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RESUMO

Neste trabalho, investigamos bifurcações de configurações de Dziobek nos problemas de

quatro e cinco corpos, considerando o expoente da função potencial de cada sistema negativo

e menor do que menos um. O objetivo deste estudo é encontrar novas configurações centrais.

Inicialmente estudamos as bifurcações de uma configuração triangular com corpos de massas

unitárias em seus vértices e um corpo de massa arbitrária no centro. Utilizando o método de

Redução de Liapunov-Schmidt e o Teorema da Ramificação Equivariante, encontramos três

famílias de configurações centrais que bifurcam da configuração triangular centrada degener-

ada. No caso Newtoniano, realizamos uma análise completa das soluções e também encon-

tramos três famílias de configurações centrais assim como em (MEYER; SCHMIDT, 1987). Em

seguida, investigamos as bifurcações de uma configuração de Dziobek do problema de cinco

corpos no espaço. Mais precisamente, consideramos uma configuração tetraedral com corpos

de massas unitárias nos vértices e centrada num corpo de massa arbitrária. Primeiramente,

analisamos o que ocorre numa vizinhança da configuração degenerada variando igualmente

três das massas dos vértices. Em seguida, variamos igualmente duas das massas dos vértices.

Utilizamos o método de Redução de Liapunov-Schmidt, a equivariância das equações que de-

screvem o problema e expansão de Taylor para obter novas configurações centrais. No primeiro

caso, encontramos quatro novas famílias simétricas que surgem da configuração degenerada

e no segundo, encontramos três novas famílias simétricas.

Palavras-chaves: Problema de 𝑁 Corpos. Configurações Centrais Simétricas. Configurações

de Dziobek. Bifurcações.



ABSTRACT

In this work, we investigate bifurcations of Dziobek configurations in four and five-body

problems, considering the exponent of the potential function of each system to be negative

and less than minus one. The aim of this study is to find new central configurations. Initially,

we investigate the bifurcations of the equilateral triangular configuration with bodies of unit

mass at its vertices and a body with a mass of arbitrary value at its center. Using the Liapunov-

Schmidt reduction method and the Equivariant Branching Theorem, we find three families of

central configurations that bifurcate from the degenerate centered triangular configuration.

In the Newtonian case, we performed a complete analysis of the solutions found and also

found three families of central configurations with the same behavior as well as in (MEYER;

SCHMIDT, 1987). Next, we study the bifurcations of a Dziobek configuration of the five-body

problem in space. More precisely, we consider the regular tetrahedral configuration with bodies

of unit mass at the vertices and a body of arbitrary mass at the center. Firstly, we analyze

what happens in a neighborhood of the degenerate configuration by varying three of the

vertex masses in the same fashion. Next, we vary two of the vertex masses equally. We use

the Liapunov-Schmidt reduction method, the equivariance of the equations that describe the

problem and Taylor’s formula to obtain new central configurations. In the first case, we found

four new symmetrical families that arise from the degenerate configuration and, in the second,

we found three new symmetrical families.

Keywords: 𝑁 -Body Problem. Symmetrical Central Configurations. Dziobek Configurations.

Bifurcations.
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1 INTRODUCTION

The 𝑁 -body problem is a mathematical problem that has existed for more than three

centuries and continues to challenge mathematicians in various fields. In essence, this problem

is the study of the dynamics of 𝑁 massive bodies which are attracted to each other by

the gravitational force that each body exerts on the others. So far, our understanding of

the general solution to this problem is limited. For two bodies, the problem was completely

solved by Isaac Newton [1687] . The only explicitly known solutions are so-called homographic

solutions. These solutions are such that the bodies start in a special configuration, called central

configuration. The main property of central configurations is that the gravitational acceleration

vector produced on each mass by all the others must point towards the center of mass and be a

multiple of the position vector of this body relative to the center of mass. These configurations

govern the behavior of solutions near collisions. Finding homographic solutions to the 𝑁 -body

problem seems to be the main motivation for studying central configurations, but other reasons

have motivated the study of such configurations, as stressed in some references to this subject

(ALBOUY, 2003), (ALBOUY; LLIBRE, 2002) and (MOECKEL, 2014).

Central configurations are defined by a complicated system of algebraic equations, which

does not make it easy to find homographic solutions to the 𝑁 -body problem. Nevertheless,

once we find a solution to the equations of central configurations and perform a rotation,

translation or dilation of this solution, we have a new solution for this system. For this reason,

configurations obtained in this way are said to belong to the same equivalence (similarity)

class.

An important question about the central configuration equations is: for given 𝑁 positive

masses, is the number (equivalence classes) of solutions finite? This problem is sometimes

called the finiteness problem, and its answer in the affirmative is known as the Chazy-Wintner-

Smale conjecture. There are few definitive answers to this question. There are three classes of

central configurations for any ordering of three bodies with positive masses on a straight line

(EULER, 1764) and two classes in which the bodies are at the vertices of an equilateral triangle

(LAGRANGE, 1772). These are all the possible three-body central configurations. (MOULTON,

1910) generalized Euler’s result proving that for each ordering of the 𝑁 bodies along a straight

line, there is exactly one collinear central configuration. A generalization of Lagrange’s result

is such that, for 𝑁 arbitrary masses, the only associated (𝑁 − 1)-dimensional configuration is
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the regular simplex (SAARI, 1980).

The classification of central configurations can be explored through the dimension of the

configuration. The dimension of a configuration is understood as the dimension of the smallest

affine space containing the positions of the point masses at the configuration. The (𝑁 − 1)-

dimensional configurations are classified as we have already mentioned, but the (𝑁 − 2)-

dimensional configurations are not yet well understood. These configurations are often called

Dziobek configurations and stand out, among other reasons, because they allow for a simpler

formulation of the equations of central configuration.

For four bodies in the plane with equal masses, (ALBOUY, 1996) proved that there exists an

upper bound for the number of classes of Dziobek configurations. A lower bound can be found

in (SIMO, 1978). More generally, for any four positive masses, (HAMPTON; MOECKEL, 2006)

and (ALBOUY; KALOSHIN, 2012) showed that the number of equivalence classes of central con-

figurations is finite. For a particular family of 𝑑-dimensional symmetric configurations of 𝑑+ 2

bodies of point masses, (LEANDRO, 2003) showed the finiteness and studied the bifurcations

of these configurations, providing the exact number of central configurations when 𝑑 = 2, 3.

There are many other enumerative studies for particular cases. For five bodies with any pos-

itive masses, except for an explicitly determined set of zero measure in the space of masses,

(ALBOUY; KALOSHIN, 2012) showed that the number of classes of central configurations is

finite (generic finiteness).

For six bodies or more, even generic finiteness is an open problem. However, recently some

contributions have been made, see (DIAS; PAN, 2020) and (CHEN; CHANG, 2023).

The equations for central configurations suggest that we interpret a central configuration

as a critical point of the potential function of the 𝑁 -body system under the condition that

the moment of inertia is constant. A central configuration is called degenerate if it is not

isolated, already considering its equivalence class modulo rotations, translations and dilations.

Bifurcation theory has proved to be an important way of obtaining new central configurations

that shoot out from a degenerate configuration. For this purpose, the masses of the bodies

are typically considered to be the bifurcation parameters.

The use of bifurcation methods in Celestial Mechanics was probably pioneered by (PAL-

MORE, 1973) considering a configuration consisting of three bodies with unitary masses at the

vertices of an equilateral triangle centered at a fourth body with arbitrary mass. He also con-

sidered a configuration consisting of four bodies of unitary masses at the vertices of a square

centered at a fifth body of arbitrary mass. In both cases, the author showed that there exists a
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unique positive value of the central mass for which these configurations are degenerate. Consid-

ering the central mass as the bifurcation parameter in each case, Palmore found a new central

configuration family bifurcating from the degenerate configuration. (MEYER; SCHMIDT, 1987),

repeated the bifurcation analysis of these problems using mutual distances as coordinates and

showed the existence of new central configurations. Namely, the configurations that bifurcate

from the centered equilateral triangle are pseudo- centered isosceles triangles. For five bodies,

the configurations that bifurcate from the centered square form either a pseudo-centered kite

or an isosceles trapezoid.

In the case of a rhombus configuration with unitary masses at the vertices and centered

at a mass of arbitrary value, there is a negative value for the central mass which makes this

configuration degenerate. It was shown in (ROBERTS, 1999) that there is a continuum of

central configurations bifurcating from this one. This is an important result that shows that

considering positive masses is a necessary condition for finiteness.

Applying the same analytical techniques as in (MEYER; SCHMIDT, 1987), (SCHMIDT, 1988)

studied the bifurcations of a regular tetrahedral configuration with unitary masses at the

vertices and a mass of arbitrary value at the barycenter. It was shown that there is a single

positive value for the central mass which makes the configuration degenerate. Considering

the central mass as the bifurcation parameter, the author proved the existence of four new

families of symmetric tetrahedrons. This work was continued in (SANTOS, 2004). The author

showed, after reformulating the problem using Dziobek equations and bifurcation theory with

symmetry, that there are in fact at least seven families of central configurations close to the

centered regular tetrahedron. The three new configurations that were found have a so-called

planar symmetry.

(MEYER; SCHMIDT, 1988) extended the method to find the value of the central mass that

makes the central configuration formed by any centered regular polygon with equal masses at

the vertices degenerate. They used the so-called Palmore coordinates. In addition, with the

help of the software Macsyma and Polypak, they carried out a complete bifurcation analysis

for problems of five to thirteen bodies where the central mass is the bifurcation parameter.

In a numerical study, (GLASS, 1997) examined the bifurcations of central configurations in

the planar four-body problem under the condition of equal masses and using the exponent of

the system’s potential as the bifurcation parameter. In the same way, (GLASS, 2000) discussed

the many bifurcations that occur in the central configuration equation with the number of

bodies between five and eight. Some asymmetrical configurations were found for the six-body
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problem.

Assuming again the centered tetrahedral configuration with equal masses at its vertices and

the central mass as the bifurcation parameter, (ALVAREZ-RAMÍREZ; CORBERA; LLIBRE, 2016)

analyzed numerically this family with the central mass varying from zero to one. However, no

central configurations were found other than those by Schmidt and Santos.

Considering homogeneous potentials with negative exponents, (SANTOS et al., 2017) proved

the existence of new Dziobek configurations arising from the centered equilateral triangular

configuration and the centered regular tetrahedron with unitary masses at their vertices and

an arbitrary mass at the barycenter. In both cases, the mass at one of the vertices of the

configuration was taken as the bifurcation parameter, with the mass at the barycenter assuming

the specific degenerate value and the remaining masses equal to one. For the four-bodies

problem, there are two symmetrical configurations and two non-symmetrical configurations

bifurcating from the degenerate centered equilateral triangle. For the five-bodies problem,

there are five symmetrical configurations which were found bifurcating from the degenerate

centered regular tetrahedron, two with so-called axial symmetry and three with so-called planar

symmetry.

The present thesis is divided into three parts and was mostly inspired by (SANTOS et al.,

2017) and (SANTOS, 2004). Our main results derive from the study of the bifurcations of the

centered tetrahedral configuration. We will continue to treat the masses of the vertices as

bifurcation parameters, but the degenerate configuration will be approached differently than

in preceding works.

The second chapter provides a foundation for the technical concepts that will be used to

study bifurcations of central configurations in the following chapters. It also reviews relevant

concepts about bifurcations (GOLUBITSKY; STEWART; SCHAEFFER, 1985) and (GOLUBITSKY;

SCHAEFFER, 1988) and central configurations (ALBOUY, 2003).

In the third chapter, we analyze the bifurcations of the centered triangular configuration.

We consider the exponent of the potential function of the system to be less than minus one.

The central mass that makes the configuration degenerate is determined as a function of this

exponent. We consider the central mass as the bifurcation parameter, and apply the Liapunov-

Schimidt reduction method to the equation that describes the problem. In the simplified

equations, we apply a theorem, known as Equivariant Branching Theorem, which guarantees

the existence and uniqueness of solutions for particular bifurcation problems. We find three

families of central configurations that bifurcate from the centered equilateral triangle. In the
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Newtonian case, a more detailed analysis of the three families revealed that the configurations

that bifurcate from the centered equilateral triangle are pseudo-centered isosceles triangles, as

in (MEYER; SCHMIDT, 1987).

Finally in chapter four, we investigate the bifurcations of the centered regular tetrahedron

with equal masses at the vertices and a body of arbitrary mass at the barycenter. Keeping in

mind that this is a bifurcation problem with five different parameters, we study two particular

cases of this general problem. The first problem consists of varying three vertex masses equally,

while the second consists of varying two of the vertex masses equally. We use the same tech-

nique to solve both problems. We start by applying the Liapunov-Schmidt reduction method

to simplify the equations that describe these problems. Next, we make use of the equivariance

of the reduced equations to find some solutions. To look for more solutions, we use analyticity

to obtain an interesting factorization of the Taylor expansion of the functions involved. The

implicit function theorem is an important tool in this process. For the first problem, we found

four central configuration families emerging from the degenerate configuration with the same

type of symmetry as the solutions presented in (SANTOS et al., 2017). In the second problem,

we found three new central configuration families bifurcating from the degenerate configura-

tion. These configurations are symmetrical with respect to a plane containing one edge of the

tetrahedron and the midpoint of the opposite edge. To display the solutions analytically, we

use Taylor series.

We used the computer algebra system Maple to perform the extensive calculations in this

thesis.
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2 PRELIMINARIES

2.1 MOTIVATION

Consider 𝑁 particles with masses 𝑚1, ...,𝑚𝑁 ∈ R+ located at the positions 𝑞1, ..., 𝑞𝑁 at

time 𝑡, with each 𝑞𝑖 in R𝑑. Determining the positions and velocities of these particles at each

instant is the classical problem of Celestial Mechanics known as the 𝑁 -body problem, whose

mathematical formulation is given by the system of equations of motion

𝑞𝑖 =
𝑁∑︁

𝑗 ̸=𝑖

𝑚𝑗||𝑞𝑖 − 𝑞𝑗||2𝑎(𝑞𝑗 − 𝑞𝑖), 𝑖 = 1, ..., 𝑁, (2.1)

when 𝑎 = −3/2. We define the potential function of the system by

𝑈 = 1
2𝑎+ 2

𝑁∑︁
𝑖<𝑗

𝑚𝑖𝑚𝑗 ‖ 𝑞𝑖 − 𝑞𝑗 ‖2𝑎+2, ∀ 𝑎 ̸= −1. (2.2)

Finding solutions for the system of equations (2.1) is a challenging task and has motivated

many research works covering different areas of Mathematics. In this sense the study of central

configurations plays an important role, one major reason being that these configurations are

initial conditions for a special family of solutions of the 𝑁 -body problem called homographic

solutions (see chapter 2 in (LLIBRE; MOECKEL; SIMO, 2015) and (MOECKEL, 2014)).

Definition 2.1. A configuration 𝑞 = (𝑞1, ..., 𝑞𝑛) ∈ R𝑑𝑛 is central if there exists a constant

𝜆 ∈ R such that
𝑁∑︁

𝑗 ̸=𝑖

𝑚𝑗 ‖ 𝑞𝑖 − 𝑞𝑗 ‖2𝑎 (𝑞𝑖 − 𝑞𝑗) = 𝜆(𝑞𝑖 − 𝑞𝐺), ∀ 𝑖 = 1, ..., 𝑁, (2.3)

where 𝑞𝐺 = 1
𝑀

𝑁∑︀
𝑖=1

𝑚𝑖𝑞𝑖 is center of mass when 𝑀 =
𝑁∑︀

𝑖=1
𝑚𝑖 ̸= 0.

Remark 2.2. It is important to emphasize that the value of the exponent 𝑎 may play a

fundamental role in the dynamics of the system (see (ALBOUY, 2003)), but if the interest is

to study central configurations, which is a problem from statics, its value seems to be not

so relevant. In this work, we usually consider 𝑎 < −1 and, when it is convenient, we will

concentrate on the Newtonian case, 𝑎 = −3/2.

Remark 2.3. The dimension of a configuration is understood as the dimension of the smallest

affine subspace of R𝑑 containing the points 𝑞1, ..., 𝑞𝑁 , or simply the dimension of the space

generated by 𝑞1 − 𝑞𝑖, ..., 𝑞𝑁 − 𝑞𝑖, which does not depend on the choice of the point 𝑞𝑖.
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Proposition 2.4. For any value of 𝑎 ̸= 0, a configuration of 𝑁 non-zero masses of dimension

exactly 𝑁 − 1 is central if and only if it is the regular simplex.

Remark 2.5. The value of the exponent 𝑎 = 0 implies every configuration is central.

Additional fundamental information can be found in (ALBOUY, 2003).

Lemma 2.6. Let 𝑞 = (𝑞1, ..., 𝑞𝑁) be a configuration. If the dimension of 𝑞 is exactly 𝑁 − 2,

then there exists a unique non-zero 𝑁−tuple 𝑋 = (𝑥1, ..., 𝑥𝑁) ∈ R𝑁 , up to a common factor,

such that
𝑁∑︁

𝑖=1
𝑥𝑖 = 0 and

𝑁∑︁
𝑖=1

𝑥𝑖𝑞𝑖 = 0. (2.4)

Proof. The dimension of a configuration is 𝑁 − 2, if and only if, for each 1 ≤ 𝑖 ≤ 𝑁, there

is 𝑘 ∈ {1, ...𝑖 − 1, 𝑖 + 1, ..., 𝑁} such that the vectors {𝑞𝑗 − 𝑞𝑖}𝑗 ̸=𝑘,𝑖 are linearly independent.

So, there exists 𝛼𝑗 ∈ R such that

𝑞𝑘 − 𝑞𝑖 =
𝑁∑︁

𝑗 ̸=𝑖,𝑘

𝛼𝑗(𝑞𝑗 − 𝑞𝑖) = 𝛼1(𝑞1 − 𝑞𝑖) + ...+ 𝛼𝑖−1(𝑞𝑖−1 − 𝑞𝑖) + 𝛼𝑖+1(𝑞𝑖+1 − 𝑞𝑖) + ...

+ 𝛼𝑘−1(𝑞𝑘−1 − 𝑞𝑖) + 𝛼𝑘+1(𝑞𝑖+1 − 𝑞𝑖) + ...+ 𝛼𝑁(𝑞𝑁 − 𝑞𝑖).

Grouping common terms, we have

𝛼1𝑞1 + ...+ 𝛼𝑖−1𝑞𝑖−1 + 𝛼𝑖+1𝑞𝑖+1 + ...𝛼𝑘−1𝑞𝑘−1 + 𝛼𝑘+1𝑞𝑘+1 + ...𝛼𝑁𝑞𝑁

+ (1 − 𝛼1 − ...− 𝛼𝑘−1 − 𝛼𝑘+1 − ...− 𝛼𝑁)𝑞𝑖 − 𝑞𝑘 = 0.

Hence, taking 𝑥𝑖 = 1 − 𝛼1 − ... − 𝛼𝑘−1 − 𝛼𝑘+1 − ... − 𝛼𝑁 , 𝑥𝑘 = −1 and 𝑥𝑗 = 𝛼𝑗, 𝑗 ̸= 𝑖, 𝑘,

the existence follows. Now, suppose that there are 𝑋 and 𝑌 ∈ R𝑁 satisfying (2.4). Since the

dimension of 𝑞 is 𝑁 − 2, we have

𝑥𝑘(𝑞𝑘 − 𝑞𝑖) = −
𝑁∑︁

𝑗 ̸=𝑘

𝑥𝑗(𝑞𝑗 − 𝑞𝑖), (2.5)

𝑦𝑘(𝑞𝑘 − 𝑞𝑖) = −
𝑁∑︁

𝑗 ̸=𝑘

𝑦𝑗(𝑞𝑗 − 𝑞𝑖). (2.6)

By multiplying (2.5) by −𝑦𝑘, (2.6) by 𝑥𝑘 and adding the resulting expressions, we get

∑︁
𝑗 ̸=𝑘

(𝑦𝑘𝑥𝑗 − 𝑦𝑗𝑥𝑘)(𝑞𝑗 − 𝑞𝑖) = 0.

By linear independence, it follows that 𝑦𝑘𝑥𝑗 − 𝑦𝑗𝑥𝑘 = 0, so 𝑥𝑗 = 𝜇𝑦𝑗, for all 𝑗 ̸= 𝑘, 𝑖, where

𝜇 = 𝑥𝑘

𝑦𝑘

, since for some 𝑘 we have that 𝑦𝑘 ̸= 0.
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Definition 2.7. A Dziobek configuration is a configuration 𝑞 = (𝑞1, ..., 𝑞𝑁), with non-zero

masses, such that there exists a non-zero 𝑋 ∈ R𝑁 satisfying (2.4) and, for some pair (𝜉, 𝜂) ∈

R2, we have that

𝑠𝑎
𝑖𝑗 = 𝜉 + 𝜂

𝑥𝑖

𝑚𝑖

𝑥𝑗

𝑚𝑗

∀ 𝑖 ̸= 𝑗, (2.7)

where 𝑠𝑖𝑗 =‖ 𝑞𝑖 − 𝑞𝑗 ‖2 .

Lemma 2.8. A Dziobek configuration is a central configuration with 𝜉 = 𝜆

𝑀
.

Lemma 2.9. A central configuration with non-zero masses and 𝑀 ̸= 0 of dimension exactly

𝑁 − 2 is a Dziobek configuration.

A proof of both lemmas is found in (ALBOUY, 2003) as well as that 𝜂 < 0 for any Dziobek

configuration, with 𝑎 < 0 and 𝑚𝑖 > 0, for all 𝑖.

Remark 2.10. Setting 𝑡𝑖 = ∑︀
𝑗 ̸=𝑖 𝑠𝑖𝑗𝑥𝑗, equations (2.4) are equivalent to

𝑁∑︁
𝑖=1

𝑥𝑖 = 0 and 𝑡𝑖 = 𝑡𝑗, ∀ 𝑖 ̸= 𝑗.

See (SANTOS, 2004).The variables 𝑥𝑖 can be interpreted as barycentric coordinates and are

sometimes called barycentric weights (ALBOUY, 2003). For more details about these coordi-

nates, see (BERGER, 2009) and (COXETER, 1969).

The central configuration equations can be written equivalently as:

∇𝑖𝑈(𝑞) − 𝜆

2 ∇𝑖𝐼(𝑞) =0, 𝑖 = 1, ..., 𝑁,

where 𝑈 is the potential function given by (2.2) and 𝐼 is the moment of inertia of the system

𝐼(𝑞) = 1
2

𝑁∑︁
𝑖=1

𝑚𝑖 ‖ 𝑞𝑖 ‖2. (2.8)

The constant 𝜆 can be interpreted as a Lagrange multiplier. Thus, central configurations are

critical points of 𝑈(𝑞) under the condition that 𝐼(𝑞) = 𝐼0, where 𝐼0 is a constant.

Bifurcation Theory allows us to find new central configurations close to a degenerate

central configuration.

Remark 2.11. We must keep in mind that a central configuration is understood as being

degenerate if it is not isolated as we vary the masses, already considering its equivalence class

modulo rotations, translations, and dilations.
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2.2 SOME BIFURCATION THEORY

In this section, we will describe some techniques, concepts, and results that will help us to

study central configurations in some degenerate cases, as well to analyze the behavior of the

bifurcation branches arising from a degenerate central configuration.

We begin by studying the structure of the bifurcations of an equilibrium solution of a

system of ODEs

𝑥̇ = Φ(𝑥, 𝜖),

where Φ : R𝑛 ×R𝑘 −→ R𝑛 is a smooth map. Assuming that 𝑥 = 𝑥0 is an equilibrium solution,

i.e. Φ(𝑥0, 𝜖) = 0 for all 𝜖 ∈ R𝑘, we consider a bifurcation problem as a problem of finding

solutions to the equation

Φ(𝑥, 𝜖) = 0 (2.9)

in the neighborhood of a degenerate solution (𝑥0, 𝜖0) in which 𝜖 is the bifurcation parameter.

These solutions are usually of the form 𝑥(𝜖) but can also be of the form 𝜖(𝑥).

Definition 2.12. A degenerate solution of (2.9) is a solution such that Φ(𝑥0, 𝜖0) = 0 and

𝐷𝑥Φ(𝑥0, 𝜖0) = 0. We call bifurcation diagram the set 𝑆 = {(𝑥, 𝜖) ∈ R𝑛 × R𝑘 | Φ(𝑥, 𝜖) = 0

near (𝑥0, 𝜖0)}. If 𝑛(𝜖) denotes the number of solutions 𝑥(𝜖) of Φ(𝑥, 𝜖) = 0, a bifurcation point

is a point (𝑥0, 𝜖0) ∈ 𝑆 at which 𝑛(𝜖) changes when we vary the parameter in a neighborhood

of 𝜖0.

The vanishing of the determinant of 𝐷𝑥Φ(𝑥0, 𝜖0) is a necessary condition for the point

(𝑥0, 𝜖0) to be a bifurcation point. As a matter of fact, if rank(𝐷𝑥Φ)(𝑥0, 𝜖0) is maximum, then

the implicit function theorem ensures that equation (2.9) may be solved uniquely for 𝑥 in terms

of 𝜖 in a neighborhood of 𝜖0. Therefore, in a neighborhood of (𝑥0, 𝜖0) the number of solutions

is always the same. So, by definition, (𝑥0, 𝜖0) can not be a bifurcation point (for more details,

see (GOLUBITSKY; SCHAEFFER, 1988) ).

Example 2.13. Consider the ODE

𝑥̇ = 𝑥2 + 𝜖,

where 𝑥, 𝜖 ∈ R and Φ(𝑥, 𝜖) = 𝑥2 + 𝜖. The equilibrium points are 𝑥 = ±
√

−𝜖. If 𝜖 < 0, then

there are two real equilibrium points, but if 𝜖 = 0, then there is only one. It is clear that
𝑑Φ
𝑑𝑥

(0, 0) = 0, so the point (0, 0) is the bifurcation point, and in a neighborhood of zero the



17

equilibrium points appear and disappear. This type of bifurcation is known in the literature as

a saddle node bifurcation.

𝑥

𝜖

√
−𝜖−

√
−𝜖

𝑂

Figure 1. Saddle node bifurcation at (0, 0). The bifurcation branches are defined for 𝜖 < 0.

Example 2.14. Consider the ODE

𝑥̇ = 𝑥3 − 𝜖 𝑥,

where 𝑥, 𝜖 ∈ R and Φ(𝑥, 𝜖) = 𝑥3 − 𝜖 𝑥. The equilibrium points are 𝑥 = 0 and 𝑥 = ±
√
𝜖.

Similar to the previous example, the point (0, 0) is the only bifurcation point. The number of

solutions of Φ = 0 jumps from one to three when 𝜖 crosses zero and the equilibrium points

that appear are symmetrical with respect to the 𝜖−axis. In this case, the bifurcation is known

in the literature as a pitchfork bifurcation

𝑥

𝜖

√
𝜖

−
√
𝜖

𝑂

Figure 2. Pitchfork Bifurcation at (0, 0). The bifurcation branches are defined for 𝜖 > 0.

For more examples and basic concepts, see (STROGATZ, 2000), (GOLUBITSKY; SCHAEFFER,

1988) and (HALE; KOÇAK, 2012).
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Remark 2.15. This thesis is concerned only with finding bifurcations that arise from degen-

erate configurations, but not in classifying them.

2.2.1 Liapunov-Schmidt Reduction Method

The Liapunov-Schmidt reduction can help to solve, or at least simplify, degenerate prob-

lems. This method allows us to apply the implicit function theorem in situations where it

apparently cannot be used. More precisely, we can apply it to minimally degenerate prob-

lems. The purpose of this section is to present the Liapunov-Schimidt reduction method for

finite dimensional problems with or without symmetry. (for further details see (GOLUBITSKY;

SCHAEFFER, 1988)).

Let us start with the Liapunov-Schmidt reduction method without symmetry. We consider

a bifurcation problem as (2.9), where Φ(0, 0) = 0, rank(𝐷𝑥Φ(0, 0)) = 𝑛 − 𝑟, and let 𝐿 =

𝐷𝑥Φ(0, 0). By choosing subspaces complementary to the kernel and the image of 𝐿, it is

possible to obtain a direct sum decompositions of the domain and the condomain of Φ
R𝑛 = ker(𝐿) ⊕𝑀, (2.10)

R𝑛 = 𝑁 ⊕ Im(𝐿). (2.11)

Lemma 2.16. Let P be the projection of R𝑛 onto Im(𝐿) and 𝐼−𝑃 the projection of R𝑛 onto

𝑁 . If 𝑢 ∈ R𝑛, then 𝑢 = 0 if and only if 𝑃 (𝑢) = 0 and (𝐼 − 𝑃 )(𝑢) = 0.

Proof.

(⇒) It is clear since 𝑃 and (𝐼 − 𝑃 ) are linear maps.

