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RESUMO

In this work, considering the family of distributions, generalized odd log-logistic-G, several
applications have been proposed with different real data using regression models. The distri-
butions of this family accommodate asymmetric, bimodal and heavy-tailed forms, showing
flexibility when compared to other well-known generator distributions. Based on the generator
family of distributions presented, regression models have been introduced with distinct sys-
tematic structures, linking the explanatory variables through the parameters of the baseline
distribution and all computational modeling is implemented using the R software. The first
two applications involve two univariate distributions: Lindley and exponential. The first uses
the novel generalized odd log-logistic Lindley distribution to evaluate data on the completed
primary vaccination rate of COVID-19 in counties in the American state of Texas. The sec-
ond uses the generalized odd log-logistic exponential distribution to investigate dengue fever
weekly cases in the Federal District of Brazil. The other applications relied on the well-known
continuous distributions, gamma, and Weibull distributions. The first applies the generalized
odd log-logistic gamma distribution to agricultural data on yacon potatoes from a study in
Peru. The following analysis employs the generalized odd log-logistic Weibull distribution to
examine daily wind power generation data in Brazil. Monte Carlo simulations are used to eva-
luate the accuracy of maximum likelihood estimates using a variety of measures. In order to
determine the most suitable model, the research includes goodness-of-fit measures, diagnostics
and residual analysis. Finally, the findings obtained utilizing various data sets demonstrated
that the proposed models are a viable alternative to competing distributions.

Keywords: diagnostic; generalized odd log-logistic family; maximum likelihood; regression
model; simulation.



ABSTRACT

Neste trabalho, considerando a família de distribuições log-logística odd generalizada-G,
foram propostas várias aplicações com diferentes dados reais usando modelos de regressão.
As distribuições dessa família acomodam formas assimétricas, bimodais e de cauda pesada,
mostrando flexibilidade quando comparadas a outras distribuições de geradores conhecidos.
Com base na classe geradora de distribuições apresentada, foram introduzidos modelos de
regressão com estruturas sistemáticas distintas, vinculando as variáveis explicativas por meio
dos parâmetros da distribuição baseline e toda a modelagem computacional foi implementada
usando o software R. As duas primeiras aplicações envolvem duas distribuições univariadas:
Lindley e exponencial. A primeira usa a nova distribuição Lindley log-logística odd generalizada
para avaliar dados sobre a taxa de vacinação primária completa de COVID-19 em condados
do estado Americano do Texas. A segunda usa a distribuição exponencial log-logística odd

generalizada para investigar casos semanais de dengue no Distrito Federal do Brasil. As outras
aplicações se basearam nas conhecidas distribuições contínuas, gama e Weibull. A primeira
aplica a distribuição gama log-logística odd generalizada a dados agrícolas sobre batatas yacon
de um estudo no Peru. A análise seguinte emprega a distribuição Weibull log-logística odd

generalizada para examinar os dados diários de geração de energia eólica no Brasil. Simulações
de Monte Carlo são utilizadas para avaliar a acurácia das estimativas de máxima verosimilhança
utilizando uma variedade de medidas. Para determinar o modelo mais adequado, a investigação
inclui medidas de adequação, diagnóstico e análise de resíduos. Por fim, as conclusões obtidas
com o uso de vários conjuntos de dados demonstraram que os modelos propostos são uma
alternativa viável às distribuições concorrentes.
Palavras-chaves: diagnóstico; família generalizada odd log-logística; máxima verossimilhança;
modelo de regressão; simulação.
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1 INTRODUCTION

Regression analysis is a valuable tool statistical technique with a wide application in many
scientific fields. Traditionally, in linear regression, when the normality assumptions of the res-
ponse variable are not satisfied, researchers apply some type of transformation. This approach
is used because many phenomena have asymmetry, bimodal form or the presence of discrepant
observations. Due to the limitations of this process, lately, the development of new regression
models has grown to handle non-normal data sets. For instance, novel models can produce
more accurate and insightful results.

Exploring new distributions provides more powerful methods for expanding regression’s
applicability, improving prediction accuracy, their structures and allowing for greater flexibi-
lity in fitting real data. This work focuses on the generalized odd log-logistic-G (GOLL-G)
distribution, pioneered by Cordeiro et al. (2017). In light of this, a linear representation is
presented, some mathematical features are addressed and the maximum likelihood of the class
of GOLL-G distributions is described. The family of distribution’s applications are illustrated
using a regression structure on the baseline parameter vector using data on the corona virus
disease 2019 (COVID-19) immunization rate in 254 Texas, United States (US) counties in a
window scenario in February 2023, dengue fever weekly cases in the Federal District of Brazil
in 2022, yacon potato sugar concentration in a Peruvian research study and the total daily
Brazilian wind energy generation in 2022.

In recent years, the GOLL-G class has applications in several domains, demonstrating its su-
periority over well-known distributions. Prataviera et al. (2018) introduced the GOLL-flexible
Weibull (GOLLFW) distribution to modeling repairable systems data (sugarcane harvester
machines). One notable feature of this new regression model is that it does not require the
assumption of proportional risks. The generalized odd log-logistic exponential (GOLLE) dis-
tribution (QOSHJA; MUÇA, 2018) is applied in fatigue fracture of Kevlar 373/epoxy data and
confirms the better fit than beta and Kumaraswamy generators. Moreover, the GOLL-Maxwell
(GOLLMax) distribution (PRATAVIERA; ORTEGA; CORDEIRO, 2020) is presented to study bi-
modal data in three engineering applications (strength, image and brittle materials data),
whose key advantage over other competing distributions is modelling bimodal, asymmetric
and heavy tail data. In addition, Prataviera et al. (2020) proposed a novel GOLLMax re-
gression with application to microbiology data. The major characteristic is that it fits data
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with covariables in the presence of bimodality, heteroscedasticity, zero-inflation and nonlinear
effects.

Additionally, Ibrahim (2020) introduced a new four-parameter distribution named genera-
lized odd log-logistic Nadarajah Haghighi (GOLLNH), studied several mathematical properties
and used different methods of estimation. The flexibility of the new model is illustrated by
the many important shapes of the failure rate function and some applications. Afify et al.
(2021) defined the GOLLE distribution for application in reparable systems. The model can
model various shapes of aging and failure criteria. Further, the estimation difficulties of un-
known parameters under complete and type II censored data were also examined, utilizing
the maximum likelihood and Bayesian estimation approaches. Furthermore, Vasconcelos et
al. (2022) proposed a parametric and a partially linear regression based on the generalized
odd log-logistic Birnbaum–Saunders (GOLLBS) distribution using average price data received
by producers and wholesalers. Compared to competitive regression models in the literature,
the new model’s flexibility has a better fit. Likewise, Vasconcelos et al. (2022) presented a
parametric and additive partial linear regressions based on the generalized odd log-logistic log-
normal (GOLLLN) distribution to employ in a climatological and an aerobic stability test data.
The model proved essential for identifying covariables with nonlinear effects on the response
variable.

Khaleq (2022) defined the generalized odd log-logistic Fréchet (GOLLFr) distribution for
modeling extreme values. Three applications are addressed to breaking stress, glass fibers and
relief time data and showed better fit to other distributions. Cordeiro et al. (2022) proposed
the generalized odd log-logistic generalized Rayleigh (GOLLGR) distribution. The researchers
constructed a novel regression using the lifetimes of patients diagnosed with COVID-19 and
examined the effect of age and diabetes on the time until death. Both covariates are found
to be significant in the response variable. Moreover, Prataviera et al. (2022) model rates and
proportions data with the new generalized odd log-logistic beta (GOLLBE) distribution. Lastly,
Vigas et al. (2023) used the GOLL-G family to propose a new regression for interval-censored
survival data and Prataviera et al. (2023) described the GOLLMax mixture (GOLLMaxMix)
model to analyze COVID-19 Chinese data.

In the context of the GOLL-G family of distributions presented, the thesis is organized in
the following manner and each Chapter can be read independently. Chapter 2 reviews the class
of distributions called generalized odd log-logistic-G (CORDEIRO et al., 2017), presents some
of these properties and uses the maximum likelihood approach to estimate the parameters.
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An innovative regression model based on the GOLL-G distribution is proposed, linking the
covariates into the vector parameter of the baseline distribution and simulations are computed
using some measures to evaluate the accuracy of the MLEs. The best fit model is evaluated
using goodness-of-fit measurements, diagnostics and residual analysis. All computational re-
quirements of the new distribution and regression model were implemented in the R software.
Chapters 3 and 4 demonstrated the use of the GOLL-G with two univariate distributions: Lind-
ley and exponential. The first one uses the new generalized odd log-logistic Lindley distribution
with a shape regression framework to analyze counties Texas, US COVID-19 vaccination rate
data. The second addresses by Qoshja e Muça (2018) and Afify et al. (2021) defined the
generalized odd log-logistic exponential distribution with a regression structure in the shape
parameter applied to dengue fever weekly cases data in Federal District, Brazil. Chapters 5 and
6 present two regression models based on the well-known continuous distributions, gamma and
Weibull. The primary one presented by Cordeiro et al. (2017) is the generalized odd log-logistic
gamma distribution with shape and scale regression structure for agricultural data. The next
one used a novel generalized odd log-logistic Weibull distribution Cordeiro et al. (2017) with
a bivariate regression structure for total daily Brazilian wind energy generation data. Finally,
some considerations and perspectives are addressed in Chapter 7.
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2 REVIEW OF THE GENERALIZED ODD LOG-LOGISTIC FAMILY OF DISTRI-

BUTIONS

RESUMO

A família de distribuições log-logística odd generalizada é apresentada como uma revisão
e foi introduzida de forma pioneira por Cordeiro et al. (2017). Trata-se de uma classe de
distribuições contínuas com dois parâmetros de forma extra que produzem formas flexíveis
para ajustar dados reais. Uma representação linear da família é apresentada e algumas de suas
propriedades matemáticas, incluindo a função quantílica, os momentos e a função geradora
de momentos são abordadas. É definido o método de máxima verossimilhança para estimar
os parâmetros e maximizá-los numericamente usando o R Core Team (2021). O modelo de
regressão baseado na classe de distribuições é apresentado com a proposta de vincular as va-
riáveis explicativas por meio do vetor de parâmetros da distribuição baseline. O comportamento
das estimativas é estudado por meio de simulações de Monte Carlo usando algumas medidas.
Para avaliar o modelo de melhor ajuste, são usadas algumas medidas de bondade de ajuste,
diagnóstico e análise de resíduos.

Palavras-chaves: Diagnóstico. Distribuição base. Família log-logística odd generalizada. Má-
xima verossimilhança. Medidas de bondade. Propriedades. Regressão. Resíduos. Simulação.

ABSTRACT

The family of generalized odd log-logistic distributions is presented as a review and was
pioneered introduced by Cordeiro et al. (2017). It is a class of continuous distributions with
two extra shape parameters that produce very flexible forms for fitting real data. A linear
representation of the family is presented and some of its mathematical properties, including
the quantile function, the moments and the moment generating function are addressed. The
method of maximum likelihood to estimate the parameters and maximize them numerically u-
sing the R Core Team (2021) is defined. The regression model based on the class of distributions
is presented with the proposal to link the explanatory variables through the parameter vector
of the baseline distribution. The behavior of the estimates is studied by means of Monte Carlo
simulations using some measures. To assess the best fit model, some goodness-of-fit measures,
diagnostics and residuals analyses are used.
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Keywords: Baseline. Diagnostic. Generalized odd log-logistic family. Goodness-of-fit. Maxi-
mum likelihood. Properties. Regression. Residuals. Simulation.

2.1 INTRODUCTION

Consider a baseline cumulative distribution function (cdf), 𝐺(𝑥; 𝜉), with unknown para-
meter vector 𝜉. The cdf of the odd log-logistic (OLL-G) family (GLEATON; LYNCH, 2006) is
characterized, as:

𝐹 (𝑦;𝛼, 𝜉) = 𝐺(𝑥; 𝜉)𝛼

𝐺(𝑥; 𝜉)𝛼 + [1 −𝐺(𝑥; 𝜉)]𝛼 , (2.1)

where 𝛼 > 0.
Based on the transformer-transformer (T-X) generator (ALZAATREH; LEE; FAMOYE, 2013),

Cordeiro et al. (2017) introduced the cdf of the generalized odd log-logistic (GOLL-G) family
of distributions integrating the log-logistic density function, as follows:

𝐹 (𝑦;𝛼, 𝜃, 𝜉) =

𝐺(𝑥;𝜉)𝜃

1−𝐺(𝑥;𝜉)𝜃∫︁
0

𝛼𝑡𝛼−1

(1 − 𝑡𝛼)2𝑑𝑡 = 𝐺(𝑥; 𝜉)𝛼𝜃

𝐺(𝑥; 𝜉)𝛼𝜃 + [1 −𝐺(𝑥; 𝜉)𝜃]𝛼 , (2.2)

where 𝛼 > 0 and 𝜃 > 0 are two extra shape parameters that play an important role in shaping
the overall shape, skewness, tail behavior and central tendency of the distribution, allowing to
model a variety of data sets.

Let 𝑌 ∼ GOLL-G(𝛼, 𝜃, 𝜉) be a random variable (rv) with cdf (2.2). Differentiating Equation
(2.2), the probability density function (pdf) of 𝑌 reduces to:

𝑓(𝑦;𝛼, 𝜃, 𝜉) = 𝛼𝜃𝑔(𝑥; 𝜉)𝐺(𝑥; 𝜉)𝛼𝜃−1[1 −𝐺(𝑥; 𝜉)𝜃]𝛼−1

{𝐺(𝑥; 𝜉)𝛼𝜃 + [1 −𝐺(𝑥; 𝜉)𝜃]𝛼}2 , (2.3)

where 𝑔(𝑥; 𝜉) is the parent pdf. Due to its great flexibility, firstly shown through special mo-
dels in Cordeiro et al. (2017), the density function (2.3) is widely used in many areas, such as
biology (GOLLMax), engineering (GOLLFW, GOLLE and GOLLMax), economy (GOLLBS),
epidemiology (GOLLGR, generalized odd log-logistic normal (GOLLN) and GOLLMaxMix),
extreme value theory (GOLLFr), meteorology (GOLLLN), among others.

The hazard rate function (hrf) of 𝑌 is defined, as:

𝜏(𝑦;𝛼, 𝜃, 𝜉) = 𝛼𝜃𝑔(𝑥; 𝜉)𝐺(𝑥; 𝜉)𝛼𝜃−1

[1 −𝐺(𝑥; 𝜉)𝜃]{𝐺(𝑥; 𝜉)𝛼𝜃 + [1 −𝐺(𝑥; 𝜉)𝜃]𝛼}
. (2.4)

One advantage of this approach is that if the baseline distribution has a closed-form
expression (explicitly standard mathematical functions), the resulting representation of the
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linear combination of the GOLL-G can be more mathematically tractable, making it easier to
compute moments, gf and other measures.

Table 1 summarizes the associated sub-families of Equation (2.2). Furthermore, the log-
likehood test makes it simple and interesting to compare the generalized class of distributions
with specific classes of models.

Table 1 – Sub-families associated to the GOLL-G family of distributions.

𝛼 𝜃 Submodel
- 1 Generalized log-logistic family (GLEATON; LYNCH, 2006)
1 - Proportional reversed hazard rate family (GUPTA; GUPTA, 2007)
1 1 Baseline

2.2 MAIN PROPERTIES

The simple form of the exponentiated generator allows a broad spectrum of shapes, making
it a well-suited alternative for diverse data types and phenomena, see (GUPTA; KUNDU, 1999).
The distribution class exponentiated-G (Exp-G) is significant since it permits the properties of
the GOLL-G family to be written from the exponentiated baseline. Such features enable it to
be straightforward to compute the moments, generating function, among other measures and
are used in some parts of the Section.

In this scenario, the Exp-G family for a parent cdf 𝐺(𝑥; 𝜉) is defined for a power extra
parameter, 𝑐. Namely 𝑊 ∼ Exp𝑐-G, the pdf and the cdf are given by 𝐻𝑐(𝑥) = 𝐺(𝑥; 𝜉)𝑐

and ℎ𝑐(𝑥) = 𝑐 𝑔(𝑥; 𝜉)𝐺(𝑥; 𝜉)𝑐−1, respectively. Formally, for more than fifty baselines, several
authors studied the characteristics of the Exp-G class, e.g., for Exp-log-normal (SHIRKE; S.,
2006), for Exp-gamma (NADARAJAH; GUPTA, 2007) and for Exp-Gumbel (NADARAJAH, 2006),
among others.

2.2.1 Linear Representation

The GOLL-G family of distributions admits the following linear representation:

𝑓(𝑦;𝛼, 𝜃, 𝜉) =
∞∑︁

𝑘=0
𝑏𝑘 ℎ𝑘+1(𝑦; 𝜉), (2.5)
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where 𝑏𝑘 is

𝑏𝑘 = 𝛼𝜃

𝑘 + 1

∞∑︁
𝑖,𝑗=0

∞∑︁
𝑙=𝑘

(−1)𝑗+𝑘+𝑙

(︃
−2
𝑖

)︃(︃
𝑙

𝑘

)︃(︃
−(𝑖+ 1)𝛼

𝑗

)︃(︃
(𝑖+ 1)𝛼𝜃 + 𝑗𝜃 − 1

𝑙

)︃
,

used in subsequent Chapters to derive the linear representation of the proposed models and
ℎ𝑘+1(𝑦; 𝜉) is the Exp-G distribution with power parameter 𝑘 + 1.

Equation (2.5) is the main result of the Section defined on Cordeiro et al. (2017). By
utilizing the properties of the Exp-G family of distributions, it is possible to derive significant
properties of the GOLL-G class in a straightforward manner.

2.2.2 Quantile function

The quantile function (qf) of 𝑌 , denoted by 𝑦 = 𝑄(𝑢) = 𝐹−1(𝑢), can be obtained inverting
Equation (2.2), as follows:

𝑦 = 𝑄(𝑢) = 𝑄G(𝑥;𝜉) (𝜀𝛼,𝜃(𝑢)) , (2.6)

where 𝑄G(𝑥;𝜉)(·) is the qf of the baseline distribution and

𝜀𝛼,𝜃(𝑢) =

⎡⎢⎣
(︁

𝑢
1−𝑢

)︁1/𝛼

1 +
(︁

𝑢
1−𝑢

)︁1/𝛼

⎤⎥⎦
1/𝜃

,

is utilized in the following Chapters.
Equation (2.6) is a useful tool for simulating any GOLL-G distribution when 𝑈 is drawn from

a uniform distribution on the interval (0, 1). Furthermore, the qf offers descriptive statistics,
data exploration and more reliable estimation.

To effectively illustrate how skewness and kurtosis behave as functions of parameters,
Galton’s skewness (GALTON, 1883) and Moors kurtosis (MOORS, 1988) can be provide for a
range of values of 𝛼 and 𝜃. To address these metrics, arbitrary values for 𝜉 are utilized in the
following Sections. These measures, which are considered using the quantile function, are less
affected by outliers and exist even for distributions without moments.

Galton’s skewness formula is

𝒢 = 𝑄(3/4) +𝑄(1/4) − 2 ·𝑄(1/2)
𝑄(3/4) −𝑄(1/4) ,

whereas the Moors kurtosis is given by

ℳ = 𝑄(3/8) −𝑄(1/8) +𝑄(7/8) −𝑄(5/8)
𝑄(6/8) −𝑄(2/8) .
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2.2.3 Moments

Moments are a powerful tool for investigating the key features and characteristics of a
distribution, such as tendency, dispersion, skewness and kurtosis. The definition below is used
along with all applications to provide further information about any baseline proposed.

The 𝑛th moment of the GOLL-G distribution is defined in Cordeiro et al. (2017) by:

𝜇′
𝑛 = E(𝑌 𝑛) =

∞∑︁
𝑘=0

𝑏𝑘 E(𝐻𝑛
𝑘+1), (2.7)

where can be employed the expressions for moments of some exponentiated distributions
(NADARAJAH; KOTZ, 2006b). These expressions enable the computation of the GOLL-G mo-
ments, simplifying further analysis and characterization of the distribution.

2.2.4 Generating Function

The moment generating function (mgf) of 𝑌 , denoted as 𝑀(𝑡) = E[𝑒𝑡𝑌 ], can be obtained
by the following expression in Cordeiro et al. (2017), as:

𝑀(𝑡) =
∞∑︁

𝑘=0
𝑏𝑘𝑀𝑘+1(𝑡), (2.8)

where 𝑀𝑘+1(𝑡) represents the mgf of 𝐻𝑘+1(𝑦; 𝜉). The computation of the mgf by the Exp-G
distribution reveals the properties of the GOLL-G distributions in a straightforward manner
and is employed in all the applications of the proposed models.

2.3 ESTIMATION

Let 𝑦1, . . . , 𝑦𝑛 represent the observed values from the GOLL-G distribution with parameter
vector 𝜓 = (𝛼, 𝜃, 𝜉)⊤ with dimension 𝑟 × 1. As defined in Cordeiro et al. (2017), the total
log-likelihood function for 𝜓 can be expressed, as follows:

𝑙𝑛(𝜓) = 𝑛 log(𝛼𝜃) +
𝑛∑︁

𝑖=1
log[𝑔(𝑥𝑖; 𝜉)] + (𝛼𝜃 − 1)

𝑛∑︁
𝑖=1

log[𝐺(𝑥𝑖; 𝜉)]

+ (𝛼− 1)
𝑛∑︁

𝑖=1
log[1 −𝐺(𝑥𝑖; 𝜉)𝜃] − 2

𝑛∑︁
𝑖=1

log{𝐺(𝑥𝑖; 𝜉)𝛼𝜃 + [1 −𝐺(𝑥𝑖; 𝜉)𝜃]𝛼}.
(2.9)

The components of the score vector can be expressed, as:
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𝑈𝛼 = 𝑛

𝛼
+ 𝜃

∞∑︁
𝑖=1

log[𝐺(𝑥𝑖; 𝜉)] +
∞∑︁

𝑖=1
log[1 −𝐺(𝑥𝑖; 𝜉)𝜃]

− 2
∞∑︁

𝑖=1

(𝑥𝑖; 𝜉)𝛼𝜃 log[𝐺(𝑥𝑖; 𝜉)] + [1 −𝐺(𝑥𝑖; 𝜉)𝜃]𝛼 log[1 −𝐺(𝑥𝑖; 𝜉)𝜃]
𝐺(𝑥𝑖; 𝜉)𝛼𝜃 + [1 −𝐺(𝑥𝑖; 𝜉)𝜃]𝛼 ,

𝑈𝜃 = 𝑛

𝜃
+ 𝛼

∞∑︁
𝑖=1

log[𝐺(𝑥𝑖; 𝜉)] + (1 − 𝛼)
∞∑︁

𝑖=1

𝐺(𝑥𝑖; 𝜉)𝜃 log[𝐺(𝑥𝑖; 𝜉)]
1 −𝐺(𝑥𝑖; 𝜉)𝜃

− 2𝛼
∞∑︁

𝑖=1

𝐺(𝑥𝑖; 𝜉)𝛼𝜃 log[𝐺(𝑥𝑖; 𝜉)] −𝐺(𝑥𝑖; 𝜉)𝜃 log[1 −𝐺(𝑥𝑖; 𝜉)𝜃]𝛼−1 log[𝐺(𝑥𝑖; 𝜉)]
𝐺(𝑥𝑖; 𝜉)𝛼𝜃 + [1 −𝐺(𝑥𝑖; 𝜉)𝜃]𝛼 ,

and

𝑈𝜉 =
∞∑︁

𝑖=1

𝜕𝜉𝑔(𝑥𝑖; 𝜉)
𝑔(𝑥𝑖; 𝜉)

+ (𝛼𝜃 − 1)
∞∑︁

𝑖=1

𝜕𝜉𝐺(𝑥𝑖; 𝜉)
𝐺(𝑥𝑖; 𝜉)

+ 𝜃(1 − 𝛼)
∞∑︁

𝑖=1

𝜕𝜉𝐺(𝑥𝑖; 𝜉)𝐺(𝑥𝑖; 𝜉)𝜃−1

1 −𝐺(𝑥𝑖; 𝜉)𝜃

− 2
∞∑︁

𝑖=1
𝜕𝜉𝐺(𝑥𝑖; 𝜉)

𝐺(𝑥𝑖; 𝜉)𝛼𝜃−1 −𝐺(𝑥𝑖; 𝜉)𝜃−1[1 −𝐺(𝑥𝑖; 𝜉)𝜃]𝛼−1

𝐺(𝑥𝑖; 𝜉)𝛼𝜃 + [1 −𝐺(𝑥𝑖; 𝜉)𝜃]𝛼 ,

where 𝜕𝜉𝑔(·) and 𝜕𝜉𝐺(·) denotes the derivative of the function 𝑔(𝑥; 𝜉) and 𝐺(𝑥; 𝜉) with respect
to 𝜉, respectively.

The maximum likelihood estimate (MLE) 𝜓̂ of 𝜓 can be found by setting the score
equations 𝑈𝛼 = 𝑈𝜃 = 𝑈𝜉 = 0 using an iterative method algorithm to find roots. Alternatively,
Equation (2.9) can be maximized numerically using the optim routine available in R Core Team
(2021), or the AdequacyModel package (MARINHO et al., 2019) can serve as an alternative
tool for this purpose.

In all applications throughout the Sections, the innovative model outperforms competitive,
well-known generators (beta-G, Kumarawswamy-G, gamma-G, Weibull-G, among others) in
terms of accuracy, insight and capture different non-normal patterns.

