔΛ = 4Λ2 , (4.55)

which yields Λ ∝ Δ. If the opposite is true, then, the leading terms become

ΔΣ = 4𝛼/(𝑤𝐼𝐼 + 𝛼)ΛΣ , (4.56)

also yielding Λ ∝ Δ. Observe that, contrary to the previous universality classes, where the

difference field was neglectable, the field Λ belongs to a different class than Σ, 𝛽Λ = 1, both

are important for scaling. It is noteworthy that Σ shares scaling with 𝐸 and 𝐼. Considering the

equation for Σ̇ (Eq. (4.49)), the leading linear term is 4(𝑤𝐼𝐼 + 𝛼)Λ, since the term Δ(Σ + Λ)

provides a higher-order contribution. Once again, we need to compare the leading positive

with the leading negative term, which is −𝛼(𝑤𝐼𝐼 + 𝛼)Σ2. Observe that the other quadratic

term in Σ and Λ, −4ΣΛ, either share scaling with the one proportional to −Σ2 or yields a

fixed value of Σ, i.e., independent of Δ, which is not a valid solution in this case. We, then,

worked out that Λ ∝ Σ2, consistently with the solution for the time decay. Finally, we derive

Σ ∼ Δ1/2 and 𝛽 = 1/2, consistently with the tricritical directed percolation universality class.

A priori, the fact that the transition has different exponents consistent with different

universality classes in no way implies a problem or a break in theory. However, considering
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that, as discussed in Sec. 4.2, the correlation exponent is 𝜈‖ = 1 for all mean-field transitions,

the exponents for the H+TDP transitions lead to 𝜃 = 1 and 𝛽/𝜈‖ = 1/2, hence

𝜃 ̸= 𝛽/𝜈‖ , (4.57)

thus failing to satisfy Eq. (4.36), which is one of the basic scaling relations regarding quiescent

states (MUÑOZ et al., 1999). As described in Sec. 2.5, a similar violation in scaling is observed

in the asymmetrically coupled directed percolation universality class (NOH; PARK, 2005b). The

similarity in the models lies in the non-trivial interplay between these two fields with opposing

effects, possibly yielding this break in scaling.

Regarding the spreading exponents, the survival probability decays similarly to the previous

transitions, i.e., with an exponent 𝛿 = 1 (see Fig. 32d), albeit with a need for a bigger system

size to see the full effects of criticality. Conversely, the instantaneous number of active sites

in spreading experiments at the transition, 𝑁(𝑡; Δ = 0) diverges for 𝑇5. In fact, we observe

that 𝑁(𝑡) ∼ 𝑡2, which gives us 𝜂 = 2 (see Fig. 33b). This result is surprising since for most

mean-field universality classes, where there are no anomalous dimensions (BINNEY et al., 1993;

GRINSTEIN; MUÑOZ, 1996), hence 𝜂 = 0, which was the value found for 𝑇1 and 𝑇2 (Fig. 33a).

Figure 33 – Mean number of particles 𝑁(𝑡) in spreading experiments in bona fide continuous phase transitions
(i.e., 𝑇1, 𝑇2, and 𝑇5), at which one expects 𝑁(𝑡) ∼ 𝑡𝜂. Simulations with the same parameters as
Fig. 22 with 𝑁 = 108 [panel (a)] and 𝑁 = 108 and 𝑁 = 1010 [panel (b)]. (a) For 𝑇1 and 𝑇2,
we obtain results compatible with 𝜂 = 0, as expected for DP and TDP, as well as, in general,
for mean-field theories. (b) On the other hand, for 𝑇5 we obtain the unusual result 𝜂 = 2, with
strong finite-size effects.

Source: (PIUVEZAM et al., 2023)

To understand this behavior, let us revisit the linearized dynamics at the transition, Eq. (4.53).

Considering that the behavior at this transition follows the normal form of a Bogdanov-Takens,

we expect that a small initial condition provokes a large trajectory in the state space before
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heading back to the quiescent state, which gives the quiescent state the label of excitable. In

order to find the spreading exponents, the system in spreading experiments is initiated with

a single seed, from which the system grows deterministically until it reaches a maximum size

and, then, decays with exponent 𝜃. The perturbative term should follow

𝑑

𝑑𝑡

⎛⎜⎜⎝ 𝜉Σ

𝜉Λ

⎞⎟⎟⎠ = (𝑤𝐼𝐼 + 𝛼)

⎛⎜⎜⎝ 0 1

0 0

⎞⎟⎟⎠
⎛⎜⎜⎝ 𝜉Σ

𝜉Λ

⎞⎟⎟⎠ , (4.58)

which means that a perturbation in the Λ causes Σ to grow linearly, i.e., a perturbation in

lambda behaves as an external field (ℎ̄). Thus, an initial burst, such as the beginning of

the spreading experiments, yields Σ̇ = ℎ̄ and Σ(𝑡) = ℎ𝑡 (𝑡 indicates the beginning of the

experiment, not to be mistaken by the time 𝑡). This initial deterministic growth results in the

anomalous value of 𝜂. The number of active sites is capped by the “volume” of the system

(𝐿𝑑𝑐 ∼ 𝑇 𝑑𝑐/2) and proportional to the density of active sites, which means that 𝑁(𝑡) =

Σ(𝑡)⊑≀↕(𝑡). Considering 𝑑𝑐 = 4, ⊑≀↕(𝑡) ∼ 𝑡; therefore, we conclude that 𝑁(𝑡) ∼ Σ(𝑡)𝑡 ∼ 𝑡2

and 𝜂 = 2.

In summary, the 𝑇5 transition poses as an unknown universality class that we named Hopf

Tricritical Directed Percolation (H+TDP). In its mean-field form, this transition has different

exponents from the other quiescent-active continuous transitions we explored in this chapter

(Table 2), violates at least one scaling relation, has an uncommon spreading exponent, and

produces asymmetrical avalanche shapes, as we will show in Sec. 4.10.

4.8 HOPF-TRANSCRITICAL BIFURCATION.

In case C, as we increase 𝑤𝐸𝐸, the first tricritical point is the Hopf transcritical bifurca-

tion, a codimension 2 bifurcation that comprises the collision between the curve of Hopf and

trascritical bifurcations (see Fig. 27). There lies the continuous transition 𝑇6. A key charac-

teristic of this transition is that, independently of the initial condition, the trajectories decay

to the quiescent state through region II. In this transition, the Hopf bifurcation overrides the

transcritical bifurcation eliciting frustrated oscillations. These frustrated oscillations drive the

system toward the switching manifold and, thus, into region II. Once in region II, the excitatory

density decays exponentially and drags the system to quiescence without power law behavior,

i.e., the dynamic exponent 𝜃 is ill-defined for 𝑇6 (see Fig. 34c).