(⇐) If 𝑢 ∈ ker(𝑃 ) = 𝑁 and 𝑢 ∈ ker(𝐼 −𝑃 ) = Im(𝐿), since 𝑁 ∩ Im(𝐿) = {0}, it follows that

𝑢 = 0.

By lemma 2.16, equation (2.9) is equivalent to the pair of equations

(𝑃 ∘ Φ)(𝑥, 𝜖) = 0, (2.12)

[(𝐼 − 𝑃 ) ∘ Φ](𝑥, 𝜖) = 0. (2.13)

Dividing the problem into this pair of equations becomes interesting because it allows us to

solve equation (2.12) for (𝑛 − 𝑟) variables by applying the implicit function theorem to the

function (𝑃 ∘ Φ)(𝑥, 𝜖). Actually, according to decomposition (2.10), any vetor 𝑥 ∈ R𝑛 can be
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written as 𝑥 = 𝑣 + 𝑤, where 𝑣 ∈ ker(𝐿) and 𝑤 ∈ 𝑀. So, defining a map

𝐹 : ker(𝐿) ×𝑀 × R𝑘 −→ Im(𝐿)

(𝑣, 𝑤, 𝜖) ↦−→ 𝐹 (𝑣, 𝑤, 𝜖) = (𝑃 ∘ Φ)(𝑣 + 𝑤, 𝜖),

we have that 𝐹 (0, 0, 0) = 0 and

𝐷𝑤𝐹 (𝑣, 𝑤, 𝜖) = (𝑃 ∘𝐷𝑤Φ)(𝑣 + 𝑤, 𝜖).

At (0, 0, 0), it follows that 𝐷𝑤𝐹 (0, 0, 0) = 𝐿
∣∣
𝑀

is an invertible linear map. Hence, by the

implicit function theorem, there exists a neighborhood 𝑉 ⊂ ker(𝐿) × R𝑘 such that for all

(𝑣, 𝜖) ∈ 𝑉 there is a unique smooth function 𝑤 = 𝑊 (𝑣, 𝜖) : 𝑉 −→ 𝑀 , where 𝑊 (0, 0) = 0

and 𝐹 (𝑣,𝑊 (𝑣, 𝜖), 𝜖) = 0.

Now, we substitute 𝑊 into equation (2.13) to obtain the map

𝜑 : ker(𝐿) × R𝑘 −→ 𝑁

(𝑣, 𝜖) ↦−→ 𝜑(𝑣, 𝜖) = [(𝐼 − 𝑃 ) ∘ Φ](𝑣 +𝑊 (𝑣, 𝜖), 𝜖).

Thus, for all (𝑣, 𝜖) near (0, 0), the zeros of 𝜑(𝑣, 𝜖) determine the zeros of Φ(𝑥, 𝜖).

After replacing 𝑊 in equation (2.12), if we choose explicit bases for ker(𝐿) and 𝑁 , namely

{𝑣1, ..., 𝑣𝑟} and {𝑣*
1, ..., 𝑣

*
𝑟}, respectively, we can define a map

𝑔 : R𝑟 × R𝑘 −→ R𝑟

(𝑦, 𝜖) ↦−→ (𝑔1, ..., 𝑔𝑟),

by 𝑔𝑖 = ⟨𝑣*
𝑖 , 𝜑 (∑︀𝑟

𝑖=1 𝑦𝑖𝑣𝑖, 𝜖)⟩, when ⟨·, ·⟩ is the canonical inner product of R𝑟, and 𝑦 =

(𝑦1, ..., 𝑦𝑟) are the coordinates of the vector 𝑣 ∈ ker(𝐿) with respect to the chosen basis. So,

𝑔(𝑦, 𝜖) = 0 if and only if 𝜑 (∑︀𝑟
𝑖=1 𝑦𝑖𝑣𝑖, 𝜖) = 0. Both of these equations are called reduced

equations.

In particular, we can choose 𝑀 = ker(𝐿)⊥ and 𝑁 = Im(𝐿)⊥.

Remark 2.17. The function 𝑔 can be seen as a representation of 𝜑 in specific coordinates.

Indeed, since 𝜑
(∑︀𝑟

𝑗=1 𝑦𝑗𝑣𝑗, 𝜖
)

∈ 𝑁 , we have 𝜑(∑︀𝑟
𝑗=1 𝑦𝑗𝑣𝑗, 𝜖) = ∑︀𝑟

𝑖=1 𝛼𝑖𝑣
*
𝑖 and taking the inner

product on both sides with 𝑣*
𝑖 , and assuming that the basis of 𝑁 is an orthogonal basis, we

obtain

𝛼𝑖(𝑦, 𝜖) = ⟨𝑣*
𝑖 , 𝜑 (∑︀𝑟

𝑖=1 𝑦𝑖𝑣𝑖, 𝜖)⟩
‖ 𝑣*

𝑖 ‖2 , 𝑖 = 1, ..., 𝑟.
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So, by definition of 𝜑(𝑣, 𝜖), if 𝑁 = Im(𝐿)⊥, we have

𝛼𝑖(𝑦, 𝜖) = ⟨𝑣*
𝑖 ,Φ (∑︀𝑟

𝑖=1 𝑦𝑖𝑣𝑖 +𝑊 (∑︀𝑟
𝑖=1 𝑦𝑖𝑣𝑖, 𝜖), 𝜖)⟩

‖ 𝑣*
𝑖 ‖2 , 𝑖 = 1, ..., 𝑟, (2.14)

for 𝑣*
𝑖 ∈ Im(𝐿)⊥ whereas (𝑃 ∘ Φ) (∑︀𝑟

𝑖=1 𝑦𝑖𝑣𝑖 +𝑊 (∑︀𝑟
𝑖=1 𝑦𝑖𝑣𝑖, 𝜖) , 𝜖) ∈ Im(𝐿). Therefore, we

can define 𝑔𝑖 := 𝛼𝑖.

2.2.2 Groups in Bifurcation Theory

In this section, we consider the Liapunov-Schmidt reduction method with symmetry. We

treat the case when the operator 𝐿 in the bifurcation problem (2.9) commutes with a group

of symmetries. Usually, the symmetries present in the problem furnish a simplification for the

equations after the Liapunov-Schmidt reduction. The reduced equation inherits the symmetry

of the complete equation (the best reference, in my opinion, is chapter XVII of (GOLUBITSKY;

SCHAEFFER, 1988)).

Definition 2.18. Let Γ be a group and V a nonzero finite-dimensional vector space. A rep-

resentation of Γ on V is a homomorphism 𝜌 : Γ −→ 𝐺𝐿(V). In other words, Γ acts linearly

on V if to each element 𝛾 ∈ Γ we can associate an isomorphism 𝜌𝛾 ∈ 𝐺𝐿(V) defined by

𝜌𝛾 : V −→ V

𝑣 ↦−→ 𝜌𝛾(𝑣),

such that
𝜌𝛾1�𝛾2(𝑣) = (𝜌𝛾1 ∘ 𝜌𝛾2) (𝑣), ∀ 𝛾1, 𝛾2 ∈ Γ.

Definition 2.19. A representation 𝜌 of a group Γ on V is absolutely irreducible if the only

linear operators on V that commute with each 𝜌𝛾 are scalar multiples of the identity.

Definition 2.20. A map Φ : V −→ W commutes with the representation 𝜌 of a group of

symmetries Γ if

Φ(𝜌𝛾(𝑣)) = 𝜌𝛾(Φ(𝑣)), ∀ 𝛾 ∈ Γ, 𝑣 ∈ V.

In this case we say that Φ is Γ− equivariant.

Remark 2.21. If we want the representation 𝜌 act on the domain of Φ in the same way that

it acts on the codomain, we must have that V ⊆ W. Otherwise, it is necessary to define a

representation different from 𝜌 for act on V.
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In the context of the Liapunov-Schmidt reduction, definition 2.20 makes sense if we restrict

the choice of the complements of the kernel and the image of the derivative map to Γ-invariant

( or, simply, invariant) subspaces M and N, respectively. The next two lemmas will allow us

to construct such subspaces.

Lemma 2.22. Consider Γ a finite group, Φ : V −→ W a Γ−equivariant map, where V and

W are finite-dimensional vector subspaces, and 𝐿 = 𝐷Φ(0). Then,

(a) 𝐿 commutes with Γ.

(b) ker(𝐿) is Γ-invariant subspace of V.

(c) Im(𝐿) is Γ-invariant subspace of W.

Proof.

(a) Let 𝜌 be a representation of Γ. By hypothesis, Φ(𝜌𝛾(𝑣)) = 𝜌𝛾(Φ(𝑣)), for all 𝛾 ∈ Γ. So, by

the chain rule

𝐷Φ(𝜌𝛾(𝑣))𝐷𝜌𝛾(𝑣)
∣∣∣
𝑣=0

= 𝐷𝜌𝛾(𝑣)𝐷Φ(𝜌𝛾(𝑣))
∣∣∣
𝑣=0

.

It follows that 𝐿 ∘ 𝜌𝛾 = 𝜌𝛾 ∘ 𝐿, for all 𝛾 ∈ Γ and 𝑣 ∈ V.

(b) Pick 𝑣 ∈ ker(𝐿). In accordance with (a), we have

𝐿(𝜌𝛾(𝑣)) = 𝜌𝛾(𝐿(𝑣)) = 𝜌𝛾(0) = 0, ∀ 𝛾 ∈ Γ.

Thus, 𝜌𝛾(𝑣) ∈ ker(𝐿). Item (c) is proved similarly to item (b).

Lemma 2.23. If V is a vector space equipped with an inner product ⟨·, ·⟩, which is preserved

by the action of a group Γ, i.e.,

⟨𝜌𝛾(𝑣1), 𝜌𝛾(𝑣2)⟩ = ⟨𝑣1, 𝑣2⟩, ∀ 𝑣1, 𝑣2 ∈ V and 𝛾 ∈ Γ, (⋆)

then the orthogonal complements of ker(𝐿) and Im(𝐿) are Γ-invariant.

Proof. Assume 𝑢 ∈ ker(𝐿)⊥ and 𝑣 ∈ ker(𝐿). We want to show that 𝜌𝛾(𝑢) ∈ ker(𝐿)⊥. Since

ker(𝐿) is Γ-invariant, by the previous lemma, we have 𝜌−1
𝛾 (𝑣) ∈ ker(𝐿) and ⟨𝑢, 𝜌−1

𝛾 (𝑣)⟩ = 0.

Hence,

⟨𝜌𝛾(𝑢), 𝑣⟩ = ⟨𝜌𝛾(𝑢), 𝜌𝛾(𝜌−1
𝛾 (𝑣))⟩ = ⟨𝑢, 𝜌−1

𝛾 (𝑣)⟩ = 0,

where the second equality follows from the hypothesis (⋆). Since 𝑢 was arbitrarily chosen, we

proved the first claim. Similarly, we show that Im(𝐿)⊥ is Γ-invariant.

In order to show that the reduced map is equivariant, we need the next lemma. Let us

assume that the parameters are not affected by the action of Γ.
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Lemma 2.24. Consider Γ a finite group. If 𝑊 is an implicit solution of equation (2.12), then

𝑊 (𝜌𝛾(𝑣), 𝜖) = 𝜌𝛾(𝑊 (𝑣, 𝜖)),

for all 𝛾 ∈ Γ and 𝑣 ∈ ker(𝐿) near the origin.

Proof. Firstly, we prove that 𝑃 commutes with the action of Γ (recall that 𝑃 : 𝑁⊕ Im(𝐿) −→

Im(𝐿) is the projection on the image and its kernel is 𝑁). If 𝑢 ∈ 𝑁 , 𝑤 ∈ Im(𝐿) and 𝑥 = 𝑢+𝑤,

then

𝜌𝛾(𝑃 (𝑥)) = 𝜌𝛾(𝑤) = 𝑃 (𝜌𝛾(𝑤)) = 𝑃 (𝜌𝛾(𝑢)) + 𝑃 (𝜌𝛾(𝑤)) = 𝑃 (𝜌𝛾(𝑢) + 𝜌𝛾(𝑤)) = 𝑃 (𝜌𝛾(𝑥)),

where it was used that the projection is the identity on Im(𝐿), as well as the linearity of 𝑃 and

𝜌𝛾 for all 𝛾 ∈ Γ. In the same way, we prove that (𝐼 − 𝑃 ) commutes with 𝜌. Now, we verify

that 𝜌𝛾−1(𝑊 (𝜌𝛾(𝑣), 𝜖)) is also a solution of (2.12) for all 𝑣 ∈ ker(𝐿) near the origin. Indeed,

(𝑃 ∘ Φ)(𝑣 + 𝜌𝛾−1(𝑊 (𝜌𝛾(𝑣), 𝜖)), 𝜖) = (𝑃 ∘ Φ)(𝜌𝛾−1(𝜌𝛾(𝑣) +𝑊 (𝜌𝛾(𝑣), 𝜖)), 𝜖)

= 𝜌𝛾−1((𝑃 ∘ Φ)(𝜌𝛾(𝑣) +𝑊 (𝜌𝛾(𝑣), 𝜖), 𝜖))

= 0,

provided 𝑣 is near the origin, so 𝜌𝛾(𝑣) ∈ ker(𝐿) is also near the origin. So, 𝜌𝛾−1(𝑊 (𝜌𝛾(𝑣), 𝜖))

is a solution of equation (2.12) with 𝜌𝛾−1(𝑊 (𝜌𝛾(0), 0)) = 𝜌𝛾−1(𝑊 (0, 0)) = 0. Therefore, by

the uniqueness of the implicit solution, the statement follows.

Proposition 2.25. In the situation given in the previous section, if 𝑀 and 𝑁 are Γ-invariant

subspaces, then the reduced map 𝜑 : ker(𝐿) × R𝑘 −→ 𝑁 commutes with 𝜌𝛾 for all 𝛾 ∈ Γ.

Proof. Indeed,

𝜑(𝜌𝛾(𝑣), 𝜖) = (𝐼 − 𝑃 )(Φ(𝜌𝛾(𝑣) +𝑊 (𝜌𝛾(𝑣), 𝜖), 𝜖)),

= (𝐼 − 𝑃 )(Φ(𝜌𝛾(𝑣 +𝑊 (𝑣, 𝜖)), 𝜖)) (by lemma 2.24 and linearity of 𝜌𝛾),

= 𝜌𝛾(𝜑(𝑣, 𝜖)), ∀ 𝛾 ∈ Γ (by the equivariance of Φ and 𝐼 − 𝑃 ).

In coordinates, let 𝛽 = {𝑣1, ..., 𝑣𝑛} and 𝛽* = {𝑣*
1, ..., 𝑣

*
𝑛} be bases of ker(𝐿) and Im(𝐿)⊥,

respectively. Let 𝜌(1)
𝛾 and 𝜌(2)

𝛾 be the actions of 𝛾 on ker(𝐿) and Im(𝐿)⊥, respectively, so that

𝜌(1)
𝛾 (𝑣𝑗) =

𝑛∑︁
𝑖=1

𝑎𝑖𝑗(𝛾)𝑣𝑖, (2.15)

𝜌(2)
𝛾 (𝑣*

𝑗 ) =
𝑛∑︁

𝑖=1
𝑏𝑖𝑗(𝛾)𝑣*

𝑖 . (2.16)
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The actions are determined by the matrices 𝐴(𝛾) and 𝐵(𝛾), called action matrices in relation

to the respective ordered bases. The actions 𝜌(1)
𝛾 and 𝜌(2)

𝛾 are isomorphic if there exists a linear

isomorphism 𝜏 : ker(𝐿) −→ Im(𝐿)⊥ such that

𝜏 ∘ 𝜌(1)
𝛾 = 𝜌(2)

𝛾 ∘ 𝜏, ∀ 𝛾 ∈ Γ.

As a consequence, there is an inverse matrix 𝑆 such that

𝐵(𝛾) = 𝑆−1𝐴(𝛾)𝑆, ∀ 𝛾 ∈ Γ.

Hence, by changing the basis of Im(𝐿)⊥, we can have the same action on ker(𝐿) and Im(𝐿)⊥

(for a more general discussion in the context of group representation theory see (SERRE, 1977)).

With respect to the bases 𝛽 and 𝛽*, the reduced equation satisfies

𝑔(𝐴(𝛾)𝑦, 𝜖) = 𝐴(𝛾)𝑔(𝑦, 𝜖). (2.17)

As a matter of fact, from (2.15) and (2.16), the 𝑖-th coordinate of the vector on the right-hand

side of equation 2.17 is
𝑟∑︁

𝑗=1
𝑎𝑖𝑗(𝛾)

Æ
𝑣*

𝑗 , 𝜑

Ç
𝑟∑︁

𝑖=1
𝑦𝑖𝑣𝑖, 𝜖

å∏
. (2.18)

On the other hand,

𝑔𝑖(𝐴(𝛾)𝑦, 𝜖) =
Æ
𝑣*

𝑖 , 𝜑

Ç
𝑟∑︁

𝑖=1

Ç
𝑟∑︁
𝑗

𝑎𝑖𝑗(𝛾)𝑦𝑗

å
𝑣𝑖, 𝜖

å∏
, (2.19)

but, for each 𝑣 ∈ ker(𝐿), we have 𝜌𝛾(𝑣) =
𝑟∑︀

𝑖=1

Å
𝑟∑︀

𝑗=1
𝑎𝑖𝑗(𝛾)𝑦𝑗

ã
𝑣𝑖. So,

𝑔𝑖(𝐴(𝛾)𝑦, 𝜖) = ⟨𝑣*
𝑖 , 𝜑(𝜌𝛾(𝑣), 𝜖)⟩ = ⟨𝑣*

𝑖 , (𝜌𝛾 ∘ 𝜑)(𝑣, 𝜖)⟩ = ⟨𝜌𝛾−1(𝑣*
𝑖 ), 𝜑(𝑣, 𝜖)⟩,

=
𝑟∑︁

𝑗=𝑖

𝑎𝑗𝑖(𝛾−1)⟨𝑣*
𝑗 , 𝜑(𝑣, 𝜖)⟩, (2.20)

since, as long as 𝜌𝛾 is orthogonal, it follows that 𝐴(𝛾−1) = [𝐴(𝛾)]𝑡. Hence the last expression

in (2.20) is equal to (2.18) and equation (2.17) is verified.

Lemma 2.26. In the context discussed previously, the derivatives of the functions 𝑊 and 𝑔

at (0, 0) are zero.

Proof. Differentiating both sides of equality (2.12) with respect to 𝑣 ∈ ker(𝐿) at (0,0), we

obtain, for 𝑢 ∈ ker(𝐿),

𝑃𝐷Φ(0 +𝑊 (0, 0), 0)(I +𝐷𝑣𝑊 (0, 0))𝑢 = 0,

𝑃𝐿(𝑢+𝐷𝑣𝑊 (0, 0)𝑢) = 0.
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Since 𝐿 is an invertible operator and 𝑃 acts as the identity when restricted to M, it follows

that 𝐷𝑣𝑊 (0, 0) = 0. Recall 𝑔𝑖 = ⟨𝑣*
𝑖 , 𝜑(∑︀𝑟

𝑖=1 𝑦𝑖𝑣𝑖, 𝜖)⟩. Differentiating 𝑔𝑖 with respect to 𝑦𝑗,

we obtain

𝐷𝑦𝑗
𝑔𝑖(0, 0) = ⟨𝑣*

𝑖 , (𝐼 − 𝑃 )𝐷𝐺(0 +𝑊 (0, 0), 0)(𝑣𝑗 +𝐷𝑣𝑊 (0, 0)𝑣𝑗)⟩ = 0,

for all 𝑖, 𝑗 = 1, ...𝑟.

2.2.3 Restriction to Fixed-Point Subspaces

According to (GOLUBITSKY; STEWART; SCHAEFFER, 1985), although the Liapunov-Schmidt

reduction is useful for simplifying bifurcation problems with symmetry, often, after applying

this method, we are still left with a problem that is difficult to solve. Restricting the equations

to the subspace of fixed points of a certain subgroup of the symmetry group of the problem

allows us to reduce the number of equations to be solved. To be more precise, the number

of equations left to solve after applying the method is not greater than the dimension of

ker(𝐿), since the fixed point subspace is a subspace of ker(𝐿). So we may effectively reduce

the number of equations to be solved and the chances of obtaining solutions are higher. When

we make such a restriction we are also restricting our search to solutions with a certain type

of symmetry.

Let Γ be the symmetry group of (2.9) and 𝑦 a solution of the reduced equation (after

applying Liapunov-Schmidt reduction). This solution has the symmetry of some subgroup Σ

of Γ if it satisfies 𝜌𝜎(𝑦) = 𝑦, for all 𝜎 ∈ Σ; besides, it is in

Fix(Σ) = {𝑦 ∈ ker(𝐿) | 𝜌𝜎(𝑦) = 𝑦, ∀𝜎 ∈ Σ}.

This set is called fixed point subspace for Σ. In this context, we have the following lemma.

Lemma 2.27. Let 𝑔 : V × R −→ V be a Γ−equivariant map. The fixed point subspaces, for

each Σ ≤ Γ are invariant by 𝑔.

Proof. Assume 𝑦 ∈ Fix(Σ), for some subgroup Σ of Γ. Thus,

𝜌𝜎(𝑔(𝑦, 𝜖)) = 𝑔(𝜌𝜎(𝑦), 𝜖) = 𝑔(𝑦, 𝜖), ∀𝜎 ∈ Σ.

Hence, 𝑔(𝑦, 𝜖) ∈ Fix(Σ).
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Due to the last lemma, when we want to find solutions of the reduced equation with some

specific symmetry, it is sufficient to solve the restricted system of equations

𝑔
∣∣
Fix(Σ)×R = 0. (2.21)

A question asked in (GOLUBITSKY; SCHAEFFER, 1988) is: when does making this restriction

help us find a solution to the bifurcation problem? In other words, which isotropy subgroup

Σ guarantees that there is a solution with this type of symmetry? A partial answer occurs for

subgroups such that

dim Fix(Σ) = 1. (2.22)

The following result ensures the existence of symmetrical solutions.

Theorem 2.28. (Equivariant Branching Theorem) Suppose that the action of a finite

group Γ on a vector space V is absolutely irreducible and 𝑔 : V×Λ −→ V defines a smooth and

Γ-equivariant bifurcation problem (consequently 𝐷𝑔(0, 𝜖) = 𝑐(𝜖)Id). Assume that 0 ∈ Λ ⊂ R

with 𝑐(0) = 0 and 𝑐′(0) ̸= 0. Moreover, let Σ ≤ Γ be an isotropy subgroup which satisfies

(2.22). Then there exists a unique branch (𝑦, 𝜖(𝑦)) of solutions to 𝑔(𝑦, 𝜖) = 0 near the trivial

solution with symmetry Σ.

Theorem 2.28 is due to (VANDERBAUWHEDE, 1980) and (CICOGNA, 1981). In (GOLUBITSKY;

SCHAEFFER, 1988) there is a slightly more general statement of this theorem and a similar

theorem when dim Fix(Σ) = 2. This is particularly true when analyzing Hopf bifurcations.

Remark 2.29. Although this theorem is an important tool for ensuring the existence of certain

symmetric solutions that bifurcate from the degenerate solution, it does not guarantee that

other solutions do not also bifurcate.

In (SANTOS, 2004), theorem 2.28 was used to prove the existence of some central config-

urations which arise from the centered regular tetrahedron. In the next chapter, we will apply

it to find central configurations bifurcating from the centered equilateral triangle.
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3 BIFURCATIONS OF THE CENTERED EQUILATERAL TRIANGULAR CON-

FIGURATION

The goal of this chapter is to study central configurations of the four-body problem in the

plane, specifically the bifurcations that occur from a centered triangular configuration with

unit masses at its vertices and a mass of arbitrary value at the center. Our approach is based

on (SANTOS, 2004). Initially, we were motivated to explore the symmetry of the problem so

that we can make a more general study and find new solutions. We assume that the exponent

of the potential function of the system is negative and can take any value less than −1. We

find three families of central configurations bifurcating from the centered equilateral triangle.

So far, we have been able to fully analyze the Newtonian case, and the solutions found behave

in the same way as the solutions in (MEYER; SCHMIDT, 1987), i.e. configurations in the shape

of isosceles triangles.

3.1 PROBLEM OVERVIEW

Let (𝑞1, 𝑞2, 𝑞3, 𝑞4) be a planar configuration with three unitary masses located at the vertices

of an equilateral triangle and one variable mass at its barycenter. More precisely, we consider

𝑚1 = 𝑚2 = 𝑚3 = 1, 𝑚4 = 𝑚 and the squares of the mutual distances 𝑠𝑖𝑗 =‖ 𝑞𝑖 − 𝑞𝑗 ‖2

between the bodies given by 𝑠12 = 𝑠13 = 𝑠23 = 3 and 𝑠14 = 𝑠24 = 𝑠34 = 1. It is already

known that this configuration is central for all values of the central mass. This configuration

has dimension 2 = 4 − 2, so, by lemma 2.9, it is a Dziobek configuration and must satisfy the

system of equations
4∑︁

𝑖=1
𝑥𝑖 = 0,

𝑡𝑖 = 𝑡𝑗, (3.1)

𝑠𝑎
𝑖𝑗 − 𝜆

𝑀
= − 𝑥𝑖𝑥𝑗

𝑚𝑖𝑚𝑗

,

1 ≤ 𝑖 < 𝑗 ≤ 4, where 𝑡𝑖 = ∑︀
𝑗 ̸=𝑖 𝑠𝑖𝑗𝑥𝑗, 𝑀 = ∑︀4

𝑖=1 𝑚𝑖 and 𝜆 = 𝑚+ 31+𝑎. Indeed, if 𝑚𝑖 = 𝑚𝑗

and 𝑠𝑖𝑘 = 𝑠𝑗𝑘, for some 𝑘, then 𝑥𝑖 = 𝑥𝑗. Thus, 𝑥1 = 𝑥2 = 𝑥3 and 𝑥4 = −3𝑥1, and substituting

these in the system (3.1), the last equations are reduced to just two,
𝜆

3 +𝑚
− 3𝑎 = 𝑥2

1,

𝜆

3 +𝑚
− 1 = −3𝑥2

1
𝑚
.
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Multiplying the first equation by 3, the second by 𝑚, and adding them together, we obtain the

expression for 𝜆. Consequently, we have (𝑥1, 𝑥2, 𝑥3, 𝑥4) = (𝑘, 𝑘, 𝑘,−3𝑘), where 𝑘 = 𝑘(𝑚, 𝑎) =…
𝑚(1 − 3𝑎)

3 +𝑚
represents the centered triangular family of central configurations.

Let us assume that 𝑀 is positive and 𝑎 < −1.

Since 𝑥4 = −𝑥1 − 𝑥2 − 𝑥3 and 𝑠𝑖𝑗 =
Å
𝜆

𝑀
− 𝑥𝑖

𝑚𝑖

𝑥𝑗

𝑚𝑗

ã1/𝑎

, system (3.1) can be represented

by equation

𝐹 (𝑋,𝑚) = 0, (3.2)

where 𝑋 = (𝑥1, 𝑥2, 𝑥3) and 𝐹 : R3 × R −→ R3 is a smooth function given by 𝐹𝑖 = 𝑡𝑖 − 𝑡4,

𝑖 = 1, 2, 3. Explicitly,

𝐹1(𝑋,𝑚) =𝑥2

Å
𝜆

𝑀
− 𝑥1𝑥2

ã1/𝑎

+ 𝑥3

Å
𝜆

𝑀
− 𝑥1𝑥3

ã1/𝑎

− (𝑥1 + 𝑥2 + 𝑥3)
Å
𝜆

𝑀
+ 𝑥1(𝑥1 + 𝑥2 + 𝑥3)

𝑚

ã1/𝑎

− 𝑡4,

𝐹2(𝑋,𝑚) =𝑥1

Å
𝜆

𝑀
− 𝑥1𝑥2

ã1/𝑎

+ 𝑥3

Å
𝜆

𝑀
− 𝑥2𝑥3

ã1/𝑎

− (𝑥1 + 𝑥2 + 𝑥3)
Å
𝜆

𝑀
+ 𝑥2(𝑥1 + 𝑥2 + 𝑥3)

𝑚

ã1/𝑎

− 𝑡4,

𝐹3(𝑋,𝑚) =𝑥1

Å
𝜆

𝑀
− 𝑥1𝑥3

ã1/𝑎

+ 𝑥2

Å
𝜆

𝑀
− 𝑥2𝑥3

ã1/𝑎

− (𝑥1 + 𝑥2 + 𝑥3)
Å
𝜆

𝑀
+ 𝑥3(𝑥1 + 𝑥2 + 𝑥3)

𝑚

ã1/𝑎

− 𝑡4,

and

𝑡4 =𝑥1

Å
𝜆

𝑀
+ 𝑥1(𝑥1 + 𝑥2 + 𝑥3)

𝑚

ã1/𝑎

+ 𝑥2

Å
𝜆

𝑀
+ 𝑥2(𝑥1 + 𝑥2 + 𝑥3)

𝑚

ã1/𝑎

+ 𝑥3

Å
𝜆

𝑀
+ 𝑥3(𝑥1 + 𝑥2 + 𝑥3)

𝑚

ã1/𝑎

.