2.4 THE PROPOSAL GOLL-G REGRESSION MODEL

In the literature, location-scale and reparameterization regression models are presented in
different forms, depending on the field in which they are applied. For the first one, Prataviera et
al. (2019) defined the odd log-logistic geometric normal regression model to analyze medical
data and Altun et al. (2023) introduced a new odd log-logistic family of distributions and
applied the Weibull baseline to study medical heart data. In the second one, Prataviera et
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al. (2019) used a reparameterization of the odd log-logistic generalized gamma distribution
to introduce a new regression to analyze censored data and Cruz, Ortega e Cordeiro (2016)
proposed the log-odd log-logistic regression model as a feasible alternative to investigating the
well-known data of Stanford heart transplant.

In this context, a parametric regression model using the GOLL-G class of distributions,
named the GOLL-G regression model, is offered as a viable alternative to the usual regression
models, which requires no transformation or reparameterization. The most important part of
parametric regression models is defining the parameters based on 𝑥. In general, it is realized
by considering the conditional expectation of the response variable in the presence of the
covariates, which is useful for predicting the expectation value of 𝑌 . Nevertheless, in the case
of this work, a link function is proposed to connect the vector parameter of the baseline
distribution to the covariates.

The systematic component of the GOLL-G regression model takes into account the fact
that the vector parameter 𝜉 in Equation (2.3) varies between data (𝑖 = 1, . . . , 𝑛) as described
in:

𝜉𝑖 = 𝑔(𝑥⊤
𝑖 𝛽𝑗), (2.10)

where 𝑔(·) is a twice continuously differentiable link function (for example, identity, log, inverse,
sqrt, etc) and 𝛽𝑗 = (𝛽𝑗1, . . . , 𝛽𝑗𝑝)⊤, for (𝑗 = 1, . . . , 𝑙), is the parameter vector associated
with the explanatory variables 𝑥⊤

𝑖 = (𝑥𝑖1, · · · , 𝑥𝑖𝑝). The components of 𝛽𝑗 are assumed to
be independent. Therefore, the function 𝑔(·) plays the link with the covariates and the new
regression model.

Despite the simplicity of including explanatory variables, the model has some interpretability
disadvantages. Due to the fact that baseline parameters are not measures of central tendency
or variability, the results must be interpreted differently and it is proposed to associate them
with skewness and/or kurtosis to analyze. However, the approach leaves open the possibility
for future researchers to explore novel methods of linking variables that will assist in the
understanding of the investigation and accurate its interpretability.

2.4.1 Estimation

In this Section, the form of the log-likelihood function of the proposed regression model is
written in the similar pattern of the Equation (2.9), nonetheless each 𝜉𝑖 will have a subindex
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since it will be written using the Equation (2.10).
The components of the score vector of 𝑈𝛼 and 𝑈𝜃 are the same presented in Cordeiro et

al. (2017) and the component of the vector parameter 𝜉𝑖 are defined to add the regression
part, as follows:

𝑈𝜉𝑖
=

∞∑︁
𝑖=1

𝜕𝛽𝑗
𝑔(𝑥𝑖; 𝜉𝑖)

𝑔(𝑥𝑖; 𝜉𝑖)
+ (𝛼𝜃 − 1)

∞∑︁
𝑖=1

𝜕𝛽𝑗
𝐺(𝑥𝑖; 𝜉𝑖)

𝐺(𝑥𝑖; 𝜉𝑖)
+ 𝜃(1 − 𝛼)

∞∑︁
𝑖=1

𝜕𝛽𝑗
𝐺(𝑥𝑖; 𝜉𝑖)𝐺(𝑥𝑖; 𝜉𝑖)𝜃−1

1 −𝐺(𝑥𝑖; 𝜉𝑖)𝜃

− 2
∞∑︁

𝑖=1
𝜕𝛽𝑗

𝐺(𝑥𝑖; 𝜉𝑖)
𝐺(𝑥𝑖; 𝜉𝑖)𝛼𝜃−1 −𝐺(𝑥𝑖; 𝜉𝑖)𝜃−1[1 −𝐺(𝑥𝑖; 𝜉𝑖)𝜃]𝛼−1

𝐺(𝑥𝑖; 𝜉𝑖)𝛼𝜃 + [1 −𝐺(𝑥𝑖; 𝜉𝑖)𝜃]𝛼 ,

where 𝜕𝛽𝑗
𝑔(·) = 𝜕𝜉𝑖

𝑔(·)𝜕𝛽𝑗
𝜉𝑖(·) and 𝜕𝛽𝑗

𝐺(·) = 𝜕𝜉𝑖
𝐺(·)𝜕𝛽𝑗

𝜉𝑖(·) denotes the derivatives of the
parameter 𝜉𝑖 using the chain rule.

The MLE 𝜓 of 𝜓 of the regression model is calculated setting the score equations 𝑈𝛼 =

𝑈𝜃 = 𝑈𝜉𝑖
= 0 using an iterative method algorithm to find roots or using the optim routine.

Occasionally, it is difficult to obtain the MLE in a closed or semi-closed form, which
arises from various factors: complexity of the likelihood function, lack of closed-form solutions,
numerical issues, etc. Previous estimates from the baseline and data are used for each proposed
model to figure out the initial guess of the parameters.

2.4.2 Accuracy of Maximum Likelihood Estimates

To assess the accuracy of the MLEs by means of Monte Carlo simulations, for some sample
sizes, the average estimate (AE), bias, mean square error (MSE), absolute bias (AB), estimated
average length (AL), root mean square error (RMSE) and/or coverage probability (CP) are
computed for arbitrary parameter values (used in the following Sections). The measures are,
as follows:

𝐴𝐸𝜖(𝑛) = 1
𝑁

𝑁∑︁
𝑖=1

𝜖𝑖, 𝐵𝑖𝑎𝑠𝜖(𝑛) = 1
𝑁

𝑁∑︁
𝑖=1

(𝜖𝑖 − 𝜖), 𝑀𝑆𝐸𝜖(𝑛) = 1
𝑁

𝑁∑︁
𝑖=1

(𝜖𝑖 − 𝜖)2,

𝐴𝐵𝜖(𝑛) = 1
𝑁

𝑁∑︁
𝑖=1

|𝜖𝑖 − 𝜖|, 𝐴𝐿𝜖(𝑛) = 3.919928
𝑁

𝑁∑︁
𝑖=1

𝑠𝜖𝑖
, 𝑅𝑀𝑆𝐸𝜖(𝑛) =

⎯⎸⎸⎷ 1
𝑁

𝑁∑︁
𝑖=1

(𝜖𝑖 − 𝜖)2

and
𝐶𝑃𝜖(𝑛) = 1

𝑁

𝑁∑︁
𝑖=1

𝐼(𝜖𝑖 − 1.95996𝑠𝜖𝑖
, 𝜖𝑖 + 1.95996𝑠𝜖𝑖

),

for 𝜖 = (𝛼, 𝜃, 𝜉) and 𝑠𝜖 are the standard errors (SEs) of the MLEs.



32

2.5 DIAGNOSTIC AND RESIDUAL ANALYSIS

To compare fitted models, some goodness-of-fit (GoF) statistics are commonly used. These
include the Akaike information criterion (AIC), the consistent Akaike information criterion
(CAIC), the Bayesian information criterion (BIC), given the complexity of the model (number
of parameters), Cramér-von Mises (W*), which compares an empirical distribution with a
theoretical distribution, Anderson-Darling (A*), which captures discrepancies in the tails of
the distribution and Kolmogorov-Sminorv (KS), which compares the empirical distribution
function with a reference probability distribution function. Generally, smaller values of these
statistics indicate a better fit with the data.

The likelihood ratio (LR) statistic, which compares the likelihoods of two competing statis-
tical models to see whether one provides a better explanation of the observed data, is used to
evaluate the new distribution with its nested parameters to confirm the inclusion of the extra
parameters (𝛼 and 𝜃). This comparison helps determine whether the more complex model
considerably improves the fit over the simpler one.

When examining outliers, a number of methods have been documented in the literature,
see (COX; SNELL, 1968), (COOK; WEISBERG, 1982) and (ORTEGA; PAULA; BOLFARINE, 2008).
In order to detect influential observations of a proposed regression model, diagnostic measures
that involve excluding data points are employed. The objective of conducting residual analysis
is to identify patterns or characteristics within the residuals, which could potentially affect the
model’s validity.

In this context, for any systematic component, the exclusion of observations follows:

𝜉𝑙 = 𝑔(𝑥𝑙⊤𝛽𝑗), 𝑙 = 1, . . . , 𝑛, 𝑙 ̸= 𝑖. (2.11)

For investigating the influential observations, the generalized Cook’s distance is given by:

𝐺𝐶𝐷𝑖 =
(︁
𝜓̂(𝑖) − 𝜓̂)⊤[𝐿̈(𝜓̂)](𝜓̂(𝑖) − 𝜓̂

)︁
, (2.12)

and the likelihood distance, as:

𝐿𝐷𝑖 = 2
{︁
𝑙(𝜓̂) − 𝑙(𝜓̂(𝑖))

}︁
, (2.13)

where the subscript 𝑖 denotes the observation deleted from the dataset and 𝐿̈(𝜓) is the
observed information matrix.
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The deviance residuals have been commonly used to assess the goodness-of-fit of regression
models (SILVA; ORTEGA; PAULA, 2011). Additionally, these measures can be applied to GOLL-G
regression models to assess assumptions and detect the presence of outliers.

It follows that the deviance residuals for the GOLL-G regression are given by:

𝑟𝐷𝑖
= sgn(𝑟𝑀𝑖

) {−2[𝑟𝑀𝑖
+ 𝛿𝑖 log(𝛿𝑖 − 𝑟𝑀𝑖

)]}1/2 , (2.14)

where
𝑟𝑀𝑖

= 𝛿𝑖 + log
[︁
1 − 𝐹 (𝑦𝑖; 𝛼̂, 𝜃, 𝜉)

]︁
, (2.15)

are the martingale residuals, 𝛿𝑖 is the censoring indicator and sign(·) is the signal function with
a value +1 if the argument is positive and −1 if the argument is negative.

Atkinson (1987) proposed the construction of envelopes to support the analysis of the
residuals with normal probability plots. Confidence bands are simulated for these envelopes,
and if the model gives a good fit, most of the points will lie randomly inside. The construction
of these confidence bands can be calculated using the following steps:

(i) Calculate the 𝑟𝐷𝑖
’s for the considered model;

(ii) Using the fitted model, the response variable is simulated (𝑘 samples);

(iii) Calculate the deviance residuals for each fitted model to the sample (for 𝑗 = 1, 2, . . . , 𝑘

and 𝑖 = 1, 2, . . . , 𝑛);

(iv) Sort the 𝑛 residuals to have 𝑟𝐷(𝑖)𝑗
’s for each group;

(v) Calculate descriptive statistics (mean, minimum and maximum) of the orderly residuals
for each 𝑖;

(vi) Plot the residuals 𝑟𝐷𝑖
’s versus the expected percentile of the standard normal and the

descriptive statistics.

2.6 CONCLUDING REMARKS

The generalized odd log-logistic-G family of distributions, developed by Cordeiro et al.
(2017), is reviewed in this Chapter. The family extends some common classes of distribu-
tions studied recently, such as the odd log-logistic (GLEATON; LYNCH, 2006) and proportional
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reversed hazard rate (GUPTA; KUNDU, 2001) families. The main advantage of the GOLL-G
over other competing generators is its ability to fit bimodal, asymmetric and heavy tail data
with greater flexibility, which is applied in many research areas (biology, engineering, economy,
epidemiology, extreme value theory, metereology, among others).

Some mathematical properties of the GOLL-G class of distribution are presented, such
as a linear representation, the quantile function, the moments and the moment generating
function. The maximum likelihood estimate and inference for model parameters are discussed.
The GOLL-G regression model is introduced, which a link function is proposed to connect the
vector parameter of the baseline distribution to the exploratory variables.

The MLEs are assessed using maximum likelihood and the parameters of the GOLL-G re-
gression model were evaluated using Monte Carlo simulation, which demonstrated the estima-
tors’ consistency using some measures. Goodness-of-fit measures, diagnostic analysis, deviance
residuals and envelope plots are used to support the new model’s adequacy.
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3 A NEW LINDLEY EXTENSION TO ANALYZE COVID-19 VACCINATION

RESUMO

A distribuição Lindley log-logística odd generalizada é introduzida e é proposto o modelo
de regressão com uma componente sistemática de forma para investigar os elementos que
explicam as taxas de imunização primária completa de COVID-19 de 254 condados no es-
tado do Texas, Estados Unidos América (EUA). Algumas propriedades foram apresentadas,
os parâmetros estimados por máxima verossimilhança e a acurácia investigada através de si-
mulações. Para avaliar o ajuste do modelo, foram utilizados análise de diagnóstico e resíduos
deviance. Ao nível do condado, o modelo proposto identificou fatores críticos que influenciam
o parâmetro de forma, tais como o número de hospitais que comunicam a vacinação, a taxa
de pobreza, o condado ser ou não uma área metropolitana, a percentagem da população com
diploma do ensino médio, o acesso à internet e o número de indivíduos com doença cardíaca
crónica. Os resultados indicam um bom ajuste, com uso potencial em esforços de imunização
e como um modelo alternativo para trabalhos futuros em vários conjuntos de dados.

Palavras-chaves: COVID-19. Distribuição Lindley. Família log-logística odd generalizada.
Máxima verossimilhança. Regressão. Simulação. Vacinação.

ABSTRACT

The generalized Lindley log-logistic distribution odd is introduced and the regression
model with a systematic shape component is proposed to investigate the elements that explain
the completed primary immunization rates of COVID-19 of 254 counties in the state of Texas,
US. Some properties were presented, the parameters estimated by maximum likelihood and the
accuracy investigated through simulations. Diagnostic and residual analysis were used to assess
the model’s fit. At the county level, the proposed model identified critical factors that influence
the shape parameter, such as the number of hospitals reporting vaccination, the poverty rate,
whether the county is a metropolitan area or not, the percentage of the population with a high
school degree, internet access and the number of individuals with chronic heart disease. The
results indicate a good fit, with potential use in immunization efforts and as an alternative
model for future work on various data sets.
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Keywords: COVID-19. Lindley distribution. Generalized odd log-logistic family. Maximum
likelihood. Regression. Simulation. Vaccination.

3.1 INTRODUCTION

In recent years, the COVID-19 pandemic, caused by the new coronavirus, severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2), has had an enormous impact on practically
every element of human life, producing major disruptions to healthcare systems, the economy
and social structures all around the world. The advancements in the fight against the pandemic,
particularly vaccination, were a critical tool for protecting individuals and communities from
the virus and aiding in the prevention of its spread.

Vaccination efforts are ongoing around the world to counteract the COVID-19 epidemic.
Over 13.5 billion1 doses of COVID-19 vaccines were administered globally until November
2023. The federal government of the US has taken major steps to assure vaccination availability
and accessibility, including subsidizing vaccine manufacture, distribution and administration.
Vaccination rates have been higher among older individuals and healthcare workers, but efforts
are ongoing to ensure that the vaccine is available to all eligible individuals. Vaccination actions
are crucial to preventing the spread of the coronavirus and maintaining public health, despite
hurdles such as vaccine reluctance and supply chain concerns.

According to Our World in Data2, the US administered over 676 million doses of COVID-
19 vaccines until November 2023, with more than 81% of the eligible population receiving at
least one dose and more than 69% fully vaccinated. In terms of vaccination rates, the US is
ahead of many other countries, but disparities in immunization coverage persist among age
groups and neighborhoods. Vaccination rates vary between countries, with some still failing to
acquire and distribute sufficient vaccines.

In this instance, the use of statistical techniques to analyze pandemic data has been
widespread in the US and other countries. A comprehensive study by Hughes et al. (2021)
examines the correlation between vaccination rates and social vulnerability at the county level,
revealing significant disparities in vaccination coverage across counties. Despite limited data
on vaccination safety and efficacy during pregnancy, a recent study by Razzaghi et al. (2021)
found that vaccination coverage increased across all racial and ethnic groups during the study
1 <https://ourworldindata.org/covid-vaccinations>
2 <https://covid.cdc.gov/covid-data-tracker/#vaccine-delivery-coverage>

https://ourworldindata.org/covid-vaccinations
https://covid.cdc.gov/covid-data-tracker/#vaccine-delivery-coverage
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period. Other studies, (KRISS et al., 2022; ALBRECHT, 2022; REIMER et al., 2022), revealed a
correlation with some determinant factors and the COVID-19 vaccination rate.

As detailed, the Lindley distribution has advantages over other competing models. Re-
searchers have contributed significantly to the topic by introducing and analyzing numerous
generalizations of the Lindley distribution. The study of the Lomax-Lindley distribution in
lifetime data (TARVIRDIZADE, 2021), the perspective of the Lindley distribution on the unit
interval (KARAKAYA et al., 2022), the application of the Marshall-Olkin Lindley distribution
in reliability data (HAMEED; SAIEED, 2022) and the application of the modified-Lindley dis-
tribution in three real data sets (COŞKUN et al., 2022) are some notable examples of these
generalizations. A novel extension of the Lindley distribution is presented to estimate survival
rates using US life tables (MOHAMED; ALI; YOUSOF, 2023). At last, using Bayesian and non-
Bayesian predictions for four applications based on real-world data sets, Elgarhy et al. (2023)
investigated the truncated inverse power Lindley distribution.

Consequently, the Chapter aims to determine the factors that explain the COVID-19 vacci-
nation rate by constructing a new regression model based on the new proposed generalized odd

log-logistic Lindley (GOLLL) distribution. The GOLL-G family has applicability across various
fields, highlighting its superiority over well-known generators. For example, Vasconcelos et al.
(2022) proposed a parametric and a partially linear regression model called GOLLBS using
the average pricing data collected from producers and wholesalers. In comparison to other
regression models in the literature, the new model’s flexibility provides a better fit. Similarly,
Vasconcelos et al. (2022) proposed additive and parametric partial linear regressions using
the generalized odd log-logistic log-normal (GOLLLN) distribution with climatological and an
aerobic stability test data. Finding covariables with nonlinear effects on the response variable
proved to be a crucial application of the model. Lastly, Prataviera et al. (2023) defined the
GOLLMaxMix model to analyze COVID-19 Chinese data. According to the fitted model, the
age group has a substantial impact on the lifetime of COVID-19 patients.

Several authors have studied the links between numerous factors that influence vaccination
rates, such as demography, socioeconomic variables and comorbidities. The development of
new models that reflect the non-Gaussian data is critical for overcoming COVID-19 research
gaps. Because of the additional parameters, the new distribution can model a wide range of
data shapes. The GOLLL regression proposed aims to be an effective model for finding the
elements that influence vaccination and might be considered as an alternative for future studies
to aid in vaccination efforts.
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Thus, the analysis of the COVID-19 completed primary vaccination series at the county
level in the state of Texas is the main focus of this Chapter. The goal is to look into how
explanatory factors affect the response variable, with a particular emphasis on the effects of
vaccination in the US. The objective of this research is to significantly add to the knowledge
on the subject and offer insightful information on the variables influencing the vaccination
rate.

The structure of the Chapter is as follows. The key characteristics of the GOLLL distribution
are defined in Section 3.2. A linear representation is presented and a few of its mathemati-
cal features. The maximum likelihood estimation technique is applied and the estimators’
accuracy is tested through some simulations in Section 3.3. In Section 3.4, a new GOLLL
regression model with a systematic structure for the shape parameter is introduced and the
estimators’ consistency is assessed. In Section 3.5, an application of the proposed model to
COVID-19 vaccination rate data is considered and its performance is compared with other
models. Diagnostic analysis and deviance residuals confirmed that the new model is the best
fit to explain the current data. In addition, the study presented valuable findings that support
vaccination efforts. Section 3.6 provides a summary of the study’s principal findings.

3.2 THE GOLLL DISTRIBUTION

The Lindley distribution is defined by the cdf and pdf (for 𝑥 > 0), as:

𝐺(𝑥;𝜆) = 1 − 1 + 𝜆+ 𝜆𝑥

1 + 𝜆
e−𝜆𝑥 (3.1)

and
𝑔(𝑥;𝜆) = 𝜆2

(1 + 𝜆)(1 + 𝑥)e−𝜆𝑥, (3.2)

respectively, with shape parameter 𝜆 > 0.
The new distribution, GOLLL, is defined by inserting Equation (3.1) on (2.2) and the cdf

of the distribution is, as follows:

𝐹 (𝑦;𝛼, 𝜃, 𝜆) =

[︁
1 − 1+𝜆+𝜆𝑥

1+𝜆
e−𝜆𝑥

]︁𝛼𝜃

[︁
1 − 1+𝜆+𝜆𝑥

1+𝜆
e−𝜆𝑥

]︁𝛼𝜃
+
[︂
1 −

(︁
1 − 1+𝜆+𝜆𝑥

1+𝜆
e−𝜆𝑥

)︁𝜃
]︂𝛼 . (3.3)

Let 𝑌 ∼ GOLLL(𝛼, 𝜃, 𝜆) be a rv having cdf (3.3). By differentiating it, the pdf of 𝑌
reduces to:
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𝑓(𝑦;𝛼, 𝜃, 𝜆) =
𝛼 𝜃 𝜆2

(1+𝜆)(1 + 𝑥)e−𝜆𝑥
[︁
1 − 1+𝜆+𝜆𝑥

1+𝜆
𝑒−𝜆𝑥

]︁𝛼𝜃−1
[︂
1 −

(︁
1 − 1+𝜆+𝜆𝑥

1+𝜆
e−𝜆𝑥

)︁𝜃
]︂𝛼−1

{︂[︁
1 − 1+𝜆+𝜆𝑥

1+𝜆
e−𝜆𝑥

]︁𝛼𝜃
+
[︂
1 −

(︁
1 − 1+𝜆+𝜆𝑥

1+𝜆
e−𝜆𝑥

)︁𝜃
]︂𝛼}︂2 .

(3.4)
Its hrf is easily found substituting Equation (3.2) and (3.1) into Equation 2.4, as:

𝜏(𝑦; 𝛼, 𝜃, 𝜆) =
𝛼𝜃

(︁
𝜆2

(1+𝜆) (1 + 𝑥)e−𝜆𝑥

)︁(︀
1 − 1+𝜆+𝜆𝑥

1+𝜆
e−𝜆𝑥

)︀𝛼𝜃−1[︁
1 −
(︀

1 − 1+𝜆+𝜆𝑥
1+𝜆

e−𝜆𝑥
)︀𝜃
]︁{︁(︀

1 − 1+𝜆+𝜆𝑥
1+𝜆

e−𝜆𝑥
)︀𝛼𝜃

+ [1 −
(︀

1 − 1+𝜆+𝜆𝑥
1+𝜆

e−𝜆𝑥
)︀𝜃

]𝛼
}︁ . (3.5)

The special models of the GOLLL distribution, which demonstrate the broad applicability
of the new class for fitting data throughout a range of distributions, are listed in Table 2.

Table 2 – Submodels associated to the GOLLL distribution.

𝛼 𝜃 𝜆 Submodel
- 1 - Odd log-logistic Lindley (OLLL) distribution (OZEL MORAD ALIZADEH; CANCHO, 2017)
1 - - Exponentiated-Lindley (Exp-L) distribution (NADARAJAH; BAKOUCH; TAHMASBI, 2011)
1 1 - Lindley (L) distribution.

Plots of the pdf and the hrf of 𝑌 for chosen parameters are shown in Figures 1 and 2. The
versatility of the GOLLL distribution in generating a wide range of hazard shapes is one of its
most notable features, as presented by the extra shape parameters.

Figure 2 displays the new hrf model’s inverse J-shape, increasing-decreasing, increasing-
decreasing and other patterns and shapes. This is an improvement over the increasing Lindley
hrf form. This versatility makes the model an effective tool for modeling varied data sets with
different kinds of hazard rate patterns.

0

1

2

3

4

0.00 0.25 0.50 0.75 1.00
y

f(y
)

(θ,λ) = (2.5,4.5)

α = 0.8
α = 1.2
α = 1.6
α = 2.2
α = 2.8

0.0

0.5

1.0

0 1 2 3
y

f(y
)

(α,λ) = (1.15,0.85)

θ = 0.7
θ = 0.8
θ = 0.9
θ = 1
θ = 1.1

0.00

0.01

0.02

0.03

0 50 100 150 200
y

f(y
)

(α,θ) = (0.25,10)

λ = 0.09
λ = 0.11
λ = 0.13
λ = 0.15
λ = 0.17

(a) (b) (c)

Figure 1 – GOLLL pdf for selected values.
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Figure 2 – GOLLL hrf for selected values.

3.3 MAIN PROPERTIES

There are no mathematical closed-form properties of the GOLLL distribution. Therefore,
utilizing the linear representation of Equation (2.5), the pdf of 𝑌 can be expressed, as:

𝑓(𝑦;𝛼, 𝜃, 𝜆) =
∞∑︁

𝑘=0
𝑏𝑘ℎ𝑘+1(𝑦;𝜆), (3.6)

where ℎ𝑘+1(𝑦;𝜆) is the Exp-L distribution with power parameter 𝑘 + 1 defined by:

ℎ𝑘+1(𝑦;𝜆) = (𝑘 + 1)
[︃

𝜆2

(1 + 𝜆)(1 + 𝑥)e−𝜆𝑥

]︃ [︃
𝜆2

(1 + 𝜆)(1 + 𝑥)e−𝜆𝑥

]︃𝑘

.