Although the dynamic exponent is not well-defined, the dynamic equations should allow
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Figure 34 – Hybrid transition (𝑇6): Hopf-transcritical bifurcation. (a) Steady-state solution as a function of
the distance to transition value Δ = 𝑤𝐸𝐸 − 𝑤𝐻𝑇

𝐸𝐸 for three values of constant external field ℎ, in
black ℎ = 0, in a darker orange dashed curve ℎ = 0.01, and in a lighter orange dash-dotted curve
ℎ = 0.1. Observe that in this transition the introduction of an external field turns the transition
into a discontinuous one rather than smoothing it out. The blue dashed straight line represents
the static exponent 𝛽 = 1. (b) Steady-state solution as a function of the external field ℎ at the
Hopf-transcritical bifurcation at Δ = 0 in black with the shaded area describing coexistence. (c)
Exponential time decay. (d) Survival probability of simulation with Gillespie’s algorithm for two
system sizes, 𝑁 = 108 in black and 𝑁 = 1010 in gray, and, as a guide to the eye, a dashed
straight line that represents the spreading exponent 𝛿 = 1. The system is plot at parameters:
𝛼 = 1, 𝑤𝐼𝐼 = 0, 𝑤𝐸𝐼 = 0.8, 𝑤𝐼𝐸 = 1.25, and 𝑤𝐸𝐸 = 2.

Source: The author (2023)

us to predict the static exponents. At the possible critical point, considering the parameters

at the transition given by Eq. (4.18) and Eq. (4.19) and Δ = 𝑤𝐸𝐸 − 𝑤𝐻𝑇
𝐸𝐸 = 0, we rewrite

Eq. (4.39),

𝐸*(Δ; ℎ = 0) ≈ 𝛼 + 𝑤𝐼𝐼

(𝛼 + 𝑤𝐼𝐼 − 𝑤𝐼𝐸)Δ + 𝒪(Δ2) , (4.59)

which yields 𝛽 = 1 (see Fig. 34a). This result is true for ℎ = 0, i.e., in the absence of an

external field, because as the system evolves into the supercritical regime the emergence of

an active state attracts all trajectories pulling them away from region II. However, one of the

key characteristics of a bona fide critical point is that the introduction of an external field

smooths out the transition, which is not what we observe in Fig. 34a. The transition becomes
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discontinuous, instead, for ℎ ̸= 0.

If we followed the procedure for the other transitions, the static exponent related to the

external field should come from

𝐸*(ℎ; Δ = 0) ≈

⎯⎸⎸⎷ [(𝑤𝐼𝐼 + 𝛼)2 − 𝛼𝑤𝐼𝐸]ℎ
𝛼𝑤𝐼𝐸[𝑤𝐼𝐸 − 𝑤𝐼𝐼 − 𝛼] + 𝒪(ℎ) , (4.60)

which would yield 𝛿ℎ = 2. However, the condition for phase diagrams like that of case C is

𝑤𝐼𝐸 < 𝑤𝐼𝐼 + 𝛼 (see Sec. 4.1). Therefore, Eq. (4.60) is misleading because the denominator is

negative inside the square root, making the solution imaginary and not a real solution to our

system. This solution is misleading due to the naive linearization of the dynamical equations,

where we only consider the non-vanishing part of the response function Φ. Thus far, this

naive linearization has not failed; however, the Hopf bifurcation drives the system away from

region I. In a nutshell, for Eq. (4.60) and Δ = 0, the asymptotical dynamics fall into region II,

which means that the quiescent state is a global attractor as ℎ increases up to a discontinuous

transition in a saddle-node bifurcation (see Fig. 34b). In this hybrid transition, the static

exponent 𝛿ℎ is not well-defined.

Figure 35 – Mean number of particles 𝑁(𝑡) in spreading experiments for the transitions 𝑇1, 𝑇5, and 𝑇6.
Simulations with the same parameters as Fig. 22 with 𝑁 = 108. As seen in Fig. 33, 𝑇1 shows
regular mean-field scaling as 𝜂 = 0. However, for 𝑇5 and 𝑇6, the Bogdanov-Takens-like linear
dynamics yields the unusual result 𝜂 = 2.

Source: The author (2023)

Similarly to what we observed in the Hopf tricritical directed percolation universality class,

the 𝑇6 transition has a higher sensitivity to system size. The survival probability decays in

time with 𝛿 = 1, as seen in Fig. 34d, as in all other continuous transitions. Regarding the

instantaneous number of active sites, this transition displays the same Jacobian matrix, i.e.,
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the normal form of a Bogdanov-Takens, which yields the same spreading exponent 𝜂 = 2 (see

Fig. 35).

Briefly, 𝑇6 exhibits a mixture of signatures of continuous and discontinuous transitions

and, thus, it is, surprisingly, a hybrid transition, does not belong to any standard type of

quiescent-active universality class, and cannot be classified as a bona fide critical point.

4.9 CONTINUOUS TRANSITIONS FROM QUIESCENT-EXCITABLE TO ACTIVE STATES

The other types of hybrid transitions in case C between the quiescent excitable and active

state 𝑇7 and 𝑇8 (see Fig. 27). Observe that for these cases, similarly to 𝑇6, the trajectories

Figure 36 – Hybrid transition (𝑇7): discontinuity-induced bifurcation. (a) Steady-state solution as a function
of the distance to transition value Δ = 𝑤𝐸𝐸 −𝑤*

𝐸𝐸 for three values of constant external field ℎ, in
black ℎ = 0, in a darker orange dashed curve ℎ = 0.01, and in a lighter orange dash-dotted curve
ℎ = 0.1. In this transition, similar to 𝑇6 the introduction of an external field turns the transition
into discontinuous. The blue dashed straight line represents the static exponent 𝛽 = 1. (b) Steady-
state solution as a function of the external field ℎ at the discontinuity-induced bifurcation, Δ = 0,
in black with the shaded area describing coexistence. (d) Survival probability of simulation with
Gillespie’s algorithm, where we observe, surprisingly, plateaus followed by decays. The system is
plot at parameters: 𝛼 = 1, 𝑤𝐼𝐼 = 0, 𝑤𝐸𝐼 = 0.8, 𝑤𝐼𝐸 = 1.35, and 𝑤𝐸𝐸 = 2.08.