We can immediately verify that 𝐹 is 𝑆3-equivariant, i.e.,

𝐹 (𝜌𝛾(𝑋),𝑚) = 𝜌𝛾𝐹 (𝑋,𝑚), (3.3)

where 𝜌 is the representation of 𝑆3, the permutation group of the three symbols 1, 2, 3, on R3

given by 𝜌𝛾(𝑥1, 𝑥2, 𝑥3) = (𝑥𝛾(1), 𝑥𝛾(2), 𝑥𝛾(3)), for all 𝛾 ∈ 𝑆3.

Remark 3.1. The matrices of the representation 𝜌 with respect to the canonical basis of R3

are

𝜌(12) :


0 1 0

1 0 0

0 0 1

 , 𝜌(13) :


0 0 1

0 1 0

1 0 0

 , 𝜌(23) :


1 0 0

0 0 1

0 1 0

 ,
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𝜌(123) :


0 1 0

0 0 1

1 0 0

 , 𝜌(132) :


0 0 1

1 0 0

0 1 0

 .

Since 𝐹 is 𝑆3-equivariant and 𝑋0(𝑚) = (𝑘(𝑚), 𝑘(𝑚), 𝑘(𝑚)) ∈ Fix(𝑆3) for all 𝑚, we can

apply the chain rule in (3.3) and obtain

𝐷𝑋𝐹 (𝑋0(𝑚),𝑚)𝜌𝛾 = 𝜌𝛾𝐷𝑋𝐹 (𝑋0(𝑚),𝑚),

i,e., 𝐷𝑋𝐹 (𝑋0(𝑚),𝑚) is also 𝑆3-equivariant. Hence, it follows from equivariance that

𝐷𝑋𝐹 (𝑋0(𝑚),𝑚) =


𝜂1 𝜂2 𝜂2

𝜂2 𝜂1 𝜂2

𝜂2 𝜂2 𝜂1

 , (3.4)

where

𝜂1 = 𝜕𝐹1

𝜕𝑥1

∣∣∣
(𝑋0(𝑚),𝑚)

= −2−2𝑘2

𝑎

Å
31−𝑎 + 9

𝑚

ã
and 𝜂2 = 𝜕𝐹1

𝜕𝑥2

∣∣∣
(𝑋0(𝑚),𝑚)

= 1−𝑘2

𝑎

Å
31−𝑎 + 9

𝑚

ã
.

Thus, the determinant of (3.4) is

det(𝐷𝑋𝐹 (𝑋0,𝑚)) = (𝜂1 + 2𝜂2)(𝜂1 − 𝜂2)2.

The term 𝜂1 + 2𝜂2 = −4𝑘2

𝑎

Å 9
𝑚

+ 31+𝑎

ã
is positive whenever 𝑎 < −1 and 𝑚 > 0. On the

other hand, we have that

𝜂1 − 𝜂2 = −3 − 3𝑘2

𝑎

Å 3
𝑚

+ 3−𝑎

ã
= 0 ⇐⇒ 𝑚 = 𝑚* := 3

Å 3𝑎 − 𝑎− 1
3−𝑎 + 𝑎− 1

ã
.

Remark 3.2. When 𝑎 = −3/2, we have 𝑚* = 81 + 64
√

3
249 which agrees with the value found

in (PALMORE, 1973) and (MEYER; SCHMIDT, 1987).

Proposition 3.3. For 𝑎 < −1, the value of 𝑚* is in the interval (0, 1).

Proof. See (SANTOS et al., 2017).

Equation (3.2) describes a bifurcation problem with four parameters. For each exponent

𝑎, the pair (𝑋(𝑚*),𝑚*) represents a degenerate centered equilateral triangular configura-

tion, which is a candidate for a bifurcation point. Actually the degenerate mass vector is the

quadruple (𝑚1,𝑚2,𝑚3,𝑚4) = (1, 1, 1,𝑚*). We will study what happens with the number
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of solutions of equation (3.2) in a neighborhood of the point (1, 1, 1,𝑚*). In other words,

we want to approach this point on the straight line generated by (0, 0, 0, 𝜖). As in (SANTOS,

2004), we will make use of the Equivariant Branch Theorem to guarantee the existence and

uniqueness of symmetric solutions to this problem.

3.2 BIFURCATION ANALYSIS

Consider 𝑚1 = 𝑚2 = 𝑚3 = 1 and 𝑚4 = 𝑚*+𝜖. Replacing in (3.1), we obtain a bifurcation

problem

𝐹 (𝑋, 𝜖) = 0, (3.5)

with three variables 𝑋 = (𝑥1, 𝑥2, 𝑥3) and a parameter 𝜖. Let us represent the centered trian-

gular configuration by 𝑋̄(𝜖) = (𝑘(𝜖), 𝑘(𝜖), 𝑘(𝜖)) which is non-degenerate for all 𝜖 ̸= 0, where

𝑘(𝜖) =
…

(𝑚* + 𝜖)(1 − 3𝑎)
3 +𝑚* + 𝜖

.

The derivative of 𝐹 at (𝑋̄(0), 0) is

𝐷𝑋𝐹 (𝑋̄(0), 0) =


𝜂1 𝜂1 𝜂1

𝜂1 𝜂1 𝜂1

𝜂1 𝜂1 𝜂1

 . (3.6)

Let us apply Liapunov-Schmidt reduction with symmetry. If we define 𝐿 = 𝐷𝑋𝐹 (𝑋̄(0), 0), it

follows that

ker(𝐿) =
®

(𝑣1, 𝑣2, 𝑣3) ∈ R3
∣∣∣ 3∑︁

𝑖=1
𝑣𝑖 = 0

´
and Im(𝐿) = {(𝑠, 𝑠, 𝑠) | 𝑠 ∈ R}.

These subspaces are 𝜌-invariant. It is convenient to pick

𝛽1 =
®
𝑢1 =

Ç
−

√
6

6 ,
2
√

6
6 ,−

√
6

6

å
, 𝑢2 =

Ç
−

√
2

2 , 0,
√

2
2

å´
and

𝛽2 =
®
𝑢3 =

Ç√
3

3 ,

√
3

3 ,

√
3

3

å´
,

as bases for the kernel and the image of 𝐿, respectively. Moreover, we decompose the domain

and codomain of 𝐿 as

R3 = ker(𝐿) ⊕ Im(𝐿)

and perform the change of variables

(𝑥1, 𝑥2, 𝑥3) =
3∑︁

𝑖=1
𝑦𝑖𝑢𝑖. (3.7)
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Explicitly,

𝑥1 = −
√

6
6 𝑦1 −

√
2

2 𝑦2 +
√

3
3 𝑦3, 𝑥2 =

√
6

3 𝑦1 +
√

3
3 𝑦3, 𝑥3 = −

√
6

6 𝑦1 +
√

2
2 𝑦2 +

√
3

3 𝑦3.

Remark 3.4. Let 𝐴 be the change of basis matrix from 𝛽 = 𝛽1 ∪ 𝛽2 to the canonical basis

of R3. Since 𝐴 is orthogonal, we can obtain the matrices of the representation 𝜌 with respect

to basis 𝛽 by computing the matrices [𝜌𝛾]𝛽 = 𝐴𝑡[𝜌𝛾]𝑐𝐴, for all 𝛾 ∈ 𝑆3. Thus,

𝜌(12) :


−1

2 −1
2

√
3 0

−1
2

√
3 1

2 0

0 0 1

 , 𝜌(13) :


1 0 0

0 −1 0

0 0 1

 , 𝜌(23) :


−1

2
1
2

√
3 0

1
2

√
3 1

2 0

0 0 1

 ,

𝜌(123) :


−1

2
1
2

√
3 0

−1
2

√
3 −1

2 0

0 0 1

 , 𝜌(132) :


−1

2 −1
2

√
3 0

1
2

√
3 −1

2 0

0 0 1

 .
Substituting the change of variable (3.7) in (3.5), we have a new equation

𝐺(𝑌, 𝜖) = 0. (3.8)

Lemma 3.5. The function 𝐺(𝑌, 𝜖) is 𝑆3−equivariant.

Proof. Since 𝐹 (𝑋, 𝜖) and 𝑋(𝑌 ) are 𝑆3-equivariant, it follows that

𝐺(𝜌𝛾(𝑌 ), 𝜖) = 𝐹 (𝑋(𝜌𝛾(𝑌 )), 𝜖) = 𝐹 (𝜌𝛾(𝑋(𝑌 )), 𝜖) = 𝜌𝛾𝐹 (𝑋(𝑌 ), 𝜖) = 𝜌𝛾𝐺(𝑌, 𝜖).

The solution of equation (3.8) which corresponds to the centered triangular configuration

is given by

𝑌 (𝜖) = 𝐴𝑡𝑋̄(𝜖) = (0, 0,
√

3𝑘(𝜖)).

Due to the decomposition of R3, we can define a projection onto Im(𝐿), denoted by 𝑃 :

R3 −→ Im(𝐿) such that ker(𝐿) = ker(𝑃 ), and another projection onto ker(𝐿) given by

(𝐼 − 𝑃 ) : R3 −→ ker(𝐿). Keeping this in mind, equation (3.8) is equivalent to system

(𝑃 ∘𝐺)(𝑌, 𝜖) =
√

3
3 ⟨(1, 1, 1), 𝐺(𝑌, 𝜖)⟩𝑢3 = 0, (3.9)

((𝐼 − 𝑃 ) ∘𝐺)(𝑌, 𝜖) =
√

6
6 ⟨(−1, 2,−1), 𝐺(𝑌, 𝜖)⟩𝑢1 +

√
2

2 ⟨(−1, 0, 1), 𝐺(𝑌, 𝜖)⟩𝑢2 = 0.

(3.10)
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Let us verify that equation (3.9) may be solved for 𝑦3. We must check the hypotheses of

the implicit function theorem for the function Ψ(𝑌, 𝜖) =
√

3
3

(∑︀3
𝑖=1 𝐺𝑖(𝑌, 𝜖)

)
. We have that

𝜕Ψ
𝜕𝑦𝑖

(𝑌 (0), 0) = 0, 𝑖 = 1, 2, whereas 𝜕Ψ
𝜕𝑦3

(𝑌 (0), 0) = −4𝑘2

𝑎

Å
31−𝑎 + 9

𝑚*

ã
> 0, for all 𝑎 < −1.

Thus, there exist 𝑈 ⊂ R2 × R and 𝑉 ⊂ R neighborhoods of (0, 0, 0) and
√

3𝑘, respectively,

such that for each (𝑦1, 𝑦2, 𝜖) ∈ 𝑈 there is a unique smooth function 𝑦3 = 𝑊 : 𝑈 −→ 𝑉 , such

that 𝑊 (0, 0, 0) =
√

3𝑘 and Ψ(𝑦1, 𝑦2,𝑊 (𝑦1, 𝑦2, 𝜖), 𝜖) = 0 (we denoted 𝑘 = 𝑘(0)).

Lemma 3.6. The function Ψ is 𝑆3-invariant.

Proof. Indeed,

Ψ(𝜌𝛾(𝑌 ), 𝜖) =
√

3
3

Ç
3∑︁

𝑖=1
𝐺𝑖(𝜌𝛾(𝑌 ), 𝜖)

å
=

√
3

3

Ç
3∑︁

𝑖=1
𝐺𝛾(𝑖)(𝑌, 𝜖)

å
(by the equivariance of 𝐺)

=
√

3
3

Ç
3∑︁

𝑗=1
𝐺𝑗(𝑌, 𝜖)

å
= Ψ(𝑌, 𝜖) (if 𝑗 = 𝛾(𝑖), ∀ 𝛾 ∈ 𝑆3).

Remark 3.7. We define the representation of 𝑆3 on ker(𝐿) as 𝜌 and check that the function

𝑊 is 𝑆3-invariant. In fact, for (𝑦1, 𝑦2) near the origin, it follows that

Ψ(𝑦1, 𝑦2,𝑊 (𝜌𝛾(𝑦1, 𝑦2), 𝜖), 𝜖) = Ψ(𝜌𝛾(𝑦1, 𝑦2),𝑊 (𝜌𝛾(𝑦1, 𝑦2), 𝜖), 𝜖) = 0,

by invariance of Ψ for (𝑦1, 𝑦2) near the origin. Hence, 𝑊 (𝜌𝛾(𝑦1, 𝑦2), 𝜖) is a solution of Ψ = 0.

Provided the implicit solution is unique, we have that 𝑊 (𝜌𝛾(𝑦1, 𝑦2), 𝜖) = 𝑊 (𝑦1, 𝑦2, 𝜖).

Substituting 𝑊 in equation (3.10), we define

𝑔(𝑦1, 𝑦2, 𝜖) = 0, (3.11)

where 𝑔 : 𝑈 −→ R2 is an analytic function given by

𝑔𝑖(𝑦1, 𝑦2, 𝜖) = ⟨𝑢𝑖, 𝐺(𝑦1, 𝑦2,𝑊 (𝑦1, 𝑦2, 𝜖), 𝜖)⟩, 𝑖 = 1, 2,

which becomes the bifurcation problem to be solved, that is, 𝑔1 = 0 and 𝑔2 = 0.

To find solutions to equation (3.11) we will apply the Equivariant Branching Theorem to

the function 𝑔. The following lemma states that 𝑔 verifies the hypotheses of this theorem.
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Lemma 3.8. The map 𝑔, which we have previously defined, satisfies:

a) 𝑔(0, 0, 0) = 0.

b) 𝑔 is 𝑆3-equivariant.

c) The action of 𝑆3 on ker(𝐿) is absolutely irreducible.

d) 𝐷𝑔(0, 0, 𝜖) = 𝑐(𝜖)𝐼2×2, and 𝐷𝑔(0, 0, 0) = 0 with 𝑑𝑐(𝜖)
𝑑𝜖

∣∣∣
𝜖=0

̸= 0.

Proof.

(a) Since 𝐺(0, 0,
√

3𝑘, 0) = 0, the statement follows directly from definition of 𝑔.

b) Representing the matrices of the action of 𝑆3 on ker(𝐿) with respect to basis 𝛽1 by

𝜌𝛾 =

𝑎11 𝑎12

𝑎21 𝑎22

 ,
and with respect to canonical basis by 𝜌𝛾, as defined before for each 𝛾 ∈ 𝑆3, we have by (2.20)

that

𝑔𝑖(𝜌𝛾(𝑦), 𝜖) = ⟨𝑢𝑖, 𝐺(𝜌𝛾(𝑦),𝑊 (𝜌𝛾(𝑦), 𝜖), 𝜖)⟩ = ⟨𝑢𝑖, 𝐺(𝜌𝛾(𝑦),𝑊 (𝑦, 𝜖), 𝜖)⟩,

= ⟨𝑢𝑖, 𝐺(𝜌𝛾(𝑦,𝑊 (𝑦, 𝜖)), 𝜖)⟩ = ⟨𝑢𝑖, 𝜌𝛾𝐺(𝑦,𝑊 (𝑦, 𝜖), 𝜖)⟩,

= ⟨𝜌𝑡
𝛾(𝑢𝑖), 𝐺(𝑦,𝑊 (𝑦, 𝜖), 𝜖)⟩, 𝑖 = 1, 2,

where 𝑦 = (𝑦1, 𝑦2). Hence,

𝑔(𝜌𝛾(𝑦), 𝜖) = (⟨𝜌𝑡
𝛾(𝑢1), 𝐺(𝑦,𝑊 (𝑦, 𝜖), 𝜖)⟩, ⟨𝜌𝑡

𝛾(𝑢2), 𝐺(𝑦,𝑊 (𝑦, 𝜖), 𝜖)⟩),

= (⟨𝑎11𝑢1 + 𝑎12𝑢2, 𝐺(𝑦,𝑊 (𝑦, 𝜖), 𝜖)⟩, ⟨𝑎21𝑢1 + 𝑎22𝑢2, 𝐺(𝑦,𝑊 (𝑦, 𝜖), 𝜖)⟩),

= (𝑎11𝑔1 + 𝑎12𝑔2, 𝑎21𝑔1 + 𝑎22𝑔2),

= 𝜌𝛾(𝑔(𝑦, 𝜖)),

The second equality follows from the form of the matrix representation of the 𝜌 in the remarks

3.1 and 3.4, noting for example, that 𝜌𝑡
(124) = 𝜌(142).

c) By definition of absolutely irreducible, taking a 2 × 2 matrix representing a linear transfor-

mation of R2, and making it commute with 𝜌𝛾, for all 𝛾 ∈ 𝑆3, 𝜌𝛾 as defined in item (b), we

verify that this matrix must be a multiple of the identity.

d) Since 𝑔 is an 𝑆3-equivariant map, we have that 𝐷𝑦𝑔(0, 𝜖) is a linear map which is also

𝑆3-equivariant. So, by item (c), the derivative of 𝑔 is a multiple of the identity which depends

on 𝜖. Let us check its expression. Recall equation (3.6). We have that
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𝐷𝑌𝐺(𝑌 (𝜖), 𝜖) = 𝐷𝑋𝐹 (𝑋̄(𝜖), 𝜖)𝐷𝑌𝑋(𝑌 (𝜖))𝐼3×3

=


√

6
6 (𝜂2 − 𝜂1)

√
2

2 (𝜂2 − 𝜂1)
√

3
3 (𝜂1 + 2𝜂2)

2
√

6
6 (𝜂1 − 𝜂2) 0

√
3

3 (𝜂1 + 2𝜂2)
√

6
6 (𝜂2 − 𝜂1)

√
2

2 (𝜂1 − 𝜂2)
√

3
3 (𝜂1 + 2𝜂2)

 .

Since 𝜕𝑔𝑖

𝜕𝑦𝑗

(0, 𝜖) = ⟨𝑢𝑖, 𝐷𝑦𝐺(0, 𝜖)𝑒𝑗⟩, we have that

𝜕𝑔1

𝜕𝑦1
(0, 𝜖) = 1

6 ⟨(−1, 2,−1), (𝜂2 − 𝜂1, 2(𝜂1 − 𝜂2), 𝜂2 − 𝜂1))⟩ = 𝜂1 − 𝜂2,

𝜕𝑔1

𝜕𝑦2
(0, 𝜖) =

√
3

6 ⟨(−1, 2,−1), (𝜂2 − 𝜂1, 0, 𝜂1 − 𝜂2))⟩ = 0,

𝜕𝑔2

𝜕𝑦1
(0, 𝜖) =

√
3

6 ⟨(−1, 0, 1), (𝜂2 − 𝜂1, 2(𝜂1 − 𝜂2), 𝜂2 − 𝜂1))⟩ = 0,

𝜕𝑔2

𝜕𝑦2
(0, 𝜖) = 1

2 ⟨(−1, 0, 1), (𝜂2 − 𝜂1, 0, 𝜂1 − 𝜂2))⟩ = 𝜂1 − 𝜂2.

Hence,

𝐷𝑦𝑔(0, 𝜖) = (𝜂1 − 𝜂2)(𝜖)𝐼2×2,

where (𝜂1 − 𝜂2)(𝜖) = 𝑐(𝜖), so

𝑐(𝜖) = −
ï31+𝑎 + 3𝑎(𝑚* + 𝜖) − 𝜖

𝑚* + 3 + 𝜖

ò 1
𝑎

−
ï 9 (1 − 3𝑎)
𝑎 (3 +𝑚* + 𝜖)

òÅ
𝑚* + 3

𝑚* + 3 + 𝜖

ã 1−𝑎
𝑎

−
ï(𝑚* + 𝜖) (1 − 3𝑎)

(3 +𝑚* + 𝜖)𝑎

ò ï31+𝑎 + 3𝑎(𝑚* + 𝜖) − 𝜖

𝑚* + 3 + 𝜖

ò 1−𝑎
𝑎

.

When 𝜖 = 0, we have that 𝐷𝑦𝑔(0, 0, 0) = 0. Furthermore, differentiating 𝑐(𝜖) with respect to

𝜖, we get

𝑐′(0) = 1
3

[3𝑎(1 − 𝑎) − 1] [3(3𝑎 − 1)𝑎2 + 3𝑎+1 (1 − 3𝑎) 𝑎− 2 · 3𝑎+1 + 32𝑎+1 + 3]
3𝑎𝑎2 (3𝑎 − 1)3 .

All that is left to show is that 𝑐′(0) ̸= 0 for all 𝑎 < −1. Since the denominator is never 0 for

𝑎 < −1, we can see this fact directly from its numerator, which is already decomposed in two

factors, none of which vanish for 𝑎 < −1.

The first factor

𝑝(𝑎) := 3𝑎(1 − 𝑎) − 1,

can be readily shown to vanish if, and only if,

𝑝1(𝑎) = 1 − 𝑎− 3−𝑎
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vanishes. This last expression has derivative:

𝑝′
1(𝑎) = −1 + 3−𝑎 ln(3)

which we can estimate from below term by term

𝑝′
1(𝑎) > −1 + 3 · 1 = 2,

so 𝑝1 is monotonically increasing on the interval (−∞,−1), hence it attains its maximum value

at −1, 𝑝1(−1) = −1, which in particular is less than zero. It follows that 𝑝1 never vanishes

on this interval, and so does not the original 𝑝.

As for the second term

𝑞(𝑎) = 3(3𝑎 − 1)𝑎2 + 3𝑎+1 (1 − 3𝑎) 𝑎− 2 · 3𝑎+1 + 32𝑎+1 + 3.

Notice we can manipulate the last few terms

−2 · 3𝑎 + 32𝑎 + 1 = (−3𝑎 − 3𝑎) + 3𝑎3𝑎 + 1 = −3𝑎 + (−3𝑎 + 3𝑎3𝑎) + 1

= −3𝑎 + 3𝑎(−1 + 3𝑎) + 1 = 3𝑎(−1 + 3𝑎) + (1 − 3𝑎),

by substituting these terms into q(a), we obtain the following short factorization:

𝑞(𝑎) = 3(1 − 3𝑎)(−𝑎2 + 3𝑎𝑎− 3𝑎 + 1)

the factor 3(1 − 3𝑎) is positive for 𝑎 < −1, while the first three terms of the other factor can

be seen to be negative, with the first term being the main reason behind this entire expression

being negative since −𝑎2 + 1 < 0 and 3𝑎𝑎 and −3𝑎 are also less than zero for 𝑎 < −1.

Therefore there are no roots of the numerator in the interval for which we are considering.

We conclude that 𝑐′(0) ̸= 0 for all 𝑎 < −1.

The figure (3) illustrates the behavior of 𝑐′(0) as well as its derivative with respect to

𝑎.

Now, we need to determine all isotropy subgroups whose fixed point subspaces are one-

dimensional. Actually, three subgroups which satisfy this condition, namely

Σ1 = {id, (12)}, Σ2 = {id, (13)}, and Σ3 = {id, (23)}.

Let us denote the corresponding subspaces of fixed points by

Fix(Σ1) =
¶Ä
𝑦,−

√
3𝑦
ä©

, Fix(Σ2) = {(𝑦, 0)} , and Fix(Σ3) =
¶Ä
𝑦,

√
3𝑦
ä©

.
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𝑐′(0)

𝑎

𝑑
𝑑𝑎
𝑐′(0)

𝑎

Figure 3: The figure on the left shows how the function 𝑐′(0) behaves when 𝑎 decreases, while the figure on
the right shows how the derivative of 𝑐′(0) with respect to 𝑎 behaves.

Provided all hypotheses of the Equivariant Branching Theorem are satisfied, for each isotropy

subgroup Σ𝑖, there is only one solution branch of the bifurcation problem (3.11). Thus, we

have proved the main result of this chapter, see the theorem below.

Theorem 3.9. Let 𝑞(1, 1, 1,𝑚) be a central configuration of four bodies in the plane forming

a centered equilateral triangle. Denote by 𝑚* > 0 the value of the central mass, which depends

on the exponent 𝑎 < −1, such that the configuration is degenerate. For values of 𝑚 close to

𝑚*, there are only three symmetrical families of central configurations which bifurcate from

the degenerate solution 𝑞(1, 1, 1,𝑚*).

3.3 BIFURCATION BRANCHES

In this section, we present analytical expressions for the solutions obtained in the previous

section. Using the analyticity of functions 𝐺𝑖, 𝑖 = 1, 2, 3, we can determine the Taylor series

of the implicit solution 𝑊 of equation (3.9) and express 𝑦1 and 𝑦2 as analytical functions of

𝜖 . Firstly, let us make the translation of the variable 𝑦3 to 𝑦3 +
√

3𝑘(𝜖) in the function 𝐺𝑖,

𝑖 = 1, 2, 3, before calculating the terms of the Taylor expansion at (0, 0, 0, 0). Thus,

Ψ(𝑦1, 𝑦2, 𝑦3, 𝜖) = 𝑏3𝑦3 + 𝑏𝜖𝜖+ 1
2(𝑏11𝑦

2
1 + 𝑏22𝑦

2
2 + 𝑏33𝑦

2
3 + 𝑏𝜖𝜖𝜖

2) + 𝑏3𝜖𝑦3𝜖+𝑂(3).

Recall that 𝐺𝑖 is the 𝑖-th coordinate function of 𝐺 and Ψ = ∑︀3
𝑖=1 𝐺𝑖.

Since W is a solution of Ψ = 0, let us substitute the generic Taylor series of 𝑊 into the
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above expansion of Ψ and compare each term with the null series. We obtain

𝑊 (𝑦1, 𝑦2, 𝜖) = − 1
𝑏3

®
𝑏𝜖𝜖+ 𝑏11

2 𝑦2
1 + 𝑏22

2 𝑦2
2 +
ñ
𝑏𝜖𝜖 + 𝑏3𝜖

Å
𝑏𝜖

𝑏3

ã
− 𝑏33

Å
𝑏𝜖

𝑏3

ã2ô
𝜖2 +𝑂(3)

´
,

where

𝑏3 = −4𝑘2

𝑎

Å
31−𝑎 + 9

𝑚*

ã
> 0,

𝑏𝜖 = 6 [3𝑎(1 − 𝑎) − 1] [(3𝑎 − 1)2 + 𝑎(1 − 3𝑎)]

𝑎(3𝑎 − 1)3

 
3𝑎+1
Å1 + 𝑎− 3𝑎

3𝑎 − 1

ã > 0,

𝑏11 = 2𝑘
3

ñ(
3𝑎+1𝑚*2 − 33𝑎+3 − 3𝑚*2) (𝑎− 1) − 32𝑎+2(𝑎𝑚* + 3)

𝑎2𝑚*(3 +𝑚*)32𝑎

ô
,

𝑏22 = 𝑏11,

𝑏33 = 2
√

3𝑘
3

{
(3𝑎 − 1)2

î
12𝑚*2(𝑎− 1) − (8𝑚*2 − 12)3𝑎+1𝑎+ 32𝑎+1(𝑎+ 1) − 4 · 32𝑎+2𝑚*𝑎

ó
32𝑎𝑎2(3 +𝑚*)𝑚*

}

𝑏𝜖𝜖 = −
√

3
2

{
(3𝑎 − 1)2

î
12𝑚*2(𝑎− 1) − (8𝑚*2 − 12)3𝑎+1𝑎+ 32𝑎+1(𝑎+ 1) − 4 · 32𝑎+2𝑚*𝑎

ó
32𝑎𝑎2(3 +𝑚*)4𝑘3

}

𝑏3𝜖 = 2 [2(3𝑎 − 1)𝑎2 + (3 − 3𝑎(2 + 3𝑎))𝑎+ 2(1 − 3𝑎(2 + 3𝑎))] (1 + 3𝑎𝑎− 3𝑎)
3𝑎𝑎2(3𝑎 − 1)3

Substituting the expansion of W into the expansions of the functions 𝑔𝑖, 𝑖 = 1, 2, and combining

common terms, we get

𝑔1(𝑦1, 𝑦2, 𝜖) = 1
2(𝜏11𝑦

2
1 + 𝜏22𝑦

2
2) + (𝜏13𝑤𝜖 + 𝜏14)𝑦1𝜖+𝑂(3), (3.12)

𝑔2(𝑦1, 𝑦2, 𝜖) = 𝜂12𝑦1𝑦2 + (𝜂23𝑤𝜖 + 𝜂24)𝑦2𝜖+𝑂(3), (3.13)

where

𝜏11 =
√

2𝜁 [32𝑎+1(𝑎3 + 5𝑎+ 2) − 3𝑎+1(6𝑎2 + 8𝑎+ 4) + 32𝑎+2(𝑎2 + 𝑎) + (15𝑎2 + 18𝑎) + 6]
3𝑎 𝑎2(3𝑎 − 𝑎− 1)(1 − 3𝑎)

𝜏13 = 2𝜁 [32𝑎+1(2𝑎2 − 𝑎− 𝑎3) + 3𝑎+1(2𝑎− 3𝑎2) + 3(𝑎3 + 𝑎2 − 𝑎)]
3𝑎+1𝑎2(3𝑎 − 𝑎− 1)(3𝑎 − 1) ,

𝜏14 = (1 + 3𝑎(𝑎− 1)) [32𝑎+1(1 − 𝑎) + 3𝑎+1(𝑎2 + 𝑎− 2) − 3𝑎2 + 3]
3𝑎+1𝑎2(3𝑎 − 1)3 ,

𝑤𝜖 = − 𝑏𝜖

𝑏3
, 𝜁 =

 
3𝑎+1(1 + 𝑎− 3𝑎)

3𝑎 − 1 , 𝜏22 = 𝜂12 = −𝜏11, 𝜂23 = 𝜏13, 𝜂24 = 𝜏14.