Thus, the GOLLL properties is obtained in a straightforward way by utilizing Exp-L pro-
perties, see (NADARAJAH; BAKOUCH; TAHMASBI, 2011).

3.3.1 Quantile function

The qf of 𝑌 can be obtained from Equation (2.6), as:

𝑄(𝑢) = −1 − 1
𝜆

− 1
𝜆
𝑊−1[(1 + 𝜆)(𝜀𝛼,𝜃(𝑢) − 1)e−1−𝜆], (3.7)

where 𝑊−1(·) denotes the negative branch of the Lambert W function3.
Figure 3 displays Galton’s skewness and Moors’ kurtosis varying 𝛼 and 𝜃, with 𝜆 = 5.25.

These plots highlight the impact of both parameters on the distribution shape. When both
parameters 𝛼 and 𝜃 increase, the skewness and kurtosis measures drop to a minimum region.
3 <https://mathworld.wolfram.com/LambertW-Function.html>

https://mathworld.wolfram.com/LambertW-Function.html
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(a) (b)

Figure 3 – GOLLL distribution. (a) Galton’s skewness. (b) Moors’ kurtosis.

3.3.2 Moments

The moments of the GOLLL distribution are obtainable considering the Exp-L distribution
in Equation (2.7).

Theorem 1. The 𝑛th ordinary moment of 𝑌 is given by:

𝜇′
𝑛 = E(𝑌 𝑛) =

∞∑︁
𝑘=0

(𝑘 + 1)𝜆2

1 + 𝜆
𝐾(𝑘 + 1, 𝜆, 𝑛, 𝜆) 𝑏𝑘, (3.8)

where

𝐾(𝑎, 𝑏, 𝑐, 𝛿) =
∞∑︁

𝑖=0

𝑖∑︁
𝑗=0

𝑗+1∑︁
𝑙=0

(︃
𝑎− 1
𝑖

)︃(︃
𝑖

𝑗

)︃(︃
𝑗 + 1
𝑙

)︃
(−1)𝑖 𝑏𝑗 Γ(1 + 𝑙 + 𝑐)
(1 + 𝑏)𝑖 (𝑏𝑖+ 𝛿)1+𝑐+𝑙

.

Proof. The proof is straightforward by applying Equation (2.5) and using the Exp-L moments,
see (NADARAJAH; BAKOUCH; TAHMASBI, 2011).

3.3.3 Generating function

The mgf of the GOLLL distribution is computed considering the gf of the Exp-L distribution
in Equation (2.8).

Theorem 2. The mgf of the GOLLL density can be expressed, as:

𝑀𝑌 (𝑡) =
∞∑︁

𝑘=0

(𝑘 + 1)𝜆2

1 + 𝜆
𝐾(𝑘 + 1, 𝜆, 0, 𝜆− 𝑡) 𝑏𝑘, for 𝑡 < 𝜆.
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Proof. The proof is straightforward applying the Theorem (2.5) and using the mgf of the Exp-
L, see (NADARAJAH; BAKOUCH; TAHMASBI, 2011) and (RANJBAR; ALIZADEH; ALTUN, 2019).

3.3.4 Estimation

Let 𝑦1, . . . , 𝑦𝑛 be a random sample from 𝑌 ∼ GOLLL(𝛼, 𝜃, 𝜆). For the parameter vector
𝜓 = (𝛼, 𝜃, 𝜆)⊤, the log-likelihood function is provided by:

𝑙𝑛(𝜓) = 𝑛 log(𝛼𝜃) +
𝑛∑︁

𝑖=1
log

[︃
𝜆2

(1 + 𝜆)(1 + 𝑦𝑖)e−𝜆𝑦𝑖

]︃
+ (𝛼𝜃 − 1)

𝑛∑︁
𝑖=1

log
[︂
1 − 1 + 𝜆 + 𝜆𝑦𝑖

1 + 𝜆
e−𝜆𝑦𝑖

]︂

+ (𝛼 − 1)
𝑛∑︁

𝑖=1
log

[︃
1 −

(︂
1 − 1 + 𝜆 + 𝜆𝑦𝑖

1 + 𝜆
e−𝜆𝑦𝑖

)︂𝜃
]︃

− 2
𝑛∑︁

𝑖=1
log

{︃(︂
1 − 1 + 𝜆 + 𝜆𝑦𝑖

1 + 𝜆
e−𝜆𝑦𝑖

)︂𝛼𝜃

+
[︃
1 −

(︂
1 − 1 + 𝜆 + 𝜆𝑦𝑖

1 + 𝜆
e−𝜆𝑖𝑦𝑖

)︂𝜃
]︃𝛼}︃

.

(3.9)
For simplicity, let

𝐴𝑖 = 𝐴𝑖(𝜆) =
(︃

1 − 1 + 𝜆+ 𝜆𝑦𝑖

1 + 𝜆
e−𝜆𝑦𝑖

)︃
.

Then, the components of the score vector are

𝑈𝛼 = 𝑛

𝛼
+ 𝜃

𝑛∑︁
𝑖=1

log(𝐴𝑖) +
𝑛∑︁

𝑖=1
log

(︁
1 − 𝐴𝑖

𝜃
)︁

− 2
𝑛∑︁

𝑖=1

𝜃 log(𝐴𝑖)𝐴𝑖
𝛼𝜃 + (1 − 𝐴𝑖

𝜃)𝛼 log(1 − 𝐴𝑖
𝜃)

𝐴𝑖
𝛼𝜃 + (1 − 𝐴𝑖

𝜃)𝛼
,

𝑈𝜃 = 𝑛

𝜃
+ 𝛼

𝑛∑︁
𝑖=1

log(𝐴𝑖) − (𝛼− 1)
𝑛∑︁

𝑖=1

𝐴𝑖
𝜃 log(𝐴𝑖)
1 − 𝐴𝑖

𝜃

+
𝑛∑︁

𝑖=1

𝛼𝐴𝑖
𝛼𝜃 log(𝐴𝑖) + (1 − 𝐴𝑖

𝛼)𝜃 log(1 − 𝐴𝑖
𝛼)

𝐴𝑖
𝑖𝛼𝜃 + (1 − 𝐴𝑖

𝛼)𝜃

and

𝑈𝜆 = 𝑛

(︃
𝜆+ 2
𝜆2 + 𝜆

)︃
−

𝑛∑︁
𝑖=1

𝑦𝑖 − (𝛼𝜃 − 1)
𝑛∑︁

𝑖=1

𝜆𝑦𝑖(2 + 𝜆+ 𝑦𝑖 + 𝜆𝑦𝑖)
(1 + 𝜆)[1 + 𝜆− 𝑒𝜆𝑦𝑖(1 + 𝜆) + 𝜆𝑦𝑖]

.

Setting the score equations 𝑈𝛼 = 𝑈𝜃 = 𝑈𝜆 = 0, the MLE of 𝜓 can be found using a
Newton-Raphson type algorithm. Alternatively, the optim routine can be used to numerically
maximize Equation (3.9).
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3.3.5 Simulation study

To assess the accuracy of the estimators, 1, 000 samples of sizes 50, 150, 300, 500, 750,

and 1, 000 are generated under two scenarios: 𝜓 = (0.50, 0.58, 0.77)⊤ for scenario 1, and
𝜓 = (0.72, 0.80, 0.95)⊤ for scenario 2. For every sample size, for 𝜖 = (𝛼, 𝜃, 𝜆), the AEs,
biases and MSEs are reported in Table 3.

Table 3 – Simulations results for GOLLL distribution.

Scenario 1

Par n = 50 n = 150 n = 300
AE Bias MSE AE Bias MSE AE Bias MSE

𝛼 0.525 0.025 0.157 0.527 0.027 0.064 0.504 0.004 0.030
𝜃 1.059 0.479 1.002 0.733 0.153 0.212 0.679 0.099 0.102
𝜆 1.203 0.433 0.919 0.913 0.143 0.258 0.861 0.091 0.125

Par n = 500 n = 750 n = 1000
AE Bias MSE AE Bias MSE AE Bias MSE

𝛼 0.499 -0.001 0.018 0.506 0.006 0.012 0.508 0.008 0.009
𝜃 0.644 0.064 0.051 0.611 0.031 0.029 0.597 0.017 0.020
𝜆 0.833 0.063 0.068 0.798 0.028 0.041 0.784 0.014 0.029

Scenario 2

Par n = 50 n = 150 n = 300
AE Bias MSE AE Bias MSE AE Bias MSE

𝛼 0.936 0.186 0.794 0.859 0.109 0.289 0.803 0.053 0.105
𝜃 1.541 0.721 2.924 1,057 0.237 0.516 0.922 0.102 0.189
𝜆 1.296 0.346 0.968 1.073 0.123 0.313 1.000 0.050 0.142

Par n = 500 n = 750 n = 1000
AE Bias MSE AE Bias MSE AE Bias MSE

𝛼 0.794 0.044 0.067 0.772 0.022 0.039 0.772 0.011 0.013
𝜃 0.876 0.056 0.111 0.867 0.047 0.074 0.844 0.028 0.043
𝜆 0.973 0.023 0.092 0.972 0.022 0.062 0.958 0.028 0.087

The consistency criteria is held by the results, which show that the AEs converge to the
true parameters and that the biases and MSEs decrease as sample size increases. The results
for scenarios 1 and 2, for all parameter estimates obtained at 𝑛 = 50, are superestimates,
indicating sensitivity to specific values and sample sizes. Nevertheless, when 𝑛 increases, the
estimatives approach real values.
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3.4 THE GOLLL REGRESSION MODEL

The systematic component of the GOLLL regression model takes into account the fact
that the parameter 𝜆 in Equation (3.4) varies across observations (𝑖 = 1, . . . , 𝑛), as:

𝜆𝑖 = exp(𝑥⊤
𝑖 𝛽), (3.10)

where is a twice continuously differentiable log-linear link function and 𝛽 = (𝛽1, · · · , 𝛽𝑝)⊤ is the
𝑝-dimensional parameter vector associated with the explanatory variables 𝑥⊤

𝑖 = (𝑥𝑖1, · · · , 𝑥𝑖𝑝).

3.4.1 Estimation

The components of the score vector of 𝑈𝛼 and 𝑈𝜃 are the same Equations presented in
Subsection (3.3.4) and the score component of the vector parameter 𝜆𝑖 is defined to add the
regression part, as follows:

𝑈𝜆𝑖
=

∞∑︁
𝑖=1

𝜕𝛽𝑔(𝑥𝑖;𝜆𝑖)
𝑔(𝑥𝑖;𝜆𝑖)

+ (𝛼𝜃 − 1)
∞∑︁

𝑖=1

𝜕𝛽𝐺(𝑥𝑖;𝜆𝑖)
𝐺(𝑥𝑖;𝜆𝑖)

+ 𝜃(1 − 𝛼)
∞∑︁

𝑖=1

𝜕𝛽𝐺(𝑥𝑖;𝜆𝑖)𝐺(𝑥𝑖;𝜆𝑖)𝜃−1

1 −𝐺(𝑥𝑖;𝜆𝑖)𝜃

− 2
∞∑︁

𝑖=1
𝜕𝛽𝐺(𝑥𝑖;𝜆𝑖)

𝐺(𝑥𝑖;𝜆𝑖)𝛼𝜃−1 −𝐺(𝑥𝑖;𝜆𝑖)𝜃−1[1 −𝐺(𝑥𝑖;𝜆𝑖)𝜃]𝛼−1

𝐺(𝑥𝑖;𝜆𝑖)𝛼𝜃 + [1 −𝐺(𝑥𝑖;𝜆𝑖)𝜃]𝛼 ,

where 𝜕𝛽𝑔(𝑥𝑖;𝜆𝑖) = 𝜕𝜆𝑖
𝑔(𝑥𝑖;𝜆𝑖)𝜕𝛽𝜆𝑖(𝑥𝑖;𝛽) and 𝜕𝛽𝐺(𝑥𝑖;𝜆𝑖) = 𝜕𝜆𝑖

𝐺(𝑥𝑖;𝜆𝑖)𝜕𝛽𝜆𝑖(𝑥𝑖;𝛽) de-
notes the derivatives of the parameter 𝜆𝑖 using the chain rule.

The MLE 𝜓 of 𝜓 of the regression model is calculated setting the score equations 𝑈𝛼 =

𝑈𝜃 = 𝑈𝜆𝑖
= 0 using an iterative method algorithm to find roots or using the optim routine.

3.4.2 Simulation study

The accuracy of the MLEs in the GOLLL regression model can be assessed using the mea-
sures: biases, MSEs, ALs and CPs. Equation (3.7) is used to generate one-thousand samples
of sizes 𝑛 = 25, 55, . . . , 1, 000 by setting 𝛼 = 0.75, 𝜃 = 1.85, 𝛽0 = 2.75 and 𝛽1 = 3.40.
The Monte Carlo simulation offers a suitable method for examining the model’s parameters,
allowing researchers to investigate how a distribution behaves in different scenarios.

Figures 4-10 report how the measures evaluate with the sample size. The biases, MSEs and
ALs decay toward zero when sample size increases. It is also possible to detect, in the biases
plots, that the parameters 𝛽0 and 𝛽1 were underestimated due to the model’s complexity or
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numerical issues, yet, as 𝑛 rises, convergence is checked. Moreover, the CPs approach the
value of 0.95 when 𝑛 increases. These findings provide strong evidence of the consistency of
the MLEs.
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Figure 4 – Biases versus sample size from GOLLL regression model.
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Figure 5 – Biases versus sample size from GOLLL regression model.
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Figure 6 – MSEs versus sample size from GOLLL regression model.
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Figure 7 – MSEs versus sample size from GOLLL regression model.
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Figure 8 – ALs versus sample size from GOLLL regression model.



47

0 200 400 600 800

1.
0

1.
5

2.
0

2.
5

n

A
L 

β 0

0 200 400 600 800

0.
4

0.
6

0.
8

1.
0

1.
2

n

A
L 

β 1

(a) (b)

Figure 9 – ALs versus sample size from GOLLL regression model.
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Figure 10 – CPs versus sample size from GOLLL regression model.

3.5 APPLICATION: TEXAS COUNTIES COVID-19 VACCINATION RATE DATA

Table 4 shows alternate distributions of well-known generators, which were compared to the
GOLLL model and the nested models. The distributions are provided (for 𝑥 > 0), respectively:

𝐹BL(𝑥) = 𝐼𝐺(𝑥)(𝑎, 𝑏) = 1
𝐵(𝑎, 𝑏)

∫︁ 𝐺(𝑥)

0
𝑤𝑎−1(1 − 𝑤)𝑏−1𝑑𝑤,
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Table 4 – Competitive distributions compared to the GOLLL distribution.

Distribution Reference
Beta-Lindley (BL) (MEROVCI; SHARMA et al., 2014)

Kumaraswamy -Lindley (KwL) (ÇAKMAKYAPAN; KADILAR, 2014)
Gamma-Lindley (GL) (ZEGHDOUDI; NEDJAR, 2016)
Weibull-Lindley (WL) (ASGHARZADEH; NADARAJAH; SHARAFI, 2016)

𝐹KwL(𝑥) = 1 − [1 −𝐺(𝑥)𝑎]𝑏 ,

𝐹GL(𝑥) = 𝛾{𝑎,− log[1 −𝐺(𝑥)]/𝑏}
Γ(𝑎)

and
𝐹WL(𝑥) = 1 − exp[𝑎𝐺(𝑥)],

where the parameters of all distributions are positive real numbers, 𝐺(𝑥) is defined in Equation
(3.1) and 𝐼𝐺(𝑥)(𝑎, 𝑏) = 1

𝐵(𝑎,𝑏)
∫︀𝐺(𝑥)

0 𝑤𝑎−1(1 − 𝑤)𝑏−1𝑑𝑤 is the incomplete beta function. For
all fitted models, the goodness.fit function from AdequacyModel, using the BFGS method
computes the MLEs (SEs in parentheses).

3.5.1 A data set definition

An application is presented using the completed primary series county-level COVID-19
immunization rates in the state of Texas, US, to illustrate the utility of the novel GOLLL
regression model over competing models.

Texas is used because it has the largest number of counties of all states and has a large
national impact on industries such as oil, coal, natural gas, nuclear energy and is the main
generator of wind energy in US. Moreover, the state’s public health system throughout the
pandemic mitigating the spread of COVID-19 in its early stages using local authorities to
enforce stay-at-home orders, adding to work of the state’s health care personnel. In contrast,
the pandemic showed the underfunding of local, state and federal health systems4.

The proposed model has advantages and limitations over unitary models. The Lindley
distribution used as a baseline has certain interesting characteristics, including flexibility in
modeling asymmetric data, simplicity which allows it easy to apply, versatility for count data,
and usefulness in survival models, among others. Among the issues that can arise while applying
the model are problems with the results’ interpretability, forecasts outside the range of the
4 <https://www.texastribune.org/2021/06/11/watch-coronavirus-1623357664/>

https://www.texastribune.org/2021/06/11/watch-coronavirus-1623357664/
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response variable, modeling bias, and model sensitivity, among others. Despite this, the model
captures the impact of the covariates on the response variable very effectively.

The data set refers to 254 percentages of the population in counties with a completed
vaccination (aged adjust) to COVID-19 extracted from CDC5 (accessed on 22nd February
2023). To assess the accuracy of the new model, more research utilizing different data sets
(countries, states, and nations) ought to be conducted.

The explanatory variables were extracted from County Health Rankings6 (data from 2020)
(accessed on 22nd February 2023) are outlined (for 𝑖 = 1, . . . , 254) below:

1. 𝑦𝑖: Population rate with complete primary series of COVID-19 vaccination (VR) (re-
sponse variable);

2. 𝑥𝑖1: Total number of hospitals reporting vaccination (HP);

3. 𝑥𝑖2: Poverty rate (PR) (percentage of individuals with income below the poverty line);

4. 𝑥𝑖3: Metropolitan status (MS) (0 = metropolitan, 1 = non-metropolitan);

5. 𝑥𝑖4: High school completion rate (HR) (proportion of individuals aged 25 and above who
have completed high school or its equivalent);

6. 𝑥𝑖5: Broadband access (BA) (percentage of households that have access to broadband
internet);

7. 𝑥𝑖6: Heart disease rate (HT) (percentage of individuals that have chronic heart disease).

Table 5 provides descriptive statistics for the data set. The vaccination rate follows a right-
skewed distribution with heavy tails, showed in Figure 11. Some hypotheses can be formulated,
as follows:

• The lower VR mean (0.483), compared to the total population completed primary vacci-
nated in the US (0.6957), is explained by some factors, such as the social vulnerability of
some counties in the State (MOFLEH et al., 2022), demographics and psychosocial vari-
ables (ethnicity, education, gender identification, age, trust, fear, etc) (LUNINGHAM et

al., 2023) and mainly vaccine hesitancy among the population and healthcare personality
(BERRY; ADAMS; VYTLA, 2024) and (HOSEK et al., 2022);

5 <https://covid.cdc.gov/covid-data-tracker/#datatracker-home>
6 <https://www.countyhealthrankings.org/>
7 <https://covid.cdc.gov/covid-data-tracker/#vaccinations_vacc-people-booster-percent-pop5>

https://covid.cdc.gov/covid-data-tracker/#datatracker-home
https://www.countyhealthrankings.org/
https://covid.cdc.gov/covid-data-tracker/#vaccinations_vacc-people-booster-percent-pop5
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Table 5 – Descriptive statistics of COVID-19 completed primary vaccination rates data.

Variable Statistics
Mean Median SD Skewness Kurtosis Min. Max.

VR 0.483 0.452 0.132 1.485 6.021 0.189 0.950
HP 1.717 1.000 4.282 6.666 56.447 0.000 45.000
PR 0.161 0.152 0.061 1.022 4.878 0.026 0.395
HR 0.818 0.830 0.085 -2.056 12.509 0.220 0.970
BA 0.769 0.770 0.084 -0.388 3.301 0.480 0.970
HT 0.082 0.082 0.017 0.248 2.906 0.045 0.134

• The HP could result in increased VR. Further investigations is required;

• Lower vaccination rates are expected in high-poverty communities. COVID-19 increased
poverty and inequality worldwide (BUHEJI et al., 2020; DEATON, 2021). Individuals living
in poverty may lack access to reliable transportation, face barriers to accessing health-
care facilities and have limited resources for paying out-of-pocket costs associated with
vaccination (HYDER et al., 2021; PAROLIN; LEE, 2022). The study of Liao (2021) revealed
the lack of access to the COVID-19 vaccine in the lowest county’s poverty rates across
the American state of Illinois. Another study, (OLIVEIRA et al., 2021), showed a strong
negative correlation with poverty and vaccine coverage in the 189 countries’ research.
This can result in lower vaccination rates among populations living in poverty;

• Lower VR are expected in non-metropolitan areas. The differences in vaccination rates
between urban and rural communities are likely driven by various factors, such as dif-
ferences in access to healthcare resources, vaccine distribution challenges and mainly
vaccine hesitancy (MURTHY et al., 2021). Patterns in COVID-19 vaccination coverage by
urbanity are addressed by Barry et al. (2021), which indicated lower vaccination rates in
rural than urban area. Further, disparities in COVID-19 vaccination coverage between
urban and rural counties and explained them by educational attainment, healthcare in-
frastructure and Trump vote share (SUN; MONNAT, 2022);

• Furthermore, higher HR may indicate a better comprehension of the need of immu-
nization. Thus, counties with higher high school graduation rates tend to have higher
vaccination rates as well, which can be attributed to more access to accurate informa-
tion regarding vaccines to access better healthcare and vaccination services (KHAIRAT;

ZOU; ADLER-MILSTEIN, 2022). Other studies, (MALIK et al., 2020; AGARWAL et al., 2021;
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COUGHENOUR et al., 2021), revealed that high school is a key difference in coverage,
access and hesitancy vaccination;

• Locations with a higher BA indicate greater access to vaccination-related information.
Websites and social media platforms have been used to disseminate information about
vaccine availability, eligibility and safety. The study’s results suggest that counties with
greater access to broadcast media have a higher COVID-19 vaccination rate, which high-
lights the disparities in access to the internet and technology among some communities.
This finding is consistent with other research (GOEL; NELSON, 2021). Alternative studies,
showed that lack of internet access is a barrier to vaccination. In New York City and
some counties in North Carolina, the COVID-19 vaccine hesitancy increases if there is
difficulty accessing the internet (MICHAELS; PIRANI; CARRASCAL, 2021; DOHERTY et al.,
2021);

• Finally, counties with higher HT may prioritize immunization. Several studies (CLERKIN et

al., 2020; TIPIRNENI et al., 2022; GUAN et al., 2020) have demonstrated the heightened risk
of individuals with chronic heart disease contracting and experiencing severe symptoms
from COVID-19, as well as increased rates of hospitalization and mortality. For these
reasons, many states in the US have implemented targeted outreach efforts to ensure
that these populations have access to the vaccine. Hence, the study’s results indicate
that counties with high rates of chronic heart disease have a correspondingly higher
rate of vaccination. This finding highlights the importance of the government’s focus
on prioritizing at-risk populations (OSUAGWU et al., 2022). Subsequent studies, (CHOI;

CHEONG, 2021; YELIN et al., 2021), illustrated the efficacy and safety of the COVID-19
vaccine based on the presence of comorbidities, including heart disease.

3.5.2 Results

First, the analysis solely models the response variable using the nested models and BL,
KwL, GL and WL distributions. Table 6 reports the MLEs, SEs and GoF statistics (with the
p-values of KS) for the fitted distributions to the COVID-19 vaccination rate data. Based on
these measures, the GOLLL distribution is the best fit for the available data.
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Figure 11 – Histogram and empirical density of COVID-19 completed primary vaccination rates data.

Table 6 – Findings from the fitted models of COVID-19 completed primary vaccination rates data.

Model Parameters 𝑊 * 𝐴* KS

GOLLL(𝛼, 𝜃, 𝜆)
1.490 18.003 7.814 0.306 2.076 0.059

(0.0002) (0.0001) (0.0003) (0.338)

OLLL(𝛼, 𝜆) 4.985 1 2.084 0.444 2.774 0.067
(0.264) (-) (0.025) (0.202)

EL(𝜃, 𝜆) 1 35.255 9.127 0.321 2.275 0.097
(-) (5.861) (0.400) (0.015)

L(𝜆) 1 1 2.640 0.702 4.480 0.450
(-) (-) (0.136) (<0.0001)

BL(𝑎, 𝑏, 𝜆) 30.015 1.810 7.245 0.397 2.696 0.079
(7.324) (0.503) (1.155) (0.082)

KwL(𝑎, 𝑏, 𝜆) 20.113 2.156 6.676 0.493 3.235 0.081
(4.372) (0.514) (0.764) (0.069)

GL(𝑎, 𝑏, 𝜆) 7.807 0.005 0.307 0.793 5.013 0.126
(0.751) (<0.001) (0.022) (<0.0001)

WL(𝑎, 𝜆) 121.307 0.124 0.815 5.140 0.436
(44.059) (0.024) (<0.0001)

Figure 12(a) illustrates the histogram and fitted densities of the two best models. The
estimated cdfs of these models are also shown in Figure 12(b) The Figures corroborate the
findings and the proposed distribution fits the current data well.

Three LR tests compare the GOLLL distribution with its nested models. The findings in
Table 7 indicate that the inclusion of extra parameters is significant for accurately modeling
the current data.
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Figure 12 – Fitted models of COVID-19 completed primary vaccination rates data. (a) Histogram and esti-
mated pdfs. (b) Empirical and estimated cdfs.