Source: The author (2023)
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asymptotically decay through region II independent of the initial condition because the system

is transitioning from or to the excitable quiescent phase.

The naive linearization of the quiescent excitable state (assuming Φ > 0) produces a

complex eigenvalue with Im(𝜆) ̸= 0, eliciting frustrated oscillations, driving the trajectories

into regions II and III, and ensuring the global stability of the quiescent state (Fig. 21a). Both

transitions go through a discontinuity-induced transition (black dashed lines in Fig. 27), i.e.,

they depend on the relative sizes of the basin of attraction of the region inside the switching

manifolds and the active state. Increasing the strength of the parameter 𝑤𝐸𝐸 causes the

active state to move away from the switching manifolds and pull more trajectories to it. 𝑇7

goes from excitable quiescent to active phase normally and 𝑇8 goes through a tricritical point,

Figure 37 – Hybrid transition (𝑇8): tricritical discontinuity-induced bifurcation. (a) Steady-state solution as
a function of the distance to transition value Δ = 𝑤𝐸𝐸 − 𝑤*

𝐸𝐸 for three values of constant
external field ℎ, in black ℎ = 0, in a darker orange dashed curve ℎ = 0.01, and in a lighter
orange dash-dotted curve ℎ = 0.1. In this transition, similar to 𝑇6 and 𝑇7, the introduction of
an external field turns the transition into discontinuous. The blue dashed straight line represents
the static exponent 𝛽 = 1/2. (b) Steady-state solution as a function of the external field ℎ at
the collision between the discontinuity-induced bifurcation and the saddle-node, Δ = 0, in black
with the shaded area describing coexistence. (d) Survival probability of simulation with Gillespie’s
algorithm, where we observe, like 𝑇7 (Fig. 36), plateaus followed by a fast decay. The system is
plot at parameters: 𝛼 = 1, 𝑤𝐼𝐼 = 0, 𝑤𝐸𝐼 = 0.8, 𝑤𝐼𝐸 = 1.5625, and 𝑤𝐸𝐸 = 2.25.

Source: The author (2023)
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which means they are the counterparts of 𝑇1 and 𝑇2, respectively, for the excitable quiescent

phase. The discontinuity-induced bifurcation nearly coincides with the continuation of the

transcritical bifurcation, since the emergent active state attracts the trajectories away from

region II.

Since these transitions have a counterpart in the continuous transitions of case A, we

observe that Eq.(4.39) and Eq. (4.45) hold for 𝑇7 and 𝑇8, respectively. These solutions yield a

continuous curve with the control parameter and define with 𝛽 = 1 for 𝑇7 and 𝛽 = 1/2 for 𝑇8

(see Fig. 36a and 37a). The introduction of the external field, however, turns the seemingly

continuous transitions into discontinuous. And, using the logic that we used for 𝑇6 and looking

at Eq. (4.40) and Eq. (4.46), the denominators at the transition in case C are negative, the

solution is complex, the system asymptotically reaches region II, and exponentially decays to

quiescence. Therefore, the static exponent 𝛿ℎ is ill-defined for both transitions and there is a

discontinuous jump in the stationary solution (or order parameter) as a function of the external

field ℎ caused by the forcibly global stability of the quiescent state (Figs. 36b and 37b).

Figure 38 – Mean number of particles 𝑁(𝑡) in spreading experiments for the transitions 𝑇7 and 𝑇8. Simulations
with the same parameters as Fig. 22. The behavior of this observable in these transitions is
surprisingly oscillatory, it starts with a sharp growth that fades into an oscillation.

Source: The author (2023)

Regarding the dynamic exponent on both transitions, the asymptotic dynamics of the

time decay is exponential for both hybrid transitions, as illustrated in Fig. 36c, for 𝑇7, and in

Fig. 37c, for 𝑇8. On spreading exponents, the overall behavior of the survival probability displays

intermediate plateaus along the decay (Fig. 36d and Fig. 37d). These plateaus possibly stem

from the phantom of the emerging active state that starts to pull on the trajectories before

they fall into region II, where the quiescent state is the only attractor. Observe that for these
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transitions, the Jacobian matrix is not the normal form of a Bogdanov-Takens and, although

in many ways similar to 𝑇6, the spreading exponent 𝜂 is expected to behave as normal, i.e.,

𝜂 = 0. However, for these hybrid transitions, the spreading exponent 𝜂 is also ill-defined (see

Fig. 38), similarly to 𝑇5 and 𝑇6, they have an initial growth but it is not deterministic and as

time progresses the behavior assumes an oscillatory quality that we leave the explanation for

further research.

In conclusion, the 𝑇7 and 𝑇8 transitions exhibit a mixture of features of continuous and

discontinuous phase transitions, albeit not as strongly as 𝑇6.

4.10 AVALANCHE DYNAMICS

4.10.1 Avalanche size and duration distributions

A signature of criticality, which is well-known and widely used in neuroscience, is the power

law nature of avalanche statistics. This quantity is helpful when comparing model data with

experimental data, and when trying to classify experimental data into a universality class.

Aided by the computed exponents and the scaling relations, Eq. 4.33, Eq. 4.34, as well as the

crackling noise relation (Eq. 4.35), we find and confirm the avalanche exponents for the three

bona fide critical points: 𝑇1, 𝑇2, and 𝑇5.

The consistency of the transition 𝑇1 with the directed percolation universality class comes

two-fold. At the transition, explored in Sec. 4.3, we observe that: (i) 𝛿 = 1 and Eq. 4.34

yields 𝜏𝑡 = 2; (ii) 𝜂 = 0 and Eq. 4.33 yields 𝜏 = 3/2; and (iii) Eq. 4.35 yields 𝛾 = 2. These

exponents are consistent with mean-field directed percolation; however, to further confirm

them we compute them by simulating the stochastic system with Gillespie’s algorithm and

computing these quantities as seen in the distributions of sizes 𝑆, durations 𝑇 , and average

sizes as a function of durations in Fig. 39a, Fig. 39d, and Fig. 39g, respectively.