Remark 3.10. The terms of the Taylor series that were displayed are nonzero in a neigh-

borhood of 𝑎 = −3/2. However, no analysis has been performed to determine whether this

property holds for arbitrary values of 𝑎.
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Since Fix(Σ1)= [(1,−
√

3)], by the equivariance of 𝑔, we have that 𝑔1 = −
√

3𝑔2. Indeed,

substituting 𝑦1 = 𝜇 and 𝑦2 = −
√

3𝜇 in expression (3.13) we have

𝑔2(𝜇,−
√

3𝜇, 𝜖) = −
√

3𝜂12𝜇
2 −

√
3(𝜂23𝑤𝜖 + 𝜂24)𝜇𝜖+𝑂(2)

=
√

3𝜏11𝜇−
√

3(𝜏13𝑤𝜖 + 𝜏14)𝜇𝜖+𝑂(2)

= −
√

3𝑔1(𝜇,−
√

3𝜇, 𝜖).

We obtain similar expressions for the other fixed point subspace Σ2 and Σ3.

The solutions guaranteed by the Equivariant Branching Theorem are written as functions

of the variable (𝜇, 𝜖(𝜇)) (for example, setting 𝑦1 = 𝜇). Let

𝜖(𝜇) = 𝛿𝜇+𝑂(𝜇2),

where 𝛿 is nonzero. By restricting 𝑔 = (𝑔1, 𝑔2) to Fix(Σ1)= [(1,−
√

3)], we restricted ourselves

to solving the equation 𝑔1 = 0, where

𝑔1(𝜇,−
√

3𝜇, 𝜖(𝜇)) = [−𝜏11 + 𝛿(𝜏13𝜔𝜖 + 𝜏14)]𝜇2 +𝑂(𝜖3).

Since 𝑔1(𝜇,−
√

3𝜇, 𝜖(𝜇)) = 0, the quadratic term gives us

𝛿 = 𝜏11

𝜏13𝜔𝜖 + 𝜏14
. (3.14)

Therefore, undoing the translation made in the variable 𝑦3, the solutions of (3.8) are

Families (I),(II):



𝑦1 = 𝜇,

𝑦2 = ±
√

3𝜇,

𝑦3 =
√

3𝑘(𝜇) + 𝑤𝜖𝛿𝜇+𝑂(𝜇2),

𝜖 = 𝛿𝜇+𝑂(𝜇2).

Family (III):



𝑦1 = 𝜇,

𝑦2 = 0,

𝑦3 =
√

3𝑘(𝜇) + 𝑤𝜖𝛿𝜇+𝑂(𝜇2),

𝜖 = 𝛿𝜇+𝑂(𝜇2), 𝛿 = − 1
2𝛿 .
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Returning to the variables 𝑥𝑖, we obtain

Family (I):



𝑥1 = 𝑘(𝛿𝜇) +
ñ√

6
3 +

√
3

3 𝑤𝜖𝛿

ô
𝜇+𝑂(𝜇2),

𝑥2 = 𝑘(𝛿𝜇) +
ñ√

6
3 +

√
3

3 𝑤𝜖𝛿

ô
𝜇+𝑂(𝜇2),

𝑥3 = 𝑘(𝛿𝜇) −
ñ

2
√

6
3 −

√
3

3 𝑤𝜖𝛿

ô
𝜇+𝑂(𝜇2),

𝑥4 = −3𝑘(𝛿𝜇) −
√

3𝑤𝜖𝛿𝜇+𝑂(𝜇2).

Family (II):



𝑥1 = 𝑘(𝛿𝜇) −
ñ

2
√

6
3 −

√
3

3 𝑤𝜖𝛿

ô
𝜇+𝑂(𝜇2),

𝑥2 = 𝑘(𝛿𝜇) +
ñ√

6
3 +

√
3

3 𝑤𝜖𝛿

ô
𝜇+𝑂(𝜇2),

𝑥3 = 𝑘(𝛿𝜇) +
ñ√

6
3 +

√
3

3 𝑤𝜖𝛿

ô
𝜇+𝑂(𝜇2),

𝑥4 = −3𝑘(𝛿𝜇) −
√

3𝑤𝜖𝛿𝜇+𝑂(𝜇2).

Family (III):



𝑥1 = 𝑘(𝛿𝜇) −
ñ√

6
6 −

√
3

3 𝑤𝜖𝛿

ô
𝜇+𝑂(𝜇2),

𝑥2 = 𝑘(𝛿𝜇) +
ñ√

6
3 +

√
3

3 𝑤𝜖𝛿

ô
𝜇+𝑂(𝜇2),

𝑥3 = 𝑘(𝛿𝜇) −
ñ√

6
6 −

√
3

3 𝑤𝜖𝛿

ô
𝜇+𝑂(𝜇2),

𝑥4 = −3𝑘(𝛿𝜇) −
√

3𝑤𝜖𝛿𝜇+𝑂(𝜇2).

The behavior of the solutions can be analyzed by looking at the growth of the mutual distances.

Let

𝑠𝑖𝑗(𝜇) = 𝑠𝑖𝑗(0) + 𝑣𝑖𝑗𝜇+𝑂(𝜇2),

where 𝑣𝑖𝑗 = 𝑑𝑠𝑖𝑗(𝜇)
𝑑𝜇

∣∣∣∣∣
𝜇=0

. Recalling that 𝑠𝑖𝑗 =
Å
𝜆

𝑀
− 𝑥𝑖𝑥𝑗

𝑚𝑖𝑚𝑗

ã1/𝑎

and assuming 𝑎 = −3/2,

we calculate the values of 𝑣𝑖𝑗 for the family I. Namely,

𝑣12 =
Å 216

1909 − 40130
17181

√
3
ã 2(27 + 29

√
3)

39 ≈ −7.8,

𝑣13 = 𝑣23 =
Å 216

1909 − 91673
17181

√
3
ã 2(27 + 29

√
3)

39 ≈ −18.7,

𝑣14 = 𝑣24 =
Å2313

1909 − 122300
51543

√
3
ã 2(27 + 29

√
3)

39 ≈ −5.8,

𝑣34 =
Å21124

51543
√

3 − 4410
1909

ã 2(27 + 29
√

3)
39 ≈ −3.2.
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Therefore, this analysis shows that the central configuration that bifurcates from the cen-

tered equilateral triangle is an isosceles triangle. Due to the relationship between 𝜇 and 𝜖,

considering 𝛿 = −
Å3632612

475341 + 212892
158447

√
3
ã 27 + 29

√
3

78 < 0, when 𝜇 < 0 we have 𝜖 > 0.

Then, the mass 𝑚* moves along the axis of symmetry and approaches the mass 𝑚3. On the

other hand, when 𝜇 > 0 we have 𝜖 < 0 and the opposite motion of 𝑚* happens.

Similarly, we analyze the other two families. Due to the symmetry, we have an isosceles

triangle with the mass 𝑚* moving along the axis of symmetry passing through the mass 𝑚1

and 𝑚2.

𝑚3

𝑚<𝑚*

𝑚1 𝑚2

𝑚1 𝑚2

𝑚>𝑚*

𝑚3

𝑚3

𝑚*

𝑚2𝑚1

𝜇 > 0𝜇 < 0 𝜇 = 0

Figure 5. Bifurcation of the centered equilateral triangle representing family I. The central mass 𝑚* moves
along the axis of symmetry. When 𝜖 > 0, 𝑚* approaches 𝑚3. Conversely, when 𝜖 < 0, 𝑚* moves away from
𝑚3.
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4 BIFURCATIONS OF THE CENTERED REGULAR TETRAHEDRAL CONFIG-

URATION

4.1 INTRODUCTION

Consider a configuration 𝑞 = (𝑞1, 𝑞2, 𝑞3, 𝑞4, 𝑞5) of massive points in R3 forming a centered

regular tetrahedron with masses 𝑚1 = 𝑚2 = 𝑚3 = 𝑚5 = 1 at the vertices and 𝑚4 = 𝑚 at the

barycenter. For the sake of comparison, we denotation and ordering of masses are the same

as in (SANTOS et al., 2017). The squares of the mutual distances 𝑠𝑖𝑗 =‖ 𝑞𝑖 − 𝑞𝑗 ‖2 between

the bodies are 𝑠12 = 𝑠13 = 𝑠15 = 𝑠23 = 𝑠25 = 𝑠35 = 𝜈 and 𝑠14 = 𝑠24 = 𝑠34 = 𝑠45 = 1,

where we set 𝜈 = 8
3 as the value of the edge of the tetrahedron. As we saw in chapter 2, this

configuration of five bodies in space is a Dziobek configuration and must satisfy the system

of equations
5∑︁

𝑖=1
𝑥𝑖 = 0,

∑︁
𝑗 ̸=𝑖

𝑠𝑖𝑗𝑥𝑗 =
∑︁
𝑖 ̸=𝑗

𝑠𝑖𝑗𝑥𝑖, (4.1)

𝑠𝑎
𝑖𝑗 − 𝜆

𝑀
= − 𝑥𝑖𝑥𝑗

𝑚𝑖𝑚𝑗

,

for all 1 ≤ 𝑖 < 𝑗 ≤ 5, where 𝜆 must be equal to 𝑚+ 4𝜈𝑎. Indeed, if 𝑚𝑖 = 𝑚𝑗 and 𝑠𝑖𝑘 = 𝑠𝑗𝑘,

for some 𝑘, then 𝑥𝑖 = 𝑥𝑗. Substituting these in system (4.1), the last equations are reduced

to just two: 
𝜆

4 +𝑚
− 𝜈𝑎 = 𝑥2

1,

𝜆

4 +𝑚
− 1 = −4𝑥2

1
𝑚
.

Multiplying the first equation by 4, the second by 𝑚, and adding them together, we obtain

the expression for 𝜆.

As on chapter 3, we assume 𝑀 > 0 and 𝑎 < −1.

Note that the first equation in (4.1) gives us 𝑥4 = −
(∑︀3

𝑖=1 𝑥𝑖 + 𝑥5
)
, and the variables

𝑥0
1 = 𝑥0

2 = 𝑥0
3 = 𝑥0

5 = 𝑘 and 𝑥0
4 = −4𝑘,

where 𝑘 = ±
…
𝑚(1 − 𝜈𝑎)

4 +𝑚
determine the centered tetrahedron. We call it the trivial solution

and denote it by 𝑋0. We choose the positive sign of 𝑘 for convenience. If we put 𝑡𝑖 =∑︀
𝑗 ̸=𝑖 𝑠𝑖𝑗𝑥𝑗, with 𝑠𝑖𝑗 =

Å
𝜆

𝑀
− 𝑥𝑖𝑥𝑗

𝑚𝑖𝑚𝑗

ã1/𝑎

, from the third equation in (4.1) we have a system
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of four equations given by 𝑡𝑖 − 𝑡4 = 0, 𝑖 = 1, 2, 3, 5. We denote the new system by

𝐹 (𝑋,𝑚) = 0, (4.2)

where 𝑋 = (𝑥1, 𝑥2, 𝑥3, 𝑥5) and 𝐹 = (𝐹1, 𝐹2, 𝐹3, 𝐹5) : R4 × R −→ R4 is a smooth function

such that 𝐹 (𝑋0(𝑚),𝑚) = 0, for any given value of 𝑚.

The symmetry group of (4.2) is 𝑆4, the permutation group of the four symbols 1, 2, 3, 5,

i.e., the function 𝐹 commutes with the action of 𝑆4 on R4 defined by the representation 𝜌

given by 𝜌𝜎(𝑥1, 𝑥2, 𝑥3, 𝑥5) = (𝑥𝜎(1), 𝑥𝜎(2), 𝑥𝜎(3), 𝑥𝜎(5)),∀𝜎 ∈ 𝑆4.

Proposition 4.1. The mapping 𝐹 is 𝑆4−equivariant, i.e.,

𝐹 (𝜌𝜎 ·𝑋,𝑚) = 𝜌𝜎 · 𝐹 (𝑋,𝑚), ∀ 𝜎 ∈ 𝑆4.

Proof. By defining the function 𝜓 (𝒳 ) =
Å

𝜆

4 +𝑚
− 𝒳
ã1/𝑎

, we have that

𝐹𝑘(𝑋,𝑚) =
5∑︁

𝑖=1
𝑖 ̸=𝑘,4

𝑥𝑖

(
𝜓 (𝑥𝑖𝑥𝑘) − 𝜓

(𝑥𝑖𝑥4

𝑚

))
+ (𝑥4 − 𝑥𝑘)𝜓

(𝑥4𝑥𝑘

𝑚

)
.

Hence,

𝐹𝑘(𝜌𝜎(𝑋),𝑚) =
5∑︁

𝑖=1
𝑖 ̸=𝑘,4

𝑥𝜎(𝑖)

(
𝜓
(
𝑥𝜎(𝑖)𝑥𝜎(𝑘)

)
− 𝜓

(𝑥𝜎(𝑖)𝑥4

𝑚

))
+ (𝑥4 − 𝑥𝜎(𝑘))𝜓

(𝑥4𝑥𝜎(𝑘)

𝑚

)
,

=
5∑︁

𝑗=1
𝑗 ̸=𝜎(𝑘),4

𝑥𝑗

(
𝜓
(
𝑥𝑗𝑥𝜎(𝑘)

)
− 𝜓

(𝑥𝑗𝑥4

𝑚

))
+ (𝑥4 − 𝑥𝜎(𝑘))𝜓

(𝑥4𝑥𝜎(𝑘)

𝑚

)
,

= 𝐹𝜎(𝑘)(𝑋,𝑚), 𝑘 = 1, 2, 3, 5 and 𝜎 ∈ 𝑆4,

where the second equality follows from 𝑗 = 𝜎(𝑖).

Consequently, the derivative of 𝐹 at the point (𝑋0(𝑚),𝑚) is a linear transformation which

commutes with 𝜌𝜎 for all 𝜎 ∈ 𝑆4, since 𝑋0 ∈ Fix(𝑆4). We have that

𝐷𝑋𝐹 (𝑋0,𝑚) =



𝑏 𝑐 𝑐 𝑐

𝑐 𝑏 𝑐 𝑐

𝑐 𝑐 𝑏 𝑐

𝑐 𝑐 𝑐 𝑏


, (4.3)
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where

𝑏 = 𝜕𝐹1

𝜕𝑥1

∣∣∣
(𝑋0,𝑚)

= −2 − 𝑘2

𝑎

Å
3𝜈1−𝑎 + 28

𝑚

ã
, and

𝑐 = 𝜕𝐹1

𝜕𝑥2

∣∣∣
(𝑋0,𝑚)

= (𝜈 − 2) − 𝑘2

𝑎

Å
𝜈1−𝑎 + 12

𝑚

ã
.

So, the determinant of 𝐷𝑋𝐹 (𝑋0,𝑚) is

|𝐷𝑋𝐹 (𝑋0,𝑚)| = (𝑏+ 3𝑐)(𝑏− 𝑐)3.

The term

𝑏+ 3𝑐 = −𝑚(1 − 𝜈𝑎)
𝑎(4 +𝑚)

Å64
𝑚

+ 6𝜈1−𝑎

ã
is positive for 𝑎 < −1 and 𝑚 > 0, whereas

𝑏− 𝑐 = −𝜈 − 𝑚(1 − 𝜈𝑎)
𝑎(4 +𝑚)

Å16
𝑚

+ 2𝜈1−𝑎

ã
,

is zero if and only if 𝑚 is equal to

𝑚* = 2
Å3𝜈𝑎 − 2𝑎− 3

2𝜈−𝑎 + 𝑎− 2

ã
.

When 𝑎 = −3
2 , the Newtonian case, we have the value 𝑚* = 10368 + 1701

√
6

54952 found by

Schmidt in (SCHMIDT, 1988).

Proposition 4.2. The value of 𝑚* is positive for all 𝑎 < −1.

Proof. See (SANTOS et al., 2017).

Equation (4.2) describes a bifurcation problem where the central mass 𝑚 plays the role

of the bifurcation parameter. For each exponent 𝑎 the pair (𝑋0,𝑚*) represents the degen-

erate centered tetrahedral configuration, where the degenerate mass vector is the quintuple

(𝑚1,𝑚2,𝑚3,𝑚4,𝑚5) = (1, 1, 1,𝑚*, 1). Therefore, (𝑋0,𝑚*) is a candidate for a bifurcation

point. In the most general sense, we have a bifurcation problem where the five masses are the

bifurcation parameters. However, bifurcation problems with more than one parameter can be

technically very challenging and we shall restrict ourselves to studying particular cases. The

fundamental idea is to study what happens with the number of solutions of equation (4.2) in

a neighborhood of the point (1, 1, 1,𝑚*, 1).

For the first problem studied in this chapter, we will consider the mass vector (1 + 𝜖1, 1 +

𝜖2, 1 + 𝜖3,𝑚
* + 𝜖4, 1 + 𝜖5) with 𝜖1 = 𝜖2 = 𝜖3 = 𝜖 and 𝜖4 = 𝜖5 = 0. While in the second

problem, we will consider 𝜖1 = 𝜖2 = 𝜖 and 𝜖3 = 𝜖4 = 𝜖5 = 0. It is worth emphasizing that the

problems which we propose to study are not equivalent to the problem addressed in (SANTOS

et al., 2017), where the authors considered 𝜖1 = 𝜖2 = 𝜖3 = 𝜖4 = 0 and 𝜖5 = 𝜖.
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4.2 BIFURCATION PROBLEM WITH THREE EQUALLY VARYING MASSES

Let us consider the bifurcation problem for the centered tetrahedron with three vertex

masses as bifurcation parameters. This problem consists in studying the solutions of the system

(4.1) in a neighborhood of the degenerate configuration, i.e., we keep fixed the masses 𝑚5 = 1

and 𝑚4 = 𝑚* and we approach the remaining three unit masses in the same way, 𝑚1 = 𝑚2 =

𝑚3 = 1 + 𝜖. We substitute these mass values in (4.1) to obtain the equation

𝐹 (𝑋, 𝜖) = 0, (4.4)

where 𝑋 = (𝑥1, 𝑥2, 𝑥3, 𝑥5), 𝜖 is the bifurcation parameter and 𝐹 = (𝐹1, 𝐹2, 𝐹3, 𝐹4) : R4 ×

R −→ R4 is a smooth function such that

𝐹1(𝑋, 𝜖) =
5∑︁

𝑖=2
𝑖 ̸=4

𝑥𝑖

Å
𝜆

𝑀
− 𝑥1𝑥𝑖

(1 + 𝜖)𝑚𝑖

ã1/𝑎

−
Ç

3∑︁
𝑖=1

𝑥𝑖 + 𝑥5

åÅ
𝜆

𝑀
+ 𝑥1(

∑︀3
𝑖=1 𝑥𝑖 + 𝑥5)

(1 + 𝜖)𝑚*

ã1/𝑎

− 𝑡5

𝐹2(𝑋, 𝜖) =
5∑︁

𝑖=1
𝑖 ̸=2,4

𝑥𝑖

Å
𝜆

𝑀
− 𝑥2𝑥𝑖

(1 + 𝜖)𝑚𝑖

ã1/𝑎

−
Ç

3∑︁
𝑖=1

𝑥𝑖 + 𝑥5

åÅ
𝜆

𝑀
+ 𝑥2(

∑︀3
𝑖=1 𝑥𝑖 + 𝑥5)

(1 + 𝜖)𝑚*

ã1/𝑎

− 𝑡5

𝐹3(𝑋, 𝜖) =
5∑︁

𝑖=1
𝑖 ̸=3,4

𝑥𝑖

Å
𝜆

𝑀
− 𝑥3𝑥𝑖

(1 + 𝜖)𝑚𝑖

ã1/𝑎

−
Ç

3∑︁
𝑖=1

𝑥𝑖 + 𝑥5

åÅ
𝜆

𝑀
+ 𝑥3(

∑︀3
𝑖=1 𝑥𝑖 + 𝑥5)

(1 + 𝜖)𝑚*

ã1/𝑎

− 𝑡5

𝐹4(𝑋, 𝜖) =
5∑︁

𝑖=1
𝑖 ̸=4

𝑥𝑖

( 𝜆

𝑀
+ (∑︀3

𝑖=1 𝑥𝑖 + 𝑥5)𝑥𝑖

𝑚𝑖𝑚*

)1/𝑎

− 𝑡5,

and

𝑡5 =
3∑︁

𝑖=1
𝑥𝑖

Å
𝜆

𝑀
− 𝑥𝑖𝑥5

(1 + 𝜖)

ã1/𝑎

−
Ç

3∑︁
𝑖=1

𝑥𝑖 + 𝑥5

åÅ
𝜆

𝑀
+ 𝑥5(

∑︀3
𝑖=1 𝑥𝑖 + 𝑥5)
𝑚*

ã1/𝑎

,

for all 𝑎 < −1 fixed. We already know that when 𝜖 = 0 the degenerate configuration

is represented by the point (𝑋0, 0) = ((𝑘(𝑚*), 𝑘(𝑚*), 𝑘(𝑚*), 𝑘(𝑚*)), 0); for this reason

𝐹 (𝑋0, 0) = 0. Furthermore, 𝐹 is 𝑆3-equivariant, that is, the symmetry group of (4.4) is

Σ = {𝜎 ∈ 𝑆4 |𝜎(4) = 4} ∼= 𝑆3. For 𝜎 ∈ Σ, we set 𝜌𝜎(𝑥1, 𝑥2, 𝑥3, 𝑥5) = (𝑥𝜎(1), 𝑥𝜎(2), 𝑥𝜎(3), 𝑥5).
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Hence,

𝐹𝑘(𝜌𝜎 ·𝑋, 𝜖) =
5∑︁

𝑖=1
𝑖 ̸=4,𝑘

𝑥𝜎(𝑖)

Å
𝜆

𝑀
−

𝑥𝜎(𝑘)𝑥𝜎(𝑖)

𝑚𝜎(𝑘)𝑚𝜎(𝑖)

ã1/𝑎

−
Ç

3∑︁
𝑖=1

𝑥𝜎(𝑖) + 𝑥5

åÅ
𝜆

𝑀
+ 𝑥𝜎(𝑘)(

∑︀3
𝑖=1 𝑥𝜎(𝑖) + 𝑥5)
𝑚𝜎(𝑘)𝑚

ã1/𝑎

=
5∑︁

𝑖=1
𝜎(𝑖) ̸=4,𝑘

𝑥𝑖

Å
𝜆

𝑀
−

𝑥𝜎(𝑘)𝑥𝑖

𝑚𝜎(𝑘)𝑚𝑖

ã1/𝑎

−
Ç

3∑︁
𝑖=1

𝑥𝑖 + 𝑥5

åÅ
𝜆

𝑀
+ 𝑥𝜎(𝑘)(

∑︀3
𝑖=1 𝑥𝑖 + 𝑥5)

𝑚𝜎(𝑘)𝑚

ã1/𝑎

=𝐹𝜎(𝑘)(𝑋, 𝜖), 𝑘 = 1, 2, 3,

and it is immediate to check that 𝑡5 and 𝐹4 have 𝜌𝜎−invariant expressions.

Remark 4.3. The matrices of the representation 𝜌 with respect to the canonical basis of R4

are as follows

𝜌(12) :



0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1


, 𝜌(13) :



0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 1


, 𝜌(23) :



1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


,

𝜌(123) :



0 1 0 0

0 0 1 0

1 0 0 0

0 0 0 1


, 𝜌(132) :



0 0 1 0

1 0 0 0

0 1 0 0

0 0 0 1


.

Consequently, by the chain rule, since 𝜌𝜎(𝑋0) = 𝑋0, the derivative of 𝐹 at the point

(𝑋0, 0) is also 𝑆3−equivariant. We have that

𝐷𝑋𝐹 (𝑋0, 0) =



𝑏 𝑐 𝑐 𝑑

𝑐 𝑏 𝑐 𝑑

𝑐 𝑐 𝑏 𝑑

𝑓 𝑓 𝑓 𝑒


,
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where
𝑏 = 𝜕𝐹1

𝜕𝑥1

∣∣∣
(𝑋0,0)

= −𝜈 − 2𝑘2

𝑎

(
𝜈1−𝑎 + 8

𝑚

)
= −𝜕𝐹1

𝜕𝑥5

∣∣∣
(𝑋0,0)

= 𝑑,

𝑐 = 𝜕𝐹1

𝜕𝑥2

∣∣∣
(𝑋0,0)

= 0,

𝑓 = 𝜕𝐹4

𝜕𝑥1

∣∣∣
(𝑋0,0)

= 2 − 𝜈 + 𝑘2

𝑎

(
𝜈1−𝑎 + 12

𝑚

)
,

𝑒 = 𝜕𝐹4

𝜕𝑥5

∣∣∣
(𝑋0,0)

= 2 + 𝑘2

𝑎

(
3𝜈1−𝑎 + 28

𝑚

)
= 𝑓 − 𝑏.

.

Hence,

𝐷𝑋𝐹 (𝑋0, 0) =



𝑏 0 0 −𝑏

0 𝑏 0 −𝑏

0 0 𝑏 −𝑏

𝑓 𝑓 𝑓 𝑓 − 𝑏


.

So, the determinant

|𝐷𝑋Φ(𝑋0, 0)| = 𝑏3(4𝑒− 𝑏).

The term 4𝑒 − 𝑏 = 2𝑘2

𝑎

Å
3𝜈1−𝑎 + 32

𝑚

ã
is negative for all 𝑎 < −1 and 𝑚 positive. On the

other hand, 𝑏 = 0 if only if 𝑚 = 𝑚* (as defined earlier). Therefore, since 𝑚 = 𝑚*, we have

𝐷𝑋𝐹 (𝑋0, 0) =



0 0 0 0

0 0 0 0

0 0 0 0

𝑓 𝑓 𝑓 𝑓


,

where 𝑓 = −4(1 − 𝜈𝑎)(1 − 2𝑎)
𝑎(4 − 3𝜈𝑎) ̸= 0 for 𝑎 < −1, when we substitute 𝑚* and 𝑘(𝑚*) in its

previously defined expression.

Let 𝐿 = 𝐷𝑋𝐹 (𝑋0, 0) and apply the Liapunov-Schmidt reduction process. From the struc-

ture of 𝐿, it is immediate to obtain its kernel and image

ker(𝐿) =
®

(𝑣1, 𝑣2, 𝑣3, 𝑣4) ∈ R4
∣∣∣ 4∑︁

𝑖=1
𝑣𝑖 = 0

´
and Im(𝐿) = {(0, 0, 0, 𝑣) | 𝑣 ∈ R},

and to check that both are 𝜌-invariant subspaces. We make the decomposition R4 = ker(𝐿)⊕

Im(𝐿), choose convenient bases for the kernel and the image, respectively

𝛽1 = {𝑢1 = (1, 0, 0,−1), 𝑢2 = (0, 1, 0,−1), 𝑢3 = (0, 0, 1,−1)},

𝛽2 = {𝑢4 = (0, 0, 0,−1)},
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and perform the change of variables

(𝑥1, 𝑥2, 𝑥3, 𝑥5) =
4∑︁

𝑖=1
𝑦𝑖𝑢𝑖.

Explicitly,

𝑥1 = 𝑦1, 𝑥2 = 𝑦2, 𝑥3 = 𝑦3, 𝑥5 = −
4∑︁

𝑖=1
𝑦𝑖,

since 𝛽 = 𝛽1 ∪ 𝛽2 forms a basis for R4. We keep in mind that 𝑥4 = −
Å

3∑︀
𝑖=1

𝑥𝑖 + 𝑥5

ã
.

Remark 4.4. The matrices of the representation of 𝑆3 with respect to the basis 𝛽 and the

canonical basis are the same.