Table 7 – LR tests of the GOLLL distribution.

Models Statistic 𝑤 𝑝-value
GOLLL vs L 498.805 < 0.0001
GOLLL vs EL 15.127 0.0001
GOLLL vs OLLL 5.194 0.0227

Next, utilizing the new regression model proposed, the systematic component (for 𝑖 =

1, . . . , 254) is considered:

𝜆𝑖 = exp
(︁
𝛽0 + 𝛽1 𝑥𝑖1 + 𝛽2 𝑥𝑖2 + 𝛽3 𝑥𝑖3 + 𝛽4 𝑥𝑖4 + 𝛽5 𝑥𝑖5 + 𝛽6 𝑥𝑖6

)︁
. (3.11)

The quality of the fit of the GOLLL regression model is then evaluated. Figure 13 shows
the LD and GCD measures for identifying possibly influential observations. They demonstrate
that the 83rd, 151st and 176th observations (corresponding to the counties listed below) may
be influential.

• 83rd: Gaines county with VR: 0.222, HP: 1, PR: 0.142, MS: 0, HR: 0.62, BA: 0.80 and
HT: 0.063;

• 151st: Loving county with VR: 0.189, HP: 0, PR: 0.186, MS: 0, HR: 0.97, BA: 0.97 and
HT: 0.05;

• 176th: Newton county with VR: 0.251, HP: 0, PR: 0.206, MS: 1, HR: 0.81, BA: 0.75

and HT: 0.105.
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Gaines8 and Loving9 are the two counties with medium average vulnerability among the
three potentially influential observations. This is explained by the extremely high health system
challenges, as well as the potential impact of minorities or non-English speakers on the vacci-
nation rate and model. The final one, Newton10 county, has a high vulnerability level, which
is explained by extremely high rates of unemployment and low income as well as significant
health system challenges that may also affect the model and the immunization rate.
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Figure 13 – The GOLLL regression model. (a) LD. (b) GCD.

Furthermore, the plot of the deviance residuals in Figure 14(a) indicates that they are
distributed randomly within the bands. The normal probability plot with simulated envelope
in Figure 14(b) demonstrates the model’s ability to fit the data set. As a result, the GOLLL
regression model provides a good fit and the impacts of potentially influential observations on
the regression model are insignificant.

The MLEs, SEs and 𝑝-values for the fitted GOLLL regression model to the current data
are reported in Table 8.
8 <https://covidactnow.org/us/texas-tx/county/gaines_county/?s=49703715>
9 <https://covidactnow.org/us/texas-tx/county/loving_county/?s=49703715>
10 <https://covidactnow.org/us/texas-tx/county/newton_county/?s=49703715>

https://covidactnow.org/us/texas-tx/county/gaines_county/?s=49703715
https://covidactnow.org/us/texas-tx/county/loving_county/?s=49703715
https://covidactnow.org/us/texas-tx/county/newton_county/?s=49703715
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Figure 14 – The GOLLL regression model. (a) Deviance residual index. (b) Simulated envelope.

Table 8 – Fitted GOLLL regression of COVID-19 completed primary vaccination rates data.

Parameter Estimate SE 𝑝-value
𝛽0 1.017 0.347 0.004
𝛽1 -0.010 0.003 0.003
𝛽2 -0.524 0.243 0.032
𝛽3 -0.149 0.031 < 0.001
𝛽4 0.408 0.197 0.039
𝛽5 0.637 0.223 0.005
𝛽6 2.275 0.995 0.023

3.5.3 Discussion

The model checks reveal that the GOLLL regression model is suitable to explain the
vaccination rates in Texas counties. From the parameter estimates reported in Table 8, the
GOLLL regression model becomes:

𝜆̂𝑖 = exp
(︁
1.017−0.010𝑥𝑖1 −0.524𝑥𝑖2 −0.149𝑥𝑖3 +0.408𝑥𝑖4 +0.637𝑥𝑖5 +2.275𝑥𝑖6

)︁
. (3.12)

Several facts can be drawn from Equation (3.12). For each covariate, the study reveals
findings that indicate the importance of considering this model for future applications with
diverse other vaccination data.

Interpretations for systematic structure 𝜆

• All variables are statistically significant at a significance level of 5%;
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• The 𝛽1 shows a slight negative estimate. Less hospitals reporting immunization may
result in a decrease in the shape parameter as a result of the skewness of the baseline
distribution, which can pull the mean of vaccination rates towards lower values;

• The 𝛽2 and 𝛽3 of the variables PR and MS, respectively, are significant and their estimate
is negative. Counties with a high poverty rate and non-metropolitan locations could lead
to a decrease in shape and consequently in skewness, which shifts vaccination rates
downward on average;

• The coefficients 𝛽4, 𝛽5, and 𝛽6 for HR, BA, and HT have positive estimates. Counties
with high rates of high school education, increased broadband access and a large per-
centage of heart disease patients might result in an increase in the shape of the baseline,
hence skewness, altering vaccination rates to mean towards higher levels.

3.6 CONCLUDING REMARKS

The Chapter introduced the generalized odd log-logistic Lindley distribution and proposed
the regression model with a shape systematic component to examine the factors determining
COVID-19 immunization rates. Some mathematical features of this model were presented,
the parameters were estimated using the maximum likelihood method and simulations were
performed to evaluate them. The parameters of the suggested regression model were tested
using Monte Carlo simulation, which revealed the estimators’ consistency. Diagnostic analysis
and deviance residuals confirmed the new model’s adequacy.

A county-level investigation of COVID-19 completed primary vaccination rates in Texas,
US, revealed notable findings. All of the variables were statistically significant at a level of
5%. The variables total number of hospitals reporting vaccination, percentage of individuals
with income below the poverty line, and metropolitan status of the counties all had negative
estimates, indicating an impact on the skewness of the baseline distribution that might push the
average vaccination rates lower. Furthermore, the proportion of individuals who have completed
high school, households rate that have access to broadband internet and the percentage of
individuals with chronic heart disease have positive estimates, indicating an impact on the
skewness that could displace the mean vaccination rates higher.

The new model showed that it was more flexible than some competitive models. Hence, it is
possible to conclude that the proposed model can provide better insights into the relationship
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between the explanatory variables and the response variable, serving as an alternative model
to evaluate other research and improve vaccination efforts.
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4 A INNOVATIVE EXPONENTIAL REGRESSION MODEL FOR EPIDEMIO-

LOGICAL DATA

RESUMO

A distribuição exponencial log-logística odd generalizada (QOSHJA; MUÇA, 2018) e (AFIFY

et al., 2021) é apresentada e um modelo de regressão com um componente estrutural de forma
é proposto para examinar os casos semanais de dengue no Distrito Federal do Brasil. Uma
revisão das propriedades matemáticas é fornecida, o método de máxima verossimilhança é
usado para estimar os parâmetros e, por meio de simulações de Monte Carlo, a precisão
dos estimadores é investigada. O ajuste do modelo é avaliado usando medidas de influência
global e análise de resíduos. O pressuposto de dependência temporal é relaxado para o período
de análise devido ao pequeno número de observações e análises do modelo. Para o cenário
temporal estudado, o modelo introduzido identificou os meses com impacto no parâmetro de
forma. Finalmente, são abordadas algumas interpretações e uma discussão fornece resultados
que ajudam a compreender melhor o conjunto de dados.

Palavras-chaves: Dengue. Dados epidemiológicos. Distribuição exponencial. Família log-
logística odd generalizada. Máxima verossimilhança. Modelo de regressão. Simulação.

ABSTRACT

The generalized odd log-logistic exponential distribution (QOSHJA; MUÇA, 2018) and
(AFIFY et al., 2021) is presented and a regression model with a structural shape component
is proposed to examine dengue fever weekly cases in the Federal District of Brazil. A review
of the mathematical properties is provided, the maximum likelihood method is used to esti-
mate the parameters, and, through Monte Carlo simulations, the accuracy of the estimators
is investigated. The model’s fit is assessed using global influence metrics and residual analysis.
The time dependency assumption is relaxed for the period of analysis due to the small num-
ber of observations and model analyses. For the time scenario studied, the introduced model
identified months that have an impact on the shape parameter. Finally, some interpretations
are addressed and a discussion provides results that help to better understand the data set.

Keywords: Dengue fever. Epidemiological data. Exponential distribution. Generalized odd
log-logistic family. Maximum likelihood. Regression model. Simulation.
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4.1 INTRODUCTION

Dengue fever represents a major challenge in epidemiology around the world and specially
in Brazil. Recurring epidemics happen in some endemic territories in Brazil. The uncontrollable
increase in the metropolitan population and the lack of information and control are factors that
are determinants of the occurrence of the disease and the burden on the healthcare system.
More than 100 countries have dengue fever as an endemic problem which affects millions of
people each year. One of the most important factors that contributes to the global spread of
the virus nowadays is the climate change that is growing up fast.

In this regard, many applications for generalized extreme value (GEV) distributions can be
found in epidemiological studies. Li et al. (2020) presented a review study on the relationship
between dengue fever and meteorological parameters, as well as a meta-analysis to investigate
the impact of ambient temperature and precipitation on dengue fever. Dengue cases counts
during outbreaks in Thailand were modeled using extreme value theory (EVT) (LIM; DICKENS;

COOK, 2020). A zero-inflated GEV regression model is used in an application using Vietnam
dengue data (DIOP; DEME; DIOP, 2021). The estimate of the risk of infection for the individuals
is based on the covariates of age and weight.

Likewise, Marani et al. (2021) presented a GEV approach to study the frequency and
intensity of extreme novel epidemics similar to COVID-19. As well, an extreme value statistics
to predict in real-time severe influenza epidemics is used (THOMAS; ROOTZÉN, 2022). Moreover,
a study investigate the extreme correlation between infectious illness outbreaks and crude oil
futures (LIN; ZHANG, 2022). Tian et al. (2022) estimated the disease burden of dengue in
endemic regions to study the influence pattern of socioeconomic factors. They recommend
allocating more resources to areas with high population expansion and urbanization.

Further, Lun et al. (2022) explored the characteristics and studied the temporal-spatial
cases of the overseas imported dengue fever in outbreak provinces of China. Sandeep et al.
(2023) studied myocarditis manifestations in dengue cases in a systematic review. In Oliveira-
Júnior et al. (2023), dengue fever cases in the Brazilian state of Alagoas were modeled monthly
using GEV distribution. The findings underline the significance of ongoing monitoring and
assistance in this area.

Therefore, the study is based on the dengue fever weekly cases of the epidemiological
weeks in 2022 in the Federal District of Brazil. A regression analysis is applied to study
extreme events (an epidemiological event that affects health centers and the economy) and
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the maximum likelihood method is used to estimate the parameters. The accuracy of the
estimators is confirmed by means of Monte Carlo simulations. Some local influence measures
are used, as are residual analyses, to validate the goodness-of-fitness of the proposed model.

Considering this, the Chapter presents a new regression model based on the generalized

odd log-logistic exponential (GOLLE) distribution (QOSHJA; MUÇA, 2018) and (AFIFY et al.,
2021). The GOLL-G class’s broad flexibility, which allows modeling its tails and assymetry,
combined with the exponential distribution, which is used in many EVT applications and has
a closed mathematical form, makes the novel regression a relevant model to apply in many
areas, as well as a potential application in extreme events.

This Chapter is organized as follows. Section 4.2 presents the GOLLE distribution (QOSHJA;

MUÇA, 2018) and (AFIFY et al., 2021). Section 4.3 exhibits the linear representation and some
of its mathematical features. Maximum likelihood estimation is discussed, as well as a Monte
Carlo simulation study to show the estimators’ consistency. In Section 4.4, a novel regression
model based on the GOLLE distribution, associating the covariates with the baseline shape
parameter, is introduced and simulations examine the behavior of the estimators. Section 4.5
demonstrates the usefulness of the new regression model using an epidemiological data set and
discusses some findings. Additionally, diagnostic and residual analyses are provided. Section
4.6 contains some final observations.

4.2 THE GOLLE DISTRIBUTION

The cdf and the pdf, respectively, describe the exponential distribution (for 𝑥 > 0), as:

𝐺(𝑥;𝜆) = 1 − e−𝜆𝑥 (4.1)

and
𝑔(𝑥;𝜆) = 𝜆e−𝜆𝑥, (4.2)

for shape parameter 𝜆 > 0.
The cdf and the pdf of the GOLLE distribution (QOSHJA; MUÇA, 2018) and (AFIFY et al.,

2021) are defined, respectively, as:

𝐹 (𝑦;𝛼, 𝜃, 𝜆) =

(︁
1 − e−𝜆𝑦

)︁𝛼𝜃

(1 − e−𝜆𝑦)𝛼𝜃 +
[︁
1 − (1 − e−𝜆𝑦)𝜃

]︁𝛼 (4.3)
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and

𝑓(𝑦;𝛼, 𝜃, 𝜆) =
𝛼 𝜃 𝜆 e−𝜆𝑦

(︁
1 − e−𝜆𝑦

)︁𝛼𝜃−1
[︂
1 −

(︁
1 − e−𝜆𝑦

)︁𝜃
]︂𝛼−1

{︁
(1 − e−𝜆𝑦)𝛼𝜃 +

[︁
1 − (1 − e−𝜆𝑦)𝜃

]︁𝛼}︁2 . (4.4)

The hrf can be obtained by substituting Equations (3.2) and (3.1) into Equation 2.4, as:

𝜏(𝑦;𝛼, 𝜃, 𝜆) =
𝛼𝜃
(︁
𝜆e−𝜆𝑥

)︁ (︁
1 − e−𝜆𝑥

)︁𝛼𝜃−1[︁
1 − (1 − e−𝜆𝑥)𝜃

]︁ {︁
(1 − e−𝜆𝑥)𝛼𝜃 + [1 − (1 − e−𝜆𝑥)𝜃]𝛼

}︁ . (4.5)

Here in the Table 9, the sub-models derived from Equation (4.4) are presented. Its ability to
handle data fitting across a variety of distributions highlights its adaptability and applicability.

Table 9 – Submodels associated to the GOLLE distribution.

𝛼 𝜃 𝜆 Submodel
- 1 - Odd log-logistic exponential (OLLE) distribution (GLEATON; LYNCH, 2006)
1 - - Exponentiated-exponential (Exp-E) distribution (GUPTA; KUNDU, 2001)
1 1 - Exponential (E) distribution

Plots of the hrf and the histograms of 𝑌 for chosen parameters are shown in Figures
15 and 16. The versatility of the GOLLE distribution in generating a wide range of hazard
shapes is one of its most notable features compared to the constant behavior over time of the
exponential hrf.

The inverse J-shape, increasing-decreasing, decreasing-increasing, bathtub and several
more shapes are shown in Figure 15. In comparison to other class of distributions, Figure
16, showed the model as a powerful tool for modeling non-normal data sets with a wide range
of histogram patterns (asymmetric, heavy tail, multimodal, etc).
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Figure 15 – GOLLE hrf for selected values.
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Figure 16 – GOLLE histogram. (a) GOLLE(0.15,73,2.50). (b) GOLLE(0.22,1.13,7.50). (c)
GOLLE(0.07,120.13,3.50).

4.3 MAIN PROPERTIES

This Section showed the GOLLE distribution’s linear representation of the density function,
the qf, moments and mgf, as described in (AFIFY et al., 2021).

Definition 1. The GOLLE density (4.4) can be represented linearly using exponential densities,

as:

𝑓(𝑦;𝛼, 𝜃, 𝜆) =
∞∑︁

𝑘,𝑚=0
𝑡𝑘,𝑚 𝑔(𝑦;𝜆*), (4.6)

with a shared parameter 𝜆* = 𝜆*(𝜆,𝑚) = 𝜆(𝑚+ 1) and 𝑡𝑘,𝑚 defined by the quantities below:

𝑡𝑘,𝑚 =
(−1)𝑚

(︁
𝑘
𝑚

)︁
(𝑚+ 1) 𝑏𝑘.

The Definition (1) indicates that numerous mathematical properties of the GOLLE distri-
bution can be obtained directly from those of the exponential distribution.

4.3.1 Quantile function

The qf of 𝑌 is simply found, as:

𝑄(𝑢) = − 1
𝜆

log[1 − 𝜀𝛼.𝜃(𝑢)]. (4.7)

Figure 17 displays Galton’s skewness and Moors’ kurtosis varying 𝛼 and 𝜃, with 𝜆 = 1.58.
The influence of both parameters on the distribution shape is shown in these plots. As the
parameters 𝛼 and 𝜃 increase, the skewness and kurtosis measures decrease to a minimal value.
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(a) (b)

Figure 17 – GOLLE distribution. (a) Galton’s skewness. (b) Moors’ kurtosis.

4.3.2 Moments

The moments of the GOLLE distribution are presented in (AFIFY et al., 2021).

Definition 2. The 𝑛th moment of the GOLLE distribution is defined by:

𝜇′
𝑛 = E(𝑌 𝑛) =

∞∑︁
𝑘,𝑚=0

𝑛!
𝜆*𝑛

𝑡𝑘,𝑚 =
∞∑︁

𝑘,𝑚=0

(−1)𝑚
(︁

𝑘
𝑚

)︁
[(𝑚+ 1)𝜆*]𝑛 𝑏𝑘.

4.3.3 Generation function

The gf of the GOLLE distribution is shown in (AFIFY et al., 2021).

Definition 3. The mgf of the GOLLE density can be expressed, as:

𝑀𝑌 (𝑡) =
∞∑︁

𝑘,𝑚=0

𝜆*

𝜆* − 𝑡
𝑡𝑘,𝑚 =

∞∑︁
𝑘,𝑚=0

(−1)𝑚
(︁

𝑘
𝑚

)︁
𝜆*

𝜆* − 𝑡
𝑏𝑘, for 𝑡 < 𝜆*.

4.3.4 Estimation

The MLEs of the GOLLE parameters vector 𝜓 = (𝛼, 𝜃, 𝜆)⊤ are calculated from a complete
sample 𝑦1, . . . , 𝑦𝑛 by maximizing:
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𝑙𝑛(𝜓) = 𝑛 log(𝛼𝜃𝜆) − 𝜆
𝑛∑︁

𝑖=1
𝑦𝑖 + (𝛼𝜃 − 1)

𝑛∑︁
𝑖=1

log(1 − e−𝜆𝑦𝑖) + (𝛼 − 1)
𝑛∑︁

𝑖=1
log

[︁
1 − (1 − e−𝜆𝑦𝑖)𝜃

]︁
− 2

𝑛∑︁
𝑖=1

log
{︁

(1 − e−𝜆𝑦𝑖)𝛼𝜃 +
[︁
1 − (1 − e−𝜆𝑦𝑖)𝜃

]︁𝛼}︁
.

(4.8)

Let’s consider
𝐴𝑖(𝜆) = 𝐴𝑖 = 1 − e𝜆𝑦𝑖 .

Therefore, the elements of the score vector can be formulated, as follows:

𝑈𝛼 = 𝑛

𝛼
+ 𝜃

𝑛∑︁
𝑖=1

log(𝐴𝑖) +
𝑛∑︁

𝑖=1
log

(︁
1 − 𝐴𝑖

𝜃
)︁

− 2
𝑛∑︁

𝑖=1

𝜃 log(𝐴𝑖)𝐴𝑖
𝛼𝜃 + (1 − 𝐴𝑖

𝜃)𝛼 log(1 − 𝐴𝑖
𝜃)

𝐴𝑖
𝛼𝜃 + (1 − 𝐴𝑖

𝜃)𝛼
,

𝑈𝜃 = 𝑛

𝜃
+ 𝛼

𝑛∑︁
𝑖=1

log(𝐴𝑖) − (𝛼− 1)
𝑛∑︁

𝑖=1

𝐴𝑖
𝜃 log(𝐴𝑖)
1 − 𝐴𝑖

𝜃

+
𝑛∑︁

𝑖=1

𝛼𝐴𝑖
𝛼𝜃 log(𝐴𝑖) + (1 − 𝐴𝑖

𝛼)𝜃 log(1 − 𝐴𝑖
𝛼)

𝐴𝑖
𝛼𝜃 + (1 − 𝐴𝑖

𝛼)𝜃

and

𝑈𝜆 = 𝑛

𝜆
−

𝑛∑︁
𝑖=1

𝑦𝑖 + (𝛼𝜃 − 1)
𝑛∑︁

𝑖=1

(1 − 𝐴𝑖)
𝐴𝑖

− 𝜃(𝛼− 1)
𝑛∑︁

𝑖=1

(1 − 𝐴𝑖)𝐴𝜃−1
𝑖

1 − 𝐴𝜃
𝑖

− 2𝛼𝜃
𝑛∑︁

𝑖=1

(1 − 𝐴𝑖)[𝐴𝛼𝜃−1
𝑖 − 𝐴𝜃−1

𝑖 (1 − 𝐴𝜃
𝑖 )𝛼−1]

𝐴𝛼𝜃
𝑖 + (1 − 𝐴𝜃

𝑖 )𝛼
.

Using a Newton-Raphson type method and setting the score equations 𝑈𝛼 = 𝑈𝜃 = 𝑈𝜆 = 0,
the MLEs are calculated. The optim procedure can also be used to numerically maximize
Equation (4.8).

4.3.5 Simulation study

In two scenarios, Monte Carlo simulations generated by 1, 000 samples of varied sizes
of the GOLLE distribution are utilized to assess the accuracy of MLEs. For each sample
size, 𝑛 = {50, 100, 200, 400, 800, 1, 000}, the AEs, ABs and RMSEs are computed, for each
𝜖 = (𝛼, 𝜃, 𝜆).
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Table 10 – Simulations results for GOLLE distribution

scenario 1 - GOLLE(0.23,1.25,0.89)

Par n=50 n =150 n = 300
AE AB RMSE AE AB RMSE AE AB RMSE

𝛼 0.274 0.044 0.207 0.266 0.036 0.141 0.249 0.019 0.088
𝜃 1.580 0.330 0.909 1.357 0.107 0.618 1.292 0.042 0.417
𝜆 1.076 0.186 0.603 0.932 0.042 0.399 0.908 0.0018 0.281

Par n = 500 n = 750 n = 1000
𝛼 0.239 0.009 0.060 0.234 0.008 0.041 0.235 0.005 0.034
𝜃 1.279 0.029 0.309 1.244 0.006 0.211 1.252 0.002 0.179
𝜆 0.906 0.016 0.213 0.884 0.006 0.147 0.890 0.000 0.124

scenario 2 - GOLLE(0.85,0.15,1.15)
Par n = 50 n = 150 n = 300
𝛼 0.824 0.026 0.292 0.837 0.012 0.184 0.855 0.005 0.121
𝜃 0.201 0.051 0.175 0.164 0.014 0.051 0.154 0.004 0.024
𝜆 2.232 1.082 3.356 1.479 0.329 0.980 1.239 0.089 0.446

Par n = 500 n = 750 n = 1000
𝛼 0.848 0.002 0.090 0.851 0.001 0.062 0.849 0.001 0.054
𝜃 0.153 0.003 0.017 0.151 0.001 0.011 0.151 0.001 0.010
𝜆 1.225 0.075 0.338 1.172 0.022 0.218 1.176 0.026 0.196

As predicted by the consistency requirement, the results in Table 10 indicate that AEs
approximate to the real values and ABs and RMSE approach zero as 𝑛 increases. It is notable
that for scenario 1, all the estimates obtained when 𝑛 = 50 were overestimated, while for
scenario 2, the parameters 𝜃 and 𝜆 were overestimated. This shows the sensitivity of the
model’s parameters to some values, but in general, as the sample size increases, convergence
towards the true values is achieved.

4.4 THE GOLLE REGRESSION MODEL

The systematic component of the GOLLE regression model takes into account the fact
that the shape parameter 𝜆 in Equation (4.4) varies between observations (for 𝑖 = 1, . . . , 𝑛),
as:

𝜆𝑖 = exp(𝑥⊤
𝑖 𝛽), (4.9)

where is a twice continuously differentiable log-linear link function and 𝛽 = (𝛽, . . . , 𝛽𝑝)⊤ is the
parameter vector of dimension 𝑝 associated with the explanatory variables 𝑥𝑖⊤ = (𝑥𝑖1, . . . , 𝑥𝑖𝑝).
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4.4.1 Estimation

Except for 𝜆𝑖, the components of the score vector for 𝑈𝛼 and 𝑈𝜃 are the same as those
obtained from the Equations presented in Subsection (4.3.4). The score component of the
vector parameter 𝜆𝑖 is defined to add the regression part in the manner described below:

𝑈𝜆𝑖
=

∞∑︁
𝑖=1

𝜕𝛽𝑔(𝑥𝑖;𝜆𝑖)
𝑔(𝑥𝑖;𝜆𝑖)

+ (𝛼𝜃 − 1)
∞∑︁

𝑖=1

𝜕𝛽𝐺(𝑥𝑖;𝜆𝑖)
𝐺(𝑥𝑖;𝜆𝑖)

+ 𝜃(1 − 𝛼)
∞∑︁

𝑖=1

𝜕𝛽𝐺(𝑥𝑖;𝜆𝑖)𝐺(𝑥𝑖;𝜆𝑖)𝜃−1

1 −𝐺(𝑥𝑖;𝜆𝑖)𝜃

− 2
∞∑︁

𝑖=1
𝜕𝛽𝐺(𝑥𝑖;𝜆𝑖)

𝐺(𝑥𝑖;𝜆𝑖)𝛼𝜃−1 −𝐺(𝑥𝑖;𝜆𝑖)𝜃−1[1 −𝐺(𝑥𝑖;𝜆𝑖)𝜃]𝛼−1

𝐺(𝑥𝑖;𝜆𝑖)𝛼𝜃 + [1 −𝐺(𝑥𝑖;𝜆𝑖)𝜃]𝛼 ,

where 𝜕𝛽𝑔(𝑥𝑖;𝜆𝑖) = 𝜕𝜆𝑖
𝑔(𝑥𝑖;𝜆𝑖)𝜕𝛽𝜆𝑖(𝑥𝑖;𝛽) and 𝜕𝛽𝐺(𝑥𝑖;𝜆𝑖) = 𝜕𝜆𝑖

𝐺(𝑥𝑖;𝜆𝑖)𝜕𝛽𝜆𝑖(𝑥𝑖;𝛽) de-
notes the derivatives of the parameter 𝜆𝑖 using the chain rule.