The avalanche statistics for the tricritical directed percolation have not yet been confirmed

through simulation. However, in a general analysis and with the scaling relations, we are able

to compute the same exponents. Since 𝛿 = 1 and 𝜂 = 0, the avalanche exponents of the

tricritical case should be the same as for the regular one: (i) 𝜏 = 3/2, (ii) 𝜏𝑡 = 2, and (iii)

𝛾 = 2; These values are further confirmed by numerical simulations, analogous to the analysis

for 𝑇1, in Fig. 39b, Fig. 39e, and Fig. 39h. It is noteworthy that these exponents are the

same as directed percolation; therefore, from this analysis alone, these two universality classes
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Figure 39 – Avalanche analysis. Simulations using Gillespie’s algorithm for the same parameters as in Fig. 22
and network size 𝑁 = 108. In this case, we report results only for true (or bonafide) continuous
phase transitions, for which scale-free avalanches emerge, i.e., 𝑇1, 𝑇2, and 𝑇5. For the 𝑇1 transition,
one obtains results as expected for DP: (a) 𝜏 ≈ 3/2, (d) 𝜏𝑡 ≈ 2, and (g) 𝛾 ≈ 2. For 𝑇2, the
system behaves consistently with TDP: (b) 𝜏 ≈ 3/2, (e) 𝜏𝑡 ≈ 2, and (h) 𝛾 ≈ 2, i.e., TDP and
DP share the same avalanche exponents. Finally, for the 𝑇5 transition, (c) 𝜏 ≈ 5/4, (f) 𝜏𝑡 ≈ 2,
and (i) 𝛾 ≈ 4. The exponents 𝜏 and 𝜏𝑡 were obtained with the Maximum Likelihood Estimator
(MLE) method (DELUCA; CORRAL, 2013).

Source: (PIUVEZAM et al., 2023)

are indistinguishable. One could argue that the probability is in favor of the standard directed

percolation as it is more widespread and less restrictive in parameters (e.g., in this study, it has

a lower co-dimension). That said, the exponents are the same and the distribution themselves

cannot distinguish them.

The Hopf tricritical directed percolation universality class differs from the aforementioned

classes because its number of active sites scales with 𝜂 = 2, even if the other spreading

exponent 𝛿 behaves as usual (see Sec. 4.7). Given this anomalous value, the scaling relations

predict different values for 𝜏 and 𝛾: (i) Eq. (4.33) predicts 𝜏 = 5/4, (ii) Eq. 4.34 predicts

𝜏𝑡 = 2, and (iii) Eq. 4.35 predicts 𝛾 = 4. Besides verifying these results numerically in

Fig. 39c, Fig. 39f, and Fig. 39i, the crackling noise and the scaling cutoff of 𝑆 for different
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Figure 40 – Conditional Probability. (a) The conditional probability, 𝑃 (𝑆|𝑇 ), collapses into one curve when
we set 𝛾 = 4.0 for the Hopf Tricritical Directed Percolation (𝑇5). (b) In contrast, for 𝛾 = 2.0
there is no collapse. Furthermore, on the inset, one observes that the peaks of 𝑃 (𝑆|𝑇 ), 𝑆*,
scale with 𝑆* ∼ 𝑇 𝛾 , for 𝛾 = 4.0. (c) The cutoff for size and duration distributions scaling with
𝛾 (CHESSA et al., 1999; DICKMAN; CAMPELO, 2003). Simulations with Gillespie’s algorithm for the
same parameters as Fig. 22; for (a) and (b), 𝑁 = 108; and, for (c), 𝑁 =

[︀
104, 105, 106, 107, 108]︀.

Source: (PIUVEZAM et al., 2023)

system sizes also give us further tests of consistency (CHRISTENSEN; FOGEDBY; JENSEN, 1991;

CHESSA et al., 1999; DICKMAN; CAMPELO, 2003). When analyzing 𝑃 (𝑆|𝑇 ), we would expect

that 𝑃 (𝑆|𝑇 )𝑇 𝛾−1 scales with 𝑆/𝑇 𝛾 and, at Fig. 40a and Fig. 40b, we observe an excellent

data collapse. On the cutoffs, we observe a clear difference between the cases of, on the one

hand, 𝑇1 and 𝑇2, where 𝛾 = 2 and 𝑇5, on the other hand, where 𝛾 = 4 (see Fig. 40c). Also,

consistently with the scaling relation 𝜏𝑡 = 𝛿 + 1, the avalanche distribution of durations scales

with the same exponent as in DP and TDP, 𝜏𝑡 = 2 (Fig. 39f). An overview of the set of

exponents for the three bona fide critical transitions is in Table 2.

Table 2 – Summary of exponents in the Wilson-Cowan Model

DP TDP H+TDP
Codim. 1 2 3
𝛽 1 1/2 1/2
𝛿ℎ 2 3 2
𝜃 1 1/2 1
𝛿 1 1 1
𝜂 0 0 2
𝜈‖ 1 1 1
𝜏 3/2 3/2 5/4
𝜏 𝑡 2 2 2
𝛾 2 2 4

Source: (PIUVEZAM et al., 2023)
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4.10.2 Mean temporal profile of avalanches

The scaling of the mean avalanche shape (also called mean temporal profile of avalanches)

is also a widely used signature of criticality in non-equilibrium systems with absorbing states (PA-

PANIKOLAOU et al., 2011). The mean temporal profile of avalanches observes that when aver-

aged and normalized using critical exponents, the shape of avalanches of different sizes and

durations collapses onto a single curve,

𝜌(𝑡; 𝑇 ) ∼ 𝑇 𝛾−1ℱ(𝑡/𝑇 ). (4.61)

For standard processes with absorbing states, the averaged shape of avalanches with different

durations and sizes collapses onto a universal curve that typically has a symmetric inverted

parabolic form (FRIEDMAN et al., 2012).

Figure 41 – Skewness and mean temporal profile of avalanches. (a,d) Schematic representations of where
the system is sitting for the avalanche shape analysis. (b) Shape-collapse of the mean temporal
profile for several critical values in Case A as the system approaches the tricritical point. (c) The
skewness of these curves slightly decreases with the eigenvalue 𝜆−. (d) Considering a change in
𝑤𝐼𝐸 , the phase diagram goes from case A to case B. (e) On the tricritical point, the shape-collapse
deforms approaching the H+TDP transition. (f) The skewness as a function of 𝜆−. Simulations
with Gillespie’s algorithm for the same parameters as Fig. 22 and 𝑁 = 108.