By changing variables, we obtain a new function and the problem is described by the

equation

𝐺(𝑌, 𝜖) = 0, (4.5)

where

𝐺1(𝑌, 𝜖) = 𝑦2

ï
𝜆

𝑀
− 𝑦1𝑦2

(1 + 𝜖)2

ò1/𝑎

+ 𝑦3

ï
𝜆

𝑀
− 𝑦1𝑦3

(1 + 𝜖)2

ò1/𝑎

+ 𝑦4

ï
𝜆

𝑀
− 𝑦1𝑦4

(1 + 𝜖)𝑚*

ò1/𝑎

− 𝑦1

ï
𝜆

𝑀
+ 𝑦1(

∑︀4
𝑖=1 𝑦𝑖)

(1 + 𝜖)

ò1/𝑎

− 𝑦2

ï
𝜆

𝑀
+ 𝑦2(

∑︀4
𝑖=1 𝑦𝑖)

(1 + 𝜖)

ò1/𝑎

− 𝑦3

ï
𝜆

𝑀
+ 𝑦3(

∑︀4
𝑖=1 𝑦𝑖)

(1 + 𝜖)

ò1/𝑎

− 𝑦4

ï
𝜆

𝑀
+ 𝑦4(

∑︀4
𝑖=1 𝑦𝑖)
𝑚*

ò1/𝑎

−
Ç

4∑︁
𝑖=1

𝑦𝑖

åï
𝜆

𝑀
+ 𝑦1(

∑︀4
𝑖=1 𝑦𝑖)

(1 + 𝜖)

ò1/𝑎

,

𝐺2(𝑌, 𝜖) = 𝑦1

ï
𝜆

𝑀
− 𝑦1𝑦2

(1 + 𝜖)2

ò1/𝑎

+ 𝑦3

ï
𝜆

𝑀
− 𝑦2𝑦3

(1 + 𝜖)2

ò1/𝑎

+ 𝑦4

ï
𝜆

𝑀
− 𝑦2𝑦4

(1 + 𝜖)𝑚*

ò1/𝑎

− 𝑦1

ï
𝜆

𝑀
+ 𝑦1(

∑︀4
𝑖=1 𝑦𝑖)

(1 + 𝜖)

ò1/𝑎

− 𝑦2

ï
𝜆

𝑀
+ 𝑦2(

∑︀4
𝑖=1 𝑦𝑖)

(1 + 𝜖)

ò1/𝑎

− 𝑦3

ï
𝜆

𝑀
+ 𝑦3(

∑︀4
𝑖=1 𝑦𝑖)

(1 + 𝜖)

ò1/𝑎

− 𝑦4

ï
𝜆

𝑀
+ 𝑦4(

∑︀4
𝑖=1 𝑦𝑖)
𝑚*

ò1/𝑎

−
Ç

4∑︁
𝑖=1

𝑦𝑖

åï
𝜆

𝑀
+ 𝑦2(

∑︀4
𝑖=1 𝑦𝑖)

(1 + 𝜖)

ò1/𝑎

,
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𝐺3(𝑌, 𝜖) = 𝑦1

ï
𝜆

𝑀
− 𝑦1𝑦3

(1 + 𝜖)2

ò1/𝑎

+ 𝑦2

ï
𝜆

𝑀
− 𝑦2𝑦3

(1 + 𝜖)2

ò1/𝑎

+ 𝑦4

ï
𝜆

𝑀
− 𝑦3𝑦4

(1 + 𝜖)𝑚*

ò1/𝑎

− 𝑦1

ï
𝜆

𝑀
+ 𝑦1(

∑︀4
𝑖=1 𝑦𝑖)

(1 + 𝜖)

ò1/𝑎

− 𝑦2

ï
𝜆

𝑀
+ 𝑦2(

∑︀4
𝑖=1 𝑦𝑖)

(1 + 𝜖)

ò1/𝑎

− 𝑦3

ï
𝜆

𝑀
+ 𝑦3(

∑︀4
𝑖=1 𝑦𝑖)

(1 + 𝜖)

ò1/𝑎

− 𝑦4

ï
𝜆

𝑀
+ 𝑦4(

∑︀4
𝑖=1 𝑦𝑖)
𝑚*

ò1/𝑎

−
Ç

4∑︁
𝑖=1

𝑦𝑖

åï
𝜆

𝑀
+ 𝑦3(

∑︀4
𝑖=1 𝑦𝑖)

(1 + 𝜖)

ò1/𝑎

,

𝐺4(𝑌, 𝜖) = 𝑦1

ï
𝜆

𝑀
− 𝑦1𝑦4

(1 + 𝜖)𝑚*

ò1/𝑎

+ 𝑦2

ï
𝜆

𝑀
− 𝑦2𝑦4

(1 + 𝜖)𝑚*

ò1/𝑎

+ 𝑦3

ï
𝜆

𝑀
− 𝑦3𝑦4

(1 + 𝜖)𝑚*

ò1/𝑎

− 𝑦1

ñ
𝜆

𝑀
+
𝑦1

(∑︀4
𝑖=1 𝑦𝑖

)
(1 + 𝜖)

ô1/𝑎

− 𝑦2

ñ
𝜆

𝑀
+
𝑦2

(∑︀4
𝑖=1 𝑦𝑖

)
(1 + 𝜖)

ô1/𝑎

− 𝑦3

ñ
𝜆

𝑀
+
𝑦3

(∑︀4
𝑖=1 𝑦𝑖

)
(1 + 𝜖)

ô1/𝑎

− 𝑦4

ï
𝜆

𝑀
+ 𝑦4(

∑︀4
𝑖=1 𝑦𝑖)
𝑚*

ò1/𝑎

−
Ç

4∑︁
𝑖=1

𝑦𝑖

åï
𝜆

𝑀
+ 𝑦4(

∑︀4
𝑖=1 𝑦𝑖)
𝑚*

ò1/𝑎

,

are the coordinates of 𝐺(𝑌, 𝜖) with respect to canonical basis and 𝜆 = 𝑚* + 4𝜈𝑎, 𝑀 =

4 +𝑚* + 3𝜖 and 𝑘 =
…

𝑚*

4 +𝑚* (1 − 𝜈𝑎) are fixed for each 𝑎 < −1.

Remark 4.5. 𝐺(𝑌, 𝜖) is 𝑆3−equivariant.

Let us write the degenerate solution in the new coordinates by (𝑌 0, 0) = (𝑘, 𝑘, 𝑘,−4𝑘, 0)

and note that 𝐷𝑌𝐺(𝑋0, 0) = 𝐷𝑋𝐹 (𝑋0, 0)𝐷𝑌𝑋(𝑌 0)𝐷𝑌 𝑌 (𝑌 0). Thus

𝐷𝑌𝐺(𝑋0, 0) =



0 0 0 0

0 0 0 0

0 0 0 0

𝑓 𝑓 𝑓 𝑓





1 0 0 0

0 1 0 0

0 0 1 0

−1 −1 −1 −1





1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


=



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 −𝑓


.

In order to solve equation (4.5), we make use of the equivariance of G and the implicit

function theorem with the same technique as in (SANTOS et al., 2017).

According to the decomposition of R4 = ker(𝐿) ⊕ Im(𝐿), equation (4.5) is equivalent to

the system

(𝑃 ∘𝐺)(𝑌, 𝜖) = ⟨𝑢4, 𝐺4(𝑌, 𝜖)⟩𝑢4 = 0, (4.6)

((𝐼 − 𝑃 ) ∘𝐺)(𝑌, 𝜖) =
3∑︁

𝑖=1
⟨𝑢𝑖, 𝐺(𝑌, 𝜖)⟩𝑢𝑖 = 0, (4.7)
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where 𝑃 : R4 −→ Im(𝐿) is the canonical projection on Im(𝐿) with ker(𝑃 ) = ker(𝐿), and

𝐼 − 𝑃 is the complementary projection.

We verify that equation (4.6) may be solved for 𝑦4. Firstly, observe that any vector 𝑣 ∈ R4

may be decomposed in the form 𝑣 = 𝑣1 + 𝑣2, where 𝑣1 ∈ ker(𝐿) and 𝑣2 ∈ Im(𝐿). Therefore,

it is sufficient to solve the equation 𝐺4 = 0, since 𝐺4 is the coordinate of (𝑃 ∘𝐺)(𝑌, 𝜖) with

respect to 𝛽2.

We check that 𝐺4(𝑌 0, 0) = 0 and 𝜕𝐺4

𝜕𝑦𝑖

(𝑌 0, 0) = 0, 𝑖 = 1, 2, 3, but,

𝜕𝐺4

𝜕𝑦4
(𝑌 0, 0) = 4(1 − 𝜈𝑎)(1 − 2𝑎)

𝑎(4 − 3𝜈𝑎) < 0,

for all 𝑎 < −1. Hence, by the implicit function theorem, there exists an open set 𝑈×𝑉 ⊂ R3×

R containing (‹𝑌 0, 0), where ‹𝑌 0 = (𝑘(𝑚*), 𝑘(𝑚*), 𝑘(𝑚*)), such that there is a unique analytic

function 𝑦4 = 𝑊 : 𝑈 × 𝑉 −→ R with 𝑊 (‹𝑌 0, 0) = −4𝑘(𝑚*), and for all (𝑦1, 𝑦2, 𝑦3) ∈ 𝑈

and 𝜖 ∈ 𝑉 we have 𝐺4(𝑦1, 𝑦2, 𝑦3,𝑊 (𝑦1, 𝑦2, 𝑦3, 𝜖), 𝜖) = 0. Analogously to lemma 2.24, we can

show that the function 𝑊 is 𝑆3−invariant.

Now, substituting 𝑊 (𝑦1, 𝑦2, 𝑦3, 𝜖) into equations (4.7) yields an 𝑆3-equivariant system of

three equations, three variables and one parameter, namely

𝐺̃𝑖(𝑦1, 𝑦2, 𝑦3, 𝜖) = 0, 𝑖 = 1, 2, 3. (4.8)

Lemma 4.6. The system (4.8) does not admit an implicit differentiable solution defined

around 𝜖 = 0.

Proof. Indeed, if we had a solution ‹𝑌 (𝜖) = (𝑦1(𝜖), 𝑦2(𝜖), 𝑦3(𝜖)) of (4.8), then

𝐷𝜖𝐺̃
Ä‹𝑌 0, 0

ä
= 𝐷‹𝑌 𝐺̃ Ä‹𝑌 0, 0

ä 𝑑‹𝑌
𝑑𝜖

(0) + 𝜕𝐺̃

𝜕𝜖

Ä‹𝑌 0, 0
ä

= 0. (4.9)

But, 𝐷‹𝑌 𝐺̃ Ä‹𝑌 0, 0
ä

= 0, whereas

𝜕𝐺𝑖

𝜕𝜖
(‹𝑌 0, 0) = 2𝑘3

𝑎

Å
𝜈1−𝑎 + 8

𝑚*

ã
< 0, 𝑖 = 1, 2, 3,

for 𝑎 < −1. So, the claim is proved.

Let us consider the parameter 𝜖 as an additional variable of the problem, and solve one

of the equations 𝐺̃𝑖 = 0, 𝑖 = 1, 2, 3, for 𝜖 in terms of (𝑦1, 𝑦2, 𝑦3). More precisely, we consider

𝑖 = 3 and since we already know that 𝐺3(‹𝑌 0, 0) = 0 and 𝜕𝐺3

𝜕𝜖
̸= 0, by the implicit function
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theorem, there exist neighborhoods 𝑉1(‹𝑌 0) ⊂ R3 and 𝑉2(0) ⊂ R such that, for all (𝑦1, 𝑦2, 𝑦3) ∈

𝑉1(𝑌 0) ∩ 𝑈 there is 𝜖(𝑦1, 𝑦2, 𝑦3) ∈ 𝑉2(0), such that

𝐺̃3(𝑦1, 𝑦2, 𝑦3, 𝜖(𝑦1, 𝑦2, 𝑦3)) = 0,

with 𝜖(‹𝑌 0) = 0.

Due to the 𝑆3-equivariance of system (4.8), the remaining two equations can also be solved

if we restrict ourselves to subspaces of fixed points. In fact, since

𝜌(123) :


0 1 0

0 0 1

1 0 0

 , 𝜌(132) :


0 0 1

1 0 0

0 1 0

 ,
the fixed points (𝑦1, 𝑦2, 𝑦3) by 𝜌(123) and 𝜌(132) are ‹𝑌 = (𝛿, 𝛿, 𝛿) (setting 𝑦1 = 𝑦2 = 𝑦3 = 𝛿).

Therefore,

𝐺̃1(𝑦1, 𝑦2, 𝑦3, 𝜖(𝑦1, 𝑦2, 𝑦3)) = 𝐺̃2(𝑦1, 𝑦2, 𝑦3, 𝜖(𝑦1, 𝑦2, 𝑦3)) = 𝐺̃3(𝑦1, 𝑦2, 𝑦3, 𝜖(𝑦1, 𝑦2, 𝑦3)),

for all (𝑦1, 𝑦2, 𝑦3) ∈ 𝑉1(‹𝑌 0) ∩ 𝑈 ∩ Fix(Σ(123)) or (𝑦1, 𝑦2, 𝑦3) ∈ 𝑉1(‹𝑌 0) ∩ 𝑈 ∩ Fix(Σ(132)).

Thus, we have that 𝑦1 = 𝑦2 = 𝑦3 is a solution of system (4.8). On the other hand, the points

(𝑦1, 𝑦2, 𝑦3) fixed by

𝜌(12) :


0 1 0

1 0 0

0 0 1

 , 𝜌(13) :


0 0 1

0 1 0

1 0 0

 , 𝜌(23) :


1 0 0

0 0 1

0 1 0

 ,
are‹𝑌 = (𝛿, 𝛿, 𝑦3) (setting 𝑦1 = 𝑦2 = 𝛿),‹𝑌 = (𝛿, 𝑦2, 𝛿) (setting 𝑦1 = 𝑦3 = 𝛿) and‹𝑌 = (𝑦1, 𝛿, 𝛿)

(setting 𝑦2 = 𝑦3 = 𝛿). Therefore,

𝐺̃1(𝑦1, 𝑦2, 𝑦3, 𝜖(𝑦1, 𝑦2, 𝑦3)) = 𝐺̃3(𝑦1, 𝑦2, 𝑦3, 𝜖(𝑦1, 𝑦2, 𝑦3)),

𝐺̃2(𝑦1, 𝑦2, 𝑦3, 𝜖(𝑦1, 𝑦2, 𝑦3)) = 𝐺̃3(𝑦1, 𝑦2, 𝑦3, 𝜖(𝑦1, 𝑦2, 𝑦3)),

for all (𝑦1, 𝑦2, 𝑦3) ∈ 𝑉1(‹𝑌 0)∩𝑈 ∩ Fix(Σ(13)) and (𝑦1, 𝑦2, 𝑦3) ∈ 𝑉1(‹𝑌 0)∩𝑈 ∩ Fix(Σ(23)). Thus,

we have that 𝑦1 = 𝑦3 and 𝑦2 = 𝑦3 are solutions of system (4.8). To show that 𝑦1 = 𝑦2 is also

a solution of system (4.8), we just have to solve the equation 𝐺̃1(𝑦1, 𝑦1, 𝑦3, 𝜖(𝑦1, 𝑦1, 𝑦3)) = 0.

Without imposing any restrictions and setting

𝐻1(𝑦1, 𝑦2, 𝑦3) := 𝐺̃1(𝑦1, 𝑦2, 𝑦3, 𝜖(𝑦1, 𝑦2, 𝑦3)), (4.10)

𝐻2(𝑦1, 𝑦2, 𝑦3) := 𝐺̃2(𝑦1, 𝑦2, 𝑦3, 𝜖(𝑦1, 𝑦2, 𝑦3)), (4.11)
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we can solve the system 𝐻1 = 0 and 𝐻2 = 0 completely.

The following theorem, found in (SANTOS et al., 2017), allows us to rewrite the functions

𝐻𝑖 in an interesting way.

Theorem 4.7. If 𝐻(𝑥, 𝑦, 𝑧) is an analytic function defined in a neighborhood of the origin

(0, 0, 0), such that 𝐻(0, 0, 0) = 0 and 𝐻(𝑥, 𝑥, 𝑧) = 0, then

𝐻(𝑥, 𝑦, 𝑧) = (𝑥− 𝑦)ℎ(𝑥, 𝑦, 𝑧),

where ℎ(𝑥, 𝑦, 𝑧) is an analytic function in a neighborhood of (0, 0, 0).

Proof. We first define an auxiliary function 𝐻̂(𝜉, 𝜂, 𝑧) = 𝐻(𝜉+𝜂, 𝜉−𝜂, 𝑧) for all (𝜉, 𝜂, 𝑧) near

the origin (0, 0, 0). The function 𝐻̂ is an analytic function because 𝐻 is. Its Taylor expansion

at (0, 0, 0) has the form

𝐻̂(𝜉, 𝜂, 𝑧) = 𝜕𝐻̂

𝜕𝜉
(0)𝜉 + 𝜕𝐻̂

𝜕𝜂
(0)𝜂 + 𝜕𝐻̂

𝜕𝑧
(0)𝑧 + 𝜕2𝐻̂

𝜕𝜉𝜕𝜂
(0)𝜉𝜂 + 𝜕2𝐻̂

𝜕𝜉𝜕𝑧
(0)𝜉𝑧 + 𝜕2𝐻̂

𝜕𝜂𝜕𝑧
(0)𝜂𝑧

+ 1
2

Ç
𝜕2𝐻̂

𝜕𝜉2 (0)𝜉2 + 𝜕2𝐻̂

𝜕𝜂2 (0)𝜂2 + 𝜕2𝐻̂

𝜕𝑧2 (0)𝑧2
å

+𝑂(3).

By hypothesis, it follows that 𝐻̂(𝜉, 0, 𝑧) = 𝐻(𝜉, 𝜉, 𝑧) = 0. So,

𝐻̂(𝜉, 0, 𝑧) = 𝜕𝐻̂

𝜕𝜉
(0)𝜉 + 𝜕𝐻̂

𝜕𝑧
(0)𝑧 + 𝜕2𝐻̂

𝜕𝜉𝜕𝑧
(0)𝜉𝑧 + 1

2

Ç
𝜕2𝐻̂

𝜕𝜉2 (0)𝜉2 + 𝜕2𝐻̂

𝜕𝑧2 (0)𝑧2
å

+𝑂(3)

is equal to the null series, which implies that

𝜕𝑖𝐻̂

𝜕𝜉𝑖
(0) = 0, 𝜕

𝑖𝐻̂

𝜕𝑧𝑖
(0) = 0, and 𝜕𝑖𝐻̂

𝜕𝜉𝑗𝜕𝑧𝑘
(0) = 0, ∀ 𝑖, 𝑗, 𝑘 = 1, 2, 3, ... .

Thus,

𝐻̂(𝜉, 𝜂, 𝑧) = 𝜂

Ç
𝜕𝐻̂

𝜕𝜂
(0) + 1

2
𝜕2𝐻̂

𝜕𝜂2 (0)𝜂 + 𝜕2𝐻̂

𝜕𝜉𝜕𝜂
(0)𝜉 + 𝜕2𝐻̂

𝜕𝜂𝜕𝑧
(0)𝑧 +𝑂(2)

å
. (4.12)

for all (𝜉, 𝜂, 𝑧) near of the origin. Setting 𝜂 = 𝑥− 𝑦 and 𝜉 = 𝑥+ 𝑦, the result follows.

Since functions 𝐻𝑖, 𝑖 = 1, 2, previously defined, satisfy theorem 4.7 (𝐻1(𝜏1, 𝑦2, 𝜏1) = 0

and 𝐻2(𝑦1, 𝜏2, 𝜏2) = 0), so we must have

𝐻1(𝑦1, 𝑦2, 𝑦3) = (𝑦1 − 𝑦3)ℎ1(𝑦1, 𝑦2, 𝑦3) = 0, (4.13)

𝐻2(𝑦1, 𝑦2, 𝑦3) = (𝑦2 − 𝑦3)ℎ2(𝑦1, 𝑦2, 𝑦3) = 0, (4.14)

where the analytic functions ℎ′
𝑖𝑠 are defined in 𝑉1(𝑂) ∩𝑈 (by translating the point ‹𝑌 0 to the

origin).
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Next, in order to analyze the bifurcations arising from the centered regular tetrahedral

configuration, we will use the analyticity of the function 𝐺 to obtain analytical expressions for

the implicit solutions 𝑊 and 𝜖 found so far, and the analytical expressions for the functions

ℎ1 and ℎ2 in equations (4.13) and (4.14).

4.2.1 Analytic Expressions

Let us write Taylor expansions for the functions 𝐺𝑖 around the origin. For this, we make a

translation of the variables 𝑦𝑖 = 𝑦𝑖 + 𝑘, 𝑖 = 1, 2, 3, and 𝑦4 = 𝑦4 − 4𝑘. Note that the function

𝐺1 is 𝜌(23)-invariant. Thus, the expression of the Taylor series up to second order terms has

the form

𝐺1(𝑌, 𝜖) = 𝑏5𝜖+ 𝑏11𝑦
2
1 + 𝑏22(𝑦2

2 + 𝑦2
3) + 𝑏44𝑦

2
4 + 𝑏55𝜖

2 + 𝑏12(𝑦2 + 𝑦3)𝑦1 + 𝑏23𝑦2𝑦3 + 𝑏14𝑦1𝑦4

+ 𝑏24(𝑦2 + 𝑦3)𝑦4 + 𝑏15𝑦1𝜖+ 𝑏25(𝑦2 + 𝑦3)𝜖+ 𝑏45𝑦4𝜖+𝑂(3).

Moreover, due to the equivariance of 𝐺,

𝐺2(𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝜖) = 𝐺1(𝑦2, 𝑦1, 𝑦3, 𝑦4, 𝜖),

𝐺3(𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝜖) = 𝐺1(𝑦3, 𝑦2, 𝑦1, 𝑦4, 𝜖),

thus we get the Taylor expansions of 𝐺2 and 𝐺3.

On the other hand, the function 𝐺4 is 𝑆3-invariant. Thus, its Taylor series can be written

as

𝐺4(𝑌, 𝜖) = − 𝑓𝑦4 + 𝑐5𝜖+ 𝑐11(𝑦2
1 + 𝑦2

2 + 𝑦2
3) + 𝑐44𝑦

2
4 + 𝑐55𝜖

2 + 𝑐12(𝑦1𝑦2 + 𝑦1𝑦3 + 𝑦2𝑦3)

+ 𝑐14(𝑦1 + 𝑦2 + 𝑦3)𝑦4 + 𝑐15(𝑦1 + 𝑦2 + 𝑦3)𝜖+ 𝑐45𝑦4𝜖+𝑂(3).

The terms in the expansion of 𝐺 at (0, 0, 0, 0, 0) which are the most important for the analysis,

will be made explicit, and the remaining ones will be omitted. The expressions of the coefficients
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are

𝑏5 = 𝜕𝐺1

𝜕𝜖
= 2𝑘3

𝑎

Å
𝜈1−𝑎 + 8

𝑚*

ã
,

𝑏22 = 𝜕2𝐺1

𝜕𝑦2
2

= −6
𝑎
𝑘𝜈1−𝑎 + 64𝑘3

𝑎2𝑚*2 (1 − 𝑎),

𝑐5 = 𝜕𝐺4

𝜕𝜖
= −12𝑘

𝑎

ï2(𝑚* + 4𝜈𝑎)
(4 +𝑚*)2 + 𝑘2

𝑚*

ò
− 3𝑘

𝑎
𝜈1−𝑎

ï
𝑘2 − 3(𝑚* + 4𝜈𝑎)

(4 +𝑚*)2

ò
,

𝑐11 = 𝜕2𝐺4

𝜕𝑦2
1

= 2𝑘
𝑎

Å 8
𝑚* − 𝜈1−𝑎

ã
+ 2𝑘3

𝑎2

Å 48
𝑚*2 − 𝜈1−2𝑎

ã
(1 − 𝑎),

𝑐12 = 𝜕2𝐺4

𝜕𝑦1𝜕𝑦2
= 4𝑘

𝑎

Å 2
𝑚* − 𝜈1−𝑎

ã
+ 𝑘3

𝑎2

Å 80
𝑚*2 − 𝜈1−2𝑎

ã
(1 − 𝑎),

𝑐15 = 𝜕2𝐺4

𝜕𝑦1𝜕𝜖
= 𝑘

𝑎

Å
𝜈1−𝑎 − 8

𝑚*

ã
+ 2𝑘4

𝑎2

Å 8
𝑚*2 − 𝜈1−2𝑎

ã
(1 − 𝑎),

𝑐44 = 𝜕2𝐺4

𝜕𝑦2
4

= 𝑘3

𝑎2

Å 128
𝑚*2 − 3𝜈1−2𝑎

ã
(1 − 𝑎) + 30𝑘

𝑎𝑚* ,

𝑐45 = 𝜕2𝐺4

𝜕𝑦4𝜕𝜖
= 3𝑘4

𝑎2

Å 4
𝑚*2 − 𝜈1−2𝑎

ã
(1 − 𝑎) + 3𝑘2

𝑎

Å 1
𝑚* + 𝜈1−𝑎

ã
,

𝑐55 = 𝜕2𝐺4

𝜕𝜖2 = 3𝑘5

𝑎2

Å 16
𝑚*2 − 𝜈1−2𝑎

ã
(1 − 𝑎) + 6𝑘3

𝑎

Å 4
𝑚* + 𝜈1−𝑎

ã
,

𝑏11 = 𝜕2𝐺1

𝜕𝑦2
1

= 0, 𝑏12 = 1
2
𝜕2𝐺1

𝜕𝑦1𝜕𝑦2
= 𝑏22, 𝑐14 = 𝜕2𝐺4

𝜕𝑦1𝜕𝑦4
= 𝑐11.

The analytic expression of the implicit solution 𝑊 can be obtained by substituting its

generic Taylor series into 𝐺4 and setting each term equal to zero. Moreover, since 𝑊 is

𝑆3-invariant, we have

𝑊 (𝑦1, 𝑦2, 𝑦3, 𝜖) = 1
𝑓

(
𝑐5𝜖+ 𝑐11(𝑦2

1 + 𝑦2
2 + 𝑦2

3) +
Å
𝑐44

𝑐2
5
𝑓 2 + 𝑐55 + 𝑐45

𝑐5

𝑓

ã
𝜖2

+ 𝑐12(𝑦1𝑦2 + 𝑦1𝑦3 + 𝑦2𝑦3) +
Å
𝑐14
𝑐5

𝑓
+ 𝑐15

ã
(𝑦1 + 𝑦2 + 𝑦3)𝜖+𝑂(3)

)
,

Recall that 𝑓 = 4(1 − 𝜈𝑎)(1 − 2𝑎)
𝑎(4 − 3𝜈𝑎) . Substituting 𝑦4 = 𝑊 into the system 𝐺𝑖 = 0, 𝑖 = 1, 2, 3,

and setting

𝐺̃𝑖(𝑦1, 𝑦2, 𝑦3, 𝜖) = 𝐺𝑖(𝑦1, 𝑦2, 𝑦3,𝑊 (𝑦1, 𝑦2, 𝑦3, 𝜖), 𝜖), 𝑖 = 1, 2, 3,

we get
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𝐺̃1(𝑦1, 𝑦2, 𝑦3, 𝜖) = 𝑏5𝜖+ 𝑏22
[
(𝑦2

2 + 𝑦2
3) + 2(𝑦1𝑦2 + 𝑦1𝑦3 + 𝑦2𝑦3)

]
+
Å
𝑏14

𝑓
𝑐5 + 𝑏15

ã
𝑦1𝜖

+
Å
𝑏44

𝑓 2 𝑐
2
5 + 𝑏45

𝑓
𝑐5 + 𝑏55

ã
𝜖2 +
Å
𝑏24

𝑓
+ 𝑏25

ã
(𝑦2 + 𝑦3)𝜖+𝑂(3),

𝐺̃2(𝑦1, 𝑦2, 𝑦3, 𝜖) = 𝑏5𝜖+ 𝑏22
[
(𝑦2

1 + 𝑦2
3) + 2(𝑦1𝑦2 + 𝑦2𝑦3 + 𝑦1𝑦3)

]
+
Å
𝑏14

𝑓
𝑐5 + 𝑏15

ã
𝑦2𝜖

+
Å
𝑏44

𝑓 2 𝑐
2
5 + 𝑏45

𝑓
𝑐5 + 𝑏55

ã
𝜖2 +
Å
𝑏24

𝑓
+ 𝑏25

ã
(𝑦1 + 𝑦3)𝜖+𝑂(3),

𝐺̃3(𝑦1, 𝑦2, 𝑦3, 𝜖) = 𝑏5𝜖+ 𝑏22
[
(𝑦2

2 + 𝑦2
1) + 2(𝑦3𝑦2 + 𝑦1𝑦3 + 𝑦2𝑦1)

]
+
Å
𝑏14

𝑓
𝑐5 + 𝑏15

ã
𝑦3𝜖

+
Å
𝑏44

𝑓 2 𝑐
2
5 + 𝑏45

𝑓
𝑐5 + 𝑏55

ã
𝜖2 +
Å
𝑏24

𝑓
+ 𝑏25

ã
(𝑦2 + 𝑦1)𝜖+𝑂(3).