The MLE 𝜓 of 𝜓 of the regression model is calculated setting the score equations 𝑈𝛼 =

𝑈𝜃 = 𝑈𝜆𝑖
= 0 using an iterative method algorithm to find roots or using the optim routine.

4.4.2 Simulation study

To show the accuracy of the MLEs for 𝛼 = 0.75, 𝜃 = 1.50, 𝑏 = 0.50, 𝛽0 = 0.85 and
𝛽1 = 1.20, 1,000 samples of size 𝑛 = {25, . . . , 1, 000} from Equation (4.7) were generated.
The study is based on the measurements: biases, MSEs, ALs and CPs.

Figures 18-22 show the values of these measures in relation to 𝑛. Biases, MSEs and ALs
tend to zero as sample size increases. In the biases, the estimate of 𝛽0 is an underestimated,
while the estimate of 𝛽1 shows oscillatory behavior. These indicated potential concerns with
optimization for certain values and sample sizes. Despite, the biases converges to zero as
expected. Furthermore, in Figure 24, the CP is near 0.95. These findings corroborate the
consistency of the MLEs.
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Figure 18 – Biases versus sample size from GOLLE regression model.
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Figure 19 – Biases versus sample size from GOLLE regression model.
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Figure 20 – MSEs versus sample size from GOLLE regression model.
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Figure 21 – MSEs versus sample size from GOLLE regression model.
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Figure 22 – ALs versus sample size from GOLLE regression model.
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Figure 23 – ALs versus sample size from GOLLE regression model.
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Figure 24 – CPs versus sample size from GOLLE regression model.

4.5 APPLICATION: FEDERAL DISTRICT DENGUE FEVER DATA

Table 11 illustrates some alternative distributions of some well-known generators, in addi-
tion to the nested models, that were utilized to compare with the GOLLE model.

Table 11 – Competitive distributions compared to the GOLLE distribution.

Distribution Reference
Kumaraswamy-Fréchet (KwFr) (MEAD, 2014)

Kumaraswamy -Exponential (KwE) (ADEPOJU; CHUKWU, 2015)
Gamma-Fréchet (GFr) (-)

Gamma-Exponentital (GE) (KUDRIAVTSEV, 2019)
Beta-Exponentital (BE) (NADARAJAH; KOTZ, 2006a)

Fréchet (Fr) (FRÉCHET, 1927)

The distributions are presented (for 𝑥 > 0), respectively, as:

𝐹KwFr(𝑥) = {1 − [𝐹Fr(𝑥)]𝑎}𝑏,

𝐹KwE(𝑥) = {1 − [𝐺(𝑥)]𝑎}𝑏,
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𝐹GFr(𝑥) = 𝛾{𝑎,− log[1 − 𝐹Fr(𝑥)]/𝑏}
Γ(𝑎) ,

𝐹GE(𝑥) = 𝛾{𝑎,− log[1 −𝐺(𝑥)]/𝑏}
Γ(𝑎) ,

𝐹BE(𝑥) = 𝐼𝐺(𝑥)(𝑎, 𝑏) = 1
𝐵(𝑎, 𝑏)

∫︁ 𝐺(𝑥)

0
𝑤𝑎−1(1 − 𝑤)𝑏−1𝑑𝑤

and
𝐹Fr(𝑥) = exp[−(𝑥− 𝑎)−𝑏],

where all of the parameters are positive and 𝐺(𝑥) and 𝐹Fr(𝑥) represent the Equation (4.2)
and Fréchet distributions, respectively. The goodness.fit function of AdequacyModel package
computes the MLEs (SEs in parenthesis) for all fitted models using the BFGS approach.

4.5.1 A data set definition

The data set was obtained from the Federal District Health Department (SES-DF11). This
system maintains a register of patient notifications that include diseases, injuries and public
health incidents that are required to be reported. This contains epidemiological information of
dengue fever, zika fever, chikungunya fever, yellow fever and more than 40 other diseases. The
data is made up of notifications relating to dengue fever cases (in thousands) registered in the
Federal District of Brazil and it spans all 49 epidemiological weeks (observations) in 2022:

• 𝑦𝑖: total dengue fever cases (in thousands) of a epidemiological week (DG) (response
variable);

• 𝑚𝑖𝑗: month (levels: 0 - January to 11 - December). Thus, for 𝑖 = 1, . . . , 49 and 𝑗 =

0, . . . , 11, dummy variables.

The proposed model has both advantages and disadvantages over counting models. The
exponential distribution utilized as a baseline has numerous notable features, including a use-
fulness in some epidemiological cases, memorylessness, a good fit with empirical data with
heavy tails, flexibility and a simple density form. On the other hand, various issues can occur,
such as a lack of flexibility for trend modeling, violations of the assumption of independence,
11 <https://www.saude.df.gov.br/informes-dengue-chikungunya-zika-febre-amarela>

https://www.saude.df.gov.br/informes-dengue-chikungunya-zika-febre-amarela
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which can result in erroneous models and limitations with inflated zero data, among others.
Nevertheless, the model captures the significance of the exploratory variables and an extreme
event of dengue fever cases in the time scenario.

Table 12 offers some descriptive statistics. The number of dengue fever cases fluctuated
from very low (0.277) to high (6.726). The standard deviation is 1.445, indicating more variabi-
lity in dengue fever cases over time. The distribution is skewed to the right (1.509), indicating
that there are more extreme values near the top of the scale, while kurtosis indicates heavier
tails (4.997).

Table 12 – Descriptive statistics of dengue fever cases.

Variable Min. Max. Mean Median SD Skewness Kurtosis
DG 0.277 6.726 1.483 0.752 1.445 1.509 4.997

Figure 25 illustrates the histogram and time series of the data. Figure 25(a) showed a
fat tail behavior, which corroborates with extreme event data. Figure 25(b) illustrates the
existence of extreme occurrences with comparable behavior during the months of May and
June. The abrupt increases are a record for the same period since 199812 demonstrating the
atypical behavior of the observations, which deviate significantly from the historical average,
indicating an unusual outbreak, or, in epidemiology, an extreme event for dengue cases that
can have an impact on both the health system and the economy. In addition, the plot reveals
an upward trend during the months of February and June, when dengue fever is most likely to
occur in the Federal District.

Brazil is a continental country and has different patterns, nevertheless, the Midwest is
where there is the highest incidence of dengue fever, according to the arbovirus monitoring
panel of the Ministry of Health13, which is the region of the study data.
12 <https://www.correiobraziliense.com.br/cidades-df/2022/06/5017446-casos-atingem-maior-numero-desde-1998.

html>
13 <https://www.gov.br/saude/pt-br/assuntos/saude-de-a-a-z/a/aedes-aegypti/monitoramento-das-arboviroses>

https://www.correiobraziliense.com.br/cidades-df/2022/06/5017446-casos-atingem-maior-numero-desde-1998.html
https://www.correiobraziliense.com.br/cidades-df/2022/06/5017446-casos-atingem-maior-numero-desde-1998.html
https://www.gov.br/saude/pt-br/assuntos/saude-de-a-a-z/a/aedes-aegypti/monitoramento-das-arboviroses
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Figure 25 – Dengue fever data. (a) Histogram and empirical density. (b) Variation across months with trend
smoothed line.

4.5.2 Results

The study of time series data on dengue fever cases requires a thorough examination,
which involves determining correlations between subsequent observations. Failure to account
for these associations may result in an inaccurate model that ignores temporal relationships,
potentially leading to incorrect forecasts and interpretations. As a result, it is critical to exa-
mine the autocorrelation function (ACF) and partial autocorrelation function (PACF) plots to
determine the presence of serial correlation. The ACF and PACF plots in Figure 26 indicate
an autoregressive integrated moving average model with a one-lag in the differenced series
(ARIMA(1,1,0)).

Despite the fact that dengue cases exhibit a correlation, i.e. dependence, the proposed
regression model can be used provided this assumption is relaxed, given the small number of
observations and the model’s fit is assessed using diagnostic and residual analysis.
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Figure 26 – Dengue fever data. (a) ACF. (b) PACF.

Table 13 summarizes the results of the fitted distributions to the current data and demons-
trates that the GOLLE distribution is the best fit. In fact, the histogram and plots of the
predicted density functions in Figure 27(a) and the empirical cdf computed ones in Figure
27(b) confirm this result. The Fréchet distribution density is widely used for modeling extreme
occurrences and these results show that the KwFr distribution (the second best model) is
competitive with the presented model.
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Figure 27 – Fitted models of dengue fever data. (a) Histogram and estimated pdfs. (b) Empirical and estimated
cdfs.
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Table 13 – Findings from the fitted models of dengue fever data.

Model Parameters W* A* KS

GOLLE(𝛼, 𝜃, 𝜆) 0.154 76.500 5.402 0.060 0.400 0.077
(0.018) (0.019) (0.003) (0.914)

OLLE(𝛼, 𝜆) 1.180 1 0.634 0.318 1.929 0.160
(0.142) (-) (0.086) (0.145)

EE(𝜃, 𝜆) 1 1.391 0.830 0.313 1.898 0.175
(-) (0.284) (0.147) (0.088)

E(𝜆) 1 1 0.674 0.316 1.913 0.170
(-) (-) (0.096) (0.103)

KwFr(𝛽, 𝛾, 𝑎, 𝑏) 3.851 51.070 0.172 0.271 0.087 0.559 0.097
(1.409) (71.389) (0.060) (0.008) (0.705)

KwE(𝛽, 𝛾, 𝜆) 4.500 0.151 5.402 0.242 1.482 0.205
(0.005) (0.022) (0.003) (0.028)

GFr(𝛽, 𝑎, 𝑏) 0.465 0.777 0.225 0.128 0.830 0.120
(0.082) (0.142) (0.039) (0.443)

BE(𝛽, 𝛾, 𝜆) 3.027 0.150 5.402 0.253 1.548 0.197
(0.1.054) (0.023) (0.003) (0.038)

GE(𝛽, 𝜆) 1.323 0.892 0.317 1.917 0.173
(0.241) (0.197) (0.096)

Fr(a,b) 1.791 -0.281 0.235 1.449 0.173
(0.285) (0.076) (0.094)

LR tests were used to compare the GOLLE distribution and its nested models. Table 14
shows that adding more parameters has a significant influence on accurately modeling the
existing data.

Table 14 – LR tests of the GOLLE distribution

Models Statistic 𝑤 𝑝-value
GOLLE vs E 29.657 < 0.0001

GOLLE vs EE 27.143 < 0.0001
GOLLE vs OLLE 27.937 < 0.0001

The systematic structures are considered here based on a non-linear equation (for 𝑖 =

1, . . . , 49), as follows:

𝜆𝑖 = exp
⎛⎝𝛽0 +

11∑︁
𝑗=1

𝛽𝑗 𝑚𝑗

⎞⎠ .
One influential observation was indicated using the GCD and LD measures, as shown in

Figure 28. It’s worth noting that the 49th observation (corresponding to the last epidemiolo-
gical week) has the potential to be influential. One probable explanation, as an important
event, is the vacation/recess period at the end of the year, which causes a backlog of alerts
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due to a lack of health care personnel in service who notify cases and input data into the
system.

Nonetheless, Figure 29 indicates that the index deviation residuals behave randomly over
the range and the residuals are within the simulated envelope, showing that the observation
has no significant impact on the regression model.
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Figure 28 – The GOLLE regression model. (a) LD. (b) GCD.
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Figure 29 – The GOLLE regression model. (a) Deviance residual index. (b) Simulated envelope.

The results (MLEs, SEs, and 𝑝-values) of the fitted GOLLE regression model to the current
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data are presented in Table 15.

Table 15 – Fitted GOLLE regression of dengue fever data.

Parameter Estimate SE 𝑝-value
𝛽0 −9.1118 2.3349 0.0004
𝛽1 0.5459 0.1892 0.0066
𝛽2 1.0759 0.1928 < 0.0001
𝛽3 1.6690 0.1829 < 0.0001
𝛽4 1.7019 0.1881 < 0.0001
𝛽5 1.4481 0.2350 < 0.0001
𝛽6 0.3074 0.1976 0.1287
𝛽7 −0.5868 0.2041 0.0068
𝛽8 −0.4721 0.1780 0.0120
𝛽9 −0.5865 0.1839 0.0030
𝛽10 −0.5826 0.1843 0.0032
𝛽11 −0.1544 0.2003 0.4459

4.5.3 Discussion

The findings show that the GOLLE regression model is appropriate for explaining the
dengue fever weekly cases in the Federal District. Table 15 provides parameter estimates for
the GOLLE regression model, which becomes:

𝜆̂𝑖 = exp
(︂

− 9.1118 + 0.5459𝑚𝑖1 + 1.0759𝑚𝑖2 + 1.6690𝑚𝑖3 + 1.7019𝑚𝑖4

+ 1.4481𝑚𝑖5 − 0.5868𝑚𝑖7 − 0.4721𝑚𝑖8 − 0.5865𝑚𝑖9 − 0.5826𝑚𝑖10

)︂
.

(4.10)

The following discussion examines the systematic structure using January as the month of
reference.

Interpretations for systematic structure 𝜆

• Except for the covariates 𝑚6 and 𝑚11, referring to the months July and December, all
other covariates are significant at a 5% level of significance;

• The months of February to June have positive estimates and it is significant. The dis-
tribution is positively skewed with heavy tails, and these months have a higher positive
impact on the baseline distribution’s shape parameter, possibly pulling the mean higher.
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This may be seen in Figure 25(b), which shows a extreme event in that window data
scenario. Several factors can contribute to extreme occurrences in dengue fever cases, in-
cluding outbreaks, epidemics, severe cases, unusual patterns, and others. The event that
occurred between May and June is considered atypical when compared to the period’s
historical average;

• August to November have negative values, which have a negative effect on the baseline
distribution’s shape parameter, shifting the average dengue cases lower. During this
period, the Federal District experiences a drought that corroborates the findings14

4.6 CONCLUDING REMARKS

The Chapter defined the generalized odd log-logistic exponential distribution (QOSHJA;

MUÇA, 2018) and (AFIFY et al., 2021) and introduced the regression model with a shape sys-
tematic structure to investigate dengue fever weekly cases in the Federal District in 2022. Some
mathematical properties are presented, the parameters are estimated by the maximum likeli-
hood method and the consistency criterion is evaluated by means of Monte Carlo simulations.
The consistency of the MLEs of the regression model is evaluated by means of simulations.
Some global influence measures and residual analysis are addressed to investigate the fit of
the new model.

Some important discoveries are addressed. Except for the July and December months, the
remaining months are significant. February to June exhibit positive estimations, suggesting a
positive impact on the baseline distribution’s shape parameter, possibly displacing the mean
of cases higher. August to November experience a drought, supporting the negative estimates
during this period, which have a negative effect on the shape parameter, altering the average
dengue fever cases downward.

The epidemiology data set demonstrated that the novel model is more versatile than some
nested and competing models. As a result, the suggested model improves understanding of
dengue fever cases in the Federal District, as well as extreme events observed during the study
period.

14 <https://portal.inmet.gov.br/uploads/notastecnicas/Estado-do-clima-no-Brasil-em-2022-OFICIAL.pdf>

https://portal.inmet.gov.br/uploads/notastecnicas/Estado-do-clima-no-Brasil-em-2022-OFICIAL.pdf
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5 A NOVEL BIMODAL GAMMA REGRESSION MODEL WITH AGRICUL-

TURAL APPLICATION

RESUMO

A distribuição gamma log-logística odd generalizada (CORDEIRO et al., 2017) é exibida e
um novo modelo bimodal de regressão com duas componentes sistemáticas de forma e escala é
introduzido para estudar dados agrícolas de batata yacon de uma pesquisa do Peru. Uma nova
representação linear é demonstrada e algumas propriedades matemáticas são apresentadas.
O método de máxima verossimilhança é usado para estimar os parâmetros e simulações são
realizadas para investigar a precisão dos estimadores. Os resíduos deviance e a análise de
diagnóstico são discutidos para avaliar o ajuste do modelo. A abordagem proposta identifica
com eficiência os fatores essenciais que afetam a forma e escala da distribuição. Além disso,
algumas descobertas valiosas são abordadas e a nova distribuição fornece um modelo bimodal
alternativo adequado para estudos futuros em conjunto de dados não-Gaussianos.

Palavras-chaves: Dados agrícolas. Diagnósticos. Distribuição gama. Família log-logística odd

generalizada. Máxima verossimilhança. Modelo bimodal. Modelo de regressão. Simulação.

ABSTRACT

The generalized odd log-logistic gamma distribution (CORDEIRO et al., 2017) is shown
and a new bimodal regression model with two systematic components of shape and scale is
introduced to study yacon potato agricultural data from a Peruvian survey. A new linear re-
presentation is demonstrated and some mathematical properties are presented. The maximum
likelihood method is used to estimate the parameters and simulations are carried out to inves-
tigate the accuracy of the estimators. Deviation residuals and diagnostic analysis are discussed
to assess the fit of the model. The proposed approach efficiently identifies the essential fac-
tors affecting the shape and scale of the distribution. In addition, some valuable findings are
addressed and the new distribution provides an alternative bimodal model suitable for future
studies on non-Gaussian data sets.

Keywords: Agricultural data. Bimodal model. Diagnostics. Gamma distribution. Generalized
odd log-logistic family. Maximum likelihood. Regression model. Simulation.
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5.1 INTRODUCTION

In statistics, the gamma distribution is a common continuous probability distribution used
to model non-negative rvs. Numerous applications have been identified for this adaptable and
frequently utilized distribution in a variety of fields, including finance (TRAN; KUKAL, 2022),
engineering (KHAMEES et al., 2022) and the natural sciences (WANG; PAL, 2022).

While the gamma distribution is widely used, developing other statistical distributions has
gained more attention recently. These innovative distributions often have more flexible and
novel structures, providing researchers with important tools to more thoroughly investigate a
range of data sets. Therefore, there will be a lot of research done in the future on the design
of new statistical distributions.

Several recent studies have explored regression analysis across a range of contexts. For ins-
tance, a log-odd log-logistic Weibull regression model (??) is used to analyze heart transplant
data, while Alizadeh et al. (2018) developed a heteroscedastic regression model to examine
long-term survival in gastric adenocarcinoma data. In finance, Vasconcelos et al. (2019) intro-
duced a new odd log-logistic generalized inverse Gaussian regression model. Additionally, Altun
et al. (2021) proposed a new type II half logistic-G family with various properties, regression
models, system reliability and applications. At last, Altun et al. (2022) explored the statistical
properties, characterizations and regression modeling of the Gudermannian generated family.

Considering this scenario, the primary goal is to describe the generalized odd log-logistic

gamma (GOLLΓ) distribution, capable of effectively modeling data with two distinct modes,
or bimodal data. By fitting a model that accurately captures the underlying distribution of the
data, more precise estimates for key quantities of interest can be obtained.

The second goal of this Chapter is to propose a regression model based on the GOLLΓ

distribution that can effectively capture explanatory variables. In order to attain this goal, a
novel analysis approaches are applied to agricultural data (yacon potatoes), with the MLE
method used for inference. Such an approach is especially useful when the answer variable is
influenced by many explanatory variables. Monte Carlo simulations are used to evaluate the
accuracy of the proposed model.

To verify the validity of the results, the model assumptions are carefully examined and
possible influential observations are investigated, this combined with residual analysis. Further-
more, envelope plots are used to illustrate the models’ fit. This study intends to contribute to
the existing literature by introducing a new regression model and shedding light on the link
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between explanatory variables and the response variable.
This Chapter is well-structured and organized into several Sections. Section 5.2 provides a

review of the GOLLΓ distribution, while Section 5.3 demontrates a new linear representation
and some mathematical properties. MLEs are determined and a simulation study is conducted
to verify their accuracy. The new GOLLΓ bimodal regression model is developed in Section 5.4
and the consistency of the estimators is examined. Section 5.5 demonstrates the superiority of
the new regression model compared to other competitive models for explaining an agricultural
dataset and presents some findings. The model is the best fit to explain the current data,
according to diagnostic analysis and deviance residuals. Finally, Section 5.6 concludes with
some remarks.

5.2 THE GOLLΓ DISTRIBUTION

The gamma distribution (shape parameter 𝑝 > 0 and scale parameter 𝜇 > 0) has the cdf
and the pdf expressed, respectively (for 𝑥 > 0), as:

𝐺(𝑥; 𝑝, 𝜇) = 𝛾1

(︃
𝑝,
𝑥

𝜇

)︃
(5.1)

and
𝑔(𝑥; 𝑝, 𝜇) = 1

𝜇𝑝Γ(𝑝)𝑥
𝑝−1e− 𝑥

𝜇 , (5.2)

where 𝛾1(𝑝, 𝑥/𝜇) = 1
Γ(𝑝)

∫︀ 𝑥/𝜇
0 𝑡𝑝−1e−𝑡𝑑𝑡 is the incomplete gamma function ratio and Γ(·) is the

gamma function.
To obtain the GOLLΓ cdf, Equation (5.1) is substituted into Equation (2.2), as follows:

𝐹 (𝑦;𝛼, 𝜃, 𝑝, 𝜇) =
𝛾1
(︁
𝑝, 𝑦

𝜇

)︁𝛼𝜃

𝛾1
(︁
𝑝, 𝑦

𝜇

)︁𝛼𝜃
+
[︂
1 − 𝛾1

(︁
𝑝, 𝑦

𝜇

)︁𝜃
]︂𝛼 (5.3)

and the corresponding pdf is obtained by inserting Equation (5.2) into Equation (2.3) as:

𝑓(𝑦;𝛼, 𝜃, 𝑝, 𝜇) =
𝛼 𝜃 𝑦𝑝−1e−𝑦/𝜇𝛾1

(︁
𝑝, 𝑦

𝜇

)︁𝛼𝜃−1
[︂
1 − 𝛾1

(︁
𝑝, 𝑦

𝜇

)︁𝜃
]︂𝛼−1

𝜇𝑝Γ(𝑝)
{︂
𝛾1
(︁
𝑝, 𝑦

𝜇

)︁𝛼𝜃
+
[︂
1 − 𝛾1

(︁
𝑝, 𝑦

𝜇

)︁𝜃
]︂𝛼}︂2 . (5.4)

The GOLLΓ model includes six distinct distributions, which are summarized in Table 16.
This indicates that the new class has the ability to fit data across multiple distribution forms.

The GOLLΓ distribution’s pdf and hrf are shown in Figures 30 and 31, respectively. The
flexibility of the GOLLΓ distribution to generate a variety of hazard rate shapes, such as the
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Table 16 – Submodels associated to the GOLLΓ family of distributions.

𝛼 𝜃 p 𝜇 Submodel
- - 1 - Generalized odd log-logistic exponential (GOLLE) distribution
- 1 - - Odd log-logistic gamma (OLLΓ) distribution
1 1 - - Odd log-logistic exponential (OLLE) distribution
1 - - - Exponentiated-gamma (Exp-Γ) distribution (NADARAJAH; GUPTA, 2007)
1 - 1 - Exponentiated-exponential (Exp-E) distribution
1 1 - - Gamma (Γ) distribution

bathtub, inverse J-shape, increasing-decreasing, and other forms, is one of its key characte-
ristics. It is superior to the hrf of the gamma, which presents simple shapes (constant, increas-
ing, decreasing, etc). As a result, the model is useful for modeling data sets with a wide range
of hazard rate patterns. Additionally, this model provides bimodality and skewness forms for a
given parameter vector, as illustrated in Figure 30.
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Figure 30 – GOLLΓ pdf for selected values.
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5.3 MAIN PROPERTIES

Since there is no mathematical closed-form for the GOLLΓ distribution, a novel linear
combination of generalized gamma (GG) densities is used to represent the density function.

With shape parameters 𝑝, 𝛽 > 0 and a scale parameter 𝜇 > 0, the cdf of the GG distribution
(STACY, 1962) is represented by:

Λ(𝑥; 𝑝, 𝜇, 𝛽) = 𝛾1

⎛⎝𝑝,(︃𝑥
𝜇

)︃𝛽
⎞⎠ (5.5)

and its corresponding density function defined, as follows:

𝜆(𝑥; 𝑝, 𝜇, 𝛽) = 𝛽

𝜇𝑝𝛽Γ(𝑝)𝑥
𝑝𝛽−1 exp

⎡⎣−
(︃
𝑥

𝜇

)︃𝛽
⎤⎦ (5.6)

and clearly, the gamma pdf can be derived from (5.6) by setting 𝛽 = 1.