Source: (PIUVEZAM et al., 2023)

Indeed, the averaged avalanche shape throughout the 𝑇1 curve is approximately an inverted

parabola (see Fig. 41a and Fig. 41b). The shapes collapse for different durations with 𝛾 = 2,
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and as they approach the tricritical point the inverted parabola starts showing a slight skew

(or asymmetry). The symmetric inverted parabolas shown in these mean-temporal profiles of

avalanches is a consequence of time-reversal symmetry (MILLER; YU; PLENZ, 2019); therefore,

it follows that the asymmetry, when found, reflects a break in that symmetry (LAURSON et al.,

2013; LÓPEZ; BUENDÍA; MUÑOZ, 2022). Interestingly, when the system follows the 𝑇1 curve

towards 𝑇2 in case A, the mean temporal profile gets increasingly more asymmetric, though

only slightly when quantified by the increase in the absolute value of skewness (Fig. 41c).

This behavior has been observed and confirmed in other studies (CANDIA et al., 2021; LÓPEZ;

BUENDÍA; MUÑOZ, 2022; NANDI et al., 2022), which shows that the introduction of an inhibitory

population causes a small tilt on the mean temporal profile in systems belonging to the directed

percolation universality class.

Conversely, while studying the systems at 𝑇2 and evolving the parameters from case A to

case B (Fig. 41d), the avalanche mean temporal profile skews progressively. This progression in

its skewness reaches a maximal absolute value (or asymmetry) at the Hopf tricritical directed

percolation transition (Fig. 41e). Observe that, in Fig. 41c, the decay is slower and the value

remains somewhat fixed; however, in Fig. 41e, the drop is steeper. These results should provide

further aid in comparing theoretical with experimental results.
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5 CONCLUSIONS AND PERSPECTIVES

Throughout this thesis, we have rigorously examined all potential phase transitions between

active and quiescent phases within the stochastic Wilson-Cowan model. This meticulous in-

vestigation entailed detailed scaling analyses by studying the dynamic mean-field equations

and numerical simulations of the microscopic model.

In the absence of an external field, the model exhibits the standard quiescent and active

phases separated by phase transitions. A novel feature of the model uncovered in this thesis

is the addition of a new quiescent phase, the excitable quiescent phase. This phase appears

because of the piecewise smooth nature of the response function. The dynamical model notably

features Hopf bifurcations. On one side of this bifurcation, the state (or fixed point) is a stable

focus, i.e., independently of the piecewise nature of the response function the system relaxes to

it, which falls under the category of standard quiescent. On the other side of this bifurcation,

the state is a locally unstable focus and the trajectories are, at first, repelled by the quiescent

state; and, as they reach the switching manifolds, relax towards it because of the shift in

dynamics, falling under the new category called excitable quiescent. The presence of foci

means the eigenvalues are complex, eliciting oscillations. However, these pseudo-oscillations

are “frustrated” when the system crosses over to inhibition-dominated regions of the state

space (region II or region III), where the trajectories relax to zero exponentially. In this regime,

small perturbations close to quiescence are transiently amplified before the exponential decay,

hence the name “excitable quiescent" phase (or also “reactive" phase, see (ASSIS; COPELLI,

2009; BENAYOUN et al., 2010; HIDALGO et al., 2012; SANTO et al., 2018; PINTO; COPELLI, 2019;

GUDOWSKA-NOWAK et al., 2020)).

In between the quiescent and excitable quiescent is a curve of Hopf bifurcations; in between

the active and standard quiescent phases is a curve of transcritical bifurcations; and, in be-

tween the active and excitable quiescent state is a curve of discontinuity-induced bifurcations.

The curve of saddle-node bifurcations delineates the bistable regions. And from any of the qui-

escent phases to the active phase, we observe eight different transitions. The types of these

phase transitions are: second-order (or continuous) — which, when between standard quies-

cent and active, we proved to belong to the mean-field directed percolation class; first-order

(or discontinuous) displaying hysteresis; a tricritical point — which, when between standard

quiescent and active, belongs to the tricritical directed percolation universality class (LÜBECK,
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2006; HENKEL; HINRICHSEN; LÜBECK, 2008; ÓDOR, 2008); and, surprisingly, hybrid, where some

transitions close to or involving the excitable quiescent phase display characteristics of both

second- and first-order transitions. The presence of an excitable quiescent phase stems from

the existence of an inhibitory field. The other more common features, such as directed perco-

lation and tricritical directed percolation, appear in simpler models containing only excitatory

populations. Therefore, without the inhibitory activity, a model fails to display this unique set

of possible phase transitions.

Analyzing the dynamics of the Wilson-Cowan model and its stochastic counterpart, we

observed that there are three distinct cross-sections of a three-dimensional phase diagram.

These cross sections are themselves two-dimensional phase diagrams with the parameters

[𝑤𝐸𝐸, 𝑤𝐸𝐼 ] as variables (seen in Fig. 22). The third parameter, 𝑤𝐼𝐸, controls the position of

the Hopf bifurcation curve with respect to the tricritical point, characterizing the cases A, B,

and C. Across the three cases in the phase diagrams, we found 8 types of transitions, labeled

𝑇1, 𝑇2, . . ., and 𝑇8, in Fig. 25, Fig. 26, and Fig. 27.

The first three transitions are commonly found in many models, which present active and

quiescent phases. Their mean-field version has a counterpart in low-dimensional dynamical

analysis: (i) mean-field directed percolation (MF-DP) – second-order phase transition (𝑇1) –

corresponds to a transcritical bifurcation; (2) mean-field tricritical directed percolation (MF-

TDP) – also second-order (𝑇2) – corresponds to a saddle-node transcritical bifurcation; and

(iii) a discontinuous transition with hysteresis (or bistability) – first-order (𝑇3) – corresponds

to a saddle-node bifurcation.

Our findings in the well-known and widely explored directed percolation transition (𝑇1)

in the stochastic Wilson-Cowan are congruent to the results of CANDIA et al. (2021). When

choosing the parameter reduction 𝑤𝐸 ≡ 𝑤𝐸𝐸 = 𝑤𝐼𝐸 and 𝑤𝐼 ≡ 𝑤𝐸𝐼 = 𝑤𝐼𝐼 , the system is

poised at the transcritical bifurcation for 𝑤𝐸 − 𝑤𝐼 = 𝛼 (for full parameters: 𝑤𝐸𝐸 = 𝛼 +

𝑤𝐸𝐼𝑤𝐼𝐸/(𝛼 + 𝑤𝐼𝐼)), which is the condition they reported necessary for criticality. Similarly,

our results reproduce the tricritical directed percolation class (𝑇2), as first described in LÜBECK

(2006). Other recent works have found a tricritical point in neuronal models with a population

of inhibitory units (LÓPEZ; BUENDÍA; MUÑOZ, 2022; ALMEIRA et al., 2022). In this cluster of

well-known and studied transitions, on the other side of the tricritical point is a discontinuous

transition featuring hysteresis (LÜBECK, 2006; ASSIS; COPELLI, 2009). It is noteworthy that in

this work we have shown that the avalanche exponents at both 𝑇1 and 𝑇2 continuous transitions

follow the well-known values: 𝜏 = 3/2, 𝜏𝑡 = 2, and 𝛾 = 2 so that they alone cannot be used
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to distinguish between the two transitions. One can rightfully point out that the directed

percolation class is probabilistically easier to find due to its lower codimension. However, this

observation gives margin for further investigation, since the avalanches themselves behave the

same.