Now, the series for 𝜖(𝑦1, 𝑦2, 𝑦3) can be obtained by substituting its generic Taylor series into

𝐺3 and setting each term equal to zero. It follows that

𝜖(𝑦1, 𝑦2, 𝑦3) = − 𝑏22

𝑏5
(𝑦1 + 𝑦2)(2𝑦3 + 𝑦1 + 𝑦2) + 𝑑1(𝑦3

1 + 𝑦3
2) + 𝑑2𝑦

3
3 + 𝑑3𝑦1𝑦2𝑦3

+ 𝑑4(𝑦2
1𝑦2 + 𝑦2

2𝑦1) + 𝑑5(𝑦2
1𝑦3 + 𝑦2

2𝑦3) + 𝑑6(𝑦2
3𝑦1 + 𝑦2

3𝑦2) +𝑂(4).

where

𝑑1 = 𝜕3𝜖

𝜕𝑦3
1

= − 1
𝑏5

ï
𝑏24
𝑐11

𝑓
+ 𝑏222 − 𝑏22

𝑏5

Å
𝑐5
𝑏24

𝑓
+ 𝑏25

ãò
,

𝑑2 = 𝜕3𝜖

𝜕𝑦3
3

= − 1
𝑏5

ï
𝑏14
𝑐11

𝑓
+ 𝑏111

ò
,

𝑑3 = 𝜕3𝜖

𝜕𝑦1𝜕𝑦2𝜕𝑦3
= − 1

𝑏5

ï
𝑏123 + 𝑐12

𝑓
(𝑏14 + 2𝑏24) − 𝑏12

𝑏5

Å
𝑐5

𝑓
(𝑏14 + 2𝑏24) + 𝑏15

ãò
,

𝑑4 = 𝜕3𝜖

𝜕𝑦2
1𝜕𝑦2

= − 1
𝑏5

ï
𝑏223 − 𝑏12

𝑏5

Å
𝑏25 + 𝑏24

𝑓
(𝑐5 + 𝑐12)

ãò
,

𝑑5 = 𝜕3𝜖

𝜕𝑦2
1𝜕𝑦3

= − 1
𝑏5

ï
𝑏112 + 1

𝑓
(𝑏14𝑐11 + 𝑏24𝑐12) − 𝑏22

𝑏5

Å
𝑏15 + 𝑏14

𝑓

ã
− 𝑏12

𝑏5

Å
𝑏25 + 𝑐5

𝑏24

𝑓

ãò
,

𝑑6 = 𝜕3𝜖

𝜕𝑦2
3𝜕𝑦1

= − 1
𝑏5

ï
𝑏112 + 1

𝑓
(𝑏14𝑐12 + 𝑏24𝑐11) − 𝑏12

𝑏5

Å
𝑏15 + 𝑐5

𝑏14

𝑓

ãò
.

Remark 4.8. To express the Taylor series for 𝜖 up to order-three, it was necessary to calculate

the order three terms of the Taylor series of 𝐺3. However, these terms are omitted because

their expressions were too long.

Finally, we define

𝐻𝑖(𝑦1, 𝑦2, 𝑦3) = 𝐺̃𝑖(𝑦1, 𝑦2, 𝑦3, 𝜖(𝑦1, 𝑦2, 𝑦3)),
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by replacing the series of 𝜖 into series of the 𝐺̃𝑖, 𝑖 = 1, 2. Hence,

𝐻1(𝑦1, 𝑦2, 𝑦3) = −𝑏22(𝑦3 + 𝑦1)(𝑦1 − 𝑦3) +𝑂(3), (4.15)

𝐻2(𝑦1, 𝑦2, 𝑦3) = −𝑏22(𝑦3 + 𝑦2)(𝑦2 − 𝑦3) +𝑂(3), (4.16)

Recall that 𝑏22 = −6
𝑎
𝑘𝜈1−𝑎 + 64𝑘3

𝑎2𝑚*2 (1 − 𝑎).

Since the Taylor series of a function is unique, we compare (4.13) with (4.15), and (4.14)

with (4.16). We conclude that the analytic functions ℎ𝑖 are given by

ℎ1(𝑦1, 𝑦2, 𝑦3) = −𝑏22(𝑦1 + 𝑦3) +𝑂(2), (4.17)

ℎ2(𝑦1, 𝑦2, 𝑦3) = −𝑏22(𝑦2 + 𝑦3) +𝑂(2). (4.18)

The factorization guaranteed by theorem 4.7 allows us to look for solutions of the system of

equations (4.13) and (4.14) using the zeros of the functions ℎ𝑖, 𝑖 = 1, 2. As a matter of fact,

firstly we observe that
𝜕ℎ1

𝜕𝑦1
= −𝑏22 ̸= 0 and ℎ1(0, 0, 0) = 0.

By the implicit function theorem, there is an analytic function 𝜏1 : ‹𝑉1(0) ⊆ R2 −→ ‹𝑉2(0) ⊆ R

such that

ℎ1(𝜏1(𝑦2, 𝑦3), 𝑦2, 𝑦3) = 0 and 𝜏1(0, 0) = 0.

More precisely, we solve ℎ1 = 0 for the variable 𝑦1 = 𝜏1(𝑦2, 𝑦3). Due to the expansion of ℎ1,

we conclude that

𝜏1(𝑦2, 𝑦3) = −𝑦3 +𝑂(2).

Similarly, there exists a analytic function 𝜏2 : 𝑈1(0) ⊆ R2 −→ 𝑈2(0) ⊆ R such that

ℎ2(𝑦1, 𝜏2(𝑦1, 𝑦3), 𝑦3) = 0, 𝜏2(0, 0) = 0.

Due to the expansion of ℎ2, we conclude that

𝜏2(𝑦1, 𝑦3) = −𝑦3 +𝑂(2).

Therefore, we implicitly obtain all possible solutions for the system of equations (4.13) and

(4.14), i.e., by combining the solutions of (4.13) with the solutions of (4.14), we determine

four bifurcation branches which form the solution set of the bifurcation problem (4.5), namely

(I) 𝑦1 = 𝑦3 and 𝑦2 = 𝑦3,

(II) 𝑦1 = −𝑦3 +𝑂(2) and 𝑦2 = −𝑦3 +𝑂(2),

(III) 𝑦2 = 𝑦3 and 𝑦1 = −𝑦3 +𝑂(2),

(IV) 𝑦1 = 𝑦3 and 𝑦2 = −𝑦3 +𝑂(2).
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In order, to obtain family (IV), we substitute the solution 𝑦1 = 𝑦3 of (4.13) into equation (4.14),

which produces 𝐻2(𝑦3, 𝑦2, 𝑦3) = (𝑦2 − 𝑦3)ℎ2(𝑦3, 𝑦2, 𝑦3). Assuming that 𝑦2 ̸= 𝑦3, 𝐻2 = 0 if

𝑦2 = 𝜏2(𝑦3) = −𝑦3 + 𝑂(2). Family (III) was obtained by substituting the solution 𝑦2 = 𝑦3 of

(4.14) into equation (4.13). So, we have 𝐻1(𝑦1, 𝑦3, 𝑦3) = (𝑦1 −𝑦3)ℎ1(𝑦1, 𝑦3, 𝑦3) and assuming

that 𝑦1 ̸= 𝑦3, 𝐻1 = 0 if 𝑦2 = 𝜏1(𝑦3) = −𝑦3 + 𝑂(2). Finally, family (II) is the combination of

the zeros of the functions ℎ𝑖.

Our approach coincides with the one in (SANTOS et al., 2017). Although the problems are

similar, mainly because the symmetry in both problems is the same, in each case one can see

subtle changes in the solutions found. Since the problems have the same symmetry, we could

expect that the solutions found behave similarly.

In the next section we will analyze in more detail two of the four families of solutions found

above and we will compare them with the solutions found in (SANTOS et al., 2017).

4.2.2 The Behavior of Bifurcation Branches

In the last section, the variables and the bifurcation parameter were determined in terms

of the variable 𝑦3 (using the functions 𝜏1 and 𝜏2). In order to describe the families of central

configurations corresponding to the solutions of equation (4.5), let us set 𝑦3 = 𝛿 as the

bifurcation parameter of the problem and study the behavior of solutions when we approach

the degenerate configuration (by letting 𝛿 → 0). We should keep in mind that it is necessary to

undo the translation of variables made to study the Taylor series expansions. We will analyze

the four central configurations obtained from the system of equations (4.5) starting with family

(I):

Family (I):



𝑦1(𝛿) = 𝑘 + 𝛿,

𝑦2(𝛿) = 𝑘 + 𝛿,

𝑦3(𝛿) = 𝑘 + 𝛿,

𝑦4(𝛿) = −4𝑘 +
ï3𝑏5(𝑐11 + 𝑐12) − 8𝑏22𝑐5

𝑓𝑏5

ò
𝛿2 +𝑂(3),

𝜖(𝛿) = −
Å8𝑏22

𝑏5

ã
𝛿2 +𝑂(3).

Since 𝑏22 > 0 and 𝑏5 < 0 for 𝑎 ∈ (−∞,−1), the derivative 𝑑2

𝑑𝛿2 (𝜖(0)) is positive, which

indicates that 𝜖(𝛿) has a minimum at 𝛿 = 0. Furthermore, we consider 𝛿 near the origin, so

the quadratic term controls the behavior of the function. For this reason, we can state that
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𝜖(𝛿) > 0 and for each value of 𝜖, we have two values for 𝛿, 𝛿1 = 𝛿 and 𝛿2 = −𝛿, such that

𝜖(𝛿1) = 𝜖(𝛿2) and 𝑌1(𝛿1) ̸= 𝑌2(𝛿2). Thus, for the masses 𝑚4 = 𝑚* and𝑚5 = 1 fixed and

𝑚𝑖 ∈ (1, 1 + 𝜖(𝛿)), 𝑖 = 1, 2, 3, we have two branches of solution arising from the centered

tetrahedron. Moreover, these branches only exist for positive values of the parameter 𝜖.

Remark 4.9. When the bifurcation parameter is the mass of one of the vertices of the

tetrahedron (SANTOS et al., 2017), the branches of bifurcations with this same symmetry exist

for negative values of the parameter 𝜖.

Returning to the variables 𝑥𝑖, we find that

𝑥1(𝛿) = 𝑥2(𝛿) = 𝑥3(𝛿) = 𝑘 + 𝛿,

𝑥4(𝛿) = −4𝑘 +
ï3𝑏5(𝑐11 + 𝑐12) − 8𝑏22𝑐5

𝑓𝑏5

ò
𝛿2 +𝑂(3),

𝑥5(𝛿) = 𝑘 − 3𝛿 −
ï3𝑏5(𝑐11 + 𝑐12) − 8𝑏22𝑐5

𝑓𝑏5

ò
𝛿2 +𝑂(3).

Finally, to establish the behavior of the solutions, we use the expressions for the squares of the

distances

𝑠𝑖𝑗(𝛿) =
ï

𝜆

4 +𝑚* + 3𝜖(𝛿) − 𝑥𝑖(𝛿)𝑥𝑗(𝛿)
𝑚𝑖𝑚𝑗

ò1/𝑎

, 1 ≤ 𝑖 < 𝑗 < 5. (4.19)

These expressions give information about the growth of the distances between the bodies when

we change the parameter.

We write the Taylor series of 𝑠𝑖𝑗 around 𝛿 = 0 as follows

𝑠𝑖𝑗(𝛿) = 𝑠0
𝑖𝑗 + 𝑣𝑖𝑗𝛿 + 𝛼𝑖𝑗𝛿

2 +𝑂(𝛿3), (4.20)

where 𝑣𝑖𝑗 = 𝑑𝑠𝑖𝑗

𝑑𝛿

∣∣∣
𝛿=0

and 𝛼𝑖𝑗 = 1
2
𝑑2𝑠𝑖𝑗

𝑑𝛿2

∣∣∣
𝛿=0

. The linear terms are

𝑣12 = 𝑣13 = 𝑣23 = −2𝜈1−𝑎

𝑎
𝑘 > 0,

𝑣15 = 𝑣25 = 𝑣35 = 2𝜈1−𝑎

𝑎
𝑘 < 0,

𝑣14 = 𝑣24 = 𝑣34 = 4𝑘
𝑎𝑚* < 0,

𝑣45 = − 12
𝑎𝑚*𝑘 > 0, for 𝑎 ∈ (−∞,−1),

and, the quadratic terms are

𝛼12 =
Å4𝑘2

𝑎2 𝜈
1−2𝑎

ã
(1 − 𝑎) + 𝜈1−𝑎

𝑎

ß
−2 + 48

ï
𝑏22

𝑏5

(𝑚* + 4𝜈𝑎)
(4 +𝑚*)2

ò
− 32𝑘2 𝑏22

𝑏5

™
,

𝛼15 =
Å4𝑘2

𝑎2 𝜈
1−2𝑎

ã
(1 − 𝑎)

+ 2𝜈1−𝑎

𝑎

ß
3 + 24

ï
𝑏22

𝑏5

(𝑚* + 4𝜌𝑎

(4 +𝑚*)2

ò
+ 𝑘

ï3𝑏5(𝑐11 + 𝑐12) − 8𝑏22𝑐5

𝑓𝑏5

ò
− 8𝑘2 𝑏22

𝑏5

™
,
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𝛼14 = 16
𝑎2(𝑚*)2𝑘

2(1 − 𝑎)

+ 1
𝑎

ß
48
ï
𝑏22(𝑚* + 4𝜈𝑎)
𝑏5(4 +𝑚*)2

ò
− 2𝑘

ï3𝑏5(𝑐11 + 𝑐12) − 8𝑏22𝑐5

𝑓𝑏5𝑚*

ò
+
Å64𝑘2

𝑚*

ã
𝑏22

𝑏5

™
,

𝛼45 =
Å 144𝑘2

𝑎2(𝑚*)2

ã
(1 − 𝑎) + 1

𝑎

ß
48
ï
𝑏22(𝑚* + 4𝜈𝑎)
𝑏5(4 +𝑚*)2

ò
− 10𝑘

ï8𝑏22𝑐5 + 3𝑏5(𝑐11 + 𝑐12)
𝑓𝑏5𝑚*

ò™
.

Calculating the terms of the 𝑠𝑖𝑗 expansion found in (SANTOS et al., 2017) and comparing them

with ours, we see that the linear terms agree, but the quadratic terms do not ( the terms

of the 𝑠𝑖𝑗 of (SANTOS et al., 2017) are displayed in Appendix A). Therefore, in the linear

approximation, the solutions have the same behavior, but they must diverge for higher order

terms.

A natural question is whether it is possible to obtain a reparametrization of one of the

solutions capable of obtaining a solution of the other problem, i.e., for different values of the

mass vector, is it possible to obtain the same solution curve? This is an unlikely fact and would

imply the existence of a configuration of the type called perverse in (CHENCINER, 2003).

In order to answer this question we assume that such an analytic reparametrization exists

and let

𝛿(𝑡) = 𝜁 + 𝛽𝑡+ 𝛾𝑡2 +𝑂(𝑡3), 𝜁, 𝛽, 𝛾 ∈ R,

where 𝑡 is the parameter used in (SANTOS et al., 2017). Substituting in (4.20) it is possible to

determine the expressions for possible coefficients. In fact,

𝑠12(𝛿(𝑡)) =
Å8

3 + 𝑣12𝜁 + 𝛼12𝜁
2
ã

+ 𝛽 (𝑣12 + 2𝜁𝛼12) 𝑡+
(
𝑣12𝛾 + 𝛼12(𝛽2 + 2𝜁𝛾)

)
𝑡2 +𝑂(3)

and comparing each term with the terms in the expression 𝑠12 in (SANTOS et al., 2017), we

have
𝜁 = 0 or 𝜁 = − 𝑣12

𝛼12
,

𝛽 = 1 or 𝛽 = −1,

𝛾 = ±1
𝑘

ï
16𝑘2 − 32(𝑚* + 4𝜈𝑎)

(4 +𝑚*)2

ò
𝑏22

𝑏5
.

In the same way for

𝑠15(𝛿(𝑡)) =
(
1 + 𝑣15𝜁 + 𝛼15𝜁

2) + 𝛽 (𝑣15 + 2𝜁𝛼15) 𝑡+
(
𝑣15𝛾 + 𝛼15(𝛽2 + 2𝜁𝛾)

)
𝑡2 +𝑂(3).

To agree with the coefficients found for 𝑠12, we get that 𝜁 = 0 and consequently 𝛽 = 1.

However, in this case we obtain

𝛾 =
ß

16𝑘2 + 8𝑘
𝑓

ïÅ12𝑘𝜈1−𝑎

𝑎
− 32
ãÅ

𝑚* + 4𝜈𝑎

(4 +𝑚*)2

ã
− 32𝑘3

𝑎𝑚*

ò
− 32(𝑚* + 4𝜈𝑎)

(4 +𝑚*)2

™
𝑏22

𝑏5
.



58

Unfortunately, it is not possible yet to give a complete analysis when 𝑎 < −1. For the particular

case when 𝑎 = −3/2, we can see that we would need different coefficients for 𝛿(𝑡). This leads

us to conclude that, for 𝑎 = −3/2, there is no class 𝐶2 reparametrization and, from this

analysis, the solutions seem to behave differently for orders higher than two.

𝑚1
𝑚2

𝑚3

𝑚1
𝑚2

𝑚5

𝑚1
𝑚2

𝑚5

𝑚3 𝑚3

𝑚*

𝑚*

𝑚5

𝑚3

𝛿 = 0 𝛿 > 0𝛿 < 0

𝑚*

Figure 6 : Bifurcations of the centered regular tetrahedron when 𝜖 > 0 (corresponding to family (I)). The
axis of symmetry passes through the barycenter of the tetrahedron and 𝑚* moves along this axis as 𝜖 varies.
Notice that the base of the tetrahedron remains an equilateral triangle.

Now, we analyze the second family of central configurations obtained from the system of

the equations (4.5),

Family (II):



𝑦1(𝛿) = 𝑘 − 𝛿 +𝑂(2),

𝑦2(𝛿) = 𝑘 − 𝛿 +𝑂(2),

𝑦3(𝛿) = 𝑘 + 𝛿,

𝑦4(𝛿) = −4𝑘 +
Å3𝑐11 + 𝑐12

𝑓

ã
𝛿2 +𝑂(3),

𝜖(𝛿) = 𝑑𝛿3 +𝑂(4),

where 𝑑 = −2𝑑1+𝑑2+𝑑3−2𝑑4+2𝑑5−2𝑑6. In this case, the value of 𝜖 is uniquely determined by

the value of 𝛿, and we have a single branch of solutions shooting off the centered tetrahedron.

Returning to the variables 𝑥𝑖, we get

𝑥1(𝛿) = 𝑥2(𝛿) = 𝑘 − 𝛿 +𝑂(2),

𝑥3(𝛿) = 𝑘 + 𝛿,

𝑥4(𝛿) = −4𝑘 +
Å3𝑐11 + 𝑐12

𝑓

ã
𝛿2 +𝑂(3),

𝑥5(𝛿) = 𝑘 + 𝛿 −
Å3𝑐11 + 𝑐12

𝑓

ã
𝛿2 +𝑂(3).

Finally, we write the Taylor series of 𝑠𝑖𝑗 around 𝛿 = 0 up to third order as

𝑠𝑖𝑗(𝛿) = 𝑠0
𝑖𝑗 + 𝑣𝑖𝑗𝛿 + 𝛼𝑖𝑗𝛿

2 + 𝑤𝑖𝑗𝛿
3 +𝑂(𝛿4),
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where 𝑣𝑖𝑗 = 𝑑𝑠𝑖𝑗

𝑑𝛿

∣∣∣
𝛿=0

, 𝛼𝑖𝑗 = 1
2
𝑑2𝑠𝑖𝑗

𝑑𝛿2

∣∣∣
𝛿=0

and 𝑤𝑖𝑗 = 1
3!
𝑑3𝑠𝑖𝑗

𝑑𝛿3

∣∣∣
𝛿=0

. The linear terms are

𝑣12 = 2𝜈1−𝑎

𝑎
𝑘 < 0,

𝑣13 = 𝑣23 = 𝑣15 = 𝑣25 = 0,

𝑣14 = 𝑣24 = − 4𝑘
𝑎𝑚* > 0,

𝑣34 = 𝑣45 = 4𝑘
𝑎𝑚* < 0,

𝑣35 = −2
𝑎
𝜈1−𝑎𝑘 > 0, ∀ 𝑎 < −1.

The quadratic terms are

𝛼12 =
Å2𝜈1−𝑎

𝑎2

ã [
2𝑘2(1 − 𝑎) − 𝑎

]
,

𝛼13 = 𝛼23 = 2
𝑎
𝜈1−𝑎,

𝛼15 = 𝛼25 =
Å2𝜈1−𝑎

𝑎

ãï
1 + 𝑘(3𝑐11 − 𝑐12)

𝑓

ò
,

𝛼14 = 𝛼24 = 𝛼34 =
Å 2𝑘
𝑎2𝑚*2𝑓

ã
[8𝑘𝑓(1 − 𝑎) − (3𝑐11 − 𝑐12)𝑎𝑚*] ,

𝛼45 =
Å 2
𝑎2𝑚*2𝑓

ã
[8𝑓(1 − 𝑎) − 5(3𝑐11 − 𝑐12)𝑎𝑚*] .

Finally,

𝑤12 =
Å8𝑘3𝜈1−3𝑎

𝑎3

ã (
1 − 3𝑎+ 2𝑎2) +

Å12𝑘𝜈1−2𝑎

𝑎2

ã
(1 − 𝑎)

−
Å6𝜈1−𝑎

𝑎

ãï3(𝑚* + 4𝜈𝑎)
(4 +𝑚*)2 − 2𝑘2

ò
𝑑,

𝑤13 =𝑤23 = −6
Å
𝜈1−𝑎

𝑎

ãÅ3(𝑚* + 4𝜈𝑎)
(4 +𝑚*)2 − 2𝑘2

ã
𝑑,

𝑤15 =𝑤25 = −6
Å
𝜈1−𝑎

𝑎

ãßï3(𝑚* + 4𝜈𝑎)
(4 +𝑚*)2 − 𝑘2

ò
𝑑+ (3𝑐11 − 𝑐12)

𝑓

™
,

𝑤14 =𝑤24 = −
Å 64𝑘3

𝑎3𝑚*3

ã
(1 − 3𝑎+ 2𝑎2) +

Å 24𝑘2

𝑎2𝑚*2𝑓

ã
(3𝑐11 − 𝑐12)(1 − 𝑎)

− 6
𝑎

ßï3(𝑚* + 4𝜈𝑎)
(4 +𝑚*)2 + 4𝑘2

𝑚*

ò
𝑑− 3𝑐11 − 𝑐12

𝑓𝑚*

™
,

𝑤34 = −
Å 64𝑘3

𝑎3(𝑚*)3

ã
(1 − 3𝑎+ 2𝑎2) −

Å 24𝑘2

𝑎2(𝑚*)2𝑓

ã
(3𝑐11 − 𝑐12)(1 − 𝑎)

− 6
𝑎

ßï3(𝑚* + 4𝜈𝑎)
(4 +𝑚*)2 + 4𝑘2

𝑚*

ò
𝑑+ 3𝑐11 − 𝑐12

𝑓𝑚*

™
,

𝑤45 =
Å 64𝑘3

𝑎3𝑚*3

ã
(1 − 3𝑎+ 2𝑎2) −

Å 120𝑘2

𝑎2𝑚*2𝑓

ã
(3𝑐11 − 𝑐12)(1 − 𝑎)

− 6
𝑎

ßï
3(𝑚* + 4𝜈𝑎)

(4 +𝑚*)2

ò
𝑑+ 3𝑐11 − 𝑐12

𝑓𝑚*

™
,
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𝑤35 =
Å8𝑘3𝜈1−3𝑎

𝑎3

ã
(−1 + 3𝑎− 2𝑎2) −

Å12𝑘𝜈1−2𝑎

𝑎2

ãï
𝑘(3𝑐11 − 𝑐12)

𝑓
− 1
ò

(1 − 𝑎)

−
Å6𝜈1−𝑎

𝑎

ãßï3(𝑚* + 4𝜈𝑎)
(4 +𝑚*)2 − 𝑘2

ò
𝑑−
Å3𝑐11 − 𝑐12

𝑓

ã™
.

Again comparing the solution above with the solution found in (SANTOS et al., 2017), we

notice that they coincide up to terms of quadratic order and diverge for higher order terms.

The analysis for families (III) and (IV) follows the same path as family (II), noting that

these solutions are basically solution (II) with the rearrangements of the mass indices.

𝑚1
𝑚2

𝑚3

𝑚5

𝑚1
𝑚2

𝑚5

𝑚1
𝑚2

𝑚5

𝑚3𝑚3

𝑚*

𝑚*

𝑚*

𝛿 < 0 𝛿 = 0 𝛿 > 0
Figure 7: Bifurcation of the centered tetrahedron when 𝜖 > 0 or 𝜖 < 0 (corresponding to family (II)). The
mass 𝑚* moves along a plane passing through the segment 𝑞3𝑞5. When 𝛿 > 0, 𝑚* is closer to the segment
𝑞3𝑞5, and when 𝛿 < 0, 𝑚* is closer to the segment 𝑞1𝑞2.

To summarise the results obtained in this chapter, we state the following theorem.

Theorem 4.10. Let 𝑞(1, 1, 1,𝑚, 1) be a central configuration of five bodies in the space

forming a centered regular tetrahedron. Denote by 𝑚* > 0 the value of the central mass,

which depends on the exponent 𝑎 < −1, such that the configuration is degenerate. For each

𝜖 > 0, if exactly three of the four vertices of the tetrahedron have equal masses in the interval

(1, 1 + 𝜖), then there are two families of central configurations with axis-type symmetry that

bifurcate from the degenerate configuration 𝑞(1, 1, 1,𝑚*, 1). Furthermore, three additional

families of central configurations with plane-type symmetry bifurcate from the degenerate

solution if the same three of the four vertices of the tetrahedron have equal masses in the

interval (1 − 𝜖, 1 + 𝜖). In all cases, there are no symmetrical central configurations bifurcating

from 𝑞(1, 1, 1,𝑚*, 1).
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4.3 BIFURCATION PROBLEM WITH TWO EQUALLY VARYING MASSES

Next we are interested in studying the bifurcation problem for the centered tetrahedron

with two vertex masses as bifurcation parameters. More precisely, we keep the masses 𝑚5 =

𝑚3 = 1 and 𝑚4 = 𝑚* fixed and we approach the remaining two unit masses in the same way,

𝑚1 = 𝑚2 = 1 + 𝜖. If we substitute these values in (4.1) and consider 𝑥4 = −
(∑︀3

𝑖=1 𝑥𝑖 + 𝑥5
)
,

we get a system of four equations defined by 𝑡𝑖 − 𝑡4 = 0, four variables 𝑋 = (𝑥1, 𝑥2, 𝑥3, 𝑥5)

and the bifurcation parameter 𝜖. The pair (𝑋, 𝜖) = (𝑋0, 0) = (𝑘, 𝑘, 𝑘, 𝑘, 0) is the degenerate

configuration.

Define Φ = (Φ1,Φ2,Φ3,Φ5) : R4 × R −→ R4 by

Φ1(𝑋, 𝜖) =
5∑︁

𝑖 ̸=1
𝑖 ̸=4

𝑥𝑖

ï
𝜆

𝑀
− 𝑥1𝑥𝑖

(1 + 𝜖)𝑚𝑖

ò1/𝑎

−
Ç

3∑︁
𝑖=1

𝑥𝑖 + 𝑥5

åï
𝜆

𝑀
+ 𝑥1(

∑︀3
𝑖=1 𝑥𝑖 + 𝑥5)

(1 + 𝜖)𝑚*

ò1/𝑎

− 𝑡4,

Φ2(𝑋, 𝜖) =
5∑︁

𝑖 ̸=2
𝑖 ̸=4

𝑥𝑖

ï
𝜆

𝑀
− 𝑥2𝑥𝑖

(1 + 𝜖)𝑚𝑖

ò1/𝑎

−
Ç

3∑︁
𝑖=1

𝑥𝑖 + 𝑥5

åï
𝜆

𝑀
+ 𝑥2(

∑︀3
𝑖=1 𝑥𝑖 + 𝑥5)

(1 + 𝜖)𝑚*

ò1/𝑎

− 𝑡4,

Φ3(𝑋, 𝜖) =
5∑︁

𝑖 ̸=3
𝑖 ̸=4

𝑥𝑖

Å
𝜆

𝑀
− 𝑥3𝑥𝑖

𝑚𝑖

ã1/𝑎

−
Ç

3∑︁
𝑖=1

𝑥𝑖 + 𝑥5

åï
𝜆

𝑀
+ 𝑥3(

∑︀3
𝑖=1 𝑥𝑖 + 𝑥5)
𝑚*

ò1/𝑎

− 𝑡4,

Φ5(𝑋, 𝜖) =
3∑︁

𝑖=1
𝑥𝑖

Å
𝜆

𝑀
− 𝑥𝑖𝑥5

𝑚𝑖

ã1/𝑎

−
Ç

3∑︁
𝑖=1

𝑥𝑖 + 𝑥5

åï
𝜆

𝑀
+ 𝑥5(

∑︀3
𝑖=1 𝑥𝑖 + 𝑥5)
𝑚*

ò1/𝑎

− 𝑡4,

and

𝑡4 =
5∑︁

𝑖=1
𝑖 ̸=4

𝑥𝑖

ñ
𝜆

𝑀
−
𝑥𝑖

(∑︀3
𝑗=1 𝑥𝑗 + 𝑥5

)
𝑚𝑖𝑚*

ô1/𝑎

,

where 𝑀 = 4 +𝑚* + 2𝜖, 𝜆 = 𝑚* + 4𝜈𝑎, 𝑘 =
…

𝑚*

4 +𝑚* (1 − 𝜈𝑎) and 𝑎 < −1.