Theorem 3. The GOLLΓ density (5.4) can be represented linearly using the GG density:

𝑓(𝑦;𝛼, 𝜃, 𝑝, 𝜇) =
∞∑︁

𝑘,𝑚=0
𝑧𝑘,𝑚 𝜆(𝑦; 𝑝*, 𝜇, 1), (5.7)

with parameters 𝑝* = 𝑝*(𝑝, 𝑘,𝑚) = 𝑘+𝑝(𝑚+1), 𝜇, 𝛽 = 1 and 𝑧𝑘,𝑚 defined by the quantities

below:

𝑧𝑘,𝑚 = (𝑚+ 1)𝜇𝑘+𝑝(𝑚+1)Γ(𝑘 + 𝑝(𝑚+ 1))
𝜇𝑝Γ(𝑝) 𝑏𝑘 𝑠𝑘,𝑚.

Proof. The GOLLΓ density (5.4) can be expressed using the linear representation in Equation
(2.5), as:

𝑓(𝑦;𝛼, 𝜃, 𝑝, 𝜇) =
∞∑︁

𝑘=0
𝑏𝑘ℎ𝑘+1(𝑦; 𝑝, 𝜇), (5.8)

where ℎ𝑘+1(𝑦; 𝑝, 𝜇) is the Exp-Γ density with power parameter (𝑘 + 1) presented, as:

ℎ𝑘+1(𝑦;𝜇, 𝜆) = (𝑘 + 1)
[︃

1
𝜇𝑝Γ(𝑝)𝑥

𝑝−1e− 𝑥
𝜇

]︃ [︃
1

𝜇𝑝Γ(𝑝)𝑥
𝑝−1e− 𝑥

𝜇

]︃𝑘

Moreover, the following expression was obtained by applying the power series expansion
for the incomplete gamma function ratio:

𝛾1(𝑝, 𝑦/𝜇) =
∞∑︁

𝑚=0
𝑐𝑚 𝑦

𝑚+𝑝, (5.9)

where 𝑐𝑚 = 𝑐𝑚(𝛼, 𝜃) = (−1)𝑚

(𝑚+𝑝)𝜇𝑚+𝑝Γ(𝑝)𝑚! (for 𝑚 ≥ 0).
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Using the Equation for power series raised to powers found in Section 0.314 (GRADSHTEYN;

JEFFREY; RYZHIK, 1996), the following expression holds:

𝛾1(𝑝, 𝑦/𝜇)𝑘 =
∞∑︁

𝑚=0
𝑠𝑘,𝑚 𝑦

𝑚+𝑘𝑝, (5.10)

where 𝑠𝑘,0 = 𝑐𝑘
0 and 𝑠𝑘,𝑚 = (𝑚𝑐0)−1∑︀𝑘

𝑟=1[(𝑘 + 1)𝑟 −𝑚]𝑐𝑟 𝑠𝑘,𝑚−𝑟 (for 𝑚 = 1, 2, . . .).
Finally, the GOLLΓ density can be expressed as a linear combination of GG densities:

𝑓(𝑦) =
∞∑︁

𝑘,𝑚=0

(𝑘 + 1)
𝜇𝑝Γ(𝑝) 𝑏𝑘𝑠𝑘,𝑚 𝑦

𝑚+𝑝(𝑘+1)−1 e− 𝑦
𝜇

=
∞∑︁

𝑘,𝑚=0
𝑧𝑘,𝑚 𝜆(𝑦; 𝑝*, 𝜇, 1),

(5.11)

with two shared parameters, 𝜇, 𝛽 = 1 and the third parameter 𝑝*, where is determined by
𝑝* = 𝑝*(𝑝, 𝑘,𝑚) = 𝑚 + 𝑝(𝑘 + 1) and the coefficients 𝑧𝑘,𝑚, which depend on the preceding
quantities, are expressed by:

𝑧𝑘,𝑚 = (𝑘 + 1)𝜇𝑚+𝑝(𝑘+1)Γ(𝑚+ 𝑝(𝑘 + 1))
𝜇𝑝Γ(𝑝) 𝑏𝑘 𝑠𝑘,𝑚.

The linear representation (5.7) is the main result of this Section and a valuable tool
in deriving mathematical properties for the GOLLΓ distribution utilizing well-established GG
properties, see (STACY; MIHRAM, 1965) and (LAWLESS, 1980).

5.3.1 Quantile function

The qf of a rv 𝑌 can be derived using the gamma distribution with a parent distribution
as described in Equation (2.6), as follows:

𝑄(𝑢) = 𝜇𝛾−1
1 (𝑝, 𝜀𝛼,𝜃(𝑢)). (5.12)

With 𝑝 = 3.15 and 𝜇 = 0.45, Figure 32 presents Galton’s skewness and Moors’ kurtosis for
a set of values of 𝛼 and 𝜃. This clearly illustrates how skewness and kurtosis act as functions
of parameters. When both 𝛼 and 𝜃 increase, the skewness decreases. Kurtosis increases for a
region when both 𝛼 and 𝜃 parameters increase.
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(a) (b)

Figure 32 – GOLLΓ distribution (a) Galton’s skewness. (b) Moor’s kurtosis.

5.3.2 Moments

Using the moments of the GG densities, the moments of the GOLLΓ is calculated.

Theorem 4. The 𝑛th moment of the GOLLΓ distribution is defined by:

𝜇′
𝑛 = E(𝑌 𝑛) = 𝜇𝑛

∞∑︁
𝑘,𝑚=0

Γ(𝑚+ 𝑛+ 𝑝(𝑘 + 1))
Γ(𝑚+ 𝑝(𝑘 + 1)) 𝑧𝑘,𝑚. (5.13)

Proof. The proof is straightforward applying the Theorem (3) and using the basic properties
of GG distribution, see (STACY; MIHRAM, 1965) and (LAWLESS, 1980).

5.3.3 Generation function

The gf of the GOLLΓ distribution is shown using the gf of GG densities.

Theorem 5. The mgf of the GOLLΓ density can be expressed, as:

𝑀𝑌 (𝑡) =
∞∑︁

𝑛=0

∞∑︁
𝑘,𝑚=0

(𝑡𝜇)𝑛

𝑛!
Γ(𝑚+ 𝑛+ 𝑝(𝑘 + 1))

Γ(𝑚+ 𝑝(𝑘 + 1)) 𝑧𝑘,𝑚. (5.14)

Proof. The proof is straightforward applying the Theorem (3) and using the basic properties
of GG distribution, see (STACY; MIHRAM, 1965) and (LAWLESS, 1980).
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5.3.4 Estimation

The log-likelihood function for the parameter vector 𝜓 = (𝛼, 𝜃, 𝑝, 𝜇)⊤ can be found based
on the observed values 𝑦1, . . . , 𝑦𝑛 from the GOLLΓ distribution, as:

𝑙𝑛(𝜓) = 𝑛 log(𝛼𝜃) − 𝑛𝑝 log(𝜇) − 𝑛 log[Γ(𝑝)] − (𝑝− 1)
𝑛∑︁

𝑖=1
log(𝑦𝑖) (5.15)

− 1
𝜇

𝑛∑︁
𝑖=1

𝑦𝑖 + (𝛼𝜃 − 1)
𝑛∑︁

𝑖=1
log

[︃
𝛾1

(︃
𝑝,
𝑦𝑖

𝜇

)︃]︃
+ (𝛼− 1)

𝑛∑︁
𝑖=1

log
⎡⎣1 − 𝛾1

(︃
𝑝,
𝑦𝑖

𝜇

)︃𝜃
⎤⎦

+ (𝛼− 1)
𝑛∑︁

𝑖=1
log

⎡⎣1 − 𝛾1

(︃
𝑝,
𝑦𝑖

𝜇

)︃𝜃
⎤⎦

− 2
𝑛∑︁

𝑖=1
log

⎧⎨⎩𝛾1

(︃
𝑝,
𝑦𝑖

𝜇

)︃𝛼𝜃

+
⎡⎣1 − 𝛾1

(︃
𝑝,
𝑦𝑖

𝜇

)︃𝜃
⎤⎦𝛼⎫⎬⎭ .

For simplicity, let be
𝐴𝑖(𝑝, 𝜇) = 𝐴𝑖 = 𝛾1

(︃
𝑝,
𝑦𝑖

𝜇

)︃
.

The components of the score vector can be expressed, as follows:

𝑈𝛼 = 𝑛

𝛼
+ 𝜃

𝑛∑︁
𝑖=1

log(𝐴𝑖) +
𝑛∑︁

𝑖=1
log

(︁
1 − 𝐴𝑖

𝜃
)︁

− 2
𝑛∑︁

𝑖=1

𝜃 log(𝐴𝑖)𝐴𝑖
𝛼𝜃 + (1 − 𝐴𝑖

𝜃)𝛼 log(1 − 𝐴𝑖
𝜃)

𝐴𝑖
𝛼𝜃 + (1 − 𝐴𝑖

𝜃)𝛼
,

𝑈𝜃 = 𝑛

𝜃
+ 𝛼

𝑛∑︁
𝑖=1

log(𝐴𝑖) − (𝛼− 1)
𝑛∑︁

𝑖=1

𝐴𝑖
𝜃 log(𝐴𝑖)
1 − 𝐴𝑖

𝜃

+
𝑛∑︁

𝑖=1

𝛼𝐴𝑖
𝛼𝜃 log(𝐴𝑖) + (1 − 𝐴𝑖

𝛼)𝜃 log(1 − 𝐴𝑖
𝛼)

𝐴𝑖
𝛼𝜃 + (1 − 𝐴𝑖

𝛼)𝜃
,

𝑈𝑝 = −𝑛 log(𝜇) − 𝑛𝜓(𝑘) −
𝑛∑︁

𝑖=1
log(𝑦𝑖) − (𝛼𝜃 − 1)

𝑛∑︁
𝑖=1

𝜕𝐴𝑖/𝜕𝑝

𝐴𝑖

− 𝜃(𝛼− 1)
𝑛∑︁

𝑖=1

𝐴𝜃−1
𝑖 𝜕𝐴𝑖/𝜕𝑝

1 − 𝐴𝜃
𝑖

− 2𝛼𝜃
𝑛∑︁

𝑖=1

[𝐴𝛼𝜃−1
𝑖 − (1 − 𝐴𝜃

𝑖 )𝛼−1𝐴𝜃−1
𝑖 ]𝜕𝐴𝑖/𝜕𝑝

𝐴𝛼𝜃
𝑖 + (1 − 𝐴𝜃

𝑖 )𝛼

and

𝑈𝜇 = 𝑛𝑝

𝜇
+ 1
𝜇2

𝑛∑︁
𝑖=1

𝑦𝑖 + (𝛼𝜃 − 1)
𝑛∑︁

𝑖=1

𝜕𝐴𝑖/𝜕𝜇

𝐴𝑖

− 𝜃(𝛼− 1)
𝑛∑︁

𝑖=1

𝐴𝜃−1
𝑖 𝜕𝐴𝑖/𝜕𝜇

1 − 𝐴𝜃
𝑖

− 2𝛼𝜃
𝑛∑︁

𝑖=1

[𝐴𝛼𝜃−1
𝑖 − (1 − 𝐴𝜃

𝑖 )𝛼−1𝐴𝜃−1
𝑖 ]𝜕𝐴𝑖/𝜕𝜇

𝐴𝛼𝜃
𝑖 + (1 − 𝐴𝜃

𝑖 )𝛼
.
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The formulas for the quantities 𝜕𝛾1(·)/𝜕𝑝 and 𝜕𝛾1(·)/𝜕𝜇 are provide in Marciano et al.
(2012), as:

𝜕𝛾1(𝑝, 𝑦/𝜇)
𝜕𝑝

= Γ(𝑝)𝜓(𝛾) − log(𝑦/𝜇)𝛾(𝑝, 𝑦/𝜇) −𝐺3,0
2,3

⎛⎜⎜⎝ 1, 1

0, 0, 𝑝

⃒⃒⃒⃒
⃒⃒⃒⃒ 𝑦/𝜇

⎞⎟⎟⎠ ,

where 𝐺3,0
2,3

(︂
·
⃒⃒⃒⃒
·
)︂

is a particular case of the Meijer G-function15 and

𝜕𝛾1(𝑝, 𝑦/𝜇)
𝜕𝜇

= 𝑦𝑝 exp(−𝑦/𝜇)
𝜇𝑝−1Γ(𝑝) .

Using the optim routine, Equation (5.15) is numerically maximized to calculate the MLE
of the vector 𝜓̂.

5.3.5 Simulation study

One-thousand samples of sizes 𝑛 = {50, 100, 250} are generated for each of the two
sets of true parameters (0.25, 2.00, 0.50, 0.35) for simulation 1 and (0.38, 0.75, 1.50, 2.35) for
simulation 2 in order to evaluate the estimators’ accuracy. Table 17 reports the AEs, biases,
and MSEs, for 𝜖 = (𝛼, 𝜃, 𝑝, 𝜇). The consistency criteria are held since the AEs converge to
the true values and the biases and MSEs tend to zero as the sample size increases.

Table 17 – Simulations results for GOLLΓ distribution

Simulation 1

Par n = 50 n = 100 n = 250
AE Bias MSE AE Bias MSE AE Bias MSE

𝛼 0.289 0.039 0.031 0.282 0.032 0.016 0.274 0.024 0.007
𝜃 2.206 0.206 4.098 2.118 0.118 2.286 2.172 0.172 1.579
𝑝 0.611 0.111 0.810 0.446 -0.054 0.339 0.329 -0.171 0.160
𝜇 1.027 0.677 0.944 0.836 0.486 0.451 0.743 0.393 0.239

Simulation 2

Par n = 50 n = 100 n = 250
AE Bias MSE AE Bias MSE AE Bias MSE

𝛼 0.441 0.061 0.137 0.401 0.021 0.045 0.391 0.011 0.020
𝜃 2.273 1.523 15.210 2.100 1.350 10.241 1.694 0.944 4.526
𝑝 5.137 3.627 84.410 3.130 1.630 17.763 2.116 0.616 4.792
𝜇 3.690 1.340 11.268 2.713 0.363 2.905 2.144 -0.206 0.790

15 <https://functions.wolfram.com/HypergeometricFunctions/MeijerG/>

https://functions.wolfram.com/HypergeometricFunctions/MeijerG/
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5.4 THE GOLLΓ REGRESSION MODEL.

The GOLLΓ regression model’s systematic component establishes a relationship between
the response variable and one or more covariates. It is typical practice in statistical modeling
to take into account the variation in parameter values across several observations. Thus, for
𝑖 = 1, . . . , 𝑛, the regression model is specified by two systematic components for 𝑝𝑖 and 𝜇𝑖,
as follows:

𝑝𝑖 = exp(𝑥⊤
𝑖1𝛽1) and 𝜇𝑖 = exp(𝑥⊤

𝑖2𝛽2). (5.16)

Here, 𝑥𝑖𝑗 = (𝑥𝑖𝑗1, · · · , 𝑥𝑖𝑗𝑐𝑗
) represents the observations on 𝑐𝑗 known regressors (𝑗 = 1, 2)

and 𝛽 = (𝛽𝑗0, · · · , 𝛽𝑗𝑐)⊤ are vectors of length (𝑐𝑗 + 1) of unknown coefficients functionally
independent. The log-linear link function is assumed to be twice continuously differentiable and
plays a key role in specifying the relationship between the response variable and the covariates.

5.4.1 Estimation

With the exception of the vector parameters of the gamma distribution, the components
of the score vector of 𝑈𝛼 and 𝑈𝜃 are the same Equations given in Subsection (5.3.4). The
score components of the vector parameters 𝑝𝑖 and 𝜇𝑖 are defined for the purpose to add the
regression part, respectively, as follows:

𝑈𝑝𝑖
=

∞∑︁
𝑖=1

𝜕𝛽1𝑔(𝑥𝑖; 𝑝𝑖)
𝑔(𝑥𝑖; 𝑝𝑖)

+ (𝛼𝜃 − 1)
∞∑︁

𝑖=1

𝜕𝛽1𝐺(𝑥𝑖; 𝑝𝑖)
𝐺(𝑥𝑖; 𝑝𝑖)

+ 𝜃(1 − 𝛼)
∞∑︁

𝑖=1

𝜕𝛽1𝐺(𝑥𝑖; 𝑝𝑖)𝐺(𝑥𝑖; 𝑝𝑖)𝜃−1

1 −𝐺(𝑥𝑖; 𝑝𝑖)𝜃

− 2
∞∑︁

𝑖=1
𝜕𝛽1𝐺(𝑥𝑖; 𝑝𝑖)

𝐺(𝑥𝑖; 𝑝𝑖)𝛼𝜃−1 −𝐺(𝑥𝑖; 𝑝𝑖)𝜃−1[1 −𝐺(𝑥𝑖; 𝑝𝑖)𝜃]𝛼−1

𝐺(𝑥𝑖; 𝑝𝑖)𝛼𝜃 + [1 −𝐺(𝑥𝑖; 𝑝𝑖)𝜃]𝛼

and

𝑈𝜇𝑖
=

∞∑︁
𝑖=1

𝜕𝛽2𝑔(𝑥𝑖;𝜇𝑖)
𝑔(𝑥𝑖;𝜇𝑖)

+ (𝛼𝜃 − 1)
∞∑︁

𝑖=1

𝜕𝛽2𝐺(𝑥𝑖;𝜇𝑖)
𝐺(𝑥𝑖;𝜇𝑖)

+ 𝜃(1 − 𝛼)
∞∑︁

𝑖=1

𝜕𝛽2𝐺(𝑥𝑖;𝜇𝑖)𝐺(𝑥𝑖;𝜇𝑖)𝜃−1

1 −𝐺(𝑥𝑖;𝜇𝑖)𝜃

− 2
∞∑︁

𝑖=1
𝜕𝛽2𝐺(𝑥𝑖;𝜇𝑖)

𝐺(𝑥𝑖;𝜇𝑖)𝛼𝜃−1 −𝐺(𝑥𝑖;𝜇𝑖)𝜃−1[1 −𝐺(𝑥𝑖;𝜇𝑖)𝜃]𝛼−1

𝐺(𝑥𝑖;𝜇𝑖)𝛼𝜃 + [1 −𝐺(𝑥𝑖;𝜇𝑖)𝜃]𝛼 ,

where 𝜕𝛽1𝑔(𝑥𝑖; 𝑝𝑖) = 𝜕𝑝𝑖
𝑔(𝑥𝑖; 𝑝𝑖)𝜕𝛽1𝑝𝑖(𝑥𝑖;𝛽1) and 𝜕𝛽1𝐺(𝑥𝑖; 𝑝𝑖) = 𝜕𝑝𝑖

𝐺(𝑥𝑖; 𝑝𝑖)𝜕𝛽1𝑝𝑖(𝑥𝑖;𝛽1)

denotes the derivatives of the parameter 𝑝𝑖 and 𝜕𝛽2𝑔(𝑥𝑖;𝜇𝑖) = 𝜕𝜇𝑖
𝑔(𝑥𝑖;𝜇𝑖)𝜕𝛽2𝜇𝑖(𝑥𝑖;𝛽2) and

𝜕𝛽2𝐺(𝑥𝑖;𝜇𝑖) = 𝜕𝜇𝑖
𝐺(𝑥𝑖;𝜇𝑖)𝜕𝛽2𝜇𝑖(𝑥𝑖;𝛽2) denotes the derivatives of the parameter 𝜇𝑖 using

the chain rule.
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The MLE 𝜓 of 𝜓 of the regression model is calculated setting the score equations 𝑈𝛼 =

𝑈𝜃 = 𝑈𝑝𝑖
= 𝑈𝜇𝑖

= 0 using an iterative method algorithm to find roots or using the optim

routine.

5.4.2 Simulation study

GOLLΓ qf was used to simulate 1,000 samples with varying sample sizes (𝑛 = 25, . . . , 1, 000)
and fixed parameter values (𝛼 = 0.50, 𝜃 = 3.00, 𝛽10 = 0.75, 𝛽11 = 0.40, 𝛽20 = 0.20, 𝛽21 =

3.00). The MLEs for the parameters were estimated for each generated sample. Following
that, the biases, MSEs, ALs and CPs, were determined for each parameter estimate. This
study enabled the MLEs’ accuracy and precision to be assessed across a range of sample sizes
and parameter values.

The Figures 33-42 show how these measures behave as a function of sample size. As
𝑛 increase, the biases, MSEs and ALs converge towards zero, showing that the MLEs are
consistent. Furthermore, as 𝑛 increases, the CPs approach 0.95, showing that the estimators
are becoming more accurate. The biases of the parameters 𝛽11 and 𝛽21 present are near zero
as the sample size grows in an oscillator behavior, nonetheless, this form does not affect the
estimative of all other parameters.
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Figure 33 – Biases versus sample size from GOLLΓ regression model.
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Figure 34 – Biases versus sample size from GOLLΓ regression model.
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Figure 35 – Biases versus sample size from GOLLΓ regression model.

0 200 400 600 800 1000

0
.0

1
0
.0

2
0
.0

3
0
.0

4
0
.0

5
0

.0
6

n

M
S

E
 α

0 200 400 600 800 1000

5
1

0
1

5

n

M
S

E
 θ

(a) (b)

Figure 36 – MSEs versus sample size from GOLLΓ regression model.
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Figure 37 – MSEs versus sample size from GOLLΓ regression model.
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Figure 38 – MSEs versus sample size from GOLLΓ regression model.
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Figure 39 – ALs versus sample size from GOLLΓ regression model.
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Figure 40 – ALs versus sample size from GOLLΓ regression model.
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Figure 41 – ALs versus sample size from GOLLL regression model.
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Figure 42 – CPs versus sample size from GOLLΓ regression model.
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5.5 APPLICATION: AGRICULTURAL (YACON POTATO) DATA

The GOLLΓ model is compared with nested models and other alternative distributions as
indicating in Table 18.

Table 18 – Competitive distributions compared to the GOLLΓ distribution.

Distribution Reference
Kumaraswamy-gamma (KwΓ) (CORDEIRO; CASTRO, 2011)
New Weibull-Gamma (NWΓ) (KLAKATTAWI, 2019)
New flexible-gamma (NFΓ) (TAHIR; HUSSAIN; CORDEIRO, 2022)

The densities are (for 𝑥 > 0), respectivelly:

𝐹KwΓ(𝑥) = 1 − {1 −𝐺(𝑥)𝛼}𝜃 ,

𝐹NWΓ(𝑥) = 1 − exp

⎧⎨⎩−𝛼
[︃

𝐺(𝑥)
1 −𝐺(𝑥)

]︃𝜃
⎫⎬⎭

and

𝐹NFΓ(𝑥) = 1 − [1 −𝐺(𝑥)]𝐺(𝑥),

where all the parameters are positive and 𝐺(𝑥) is defined in Equation (5.1). The goodness.fit

function computes the MLEs (SEs in parenthesis) for all fitted models using the BFGS ap-
proach.

5.5.1 Dataset definition

The application examines yacon data provided from the agricolae package (Felipe de Mendiburu;

Muhammad Yaseen, 2020) in R Core Team (2021) to illustrate the usefulness of the new regres-
sion model over other competitive models. Ivan Manrique and Carolina Tasso contributed the
data from the International Potato Center’s (IPC, Peru) experimental field in 2003.

The dataset has 432 observations of yacon potato (Smallanthus sonchifolius), a native
plant of the Peruvian Andes. The effect of the covariates on the response variable degree brix
(sugar concentration) was investigated. Figure 43 presents the bimodal behavior of the data.

To achieve this purpose, our focus was on the following variables:
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Figure 43 – Histogram and empirical density of yacon potato data.

• 𝑦𝑖: Degree brix (DBR) - measures the density or sugar concentration of solutions (res-
ponse variable);

• 𝑥𝑖1: Sucrose (SUCR) - pergentage;

• 𝑥𝑖2: Dummy variable 1 (LOC1) - location - Cajamarca = 1, Lima = 0, Oxapampa = 0;

• 𝑥𝑖3: Dummy variable 2 (LOC2) - location - Cajamarca = 0, Lima = 1, Oxapampa = 0;

• 𝑥𝑖4: Fructo-oligosaccharides (FOS) - pergentage;

• 𝑥𝑖5: Fructose (FRUC) - pergentage.

Vasconcelos et al. (2021) explored the data set using the odd log-logistic exponential
Gaussian (OLLExGa) regression model to explain the association between the response variable
and location. The goal is to add to the existing literature on this topic by providing new and
helpful insights into the numerous factors that influence the response variable.

The descriptive statistics from the dataset are presented in Table 19. The degree brix mean
is 9.43, with higher standard deviation indicating greater variability in the data. The near zero
skewness suggests a central distribution, while negative kurtosis indicates a distribution with
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thinner tails and a flatter peak compared to a normal distribution. Based on these findings, it
is expected that SUCR will relate positively with DBR, given both are measurements of sugar
content. Similar behavior could be expected from the variables FOS and FRUC.

Table 19 – Descriptive statistics of yacon potato data.

Variable Statistics
Mean Median SD Skewness Kurtosis Min. Max.

DBR 9.43 10.45 3.67 -0.05 -1.54 2.90 16.10
SUCR 18.07 18.67 8.14 -0.24 -0.43 -1.36 37.30
FOS 45.43 48.40 20.19 -0.64 -0.33 0.70 79.20

FRUC 17.82 14.98 13.28 0.56 -0.68 1.50 54.15

5.5.2 Results

Table 20 displays the findings of the fitted models and the GoF measures, jointly with
the MLEs and SEs in parenthesis. The GOLLΓ distribution was found to have the best fit to
the data, except for the KS measure (OLLΓ - 0.096). The proposed distribution is also the
best fit model when compared to the odd log-logistic exponential Gaussian (OLLExGa) model
introduced by Vasconcelos et al. (2021) (AIC: 2142.956 versus 2149.156). The estimated pdfs
and cdfs presented in Figure 44 for the fitted models reinforce this.