The transitions between the excitable quiescent and active phases have a similar distribu-

tion of types. For all cases, the discontinuous transition is 𝑇4 displaying an excitable bistability

(coexistence of the excitable quiescent and the active phases). In case C, the transcritical

bifurcation between quiescent and active (𝑇1) has a counterpart in the discontinuity-induced

bifurcation, labeled 𝑇7; and the tricritical point is 𝑇8, in this case, where the 𝑇4 curve of tran-

sitions change into 𝑇7. The transitions 𝑇7 and 𝑇8, for being counterparts of two continuous

transitions and exhibiting a continuous growth from zero in the absence of an external field,

seem to be continuous at first glance. However, their response to an external field is anoma-

lous because, when we introduce an external field the transition becomes discontinuous. The

excitability of the quiescent state distorts the trajectories, i.e., a small excitable external in-

put drives slightly active states to quiescence. These hybrid transitions have the static critical

exponent 𝛽 but the other static exponent 𝛿ℎ, the dynamic exponent 𝜃, and the spreading

exponents 𝛿 and 𝜂 are all ill-defined.

The Hopf bifurcation is directly involved in two transitions, which corresponds to higher-

codimension bifurcations. When the Hopf meets the transcritical bifurcation, we observe a

hybrid transition labeled 𝑇6; and, when this Hopf-transcritical bifurcation finds a saddle-node

in a tricritical point (only possible in case B), we find a novel continuous transition, which we

call the Hopf tricritical directed percolation (𝑇5).

Similarly to the other aforementioned hybrid transitions, the 𝑇6 transition also involves

the excitable quiescent phase, and the introduction of an external field also results in a dis-

continuous transition. Therefore, the static exponent 𝛿ℎ is ill-defined along with the dynamic

exponent 𝜃. The other static exponent, 𝛽 (calculated at ℎ = 0), is well-defined and so are the

spreading exponents, characterizing this transition as a hybrid.

The Hopf tricritical directed percolation transition (𝑇5) is the main novelty of the present

work. It corresponds to a codimension-3 bifurcation, where the Hopf curve collides with the

saddle-node transcritical bifurcation at a tricritical point. Both eigenvalues vanish at this

transition so that the Jacobian matrix of the transition takes the normal form of a Bogdanov-

Takens bifurcation. In analyzing the system’s scaling, we observe its behavior at the critical

point and slightly in the supercritical regime the strictly upper triangular matrix strongly
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influences these behaviors resulting in the violation of scaling relations. In particular, it violates

the relation 𝜃 = 𝛽/𝜈‖, since its static exponents are 𝛽 = 1/2 and 𝛿ℎ = 1/2 and its dynamic

exponent is 𝜃 = 1. A similar break in scaling relations was recently observed by NOH; PARK

(2005b), also involving a second inhibitory field.

A common feature of mean-field scaling is the vanishing of the spreading exponent driving

the growth of the total number of particles (𝜂) because it regards the perturbative corrections

to mean-field behavior (MUÑOZ; GRINSTEIN; TU, 1997). However, this exponent does not van-

ish for the 𝑇5 transition (𝜂 = 2), even when considering the mean-field approximation. This

anomaly in scaling, coupled with the broken scaling relation, yields different avalanche expo-

nents. The duration exponent holds as 𝜏𝑡 = 2, since it depends solely on the survival exponent,

and is consistent with MF-DP and MF-TDP. Conversely, the size exponent, 𝜏 = 5/4, and the

crackling noise exponent, 𝛾 = 4, diverge from the known ones.

Standard models within the directed percolation universality class exhibit symmetry in

the average temporal profile of avalanches, resembling inverted parabolas. This symmetry,

demonstrated by the convergence of average avalanche shapes, reveals time-reversal invari-

ance (LAURSON et al., 2013; MILLER; YU; PLENZ, 2019). Conversely, the mean temporal profile

in the Hopf tricritical directed percolation displays a notable asymmetry, which we quantified

through its negative skewness. Recent work has shown that this tilt in the symmetric mean

temporal profiles results from introducing an inhibitory field into models in directed percolation

universality class (CANDIA et al., 2021; LÓPEZ; BUENDÍA; MUÑOZ, 2022; NANDI et al., 2022). Our

results further suggest that not only does the strength of the inhibitory coupling slightly skew

the average temporal profiles, but the combination of the proximity to the excitable quiescent

phase and the onset of frustrated oscillations further prompts more pronounced distortions.

This asymmetry in the avalanche mean temporal profile provides a useful tool to assess the

proximity to a transition belonging to the Hopf tricritical directed percolation, considering the

inherent difficulties of evaluating the exponents from experimental data. This is especially ben-

eficial when considering the inherent challenges involved in evaluating these exponents from

experimental data.

Our research thoroughly delves into the Hopf tricritical directed percolation universality

class within the context of the stochastic Wilson-Cowan model under a mean-field approxi-

mation. Studying the model in a different network should lead to the investigation of these

transition behaviors across various dimensions. In particular, the nature of the transition might

exhibit subtle variations when examining it on a sparser network (BRUNEL, 2000b; BUENDíA et
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al., 2019); since the presence of enhanced stochastic effects from the finite connectivity causes

substantial changes in dynamics and gives rise to new phenomena. Moreover, the introduc-

tion of heterogeneity to the network potentially leads to Griffiths phases (MUÑOZ et al., 2010;

MORETTI; MUÑOZ, 2013; ODOR, 2016) Nevertheless, there remains a need for a more system-

atic field-theoretical analysis of the Hopf tricritical directed percolation universality class.