The problem is described by equation

Φ(𝑋, 𝜖) = 0, (4.21)

with symmetry group Γ = {id, (12), (35), (12)(35)} ∼= Z2 ×Z2. The action of the group Γ on

R4, similarly to the previous problem, is defined by the representation given by 𝜌𝛾(𝑥1, 𝑥2, 𝑥3, 𝑥5) =

(𝑥𝛾(1), 𝑥𝛾(2), 𝑥𝛾(3), 𝑥𝛾(5)), ∀ 𝛾 ∈ Γ, such that,

Φ(𝜌𝛾 ·𝑋, 𝜖) = 𝜌𝛾 · Φ(𝑋, 𝜖), ∀ 𝛾 ∈ Γ. (4.22)
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Remark 4.11. The matrices of the representation 𝜌 with respect to the canonical basis are

𝜌(𝑖𝑑) :



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


, 𝜌(12) :



0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1


, 𝜌(35) :



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


, 𝜌(12)(35) :



0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0


.

Therefore, the derivative of Φ at 𝑋0, 𝜖 is a matrix of the form

𝐷𝑋Φ(𝑋0, 𝜖) =



𝑏 𝑐 𝑑 𝑑

𝑐 𝑏 𝑑 𝑑

𝑒 𝑒 𝑓 𝑔

𝑒 𝑒 𝑔 𝑓


.

Calculating the derivatives we get

𝑏 = 𝑓 = − 2 − 𝑘2

𝑎

Å
3𝜈1−𝑎 + 28

𝑚*

ã
,

𝑐 = 𝑑 = 𝑔 = (𝜌− 2) − 𝑘2

𝑎

Å
𝜈1−𝑎 + 12

𝑚*

ã
.

When 𝑚1 = 𝑚2 = 𝑚3 = 𝑚5 = 1 and 𝑚4 = 𝑚*, i.e., 𝜖 = 0, the derivative of Φ coincides with

(4.3). So, at (𝑋0, 0) we have

𝐷𝑋Φ(𝑋0, 0) =



𝑏 𝑏 𝑏 𝑏

𝑏 𝑏 𝑏 𝑏

𝑏 𝑏 𝑏 𝑏

𝑏 𝑏 𝑏 𝑏


.

Let us consider 𝐿̃ = 𝐷𝑋Φ(𝑋0, 0) and from its structure, it is immediate to obtain its kernel

and image

ker(𝐿̃) =
®

(𝑣1, 𝑣2, 𝑣3, 𝑣4) ∈ R4
∣∣∣ 4∑︁

𝑖=1
𝑣𝑖 = 0

´
and Im(𝐿̃) = {(𝜇, 𝜇, 𝜇, 𝜇) | 𝜇 ∈ R},

and to check that both are 𝜌-invariant subspaces. Applying the Liapunov-Schmidt reduction

process, we make the decomposition R4 = ker(𝐿̃) ⊕ Im(𝐿̃) and choose convenient bases for

the kernel and the image, respectively

𝛽1 = {𝑢1 = (−1, 1,−1, 1), 𝑢2 = (−1,−1, 1, 1), 𝑢3 = (1,−1,−1, 1)},

𝛽2 = {𝑢4 = (1, 1, 1, 1)}.
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Because of the splitting of R4, we make the change of variables

(𝑥1, 𝑥2, 𝑥3, 𝑥5) =
4∑︁

𝑖=1
𝑦𝑖𝑢𝑖.

Explicitly,
𝑥1 = −𝑦1 − 𝑦2 + 𝑦3 + 𝑦4,

𝑥2 = 𝑦1 − 𝑦2 − 𝑦3 + 𝑦4, (4.23)

𝑥3 = −𝑦1 + 𝑦2 − 𝑦3 + 𝑦4,

𝑥5 = 𝑦1 + 𝑦2 + 𝑦3 + 𝑦4.

Substituting (4.23) in (4.21) we have a new equation

𝐺(𝑌, 𝜖) = 0. (4.24)

We know that 𝐺(𝑌 0, 0) = 0, where the point 𝑌 0 = (0, 0, 0, 𝑘(𝑚*)) represents the degenerate

configuration and was obtained by multiplying the inverse of the change of basis matrix by

𝑋0. The functions 𝐺𝑖 are

𝐺1(𝑌, 𝜖) = (𝑦1 − 𝑦2 − 𝑦3 + 𝑦4)
ï
𝜆

𝑀
− (−𝑦1 − 𝑦2 + 𝑦3 + 𝑦4)(𝑦1 − 𝑦2 − 𝑦3 + 𝑦4)

(1 + 𝜖)2

ò1/𝑎

− (𝑦1 − 𝑦2 + 𝑦3 − 𝑦4)
ï
𝜆

𝑀
− (−𝑦1 − 𝑦2 + 𝑦3 + 𝑦4)(−𝑦1 + 𝑦2 − 𝑦3 + 𝑦4)

(1 + 𝜖)

ò1/𝑎

+ (𝑦1 + 𝑦2 + 𝑦3 + 𝑦4)
ï
𝜆

𝑀
− (−𝑦1 − 𝑦2 + 𝑦3 + 𝑦4)(𝑦1 + 𝑦2 + 𝑦3 + 𝑦4)

(1 + 𝜖)

ò1/𝑎

− (4𝑦4)
ï
𝜆

𝑀
+ (4𝑦4)(−𝑦1 − 𝑦2 + 𝑦3 + 𝑦4)

(1 + 𝜖)𝑚*

ò1/𝑎

− 𝑡4,

𝐺2(𝑌, 𝜖) = − (𝑦1 + 𝑦2 − 𝑦3 − 𝑦4)
ï
𝜆

𝑀
− (−𝑦1 − 𝑦2 + 𝑦3 + 𝑦4)(𝑦1 − 𝑦2 − 𝑦3 + 𝑦4)

(1 + 𝜖)2

ò1/𝑎

− (𝑦1 − 𝑦2 + 𝑦3 − 𝑦4)
ï
𝜆

𝑀
− (𝑦1 − 𝑦2 − 𝑦3 + 𝑦4)(−𝑦1 + 𝑦2 − 𝑦3 + 𝑦4)

(1 + 𝜖)

ò1/𝑎

+ (𝑦1 + 𝑦2 + 𝑦3 + 𝑦4)
ï
𝜆

𝑀
− (𝑦1 − 𝑦2 − 𝑦3 + 𝑦4)(𝑦1 + 𝑦2 + 𝑦3 + 𝑦4)

(1 + 𝜖)

ò1/𝑎

− (4𝑦4)
ï
𝜆

𝑀
+ (4𝑦4)(𝑦1 − 𝑦2 − 𝑦3 + 𝑦4)

(1 + 𝜖)𝑚*

ò1/𝑎

− 𝑡4,

𝐺3(𝑌, 𝜖) = − (𝑦1 + 𝑦2 − 𝑦3 − 𝑦4)
ï
𝜆

𝑀
− (−𝑦1 − 𝑦2 + 𝑦3 + 𝑦4)(−𝑦1 + 𝑦2 − 𝑦3 + 𝑦4)

(1 + 𝜖)

ò1/𝑎

+ (𝑦1 − 𝑦2 − 𝑦3 + 𝑦4)
ï
𝜆

𝑀
− (𝑦1 − 𝑦2 − 𝑦3 + 𝑦4)(−𝑦1 + 𝑦2 − 𝑦3 + 𝑦4)

(1 + 𝜖)

ò1/𝑎

+ (𝑦1 + 𝑦2 + 𝑦3 + 𝑦4)
ï
𝜆

𝑀
− (−𝑦1 + 𝑦2 − 𝑦3 + 𝑦4)(𝑦1 + 𝑦2 + 𝑦3 + 𝑦4)

ò1/𝑎

− (4𝑦4)
ï
𝜆

𝑀
+ (4𝑦4)(−𝑦1 + 𝑦2 − 𝑦3 + 𝑦4)

𝑚*

ò1/𝑎

− 𝑡4,
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𝐺4(𝑌, 𝜖) = − (𝑦1 + 𝑦2 − 𝑦3 − 𝑦4)
ï
𝜆

𝑀
− (−𝑦1 − 𝑦2 + 𝑦3 + 𝑦4)(𝑦1 + 𝑦2 + 𝑦3 + 𝑦4)

(1 + 𝜖)

ò1/𝑎

+ (𝑦1 − 𝑦2 − 𝑦3 + 𝑦4)
ï
𝜆

𝑀
− (𝑦1 − 𝑦2 − 𝑦3 + 𝑦4)(𝑦1 + 𝑦2 + 𝑦3 + 𝑦4)

(1 + 𝜖)

ò1/𝑎

− (𝑦1 − 𝑦2 + 𝑦3 − 𝑦4)
ï
𝜆

𝑀
− (−𝑦1 + 𝑦2 − 𝑦3 + 𝑦4)(𝑦1 + 𝑦2 + 𝑦3 + 𝑦4)

ò1/𝑎

− (4𝑦4)
ï
𝜆

𝑀
+ (4𝑦4)(𝑦1 + 𝑦2 + 𝑦3 + 𝑦4)

𝑚*

ò1/𝑎

− 𝑡4,

where

𝑡4 = − (𝑦1 + 𝑦2 − 𝑦3 − 𝑦4)
Å
𝜆

𝑀
+ (4𝑦4)(−𝑦1 − 𝑦2 + 𝑦3 + 𝑦4)

(1 + 𝜖)𝑚*

ã1/𝑎

+ (𝑦1 − 𝑦2 − 𝑦3 + 𝑦4)
Å
𝜆

𝑀
+ (4𝑦4)(𝑦1 − 𝑦2 − 𝑦3 + 𝑦4)

(1 + 𝜖)𝑚*

ã1/𝑎

− (𝑦1 − 𝑦2 + 𝑦3 − 𝑦4)
Å
𝜆

𝑀
+ (4𝑦4)(−𝑦1 + 𝑦2 − 𝑦3 + 𝑦4)

𝑚*

ã1/𝑎

+ (𝑦1 + 𝑦2 + 𝑦3 + 𝑦4)
Å
𝜆

𝑀
+ (4𝑦4)(𝑦1 + 𝑦2 + 𝑦3 + 𝑦4)

𝑚*

ã1/𝑎

,

𝑀 = 4 +𝑚* + 2𝜖, 𝜆 = 𝑚* + 4𝜈𝑎, 𝑘 =
…

𝑚*

4 +𝑚* (1 − 𝜈𝑎) and 𝑎 < −1.

Remark 4.12. The matrices of the representation of 𝜌 with respect to the basis 𝛽 = 𝛽1 ∪ 𝛽2

are

𝜌id :



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


, 𝜌(12) :



0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 1


, 𝜌(35) :



0 0 −1 0

0 1 0 0

−1 0 0 0

0 0 0 1


,

𝜌(12)(35) :



−1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 1


.
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The derivative of 𝐺(𝑌, 𝜖) at the point (𝑌 0, 0) is

𝐷𝑌𝐺(𝑌 0, 0) =



𝑏 𝑏 𝑏 𝑏

𝑏 𝑏 𝑏 𝑏

𝑏 𝑏 𝑏 𝑏

𝑏 𝑏 𝑏 𝑏





−1 −1 1 1

1 −1 −1 1

−1 1 −1 1

1 1 1 1





1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


=



0 0 0 4𝑏

0 0 0 4𝑏

0 0 0 4𝑏

0 0 0 4𝑏


,

where 𝑏 = −4(1 − 2𝑎)(1 − 𝜌𝑎)
𝑎(4 − 3𝜈𝑎) . Equation (4.24) is equivalent to the pair of equations

(𝑃 ∘𝐺)(𝑌, 𝜖) = ⟨𝑢4, 𝐺(𝑌, 𝜖)⟩𝑢4 = (0, 0, 0, 0), (4.25)

((𝐼 − 𝑃 ) ∘𝐺)(𝑌, 𝜖) =
3∑︁

𝑖=1
⟨𝑢𝑖, 𝐺(𝑌, 𝜖)⟩𝑢𝑖 = (0, 0, 0, 0), (4.26)

where 𝑃 : R4 −→ Im(𝐿̃) is the canonical projection on Im(𝐿̃) with ker(𝑃 ) = ker(𝐿̃) and 𝐼−𝑃

is the complementary projection. Following the reduction of Liapunov-Schmidt, we want to

show that the implicit function theorem is applicable to the function (𝑃 ∘𝐺)(𝑌, 𝜖) in order to

solve equation (4.25) for 𝑦4 in terms of (𝑦1, 𝑦2, 𝑦3, 𝜖). More precisely, we define the function

Ψ : R4 × R −→ R given by Ψ(𝑌, 𝜖) = ∑︀4
𝑖=1 𝐺𝑖(𝑌, 𝜖), and we verify that Ψ(𝑌 0, 0) = 0 and

𝜕Ψ
𝜕𝑦4

(𝑌 0, 0) = 16𝑏 < 0, for all 𝑎 < −1. Hence, by the implicit function theorem, there exists a

unique analytic function 𝑦4 = 𝑊 (𝑦1, 𝑦2, 𝑦3, 𝜖) such that Ψ(𝑦1, 𝑦2, 𝑦3,𝑊 (𝑦1, 𝑦2, 𝑦3, 𝜖), 𝜖) = 0,

for all (𝑦1, 𝑦2, 𝑦3, 𝜖) near of the origin. Since Ψ is 𝜌-invariant, that is

Ψ(𝜌𝛾(𝑌 ), 𝜖) =
4∑︁

𝑖=1
𝐺𝑖(𝜌𝛾(𝑌 ), 𝜖) =

4∑︁
𝑖=1

𝐺𝑖(𝑌, 𝜖) = Ψ(𝑌, 𝜖), ∀ 𝛾 ∈ Γ,

where the second equality follows from the equivariance of𝐺, we conclude that𝑊 is 𝜌-invariant

(See lemma 2.24 of chapter 2).

Substituting 𝑊 in (4.26), we define the equation

𝑔
Ä‹𝑌 , 𝜖ä = 0, (4.27)

where ‹𝑌 = (𝑦1, 𝑦2, 𝑦3) and 𝑔 : R3 × R −→ R3 is an analytic function such that 𝑔𝑖 =

⟨𝑢𝑖, 𝐺(‹𝑌 , 𝜖)⟩, for 𝑢𝑖 ∈ ker(𝐿̃), 𝑖 = 1, 2, 3.

Using an argument similar to the one used in lemma 4.6, we show that equation (4.27) does

not admit a differentiable solution of the form ‹𝑌 (𝜖). So, the parameter 𝜖 will be considered

again as an additional variable of the problem.
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Due to the symmetry of the reduced equation (4.27), one way to find solutions is to

restrict the function 𝑔 to the subspace of fixed points as discussed in chapter 2. As we saw,

this technique is interesting because it allows us to reduce the number of equations to be

solved to dim(Fix(Σ))-equations, where Σ is a subgroup of Γ. We will briefly study how to

apply this technique in our context, i.e., start by looking for solutions with symmetry. Consider

Σ1 = {id, (12)}, Σ2 = {id, (35)} and Σ3 = {id, (12)(35)}

subgroups of Γ. If there exists a solution ‹𝑌 of (4.27), for some small 𝜖, which has symmetry

Σ𝑖, then it must be in the Fix(Σ𝑖), 𝑖 = 1, 2, 3. Let us analyze each of the cases separately.

If ‹𝑌 is a solution with symmetry Σ3, such that dim(Fix(Σ3)) = 1, then

𝜌(12)(35)(‹𝑌 ) = ‹𝑌 ⇔ 𝑦1 = 𝑦3 = 0.

this solution should be of the form ‹𝑌 = (0, 𝑦2, 0). Hence, restricting the function 𝑔 to this

subspace, we have the equation

𝑔
∣∣∣
Fix(Σ3)×R

= 0.

More precisely, we define 𝑔2(𝑦2, 𝜖) = 𝑔2(0, 𝑦2, 0, 𝜖) and the only equation to be solved is

𝑔2(𝑦2, 𝜖) = 0. (4.28)

We can make use of the implicit function theorem in the function 𝑔2 to solve equation (4.28)

for 𝜖 = 𝜖(𝑦2). As a matter of fact, the function 𝑔2 is smooth, 𝑔2(0) = 0 and

𝜕𝑔2

𝜕𝜖
(0, 0) = −

ï4(1 − 𝜈𝑎)(𝑚*𝜈1−𝑎 + 8)
(4 +𝑚*)𝑎

ò…
𝑚*

4 +𝑚* (1 − 𝜈𝑎) > 0, (4.29)

for all 𝑎 < −1 (recall that 𝑚* > 0 and 𝜈 = 8
3). It is worth noting that we can verify directly

that 𝑔1(0, 𝑦2, 0, 𝜖) = 0 and 𝑔3(0, 𝑦2, 0, 𝜖) = 0.

For the solution ‹𝑌 whose symmetry is Σ1 we have 𝑦1 = 𝑦3. So, restricting the function 𝑔 to

Fix(Σ1) (whose dimension of Fix(Σ1) is equal to two) and setting 𝑔1(𝑦1, 𝜖) = 𝑔1(𝑦1, 𝑦2, 𝑦1, 𝜖)

and 𝑔2(𝑦1, 𝜖) = 𝑔2(𝑦1, 𝑦2, 𝑦1, 𝜖), it is sufficient to solve the system of equations

𝑔1(𝑦1, 𝑦2, 𝜖) = 0, (4.30)

𝑔2(𝑦1, 𝑦2, 𝜖) = 0. (4.31)

Again, using that the derivative of 𝑔2 with respect 𝜖 is different from zero, see (4.29), we

can solve (4.31) for 𝜖 = 𝜖(𝑦1, 𝑦2) for (𝑦1, 𝑦2) near of the origin (0, 0). Substituting 𝜖(𝑦1, 𝑦2) in
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(4.30) and noting that the solution found in (4.28) also admits symmetry of Σ1, it follows that

(0, 𝑦2, 𝜖(𝑦2)) is a solution to (4.30) for 𝑦2 near zero. Then, the function 𝑔1 can be factored

𝑔1(𝑦1, 𝑦2, 𝜖(𝑦1, 𝑦2)) = 𝑦1𝑓(𝑦1, 𝑦2),

by theorem 4.7, where 𝑓 is an analytical function. The idea for exploring more solutions to

equation (4.30) is by studying the zeros of the function 𝑓 .

Finally, the solution whose symmetry is Σ2 should be of the form ‹𝑌 = (𝑦1, 𝑦2,−𝑦1). This

case is similar to the previous one and follows the same analysis.

Our intention is not to study these particular cases. We will examine equation (4.27)

without imposing any restrictions, and these cases will appear naturally, due of the symmetry

of the equation.

The system of equations (4.27) is

𝑔1(𝑦1, 𝑦2, 𝑦3, 𝜖) = (𝐺2 −𝐺1 −𝐺3 +𝐺4)(𝑦1, 𝑦2, 𝑦3, 𝜖) = 0,

𝑔2(𝑦1, 𝑦2, 𝑦3, 𝜖) = (𝐺3 +𝐺4 −𝐺1 −𝐺2)(𝑦1, 𝑦2, 𝑦3, 𝜖) = 0,

𝑔3(𝑦1, 𝑦2, 𝑦3, 𝜖) = (𝐺1 −𝐺2 −𝐺3 +𝐺4)(𝑦1, 𝑦2, 𝑦3, 𝜖) = 0.

Since 𝜕𝑔2

𝜕𝜖
(0, 0) ̸= 0 by (4.29), we solve 𝑔2 = 0 for 𝜖 = 𝜖(𝑦1, 𝑦2, 𝑦3) using the implicit function

theorem. Substituting in the remaining equations, we have

𝑔1(𝑦1, 𝑦2, 𝑦3, 𝜖(𝑦1, 𝑦2, 𝑦3)) = 0,

𝑔3(𝑦1, 𝑦2, 𝑦3, 𝜖(𝑦1, 𝑦2, 𝑦3)) = 0,

which is equivalent to the system of equations

𝐻1(𝑦1, 𝑦2, 𝑦3) = (𝑔1 + 𝑔3)(𝑦1, 𝑦2, 𝑦3, 𝜖(𝑦1, 𝑦2, 𝑦3)) = 0, (4.32)

𝐻2(𝑦1, 𝑦2, 𝑦3) = (𝑔1 − 𝑔3)(𝑦1, 𝑦2, 𝑦3, 𝜖(𝑦1, 𝑦2, 𝑦3)) = 0. (4.33)

We check that if 𝑦1 = −𝑦3, then (−𝑦3, 𝑦2, 𝑦3) is a solution of (4.32). Moreover, if 𝑦1 = 𝑦3,

then (𝑦3, 𝑦2, 𝑦3) is a solution of (4.33). This follows directly from the equivariance of 𝑔, i.e.,

𝑔3(𝑦1, 𝑦2, 𝑦3) = 𝑔1(𝑦3, 𝑦2, 𝑦1), (by element (12) of group Γ),

𝑔3(𝑦1, 𝑦2, 𝑦3) = −𝑔1(−𝑦3, 𝑦2,−𝑦1), (by element (35) of group Γ).

Hence, we can write (4.32) and (4.33) in a factored form

𝐻1(𝑦1, 𝑦2, 𝑦3) = (𝑦1 + 𝑦3)ℎ1(𝑦1, 𝑦2, 𝑦3) = 0, (4.34)

𝐻2(𝑦1, 𝑦2, 𝑦3) = (𝑦1 − 𝑦3)ℎ2(𝑦1, 𝑦2, 𝑦3) = 0, (4.35)
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where ℎ1 and ℎ2 are the analytic functions provided by theorem 4.7. Next, we will determine

the analytical expressions of these functions ℎ𝑖 using the analyticity of the function 𝐺.

4.3.1 Analytic Expressions

In this section, we use the analyticity of function 𝐺 to obtain analytic expressions for

function 𝑔 and the solutions obtained implicitly, 𝑊 (𝑦1, 𝑦2, 𝑦3, 𝜖) and 𝜖(𝑦1, 𝑦2, 𝑦3).

Firstly, we make a translation 𝑦4 = 𝑦4 + 𝑘 in the expression of 𝐺𝑖, 𝑖 = 1, 2, 3, 4, and we

note that 𝐺1 is invariant by 𝜌(35). So, its analytical expression is given by

𝐺1(𝑌, 𝜖) = 𝑏4𝑦4 + 𝑏5𝜖+ 𝑏11(𝑦2
1 + 𝑦2

2 + 𝑦2
3) + 𝑏44𝑦

2
4 + 𝑏55𝜖

2 + 𝑏12(𝑦1𝑦2 − 𝑦1𝑦3 − 𝑦2𝑦3)

+ 𝑏11(𝑦3 − 𝑦2 − 𝑦1)𝑦4 + 𝑏15(𝑦1 − 𝑦3)𝜖+ 𝑏25𝑦2𝜖+ 𝑏45𝑦4𝜖+𝑂(3).

On the other hand, 𝐺3 is invariant by 𝜌(12). Thus

𝐺3(𝑌, 𝜖) = 𝑏4𝑦4 + 𝑐5𝜖+ 𝑏11(𝑦2
1 + 𝑦2

2 + 𝑦2
3) + 𝑏44𝑦

2
4 + 𝑐55𝜖

2 + 𝑏12(𝑦1𝑦3 − 𝑦1𝑦2 − 𝑦2𝑦3)

− 𝑏11(𝑦1 − 𝑦2 + 𝑦3)𝑦4 + 𝑐15(𝑦1 + 𝑦3)𝜖+ 𝑐25𝑦2𝜖+ 𝑐45𝑦4𝜖+𝑂(3).

Due to the Γ-equivariance of 𝐺, we must have

𝐺2(𝑌, 𝜖) = 𝑏4𝑦4 + 𝑏5𝜖+ 𝑏11(𝑦2
1 + 𝑦2

2 + 𝑦2
3) + 𝑏44𝑦

2
4 + 𝑏55𝜖

2 + 𝑏12(𝑦3𝑦2 − 𝑦1𝑦3 − 𝑦1𝑦2)

+ 𝑏11(𝑦1 − 𝑦2 − 𝑦3)𝑦4 + 𝑏15(𝑦3 − 𝑦1)𝜖+ 𝑏25𝑦2𝜖+ 𝑏45𝑦4𝜖+𝑂(3),

𝐺4(𝑌, 𝜖) = 𝑏4𝑦4 + 𝑐5𝜖+ 𝑏11(𝑦2
1 + 𝑦2

2 + 𝑦2
3) + 𝑏44𝑦

2
4 + 𝑐55𝜖

2 + 𝑏12(𝑦1𝑦3 + 𝑦1𝑦2 + 𝑦2𝑦3)

+ 𝑏11(𝑦1 + 𝑦2 + 𝑦3)𝑦4 − 𝑐15(𝑦1 + 𝑦3)𝜖+ 𝑐25𝑦2𝜖+ 𝑐45𝑦4𝜖+𝑂(3).

The analytic expression of the function Ψ is given by

Ψ(𝑌, 𝜖) = 4𝑏4𝑦4 + 2(𝑏5 + 𝑐5)𝜖+ 2𝑏11(𝑦2
1 + 𝑦2

2 + 𝑦2
3) + 2𝑏44𝑦

2
4 + 2(𝑏55 + 𝑐55)𝜖2

+ 2(𝑏25 + 𝑐25)𝑦2𝜖+ 2(𝑏45 + 𝑐45)𝑦4𝜖+𝑂(3).

Since 𝑊 is a solution to Ψ = 0 with 𝑏4 = −8𝑘2

𝑎

Å
3𝜈1−𝑎 + 32

𝑚*

ã
, we substitute a generic

Taylor expansion of 𝑊 into the Taylor expression of Ψ, group the similar term and compare

each term with the null series to obtain

𝑊 (𝑦1, 𝑦2, 𝑦3, 𝜖) = −
[
𝑤5𝜖+ 𝑤11(𝑦2

1 + 𝑦2
2 + 𝑦2

3) + 𝑤55𝜖
2 + 𝑤25𝑦2𝜖+𝑂(3)

]
,

where
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𝑤5 = 1
2𝑏4

(𝑏5 + 𝑐5),

𝑤11 = 𝑏11

𝑏4
,

𝑤55 = 1
4𝑏4

ï
2(𝑏55 + 𝑐55) + 𝑏44

𝑏4
𝑤5 + 2𝑏4𝑤5(𝑏45 + 𝑐45)

ò
,

𝑤25 = 1
2𝑏4

(𝑏25 + 𝑐25).