Table 20 – Findings from the fitted models of yacon potato data.

Model 𝛼 𝜃 𝑝 𝜇 AIC BIC W* A* KS

GOLLΓ
0.097 0.790 160.132 17.890 2142.956 2159.230 1.008 5.378 0.128

(0.004) (0.024) (0.055) (0.003)

OLLΓ 0.084 1 166.068 18.400 2156.692 2168.898 1.207 6.636 0.096
(0.003) (-) (0.022) (0.008)

EΓ 1 0.014 298.962 17.700 2301.724 2313.930 2.848 15.224 0.174
(-) (0.005) (96.082) (5.578)

Γ 1 1 5.906 0.626 2350.633 2358.770 3.266 17.847 0.178
(-) (-) (0.391) (0.043)

GOLLE 0.522 52.497 1 0.537 2353.793 2365.998 2.806 15.790 0.205
(0.065) (20.802) (-) (0.059)

OLLE 2.742 1 1 0.077 2390.677 2398.814 3.601 19.901 0.165
(0.107) (-) (-) (0.002)

EE 1 8.286 1 0.290 2367.808 2375.945 3.323 18.289 0.184
(-) (0.809) (-) (0.012)

KwΓ 0.213 64.742 14.973 0.186 2337.605 2353.879 3.173 17.239 0.163
(0.202) (60.570) (14.171) (0.182)

NWΓ 2.907 15.784 0.996 1.484 2332.191 2348.465 3.118 16.917 0.159
(0.357) (10.124) (0.653) (0.872)

NFΓ - - 2.821 0.357 2371.753 2379.890 3.414 18.791 0.178
(-) (-) (0.196) (0.025)
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Figure 44 – Fitted models of yacon potato data. (a) Histogram and estimated pdfs. (b) Empirical and esti-
mated cdfs.

To compare the novel distribution with its nested models, a LR test was used. The results
in Table 21 show that including more parameters is significant for modeling the existing data.

Table 21 – LR tests of yacon potato data.

Models Statistic 𝑤 𝑝-value
GOLLΓ vs Γ 211.677 < 0.0001
GOLLΓ vs EΓ 160.768 < 0.0001
GOLLΓ vs OLLΓ 15.736 < 0.0001
GOLLΓ vs EE 228.852 < 0.0001
GOLLΓ vs OLLE 251.721 < 0.0001
GOLLΓ vs GOLLE 212.837 < 0.0001

Next, one focused on the systematic components of the Equation (5.16) (for 𝑖 = 1, . . . , 432),
as:

𝑝𝑖 = exp(𝛽10 + 𝛽11 𝑥𝑖1 + 𝛽12 𝑥𝑖2 + 𝛽13 𝑥𝑖3 + 𝛽14 𝑥𝑖4 + 𝛽15 𝑥𝑖5),

𝜇̂𝑖 = exp(𝛽20 + 𝛽21 𝑥𝑖1 + 𝛽22 𝑥𝑖2 + 𝛽23 𝑥𝑖3 + 𝛽24 𝑥𝑖4 + 𝛽25 𝑥𝑖5).
(5.17)

Examining Figure 45, some observations are found to impact the model, proving the use-
fulness of LD and GCD measures in identifying potentially influential observations. To further
assess the suitability of the new regression model, Figure 46(a) shows the index plot of the
deviance residuals, indicating random behavior, besides some observations. Additionally, Fi-
gure 46(b) presents the normal probability plot with simulated envelope, suggesting that the
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GOLLΓ regression model is suitable for analyzing these data. These results imply that the
possible influential observations had no effect on the model.
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Figure 45 – The GOLLΓ regression model. (a) LD. (b) GCD.
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Figure 46 – The GOLLΓ regression model. (a) Deviance residual index. (b) Simulated envelope.

Table 22 displays the results with the MLEs, SEs and 𝑝-values obtained from fitting the
new regression model proposed.
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Table 22 – Fitted GOLLΓ regression of yacon potato data.

MLEs SEs 𝑝-values MLEs SEs 𝑝-values
𝛽10 -3.1373 0.9194 0.0007 𝛽20 -2.0724 0.5350 0.0001
𝛽11 -1.3455 1.4679 0.3599 𝛽21 -1.9263 0.7287 0.0085
𝛽12 -3.8563 0.5227 <0.0001 𝛽22 -0.9061 0.1759 <0.0001
𝛽13 -2.9413 0.2212 <0.0001 𝛽23 -1.0075 0.1564 <0.0001
𝛽14 5.6532 0.9318 <0.0001 𝛽24 2.6710 0.5870 <0.0001
𝛽15 10.2580 1.3435 <0.0001 𝛽25 5.6557 0.8984 <0.0001

5.5.3 Discussion

The model checks show that the agricultural (yacon potato) data can be adequately ex-
plained by the GOLLΓ regression model. By utilizing the parameter estimates presented in
Table 22, the GOLLΓ regression model is transformed into:

𝑝𝑖 = exp(−3.1373 − 3.8563𝑥𝑖2 − 2.9413𝑥𝑖3 + 5.6532𝑥𝑖4 + 10.2580𝑥𝑖5),

𝜇̂𝑖 = exp(−2.0724 − 1.9263𝑥𝑖1 − 0.9061𝑥𝑖2 − 1.0075𝑥𝑖3 + 2.6710𝑥𝑖4 + 0.8984𝑥𝑖5).
(5.18)

Based on the parameter estimates provided in Table 22, several interpretations can be
derived:

• All parameter estimates, except for 𝛽11, exhibit a significant level of significance at the
5% level;

• Interpretation for systematic structure 𝑝

– The distribution is symmetrical under the mean (near zero skewness) with a light
tail (negative kurtosis), which means that the negative coefficients of 𝛽12 and 𝛽13,
respectively, LOC1 and LOC2, suggest that as the covariates decrease, the shape
of the baseline distribution decreases, shifting the average of degree brix.

– The variables FOS and FRUC have significant and positive coefficients (𝛽14 and
𝛽15), indicating an effect on increasing the shape parameter and, subsequently, the
skewness. As a possible result, the impact on the degree brix of the variables is a
mean right displaced.

• Interpretation for systematic structure 𝜇
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– The negative coefficients of 𝛽21, 𝛽22, and 𝛽23, respectively, for SUCR, LOC1, and
LOC2, indicate a reduction of the scale parameter, which can indicate a decrease
in kurtosis with a negative impact on the spread of the degree brix in relation to
these variables;

– In the opposite effect, the 𝛽24 and 𝛽25 coefficients are positive, resulting in an
increase in the scale parameter and, as a result, an increase in the kurtosis. This
has potentially a positive impact on the spread of the degree brix.

5.6 CONCLUDING REMARKS

In this Chapter, the generalized odd log-logistic gamma distribution is described and a
novel bimodal regression model with a shape and scale systematic structure is used to ex-
plore the agricultural yacon potato data from a study in Peru. A novel linear representation
was demonstrated and some mathematical properties were presented. The parameters were
estimated using the maximum likelihood method and demonstrated the consistency of the
estimators through Monte Carlo simulations. Likewise, in the presented distribution, the key
features of the regression model are displayed with simulations. To assess the goodness-of-fit
measures, diagnostic checks are performed and deviance residuals are examined, which indicate
the new model’s suitability.

Some valuable findings are shown by performing the model. Except for the sucrose coef-
ficient in the shape structure, the remaining are significant at the 5% level. The descriptive
Table showed that the distribution is symmetrical under the mean (near zero skewness) with
a light tail (negative kurtosis). For the shape systematic component, locations 1 and 2 have
negative estimates that reduce the baseline’s shape parameter, which suggests shifting the a-
verage degree brix lower. The proportions of fructo-oligosaccharides and fructose have positive
estimates, indicating that they increase the shape parameter and, consequently, the skewness.
As a consequence, pulling the mean of the sugar concentration higher. For the scale systematic
component, sucrose, locations 1 and 2 have negative estimates, indicating a reduction of the
scale parameter, and in the kurtosis, indicating a negative impact on the spread of the degree
brix. In contrast, fructo-oligosaccharides and fructose increase the scale parameter, resulting
in an increase in kurtosis. Therefore, there is a likely positive impact on the spread of the sugar
concentration.
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The proposed model showed more flexibility than some competitive models and prior in-
vestigation models. The new bimodal model provides better insights to explain factors that
affect the shape and scale parameters and serves as an alternative model to other research.
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6 A WEIBULL REGRESSION MODEL IN PRESENCE OF BIMODALITY WITH

APPLICATION TO WIND ENERGY GENERATION

RESUMO

A distribuição Weibull log-logística odd generalizada (CORDEIRO et al., 2017) é descrita
e um novo modelo bimodal de regressão com dois componentes estruturais é indicado para
averiguar dados do total de geração de energia eólica no Brasil. É apresentado algumas ca-
racterísticas matemáticas, os parâmetros determinados usando a máxima verossimilhança e as
simulações de Monte Carlo confirmaram a suposição de consistência. Por meio de simulações,
usando algumas medidas, os MLEs do modelo de regressão são avaliados. Medidas de diag-
nóstico de influência global e análise de resíduos foram usadas para identificar observações
influentes e discrepantes. Para a janela temporal estudada, a regressão introduzida identificou
os meses com impacto nos parâmetros de forma e escala. Os principais resultados indicaram
que o modelo de regressão proposto é eficaz e são abordadas algumas interpretações para
melhor compreender o conjunto de dados.

Palavras-chaves: Bimodalidade. Distribuição Weibull. Energia eólica. Família log-logística
odd generalizada. Máxima verossimilhança. Modelo de Regressão. Simulação.

ABSTRACT

The generalized odd log-logistic Weibull distribution (CORDEIRO et al., 2017) is described
and a new bimodal regression model with two structural components is indicated to inves-
tigate data on total wind power generation in Brazil. Some mathematical characteristics are
presented, the parameters were determined using maximum likelihood and Monte Carlo simu-
lations confirmed the consistency assumption. Through simulations, using some measures, the
MLEs of the regression model are evaluated. Diagnostic measures of global influence and resid-
ual analysis were used to identify influential and discrepant observations. For the time window
studied, the regression introduced identified the months with an impact on the shape and
scale parameters. The main results indicated that the proposed regression model is effective
and some interpretations are addressed to better understand the dataset.

Keywords: Bimodality. Generalized odd log-logistic family. Maximum likelihood. Regression
model. Simulation. Weibull distribution. Wind energy.
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6.1 INTRODUCTION

Renewable energy sources are gaining progress in the worldwide effort to combat climate
change and reduce dependency on fossil fuels. Unlike harmful fuels, these resources utilize
nature’s power to supply clean energy while self-regenerating over time. Biomass, derived
from organic materials such as plants and waste; geothermal energy, which uses the Earth’s
interior heat; hydroelectric power, generated by utilizing the force of flowing water, both in
rivers and waves, providing a continuous and adaptable energy, are some examples for green
energy. Nevertheless, wind energy generation stands out as a significant contributor to the
move toward cleaner and more sustainable electricity generation.

In light of this, Delina (2022), for example, investigates the feasibility of harvesting Hong
Kong’s offshore wind energy, strategic implementation measures and associated environmental
challenges. Roga et al. (2022) examines wind energy technology, explores possible futures
and suggests solutions to increase the efficiency of wind generation systems. Moreover, the
environmental impact, economic concerns and energy implications of wind energy generation
are discussed (MSIGWA; IGHALO; YAP, 2022). Finally, the climate uncertainties regarding the
future of wind power across Europe’s climate zones are examined (YANG; JAVANROODI; NIK,
2022).

The Weibull distribution has been widely applied in a wide variety of fields. Ortega, Cruz
e Cordeiro (2019) utilized the log-odd logistic-Weibull regression model under informative
censoring to analyze the survival time of patients with chronic leukemia. Moreover, Ishaq e
Abiodun (2020) introduced the Maxwell-Weibull distribution applied in an economic data set
of exchange rates of Nigerian Naira to Japanese Yen. In addition, Vila e Çankaya (2022)
defined a bimodal Weibull distribution and modeled six real data sets, which outperformed
compared to competitive models. Further, Sayibu, Luguterah e Nasiru (2024) presented a
new six-parameter Weibull distribution that contains several sub-models and demonstrated its
applicability in lifetime data.

Based on this, the Chapter studies the total daily wind energy generation in Brazilian
territory. The country offers wide areas suitable for wind farm installation, with the Northeast
standing out for its good climatic conditions with continuous and strong winds, making it
a significant center for wind energy generation. Wind energy’s future outlook is critical in
the Brazilian energy grid, with the potential for development in other regions of Brazil and
continuous investment in more efficient and sustainable wind technology.
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Therefore, the study offers a novel regression model based on the generalized odd log-

logistic Weibull (GOLLW) distribution (CORDEIRO et al., 2017). This distribution is extremely
adaptable when it comes to representing bimodal data. The parameters are determined using
maximum likelihood and the accuracy of the GOLLW regression is assessed using Monte Carlo
simulations. Some local influence measures are used to verify potential outlier observations
and deviance residuals are used to verify some assumptions.

The rest of the Chapter is organized as follows. Section 6.2 presents the GOLLW distribution
features. Some mathematical properties are addressed and the maximum likelihood method
is used to estimate the parameters. The analysis of the accuracy of estimates is done by
means of Monte Carlo simulations in Section 6.3. The new bimodal regression model with
two systematic components was constructed in Section 6.4 and the MLEs of the parameters
were described. Simulations are used to assess the accuracy of the regression MLEs. Section
6.5 illustrates the new regression’s usefulness using Brazil wind energy generation data. Some
conclusions are provided in Section 6.6.

6.2 THE GOLLW DISTRIBUTION

For more than fifty years, the Weibull distribution has been widely employed in a variety
of fields (physics, medicine, economics, sociology, etc). The distribution is defined by its cdf
and pdf (for 𝑥 > 0), as follows:

𝐺(𝑥;𝜇, 𝜆) = 1 − e−( 𝑥
𝜆)𝜇

(6.1)

and

𝑔(𝑥;𝜇, 𝜆) = 𝜇

𝜆

(︂
𝑥

𝜆

)︂𝜇−1
e−( 𝑥

𝜆)𝜇

, (6.2)

respectivelly, where 𝜇 > 0 is the shape parameter and 𝜆 > 0 is the scale parameter.
Inserting Equation (6.1) into (2.2) follows that the GOLLW cdf is

𝐹 (𝑦;𝛼, 𝜃, 𝜇, 𝜆) =

(︂
1 − e−( 𝑥

𝜆)𝜇
)︂𝛼𝜃

(︂
1 − e−( 𝑥

𝜆)𝜇
)︂𝛼𝜃

+ [1 −
(︂

1 − e−( 𝑥
𝜆)𝜇
)︂𝜃

]𝛼
. (6.3)

The corresponding four-parameter pdf, plugging Equations (6.1) and (6.2) in (2.3), is
defined, as:
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𝑓(𝑦; 𝛼, 𝜃, 𝜇, 𝜆) =
𝛼𝜃 𝜇

𝜆

(︀
𝑥
𝜆

)︀𝜇−1 e−( 𝑥
𝜆 )𝜇 (︁

1 − e−( 𝑥
𝜆 )𝜇)︁𝛼𝜃−1

[1 −
(︁
1 − e−( 𝑥

𝜆 )𝜇)︁𝜃
]𝛼−1{︂(︁

1 − e−𝑙𝑜𝑔( 𝑥
𝜆 )𝜇)︁𝛼𝜃

+
[︂
1 −

(︁
1 − e−( 𝑥

𝜆 )𝜇)︁𝜃
]︂𝛼}︂2 . (6.4)

The GOLLW contains 10 submodels, which are listed below. The new class proves its
adaptability by fitting data to a variety of distribution forms and attributes.

Table 23 – Submodels associated to the GOLLW family of distributions.

𝛼 𝜃 𝜇 𝜆 Submodel
- 1 - - Odd log-logistic Weibull (OLLW) distribution (COORAY, 2006)
1 - - - Exponentiated-Weibull (Exp-W) distribution (MUDHOLKAR; SRIVASTAVA, 1993a)
1 1 - - Weibull (W) distribution
- - 1 - Generalized odd log-logistic (GOLLE) dsitribution
- 1 1 - Odd log-logistic exponential (OLLE) distribution
- 1 2 - Odd log-logistic Rayleigh (OLLR) distribution
1 - 1 - Exponentiated-exponential (Exp-E) dsitribution
1 - 2 - Exponentiated-Rayleigh (Exp-R) distribution (SURLES; PADGETT, 2001)
1 1 1 - Exponential (E) distribution
1 1 2 - Raileigh (R) distribution

The GOLLW distribution’s extra parameters allow great flexibility and a wide range of
alternatives for density plots and histograms. Figure 47 shows many properties such as bi-
modality and left/right skewness, which have more potential to fit a wide range of data than
the Weibull distribution. Figure 48 illustrates multimodality and bathtub shape, these qualities
demonstrate the new distribution’s complexity and usefulness.
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Figure 47 – GOLLW pdf for selected values.
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Figure 48 – GOLLW histogram. (a) GOLLW(0.05,9.73,8,80). (b) GOLLW(0.10,4.13,9,40).
(c) GOLLW(0.67,1.25,4,90).

6.3 MAIN PROPERTIES

A closed mathematical version of the GOLLW distribution is not possible, taking into
consideration, the density of 𝑌 can be described as a linear representation using the Equation
(2.5), as:

𝑓(𝑦;𝛼, 𝜃, 𝜇, 𝜆) =
∞∑︁

𝑘=0
𝑏𝑘ℎ𝑘+1(𝑦;𝜇, 𝜆),

where ℎ𝑘+1(𝑦;𝜇, 𝜆) is the Exp-W density with power parameter 𝑘 + 1 presented, as:

ℎ𝑘+1(𝑦;𝜇, 𝜆) = (𝑘 + 1)
[︃
𝜇

𝜆

(︂
𝑥

𝜆

)︂𝜇−1
e−( 𝑥

𝜆)𝜇
]︃ [︂

1 − e−( 𝑥
𝜆)𝜇
]︂𝑘

.

Hence, the GOLLW properties are obtained in a simple form by utilizing Exp-W properties,
see (MUDHOLKAR; SRIVASTAVA, 1993b).

6.3.1 Quantile function

The qf of Y can be easily calculated using the Equation (2.6) and the qf of the Weibull
distribution, as:

𝑄(𝑢) = 𝜆

[︃
log

(︃
1

1 − 𝜖𝛼,𝜃(𝑢)

)︃]︃1/𝜇

. (6.5)

For varying 𝛼 and 𝜃 of the GOLLW(𝛼,𝜃,0.25,0.85) distribution, the skewness and kurtosis
measures are given in Figure 49, which show a decrease behavior for both measures. The
skewness stabilizes when both parameters increase and the kurtosis drops to a zero region.
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(a) (b)

Figure 49 – GOLLW distribution (a) Galton’s skewness. (b) Moor’s kurtosis.

6.3.2 Moments

Equation (2.7) calculates the moments of the GOLLW distribution based on the Exp-W
distribution.

Theorem 6. The 𝑛th ordinary moment of 𝑌 , for 𝑛 = 1, 2, 3, . . ., is given by:

𝜇′
𝑛 = E(𝑌 𝑛) =

∞∑︁
𝑘=0

𝑎𝜆𝑛Γ
(︃
𝑛

𝜇
+ 1

)︃{︃
1 +

∞∑︁
𝑖=1

𝑐𝑖

[︁
(𝑖+ 1)−𝑛/𝜇+1

]︁}︃
𝑏𝑘, (6.6)

where (for 𝑖 = 1, 2, 3, . . .)

𝑐𝑖 = (−1)𝑖 (𝑎− 1)[(𝑎− 1) − 1] · · · [(𝑎− 1) − 𝑖− 1]
𝑖! .

Proof. The proof is straightforward by applying Equation (6.3) and using the Exp-W moments
in Choudhury (2005).

6.3.3 Generation function

Equation (2.8) determines the mgf of the GOLLW distribution established on the gf of the
Exp-W distribution.

Theorem 7. The mgf of 𝑌 is

𝑀𝑌 (𝑡) =
∑︁

𝑛,𝑘,ℎ

(−1)ℎΓ(𝑘 + 2) (𝑡𝜆)𝑛

𝑗!Γ(𝑘 + 1 − ℎ) (ℎ+ 1)
𝑛
𝜇

+1 Γ
(︃
𝑛

𝜇
+ 1

)︃
𝑏𝑘. (6.7)
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Proof. The proof is straightforward by applying Eq. (6.3) and using the Exp-W mgf in Afify
et al. (2018).

6.3.4 Estimation

The MLEs of the parameters in 𝜓 = (𝛼, 𝜃, 𝜇, 𝜆)⊤ are determined for a complete random
sample 𝑦1, . . . , 𝑦𝑛 from the GOLLW distribution by maximizing:

𝑙𝑛(𝜓) = 𝑛 log(𝛼𝜃) + 𝑛 log
(︂
𝜇

𝜆

)︂
+ (𝜇− 1)

𝑛∑︁
𝑖=1

log
(︂
𝑦𝑖

𝜆

)︂

−
𝑛∑︁

𝑖=1

(︂
𝑦𝑖

𝜆

)︂𝜇

+ (𝛼𝜃 − 1)
𝑛∑︁

𝑖=1
log

(︂
1 − e−( 𝑦𝑖

𝜆 )𝜇
)︂

+ (𝛼− 1)
𝑛∑︁

𝑖=1
log

[︃
1 −

(︂
1 − e−( 𝑦𝑖

𝜆 )𝜇
)︂𝜃
]︃

− 2
𝑛∑︁

𝑖=1
log

⎧⎨⎩
(︂

1 − e−( 𝑦𝑖
𝜆 )𝜇

)︂𝛼𝜃

+
[︃
1 −

(︂
1 − e−( 𝑦𝑖

𝜆 )𝜇
)︂𝜃
]︃𝛼
⎫⎬⎭. (6.8)

Let be
𝐴𝑖 = 𝐴𝑖(𝜇, 𝜆) = 1 − e−( 𝑦𝑖

𝜆 )𝜇

.
Thus, the score vector are

𝑈𝛼 = 𝑛

𝛼
+ 𝜃

𝑛∑︁
𝑖=1

log𝐴𝑖 +
𝑛∑︁

𝑖=1
log(1 − 𝐴𝑖) − 2

𝑛∑︁
𝑖=1

𝜃𝐴𝛼𝜃
𝑖 log𝐴𝑖 + (1 − 𝐴𝜃

𝑖 ) log(1 − 𝐴𝜃
𝑖 )𝛼

𝐴𝛼𝜃
𝑖 + (1 − 𝐴𝜃

𝑖 )𝛼
,

𝑈𝜃 = 𝑛

𝜃
+ 𝛼

𝑛∑︁
𝑖=1

log𝐴𝑖 + (1 − 𝛼)
𝑛∑︁

𝑖=1

𝐴𝜃
𝑖 log𝐴𝑖

1 − 𝐴𝜃
𝑖

− 2𝛼
𝑛∑︁

𝑖=1

𝐴𝛼𝜃
𝑖 log𝐴𝑖 − 𝐴𝜃

𝑖 (1 − 𝐴𝜃
𝑖 )𝛼−1 log𝐴𝑖

𝐴𝛼𝜃
𝑖 + (1 − 𝐴𝜃

𝑖 )𝛼
,

𝑈𝜇 = 𝑛

𝜇
+

𝑛∑︁
𝑖=1

log
(︂
𝑦𝑖

𝜆

)︂
−

𝑛∑︁
𝑖=1

log
(︂
𝑦𝑖

𝜆

)︂(︂
𝑦𝑖

𝜆

)︂𝜇

+ (𝛼𝜃 − 1)
𝑛∑︁

𝑖=1

𝜕𝜇𝐴𝑖

𝐴𝑖

+ 𝜃(1 − 𝛼)
𝑛∑︁

𝑖=1

𝜕𝜇𝐴𝑖 log𝐴𝜃−1
𝑖

1 − 𝐴𝜃
𝑖

− 2𝛼𝜃
𝑛∑︁

𝑖=1
𝜕𝜇𝐴𝑖

𝐴𝛼𝜃−1
𝑖 − 𝐴𝜃−1

𝑖 (1 − 𝐴𝜃
𝑖 )𝛼−1

𝐴𝛼𝜃
𝑖 + (1 − 𝐴𝜃

𝑖 )𝛼

and

𝑈𝜆 = −(𝜇− 2)𝑛
𝜆

+ 𝜇

𝜆

𝑛∑︁
𝑖=1

(︂
𝑦𝑖

𝜆

)︂𝜇

+ (𝛼𝜃 − 1)
𝑛∑︁

𝑖=1

𝜕𝜆𝐴𝑖

𝐴𝑖

+ 𝜃(1 − 𝛼)
𝑛∑︁

𝑖=1

𝜕𝜆𝐴𝑖 log𝐴𝜃−1
𝑖

1 − 𝐴𝜃
𝑖

− 2𝛼𝜃
𝑛∑︁

𝑖=1
𝜕𝜆𝐴𝑖

𝐴𝛼𝜃−1
𝑖 − 𝐴𝜃−1

𝑖 (1 − 𝐴𝜃
𝑖 )𝛼−1

𝐴𝛼𝜃
𝑖 + (1 − 𝐴𝜃

𝑖 )𝛼
,
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where the quantities 𝜕𝜇𝐴𝑖 and 𝜕𝜆𝐴𝑖 are, respectively:

𝜕𝜇𝐴𝑖 = log
(︂
𝑦𝑖

𝜆

)︂(︂
𝑦𝑖

𝜆

)︂𝜇

(1 − 𝐴𝑖) and 𝜕𝜆𝐴𝑖 = −𝜇

𝜆

(︂
𝑦𝑖

𝜆

)︂𝜇

(1 − 𝐴𝑖).