At last, the work studying subsampling effects on avalanche exponents shows that the

brain could reasonably be operating just below and at the critical point, when comparing the

experimental data in Fontenele et al. (FONTENELE et al., 2019) to the data of a model belonging

to MF-DP and subsampling it (CARVALHO et al., 2021; LOTFI et al., 2021). Considering that

the exponents of MF-DP are the same as MF-TDP, does the subsampling of the model at the

MF-TDP transition also replicate experimental data? Furthermore, does the subsampling at

the novel transition also replicate experimental data? These are some of the open questions

prompted by the results herein for future investigation.
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APPENDIX A – NUMERICAL METHODS

A.1 MAXIMUM LIKELIHOOD ESTIMATOR

The distributions of size and duration undergo a power-law fit with the maximum likelihood

estimator (MLE) algorithm yielding the exponents.

The discrete distribution follows

𝑓(𝑥) = 𝐴(𝛼; 𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥)𝑥−𝛼 , (A.1)

where 𝐴(𝛼; 𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥) is the normalization constant.

𝐴(𝛼; 𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥) =
(︃

𝑥𝑚𝑎𝑥∑︁
𝑥=𝑥𝑚𝑖𝑛

𝑥−𝛼

)︃−1

(A.2)

The likelihood function is

𝐿(𝛼) =
𝑁−1∏︁
𝑖=0

𝑓(𝑥𝑖). (A.3)

The logarithm of Eq (A.3) is more easily treatable, so the log-likelihood is:

𝑙(𝛼) = 1
𝑁

log
(︃

𝐴(𝛼; 𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥)𝑁
𝑁−1∏︁
𝑖=0

𝑥𝑖

)︃
(A.4)

= − log
(︃

𝑥𝑚𝑎𝑥∑︁
𝑥=𝑥𝑚𝑖𝑛

𝑥−𝛼

)︃
− 𝛼

𝑁

𝑁−1∑︁
𝑖=0

log(𝑥𝑖). (A.5)

Considering that the left side of this equation grows and the right side decays continuously

with 𝛼, there should be a value of 𝛼 that maximizes this log-likelihood. Using the lattice search

algorithm, the exponent value is 𝛼̂ = arg max𝛼 𝑙(𝛼) (MARSHALL et al., 2016).

A.2 BOOTSTRAP

The error in the simulation analysis was calculated through bootstrapping. Bootstrap is a

resampling method, where we sample with replacement from the original data; therefore, the

new samples are made without assumptions about the underlying distribution of the data. The

script follows:

Step 1 Create multiple resampling datasets of the same size by randomly selecting data points

with replacements.
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Step 2 Run the MLE algorithm for each new sample.

Step 3 and, take the standard deviation of these values.

The Bootstrap method is widely used in scientific research to assess the stability of statistical

estimates (EFRON; TIBSHIRANI, 1985).
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APPENDIX B – SIMULATION METHOD: GILLESPIE’S ALGORITHM

The majority of the results in this paper are analytical. However, the survival probability

and avalanche analysis are purely stochastic phenomena. As such, the stochastic Markov

version of the Wilson-Cowan model was simulated using Gillespie’s algorithm (GILLESPIE, 1976;

GILLESPIE, 1977). The algorithm follows the steps:

Step 0 Initialize the system. For the survival and for avalanche analysis, only an excitatory

site is active at 𝑡 = 0;

Step 1 at each time step, calculate the transition rates for each neuron – if active, Φ(𝑠𝑖),

and otherwise, 𝛼 – and sum these rates, 𝑟;

Step 2 the time step is chosen from an exponential distribution with rate 𝑟 and added to the

total time;

Step 3 and, the site to be updated is chosen with probability 𝑟𝑖/𝑟.

The size and duration of the avalanche are counted as the number of spikes and duration

of a single instance of the simulation from one excitatory site activated to all sites being

inactivated. The advantage of this method is that it is independent of bin size.
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APPENDIX C – PIECEWISE SMOOTH DYNAMICAL SYSTEM

CALCULATIONS

C.1 DISCONTINUITY-INDUCED BIFURCATION

A “discontinuity-induced bifurcation" is a direct consequence of the non-smooth dynamics

of the system (HARRIS; ERMENTROUT, 2015). These bifurcations happen because of the pres-

ence of switching manifolds, observe that as we transition from one panel to the other from

(𝑎) to (𝑑) in Fig. 42 shows us the area in the phase diagrams where the initial conditions are

attracted to the regions inside the switching manifolds, i.e., the basin of attraction of said

regions. For the purposes of the transitions mentioned throughout this thesis, we searched

for the limits of the global stability of the quiescent state when the initial conditions are

excitatory-dominated.

Figure 42 – Basin of attraction of the regions enclosed by the switching manifolds across the 𝑇4 transition.
Parameters: 𝛼 = 1, 𝑤𝐼𝐼 = 0, 𝑤𝐸𝐼 = 3, 𝑤𝐼𝐸 = 0.5, and 𝑤𝐸𝐸 = [1.5, 2.0, 2.5, 3.0]

Source: The author (2023)
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For 𝑇4, the system has a period without a locally stable solution in region I; the quiescent

state, however, attracts the trajectories through the other regions constituting a globally stable

fixed point. As the control parameter increases, the basin of attraction of the regions diminishes

up to the discontinuity-induced bifurcation, where the only available stable fixed point is the

active one. For 𝑇6, 𝑇7, and 𝑇8, the transition is continuous. Close to the point where the active

stable fixed point appears, the basin reduces to nothing and the system relaxes to an active

state.

C.2 BEHAVIOR ON THE SWITCHING MANIFOLDS

Piece-wise continuous dynamics have two possible behaviors at the switching manifolds:

sliding or crossing (GLENDINNING; JEFFREY, 2019). This behavior depends on the system’s flow

on each side of the switching manifold. If we consider the Heaviside function, Eq. (3.12), in

Eqs. (3.23) and (3.24):

𝑥̇ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑓+
𝑥 ≡ −𝛼𝑥 + (1 − 𝑥) tanh(𝑤𝑖𝑥 − 𝑤𝑗𝑦) ,

if 𝑠 ≡ 𝑤𝑖𝑥 − 𝑤𝑗𝑦 > 0

𝑓−
𝑥 ≡ −𝛼𝑥 , if 𝑠 < 0

(C.1)

where 𝑓+
𝑥 is the dynamics to the right and 𝑓−

𝑥 is to the left of the switching manifold, 𝑠 = 0.