Now, the expressions of the functions 𝑔𝑖 up to the third order are

𝑔1(𝑦1, 𝑦2, 𝑦3, 𝜖) = 𝑏12𝑦2𝑦3 + (−𝑏11𝑤5 − 𝑏15 − 𝑐15)𝑦1𝜖− 𝑤11(𝑏11 + 𝑏111)𝑦3
1

− 𝑤11(𝑏11 + 𝑏112)𝑦1𝑦
2
2 − (𝑏11𝑤55 + 2𝑏551 + 2𝑐551 − 𝑏145𝑤5 − 𝑐145𝑤5)𝑦1𝜖

2

− (𝑏11𝑤25 + 𝑏125 + 𝑐125)𝑦1𝑦2𝜖+ (𝑏15 − 𝑐15)𝑦3𝜖+ (𝑏112 − 𝑏11𝑤11)𝑦1𝑦
2
3

+ (2𝑏551 − 2𝑐551 − 𝑏145𝑤5 + 𝑐145)𝑦3𝜖
2

+ (𝑏125 − 𝑏123𝑤5 − 𝑐125)𝑦2𝑦3𝜖+𝑂(4),

𝑔2(𝑦1, 𝑦2, 𝑦3, 𝜖) = (𝑐5 − 𝑏5)𝜖+ [(𝑐55 − 𝑏55) − 2(𝑐45 − 𝑏45)𝑤5] 𝜖2 + 𝑏12𝑦1𝑦3

− (𝑏11𝑤5 + 2(𝑏25 + 𝑐25))𝑦2𝜖− (𝑏11𝑤11 + 𝑏112)𝑦2𝑦
2
1 − 𝑏11𝑤11𝑦

3
2

− (𝑏11𝑤11 + 𝑏112)𝑦2𝑦
2
3

−
[
𝑏11𝑤55 − 𝑏114𝑤

2
5 − (𝑏45 − 𝑐45)𝑤25 + 2(𝑏552 + 𝑐552) + 2(𝑏245 + 𝑐245)

]
𝑦2𝜖

2

− [𝑏11𝑤25 + 2(𝑐45 − 𝑏45)𝑤11 + 2(𝑏225 − 𝑐225)] 𝑦2
2𝜖

− 2 [(𝑐45 − 𝑏45)𝑤11 + (𝑏115 − 𝑐115)] 𝑦2
1𝜖+ [(𝑏45 − 𝑐45)𝑤11 + 𝑐115 − 𝑏115] 𝑦2

3𝜖

+ [(𝑏45 − 𝑐45)𝑤55 + (𝑐555 − 𝑏555) − (𝑏554 − 𝑐554) + (𝑐445 − 𝑏445)] 𝜖3

+ (𝑏123𝑤5 + 𝑐135 − 𝑏135) 𝑦1𝑦3𝜖+𝑂(4),

𝑔3(𝑦1, 𝑦2, 𝑦3, 𝜖) = 𝑏12𝑦1𝑦2 − (𝑏11𝑤5 + 𝑏15 + 𝑐15)𝑦3𝜖− 𝑤11(𝑏11 + 𝑏111)𝑦3
3

− 𝑤11(𝑏11 + 𝑏112)𝑦3𝑦
2
2

+ (−𝑏11𝑤55 − 2𝑏551 − 2𝑐551 + 𝑏145𝑤5 + 𝑐145𝑤5)𝑦3𝜖
2

− (𝑏11𝑤25 + 𝑏125 − 𝑐125)𝑦2𝑦3𝜖+ (𝑏15 − 𝑐15)𝑦1𝜖+ (𝑏112 − 𝑏11𝑤11)𝑦3𝑦
2
1

+ (2𝑏551 − 2𝑐551 − 𝑏145𝑤5 + 𝑐145)𝑦1𝜖
2 + (𝑏125 − 𝑏123𝑤5 − 𝑐125)𝑦1𝑦2𝜖+𝑂(4).

Recall 𝑐5 − 𝑏5 = −
ï4(1 − 𝜈𝑎)(𝑚*𝜈1−𝑎 + 8)

(4 +𝑚*)𝑎

ò…
𝑚*

4 +𝑚* (1 − 𝜈𝑎) is the derivative of 𝑔2 with

respect to 𝜖. Moreover, from the discussion in the last section, 𝜖 is an implicit solution of
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𝑔2 = 0. Hence, we obtain the expression of 𝜖 in the same way as for 𝑊 .

𝜖(𝑦1, 𝑦2, 𝑦3) =
Å 1
𝑐5 − 𝑏5

ã [
−𝑏12𝑦1𝑦3 + 𝑏11𝑤11𝑦

3
2 + (𝑏11𝑤11 + 𝑏112)(𝑦2

1 + 𝑦2
3
)
𝑦2

− 𝑏12 (𝑏11𝑤5 + 2(𝑏25 + 𝑐25))𝑦1𝑦2𝑦3 +𝑂(4)] ,

and replacing the above expression of 𝜖 in 𝑔1 and 𝑔3, it follows that

𝐻1(𝑦1, 𝑦2, 𝑦3) = 𝑏12(𝑦1 + 𝑦3)𝑦2 +
Å

𝑏12

𝑐5 − 𝑏5

ã
(𝑏11𝑤5 + 𝑏15 + 𝑐15)(𝑦1 + 𝑦3)𝑦1𝑦3

− 𝑤11(𝑏11 + 𝑏111)(𝑦1 + 𝑦3)(𝑦2
1 − 𝑦1𝑦3 + 𝑦2

3) − 𝑤11(𝑏11 + 𝑏112)(𝑦1 + 𝑦3)𝑦2
2

+
ï
2
Å
𝑐15 − 𝑏15

𝑐5 − 𝑏5

ã
𝑏12 − 𝑏11𝑤11 + 𝑏112

ò
(𝑦1 + 𝑦3)𝑦1𝑦3 +𝑂(4),

𝐻2(𝑦1, 𝑦2, 𝑦3) = 𝑏12(𝑦1 − 𝑦3)𝑦2 +
Å

𝑏12

𝑐5 − 𝑏5

ã
(𝑏11𝑤5 + 𝑏15 + 𝑐15)(𝑦1 − 𝑦3)𝑦1𝑦3

− 𝑤11(𝑏11 + 𝑏111)(𝑦1 − 𝑦3)(𝑦2
1 + 𝑦1𝑦3 + 𝑦2

3) − 𝑤11(𝑏11 + 𝑏112)(𝑦1 − 𝑦3)𝑦2
2

−
ï
2
Å
𝑐15 − 𝑏15

𝑐5 − 𝑏5

ã
𝑏12 − 𝑏11𝑤11 + 𝑏112

ò
(𝑦1 − 𝑦3)𝑦1𝑦3 +𝑂(4).

We know that 𝑦1 = −𝑦3 is a solution of 𝐻1 = 0 and 𝑦1 = 𝑦3 is a solution of 𝐻2 = 0, as

explained in the previous section. Thus, we factor the term (𝑦1 + 𝑦3) from expansion of 𝐻1

and (𝑦1 − 𝑦3) from 𝐻2 and then, comparing with equations (4.34) and (4.35), we get

ℎ1(𝑦1, 𝑦2, 𝑦3) = 𝑏12𝑦2 +
ïÅ

𝑏12

𝑐5 − 𝑏5

ã
(𝑏11𝑤5 + 3𝑐15 − 𝑏15) + 𝑤11𝑏111 + 𝑏112

ò
𝑦1𝑦3 (4.36)

− 𝑤11
[
(𝑏11 + 𝑏111)(𝑦2

1 + 𝑦2
3) + (𝑏11 + 𝑏112)𝑦2

2
]

+𝑂(3),

ℎ2(𝑦1, 𝑦2, 𝑦3) = 𝑏12𝑦2 +
ïÅ

𝑏12

𝑐5 − 𝑏5

ã
(𝑏11𝑤5 + 3𝑏15 − 𝑐15) − 𝑤11(2𝑏11 + 𝑏111) + 𝑏112

ò
𝑦1𝑦3

− 𝑤11
[
(𝑏11 + 𝑏111)(𝑦2

1 + 𝑦2
3) + (𝑏11 + 𝑏112)𝑦2

2
]

+𝑂(3). (4.37)

The derivative of ℎ𝑖, 𝑖 = 1, 2, with respect to 𝑦2 is 𝑏12 = 6𝑘
𝑎
𝜈1−𝑎 + 64𝑘3

𝑎2𝑚*2 (𝑎 − 1), which is

negative for all 𝑎 < −1. Thus, it follows from the implicit function theorem that ℎ𝑖 = 0, 𝑖 =

1, 2, can be solved for 𝑦2 in terms of (𝑦1, 𝑦3) near the origin (0, 0). Therefore, the expression

of the implicit solution of ℎ1 = 0 is

𝑦1
2(𝑦1, 𝑦3) = − 1

𝑏12

ïÅ
𝑏12

𝑐5 − 𝑏5

(
𝑏11𝑤5 + 3𝑐15 − 𝑏15

ã
+ 𝑏112 + 𝑤11𝑏111

ã
𝑦1𝑦3

− 𝑤11
(
𝑏11 + 𝑏111)(𝑦2

1 + 𝑦2
3) +𝑂(3)

]
.

On the other hand, the expression of the implicit solution of ℎ2 = 0 is

𝑦2
2(𝑦1, 𝑦3) = − 1

𝑏12

ïÅ
𝑏12

𝑐5 − 𝑏5

(
𝑏11𝑤5 + 3𝑏15 − 𝑐15

ã
+ 𝑏112 − 𝑤11(𝑏111 + 2𝑏11)

ã
𝑦1𝑦3

− 𝑤11
(
𝑏11 + 𝑏111)(𝑦2

1 + 𝑦2
3) +𝑂(3)

]
.
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Remark 4.13. We calculated all the coefficients 𝑏’s and 𝑐’s using the computer algebra system

Maple.

4.3.2 Bifurcation Branches

Bifurcation branches arising from the centered tetrahedron are obtained by combining the

solutions of equations (4.34) and (4.35). There are four possible cases.

Firstly, 𝑦1 = 𝑦3 = 0 is a solution of equations (4.34) and (4.35) for any 𝑦2 near the origin.

The second solution is obtained substituting the solution (−𝑦3, 𝑦2, 𝑦3) from equation (4.34)

into (4.35). We have

(−2𝑦3)ℎ2(𝑦1, 𝑦2) = 0, (4.38)

whose solutions are 𝑦3 = 0 and the zeros of the function ℎ2, namely 𝑦2
2(𝑦3).

Similarly, the third solution is obtained by substituting the solution (𝑦3, 𝑦2, 𝑦3) from (4.35)

into (4.34). We get

(2𝑦3)ℎ1(𝑦1, 𝑦2) = 0, (4.39)

whose solutions are 𝑦3 = 0 and the zeros of ℎ1, namely 𝑦1
2(𝑦3).

Finally, we consider 𝑦1 ̸= −𝑦3 and substitute 𝑦1
2(𝑦1, 𝑦3) in (4.34), assuming that 𝑦1 ̸= 𝑦3,

we obtain

ℎ̃2(𝑦1, 𝑦
1
2, 𝑦3) =

ïÅ 4𝑏12

𝑐5 − 𝑏5

ã
(𝑏15 − 𝑐15) − 2𝑤11(𝑏111 + 𝑏11)

ò
𝑦1𝑦3 +𝑂(3).

If we analyze the first term of ℎ̃2 numerically, we see that in the neighborhood of 𝑎 = −3/2

this term is nonzero. Therefore, the solution of ℎ̃2 = 0 is 𝑦1 = 𝑦3 = 0, which results in 𝑦2 = 0,

i.e., the trivial solution.

To summarize the above discussion, we have obtained three families of solutions. In the

family (I), the free variable is 𝑦2, while in the families (II) and (III), the free variable is 𝑦3. This

means that we need to use different bifurcation parameters to represent distinct families, for



72

different free variables lead to different relationships with the parameter 𝜖. Hence,

Family (I):



𝑦1 = 0,

𝑦2 =: 𝛿,

𝑦3 = 0,

𝑦4 = 𝑘 − 𝑏11

𝑏4
𝛿2 +𝑂(3),

𝜖 = −
ï

𝑏2
11

𝑏4(𝑐5 − 𝑏5)

ò
𝛿3 +𝑂(4).

The term of third order in the above expansion for 𝜖 is negative, since 𝑏4 > 0 and 𝑐5 − 𝑏5 > 0,

for 𝑎 < −1. The other two families one

Family (II):



𝑦1 = −𝜇,

𝑦2 =
ßï

𝑏112 − (3𝑏111 + 4𝑏11)𝑤11

𝑏12

ò
−
ï
𝑏11𝑤5 + 3𝑏15 − 𝑐15

𝑐5 − 𝑏5

ò™
𝜇2 +𝑂(3),

𝑦3 =: 𝜇,

𝑦4 = 𝑘 −
ïÅ

𝑤5𝑏12

𝑐5 − 𝑏5

ã
+ 2𝑤11

ò
𝜇2 +𝑂(3),

𝜖 =
Å

𝑏12

𝑐5 − 𝑏5

ã
𝜇2 +𝑂(3).

Family (III):



𝑦1 = 𝜇,

𝑦2 =
ïÅ
𝑏112 + 𝑤11𝑏11

𝑏12

ã
−
Å
𝑏11𝑤5 + 3𝑐15 − 𝑏15

𝑐5 − 𝑏5

ãò
𝜇2 +𝑂(3),

𝑦3 =: 𝜇,

𝑦4 = 𝑘 −
ï
2𝑤11 −

Å
𝑏12𝑤5

𝑐5 − 𝑏5

ãò
𝜇2 +𝑂(3),

𝜖 = −
Å

𝑏12

𝑐5 − 𝑏5

ã
𝜇2 +𝑂(3).

In family (II) we have 𝜖 > 0, since 𝑏12 > 0 and 𝑐5 − 𝑏5 > 0. Furthermore, for each value

of 𝜖, we have 𝜖(𝜇) = 𝜖(−𝜇), but 𝑌 (𝜇) ̸= 𝑌 (−𝜇). In other words, for each value of 𝜖, we have

two central configurations shooting off the degenerate centered tetrahedron, when 𝜇 → 0, as

for family (III), but in this case 𝜖 < 0.

Returning to the variables 𝑥𝑖, we have
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Family (I):



𝑥1 = 𝑘 − 𝛿 − 𝑏11

𝑏4
𝛿2 +𝑂(3),

𝑥2 = 𝑘 − 𝛿 − 𝑏11

𝑏4
𝛿2 +𝑂(3),

𝑥3 = 𝑘 + 𝛿 − 𝑏11

𝑏4
𝛿2 +𝑂(3),

𝑥4 = −4𝑘 + 4𝑏11

𝑏4
𝛿2 +𝑂(3),

𝑥5 = 𝑘 + 𝛿 − 𝑏11

𝑏4
𝛿2 +𝑂(3).

Family (II):



𝑥1 = 𝑘 + 2𝜇− (𝛼2 + 𝛽2)𝜇2 +𝑂(3),

𝑥2 = 𝑘 − 2𝜇− (𝛼2 + 𝛽2)𝜇2 +𝑂(3),

𝑥3 = 𝑘 + (𝛼2 − 𝛽2)𝜇2 +𝑂(3),

𝑥4 = −4𝑘 + 4𝛽2𝜇
2 +𝑂(3),

𝑥5 = 𝑘 + (𝛼2 − 𝛽2)𝜇2 +𝑂(3).

Family (III):



𝑥1 = 𝑘 − (𝛼3 + 𝛽3)𝜇2 +𝑂(3),

𝑥2 = 𝑘 − (𝛼3 + 𝛽3)𝜇2 +𝑂(3),

𝑥3 = 𝑘 − 2𝜇+ (𝛼3 − 𝛽3)𝜇2 +𝑂(3),

𝑥4 = −4𝑘 + 4𝛽3𝜇
2 +𝑂(3),

𝑥5 = 𝑘 + 2𝜇+ (𝛼3 − 𝛽3)𝜇2 +𝑂(3),

where

𝛼2 = 𝑏112 − (3𝑏111 + 4𝑏11)𝑤11

𝑏12
− 𝑏11𝑤5 + 3𝑏15 − 𝑐15

𝑐5 − 𝑏5
, 𝛽2 = 𝑤5𝑏12

𝑐5 − 𝑏5
+ 2𝑤11,

𝛼3 = 𝑏112 + 𝑤11𝑏11

𝑏12
− 𝑏11𝑤5 + 3𝑐15 − 𝑏15

𝑐5 − 𝑏5
, 𝛽3 = 2𝑤11 − 𝑏12𝑤5

𝑐5 − 𝑏5
.

Finally, the Taylor series of 𝑠𝑖𝑗 of the first family around 𝛿 = 0 up to second order

𝑠𝐼
𝑖𝑗(𝛿) = 𝑠0

𝑖𝑗 + 𝑣𝐼
𝑖𝑗𝛿 + 𝛼𝐼

𝑖𝑗𝛿
2 +𝑂(𝛿3), 1 ≤ 𝑖, 𝑗 ≤ 5, (4.40)

where 𝑣𝐼
𝑖𝑗 = 𝑑𝑠𝑖𝑗

𝑑𝛿

∣∣∣
𝛿=0

, and 𝛼𝐼
𝑖𝑗 = 1

2
𝑑2𝑠𝑖𝑗

𝑑𝛿2

∣∣∣
𝛿=0

.

To understand how families (I), (II), and (III) behave, we will analyze the signs of linear

terms of (4.40) to study the growth of 𝑠𝑖𝑗.
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The linear terms of the family (I) are

𝑣𝐼
12 = 2𝑘

𝑎
𝜈1−𝑎 < 0,

𝑣𝐼
13 = 𝑣𝐼

23 = 𝑣𝐼
15 = 𝑣𝐼

25 = 0,

𝑣𝐼
35 = −2𝑘

𝑎
𝜈1−𝑎 > 0,

𝑣𝐼
14 = 𝑣𝐼

24 = − 4𝑘
𝑎𝑚* > 0,

𝑣𝐼
34 = 𝑣𝐼

45 = 4𝑘
𝑎𝑚* < 0, ∀ 𝑎 ∈ (−∞,−1).

The behavior of the family (I) is shown in figure 8. The symmetry is given by the intersection

of two planes. One of the plane contains the midpoint of the segment 𝑞3𝑞5 and the segment

𝑞1𝑞2, and the other contains the midpoint of the segment 𝑞1𝑞2 and the segment 𝑞3𝑞5. The

mass 𝑚* must be at the intersection of these two planes. If 𝛿 > 0, then the mass 𝑚* is closer

to the segment 𝑞3𝑞5. Conversely, the mass 𝑚* is closer to the segment 𝑞1𝑞2.

𝑚1
𝑚2

𝑚5

𝑚3 𝑚*

𝑚1
𝑚2

𝑚5

𝑚3 𝑚*

𝑚1
𝑚2

𝑚5

𝑚3 𝑚*

Figure 8. Bifurcation emerging from centered regular tetrahedron, which occurs when 𝜖 > 0 (𝛿 < 0). The
intersection of the two planes gives us the symmetry.

The Taylor series of 𝑠𝑖𝑗 of the second and third families around 𝜇 = 0 up to second order

is

𝑠𝐼𝐼
𝑖𝑗 (𝜇) = 𝑠0

𝑖𝑗 + 𝑣𝐼𝐼
𝑖𝑗 𝜇+ 𝛼𝐼𝐼

𝑖𝑗 𝜇
2 +𝑂(𝜇3), (4.41)

where 𝑣𝐼𝐼
𝑖𝑗 =

𝑑𝑠𝐼𝐼
𝑖𝑗

𝑑𝜇

∣∣∣
𝜇=0

, and 𝛼𝐼𝐼
𝑖𝑗 = 1

2
𝑑2𝑠𝐼𝐼

𝑖𝑗

𝑑𝜇2

∣∣∣
𝜇=0

.
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The linear terms of the family (II) are

𝑣𝐼𝐼
12 = 𝑣𝐼𝐼

34 = 𝑣𝐼𝐼
45 = 𝑣𝐼𝐼

35 = 0,

𝑣𝐼𝐼
13 = 𝑣𝐼𝐼

15 = −2𝑘
𝑎
𝜈1−𝑎,

𝑣𝐼𝐼
14 = 8𝑘

𝑎𝑚* < 0,

𝑣𝐼𝐼
23 = 𝑣𝐼𝐼

25 = 2𝑘
𝑎
𝜈1−𝑎 < 0,

𝑣𝐼𝐼
24 = − 8𝑘

𝑎𝑚* > 0, ∀ 𝑎 ∈ (−∞,−1).

In this case, the plane of symmetry intersects the segment 𝑞3𝑞5 orthogonally and contains

the segment 𝑞1𝑞2. If 𝜇 > 0, then the mass 𝑚* lies on this plane, but closer to the segment

𝑞1𝑞2. Furthermore, 𝑚* is closer to 𝑚1 than to 𝑚2, meaning that it lies outside the plane of

symmetry that intersects 𝑞1𝑞2 at the midpoint. If 𝜇 < 0, the opposite happens with the mass

𝑚*.

𝑚1
𝑚1

𝑚2

𝑚3
𝑚5

𝑚2

𝑚3
𝑚5

𝑚1

𝑚2

𝑚3
𝑚5

𝜇 < 0 𝜇 = 0 𝜇 > 0

𝑚*

𝑚*
𝑚*

Figure 9: Bifurcation of family (II), which occurs when 𝜖 > 0. The plane of symmetry intersects the midpoint
of the segment 𝑞3𝑞5.

Finally, the linear terms of the family (III) are

𝑣𝐼𝐼𝐼
12 = 𝑣𝐼𝐼𝐼

14 = 𝑣𝐼𝐼𝐼
24 = 𝑣𝐼𝐼𝐼

35 = 0,

𝑣𝐼𝐼𝐼
13 = 𝑣𝐼𝐼𝐼

23 = 2𝑘
𝑎
𝜈1−𝑎 < 0,

𝑣𝐼𝐼𝐼
15 = 𝑣𝐼𝐼𝐼

25 = −2𝑘
𝑎
𝜈1−𝑎 > 0,

𝑣𝐼𝐼𝐼
34 = − 8𝑘

𝑎𝑚* > 0,

𝑣𝐼𝐼𝐼
45 = 8𝑘

𝑎𝑚* < 0, ∀ 𝑎 ∈ (−∞,−1).

The plane of symmetry intersects the segment 𝑞1𝑞2 orthogonally and contains the segment

𝑞3𝑞5. If 𝜇 > 0, then the mass 𝑚* lies on this plane, but it is closer to 𝑚5 than to 𝑚3, meaning
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that it lies outside the plane of symmetry that intersects 𝑞3𝑞5 at the midpoint. If 𝜇 < 0, the

opposite happens with the mass 𝑚*.

𝑚3
𝑚3

𝑚5

𝑚1
𝑚2

𝑚5

𝑚1
𝑚2

𝑚3

𝑚5

𝑚1
𝑚2

𝜇 > 0𝜇 = 0𝜇 < 0

𝑚*

𝑚* 𝑚*

Figure 10: Bifurcation of family (III), which occurs when 𝜖 < 0. The plane of symmetry intersects the midpoint
of the segment 𝑞1𝑞2.

Theorem 4.14. Let 𝑞(1, 1, 1,𝑚, 1) be a central configuration of five bodies in the space

forming a centered regular tetrahedron. Denote by 𝑚* > 0 the value of the central mass,

which depends on the exponent a<-1, such that the configuration is degenerate. If 𝜖 > 0, for

exactly two equal masses at the vertices of the tetrahedron either in the interval (1, 1 + 𝜖) or

(1 − 𝜖, 1), then in both cases there exist two families of central configurations with plane-type

symmetry which bifurcate from the degenerate solution 𝑞(1, 1, 1,𝑚*, 1). Furthermore, there is

only one family of central configurations with plane-type symmetry that bifurcates from the

degenerate solution if exactly two equal masses are in the interval (1 − 𝜖, 1 + 𝜖). In all cases,

there are no symmetrical central configurations bifurcating from 𝑞(1, 1, 1,𝑚*, 1).

Remark 4.15. According to (GOLUBITSKY; SCHAEFFER, 1988), when a solution to a bi-

furcation problem has less symmetry than the equations that describe such problem, it is

said that there has been a symmetry breaking. In both problems studied in this chapter, the

symmetry-breaking phenomenon has been observed.
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5 CONCLUSION AND PERSPECTIVES

In this thesis, we set out to find new central configurations from two degenerate central con-

figurations of the four-body and five-body problems. We started by analyzing the bifurcations

of a centered triangular configuration. We obtained three families of central configurations that

are valid for any value of the exponent of the potential function in the interval (−∞,−1).

However, we were only able to fully analyze the Newtonian case. We will continue this analysis

in future projects in order to consider other particular cases.

For the five-body problem, we studied the bifurcation of a degenerate centered regu-

lar tetrahedron. We approached this degenerate central configuration following two different

paths. Considering three equal bifurcation parameters, we obtained four families of central

configurations. For two equal bifurcation parameters, there are three families of central con-

figurations. We understand that for these cases the analysis was carried out completely and

the solutions found are valid for any potential function with exponent 𝑎 < −1.

The bifurcation analysis we used was heavily based on the symmetry of the problems. This

indicates that we need to increasingly understand the role of symmetry in solving bifurcation

problems.

Our expectation for future work is to study the bifurcations of the centered regular tetra-

hedron considering approaching the degenerate configuration through different paths than

those already considered. At first, considering two different parameters and thus reducing the

symmetry group of the problem seems like a natural way forward.

Another problem to be studied later are the bifurcations of a configuration that is not

Dziobek. More precisely, a configuration of five bodies in the plane in the form of a square

with equal masses at the vertices and an arbitrary mass in the center.
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APPENDIX A – COMPARISON OF THE TERMS OF THE EXPANSION OF

THE SQUARE OF THE DISTANCE

To facilitate a comparison the terms of the 𝑠𝑖𝑗 presented in section 4.2.2 with the ones

studied in (SANTOS et al., 2017), we display in this appendix the second-order terms of the

family (I) and the second and third-order terms of family (II) found in (SANTOS et al., 2017).

The second order terms of family (I) are

𝛼12 =
Å 4
𝑎2𝜈

1−2𝑎𝑘2
ã

(1 − 𝑎) + 𝜈1−𝑎

𝑎

ß
−2 + 16

ï
𝑚* + 4𝜈𝑎

(4 +𝑚*)2

ò
𝑏22

𝑏5

™
,

𝛼15 =
Å 4
𝑎2𝜈

1−2𝑎𝑘2
ã

(1 − 𝑎)

+ 𝜈1−𝑎

𝑎

ß
6 + 16

ï
𝑚* + 4𝜌𝑎

(4 +𝑚*)2 − 𝑘2
ò
𝑏22

𝑏5
+ 2𝑘

ï−8𝑏22𝑐5 + 3𝑏5(𝑐11 + 𝑐12)
𝑓𝑏5

ò™
,

𝛼14 = 16
𝑎2(𝑚*)2𝑘

2(1 − 𝑎)

+ 1
𝑎

ß
16
ï
𝑚* + 4𝜈𝑎

(4 +𝑚*)2

ò
𝑏22

𝑏5
− 2𝑘

ï−8𝑏22𝑐5 + 3𝑏5(𝑐11 + 𝑐12)
𝑓𝑏5𝑚*

ò™
,

𝛼45 =
Å 144
𝑎2(𝑚*)2

ã
𝑘2(1 − 𝑎)

+ 1
𝑎

ß
16
ï
𝑚* + 4𝜈𝑎

(4 +𝑚*)2 + 4𝑘2

𝑚*

ò
𝑏22

𝑏5
− 10𝑘

ï8𝑏22𝑐5 + 3𝑏5(𝑐11 + 𝑐12)
𝑓𝑏5𝑚*

ò™
.

Since the second order terms of family (II) agree with whose was showed in section 4.2.2,

we will show the third order terms

𝑤12 =
Ç

8𝑘3𝜈(1−3𝑎)

𝑎3

å (
1 − 3𝑎+ 2𝑎2) −

Ç
12𝑘𝜈(1−2𝑎)

𝑎2

å
(1 − 𝑎)

−
Ç

6𝜈(1−𝑎)

𝑎

åÅ
𝑚* + 4𝜈𝑎

(4 +𝑚*)2

ã
𝑑,

𝑤13 =𝑤23 = −6
Ç
𝜈(1−𝑎)

𝑎

åï(𝑚* + 4𝜈𝑎)
(4 +𝑚*)2

ò
𝑑,

𝑤15 =𝑤25 = −6
Ç
𝜈(1−𝑎)

𝑎

åßï(𝑚* + 4𝜈𝑎)
(4 +𝑚*)2 − 𝑘2

ò
𝑑+ (3𝑐11 − 𝑐12)

𝑓

™
𝑤14 =𝑤24 = −

Å 64𝑘3

𝑎3𝑚*3

ã
(1 − 3𝑎+ 2𝑎2) +

Å 24𝑘2

𝑎2𝑚*2𝑓

ã
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− 6
𝑎

ßï(𝑚* + 4𝜈𝑎)
(4 +𝑚*)2

ò
𝑑− 3𝑐11 − 𝑐12

𝑓𝑚*

™
,

𝑤34 = −
Å 64𝑘3

𝑎3𝑚*3

ã
(1 − 3𝑎+ 2𝑎2) −

Å 24𝑘2

𝑎2𝑚*2𝑓

ã
(3𝑐11 − 𝑐12)(1 − 𝑎)

− 6
𝑎

ßï(𝑚* + 4𝜈𝑎)
(4 +𝑚*2

ò
𝑑+ 3𝑐11 − 𝑐12

𝑓𝑚*

™
,
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𝑤45 =
Å 64𝑘3

𝑎3𝑚*3

ã
(1 − 3𝑎+ 2𝑎2) −

Å 120𝑘2

𝑎2𝑚*2𝑓

ã
(3𝑐11 − 𝑐12)(1 − 𝑎)

− 6
𝑎

ßï(𝑚* + 4𝜈𝑎)
(4 +𝑚*)2

ò
𝑑+ 3𝑐11 − 𝑐12

𝑓𝑚*

™
,

𝑤35 =
Å8𝑘3𝜈1−3𝑎

𝑎3

ã
(−1 + 3𝑎− 2𝑎2) −

Å12𝑘𝜈1−2𝑎

𝑎2

ãï
𝑘(3𝑐11 − 𝑐12)

𝑓
− 1
ò

(1 − 𝑎)

−
Ç

6𝜈(1−𝑎)

𝑎
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(4 +𝑚*)2 − 𝑘2

ò
𝑑−
Å3𝑐11 − 𝑐12
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ã™
,

where 𝑑 has an expression such as the one at the bottom of the page 58.
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