The MLEs can be determined using any type of Newton-Raphson method by fixing the
score vector equations 𝑈𝛼 = 𝑈𝜃 = 𝑈𝜇 = 𝑈𝜆 = 0 or using the optim procedure.

6.3.5 Simulation study

Monte Carlo simulations with 1, 000 samples of varied sizes are used to assess the accuracy
of MLEs under two scenarios. The AEs, ABs and RMSEs are calculated for each sample size
(𝑛 = 50, 100, 200, 400, 800, 1, 000), for 𝜖 = (𝛼, 𝜃, 𝜇, 𝜆). In both schemes, all parameter
estimates are overestimated, however, when the sample size increases, the estimates are near
the true value and the ABs and the MSEs are close to zero.

Table 24 – Simulations results for GOLLW distribution

scheme 1 - GOLLW(0.45,1.25,1.09,1.14)

Par n=50 n =100 n = 200
AE AB RMSE AE AB RMSE AE AB RMSE

𝛼 0.536 0.089 0.416 0.525 0.075 0.323 0.509 0.059 0.265
𝜃 2.044 0.794 2.116 1.593 0.343 1.259 1.398 0.148 0.797
𝜇 1,548 0.458 1.312 1.310 0.220 0.649 1.217 0.127 0.405
𝜆 2.227 1.087 2.836 1.867 0.727 2.114 1.657 0.517 1.697

Par n = 400 n = 800 n = 1000
𝛼 0.461 0.011 0.145 0.460 0.010 0.100 0.458 0.0084 0.0828
𝜃 1.345 0.095 0.512 1.287 0.037 0.363 1.274 0.0236 0.3068
𝜇 1.130 0.040 0.162 1.105 0.015 0.087 1.100 0.0090 0.0717
𝜆 1.281 0.141 0.732 1.210 0.070 0.396 1.191 0.0510 0.3078

scheme 2 - GOLLW(0.65,0.90,0.88,0.76)
Par n = 50 n = 100 n = 200

AE AB RMSE AE AB RMSE AE AB RMSE
𝛼 0.441 0.111 0.374 0.410 0.080 0.299 0.382 0.052 0.227
𝜃 1.947 0.497 1.731 1.683 0.233 1.141 1.560 0.110 0.785
𝜇 2.991 1.741 5.797 1.856 0.606 2.658 1.468 0.218 1.091
𝜆 2.980 1.500 3.826 2.442 0.962 2.868 2.050 0.570 2.147

Par n = 400 n = 800 n = 1000
𝛼 0.335 0.005 0.101 0.337 0.007 0.068 0.334 0.004 0.058
𝜃 1.545 0.095 0.515 1.479 0.029 0.370 1.482 0.032 0.331
𝜇 1.293 0.043 0.235 1.264 0.014 0.091 1.260 0.010 0.073
𝜆 1.585 0.106 0.713 1.542 0.062 0.387 1.519 0.039 0.291
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6.4 THE GOLLW REGRESSION MODEL

Modeling both the shape and scale parameters of the distribution (6.4) of 𝑌 yields the
novel heteroscedastic regression model. To introduce the structure, the parameters 𝜇𝑖 and 𝜆𝑖

are assumed to vary among observations, as shown below:

𝜇𝑖 = exp(𝑥⊤
𝑖 𝛽1) and 𝜆𝑖 = exp(𝑥⊤

𝑖 𝛽2). (6.9)

Here, 𝑥𝑖𝑗 = (𝑥𝑖𝑗1, · · · , 𝑥𝑖𝑗𝑐𝑗
) represents the observations on 𝑐𝑗 known regressors (𝑗 = 1, 2),

and 𝛽 = (𝛽𝑗0, · · · , 𝛽𝑗𝑐)⊤ are vectors of length (𝑐𝑗 + 1) of functionally independent unknown
coefficients. The log-linear link function is considered to be twice continuously differentiable
and plays an important role in describing the relationship between the response variable and
the covariates.

6.4.1 Estimation

Apart for the vector parameters of the Weibull distribution, the components of the score
vector of 𝑈𝛼 and 𝑈𝜃 are the identical Equations presented in Subsection (6.3.4). The score
components of the vector parameters 𝜇𝑖 and 𝜆𝑖 are specified to add the regression part, as
follows:

𝑈𝜇𝑖
=

∞∑︁
𝑖=1

𝜕𝛽1𝑔(𝑥𝑖;𝜇𝑖)
𝑔(𝑥𝑖;𝜇𝑖)

+ (𝛼𝜃 − 1)
∞∑︁

𝑖=1

𝜕𝛽1𝐺(𝑥𝑖;𝜇𝑖)
𝐺(𝑥𝑖;𝜇𝑖)

+ 𝜃(1 − 𝛼)
∞∑︁

𝑖=1

𝜕𝛽1𝐺(𝑥𝑖;𝜇𝑖)𝐺(𝑥𝑖;𝜇𝑖)𝜃−1

1 −𝐺(𝑥𝑖;𝜇𝑖)𝜃

− 2
∞∑︁

𝑖=1
𝜕𝛽1𝐺(𝑥𝑖;𝜇𝑖)

𝐺(𝑥𝑖;𝜇𝑖)𝛼𝜃−1 −𝐺(𝑥𝑖;𝜇𝑖)𝜃−1[1 −𝐺(𝑥𝑖;𝜇𝑖)𝜃]𝛼−1

𝐺(𝑥𝑖;𝜇𝑖)𝛼𝜃 + [1 −𝐺(𝑥𝑖;𝜇𝑖)𝜃]𝛼

and

𝑈𝜆𝑖
=

∞∑︁
𝑖=1

𝜕𝛽2𝑔(𝑥𝑖;𝜆𝑖)
𝑔(𝑥𝑖;𝜆𝑖)

+ (𝛼𝜃 − 1)
∞∑︁

𝑖=1

𝜕𝛽2𝐺(𝑥𝑖;𝜆𝑖)
𝐺(𝑥𝑖;𝜆𝑖)

+ 𝜃(1 − 𝛼)
∞∑︁

𝑖=1

𝜕𝛽2𝐺(𝑥𝑖;𝜆𝑖)𝐺(𝑥𝑖;𝜆𝑖)𝜃−1

1 −𝐺(𝑥𝑖;𝜆𝑖)𝜃

− 2
∞∑︁

𝑖=1
𝜕𝛽2𝐺(𝑥𝑖;𝜆𝑖)

𝐺(𝑥𝑖;𝜆𝑖)𝛼𝜃−1 −𝐺(𝑥𝑖;𝜆𝑖)𝜃−1[1 −𝐺(𝑥𝑖;𝜆𝑖)𝜃]𝛼−1

𝐺(𝑥𝑖;𝜆𝑖)𝛼𝜃 + [1 −𝐺(𝑥𝑖;𝜆𝑖)𝜃]𝛼 ,

where 𝜕𝛽1𝑔(𝑥𝑖;𝜇𝑖) = 𝜕𝜇𝑖
𝑔(𝑥𝑖;𝜇𝑖)𝜕𝛽1𝜇𝑖(𝑥𝑖;𝛽1) and 𝜕𝛽1𝐺(𝑥𝑖;𝜇𝑖) = 𝜕𝜇𝑖

𝐺(𝑥𝑖;𝜇𝑖)𝜕𝛽1𝜇𝑖(𝑥𝑖;𝛽1)

denotes the derivatives of the parameter 𝜇𝑖 and 𝜕𝛽2𝑔(𝑥𝑖;𝜆𝑖) = 𝜕𝜆𝑖
𝑔(𝑥𝑖;𝜆𝑖)𝜕𝛽2𝜆𝑖(𝑥𝑖;𝛽2) and

𝜕𝛽2𝐺(𝑥𝑖;𝜆𝑖) = 𝜕𝜆𝑖
𝐺(𝑥𝑖;𝜆𝑖)𝜕𝛽2𝜆𝑖(𝑥𝑖;𝛽2) denotes the derivatives of the parameter 𝜆𝑖 using

the chain rule.
The MLE 𝜓 of 𝜓 of the regression model is calculated setting the score equations 𝑈𝛼 =

𝑈𝜃 = 𝑈𝜇𝑖
= 𝑈𝜆𝑖

= 0 using an iterative method algorithm to find roots or using the optim

routine.
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6.4.2 Simulation study

One thousand samples from Equation (6.5) were generated using the parameter vector
(𝛼, 𝜃, 𝛽10, 𝛽11, 𝛽20, 𝛽21) = (0.65, 1.25, 0.55, 2.15, 1.44, 0.87) for sizes 𝑛 = 25, . . . , 1, 000. For
each parameter, the biases, MSEs, ALs and CPs are determined.

Figures 50-59 present these measurements in relation to sample size. The first indicates
that, as 𝑛 increases, the measures converge toward zero, holding the MLEs’ consistency criteria.
Finally, as the sample size increases, the CPs approach 0.95. The biases of the parameters
𝛼 and 𝛽20 are underestimated, nevertheless, the convergence to zero is assured. At last, the
parameter 𝛽21 presents an oscillatory behavior, however, towards zero, as expected.
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Figure 50 – Biases versus sample size from GOLLW regression model.
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Figure 51 – Biases versus sample size from GOLLW regression model.
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Figure 52 – Biases versus sample size from GOLLW regression model.
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Figure 53 – Biases versus sample size from GOLLW regression model.
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Figure 54 – Biases versus sample size from GOLLW regression model.
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Figure 55 – Biases versus sample size from GOLLW regression model.
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Figure 56 – Biases versus sample size from GOLLW regression model.
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Figure 57 – Biases versus sample size from GOLLW regression model.
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Figure 58 – Biases versus sample size from GOLLW regression model.
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Figure 59 – CPs versus sample size from GOLLW regression model.

6.5 APPLICATION: BRAZIL DAILY WIND ENERGY GENERATION

This Section includes an example application to demonstrate the effectiveness of the
GOLLW regression model. In addition to nested models, other non-nested models are fitted to
compare the new proposed distribution shown in Table 25.

The distributions are displayed (for 𝑥 > 0), respectively:
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Table 25 – Competitive distributions compared to the GOLLW distribution.

Distribution Reference
Beta-Weibull (BW) (LEE; FAMOYE; OLUMOLADE, 2007)

Kumaraswamy-Weibull (KwW) (CORDEIRO; ORTEGA; NADARAJAH, 2010)
Gamma-Weibull (GW) (PROVOST; SABOOR; AHMAD, 2011)

Kumaraswamy-Fréchet (KwFr) (MEAD, 2014)

𝐹BW(𝑥) = 𝐼𝐺(𝑥)(𝛽, 𝛿) = 1
𝐵(𝛽, 𝛿)

∫︁ 𝐺(𝑥)

0
𝑤𝛽−1(1 − 𝑤)𝛿−1𝑑𝑤,

𝐹KwW(𝑥) = 1 −
{︁
1 −𝐺(𝑥)𝛽

}︁𝛿
,

𝐹GW(𝑥) = 𝛾{𝛽,− log[1 −𝐺(𝑥)]/𝛿}
Γ(𝛿)

and
𝐹KwFr(𝑥) = 1 −

{︁
1 − 𝐹Fr(𝑥)𝛽

}︁𝛿
,

where all the parameters are positive and 𝐺(𝑥) and 𝐹Fr(𝑥) is defined in Equation (6.1) and
Fréchet distribution, respectively. Using the BFGS procedure, the goodness.fit function deter-
mines the MLEs (SEs in parentheses) for all fitted models.

6.5.1 A data set definition

The data set corresponds to 𝑛 = 365 observations of total daily wind energy generation
in Brazil from January 1st, 2022 to December 31st, 2022 retrieved from ONS16. The major
goal is to explore the relationship between the total and dispersion of daily wind generation
and the exploratory variable month during this time scenario. The variables listed below are
the focus of the investigation:

• 𝑦𝑖: total daily wind generation in Watts (W) (response variable);

• 𝑚𝑖𝑗: month (levels: 0 - January to 11 - December). Thus, for 𝑖 = 1, . . . , 365, and
𝑗 = 0, . . . , 11, dummy variables.

The descriptive statistics of these data, which feature positive asymmetry and kurtosis,
are summarized in Table 26. Additionally, the bimodality shape of the data and the aspect
of the response variable’s throughout the period are displayed in Figure 60(a). In contrast
16 <https://dados.ons.org.br/dataset/>

https://dados.ons.org.br/dataset/
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to the typical pattern in the remaining months, Figure 60(b) shows the existence of high
generation with comparable behavior during the months of July, August, September, and
October. Although the wind patterns in different parts of Brazil vary with the seasons, the
Northeast is where most energy is generated17. Between August and December, there are
consistently strong winds in this area, which is indicative of a greater generation trend in
August.

Table 26 – Descriptive statistics of Brazil wind energy generation data.

Min. Max. Mean Median SD Skewness Kurtosis
16.34 51.91 33.06 31.04 6.92 0.54 2.48
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Figure 60 – Brazil wind energy generation data. (a) Histogram and empirical density. (b) Variation across
months with trend smoothed line.

6.5.2 Results

Tables 27 shows the MLEs and GoF measures for nested and non-nested models, respec-
tively and show that the GOLLW distribution offers the best fit to the current data, despite
some values of KS measure. In fact, the histogram and plots of the estimated density functions,
as well as the empirical and estimated cdf, are shown in Figure 61 to support this result.

As shown in Table 28, the suggested model is highly competitive for both nested and non-
nested models. All null hypotheses are rejected by the LR tests in favor of the new distribution.
17 <https://shorturl.at/fntS8>

https://shorturl.at/fntS8
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Table 27 – Findings from the fitted models of Brazil wind energy data.

Model 𝛼 𝜃 𝜇 𝜆 𝛿 W* A* KS

GOLLW 0.332 4.458 3.879 188.124 0.080 0.520 0.056
(0.082) (1.200) (0.496) (10.361) (0.20)

OLLW 0.903 1 3.711 247.484 0.334 1.938 0.061
(0.144) (-) (0.510) (4.032) (0.13)

EW 1 1.468 2.755 222.015 0.224 1.413 0.054
(-) (0.495) (0.505) (23.905) (0.24)

W 1 1 3.408 248.052 0.306 1.814 0.056
(-) (-) (0.139) (4.022) (0.20)

GOLLE 1.870 3.403 1 126.755 0.243 1.828 0.059
(0.600) (2.376) (-) (47.937) (0.16)

OLLE 3.583 1 1 310.807 0.274 1.978 0.061
(0.155) (-) (-) (5.727) (0.14)

OLLR 1.763 1 2 261.054 0.251 1.707 0.061
(0.078) (-) (-) (4.743) (0.13)

EE 1 15.021 1 67.712 0.251 2.074 0.053
(-) (1.777) (-) (2.933) (0.25)

ER 1 2.713 2 177.148 0.161 1.186 0.058
(-) (0.225) (-) (4.846) (0.17)

E 1 1 1 222.469 0.150 1.234 0.369
(-) (-) (-) (11.643) (<0.01)

R 1 1 2 233.896 0.172 1.183 0.180
(-) (-) (-) (6.121) (<0.01)

GW 1.006 - 3.420 248.061 0.308 1.819 0.060
(0.382) (-) (0.808) (35.231) (0.15)

BW 1.673 3.853 2.517 343.73 0.213 1.357 0.055
(0.754) (18.048) (0.677) (587.903) (0.23)

KwW 2.328 0.116 2.936 113.216 0.117 0.875 0.055
(0.084) (0.006) (0.002) (0.039) (0.23)

KwFr 212.135 266.535 -28.952 0.649 0.168 1.196 0.057
(124.705) (176.472) (27.418) (0.108) (0.18)
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Figure 61 – Fitted models of Brazil wind energy generation data. (a) Histogram and estimated pdfs. (b)
Empirical and estimated cdfs.
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Table 28 – LR tests of Brazil wind energy data.

Models Statistic 𝑤 𝑝-value
GOLLW vs W 16.466 2.657e-04

GOLLW vs EW 15.089 1.025e-04
GOLLW vs OLLW 16.082 6.067e-05

GOLLW vs R 148.829 4.713e-32
GOLLW vs E 539.694 1.191e-116

GOLLW vs ER 18.153 1.143e-04
GOLLW vs EE 43.481 3.616e-10

GOLLW vs OLLR 25.829 2.462e-06
GOLLW vs OLLE 36.439 1.223e-08

GOLLW vs GOLLE 34.718 3.810e-09

Here, based on non-linear equations (for 𝑖 = 1, . . . , 365), the systematic structures are
consider as follows:

𝜇𝑖 = exp
⎛⎝𝛽10 +

11∑︁
𝑗=1

𝛽1𝑗 𝑚𝑖𝑗

⎞⎠
and

𝜆𝑖 = exp
⎛⎝𝛽20 +

11∑︁
𝑗=1

𝛽2𝑗 𝑚𝑖𝑗

⎞⎠ .
The GCD and LD measures, presented in Figure 62, found some influential observations.

It’s worth noting that the 221st observation (daily wind generation of 9th August 2022 -
283.9285 W) is a potentially influential observation.

The ONS18 registry of records in daily wind generation for the entire month of August
explains how the day of August 9, 2022, can affect the model, as well as by the extratropical
cyclone phenomenon19, which resulted in a strong wind season in Ceará, the Brazilian state
with the highest wind energy production.

Regardless, Figure 63 shows that index deviation residuals have a random behavior in the
range and the residuals lie within the simulated envelope, indicating that the observation has
no substantial impact on the regression model.

Table 29 presents the findings (MLEs, SEs, and 𝑝-values) of the fitted GOLLW he-
teroscedastic regression model to the current data.
18 <https://www.ons.org.br/Paginas/Noticias/20220906-Em-agosto,-ONS-registra-31-recordes-na-produ%

C3%A7%C3%A3o-de-energia-por-gera%C3%A7%C3%A3o-solar-e-e%C3%B3lica-.aspx>
19 <https://shorturl.at/enoyW>

https://www.ons.org.br/Paginas/Noticias/20220906-Em-agosto,-ONS-registra-31-recordes-na-produ%C3%A7%C3%A3o-de-energia-por-gera%C3%A7%C3%A3o-solar-e-e%C3%B3lica-.aspx
https://www.ons.org.br/Paginas/Noticias/20220906-Em-agosto,-ONS-registra-31-recordes-na-produ%C3%A7%C3%A3o-de-energia-por-gera%C3%A7%C3%A3o-solar-e-e%C3%B3lica-.aspx
https://shorturl.at/enoyW
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Figure 62 – The GOLLW regression model. (a) LD. (b) GCD.
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Figure 63 – The GOLLW regression model. (a) Deviance residual index. (b) Simulated envelope.

6.5.3 Discussion

The GOLLW regression model is able to describe the wind generation data from Brazil,
as demonstrated by the model checks. The GOLLW regression model is shown by using the
parameter estimates shown in Table 29 as follows:
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Table 29 – Fitted GOLLW regression of Brazil wind energy data.

Parameter Estimate SE 𝑝-value Parameter Estimate SE 𝑝-value
𝛽10 1.7349 0.1742 < 0.0001 𝛽20 5.0774 0.0901 < 0.0001
𝛽11 - 0.1924 0.2011 0.3394 𝛽21 0.0921 0.0676 0.1741
𝛽12 0.2044 0.1987 0.3042 𝛽22 0.1380 0.0533 0.0100
𝛽13 - 0.3048 0.1989 0.1265 𝛽23 0.1038 0.0794 0.1920
𝛽14 - 0.0524 0.1950 0.7883 𝛽24 0.2296 0.0610 0.0002
𝛽15 0.1789 0.1968 0.3640 𝛽25 0.2561 0.0555 < 0.0001
𝛽16 0.8245 0.1976 < 0.0001 𝛽26 0.5468 0.0624 < 0.0001
𝛽17 0.6132 0.2001 0.0024 𝛽27 0.6631 0.0570 < 0.0001
𝛽18 0.5849 0.1984 0.0034 𝛽28 0.6857 0.0580 < 0.0001
𝛽19 0.5319 0.1972 0.0074 𝛽29 0.7082 0.0575 < 0.0001
𝛽110 0.0062 0.1948 0.9748 𝛽210 0.3042 0.0584 < 0.0001
𝛽111 -0.2192 0.1960 0.2642 𝛽211 0.3350 0.0670 < 0.0001

𝜇̂𝑖 = exp(1.7349 + 0.8245𝑚𝑖6 + 0.6132𝑚𝑖7 + 0.5849𝑚𝑖8 + 0.5319𝑚𝑖9),

𝜆̂𝑖 = exp(5.0774 + 0.1380𝑚𝑖2 + 0.2296𝑚𝑖4 + 0.2561𝑚𝑖5 + 0.5468𝑚𝑖6

+ 0.6631𝑚𝑖7 + 0.6857𝑚𝑖8 + 0.7082𝑚𝑖9 + 0.3042𝑚𝑖10 + 0.3350𝑚𝑖11).

(6.10)

The discussion below presents an analysis of the systematic structures, utilizing January as
the month reference. In addition, Figure 64 illustrates the estimated cdfs of the fitted GOLLW
regression model and the empirical ones in specified months.

• Interpretations of the systematic component 𝜇

– July, August, September, and October (𝛽16 to 𝛽19) are statistically significant
at a 5% confidence level. The positive estimates imply a positive impact on the
baseline distribution’s shape parameter, which may displace the mean of daily wind
generation. The non-significant months are due the similar behavior to the reference
month (January);

– Figure 64 shows the absence of a significant difference among the months of Febru-
ary, March, April, May, June, November and December. The same is visualized in
July, and August, September, and October. The new regression detects similar
characteristics in the shape and scale parameters, namely clusters, and shows an
increase in energy generation in the months of July, August, September and Octo-
ber. Therefore, there are three clusters, namely "July", "August to "October" and
the rest of the months;
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– The highest wind generation came from the last cluster. In turn, the lowest gene-
ration is in the largest cluster.

• Interpretations of the systematic component 𝜆

– With the exception of February (𝛽21) and April (𝛽23), all other covariables exhibit
statistical significance at the 5% level. The estimates are positive and evidencing
an effect on increasing the scale parameter and, as a result, an increase in kurtosis
with a positive impact on the spread of wind energy generation between the other
months in relation to January, as noted in Figure 60(b).
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Figure 64 – Estimated and empirical cdfs.

6.6 CONCLUDING REMARKS

The Chapter presented the generalized odd log-logistic Weibull distribution (CORDEIRO

et al., 2017) and developed a novel Weibull bimodal regression model with two systematic
structure to analyze the total daily wind energy generation in Brazil from January 1st, 2022
to December 31st, 2022. Some valuable characteristics are addressed, the parameters are
estimated via maximum likelihood and by means of Monte Carlo simulations, some measures
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are used for the MLEs. Simulations are used to evaluate the consistency of the regression
model’s MLEs. Based on influence diagnostics and residual analysis, the performance of the
model is investigated.

Some remarkable findings are presented. For the shape systematic component, the months
of July to October are significant with positive estimates. This indicates a positive impact on
the shape parameter of the baseline, which may shift the mean of daily wind generation. For
the scale systematic component, except for the months of February and April, all other months
are significant with a positive estimate. This provides an increase in the scale parameter and,
as a consequence, in the kurtosis, implying a positive impact on the spread of wind energy
generation data.

The applicability of the energy generation data in the proposed regression model showed
more usefulness and with a better fit than nested and competitive models. In consequence,
the model improves the comprehension of Brazil daily wind energy generation.
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7 CONCLUSION

In this work, based on the generalized odd log-logistic-G family of distributions proposed
by Cordeiro et al. (2017), a few parametric regression models are introduced. Using one- and
two-parameter distributions with different regression structures, some densities are presented
to investigate the relationship between explanatory variables and the baseline vector parameter,
enabling further inspection and interpretation of various phenomena. Linear representations and
various mathematical properties are addressed for all the introduced models. The adaptability
makes the model a powerful tool for accommodating diverse types of data shapes, which
include asymetric, bimodal and fat tails.

Considering one-parameter distributions, the GOLLL and the GOLLE regression models
were defined. The first mentioned analyzed the completed primary COVID-19 vaccination rate
of counties in the state of Texas, US and effectively identified the factors that influence COVID-
19 vaccination rate. The secondary study examines extreme events that impact the response
variable. In the Chapter, cases from an epidemiological weekly of dengue fever are used in the
Federal District. The results support prior research and indicate that the new models are a
suitable alternative to other competitive distributions.

At last, utilizing the well-known distributions gamma and Weibull, the GOLLΓ and GOLLW
are defined. Two bimodal regression model structures are presented. The first mentioned il-
lustrates an application to agricultural data of a native plant of the Peruvian Andes, called
the yacon potato. The following one was studied by means of a regression model of Brazil-
ian wind energy generation. The GOLLΓ regression model proved to be more accurate than
prior studies, demonstrating the versatility of the regression. Moreover, the GOLLW regression
provided strong support to analyze and identify elements that impact wind generation.

As a future perspective for this work, the following alternatives can be highlighted: based
on all the GOLL-G models proposed, consider a semiparametric regression model, usage of
cure rate, additive partial linear regression and inflated zero models can be utilized to widen the
model’s application, as well as more analysis of the systematic structure and its interpretability
to be more accurate.
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