Let’s consider the switching manifold 𝑠𝐸 = 0, where 𝐸 = (𝑤𝐸𝐼/𝑤𝐸𝐸)𝐼. We can then

write:

∇⃗𝑠𝐸 =

⎛⎜⎜⎝
𝜕

𝜕𝐸
𝑠𝐸

𝜕
𝜕𝐼

𝑠𝐸

⎞⎟⎟⎠ =

⎛⎜⎜⎝ 𝑊𝐸𝐸

−𝑊𝐸𝐼

⎞⎟⎟⎠ (C.2)

𝑓+ =

⎛⎜⎜⎝ −𝛼𝐸 + (1 − 𝐸) tanh (𝑤𝐸𝐸𝐸 − 𝑤𝐸𝐼𝐼)

−𝛼𝐼 + (1 − 𝐼) tanh (𝑤𝐼𝐸𝐸 − 𝑤𝐼𝐼𝐼)

⎞⎟⎟⎠
𝑇

(C.3)

𝑓− =

⎛⎜⎜⎝ −𝛼𝐸

−𝛼𝐼 + (1 − 𝐼) tanh (𝑤𝐼𝐸𝐸 − 𝑤𝐼𝐼𝐼)

⎞⎟⎟⎠
𝑇

. (C.4)

We want to evaluate the sign of (𝑓+ · ∇⃗𝑠𝐸)(𝑓− · ∇⃗𝑠𝐸) at the switching manifold, to know
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if, as our system reaches the 𝑠𝐸, the trajectories will cross or slide on it.

𝑓+ · ∇⃗𝑠𝐸 = −𝛼(𝑤𝐸𝐸𝐸 − 𝑤𝐸𝐼𝐼) + 𝑤𝐸𝐸(1 − 𝐸) tanh (𝑤𝐸𝐸𝐸 − 𝑤𝐸𝐼𝐼) +

−𝑤𝐸𝐼(1 − 𝐼) tanh (𝑤𝐼𝐸𝐸 − 𝑤𝐼𝐼𝐼) , (C.5)

𝑓− · ∇⃗𝑠𝐸 = −𝛼(𝑤𝐸𝐸𝐸 − 𝑤𝐸𝐼𝐼) − 𝑤𝐸𝐼(1 − 𝐼) tanh (𝑤𝐼𝐸𝐸 − 𝑤𝐼𝐼𝐼) (C.6)

At the switching manifold, 𝑤𝐸𝐸𝐸 = 𝑤𝐸𝐼𝐼:

𝑓+ · ∇⃗𝑠𝐸 = −𝑤𝐸𝐼(1 − 𝐼) tanh
(︃

𝑤𝐼𝐸(𝑤𝐸𝐼 − 𝑤𝐼𝐼)
𝑤𝐸𝐸

𝐼

)︃
, (C.7)

𝑓− · ∇⃗𝑠𝐸 = −𝑤𝐸𝐼(1 − 𝐼) tanh
(︃

𝑤𝐼𝐸(𝑤𝐸𝐼 − 𝑤𝐼𝐼)
𝑊𝐸𝐸

𝐼

)︃
, (C.8)

(𝑓+ · ∇⃗𝑠𝐸)(𝑓− · ∇⃗𝑠𝐸) =
[︃
𝑤𝐸𝐼(1 − 𝐼) tanh

(︃
𝑤𝐼𝐸(𝑤𝐸𝐼 − 𝑤𝐼𝐼)

𝑤𝐸𝐸

𝐼

)︃]︃2

. (C.9)

For (𝑓+ ·∇⃗𝑠𝐸)(𝑓− ·∇⃗𝑠𝐸) > 0, the trajectories cross the switching manifold creating a trapping

region.

Now we consider the second switching manifold, 𝑠𝐼 = 0, where 𝐸 = (𝑤𝐼𝐼/𝑤𝐼𝐸)𝐼. Following

Figure 43 – Decelerating decay onto the switching manifolds. Close to the switching manifold, the trajectories
reach the quiescent state along the switching manifold in a decelerating decay. The fixed param-
eters: 𝛼 = 1.0 and 𝑤𝐸𝐼 = 1.5. (a) 𝑤𝐸𝐸 = 2.7, 𝑤𝐼𝐸 = 1.0, and 𝑤𝐼𝐼 = 0.5. (b) 𝑤𝐸𝐸 = 2.0,
𝑤𝐼𝐸 = 2.0, and 𝑤𝐼𝐼 = 1.0. Observe that five different initial conditions are producing the magenta
dashed lines.

Source: The author (2023)



116

the script above:

∇⃗𝑠𝐼 =

⎛⎜⎜⎝
𝜕

𝜕𝐸
𝑠𝐼

𝜕
𝜕𝐼

𝑠𝐼

⎞⎟⎟⎠ =

⎛⎜⎜⎝ 𝑊𝐼𝐸

−𝑊𝐼𝐼

⎞⎟⎟⎠ (C.10)

𝑓+ =

⎛⎜⎜⎝ −𝛼𝐸

−𝛼𝐼 + (1 − 𝐼) tanh (𝑤𝐼𝐸𝐸 − 𝑤𝐼𝐼𝐼)

⎞⎟⎟⎠
𝑇

(C.11)

𝑓− =

⎛⎜⎜⎝ −𝛼𝐸

−𝛼𝐼

⎞⎟⎟⎠
𝑇

. (C.12)

Evaluating the sign of (𝑓+ · ∇⃗𝑠𝐼)(𝑓− · ∇⃗𝑠𝐼),

𝑓+ · ∇⃗𝑠𝐼 = −𝛼(𝑤𝐼𝐸𝐸 − 𝑤𝐼𝐼𝐼) − 𝑤𝐼𝐼(1 − 𝐼) tanh (𝑤𝐼𝐸𝐸 − 𝑤𝐼𝐼𝐼) (C.13)

𝑓− · ∇⃗𝑠𝐼 = −𝛼(𝑤𝐼𝐸𝐸 − 𝑤𝐼𝐼𝐼𝐼), (C.14)

at the switching manifold, 𝑤𝐼𝐸𝐸 = 𝑤𝐼𝐼𝐼, then

𝑓+ · ∇⃗𝑠𝐼 = 0, (C.15)

𝑓− · ∇⃗𝑠𝐸 = 0, (C.16)

(𝑓+ · ∇⃗𝑠𝐸)(𝑓− · ∇⃗𝑠𝐸) = 0. (C.17)

The theory only accounts for either (𝑓+ · ∇⃗𝑠𝐸)(𝑓− · ∇⃗𝑠𝐸) ≷ 0. The null result yields more

questions than answers. However, when simulated, we observe the trajectories slowly decelerate

as they reach the switching manifolds (see Fig. 43).
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